Monash University
Browse
monash_8326.pdf (8.39 MB)

Zinc and copper behaviour during stormwater aquifer storage and recovery in sandy aquifers

Download (8.39 MB)
thesis
posted on 2017-01-10, 04:06 authored by Wendelborn, Anke
In the light of increasing demand and diminishing supplies a sustainable urban water management for Melbourne and other cities will need to include water recycling and reuse of reclaimed water and stormwater. One key issue in stormwater reuse is the need for storage between times of collection until times of demand. Aquifer storage and recovery (ASR) would be a valuable option as it has limited space requirements and restricts loss from evaporation. However, stormwater commonly contains elevated levels of heavy metals, of which Zn and Cu are the most mobile. Stormwater also contains suspended solids, organic carbon, oxygen and nutrients, which influence the behaviour of injected metals and induce geochemical changes in the aquifer. While stormwater ASR has been practiced in limestone aquifers in South Australia, field data for sandy aquifers, which are more prevalent around Melbourne, are very limited. Risk assessment regarding the potential impact of stormwater ASR on the quality of the aquifer and groundwater resources in sandy aquifer is therefore necessary. After a characterisation of stormwater from different Melbourne catchments confirmed comparatively high concentrations of Zn and Cu in stormwater, three siliceous aquifer sediments were used in a series of batch sorption experiments as well as column experiments imitating one ASR cycle to assess the impact of different parameters on Zn and Cu behaviour. The reactive geochemical transport model PHT3D was then modified to simulate experimental results with the outlook that it could be used as a predictive tool for long term evaluation. The study showed that Zn adsorption was limited and desorption of large fractions occurred, indicating that injected amounts of Zn are mobile and would mainly be recovered. In contrast, Cu adsorption was higher and desorption was limited, indicating that injected amounts of Cu would mainly accumulate in the aquifer. The release of metals was triggered by reduction in pH, increase in ionic strength and particle mobilisation. Metal concentrations were also increased after storage phases, while minor sediment constituents, especially organic matter, significantly reduce metal mobility. The different role of dissolved and solid organic carbon is critical in understanding Cu behaviour during stormwater ASR. Pretreatment of stormwater to reduce the injection of colloids, organic carbon and metals are recommended to limit metal accumulation in the subsurface. Monitoring of water quality throughout the ASR cycle would be encouraged to validate the current findings with field data. Special attention should be paid to backflushed water quality to ensure correct disposal.

History

Campus location

Australia

Principal supervisor

Mudd, Gavin

Year of Award

2008

Department, School or Centre

Civil Engineering

Additional Institution or Organisation

Institute for Sustainable Water Resources (ISWR)

Course

Doctor of Philosophy

Degree Type

DOCTORATE

Faculty

Faculty of Engineering