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ABSTRACT

Calibration error represents a significant source of uncertainty in quanti-

tative applications of ground-based radar (GR) reflectivity data. Correcting

it requires knowledge of the true reflectivity at well-defined locations and

times during a volume scan. Previous work has demonstrated that observa-

tions from certain spaceborne radar (SR) platforms may be suitable for this

purpose. Specifically, the Ku-band precipitation radars on board the Tropical

Rainfall Measuring Mission (TRMM) satellite and its successor, the Global

Precipitation Measurement (GPM) mission satellite, together provide nearly

two decades of well-calibrated reflectivity measurements over low-latitude

regions (±35◦). However, when comparing SR and GR reflectivities great

care must be taken to account for differences in instrument sensitivity and

frequency, as well as to ensure that the observations are spatially and tempo-

rally coincident. Here, a volume-matching method, developed as part of the

ground validation network for GPM, is adapted and used to quantify historical

calibration errors for three S-band radars in the vicinity of Sydney, Australia.

Volume-matched GR–SR sample pairs are identified over a seven-year pe-

riod and carefully filtered to isolate reflectivity differences associated with

GR calibration error. These are then used in combination with radar engineer-

ing work records to derive a piecewise-constant time series of calibration error

for each site. The efficacy of this approach is verified through comparisons

between GR reflectivities in regions of overlapping coverage, with improved

agreement when the estimated errors are removed.
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1. Introduction38

Since their development following the end of the Second World War, ground-based weather39

radars have become an indispensable tool for studying precipitation systems and associated phe-40

nomena on scales ranging from tens of meters to thousands of kilometers. Of particular value is41

their ability to provide quantitative information about surface rainfall intensity. Such information42

can be used by forecasters to monitor and warn for hazardous extreme-rain events, serves as input43

data to hydrological models, and allows for areal verification of quantitative precipitation fore-44

casts. However, radar-derived rainfall estimates are subject to significant uncertainties (Villarini45

and Krajewski 2010). Many of these relate to assumptions that must be made regarding the drop46

size distribution and its evolution as hydrometeors fall from the level of observation to the surface,47

but perhaps the most fundamental uncertainty is that associated with errors in radar calibration.48

The primary quantity measured by weather radars is the equivalent reflectivity factor Z (here-49

inafter reflectivity1), which has units of mm6 m−3. This is related to the returned power Pr from a50

target at range r via the radar equation:51

Z =Cr2Pr (1)

Here, C is the so-called radar constant which depends on the radar-system characteristics (e.g.52

transmitted power, wavelength, beam width, pulse duration, antenna gain). In reality C is not53

constant, but varies due to degradation, maintenance, and replacement of various radar-system54

components, as well as due to thermal effects. Taking the common logarithm of (1) and multiply-55

ing by 10, we obtain an expression for the reflectivity measured in dBZ:56

Ẑ = Ĉ+2r̂+ P̂r (2)

1Technically, the term reflectivity refers to the quantity η = π5λ−4‖Kw‖2Z, where λ is wavelength and ‖Kw‖2 = 0.93 is the dielectric constant

for liquid water. However, for brevity, and in keeping with previous studies on radar calibration, we will refer to Z as reflectivity.
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where χ̂ = 10log10 χ for a variable χ . Hereinafter, we drop the circumflex and simply use Z to57

denote reflectivity, irrespective of the units. It can be seen that any error in the assumed value of Ĉ58

will produce an equivalent error in the reflectivity. This is referred to as a calibration error.59

Maintaining a well-calibrated radar system requires regular testing and maintenance of those60

components which influence the true value of Ĉ. Since this can be both time consuming and61

costly, there is great value in so-called end-to-end calibration tests which characterize the system62

as a whole. These tests typically involve the measurement of a target (or targets) with well-defined63

scattering properties, such as a standard reflector or metal sphere (Atlas 2002; Chandrasekar et al.64

2015). An alternative approach is to compare reflectivity measurements with those from an inde-65

pendent well-calibrated radar system. The Ku-band precipitation radar (PR) on the Tropical Rain-66

fall Measuring Mission (TRMM; Simpson et al. 1996) satellite, operational from 1997 to 2014,67

represented one such system. Internal and external calibration checks showed that, in the absence68

of attenuation, PR reflectivity measurements were accurate to within 1 dB (Kawanishi et al. 2000;69

Takahashi et al. 2003). The Ku-band component of the dual-frequency precipitation radar (KuPR)70

on board the Global Precipitation Measurement mission (GPM; Hou et al. 2014) Core Observatory71

satellite, which has now superseded TRMM, is anticipated to be equally accurate.72

The task of comparing reflectivities observed by spaceborne and ground-based radars (here-73

inafter SRs and GRs, respectively) is complicated by the wildly different sampling characteristics74

of the two instruments. Operational GRs typically perform volume scans at regular intervals of75

5–10 minutes. These scans consist of 360◦ radial sweeps performed at multiple elevation angles,76

ranging from near zero to around 20–30◦. Samples of reflectivity are recorded every 0.5–1◦ in77

azimuth and every 250 m–1 km in range, out to maximum ranges of 150–300 km. By comparison,78

the TRMM PR and GPM KuPR measure quasi-vertical profiles of reflectivity within ∼ 250 km-79

wide orbital swaths, with horizontal and vertical sampling intervals of 5 km and 125–250 m, re-80
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spectively. Sun-asynchronous orbits give rise to quasi-periodic observations at all locations within81

the satellite’s latitudinal range (±35◦ for TRMM, ±65◦ for GPM) with typical overpass frequen-82

cies of 1–2 day−1. Another important difference between GR and SR measurements relates to83

the atmospheric volume sampled by each radar pulse. This volume is proportional to the angular84

beam width and increases with the square of range due to beam broadening. As a consequence,85

GR sample volumes vary by approximately five orders of magnitude within the instrument’s field86

of view. In contrast, for SRs the extent of measurements in the range (vertical) direction is limited87

to the first 20 km above the surface and thus the relative variation in sample volume is small.88

To quantitatively compare SR and GR reflectivities, measurements must be associated both in89

time and space. The ground speed of the satellites is sufficiently high that measurements across90

a typical GR field of view can be treated as instantaneous. Temporal association is thus achieved91

simply by identifying the GR volume scan closest in time to a given SR overpass. Due to the92

different sampling geometries, spatial association is much more challenging. Many researchers93

have taken the fairly simple approach of remapping both observation sets to a common three-94

dimensional Cartesian grid, using nearest-neighbour or linear interpolation (e.g. Anagnostou et al.95

2001; Liao et al. 2001; Bolen and Chandrasekar 2003; Liao and Meneghini 2009b; Wang and96

Wolff 2009; Park et al. 2015). However, such procedures necessarily introduce errors which may97

swamp systematic differences in reflectivity associated with GR miscalibration. To overcome this98

issue, Schwaller and Morris (2011, hereinafter SM11) introduced what will herein be referred to99

as the volume-matching method (VMM). In this approach, intersections between individual SR100

beams and GR elevation sweeps are identified and the reflectivity values from both instruments101

are averaged within a spatial neighbourhood around the intersection. Specifically, SR data are102

averaged in range over the width of the GR beam at the GR range of the intersection while GR103
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data are averaged in the range–azimuth plane within the footprint of the SR beam. The result is a104

pair of reflectivity measurements corresponding to approximately the same volume of atmosphere.105

The VMM was originally developed as part of ground-validation efforts in support of the GPM106

mission. While the potential of the method as a means to track GR calibration was immediately107

apparent to the developers, its use in this context has thus far been very limited. Kim et al. (2014)108

applied the VMM to four GRs in the Korean Peninsula for the period 2006–2010, finding time-109

averaged calibration errors of between −2 and +1 dB. However, they were unable to identify110

shorter-timescale variations in GR calibration due to the noisiness of the GR–SR comparisons.111

This characteristic was also noted by SM11 and is believed to result from a combination of factors,112

including imperfect spatial and temporal matching, differences in radar frequency, and errors in113

SR attenuation correction.114

The present study summarizes our efforts using the VMM to quantify and correct historical115

calibration errors for three GRs in the vicinity of Sydney, Australia. We first explore how sys-116

tematic variations in GR–SR reflectivity difference can be related to certain characteristics of the117

volume-matched sample pair. By isolating samples which are least influenced by these artifacts118

it is possible to significantly reduce the noise in GR bias estimates. We then demonstrate how119

VMM results can be used in combination with radar engineering maintenance records to identify120

variations in GR calibration on inter- and intra-annual timescales. Finally, we present a simple121

method of comparing GR observations in regions of overlapping coverage as a means to validate122

the estimated bias corrections.123
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2. Methodology124

a. Data125

The Australian Bureau of Meteorology (BoM) operates a diverse network of over 60 single-126

polarization GRs comprising a mixture of C- and S-band systems of varying age and make. This127

study uses data from three S-band radars located close to the cities of Sydney (SYD), Wollongong128

(WOL), and Newcastle (NEW) in the state of New South Wales (Fig. 1). Together, these sites129

provide coverage of a densely populated stretch of coastline which is frequently affected by high-130

impact weather, including damaging hail and extreme precipitation. The characteristics of the131

radar systems are listed in Table 1. For each of the GRs, volume-scan data for the period 15 May132

2009 (the start of operational monitoring at SYD) to 31 December 2015 were extracted from BoM133

archives and converted from the in-house Radar Picture (RAPIC) format to OPERA (Operational134

Program on the Exchange of Weather Radar Information; Köck et al. 2000) Data Information135

Model–Hierarchical Data Format version 5 (ODIM-HDF5; Michelson et al. 2014) for processing.136

Note that all data are subject to on-site processing to mitigate ground clutter and noise (Rennie137

2012). No additional quality control was applied for the present analysis.138

BoM engineering staff perform regular (approximately once every 6 months) maintenance works139

at all GR sites. Relevant to the radar calibration are checks on the transmitted peak power, fre-140

quency, and pulse duration, and on the receiver gain. Where necessary, these settings are adjusted141

and the radar constant is updated accordingly. In addition to these routine activities, unscheduled142

maintenance is sometimes required to deal with system failures or suspected faults. Records of143

all sites visits are maintained on an internal database called SitesDB. While the information con-144

tained in these records is minimal, with only a date and brief description of what was done (e.g.145

“02/12/2009: 6 monthly maintenance carried out”), it is sufficient to identify dates of possible cal-146
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ibration changes. In theory, calibration accuracy should improve following all maintenance works;147

however, as we shall demonstrate, this is often not the case.148

The characteristics of the TRMM PR and GPM KuPR are listed in Table 2. TRMM operated149

almost continuously from December 1997 to April 2015, with the PR providing reliable measure-150

ments up to September 2014. This study uses data from Version 7 of the Level 2 products 2A23151

and 2A25 (Table 3). These consist of orbital swaths made up of a large number of individual PR152

scans which in turn comprise 49 individual rays. Each scan has a unique time-stamp and rays are153

georeferenced by the latitude–longitude coordinates of their intersection with the Earth ellipsoid.154

The 2A23 product contains information on precipitation type and the characteristics of the radar155

brightband2 (where present) for each ray, while 2A25 contains the vertical profiles of attenuation-156

corrected reflectivity. Precipitation type is determined based on the horizontal and vertical echo157

structure (Awaka et al. 2007), with three basic classifications: stratiform, convective, and other.158

The brightband is identified as outlined in Awaka et al. (2009). A hybrid method (Meneghini et al.159

2004), combining the approaches of Hitschfeld and Bordan (1954) and Meneghini et al. (2000),160

is used to correct for attenuation of the SR beam, which can be significant in heavy rainfall. For161

the GPM KuPR, data are available from March 2014 onwards. Version 4 of the 2AKu product is162

used which contains the same basic variables as the 2A23 and 2A25 TRMM products (Table 3).163

All SR data were obtained using the STORM online data-access interface to NASA’s precipitation164

processing system archive (https://storm.pps.eosdis.nasa.gov). To reduce data volumes,165

only those sections of orbital swaths corresponding to GR site overpasses were extracted.166

It is noted that, at the time of writing, new product versions (Version 8 for TRMM and Version167

5 for GPM) are in the process of being released. These include changes to the SR calibrations,168

2The brightband is a layer of locally enhanced reflectivities around the melting level which occurs due to changes in the scattering properties of

snow as it melts.
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corresponding to reflectivity increases of 1.1 and 1.3 dB for the TRMM PR and GPM KuPR,169

respectively (NASA 2017; Iguchi et al. 2017). It remains to be seen whether these will be the170

final adjustments, but for now it must be assumed that the GR calibration errors derived herein171

are biased low by a little over 1 dB. This serves to illustrate the main limitation of using radar172

intercomparisons to assess calibration: even the most carefully monitored systems can be in error.173

b. Volume-matching method174

The VMM allows for quantitative comparison of SR and GR reflectivities with minimal spatial175

processing of the two datasets. Intersections between an SR beam and a GR elevation sweep are176

identified and the reflectivities from both instruments are averaged to roughly equate the sample177

volumes. SR reflectivities are averaged along the SR beam (approximately vertically) between the178

half-power points of the GR sweep. GR reflectivities are averaged in the range–azimuth plane (ap-179

proximately horizontally) within the footprint of the SR beam. Figure 2 illustrates these averaging180

procedures for idealized cases at GR ranges of 50 and 100 km. Full details of the procedure are181

provided in the appendix. Here we only note the key differences between our implementation of182

the method and the original algorithm as described by SM11 and Morris and Schwaller (2009).183

1) MINIMUM AND MAXIMUM RANGE184

As previously discussed, the volume of atmosphere sampled by a GR varies significantly across185

the instrument’s field of view due to beam broadening. This means that samples considered in the186

VMM also increase in volume with GR range. Given the limited vertical extent of many precipi-187

tating systems it is appropriate to define a maximum range, rmax, for volume-matching to proceed.188

SM11 specified rmax = 100 km, while we use a slightly higher value of 115 km. For the WOL189

radar which has an angular beamwidth ω = 2◦ this corresponds to a maximum beam diameter of190
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4 km. Since all the GRs considered by SM11 had ω ≈ 1◦, their maximum beam diameters were191

< 2 km. However, as we shall show, the GR–SR reflectivity difference displays relatively little192

sensitivity to range (and thus beam diameter). Unlike SM11, we additionally specify a minimum193

range in order to exclude samples where the GR beam width is smaller than the SR gate spacing.194

Specifically, rmin = 15 km which for ω = 1◦ corresponds to a beam diameter of just over 250 m,195

the gate spacing of the TRMM PR.196

2) FREQUENCY CORRECTION197

The different frequencies used by the SR and GR systems promotes systematic differences be-198

tween the reflectivity measured by the two instruments which vary in both sign and magnitude199

depending on the scattering characteristics of particles within the sample volume. Scattering sim-200

ulations can be used to quantify these differences and derive empirical relationships for converting201

reflectivity measurements from one frequency to another. SM11 used the equations from Liao and202

Meneghini (2009a) to convert their GR reflectivities from S to Ku band, applying the equations for203

snow and rain above and below the brightband, respectively. Since we are interested in quantifying204

GR errors it is desirable to instead convert the SR reflectivities from Ku to S band. We therefore205

use equations from Cao et al. (2013) which have the following form:206

Z(S) = Z(Ku)+
4

∑
i=0

ai [Z(Ku)]i (3)

The coefficients ai (given in Table 1 of Cao et al. 2013) are specified for rain, dry snow, and dry207

hail, and for snow and hail at varying stages of melting (from 10 to 90 % in 10 % increments). The208

melting layer (ML) is defined as extending from zb−∆zb/2 to zb +∆zb/2, where zb and ∆zb are209

the SR-derived brightband height and width, respectively. To deal with the fact that a brightband210

is only present in stratiform precipitation, both quantities are computed as the median value across211
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all stratiform SR rays that intercept the Earth ellipsoid between rmin and rmax. Overpasses where212

there are fewer than 10 such rays are excluded from further analysis.213

3) REFLECTIVITY THRESHOLDS214

The TRMM PR and GPM KuPR both have nominal sensitivities of around 18 dBZ (Hou et al.215

2014), although pre-launch tests showed that the KuPR may detect reflectivities as low as 14.5 dBZ216

(Toyoshima et al. 2015). In the VMM, only SR bins for which Zs ≥ Z∗s = 18 dBZ are included in217

the calculation of the average SR reflectivity. For each volume-matched sample, the fraction of SR218

bins within the volume which meet this criterion, fs, is recorded. A similar approach is taken with219

the GR using a different reflectivity threshold, Z∗g , with the fraction of GR bins where Zg ≥ Z∗g220

denoted as fg. When analysing the GR reflectivity bias, effects associated with nonuniform beam221

filling and the low PR sensitivity can be mitigated by excluding samples with fs and fg less than222

some threshold fmin. Based on analysis presented below, we set fmin = 0.7, while SM11 used the223

more stringent criterion fmin = 0.95. As discussed by Morris and Schwaller (2011) and illustrated224

below, GR–SR reflectivity differences derived using the VMM can vary substantially depending225

on the value of this threshold.226

Another key difference is in our choice of the GR reflectivity threshold. SM11 set Z∗g = 15 dBZ227

to match the SR sensitivity with allowance for a −3 dB GR calibration error. While it is necessary228

to match the sensitivity of the two instruments when using one to quantify bias in the other, we229

argue that this should be done at a later stage in the analysis, namely when comparing the spatially230

averaged reflectivities from the volume-matched samples. As detailed in section 3c, this allows231

for the implementation of an iterative bias correction procedure where GR samples are filtered232

according to their bias-corrected reflectivity at the nth iteration (Protat et al. 2011). In the volume233

matching we therefore employ a much lower GR reflectivity threshold, Z∗g = 0 dBZ.234
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4) REFLECTIVITY AVERAGING235

In the original VMM implementation, reflectivities for GR bins within the SR footprint are aver-236

aged using a Barnes Gaussian inverse-distance weighting, where distance is measured horizontally237

from the centre of the SR footprint to the centre of the GR bin (Morris and Schwaller 2009). This238

weighting is designed to account for the nonuniform distribution of power within the SR beam.239

The algorithm has since been updated to also include a linear weighting based on the volume of the240

GR bins, so that larger volumes are weighted more heavily (K. Morris 2015, personal communica-241

tion). This is justified by the fact that GR bin volumes can vary by up to a factor of two within the242

PR footprint. Our VMM implementation uses this modified weighting scheme. As in the original243

algorithm, no weighting is applied in averaging the SR reflectivities due to uncertainties in the GR244

beam height associated with nonstandard refraction.245

3. Results246

a. Comparison examples247

Figures 3 and 4 show examples of GR–SR comparisons for the SYD radar. The former shows248

a comparison with TRMM on 22/11/2013 while the latter shows a comparison with GPM a little249

over a year later on 27/01/2015. The top row in each figure shows plan views at a particular eleva-250

tion angle of the (frequency-corrected) SR and GR reflectivities and their difference. The middle251

row shows vertical cross-sections along a particular SR scan of the same fields. The bottom row252

presents a statistical comparison of the reflectivities from the two instruments across all volume-253

matched samples. Note that samples with fs < fmin or fg < fmin have been excluded from this254

analysis.255
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From the plan views of reflectivity it appears that the VMM produces good spatial agreement256

between the reflectivity measurements from the two instruments. This is confirmed by high values257

of the Pearson correlation coefficient (0.95 and 0.87 for the first and second comparisons, respec-258

tively). This agreement allows us to estimate the GR calibration error. In the first case, the error is259

close to zero (Fig. 3i); however, in the second the GR shows a substantial negative bias of around260

4 dB (Fig. 4i). It is thus apparent that the calibration of the SYD radar changed some time between261

late 2013 and early 2015.262

It is noteworthy that, on a point-by-point basis, the GR–SR reflectivity difference displays a263

large degree of scatter. For example, for the first case, the difference varies by more than 10 dB264

(from < −5 to > 5 dB) across the 1.3◦ elevation sweep (Fig. 3c). Part of this variation will265

be associated with imperfect spatial matching of the data due to a combination of advection and266

evolution of the precipitation features during the time between measurements (200 s in this case)267

and beam propagation effects (e.g. non-standard refraction of the GR beam). However, as we shall268

demonstrate in the next section, other factors including the Ku-to-S-band frequency correction and269

the reflectivity value itself also strongly influence GR–SR reflectivity differences.270

b. Comparison sensitivities271

In this section, we investigate the sensitivity of the GR–PR reflectivity difference, ∆Z, to various272

characteristics of the volume-matched samples. To eliminate effects associated with the time-273

varying GR calibration errors we have applied the corrections derived in the next section to all274

GR data. We begin by examining the relationship between ∆Z and fmin, the minimum fraction275

of SR and GR bins within the sample volume with reflectivities above the respective thresholds,276

Z∗s = 18 dBZ and Z∗g = 0 dBZ. This is illustrated in Fig. 5 for each of the GRs. The data are binned277

using fmin values from 1 to 0 in increments of 0.1, with the median and interquartile range (IQR)278
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of the ∆Z distribution in each bin plotted together with the number of volume-matched sample279

pairs.280

For the most restrictive case of fmin = 1, all SR and GR bins comprising a sample must satisfy281

the reflectivity criteria. This ensures good volume matching but severely limits the number of valid282

samples. In contrast, for fmin = 0 only a single bin for each radar needs to exceed the respective283

reflectivity thresholds. This gives many more valid samples but can lead to very poor volume284

matching. As fmin is decreased, we thus observed an increase in both the number of samples and285

the variability in ∆Z (Fig. 5). The change in sample size is more pronounced for the NEW and286

WOL radars due to their larger beam widths; at a given GR range, more SR bins are included in287

each sample so the probability that fs < fmin is higher. For all three GRs, there is a pronounced288

decrease in the median ∆Z with decreasing fmin, with the total change being around 1–1.5 dB. This289

trend, also noted by Morris and Schwaller (2011, their Figs. 2–5), results from the low sensitivity290

of the SRs. As fmin is reduced, an increasing number of samples comprise bins with Z < 18 dBZ291

which the GR can observe but the SR cannot. Thus the average volume-matched GR reflectivity292

decreases while the corresponding SR reflectivity remains approximately constant.293

Clearly, it is important to exclude samples with low values of fs or fg. Ideally we would set294

fmin = 1; however, testing showed that the associated reduction in sample size severely limits our295

ability to derive a complete time series of calibration error (not shown). As a compromise we296

therefore set fmin = 0.7. In doing so, Figure 5 suggests that we will introduce a slight negative297

bias in our calibration error estimates. However, it turns out that that this bias is largely mitigated298

by the reflectivity thresholding described below (not shown).299

We now examine how ∆Z varies with precipitation type and height together with the impact of300

the Ku-to-S-band frequency correction which is applied to SR reflectivities. This information is301

summarized using box-and-whisker diagrams in Fig. 6. Here, samples for each GR are divided302
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according to the SR precipitation type classification (stratiform or convective) and based on their303

height with respect to the ML (below, within, or above). For both precipitation types the frequency304

corrections for dry and melting snow have been used above and within the ML, respectively. The305

relationships for hail were initially used in convective precipitation but were found to worsen the306

agreement between ∆Z above and below the ML (not shown). Samples with precipitation type307

“other” accounted for a very small proportion (< 1 %) of the total for all radars and are therefore308

excluded from this analysis.309

The frequency correction results in an increase in ∆Z (via a decrease in Zs) below the ML and a310

decrease in ∆Z (via an increase in Zs) within and above the ML. Changes are more pronounced in311

convective than stratiform precipitation because the former is characterized by higher reflectivities.312

For all three GRs, we observe good agreement between the frequency-corrected ∆Z distributions313

above and below the ML in stratiform precipitation. However, within the ML the distributions314

are shifted upwards, suggesting that the frequency correction for melting snow is underestimated.315

This layer also shows higher variability in ∆Z due to the fact that it includes all samples whose316

volume overlaps the brightband. For convective precipitation, the frequency correction clearly in-317

creases the discrepancy between the different vertical layers, promoting a systematic decrease in318

∆Z with height. We speculate that this is associated with undercorrection of SR beam attenuation319

in convective precipitation (leading to underestimation of Zs and thus overestimation of ∆Z); how-320

ever, errors in the frequency correction may also contribute. In addition to a disagreement between321

the layers, we note that the convective samples feature larger spread in ∆Z, consistent with higher322

spatial variability in the precipitation field and associated poorer volume matching.323

Based on these results we exclude convective precipitation samples and stratiform samples324

within the ML from all subsequent analysis. This reduces the SYD radar sample size by ap-325

proximately 62 % and the WOL and NEW radar sample sizes by approximately 77 % (the larger326
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beam widths of these radars mean that more samples overlap with the ML). It should be noted that,327

in order to mitigate potential biases associated with the SR attenuation correction, only stratiform328

samples above the ML are used in ground validation of the GPM DPR (Walt Petersen 2017, per-329

sonal communication). However, when combined with the reflectivity criteria introduced below,330

the exclusion of samples below the ML was found to excessively limit the total number of samples.331

Testing reveals a slight (typically < 0.5 dB) but systematic increase in calibration error estimates332

when only samples above the ML are used (not shown). This may be indicative of excessive at-333

tenuation correction in stratiform precipitation (c.f. Wang and Wolff 2009) and/or undercorrection334

for the Ku–S band frequency difference in snow.335

Figure 7 summarises the influence of two further sample characteristics, GR range, rg, and GR–336

SR time difference, ∆t, on ∆Z. The data are plotted as bivariate histograms with the median and337

IQR of ∆Z overlaid for each rg and ∆t bin. As one might expect, there is little dependence for338

either variable. At ranges beyond ∼ 60 km, ∆Z shows a weak decreasing trend with increasing rg339

for the WOL and NEW radars which is not present for the SYD radar. This is likely due to the fact340

that the beam widths of the WOL and NEW radars are around twice the angular beam spacing,341

∆φ , whereas for SYD ω = ∆φ . For ω > ∆φ , the GR reflectivity of the volume-matched sample342

will tend to represent a larger area (in the range–azimuth plane) than observed by the SR, giving343

rise to a slight negative bias in Zg and thus ∆Z, particularly at long ranges where the absolute344

difference in area is large. It should be noted that Morris and Schwaller (2011) found the same345

trend (increasing SR−GR reflectivity in their case) despite the fact that the radar they considered346

(the WSR-88D in Melbourne, Florida) had a 1◦ beam. This probably reflects their use of a higher347

GR reflectivity threshold which will have reduced the number of samples with low Zg (and thus348

low ∆Z; see below) at short range where many GR bins are averaged.349
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Turning to the lower row of Fig. 7, it is clear that there is no systematic variation in ∆Z with350

∆t; however, larger time differences are associated with higher variability, as seen from the IQRs.351

This again is consistent with the findings of Morris and Schwaller (2011) and makes intuitive352

sense: larger ∆t implies a greater spatial mismatch between the SR and GR volumes, leading to353

larger random errors in ∆Z. These errors could potentially be reduced by applying an advection354

correction to each GR sweep; however, we do not attempt this here.355

The final sensitivity we consider is to the reflectivity itself. Of course, we have two measures of356

this quantity and it is important to consider both. The top row of Fig. 8 shows how ∆Z varies with357

SR reflectivity, Zs, for the three GRs, using the same format as Fig. 7. For SYD and WOL, ∆Z358

shows a slight increasing trend for Zs <∼ 27 dBZ while for all three radars there is a similarly weak359

decreasing trend for Zs >∼ 33 dBZ. The origin of the first of these trends is unclear; however, the360

second may be associated with the Ku-to-S-band frequency correction. Without this correction,361

the trend is much more pronounced (not shown), suggesting that with larger corrections it would362

disappear altogether. It is quite possible that the Cao et al. (2013) method underestimates the363

frequency correction at high reflectivities; however, given the other sources of uncertainty it is364

difficult to be sure. In any case, the associated variation in ∆Z is small (< 1 dB in the median).365

The variations in ∆Z with Zg are much more substantial (bottom row of Fig. 8). For all three366

radars, there are three distinct portions of the parameter space. For Zg <∼ 24 dBZ, ∆Z is negative367

and shows a strong positive trend. This is a direct consequence of the low sensitivity of the SRs.368

For Zg < 18 dBZ, the GR reflectivity is constrained to be lower than the SR reflectivity and thus369

∆Z is constrained to be negative; similarly, if Zg only slightly exceeds 18 dBZ, ∆Z can only be370

slightly positive. Effectively, the top-left portion of the histogram has been cut off. The trend371

only disappears once the reflectivity is large enough that the distribution of ∆Z becomes roughly372

symmetric, which occurs around Zg = 24 dBZ. Beyond this point, ∆Z remains almost constant up373
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to around Zg = 36 dBZ when it begins to rapidly increase again. We believe the latter trend to374

be associated with attenuation of the SR beam in regions of intense stratiform precipitation. This375

would be consistent with Liao and Meneghini (2009b) and SM11, who both noted an undercorrec-376

tion of attenuation in version 6 of the TRMM 2A25 product, as well as several studies (Wolff and377

Fisher 2008; Amitai et al. 2009; Chen et al. 2013; Kirstetter et al. 2013; Rasmussen et al. 2013)378

which identified negative biases in PR rainfall estimates at high rain rates.379

Summarizing the results of this section, we have identified several factors which strongly influ-380

ence the GR–SR reflectivity difference estimates obtained using the VMM; namely, the percentage381

of above-threshold reflectivity values within a sample, the height of the sample with respect to the382

ML, the application of a Ku-to-S-band frequency correction, the precipitation type, and the re-383

flectivity itself. Based on these findings we extract a subset of volume-matched samples for each384

radar which are expected to most accurately isolate reflectivity differences associated with GR385

calibration errors. Specifically, samples are only included if they:386

A. comprise at least 70 % SR and GR bins with reflectivities above the respective thresholds;387

B. are located entirely above or below the ML in stratiform precipitation;388

C. have volume-averaged SR and GR reflectivity values between 24 and 36 dBZ.389

Table 4 shows how the sample size, mean ∆Z and its standard deviation vary with the application390

of these criteria. Consistent with the discussion above, criteria A and C both produce a pronounced391

positive shift in mean ∆Z while criterion B produces a smaller negative shift. All three criteria act392

to reduce variability, with C having by far the biggest impact. This is almost entirely due to the393

lower reflectivity threshold; the impact of the higher threshold is much smaller because there are394

far fewer samples with high reflectivities. Applying all three criteria together results in a 2–2.4 dB395
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reduction in the standard deviation of ∆Z; this despite the fact that the sample size decreases by396

more than 90 % for each radar.397

c. Correcting calibration errors398

Figure 9 shows the complete seven-year time series of GR–SR comparisons for the SYD radar.399

Plotted are the mean reflectivity difference (symbols, colored according to the number of samples)400

and its standard deviation (vertical lines) for each SR overpass. It is apparent that, even with401

the filtering criteria detailed above, there is considerable variability in ∆Z values (c.f. Table 4),402

particularly for those comparisons with fewer than 100 samples (white and light grey symbols).403

This is most likely associated with residual volume-matching errors in the presence of rapidly404

moving/evolving precipitation features and/or non-standard GR beam refraction. Nevertheless, it405

is possible to identify the basic temporal evolution of GR calibration.406

From the start of operations in May 2009 until the middle of 2014 the calibration appears to407

be quite accurate and stable, with mean errors generally less than 2 dB. A possible exception is408

September/October 2012 where several comparisons suggests a negative offset of around 4–5 dB,409

although sample sizes for these are small. The period August 2014 to May 2015 shows more410

significant GR errors, with positive offsets of 3–4 dB during the first three months and negative411

offsets of 3–5 dB thereafter. There are no comparisons during June and July 2015 and only one412

each in August and September; however, towards the end of the year errors return to near zero.413

While the VMM does not provide sufficiently precise estimates of GR reflectivity error to iden-414

tify gradual changes in calibration associated with the degradation of radar hardware, it can pick415

out sudden jumps which may result from component failures or engineering activities. The prob-416

lem is that suitable SR site overpasses are rarely frequent enough to determine the exact date of417

these changes. Fortunately, as discussed in section 2a, the BoM maintains records of all opera-418
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tional GR maintenance works. From these records, the dates of possible calibration changes were419

identified and used to group the GR–SR comparisons into periods ranging in length from a few420

weeks to around 18 months. The calibration error, ε , during each period is assumed to be constant421

and is calculated as follows:422

1. Valid samples (i.e. those meeting criteria A–C, above) comprising all GR–SR comparisons423

during the period are grouped and the mean ∆Z is computed as an initial estimate of ε .424

2. The set of valid samples is recomputed incorporating the estimated calibration error (i.e. with425

ε subtracted from the GR reflectivities) and a new value of ε is computed as the mean of the426

uncorrected ∆Z values.427

3. Step 2 is repeated iteratively until a stable estimate of ε is obtained (to the nearest 0.1 dB).428

Typically, this takes fewer than five iterations.429

As discussed by Protat et al. (2011), an iterative calculation is required when thresholding the430

reflectivity to account for the fact that, given a non-zero calibration error, samples will be incor-431

rectly included/excluded from the calculation of ε . For example, consider a situation where the432

true ε is −3 dB. In the initial estimation (step 1, above), samples with uncorrected reflectivites433

of 21–24 dBZ (true reflectivities of 24–27 dBZ) will be incorrectly excluded while those with434

uncorrected reflectivities of 33–36 dBZ (true reflectivities of 36–39 dBZ) will be incorrectly in-435

cluded. Similarly, if the true ε is +3 dB, samples with uncorrected reflectivites of 24–27 dBZ436

(true reflectivities of 21–24 dBZ) will be incorrectly included while those with uncorrected re-437

flectivities of 36–39 dBZ (true reflectivities of 33–36 dBZ) will be incorrectly excluded. In either438

case, the magnitude of ε will be underestimated. By subsetting samples according to the corrected439

GR reflectivities and recomputing ε iteratively this bias can be eliminated. Figure 10 illustrates440

the procedure for two consecutive periods (one with positive ε , one with negative ε) from the441

20



SYD radar time series. In both cases, iteration increases the the magnitude of the calibration error442

estimate by 0.6 dB.443

Not every single maintenance event will be associated with a change in radar calibration. For444

example, checks may show the transmitter and receiver settings to be stable with respect to the445

previous site visit. We therefore test whether the calibration error during each period is statistically446

distinct from the one which preceded it. Specifically, a difference of means test is performed using447

the error-adjusted samples from each period. If the difference is significant at the 5 % level3 and448

≥ 0.5 dB then both periods are retained; otherwise, the two are combined and the GR bias estimate449

is recomputed. Periods are also combined if one contains fewer than two comparisons comprising450

at least 50 samples each; we consider this the minimum requirement for a robust error estimate.451

The choice of 0.5 dB as a minimum difference is somewhat arbitrary but reflects the remaining452

uncertainty in the GR–SR comparisons (i.e. we do not expect the method to reliably detect changes453

in calibration of less than 0.5 dB).454

Figure 11 shows the time series of GR–SR reflectivity difference for the SYD radar following455

the calculation of calibration error. The dates of possible calibration changes and the mean ∆Z456

(estimated ε) and its standard deviation for each intervening period are also indicated. Comparing457

with Fig. 9, it can be seen that the sample size and mean values for each comparison have changed,458

particularly where ε is large in magnitude (e.g. in September and October 2012), due to the use459

of bias-corrected GR reflectivities in the filtering of samples. Overall, the method appears to work460

very well. It is able to identify the above-noted major calibration changes in 2012, 2014 and 2015,461

as well as more subtle changes, for example in December 2011. Values of ε range from −5.3 to462

+3.5 dB with the average over the entire seven-year period being −0.6 dB. The same analysis463

3Other significance levels (10 % and 1 %) were tested with almost no change in the results.
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for the WOL and NEW radars (not shown) reveals similar maximum error magnitudes but more464

negative values on average with means of −1.4 and −1.7 dB, respectively.465

Two aspects of these results must be remarked upon. The first is the large magnitude of the cal-466

ibrations errors, with values frequently > 1 dB and occasionally > 5 dB. These have the potential467

to mislead forecasters (by suggesting that storms are more/less intense than they really are) and468

significantly impact radar-derived products, particularly when values are integrated in time (e.g.469

precipitation accumulations) or space (e.g. vertically integrated liquid water content). The second470

aspect to remark upon is the change in calibration associated with radar maintenance activities.471

One would hope that system checks and modifications always act either to maintain an existing472

good calibration or improve a poor one. However, our results show that this is often not the case.473

For example, following preventative maintenance of the SYD radar in July 2014, the calibration474

error was increased from +0.8 dB to around +3.5 dB (Fig. 11). Further works later that year475

saw the introduction of an error of roughly the same magnitude but opposite sign (−3.7 dB). It is476

difficult to ascertain the reason for these changes from the limited textual information contained477

in SitesDB; however, human error and miscalibrated test equipment may both play a role. Clearly,478

there is a need for more careful monitoring of radar calibration during operations, an issue we479

discuss further in section 4.480

d. Verification481

By combining filtered GR–SR comparisons with radar engineering records, we have been able to482

quantify historical calibration errors for three GRs in the vicinity of Sydney. We now seek to eval-483

uate the benefits achieved by accounting for these errors. Comparison against ground truth such as484

rain gauges is theoretically one means to achieve this goal; however, as noted in the introduction,485

radar rainfall estimates are subject to many additional sources of uncertainty. We therefore instead486

22



investigate how the consistency of our three radars differs with and without calibration adjust-487

ments. Agreement between neighbouring GRs is important both from an operational perspective488

(e.g. forecasters viewing a storm using different radars should obtain the same impression of its in-489

tensity) and for the production of multi-radar products such as regional and national rainfall maps.490

Since we are adjusting the GRs relative to the same SR reference we would expect the agreement491

between them to improve.492

Following the rationale behind the VMM, we minimize spatial processing (interpolation and av-493

eraging) of the measured reflectivities and associated errors by directly matching sample volumes494

in space and time. The only spatial processing we apply is the averaging of reflectivities in range495

to achieve a consistent gate spacing (∆r0 = 1000 m) across all three radars. For all possible radar496

pairs (SYD–WOL, SYD–NEW, and WOL–NEW), we then identify bins which are (a) close in497

space (centres < 500 m apart), (b) close in time (elevation sweeps < 2 minutes apart), and (c)498

similar in size (difference in volume < 10 %). Spatial association is achieved by mapping data to499

a common Cartesian grid using an azimuthal equidistant projection centred half way between the500

sites. For simplicity, we model the volume of atmosphere sampled by each bin as a cuboid with501

dimensions of ∆r0, r (ω +∆φ cosθ), and rω in the range, azimuth, and elevation directions, re-502

spectively. Here, we account for the fact that each azimuthal sector comprises multiple rays which503

overlap by an increasing degree with increasing elevation angle (the ∆φ cosθ term). The fractional504

volume difference between radar bins i and j is computed as
∣∣Vi−Vj

∣∣/[1
2

(
Vi +Vj

)]
. To reduce505

computational expense, only days with widespread rainfall in the area of overlapping coverage506

are processed. Specifically, we use gridded rain gauge data (Jones et al. 2009) to identify days507

with at least 1 mm of rain over two-thirds of the land portion of the overlap area. For each pair of508

temporally matched scans, the reflectivities and volumes of each bin pair are stored together with509

their spatial and temporal offsets.510

23



This GR–GR comparison method is very similar to that used in the original version of the Radar511

Reflectivity Comparison Tool (RRCT; Gourley et al. 2003), which was developed for monitoring512

the relative calibration of radars in the US WSR-88D network. Tolerances in the RRCT were513

500 m in horizontal distance, 50 m in vertical distance, 5 % in volume, and 3 minutes in time514

(between volume scans). Note, however, that the method was subsequently modified to use less515

stringent tolerances (750 m in distance and 6 minutes in time) while only considering bins within516

a rectangular region (120 km in length, 20 km in width, and 20 km in height) centred equidistant517

between the radars to ensure comparable bin volumes (http://rrct.nwc.ou.edu/). The latter approach518

would not work here because, unlike the WSR-88Ds, our three radars all have different beam519

widths (Table 1) and thus different bin volumes at a given range.520

Figure 12 summarises the GR–GR comparison results using smoothed kernel density estima-521

tion violin plots (Hintze and Nelson 1998). Shown are the distributions of reflectivity difference522

computed with and without calibration adjustments, together with the sample size and Pearson523

correlation coefficients. Note that there are over a million samples for each radar pair, with nearly524

10 million for the SYD–WOL comparison due to the close proximity of these sites (Fig. 1). It can525

be seen that the agreement of both the WOL and NEW radars with the SYD radar is improved,526

with smaller values of median difference, smaller IQRs, and higher correlation coefficients for527

the calibrated reflectivities (Fig. 12a,b). While the latter two changes are also seen in the WOL–528

NEW comparison, the median difference in this case actually increases in an absolute sense, from529

−0.1 to +0.5 dB. Taken alone, this would suggest that NEW reflectivities are being overcorrected530

and/or WOL reflectivities are being undercorrected. However, based on the SYD comparisons,531

we would expect a difference of only around 0.1 dB between these two radars after calibration532

adjustments. This discrepancy may be indicative of poorer volume matching between the WOL533

and NEW radars due to the large distance between them (Fig. 1).534

24



4. Summary and outlook535

In this paper, we have presented a method for estimating ground-based radar (GR) calibration536

errors through comparisons with spaceborne radar (SR) measurements from the TRMM and GPM537

satellites. This has been developed and tested using data from three Bureau of Meteorology (BoM)538

operational GRs in the vicinity of Sydney, Australia, for the period 2009–2015.539

Spatially and temporally coincident GR and SR observations are first obtained using the volume-540

matching method (VMM) of SM11, which was originally developed to support ground validation541

efforts for GPM. Following Cao et al. (2013), a precipitation phase–dependent reflectivity cor-542

rection is applied to the SR data to account for differences in measurement frequency (S-band543

for GRs, Ku-band for SRs). The resulting sample pairs are then filtered to isolate reflectivity544

differences associated with GR calibration error. Specifically, samples are only retained if they545

(a) predominantly comprise bins with reflectivities above the respective instrument sensitivities546

(18 dBZ for the SRs, 0 dBZ for the GRs), (b) are located in stratiform precipitation outside of the547

melting layer, and (c) have moderate reflectivities (24–36 dBZ) which are largely unaffected by548

the low SR sensitivity or attenuation of the SR beam. It was shown that the application of these549

criteria reduces the standard deviation of GR–SR reflectivity difference by around 2 dB.550

Time series of the filtered GR–SR comparisons show periods of relatively stable GR calibration551

separated by sudden jumps of several dB. However, it is not possible to determine the precise date552

of these changes due to the low frequency of suitable satellite overpasses. In addition, residual553

noise in the comparisons, resulting from imperfect volume matching, makes it difficult to detect554

more subtle changes in calibration. To address these issues we make use of radar engineering555

work records maintained by the BoM. Dates of possible calibration changes are identified, be-556

tween which the GR error is assumed to be constant. The calibration error for each period is then557
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computed as the mean GR–SR reflectivity difference across all contemporaneous samples, using558

an iterative procedure to account for biases introduced by the reflectivity thresholding (Protat et al.559

2011). This method produces results which are consistent with a subjective assessment of the time560

series while providing precise estimates of calibration error.561

Since no ground truth exists to verify the accuracy of our calibration error estimates, we have562

examined the impact of correcting for these errors on the agreement between the three radars.563

Following the rationale behind the VMM, a method has been developed where spatially and tem-564

porally coincident GR sample volumes are identified and their reflectivities compared (c.f. Gourley565

et al. 2003). It was found that the calibration corrections in general lead to a robust improvement566

in the agreement between GRs, with an increase in correlation coefficients and a narrowing and567

shift towards zero of reflectivity difference distributions.568

In the future it would be valuable to explore ways to further reduce the variability in GR–SR569

comparisons. One method, currently being investigated is to use quality indices to screen out GR570

samples that may be contaminated by ground clutter, anomalous propagation, or beam blockage571

(Crisologo et al. 2017). Screening could also be applied in cases where the orientation of the two572

radar beams leads to poor volume matching (e.g. Fig. 2c). The accuracy of the VMM would573

likely be further improved by accounting for non-standard GR beam refraction and the movement574

of precipitation features between SR and GR scans. Future work could also explore refinements575

to the Cao et al. (2013) frequency correction in the melting layer, with a view to eliminating the576

need to filter out volume-matched samples which fall within this layer.577

In theory, the approach presented in this paper could be applied to any radar that falls within the578

coverage of the SRs (±35◦ and ±65◦ during the TRMM and GPM eras, respectively). In practise,579

however, its potential is limited by the requirement for reliable engineering records, as these may580

not be available for many GR networks. Furthermore, since several months can pass between581
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suitable satellite overpasses, the approach cannot be used for operational calibration monitoring.582

An alternative method which does not suffer from these issues is the relative calibration adjustment583

(RCA) technique (Silberstein et al. 2008; Wolff et al. 2015). This uses the statistical properties of584

ground clutter to provide a precise (±0.5 dB) measure of day-to-day variations in GR calibration585

relative to some baseline. The problem in this case is identifying an accurate baseline.586

Clearly, the two techniques—SR comparison and RCA—are complementary. We are thus ex-587

ploring the potential of applying them in tandem: using SR comparisons to set and periodically588

check the baseline reflectivity and the RCA to monitor and correct day-to-day fluctuations in cali-589

bration. This approach has already been successfully applied to 16 years of observations from the590

CPOL research radar in Darwin, Australia, and work is ongoing to incorporate it into operational591

radar quality control procedures at the BoM (Louf et al. 2017). Given the near-global coverage of592

GPM and the ubiquity of ground clutter, we believe that this approach has the potential to improve593

the accuracy and stability of GR calibration the world over.594
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APPENDIX600

The VMM algorithm was coded up using Interactive Data Language (IDL) based on the descrip-601

tions in SM11 and Morris and Schwaller (2009), with modifications as detailed in section 2b. At602

the time of writing, work is ongoing to incorporate it into the wradlib radar analysis and visual-603

ization library for Python (Heistermann et al. 2013). Here we summarize the steps involved in604
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creating the GR–SR comparison for a single SR overpass. The geometry of the two measurements605

is illustrated in Fig. A1.606

The first step is to determine the location of each SR bin with respect to the GR. For this, we use607

an azimuthal equidistant projection centred on the GR. Each SR ray has an associated longitude–608

latitude pair corresponding to its intersection with the Earth ellipsoid (TRMM and GPM both use609

the WGS 84 ellipsoid). These are easily converted to Cartesian coordinates using standard map610

projection routines. To determine the full three-dimensional coordinates of each SR bin we must611

apply a parallax correction. The magnitude of the parallax error is612

∆S = r0 sinα, (A1)

where r0 is the range of the bin from the Earth ellipsoid and α is the local zenith angle of the ray613

(Fig. A1a). The parallax-corrected horizontal coordinates are then614

xs = x0−∆Scosγ, (A2a)

ys = y0−∆S sinγ. (A2b)

Here x0 and y0 are the coordinates of the ellipsoid intersection (z = 0) and γ is the angle of the SR615

scan line (Fig. A1a). Finally, the height of the bin is computed as616

zs = r0 cosα (A3)

Note that we do not account for the curvature of the Earth in these calculations. This is a reasonable617

approximation because ∆S is small (typically < 5 km).618

In addition to the coordinates of each SR bin, we calculate their horizontal and vertical dimen-619

sions. The radius of a bin projected onto the horizontal plane is computed as the average of the620

projected radii the in along-track and cross-track directions (the latter varies with cosα):621

Rs =
1
2 (1+ cosα)rs tan(ωs/2) (A4)
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where rs is the SR range of the bin (Fig. A1a) and ωs is the SR angular beam width (0.71◦ for both622

TRMM and GPM). The vertical depth of a bin is given by623

Ds = ∆rs/cosα (A5)

where ∆rs is the SR gate spacing (250 m for TRMM, 125 m for GPM).624

The next step is to identify the nearest GR volume scan in time. Each SR scan has a unique625

timestamp; however, since it takes less than a minute for the satellite to traverse the GR field of626

view, a single time may be reasonably applied to all scans in the overpass. Specifically, we use the627

time corresponding to the closest point of approach to the GR, tcpa. For the BoM radars, volume628

scans have a timestamp for every elevation sweep (corresponding to the start of that sweep), tθ ,629

but are named according to the start time of the entire scan, tvol. Preliminary work indicated that630

the largest number of GR–SR matched volumes occurred around the third or forth elevation sweep631

or about δ t = 90 seconds into the scan. Thus, to ensure the best temporal matching, we identify632

the scan which minimizes |∆tvol|=
∣∣tvol +δ t− tcpa

∣∣ and only proceed if |∆tvol| ≤ 5 min.633

The Cartesian coordinates of the GR bins are next determined under the assumption of standard634

refraction; i.e. modelling the Earth as a sphere of equivalent radius ae = kea, where ke = 4/3 and a635

is the geocentric Earth radius at the latitude of the GR. The geometry illustrated in Fig. A1b leads636

to the follow simultaneous equations:637

(
ae + zg

)
cos
(
Sg/ae

)
= rg sinθg +ae +h, (A6a)(

ae + zg
)

sin
(
Sg/ae

)
= rg cosθg, (A6b)

where h is the height of the GR antenna above the Earth ellipsoid, zg is the height of the GR bin,638

Sg its horizontal distance from the radar, and rg and θg are the GR range and elevation angle,639
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respectively. Solving for Sg, we obtain640

Sg = ae tan−1
(

rg cosθg

rg sinθg +ae +h

)
(A7)

from which the x and y coordinates can be determined as641

xg = Sg cos
(
π/2−φg

)
, (A8a)

yg = Sg sin
(
π/2−φg

)
, (A8b)

where φg is the GR azimuth angle (Fig. A1b). Returning to A6 and solving for zg, we find642

zg =
√

r2
g +(ae +h)2 +2rg (ae +h)sinθg−ae, (A9)

At this point, we have the coordinates of every SR and GR bin in a common reference frame.643

We now compute the median brightband height and width and apply a Ku-to-S band frequency644

correction to the SR data as described in section 2b. The volume matching then proceeds by645

looping first over SR rays and then over GR elevation sweeps. SR rays are only considered if they646

(a) contain precipitation (rainFlag = 20 for TRMM and flagPrecip = 1 for GPM; Table 3) and (b)647

are located between GR ranges of rmin and rmax. GR sweeps are only considered if ∆t = tθ −tcpa≤648

5 min. The steps involved in identifying a volume-matched GR–SR sample pair are as follows:649

1. Calculate the GR elevation angle of each SR bin (using A6) as650

θs = tan−1
[

cos(Ss/ae)− (ae +h)/(ae + zs)

sin(Ss/ae)

]
(A10)

where Ss =
√

x2
s + y2

s is the horizontal distance of the SR bin from the GR.651

2. Identify the SR bins that fall within the GR beam; i.e. for which θg−ωg/2≤ θs ≤ θg+ωg/2,652

where ωg is the GR’s angular beam width. Note the fraction of these, fs, for which Zs ≥ Z∗s .653

3. Average the values of xs, ys, and zs to get the coordinates of the sample centroid (x̄, ȳ, and654

z̄) and approximate its horizontal and vertical dimensions (R̄ and D̄) by the maximum Rs and655
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total Ds, respectively. Also determine the GR range of the sample (again using A6) as656

r̄g =

√
(ae + z̄)2 +(ae +h)2−2(ae + z̄)(ae +h)cos

(
S̄/ae

)
, (A11)

where S̄ =
√

x̄2 + ȳ2 is the horizontal distance of the sample from the GR.657

4. Linearly average the reflectivity values (in linear units, mm6 m−3) for which Zs ≥ Z∗s to get658

the SR reflectivity of the matched volume, Z̄s. Do this for both raw and frequency-corrected659

reflectivities.660

5. Identify the GR bins that fall within the footprint of the SR beam; i.e. for which d ≤ R̄, where661

d =

√(
xg− x̄

)2
+
(
yg− ȳ

)2. Note the fraction of these, fg, for which Zg ≥ Z∗g .662

6. Average the reflectivity values (in linear units, mm6 m−3) for which Zg ≥ Z∗g , weighting663

bins inversely by d (using a Barnes Gaussian function with radius R̄) and linearly by r2
g664

(proportional to the bin volume), to get the GR reflectivity of the matched volume, Z̄g.665

For every SR overpass, a single file is produced containing data for all volume-matched samples.666

The variables stored for each sample are as follows:667

• Cartesian coordinates (x̄, ȳ, z̄);668

• volume dimensions (R̄, D̄);669

• GR range (r̄g);670

• averaged SR and GR reflectivities (Z̄s(Ku), Z̄s(S), Z̄g);671

• fraction of SR and GR bins above the respective minimum reflectivity thresholds ( fs, fg);672

• precipitation type index (P = 1 for stratiform, P = 2 for convective, P = 3 for other);673

• GR–SR time difference (∆t).674
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The file also contains the median brightband height and width for the overpass.675

It should be noted that the quality parameters listed in Table 3 are used at various stages of the676

algorithm to ensure that all matched samples are accurate. Specifically, SR scans are rejected if677

dataQuality 6= 0 and SR rays are rejected if status ≥ 100 for TRMM and if qualityBB > 1 and/or678

qualityTypePrecip > 1 for GPM.679
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TABLE 1. Characteristics of the three radars used in this study. Symbols have the following meaning: λ =

wavelength, ω = angular beam width, ∆r = range gate spacing, ∆φ = angular beam spacing, and nθ = number

of elevation angles. Note that the WOL radar was replaced in early 2011, with associated changes in λ , ω , and

∆r. The volume scan pattern was also updated at this time, making it consistent with the SYD radar. The same

change was applied to the NEW radar in mid 2013 following an upgrade from an analogue to a digital receiver.

823

824

825

826

827

Site Make λ ω ∆r ∆φ nθ Volume scan elevation angles

(cm) (◦) (m) (◦) (◦)

SYD Meteor-1500S 10.0 1.0 250 1.0 14 0.5, 0.9, 1.3, 1.8, 2.4, 3.1, 4.2, 5.6, 7.4, 10.0, 13.3, 17.9, 23.9 32.0

WOL WSR-74S 10.4 1.9 1000 1.0 15 0.5, 1.2, 1.9, 2.7, 3.5, 4.7, 6.0, 7.5, 9.2, 11.0, 13.0, 16.0, 20.0, 25.0, 32.0

DWSR-8502S 10.0 2.0 500 1.0 14 0.5, 0.9, 1.3, 1.8, 2.4, 3.1, 4.2, 5.6, 7.4, 10.0, 13.3, 17.9, 23.9 32.0

NEW WSR-74S 10.4 1.9 500 1.0 15 0.5, 0.8, 1.1, 1.4, 1.9, 2.5, 3.3, 4.4, 5.8, 7.7, 10.3, 13.6, 18.1, 24.1, 32.0

DWSR-74S 10.4 1.9 500 1.0 14 0.5, 0.9, 1.3, 1.8, 2.4, 3.1, 4.2, 5.6, 7.4, 10.0, 13.3, 17.9, 23.9 32.0
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TABLE 2. Characteristics of the TRMM PR and GPM KuPR. Symbols have the following meaning: zo =

orbital altitude, λ = wavelength, ω = angular beam width, ∆r = range gate spacing, ∆Φ = angular beam spacing,

and Φmax = maximum off-nadir scan angle. Note that prior to August 2001, the TRMM orbital altitude was

350 km.

828

829

830

831

Instrument zo λ ω ∆r ∆Φ Φmax

(km) (cm) (◦) (m) (◦) (◦)

TRMM PR 402.5 2.2 0.71 250 0.71 17.04

GPM KuPR 407.0 2.2 0.71 125 0.71 17.04
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TABLE 3. TRMM and GPM parameters extracted for our analysis. Detailed descriptions of these parameters

can be found in the file specification documents for the Version 7 TRMM 2A23 and 2A25 products (NASA 2014,

2015) and Version 5 GPM 2AKu products (NASA 2016). The array dimensions nscan, nray, and nbin correspond

to the along-track, cross-track, and range directions, respectively. For both radars nray = 49, while nbin = 80 for

TRMM and 176 for GPM. The value of nscan varies depending on the distance and angle of the GR site overpass.

832

833

834

835

836

Satellite Product Parameter Description Dimensions

TRMM 2A23 dataQuality Quality index for scan data nscan

rainFlag Flag indicating likelihood of surface precipitation in ray nscan×nray

rainType Classification of precipitation in ray nscan×nray

HBB Height of bright band (if present) in ray nscan×nray

BBwidth Width of bright band (if present) in ray nscan×nray

status Quality index for 2A23 products nscan×nray

2A25 scLocalZenith Zenith angle of ray at Earth ellipsoid nscan×nray×nbin

correctZFactor Attenuation-corrected reflectivity nscan×nray×nbin

GPM 2AKu dataQuality Quality index for scan data nscan

localZenithAngle Zenith angle of ray at Earth ellipsoid nscan×nray

flagPrecip Flag indicating presence of precipitation in ray nscan×nray

heightBB Height of bright band (if present) in ray nscan×nray

widthBB Width of bright band (if present) in ray nscan×nray

qualityBB Quality information for bright band products nscan×nray

typePrecip Classification of precipitation in ray nscan×nray

qualityTypePrecip Quality index for precipitation type product nscan×nray

zFactorCorrected Attenuation-corrected reflectivity nscan×nray×nbin
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TABLE 4. Statistics of GR–SR comparisons under different sample filtering criteria (see text for definitions):

n = sample size, ∆Z = mean reflectivity difference (dB), and σ∆Z = standard deviation of reflectivity difference

(dB).

837

838

839

Site Stat. None A B C All

SYD n 922407 544081 405144 306244 75941

∆Z −1.9 −0.8 −2.2 +0.1 0.0

σ∆Z 4.5 3.7 4.2 2.6 2.1

WOL n 901591 372661 262531 299575 33608

∆Z −2.2 −0.7 −2.7 −0.2 0.0

σ∆Z 4.4 3.3 4.4 2.7 2.1

NEW n 851335 347115 271858 305187 33997

∆Z −1.6 −0.5 −1.7 0.0 0.0

σ∆Z 4.0 3.1 3.8 2.6 2.0
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LIST OF FIGURES840

Fig. 1. (a) Map of Australia showing the location of the region of interest (black box). (b) Map of841

the region of interest showing the locations of the three radars (white diamonds) and nearby842

major cities (black circles). Dotted lines in (b) show the 15 km and 115 km range rings843

around each radar. . . . . . . . . . . . . . . . . . . . . . 45844

Fig. 2. Illustration of the volume-matching method. Top panels (a,b) show a GR–SR intersection845

at a GR range of 50 km, azimuth angle of 45◦, and elevation angle of 1.3◦, and an SR scan846

angle of 0◦ (nadir scan). Bottom panels (c,d) show a GR–SR intersection at a GR range of847

100 km, azimuth angle of 45◦, and elevation angle of 2.4◦, and an SR scan angle of 17.04◦848

(maximum off-nadir scan). In both cases, the GR has a range gate spacing of 250 m and an849

angular beam width of 1.0◦, the SR has a range gate spacing of 250 m, and the SR scan line850

is perfectly aligned with the intersecting GR azimuth. Left panels (a,c) show vertical cross851

sections along the SR scan line, with the GR beam boundaries and centre indicated by thick852

solid and dotted blue lines, respectively, and the SR bin boundaries and centres indicated853

by thin red lines and red dots, respectively. SR bins contributing to the volume-matched854

reflectivity are shaded. Right panels (b,d) show horizontal cross sections at the height of the855

intersection, with the GR bin boundaries and centres indicated by thin blue lines and blue856

dots, respectively, and the horizontal projection of the SR beam boundary approximated by857

the red circle. GR bins contributing to the volume-matched reflectivity are shaded. In all858

panels the point of intersection is indicated with a black cross. . . . . . . . . . 46859

Fig. 3. Example of GR–SR comparison between TRMM and the SYD radar on 22/10/2013. The top860

row shows plan views of (a) SR reflectivity, (b) GR reflectivity, and (c) GR−SR reflectivity861

for the 1.3◦ elevation sweep. Each filled circle shows an individual volume-matched sample.862

Rings show the minimum and maximum GR range, while solid and dashed lines show,863

respectively, the boundaries and centre of the SR swath. The middle row shows vertical cross864

sections taken across the SR swath (location indicated by dotted lines in top panels) of (d) SR865

reflectivity, (e) GR reflectivity, and (f) GR−SR reflectivity. Here volume-matched samples866

are shown as columns of varying depth (note that these overlap for low elevation sweeps).867

Solid and dotted lines show, respectively, the centre and boundaries of the brightband. The868

bottom row summarises the statistics of the volume-matched sample pairs: (g) histogram of869

SR (black) and GR (grey) reflectivities (2 dB bins); (h) scatter plot of paired SR and GR870

reflectivities; (i) histogram of GR−SR reflectivity (1 dB bins). Dashed vertical lines in (g)871

and (h) show the minimum SR reflectivity. Solid and dotted lines in (h) show the line of872

best fit and one-to-one line, respectively, with the sample size, n, and Pearson correlation873

coefficient, r, given at the top. Mean, median, and modal GR bias are indicated in the874

top-right corner of (i). . . . . . . . . . . . . . . . . . . . . 47875

Fig. 4. As in Fig. 3, but showing a comparison between GPM and the SYD radar on 27/01/2015.876

In this case the 0.5◦ elevation sweep is shown in the top row. . . . . . . . . . . 48877

Fig. 5. GR–SR reflectivity difference plotted as a function of the minimum fraction of SR and GR878

bins with reflectivity values above their respective thresholds. Filled diamonds and vertical879

lines show, respectively, the median and interquartile range for each fmin bin, while open880

circles indicate the sample size (scale on right y axis). Values for the SYD, WOL, and NEW881

radars are shown in red, green, and blue, respectively. . . . . . . . . . . . . 49882

Fig. 6. Box-and-whisker plots showing GR–SR reflectivity difference for samples below, within,883

and above the ML in (top) stratiform and (bottom) convective precipitation for the (left)884

SYD, (middle) WOL, and (right) NEW radars. Boxes show the median and interquartile885

range of the distribution; whiskers show the 10th and 90th percentiles. Dark and light grey886
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boxes show values computed using SR data with and without the Ku-to-S-band frequency887

correction, respectively. The number of samples in each layer is given at the bottom of the888

panels. Note that all samples whose volume overlaps vertically with the ML are classified889

as being within it. . . . . . . . . . . . . . . . . . . . . . 50890

Fig. 7. Bivariate histograms showing GR–SR reflectivity difference as a function of (top) GR range891

and (bottom) GR–SR time difference for the (left) SYD, (middle) WOL, and (right) NEW892

radars. Colors show the sample size for each bin on a logarithmic scale. Black diamonds893

and vertical lines show, respectively, the median and interquartile range for each x-axis bin894

(not shown for sample sizes < 100). Pearson correlation coefficients, r, are given in the895

top-right corner of each panel. . . . . . . . . . . . . . . . . . . 51896

Fig. 8. As in Fig. 7 but showing GR–SR reflectivity difference as a function of (top) SR reflectivity897

and (bottom) GR reflectivity. Dashed lines indicate the SR sensitivity. . . . . . . . 52898

Fig. 9. Annual time series of GR–SR reflectivity difference, ∆Z, for the SYD radar. Symbols and899

thin vertical lines show, respectively, the mean GR bias and its standard deviation for each900

SR overpass. Circles and diamonds indicate comparisons with TRMM and GPM, respec-901

tively. Symbols are colored according to the number of volume-matched sample pairs on a902

logarithmic scale: white = 1–9, light grey = 10–99, dark grey = 100-999, and black = 1000+.903

Standard deviations are not shown for sample sizes < 10. . . . . . . . . . . . 53904

Fig. 10. Histograms showing SR (thick dotted line) and SYD GR (thick solid line) reflectivity distri-905

butions for (a) 29/07/2014–27/11/2014 and (b) 28/11/2014–18/01/2015. Thin vertical lines906

bound the portion of each histogram used in the comparison; dotted for the SR and solid907

for the GR with colors indicating the iteration step (blue = 1, green = 2, yellow = 3, and908

red = 4). The corresponding calibration error estimates are given in the top right corner of909

each panel. . . . . . . . . . . . . . . . . . . . . . . . 54910

Fig. 11. As in Fig. 9 but following the iterative calculation of calibration error. Thick dashed vertical911

lines show the dates of possible calibration changes; thick and thin horizontal lines show,912

respectively, the mean calibration error and its standard deviation during the intervening913

periods. . . . . . . . . . . . . . . . . . . . . . . . . 55914

Fig. 12. Smoothed kernel density estimation violin plots showing bin-matched reflectivity differ-915

ences between (a) SYD and WOL, (b) SYD and NEW, and (c) WOL and NEW radars916

before (light grey) and after (dark grey) the application of the calibration corrections derived917

herein. Thin horizontal solid and dotted lines show, respectively, the median and interquar-918

tile range of the distribution. Sample sizes, n, and Pearson correlation coefficients (before919

and after calibration corrections), r, are given at the top of each panel. . . . . . . . 56920

Fig. A1. Diagrams showing the geometry of (a) SR and (b) GR measurements (not to scale). In both921

panels, the main view is from the side in the plane parallel to the radar beam, while the inset922

shows a plan view. Red lines indicate the radar beam and black circles indicate the location923

of the bin. Crosses in (a) mark the intersection of the SR beam with the Earth ellipsoid and924

the blue arrow shows the direction of travel of the satellite. The thin dotted black line in (b)925

indicates the height of the surface relative to the Earth ellipsoid (i.e. surface orography). See926
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FIG. 1. (a) Map of Australia showing the location of the region of interest (black box). (b) Map of the region

of interest showing the locations of the three radars (white diamonds) and nearby major cities (black circles).

Dotted lines in (b) show the 15 km and 115 km range rings around each radar.
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FIG. 2. Illustration of the volume-matching method. Top panels (a,b) show a GR–SR intersection at a GR

range of 50 km, azimuth angle of 45◦, and elevation angle of 1.3◦, and an SR scan angle of 0◦ (nadir scan).

Bottom panels (c,d) show a GR–SR intersection at a GR range of 100 km, azimuth angle of 45◦, and elevation

angle of 2.4◦, and an SR scan angle of 17.04◦ (maximum off-nadir scan). In both cases, the GR has a range gate

spacing of 250 m and an angular beam width of 1.0◦, the SR has a range gate spacing of 250 m, and the SR

scan line is perfectly aligned with the intersecting GR azimuth. Left panels (a,c) show vertical cross sections

along the SR scan line, with the GR beam boundaries and centre indicated by thick solid and dotted blue lines,

respectively, and the SR bin boundaries and centres indicated by thin red lines and red dots, respectively. SR bins

contributing to the volume-matched reflectivity are shaded. Right panels (b,d) show horizontal cross sections at

the height of the intersection, with the GR bin boundaries and centres indicated by thin blue lines and blue dots,

respectively, and the horizontal projection of the SR beam boundary approximated by the red circle. GR bins

contributing to the volume-matched reflectivity are shaded. In all panels the point of intersection is indicated

with a black cross.
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FIG. 3. Example of GR–SR comparison between TRMM and the SYD radar on 22/10/2013. The top row

shows plan views of (a) SR reflectivity, (b) GR reflectivity, and (c) GR−SR reflectivity for the 1.3◦ elevation

sweep. Each filled circle shows an individual volume-matched sample. Rings show the minimum and maximum

GR range, while solid and dashed lines show, respectively, the boundaries and centre of the SR swath. The

middle row shows vertical cross sections taken across the SR swath (location indicated by dotted lines in top

panels) of (d) SR reflectivity, (e) GR reflectivity, and (f) GR−SR reflectivity. Here volume-matched samples

are shown as columns of varying depth (note that these overlap for low elevation sweeps). Solid and dotted

lines show, respectively, the centre and boundaries of the brightband. The bottom row summarises the statistics

of the volume-matched sample pairs: (g) histogram of SR (black) and GR (grey) reflectivities (2 dB bins); (h)

scatter plot of paired SR and GR reflectivities; (i) histogram of GR−SR reflectivity (1 dB bins). Dashed vertical

lines in (g) and (h) show the minimum SR reflectivity. Solid and dotted lines in (h) show the line of best fit and

one-to-one line, respectively, with the sample size, n, and Pearson correlation coefficient, r, given at the top.

Mean, median, and modal GR bias are indicated in the top-right corner of (i).

944

945

946

947

948

949

950

951

952

953

954

955

956

47



a

-100 -50 0 50 100

x (km)

-100

-50

0

50

100

y
 (

k
m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

SR Relfectivity (dBZ)

b

-100 -50 0 50 100

x (km)

-100

-50

0

50

100

y
 (

k
m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

GR Reflectivity (dBZ)

c

-100 -50 0 50 100

x (km)

-100

-50

0

50

100

y
 (

k
m

)

-5 -4 -3 -2 -1 0 1 2 3 4 5

GR - SR Reflectivity (dB)

d

-100 -50 0 50 100

d (km)

0

2

4

6

8

10

12

z
 (

k
m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

SR Relfectivity (dBZ)

e

-100 -50 0 50 100

d (km)

0

2

4

6

8

10

12

z
 (

k
m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

GR Relfectivity (dBZ)

f

-100 -50 0 50 100

d (km)

0

2

4

6

8

10

12

z
 (

k
m

)

-5 -4 -3 -2 -1 0 1 2 3 4 5

GR - SR Reflectivity (dB)

g SR
GR

0 10 20 30 40 50 60

Reflectivity (dBZ)

0

5

10

15

20

25

30

F
re

q
u

e
n

c
y
 (

%
)

h

0 10 20 30 40 50 60

SR Reflectivity (dBZ)

0

10

20

30

40

50

60

G
R

 R
e

fl
e

c
ti
v
it
y
 (

d
B

Z
)

n = 3058
r  = 0.87

i mean = -4.3
median = -4.0

mode = -4.0

-15 -10 -5 0 5 10 15

GR - SR Reflectivity (dB)

0

5

10

15

20

25

30

F
re

q
u

e
n

c
y
 (

%
)

FIG. 4. As in Fig. 3, but showing a comparison between GPM and the SYD radar on 27/01/2015. In this case

the 0.5◦ elevation sweep is shown in the top row.
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FIG. 6. Box-and-whisker plots showing GR–SR reflectivity difference for samples below, within, and above

the ML in (top) stratiform and (bottom) convective precipitation for the (left) SYD, (middle) WOL, and (right)

NEW radars. Boxes show the median and interquartile range of the distribution; whiskers show the 10th and

90th percentiles. Dark and light grey boxes show values computed using SR data with and without the Ku-to-

S-band frequency correction, respectively. The number of samples in each layer is given at the bottom of the

panels. Note that all samples whose volume overlaps vertically with the ML are classified as being within it.
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FIG. 7. Bivariate histograms showing GR–SR reflectivity difference as a function of (top) GR range and

(bottom) GR–SR time difference for the (left) SYD, (middle) WOL, and (right) NEW radars. Colors show the

sample size for each bin on a logarithmic scale. Black diamonds and vertical lines show, respectively, the median

and interquartile range for each x-axis bin (not shown for sample sizes < 100). Pearson correlation coefficients,

r, are given in the top-right corner of each panel.
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FIG. 8. As in Fig. 7 but showing GR–SR reflectivity difference as a function of (top) SR reflectivity and

(bottom) GR reflectivity. Dashed lines indicate the SR sensitivity.
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FIG. 9. Annual time series of GR–SR reflectivity difference, ∆Z, for the SYD radar. Symbols and thin

vertical lines show, respectively, the mean GR bias and its standard deviation for each SR overpass. Circles

and diamonds indicate comparisons with TRMM and GPM, respectively. Symbols are colored according to the

number of volume-matched sample pairs on a logarithmic scale: white = 1–9, light grey = 10–99, dark grey =

100-999, and black = 1000+. Standard deviations are not shown for sample sizes < 10.
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FIG. 10. Histograms showing SR (thick dotted line) and SYD GR (thick solid line) reflectivity distributions

for (a) 29/07/2014–27/11/2014 and (b) 28/11/2014–18/01/2015. Thin vertical lines bound the portion of each

histogram used in the comparison; dotted for the SR and solid for the GR with colors indicating the iteration

step (blue = 1, green = 2, yellow = 3, and red = 4). The corresponding calibration error estimates are given in

the top right corner of each panel.
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FIG. 11. As in Fig. 9 but following the iterative calculation of calibration error. Thick dashed vertical lines

show the dates of possible calibration changes; thick and thin horizontal lines show, respectively, the mean

calibration error and its standard deviation during the intervening periods.
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FIG. 12. Smoothed kernel density estimation violin plots showing bin-matched reflectivity differences be-

tween (a) SYD and WOL, (b) SYD and NEW, and (c) WOL and NEW radars before (light grey) and after (dark

grey) the application of the calibration corrections derived herein. Thin horizontal solid and dotted lines show,

respectively, the median and interquartile range of the distribution. Sample sizes, n, and Pearson correlation

coefficients (before and after calibration corrections), r, are given at the top of each panel.
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Fig. A1. Diagrams showing the geometry of (a) SR and (b) GR measurements (not to scale). In both panels,

the main view is from the side in the plane parallel to the radar beam, while the inset shows a plan view. Red lines

indicate the radar beam and black circles indicate the location of the bin. Crosses in (a) mark the intersection of

the SR beam with the Earth ellipsoid and the blue arrow shows the direction of travel of the satellite. The thin

dotted black line in (b) indicates the height of the surface relative to the Earth ellipsoid (i.e. surface orography).

See text for details.
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