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ABSTRACT

Pulsars are natural clocks that can be used as laboratories for strong-field gravity, and as
sensitive probes of the interstellar plasma along our line-of-sight. Pulsar timing arrays
(PTAs) monitor a set of the most stable millisecond pulsars (MSPs) over many years to

function as a Galactic-scale gravitational wave (GW) detector, sensitive to nanohertz-frequency
waves. The eventual detection of these GWs will rely on a detailed understanding of the pulsars
and of the various sources of noise, including the interstellar plasma. In this thesis we improve
the ephemerides for a set of these MSPs, and a relativistic binary pulsar, using the techniques of
pulsar timing and scintillometry.

For each of the radio MSPs in the Parkes PTA, we have analysed their intrinsic spin noise and
modelled small changes to the electron density along our line-of-sight. These are strong sources
of non-stationary noise for pulsar timing, which we accounted for by using a new algorithm. We
produced new timing models for each pulsar, resulting in the first parallax measurements for five
pulsars and improvements to other parameters, such as the Shapiro delay to give new pulsar
mass measurements. Our new distance measurement for PSR J0437−4715, D = 156.79±0.25 pc,
is the most precise for any pulsar. For the first time, the uncertainty on this measurement is less
than the typical wavelengths of GWs that PTAs are sensitive to, which will increase sensitivity
to continuous GW sources.

Scintillation of radio pulsars is results from scattering by the turbulent interstellar plasma.
The scattering leads to a time-variable interference pattern that is sampled by the observatory
moving through space along the Earth’s orbit. We use measurements of this scintillation to
model the motion of the line-of-sight to the pulsar, which depends on the relative transverse
motions of the Earth, pulsar, and scattering plasma. We have measured long-term changes in the
diffractive scintillation pattern of a relativistic binary pulsar, PSR J1141−6545, and used it to
determine several previously unknown important parameters for the system. In particular, we
have measured the orientation of the orbit in celestial coordinates, Ω= 23±3◦ (N→E). We use
our scattering model in a new way to estimate the pulsar distance D = 9+5

−3 kpc, and to give the
first estimate of its proper motion in right ascension µα = 2.5±1.2 mas yr−1 and in declination
µδ = 1.5±0.7 mas yr−1. With these measurements, we constrain the kinematic contamination to
the relativistic orbital period-derivative for this system.

Finally, we have capitalised on the amazing long-term data collected by the PPTA collaboration
for PSR J0437−4715. The intensity measurements reveal parabolic "scintillation arcs" on ∼1300
observing epochs, which vary in curvature with the changing line-of-sight velocity. By modelling
these arcs, we have determined some orbital parameters of the pulsar, and properties of the
interstellar scattering medium, with unprecedented precision. This method is a promising
alternative to the more common diffractive scintillation modelling for pulsars that have well-
defined scintillation arcs or that are observed in the regime of weak scattering.
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INTRODUCTION

In modern astronomy, radio emissions from celestial objects are known to originate from

an exceptionally diverse collection of sources. These range from abundant neutral hydrogen

gas, to the violent cores of distant galaxies with supermassive black holes that power near-

lightspeed jets of plasma. The astrophysical insights enabled by discoveries in radio astronomy

are equally diverse. One such discovery, of twinkling radio stars called pulsars, revolutionised

numerous fields of astronomy and physics including studies of gravity, stellar evolution, the

interstellar medium (ISM), dense-matter, magnetohydrodynamics, and high-energy astrophysics.

These pulsars are natural clocks and laboratories of extreme physics with strong gravitational

fields, and they are distributed throughout the Galaxy. Applications range from precise tests of

gravitational theories and searches for gravitational waves, to the development of pulsar-based

time-standards and eventually perhaps interstellar spacecraft navigation. This chapter gives an

overview of these pulsars and some of their remarkable applications with a particular focus on

the technique of pulsar timing and the phenomenon of interstellar scintillation, which are both

used in the subsequent chapters to develop new methods for studying properties of the pulsars

themselves and the ISM.

1.1 Discovery and Properties of Pulsars

Observations of a radio star in 1951 showed that compact sources can vary in intensity over time

(Hewish 1951), analogous to the twinkling of stars in the night sky due to turbulence in the Earth’s

atmosphere. In this case the phenomenon, called scintillation, was caused by the scattering and

subsequent interference of radio waves passing through the Earth’s ionosphere. The combined

effect of interference patterns from incident waves along the many lines-of-sight from an extended

source diminishes the observed scintillation. Thus scintillation is only observed for compact (point-
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like) sources with spatially-coherent radiation, which is the physical mechanism underlying the

adage ‘stars twinkle and planets do not’. Further observations of compact radio sources showed

that scattering by density irregularities in the solar wind could be another cause of scintillation

(Hewish 1955). This was called "interplanetary scintillation", and could be used to study the

physics of plasma in the solar wind (Hewish et al. 1964).

To investigate the interplanetary scintillation further, Antony Hewish constructed a radio

telescope, the "Interplanetary Scintillation Array", and employed a novel observing strategy of

sampling the intensity of radio waves with a high time resolution of 0.1 s in initial surveys. This

fast sampling would allow for the first detailed studies of interplanetary scintillation in bright

and compact radio sources, such as the energetic cores of distant galaxies (quasars), which had

recently been discovered (Schmidt 1963). In 1967, while studying quasars with this telescope,

Hewish’s student Jocelyn Bell discovered a signal that appeared to be tracking with the sky and

regularly pulsating every 1.3 s (Hewish et al. 1968). She had discovered the first pulsar; a rapidly

rotating "neutron star" with beamed radio emission that appears to pulse with each rotation as

the beam sweeps over the observatory. Pulsars are therefore natural clocks with a lighthouse-like

behaviour.

Neutron stars were first theoretically predicted to be the compact stellar remnant of a core-

collapse supernova of a massive star by Baade and Zwicky (1934). Soon after Bell’s discovery of

the first pulsating radio source, Gold (1968) proposed the rapidly rotating neutron star model

for their origin. This model for pulsars, and their supernova origins were strongly supported by

the discovery of pulsars with < 0.1 s periods in the Vela (Large et al. 1968) and Crab (Staelin

and Reifenstein 1968) supernova remnants (the evolution of pulsars is discussed further in the

following section). Early pulsar observations also showed strong modulations to the observed

intensity (Lyne and Rickett 1968), caused by interstellar scintillation; scattering and interference

by density irregularities in the plasma of the ISM. The observation of intensity scintillations

and the first scattering model for the ISM (Scheuer 1968) appeared soon after the discovery of

pulsars, because they are near-perfect point sources and emit spatially coherent radiation. Their

fortuitous discovery during a study of scintillation is therefore especially apt, because pulsars

themselves are ideal tools for studying scintillation. The physics of this interstellar scintillation,

and its applications from pulsar observations will be discussed further in Section 1.3.

1.1.1 Pulsar formation and evolution

Pulsars (neutron stars) are the dense remnants of the core-collapse supernova explosions of stars

with masses M & 8 M¯. They are born highly-energetic, with powerful magnetic fields and a

large angular momentum left over from the parent star. Since pulsars typically have a radius of

about 10 km, this angular momentum gives the rapid rotation with typical spin periods P . 0.1 s

(at birth). Much of the parent star’s mass is expelled in the supernova, but the remnant pulsar

retains a mass of approximately Mp ∼ 1.3 M¯ (Özel et al. 2012), meaning they are immensely
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dense objects. They can also emit high-energy radiation such as x-rays and gamma-rays, in

addition to the usual radio beams from the poles of their magnetic field. This energy expenditure

is taken from the rotational kinetic energy of the pulsar, which can be observed as a spin-down

rate Ṗ. The spin evolution of a pulsar can be visualised in a "P–Ṗ diagram" such as Figure 1.1,

which plots the spin period and its derivative for all pulsars that are currently in the Australia

Telescope National Facility (ATNF) pulsar catalogue (Manchester et al. 2005).

Pulsars are born in the upper-left region of the P–Ṗ diagram, and rapidly drift towards the

cluster of "normal" radio pulsars (with P ≈ 0.5 s) as they age and their spin and spin-down rates

both decrease. A characteristic age (dashed lines in Figure 1.1) can therefore be defined from

these quantities alone, τage = P/(2Ṗ). Many of the younger pulsars in Figure 1.1 have known,

or suspected associations with supernova remnants (SNRs), which supports the theory of their

formation from the death of massive stars. However since supernovae are energetic explosions,

the pulsar is expected to receive a high "kick velocity" at birth (often exceeding 100 km/s) and

quickly escape the remnant. In such cases, a measurement of a young pulsar’s distance, proper

motion, and characteristic age can sometimes be used to trace its spatial trajectory backwards in

time to an OB association (group of short-lived, hot stars) where the supernova likely took place.

For older pulsars (τage & 105 yr), any supernova remnant would have merged with the general

turbulent flow of the ISM and be unobservable.

The majority of pulsars occupy a large cluster in the P–Ṗ diagram populated by solitary,

radio-loud pulsars (blue dots in Figure 1.1) with 0.1s . P . 3s and 10−17 . Ṗ . 10−13, and

corresponding characteristic ages of 105 yr. τage . 108 yr. The high fraction of solitary "normal"

pulsars is again consistent with a supernova birth scenario, since it would be common for the

pulsar to be ejected from the system during supernova. The maximum age of solitary pulsars

indicates that the decaying spin-down energy of the pulsar relates to the energy in its radio beams.

Beyond a certain age, pulsars enter a "graveyard" where they no longer emit radio emission and

become radio-quiet neutron stars (grey shaded region in Figure 1.1). Since the beams are powered

by the magnetic field and spin of the pulsar, the spin evolution also relates to the characteristic

magnetic field strength through B = 3.2×1019
√

PṖ G (dashed-dotted lines in Figure 1.1 Lorimer

and Kramer 2004), which is an approximation to the surface magnetic field strength.

A small population of young, particularly energetic pulsars with enormous magnetic field

strengths (B & 1014 G) occupy the upper-right region of the P–Ṗ diagram, and these are called

"magnetars". However, the main focus for the remainder of this thesis will be on the pulsars

at the opposite end of the diagram. These are the "millisecond pulsars", which evolve from the

normal pulsars with the help of a binary companion, as discussed in the following section.

1.1.2 Millisecond pulsars and binaries

A separate population of pulsars with fast spin periods (P . 30 ms), slow spin-down rates (Ṗ ≈
10−20), high characteristic ages (τage & 108 yr), and relatively weak magnetic fields (B . 1010 yr)
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Figure 1.1: "P–Ṗ diagram", displaying spin period P and spin-down rate Ṗ for all known pulsars
with measurements taken from version 1.57 of the Australia Telescope National Facility (ATNF)
pulsar catalogue (Manchester et al. 2005). Pulsars with radio emission are shown with blue
dots and radio-quiet pulsars (with pulsed emission of higher-energy radiation) are shown with
maroon triangles. Pulsars with binary companions have a red circle surrounding the pulsar
type marker, and those with associated supernova remnants (SNRs) are surrounded by a yellow
star. Pulsars with high-energy (x-ray and gamma-ray) emissions without pulsations, such as
Anomalous X-ray Pulsars (AXP) or Soft Gamma-ray Repeater (SGR), are shown with green
triangles. The dashed lines are lines of constant characteristic age τage ∝ P/Ṗ, and dashed-dotted
lines are of constant magnetic field strength B ∝

√
PṖ . The solid line is the pulsar "death line"

that encloses the pulsar "graveyard", beyond which electron-positron pair production in the
pulsar’s inner magnetosphere is expected to cease, which terminates the radio emission.

4



1.1. DISCOVERY AND PROPERTIES OF PULSARS

occupy the lower-left portion of the P–Ṗ diagram (Figure 1.1). These millisecond pulsars (MSPs),

are thought to evolve from normal pulsars through accretion of material from a binary companion

star (Bhattacharya and van den Heuvel 1991).

If, during the supernova of a massive star in a binary system, the explosion does not eject the

remnant, a pulsar may be born with a main-sequence stellar companion. Since stars commonly

spend & 109 years on the main sequence, the pulsar may evolve through the P–Ṗ diagram to the

graveyard during this time. However, at some point the companion star will enter the red giant

phase of its evolution and swell to a point where the red giant may orbit within the Roche lobe

(gravitationally bound region) of the neutron star and begin to transfer matter via Roche lobe

overflow. Some of the angular momentum of infalling plasma is transferred to the neutron star;

spinning it up to power the radio beam once again but also reducing its magnetic field strength

in the process (Bisnovatyi-Kogan and Komberg 1974). Pulsars reborn in this way are called

"recycled pulsars" and have masses in the range of 1.2 . Mp . 2 M¯ (Özel et al. 2012). MSPs

are recycled pulsars that have generally remained in the accretion phase for the longest times;

until the companion sheds enough matter to become a white dwarf, or is evaporated completely

(Bhattacharya and van den Heuvel 1991). As a consequence, ∼80% of MSPs are observed to be

in binary systems, and the majority of these have white dwarf companions (including all of the

binary MSPs that are studied in this thesis). The binary orbit also becomes circularised in this

process. For one of the pulsars studied in Chapter 2, PSR J1909−3744, we measure the orbital

eccentricity to be e = 1.14×10−7, which corresponds to a difference between its semi-major and

semi-minor axis of just ∼ 4µm despite having a radius of ∼570,000 km.

The first millisecond pulsar to be discovered, PSR J1939+2134 (Backer et al. 1982) remains

among the fastest known, with a spin frequency of 642 Hz. MSPs exhibit remarkable stability in

their spin periods, since they are essentially massive flywheels. The stability of MSP rotation

can rival that of the best atomic clocks on decadal timescales (Hobbs et al. 2012). Long-term

monitoring of their spin stability, through models of the pulsar that can predict the arrival

times of pulses, can therefore be used to create a pulsar-based time standard. The technique of

pulsar timing has numerous other applications owing to the complex models required for precise

predictions of the pulse arrival time, and these will be discussed in the following section.

The first pulsar to be discovered in a binary system, PSR J1915+1606 (also referred to as

the Hulse-Taylor binary after its discoverers), was found to be in a ∼ 7.75 hr eccentric orbit with

another neutron star (Hulse and Taylor 1975). This small orbital period, combined with the large

masses of the pulsar and its companion, makes this system highly relativistic and in fact it was

the first system discovered that could allow tests of general relativity in the strong-field regime.

Subsequent observations of this pulsar (Taylor and Weisberg 1982) showed that the orbital period

was decreasing with time in a way that agreed with the prediction of general relativity for energy

loss through the emission of gravitational waves (ripples of spacetime curvature that propagate

at the speed of light). This was the first evidence for the existence of gravitational waves and
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paved the way for continued tests of general relativity and other theories of gravity with future

discoveries of relativistic binary pulsars (sees Sections 1.2.3.2 and 1.2.4.2).

1.2 Pulsar Timing

The MSPs are incredibly stable natural clocks. Their beamed emission is observed as a train of

pulses, spaced equally by the rotation period of the pulsar, which can be measured with high

precision. Individual pulses show variation in their shape and amplitude, but when averaged over

a ∼ 30 min observation of the pulsar, a stable mean "pulse profile" is observed and an average

pulse time-of-arrival (ToA) can be measured from this. These ToAs are the fundamental data of

pulsar timing, in which they are compared with the prediction of a detailed "timing model" to give

timing residuals. The timing model includes a precise measure of time with atomic clocks and a

description of the astrometry (position and motion) and orbital dynamics of the pulsar and the

Earth, as well as other bodies in the Solar System and the ISM along the line-of-sight. The most

precisely-timed MSPs have root mean square (rms) timing residuals of / 150 ns over decades of

monitoring (e.g. Shannon et al. 2015), meaning that the timing model is able to accurately track

the relative distance between the Earth and these pulsars to a precision of / 50 m despite typically

being of order 1 kpc (∼ 1019 m) away. With this kind of precision and long-term monitoring of

many pulsars, it should be possible to eventually measure slow changes to the distances to

pulsars caused by a stretching of space-time by nanohertz-frequency gravitational waves (e.g.

Sazhin 1978). Indeed this is the primary goal of a "pulsar timing array" (PTA), in which a set of

millisecond pulsars are monitored over many years to attempt to measure a correlated signal

in their timing residuals, which will be the signature of these gravitational waves. Throughout

this thesis we use data collected for the Parkes Pulsar Timing Array (PPTA) project, which uses

the Parkes 64 m radio telescope. Further details of the data processing pipeline for pulsar timing

is given in the following section (1.2.1), before an explanation of some of the parameters in the

timing model (Section 1.2.3) and sources of noise in timing residuals (Section 1.2.2.1), which will

be used extensively in Chapter 2. The search for gravitational waves and other applications of

PTAs are then briefly discussed in Section 1.2.4.

1.2.1 Radio observations

Pulsar timing is most commonly conducted with radio-frequency observations collected with a

single-dish radio telescope such as the Parkes 64 m radio telescope that is used for the work in

this thesis. The technique of pulsar timing is summarised in Figure 1.2, which gives a schematic

of the observing and data processing pipeline. A train of pulses emitted from the pulsar first

travels through the ISM to become frequency-dispersed and scattered (see Section 1.3) before

arriving at the telescope, where it is focused at the feed of the receiver by a parabolic surface. The

signal-to-noise ratio of the observation depends on several properties of the pulsar and observing
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Figure 1.2: Schematic of the major steps involved in the observing and data processing pipeline
for pulsar timing, from emission at the pulsar to measurements of timing model parameters. The
steps illustrated here are summarised in Section 1.2.2.

system, and is given by the pulsar timing radiometer equation (Lorimer and Kramer 2004)

(1.1)
S
N

= Ŝ f G
√

np tobs∆ f
βTsys

√
P −W

W

where Ŝ f is the pulsar’s mean flux density (mJy) at an observing frequency f , G = Ae/2k is the

telescope’s gain (K Jy−1) for effective collecting area Ae and Boltzmann constant k, tobs is the

observing integration time (s), ∆ f is the observing bandwidth (MHz) around f , Tsys is the system

observing temperature (K; including sky noise), β≈ 1 is a correction factor for digitisation losses,

and W (s) and P (s) are the pulse width and pulse period respectively. Essentially, Equation 1.1

quantitatively explains the unsurprising result that the ideal observatory has a large collecting

area (large G) and a cooled receiver (small Tsys) with wide bandwidth (large ∆ f ). Pulsars typi-

cally have steep flux density spectra, increasing towards lower frequencies with Ŝ ∝ f −1.60±0.54

(Jankowski et al. 2018). However at higher frequencies, ISM effects are suppressed and the

pulse width is typically narrower, giving a smaller (P −W)/W owing to the emission originating

from a region of the magnetic field closer to the surface of the pulsar (i.e. lower in the light

cone; Radhakrishnan and Cooke 1969; Cordes 1978). Recently Shannon et al. (2015) suggested
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that more pulsar timing observations should be conducted at higher frequencies to avoid the

significant scatter associated with ISM effects that may limit sensitivity to gravitational waves.

However higher frequency observations require a smoother telescope surface (since the rms

deviations from a parabolic shape need to be much smaller than the observing wavelength),

which is more costly to construct with a large area, while radio frequency interference is more

common at lower frequencies. As a consequence of this balance between high and low frequencies,

radio telescopes currently used for pulsar timing achieve best results in the range of ∼ 300 MHz

to ∼ 4 GHz (Verbiest et al. 2016), depending largely on the nature of the pulsar itself.

1.2.2 Data processing pipeline

Once received by an instrument at the telescope’s focus (for "single dish" observatories), the

signal, in the form of a time series of voltages is sent to a "backend" digitising, dedispersion, and

folding system before being processed further at a later date. The data processing pipeline for

pulsar timing, as shown in Figure 1.2 is as follows:

• The digitised observation is time-tagged by a local clock that is maintained by inputs from

a Hydrogen maser frequency standard, and from periodic steering to follow coordinated

universal time UTC(GPS) as monitored by a network of atomic clocks used for the global po-

sitioning system (GPS). The pulses are de-dispersed to correct for the frequency-dependent

time delay introduced by propagation through the ISM (see Section 1.3.1), and Stokes

parameters for polarisation are formed (though for the work in this thesis we use only total

intensity, Stokes I).

• The dedispered pulse train is then folded by the known pulsar period (accounting for any

delays caused by significant binary motion), using a model (ephemeris) of the pulsar system.

The result is a high signal-to-noise ratio pulse profile, which is usually highly stable in

shape with time (particularly for MSPs).

• The pulse profile is then cross-correlated with a template profile to find the pulse ToA.

The template profile is often an analytical model that is fitted to a particularly high

signal-to-noise ratio profile formed by stacking together many individual observations.

• A detailed timing model provides a prediction for the ToAs, and a regression analysis can

be used to update parameters of the timing model and results in timing residuals.

The timing model used in the above procedure takes into account all significant sources for

time delays to the pulse from its emission at the pulsar to its measurement at the observatory. To

accurately track the relative motions of the pulsar and observatory, the ToA is first referenced

to an inertial reference frame, which in this case is the Solar System barycentre (SSB; which is

actually quasi-inertial). This time transformation takes the topocentric arrival time (ttopo; in UTC

as measured by the local clock) and applies corrections for light travel time, frequency-dispersion,
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and relativistic effects. If the pulsar happens to be in a binary system, its emission time is also

referenced to the barycentre of the pulsar’s orbit. The total time transformation in the timing

model (initially assuming a solitary pulsar) is given by (Edwards et al. 2006)

(1.2) tSSB = ttopo +∆tclk −∆tDM +∆tR¯+∆tS¯+∆tE¯

where∆tclk is the total clock correction to convert the locally measured UTC to a chosen realisation

of Terrestrial Time (TT) that is maintained by the Bureau International des Poids et Mesures

(BIPM) (for example, in Chapter 2 we use a retroactive revision of TT that was computed until

to the year 2013; TT(BIPM13)), ∆tDM is the total delay due to propagation through the ISM,

solar wind, and ionosphere (see Section 1.3.1 for derivation), ∆tR¯ is the Römer delay or classical

light-travel time from the observatory to the SSB, ∆tS¯ is the Shapiro Delay (Shapiro 1964),

which is a relativistic correction to the light-travel time for the curvature of space due to massive

bodies in the Solar System, and ∆tE¯ is the Einstein delay that includes relativistic corrections

for time dilation (from the motion and changing gravitational potential at the surface of the

Earth) and gravitational redshift (by other bodies in the Solar System). The ∆tR¯, ∆tS¯, and ∆tE¯
terms all require an accurate and precise model of the positions and motions of major bodies in

the Solar System (a Solar System ephemeris). The timing model for a binary pulsar will require

additional terms for the Römer, Einstein, and Shapiro delays to reference the emission to the

barycentre of the pulsar’s orbit (another quasi-inertial reference frame). These pulsar binary

corrections are computed with parameters within the pulsar ephemeris, which is determined by

modelling the ToAs.

Timing residuals will show all deviations from this timing model, including errors in the

assumed parameters (which can often be refit with the addition of more ToAs to improve the

model) or missing effects such as that of gravitational waves. In addition there are many sources

of noise in the residuals originating from the pulsar itself, instrumentation, the ISM, drifting

of the time standard, and errors in the Solar System ephemeris. These are discussed in the

following section.

1.2.2.1 Noise sources

Noise in timing residuals can be characterised by their colour (e.g. white or red), dependence

on observing frequency, and/or spatial correlation (i..e correlation between pulsars). The most

fundamental noise process is that of white radiometer noise that originates from the sky back-

ground noise and the electronics of the observing system itself, and has a strength proportional

to Tsys (Equation 1.1). This is the primary noise process used to estimate the ToA uncertainty for

a given observation, which is given by cross-correlation with an analytical template pulse profile.

However since the pulse shape/phase changes from pulse-to-pulse, small random fluctuations

to the average profile are expected and this produces an additional white noise process referred

to as "jitter noise" (Shannon et al. 2014). Jitter noise is also a white noise process, but can be
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reduced by averaging over a larger number of pulses (i.e. having a longer integration time on

the source tobs). Other potential sources for white noise include unknown instrumental effects

and errors in calibration. Since these processes are not accounted for to derive the initial ToA

uncertainty, scaling factors are commonly required to produce normally-distributed residuals

(see Chapter 2).

Many pulsars show significant low-frequency noise ("red noise") in their timing residuals. So-

called "timing noise" that is intrinsic to the pulsar commonly originates from random variations

to the pulsar’s spin period (e.g. Shannon and Cordes 2010). These fluctuations may originate for

example from variable coupling between the pulsar crust and a superfluid core (e.g. Jones 1990),

spin-down fluctuations linked to changes in magnetosphere torque (e.g. Cheng 1987), or maybe

even asteroid belts (Shannon et al. 2013a). Timing noise is therefore frequency-independent (un-

less magnetospheric changes affect the emission region as in Shannon et al. (2016)), uncorrelated

between pulsars, and can be significantly reduced in MSPs owing to their significantly larger spin

angular momentum and reduced magnetic fields. Measuring and understanding timing noise is

not only essential for other applications of pulsar timing (such as gravitational wave detection),

but is also a way to study the neutron star magnetosphere and interior structure.

The timing model (and therefore timing residuals) relies heavily on an accurate local time

standard and Solar System ephemeris. However while highly stable on short timescales, atomic

clocks drift randomly on longer timescales; as a red stochastic process. Since this is a local

phenomenon intrinsic to atomic clocks, the induced red noise in timing residuals from time

standard errors are identical (fully correlated) and frequency-independent. By combining the

residuals of many stable MSPs to measure the fully correlated component, corrections can be

made to the assumed time standard, thus producing a new, pulsar-based realisation of terrestrial

time (e.g. Hobbs et al. 2010).

Accurately tracking the motion of the Earth with a Solar System ephemeris is a complex

problem of n-body interaction, and therefore small errors in the mass or position of major bodies

in the Solar System can induce long-timescale errors in the position of the SSB (and thus red

timing noise). Ephemeris errors are frequency-independent but are correlated between pulsars

with a dipole signature depending on the angular separation between pulsars. If this correlation is

measured, it can be used to determine masses of major bodies in the Solar System (e.g. Champion

et al. 2010).

Finally, there is significant frequency-dependent red noise in the timing residuals of many

MSPs, owing to random changes in the column density of electrons along the line-of-sight

through the ISM to a given pulsar (thus it is uncorrelated between pulsars). This ISM noise

can often dominate timing noise in magnitude, but since it is frequency-dependent with a

known dependence (which increases with f −2), it can be corrected if there are near-simultaneous

measurements of ToAs at multiple observing frequencies. However this correction may not be

perfect and residual noise could be significant in the timing residuals of some of the best MSPs.
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We discuss this ISM noise and other effects of the ISM in detail in Section 1.3.

1.2.2.2 Parameter estimation in the presence of noise

These noise processes (in particular the red noise), complicate the parameter fitting procedure

used to improve the timing model. The noise must be accurately characterised to achieve unbiased

parameter measurements and uncertainties from a simple linear least-squares fit. In this basic

fitting procedure (which is summarised below, and in Hobbs et al. (2006); Coles et al. (2011)),

the timing model is linearised about an initial guess of the parameters (many of the parameters

are linear initially; nonlinearity is encountered with some "post-Keplerian" binary parameters;

Section 1.2.3.2), and the multivariate regression model is applied

(1.3) R = MP +E

where R is a column vector of the pre-fit timing residuals of length n (number of ToAs), M is

the design matrix of size n×m for m parameters in the timing model (it contains values of each

of the variables at each of the observations), P is a column vector of the fitted parameters with

length m, and E is a column vector of "errors", or in this case the post-fit timing residuals for

each of the n observations (which also have a mean of zero). The parameters are estimated by

minimising the "squared error" ET E to give the ordinary least squares (OLS) solution

(1.4) Pest = (MT M)−1MT R

where the resulting post-fit timing residuals are assumed for now to be "homoscedastic", meaning

they are uncorrelated (i.e. "white") and have equal variance (σ2 for ToA uncertainty σ). The

normalised squared error is the chi-squared value χ2 = ET E/σ2, which is used to quantify the

"goodness-of-fit". The reduced chi-squared value χ2
r = χ2/(n−m) (where n−m is the number of

degrees of freedom) is unity for Gaussian-distributed post-fit residuals with standard deviation

equal to the ToA uncertainties σ. If χ2
r < 1 then there may be too many parameters in the model,

or the uncertainties may be over-estimated, while if χ2
r > 1 then more parameters may be required,

or the uncertainties are under-estimated (which is extremely common in ToA error estimation,

as discussed in the previous section). To account for this deviation, it is common practice to

simply scale the covariance matrix of the estimated parameters Cov(Pest)=σ2(MT M)−1 by the

measured χ2
r , although this may result in over-optimistic error estimates.

In practice, the ToA errors are unequal so we instead find the weighted least squares (WLS)

solution using the n×n covariance matrix of the residuals C, where the diagonal elements are

the variances σ2 of each ToA and the remaining matrix is zero for uncorrelated (white) noise.

The weighted squared error is ETC−1E, which again is minimised to find a solution. For under-

estimated ToA errors, giving χ2
r > 1, the covariances in this case are either all scaled by χ2

r as in

OLS, or have a constant added (this process is described further in Chapter 2). If the residuals

are also correlated in time (e.g. if a source of red noise is present) then the off-diagonal elements
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in the covariance matrix C are non-zero and the generalised least squares (GLS; Aitken 1936)

solution is

(1.5) Pest = (MTC−1M)−1MTC−1R

if C is known. In this GLS problem, the covariance matrix is used to normalise and whiten the

residuals and the timing model so it then resembles an OLS problem. However estimating the

covariance matrix is non-trivial and if the red, correlated noise is not properly accounted for, the

solution in Pest and the errors given by Cov(Pest) will be inaccurate.

Currently there are two main approaches for dealing with red noise successfully, which can

often be characterised as stationary with a power-law spectral model (Shannon and Cordes 2010).

The first is a "Frequentist" approach that uses a linear transformation to whiten the residuals

and the timing model, following on from the GLS method described above (and is the primary

focus here and in Chapter 2). One possible linear transformation to use in this approach, which

was adopted for pulsar timing by Coles et al. (2011), is the Cholesky decomposition of C. In this

process, C is factorised into C = UTU by "Cholesky lower triangle factorisation", and U−1 is

used as the whitening and normalising transformation for the residuals and timing model in the

following way. Applying the U−1 whitening transformation gives Rw =U−1R, Mw =U−1M, and

Ew =U−1E, and then the GLS problem is reduced to OLS (Equation 1.6) Rw = MwP +Ew with

solution (Coles et al. 2011)

(1.6) Pest = (MT
wMw)−1MT

wRw.

This procedure is only optimal if C is known, but can still be used to whiten the residuals

and timing model accurately. To do this, the red noise is first estimated through a spectral

analysis. In most cases the noise is stationary and the power spectrum P( f ) is well-modelled

with a single power-law of the form Pm( f )= A f −α, where A is the amplitude, f is the frequency

of the signal, and α is the spectral index. Since the ToA samples are not spaced regularly in

time, P( f ) cannot be computed directly with a fast Fourier transform (FFT), and is instead

estimated with the "periodogram", which is the squared magnitude of the FFT, scaled to be an

estimator of the spectral density. Methods for computing the periodogram include the Lomb-

Scargle method (Lomb 1976; Scargle 1982), which we use in Chapter 2 for checking the whitened

residuals, and a weighted version by Zechmeister and Kürster (2009), which is used for the

original spectral analysis of pre- and post-fit timing residuals (with first-difference pre-whitening

before computation for strong red noise with α> 2, followed by post-darkening of the result; Coles

et al. 2011).

The periodogram of residuals can be modelled with a function of the form

(1.7) Pm( f )= A[
1+

(
f
fc

)2
]α/2
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which includes a "corner frequency" fc to account for either a physical turn-over in the pulsar’s

intrinsic timing noise (e.g. Lasky et al. 2015), or simply the low-frequency power subtracted from

the residuals during a fit of the spin period and its derivative (which is a quadratic). Importantly,

this model does not diverge at low frequencies. The covariance matrix of the residuals is then

estimated from this power spectrum, since Pm( f ) is the Fourier transform of the model covariance

function c(τ) (where τ is the time lag between pairs of ToAs) for the red noise. This covariance

function is computed for each pair of residuals and the uncorrelated measurement error is added.

This method is computationally efficient (usually the most significant computation involved is the

matrix inversion to find the whitening transformation U−1), and has been shown to give unbiased

parameter measurements and uncertainties if the noise is correctly characterised (Coles et al.

2011, see also Chapter 2). This method is extended, tested, and used for parameter measurement

in Chapter 2, where we consider timing residuals with non-stationary noise characteristics (i.e.

noise that changes at some known position in the dataset).

The second commonly-used method for dealing with red noise is a "Bayesian" approach which

aims to find the "maximum likelihood" values for parameters (including those in a red noise

model) as given by the posterior probability distribution (or just "posterior") calculated with

Bayes’ theorem. If the residuals from OLS have a Gaussian distribution, the solution is also the

maximum-likelihood, so the two methods give identical results if the timing model is complete,

and the covariance matrix is estimated accurately. Several algorithms have been developed

for this Bayesian approach to fitting for the timing model (e.g. van Haasteren et al. 2009; van

Haasteren and Levin 2013; Lentati et al. 2014a), each with a different method for sampling the

posterior. This approach gives the full probability distribution for fitted parameters, so produces

robust parameter uncertainties for a complete model (i.e. with no parameters missing). However

unlike GLS, the method of fully sampling the posterior is computationally expensive, and is

sensitive to the prior probabilities that are assumed for the parameters.

In Chapters 3 and 4 we use WLS for parameter estimation when fitting models to measured

properties of scintillation (since there is not significant correlated noise). The models are non-

linear, but a set of initial guesses for P are used, following by iterative WLS fitting until the

process converges to a potential solution. In a nonlinear parameter space there may be multiple

local ET E minima, and we use the χ2 to compare solutions to find the "best-fit", and the parameter

errors are derived from Cov(Pest).

1.2.3 Pulsar ephemeris

The component of the timing model that describes the spin, astrometry, and orbital dynamics of

the pulsar is referred to as the pulsar ephemeris. It contains parameters describing the motion

of the pulsar relative to the SSB, as well as the IISM along the line-of-sight (with a "dispersion

measure" model described in Section 1.3.1). These parameters can be measured with GLS from

a time series of ToAs for a given pulsar. In this way the pulsars themselves can be studied and
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used as tools for experiments such as tests of general relativity and probes of the IISM.

Most fundamentally, each pulsar ephemeris describes the pulsar’s spin period P and its

derivative Ṗ as well as its position on the sky in celestial coordinates; right ascension α and

declination δ. The transverse motion on the sky for solitary pulsars and the barycentres of

binary pulsars, relative to the SSB, is described by the proper motion in α and δ, µα and µδ

respectively (usually expressed in units of milliarcseconds per year; mas/yr). Any constant radial

motion simply changes the apparent spin period P with a Doppler shift. For some nearby, and/or

precisely-timed pulsars, a timing parallax π (mas) may also be measured, which is a measurement

of the curvature of emitted wavefronts. The effect of this parallax is often small, and depends

on the pulsar’s ecliptic latitude since its measurement depends on the variation in arrival time

for a curved wavefront relative to a plane wave at different positions for the Earth’s orbit (and

perpendicular to the ecliptic plane there is no time dependence). If a parallax can be measured,

it gives the distance to the system directly, which is useful for various applications including

electron density models of the Galaxy (when combined with the dispersion measure, e.g. Taylor

and Cordes 1993; Cordes and Lazio 2002; Yao et al. 2017). Proper motion measurements are

useful for understanding the spatial velocities of pulsars, which is related to their "kick velocities"

at birth and dynamical evolution in the gravitational potential of the Galaxy (e.g. Hobbs et al.

2005).

Errors in these spin and astrometric parameters each leave a unique signature in timing

residuals. Spin parameters P and Ṗ produce a linear and quadratic term respectively, while

position errors produce an annual sinusoid (with a phase that depends on whether the error is in

α or δ), proper motion errors produce an annual sinusoid that grows with time from the reference

epoch at which the position was accurate, and a parallax error induces a six-month sinusoid.

1.2.3.1 Keplerian binary parameters

A simple non-relativistic binary system can be described by Kepler’s laws of motion (neglecting

for now any relative motions between the SSB and the barycentre of the pulsar’s orbit, e.g. proper

motion). In general the orbital motion in the radial direction (which is most relevant to pulsar

timing) of such a system is well modelled with these laws using just five parameters; the orbital

period Pb, the orbital eccentricity e, the projected semi-major axis x = asin i (for semi-major axis

a and orbital inclination angle i), the longitude of periastron ω (the angle between the pulsar’s

ascending passage through the plane of the sky that cuts the centre of mass of the orbit, and

its closest approach to this centre of mass at periastron), and the epoch of periastron T0. A

sixth parameter, the longitude of the ascending node Ω, describes the orientation of the orbit in

celestial coordinates (typically defined as the position angle East of North, of the ascending node

relative to the centre of mass). Together, these six parameters are the "Keplerian parameters",

and are shown schematically in Figure 1.3. However, Ω is difficult to measure through pulsar

timing alone since it is not directly related to the radial motion that ToAs are sensitive to. Instead,
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Figure 1.3: Schematic definition of angles in a Keplerian binary orbit. Lines in the plane of the
sky are grey and lines in the plane of the orbit are black; the intersection of these planes is
the line of nodes (grey dashed line). The orbit is tilted from the plane by the inclination angle
i. Periastron occurs at a distance of a(1− e), for semi-major axis a and eccentricity e, and the
longitude of periastron ω is defined from the line connecting the barycentre to the ascending
node. The orientation of the orbit from the perspective of the observer is given by the longitude of
the ascending node Ω in the plane of the sky (defined East of North). This figure was adapted
from Figure 8.3 of Lorimer and Kramer (2004).

its small effect on radial motion is apparent when relative motions between the SSB and pulsar

system are considered, since the projection of the orbit on the sky changes slightly with time (this

and other kinematic effects are described in the following section).

Following from the third law of Kepler and Newton’s law of gravitation, the binary mass

function can be defined, which relates some Keplerian parameters to the masses of the pulsar
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mp and its companion mc

(1.8) f (mp,mc)= 4π2x3

GP2
b

= (mc sin i)3

(mp +mc)2

where G is Newton’s gravitational constant.

The mass function f (mp,mc) itself can be accurately determined for all solved binary orbits

because x and Pb are easy to measure to very high precision. However for the masses to be

determined separately, observations of relativistic effects are required.

1.2.3.2 Post-Keplerian parameters

There are numerous corrections to the basic Keplerian orbital model that must be made in order

to accurately describe the motions of precisely-timed MSPs (where small kinematic effects are

detectable) and relativistic systems (where general relativistic parameters can be measured). The

parameters used to describe the general relativistic corrections are referred to as "post-Keplerian"

(PK) parameters.

Approximating the pulsar and its compact companion (white dwarf or neutron star; no

pulsars with black hole companions have yet been discovered) as point masses with no spin

angular momentum, the general relativistic PK parameters are a function of only the Keplerian

parameters and mp and mc. The parameters are required in the model if the radio beam of the

pulsar passes through a strong gravitational field, or if the orbit is close enough for the orbital

velocity to reach relativistic speeds. Among the binary MSPs in the PPTA, the smallest orbital

periods are of order Pb ∼ 1 day around a white dwarf, which is not close enough to show relativistic

effects due to high orbital velocity at the current timing precision (Chapter 2). However, if the

orbit is highly inclined (i.e. viewed near to edge-on) from our perspective, the radio emission

experiences a detectable Shapiro delay from the strong gravitational field of the companion. The

Shapiro delay is described by the "range" r and "shape" s parameters

(1.9) r = T¯mc

(1.10) s = sin i = T1/3
¯

(
Pb

2π

)−2/3
x

(
mp +mc

)2/3

mc
,

where i is the inclination angle, and T¯ = GM¯/c3 = 4.925490947µs is the mass of the Sun in

units of time. These parameters are measured in several of the PPTA pulsars, and are the most

common method for measuring the masses of the pulsar and companion in combination with

the mass function. For more compact or eccentric orbits, parameters including the relativistic

advance of periastron ω̇ and the orbital period decay due to gravitational radiation Ṗb can be

measured, and these are related to the masses through

(1.11) ω̇= 3T2/3
¯

(
Pb

2π

)−5/3 1
1− e2

(
mp +mc

)2/3
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(1.12) Ṗb =−192π
5

T5/3
¯

(
Pb

2π

)−5/3
f (e)

mpmc(
mp +mc

)1/3 ,

where f (e)= (
1+ (73/24)e2 + (37/96)e4)

/
(
1− e2)7/2 (Damour and Deruelle 1985, 1986; Peters and

Mathews 1963).

Periastron advance is famous for first being observed for the orbit of Mercury prior to general

relativity, where the relativistic component is ω̇ = 43 arcseconds per century. By contrast, the

most relativistic binary pulsars have ω̇ on the order of a few degrees to >25 degrees (e.g. Stovall

et al. 2018) per year (including PSR J1141−6545, which is studied in Chapter 3).

Additional geometric timing parameters from various kinematic effects will be introduced

in Chapter 2 where they are measured for some MSPs in the PPTA. In brief, these parameters

originate from the pulsar’s proper motion, which can alter the projection of the orbit on the sky

to give the apparent time derivatives ẋ and ω̇ that depend on i and Ω (Kopeikin 1995, 1996), or

induce a changing Doppler shift from the small radial acceleration associated with a transverse

velocity (the proper motion is tangent to the surface of a sphere centred on the SSB with radius

equal to the distance to the pulsar, meaning that a radial acceleration is observed; Shklovskii

1970).

1.2.4 Other applications

We have shown above in Section 1.2.2.1 that some noise processes have direct applications,

including studies of neutron stars themselves, development of pulsar-based time standards, and

measurements of masses in the Solar System. IISM applications are given in detail in Section

1.3 since this is the focus of Chapters 3 and 4. Highlighted in the following sections below is

gravitational wave detection because this is the primary goal of PTAs (e.g. the PPTA), and tests

of theories of gravity, which applies to work in Chapters 2 and 3.

1.2.4.1 Ultra-low frequency gravitational wave detection

The era of gravitational wave astronomy began recently, and suddenly, with the direct detection of

gravitational waves from a binary black hole inspiral and merger event (Abbott et al. 2016). These

short-lived ripples in spacetime were measured by the Laser Interferometer Gravitational Wave

Observatory (LIGO Abbott et al. 2009). LIGO is a ground-based experiment involving powerful

underground lasers that are pointed along two perpendicular 4 km arms before being reflected

by suspended mirrors multiple times and eventually recombined, with any interference being

measured by a detector. The mirrors are arranged such that the laser should cancel perfectly

through destructive interference (disregarding noise sources) if the arms are identical lengths. As

a gravitational wave (with frequency in the range 10 Hz to 10 kHz) passes through the detector,

the proper length of the interferometer arms oscillate in a way that depends on the direction,

17



CHAPTER 1. INTRODUCTION

strength, and polarisation of the wave. A non-zero interference pattern is then detected and

properties of the gravitational wave can be reconstructed from the data.

PTAs are sensitive to much lower frequency gravitational waves in a similar way to LIGO,

except on a Galactic scale. A set of pulsars in the Galaxy, each emitting radio beams, is analogous

to the LIGO test masses (mirrors) that are monitored with lasers. Instead of using interferometry

however, changes to the relative distance to each pulsar is tracked precisely using a timing model.

Gravitational waves transiting the line-of-sight to the pulsar will again oscillate the proper

length and induce a change to the propagation time of the pulses, which can be measured in

timing residuals (Sazhin 1978). Since the stability of MSPs is strongest on decadal timescales

and longer, PTAs are most sensitive to nanohertz-frequency gravitational waves, emitted for

example by the ensemble of supermassive black hole binary systems in the centres of galaxies

throughout the Universe, producing a stochastic "gravitational wave background" (GWB). This

GWB is currently predicted to be greater in amplitude than any individual sources of these

low-frequency gravitational waves (e.g. Zhu et al. 2015). Because the GWB is characteristically

stronger at low-frequencies and is random in nature, it is expected to induce red noise in timing

residuals. This noise, with a characteristic spectral index, should be first noticed in the most

precisely-timed pulsars. Eventually, the expected signal will show as a correlation in the timing

residuals between multiple pulsars that depends on the separation angle on the sky for a given

pair of pulsars (the exact dependency is called the "Hellings and Downs curve", Hellings and

Downs 1983).

Successful isolation of the red noise due to gravitational waves, and measurement of the

Hellings and Downs curve relies heavily on precise timing models for the pulsars, and on a

thorough understanding of all possible sources of noise in the timing residuals. Since gravitational

wave detection is the primary goal of all existing PTAs, the study of pulsar timing models, noise,

and interstellar medium effects presented in later chapters is important for this purpose.

1.2.4.2 Tests of general relativity and other theories of gravity

Many pulsars in compact orbits are relativistic enough for measurements of the PK binary

parameters described in Section 1.2.3.2. In such systems, the parameters can be used to test

general relativity and other theories of gravity. Since each of the parameters is a different function

of mp and mc, two measurements of any PK parameters can be used to determine measurements

of these masses, under the assumption that general relativity is correct. If a third or more PK

parameters are measured, the relativistic system can be used as a laboratory for testing general

relativity, since additional parameters must be consistent with the implied masses. Relativistic

binaries have been used in this way to precisely constrain general relativity in the strong field

regime (Kramer et al. 2006).

The first famous example of this kind of system was the Hulse-Taylor binary, for which the

measurement of Ṗb gave the first indirect evidence for the existence of gravitational waves. Tests
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of general relativity and theories of gravity have since improved with more relativistic systems,

such as the first double pulsar system, PSR J0737−3039 (Lyne et al. 2004), which has provided

tighter constraints to deviations general relativity in the strong-field than any other pulsar

system (Kramer et al. 2006). The system is highly inclined, meaning that sin i was measured

from the Shapiro delay with high precision. As we will see in the following sections, the rapidly

changing orbital velocity is ideal for measuring changes to the scintillation of the pulsar, and this

was used to independently measure the inclination angle i (uniquely) for this system (Rickett

et al. 2014).

Independent measurements of i from scintillation can be used to provide mass measurements

or further constrain theories of gravity. These measurements will be particularly valuable for

systems where the Shapiro delay is not detectable through pulsar timing. PSR J1141−6545, a

relativistic binary pulsar with white dwarf companion, was the first relativistic binary to be

modelled in this way (Ord et al. 2002a). In the following section we discuss this method further

and revisit the modelling of PSR J1141−6545 in Chapter 3.

1.3 Effects of the Ionised Interstellar Medium

The interstellar medium (ISM) is a broad term to collectively refer to all of the material between

the stars in the Galaxy. It is the ordinary matter (i.e. excluding dark matter and dark energy),

neutral or ionised, that fills interstellar space, and includes: atomic and molecular gas, dust,

plasma, and cosmic rays. The ISM at a given location in the Galaxy can be classified into one of

several "phases" depending on the temperature, density, and phase of its local constituents. The

three most fundamental phases of the ISM are: the cool neutral medium (CNM) of neutral atomic

and molecular gas with temperature T <300 K, the warm ionised medium (WIM) of primarily

plasma with T ∼ 104 K, and the hot ionized medium (HIM) of plasma that has been shock-heated

to T ∼ 106 K, by supernovae and often forms galaxy outflows (McKee and Ostriker 1977).

Observations of compact radio sources such as pulsars, active galactic nuclei (AGN), and

masers are affected in a number of ways by free electrons and magnetic fields in the WIM. This

magnetised plasma, with typical electron densities of ne ≈ 0.1 cm−3 in the spiral arms of the Milky

Way (Yao et al. 2017), is referred to as the ionised interstellar medium (IISM). This IISM interacts

with all radio waves of centimetre to metre wavelength to produce a number of observational

effects such as Faraday rotation, frequency dispersion, scintillation, and image distortion. The

magnetised component of the IISM is primarily responsible for the Faraday rotation, which is a

change to the position angle of the polarisation of a wave that is proportional to the magnetic

field strength in the direction of propagation, ne, and on the path length. For the remaining

observational effects, which are described in more detail in the following sections, the magnetic

field of the IISM can largely be ignored. These effects depend most strongly on the density,

distribution, and turbulence of the plasma. However, it is assumed that magnetic fields may be
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important for the confinement of some of the discussed structures in the IISM (e.g. Romani et al.

1987).

The interaction between the IISM and pulsar radiation can be a significant source of noise for

precise experiments involving pulsar timing, such as the search for gravitational waves. But it

can also be a useful tool for studying the astrometric and orbital parameters of some pulsars, as

well as structures in the IISM itself. In the following sections we introduce observational effects

of the IISM and discuss their consequences for pulsar timing and physics.

1.3.1 Frequency Dispersion

One major effect of the IISM on all pulsar observations is the frequency-dependence of the delay

on pulse arrival times. It was noted even in the discovery of pulsars (Hewish et al. 1968) that

higher frequencies arrived earlier than lower frequencies. This arises because the IISM is a

plasma with free electrons in which a small perturbation will produce a restoring Coulomb

force, and consequently an oscillation in ne. The frequency of this oscillation is the "plasma

frequency", fp ' 8.5kHz
√

ne/cm−3 (Lorimer and Kramer 2004). Radio waves at a frequency

f > fp propagating through this oscillating plasma (and its accompanying electric field) will

experience a frequency-dependent index of refraction µ( f ) =
√

1− ( fp/ f )2 . The reduced group

velocity vg( f )= cµ( f ) of the propagating wave, therefore produces a frequency-dependent time

delay relative to a wave of infinite frequency, which is given by

(1.13) ∆tDM =
(
D

∮
ds

vg( f )

)
− D

c
,

where the path integral is taken over the fractional distance s from the pulsar at s = 0 to the

observer at s = 1. The observed spread in time of different frequencies emitted simultaneously is

referred to as frequency dispersion. For typical radio observations at MHz to GHz frequency, where

f >> fp, the refractive index can be approximated by Taylor series with µ( f )' 1− ( f 2
p )/( f 2

p +2 f 2)

and the delay in arrival time between two pulses with frequencies f1 and f2 is then

(1.14) ∆tDM =DM

(
D

f 2
1
− D

f 2
2

)
,

where f2 > f1, D= e2/(2πmec), and DM, or "dispersion measure" is the total column density of

electrons along the line-of-sight

(1.15) DM= D
∮

neds,

and is expressed in units of cm−3pc. If the distance to the pulsar is known (e.g. from a measure-

ment of its parallax), a measurement of the DM from the curve of ∆t with observing frequency f

gives a good measure of the mean electron density along the line-of-sight to the pulsar. Many

measurements of DM for pulsars with known distances have been used to construct a model of

Galactic electron density of the IISM (e.g. Taylor and Cordes 1993; Cordes and Lazio 2002; Yao
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et al. 2017). For pulsars where the distance is not independently measured, this problem can be

reversed to estimate the pulsar distance using the model of Galactic electron density along the

line-of-sight of interest and a measurement of the DM.

1.3.2 Structure of the IISM

The electron density models, derived from DM measurements, describe the large-scale structures

in the distribution of electrons in the IISM, e.g. components of the disk, bulge, and halo of the

Galaxy, H II regions, supernova remnants, and other known large regions of over- and under-

density. However the structure of ne is far from smooth on smaller scales, because the IISM is

highly turbulent. This turbulence is expected to generate a power-law distribution of density

irregularities, which can be modelled by the three-dimensional wavenumber k. The general form

of this power spectrum is then

(1.16) Pne (q)= C2
ne

k−β,

where Cne is the strength of fluctuations, and β= 11/3 for the canonical spectrum of Kolmogorov

turbulence in which energy cascades from larger to smaller scales (as with other fluids). Many

pulsar observations show IISM effects that follow this Kolmogorov spectrum closely (e.g. Arm-

strong et al. 1995; Keith et al. 2013) over many orders of magnitude in k. However the power

spectrum is also observed to be truncated at some "inner" and "outer" scales, l i = 1/ki ≈ 108 m

and lo = 1/ko ≈ 1018 m respectively (Armstrong et al. 1995; Rickett 1990).

Other deviations from this Kolmogorov power-law are also observed, including variations to

the exponent β, and AU-scale regions of significant over-density and turbulence that are theorised

to be confined by magnetic fields in the Galaxy or ram pressure (Fiedler et al. 1994; Walker

2007). These intensely turbulent structures, which are like storms in the IISM, are referred to as

"extreme scattering events" (ESEs) because their scattering efficiency dominates the combined

scattering from the entire remaining line-of-sight (scattering and its observational effects will be

described further in the following sections). ESEs were first discovered through observations of a

quasar, where the compact and dense region of plasma acted as a diverging lens that refracted

the flux to its outer edges (Fiedler et al. 1987; Romani et al. 1987). The flux of this quasar initially

increased significantly as the ESE began to pass across the line-of-sight, before dropping below

the mean for ∼ 60 days because of the divergent flux, and it then increased at the trailing edge of

the ESE and returned to the mean once it had passed. Since this original observation, many more

ESEs have been discovered in quasars and pulsars through similar effects on the flux density,

and in general they are found to be approximately AU-scale (e.g. Walker 2007).

The power-law distribution of density irregularities in the IISM means that the DM along

a given line-of-sight changes with time as a low-frequency (red) stochastic process. The time-

dependence of DM is a combination of the motion of the plasma itself that results in a time-

dependent electron density ne(t), a changing pulsar distance from radial motion D(t), and
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transverse motions of the line-of-sight from Solar System and pulsar binary velocities. D(t) is

expected to contribute a linear term to DM(t), while annual terms are also observed in some

pulsars with transverse spatial variations in ne at a location near to the Earth (Keith et al. 2013,

Chapter 2).

Precise long-term timing of MSPs often reveals a frequency-dependent red noise, which is

the time delay induced by the stochastic component of fractional changes to the DM, from ne(t)

(e.g. You et al. 2007; Keith et al. 2013). These "DM variations", DM(t), are a major source of noise

in the timing residuals used by PTAs. They are often quantified with the "structure function"

statistic, which is the mean squared difference in DM over a time lag τ

(1.17) DDM(τ)=< [DM(t+τ)−DM(t)]2 >

and for Kolmogorov turbulence with β= 11/3, DDM(τ)∝ τ5/3 (the exact relationship depends on

the diffractive scintillation timescale introduced in the following sections; Foster and Cordes 1990).

The delay associated with frequency dispersion, proportional to DM, also has a corresponding

phase perturbation to the propagating photons φ= 2π f∆tDM = e2DM/(mec f ) relative to a photon

at infinite frequency. The structure functions for DM(t), ∆tDM and φ are related through

(1.18) Dφ(τ)= (2π f )2D∆t(τ)= (e2/(mec f ))2DDM(τ),

and in this way, measurements of DM variations can be used to study several properties of the

IISM. The phase-perturbing nature of the IISM is responsible for the scintillation phenomenon

as well, through scattering of incident wavefronts, which is discussed in the following section.

Using measurements of the TOAs at multiple observing frequencies, it is possible to measure

the DM(t) with accuracies on the order of one part in 105 for precisely-timed pulsars because

∆tDM ∝ f −2 (Equation 1.14). The DM(t) red noise can largely be removed in this way, but the

procedure is imperfect and residual red noise, which is stronger at lower-frequencies may affect

the sensitivity of a PTA to gravitational waves (e.g. Shannon et al. 2015). Measurements of DM(t)

can also be used to discover phenomena such as ESEs (e.g. Coles et al. 2015), through the sudden

increase in DM (paired with changes in observables of scattering; see the following sections)

caused by the compact and dense plasma drifting across the line-of-sight. Similarly, other lensing

events (e.g. Lam et al. 2018) or "holes" in the IISM (e.g. Coles et al. 2015) can be discovered

through a sudden decrease in DM.

1.3.3 Scattering

It is often appropriate to approximate the IISM for a given line-of-sight as a single, thin (compared

with the distance to the source from the observer), phase-changing screen, which is the "scattering

screen". For the purpose of illustrating the physics of scattering, this thin screen model is initially

used below with the assumption of isotropic scattering (following earlier reviews, e.g. Rickett

1990; Cordes and Lazio 1991; Narayan 1992; Cordes 2002; Lorimer and Kramer 2004). However
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the basic mechanisms are the same for more complex scattering geometries, and in Chapters 3

and 4, models for extended (along the line-of-sight) and anisotropic scattering are used.

A two-dimensional wavefront with unit amplitude passing through the thin scattering screen

will encounter a phase perturbation φ(x, y) at transverse position (x, y) due to the power-spectrum

of density irregularities Pne (q) in the screen (Rumsey 1975). Considering a source at infinite

distance (for simplicity), the amplitude of the wavefront is exp[iφ(x, y)] immediately after crossing

the screen, and the amplitude at position (X ,Y ) on the plane of the observer is given by the

Fresnel-Kirchhoff integral (Born et al. 1999; Narayan 1992) assuming small-angle scattering

(1.19) ψ(X ,Y )= e−iπ/2

2πr2
F

∫ ∫
exp

(
iφ(x, y)+ i

(x− X )2 + (y−Y )2

2r2
F

)
dxdy

where rF =√
De/k is the Fresnel scale for wavenumber k and distance to scattering screen De

from the observer. The Fresnel scale is the approximate transverse scale at which irregularities

in the medium transition from scattering via refraction (for irregularities larger than rF ) to

diffraction (for irregularities smaller than rF ). Between the inner and outer scales of isotropic

turbulence, the spatial phase structure function simply follows

(1.20) Dφ(z)=
(

z
sd

)5/3
,

where z = x2 + y2 and sd is the spatial scale of diffractive scattering. sd is also referred to as

the "coherence scale" because it is the transverse separation that corresponds to an rms phase

difference of 1 radian (this coherence scale is usually written as s0 in the literature, but since

s0 ≈ sd and diffractive scattering is the focus for this thesis, the coherence scale is hereafter sd;

e.g. Rickett 1990).

Scattering is the effect of wavefronts becoming deflected from their original paths, and these

phase perturbations can be understood as originating from the scattering of the wavefronts by an

angle θ0. The coherence scale sd therefore gives the width of a scatter-broadened image of the

source, which appears as a diffuse halo with angular size

(1.21) θd =
(

Ds

D

)
θ0 = 1

ksd
,

for pulsar at distance D and scattering screen at distance Ds from the pulsar. The additional

geometric path length from this scattering means that a narrow pulse from a pulsar is scattered

into a longer, quasi-exponential pulse, with 1/e "scattering timescale"

(1.22) τs =
θ2

dDe

c
.

If we consider the phase change due to this geometric delay across a finite frequency range (band-

width) ∆νd, we have the following condition for interference (for a maximum phase difference

between interfering waves of ∼1 radian; Rickett 1977)

(1.23) δφ= 2π∆νdτs ∼ 1,
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and therefore the interference pattern formed by scattered waves is frequency-dependent and

changes over the "decorrelation bandwidth" ∆νd.

Two distinct scattering regimes can be defined from this basic model of scattering and phase

structure function, with the "scattering strength" parameter u = rF /sd:

• "Weak scattering" with u < 1 implies that phase perturbations within the first Fresnel

zone are small (Dφ(rF )< 1), leading to slow variations in the interference pattern due to

refraction, and decorrelation over a wide bandwidth νd.

• "Strong scattering" with u > 1 has the diffractive scale sd as the dominant length scale

and there are strong phase perturbations within the first Fresnel zone (Dφ(rF )> 1) that

produce an interference pattern with narrow νd.

Pulsars are commonly observed in the regime of strong scattering at frequencies f & 1 GHz,

where the diffractive mechanism is dominant, but the "transition frequency" between strong and

weak scattering varies with the pulsar and scattering medium. The result of the large phase

perturbations in strong scattering is a strong intensity modulation in the interference pattern at

the plane of the observer, which drifts across the line-of-sight to produce the phenomenon of scin-

tillation (discussed in the following section). In strong scattering, the large phase perturbations

mean there are multiple points of stationary phase on the scattering screen for each point at the

plane of the observer (this is multi-path propagation). The size of the coherent regions around

the points of stationary phase define the diffractive scale sd, but all of these regions within a

larger scattering region (the "scattering disk") of size sr = Deθd = r2
F /sd will contribute to the

interference pattern at the observer. sr is the refractive scale and irregularities on this scale will

contribute slow intensity variations that modulate the rapid and narrow-bandwidth diffractive

variations in this regime (Sieber 1982; Rickett et al. 1984).

A schematic of scattering is given in Figure 1.4, where θd and θ0 are highlighted. The model of

scattering has been generalised with the pulsar at finite distance D from the observer and screen

at distance Ds from the pulsar, but the basic mechanism described with a simplified model above

(Equation 1.19) is the same (e.g. Goodman and Narayan 1985). In Figure 1.4, the transverse

velocities of the pulsar, observer, and IISM are shown, and are related to the "effective velocity"

Veff of the line-of-sight through the scattering medium at a given point (in this case at point

Ds). This Veff determines the rate of scintillation because it is related to the speed at which the

interference pattern drifts across the observatory Vlos (see following section), and therefore how

rapidly the patches of correlated intensity, or "scintles", are sampled by the line-of-sight. This

picture of scintillation and its observational properties are briefly introduced in the next section,

with further introduction given in Chapters 3 and 4, where scintillations are used to study the

IISM and properties of pulsars.
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Pulsar

Observer

Ionised interstellar 
medium (IISM)

VIISM

VE

VP

Spatially coherent 
radio emission

Interference 
pattern Distorted and frequency-

dispersed wavefronts

Ds

D

Ve�(Ds)= (Ds/D)VE + (1 - (Ds/D))VP - VIISM

θd

θ0

Vlos= Ve�/(Ds/D) 

Figure 1.4: A schematic of interstellar medium effects on the emission from radio pulsars. The
pulsar initially emits radiation that is spatially coherent. The radiation interacts with the
ionised interstellar medium (IISM) during its propagation and becomes scattered and frequency-
dispersed (the rotation measure is also altered by the Faraday effect since the IISM is magnetised).
The IISM here is assumed to be thin compared to the total distance between the observer and
pulsar D, and it is located at a distance Ds from the pulsar. The wavefronts are distorted from
scattering and interfere to produce a frequency-dependent interference pattern that is sampled
by the observatory. The observatory, IISM, and pulsar have transverse velocities (with respect
to the local standard of rest) VE, VIISM, and VP respectively (the direction chosen for the figure
was arbitrary, and just symbolises the transverse velocity). The effective velocity Veff (defined
in schematic) is the transverse velocity of a point along the line-of-sight with respect to the
medium (which in this case is defined at the location of the thin screen at Ds). The velocity of the
line-of-sight through the diffraction pattern at the observer is Vlos. The distance to the scattering
screen from the observer (used in-text) is De = D−Ds.
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1.3.4 Scintillation

Scintillation, known colloquially as "twinkling", is an observational manifestation of the scattering

of light by irregularities in a turbulent medium. The widely-known optical twinkling of stars in the

night sky is due to scattering in the Earth’s turbulent atmosphere. Interference between scattered

wavefronts produces a spatial pattern of intensity variations. These are observed as temporal

scintillations if there are relative transverse motions of the source, observer, and/or scattering

medium. Compact radio sources scintillate in the same way (though with longer timescales),

but the turbulent scattering medium is a plasma, in which the scattering is dominated by the

free electrons as described in the previous sections. The first observation of scintillation in radio

sources came from observations of flux variation in a radio star, and was found to be caused

by scattering from turbulence in the Earth’s ionosphere (Hewish 1951). Later, pulsars were

discovered serendipitously during a study of "interplanetary scintillation" of the bright and

compact cores of distant active galaxies. This scintillation occurs typically on a timescale of a few

seconds and is caused by scattering from electron density variations of the Solar wind (Hewish

1955, see also Section 1.1).

The strength of scattering (introduced in the previous section), and correspondingly the

strength of scintillation, can be observationally characterised with a measurement of the decorre-

lation bandwidth ∆νd (also called the "scintillation bandwidth") through u =√
f /∆νd . The early

examples of scintillation given above correspond to the regime of "weak scattering", with u < 1.

The discovery of pulsars was shortly followed by the observation of "strong scattering", with

u > 1 in most of the observations (Scheuer 1968; Rickett 1969). Pulsars have since been key tools

for the study of small-scale structures in the IISM through measurements of the properties of

scintillation.

The two-dimensional interference pattern at the observer produced by wavefronts scattered

by a phase-changing screen shows two distinct length scales sd, sr. The shorter length scale sd

is associated with diffractive angular scattering and results in fast (of order minutes) strong

scintillations for most pulsars. These are modulated by the weaker scintillations on longer

timescales (of order days) that correspond to the longer refractive length scales sr. As the line-of-

sight to the source cuts through the interference pattern at the observer’s plane with velocity Vlos,

it samples the spatial intensity distribution, leading to scintillations in time, with a characteristic

scintillation timescale τd. We can therefore define a "scintillation velocity" from the spatial and

temporal diffractive scales

(1.24) VISS = sd

τd
,

which is equivalent to Vlos but can be observationally derived from a measurement of τd and

an estimate of the spatial scale sd from a measurement of ∆νd. From Equations 1.21, 1.22, and

1.23, it is clear that sd ∝
√
∆νdD / f , but the exact relationship will depend on the observational

definitions of ∆νd and τd, the condition for interference (Equation 1.23), and the geometry of the
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scattering (e.g. a thin screen at distance De from the observer was assumed for Equation 1.22).

These factors are included into a constant AISS, and the observationally-derived scintillation

velocity is then

(1.25) VISS = AISS

√
D∆νd

f τd
,

which can be modelled with an appropriate Vlos and model for AISS (e.g. Gupta 1995; Cordes and

Rickett 1998).

The "effective velocity" of the line-of-sight through the medium at any position x ranging from

x = 0 at the pulsar to x = D at the observer, is a linear combination of the transverse components

of velocities for the Earth VE, pulsar VP, and the IISM itself VIISM

(1.26) Veff(x)= x
D

VE +
(
1− x

D

)
VP −VIISM,

For a thin screen at x = Ds (such as Figure 1.4), Vlos =Veff(Ds)/s, where s is the fractional distance

along the line-of-sight s = Ds/D. For an extended scattering medium, the effective velocity is

integrated along the line-of-sight (weighted by the distribution of scattering material, e.g. Cordes

and Rickett 1998) to give Vlos, which can be used to model the observations of VISS.

The interference pattern at the observatory is sampled as a function of time and frequency

across the receiver bandwidth. Observations of compact sources, such as pulsars, can be presented

in a "dynamic spectrum" of the source flux variations with frequency and time (e.g. see Chapter 3,

Figure 3.1). It is from this dynamic spectrum that the scintillation bandwidth and timescale are

typically measured (from a characteristic scintle, obtained for example by the autocovariance

function of the dynamic spectrum, such as in Chapter 3). Since VISS is sensitive to the transverse

velocity of the pulsar, measurements of τd and ∆νd can be used to model the components of pulsar

motion that are least sensitive to pulsar timing (which is sensitive to radial motion through

the pulse ToA). In this way, models of pulsars can be improved with careful measurements of

their scintillation, independent to the primary method of pulsar timing. Determining properties

of the interstellar plasma, scattering geometry, and the pulsars in this way is referred to as

"scintillometry". This thesis demonstrates the complementary approaches of pulsar timing and

scintillometry, and an overview of the contents and techniques is given in the following section.

1.4 Thesis overview

In this chapter, we have shown that the IISM interferes with pulsar observations in a way that

can be destructive for precision pulsar timing (e.g. DM variations), while valuable for other

applications (e.g. studying extreme scattering events, and transverse velocity modelling). In this

thesis we investigate properties of pulsars using pulsar timing and scintillation observations in

particular. In Chapter 2, we use a new method for measuring parameters of the pulsar timing

model in the presence of non-stationary red noise (with WLS; see Section 1.2.2.1), to update
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the models for the PPTA pulsars using the latest dataset. For each pulsar we measure and

model its noise properties, including the timing noise that is intrinsic to the pulsar, and the

frequency-dependent noise from the DM variations, DM(t). We then fit for the parameters in the

pulsar timing model, which were in most cases the most precise measurements to date. We find

several new measurements of parallax and some post-Keplerian orbital parameters, as well as

the most precise distance measurement to any star for PSR J0437−4715.

We then develop a procedure for measuring and modelling the diffractive interstellar scintil-

lation of pulsars from a dynamic spectrum, and we use this to study the long-term scintillation

of the relativistic binary pulsar PSR J1141−6545 in Chapter 3. As in Chapter 2, we focus on

precision measurements of astrometric and orbital parameters, however this time we model the

transverse velocity through the scintillation, rather than the radial velocity measured with pulsar

timing (see Section 1.3.4). Modelling the transverse velocity allows us to measure the orbital

inclination angle and the proper motion of the pulsar, while these are difficult or impossible

to measure with pulsar timing at the current timing precision for this pulsar. We also start

to explore the IISM itself by modelling anisotropic scattering and determining the dominant

location of the scattering along the line-of-sight (the distance to the scattering screen).

In Chapter 4, we consider a different approach to modelling the long-term scintillation

of pulsars. We instead study the Fourier transform of the dynamic spectrum (the secondary

spectrum) for PSR J0437−4715, which is the brightest pulsar in the PPTA. Properties of this

secondary spectrum are introduced in Chapter 4, but the primary feature is that of parabolic

arcs that often appear for high signal-to-noise ratio observations. They are clearest when the

scattering is localised, such as in a thin screen, and for PSR J0437−4715 we observe multiple

arcs (suggesting multiple discrete screens). Similarly to the diffractive scintillation timescale,

the curvature of parabolic arcs depends on the velocity of the line-of-sight through the scattering

medium, and in Chapter 4 we use this fact to model the transverse orbital velocity of PSR

J0437−4715 as well as other properties of the scattering medium. Remarkably, despite being

one of the most precisely timed millisecond pulsars, we are able to measure the longitude of the

ascending node with comparable precision to the timing model. The curvature in the arcs is also

seen to vary with the Earth’s velocity and we use the relative amplitudes of the Earth and pulsar

velocities to precisely constrain the distance and velocity for the thin scattering screens. We also

consider whether the scattering is anisotropic, and discuss some possible explanations for the

physical structures in the IISM that cause the scattering.

Overall, we demonstrate the close connection between studies with pulsar timing and effects

of the IISM. Understanding of the IISM is essential for pulsar timing experiments including the

future detection of low-frequency gravitation waves, particularly as timing precision improves in

the near future with new telescopes (e.g. MeerKAT, ASKAP, and FAST) and observing instruments

(e.g. ultra-wideband receivers for the Parkes 64 m radio telescope). These results are concluded in

Chapter 5, including suggestions of future work stemming from the results presented.
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TIMING ANALYSIS FOR 20 MILLISECOND PULSARS IN THE PARKES

PULSAR TIMING ARRAY

We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array.

The precision of the parameter measurements in these models has been improved over

earlier results by using longer data sets and modelling the non-stationary noise. We

describe a new noise modelling procedure and demonstrate its effectiveness using simulated

data. Our methodology includes the addition of annual dispersion measure (DM) variations

to the timing models of some pulsars. We present the first significant parallax measurements

for J1024−0719, J1045−4509, J1600−3053, J1603−7202, and J1730−2304, as well as the first

significant measurements of some post-Keplerian orbital parameters in six binary pulsars,

caused by kinematic effects. Improved Shapiro delay measurements have resulted in much

improved pulsar mass measurements, particularly for PSRs J0437−4715 and J1909−3744 with

Mp = 1.44±0.07 M¯ and Mp = 1.47±0.03 M¯ respectively. The improved orbital period-derivative

measurement for PSR J0437−4715 results in a derived distance measurement at the 0.16% level

of precision, D = 156.79±0.25 pc, one of the most fractionally precise distance measurements of

any star to date.

2.1 Introduction

The Parkes Pulsar Timing Array (PPTA; Manchester et al. 2013), like its North American

(Demorest et al. 2013) and European (Kramer and Champion 2013) counterparts, is a program in

which an array of millisecond pulsars (MSPs) is observed regularly over many years. The times

of arrival (ToAs) of pulses from MSPs are highly predictable using timing models that describe

the spin evolution and astrometric properties of the pulsar and any companions, as well as
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taking into account the motion of Earth and pulse propagation through curved spacetime and the

interstellar medium (ISM). The parameters of the timing model are determined, or improved, by

a least squares-fit of the model to the ToAs. The differences between the measured and predicted

ToAs (the “timing residuals”) after this fit contain the measurement error, stochastic fluctuations

in the apparent pulsar rotation rate (known as timing noise; Shannon and Cordes 2010), and

other unmodelled effects such as those of gravitational-waves (GWs), errors in the assumed time

standard, and errors in the Solar System ephemeris. Most of these effects are stronger at lower

frequencies, i.e., they have a “red" power spectrum.

The main goal of a pulsar timing array (PTA) is to search for and eventually detect and

study nanohertz frequency GWs (e.g. van Haasteren et al. 2011; Demorest et al. 2013; Zhu

et al. 2014; Wang et al. 2015), but there are many secondary objectives such as testing general

relativity (GR; Freire et al. 2012; Zhu et al. 2015), constraining common models of supermassive

black hole and galaxy formation (e.g. Shannon et al. 2015), measuring planetary masses (e.g.

Champion et al. 2010), studying the ISM (e.g. You et al. 2007; Keith et al. 2013, hereafter K13),

developing pulsar-based time standards (e.g. Hobbs et al. 2012), and precise measurements of

properties of the pulsars themselves (e.g. Verbiest et al. 2008, hereafter V08). The latter includes

for example the much improved distance and mass measurements for PSR J0437−4715 presented

in this Chapter, which will be important for future limits to changes of Newton’s gravitational

constant, and the Neutron Star Interior Composition Explorer (NICER) mission that will attempt

to measure its radius (Gendreau et al. 2012). The new and improved distance measurements for

pulsars presented in this Chapter are also useful for future Galactic electron density models (cf.

Cordes and Lazio 2002).

It has long been known that least-squares fitting for the parameters of the timing model

can be biased and can underestimate the uncertainties on the parameters when the residuals

contain significant red noise. To account for this effect, V08 used Monte Carlo simulations

for PSR J0437−4715 to determine parameter uncertainties. Verbiest et al. (2009, hereafter

V09), however, prewhitened the residuals for the three pulsars with the most red noise in their

sample by fitting harmonically-related sine/cosine pairs (Hobbs et al. 2006). Coles et al. (2011,

hereafter C11) demonstrated that this method can result in biased parameter measurements

and underestimated uncertainties. For all pulsars, V09 then doubled the formal uncertainties

obtained from the fit.

For our work, we use an extension of the “Cholesky" algorithm developed by C11 and imple-

mented in the timing software package TEMPO2 (Edwards et al. 2006; Hobbs et al. 2006). For

the results presented in C11 the red noise was modelled as wide-sense stationary, i.e., having a

single power spectrum. However, the algorithm only requires that the red noise be described by a

covariance matrix. In our data set the red noise is not stationary because the earlier data contain

uncorrected fluctuations in the dispersion measure (DM; the column density of electrons along

the line of sight to the pulsar) of the ISM, while the later data do not. Accordingly, we use, and
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describe below, a modification of the algorithm in C11 that we refer to as the “split-Cholesky"

algorithm, which allows for two different red-noise models in the data set.

In Section 2.2, we describe the observations and methodology for determining white-noise

parameters. In Section 2.3 we describe the parameters of the timing model. In Section 2.4

we describe the new split-Cholesky algorithm, modelling of the DM variations, and present

parameters describing the red noise and DM noise models. In Section 2.5, for each pulsar, we

present the new timing model parameter values. In Section 2.6 we present simulations of the

split-Cholesky algorithm and compare the method to alternate Bayesian pulsar timing analysis

algorithms (e.g. van Haasteren et al. 2011; van Haasteren and Levin 2013; Lentati et al. 2014a),

and derive a precise pulsar distance for PSR J0437−4715.

2.2 Observations

The observations used here were published as the extended first Parkes Pulsar Timing Array

(PPTA) data release (DR1E) by Manchester et al. (2013). All observations were taken using

the Parkes 64m radio telescope. The data set includes observations at three observing bands

(with approximate centre wavelengths of 10 cm, 20 cm, and 50 cm) from the PPTA project that

commenced in 2005 (these observations alone are referred to as data release one; DR1), along with

observations prior to 2005 (in the 20 cm band only) from previous observing programmes. The

earliest data were obtained from a timing programme that commenced during the Parkes 70 cm

survey (Bailes et al. 1994) and were published by Bell et al. (1997) and Toscano et al. (1999). The

sample of pulsars was increased by MSPs discovered during the Swinburne intermediate-latitude

survey (Edwards et al. 2001) and elsewhere. Updated timing solutions were published by Hotan

et al. (2006) and Ord et al. (2006). Throughout this Chapter, we refer to the archival 20 cm

observations taken prior to the PPTA as the “early" data, and the multi-band PPTA observations

as “recent" data.

An intensive observing campaign was used to study PSR J0437−4715 in detail. Results were

published in van Straten et al. (2001). V08 (for PSR J0437−4715) and V09 (for the other 19

pulsars in the PPTA) combined the earlier data with the initial PPTA data to determine timing

ephemerides. Here we use the extra ∼3 years of data provided by Manchester et al. (2013) to

improve on the results of V08 and V09. Along with the extra data span, our new data set provides

significantly improved observing cadence and, for the recent data, the ability to remove the effects

of DM variations (∆DM) more precisely than previously possible. Most of the raw observation

files used in this analysis are available from the Parkes pulsar data archive (Hobbs et al. 2011).

Throughout this Chapter we make use of the TEMPO2 software package to analyse the pulse

arrival times (Hobbs et al. 2006). Our analysis method, described below, relies on knowledge of the

noise affecting the residuals. Radiometer noise affects all pulsars and is well-modelled by the ToA

uncertainty that is obtained from the template-matching procedure carried out when determining

31



CHAPTER 2. TIMING ANALYSIS FOR 20 MILLISECOND PULSARS IN THE PARKES PULSAR
TIMING ARRAY

the ToA. However, in almost all cases the observed scatter in the residuals is greater than that

expected from radiometer noise alone. This is not unexpected. Such excess can arise from intrinsic

pulse jitter1 (e.g. Osłowski et al. 2011; Shannon et al. 2014), calibration errors, instrumental

effects, or a poor selection of templates used in the template matching process. TEMPO2 currently

only has two methods for correcting the measured ToA uncertainties: 1) uncertainties for a set

of observations can be multiplied by a scaling factor (this is termed an “EFAC") or 2) adding

a specified amount of extra noise in quadrature with the original uncertainties (termed an

“EQUAD"). If both methods are implemented then the resulting uncertainty is:

(2.1) σ′
i = efac×

√
σ2

i +equad2

where σi is the original uncertainty for the i’th observation. Determining the EFAC and/or EQUAD

is non-trivial as any low-frequency noise in the residuals must be accounted for and the EFAC

and EQUAD parameters are covariant. We follow the procedure below for each data set using the

EFACEQUAD plugin for TEMPO2 (Wang et al. 2015):

• Estimate the red noise by fitting a smooth model to the residuals. The default smooth model

is a linear interpolation through a set of samples on 100-day intervals. The smooth model

(red noise estimate) is then subtracted from the residuals, leaving only the white noise.

• Divide the data into groups based on observing systems that are expected to have the same

EFAC and EQUAD values. For example, our data set includes data taken using different

“backend" instruments, some of which have identical firmware, bandwidths etc., and are

therefore expected to share the same noise properties.

• For a given group selected from the whitened data set, the reduced-χ2 value (χ2
r ) is calcu-

lated. If χ2
r < 1 then efac=

√
χ2

r and equad= 0. Note that this is the only means to reduce a

ToA uncertainty as an EQUAD will always increase the uncertainty.

• If χ2
r > 1 then the normalised residuals (r i/σi) are determined for a particular grid of EFAC

and EQUAD values.

• For each grid position, we determine the probability that the normalised residuals are

drawn from a Gaussian distribution (using a Kolmogorov-Smirnov test) to determine

optimal EFAC and/or EQUAD.

• By default, we do not include the EFACs and EQUADs for a group that consists of less than

10 ToAs. They are added if it is necessary to produce normally-distributed residuals.

1For this work, we do not use the jitter parameters introduced by Shannon et al. (2014) because we do not have all
of the observation lengths for each ToA in our current dataset.
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2.3 The timing model

The timing model describes the spin, astrometric, and orbital properties of a pulsar, the ISM along

the line of sight, and requires the use of a terrestrial time standard, Solar System ephemeris,

and solar wind model. For this work we use the DE421 Jet Propulsion Laboratory Solar System

ephemeris and as a time reference use TT(BIPM2013). We use the default model within TEMPO2

to account for dispersion measure variations caused by the solar wind (wind density at 1 A.U.:

4 cm−3; Edwards et al. 2006). The pulsars have been observed over many years with various

different “backend" instruments. These instruments have different time offsets which we also

measure as part of the usual timing fit (with the split-Cholesky method).

The thirteen pulsars in our sample that are in binary systems each have a white dwarf

companion. For such systems, we do not expect any time dependencies for the orbital parameters

caused by mass loss or spin-orbit coupling. Because of the relatively low mass of the companion

stars and relatively long orbital periods, relativistic effects are small in such systems. However,

V08 do report a detection of the advance of the longitude of periastron, ω̇, for PSR J0437−4715

that is consistent with that predicted from GR, where the component masses were derived from

the Shapiro delay measurement and mass function (Thorsett and Chakrabarty 1999). van Straten

(2013) also measures ω̇ for PSR J1022−1001 that is consistent with GR.

For binary pulsars in orbits with small eccentricities, the longitude and epoch of periastron

are not well defined and are highly correlated. The ELL1 model (Lange et al. 2001) is used

to describe such systems, since it uses a small-eccentricity approximation to avoid this high

correlation. For PSRs J1022+1001, J1600−3053, and J1643−1224 this approximation is not valid

and so we instead use the DD (Damour and Deruelle 1986) model to describe the binary orbit.

Observed changes in the orbital parameters can be caused by kinematic effects. Changes in

the apparent viewing geometry of the orbit caused by proper motion can lead to an apparent

time derivative of the projected semi-major axis of the orbit, ẋ, and/or ω̇ (Kopeikin 1996). For

some pulsars, this kinematic ẋ or ω̇ may be detected individually. However, if both are well

determined we instead parametrise the effect with Ω and i, which are the longitude of the

ascending node and inclination angle of the orbit respectively (van Straten and Bailes 2003). This

parametrisation of the orbit describes the annual orbital parallax and is implemented through

the T2 model (Edwards et al. 2006), which we use for PSRs J0437−4715, J1713+0747, and

J1909−3744. For PSRs J1022+1001, J1600−3053, J1603−7202, J1643−1224, and J2145−0750

we use the ẋ measurement to place an upper limit on the inclination angle of the orbit (using

tan i ≤ xµ/ẋ, where µ is the total proper motion), as was done by Sandhu et al. (1997).

A pulsar can have an apparent spin frequency derivative (ν̇) or orbital period-derivative

(Ṗb) as a result of the Shklovskii effect (Shklovskii 1970); an apparent radial acceleration of

the system caused by proper motion perpendicular to the line of sight. As we do not include

this explicitly in the timing model, we expect non-zero values for these parameters. The ν̇ value

caused by the Shklovskii effect is simply absorbed into the intrinsic spin-down rate for the pulsar.
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However, if the expected intrinsic Ṗb = 0 then as shown by Bell and Bailes (1996), the observed

value can be used to determine the distance to the pulsar:

(2.2) D = c
µ2

Ṗobs
b

Pb

where D is the pulsar’s distance, c the vacuum speed of light, and µ the total proper motion. This

equation neglects the differential acceleration of the pulsar and the Earth in the gravitational

potential of the Galaxy. The pulsar’s distance can therefore be determined from Ṗobs
b or from

the annual parallax when these effects are taken into account. We choose to decouple these

parameters (i.e., fit separately for the two distances) in order to determine whether the distance

measurements are consistent. The pulsar timing model requires a distance estimate when

determining the orbital parallax and the annual orbital parallax (Kopeikin 1995). In all cases

here, we use the default parallax distance. In Section 2.6.2 we discuss the significance of this Ṗb

distance measurement for PSR J0437−4715.

2.3.1 Choosing parameters to include in the model

For all pulsars we start with the timing models presented by V09 (and, for PSR J0437−4715,

the model from V08). For solitary pulsars, model parameters include the spin (ν, ν̇), astrometric

(position, proper motion, and parallax), and ISM parameters (Section 2.4.1). In all cases, we fit

for the spin, position (right ascension α, and declination δ), and DM variation parameters (from

Manchester et al. 2013). These parameters are all measured at a reference epoch of MJD 54500.

In a few cases (in particular where the pulsar is either close to or almost perpendicular to the

ecliptic plane respectively) we cannot obtain a significant measurement of the proper motion in

declination (µδ) or the parallax (π).

To determine whether parameters beyond this base model are required by the data, we make

use of the Akaike information criterion (AIC; Akaike 1998), which states that a model is a better

fit to the data if

(2.3) ∆χ2 > 2k

where ∆χ2 is the difference of the χ2 value before and after a fit that includes k new parameters.

To determine which parameters to fit for using the AIC, we use the following procedure with

solitary pulsars:

• Remove non-essential parameters (proper motion in right ascension µα and declination µδ,

and parallax π) from the timing model (if present) and note the χ2 value of residuals.

• Fit for each parameter separately and note the new χ2 value in each case.

• Include the parameter that results in the lowest χ2 value permanently into the timing

model if this parameter also satisfies the AIC.
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• Repeat with remaining parameters until either all parameters are included in the timing

model, or all remaining parameters fail to improve the timing solution, as determined by

the AIC.

This procedure is also applied to pulsars in binary systems. All non-essential binary parame-

ters (post-Keplerian) are initially removed and the AIC is used to find which should be included.

If a Shapiro delay (Shapiro 1964) is detectable for the binary system, we parametrise this with

the companion mass Mc, and sine of inclination angle of the orbit, sin i, except in the cases of

pulsars described with the T2 binary model, for which we link sin i with the measured inclination

angle from the Kopeikin terms (Kopeikin 1996).

2.4 Parameter measurement in the presence of non-stationary
red noise

In the original implementation of the C11 algorithm, the red noise was characterized by a power

spectrum, from which a covariance function was estimated and finally a covariance matrix was

constructed. This was satisfactory for analysis of the DR1 data set. However, DR1E data contain

uncorrected DM variations in the 20 cm residuals prior to multi-band observations and thus have

additional red noise. We cannot produce a single power-law model for the entire data set because

of this extra red noise which may dominate the total red noise in a subset of the data. Instead we

produce two separate models to describe the two sources of red noise in the residuals. One model

describes the frequency-independent noise present throughout the dataset using a power-law,

while the other describes the additional DM noise present only in the early data (Section 2.4.1).

We have updated the implementation of the algorithm to synthesize a covariance matrix for

DR1E observations using these two red-noise models, which we refer to as the split-Cholesky

algorithm.

The method requires two red noise covariance matrices, one for the frequency-independent

timing noise and another for the DM noise. Both of these are estimated from the DR1 data alone

because for this data set we can estimate and remove the DM noise (described in Section 2.4.1),

allowing us to model the timing noise (Section 2.4.2) independently with an analytical model,

(2.4) P( f )= P0[
1+

(
f
fc

)2
]α/2

where P0 is the amplitude of the power in yr3 at a corner frequency fc, and α is the spectral

index. A stationary covariance matrix is then computed from this spectral model.

To build the DM noise model that applies to only the early DM-uncorrected observations, we

first estimate DM variations, ∆DM(t) from the DM-corrected DR1 data using a process described
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in Section 2.4.1. We can then choose to create an analytical model of the power spectrum of

∆DM(t) from which we compute a covariance function C f (τ) (Keith et al. 2013), or we can model

the covariance function of ∆DM(t) directly (Section 2.4.1). To create the final covariance matrix

for the entire data set we must account for the fact that we do not know the mean ∆DM for the

DR1 DM-corrected data. It is adjusted to match the end of the earlier uncorrected data with

no discontinuity. We then compute the non-stationary ∆DM(t) covariance matrix Cm(ti, t j) as

follows:

Cm(ti, t j)= C f (|ti − t j|)
for ti, t j < Tc

Cm(ti, t j)= Cm(Tc,Tc)= C f (0)

for ti, t j > Tc, and

Cm(ti, t j)= C f (|ti −Tc|)
for ti < Tc, t j > Tc, where Tc is MJD 53430, the time in the dataset beyond which the data is DM

corrected. Finally we sum the stationary covariance matrix for the red timing noise (C11), the

non-stationary covariance matrix for the ∆DM(t), and the diagonal matrix of the variances of the

white noise at each sample and apply the Cholesky algorithm as originally formulated. In Section

2.6.1 we demonstrate the effectiveness of this algorithm through the use of simulated data.

2.4.1 Modelling the Dispersion Measure variations

With the advent of the PPTA in 2005, regular observations occurred in multiple observing bands

(10cm, 20cm, and 50cm). For these data we are, in principle, able to obtain a measurement of the

DM because the group delay is ∝λ2. However, as the pulse profiles of MSPs in our sample evolve

significantly with frequency (Dai et al. 2015), the effect of an absolute DM on the residuals is

coupled with the frequency evolution of the pulse profile and is therefore difficult to determine.

We are however able to measure changes in DM, which we refer to as ∆DM(t), using interband

measurements with the required accuracy (≈ 1 : 105). Residual errors in these corrections are an

important source of noise in the PPTA (and all other PTAs). Such time series (obtained from the

same observations we analyse here but with different EFACs and EQUADs) were analysed by

K13.

We assume that the ∆DM(t) are caused by the movement of the line of sight from the Earth to

the pulsar through spatial variations in the ISM. If the velocity of the line of sight were constant,

∆DM(t) would simply represent a cut through the ISM in the direction of the velocity. If the

fluctuations are due to homogeneous Kolmogorov turbulence then the power spectrum of ∆DM(t)

would be (K13)

(2.5) PDM( f )' 3.539D(τ)τ−5/3 f −8/3

where D(τ) is the structure function at time lag τ. Here D(τ) is measured in s2, τ in s, f in yr−1,

and PDM( f ) in yr3.
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Many of the pulsars in K13 showed a clear linear trend in ∆DM(t), possibly indicating a

constant spatial gradient over the observing span. In such cases the Earth’s orbital motion causes

an annual sinusoid in ∆DM(t) and this was also observed by K13. Although this gradient may be

part of a stochastic process, for the purpose of analysing our observations it can be considered

deterministic and included in the timing model. Accordingly, if it is statistically significant

(determined using an AIC test), we fit and remove a linear gradient (dDM/dt) and an annual

sinusoid that has been added to the parameters of the timing model in TEMPO2 with the equation

(2.6) DMyr = A sin
(
2πyr−1 (t−T0)

)+Bcos
(
2πyr−1 (t−T0)

)
where A and B are the parameters in the timing model that describe the amplitude and phase of

the DM annual variations and T0 is the reference epoch for the DM measurements. If ∆DM(t)

has a linear trend and/or annual variation, which we include in the timing model using dDM/dt,

and/or A and B, then we need to measure and model the covariance, Cov(τ), of the residual

∆DM(t).

We measure ∆DM(t) with a 5 yr−1 cadence for each pulsar using the DR1 multi-band data,

and convert each measurement to a time delay in the 20 cm band using tDM(ν)=DM/(Kν2), where

ν is the observing frequency (1400 MHz in this case) and K = 2.410×10−4 MHz−2cm−3pc s−1 (You

et al. 2007). We then model the covariance functions of the detrended (if required) ∆DM(t) with a

function of the form

(2.7) Cov(DM(t))= aexp
(
−

(τ
b

)α)
.

The covariance (Cov) is a function of lag τ (in days), a is the amplitude of the red noise (in s2),

b is the characteristic timescale (in days), and the exponent was chosen to be α= 2 so that the

covariance function will have a positive definite Fourier transform, which is the power spectrum.

The annual variation, linear trend, and covariance function parameters that we have used to

construct a DM model for each pulsar are given in Table 2.1. In some cases, no dDM/dt is apparent

in the data, but the ∆DM(t) noise is nevertheless well modelled by the covariance function since

it is small. For all pulsars with the exception of PSR J0437−4715 (which is very well modelled by

a Kolmogorov power law), we find that these covariance function models successfully whiten the

residuals and we therefore include them in our combined red-noise models. For PSR J0437−4715

we use the Kolmogorov power law presented in K13 to model the DM noise present in the early

data.

For PSR J1603−7202 there is an extreme scattering event (ESE; Fiedler et al. 1987), lasting

∼250 days, which was reported by K13 and is described in detail in Coles et al. (2015). The ESE

dominates the shape of the non-DM-corrected 20 cm residuals in that region. We examined the

early 20 cm data searching for ESEs comparable with the one reported by K13 and found none.

We obtained the covariance model for ∆DM(t) by linearly interpolating across the ESE before

computing the covariance function.
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Maitia et al. (2003) reported on a 3-year-long ESE (centred on the year 1998) detected in

the direction of PSR J1643−1224 by studying flux variability of the pulsar using observations

undertaken at the Nancay observatory. Unfortunately we have poor data during this time and

consequently do not find evidence for such an event. For PSR J1713+0747 we see a peculiar

“drop out" in the ∆DM(t) that is possibly related to an ESE-like structure (Coles et al. 2015). We

therefore computed the covariance of ∆DM(t) for PSR J1713+0747 by interpolating across this

drop out.

The deterministic terms in the model for each pulsar include an absolute DM measurement

(which we hold constant because it is covariant with pulse profile evolution; Dai et al. 2015),

and if required, the additional terms dDM/dt, A and B, or ∆DM(t) measurements taken at a

spacing of ∆tDM days to remove any residual red noise. The sampling interval ∆tDM is ideally

the widest spacing required to remove the red noise since the measurements add white noise to

the residuals. We start with the ∆tDM published with the dataset in Manchester et al. (2013). We

sample more frequently if there is residual red noise because the published ∆tDM were selected

to minimise the rms residual in the best band for each pulsar, and not to absorb the most red

noise. However adding the deterministic DM parameters often allows us to reduce the ∆DM(t)

measurement cadence relative to that published in Manchester et al. (2013).

2.4.2 Modelling the red timing noise

The analytical model (Equation 2.4) for the frequency-independent red noise (e.g. timing noise)

must be estimated with data that have the frequency-dependent red noise contributions from DM

variations already removed. We therefore use the DM-corrected DR1 data and fit the analytical

model (Equation 2.4) to the power spectrum. In most cases we find that fc = 1/T1 fits the data

reasonably well, where T1 is the length of the DR1 data. For these cases we assume that the

model will fit the entire DR1E with fc = 1/TE, where TE is the length of the DR1E dataset, and

we scale P0 to this new fc accordingly.

In many cases, extrapolating the timing noise model by adjusting fc will underestimate the

noise at f ≈ 1/TE because fitting for the spin frequency and its derivative removes much of the

low-frequency power at f ≈ 1/T1. For pulsars where the timing noise dominates the DM noise, we

create a single spectral model for the entire DR1E span directly. If this model ultimately whitens

the residuals adequately we do not need to estimate the covariance matrix of the DM variations.

If however the timing noise model does not extrapolate well and the DM noise is too significant

to ignore, we construct a red-noise model using the DR1E data, but reduce the amplitude, P0, to

account for the known DM noise in the data. The amplitude need only be reduced such that the

residuals are sufficiently whitened by the red-noise model.

For PSRs J0613−0200, J1600−3053, and J2145−0750 we find that the red-noise model from

the DR1 data alone does not extrapolate well over the entire dataset since the power spectrum

of the DR1E data is observed to turn over at fc > 1/TE. This was not obvious when analysing
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Table 2.1: Parameters describing the DM model used for each pulsar. DM noise in the earliest
residuals is described by the DM covariance function parameters (a and b) in Equation 7, which
are calculated after the removal (if necessary) of a linear trend, dDM/dt, and annual variations
described by the sine (A) and cosine (B) amplitudes. ∆tDM is the separation of ∆DM measurements
in the multi-frequency section of the dataset for each pulsar.

Timing model parameters DM covariance
DM dDM/dt A B ∆tDM a b

Pulsar Name (cm−3pc) (cm−3pc yr−1) (10−4 cm−3pc) (10−4 cm−3pc) (days) (s2) (days)
J0437−4715∗ 2.64498 – – – 60 – –
J0613−0200 38.7756 – −1.0±0.2 −1.0±0.2 365.25 5.5×10−14 317
J0711−6830 18.4099 (9±7)×10−5 – – 200 5.8×10−13 331
J1022+1001 10.2531 – – – 200 1.2×10−13 153
J1024−0719 6.48803 (2.2±0.6)×10−4 – – – – –
J1045−4509 58.1438 (−3.66±0.13)×10−3 −8.1±2.3 −0.9±4 182.62 1.7×10−11 179
J1600−3053 52.3249 (−6.3±0.3)×10−4 – – 125 5.2×10−13 146
J1603−7202 38.0489 – – – 100 6.3×10−13 64
J1643−1224 62.4143 (−1.23±0.005)×10−3 −2.9±0.7 −5.9±0.7 365.25 1.5×10−12 113
J1713+0747 15.9903 – – – 365.25 2.6×10−14 171
J1730−2304 9.61634 (5.6±0.5)×10−4 – – – – –
J1732−5049 56.8365 (8.8±1.2)×10−4 – – – – –
J1744−1134 3.13695 (−1.32±0.18)×10−4 – – – – –
J1824−2452A 119.892 (1.15±0.08)×10−3 – – 82.5 – –
J1857+0943 13.2984 (2.8±0.5)×10−4 – – – – –
J1909−3744 10.3932 (−2.97±0.06)×10−4 – – 105 – –
J1939+2134 71.0227 (−5.9±0.3)×10−4 2.4±1.1 1.6±1.2 50 3.2×10−13 112
J2124−3358 4.60096 – – – – – –
J2129−5721 31.8509 (−1.6±0.4)×10−4 – – – – –
J2145−0750 8.99761 (1.2±0.3)×10−4 – – – – –

∗ Kolmogorov model from K13 is used to model the DM noise instead of a covariance function.

the DR1 data alone. We observe a similar turn over for PSR J1909−3744, however the dataset

used for this pulsar includes multi-band observations across the entire span and so is largely

DM-corrected (see Section 2.5.16). For this pulsar, we therefore model the power spectrum of the

entire data set and use this with the original Cholesky algorithm.

The parameters describing the red timing noise models for each pulsar are given in Table 2.2.

The DM models that are used with these red-noise models are described in Section 2.4.1, with

parameters in Table 2.1.

2.4.3 How do we know when our models are optimal?

The split-Cholesky algorithm produces the best linear unbiased estimators if, and only if, the

residuals after whitening are white and normally distributed. If this is not the case, one or more

of the red-noise model, EFACs, or EQUADs are incorrect. We utilise two tests to check that the

final residuals are what we require to have confidence in the parameter measurements and

uncertainties.

39



CHAPTER 2. TIMING ANALYSIS FOR 20 MILLISECOND PULSARS IN THE PARKES PULSAR
TIMING ARRAY

Table 2.2: Parameters for the red-noise model for each pulsar. The parameters are used to
describe the frequency-independent noise in the data with a power law (Equation 4), where α is
the spectral index and P0 is the power at corner frequency, fc.

Pulsar Name α P0 (yr3) fc (yr−1)
J0437−4715 3 1.14×10−27 0.067
J0613−0200 5 5.5×10−28 0.40
J0711−6830 – – –
J1022+1001 – – –
J1024−0719 6 1.8×10−23 0.066
J1045−4509 3 2.0×10−24 0.059
J1600−3053 2.5 3.0×10−28 0.40
J1603−7202 2.5 1.2×10−25 0.065
J1643−1224 4 1.5×10−25 0.15
J1713+0747 2 3.0×10−27 0.059
J1730−2304 – – –
J1732−5049 2 3.0×10−27 0.25
J1744−1134 – – –
J1824−2452A 3.5 3.0×10−25 0.17
J1857+0943 – – –
J1909−3744 2 1.2×10−29 0.50
J1939+2134 4.5 1.5×10−24 0.064
J2124−3358 3.5 2.0×10−25 0.06
J2129−5721 1 1.0×10−27 0.065
J2145−0750 4 3.0×10−26 0.3

The first of these is an Anderson-Darling (AD) test for normality (Anderson and Darling 1954).

We apply this to our whitened, normalised residuals to determine whether they are consistent

with a normal distribution with µ= 0 and σ= 1. The result is the modified AD statistic, A∗2. This

is used to test the hypothesis that the residuals obey the described normal distribution. The

hypothesis is rejected if A∗2 > 2.492 with 5% significance (Stephens 1974), since the expected

distribution function for the normalised residuals is known. For example, panel (a) of Figure 2.1

shows the post-fit whitened and normalised residuals for PSR J1713+0747 and panel (c) shows

the cumulative distribution of these residuals. The modified AD statistic, A∗2 = 1.03, indicates

that the normalised residuals are consistent with a standard normal distribution.

We then test for “whiteness" by inspecting the power spectrum of the whitened, normalised

residuals (see also C11). Panel (b) of Figure 2.1 shows the Lomb-Scargle periodogram of these

residuals for PSR J1713+0747. We compute this power spectrum by first converting the whitened

components in panel (a) to a time series using the ToAs of the unwhitened residuals. The frequency

axis of the resulting power spectrum is not well-defined, and we term it the pseudo-frequency.

However the whitening process provides a diagonally-dominant whitening matrix such that low

frequencies in the unwhitened residuals translate to low frequencies in the pseudo-time-series of
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Figure 2.1: (a) Whitened and normalised post-fit residuals for PSR J1713+0747. (b) Power spectra
of whitened and normalised post-fit residuals. Dotted line marks f = 1 yr−1 and dashed lines
indicate expected mean and variance for the spectrum. The pseudo-frequency is determined by
converting the whitened components to a pseudo-time-series using the ToAs of the unwhitened
residuals. (c) Cumulative distribution of whitened and normalised post-fit residuals (solid line)
with expected distribution based on normal distribution with zero mean and unit variance (dashed
line). Modified AD statistic for this distribution with the expected distribution is labelled. (d)
Power spectra of post-fit residuals. Dotted line marks f = 1 yr−1 and solid flat line is an estimate
of the white-noise level. Dashed line is the power law model of the frequency-independent timing
noise.

the whitened components. The pseudo-frequency power spectrum can therefore be a useful test of

the red-noise model used in the whitening process, since it must be flat. The power spectrum of

the unwhitened residuals is shown in panel (d) of Figure 2.1 with the timing noise model used for

this pulsar. If the test fails for any pulsar, we update the red-noise model and re-fit the timing

model until the residuals are successfully whitened as required.

2.5 Results

In this section, we present our final timing solutions for each pulsar, with the post-fit residuals

given in Figure 2.2. We compare our measured parameters with those in the literature, including
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VLBI measurements and distances derived from the pulsar DMs using the Taylor and Cordes

(1993, hereafter TC93) and NE2001 (Cordes and Lazio 2002) Galactic free electron distribution

models (giving distances accurate to approximately 25% and 20% respectively).

Much of the comparison in this section will be with V08 and V09, which used a subset

of our dataset and is therefore not independent. However, V08 and V09 used a different So-

lar System ephemeris, DE405, and time standard, TT(TAI), to our analysis, which results in

apparent changes to some parameters. Use of the DE405 ephemeris in particular induces signifi-

cantly different position parameters compared to the newer DE421 ephemeris, while the use of

TT(TAI) changes the apparent spin frequency and its derivative. For each pulsar we find that

inconsistencies in the position parameters are explained by the use of this different ephemeris.

Although K13 measured DM variations for all PPTA pulsars and determined an optimal

sampling time, Manchester et al. (2013) did not publish any ∆DM measurements for seven

pulsars. This is because ∆DM values were only published by Manchester et al. (2013) if their

inclusion improved the rms residuals. For our work, we must account for all red noise in the

residuals since this is required for the split-Cholesky algorithm (this process is described in

Section 2.4). The testing of red- and white-noise models for each pulsar is described in Section

2.4.3, where we present the analysis of PSR J1713+0747 as an example. We do not present the

analysis of the other pulsars, with the exception of PSR J0437−4715, which shows some variation

that we discuss below in Section 2.5.1.

For each pulsar we also compare the various distance measurements available in the literature

to check that our new distance measurements from π or Ṗb are consistent with these. For each

parallax measurement, we calculate the Lutz-Kelker (Lutz and Kelker 1973) corrected parallax

value and the corresponding corrected distance using the method of Verbiest et al. (2012) and with

the mean flux of each pulsar given in Manchester et al. (2013). The parallax measurements for

PSRs J1024−0719, J1045−4509, J1603−7202, and J1857+0943 have high fractional uncertainties

(parallax measured with less than 3-σ confidence) and therefore the bias corrected values for

these closely resemble the prior distributions used. The measurements however are important

for placing an upper-bound on the parallax value, or similarly, a lower-bound on the distance

measurement. A table of these values, and the distances from Ṗb and DM are given in Table 2.3.

For each pulsar, we derive the characteristic age, surface magnetic field strength, and energy-

loss rate from the spin-down. Where available, we use the pulsar mass function (Thorsett and

Chakrabarty 1999) and a precise Shapiro delay measurement to calculate a pulsar mass, and

use the kinematic ẋ measurements to place a limit on the inclination angle of the orbit. These

derived parameters are given in the Appendix with the tables of parameters.

The red-noise models, ToA files, and parameter files for each pulsar are available from the The

Commonwealth Scientific and Industrial Research Organisation (CSIRO) Data Access Portal2.

The final parameters for the seven solitary pulsars J0711−6830, J1024−0719, J1730−2304,

2http://dx.doi.org/10.4225/08/561EFD72D0409
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Figure 2.2: Final post-fit residuals for each of the pulsars in our sample. The vertical range of
each subplot is given below the pulsar name. 43
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Table 2.3: Parallax values and distance measurements for pulsars in our sample. Parallax and
parallax-derived distance values are corrected for the Lutz-Kelker bias using the method of
Verbiest et al. (2012). TC93 and NE2001 DM distances have approximate uncertainties of 25%
and 20% respectively.

Measured values L-K bias corrected values DM distances (kpc)
Pulsar Name Parallax π (mas) Ṗb distance (kpc) Parallax π (mas) π distance (kpc) TC93 NE2001
J0437−4715 6.37±0.09 0.15679±0.00025 6.37±0.09 0.1569±0.0022 0.14 0.189
J0613−0200 0.86±0.13 – 0.81±0.13 1.09+0.18

−0.14 2.19 1.700
J0711−6830 – – – – 1.04 0.854
J1022+1001 1.1±0.3 1.2±0.5 1.0±0.3 0.74+0.19

−0.13 0.60 0.443
J1024−0719 0.5±0.3 – 0.5+0.21

−0.16 1.1+0.4
−0.3 0.35 0.381

J1045−4509 2.2±1.1 – 0.29+0.5
−0.15 0.34+0.2

−0.10 3.24 1.945
J1600−3053 0.48±0.11 – 0.43±0.11 1.8+0.5

−0.3 2.67 1.581
J1603−7202 1.1±0.8 3.9±1.8 0.25+0.4

−0.12 0.53+0.4
−0.16 1.64 1.159

J1643−1224 1.27±0.19 – 1.18±0.19 0.74+0.12
−0.10 >4.86 2.320

J1713+0747 0.86±0.09 3.1±1.2 0.84±0.09 1.12+0.12
−0.11 0.89 0.889

J1730−2304 1.5±0.3 – 1.2±0.4 0.62+0.15
−0.10 0.51 0.529

J1732−5049 – – – – 1.81 1.392
J1744−1134 2.53±0.07 – 2.52±0.07 0.395±0.011 0.17 0.415
J1824−2452A – – – – 3.64 3.042
J1857+0943 0.5±0.3 – 0.15+0.2

−0.07 1.2+0.7
−0.4 0.70 1.168

J1909−3744 0.81±0.03 1.140±0.012 0.81±0.03 1.23±0.05 0.55 0.457
J1939+2134 0.52±0.16 – 0.40±0.16 1.5+0.5

−0.3 3.58 3.550
J2124−3358 2.4±0.4 – 2.15±0.4 1.39+0.08

−0.06 0.25 0.268
J2129−5721 – 3.2±1.5 – – >2.55 1.686
J2145−0750 1.84±0.17 – 1.80±0.17 0.53+0.06

−0.05 0.50 0.566

J1744−1134, J1824−2452A, J1939+2134, and J2124−3358 are given in Table 4. The binary

pulsars are separated by the binary model used to describe their orbit. Parameters for the small-

eccentricity pulsars described by the ELL1 model, PSRs J0613−0200, J1045−4509, J1603−7202,

J1732−5049, J1857+0943, J2129−5721, and J2145−0750 are presented in Table 5; DD model

pulsars J1022+1001, J1600-3053, and J1643−1224 are presented in Table 6; and T2 model

pulsars J0437−4715, J1713+0747, and J1909−3744 are presented in Table 7.

2.5.1 PSR J0437−4715

PSR J0437−4715 is the closest MSP currently known and the brightest at radio wavelengths. van

Straten et al. (2001) presented a timing solution including the full three-dimensional geometry

of the binary orbit. An updated model was presented by V08. This included a precise distance

estimate derived from an orbital period-derivative measurement.

In Figure 2.3, we show the two components of the red-noise model with the power spectrum

of the post-fit residuals (panel d). As shown in panel (b), the model successfully whitens the

residuals. Significant uncorrected DM noise is present in the early data. Therefore, as expected,

the timing noise model underestimates the total noise, whereas the DM noise model alone
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overestimates the total noise (since it does not apply to the entire dataset). There is excess

noise at all frequencies (the mean of the power spectrum of normalised residuals is > 1). This

could result, for example, by additional uncorrected short-timescale correlated noise in the

residuals. The normalised residuals do not pass the AD test (A∗2 = 6.75). This may be because of

instrumental effects, or because of pulse jitter (Shannon et al. 2014). Non-Gaussianity has been

detected previously for PSR J0437−4715 by Lentati et al. (2014b). However it was shown that,

at this level, the non-Gaussianity and high mean spectral power do not significantly affect the

parameter measurements or uncertainties.

Using our new, precise measurement of Ṗb, we can calculate an improved distance to

PSR J0437−4715 of D = 156.79±0.25 pc. We discuss this measurement in detail in Section

2.6.2. As shown in Table 2.3, this measurement is consistent with independent distances, includ-

ing our parallax distance measurement of D = 157±2 pc. V08 measured a high pulsar mass for

this pulsar, of Mp = 1.76±0.2 M¯. Our improved measurement of the Shapiro delay reduces the

uncertainty on the pulsar mass and we find Mp = 1.44±0.07 M¯, significantly smaller at the

1.5-σ level. This improved mass measurement will be important for the NICER mission which

will attempt to measure the neutron-star radius, probing the neutron star equation of state.

Kinematic contributions to the measured ω̇ are included in the timing model through the

measurement of Kopeikin terms. We therefore expect that our ω̇ measurement is solely due to

the effects of GR, as was reported in V08. Under this assumption, the reported ω̇ corresponds to

a combined pulsar and companion mass of Mp +Mc = 1.44±0.2 M¯, which is just consistent with

the measured masses at the 1-σ level. In analysis of future data sets for this pulsar, the improving

ω̇ measurement will be able to be used in combination with the Shapiro delay measurement to

further constrain the pulsar mass.

2.5.2 PSR J0613−0200

The only new parameters included in our PSR J0613−0200 timing model are those describing

the sinusoidal annual variations in DM that were presented in Section 2.4.1.

2.5.3 PSR J0711−6830

The pulsar timing model for this pulsar contains the same parameters as in V09. As expected, our

measurements are more precise than previous work. We have not been able to obtain a parallax

measurement for this pulsar because of its proximity to the ecliptic pole.

2.5.4 PSR J1022+1001

This pulsar has the smallest ecliptic latitude (−0.06 deg) of all pulsars in the sample. Observations

when the line-of-sight to the pulsar passes close to the Sun have been used by You et al. (2007) to

study the solar corona. However, these observations are generally removed for high-precision
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Figure 2.3: (a) Whitened and normalised post-fit residuals for PSR J0437−4715. (b) Power spectra
of whitened and normalised post-fit residuals. Dotted line marks f = 1 yr−1 and dashed lines
indicate expected mean and variance for the spectrum. The pseudo-frequency is determined by
converting the whitened components to a pseudo-time-series using the ToAs of the unwhitened
residuals. (c) Cumulative distribution of whitened and normalised post-fit residuals (solid line)
with expected distribution based on normal distribution with zero mean and unit variance (dashed
line). Modified AD statistic for this distribution with the expected distribution is labelled. (d)
Power spectra of post-fit residuals. Dotted line marks f = 1 yr−1 and solid flat line is an estimate
of the white-noise level. The timing noise model applies over entire data set in combined noise
model, while the Kolmogorov DM noise model only applies to residuals prior to MJD 53430.

timing applications. For our timing solutions, we removed the ToAs that were obtained when the

line-of-sight to the pulsar passed within 5◦ of the Sun. The removal of these residuals produces

normalised residuals that are consistent with zero mean and unit variance.

van Straten (2013) analysed 7.2 years of data for this pulsar from the Parkes radio telescope

using a new method of polarimetric calibration to improve timing precision. The DR1 and DR1E

datasets did not include this new calibration procedure. With our dataset we have detected a

significant Shapiro delay using the traditional parameters Mc and sin i. However while we found

sin i = 0.69±0.18, we did not measure a significant companion mass, Mc = 2.2±2.4 M¯. Our

parameters are consistent with those of van Straten (2013).

We measured the orbital period-derivative, Ṗb = (5.5±2.3)×10−13, for the first time (this
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parameter was not measured by van Straten 2013). Assuming a pulsar mass of Mp = 1.4 M¯ and

companion mass of Mc = 0.2 M¯, the expected Ṗb contribution from quadrupolar GW emission

is ṖGR
b =−1.7×10−16, three orders of magnitude smaller than this measurement. We therefore

expect that our measurement is an apparent orbital period increase caused by the Shklovskii

effect. Given the proper motion of the pulsar, we can derive the distance to the pulsar, D =
1.5±0.5 kpc, which, as shown in Table 3, is consistent with other distance measurements.

The measured ẋ is expected to be from the Kopeikin kinematic effects discussed in Section

2.3. From this, we place an upper limit on the inclination angle of the orbit of i ≤ 84 deg using

the total proper motion presented in van Straten (2013), since we do not measure the proper

motion in declination. The ω̇ measurement can have contributions from these same kinematic

effects, but may also be consistent with the periastron advance expected from GR. Assuming

that the observed ω̇ comes entirely from GR, we derive the combined mass of the system to be

Mp +Mc = 2.5±1.3 M¯, which is consistent with a neutron star – white dwarf binary system.

2.5.5 PSR J1024−0719

The red timing noise for PSR J1024−0719 has a large spectral exponent (i.e., it is very steep)3.

Our usual procedure, as described earlier, requires that we extrapolate the red-noise model

obtained from the recent, multi-wavelength data into the earlier data. For PSR J1024−0719, we

found that the red-noise model obtained from the recent data did not extrapolate well. Since DM

noise is not detectable in the detrended data, we simply modelled the red noise in the entire

dataset and did not use an additional DM noise model.

Our measurements are consistent with those of V09 and the measurement precision is

improved in all cases. We measure a parallax of π = 0.5±0.3 mas (prior to Lutz-Kelker bias

correction), which was undetected by V09. A parallax was previously measured by Hotan et al.

(2006) to be π= 1.9±0.8 mas, which is also consistent with our measurements. However, since a

parallax was undetected by V09, and PSR J1024−0719 has steep red noise that was unaccounted

for by Hotan et al. (2006), the uncertainty for their original parallax measurement is likely to be

severely underestimated.

2.5.6 PSR J1045−4509

A parallax measurement was presented by V09 of π= 3±4 mas, but this measurement may have

been affected by uncorrected red noise. We now make the first significant parallax measurement

of π= 2.2±1.1 mas.

3Shortly after the publication of this work in Reardon et al. (2016), it was shown simultaneously by Kaplan et al.
(2016) and Bassa et al. (2016) that this steep red noise likely originates not from timing noise, but from a long-period
orbit with a low-mass companion.
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2.5.7 PSR J1600−3053

We present the first significant measurement of ẋ = (−4.2±0.7)×10−15, which is attributed to

the proper motion of the system (Kopeikin 1996), and gives us an upper limit on the inclination

angle of i ≤ 67 deg. We detect the first significant parallax of π = 0.48±0.11 mas (compared

with π = 0.2±0.3 mas given by V09). From the Shapiro delay companion mass measurement

Mc = 0.34±0.15 M¯ and the mass function, we can provide a constraint on the pulsar’s mass:

Mp = 2.4±1.7 M¯.

2.5.8 PSR J1603−7202

For this pulsar, we have the first measurement of a parallax π = 1.1±0.8 mas (prior to Lutz-

Kelker bias correction). We also present the measured first derivatives of the orbital period,

Ṗb = (3.1±1.5)×10−13 and the projected semi-major axis, ẋ = (1.36±0.16)×10−14. Since the GR

contribution (for both Ṗb and ẋ) is negligible for this system, we use the proper motion of the

pulsar and our Ṗb measurement to derive the distance to the pulsar, D = 3.9±1.8 kpc, which

is marginally consistent with other distance measurements (Table 3). However all distance

measurements for this pulsar are poor. Using the ẋ measurement, we place an upper limit on the

orbital inclination angle of i ≤ 31 deg.

2.5.9 PSR J1643−1224

We present the first measurement of ω̇ = −0.007± 0.004 deg. An improved measurement of

ẋ = (−5.25±0.16)×10−14 allows us to derive an upper limit on the inclination angle of i ≤ 28 deg.

For the measured ω̇ to be the result of GR effects, rather than the assumed kinematic effects,

the combined mass of the system would need to be Mp + Mc = 54 M¯; an order of magnitude

larger than expected. We therefore expect that this measurement is not contaminated by GR

contributions and instead results from kinematic effects. However since these measurements are

not well determined and we do not detect a Shapiro delay, we are unable to find a unique solution

for the Kopeikin terms i and Ω and we therefore do not re-parametrise the orbit.

2.5.10 PSR J1713+0747

Splaver et al. (2005) reported on 12 years of timing observations of this pulsar from the Arecibo

observatory. Their analysis was carried out with the JPL DE405 Solar System ephemeris

and the time reference was TT(BIPM03). They obtained π= 0.89±0.08 mas, µα cosδ= 4.917±
0.004 mas yr−1, and µδ = −3.933±0.01 mas yr−1. The orbital projection effects caused by this

proper motion allowed them to determine Ω= (87±6)◦. Their analysis was carried out by “whiten-

ing" the residuals using eight time derivatives of the pulse frequency. C11 showed that such

whitening can lead to underestimated parameter uncertainties.
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V09 obtained a less precise parallax determination of π= 0.94±0.10 mas and a proper motion

components of µα cosδ = 4.924±0.10 mas yr−1 and µδ = −3.85±0.02 mas yr−1. They obtained

i = (78.6±1.7)◦ and Ω= (67±17)◦. V09 also included Ṗb = (41±20)×10−13.

The most recent VLBI observations of this pulsar (Chatterjee et al. 2009) give proper

motion components of µα = 4.75+0.16
−0.07 mas yr−1 and µδ = −3.67+0.06

−0.15 mas yr−1 and parallax of

π= 0.95+0.06
−0.05 mas. These values are in fair agreement with our values in Table 7.

Zhu et al. (2015) have analysed 21 years of timing data from the North American Nanohertz

Observatory for Gravitational Waves (NANOGrav) for this pulsar to conduct tests of theories of

gravity. In their analysis they measured parameters using a number of different noise models.

Using TEMPO2 with a jitter-based white-noise model and a red-noise model, they measured

π= 0.87±0.03 mas, µα cosδ= 4.915±0.003 mas yr−1, and µδ =−3.914±0.005 mas yr−1. For the

binary model, they measured the Kopeikin terms i = (71.9±0.7)◦, and Ω= (88±2)◦, as well as a

companion mass of Mc = 0.286±0.012 M¯ and Ṗb = (0.36±0.17)×10−12. These parameters are

consistent with, and more precise than our measurements below because of the longer data span

and higher timing precision of the NANOGrav dataset for this pulsar.

With our analysis we obtain Ṗb = (1.7±0.7)×10−12. The intrinsic ṖGR
b from GW emission is

negligible and so we expect that this result comes from the Shklovskii effect. This provides a pul-

sar distance of D = 3.1±1.2 kpc, which is marginally consistent with other distance measurements

(Table 3). We also use the Shapiro delay companion mass measurement Mc = 0.32±0.05 M¯ and

the mass function, to calculate the pulsar mass, Mp = 1.7±0.4 M¯.

2.5.11 PSR J1730−2304

We present the first measurement of a parallax for this pulsar of π = 1.5±0.3 mas, prior to

Lutz-Kelker bias correction. All other parameters are consistent with the previous values from

V09.

2.5.12 PSR J1732−5049

V09 was only able to determine µδ =−9.3±0.7 mas yr−1. We now also present a measurement

of the proper motion in right ascension, µα cosδ = −0.41±0.09 mas yr−1, but parallax was not

detected.

2.5.13 PSR J1744−1134

All parameters are consistent with V09 after accounting for apparent changes resulting from the

different solar-system ephemeris and time standard used in the analysis.
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2.5.14 PSR J1824−2452A

PSR J1824−2452A is a solitary pulsar located in the globular cluster M28. The timing residuals

for this pulsar exhibit red noise, which may be caused by acceleration within the cluster potential,

or timing noise. Our timing model includes dDM/dt but, as we do not include any single-frequency

data for this pulsar, we use the original Cholesky routines with a single noise model. We did not

measure a significant proper motion in declination nor a parallax even though V09 did publish a

proper motion in declination.

2.5.15 PSR J1857+0943

This pulsar is in an orbit that is highly inclined to our line of sight, allowing for a precise mea-

surement of the Shapiro delay. We do not improve parameter uncertainties for every parameter

since V09 made use of publicly available data from the Arecibo observatory to extend the dataset,

while we chose to use only the PPTA DR1E data set. Using our Shapiro delay companion mass

measurement Mc = 0.25±0.03 M¯ and the mass function, we calculate the pulsar mass to be

Mp = 1.5±0.2 M¯.

2.5.16 PSR J1909−3744

The narrow pulse width, particularly at 10 cm, allows us to achieve very low ToA uncertainties.

Recent PPTA data for this pulsar, timed to sub-100 ns precision over more than ten years has led

to the most stringent limit on the stochastic GW background to date (Shannon et al. 2015). For

this reason, this pulsar is an important tool for testing models of galaxy and supermassive black

hole formation.

For this pulsar, we use a corrected version of the DR1E dataset that is described in Shan-

non et al. (2013b). Previously undetected instrumental offsets were found and corrected, and

additional archival 50cm observations were included to allow measurement of ∆DM over the

entire dataset. We also include an additional jump corresponding to a software upgrade at MJD

55319.8 that was identified by Shannon et al. (2015). We include dDM/dt in the timing model,

which removes the majority of the DM noise. While there is no evidence for red noise in the 10 cm

residuals (Shannon et al. 2015), we identify some slight red noise originating from the 20 cm and

50 cm residuals. This could be the result of instrumental noise or residual interstellar dispersion

noise. Because of this noise, we included a red-noise model that sufficiently whitens the residuals.

V09 did not include Kopeikin terms in the timing model, but instead fitted for ẋ; ω̇ was not

measured. We now include the Kopeikin terms, giving the inclination angle, i = 93.52±0.09 deg,

and the longitude of ascending node, Ω= 39±10 deg. We measure the orbital period-derivative to

be Ṗb = (5.03±0.06)×10−13. The expected contribution from quadrupolar GW emission to this

measurement is ṖGR
b =−2.7×10−15; two orders of magnitude smaller than this measurement.

This expected value was calculated from the measured companion mass Mc = 0.2067±0.0019 M¯
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and the calculated pulsar mass from the Shapiro delay and mass function of Mp = 1.47±0.03 M¯.

From this Ṗb measurement and the proper motion, we derive a distance of D = 1.140±0.012 kpc,

which is consistent with the parallax distance. The distances derived from the DM and Galactic

electron density models are evidently under-estimated.

2.5.17 PSR J1939+2134

PSR J1939+2134 was the first MSP discovered (Backer et al. 1982), and it is currently the second

fastest spinning pulsar known. The timing residuals for this pulsar are dominated by red noise.

2.5.18 PSR J2124−3358

All measured parameters for this pulsar are consistent with V09 and the uncertainties have

decreased in all cases.

2.5.19 PSR J2129−5721

We have the first measurement of the orbital period-derivative, Ṗb = (7.9±3.6)×10−13. Using this

measurement and the proper motion, we derive a distance of D = 3.2±1.5 kpc, which is consistent

with the DM distances (Table 3), however all distance measurements for this pulsar are poor. We

do not yet detect a parallax for this pulsar because of its proximity to the ecliptic pole.

2.5.20 PSR J2145−0750

We have the first measurement of ẋ = (8.0±0.8)×10−15, resulting from the proper motion of

the pulsar. Using this value, we place an upper limit on the inclination angle of the orbit of

i ≤ 69 degrees. All parameters are consistent with the previous results. V09 published ẋ, Ṗb, and

ω̇ values, but the measurements were not significant. Furthermore, the uncertainties were likely

to be underestimated because of the red noise present in these observations.

2.6 Discussion

2.6.1 Advantages of using the split-Cholesky algorithm

The methodology that we have used in this Chapter is based on traditional, frequentist analysis

of pulsar timing residuals. An alternate approach is through Bayesian algorithms, such as those

described in van Haasteren et al. (2009), van Haasteren and Levin (2013), or the TEMPONEST

algorithm developed by Lentati et al. (2014a). These algorithms have successfully been used by

the NANOGrav and European Pulsar Timing Array (EPTA) groups (e.g. van Haasteren et al.

2011; Arzoumanian et al. 2014a). When these same algorithms are applied to PPTA datasets,

uncertainties arise in the noise models because of the covariance between DM variations and
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timing noise processes in the single-wavelength (20 cm) early data. At present, there is no way

for current implementations of the Bayesian algorithms to model such non-stationary red noise

in the way that the split-Cholesky algorithm allows 4. Instead the Bayesian algorithms assume

that the noise is wide-sense stationary. Constructing separate red-noise models for the timing

noise and DM variations allows us to better understand our noise model, by avoiding large

uncertainties in our early data. We therefore chose to use a frequentist approach to analyse our

dataset since it is less computationally expensive than the Bayesian alternatives and gives us

greater control of our noise models.

To demonstrate the necessity for the split-Cholesky algorithm with our dataset, we created

500 realisations of PSR J0437−4715 data with red noise and DM noise at the level presented in

Section 2.4. The parameters in the timing model were fitted (including jumps and DM variations)

with three different noise treatments; no red-noise model, extrapolated DR1 red-noise model

in the Cholesky algorithm only, and a two-component red-noise model with Kolmogorov DM

noise in the split-Cholesky algorithm. In Figure 2.4 we show the distribution of post-fit parallax

values represented by the number of standard deviations from the true value. When no noise

model is used (panel a), the parameter uncertainties are clearly underestimated. When the

single-component red-noise model is used (panel b), there is a significant improvement but the

parameter uncertainties remain underestimated. Finally, when a two-component red-noise model

is used with the split-Cholesky algorithm (panel c), we can accurately model the total red noise

for the pulsar, and as a result we avoid underestimation of uncertainties. This is true for all

parameters with the exception of ν and ν̇ (as was the case in the original Cholesky algorithm; see

C11). The distributions of post-fit values for each parameter in the PSR J0437−4715 timing model

(excluding ν and ν̇), using the split-Cholesky method, are given in Figure 2.5 with the Anderson-

Darling statistic used to test the distribution. We see that the distributions are consistent with

the expected zero mean, unit variance distribution for all parameters except for declination and

proper motion, which have slightly overestimated uncertainties.

2.6.2 PSR J0437−4715 Kinematic distance measurement from Ṗb

As described in Section 2.3, the measurement of Ṗb for PSR J0437−4715 can be used to measure

the pulsar’s distance, using Equation 2. Contributions to the observed Ṗb value can come from

changes intrinsic to the pulsar system, Ṗ int
b , from the kinematic or Shklovskii effect, Ṗkin

b , and

from differential acceleration of the Solar System and pulsar system caused by mass in the

Galaxy, ṖGal
b . Therefore,

(2.8) Ṗobs
b = Ṗ int

b + ṖGal
b + Ṗkin

b

where we have measured Ṗobs
b = (3.7276±0.0058)×10−12.

4They have since been updated to allow non-stationary noise models.
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Figure 2.4: Distribution of parallax values from timing model fits to 500 realisations of simulated
PSR J0437−4715 data. σ is the number of standard deviations from the true value for each
of the N realisations. We used three different noise treatments: (a) No red-noise model, (b)
red-noise model from DR1 data, extrapolated to apply over the entire dataset was used with
the Cholesky algorithm, and (c) two-component red-noise model with Kolmogorov DM model is
used in split-Cholesky algorithm. For each panel, the black line is a normal distribution fit to
the distribution and the red, dashed line is a normal distribution with zero mean and standard
deviation equal to the average of the standard TEMPO2 uncertainties for the 500 realisations,
scaled to the same area as the black-line distribution.

The intrinsic orbital decay for neutron star-white dwarf systems such as PSR J0437−4715 is

dominated by quadrupolar GW emission, which can be calculated using the relation:

Ṗ int
b ' ṖGR

b =− 192πG5/3

5c5 (Pb/2π)−5/3 (
1− e2)−7/2

(2.9)

×
(
1+ 73

24
e2 + 37

96
e4

)
mpmc

(
mp +mc

)−1/3

(Peters and Mathews 1963; Taylor and Weisberg 1982). For PSR J0437−4715 this GR contribution

is ṖGR
b = −3.2× 10−16, which is smaller than the value calculated by V08 because of their

measurement of a high pulsar mass. This GR contribution is an order of magnitude smaller than

the uncertainty in the observed value.

The Galactic acceleration component can be estimated by combining the accelerations from

differential rotation and the Galactic potential. The differential rotation acceleration is found
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Figure 2.5: Distributions of parameter values from timing model fits with the split-Cholesky
algorithm to 500 realisations of simulated PSR J0437−4715 data. σ is the number of standard
deviations from the true value for each realisation. Data were simulated with statistically
identical red noise properties to those of PSR J0437−4715.
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using the galactic longitude and distance to the pulsar, and the galactocentric distance and

circular velocity of the Sun. Acceleration in the Galactic potential varies as a function of height

and can be computed from a model of the local surface density of the Galaxy given the Galactic

latitude of the pulsar and its parallax distance. V08 used the Holmberg and Flynn (2004) and

calculate the total Galactic contribution to be ṖGal
b = (−1.8−0.5)×10−14 = −2.3×10−14. Since

the value of the Galactic acceleration is larger than the uncertainty of our observed value, the

uncertainty in this component may become important. Bovy et al. (2012) find that the uncertainty

for the circular velocity of local sources is approximately 3% by using data from the Apache Point

Observatory Galactic Evolution Experiment. From Holmberg and Flynn (2004), the uncertainty

in the surface density resulting in the vertical component of acceleration is approximately 10%.

Using these uncertainties, we have ṖGal
b = (−2.3±0.08)×10−14, which is small compared to the

uncertainty in our measurement.

The kinematic contribution to Ṗobs
b because of the Shklovskii effect and the distance to the

pulsar can be found through

(2.10) Ṗobs
b − ṖGR

b − ṖGal
b ' Ṗkin

b = µ2D
c

Pb

where µ is the total proper motion of the pulsar and D is the distance. This gives Ṗkin
b =

(3.7513±0.006)×10−12 and D = 156.79±0.25 pc, which is consistent with our independently

measured parallax distance of D = 156.9±2.2 pc. This is the most precise distance measurement

for all pulsars and one of the most fractionally precise distance measurements for any star. Our

distance measurement is also consistent with the VLBI parallax distance of D = 156.3±1.3 pc,

measured by Deller et al. (2008). Since Ṗb produces an effect in the residuals that grows over

time, we can expect the uncertainty in Ṗobs
b to decrease significantly in future data sets, leaving

the distance uncertainty to be dominated by the uncertainty in models used to calculate the

contributions from Galactic acceleration. Precise distance measurements such as this will be

important to PTAs in the future since it allows the use of the pulsar term in single-source GW

detection, which is essential for accurately determining the source location (Lee et al. 2011).

2.7 Conclusion

We have presented new models for red noise caused by DM variations in single-frequency

data sets, obtained by first including deterministic components in the timing model, and then

modelling the covariance function of the remaining noise. For 14 of the pulsars in our sample,

we detect a linear trend in the DM variations and include this in the timing model, and for four

pulsars (PSRs J0613−0200, J1045−4509, J1643−1224, and J1939+2134) we also include new

parameters that describe annual DM variations. The new DM noise models apply only to the early

data where excess noise is present, and are used in conjunction with a red-noise model for the

frequency-independent noise that is present in the entire dataset. These two-component models
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were used in the new “split-Cholesky" algorithm to whiten the residuals to provide unbiased

parameter measurements. We have described this algorithm and demonstrated its effectiveness

on simulated data. Model parameters were shown to be unbiased and have accurate uncertainties

through simulations based on PSR J0437−4715.

Determining new timing models for the 20 PPTA pulsars in the DR1E dataset required these

new models and algorithm because of the non-stationary red noise for most pulsars. The models

we present provide the best description of the noise currently possible with the PPTA data sets,

and result in the most accurate and precise parameter measurements to date for most pulsars

in our sample, as well as the detection of several new parameters. Most notably, we presented

the first significant parallax measurements for PSRs J1024−0719, J1045−4509, J1600−3053,

J1603−7202, and J1730−2304, and determined the distance to PSR J0437−4715 at the 0.16%

level of precision. We also measured an improved pulsar mass for PSR J0437−4715, which at

Mp = 1.44±0.07 M¯, is somewhat lower than the previous measurement.

The analysis described here can easily be applied to future PPTA data releases and to any

PTA data with non-stationary noise processes. Longer datasets for PSR J0437−4715 will further

improve the distance measurements based on both the parallax, and the orbital period-derivative

from Schklovskii acceleration. If the parallax distance from pulsar timing becomes more precise

than the current VLBI distance, these two independent measurements can be used for example to

further improve current constraints on the change to Newton’s Gravitational constant (Freire et al.

2012). It may also be possible to measure, or place limits on, the acceleration of the pulsar system

caused by mass in the Galaxy. With longer datasets, improving ω̇ measurements, particularly for

PSR J0437−4715, can compliment the Shapiro delay to further improve measurements of the

pulsar mass.
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3
MODELLING RELATIVISTIC AND ANNUAL VARIATIONS IN THE

SCINTILLATION OF PSR J1141−6545 FOR PRECISE ASTROMETRY

We have observed the relativistic binary pulsar PSR J1141−6545 over a period of ∼6 years

using the Parkes 64 m radio telescope, with a focus on precision measurements of the

pulse times of arrival (TOAs), and diffractive intensity scintillations. Fitting models to

these scintillations allows us to measure astrometric and orbital parameters that are difficult

to measure with TOAs alone because TOA measurements are sensitive to the changing radial

velocity of the pulsar while scintillations are sensitive to its transverse velocity. We have modelled

the long-term scintillation, which shows relativistic and annual variations, to measure parameters

that include: the inclination of the binary orbit i; the longitude of the ascending node Ω; the

relativistic advance of periastron ω̇; and the pulsar system transverse velocity. We use the annual

variations to resolve the previous ambiguity in the sense of the inclination angle. Using the

correct sense, but the more precise value inferred from tests of general relativity (i = 73±1.5◦),
we find Ω = 23±3◦ and we estimate the pulsar distance to be D = 9+5

−3 kpc, which then gives

us an estimate of this pulsar’s proper motion of µα = 2.5±1.2 mas yr−1 in right ascension and

µδ = 1.5±0.7 mas yr−1 in declination. Finally, we obtain measurements of the spatial structure of

the interstellar electron density fluctuations, including: the spatial scale and anisotropy of the

diffraction pattern; the distribution of scattering material along the line of sight; and spatial

variation in the strength of turbulence from epoch to epoch. We find that the scattering is

dominated by a thin screen that is slightly anisotropic.
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3.1 Introduction

Interstellar intensity scintillations are seen in all radio observations of highly compact sources

at centimetre to metre wavelengths. They are caused by transverse fluctuations in the electron

density of the turbulent ionised interstellar medium (IISM). The primary mechanism is diffractive

angular scattering, where intensity variations arise from interference between the scattered

waves (Rickett 1969). The diffractive scintillations are modulated by refractive scintillations

on larger spatial scales (Rickett et al. 1984; Romani et al. 1986). The observed scintillations,

which appear as variations in the source flux with time and observing frequency, are caused by a

spatial interference pattern drifting across the line-of-sight. Thus the time scale of the observed

scintillations τd (typically of order minutes) is inversely proportional to this drift velocity Vlos,

which is a linear combination of the transverse velocities of the observer, source, and IISM

(Section 3.3.1). The diffraction pattern is also frequency-dependent and becomes decorrelated

over a bandwidth ∆νd. The angular scattering broadens each pulse into a quasi-exponential pulse

with timescale τs, which is related to the bandwidth by 2π∆νdτs ≈ 1 (Rickett 1977). Diffractive

scintillations have a narrow bandwidth (typically of order MHz), which is a measure of the

strength of scattering and can be used to estimate the diffractive spatial scale sd (Section 3.2.3).

Detailed overviews of pulsar scintillations are given by Rickett (1990) and Narayan (1992).

Measurements of a dynamic spectrum of intensity scintillation with time and frequency can

therefore provide information on the spatial structure of the IISM, the transverse velocity of

the pulsar, and the strength of scattering. For solitary pulsars Vlos is often dominated by the

pulsar proper motion and is relatively simple to model, depending only on the distance from the

scattering region to the Earth (Lyne and Smith 1982). If the pulsar has a binary companion,

orbital dynamics can also be studied from the transverse orbital motion. This was first used by

Lyne (1984) to measure the orbital inclination angle of PSR B0655+64 for the first time. Then

Ord et al. (2002a) analysed two consecutive orbits of PSR J1141−6545, a relativistic binary pulsar

with a white dwarf companion in a ∼4.7 hour eccentric orbit (discovered by Kaspi et al. 2000),

with the assumption of isotropic scattering. The technique was extended to deal with anisotropic

scattering of the double pulsar PSR J0737−3039A by Coles et al. (2005) and further extended to

analyze multiple observations of PSR J0737−3039A including the effects of the variation in the

Earth’s velocity by Rickett et al. (2014). We have been provided access to the latter data and used

it to calibrate our analysis against that of Rickett et al. (2014).

For this work we use the dynamic spectrum as our basic observable and model the diffractive

scintillations over a period of ∼6 years for PSR J1141−6545. An example dynamic spectrum from

some of our observations is shown in Figure 3.1. This spectrum shows the modulation of the

scintillation timescale τd, caused by the orbital motion of the pulsar (see also Figure 1 of Ord

et al. 2002a). We characterise the statistics of this spectrum by a two dimensional autocovariance

function (ACF). Following convention (Cordes and Rickett 1998), the half-width at half maximum

of this ACF in frequency is the decorrelation bandwidth ∆νd and the half-width at 1/e in time
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Figure 3.1: A dynamic spectrum of four PSR J1141−6545 observations made on MJD 56391 with
∼300 MHz of used bandwidth about a centre frequency of 1366 MHz. The four observations cover
a combined ∼ 2.2 pulsar orbits. Stretching of the scintles (in black) in time is evident (at e.g. 100
and 400 minutes) when the pulsar orbital velocity reaches a minimum. The vertical white bars
are periods between the individual observations, while horizontal white bars and patches were
removed because of radio-frequency interference. The greyscale shows the normalised flux with
the colour limits chosen to optimise the visualisation of scintles.

is τd. The scale of spatial variations in the diffraction pattern sd is related to the scintillation

timescale by sd =Vlosτd. The spatial scale is determined by the strength of scattering, which can

vary with time but is independent of Vlos. If the spatial structure is anisotropic, τd will depend

on the angle between the semi-major axis of the anisotropy and the velocity vector. Fortunately,

since ∆νd is a direct measure of the strength of scattering, this can be used to correct for temporal

variations in the spatial scale caused by changes in the strength of scattering, provided that

the anisotropy does not also change with time. A formalism for using ∆νd to correct for changes

in sd has been provided by Cordes and Rickett (1998). The near-constant ∆νd for the dynamic

spectrum in Figure 3.1 indicates that the strength of scattering does not change over the orbital

period, because the projected size of the orbit is smaller than the scattering disk. However we do

observe small strength of scattering changes from epoch to epoch (discussed in Section 3.2.3) and

we use the scheme of Cordes and Rickett (1998) to account for this.

PSR J1141−6545 has already proved to be a valuable and unique laboratory for testing

general relativity (Bhat et al. 2008; Manchester et al. 2010). The parameters measured from

scintillation are important for these tests because poor timing precision limits the measurement

of the Shapiro delay, which would otherwise provide a measurement of the inclination angle

and companion mass to further constrain the tests of general relativity (Bhat et al. 2008). In
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addition to this, the distance to the pulsar is poorly constrained at present, which means that

the contamination from kinematic effects (in this case the Shklovskii effect; Shklovskii 1970) in

the measured relativistic orbital parameters is unknown. A lower-bound distance estimate of

3.7 kpc was found by Ord et al. (2002b) using HI absorption spectra and was used to calculate the

“scintillation velocity" VISS (observationally-derived Vlos) in Ord et al. (2002a). Verbiest et al. (2012)

then showed that distances derived in this way may be overestimated because of a luminosity

bias, and presented a revised distance estimate of 3±2 kpc (which is not significantly different,

but we take this as an initial value for our models). At this large distance, the proper motion

is too small to be measured with current timing precision. For this reason, both the measured

transverse velocity (to estimate the Shklovskii effect) and inclination angle (to constrain the

pulsar and companion masses) from scintillation modelling are useful for improving the tests of

general relativity with this system. The system runaway velocity is also an important tool for

investigating the formation of such white dwarf-neutron star systems (e.g. Tauris and Sennels

2000; Davies et al. 2002; Church et al. 2006).

In this paper we present new short-term and long-term scintillation models for two differ-

ent scattering geometries. Our best long-term model is a thin scattering screen and includes

anisotropy in the IISM. We show that the Earth’s velocity is detectable from scintillation timescale

modulation over a year, and that the relativistic advance of periastron can be measured from

scintillation alone. We use the annual variation to measure the orientation of the pulsar’s orbit

in celestial coordinates, resolve the sense of the inclination angle, determine the distance to the

scattering region, and calculate the proper motion of the pulsar. We compare these results with

previous measurements from scintillation and pulsar timing, provide a revised distance estimate

to the pulsar, and predict the contamination in the orbital period-derivative from the Shklovskii

effect (Shklovskii 1970).

3.2 Dataset

3.2.1 Observations and dynamic spectra

For this work, we use a selection of archival PSR J1141−6545 observations from the Parkes 64 m

radio telescope, spanning ∼6 years from June 2009 to June 2015. The observations were part

of the P361 observing project, which was a long-term campaign to monitor PSR J1141−6545 to

improve the stringent tests of gravitational theories. The data were received with the central

beam of the Parkes multibeam receiver, and recorded either with a digital polyphase filterbank

system with a 256 MHz bandwidth and 0.25 MHz channel width, or a coherent dedispersion

machine with a 400 MHz bandwidth and 0.78 MHz channel width. Each observation was from

the “20 cm band" and had a centre frequency in the range of 1358 MHz to 1423 MHz.

We selected only the longest observations, which spanned at least 142 minutes, so that each

observation covered at least half of an orbit (orbital period ∼4.7 hrs). This yielded 126 individual

60



3.2. DATASET

observations, which we organise into 23 distinct “epochs" separated by at least 60 days.

A dynamic spectrum for each observation was produced using the data processing pipeline

designed for the upcoming data release 2 (DR2) of the Parkes Pulsar Timing Array (PPTA;

Manchester et al. 2013) project. In brief, observations of a pulsed noise diode that excites both

X and Y polarisations in phase are performed before each of the observations described above,

to allow correction of the complex gain. The noise diode is itself calibrated to absolute flux

density using on- and off-source observations of the bright radio galaxy Hydra A. Polarisation

calibration is done using the noise diode observations combined with regular observations of the

highly polarised pulsar PSR J0437−4715 (van Straten 2004). To compute dynamic spectra, we

perform a least-squares fit of an analytic model of the pulse profile in total intensity (Stokes I)

to the observed pulse profile for each sub-integration and frequency channel. This fit provides

the amplitude and its uncertainty. Because the observed pulsar profiles are already absolutely

calibrated, the amplitude measurement yields the pulsar flux density directly. In addition, using

this analytic pulse profile simultaneously optimises the signal-to-noise ratio for both the pulse

amplitude and time of arrival. The calibrations and measurements described above are performed

with the PSRCHIVE (Hotan et al. 2004) package.

Figure 3.1 shows the dynamic spectra of four consecutive observations of PSR J1141−6545

on MJD 56391. We cut each observation into segments < 12 minutes in length (on average they

are ∼ 11 minutes) and measure the scintillation timescales and bandwidths for each segment (as

described in the following section). In this way we can measure the modulation of τd across orbital

phase for each observation. The decorrelation bandwidth ∆νd measurements and the grouping

of observations into the 23 epochs are shown in Figure 3.2. The measurements in this Figure

are from all available archival observations (with tobs > 24 mins) during our selected observing

span, not just the 126 observations from P361 that we use for modelling. This is because many of

the P361 observations have channel bandwidths Bc = 0.78 MHz, meaning that we overestimate

the decorrelation bandwidth because ∆νd < Bc. We use all available data (which may not be

suitable for τd measurements because of a short observing span for example) to measure ∆νd

from observations with ∆νd > Bc, and estimate ∆νd using the variance of the flux in the dynamic

spectrum when ∆νd < Bc. This method is described in Section 3.2.3, where we also show that it is

sufficient to simply take the weighted mean of ∆νd at each epoch and hold this fixed for each of

the 126 long observations that we use for τd measurements and our modelling.

Since the binary orbital velocity can change rapidly for this system, our measured scintillation

parameters are actually an average across the ∼11 minute window. This has a small effect

for our measurements near the minimum velocity, where the measured timescale is typically

underestimated near the maximum. To account for this, we apply an 11 minute smoothing window

to our models before fitting. Without taking this bias into account, the peak-to-peak difference

in orbital velocity would be reduced, which would primarily result in a slightly over-estimated

inclination angle.
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Figure 3.2: Decorrelation bandwidth (∆νd) as a function of time for all archival observations
in a ∼6 year span with a total observing time of at least 20 minutes at ∼1400 MHz for PSR
J1141−6545. The data are split into 23 epochs separated by vertical, dashed lines. Each epoch
contains multiple individual observations, and the dynamic spectra for these were cut into
∼11 minute segments. Black crosses are the measured ∆νd for each segment where Bc <∆νd for
channel bandwidth Bc. Grey circles are a flux-based estimate of ∆νd from the procedure described
in Section 3.2.3 for segments where Bc >∆νd. The measurements and estimates were used to
calculate a weighted mean value of ∆νd for each observing epoch. The anomalous region just
before MJD 55500 is primarily over-estimated due to poor dynamic spectrum quality because of
terrestrial radio interference in some observations at this time. This does not significantly affect
the weighted mean for this epoch.

3.2.2 Measurement of τd and ∆νd

We measure the scintillation parameters from ∼11 minute segments of the dynamic spectrum

because the scintillation timescale varies rapidly for the relativistic orbit. We characterise the

statistics of these segments using the estimated autocovariance function (ACF), C(τ,δν). To

calculate this we pad each segment with an equal length of zeroes in both dimensions, perform a

2-D FFT on the zero-padded segment, take the squared magnitude of the result, and perform an

inverse 2-D FFT. We then perform a least squares fit of analytical models to C(τ,0) and C(0,δν)

to obtain τd and ∆νd respectively. First we fit C(τ,0) with

C(τ,0)= A exp
(
−

∣∣∣ τ
τd

∣∣∣ 5
3
)
Λ(τ,Tobs), for τ> 0(3.1)

C(0,0)= N.

where Tobs is the length of the segment (∼11 minutes) and Λ(τ,Tobs) is the triangle function of

length Tobs. This function is a slight modification to the previous standard of a Gaussian function

(Cordes and Rickett 1998), where we have introduced the exponent of 5/3 to be a better fit to

the shape of Kolmogorov scintillations. After obtaining A, N, and τd, we keep A and N constant
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because we typically have marginal resolution in frequency and it is easier to isolate the noise

spike using the time cut, C(τ,0). We then fit C(0,δν) with

C(0,δν)= A exp
(
−

∣∣∣ δν

∆νd/ ln2

∣∣∣)Λ(δν,B), for δν> 0(3.2)

C(0,0)= N

to obtain ∆νd, where B is the receiver bandwidth. Here ∆νd is the half width at half power for

the exponential function, which is standard in the field (Cordes and Rickett 1998).

This fitting provides straightforward estimators of τd and ∆νd, which is easily checked

manually, but the least squares fit is not optimal because samples of the observed ACF are

heavily correlated. We therefore repeat the fit using the same analytical models, but we perform

the fit in the Fourier transform domain where we simply transform the autocovariance function

and the models.

The 2-D FFT of C(τ,δν) is the power spectrum (or secondary spectrum) P( fdop, tdel), where

the dimensions are the differential time delay tdel and the differential Doppler shift fdop of the

interfering waves. To obtain τd from this data we first sum P( fdop, tdel) over the tdel dimension

and divide by the number of samples Ndel and then we fit the transform of Equation 3.1. As

before we hold A and N fixed from this fit before obtaining ∆νd by summing P( fdop, tdel) over the

fdop dimension, dividing by the number of samples Ndop, and fitting the resulting power spectrum

with the transform of Equation 3.2.

The errors on these average power spectra are independent, but not equal. In fact they are

proportional to the average power spectra itself, so we use a weighted least squares fit with the

models providing the weights. This approach provides a second (but not independent) estimator

for both τd and ∆νd for which we believe the measurements and uncertainty estimates are more

reliable. We check that the two methods agree within the uncertainty of the second method and

review the dynamic spectra if they do not. For this work we use the τd and ∆νd measurements

from this Fourier-domain method.

As discussed in the previous section, our measurements of τd are actually the average across

an ∼11 minute segment, and we therefore must smooth our models to account for this. However,

there is also a bias introduced by assuming that the shape of C(τ,0) is given by Equation 3.1, even

in the case of a rapidly changing velocity across the segment. The shape of the covariance function

will change slightly since the data are a combination of multiple velocities, each contributing a

covariance with the form of C(τ,0), but with different widths. We have pre-computed this bias as

a function of orbital-phase by averaging a range of C(τ,0) corresponding to the range of observed

scintillation velocities across the segment, and then measuring the change to τd relative to the

scale of C(τ,0) from the mean velocity. We find that the maximum bias is ∼3% when the velocity

change across the segment is a maximum. Our data are then corrected for this bias, which may

otherwise have a small effect on the measured parameters, particularly the inclination angle

because this is closely related to minimum transverse orbital velocity.
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3.2.3 The effects of inhomogeneity in the IISM

The primary physical mechanism underlying scintillation is angular scattering by small scale

irregularities in electron density that is diffractive in nature. Observations that are sensitive

to the spectral exponent of the power-law of density fluctuations have shown a Kolmogorov

spectrum truncated at an inner scale (which is at or near the ion inertial scale or ion Larmor

radius) (e.g. Armstrong et al. 1995; Rickett et al. 2009; Spangler and Gwinn 1990). Thus it has

been assumed that the microstructure in the IISM is turbulent in origin and by default they have

been assumed homogeneous. However more recent observations of phenomena such as extreme

scattering events (ESEs) (e.g. Fiedler et al. 1987; Coles et al. 2015) suggest that the turbulence is

often inhomogeneous or that inhomogeneous structures that dominate the scattering are often

present at some place on the line of sight from the source to the observer.

Furthermore the spatial structure is now often found to be localised (along the line-of-sight)

and anisotropic, for example by the presence of enhanced parabolic arcs in the two-dimensional

fourier transform of the dynamic spectrum that were first discovered by Stinebring et al. (2001).

This has been called the “secondary spectrum" or the “delay-Doppler distribution" because its

axes are the differential Doppler shift and the differential time delay of the interfering waves that

cause the intensity variations (e.g. Walker et al. 2004; Cordes et al. 2006; Brisken et al. 2010).

The parabolic arcs occur when the scattering is dominated by a compact local region on the line

of sight and are enhanced when the scattering is anisotropic and is aligned with the drift velocity

of the diffraction pattern. We have analysed the secondary spectra for PSR J1141−6545 and

found no parabolic arcs, suggesting that the scattering may be isotropic and/or extended along

the line of sight. PSR J1141−6545 is much further away than the pulsars observed by Stinebring

et al. (2001), so it is not surprising that the scattering is not dominated by a single localised

region. It is also likely that any anisotropy in the microstructure would be reduced by the long

line of sight integration for a uniform distribution. For this reason we choose to fit a broad set of

scattering models. However we may also be insensitive to the arcs if the scattering is localised,

but extended (as in a “thick screen"), or if the curvature of the arc is not in the sensitivity range

for our secondary spectra (the curvature could be large for a distant pulsar like PSR J1141−6545,

which could hide the arcs along τdel axis; Cordes et al. 2006).

The coherence spatial scale of the scattering medium (or the spatial scale of the diffractive

scattering), sd is defined as the transverse separation where incident waves have a 1 radian

rms difference in phase. The width of the angular scattering is then θd ≈ 1/(ksd), for incident

radiation with wavenumber k (Rickett 1990). The radiation received by the observer arrives

from a scattering region of diameter sr = θdDe, where De is the distance to the scattering screen

from the observer. The intensity will also show variations from refraction, with a spatial scale

equal to the diameter of this scattering region (the refractive scale). We estimate the size of

the scattering region sr from sr/rF = √
ν/∆νd (Rickett 1990), where rF = √

De(1−De/D)/k is

the “Fresnel scale," and find sr ≈ 108 km (AU-scale) for scintillation bandwidth ∆νd = 0.36 MHz
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(mean from Figure 3.2). Because the projected size of the orbit is 5.6×105 km at this distance,

the scattering disk is much larger than the orbital diameter regardless of the location of the

scattering screen or a significant error in the pulsar distance. So for a single binary orbit, the

line of sight to PSR J1141−6545 does not travel outside of the scattering region. Therefore we

do not expect the strength of scattering or the anisotropy of the IISM to change during a single

orbit (although the anisotropy could show small random variations even for isotropic scattering).

In this case the variation of τd over an orbit can be exactly described by a sum of five harmonic

terms (i.e. a constant plus sine and cosine of first and second harmonics; Rickett et al. 2014).

In addition ∆νd should not vary over the orbit, which provides a 6th constraint on the model.

However we know that the scattering may be inhomogeneous on a spatial scale of AU, so we

must expect variations in the strength of scattering and perhaps other parameters of the IISM

from epoch-to-epoch. Accordingly we fit VISS(φ)2 at each epoch with a five harmonic model, where

VISS(φ) is the “scintillation velocity" as a function of orbital phase, φ and is defined in Equation

3.3 of Section 3.3. As expected we find the harmonic model fits very well at each epoch, as shown

in Figure 3.3. The relationship between the harmonic coefficients and physical parameters of the

scattering are given in Equation 3.17 of Section 3.3.2.1.

We compute the weighted mean and the rms of ∆νd at each epoch, but we find that the

apparent value of∆νd depends on the channel bandwidth Bc. In a few epochs we have observations

with Bc = 0.78 MHz and also with Bc = 0.25 MHz. In these cases ∆νd should be the same, but

the estimator determined from the ACF saturates near Bc and typically is close to 0.3 MHz.

Unfortunately many of our observations are made with Bc >∆νd. In this case fitting the ACF

does not provide a useful estimate, but we know that the intensity variance VI will be reduced

by a factor of ∆νd/Bc. When Bc < ∆νd we know that VI = M2
I where MI is the mean intensity.

So when Bc >∆νd we can use ∆νd = FcBcVI /M2
I , where Fc is a calibration factor that is needed

because the method depends on the actual shape of the ACF. We use the epochs for which we have

observations with two different values of Bc to determine Fc = 0.82. This is shown in the lower

panel of Figure 3.2, where the direct ∆νd measurements are in dark grey, the scaled estimates

from VI are in light grey, and the resulting weighted mean ∆νd for each epoch is in black. This

technique was also used briefly by Kerr et al. (2018), but they had insufficient data to determine

the calibration factor Fc. We show here for the first time that the method works well enough to

detect small changes in bandwidth and generally agrees well with the direct measurement of

∆νd from the ACF.

From a single orbit one can hope to model six parameters which must include: sd, the axial

ratio of anisotropy Ar, the angle of anisotropy ψ, the distance to screen s, and two constant

components of the velocity Vx, and Vy. If, as it happens, Ar is small (see Figure 3.4 and Section

3.3.2.1), then we can estimate ω and i at each epoch. We can then use the variation of the Earth’s

velocity over the year, and the known relativistic advance of the longitude of periastron (from

precise pulsar timing), to provide additional constraints. However one must re-estimate sd from
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∆νd at each epoch as the strength of scattering changes on a spatial scale of AU; the calculated

size of the scattering region.

In most cases the plasma turbulence causing the scattering has an outer scale which is much

greater than the refractive scale. So it is not uncommon to see a spatial gradient in density which

is essentially constant over the refractive scale. This will cause the apparent position of the pulsar

to shift, and this will affect ∆νd, but it does not, to first order, affect τd. The spatial gradient can

be estimated from the ACF, as can Ar, however our observations do not have sufficient sensitivity

to do more than estimate the phase gradient. The phase gradient in the direction of the velocity

causes a frequency-dependent spatial shift to the diffraction pattern, which is measured as a

“tilt" in the characteristic scintle in the ACF (this is a chromatic abberation effect; Cordes et al.

1986; Rickett et al. 2014). We find that the amplitude and direction of these tilts vary across

orbital phase for each observation, consistent with a constant phase gradient that is sampled by

a rotating velocity vector. However, we do not find a strong correlation between these tilts and the

measured ∆νd for each segment. The uncertainty on the weighted mean ∆νd, which we calculate

as a constant for each epoch, is larger than any bias introduced by not accounting for this phase

gradient. We therefore use the weighted mean ∆νd (Figure 3.2; black diamonds), measured at

each epoch, to estimate the spatial scale and VISS as described in the following section.

3.3 The models

In this section we describe how we use the procedure of Cordes and Rickett (1998) to model the

dynamic spectra. Their model is designed to account for variations in the strength of scattering,

which will change the spatial scale and consequently the time scale. They define a “scintillation

velocity" VISS, which is the ratio of the spatial scale of the diffraction pattern at the observer sd, to

the temporal scale τd. This VISS can be modelled if one knows the distribution and velocity of in-

terstellar plasma along the line-of-sight. We choose two simple models for the plasma distribution:

Uniform medium: A continuous, uniform distribution of plasma with Kolmogorov tur-

bulence along the line-of-sight.

Thin screen: A single compact “blob" of plasma with Kolmogorov turbulence, the “scattering

screen", at some position s between the pulsar s = 0 and the Earth s = 1.

For both models we assume that the density irregularities originate from turbulence and are

described by a Kolmogorov spectrum. Cordes and Rickett (1998) derive the spatial scale sd given

the observed decorrelation bandwidth ∆νd for both of these models, assuming that the scattering

is isotropic. In general they find that the scintillation velocity is then given by

(3.3) VISS = AISS

√
D∆νd

f τd
,
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Figure 3.3: Scintillation velocity, VISS as a function of true anomaly for the 23 epochs of observa-
tions shown in Figure 3.2. The title of each panel gives the approximate starting date for the first
observation in the group. VISS is defined as the scintillation velocity observed at the Earth for a
uniform, Kolmogorov medium along the line-of-sight (Equation 3.3). The solid line for each panel
is the best fit physical model, which is described in Section 3.3.2.2.
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where D is the distance to the pulsar in kiloparsecs, f is the observing frequency in GHz,

∆νd is in MHz, τd is in seconds, and the factor AISS depends on the assumed geometry of the

scattering medium and on the exponent of the density spectrum. For the uniform medium model,

AISS = 2.53×104 km s−1, while for the thin screen model, AISS = 2.78×104p2(1− s)/s km s−1,

where s is the fractional distance along the line-of-sight from the pulsar to the scattering screen

(Cordes and Rickett 1998). We also include the extension to anisotropic scattering first presented

by Coles et al. (2005) in both of our models, and we describe this extension in Section 3.3.1. In

addition to these models that we use for the long-term scintillation, we fit the model of Ord et al.

(2002a) to each of the 23 epochs of observations in Figure 3.3. We refer to this as the “physical

model" for single epochs as opposed to the harmonic coefficient model of Rickett et al. (2014), both

of which are described in Section 3.3.2 with results given in Section 3.5.1.1.

VISS is related to the effective transverse line-of-sight velocity Veff(s) through the scattering

medium at position s, which is a weighted sum of the pulsar, Earth, and IISM velocities (Cordes

and Rickett 1998):

(3.4) Veff(s)= (1− s)(Vp +Vµ)+ sVE −VIISM(s),

where Vp, Vµ, VE, and VIISM are the velocities from the pulsar’s orbit, the pulsar proper motion,

the Earth, and the IISM respectively. Each is relative to the local standard of rest, and the IISM

velocity can vary as a function of distance along the line-of-sight, s.

The proper motion of PSR J1141−6545 is not currently known from pulsar timing, however

we expect that the transverse velocity of the pulsar system is larger than any IISM speed (Ord

et al. 2002a), and accordingly we chose to set VIISM = 0. In this case, our measurement of Vµ will

include a contamination from any non-zero VIISM. Therefore, when interpreting Vµ as the proper

motion we implicitly make the assumption for the uniform medium model that the mean VIISM

along the line-of-sight is small compared with Vµ, and for the thin screen model our assumption

is that the velocity of the scattering screen is small compared with Vµ.

VISS is found by integrating Veff along the line-of-sight from x = 0 at the pulsar and x = 1 at

the observer, with a weight that corresponds to the geometry of the scattering medium (Cordes

and Rickett 1998)

(3.5) VISS =


1∫
0
η(x)|Veff(x)|αdx

1∫
0
η(x)xαdx


1/α

,

where α= 5/3 for a Kolmogorov medium, and η(x) is the mean-square scattering angle per unit

distance and functions as the weight for the integral to describe different geometries. For the

uniform medium model the weight is unity (η(x)= 1), and the integral simplifies to
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(3.6) VISS =
8

3

1∫
0

|Veff(x)|5/3dx

3/5

.

For the thin screen model, η(x) is a delta function at x = s, and VISS reduces to the line-of-sight

velocity Vlos with respect to the diffraction pattern, defined at the location of the observer,

(3.7) VISS =Vlos =Veff/s.

In the following section we describe the model for Veff. This includes the definitions for the

pulsar orbital velocity, the orientation of the orbit in celestial coordinates, and the extension to

anisotropic scattering developed by Coles et al. (2005).

3.3.1 Effective velocity and IISM anisotropy

The scintillation velocity in Equation 3.3 is derived from the dynamic spectrum and can be

modelled with a weighted sum of the pulsar, Earth, and IISM velocities (Equation 4.7) for a given

scattering geometry. The transverse velocity of the pulsar Vp has components vp,∥ along the line

of nodes, and vp,⊥ perpendicular to this in the plane of the sky. These velocities are defined as a

function of orbital phase from the line of nodes φ= θ+ω, where θ is the true anomaly and ω is

the longitude of periastron,

(3.8)

(
vp,∥
vp,⊥

)
=

(
−V0

(
esinω+sinφ

)
V0 cos i

(
ecosω+cosφ

))+(
vµ,∥
vµ,⊥

)

where V0 = 2πxc/(sin iPb(1− e2)1/2) is the mean orbital velocity, x is the projected semi-major

axis in seconds, Pb is the binary orbital period, e is the eccentricity, i is the inclination angle,

and vµ,∥ and vµ,⊥ are the proper motion components of the pulsar velocity. These equations are

in agreement with the previous work of Ord et al. (2002a) for PSR J1141−6545 and Rickett

et al. (2014) for PSR J0737−3039A. The true anomaly was first calculated by numerically

computing the eccentric anomaly, E from Kepler’s equation E− esinE = M, with mean anomaly

M = (2π/Pb)(t−T0), where T0 is the epoch of periastron. The true anomaly is then given by

(3.9) θ = 2arctan

[√
1+ e
1− e

tan
E
2

]
.

To include the changing velocity of the Earth in our model, we calculate, for the position of

PSR J1141−6545, the transverse component of the Earth’s velocity VE in right ascension vE,α,

and declination vE,δ. We then rotate these into the coordinates of the pulsar velocity above, which

is defined by the line of nodes and the plane of the sky. The angle of this rotation Ω, is the

longitude of the ascending node, and the rotation is defined as

69



CHAPTER 3. MODELLING RELATIVISTIC AND ANNUAL VARIATIONS IN THE
SCINTILLATION OF PSR J1141−6545 FOR PRECISE ASTROMETRY

(3.10)

(
vE,∥
vE,⊥

)
=

(
sinΩ cosΩ

cosΩ −sinΩ

)(
vE,α

vE,δ

)

where vE,∥ and vE,⊥ are the components of the Earth’s velocity aligned with vp,∥ and vp,⊥ respec-

tively. This was also used by Rickett et al. (2014) (but with the direction of the perpendicular

axis reversed in their definition) to include the Earth’s velocity and proper motion of PSR

J0737−3039A into their scintillation model, which are both known in celestial coordinates. We

then combine the pulsar and Earth velocities, scaling them appropriately by the distance to the

scattering region s

(3.11) V(s)=
(

v∥(s)

v⊥(s)

)
= s

(
vE,∥
vE,⊥

)
+ (1− s)

(
vp,∥
vp,⊥

)

In the case of isotropic scattering where the angular size of the pulsar orbit is compact enough

to remain in the scattering disk, the spatial scale sd is constant with orbital phase (but it may

change on longer time scales if the IISM is inhomogeneous; see Section 3.2.3). Consequently,

the decorrelation bandwidth ∆νd is also constant with orbital phase and the effective velocity is

simply given by

(3.12) Veff(s)= |V(s)| =
√

v∥(s)2 +v⊥(s)2 .

However, for anisotropic scattering, sd depends on the direction of VISS. To account for such

scattering in PSR J0737−3039A, Coles et al. (2005) considered the spatial diffraction pattern as

an ellipse. The pattern is then described by a quadratic form

(3.13) Q(sd)= as2
d,∥+bs2

d,⊥+ csd,∥sd,⊥,

where the coefficients a, b, and c are parametrised by the axial ratio Ar of the ellipse and

its orientation ψ with respect to the coordinates of the pulsar orbit as defined above. Rickett

et al. (2014) used this anisotropy model for PSR J0737−3039A but parametrised the quadratic

coefficients in terms of R = (A2
r −1)/(A2

r +1), which is bound between 0 and 1. If the orientation

angle ψ is defined clockwise from the line of nodes, then from Rickett et al. (2014) the coefficients

are

(3.14)

a = [
1−R cos

(
2ψ

)]
/
√

1−R2

b = [
1+R cos

(
2ψ

)]
/
√

1−R2

c =−2R sin
(
2ψ

)
/
√

1−R2 .

Finally, we introduce a scaling factor κ to the model, which will account for any errors (for

example an error in the pulsar distance D) in the calculation of VISS from the dynamic spectrum

(Equation 3.3). Our final model for the effective velocity is then

70



3.3. THE MODELS

(3.15) Veff(s)= κ
√

Q(V(s)) ,

which we use in Equation 3.6 for the uniform medium model and Equation 3.7 for the thin screen

model.

The parameters in this model that are unknown from pulsar timing of PSR J1141−6545 are

κ, s, i, Ω, vµ,∥, vµ,⊥, R, and ψ. As discussed in Section 3.2.3, the constraints from the known

Earth’s velocity and ω̇ provide the additional degrees of freedom required to uniquely determine

these parameters. For the uniform medium model we have one fewer parameter because we

integrate over s (Equation 3.6). For the case of isotropic scattering, which we consider for both

the uniform medium model and the thin screen model, we have R = 0 and the model reduces to

Equation 3.12 scaled by the factor κ. However, we also found in Section 3.2.3 that it is necessary

to re-estimate the spatial scale from ∆νd at each epoch because of AU-scale inhomogeneities in

the IISM. The calculation of the spatial scale from these ∆νd measurements is imperfect, and

Rickett et al. (2014) found some disagreement between ∆νd and the spatial scale (by analysing

the harmonic coefficients described in the following section). To account for this, and some other

correlated time-variability in properties such as the anisotropy and IISM velocity, we chose to

use a scaling factor at each epoch. To do this, we scaled the data for each epoch to the mean VISS,

then fitted for the mean scaling factor κ between the model and scaled data. Ideally κ would then

represent the major systematic biases in the model, such as from an inaccurate assumed pulsar

distance, while the scaling at each epoch accounts for time variations in sd and perhaps some of

the variation due to changing anisotropy and IISM velocity. Finally, as discussed in Section 3.2.1,

because our τd are an average over an ∼11 minute segment we also apply a smoothing window

of this length to each of our models (including those described below) to avoid small biases in

important parameters such as the inclination angle.

3.3.2 Comparison to the earlier models

3.3.2.1 Harmonic coefficients

Like PSR J1141−6545, which we analyse here, the double pulsar PSR J0737−3039A shows

orbital modulation of the scintillation timescale, which was first measured and modelled by

Ransom et al. (2004). The analysis was extended to include anisotropy in the IISM by Coles

et al. (2005) and further extended to include the Earth’s velocity by Rickett et al. (2014), who

also showed that the modulation of 1/τ2
d with orbital phase can be modelled as the sum of five

harmonics

(3.16)
1

τd(φ)2 = K0 +KS sinφ+KC cosφ+KS2 sin(2φ)+KC2 cos(2φ),
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where the harmonic coefficients contain all of the information on the diffractive interstellar

scintillation available in the data. The relationship between these coefficients and the physical

parameters of the scattering and velocity are

K0 =[0.5V 2
0 (a+bcos2 i)(3.17)

+a(vC,∥−V0esinω)2

+b(vC,⊥+V0ecosωcos i)2

+ c(vC,∥−V0esinω)(vC,⊥+V0ecosωcos i)]/s2
d

KS =−V0[2a(VC,∥−V0esinω)

+ c(vC,⊥+V0ecos i cosω)]/s2
d

KC =V0 cos i[c(vC,∥−V0esinω)

+2b(vC,⊥+V0ecos i cosω)]/s2
d

KS2 =− cV 2
0 cos i/2s2

d

KC2 =V 2
0 (−1+cos2 i)/2s2

d

where vC,∥ and vC,⊥ are the constant (for a given epoch) components of the line-of-sight velocity,

which will be dominated by the pulsar’s proper motion, but also includes the Earth’s velocity and

any IISM velocity. Note that each of these coefficients are inversely proportional to s2
d, and that

KS2 and KC2 are constant with time for a constant anisotropy. Rickett et al. (2014) used these

facts to normalise the coefficients by KC2, which corrects each one for changes to the spatial scale

sd with time and with observing frequency. This allowed them to model observations at multiple

observing frequencies simultaneously.

We have measured these normalised harmonic coefficients (k0 = K0/KC2, kS = KS/KC2, kC =
KC/KC2, and kS2 = KS2/KC2) for each epoch of PSR J1141−6545 observations. The results are

shown in Figure 3.4. It is worth noting that in the case of isotropic scattering (with a = b = 1 and

c = 0), kS only changes with time because of VC,∥ (ignoring ω̇), kC changes with VC,⊥, and kS2 = 0.

While we do find that kS2 is consistent with zero on average (Figure 3.4), there is some variation

that is correlated with variations in the other normalised parameters. Since kS2 is constant with

orbital phase (for a constant anisotropy over the orbit), this indicates epoch-to-epoch variation to

the anisotropy, which will be an unmodelled source of noise in our data and is discussed further

in Section 3.5.2.2. Because kS2 = 0 on average, we can also see that our long-term model must

be consistent with c = 0, and thus should indicate that the scattering is isotropic, with R = 0, or

anisotropic with orientation near ψ= 0◦ or ψ= 90◦.

3.3.2.2 Physical model for individual epochs

For the first scintillation analysis of PSR J1141−6545, Ord et al. (2002a) modelled the dynamic

spectrum for a single 10 hr observation. From this dynamic spectrum they derived the VISS of

Cordes and Rickett (1998) (Equation 3.3), and modelled this using only the pulsar velocities in

72



3.3. THE MODELS

55000 55500 56000 56500 57000

-2

-1.5

-1

-0.5

0

0.5

Figure 3.4: The normalised harmonic coefficients derived from a fit to VISS(φ) at each observing
epoch, as described in Section 3.3.2.1.

Equation 4.9, with a scaling factor κu. They assumed that the scattering was isotropic and the

velocity model was then given by

(3.18) Vmodel = κu

√
v2

p,∥+v2
p,⊥ ,

with κu, i, ω, vC,∥, and vC,⊥ being the five fitted parameters. We use vC,∥ and vC,⊥ here instead of

vµ,∥ and vµ,⊥ because they will include a contribution from the Earth’s velocity, and as a result

will show annual variations with time. The parameter κu can be used to absorb any errors in the

calculation of VISS, such as from an incorrect pulsar distance, which is what we intend for κ in

Equation 3.15. However, since the pulsar velocity in this model is not scaled by a screen distance

s because the changing Earth’s velocity is not included to constrain it, one could also interpret

κu in this case as a scale factor for AISS. In this interpretation, κu is also related to the screen

distance s and can account for different scattering geometries provided they are isotropic.

We repeat this analysis of Ord et al. (2002a) as described above for each of the 23 epochs of

observations and we refer to this as the single-epoch “physical model". We present the results

from this model in Section 3.5.1.1 and show that this approach can also be used to measure the

advance of periastron ω̇.
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3.4 Fitting and comparing the models

The harmonic model for individual epochs was initially fitted with a weighted linear least-squares

analysis to provide an initial solution. However this and all other models were also fitted with

weighted nonlinear regression (using the LSQNONLIN function in MATLAB) after we accounted

for the smoothing required for the models (since the data are smoothed by the ∼ 11 minute

window of the dynamic spectra segments). We use this method for all models because this was

a convenient way of propagating the uncertainties to the physical parameters. For fitting the

harmonic coefficients, the linear fit of the unsmoothed model provides the starting point for the fit,

and the coefficients were unbounded. To fit the remaining models, we used a set of random initial

guesses across the full parameter space, which were uniformly distributed in the physically-bound

regions for each parameter (i.e. 0 < s < 1, 0 ≤Ω < 2π, 0 ≤ i < π, 0 ≤ ψ < π and 0 ≤ R < 1). For

the pulsar’s proper motion velocity components, we used normally distributed initial guesses

with a mean and standard deviation of µv = 0 km s−1 and σv = 150 km s−1 respectively, and for

the scaling factor κ we used random guesses between 0 < κ≤ 2. The nonlinear fit was used to

find a local minimum from each initial guess, and we then selected the best-fit local minimum

for each model based on the χ2 value as a goodness-of-fit measure. In the cases where there

are multiple interesting, or equally significant solutions, we present and discuss them in the

following sections.

The uncertainties for each parameter in the resulting best-fit models are estimates drawn

from the diagonal elements in the parameter covariance matrix C, which was computed from

the Jacobian of the model J with C = (JTJ)−1, where T denotes the transpose. Since there is

excess noise in the data (which is likely due to time variability for scattering properties that are

not accounted for in the model, as we have discussed) the parameter covariance matrix for each

model fit is also scaled by the mean squared error (mse) to approximately account for this. The

vector of parameter standard errors is then given by σ=√
diag(mse×C) .

For basic model comparison we use the Akaike Information Criterion (AIC; Akaike 1998),

which compares the χ2 statistics for two models differing by k parameters. The additional k

parameters improved the model if ∆χ2 = χ2
2 −χ2

1 > 2k. However there is excess noise in our data

from variations in scattering properties from epoch-to-epoch (e.g. anisotropy, IISM velocity, and

perhaps strength of scattering variations that are not fully accounted for by measurements

of ∆νd), and as a result the reduced chi-squared values for the models (χ2
r = χ2/(n−m) for n

observations and m parameters) will be large. To use the AIC for two models with large χ2
r , we

scale the χ2 of both models by the χ2
r of the model with additional parameters χ2

r,2, giving the

new condition ∆χ2
c = (χ2

2 −χ2
1)/χ2

r,2 > 2k. This approximate solution is effectively a scaling of the

measurement errors to account for the excess noise to set χ2
r,2 = 1, which is the requirement for

the AIC to hold. We use this in the following sections to compare between uniform medium and

thin screen models, as well as isotropic and anisotropic models.
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3.5 Results and model comparison

Here we present and compare the various scintillation models for PSR J1141−6545. We first

fitted each of the 23 epochs separately with a sum of five harmonics of orbital phase, which are

described in Rickett et al. (2014) and in Section 3.3.2.1. We then fit a physical model for isotropic

scattering to each epoch (Section 3.3.2.2), which provided measurements of ω and VC over time

to clearly show that the relativistic advance of periastron and the modulation from the Earth’s

velocity can be recovered in the data, and to compare the results with the earlier analysis of Ord

et al. (2002a). These models are presented below in Section 3.5.1.1.

We then held the periastron advance fixed at the precisely-measured value from pulsar timing,

ω̇= 5.3096 ◦yr−1 (Bhat et al. 2008), and calculated the components of the Earth’s velocity (VE)

transverse to the line-of-sight of PSR J1141−6545 for each observation. Then we combined the

23 epochs of data and fit several long-term scintillation models, using the additional degrees of

freedom provided by ω̇ and VE to help constrain additional parameters including the scattering

anisotropy and the longitude of the ascending node Ω. We fit these long-term velocity models for

two distributions of Kolmogorov turbulent plasma along the line-of sight: A uniform distribution,

and a thin screen.

We first present and compare the isotropic models, for both individual epochs and long term

data, in Section 3.5.1. For these models we compare the results of the long-term analysis to

the single epochs, and discuss the multiple solutions that arise from a degeneracy between i

and vµ,⊥. We show that the annual variations in the long-term analysis can be used to break

the degeneracy and provides evidence for the sense of the inclination angle and distribution

of plasma along the line-of-sight (though the effects of anisotropy should be considered before

making strong conclusions). We then give the long-term models of anisotropic scattering for both

scattering geometries in Section 3.5.2.

Finally, we have included in Appendix A the links to access the data (raw observations and

processed dynamic spectra) used for this work, as well as the MATLAB code used for the analysis

for the purpose of reproducibility, including the scripts used to measure scintillation parameters

from the dynamic spectra and fit the scintillation velocity as described in the previous section.

3.5.1 Isotropic scattering

3.5.1.1 Individual epochs

For each epoch of observations shown in Figure 3.3, we fit the VISS of Equation 3.3 as a function of

orbital phase φ, with a sum of five harmonics (Section 3.3.2.1). The resulting normalised harmonic

coefficients are given in Figure 3.4 as a function of time. In the case of PSR J0737−3039A, the

inclination of the orbit is essentially edge-on, which means that kC and kS2 are almost zero

(Rickett et al. 2014). This is not true for PSR J1141−6545, but we do still find that the mean of

kS2 is consistent with zero. This suggests that the scattering may be nearly isotropic since kS2 is
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independent of the changing pulsar and Earth velocities. There is however some time variability

in kS2, which is correlated with some other normalised harmonic coefficients. This may be due to

time variability in the anisotropy, which one would expect even from random realisations of a

truly isotropic medium. This time variability is not evidence for anisotropic scattering on average,

but it is a source of noise for the long-term scintillation models. This may be the primary reason

for a large reduced chi-squared value for the long-term models (Section 3.5.1.2 and Section 3.5.2).

The evidence for isotropic scattering is important because the single-epoch physical model

(Section 3.3.2.2) depends on it. With only five degrees of freedom available from a single epoch

of observations, accurate measurement of the pulsar proper motion and inclination angle can

only be made for isotropic scattering (Coles et al. 2005). We therefore fit this physical model to

each of the epochs under the assumption of isotropic scattering to obtain a time series for each

of the physical parameters described in Section 3.3.2.2. However we find that there are four

possible solutions for each epoch, arising from a known degeneracy between the proper motion

and inclination angle (Lyne 1984). This produces a more edge-on solution with higher proper

motion and a more face-on solution with lower proper motion, and their corresponding pairs with

an opposite “sense" of inclination about i = 90◦. Ord et al. (2002a) considered only the i < 90◦

solutions and determined the more edge-on solution to be favorable using the implied pulsar

mass. For each of our fits we also take the i < 90◦ solutions, and we show in Section 3.5.2.2 that

this physical.

The time series of our fitted ω values is shown in Figure 3.5. The clear gradient is the

advance of periastron, ω̇ = 5.6± 0.3 ◦/yr, and is close to the measurement of pulsar timing

ω̇ = 5.3096±0.0004 ◦/yr (Bhat et al. 2008). As expected, κu and i are constant with time with

the exception of random variations similar to those seen in the harmonic coefficients (Figure

3.4). The weighted mean and standard deviation for these parameters across all epochs are

given in left two columns of Table 3.1, for both degenerate solutions. The inclination angles from

these solutions i = 80.1±1.1◦ and i = 71±3◦ are both consistent with the previous scintillation

measurement of 76±2.5, to within about 1σ of both measurements. However our more face-on

solution is more consistent with the inferred i = 73±1.5◦ from the mass constraints derived from

general relativity (Bhat et al. 2008). The reduced chi-squared value for these solutions (across all

epochs, with total number of parameters m = 115; five per epoch), is ∼ χ2
r = 1.5, suggesting that

either the measurement errors for scintillation parameters are underestimated, there is excess

noise in the data, or the model is incomplete. The χ2
r for individual epochs with observations

spanning several days is generally higher than the few epochs with a single day, which is usually

close to unity. It is therefore likely that the cause is small random changes in the scattering on a

timescale of ∼days, such as variations to the anisotropy. Such variations may be physical, or an

observational effect since we are observing a finite number of scintles and would expect random

variations from the ensemble average.

The more edge-on inclination angle is consistent with the equivalent from Ord et al. (2002a),
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Figure 3.5: The longitude of periastron, ω as a function of time, measured independently at each
of the 23 epochs shown in Figure 3.3. The solid line is a weighted best fit, where the gradient,
ω̇= 5.6±0.3 ◦ yr−1, is the advance of periastron and is consistent with the measurement from
pulsar timing (red dashed line).

but κu is significantly smaller. We note that the VISS(θ) shown in Figure 2 of Ord et al. (2002a) is

larger by approximately a factor of two compared with our data in Figure 3.3. This explains the

variation in κu, and is more likely the result of systematic errors than real changes in the IISM,

given the stability with time seen in these later six years. We also note that Ord and Bailes (2005)

attempted to model the long-term scintillation using data collected in 2002 and 2003, shortly

after the work of Ord et al. (2002a), and their scintillation velocities are more consistent with our

results.

In Figure 3.6 we show the time series for vC,∥ (top panel) and vC,⊥ (bottom panel). There is

a clear annual modulation, demonstrating that the Earth’s velocity can be used to constrain

additional parameters in a long-term model. We calculate the transverse components of the

Earth’s velocity (in celestial coordinates) in the direction of PSR J1141−6545, and then scale it by

the “screen distance" s, and rotate it by Ω to align with vC,∥ and vC,⊥. These parameters, for both

solutions, are also given in the left two columns of Table 3.1 and are approximately equivalent to

the parameters in the long-term models and we compare them in the next section. The scaled

and rotated Earth velocity is then shown on Figure 3.6 with red diamonds.
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Figure 3.6: Components of the constant (with orbital phase) transverse velocity parallel (vC,∥,
top panel) and perpendicular (vC,⊥, bottom panel) to the line of nodes for each observing epoch.
The measured velocity is a scaled combination of the Earth and IISM velocities and the pulsar
proper motion. The Earth’s contribution is apparent from the clear annual modulation. The grey
line is a weighted best fit annual sine wave to each of the time series. The red diamonds are the
calculated Earth’s velocity at each epoch, scaled down by a screen distance s = 0.36±0.07, and
rotated from celestial coordinates by Ω= 25±10 ◦ (i.e. “Solution 1" from Table 3.1).

3.5.1.2 Long-term models

Our first long-term model is that of a Kolmogorov turbulent plasma distributed uniformly along

the line-of-sight (Equation 3.6). Such a situation may be rare in observations of nearby pulsars

since scattering is often dominated by one or a few compact regions, or “thin screens", (e.g.

Stinebring et al. 2001; Coles et al. 2015). For more distant sources such as PSR J1141−6545 we

might expect to find that the scattering is extended uniformly, or appears to be as a result of

combining the effects of many scattering regions across the line of sight. We find that there are

no clear parabolic scintillation arcs detected in secondary spectra for any observation over the

six years we analyse. This might be because of insufficient data quality, or it may be suggestive

of scattering that is nearly isotropic and/or extended along the line-of sight (Stinebring et al.

2001). Accordingly, we fit both isotropic and anisotropic models assuming a uniform medium.

The parameters for each of the isotropic models are shown in Table 3.1, and the extension to

anisotropy is discussed in the next section.

A thin screen model is often appropriate, but requires one additional parameter to describe,
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Table 3.1: Measured parameters for each of the isotropic scintillation models. The first two
columns are parameters from single-epoch fits of a physical model. κu and i are the weighted
mean values from the fit, while Ω, s, vµ,∥, and vµ,⊥ are derived from a simple model of the annual
variations in a time series of the measured vC,∥, and vC,⊥ (Section 3.5.1.1). Two degenerate
solutions of equal quality are given for these single-epoch fits, and the equivalent solutions are
also given in the next four columns of long-term isotropic models. Columns three and four are the
parameters from a uniform medium while columns five and six are for a thin screen; these are
discussed in Section 3.5.1.2. The chi-squared χ2 and reduced chi-squared χ2

r values for each model
are given, and these are used for model comparison. Numbers in brackets are the 1σ standard
errors on the last quoted digit.

Measured parameters
Model type Single epochs† Long-term
Scattering geometry Uniform medium Thin screen
Solution # Solution 1 Solution 2 Solution 1 Solution 2 Solution 1 Solution 2
κu and κ 0.78(7) 0.78(7) 0.794(4) 0.797(4) 0.626(19) 0.59(2)
s 0.36(7) 0.26(5) – – 0.203(10) 0.184(10)
Ω (◦) 25(10) 39(12) 18.2(17) 33.8(18) 11(4) 38(4)
i (◦)† 80.1(14) 71(3) 78.94(16) 72.5(3) 80.19(13) 70.32(17)
vµ,∥ (km s−1) 11.8(15) 14.2(15) 13.0(5) 14.1(5) 12.5(5) 14.6(5)
vµ,⊥ (km s−1) 75(2) 41.4(16) 69.1(9) 45.7(7) 77.0(7) 41.1(6)
χ2 2211 2211 4307 4531 3790 4013
χ2

r 1.499 1.499 2.718 2.858 2.390 2.530

† The previous measurements are i = 76±2.5◦ from scintillation (Ord et al. 2002a) and i = 73±1.5◦ from pulsar timing, assuming
general relativity to be correct (Bhat et al. 2008).

compared with the uniform model. This is the fractional screen distance s, defined to be 0 at the

pulsar and 1 and the observer. For both the uniform medium and thin screen models, we give

the two solutions that correspond to the degenerate solutions from fits to individual epochs. The

parameters are given in the right four columns of Table 3.1, and again we show only the i < 90◦

solutions because for these models with annual variations accounted for, the i > 90◦ solutions

have a higher χ2 (and this remains true when including anisotropy in the models; Section 3.5.2).

Unlike the fits to individual epochs, the long-term models allow model comparison because of

the additional degrees of freedom provided by the annual variations. We find that the more

edge-on solutions are favoured for both the uniform medium solutions, with ∆χ2
c ∼ 82, and the

thin screen solutions, with ∆χ2
c ∼ 93. This is consistent with Ord et al. (2002a), but these more

edge-on solutions are higher than the inclination angle inferred from general relativity (Bhat

et al. 2008), likely because of the assumption of isotropic scattering.

The addition of the extra parameter s for the thin screen model also comfortably passes the

AIC, with ∆χ2
c = 216 (from Table 3.1, comparing the preferred “Solution 1" for both models). The

best-fit model suggests that the scattering is located nearer to the pulsar, with s = 0.203±0.010,

which is constrained simply by the relative amplitude of annual modulation to the orbital

modulation.
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3.5.2 Anisotropic Scattering: Long-term models

Diffractive scintillation is often dominated by a single compact and turbulent scattering region

in the line-of-sight, and we found from the isotropic models in the previous section that the

thin screen model provided a better fit than the uniform medium. However when accounting for

anisotropy in the models, there is a potential for the results to be different because the model

has the freedom to change the amplitude of the annual variations without the screen distance

parameter s. We therefore consider again the uniform medium model as well as the thin screen

for the case of anisotropic scattering.

From the results in the previous section, the Earth’s velocity is observed to be significantly

modulating VISS for this pulsar. Including the known VE in our long-term model provides im-

portant constraints and allows us to break model degeneracies. Ordinarily we would find a

“reflected" solution with opposite sense of the inclination angle (and direction of proper motion)

about i = 90◦. However these models also give different orbital orientations (parametrised in

celestial coordinates by the longitude of the ascending node Ω), meaning that the Earth’s velocity

can be used to distinguish them. This was first successfully applied by Rickett et al. (2014) for

PSR J0737−3039A to determine a unique inclination angle. Although in our case the scattering

appears to be fractionally further from the Earth, whether uniform (which is similar to a screen

at s ∼ 0.5) or a thin screen (at s = 0.257, from Section 3.5.2.2). Because of this, the effect of the

Earth’s motion is diminished with respect to PSR J0737−3039, but we have more data than

Rickett et al. (2014) had available. Using VE with these long-term models, we are indeed able

to resolve the inclination ambiguity and we find that the i < 90◦ solutions are physical (Section

3.5.2.2). For both models there is a unique best-fit solution, which is shown in the left two columns

of Table 3.3, and discussed in the following sections.

3.5.2.1 Uniform medium

Our measurement of anisotropic scattering for a uniform medium is essentially the average

across the entire line-of-sight. We found that the thin screen model was preferred in the case of

isotropic scattering simply because of the relative amplitude of the annual variations in VISS.

However this amplitude could also be reduced by anisotropic scattering in combination with the

other parameters, so we have repeated the uniform medium fit with anisotropy. The result, in

the left column of Table 3.3, is a unique solution with an inclination angle of i = 38±3◦, which

is ruled out by the mass constraints from pulsar timing (Bhat et al. 2008). It also gives a very

high proper motion velocity, with vµ,⊥ = 530±50 km s−1 and an especially small scaling factor

κ= 0.236±0.018, which are both unlikely. We searched for other solutions by constraining the

inclination angle in the range 1rad< i < π
2 rad, but found no solutions with a χ2 comparable to

the anisotropic thin screen model presented in the following section. The conclusion is therefore

that the dominant scattering is localised to some position on the line-of-sight and the thin screen

model is appropriate.
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Table 3.2: Measured parameters for anisotropic long-term models for model comparison. Columns
one and two are the best-fit solutions for an anisotropic uniform medium and thin screen
respectively. The uniform medium model is ruled out based on the low inclination angle and high
space velocity (Section 3.5.2). Bounding the inclination angle to 1rad< i < π

2 rad does not reveal a
valid solution and instead returns the boundary condition i = 1 rad. We therefore only considered
the thin screen model with inclination angle fixed at values corresponding to the sin i constraint
of pulsar timing. The two best solutions for each of i = 73◦ and i = 107◦ are given in the right four
columns for the case of an anisotropic thin screen (and these are discussed in Section 3.5.2.2).
The chi-squared χ2 and reduced chi-squared χ2

r values for each model are given, which we use for
model comparison. Numbers in brackets are the 1σ standard errors on the last quoted digit.

Measured parameters
Inclination angle Free parameter Fixed at i = 73◦ Fixed at i = 107◦
Scattering geometry Uniform medium Thin screen Thin screen Thin screen
Solution # Solution 1 Solution 2 Solution 1 Solution 2
κ 0.236(18) 0.45(5) 0.552(18) 0.62(3) 0.44(3) 0.51(3)
s – 0.295(18) 0.257(11) 0.175(11) 0.180(15) 0.126(12)
Ω (◦) 31(3) 27(3) 23(3) 40(5) 41(5) 4(6)
i (◦)† 38(3) 62(5) 73 73 107 107
vµ,∥ (km s−1) 29(3) 20.2(15) 18.4(12) 14.9(5) 17.7(14) 15.1(8)
vµ,⊥ (km s−1) 530(50) 221(45) 129(6) 37.1(9) −129(4) −36.8(12)
ψ (◦) 88.8(3) 87.7(7) 85.4(9) 10(3) 94.1(12) 169(6)
R 0.905(7) 0.75(7) 0.48(4) 0.112(14) 0.49(3) 0.12(2)
χ2 3640 3570 3592 3929 4065 4214
χ2

r 2.299 2.257 2.271 2.483 2.569 2.664

† The previous measurements are i = 76±2.5◦ from scintillation (Ord et al. 2002a) and i = 73±1.5◦ from pulsar timing, assuming
general relativity to be correct (Bhat et al. 2008).

3.5.2.2 Thin screen

We showed in Section 3.5.1.2 that the isotropic thin screen model gave an inclination angle

that was inconsistent with the current constraint from pulsar timing, which suggests either

an underestimated parameter uncertainty or a bias due to an incomplete model, or both. The

obvious source for this discrepancy would be the assumption of isotropic scattering, since Coles

et al. (2005) showed that anisotropy in the IISM can produce a bias in proper motion velocity

measurements (for PSR J0737−3039), and we find here that vµ,⊥ in particular is closely tied with

i. Any anisotropy cannot be accounted for by measuring a single epoch of VISS alone because

there are not enough degrees of freedom available for the additional two parameters. Instead,

Coles et al. (2005) was able to use the correlated scintillations of both pulsars in the double

pulsar system at their apparent closest approach (when the magnetosphere of pulsar B eclipses

pulsar A) to produce a spatial correlation pattern that revealed the anisotropy. Later, Rickett et al.

(2014) was able to use the annual variations in the harmonic coefficients for PSR J0737−3039 to

measure the anisotropy and determine the sense of the inclination angle by comparing the two

models with inclinations fixed by the sin i measurement from pulsar timing. They also showed

that the anisotropy and IISM velocity (because the proper motion velocity was known from
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timing) could be measured from a model of the individual ACFs alone, but that the measurements

differed from the average value obtained with long-term fitting, suggesting some weakness in the

model and difficulty in confidently determining the anisotropy. The annual variation approach is

equivalent to the long-term physical models we use here, and we are unable to use the ACFs of

PSR J1141−6545 for anything other than estimating the phase gradient for each observation

(see Section 3.2.3).

The best anisotropic thin screen model, with inclination angle fitted, is shown in Figure

3.7 with parameters given in the second column of Table 3.3. Each observation epoch has been

independently scaled to the mean VISS in Figure 3.7 as described in Section 3.3, and the apparent

white noise in the model is the out-of-phase variation due to the Earth’s velocity. For this model we

find i = 62±5◦, which is lower than the 73±1.5◦ given by the general relativistic mass constraints,

and the 80.19±0.13◦ given by the isotropic thin screen model. The large uncertainty for i suggests

that the isotropic model uncertainties were greatly underestimated, and that the anisotropy is

important to consider. The anisotropy for this model is R = 0.75±0.07, which corresponds to an

axial ratio Ar = 2.8±0.5.

If the scattering were truly isotropic, we would expect that each observation samples a

single realisation of this, and thus would randomly appear slightly anisotropic, with an rms of

Rrms ∼ 0.7(sd/sr)−1/6 (Romani et al. 1986; Rickett et al. 2014). In our case Rrms ∼ 0.18, and from

23 epochs we would expect to observe Rrms/
p

23 ∼ 0.04. The measurement is significantly larger

than this, which suggests that there is significant anisotropy in the scattering, which is supported

by the additional parameters passing the AIC, with ∆χ2
c ∼ 97 when compared to the isotropic

thin screen model. We find ψ= 87.7±0.7◦, which is expected because we have kS2 ≈ 0 on average

(Figure 3.4), so any anisotropic solution must have sin(2ψ)= 0 (from Equations 3.14 & 3.17) and

thus ψ≈ 0◦ or ψ≈ 90◦. This close alignment with the pulsar orbit may be chance, or may be the

result of the anisotropy absorbing some systematic errors in the data. Future observations and

studies of PSR J1141−6545 could be designed to maximise the detail in the ACFs to allow for an

independent measurements of the anisotropy and its time variability, which could then be used

in these long-term VISS models to improve the inclination angle measurement.

To improve the measurements of the other parameters in the model, and to resolve the sense

of the inclination angle, we repeat the fit of this anisotropic model with the inclination angle

fixed at values corresponding to the sin i inferred from pulsar timing; i = 73◦ and i = 107◦ (Bhat

et al. 2008). We find two solutions for each inclination angle; one significantly anisotropic solution

(though less anisotropic than the model with i as a free parameter) with ψ near to 90◦, and

one slightly anisotropic model with a smaller vµ,⊥. These solutions are also shown in Table 3.3,

and it is worth noting that the two inclination angles give opposite signs for vµ,⊥, meaning that

resolving this ambiguity also provides a unique proper motion velocity for the first time. The

solutions with higher anisotropy (that are approximately aligned with orbit) are preferred by the

AIC, and the best solution with i = 73◦ is preferred over the equivalent with i = 107◦ with a high
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Figure 3.7: Scintillation velocity, VISS as a function of orbital phase, φ for ∼6 years of PSR
J1141−6545 observations at a frequency of ∼ 1400 MHz. The orbital phase was calculated using
the ω and ω̇ values measured in the pulsar timing model. VISS in this case is defined at the
scattering screen (IISM frame), because the distance to the screen was a parameter in the model.
The best-fit anisotropic-IISM model is shown as the red line, and the apparent white-noise in the
model is due to the out-of-phase Earth’s velocity. The data in each epoch have been scaled to the
mean VISS and the model is scaled by κ to match.

significance ∆χ2
c ∼ 208. The anisotropy for this model is R = 0.48±0.04, which corresponds to an

axial ratio of Ar = 1.70±0.08.

Our model with i as a free parameter passes the AIC but gives only a marginal improvement

over the fixed i = 73◦ model, with ∆χ2
c ∼ 10. We therefore take the other parameters from the

model with the more precise i = 73◦ measurement. This includes Ω= 23±3◦, which we use in

combination with the scaling factor κ= 0.552±0.18 and unique velocities vµ,∥ = 18.4±1.2 km s−1

and vµ,⊥ = 129± 6 km s−1 in Section 3.6.1 to estimate the pulsar proper motion in celestial

coordinates for the first time.

The reduced chi-squared value for the best models is χ2
r ∼ 2.3, and (as mentioned for the

isotropic model as well) this is likely high because of model errors, such as our assumption of a

time-stationary anisotropy and proper motion. The proper motion of the pulsar is not expected to

change, but the velocity of the IISM could be changing from epoch-to-epoch, as can the anisotropy.

As discussed above, even for a truly isotropic screen we would see epoch-to-epoch variation

in the apparent anisotropy. Indeed the normalised harmonic coefficients in Figure 3.4 show
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some time variability that would not be explained by the Earth’s motion or by changes to the

strength of scattering that would be taken into account by scaling of each epoch. This random

time-variability is likely to be our largest source of noise and the major reason for a large χ2
r , but

there may also be some contribution from measurement errors on the scintillation parameters for

example. Obtaining independent constraints on the anisotropy and IISM velocity from modelling

high-resolution ACFs directly (e.g. Rickett et al. 2014) is the best chance for future work to

improve the quality of the fit and the precision of the inclination angle measurement.

3.6 Discussion

Our modelling of the long-term scintillation of PSR J1141−6545 shows that the dominant

scattering region is centred at a fractional distance of s = 0.257±0.011 from the pulsar, and that

the scattering is slightly anisotropic with an axial ratio of Ar = 1.70±0.08. We were able to provide

an independent measurement of the orbital inclination angle i = 62±5◦ from the anisotropic

thin screen model, however this was less precise than the value of i = 73±1.5◦ obtained from

pulsar timing (Bhat et al. 2008). We repeated the fit with this more reliable inclination angle, to

obtain improved measurements of the other scintillation parameters. The measured parameters

from both of these models, the derived anisotropy axial ratio Ar, the mass of pulsar Mp, and the

mass of the companion Mc are given in Table 3.6.1. We also derive a new estimate of the pulsar

distance D and proper motion in celestial coordinates for the first time, as described below in

section 3.6.1. We then discuss the implications of these derived measurements for future tests of

general relativity in Section 3.6.2.

3.6.1 Pulsar distance and proper motion estimates

The distance to PSR J1141−6545 is currently poorly constrained, with the best estimate of

D = 3±2 kpc from Verbiest et al. (2012) originating from a luminosity bias correction to an earlier

lower-limit of 3.7±1.7 kpc that was derived from neutral hydrogen absorption spectrum (Ord et al.

2002b). There is also a lower estimate of 1.7 kpc from the most recent Galactic electron-density

model (Yao et al. 2017). This poor measurement precision is problematic for our data because our

derivation of VISS from the scintillation parameters is proportional to
p

D . We accordingly fitted

for a scaling factor κ (see Section 3.3.1), which would absorb any errors in the calculation of VISS,

for example from an error in the assumed pulsar distance of D = 3 kpc. However, this scaling

factor would also include systematic errors in the measurements of ∆νd and τd, as well as any

error in the numerical relationship between ∆νd, the strength of scattering, and sd derived by

Cordes and Rickett (1998). This numerical relationship is summarised by the AISS coefficient,

AISS = 2.78×104p2(1− s)/s km s−1 for the thin screen model.

We have also chosen to scale each epoch of observations to the mean VISS, which will primarily

take into account any epoch-to-epoch errors in the relationship between the strength of scattering
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and ∆νd. In Section 3.2.3 we showed that it was necessary to re-estimate ∆νd at each epoch due

to inhomogeneities in the IISM on an AU scale. However we also know that the derivation of sd

from ∆νd is imperfect and can depend on the shape of the ACF among other factors. This was

also noted by Rickett et al. (2014), who found discrepancies between their ∆νd measurements

and the spatial scale inferred from measurements of the harmonic coefficient KC2 with time. For

our analysis, we intend for our scaling of each epoch to take into account such discrepancies

with time, which may also come partially from time-evolution in other parameters, such as the

anisotropy. However, we assume that the scaling factor for the mean VISS, κ, represents the

largest systematic error in the calculation of VISS, and we assume that this is from an error in

the pulsar distance D.

For the two best models, we show this scaling factor κ and its error in Table 3.6.1. For the

model with fixed inclination angle, κ= 0.552±0.018, suggesting a significant systematic error

in the VISS. If this is indeed a measurement of the error in pulsar distance, we can use this to

provide a new estimate. To do so, we first assume a 20% uncertainty on AISS, originating from

a discrepancy of approximately this magnitude between the spatial scale sd derived from the

measured ∆νd, and that derived from KC2 in this work and that of Rickett et al. (2014). We

then calculate the distribution for pulsar distance given that D ∝ 1/κ2 and assume a Gaussian

distribution for κ with mean and standard deviation given by the measurement in Table 3.6.1.

We do this for both models (for comparison), and find that the distance is estimated to be larger

than the assumed 3 kpc, but that it is poorly constrained by this method. The fixed-i model gives

a large range of D = 9+5
−3 kpc. This shows that in principle scintillation can be used to estimate

pulsar distances, but in practice it is complicated by the D ∝ 1/κ2 relationship and by the large

uncertainty in AISS. With improved scintillation modelling and understanding of the IISM along

the line-of-sight, we expect that the precision on distance estimates with this method can be

improved in the future.

Using our own distance estimate (for self-consistency) with our measurements of the pulsar’s

transverse velocity in coordinates of the pulsar’s orbit, vµ,∥ and vµ,⊥, and the longitude of the

ascending node Ω we have been able to derive the pulsar proper motion in celestial coordinates

(right ascension α and declination δ). We use the same distance distribution derived from κ above,

and calculated the distribution of proper motions assuming Gaussian distributions for vµ,∥, vµ,⊥,

and Ω given by the measurements and their uncertainties listed in Table 3.6.1. The derived

proper motions in α and δ are shown in the table for both models, and are consistent due to the

large uncertainty. For the fixed-i model, we have µα = 2.5±1.2 mas yr−1 and µδ = 1.5±0.7 mas yr−1.

We believe that this is a fairly conservative estimate (because of the large uncertainty on D), but

may be under-estimated if other existing distance estimates are correct. For example, taking

the current lowest distance estimate of D = 1.7 kpc from Yao et al. (2017) and assuming a 20%

uncertainty, we would have µα = 15±4 mas yr−1 and µδ = 9±3 mas yr−1. However a proper motion

of this magnitude may soon be ruled out with improved pulsar timing sensitivity.
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Table 3.3: Two best-fit long-term models for an anisotropic thin scattering screen, with derived
parameters. For the pulsar distance D, we assume a 20% uncertainty on the AISS coefficient from
(Cordes and Rickett 1998). The parameters are described and discussed in Section 3.6.1.

Measured parameters
Fitted i Fixed i = 73◦

κ 0.45(5) 0.552(18)
s 0.295(18) 0.257(11)
Ω (◦) 27(3) 23(3)
i (◦) 62(5) 73
vµ,∥ (km s−1) 20.2(15) 18.4(12)
vµ,⊥ (km s−1) 221(45) 129(6)
ψ (◦) 87.7(7) 85.4(9)
R 0.75(7) 0.48(4)

Derived parameters
Ar 2.8(5) 1.70(8)
Mp (M¯) 1.18(6) 1.27
Mc (M¯) 1.11(5) 1.02
D (kpc) 13+9

−5 9+5
−3

µα (mas yr−1) 2.8(16) 2.5(12)
µδ (mas yr−1) 1.8(10) 1.5(7)
χ2 3570 3592
χ2

r 2.257 2.271

The estimated proper motion is highly uncertain, primarily because of uncertainty in the

pulsar distance. For the following section we will assume the values derived from our model of

µα = 2.5±1.2 mas yr−1 and µδ = 1.5±0.7 mas yr−1. However, if in the future the pulsar distance is

constrained with higher confidence, the proper motion should be re-derived from our measure-

ments of vµ,∥, vµ,⊥, and Ω. Alternatively, given a measurement of the pulsar proper motion in the

near future from improved timing precision, our independent measurements of the velocity due

to proper motion can be used to derive the distance.

3.6.2 Implications for timing and tests of general relativity

PSR J1141−6545 is a highly relativistic pulsar in an eccentric, asymmetrical mass system,

which makes it an ideal laboratory for testing general relativity. Bhat et al. (2008) analysed

the gravitational radiation losses from this system through pulsar timing and noted that with

increasing precision of the orbital period-derivative, contamination from kinematic effects (e.g. the

Shklovskii effect) and Galactic acceleration would start to dominate the uncertainty in the near

future. The transverse velocity of the pulsar system is accompanied by a radial acceleration, which

produces a time-dependent Doppler-shift to the pulsar spin frequency and orbital period. This is

the Shklovskii effect (Shklovskii 1970), and it results in an apparent orbital period-derivative

Ṗkin
b that is considered a contamination to the orbital period measurement from gravitational
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radiation losses, ṖGR
b . However, the exact level of this effect was unknown because the proper

motion was not measured via pulsar timing. We are now able to determine the contribution from

the Shklovskii effect for the first time because our scintillation work is sensitive to the transverse

motion of the pulsar instead of the radial motion probed by pulsar timing.

This Shklovskii effect can be calculated from Ṗkin
b = DPbµ

2/c = PbV 2
µ /cD (Bell and Bailes

1996). With the distance and transverse velocity provided by our model, we calculate Pkin
b =

3.5×10−15, which is ∼1% of the Ṗb measurement of Bhat et al. (2008) and well below the 6%

measurement precision. However, if we again assume the distance from Yao et al. (2017), then

Ṗkin
b = 1.9×10−14. This is at the level of the current expected timing precision of ∼2% for Ṗb. It

is therefore important to further constrain the system transverse velocity and/or distance from

improved scintillation modelling and/or pulsar timing. In addition to the Shklovskii effect on Ṗb,

the proper motion changes the projected geometry of the binary orbit, resulting in apparent ẋ and

ω̇. However, these kinematic contaminations are far below the measurement precision for this

pulsar and are typically only observed in precisely-timed millisecond pulsars (Kopeikin 1996).

3.7 Conclusion

We have presented new scintillation models for PSR J1141−6545 using six years of data from

the Parkes 64 m radio telescope. We found that like many pulsars, the scattering shows some

anisotropy, and is dominated by a single scattering region centred at s = 0.257± 0.011. By

accounting for anisotropy in the scattering, we measured the system inclination angle of i =
62±5◦, which is less precise than previous measurements, suggesting that previous errors were

underestimated. The value is also lower than the more precise constraint of 73± 1.5◦ from

pulsar timing (inferred from the masses using general relativity), suggesting that a weakness in

the model, such as time-stationary IISM velocity and anisotropy cause some systematic errors.

However, using a model with the inclination angle fixed at 73◦, we have been able to measure

several astrometric parameters for the first time.

Using the significant annual and relativistic variations observed in the scintillation velocity

to constrain our models, we have been able to resolve the “sense" of the inclination angle, and we

find that i < 90◦. This in turn resolved the ambiguity in the direction of the proper motion velocity

in pulsar coordinates. With our new measurement of the orientation of the orbit in celestial

coordinates Ω= 23±3◦, and estimate of the pulsar distance D = 9+5
−3 kpc, we have been able to

estimate the proper motion for the first time. We determine the proper motion in right ascension

µα = 2.5±1.2 mas yr−1 and in declination µδ = 1.5±0.7 mas yr−1, and we use these numbers to

calculate the contribution of the Shklovskii effect to Ṗb. This effect is the most significant source

of contamination for tests of general relativity, but our low proper motion suggests that it exists

only at the ∼1% level. Our improved accuracy and precision for the pulsar’s transverse velocity is

also important for understanding the formation of this system.
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Our distance measurement is model-dependent, with the accuracy determined partially by

the relationship between the measured scintillation bandwidth and the spatial scale, for which we

have used the method of Cordes and Rickett (1998). In the near future, wide-bandwidth observing

systems, such as that of the MeerKAT radio telescope or the ultra-wideband low-frequency

(UWL) receiver for the Parkes 64 m radio telescope, could provide an experimentally-derived

relationship through analysis of the frequency-dependence on the scintillation bandwidth. In

this way scintillation studies may be used to give distance measurements to pulsars with

predictable modulation of the scintillation timescale (e.g. relativistic binaries). We may also soon

see an independent proper motion measurement from pulsar timing with improved observation

span and techniques, which would provide another method for determining the pulsar distance

in combination with our velocity measurements. Future high-quality observations, with the

sensitivity and resolution to estimate the scattering anisotropy from the autocovariance functions

of individual dynamic spectra will be valuable for improving the accuracy and precision of future

inclination angle measurements of scintillating binary pulsars.
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4
PRECISE SCINTILLOMETRY WITH ANNUAL AND ORBITAL

VARIATIONS IN SCINTILLATION ARCS FOR PSR J0437−4715

Intensity scintillations of radio pulsars are known to originate from interference between

waves scattered by electron density irregularities in the ionised interstellar medium (IISM;

see Section 1.3.3 of Chapter 1). Parabolic arcs are observed in a power spectrum of these

scintillations when interference occurs between waves from scattered images of the source that

extend beyond the root-mean-square scattering angle. The curvature of these arcs is related to

the distance of the scattering plasma and its velocity with respect to the line-of-sight, as well

as the orientation of the scattered image. In this Chapter we report the observation of annual

and orbital variations in the curvature of scintillation arcs over a period of ∼ 13 years for the

bright PPTA millisecond pulsar, PSR J0437−4715. These variations are the signature of the

relative transverse motions of the Earth, pulsar, and IISM, which we model to obtain precise

measurements of parameters of the pulsar’s binary orbit and the scattering medium itself. We

observe two clear scintillation arcs in most observations and we show that they originate from

anisotropic scattering in thin screens located at distances De = 90.6±0.7 pc and De = 122±3 pc

from the Earth, along the line-of-sight to the pulsar. From our velocity model of the "primary"

(brightest) arc we measure the pulsar’s longitude of ascending node to be Ω= 207.2±0.7◦, which

is consistent with the best timing model (Chapter 2), but surpasses its precision despite this

being one of the most precisely-timed pulsars. This is the highest-precision kinematic model

achieved with scintillometry for any pulsar, demonstrating that scintillation arcs can potentially

be a superior method to the traditional diffractive scintillation modelling for pulsars with sharp

scintillation arcs, or pulsars in weak scattering. In such cases, this technique can be used in

combination with pulsar timing to determine the full three-dimensional orbital geometries of

binary pulsars.
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4.1 Introduction

PSR J0437−4715 is the nearest and brightest millisecond radio pulsar. For this reason it is a

key pulsar in the Parkes Pulsar Timing Array (PPTA; Manchester et al. 2013) and International

Pulsar Timing Array (IPTA; Hobbs et al. 2010) projects that monitor the arrival times of a set of

millisecond pulsars over many years. The main goal of these projects is the eventual detection

and study of nanohertz-frequency gravitational waves. In order to achieve this detection, it is

necessary to understand in detail the effects of the IISM in the pulsar observations, including

dispersion measure (DM) variations (changes to the total column density of electrons along the

line-of-sight) and scattering (see Section 1.3 of Chapter 1 for an introduction).

These effects are observed with all radio observations of compact sources at centimetre to

metre wavelengths, but pulsars are a particularly sensitive tool for their study. Even small

fractional changes to the DM with time, on the order of one part in 104, are a significant source of

noise in pulsar timing data, but can also be a tool for identifying compact and dense structures in

the IISM such as extreme scattering events (ESEs) (e.g. Coles et al. 2015; Bannister et al. 2016).

These spatial fluctuations in the IISM electron density, which have a power-law distribution of

sizes and densities originating from turbulence, also scatter incident wavefronts and produce an

interference pattern of intensity variations at the observatory. As the interference pattern drifts

across the telescope with velocity Vlos, the intensity varies as a function of time and frequency

of the radio waves. These variations are insightfully captured in the dynamic spectrum (see

left panels of Figure 4.1), and our observations of these are described in Section 4.2. Diffractive

angular scattering is the dominant mechanism for the scintillations in pulsar observations

(Rickett 1969), but the resulting diffractive scintillations with spatial scale sd are modulated

by refractive scintillations that occur on larger spatial and angular scales (Rickett et al. 1984).

The timescale of the diffractive scintillations τd (of order minutes) is inversely proportional to

the line-of-sight velocity Vlos = sd/τd, while the frequency scale ∆νd (of order MHz for strong

scattering) is the frequency change over which the interference pattern becomes decorrelated.

This decorrelation occurs because the strength of scattering, and therefore the interference

pattern, is frequency-dependent. In Chapter 3 we measured these diffractive scintillations to

model the transverse velocity for PSR J1141−6545.

The multi-path propagation of a scattered pulse extends it into a quasi-exponential shape

with a characteristic decay rate determined by the scattering timescale τs. The latter is inversely

proportional to ∆νd because the two quantities are related through the "uncertainty relation"

2π∆νdτs ≈ 1 (Rickett 1977). Since PSR J0437−4715 is near to the Earth at D = 156.79 pc (Chapter

2), it has a relatively small DM and τs, and thus the scintillation bandwidth ∆νd is relatively

large. It is often observed in the regime of weak scattering where ∆νd > f , for observing frequency

f above a “transition frequency" of f t ∼ 1 GHz. Below the transition frequency, f < f t, the pulsar

is observed in strong scattering with ∆νd < f , which is common for most pulsar observations.

Pulsar observers often work with the secondary spectrum, which is the two-dimensional
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Figure 4.1: Dynamic spectra (left panels) and corresponding secondary spectra (right panels)
for observations of PSR J0437−4715 from the Parkes 64 m radio telescope from the “20 cm"
observing band (top panels) and “40 cm" observing band (bottom panels). The 20 cm dynamic
spectrum is a combination of six consecutive observations, which have been concatenated with
linear-interpolation applied to the gaps (as described in Section 4.2.1), while the 40 cm dynamic
spectrum is from a single observation. The colour in the dynamic spectra shows the normalised
flux after subtracting the mean, while the colour in the secondary spectrum shows the log power
for these dynamic spectra, which saturates at 2.5 dex above the mean to optimise visualisation of
the arcs.
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power spectrum of the dynamic spectrum (Figure 4.1, right panels). This may also be referred to

as a “delay-Doppler" distribution because the variables on the plotted axes are the differential

time delay τdel and differential Doppler shift fdop between the interfering waves from a scattered

image of the pulsar and the main image (Cordes et al. 2006). The nature of τdel is understood from

the Fourier relationship between scattered pulse broadening and the decorrelation over frequency

of the interference pattern, which leads to the uncertainty relation given above. The Fourier

analysis of scintillations in time gives fdop, which is proportional to the spatial wavenumber vector

kθ (for arrival angle θ) and the effective velocity (see Section 4.3.1 for more detail). Parabolic arcs

in a pulsar secondary spectrum were first observed by Stinebring et al. (2001), and the origin of

their shape was explained by Walker et al. (2004) to be a result of the common dependence on

scattering angle for the Fourier components, fdop ∝ (θ)0 and τdel ∝ (θ)2
0, where (θ)0 is the angle

between the interfering scattered waves.

The curvature of the arcs is related to several variables: the distance to the scattering screen,

the “effective velocity" of the line-of-sight relative to the medium (which is a linear combination

of the transverse motions of the Earth, pulsar, and IISM), and the angle between the effective

velocity vector and the scattered image in the case of anisotropic scattering. Arcs are clearest

when the scattering region is compact on the line-of-sight (e.g. a “thin screen"), and are enhanced

when the scattered image is anisotropic and extended in the direction of the effective velocity

vector. The secondary spectrum and arc curvature are explained further in Section 4.3, and a

detailed explanation can be found in Walker et al. (2004) and Cordes et al. (2006).

With multiple measurements of parabolic arcs at different epochs, we would expect to observe

cyclical variations corresponding to the orbital motions of the Earth and the pulsar. However

earlier analyses of scintillation arcs have primarily involved solitary pulsars without binary

motions (e.g. Stinebring et al. 2001), and individual epochs of observations (e.g. Brisken et al.

2010; Bhat et al. 2016). Only one previous example of annual and orbital velocity modulations to

arc curvature has been reported, which was for an analysis of the double pulsar, PSR J0737−3039

(Stinebring et al. 2005). This arc curvature model was inferior to the earlier diffractive scintilla-

tion model of Ransom et al. (2004) for PSR J0737−3039 because the arcs were not as sharp as

those we present here.

Scintillation arcs have previously been observed for PSR J0437−4715, in observations from

the Parkes radio telescope and Murchison Wide-field Array (MWA; Bhat et al. 2016). However

with only two observations of the brightest arc, Bhat et al. (2016) were only able to estimate

the distance to one of the screens. We show that attempting to measure the scattering screen

distance from individual observations in this way, with the necessarily restrictive assumptions of a

stationary IISM and an isotropic scattered image, can result in significantly biased measurements.

In this chapter, we show that the modelling of the long-term behavior of the scintillation arcs can

provide a robust screen distance measurement, which is constrained by the relative amplitudes of

the arc curvature modulation due to the pulsar and Earth velocities (as with the screen distance
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for PSR J1141−6545 in Chapter 3). It can also provide precise measurements of the IISM velocity

and anisotropy, and useful parameters of the pulsar ephemeris such as the orbital inclination

angle i, and the longitude of the ascending node Ω. This is important for studies of relativistic

binary pulsars because these parameters can be difficult to measure through pulsar timing alone,

but they are useful in tests of general relativity (as discussed in Chapter 3). We found in Chapter

3 that modelling of the long-term changes to the diffractive scintillations can also be used to

precisely measure these parameters (see also Rickett et al. 2014), but the work in this Chapter is

an independent approach that can work well even in the regime of weak scattering.

PSR J0437−4715 was the first pulsar to have its full three-dimensional orbital motion

determined (van Straten et al. 2001), and it also has the most precisely measured distance of

any pulsar, D = 156.79±0.25 pc (Chapter 2). These facts make this system an ideal candidate

for modelling of the transverse motion apparent in scintillations, and allow us to determine

the distance to the scattering screens with unprecedented precision. In Section 4.4 we describe

the model for arc curvature variations before presenting the results in Section 4.5. We identify

two clear arcs corresponding to two discrete scattering screens, and we are able to model the

long-term arc curvature modulations for both. The models show that the scattering is likely

anisotropic, which is a common finding through scintillation phenomena (e.g. Brisken et al.

2010). The results are discussed in Section 4.6, and in Section 4.6.2 we give some suggestions for

candidate structures in the IISM responsible for the scattering. Recently, Walker et al. (2017)

found that the anisotropic plasma structures that cause intra-day variability in the flux of two

radio quasars is associated with hot stars with small impact parameters for the line-of-sight to

the quasars. In Section 4.6.2.1 we test this conclusion by searching for associations with stars

that have small impact parameters, and measured distances and kinematics that are consistent

with our precise scattering screen models.

4.2 Observations and data

Our observations of PSR J0437−4715 are from the Parkes 64 m radio telescope and span

12.7 years from MJD 52620 to 57670, with the majority being taken as part of the PPTA pro-

gram (Manchester et al. 2013) that commenced regular observations in 2005 (MJD 53430). The

PPTA observes a set of millisecond pulsars approximately every two weeks in three observ-

ing bands, 40/50 cm (at centre frequencies fc ∼ 685 MHz and fc ∼ 732 MHz respectively), 20 cm

( fc ∼ 1400 MHz), and 10 cm ( fc ∼ 3100 MHz). Here we use observations from the 40/50 cm and

20 cm bands because the 10 cm observations do not show clear scintillation arcs in the secondary

spectra. This is likely because these observations are too far above the transition frequency and

because the curvature of any arcs would be quite large and near to the noise and scattered power

close to the fdop = 0 axis of the secondary spectrum. The lower-frequency observations prior to

mid-2009 were taken with the “10/50 cm" receiver in the 50 cm band and with an observing band-
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width B ∼ 64 MHz. After mid-2009, the observing band was shifted to the 40 cm band with the

same receiver and bandwidth to avoid some significant terrestrial radio-frequency interference

(RFI) in the 50 cm band. The 20 cm observations were captured either with the central beam

of the “multibeam" receiver with a typical centre frequency of fc ∼ 1369 MHz and bandwidth

B ∼ 300 MHz, or the “H-OH" receiver with typical values fc ∼ 1433 MHz and B ∼ 600 MHz.

PSR J0437−4715 is an important target for the PPTA and IPTA because it is not included

in either of the Northern PTA counterparts, and its high flux density means observations

yield extremely precise times of arrival (TOAs). It is out of the Galactic plane unlike most

other pulsars, meaning that there are fewer other targets to observe when it is in the sky.

Consequently, this pulsar is often selected for repeated observations during the PPTA observing

program (archival data is found under the "P456" observing code through the CSIRO Data Access

Portal: https://data.csiro.au/dap/). These additional observations give valuable TOAs that

increases the sensitivity of the PPTA to gravitational waves, but simultaneously provides us

with the opportunity to extend the dynamic spectrum in time by concatenating consecutive

observations, thus improving our signal-to-noise ratio of any scintillation arcs in the secondary

spectra. In addition, PSR J0437−4715 is highly linearly-polarized and for this reason it is the

target of a separate observing campaign (observing code "P737"), which tracks the pulsar (a few

times per year) for up to ∼ 10 hours from rise to set for the purpose of polarization calibration

and instrument commissioning.

These consecutive observations give particularly valuable dynamic spectra when concatenated,

such as the 20 cm observation shown in the top-left panel of Figure 4.1, with a well-defined

scintillation arc apparent in the secondary spectrum. However, while these observations give

very clear scintillation arcs, and often show multiple arcs, we actually see the primary arc in all

available observations in the 20 cm and 50 cm bands, provided they are not too contaminated

with RFI. Below we describe the formation of the dynamic and secondary spectra from these

observations.

4.2.1 Computing dynamic and secondary spectra

The dynamic spectra, S(t, f ), are computed using a procedure in the data processing pipeline that

has been developed for the PPTA data release 2 (dr2). This uses the PSRCHIVE (Hotan et al. 2004)

package and will be described in detail in Kerr et al. (in prep.). Dynamic spectra for the relativistic

binary pulsar, PSR J1141−6545 that were computed with this same pipeline, were analysed

in Chapter 3 for the purpose of modelling the long-term changes to the scintillation velocity

derived from diffractive scintillations. In brief, observations of PSR J0437−4715 are preceded

and followed by observations of a pulsed noise diode which excites the X and Y polarizations for

measuring and correcting the complex gain. This noise diode is calibrated to absolute flux density

using observations of the bright radio galaxy Hydra A, which are taken usually in the same

observing session (i.e. within a day or two of the pulsar observation). As mentioned above, the
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P737 observing campaign monitors PSR J0437−4715 for the purpose of polarisation calibration,

and these observations are used in combination with the noise diode for polarization calibration

of all other observations (e.g. from the P456 project). However for computing the dynamic spectra

we are only concerned with the total intensity (Stokes I).

For each subintegration and frequency channel in an observation, an analytical model of the

Stokes I pulse profile is fitted with linear regression to the observed pulse profile. The result

of the fit is the pulsar flux density and its uncertainty because of the prior calibration. In this

way, we obtain the dynamic spectrum of flux density as a function of frequency and time (left

panels of Figure 4.1), with typical resolutions of order Bc ∼ 0.5 MHz (channel bandwidth) and

tsub ∼ 30 s (subintegration time) respectively. In the case of multiple consecutive observations of

the pulsar, we concatenate the dynamic spectra to increase the effective observing time, which is

particularly valuable for the 20 cm observations because of the larger spatial and temporal scales

of the scintles. The gaps in time between individual observations (during which the noise diode is

observed) is filled with linear interpolation. We find that this does not affect the curvature of the

scintillation arcs, but it does reduce the scattered power near the axes of the secondary spectrum,

thus improving our arc signal-to-noise ratio (we experimented with filling the gaps instead with

the mean flux density, rather than linearly interpolating, and saw similar results). Each dynamic

spectrum is also analysed for RFI by simply searching for channels and subintegrations that

have outlying flux densities. Anything in the dynamic spectrum that is flagged in this way is

re-filled with a linear interpolation from the neighboring clean channels/subintegrations. The

edited dynamic spectra are then checked manually and any significantly contaminated spectra

(e.g. with residual RFI or large regions that have been flagged as bad and require re-filling) are

excluded from our analysis.

Once the consecutive dynamic spectra are concatenated and corrected for RFI, we correct

the new dynamic spectrum by the measured bandpass of flux density, subtract the mean flux,

and finally normalise before computing the secondary spectrum, P( fdop,τdel), which is its two-

dimensional Fourier transform. This is computed by first pre-whitening the dynamic spectrum (by

means of a first-difference filter, e.g. Jenkins and Watts 1969; Coles et al. 2011) before it is Fourier

transformed with zero padding. We take the squared magnitude of the transform, and shift and

crop it to show only values for tdel > 0. The spectrum is then "post-darkened" (the reverse process

of pre-whitening), normalised, and finally we take the logarithm of the result because the power

in the noise is log-normally distributed. So in summary we have P( fdop,τdel) = log(|S̃(t, f )|2),

where the tilde denotes the two-dimensional Fourier transform, fdop and τdel are the Fourier

conjugates of t and f respectively, and S(t, f ) is the mean-subtracted and normalised dynamic

spectrum. Two examples of the secondary spectra computed in this manner are shown in the right

panels of Figure 4.1. The total observing time and receiver bandwidth of the dynamic spectrum

define the range in the transformed secondary spectrum, but we crop the secondary spectrum

for improved arc visualisation and curvature uncertainty estimation (see Section 4.3.1). In the
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following section we describe some properties of the secondary spectrum and the method for

measuring the curvature of the arcs.

4.3 Interpreting and fitting the secondary spectra

We have so far introduced the secondary spectra as being the power spectrum of intensity

scintillations with axes corresponding to the differential geometric time delay τdel and differential

Doppler shift fdop between interfering waves. Here we provide some basic theory to understand

this spectrum and the parabolic arcs in more detail (see also Walker et al. 2004; Cordes et al.

2006). We then also describe the method we use for fitting the parabolic arcs and estimating the

uncertainty in the curvature parameter (which follows Bhat et al. 2016).

A power-law distribution of density irregularities in the IISM scatters incident radiation, by

means of diffraction, into an angular spectrum relative to the direct line-of-sight to the source.

Consider the interference of waves arriving at the observatory from just two small angles in

this spectrum, θ1 and θ2. The result is a single frequency-dependent interference fringe pattern,

which is sampled by the observatory in time and frequency to be observed as a sinusoid in the

dynamic spectrum (Cordes et al. 2006). For a compact scattering region, or a so-called “thin

screen," at some fractional position s along the line of sight from the source (i.e. from s = 0 at the

source to s = 1 at observatory), the axes of the secondary spectrum are related to these scattering

angles with

(4.1) τdel =
D(1− s)

2cs
(θ2

2 −θ2
1)

(4.2) fdop =
fc

cs
Veff · (θ2 −θ1),

where D is the distance to the source from the observatory, Veff is the velocity of the line-of-sight

through the screen (a linear combination of Earth, IISM, and pulsar velocities which is described

in Section 4.4), fc is the centre frequency of the observation, and c is the speed of light. As

mentioned previously, τdel is the differential geometric time delay between the paths taken to

arrive from the two angles, and fdop is their differential Doppler shift, but is equally the “fringe

rate" in the dynamic spectrum. Each Fourier component in the secondary spectrum corresponds

to one of the sinusoidal fringe patterns and thus to the summation of all pairs of components of

the angular spectrum with the appropriate τdel and fdop.

In the case of weak scattering (e.g. PSR J0437−4715 observations in the 20 cm band), the

origin of a parabolic arc in the secondary spectrum can be understood by considering the interfer-

ence between the unscattered main image of the pulsar (centred on the line-of-sight), and the

scattered image. In this case we have Equations 4.1 and 4.2 with θ1 = 0 and θ2 = θ0, where θ0 is

now the position angle to a component of the scattered image. The arc comes from the parabolic
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relationship between delay and Doppler shift through their dependence on θ0, and we define the

curvature parameter η with τdel = η f 2
dop, and this is then given by

(4.3) η= cDs(1− s)
2 f 2

c V2
eff cos2ψ

where ψ is the angle between Veff and the position vector along the anisotropy in the scattered

image and comes from the dot product in Equation 4.2. For an isotropically-distributed image

such as a ring or halo, the equation is the same but cosψ has any value in the range [-1 1] for

individual points in the image, giving a maximum extent of cosψ= 1 in the secondary spectrum

(Cordes et al. 2006). In the case of strong scattering (such as in 40/50 cm observations of PSR

J0437−4715), the argument is similar but instead a scattered image that extends beyond the

root-mean-square scattering angle interferes with the main image.

Additional phenomena that can be observed in the secondary spectra include: arc asymmetries

about fdop = 0 formed by asymmetrical scattering about the line-of-sight in the direction of Veff

(e.g. Cordes et al. 2006), and inverted “arclets" on or near to the main arc, which are formed

by discrete multiple images that interfere with each other and the main image (e.g. Brisken

et al. 2010). We do not observe any clearly asymmetrical arcs (from an asymmetrical image

distribution) at any epoch or orientation of the Veff vector. This may indicate that the scattered

image is not only symmetrical, but also continuous, such as a linear structure (for anisotropic

scattering) or a circularly-symmetric halo (for isotropic scattering). Since Veff is dominated by the

pulsar’s high proper motion, there are only small changes to the orientation of the vector with

time, meaning that mostly symmetrical arcs could also be observed if any discontinuities in the

scattered image were aligned perpendicularly to the mean direction of Veff. However in this case

we would expect to see arcs that are discontinuous in τdel, which we do not. We also do not observe

any inverted arclets, which could also be expected from discontinuous/inhomogeneous scattering

that appears as multiple images. Although this would also only be expected to appear in strong

scattering such as in the 40/50 cm band, but these observations in general are less sensitive

than the 20 cm observations. This is because when the scattered radiation is weaker than the

main image, the scintillations show interference of waves on the direct path with itself and the

scattered image, rather than multiple scattered images interfering with each other (Walker et al.

2004).

The power distribution in the secondary spectra itself can also give us some insight into the

appropriate scattering model to apply. The relatively thin, symmetrical, and continuous arcs

that we observe (Figure 4.1, right panels) are indicative of a scattered image that is continuous

and symmetrical about a line perpendicular to Veff for an isotropic image, or about the direct

line-of-sight for a one-dimensional anisotropic image. The decay of power in the arcs away from

the τdel = 0 axis is simply due to the decline in intensity with increasing scattering angle. In

addition, the thin arcs suggest a compact scattering region (thin screen) and the appearance of
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multiple arcs in the highest signal-to-noise secondary spectra suggest multiple discrete scattering

screens distributed along the line-of-sight, each with its own Veff. In Section 4.4 we describe

the models for Veff and arc curvature, which includes models for both isotropic and anisotropic

scattered images.

4.3.1 Fitting arc curvature

To measure the arc curvature and its uncertainty from the secondary spectrum of each observa-

tion, we follow the method of Bhat et al. (2016) in their analysis of Murchison Widefield Array

(MWA) and Parkes observations of PSR J0437−4715. For a set of trial curvatures ηi, we find

the power along the parabola τdel = ηi f 2
dop by summing the linearly-interpolated power between

pixels neighboring fdop,i = ±√
τdel/ηi for each τdel in the secondary spectrum P( fdop,τdel). We

then divide by twice the number of τdel rows in the secondary spectrum N, to give the mean

power per pixel as a function of curvature η

(4.4) Parc(η)= 1
2N

N∑
i=1

P( fdop,i,τdel,i).

The arcs in the secondary spectrum then correspond to different maxima in this function.

Using this method, the secondary spectrum must be cropped (or truncated) at a τdel value

that is ideally just beyond the arc that is being measured, so that the mean power in the

arc is not averaged down by including noise. This is difficult because the power in the arcs

decays with increasing τdel. We chose to crop each secondary spectrum at a fixed maximum

time delay, τdel,max beyond which most observations show no evidence of the primary arc. This

delay depends on the observing frequency for the observation, and we have therefore defined

τdel,max = 0.25µs× (1400MHz/ f )2 for the primary arc and τdel,max = 0.1µs× (1400MHz/ f )2 for

fitting the secondary. In general, this is a conservative figure for the primary arc and our

estimated uncertainties for the arc curvature are expected to be slightly overestimated because

the measured power in the primary arc is averaged down as the power decays towards τdel,max,

such as in Figure 4.2. We measured Parc(η) from these cropped secondary spectra with a set of

trial curvatures spaced equally in p
η with a resolution of 0.001 s3/2.

The curvature for the primary arc is found by using a three-point smoothing window on our

measured Parc(η) (to reduce the noise), before finding the maximum. To estimate the uncertainty

of this measurement (again following Bhat et al. 2016), we first determine the average and

standard deviation of the noise far from the power in the arcs and the τdel and fdop axes, < Pnoise >
and σnoise respectively. We use the region of the original (uncropped) secondary spectrum in the

upper half of the τdel range and upper half of | fdop| to measure < Pnoise > and σnoise for each

observation. The uncertainty in the arc curvature measurement is then given by half of the

domain around the measurement for which Parc(η) is within one σnoise of the maximum. This

curvature measurement for the primary and secondary arcs, the measured < Pnoise > and σnoise,
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Figure 4.2: Cropped secondary spectrum (left) and corresponding Parc(η) curve (in log10(Parc)
and p

η ) for a 20 cm observation on MJD 56946. The colour scale for the secondary spectrum is
as described for Figure 4.1 and the white regions were discarded from the analysis since they
contain scattered power. The red solid vertical line and dashed lines on the Parc(η) curve show the
primary arc curvature measurement and error region, while the black vertical lines are for the
secondary arc. The error was calculated from the mean and standard deviation power of the noise
in the secondary spectrum, which is shown with the horizontal solid and dotted lines respectively.
The measured curvature for the primary and secondary arcs are shown in secondary spectrum
with red and black dashed lines respectively.

and the corresponding uncertainty range for the curvature, are shown for one observation in

Figure 4.2.

If Parc(η) clearly shows the second maximum corresponding to the secondary arc (as in Figure

4.2), we find the curvature corresponding to the local maximum power after using a five-point

smoothing window on Parc(η). The secondary arc is defined as the highest curvature peak below

the measured primary arc with a prominence of at least 1σnoise (in the smoothed Parc(η) curve).

The uncertainty for the curvature in this secondary arc is then estimated in the same manner as

for the primary arc. However, the uncertainty may be underestimated because minor arcs are

often difficult to separate from the scattered power near the axes and the power in the primary

arc.

4.4 Modelling arc curvature variations

The curvature of arcs in the secondary spectrum depends on the distance to the scattering region

s (assumed to be a thin screen), the velocity of the line-of-sight with respect to the medium

at this distance Veff, and the orientation of the scattered image (if anisotropic) with respect

to this velocity vector ψ, as given in Equation 4.3. We therefore expect the curvature to be

time-dependent as Veff changes because of the changing transverse components of the Earth’s

velocity (VE) and the pulsar’s binary velocity (Vp), where both are relative to the Solar system
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barycentre. The effective velocity is a linear combination of these velocities and the velocity of

the medium itself (VIISM),

(4.5) Veff = (1− s)(Vp +Vµ)+ sVE −VIISM,

where s is defined as a fractional distance from s = 0 at the pulsar to s = 1 at the Earth, and Vµ is

the constant transverse velocity of the pulsar system (corresponding to its proper motion).

The curvature of the arcs is also radio frequency-dependent, η∝ f −2
c . To simultaneously

model arcs from observations at different frequencies, we define the “equivalent curvature"

(4.6) η∗ = η
(

fc

1400MHz

)2

to be the arc curvature scaled to a reference frequency of 1400 MHz.

We model the variations in η∗(t) with effective velocity components in right ascension (α) and

declination (δ)

(4.7)

veff,α =(1− s)(vp,α+vµ,α)+ svE,α−vIISM,α

veff,δ =(1− s)(vp,δ+vµ,δ)+ svE,δ−vIISM,δ

Veff =
√

v2
eff,α+v2

eff,δ .

The distance and proper motion for PSR J0437−4715 is known to high precision from pulsar

timing, giving vp,α = 90.26 km s−1 and vµ,δ =−53.13 km s−1 (Chapter 2). The precise timing model

also allows us to derive the mean orbital velocity

(4.8) V0 = 2πxc

sin iPb

√(
1− e2

)
from the projected semi-major axis x (light-seconds), orbital period Pb, eccentricity e, and the

inclination angle i. The transverse velocity is then defined in terms of the true orbital anomaly θ

(4.9)
vp,∥ =−V0 (esinω+sin(θ+ω))

vp,⊥ =V0 cos i (ecosω+cos(θ+ω)) ,

These are rotated into right ascension α and declination δ with the longitude of the ascending

node Ω, defined East of North. This is the most uncertain parameter in the velocity model

with Ω = 207±1.2◦ because it is included into the timing model through a subtle kinematic

effect caused by the pulsar’s proper motion changing the projection of the orbit. Remarkably, by

modelling the annual and orbital modulation of diffractive scintillations (e.g. Rickett et al. 2014,

and Chapter 3) or arc curvature, we are able to measure Ω and other parameters (such as i)

often with higher precision than through timing model because they depend primarily on the

transverse velocity. From Equations 4.7 and 4.9 we then see that the only parameters required for

modelling the effective velocity are: s, vIISM,α, and vIISM,δ, although we also fit for Ω to improve

the current measurement.
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The variations in arc curvature follow from this velocity model through Equation 4.3. For

an isotropic scattered image the parameters described above complete the model, while for a

highly anisotropic model we must also consider the angle between Veff and the anisotropy ψ. For

this work we consider both isotropic and anisotropic models and compare their goodness-of-fit

to the arc curvature variations, and discuss the power distribution in the secondary spectra.

Our anisotropic model is a one-dimensional approximation for highly-anisotropic scattering,

originating for example from thin plasma filaments. In such a scenario, the data are only

sensitive to the velocity parallel to the direction of the anisotropy ψ. If this anisotropy is caused

by plasma filaments, then the arcs are only sensitive to the component of the effective velocity

that is perpendicular to the filaments. Therefore instead of the two IISM velocity components

in celestial coordinates, we instead fit for a single velocity component parallel to the anisotropy,

vIISM,ψ. We then use vIISM,α = vIISM,ψ sinψ and vIISM,δ = vIISM,ψ cosψ.

We fit both isotropic and anisotropic models to the arc curvature variations measured in the

primary and secondary arcs. We use weighted nonlinear least squares regression and present the

results in the following section. The models are fitted using the same procedure as described in

Section 3.4 of Chapter 3 and we similarly follow the description therein of basic model comparison

with the Akaike information criterion (AIC; Akaike 1998). However, for the anisotropic model of

the primary arc, which we find is kinematically favoured, we also use a Markov Chain Monte

Carlo (MCMC) sampler to analyse the full posterior probability distribution for the model

parameters. This was done in order to confirm that the probability density functions (PDF)

were near Gaussian, which is the assumption we make to simplify the calculation of chance

associations with known stars (Section 4.6.2.1). The algorithm we use is described in Veitch and

Vecchio (2010) and was implemented in MATLAB by Pitkin and Romano (2013). We use uniform

priors on all parameters and find that the MCMC analysis gives results in agreement with the

least squares fit, which is unsurprising because the residuals are normally distributed and the

parameters are well-described by a multi-variate Gaussian function (Section 4.5.1).

4.5 Results

We have measured the curvature of scintillation arcs in a set of observations across two observing

bands for PSR J0437−4715. We have found that all observations in the 20 cm and 40/50 cm bands

show evidence for at least one arc, which is the strongest in all of the observations and we refer to

as the "primary arc". The arc signal-to-noise ratio depends strongly on the pulsar flux, observation

length tobs, and observing bandwidth B. In observations with the highest signal-to-noise ratio,

we see a fainter, "secondary arc" at a lower equivalent curvature η∗.

The time series of η∗ for each measurement of the primary scintillation arc is shown in Figure

4.3. There is a clear annual modulation to the curvatures, as well as a ∼ 5.7 day modulation

corresponding to the pulsar’s orbital period. We find similar annual and binary orbital modulation
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Table 4.1: Parameters for isotropic and anisotropic scattering models for the curvature variations
in the primary and secondary arcs for PSR J0437−4715. Parameters were measured with a
weighted nonlinear least-squares analysis.

Primary arc Secondary arc
Isotropic Anisotropic Isotropic Anisotropic

s 0.420(5) 0.422(4) 0.21(3) 0.218(14)
Ω (◦) 206.7(8) 207.2(7) (207◦)† (207◦)†

vIISM,α (km s−1) −10.9(8) – −4(9) –
vIISM,δ (km s−1) 31.7(7) – 47(8) –
vIISM,ψ (km s−1) – −31.2(5) – −41(5)
ψ (◦) – 135.4(5) – 141(2)
χ2 734 705 2462 2440
χ2

r 0.547 0.526 3.354 3.324
† Fixed value

for the secondary arc (Figure 4.5), although the binary orbital modulation dominates for these

because the scattering region is located closer to the pulsar on the line-of-sight. We have modelled

the variations in both the primary and secondary arcs with both the isotropic and anisotropic

scattering models described in Section 4.4. Table 4.1 gives the fitted parameters for each of these

models, which are discussed further in the following sections.

We see weak evidence for additional faint arcs; one at a lower curvature and one at a higher

curvature in a few observations. However we are unable to reliably measure the curvature

for these arcs in multiple observations to find curvature modulations. This is because the arc

with smaller curvature is generally faint, near to the τdel = 0 axis, and near the power on the

leading-edge of secondary and/or primary arc. The potential arc with higher curvature is hidden

mostly within the power inside the primary arc and the scattered power along the fdop = 0 axis.

Future observations can be optimised for fitting any arcs with higher curvature by using dynamic

spectra with long and continuous integration times.

4.5.1 Primary arc

The primary arc is seen in all observations in the 20 cm and 40/50 cm bands that are not

contaminated with RFI, giving us 1347 total measurements of η. This is the highest number for

any single object owing to the frequent and long-term observations of the PPTA.

The best-fit model for the variations in η∗ for the primary arcs is shown in the bottom panels

of Figure 4.3. We have subtracted the annual modulation given by the model fit, in order to show

the modulation as a function of orbital phase (bottom left of Figure 4.3), and similarly subtracted

the orbital modulation to show the annual variation as a function of day of year (bottom right of

Figure 4.3). The parameters for both the isotropic and anisotropic models are shown in Table

4.1. The anisotropic model is favoured by the chi-squared goodness-of-fit test, with ∆χ2
c ∼ 55 (see

Section 3.4 of Chapter 3).
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Figure 4.3: Top-panel: Equivalent curvature η∗ (Equation 4.6) for each measurement of the
primary scintillation arc across ∼13 years of observations for PSR J0437−4715. Bottom panels:
Equivalent curvatures with best-fit anisotropic model (solid line) as a function of orbital true
anomaly θ (left; with fitted annual variation subtracted) and day-of-year (right; with fitted pulsar
orbital variation subtracted). The parameter uncertainties have been scaled down by a factor of
1.4 because of the small χ2

r value (see Section 4.5.1).
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Figure 4.4: Posterior probability distributions for the parameters of the anisotropic model for the
primary arc using the MCMC sampler of Veitch and Vecchio (2010), implemented in MATLAB
by Pitkin and Romano (2013). 103
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We also prefer the anisotropic model based on the power distribution across the arc. From

Figure 4.2 it is clear that the power drops off just inside the arc and is somewhat symmetric

about the peak. If the scattering were truly isotropic, we would expect to see power inside the arc

"filled in" (e.g. Figure 10 of Cordes et al. 2006) such that the power across the arc in Figure 4.2

would be maximally asymmetric.

The χ2
r values for these models are low, suggesting that the uncertainties for the arc mea-

surement were over-estimated by a factor of ∼ 1/
√
χ2

r = 1.4 on average. We have scaled the

measurement uncertainties shown in Figure 4.3 by this factor.

If we choose to also fit for the orbital inclination angle i with the anisotropic model, we

measure i = 136.1±0.5◦, which differs from the timing solution of i = 137.56±0.04◦ (Chapter 2)

by ∼ 3σ, suggesting only a slight weakness in the model. The precision (and accuracy) of this

measurement is impressive for scintillation studies, which can often be complicated by changes

to properties of the scattering with time. The IISM velocity and anisotropy in the direction of

PSR J0437−4715 remains incredibly stable over the ∼13 years of our observations, meaning that

the scattering properties of the screen are stable over a spatial scale of ∼ 350 AU.

Finally, we have also repeated this fit with an MCMC analysis to sample the posterior

probability distribution for the fitted parameters s, Ω, vIISM,ψ, and ψ. The result is shown in

Figure 4.4 with a normal distribution fit to the PDF of each parameter. The mean and standard

deviations are identical to the measurements from the least squares fit, with uncertainties

taken from the parameter covariance matrix (Section 3.4, Chapter 3). We therefore use a normal

distribution for the parameter probabilities in the calculation of chance stellar associations in

Section 4.6.2.1.

4.5.2 Secondary arc

The secondary arc is observed in 739 of the highest signal-to-noise ratio observations (Figure

4.2). The measured curvature is less robust than that of the primary arc and as a consequence

the data contains more noise. As with the primary arc, we have fitted isotropic and anisotropic

models, which are given in Table 4.1. The anisotropic model is favoured, but only slightly, with

∆χ2
c ∼ 7. This is not surprising because the two models are kinematically very similar, but once

again the anisotropic model is also favoured because of the symmetric power distribution across

the arc (Figure 4.2). The excess noise in the data from complications in fitting this secondary arc

(see Section 4.3.1) is quantified by the large reduced chi-squared value, χ2
r = 3.324, suggesting

underestimated uncertainties by a factor of ∼ 1.8.

We have also repeated the fit with an MCMC analysis and find that the PDF for each

parameter is well described by a normal distribution. The parameters are consistent with the

least squares analysis, with only slightly larger uncertainties in two parameters: s = 0.219±0.017

and v∥ =−41±6 km s−1.
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Figure 4.5: Top-panel: Equivalent curvature η∗ (Equation 4.6) for each measurement of the
secondary scintillation arc across ∼13 years of observations for PSR J0437−4715. Bottom panels:
Equivalent curvatures with best-fit anisotropic model (solid line) as a function of orbital true
anomaly θ (left; with fitted annual variation subtracted) and day-of-year (right; with fitted pulsar
orbital variation subtracted). The parameter uncertainties have been scaled up by a factor of 1.8
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0.15 0.2 0.25

0

20

40

60

0.18 0.2 0.22 0.24 0.26 0.28

-50

-40

-30

-60 -50 -40 -30 -20

0

20

40

60

0.18 0.2 0.22 0.24 0.26 0.28

135

140

145

-55 -50 -45 -40 -35 -30

135

140

145

135 140 145

0

20

40

60

Figure 4.6: Posterior probability distributions for the parameters of the anisotropic model for the
secondary arc using the MCMC sampler of Veitch and Vecchio (2010), implemented in MATLAB
by Pitkin and Romano (2013). 105



CHAPTER 4. PRECISE SCINTILLOMETRY WITH ANNUAL AND ORBITAL VARIATIONS IN
SCINTILLATION ARCS FOR PSR J0437−4715

4.6 Discussion

Scintillation studies are useful for studying the IISM and modelling the transverse velocity, which

pulsar timing is not usually as sensitive to. This has important applications when parameters

such as the inclination angle and longitude of ascending node can be measured, particularly for

relativistic binary pulsars, where these parameters are important for testing theories of gravity

in the strong-field. The scintillation of the relativistic binaries, PSRs J0737−3039 (Rickett et al.

2014) and J1141−6545 (Chapter 3), are well analysed with diffractive scintillations because

there are many scintles in their dynamic spectra, meaning that one can measure a stable

autocovariance function and it will remain stable over an orbit because the scattering region is

larger than the projected size of the orbit. In these pulsars we see variations in the diffractive

scintillation from orbit-to-orbit that complicate the processing because the level of turbulence

varies and that changes both the timescale and the bandwidth (Chapter 3).

However, for PSR J0437−4715 we do not have enough scintles in an observation to get a stable

scintillation bandwidth or timescale, and the strength of scattering changes from observation-to-

observation. This makes it difficult to model the transverse motion through measurement of the

diffractive scintillation parameters. Fortunately, the curvature of arcs in the secondary spectra

depends on the screen velocity and distance, neither of which change rapidly with time. The arc

curvature is also defined mostly by the very small scale structures in the dynamic spectrum,

meaning that there may be many in a dynamic spectrum, even for weak scattering. From our

observations, we see that the IISM velocity, distance, and anisotropy change slowly enough for the

curvature to remain stable over many years, which gives us clean annual variations for precise

transverse velocity modelling.

Our models for variations to the curvature of two scintillation arcs are given in the previous

Section, and below we discuss these results. In Section 4.6.1 we give the absolute distance to each

of the screens, and discuss the similarity of their measured velocities and anisotropy angles. In

Section 4.6.2 we briefly discuss potential sources for the anisotropic plasma, and in 4.6.2.1 we

search for stars with impact parameters that may be associated with the plasma.

4.6.1 Screen distances and IISM velocity

We find that the scattering is anisotropic for both arcs, based on the distribution of power

across the arcs, and by the quality of the kinematic model fits. In both cases we have also

measured a significant IISM velocity, which may be related to the Alfvén speed of the interstellar

plasma (Goldreich and Sridhar 1995), or perhaps to the velocity of a comoving object. Taking

these velocities into account, we were able to make robust screen distance measurements of

s = 0.422±0.004 and s = 0.219±0.017 for the primary and secondary (taking the slightly larger

uncertainty from the MCMC analysis) arcs respectively. Using the precise new measurement of

the distance to PSR J0437−4715 from Chapter 2, D = 156.79±0.25 pc, the absolute distances to
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these screens are De = 90.6±0.7 pc and De = 122±3 pc respectively.

The primary screen distance is significantly different from that reported in the earlier PSR

J0437−4715 arc analysis of Bhat et al. (2016). This is because they had only two observations and

so could not account for the IISM velocity or anisotropy. Our results show that screen distance

estimates from individual arcs in single observations are unreliable, particularly because of a

potentially significant IISM velocity.

We also note that the IISM velocity and anisotropy measurements for the two screens are

very similar (Table 4.1), despite being separated by ∼ 31 pc. Rather than being a coincidence or

suggestive of an association between these two screens, this similarity is likely a due to a selection

effect imposed by the sampling characteristics of our dynamic spectra (Mark Walker, private

communication). If the IISM for these screens had zero velocity, then the pulsar’s high proper

motion would be the only constant component of the effective velocity. Since we measure the

screen to be moving approximately anti-parallel to the direction of proper motion (which is 120.5◦

East of North; Chapter 2), the effective velocity is significantly increased. A stationary IISM

would therefore have a relatively much larger curvature and would be hidden in the scattered

power on the fdop = 0 axis. High-velocity screens moving parallel or perpendicular to the proper

motion will not reduce the effective velocity in order for it to be in our range.

By the same selection effect, our data are most sensitive to anisotropy near to the direction of

proper motion. If the line-of-sight contains a population of screens with velocity dispersion smaller

than the proper motion velocity of the pulsar (which is large at 105 km s−1; Chapter 2), then

those aligned with the proper motion with an anti-parallel velocity will be favoured. We therefore

predict that there may be many more scintillation arcs observable for PSR J0437−4715 if future

observations are planned to maximise the uninterrupted integration time for the dynamic spectra,

and therefore maximise the fdop resolution in the secondary spectra in order to measure arcs

with higher curvature.

4.6.2 Object candidates

Structures in the IISM are generally poorly understood because they are difficult to study;

appearing only indirectly through scintillation of compact radio-frequency sources. Compact,

turbulent, and over-dense regions of electron density in the IISM are known to have a high

scattering efficiency, that can dominate the scattering of the entire line-of-sight, meaning that the

scintillation can often be described by a single thin screen scattering model. However the origin

of such compact regions, including extreme scattering events (ESEs; e.g. Fiedler et al. 1987, 1994;

Coles et al. 2015; Bannister et al. 2016), largely remains a mystery. Often plasma confinement

by magnetic fields in the IISM is invoked to explain the observed scattering phenomena (e.g.

Goldreich and Sridhar 1995).

Anisotropic scattering, resulting in pulsar scintillation arcs, has previously been suggested to

originate from inclined, corrugated "reconnection current sheets" in the IISM (Pen and Levin
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2014). These current sheets form at the boundaries between magnetic field configurations after

they relax from an energetic disturbance such as a supernova. Other potential structures include

the boundaries of local interstellar clouds (e.g. Linsky et al. 2008), or the ionised surfaces of

small, self-gravitating molecular clouds (Walker and Wardle 1998). However, the latter suggests

discrete AU-scale clouds, which is a more appropriate model for ESEs (Walker et al. 2017) than

the sustained, stable scattering that we observe for this pulsar. Bhat et al. (2016) also suggested

that the primary screen for PSR J0437−4715 may be associated with the edge of the Local

Bubble (a local region of plasma under-density and high temperature), which is estimated to be at

∼ 100−120 pc (e.g. Spangler 2009). Our updated distance for the primary screen is significantly

less than the measurement of Bhat et al. (2016), but either of the screens (at 90.6±0.7 pc and

122±3 pc) could still be associated with the boundary of the Local Bubble, or other plasma

structures surrounding it.

The observed power distribution in our secondary spectra makes studying individual struc-

tures difficult, since there are no arc asymmetries, inverted arclets, or other deviations from

a parabola that passes through the origin, which would be associated with asymmetric scat-

tering across the line-of-sight. Instead, the power distributions appear most consistent with

an anisotropic Kolmogorov spectrum (e.g. Cordes et al. 2006), and we also observe that DM

variations (which probe larger spatial scales in the IISM) agree well with a Kolomorov sprectum

(Keith et al. 2013, Chapter 2). The anisotropy is supported by our modelling of the curvature

variations, for which an anisotropic scattered image is favoured based on the χ2 value for the fit.

Recently, Walker et al. (2017) found that the scintillation of two intra-day variable quasars

(IDVs) was associated with hot (O-, B-, and A-Type) stars with small impact parameters. They

modelled the extreme scattering observed in these IDVs and found that the anisotropy vector was

consistent with plasma filaments that were aligned radially to nearby hot stars and comoving

with them. In addition to anisotropy position vectors for both screens and a component of the

plasma velocity, we have precise measurements of the distance to the scattering region, giving

another constraint on possible stellar associations. Accordingly we have searched the Hipparcos

catalogue for stars with small impact parameters and we discuss the results in the following

section.

4.6.2.1 Stellar associations

The precise measurements of IISM velocity, anisotropy angle, and screen distance that are

provided by our velocity models (Section 4.5) are highly constraining for the hypothesis that the

scattering plasma is in the form of radial filaments associated with nearby stars (Walker et al.

2017). We have searched for stars with small impact parameters in the Hipparcos (Perryman et al.

1997) catalogue that have measured distances within 3σ of our screen distance measurements.

We take the distances from the recent parallax measurements of the Gaia data release 2 (dr2;

Gaia Collaboration et al. 2018), which have much higher precision than those of Hipparcos. We
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find two candidates for the primary arc, and none for the secondary arc. For each candidate we

calculate the component of their proper motion velocity parallel to our measured anisotropy,

vStar,ψ, which can then be compared directly to our measurements of vIISM,ψ

The first candidate for the primary arc is an A8IV star, HIP 21849, at a position angle of

φ= 126.9◦ (East of North, relative to the pulsar), with impact parameter b = 1.51 pc, distance

D = 92.3±0.4 pc, and velocity in direction of anisotropy vStar,ψ = 3.5 km s−1. The second is a G3V

star, HIP 22073, with φ= 57.4◦, b = 2.35 pc, D = 91.43±0.18 pc, and vStar,ψ =−28.2 km s−1.

The position angle of HIP 21849 is 8.5◦ from the measured direction of anisotropy, but since

the scattered image is perpendicular to the plasma filaments, it is a poor candidate for a model of

radial filaments. Despite this, it is interesting because of its close distance to the screen. We could

speculate that the position angle instead supports a transverse filament model, with magnetic

fields that confine the plasma and are aligned perpendicular to the radial direction from the star

at a distance of 1.5 pc. However this model is not established with independent observations,

unlike the radial filament model, and the discrepancy between our measured IISM velocity and

the star’s proper motion velocity in the direction of anisotropy would also imply a plasma velocity

of ∼ 35 km s−1 relative to the star. For this reason we simply calculate the probability of a chance

association using only the distance, described below.

HIP 22073 is a cooler star than expected by the "hot star" hypothesis, and is relatively far from

the line-of-sight at b = 2.35 pc. However it is still an interesting candidate for this radial filament

model because the distance, velocity, and position angle are all relatively close to the measured

screen properties (Table 4.1). The differences between these parameters are (D −De) = 0.8 pc,

(φ− (ψ−90◦))= 12◦, and (vStar,ψ−vIISM,ψ)= 3 km s−1.

The probability of chance associations, P(coincidence), is calculated using code developed

for the earlier work of Walker et al. (2017). The local stellar population is characterised with

estimates of local stellar density from the Gaia data release 1 (Gaia Collaboration et al. 2016;

Bovy 2017), and the local kinematics from Hipparcos (Perryman et al. 1997; Dehnen and Binney

1998). The probability of getting a chance association at least as good as those observed is

calculated as described in Walker et al. (2017).

Using only the distance, we find that the chance of finding a star as hot as HIP 21849 (or

hotter) as close to the screen as we observe it (or closer), is P(coincidence)∼ 1%. It is therefore

unlikely. This probability estimate may be improved by using estimates of local stellar density

and kinematics from the recent Gaia data release 2 (Gaia Collaboration et al. 2018). It may also

be possible that the distribution of hot stars in the vicinity of the screen is not well characterised

by the local (within 60 pc) sample.

Assuming the radial filament model for HIP 22073, we calculate the P(coincidence) for finding

a G3V (or hotter) star with distance, velocity, and position angle that match at least as well. By

integrating over the error ellipse for the measured parameters, assuming they are described by

the normal distributions in Figure 4.4, we calculate P(coincidence)∼ 2.5×10−4.
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This 1 in 4000 chance for an association is especially intriguing, but the conclusion that the

primary screen is associated with HIP 22073 challenges the hypothesis that this phenomenon

is linked with hot stars. The implication is that stars at least as cool as G3V can be associated

with ionised filaments at a distance of 2.35 pc. This initially seems unlikely, but there are

currently no theoretical models for relating FUV luminosity to scattering properties. As with

the P(coincidence) calculation for HIP 21849, this probability estimate will be improved by

considering a sample population characterised by the new Gaia dr2. Since this catalogue will

contain more stars (although mainly late types) than Hipparcos, we will also extend the analysis

to search again for associations with the secondary screen.

4.7 Conclusion

Measuring the curvature of scintillation arcs as they change with the velocity of the line-of-sight

through the scattering medium can be an effective way to precisely measure properties of the

scattering and orbit of a binary pulsar. We have measured annual and orbital modulations

to the curvature of two separate arcs for the millisecond pulsar, PSR J0437−4715. The two

arcs correspond to separate scattering screens, and we have precisely measured their distance,

velocity, and anisotropy. We find that the primary (strongest) and secondary screens are located at

De = 90.6±0.7 pc and De = 122±3 pc from the Earth respectively. We find that their scattering is

anisotropic and that the interstellar plasma in the screen has a significant speed with respect to

the local standard of rest at vIISM,ψ =−31.2±0.5 km s−1 and vIISM,ψ =−41±5 km s−1 respectively,

in the direction of the measured anisotropy. Not accounting for this IISM velocity, and the

scattering anisotropy, can lead to biased screen distance measurements.

We found that the kinematics of the scattering is very well modelled by just a single IISM

velocity and anisotropy angle across the ∼ 13 years of observations, meaning that the properties of

the interstellar plasma remain stable over a spatial scale of at least ∼ 350 AU. Our precise velocity

model can provide a measurement of the longitude of the ascending node for PSR J0437−4715

independently of pulsar timing, and we find Ω = 207.2±0.7, which is more precise than that

obtained from the timing model of Chapter 2. The arc curvature is also sensitive to the orbital

inclination angle, and we have measured i = 136.1±0.5◦. This is less precise than i measured in

the timing model, but shows that modelling these variations can give precise inclination angle

measurements for pulsars that do not have such precise timing. Our measurement of i is also

relatively accurate compared with the modelling of diffractive scintillation in e.g. Chapter 3. This

will be important for future relativistic binary pulsars for example.

If the proper motion of a pulsar is not known from pulsar timing, this method could be used

to estimate it by assuming that its velocity is larger than any IISM velocity (as in Chapter 3).

This method is also promising for pulsars observed in the weak scattering regime, where the

scintillation bandwidth and timescale is too unstable from observation-to-observation to reliably
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measure the properties of diffractive scintillation and their change with time.

We have discussed potential structures in the IISM that could generate the observed anisotropic

scattering. Possibilities include inclined reconnection current sheets, boundaries between inter-

stellar clouds, or the boundary of the Local Bubble. Since we have precise screen distance, velocity,

and anisotropy information, we have been able to test a recent finding of plasma filaments

oriented radially from hot stars with small impact parameters. We searched stellar catalogues

for candidates, and calculated the probabilities of their association being a coincidence. For the

primary screen, the best candidate is a G3V star located 2.35 pc off the line-of-sight, HIP 22073,

with a very small chance of association by coincidence P(coincidence)∼ 2.5×10−4, owing to its

distance, velocity, and position angle that all agree well with a radial filament model. Since

this star is cooler and further from the line-of-sight than expected, this possible association is

surprising.

This work will lead to a publication after an extension to include a targeted search for

additional minor arcs. The dynamic spectra sampling will be optimised for this work with new

observations. We will also improve the estimate of stellar association probabilities, using the new

Gaia dr2 catalogue for our target search and for characterising the local stellar population.
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CONCLUSION

H igh precision timing of millisecond pulsars (MSPs) is likely to produce the first evi-

dence for nanohertz-frequency gravitational waves in the coming years. Advances such

as this are accelerated by continuously improving data quality with next-generation

observatories and instruments such as MeerKAT, FAST, and the ultra-wideband receiver for

the Parkes radio telescope. Other applications of pulsar timing arrays will also see advances

including improved tests of general relativity with better timing precision and new discoveries of

relativistic binaries, and studies of IISM effects across wide observing bandwidths.

We are already discovering that uncorrected effects of the ionised interstellar medium (IISM)

in pulsar timing data may in part be limiting our sensitivity to gravitational waves (Shannon et al.

2015). As data improves in the near future, it will become more important that we understand in

detail the phenomena that cause small changes to scattering and frequency dispersion with time.

With this comes the opportunity to use these effects to understand not only the IISM, but also the

pulsars themselves. The primary result in this thesis was a demonstration of the complementary

methods of pulsar timing and interstellar scintillation modelling for producing precise pulsar

ephemerides. Since pulsar timing is most sensitive to radial components of orbital motion, while

the pulsar scintillation is sensitive to the transverse motion, a scintillating binary pulsar can

have its full three-dimensional orbit reconstructed without the need for the measurement of

subtle kinematic orbital effects that are only seen in the most precisely-timed MSPs (e.g. Kopeikin

1995, 1996, see also Chapter 2). In addition, scintillometry can provide a new way for estimating

distances to pulsars (Chapter 3), and can be useful in the regime weak scattering (Chapter 4) as

well as the more common strong scattering.

In Chapter 2 of this thesis, the technique of precise pulsar timing in an era of constantly-

improving data was demonstrated. New timing models were presented for the 20 MSPs of the
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Parkes Pulsar Timing Array (PPTA) using the extended first data release (Manchester et al.

2013), which contains timing residuals with an abrupt change to their noise characteristics at a

known epoch. The abrupt change in the noise characteristics corresponded with the start of the

official PPTA project in 2005, beyond which regular observations at multiple frequencies were

made for each pulsar. This allowed for measurement and correction of the significant dispersion

measure (DM) variations in the data, which would otherwise produce strong red noise. However

the legacy data prior to 2005, which is valuable for pulsar timing model improvements because

of its long timespan, did not have observations at multiple frequencies and thus included this

DM noise. To account for this, we presented an extension to an earlier method of accounting

for red noise by choosing an appropriate whitening transformation for the data and model (the

"Cholesky method" introduced in Chapter 1; Coles et al. 2011). The extension was simply to allow

for multiple noise components to deal with non-stationary noise in the data. For the datasets in

Chapter 2, we applied one noise model for the intrinsic "timing noise" across the entire dataset,

and then characterised an additional noise component due to DM variations to apply to the

legacy data only. We described this new "split-Cholesky" method and demonstrated that it gives

unbiased parameter measurements and uncertainties when an appropriate noise model is used.

This algorithm is currently the best alternative to the increasingly-popular Bayesian pulsar

timing algorithms (e.g. Lentati et al. 2014a; van Haasteren and Levin 2013), which can now

account for non-stationary noise processes, but are much more computationally expensive. The

generalised least-squares solution from the split-Cholesky algorithm is equivalent to that of the

maximum likelihood approach of these Bayesian algorithms if the noise model is accurate, and

we therefore recommend its use in pulsar timing work for the purpose of computational efficiency,

especially for problems that require multiple/repeated model fits.

For each of the PPTA MSPs, we presented new noise models that were used in this split-

Cholesky algorithm, which included new timing noise models and novel DM models that included

linear trends and annual DM variations. These parameters were included because the DM

variations showed linear trends more frequently than one would expect for a purely Kolmogorov

turbulent medium (e.g. Keith et al. 2013). The conclusion is that in some cases, the mean

interstellar electron density along the line of site changes steadily because of either radial motion

of the pulsar through a relatively dense medium, or because of transverse motions of the line-of-

sight through a density gradient. The latter is the likely cause of annual variations to the DM,

where the density gradient may be located nearer to the Earth and thus is modulated as the

line-of-sight cuts through it following the motions of the Earth. Through the same mechanism,

there is likely to be DM variations following the binary orbital period for some pulsars. However

in the PPTA sample, the majority have short orbital periods and are not observed with a high

enough cadence to detect these changes. The DM variations are small and are usually measured

as an average change across a time span of order ∼100 days, but small orbital modulations caused

by a transverse density gradient may be one of the sources for excess noise in the "corrected" DM
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variations that affect the sensitivity of PTAs. Future scintillation studies can probe the IISM on

much smaller time and length scales than the DM variations, and can potentially reveal these

changes to the IISM. In the following section we summarise the prospects for future work to use

measurements of the phase gradient across the line-of-sight as an estimator for DM variations;

an approach that may be able to detect changes in DM over smaller time scales than pulsar

timing, and with a comparable sensitivity (Bill Coles, private communication).

Using our new noise models for each pulsar, we then completed the timing model fit to

improve their ephemerides and measure new parameters. The key results included new parallax

measurements for five pulsars, improved masses for important pulsars such as PSRs J1909−3744

and J0437−4715, and also an exceptionally precise distance measurement for PSR J0437−4715.

The mass measurements are important for constraining the neutron star equation of state, and

will be used soon in the Neutron star Interior Composition Explorer (NICER; Arzoumanian

et al. 2014b) mission, which aims to measure the radius of pulsars, including PSR J0437−4715,

by modelling their x-ray emission. The distance measurement for PSR J0437−4715 of D =
156.79±0.25 pc is particularly promising for future science, since it is the first time that the

distance to any millisecond pulsar has been measured with an uncertainty of less than 1 lightyear,

which is comparable to the wavelength of gravitational waves that PTAs are sensitive to. For

continuous gravitational waves originating from a single source, such as a supermassive black

hole binary in a nearby galaxy, knowing the distance to this precision will allow us to determine

the pulsar term and include it deterministically in the search template for the wave. This

effectively increases the available signal because the pulsar term is often regarded as unknown

noise during searches. We have also used this precise distance measurement in Chapter 4 to

determine the distances to two thin scattering screens to high precision. Additional applications

for these results are listed in the following section.

In Chapter 3 we continued the study of IISM effects by measuring and modelling the diffrac-

tive scintillations of the relativistic binary pulsar PSR J1141−6545. As in Chapter 2, the goal

was to improve the ephemeris for this important pulsar. PSR J1141−6545 has previously been

used to test general relativity (e.g. Bhat et al. 2008; Manchester et al. 2010) and it is unusual for

being an assymetrical-mass binary with an elliptical orbit, where the white dwarf companion

formed first (Tauris and Sennels 2000; Davies et al. 2002). The model for the pulsar is therefore

particularly interesting for its relativistic effects (to test theories of gravity) and its runaway

velocity (to test models of its formation). The former can easily be measured through pulsar

timing, but as discussed in Chapter 2 and Chapter 3, there are also kinematic contributions

to these post-Keplerian parameters that are considered a contamination for the relativistic

component. For PSR J1141−6545, the most significant contamination is from the Shklovskii

effect (Shklovskii 1970), which depends on the distance and proper motion (and actually provided

our precise new distance to PSR J0437−4715 in Chapter 2). However, for PSR J1141−6545 the

distance is poorly constrained and the proper motion is unknown from pulsar timing. From our
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modelling of scintillation timescale modulation in Chapter 3, we were able to determine the

transverse velocity and inclination angle uniquely, which is currently impossible to do with timing

of this pulsar. This was possible because of our improved long-term scintillation velocity models

that account for anisotropy in the scattering. These models also included the Earth’s velocity,

which allowed us to uniquely determine the sense of the inclination angle, and the relativistic

advance of periastron, which we showed could be measured from scintillation alone.

The above method is most effective when the strength of scattering is such that the scintilla-

tion bandwidth can be measured easily. If the scattering is too weak, there may not be enough

scintles in the dynamic spectra to estimate the bandwidth accurately. If the scattering is too

strong, the scintillation bandwidth may be less that the channel bandwidth, as was the case

for a subset of our observations. For these observations, we used the flux variance to estimate

the number of scintles in the band, and thus their bandwidth, but this approach also required

a small calibration factor (Chapter 3, Section 2). Measurement of the scintillation bandwidth

enables corrections for changes to the strength of scattering with time using a numerical model

(we used the model of Cordes and Rickett 1998). Following this correction, we were able to give a

new estimate for the distance to PSR J1141−6545 of D = 9+5
−3 kpc. This distance, in combination

with our measured transverse velocity and longitude of ascending node, gave the first estimate of

the proper motion. We then used this to estimate the contamination to the relativistic orbital

period derivative from the Shklovskii effect, and showed that it exists only at the ∼1% level. Our

new approach for estimating the distance will be improved in the near future with improved

numerical models for the scintillation velocity provided by long-term scintillation studies with

observations across large frequency ranges. This is because it requires a strong understanding

of the relationship between scintillation bandwidth and diffractive spatial scale, and of the

distribution of interstellar plasma along the line-of-sight.

For pulsars in weak scattering and/or with long scintillation timescales, such as PSR

J0437−4715, reliable measurement of the scintillation bandwidth and timescale may be al-

most impossible. However, in Chapter 4 we showed that the parabolic arc phenomenon observed

in secondary spectra originates from finer-scale structures in dynamic spectra and can be used

for precise velocity modelling. Using ∼13 years of data for PSR J0437−4715 we measured the cur-

vature of these arcs and found that they were modulated by the motion of the Earth and pulsar in

the same way as the diffractive scintillations of Chapter 3. We identified two prominent parabolic

arcs for many of the observations, each corresponding to a discrete, thin scattering screen on the

line-of-sight. The annual and orbital modulation of the primary (highest signal-to-noise ratio)

arc was so pronounced that we were able to measure parameters of the orbit to a precision that

was comparable to the precise timing model. Our model used the timing model and distance

measurement provided in Chapter 2, and used parts of the velocity model established in Chapter

3. We showed that like the well-known diffractive timescale modulation, changes to arc curvature

can be used to measure useful astrometric and orbital parameters such as the inclination angle i
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and longitude of the ascending node Ω. The latter was measured to a higher precision than the

timing model of Chapter 2, and we found Ω= 207.2±0.7◦. For relativistic binaries with suitable

scintillation properties, this approach could give precise measurements of the inclination angle,

and with it an additional constraint on the system masses for testing theories of gravity if the

Shapiro delay cannot be measured through timing.

The scattering in the direction of PSR J0437−4715 appears incredibly stable, leading to arc

curvatures that do not significantly deviate from our model over ∼13 years, which corresponds

to a spatial scale of ∼ 350 AU. We favoured a model of anisotropic scattering for both of the

scattering screens, and measured their distances to be De = 90.6±7 pc and De = 123±4 pc for

the primary and secondary scattering screens respectively. Because the proper motion of the

pulsar is known to high precision from the timing model (Chapter 2), we were able to include

the velocity of the interstellar plasma as a parameter of the kinematic model (unlike in Chapter

3 where the IISM velocity could not be separated from the proper motion). However, for the

preferred anisotropic model, the data were only sensitive to the component of IISM velocity

parallel to the anisotropy. The velocity had magnitudes of vIISM,ψ = −31.2± 0.5 km s−1 and

vIISM,ψ = −41±km s−1 in the direction of ψ = 135.4±0.5◦ and ψ = 141±2◦ (East of North) for

the primary and secondary screens respectively. The velocity measurements may represent the

Alfvén speed of the interstellar plasma at these locations, or may be explained by an association

with a comoving object. We searched for stars near to the line-of-sight with measured distances,

velocities, and position angles that matched the measured screen properties, following a recent

model of plasma filaments aligned radially to hot stars (Walker et al. 2017). Finally, we calculated

the probability of a chance association for two candidate stars after characterising the statistics of

a local stellar population with stellar catalogues, as described in Walker et al. (2017). We found a

∼ 2.5×10−4 probability of a chance association (assuming this radial filament model) for the G3V

star, HIP 22073, which is 2.35 pc off the line-of-sight. However this probability is for a chance

association of a star with this spectral type or hotter. The probability will decrease if the search

is broadened to include cooler stars, but an appropriate lower-bound temperature is not known.

If this is a true association, it challenges the hypothesis that the plasma is associated with only

the hottest (e.g. O-, B-, and A-type) stars. An absent association for the secondary scintillation

arc may also suggest that the apparent primary arc association is spurious.

5.1 Suggestions for future work

The work in this thesis has demonstrated that scintillometry can be used in partnership with

pulsar timing to improve pulsar ephemrides, and the results have opened up several pathways

for further research.

The precise distance measurement to PSR J0437−4715 presented in Chapter 2, which was

provided by the Shklovskii effect on the orbital period derivative, has several important applica-
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tions. In that Chapter we discussed that the distance can be used in combination with another

independent distance measurement (for example from an improved timing or VLBI parallax)

to place limits on changes to Newton’s gravitational constant G. This is possible because the

measured orbital period derivative Ṗb is sensitive to any anomalous changes, which could be

caused for example by a time derivative of G. An independent distance measurement is required

because the contributions from the Shklovskii effect and differential Galactic acceleration must

be accounted for accurately. By the same reasoning, a precise independent distance could also

be used to directly measure the acceleration of the pulsar in the Galactic potential, under the

assumption that G is constant. The distance will also be useful for future searches for single-

source gravitational waves using the pulsar term. This will be especially useful as the precision

of the distance measurement decreases with improved timing until the uncertainty is dominated

by the relatively poorly understood contribution to Ṗb from differential Galactic acceleration.

The precise mass measurements, particularly for PSR J0437−4715 will also soon be used by the

NICER mission and will then help to constrain the neutron star equation of state.

The diffractive scintillation analysis of PSR J1141−6545 in Chapter 3 showed that careful

modelling of long-term annual and orbital variations can provide new measurements of: the

inclination angle, longitude of ascending node, transverse velocity, screen distance, and scattering

anisotropy. We were also able to estimate the pulsar distance in a new way and we used this

to determine the proper motion for the first time. However, the model was limited by the

assumptions of a stationary anisotropy and screen velocity. This problem was overcome in a

long-term scintillation study of the double pulsar by Rickett et al. (2014). For that work, they used

an analytical model of the two-dimensional autocovariance function (ACF) of the dynamic spectra

to fit for the anisotropy and IISM velocity directly from the shape of the ACF. Unfortunately the

scintillation bandwidth in our observations was too small to see any of the necessary structure

in the ACF to fit for these additional parameters. Future observations can be processed with

smaller channel bandwidths to improve the frequency resolution in the dynamic spectra so that

the anisotropy, and its variation with time, can be measured independently of the scintillation

velocity model. This will likely improve the accuracy and precision of the measured parameters;

particularly the inclination angle, which is highly correlated with the axial ratio parameter for

the anisotropy.

We have briefly analysed other pulsars in the PPTA with the methods presented in Chapter 3.

We found annual variations in the scintillation timescale for each of the pulsars with annual DM

variations measured in Chapter 2: PSRs J0613−0200, J1045−4509, J1643−1224, and J1939+2134.

This supports the idea that the annual DM variations are caused by a region in the interstellar

plasma near to the Earth with a transverse density gradient, because it also appears to affect the

scattering. Further analysis of these pulsars should provide a measurement of the distance to the

scattering regions, and may also allow measurements of astrometric and/or orbital parameters

for these pulsars in the same way as PSR J1141−6545 in Chapter 3.
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We also discussed in Chapter 3 the presence of a "phase gradient" across the line-of-sight,

which was measured in the dynamic spectrum as a "tilt" to the scintles. A constant phase

gradient causes a frequency-dependent angular displacement of the direct line-of-sight, which in

turn causes a spatial displacement to the diffraction pattern. The frequency-dependent spatial

displacement is the source of the observed tilts in the ACF, when sampled by the moving line-

of-sight. For the work in Chapter 3 we did not have the resolution in the ACFs to measure the

anisotropy accurately, but we were able to make simple measurements of this tilt. We simply

reported that it varied with orbital phase but that it did not affect our measurements of the

decorrelation bandwidth. Each observation is only sensitive to the component of the phase

gradient in the direction of the effective velocity, but with an accurate model of this velocity,

the true phase gradient can be recovered. If these individual phase gradient measurements are

integrated over time, the total phase Φ(t) can be recovered, which is directly proportional to

the DM variations, DM(t) (Bill Coles, private communication). Regularly monitoring pulsars for

precise measurements of the phase gradient can therefore potentially be used to measure DM(t).

Measurements and corrections of DM(t) using the phase gradients can hopefully be done on

shorter timescales than through timing, and with a comparable precision. This method requires

only one relatively narrow observing band, rather than the wide frequency range required for

DM(t) measurement and correction in the traditional pulsar timing method (e.g. the 10 cm, 20 cm,

and 40/50 cm bands in the PPTA). We have already investigated this technique for some pulsars

in the PPTA, and found that it can potentially be used to identify extreme scattering events

(ESEs). We observed a change to the tilts of scintles across the known ESE for PSR J1603−7202

(Keith et al. 2013; Coles et al. 2015), which was recovered despite having an incomplete model of

the effective velocity. The method currently requires strong scattering for stable measurements

of the diffractive scintles, a prior model of the line-of-sight velocity, and some calibration scaling

factor to relate Φ(t) to the measured DM(t). We are continuing to develop this method, which may

provide a promising alternative to current DM(t) measurement techniques and help to reduce

the excess noise in "DM-corrected" timing residuals.

Our scintillation arc analysis in Chapter 4 shows that modelling arc curvature variations

is a promising alternative to diffractive scintillation modelling for pulsars with sharply defined

arcs and/or weak scattering. The characteristics of the dynamic spectra used in this chapter

introduced a selection bias that favoured scattering screens with velocities aligned anti-parallel

to the proper motion of the pulsar (to produce a higher effective velocity). We anticipate that

many more screens may be detectable in the secondary spectra if the uninterrupted integration

time of future observations is increased, which will increase the differential Doppler frequency

resolution. It is possible that arcs of higher curvature can be measured with such observations,

since we have already seen some evidence for structures inside the primary arcs.

All of the work presented in this thesis will benefit from the next generation of radio telescopes,

observing instruments, analysis techniques, and computing. Wide-bandwidth observations with
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the new Parkes ultra-wideband receiver will allow us to study IISM effects with unprecedented

detail. We will be able to measure the frequency evolution of scattering properties to accurately

model the relationship between scintillation bandwidth and diffractive spatial scale. This will

be useful for the new distance estimation technique of Chapter 3. A wide bandwidth also allows

for segments of a dynamic spectrum to be selected based on the optimal strength of scattering,

to avoid radio frequency interference, or to optimise the clarity of scintillation arcs. Pulsar

timing across a wide bandwidth will significantly improve the correction of DM variations for

pulsar timing, both because of the improved sensitivity and because of increased observing

efficiency, which may lead to a higher observing cadence. Improved observing efficiency will allow

for regular monitoring of a larger set of pulsars for both pulsar timing and IISM applications,

giving improved sensitivity to transient events in the pulsar such as glitches or magnetosphere

disruptions, or in the IISM such as extreme scattering events. New techniques such as the use of

cyclic spectroscopy (e.g. Demorest 2011) can significantly improve the frequency resolution in

dynamic spectra, which will help with measurements of scintillation bandwidth in sources for

which it is unresolved (e.g. some observations of PSR J1141−6545 in Chapter 3).

We hope that the work in this thesis will encourage other pulsar astronomers to utilise their

pulsar timing observations for scintillation studies more frequently. This will be useful for better

understanding of the pulsars in the array, and of the IISM noise in timing residuals.
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APPENDIX

Timing model parameter tables from Chapter 2

The pulsar parameters from Chapter 2 are listed in the tables below, and a discussion for each pul-

sar is given in Section 2.5. The model parameter files, ToA files, and red-noise models for each pul-

sar are available from the CSIRO Data Access Portal: http://dx.doi.org/10.4225/08/561EFD72D0409.
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Table 1: Parameters for the solitary pulsars J0711−6830, J1024−0719, J1730−2304, J1744−1134, J1824−2452A, J1939+2134, and
J2124−3358. Numbers in brackets are the TEMPO2 1-sigma uncertainties on the last quoted decimal place, including split-Cholesky
analysis.

Pulsar name . . . . . . . . . . . . . . . J0711−6830 J1024−0719 J1730−2304 J1744−1134 J1824−2452A J1939+2134 J2124−3358
MJD range. . . . . . . . . . . . . . . . 49373.6—55619.2 50117.5—55619.5 49421.9—55598.8 49729.1—55619.0 53518.8—55619.1 49956.5—55619.0 49489.9—55618.2
Data span (yr) . . . . . . . . . . . . . . 17.1 15.06 16.91 16.13 5.75 15.5 16.78
Number of TOAs. . . . . . . . . . . . . 566 493 390 534 313 397 652
Rms timing residual (µs) . . . . . . . . 2.0 10.4 1.9 0.5 5.5 5.8 2.9

Measured Quantities
Right ascension (RA), α (hh:mm:ss) . . . 07:11:54.189114(13) 10:24:38.678633(7) 17:30:21.66624(8) 17:44:29.4057891(11) 18:24:32.00788(3) 19:39:38.561213(3) 21:24:43.849372(10)
Declination (DEC), δ (dd:mm:ss). . . . . −68:30:47.41446(8) −07:19:19.36778(19) −23:04:31.19(2) −11:34:54.68126(8) −24:52:10.834(8) +21:34:59.12628(6) −33:58:44.8500(3)
Pulse frequency, ν (s−1) . . . . . . . . . 182.1172346685786(10) 193.71568347859(4) 123.1102871605879(5) 245.4261197130557(4) 327.40559048006(3) 641.92822645342(4) 202.793893782574(6)
First derivative of pulse frequency, ν̇ (s−2) −4.94405(11)×10−16 −6.9523(18)×10−16 −3.05917(4)×10−16 −5.38173(3)×10−16 −1.735302(7)×10−13 −4.33106(3)×10−14 −8.4597(3)×10−16

Proper motion in RA, µα cosδ (mas yr−1) −15.57(3) −35.33(4) 20.264(19) 18.790(6) −0.69(13) 0.087(16) −14.14(4)
Proper motion in DEC, µδ (mas yr−1) . . 14.24(3) −48.32(8) – −9.40(3) – −0.41(3) −50.08(9)
Parallax, π (mas). . . . . . . . . . . . . – 0.5(3) 1.5(3) 2.53(7) – 0.52(16) 2.4(4)

Set Quantities
Dispersion measure, DM (cm−3pc). . . . 18.4099 6.48803 9.61634 3.13695 119.892 71.0227 4.60096

Derived Quantities
log10(Characteristic age, yr) . . . . . . 9.77 9.64 9.8 9.86 7.48 8.37 9.58
log10(Surface magnetic field strength, G) 8.46 8.5 8.61 8.29 9.35 8.61 8.51
log10(Edot, ergs/s) . . . . . . . . . . . . 33.55 33.73 33.17 33.72 36.35 36.04 33.83



Table 2: Parameters for the binary pulsars described by the small-eccentricity ELL1 binary model, PSRs J0613−0200, J1045−4509,
J1603−7202, J1732−5049, J1857+0943, J2129−5721, and J2145−0750. Numbers in brackets are the TEMPO2 1-sigma uncertainties
on the last quoted decimal place, including split-Cholesky analysis.

Pulsar name . . . . . . . . . . . . . . . J0613−0200 J1045−4509 J1603−7202 J1732−5049 J1857+0943 J2129−5721 J2145−0750
MJD range. . . . . . . . . . . . . . . . 51526.6—55619.3 49405.5—55619.5 50026.1—55618.8 52647.1—55582.2 53086.9—55619.0 49987.4—55618.3 49517.8—55618.2
Data span (yr) . . . . . . . . . . . . . . 11.21 17.01 15.31 8.04 6.93 15.42 16.7
Number of TOAs. . . . . . . . . . . . . 639 646 493 244 291 448 972
Rms timing residual (µs) . . . . . . . . 1.0 11.9 2.7 3.1 1.1 1.4 1.7

Measured Quantities
Right ascension (RA), α (hh:mm:ss) . . . 06:13:43.975503(4) 10:45:50.18696(3) 16:03:35.67751(4) 17:32:47.766731(19) 18:57:36.390848(4) 21:29:22.766966(12) 21:45:50.46148(3)
Declination (DEC), δ (dd:mm:ss). . . . . −02:00:47.21147(14) −45:09:54.1223(4) −72:02:32.72985(19) −50:49:00.1917(4) +09:43:17.21458(9) −57:21:14.21183(12) −07:50:18.4759(12)
Pulse frequency, ν (s−1) . . . . . . . . . 326.6005620676858(16) 133.793149554823(14) 67.376581131844(3) 188.233512213289(4) 186.4940784047797(7) 268.3592273587338(16) 62.2958878423832(13)
First derivative of pulse frequency, ν̇ (s−2) −1.02293(3)×10−15 −3.1616(8)×10−16 −7.0956(12)×10−17 −5.0296(6)×10−16 −6.20417(14)×10−16 −1.501784(14)×10−15 −1.15599(7)×10−16

Proper motion in RA, µα cosδ (mas yr−1) 1.811(16) −6.07(9) −2.46(4) −0.41(9) −2.69(3) 9.25(4) −9.59(8)
Proper motion in DEC, µδ (mas yr−1) . . −10.36(4) 5.20(10) −7.33(5) −9.87(19) −5.48(6) −9.58(4) −8.9(3)
Parallax, π (mas). . . . . . . . . . . . . 0.86(13) 2.2(11) 1.1(8) – 0.5(3) – 1.84(17)
Orbital period, Pb (d) . . . . . . . . . . 1.198512575218(18) 4.0835292548(3) 6.3086296691(5) 5.2629972182(5) 12.3271713817(5) 6.6254930923(13) 6.83890261536(5)
Projected semi-major axis, x (lt-s) . . . . 1.09144422(6) 3.0151313(3) 6.8806577(6) 3.9828703(4) 9.2307805(4) 3.50056678(14) 10.1641061(3)
Epoch of ascending node, TASC (MJD) . 50315.26949108(6) 50273.507005(3) 50426.28702402(13) 51396.3661225(3) 47520.4323457(3) 50442.6431238(4) 50802.29822944(3)
EPS1, esinω0 . . . . . . . . . . . . . . 3.90(11)×10−6 −2.096(17)×10−5 1.60(5)×10−6 2.08(16)×10−6 −2.160(5)×10−5 −3.58(8)×10−6 −6.840(13)×10−6

EPS2, ecosω0 . . . . . . . . . . . . . . 3.40(11)×10−6 −1.099(16)×10−5 −9.20(4)×10−6 −8.24(16)×10−6 2.46(3)×10−6 −1.165(8)×10−5 −1.8059(14)×10−5

First derivative of orbital period, Ṗb . . . – – 3.1(15)×10−13 – – 7.9(36)×10−13 –
First derivative of x, ẋ . . . . . . . . . . – – 1.36(16)×10−14 – – – 8.0(8)×10−15

Companion mass, Mc (M¯) . . . . . . . – – – – 0.25(3) – –
Sine of inclination angle, sin i . . . . . . – – – – 0.9988(8) – –

Set Quantities
Dispersion measure, DM (cm−3pc). . . . 38.7756 58.1438 38.0489 56.8365 13.2984 31.8509 8.99761

Derived Quantities
log10(Characteristic age, yr) . . . . . . 9.7 9.83 10.18 9.77 9.68 9.45 9.93
log10(Surface magnetic field strength, G) 8.24 8.57 8.69 8.44 8.5 8.45 8.84
log10(Edot, ergs/s) . . . . . . . . . . . . 34.12 33.22 32.28 33.57 33.66 34.2 32.45
Epoch of periastron, T0 (MJD). . . . . . 50315.432(4) 50276.256(5) 50429.268(5) 51398.790(16) 47529.900(3) 50446.270(7) 50806.1118(8)
Orbital eccentricity, e . . . . . . . . . . 5.18(11)×10−6 2.367(17)×10−5 9.35(5)×10−6 8.50(16)×10−6 2.174(5)×10−5 1.219(8)×10−5 1.9311(14)×10−5

Longitude of periastron, ω0 (deg) . . . . 48.9(12) 242.3(4) 170.1(3) 165.8(11) 276.49(7) 197.1(4) 200.75(4)
Pulsar mass, MP (M¯) . . . . . . . . . . – – – – 1.5(0.2) – –
i limit from ẋ measurement (degrees) . . – – ≤ 31 – – – ≤ 69



Table 3: Parameters for the binary pulsars described by DD binary model, PSRs J1022+1001, J1600−3053, and J1643−1224. Numbers
in brackets are the TEMPO2 1-sigma uncertainties on the last quoted decimal place, including split-Cholesky analysis.

Pulsar name . . . . . . . . . . . . . . . J1022+1001 J1600−3053 J1643−1224
MJD range. . . . . . . . . . . . . . . . 52649.7—55618.6 52302.0—55618.8 49421.8—55618.9
Data span (yr) . . . . . . . . . . . . . . 8.13 9.08 16.97
Number of TOAs. . . . . . . . . . . . . 615 715 488
Rms timing residual (µs) . . . . . . . . 1.8 0.8 2.8

Measured Quantities
Right ascension (RA), α (hh:mm:ss) . . . 10:22:58.0007(13) 16:00:51.903452(7) 16:43:38.160985(9)
Declination (DEC), δ (dd:mm:ss). . . . . +10:01:52.77(5) −30:53:49.3653(3) −12:24:58.6783(6)
Pulse frequency, ν (s−1) . . . . . . . . . 60.7794479636137(3) 277.9377070213120(12) 216.373337179973(9)
First derivative of pulse frequency, ν̇ (s−2) −1.60095(6)×10−16 −7.3385(4)×10−16 −8.6433(5)×10−16

Proper motion in RA, µα cosδ (mas yr−1) −17.09(3) −0.99(4) 5.94(5)
Proper motion in DEC, µδ (mas yr−1) . . – −7.22(15) 3.94(18)
Parallax, π (mas). . . . . . . . . . . . . 1.1(3) 0.48(11) 1.27(19)
Orbital period, Pb (d) . . . . . . . . . . 7.8051360(16) 14.3484577721(3) 147.01728(7)
Projected semi-major axis, x (lt-s) . . . . 16.765395(14) 8.8016536(13) 25.0726150(7)
Epoch of periastron, T0 (MJD). . . . . . 49778.4080(11) 53295.5390(7) 49577.972(3)
Orbital eccentricity, e . . . . . . . . . . 9.683(17)×10−5 1.73729(10)×10−4 5.05753(9)×10−4

Longitude of periastron, ω0 (deg) . . . . 97.64(5) 181.832(17) 321.857(6)
First derivative of orbital period, Ṗb . . . 5.5(23)×10−13 – –
First derivative of x, ẋ . . . . . . . . . . 1.15(16)×10−14 −4.2(7)×10−15 −5.25(16)×10−14

Periastron advance, ω̇ (deg/yr) . . . . . . 0.012(4) – −0.0007(4)
Companion mass, Mc (M¯) . . . . . . . 2.2(2.4) 0.34(15) –
Sine of inclination angle, sin i . . . . . . 0.69(18) 0.87(6) –

Set Quantities
Dispersion measure, DM (cm−3pc). . . . 10.2531 52.3249 62.4143

Derived Quantities
log10(Characteristic age, yr) . . . . . . 9.78 9.78 9.6
log10(Surface magnetic field strength, G) 8.93 8.27 8.47
log10(Edot, ergs/s) . . . . . . . . . . . . 32.58 33.91 33.87
Pulsar mass, MP (M¯) . . . . . . . . . . – 2.4(1.7) –
i limit from ẋ measurement (degrees) . . ≤ 84 ≤ 67 ≤ 28



Table 4: Parameters for the binary pulsars described by T2 binary model, PSRs J0437−4715, J1713+0747, and J1909−3744. Numbers
in brackets are the TEMPO2 1-sigma uncertainties on the last quoted decimal place, including split-Cholesky analysis. In each case
where a companion mass is measured from the Shapiro delay, the corresponding sin i parameter is linked to the Kopeikin parameter,
i.

Pulsar name . . . . . . . . . . . . . . . J0437−4715 J1713+0747 J1909−3744
MJD range. . . . . . . . . . . . . . . . 50191.0—55619.2 49421.9—55618.9 52618.4—55619.1
Data span (yr) . . . . . . . . . . . . . . 14.86 16.97 8.22
Number of TOAs. . . . . . . . . . . . . 5065 622 1368
Rms timing residual (µs) . . . . . . . . 0.3 0.4 0.2

Measured Quantities
Right ascension (RA), α (hh:mm:ss) . . . 04:37:15.8961737(6) 17:13:49.5327220(19) 19:09:47.4346749(11)
Declination (DEC), δ (dd:mm:ss). . . . . −47:15:09.110714(7) +07:47:37.49795(6) −37:44:14.46674(5)
Pulse frequency, ν (s−1) . . . . . . . . . 173.6879458121843(5) 218.8118404348011(11) 339.3156872882446(3)
First derivative of pulse frequency, ν̇ (s−2) −1.728361(5)×10−15 −4.08380(6)×10−16 −1.614817(5)×10−15

Proper motion in RA, µα cosδ (mas yr−1) 121.4385(20) 4.912(7) −9.517(5)
Proper motion in DEC, µδ (mas yr−1) . . −71.4754(20) −3.888(14) −35.797(17)
Parallax, π (mas). . . . . . . . . . . . . 6.37(9) 0.86(9) 0.81(3)
Orbital period, Pb (d) . . . . . . . . . . 5.7410459(4) 67.825130978(4) 1.533449474406(13)
Projected semi-major axis, x (lt-s) . . . . 3.36671444(5) 32.3424210(5) 1.89799118(4)
Epoch of periastron, T0 (MJD). . . . . . 54501.4671(3) 51997.5804(9) 53631.39(4)
Orbital eccentricity, e . . . . . . . . . . 1.91811(15)×10−5 7.49373(17)×10−5 1.14(10)×10−7

Longitude of periastron, ω0 (deg) . . . . 1.363(17) 176.201(5) 156(8)
First derivative of orbital period, Ṗb . . . 3.728(6)×10−12 1.7(7)×10−12 5.03(6)×10−13

Periastron advance, ω̇ (deg/yr) . . . . . . 0.0138(13) – –
Companion mass, Mc (M¯) . . . . . . . 0.224(7) 0.34(5) 0.2067(19)
Inclination angle, i (degrees) . . . . . . 137.56(4) 69(3) 93.52(9)
Longitude of ascending node, Ω (degrees) 207.0(12) 99(4) 39(10)

Set Quantities
Dispersion measure, DM (cm−3pc). . . . 2.64498 15.9903 10.3932

Derived Quantities
log10(Characteristic age, yr) . . . . . . 9.2 9.93 9.52
log10(Surface magnetic field strength, G) 8.76 8.3 8.31
log10(Edot, ergs/s) . . . . . . . . . . . . 34.07 33.55 34.34
Pulsar mass, MP (M¯) . . . . . . . . . . 1.44(7) 1.7(4) 1.47(3)



APPENDIX

Reproducing our results from Chapter 3

The raw data from the Parkes radio telescope that were used for this work are available from

the CSIRO data access portal (DAP; https://data.csiro.au), and were processed with a

pipeline developed for the second PPTA data release. This pipeline is used to produce TOAs

and dynamic spectra, and is briefly summarised in Section 3.2. The dynamic spectra files that

were produced from this pipeline, and the collection of MATLAB codes used to analyse these

dynamic spectra for the results presented in this paper, are available from the DAP at https:

//doi.org/10.4225/08/5ae7b7b1b65c8.

The code is presented for reproducibility and in general is not intended to be used for other

applications, however a brief description of each script and function is included in README.TXT,

and some may be useful for other scintillation studies. For example, we have included a function

(GETDYNSPECPARAMS.M) that may be used to measure scintillation parameters for any dynamic

spectrum given as a two-dimensional matrix of intensity versus observing time and frequency,

using the methods described in Section 3.2.2. We have also included the scintillation velocity

model (VISSMODEL.M), which is described in Section 3.3, and a script that numerically calculates

the true anomaly from MJD and then uses nonlinear regression to fit the model to VISS derived

from scintillation parameters (MODELDYNSPECPARAMS.M).

The MATLAB code was executed in version 2017b, and requires JD2DATE.M from the ASTRO-

MATLAB library (https://webhome.weizmann.ac.il/home/eofek/matlab/; Ofek 2014), and

the “Image Processing", “Statistics and Machine Learning", “Signal Processing", “Optimization",

“Curve Fitting", “Symbolic Math", and “Parallel Computing" MATLAB toolboxes.
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