
Modelling and Solving Techniques for
Stochastic Combinatorial Optimisation Problems

by

David Hemmi
MSc Robotics

A thesis submitted for the degree of Doctor of Philosophy at

Monash University in 2019

Caulfield School of Information Technology

Supervisors:

Dr. Guido Tack

Prof. Dr. Mark Wallace

ii

© David Hemmi 2019

Contents

List of Tables . viii

List of Figures . ix

Abstract . xi

Acknowledgments . xiii

1 Introduction . 1
1.1 Modelling and Solving Stochastic Programs 2
1.2 Scope . 4
1.3 Research Questions and Objectives . 4

1.3.1 RQ1: What role can modelling techniques that have shown to im-
prove deterministic optimisation problems play when modelling stochas-
tic programs? . 4

1.3.2 RQ2: How can scenario based combinatorial stochastic programs,
formalised in a high-level modelling language, be solved effectively
using decomposition methods and off-the-shelf solvers? 5

1.3.3 RQ3: How can simulation be used to improve the quality of a policy? 5
1.4 Structure and Contributions . 6

1.4.1 Chapter 2: Background . 6
1.4.2 Chapter 3: Modelling . 6
1.4.3 Chapter 4: Evaluate and Cut with Diving 7
1.4.4 Chapter 5: Recursive Evaluate and Cut 7
1.4.5 Chapter 6: Simulation Based Evaluate and Cut 8
1.4.6 Chapter 7: Conclusions . 8

2 Background . 9
2.1 Introduction . 9
2.2 Combinatorial Optimisation . 9

2.2.1 Mixed-Integer Programming . 10
2.2.2 Constraint Programming . 11

2.3 Modelling Combinatorial Problems . 14
2.3.1 Algebraic Modelling . 14
2.3.2 High-Level Constraint Modelling . 15

iv

2.3.3 Modelling in MiniZinc . 15
2.3.4 A Comparison of Algebraic and Constraint Models 16
2.3.5 Compiling MinZinc Models . 17

2.4 Stochastic Programming . 18
2.4.1 Two-Stage Stochastic Programming 19
2.4.2 Multi-Stage Stochastic Programming 19

2.5 Solving Stochastic Programs . 22
2.5.1 Decomposition Approaches . 22
2.5.2 Scenario Decomposition . 23

2.6 Stochastic Programming Frameworks . 25
2.6.1 Modelling . 25
2.6.2 Stochastic Extensions to Algebraic Modelling Systems 26
2.6.3 Stochastic Extensions to Constraint Modelling Systems 27

2.7 Formalism . 29
2.7.1 Constraint Optimisation Problem . 29
2.7.2 Stochastic Constraint Satisfaction Problem 30
2.7.3 Scenario based Stochastic Constraint Optimisation Problem 30
2.7.4 Evaluate and Cut . 34

2.8 Conclusion . 36

3 Modelling . 37
3.1 Introduction . 37
3.2 Symmetry and Dominance . 39

3.2.1 Stochastic template design problem 41
3.2.2 Stochastic MiniZinc and symmetries/dominance 43

3.3 Global View on the Scenario Decomposition 45
3.3.1 Experiments . 49
3.3.2 Results . 49

3.4 Related Work . 51
3.5 Conclusion . 51

3.5.1 Limitations . 51
3.5.2 Future Work . 51

4 Evaluate and Cut with Diving . 53
4.1 Introduction . 53
4.2 Scenario decomposition and Lazy Clause Generation 54
4.3 Search Over Partial Assignments . 55
4.4 Experiments . 59

4.4.1 Results . 60
4.5 Related Work . 63
4.6 Conclusion . 63

4.6.1 Limitations . 64
4.6.2 Future Work . 64

v

5 Recursive Evaluate and Cut . 66
5.1 Introduction . 66
5.2 Recursive multistage E&C . 67

5.2.1 Naïve E&C Recursion . 67
5.2.2 Improved E&C Recursion . 68

5.3 Experiments . 71
5.4 Results . 72
5.5 Related Work . 74
5.6 Conclusion . 75

5.6.1 Limitations . 75
5.6.2 Future Work . 76

6 Simulation Based Evaluate and Cut . 77
6.1 Introduction . 77
6.2 Background - Monte Carlo Simulation . 79

6.2.1 Sample Average Approximation Method 80
6.2.2 Evaluating Candidate Solutions . 80
6.2.3 Discussion . 83

6.3 Simulation-based Evaluate and Cut . 84
6.3.1 Algorithm . 84
6.3.2 Experiments . 86
6.3.3 Results . 87

6.4 Related work . 92
6.5 Conclusion . 93

6.5.1 Limitations . 93
6.5.2 Future work . 94

7 Conclusions . 95
7.1 Modelling . 95

7.1.1 Evaluate and Cut with Diving . 96
7.1.2 Recursive Evaluate and Cut . 97
7.1.3 Simulation Based Evaluate and Cut 97
7.1.4 Concluding Remarks . 98

Appendix A Benchmark Models . 99
A.1 Template Design . 99

A.1.1 Template Design in Stochastic MiniZinc 99
A.1.2 Template Design Deterministic Equivalent 101
A.1.3 Template Design Data . 102
A.1.4 Stochastic Assignment and Scheduling Problem 104

A.2 Four-stage stochastic facility location problem 107

References . 110

vi

Vita . 119

vii

List of Tables

4.1 Speedup using vertical learning . 63
4.2 Time to prove optimality [sec] . 65

6.1 Comparison of SAA method and Statistical E&C 89
6.2 Time to generate or evaluate a single candidate 92

viii

List of Figures

1.1 Model and Solve Stochastic Problems . 3

2.1 Solving a MIP problem . 12
2.2 The n-queens problem . 13
2.3 Solving the n-queens problem with Constraint Programming 14
2.4 TSP in MIP . 16
2.5 TSP in CP . 16
2.6 Task assignment in MIP . 17
2.7 Task assignment in CP . 17
2.8 MiniZinc compilation . 18
2.9 A two-stage facility location problem . 20
2.10 A multi-stage facility location problem . 21
2.11 Stagewise decomposition . 23
2.12 Scenario decomposition . 24
2.13 A stochastic program modelled in a high level language 26
2.14 Stochastic task assignment in Stochastic MiniZinc 29
2.15 AND/OR tree . 31
2.16 Scenario tree . 32
2.17 Evaluate and Cut convergence . 34

3.1 Knapsack problem with uncertain profits modelled in stochastic Minizinc . 38
3.2 Symmetric solutions for the n-queens problem 40
3.3 Dominance relations in the knapsack problem 41
3.4 Template design problem (extract) . 42
3.5 A template design problem . 43
3.6 A native transformation in stochastic MiniZinc 44
3.7 The impact of a symmetry or dominance constraint 45
3.8 Scenario Grouping . 46
3.9 Facility location problem with two scenarios 47
3.10 Enforce a scenario constraint in all subproblems 48
3.11 Number of infeasible candidates . 50
3.12 Standard versus strengthened scenario subproblems 50

4.1 Inter-instance learning using a lazy clause generation CP solver 54
4.2 Inter-instance learning applied to E&C . 55

ix

4.3 Generalised assignment problem . 61
4.4 Time to prove optimality: E&C vs. diving 62

5.1 Time vs. number of scenarios (basic model) 73
5.2 Time vs. number of scenarios (extended model) 74

6.1 A two-stage facility location problem . 78
6.2 Time to solve a stochastic problem . 79
6.3 SAA illustration . 81
6.4 Ranking of candidates by objective value . 90
6.5 Simulated ranking of best candidate . 91

x

Modelling and Solving Techniques for
Stochastic Combinatorial Optimisation Problems

David Hemmi
david.hemmi@monash.edu

Monash University, 2019

Supervisor: Dr. Guido Tack

Associate Supervisor: Prof. Dr. Mark Wallace

Abstract

Combinatorial optimisation is concerned with solving mathematical problems that are
characterised by discrete choices, a set of constraints and an objective function, which mea-
sures the quality of a solution. Solving these problems is critical in a wide range of areas,
such as telecommunications, circuit design, supply chain management and transportation.
However, combinatorial optimisation problems are often subject to uncertainties that have
to be taken into account to produce realistic solutions.

Stochastic Programming is concerned with solving optimisation problems under un-
certainty. First, decisions are implemented before observing the random variables, and
thereafter recourse actions are taken in response to the now observed random variables.
Solving stochastic programs, especially of combinatorial nature, is notoriously difficult.
However, numerous systems emerged over the years that enable optimisation practition-
ers to A) model decision problems under uncertainty in a high-level language and B) use
back-end solvers to find high quality policies.

This thesis is concerned with improving systems that facilitate the modelling and
solving of combinatorial stochastic programs and is composed of four main contributions.
First, we show how symmetry and dominance breaking constraints are to be used correctly
when modelling stochastic problems and study other techniques to improve stochastic
optimisation models. Secondly, we improve the performance of an algorithm introduced
by Ahmed (2013) that is based on the scenario decomposition and developed to solve two-
stage stochastic problems with binary first-stage variables. Thirdly, we show how the same
algorithm can be generalised for multi-stage problems. And lastly, we present a method
that combines optimisation and simulation to find strong policies for problems that are
described using a large set of scenarios.

In conclusion, we show how modelling frameworks for stochastic programming can be
improved by incorporating modelling techniques from Constraint Programming and by
developing algorithms that utilise off-the-shelf solvers.

xi

Modelling and Solving Techniques for
Stochastic Combinatorial Optimisation Problems

Declaration

This thesis contains no material which has been accepted for the award of any other
degree or diploma at any university or equivalent institution and that, to the best of my
knowledge and belief, this thesis contains no material previously published or written by
another person, except where due reference is made in the text of the thesis.

David Hemmi
February 17, 2019

xii

Acknowledgments

I owe a great debt of gratitude to the supportive environment at Monash University, my
family and friends whose backing was instrumental for completing this work. I completed
a PhD, but lasting will be the memories and friendships created during the time of my
candidature.

First and foremost, I would like to thank my supervisors, Guido Tack, Mark Wallace,
and Andrea Rendl, for their overwhelming support. Without Andrea, I would have not
started my studies at Monash University. She has been a great inspiration ever since I
met her as a trainee at the Austrian Institute of Technology (AIT) in Vienna. I thank
Guido and Mark for their advice, encouragement, feedback and their generosity with time
throughout the whole PhD process.

Lots of learning and personal growth over the past years is attributed to extracurricular
activities and a big thank goes to Danushi Peiris for working with me on such exciting
projects.

I’m eternally grateful to my flatmates; this wasn’t just a house, it was a home!
Experiencing such incredible support was and still is overwhelming, thank you David,
Richard, Leslie, Helen and the whole family Graber for all you have done for me.

My sincere thanks also go to the people of Australia, Data61/NICTA and Monash Uni-
versity for allowing me to be part of the vibrant Australian research community. I’d also
like to thank my colleagues and friends at Monash University for stimulating discussions
and the great vibe in our office. Especially, I would like to mention the support of Kevin
Leo. Furthermore, I enjoyed many valuable and inspiring conversations with academics
that greatly helped shaping my thesis, I’d like to thank: Peter Stuckey, Tias Guns and
Ahmed Shabbir.

Last but not the least, I wish to thank my parents, Marianne and Hansjörg and my
sister Fiona for their continued support.

David Hemmi

Monash University
February 2019

xiii

xiv

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Complex decision making is ubiquitous in our modern society. Establishing a strategic
policy for long term investments, such as designing a future-proof electricity network or
transport system, is very challenging, since analysing large amounts of data is necessary to
make an informed statement. Similarly, operational decisions, such as packing cargo onto
delivery trucks to minimise the cost of distribution or scheduling operations, are decision
problems that require to be solved very quickly as they have to be implemented without
delay.

There is a rich history of using advanced analytical methods to help make better
decisions. These techniques might assist a decision maker in understanding the impact of
an action better, e.g. by using simulation or visualisation, or aim to improve the quality of
the decision-making process by computationally analysing data and intelligently proposing
a course of action. In particular, the field of mathematical optimisation is concerned with
finding a policy that satisfies a set of constraints while maximising or minimising a value
function. A well-known example that is solved using mathematical optimisation is the
travelling salesman problem where a list of cities is given to a sales person who decides in
what order to visit all of them before returning to the starting point while minimising the
total distance travelled.

Various research directions that aim to improve mathematical programming have
emerged over the years, for example, linear programming, mixed-integer programming,
and constraint programming to name just few. The structural properties of a decision
problem determine which technology is most promising for finding good policies quickly.

In practice, decision makers often face choices in environments that are governed by
uncertainty. For example, it is difficult to forecast the expected electricity consumption
in twenty years’ time, or even what the weather will be like next week, which greatly
determines the energy production level of a solar or wind power plant. These uncertainties
must be taken into account when investing in the electricity network or managing energy
production. Similarly, parameters such as customer demand, travel times or the price of
resources are often unknown at the time a decision is made.

This thesis contributes to decision making under uncertainty by combining
ideas from constraint programming and stochastic programming. The field of stochastic
programming is concerned with solving decision problems that are subject to uncertainty.

CHAPTER 1. INTRODUCTION 2

Constraint programming is looking at modelling and solving decision problems with dis-
crete choices, also called combinatorial optimisation problems.

In this thesis, we focus on modelling and solving combinatorial optimisation prob-
lems under uncertainty. We contribute by proposing modelling techniques that improve
stochastic problem formulations and by developing algorithms that find high quality poli-
cies for stochastic problems quickly. The subsequent sections will look more closely into
stochastic programming, introduce key terms, and define the scope and contribution of
this thesis in more detail.

1.1 Modelling and Solving Stochastic Programs

A key factor that enabled the success of classical (deterministic) mathematical program-
ming is the separation of modelling and solving a decision problem. To formalise mathe-
matical problems, a whole range of high-level modelling languages are available that allow
a decision maker to write models at a high level of abstraction. Often, these modelling
systems are solver agnostic, which means that a problem can be formalised without being
tailored for a specific solver. To solve the mathematical model, a back-end solver, which is
essentially an algorithm that is able to interpret and solve the model is utilised. Since the
model is solver agnostic, the decision maker can experiment with a variety of solvers that
have different strengths and weaknesses to find the technology that works best to solve a
specific optimisation problem. This separation enables decision makers to formalise and
solve a mathematical problem without having to implement algorithms themselves.

Decision problems under uncertainty are different to deterministic (no uncertainty) de-
cision problems as they contain random variables that describe the uncertainty. It is possi-
ble to model and solve stochastic programs using standard modelling systems as described
above. However, this is not advisable (Watson et al.; 2012), as it requires understanding of
how to formalise a mathematical program that contains random variables. Furthermore,
and perhaps more importantly, standard back-end solvers are not well equipped to solve
stochastic programs. For this reason, multiple modelling frameworks for decision making
under uncertainty have been developed over the years.

One way of modelling a stochastic program is by separating the problem into three key
components as illustrated in Fig. 1.1; a decision model, an uncertainty model and use case
specific data. As the name implies, the decision model contains a parametric description of
the decisions, constraints and objective function that define the optimisation problem. The
uncertainty model characterises the random variables, using scenarios, and their impact
on the decision model. A scenario is a concrete instantiation of the random variables
and a set of scenarios is used to describe our expectation of the future. The decision
model is impacted by the uncertainty model as the latter assigns decisions to time stages.
For example, in a two-stage stochastic program, decisions are taken before observing the
random variables, as well as afterwards. We call them first- and second-stage decisions and
the same concept can be generalised for multiple (more than two) decision stages. And
finally, the data file describes a specific use case of the model and matches the parameters

CHAPTER 1. INTRODUCTION 3

Decision
model

Uncertainty
model DataModelling:

Solving:

Off-the-shelf solver
- Deterministic equivalent

Dedicated solver
- Scenario decomposition

Compile

Stochastic Program

Figure 1.1: Model and Solve Stochastic Problems

in the decision and uncertainty model. The three components are then compiled into an
instance of a stochastic program.

To provide a better intuition for the three key components required to model a stochas-
tic program, we will use an example. Consider a news vendor who has to decide early in the
morning how many newspapers to purchase from the wholesaler, to sell them afterwards,
on that very same day to prospective customers. If the demand is less than the number
of copies she bought, she can return the left-overs at a low price. If she runs out of news
papers during the day, she pays a penalty. Her goal is to maximise the profit of selling
newspapers to customers. The decision model contains precisely what has just been
described; a decision, how many copies to purchase, a set of rules, what happens if the
number of copies she purchased does not match the demand, and her objective, maximis-
ing profit. In her case however, the customer demand is uncertain and the uncertainty
model contains a description of the random variables, e.g. the probability distribution
that describes how many copies she is likely to sell. The uncertainty model also assigns the
purchase decision to the first stage and describes that she wants to maximise her expected
profit. The expected profit denotes the average profit she makes when purchasing the same
number of news papers over many similar days. And lastly, the data file is used to create a
specific instance, for example, there might be multiple news vendors who apply our model
to their specific use case.

An instance of a stochastic program is solved in one of two ways. A straightforward
method to solve the stochastic problem is by formalising the deterministic equivalent
(DE), which is solved using an off-the-shelf solver. The DE is a single model that contains
all decisions and scenarios. However, while this approach is convenient, as it utilises
standard solver technology, its performance is often poor (Birge and Louveaux; 2011). To
achieve better performance, dedicated techniques to solve stochastic programs have been
developed (Schultz; 2003). These specialised algorithms are able to exploit the model
structure of a stochastic program, by decomposing the problem into smaller subproblems
that can be solved quickly.

CHAPTER 1. INTRODUCTION 4

1.2 Scope

This thesis is concerned with modelling and solving combinatorial optimisation problems
under uncertainty. The term combinatorial optimisation refers to decision problems with
discrete choices, for example assigning a lecturer to a classroom or deciding which delivery
truck will visit a customer. Discrete choice models with random variables are extremely
challenging to solve, as the complexity of a mathematical model increases greatly when
scenarios are used to describe the random variables.

The techniques used to solve combinatorial problems have various origins. On the
one hand, methods such as linear programming (LP) and its extension mixed integer pro-
gramming (MIP) are associated with applied mathematics and operations research. On the
other hand, approaches such as constraint programming and constraint logic programming
originate in computer science. Until now, most of the work in stochastic programming has
been closely linked to LP and MIP techniques.

In this thesis we will improve on some of the existing MIP techniques, translate con-
cepts from constraint programming to stochastic programming and develop new methods
that are a combination of both worlds. We focus on improving existing frameworks for
modelling and solving stochastic programs. We will not propose a new modelling paradigm
or framework, but rather acknowledge that there are multiple systems available that al-
ready cater for uncertainty. We address the modelling of stochastic programs by proposing
techniques to strengthen decision models formalised in one of these existing systems; a
model is stronger if it can be solved faster. However, we will not address how to formalise
uncertainty or generate scenarios, as this is a research topic in itself. Furthermore, we ad-
dress the solving of stochastic programs by developing algorithms to solve combinatorial
stochastic programs and evaluate their performance using empirical experiments.

1.3 Research Questions and Objectives

The research objective of this thesis is to improve the performance of systems that
support decision making under uncertainty. We aim to develop methods and algorithms
that enhance the usability of modelling frameworks developed to solve stochastic programs.
All our research efforts are made with Stochastic MiniZinc (Rendl et al.; 2014) in mind, a
modelling framework for stochastic programs; however, our results are equally applicable
to be implemented in comparable systems. The research questions (RQ) that govern this
thesis are the following.

1.3.1 RQ1: What role can modelling techniques that have shown to
improve deterministic optimisation problems play when modelling
stochastic programs?

In constraint programming, multiple techniques to strengthen optimisation models have
been proposed. For example, combinatorial problems often exhibit symmetries and dom-
inance relations. Two solutions are symmetric if they are invariant to transformations,

CHAPTER 1. INTRODUCTION 5

in other words the quality of two solutions is equal. A dominance relation describes a
situation where one solution is guaranteed to be better than another. Breaking symme-
tries and dominance relations is standard practice in traditional (deterministic) constraint
programming. In this thesis we will explore the following hypothesis:

Hypothesis 1:

Constraint programming modelling techniques that are evidently beneficial to solve deter-
ministic combinatorial problems can be adopted to strengthen stochastic programs.

1.3.2 RQ2: How can scenario based combinatorial stochastic programs,
formalised in a high-level modelling language, be solved effectively
using decomposition methods and off-the-shelf solvers?

As show in Fig. 1.1, there are two ways of solving a stochastic program. The most
straightforward way, is to compile the stochastic program into a deterministic equivalent
and solve it with an off-the-shelf solver. However, while the DE method works well to
solve easy problems, often times it does not scale to more difficult ones. For this reason,
many researchers have proposed algorithms that exploit the specific problem structure of
stochastic programs. A common approach that is based on model structure analysis is
called decomposition, where the original problem is broken up into subproblems that
can be solved with ease. A stochastic problem can for example be separated by scenarios,
where each scenario is considered as a subproblem. Many algorithms to solve stochastic
problems are developed on the basis of the scenario decomposition (Schultz; 2003).

In this thesis, we are looking to exploit the scenario decomposition to solve stochastic
problems effectively. We aim to incorporate learning techniques from constraint pro-
gramming, generalise a two-stage algorithm to solve multi-stage problems and propose
techniques to improve existing algorithms, which leads us to the following hypothesis.

Hypothesis 2:

Combining the scenario decomposition with off-the-shelf solvers allows us to develop algo-
rithms that effectively solve combinatorial stochastic optimisation problems to optimality.

1.3.3 RQ3: How can simulation be used to improve the quality of a
policy?

We are interested in solving stochastic programs, where in many cases, the scenario-based
uncertainty model is only an approximation of the actual stochastic process. For example,
a continuous distribution is sampled to obtain scenarios. On the one hand, the more
scenarios are used to describe the uncertainty, the better the approximation (Shapiro and
Philpott; 2007). On the other hand, increasing the number of scenarios also increases
the time it takes to solve a stochastic program (Kleywegt et al.; 2002). In this thesis
we are interested in combining optimisation techniques to solve scenario based stochastic

CHAPTER 1. INTRODUCTION 6

problems with simulation, to achieve a trade-off between the time to solve a stochastic
problem and the quality of the uncertainty approximation.

Hypothesis 3:

Combining optimisation and simulation techniques allows us to find policies that are better
with respect to the actual stochastic process, rather than the scenario-based uncertainty
model, which is only an approximation thereof.

1.4 Structure and Contributions

This thesis is structured to first provide the relevant background knowledge before ad-
dressing the research questions in sequence.

1.4.1 Chapter 2: Background

The background chapter introduces the fundamental concepts of deterministic optimisa-
tion, such as constraint programming, mixed-integer programming and relevant modelling
techniques. It proceeds by addressing the basics of stochastic programming and relates it
back to deterministic optimisation. Thereafter the background introduces the formal no-
tation that is used throughout the thesis for developing algorithms. The chapter concludes
with the presentation of an algorithm to solve two-stage stochastic problems introduced
by Ahmed (2013) that is relevant for all subsequent chapters.

1.4.2 Chapter 3: Modelling

The modelling chapter aims to improve the performance of solving stochastic programs
using modelling techniques; it discusses the role of adding extra constraints to stochastic
programming formulations that are not strictly required for the basic problem description.
First, we discuss the role of symmetry and dominance relations in constraint program-
ming. It is well established that using symmetry and dominance breaking constraints
yields stronger models. However, these constraints are not an integral part of the model
description, rather they aim to support the solver to search more effectively. Secondly,
when decomposing a stochastic program, information that was implicit before splitting up
the model is no longer available in the subproblems. We introduce a modelling technique,
based on redundant constraint, that explicitly introduces this information back into the
subproblems.

Contribution

We show that explicitly marking constraints such as dominance and symmetry breaking
constraints, is a necessity in stochastic programming modelling frameworks. Failing to
identify these extra constraints explicitly leads to incorrect model definitions. We also
show how to compile the extra constraints once they are marked as such.

CHAPTER 1. INTRODUCTION 7

Secondly, we show how problem specific information is lost when decomposing a
stochastic program into scenarios. Thereafter, we propose a solution and empirically
demonstrate its effectiveness.

1.4.3 Chapter 4: Evaluate and Cut with Diving

This chapter is concerned with solving two-stage combinatorial stochastic programs. The
background chapter introduces an algorithm that we call Evaluate and Cut published by
Ahmed (2013). This algorithm is based on the scenario decomposition and performs very
strongly in finding the optimal solution to stochastic programs quickly. However, the
algorithm exhibits a weakness with regard to proving optimality.

Contribution

We present a method called diving to decrease the time it takes to prove optimality
and ultimately improve the performance of Evaluate and Cut. Furthermore, we introduce
vertical learning, an application of inter-instance learning, a constraint programming tech-
nique introduced by Chu and Stuckey (2012). Finally, we evaluate our contribution using
empirical experiments. This chapter has been published as:

David Hemmi, Guido Tack, and Mark Wallace. “Scenario-based learning for stochas-
tic combinatorial optimisation”. Integration of AI and OR Techniques in Constraint
Programming, CPAIOR 2017, Proceedings, pp. 277-292.

1.4.4 Chapter 5: Recursive Evaluate and Cut

This chapter is concerned with solving multi-stage combinatorial stochastic programs.
Often, uncertainty is revealed over time and modelling a stochastic program with multi-
ple decision stages is natural. Solving multi-stage problems is challenging and adapting
algorithms that have been developed to solve two-stage problems is not straightforward.

Contribution

We present an algorithm called Recursive Evaluate and Cut that is a generalisation of
the two-stage algorithm introduced by Ahmed (2013). First, we present the naïve recur-
sive of the two-stage algorithm. Thereafter, we present an improved recursive algorithm
that solves combinatorial multi-stage programs effectively. Finally, we solve a multi-stage
facility location problem to provide empirical evidence for the performance of Recursive
Evaluate and Cut. This chapter has been published as:

David Hemmi, Guido Tack, and Mark Wallace. “Decomposition-Based Solving Ap-
proaches for Stochastic Constraint Optimisation”. Thirty-Second Conference on Ar-
tificial Intelligence, AAAI 2018, Proceedings, pp. 1322-1329.

CHAPTER 1. INTRODUCTION 8

1.4.5 Chapter 6: Simulation Based Evaluate and Cut

This chapter presents a method that combines Evaluate and Cut (Ahmed; 2013), an
optimisation technique, with simulation. Often when using scenario based stochastic pro-
gramming, a trade-off is made between A) the accuracy of the uncertainty model that
approximates the real stochastic process and B) the time required to solve the resulting
optimisation problem. More scenarios improve the quality of the approximation, but also
increase the time it takes to solve a stochastic program.

Contribution

We present an algorithm called Simulation Based Evaluate and Cut that combines stan-
dard Evaluate and Cut with simulation techniques to get the best out of both worlds;
the optimisation algorithm finds high quality policies, and simulation is used to evaluate
the quality of the resulting policies on a model that approximates the stochastic process
better compared to the optimisation model.

1.4.6 Chapter 7: Conclusions

The final chapter summarises the work that was completed as part of this thesis, presents
conclusions and addresses future work.

CHAPTER 2. BACKGROUND 9

Chapter 2

Background

2.1 Introduction

This thesis contributes to the modelling and solving of combinatorial optimisation prob-
lems that are subject to uncertainty. The overarching aim is to solve stochastic programs
faster. This is achieved by improving modelling and solving techniques that are suitable
to tackle stochastic combinatorial optimisation problems.

This chapter introduces the fundamental concepts required to understand the subse-
quent contributions. We start with a non-formal introduction to combinatorial optimisa-
tion and show how to model and solve these types of problems. Thereafter, we proceed
with decision making under uncertainty, specifically, we introduce stochastic programming.

The first part of the chapter, namely sections 2.2 to 2.6.3, aims to introduce the
relevant background without using mathematical formulations. The structure was chosen
with purpose, with the aim to be accessible to the reader who wishes to get an overview of
the research project without studying the formalities of the thesis in great mathematical
detail. The chapter concludes with section 2.7 that introduces the mathematical notation
before formally introducing the most relevant background algorithms. Out of necessity,
the chapter repeats certain topics; a topic may initially be addressed informally in the
first part before looking at the same topic once again using mathematical notation.

2.2 Combinatorial Optimisation

Combinatorial optimisation is a field at the intersection of applied mathematics and the-
oretical computer science and is concerned with finding an optimal selection from a finite
set of objects that maximises or minimises an objective function. Combinatorial problems
are found in a wide range of areas such as circuit design, transportation, network manage-
ment and configuration, logistics, and production scheduling (Barták; 1999). In this thesis,
we will investigate the impact of uncertainty when modelling and solving combinatorial
optimisation problems. For example, finding a production schedule when processing times
are uncertain is quite a different problem compared to a production scheduling problem
with known processing times.

CHAPTER 2. BACKGROUND 10

There are many ways to solve combinatorial optimisation problems. For example,
one could implement a problem specific algorithm. The advantage of problem specific
algorithms is that they are able to exploit what is known about the problem and can
therefore be very efficient. However, implementing a special algorithm to solve a problem
can often not be justified, as the time to develop, test and deploy a new method is high.
To decrease the effort of solving optimisation problems, general purpose solvers have been
developed. A solver is designed to read a mathematical formulation and to solve it. Mature
solvers have typically many decades of research and development invested in them.

Using general-purpose solvers breaks up the task of solving combinatorial problems
into two parts. Firstly, an active field of research is concerned with the question of how
to increase the efficiency of general-purpose solvers. Secondly, questions arise on how to
model an optimisation problem, as a well formalised model reduces the time it takes the
solver to find high quality solutions.

While generic solvers are able to solve many kinds of combinatorial problems, they often
work best for a specific problem class and not so well for others, a classic example of the no-
free-lunch theorem (Wolpert and Macready; 1997). It is often difficult to predict what kind
of algorithm or solver works best to solve a specific problem (Kotthoff; 2016). Therefore,
having a system that enables researchers and practitioners to use several different solvers
without rewriting their model is of great value.

The rest of this section introduces the most relevant solving techniques for this thesis,
without aiming to be comprehensive.

2.2.1 Mixed-Integer Programming

Mixed-integer (linear) programming (MIP) is concerned with solving combinatorial opti-
misation problems that are formalised using a mix of continuous and discrete variables
constrained by linear inequalities. The quality of a solution is measured using a linear ob-
jective function. MIP is an extension of linear programming (LP), a line of research that
is said to have started with George Dantzig in 1947 (Bixby; 2012). LP is concerned with
solving problems that are formalised using only continuous variables and linear constraints.

Equation 2.1 is a simple example of a MIP. The problem is composed of two integer
variables x and y, a set of four linear constraints and an objective function that asks to
maximise the value of y.

maximise: y

−x+y ≤1

3x+ 2y ≤12

2x+ 3y ≤12

x,y ≤0

x,y ∈Z

(2.1)

The main steps to solve the problem introduced above are displayed in Fig. 2.1. First, by
removing the integrality condition on the variables x and y we obtain the LP relaxation of

CHAPTER 2. BACKGROUND 11

the MIP problem. The LP relaxation is considered easy to solve; it can be solved using the
well-known simplex algorithm or the interior point method. Note, the optimal solution to
an LP can always be found at an intersection of two or more constraints, depending on
the dimensions of the problem.

In our example, the optimal solution to the LP relaxation assigns fractional values for
both variables x and y (1). To obtain an integer solution, a branching scheme that splits
the original problem into two subproblems is used. By introducing the constraints x ≤ 1
and x ≥ 2 (2), two subproblems are generated that rule out a current non-integer value
without eliminating any integer solutions. After introducing the additional constraints, the
LP relaxation for the subproblem with the additional constraint x≥ 2 is solved. The new
solution is integral in x, however remains fractional in y. This is why we branch on y and
solve the LP relaxation again to obtain a feasible solution; x= 2 and y= 2 (3). Lastly, after
finding an incumbent solu@tion, the feasible solution with the highest value seen so far,
we add a constraint that enforces future solutions to return a higher objective value than
the currently best (y > 2). This procedure is repeated until the optimal solution is found
and optimality has been proven. Needless to say, modern solvers employ many additional
strategies to improve search performance such as pre-solving or branch-and-cut. The
following software packages employ, among other techniques, the above method to solve
MIP problems; Gurobi (Gurobi Optimization Inc.; 2014), Xpress (FICO Xpress; 2016),
CPLEX (IBM CPLEX; 2011), Mosek (MOSEK; 2016), the GNU Linear Programming
Kit (GLPK; 2006), SCIP (Gamrath et al.; 2016), and the Coin-or branch-and-cut (Cbc)
solver (Forrest et al.; 2018).

2.2.2 Constraint Programming

Constraint programming (CP) is another approach for modelling and solving combinatorial
problems. Modern CP is the result of many years of research; it started with early work on
constraint based systems (Sutherland; 1964), continued with work that used the PROLOG
system as host framework for CP with negations (Van Emden and Kowalski; 1976), to
constraint logic programming (Jaffar and Lassez; 1987) and constraint based reasoning,
which introduced the general concept of a Constraint Satisfaction Problem (Guesgen and
Hertzberg; 1992) and, finally, to the modern concept of Constraint Programming (Rossi
et al.; 2006).

A constraint program is composed of variables, domains associated with variables,
constraints and an objective function. Problems formalised using the CP approach are not
limited to linear constraints and a linear objective function. To find solutions, CP solvers
use a combination of propagation and search. Propagation reduces the domain of variables
until no further reduction is possible or a constraint is violated. After propagation has
finished, search assigns values from their domain to variables. If a constraint is violated by
a variable assignment, backtracking is used to revert to previous search decisions. Modern
solvers employ many additional strategies to improve the search performance.

A neat example to introduce the foundation of CP based search and propagation is the
n-queens problem modelled in Fig. 2.2 and visualised in Fig. 2.3. We are given n queens

CHAPTER 2. BACKGROUND 12

y

x
Branch on x-variable (fractional) and
solve LP relaxation

! ≥ 2! ≤ 1

2! + 3(≤ 12

3! + 2(≤ 12

max(
y

x

(− ! ≤ 1

Find the LP optimal solution
1 2 3 4

1

2

3

y

x
Branch on y-variable (fractional)
solve LP relaxation

! ≥ 2! ≤ 1

(≤ 2

y

x
A feasible solution has been found
add a constraint on the objective function

! ≥ 2! ≤ 1

(> 2

max(
1 2

3 4

Figure 2.1: Solving a MIP problem

CHAPTER 2. BACKGROUND 13

1 include "alldifferent.mzn";
2 %number of queens
3 int: n;
4 %queen of column i is placed in row q[i]
5 array[1..n] of var 1..n: q;
6
7 %distinct rows
8 constraint alldifferent(q);
9 %distinct diagonals upwards

10 constraint alldifferent([q[i] + i | i in 1..n]);
11 %distinct diagonals downwards
12 constraint alldifferent([q[i] - 1 | i in 1..n]);
13
14 solve :: int_search(q, first_fail, indomain_min, complete)
15 satisfy;

Figure 2.2: The n-queens problem

and a chess board of size n (n may be different than eight). The goal is to place exactly
one queen in every row, column and diagonal. A possible solution is displayed in Fig. 2.3,
with n = 4, in the bottom right corner. Each column contains exactly one queen and no
two queens share a row or diagonal. The problem is modelled using variables that describe
for each column where the respective queen is placed, Fig. 2.2 line 5. The domain of the
variables is 1 to n; each queen is placed in a row with index 1, . . . ,n. The alldifferent

constraints, line 8 to 12, enforce the rules of the game.
The procedure to solve the n-queens problem is displayed in Fig. 2.3. First, we employ

propagation on the empty chess board (1), top left. No domain reduction is possible at
this point, as no queen has been deployed yet. Secondly, search places a queen in the
first column q[1] = 2 (2). Propagation is now able to reduce the domain of the remaining
variables (3). For example, the domain of q[2] is reduced to {4}, q[3] to {1,3} and finally
q[4] to {1,3,4}, indicated by the red colour. Thereafter, a queen is placed in q[2] = 4 (the
only option) and the domain of the variables is further reduced (4). Next, a queen is
positioned at q[4] = 1, and the result of this variable assignment is a domain reduction of
q[3] to the empty set. This violates the constraints of the game, as one queen must be
placed in every column, and therefore the current queen placement cannot yield a feasible
solution. As a result, the last search decision is reversed, also called backtracking, and the
queen is placed in the only alternative location (6).

Many CP solvers exist, including Gecode (Schulte et al.; 2006), ECLiPSe (Apt and
Wallace; 2006), Mistral (Hebrard and Siala; 2017), Minion (Gent et al.; 2006), Opturion
CPX (Opturion CPX; 2018), Chuffed (Chu; 2011) and Choco (Prud’homme et al.; 2014).
All these solvers work on the basis of propagation and search, however employ lots of
additional techniques to improve the search performance.

CHAPTER 2. BACKGROUND 14

1 2 3

4 5 6

q[1] q[2] q[3] q[4] q[1] q[2] q[3] q[4] q[1] q[2] q[3] q[4]

Figure 2.3: Solving the n-queens problem with Constraint Programming

2.3 Modelling Combinatorial Problems

In the previous section we introduced MIP and CP as two generic solving techniques for
combinatorial problems. This section addresses how to create models of combinatorial
problems that are solved by off-the-shelf (generic) solvers.

When generic solvers started to be developed, mathematical problems were typically
modelled using code that would construct input for a specific solver. Later with systems
based around the concept of constraint logic programming (Van Emden and Kowalski;
1976), declarative languages were used to formalise problem instances. These models
could be passed on to multiple back-end solvers. In the following, we first introduce
algebraic modelling before we proceed with addressing the CP modelling paradigm and
conclude with contrasting both.

2.3.1 Algebraic Modelling

Algebraic modelling languages are a popular way of describing combinatorial problems.
Many systems are available such as, GAMS (Bussieck and Meeraus; 2004), Pyomo (Hart
et al.; 2012), AMPL (Fourer et al.; 1993), AIMMS (Bisschop and Roelofs; 2006a), Mosel
(Colombani and Heipcke; 2002), and JuMP (Dunning et al.; 2017), the optimisation pack-
age for the numerical computing system Julia (Bezanson et al.; 2017). The syntax of
these systems is similar to the mathematical notation of optimisation problems (Kallrath;
2013). The modelling is “solver independent”, once formulated, a model can be solved
using a MIP solver without customising the model for it. An algebraic model is typically

CHAPTER 2. BACKGROUND 15

composed of continuous and discrete variables, linear constraints and a linear objective
function. However, some of the systems mentioned above include support for non-linear
constraints and objective function.

2.3.2 High-Level Constraint Modelling

Algebraic modelling intends to be syntactically close to the mathematical notation of op-
timisation problems. The CP modelling paradigm is different as it aims to capture the
structure of a model on a high level of abstraction. This is achieved by using global con-
straints to capture common model sub-structures and by providing user-defined predicates
and functions. A CP model is composed of variables, associated domains and constraints.
A number of CP modelling languages are available such as, OPL (Van Hentenryck et al.;
1999), Zinc (de la Banda et al.; 2006), Essence (Frisch et al.; 2007) and MiniZinc (Nether-
cote et al.; 2007). Constraint models can either be solved using a CP solver directly or
they can be linearised and then solved using MIP technology. In the following we will use
MiniZinc to introduce the main concepts of modelling in CP by example.

2.3.3 Modelling in MiniZinc

The n-queens problem modelled in Fig. 2.3 uses MiniZinc syntax. In line 3 the parameter n
is declared. For the model to become a concrete problem instance, n needs to be specified.
This is usually done in a separate data file. Later, in line 5, the variables of the model
are declared. A variety of variable types are available in constraint programming, such as
Booleans, integers, floats, enumerated types, and strings. The types can be aggregated
using arrays or sets. In line 8 to 12, the constraints of the problem are defined. As in
MIP, the constraints can be linear. However, in addition, it is possible to define non-linear
and logical constraints as well as global constraints, such as the alldifferent constraint
used in the example. Global constraints enable stronger propagation as the structure of
the model is explicitly captured, as opposed to using a set of disconnected constraints
(Beldiceanu et al.; 2007). Lastly, the model contains a solve item, line 14. The solve
item specifies that we are either interested in finding a variable assignment that satisfies
all constraints or it defines whether to minimise or maximise a given objective function
whilst satisfying the constraints.

CP solvers strongly rely on the search strategy used when solving a model. As a
result, constraint modelling languages allow the modeller to specify a search strategy. For
example, the solve item in 14 is annotated with int_search, in which a search strategy is
specified. Understanding how search strategies work is not important to follow the rest of
the thesis.

Note: While deterministic optimisation enjoys an almost universally accepted canoni-
cal form, there is no comparable standard form to express stochastic optimisation problems
(Powell; 2014). MiniZinc (Nethercote et al.; 2007) and its predecessor Zinc (de la Banda
et al.; 2006) are formal languages. Therefore, we use throughout the thesis the MiniZinc
language to describe optimisation problems, including stochastic problems.

CHAPTER 2. BACKGROUND 16

2.3.4 A Comparison of Algebraic and Constraint Models

We introduced the concept of algebraic modelling and the way a problem is formalised
using CP. To further clarify the differences, this section will contrast models specified in
either paradigm using MiniZinc notation.

Travelling salesman problem

The travelling salesman problem (Applegate et al.; 2006) is a well-studied mathematical
problem. Given a road network and a set of cities, the challenge is to find the shortest path
to visit each city and return to the starting location. In Fig. 2.4 the TSP is modelled using
algebraic notation. The distance between each city is given by the parameter Distance.
A two-dimensional array of variables with domain {0,1}, called arc, denotes whether a
road segment is travelled or not. The load variables are used for sub-tour elimination; all
cities have to be visited in one single tour. The linear constraints in line 8 to 12 state
first that each city is visited exactly once followed by the sub-tour elimination constraints.
The solve item indicates that we aim to find the shortest path.

The TSP can also be modelled using the CP paradigm, as shown in Fig. 2.5. Instead
of using a matrix of binary arc variables, we define a vector of successors that specifies
which city to visit after the current one. In the MIP formulation, a set of linear constraints
was used to specify the core of the problem. When modelling in CP, the global constraint
circuit can be used. The circuit constraint (Lauriere; 1978) implicitly captures the
structure of the model, including sub-tour elimination.

1
2 array[1..N,1..N] of int: Distance;

3 array[1..N,1..N] of var 0..1: arc;

4 array[1..N] of var 0..N: load;

5
6 var int: total_distance;

7
8 constraint forall(i in 1..N)(

9 sum(j in 1..N)(arc[i,j]) = 1 /\

10 sum(j in 1..N)(arc[j,i]) = 1);

11 %Subtour elimination constraint

12 constraint forall(i,j in 2..N)(

13 load[i] - load[j] + N * arc[i,j]

14 <= N-1);

15
16
17 constraint total_distance =

18 sum(i,j in 1..N)

19 (Distance[i,j]*arc[i,j]);

20
21 solve minimize total_distance;

Figure 2.4: TSP in MIP

1 include "globals.mzn";

2 array[1..N,1..N] of int: Distance;

3
4
5 array[1..N] of var 1..N: successor;

6 var int: total_distance;

7
8
9
10
11
12
13
14
15 constraint circuit(successor);

16
17 constraint total_distance =

18 sum(i in 1..N)

19 (Distance[i,successor[i]]);

20
21 solve minimize total_distance;

Figure 2.5: TSP in CP

CHAPTER 2. BACKGROUND 17

Task assignment Problem

The challenge in the task assignment problem is to assign tasks to workers and maximise
the value of all completed tasks. There are at least as many tasks as workers and each
worker executes exactly one task. The MIP formulation of this problem is listed in Fig.
2.6. As in the TSP, a two-dimensional array of binary variables, w_t is used to represent
the task to worker assignment. A set of linear constraints, line 9 to 13, specifies that
each worker has one task assigned (first set of constraints) and that each task is at most
assigned to a single worker. The CP version of the assignment problem, Fig. 2.7, uses the
global constraint alldifferent (Lauriere; 1978) to represent the same logic.

1
2 set of int: WORKER;

3 set of int: TASK;

4 array[WORKER,TASK] of int: value;

5
6 array[WORKER,TASK] of var 0..1: w_t;

7
8
9 constraint forall(w in WORKER)(

10 sum(t in TASK)(w_t[w,t] = 1));

11
12 constraint forall(t in TASK)(

13 sum(w in WORKER)(w_t[w,t] <= 1));

14
15
16 solve minimize

17 sum(w in WORKER, t in TASK)(

18 w_t[w,t] * value[w,t]);

Figure 2.6: Task assignment in MIP

1 include "globals.mzn";

2 set of int: WORKER;

3 set of int: TASK;

4 array[WORKER,TASK] of int: value;

5
6
7 array[WORKER] of var TASK: task;

8
9
10
11
12
13
14 constraint alldifferent(task);

15
16 solve minimize

17 sum(w in WORKER)(

18 value[w,task[w]]);

Figure 2.7: Task assignment in CP

Conclusion

In contrast to algebraic modelling frameworks that replicate mathematical syntax, the
CP modelling paradigm captures the problem structure at a higher level of abstraction.
Constraint Programming permits logical constraints, such as implications, conjunctions
and disjunctions that introduce non-linearities into the mathematical model, which can
only be expressed indirectly in algebraic models, for example with additional variables and
constraints. However, each CP model can be reformulated, e.g. linearised, to match the
structural properties required to be solved using MIP technology.

2.3.5 Compiling MinZinc Models

Modern high-level modelling languages, including MiniZinc, follow a three-step procedure;
modelling, compilation and solving. The compile process of MiniZinc is conceptually
illustrated in Fig. 2.8. The user formalises a model, that is, a parametric specification

CHAPTER 2. BACKGROUND 18

model.mzn
include “alldifferent.mzn”

set of int: WORKER;
set of int: TASK;
array[WORKER, TASK] of int: value;

array[WORKER] of var TASK: task;

constraint alldifferent(task);

solve minimize sum(w in WORKER)
(value[w,task[w]]);

globals.mzn

alldiff.mzn

WORKER = {1,2};
TASK = {1,2,3};
value = [|4,5,6|

9,8,7|];

data.dzn

mzn2fzn

solver

instance.fzn
array[1..3] of int: X_INTRODUCED_3_ = [4,5,6];
array[1..3] of int: X_INTRODUCED_5_ = [9,8,7];
array[1..2] of int: X_INTRODUCED_7_ = [1,-1];

var 1..3: X_INTRODUCED_0;
var 1..1: X_INTRODUCED_1;
var 11..15: X_INTRODUCED_2 :: is_defined_var;

constraint int_lin_le([2],[X_INTRODUCED_0],1);
constraint int_lin_ne([7],[X_INTRODUCED_1],6);
constraint int_lin_eq([8],[X_INTRODUCED_2],9);

solve minimize obj;

(Solver specific
reformulations)

Figure 2.8: MiniZinc compilation

of the problem, top left. A model can include global constraints that are specified in a
library. The compiler then creates an instance, using the parametric model, a data file
and information from the library. The resulting instance is a solver specific FlatZinc file.
FlatZinc contains all specifications for the solver and is not intended to be human readable.

The MiniZinc library contains solver specific information. When creating a FlatZinc
instance for a solver that understands a specific global constraint, the constraint is passed
on to the solver. Otherwise, the MiniZinc compiler rewrites, e.g. linearises, constraints
such that a MIP solver can be used as back-end solver. The ability to reformulate the
structure of a model into instances that are optimised for a specific solver makes CP
modelling frameworks versatile and powerful.

2.4 Stochastic Programming

Stochastic programming is an approach for modelling and solving optimisation problems
that include random variables. Many decision problems are subject to uncertainty. For
example, the price of commodities, such as fuel or feed for cattle, often varies between
the planning and execution stage. These fluctuations must be considered to ensure the
profitability of a business. Similarly, customer demand is often unknown. While machine
learning and statistical inference methods provide a means to forecast demand patterns,
predictions are always subject to a confidence level that must be taken into account to
implement robust decisions. Various strategies might be considered when solving a decision
problem under uncertainty.

To provide an intuition for some of the basic strategies that can be employed when
optimising under uncertainty, we are using an example. Consider the challenge of designing

CHAPTER 2. BACKGROUND 19

milk pick-up routes, with unknown milk production. Once the capacity limit of the truck
is met, e.g. on a high production day, the tank must be emptied before proceeding with
collecting milk. One might decide to wait-and-see until the randomness is revealed. In
our example, the trucks could be held back until the milk production for the day is known
before planning the tours. However, delaying decisions is not always possible, e.g. the
time to finish a tour might be long and delaying the start compromises other operations.
Another approach would be to create robust tours that remain feasible, even in the worst
case. It is possible to design milk pick-up tours that ensure enough truck capacity even
when all farmers produce maximal outputs. However, such robust solutions are often
conservative and may impose unnecessary cost. This thesis studies strategies where a set
of decisions is implemented before observing the randomness and other decisions made
after, to account for the uncertainty.

2.4.1 Two-Stage Stochastic Programming

The idea behind two-stage stochastic programming is that optimal decisions should be
based on data available at the time a decision is made and should not depend on future
observations. This results in two decision stages, one before observing the uncertainty
and one after. To support the explanation, we use a two-stage facility location problem
as illustrated in Fig. 2.9. The challenge in the classical (deterministic) facility location
problem is to select a set of facilities, e.g. warehouses, that will be used to serve a number
of predetermined customers, e.g. shops, whilst minimising the cost of opening facilities
and distributing goods. Now, let us assume that building facilities takes time and we
have to decide where to build facilities before knowing the precise customer demand.
The decisions taken before observing the uncertainty are called first-stage decisions.
For example, in the facility location problem we initially decide which facilities to open,
Fig. 2.9 top left corner. Scenarios are used to represent the uncertainty. Each scenario
captures a potential instantiation of the random variables, e.g. three scenarios are used
to describe how the customer base might look like in the future. Furthermore, scenarios
are associated with probabilities, e.g. not every scenario may be equally likely. In the
second stage, decisions are taken with respect to each scenario, e.g. assigning customers
to facilities. Importantly, the first-stage decisions are made without anticipating which
scenario will actually occur, this is called the nonanticipativity principle. Finally, the
goal might be to optimise with respect to the expected value of the problem; in the
facility location example we would like to find an assignment that minimises the cost
of opening the facilities (first-stage cost) and the expected cost of serving the customers
(second-stage cost). The expected cost is the probability weighted cost over all scenarios,
e.g. the average. Alternatively, one might seek a solution that is optimal with respect to
a risk measure such as Value at Risk or Conditional Value at Risk (Jorion; 2000).

2.4.2 Multi-Stage Stochastic Programming

The last section introduced the basic concepts behind two-stage stochastic optimisation.
Most importantly, it explained that decisions are split up into a first and second stage,

CHAPTER 2. BACKGROUND 20

First stage decision Scenario 1

Scenario 3Scenario 2

Second stage

First stage

Figure 2.9: A two-stage facility location problem

where the first-stage decisions are made without anticipating the future. However, in
many cases the uncertainty is revealed over time. For example, consider the management
of inventory in a store. Each quarter (or other decision period), the remaining stock is
assessed, and new products are ordered.

In Fig. 2.10 we illustrate a multi-stage stochastic facility location problem. In this
example, we assume that customers open and close their operations over time and the
layout of facilities must be adapted to meet customer demand. As in the two-stage case, a
number of facilities is opened in the first stage. Thereafter, in the second stage, we assign
customers to facilities. However, an additional set of decisions is made; we might decided
to open further facilities to cope with future demand. In the third, and last stage, the
only decision left is the assignment of customers to facilities. The scenario structure in
multi-stage stochastic optimisation forms a tree. In the very first or root stage, decisions
are made with respect to all scenarios. However, later, e.g. in the second stage, the scope
of decisions reduces to the set of scenarios that can be reached from the current node
towards the leaves, for example the second-stage decisions for scenario one and two are
identical.

CHAPTER 2. BACKGROUND 21

1

Stage 1 Stage 2 Stage 3

21

1 2

21

1
2

1
2

1
2

Scenario 4

Scenario 3

Scenario 2

Scenario 1

First-stage decisions:

1) Open facility 1
Second-stage decisions:

1) Assign customers to

2) Open new facilities

1
2

Third-stage decisions:

1) Assign customers to

and

1
2

Figure 2.10: A multi-stage facility location problem

CHAPTER 2. BACKGROUND 22

2.5 Solving Stochastic Programs

Stochastic combinatorial optimisation problems are challenging to solve and many spe-
cialised algorithms have been developed to solve them, an overview of which can be found
in (Schultz; 2003). In the following we will introduce the most relevant methods to solve
two-stage scenario-based stochastic problems. Many of these techniques can in theory be
generalised to multi-stage problems.

Deterministic Equivalent

The most straightforward method to model and solve stochastic problems is the determin-
istic equivalent (DE) formulation. The DE is one large model that contains all scenarios
that represent the stochastic problem. The model is composed of a set of first-stage vari-
ables and constraints. In addition, it contains copies of the second-stage variables and
constraints, one for each scenario. This implies that the model grows linearly with the
number of scenarios. The DE is then solved using any off-the-shelf MIP or CP solver.
Using the DE is convenient as it can directly be formulated, and no specialised algorithm
is required to solve it. However, for combinatorial problems, a linear increase in the size
of the model (e.g. scenarios) leads to an exponential growth in the search space. As a
result, deterministic equivalent models become computationally intractable when more
than just few scenarios are modelled. To solve stochastic programs more effectively, many
algorithms that are based on decomposition techniques have been developed.

2.5.1 Decomposition Approaches

Scenario-based stochastic optimisation problems exhibit a convenient structure to be de-
composed into subproblems and solved accordingly. Decomposition approaches have been
developed to exploit the model structure and are based on the idea that solving a subprob-
lem is cheap and can therefore be done multiple times. The subproblems are coordinated
by an algorithm that iteratively solves them, extracts knowledge from the solutions and
distributes this knowledge across the relevant subproblems. This way, the search is pro-
gressed until the optimal solution has been found and optimality is proven. A stochastic
program can be decomposed in two ways, vertically by time-stages, and horizontally by
scenarios. In the following, we first address the time-stage decomposition and thereafter
the scenario decomposition.

L-Shaped method

The first decomposition approach we consider is the vertical decomposition. When split-
ting the stochastic problem by time stages, it naturally decomposes into a master and a
set of subproblems. The master problem is composed of the first stage and is augmented
with an optimistic approximation of the second stage, Fig. 2.11 conceptually illustrates
this. The subproblems capture the second stage. The problem is then solved using the

CHAPTER 2. BACKGROUND 23

!(#, %1)
!(#, %2)
!(#, %3)

g # + !(#)+,,-.#
/

%1
%2
%3

Stage 1 Stage 2

A two-stage stochastic program

Master Subproblem

Split into Master (first stage) and
subproblem (second stage)

Figure 2.11: Stagewise decomposition

L-Shaped method (Birge and Louveaux; 2011), which is equivalent to Benders decom-
position (Rahmaniani et al.; 2017), however called L-Shaped method in the context of
Stochastic Programming.

The L-Shaped algorithm proceeds as follows. The master problem is solved and the
resulting first-stage variable assignment is projected onto the subproblems before solving
them. Information that is extracted from the solved subproblems is passed back into the
master problem to A) eliminate infeasible variable assignments and B) guide the search
towards the optimal solution. The classical L-Shaped method is restricted to problems
with pure LP subproblems, as it requires the dual of the second stage. Note, the dual
of an LP consists of an alternative view on the problem that recovers information of the
original problem commonly known as primal model. The dual is widely used in algorithms,
however can only be constructed for linear programs. However, Laporte and Louveaux
(1993) proposed an extension to the basic algorithm; the integer L-Shaped method to solve
problems with binary first-stage variables and mixed-integer linear second-stages.

2.5.2 Scenario Decomposition

The L-Shaped method is based on a time-stage decomposition. Another way to naturally
decompose a Stochastic Program is horizontally by scenario. The scenario decomposition
is conceptually illustrated in Fig. 2.12. A copy of the first-stage variables and constraints is
introduced for each of the scenarios. In addition, a consistency constraint forcing all copies
to take on the same variable assignment is introduced. When removing (or relaxing) the
consistency constraints we end up with a number of separated subproblems. Algorithms
that are based on the scenario decomposition iteratively enforce convergence over the
first-stage variables. In the following we will introduce the most relevant methods.

Dual Decomposition

Carøe and Schultz (1999) introduced the dual decomposition (DD) to solve linear two- and
multi-stage stochastic programs with integrality requirements. When using the DD, the
stochastic problem is decomposed by scenarios and a branch-and-bound scheme is used to

CHAPTER 2. BACKGROUND 24

!1 = !2 = !3

&1
&2
&3

!1
!2
!3

!1 = !2 = !3

&1
&2
&3

!1
!2
!3

!
&1
&2
&3

Stage 1 Stage 2

A two-stage stochastic program Introduce a copy of the
first-stage variables and
introduce a consistency
constraint

Relax the consistency
constraint

Figure 2.12: Scenario decomposition

find convergence over the first-stage variables. To obtain a lower bound, the scenarios are
solved individually and Lagrangian multipliers are used to strengthen the lower bound.
To get an upper bound, the average value of the first-stage variable assignments is used,
but integrality is enforced first using a rounding heuristic. Subsequently, the feasible
region is successively partitioned by branching over the shared (first-stage) variables. The
efficiency of the DD strongly depends on the update scheme used for the Lagrangian
multipliers. While Carøe and Schultz (1999) claim that the DD method is theoretically
applicable to solve multi-stage problems, the authors acknowledge that due to the increased
complexity, multiple issues arise to successfully implement a multi-stage version of the
algorithm (Ahmed et al.; 2003).

Progressive Hedging

Rockafellar and Wets (1991) introduced Progressive Hedging (PH); a scenario decompo-
sition based algorithm to solve convex stochastic programs. Convergence over the shared
(first-stage) variables is found by successively penalising the objective function of every
scenario. The algorithm first solves each scenario individually without penalty term.
Thereafter, the objective function of the scenarios is augmented with a penalty and reg-
ularisation term. The scenario specific penalty is calculated using the Euclidean distance
between the average overall first-stage variable assignments and the first-stage variable as-
signment of each individual scenario. Multiple methods that extend PH to solve problems
with integrality requirements, but sacrificing optimality, have been developed (Watson
and Woodruff; 2011) or (Boland et al.; 2018). Furthermore, PH can be used to solve
multi-stage problems (Løkketangen and Woodruff; 1996) and (Haugen et al.; 2001).

Branch and Fix

Alonso-Ayuso et al. (2003) introduced an algorithm to solve two- and multi-stage stochas-
tic optimisation problems, called Branch-and-Fix (BF), that relaxes the integrality re-
quirements in addition to the consistency constraints, without introducing Lagrangian

CHAPTER 2. BACKGROUND 25

multipliers. First, each scenario is solved using a linear programming based branch-and-
bound method. Thereafter, consistency over the shared variables is regained by using a
common branching mechanism that fixes the shared variables in all scenarios to identical
values. From the viewpoint of the full model this corresponds to what is known as logical
or constraint branching. The branching occurs step-wise until a fully converged solution
is found and optimality is proven.

Scenario Decomposition for 0 – 1 programs

Ahmed (2013) introduced an algorithm to solve two-stage problems with binary first-stage
variables and arbitrary second-stage structure. The algorithm is based on the scenario de-
composition and follows a three-step procedure. First, each scenario is solved individually.
A lower bound is computed as the probability weighted sum over all scenarios. Secondly,
each first-stage variable assignment, also called candidate, obtained in the first step is suc-
cessively evaluated over all remaining scenarios. A valid upper bound is calculated as the
probability weighted sum of the objectives that result from the evaluation step. Thirdly,
all evaluated candidates are excluded from further search iterations by adding a nogood
constraint to each of the scenarios. By iteratively repeating the three steps the algorithm
is guaranteed to find the optimal solution.

2.6 Stochastic Programming Frameworks

Stochastic Programming is a popular framework for decision making under uncertainty
(Valente et al.; 2009). While it is possible to formalise stochastic programs in standard
algebraic and CP modelling frameworks, as introduced in section 2.3, there are numerous
drawbacks when attempting to do this. First, the models become large and unclear. The
decisions, uncertainty and stages are all expressed in the same model. This can be confus-
ing and changing the model becomes cumbersome. Secondly, due to the special structure
of scenario-based stochastic programs, algorithms that exploit the structure have been
developed with great success. When using a single model to express the decisions and un-
certainty, it becomes difficult to utilise these special solving methods. Many extensions to
standard modelling frameworks have been proposed to address the mentioned drawbacks.
In the following, we will first introduce the idea behind these extensions before addressing
algorithms to solve these problems.

2.6.1 Modelling

Stochastic Programming extensions to classical modelling frameworks aim to increase
the usability of Stochastic Programming for optimisation practitioners. While there are
many nuances when comparing the frameworks, the basic idea remains conceptually the
same. An illustration of this concept is shown in Fig. 2.13. As introduced earlier, modern
modelling languages are based on the idea of formalising a parametric model of the opti-
misation problem. The parametric model combined with a set of data is then compiled
into a non-parametric instance that is passed on to a solver. The stochastic extensions

CHAPTER 2. BACKGROUND 26

0

include “alldifferent.mzn”
include “stochastic.mzn”

set of int: WORKER;
set of int: TASK;
array[WORKER, TASK] of int: value :: stage(2);

array[WORKER] of var TASK: task;

constraint alldifferent(task);

solve minimize
sum(w in WORKER)
(value[w,task[w]]) :: expected;

Decision modelModelling
Stage	1

Stage	2

Stage	3

Stage	4

set of int: WORKER;
set of int: TASK:
array[WORKER, TASK] of int: value;

array[WORKER, TASK] of var 0..1: w_t;

constraint forall(w in WORKER)
 sum(t in TASK) (w_t[w,t]) = 1);

constraint forall(t in TASK)
 sum(w in WORKER) (w_t[w,t]) <= 1);

solve minimize sum(w in WORKER, t in TASK)
 (value[w,t]*w_t[w,t]);

Decision model Uncertainty model

Data

solver

Uncertainty model

WORKER = {1,2};
TASK = {1,2,3};
value = [|4,5,6|

9,8,7|];

Data

Stochastic Program

compile

Figure 2.13: A stochastic program modelled in a high level language

adopt this idea. A decision model, left hand side in Fig. 2.13, describes a deterministic
optimisation problem. Instead of adapting the decision model to take on the form of a
stochastic problem, a parametric meta model is used to characterise the uncertainty. The
meta model assigns variables and parameters to stages, describes the objective function,
e.g. maximising the expected value, and specifies whether a constraint must be satisfied in
all scenarios (a hard-constraint) or satisfied with a given probability (a chance-constraint).
The parametric decision and uncertainty model is then compiled together with a set of
data into a concrete stochastic programming instance. This concept allows the compiler to
produce multiple output models, depending on the solving approach used to find solutions.

2.6.2 Stochastic Extensions to Algebraic Modelling Systems

This section will introduce the most relevant stochastic extensions to algebraic modelling
frameworks.

Stochastic Programming in AIMMS

From any deterministic linear or mixed-integer model formulated in AIMMS (Bisschop
and Roelofs; 2006a), the AIMMS compiler is able to automatically create a stochastic
model, without the need to reformulate any of the constraint definitions (Bisschop and
Roelofs; 2006b). There are two steps necessary to create a stochastic model. First, the
user indicates which parameters and variables in the deterministic model shall become
stochastic and secondly, the user provides a scenario tree and stochastic data. Once the
stochastic model is formulated, AIMMS supports two solving methods. First, it is able
to compile the model into the deterministic equivalent that is solved using a MIP solver.
Secondly, for purely linear mathematical problems, an implementation of the L-Shaped
method is available.

CHAPTER 2. BACKGROUND 27

Stochastic Programming in AMPL

Valente et al. (2009) describe how stochastic programs can be expressed using AMPL.
They propose to overlay the deterministic (core) model with a description of the random
values and stage structure, essentially a meta model. It is possible to define two- and
multi-stage stochastic MIP problems with or without chance-constraints. These models
are either transformed into the SMPS format (Gassmann; 2005), a standard format for
stochastic linear programs, and solved by a solver that can process the SMPS, e.g. (Ellison
et al.; 2010) or solved directly as a deterministic equivalent.

Stochastic Programming in GAMS

In GAMS - A User’s Guide (2017) it is described how a deterministic GAMS model can
be augmented to express stochastic programs using the GAMS Extended Mathematical
Programming (EMP) package. It is possible to define two- and multi-stage MIP stochas-
tic programs with chance constraints. Furthermore, it is possible to define an objective
function that optimises either with respect to the expected value, or a risk measure such
as Value at Risk (VaR) or Conditional Value at Risk (CVaR). The models can be compiled
into a deterministic equivalent and solved by a standard MIP solver. Alternatively, the
DECIS (Dantzig and Infanger; 1991) or LINDO (GAMS - A User’s Guide; 2017) solver
can be used to solve two-stage linear programs using Benders decomposition.

Stochastic Programming in Pyomo

Watson et al. (2012) propose PySP, a stochastic extension to the algebraic modelling
package Pyomo (Hart et al.; 2012), a package to model optimisation problems in Python.
To formulate a stochastic program in PySP, the user specifies both the deterministic base
model (supporting linear, non-linear, and mixed-integer components) and the scenario tree
model. Given these two models, PySP provides two options for solving the corresponding
stochastic program. First, it can be compiled into a deterministic equivalent and solved
using a standard MIP solver. Secondly, Watson et al. (2012) propose to use Progressive
Hedging as an alternative.

2.6.3 Stochastic Extensions to Constraint Modelling Systems

Similar extensions to express stochastic programs have been made to constraint modelling
systems.

Stochastic OPL

Walsh (2002b) proposed Stochastic OPL, an extension to OPL (Van Hentenryck et al.;
1999), as a framework to formalise Stochastic Constraint Programs. It extends Constraint
Programming with stochastic variables, chance constraints and optimises over expecta-
tions. Conceptually this proposal follows what has been introduced earlier, a core model
is augmented using a meta model. The model is then compiled into a deterministic equiv-
alent. It is proposed to use CP technology to solve the resulting instance. A working

CHAPTER 2. BACKGROUND 28

version of Stochastic OPL cannot be found online and Rendl et al. (2014) confirm that
Stochastic OPL has never been made available.

Stochastic MiniZinc

Rendl et al. (2014) introduced Stochastic MiniZinc, an extension to the constraint pro-
gramming framework MiniZinc introduced earlier. We will introduce Stochastic MiniZinc
in more depth as it is fundamental for subsequent chapters. The design of Stochastic
MiniZinc follows four objectives. (1) The extension is conservative, the stochastic model
can be run, debugged, and solved deterministically without changing the core model. (2)
In line with standard MiniZinc, the model remains agnostic of the solving approach. There
is no need for the user to commit to a specific solving approach during the modelling. (3)
The target audience of Stochastic MiniZinc are optimisation practitioners without deep
knowledge of Stochastic Programming. (4) The extensions are lightweight additions to
the language.

A Stochastic MiniZinc problem specification is composed of three parts: a core model,
a deterministic and a stochastic data specification. An example is displayed in Fig. 2.14,
where we reuse the task assignment introduced in Fig. 2.7. The core model is based on
the standard deterministic model formulation. However, in addition it is annotated with
:: stage(n) and :: expected information. The stage annotation associates variables
and parameters with stage n. Variables and parameters without annotations belong per
default to the first stage. The objective function is annotated with expected to express
the intention to optimise the expected value over all scenarios. The deterministic data
file contains all the data that is known a priori, and the stochastic data file describes the
scenarios and their likelihood of occurrence. In the stochastic task assignment example,
three scenarios are used to describe the random variable value. The weights denote how
likely a scenario will come true, e.g. the second scenario is three times as likely to occur
compared to scenario one and three. The weights in the description do not add up to 1
(as one would expect for probabilities), however when normalising the weights, the result
is equivalent to using probabilities in the first place.

A Stochastic MiniZinc model can be compiled into a deterministic equivalent and
either be solved using a CP solver or it can be linearised and passed on to a MIP solver.
In addition, Rendl et al. (2014) propose to use Combinators (Schrijvers et al.; 2013) or
MiniSearch (Rendl et al.; 2015) to implement either Progressive Hedging or policy-based
search (Walsh; 2002a) to solve the problems.

CHAPTER 2. BACKGROUND 29

1 %core_model.mzn
2 include "globals.mzn";
3 include "stochastic.mzn";
4
5 set of int: WORKER;
6 set of int: TASK;
7 array[WORKER,TASK] of int: value :: stage(2);
8
9 array[WORKER] of var TASK: task :: stage(1);

10
11 constraint alldifferent(task);
12
13 solve minimize sum(w in WORKER)(value[w,task[w]]) :: expected;

1 %deterministic_data.dzn
2 WORKER = {1,2};
3 TASK = {1,2,3};

1 %stochastic_data.sdzn
2 value = array3d(1..3,1..2,1..3,
3 [4,5,6, %scenario 1
4 3,4,2,
5 3,2,1, %scenario 2
6 6,7,9,
7 9,4,3, %scenario 3
8 8,2,1]);
9 array[1..2] of int: weights[1,3,1]

10 :: scenario_weights;

Figure 2.14: Stochastic task assignment in Stochastic MiniZinc

2.7 Formalism

Thus far, this chapter gave a high-level overview of the main concepts that are relevant
for the rest of the thesis. The purpose of this section is to lay the formal foundations used
throughout the rest of the thesis. We start by introducing the notation of a Constraint
Optimisation Problem, before moving on to the formalities of a Stochastic Program. The
section is then closed with a more in-depth discussion of the scenario decomposition in-
troduced in section 2.5.2.

2.7.1 Constraint Optimisation Problem

A deterministic Constraint Optimisation Problem is defined as follows:

Definition 1 A constraint optimisation problem (COP) is a four-tuple PD:

PD = < V,D,C,f >

where V is a set of decision variables, D is a function mapping each element of V to
a domain of potential values, and C is a set of constraints. A constraint c ∈ C acts on
variables xi, . . . ,xj, termed scope(c) and specifies mutually-compatible variable assignments
σ from the Cartesian product D(xi)×·· ·×D(xj). The quality of a solution is measured
using the objective function f . We write scope(σ) for the variables that appear in σ; σ(x)
for the value of x in assignment σ; σ|X for σ restricted to the set of variables X; and
σ ∈ D means ∀x : σ(x) ∈ D(x). We write the union of two assignments (with disjoint

CHAPTER 2. BACKGROUND 30

scopes) σ1 ∧ σ2. Furthermore, we define the set of solutions of a COP as the set of
assignments to decision variables from the domain D that satisfy all constraints in C:

sol(PD) = {σ ∈D | ∀c ∈ C : σ|scope(c)
∈ c}

Finally, an optimal solution is one that minimises the objective function:

argmin
σ∈sol(PD)

f(σ)

2.7.2 Stochastic Constraint Satisfaction Problem

The seminal paper Stochastic Constraint Programming, written by Walsh (2002a), defines
a Stochastic Constraint Satisfaction Problem.

Definition 2 A Stochastic Constraint Satisfaction Problem (SCSP) is a six-tuple:

< V,S,D,C,P,θ >

where S is a subset of V that describes the random variables. P is a mapping from S to
probability distributions for the domains; P (S) : S→ (R|S|→ [0,1]). The subset h ∈C that
constrains at least one variable in S are called chance constraints. Chance constraints
must be satisfied with probability θ, which lies in the interval [0,1]; a chance constraint
with θ = 1 is equivalent to a hard constraint.

A SCSP is composed of one or multiple stages. In a one-stage SCSP, values are assigned to
the decision variables V before observing the stochastic variables S. No decisions are made
once the random variables are revealed. In a multi-stage SCSP, V and S are partitioned
into disjoint sets that match the decision stages. In the case of an m−stage SCSP, V and
S are partitioned into the disjoint sets V1, . . .Vm and S1 . . .Sm. A feasible solution satisfies
all hard constrains and violates no more than 1−θ of the chance constrains.

Walsh (2002a) defines a policy is a tree with two types of nodes, decision variables and
stochastic variables, as displayed in Fig. 2.15. Nodes that represent decision variables have
a single child, whilst a stochastic variable node has one child for every possible (discrete)
value it can take on. A path through the policy tree starts at the root node, which is by
definition a decision variable, and ends at a leaf. Each path represents a possible world,
is associated with a probability of occurrence and its leaf is labelled with either 1, if the
variable assignments along the path satisfy all constraints or otherwise 0. The probability
weighted sum of the leaf labels must exceed θ for the policy to be feasible.

2.7.3 Scenario based Stochastic Constraint Optimisation Problem

The semantics used by Walsh (2002a) to define a SCSP produces AND/OR trees, Fig. 2.15.
Decision variables produce OR nodes where a single satisfying assignment is required (only
one arc leaves the node) to satisfy the stochastic variables that form AND nodes (multiple

CHAPTER 2. BACKGROUND 31

x1 y1

x2

x2

x2

x2

y2

y2

y2

y2

Decision
variable

Stochastic
Variable

Stage 1 Stage 2
0
1
0
1
1
1
1
0
0
0
1
1
1
1
1
1Or

node
And
node

Figure 2.15: AND/OR tree

arcs). Walsh (2002a) introduces a backtracking and forward checking algorithm to find
satisfiable policy trees.

Tarim et al. (2006) proposed to use an alternative semantics, the scenarios-based
view, where all possible realisations of the random variables are modelled explicitly in
a scenario tree as in Fig. 2.16 on the left side. The nodes represent decision variables
and the arcs concrete instantiations of the random variables. Tarim et al. (2006) argue
that in contrast to the policy-based view, a problem modelled using the scenario-based
approach can directly be compiled into a standard (non-stochastic) constraint program -
the deterministic equivalent. We will address and adopt the scenario representation for
the rest of this section.

This thesis only addresses a subset of problems covered by the SCSP notation, namely
problems without chance-constraints but an objective function. As a result, we leave
out chance constraints and explicitly introduce a utility term. Using similar notation to
Walsh (2002a), we could formalise this as a six-tuple < V,S,D,C,P,G > that omits θ and
introduces G, the utility function. As in Walsh (2002a) and Tarim et al. (2006), V and S
implicitly contain the stage structure. Next we show how the definition of a scenario-based
stochastic COP can be compiled into a form that explicitly states the stage structure.

Note: Other works have used various notations in the context of stochastic Constraint
Programming. Babaki et al. (2017) explicitly express an ordering of the variables V and
S in their problem definition of a Factored Stochastic Constraint Problem by introducing
≺ to end up with < V,S,D,C,P,f,≺>, where ≺ denotes a partial ordering, e.g. V1 ≺
S1 ≺ . . .Vm ≺ Sm. Furthermore, Rossi et al. (2015) introduced a SCSP that states the
stage structure explicitly as <V,S,D,P,C,β,L>, with L= [<V1,S1 >,. . . ,< Vi,Si>,. . . ,<

Vm,Sm>] form stages. We introduce a notation that differs from the formalism introduced
by Babaki et al. (2017) and Rossi et al. (2015). We do this because the algorithmic concepts
that are discussed in this thesis are substantially different to their work.

CHAPTER 2. BACKGROUND 32

Stage 1 Stage 2 Stage 3 Stage 4

P1

P2

P3

P4

P5

P6

V1

V21

V22

V31

V32

V33

V41

V42

V43

V44

V45

V46

Receive
information
about
random
variables

2 stage SCOP

3 stage SCOP

V1 V21

V22

V31

V32

V33

C
on

si
st

en
cy

co

ns
tra

in
t

<{V16, V26, V36,V46}, D6, C6, f6 > = COP6

P2

P3

P4

P5

Stage 1 Stage 2 Stage 3 Stage 4

V41

V42

V43

V44

V45

V46

Scenario tree Scenario decomposition

P1

P6

Figure 2.16: Scenario tree

Definition 3 A stochastic constraint optimisation problem (SCOP) is a pair:

PS =< V, [PS1, . . . ,PSn]>

or a COP

PDi =< Vi,Di,Ci,fi > ∀i ∈ 1 . . .k : V ⊆ Vi

where PS is defined as a tree composed of the subproblems PS1 . . .PSn and their shared
variables V . Each leaf PDi is a COP that represents a scenario i ∈ 1, . . . ,k. The variables
Vi of each PDI are the union of all shared variables V from the root to each leaf, including
the leaf variables.

In the case of a two-stage SCOP the problem is composed of one set of shared variables
V and k subproblems, < V, [PD1, . . . ,PDk]>.

The multi-stage case is displayed on the left side of Fig. 2.16 using a four-stage SCOP.
The illustration consists of six scenarios, where each scenario denotes a path from the root
to a leaf node. Note that a subset of scenarios shares parts of a path. For example, the
paths of scenarios PD1 and PD2 only diverge after stage three but differ from scenario
PD3–PD6 already after stage one. This implies that the decisions taken in stage one are
consistent across all scenarios, yet decisions made in stage two and three must only be
consistent over scenario PD1 and PD2, and likewise for scenarios PD3–PD6. We call a
solution that satisfies all constraints in the SCOP a policy tree.

CHAPTER 2. BACKGROUND 33

Definition 4 A policy tree T is defined as

T =< σ, [T1, . . . ,Tn]>

and contains an assignment of the root-stage variables σ and a list of policy trees [T1, . . . ,Tn],
one for each branch in the scenario tree. A policy tree T matches an SCOP PS , if and
only if the scope of each assignment σ matches the variables of the corresponding scenario
and stage:
T =< σ, [T1, . . . ,Tn] > matches PS =< V, [PS1, . . . ,PSm] > iff scope(σ) = V with n = m,
and for all i ∈ 1 . . .n, Ti matches PS i. A path of a policy tree T and a matching PS is
a tuple < [σ1, . . . ,σd],PD >, collecting all the assignments σi from the root to a leaf of T ,
and the COP PD at the corresponding leaf of PS . We write paths(T ,PS) for this set of
paths. Finally, the set of solutions of a SCOP PS is defined as the matching policy trees
for which each path is a solution to the underlying COP PD:

sol(PS) = { T | T matches PS ,

∀ paths p= < [σ1, . . . ,σd],PD >

∈ paths(T ,PS) : σ1∧·· ·∧σd ∈ sol(PD)}

And finally, an optimal solution to an SCOP minimises the sum of the individual ob-
jectives:

G= argmin
T ∈sol(PS)

∑
<[σ1,...,σd],<V,D,C,f>>∈paths(T ,PS) f(σ1∧·· ·∧σd)

Each scenario COP is associated with a probability of occurrence. In the case where
all scenarios are equally likely, the expected value is simply the sum over all scenario
objectives divided by the number of scenarios. In all cases with non-uniform probability
distributions the contribution of each scenario objective to the expected value is weighted
by its probability. We decided to use a notation that contains the scenario probabilities
implicitly in each fi, to simplify the presentation of subsequent algorithms. However, this
design choice does not change the generality of the methods discussed later.

To provide an intuition of how a deterministic equivalent formulation of an SCOP can
be modelled differently, we introduce an alternative definition of an SCOP that matches
the above definitions, including policy tree and optimal solution.

Definition 5 A deterministic equivalent (DE) can also be defined as the compact
representation of an SCOP:

PSDE =<
⋃
i∈K

Vi,
⋃
i∈K

Di,
⋃
i∈K

Ci,
∑
i∈K

fi(x)>, (2.2)

with ki,Vi,Di,Ci and fi matching the scenarios, variables, domains, constraints and ob-
jective functions used in the previous definitions. The DE is essentially one large model
that contains all variables and constraints required to describe the SCOP.

CHAPTER 2. BACKGROUND 34

Proof of
Optimality

Proof of
optimality

Upper bound

Lower bound

Generate
candidate

Evaluate
candidate

Add
nogood constraint

Figure 2.17: Evaluate and Cut convergence

2.7.4 Evaluate and Cut

In section 2.5.2 we introduced an algorithm to solve two-stage stochastic programs called
Scenario Decomposition for 0–1 Programs (Ahmed; 2013). We now examine the Scenario
Decomposition algorithm more closely as it provides the foundation for three subsequent
chapters. As its name reveals, the algorithm is based on the scenario decomposition
approach, where a copy of the first-stage variables is introduced for each scenario. Con-
ceptually, the algorithm is composed of three steps; Fig. 2.17 supports the explanation.
First, each scenario is solved individually, without enforcing the consistency constraints.
The probability weighted sum of all objectives is a lower bound (given we are minimis-
ing), as displayed in Fig. 2.17 in the bottom left corner. Secondly, the first-stage variable
assignments of each scenario, also called candidates, are evaluated across all scenarios to
obtain an upper bound, as in Fig. 2.17 in the top left corner. And lastly, the explored
candidates are excluded from the subsequent search, by making the corresponding variable
assignment infeasible using nogood constraints. By iteratively repeating the three steps,
the optimal solution is found and proven, once the (monotonically increasing) lower bound
and the upper bound (incumbent objective value) meet. For convenience we rename the
Scenario Decomposition for 0-1 Programs to Evaluate and Cut (E&C) and will refer to
the algorithm for the rest of the thesis as such.

Algorithm

Algorithm 1 explains in pseudo code how SCOPs are solved using E&C. The description
omits probabilities, as we assume that the each scenario COP implicitly contains the
probability in its objective function. This is done to simplify the presentation, however
does not compromise the generality of the method. The algorithm works for problems
with uniform and non-uniform probabilities.

First, the individual scenario COPs are retrieved from the scenario tree (line 3). Each
COP is then solved individually using a standard MIP or CP solver (line 8). The solution σ
denotes an assignment to the first- and second-stage variables and the sum of the scenario

CHAPTER 2. BACKGROUND 35

objectives (obj) yields a lower bound on the SCOP. The first-stage assignments σV of each
scenario COP, called candidates, are evaluated against all other scenarios by projecting
their variable assignment onto the first-stage variables of the other scenarios (line 7).
Adding up the (probability weighted) objectives that result from the candidate evaluation
yields an upper bound. Finally, the evaluated first-stage assignment σV is cut (pruned)
from the search by adding a nogood constraint to each of the scenario COPs (line 17). By
iteratively repeating the three steps – obtaining, evaluating and cutting candidates – the
procedure is guaranteed to find an optimal solution, as long as the first-stage variables have
finite domains. Completeness holds because the lower bound is monotonically increasing
as a result of cutting off the evaluated solutions. Optimality is proven once the lower
bound meets the upper bound. The scenarios can be evaluated independently, allowing
highly parallelized implementations.

E&C has been successfully used to solve two-stage stochastic programs with binary
first-stage variables. Basçiftci et al. (2017) solve a generator maintenance and operations
scheduling problem under uncertain failure times. In their experiments they confirm the
effectiveness of E&C, furthermore they introduce a stronger problem specific nogood cut
that improves performance. Lei et al. (2016) use E&C to solve a pre-positioning and
real-time allocation problem for resilient response to natural disasters. Ryan, Rajan and
Ahmed (2016) propose a series of algorithmic improvements, such as solving the LP relax-
ation of the subproblems and only solving the non-relaxed subproblem if the result of the
relaxation seem promising. Furthermore, they introduced an asynchronous parallelisation
scheme that alleviates the need to wait at every iteration for all the scenarios to be solved.
In, (Ahmed et al.; 2017) and (Deng et al.; 2017), the algorithm is used as upper bounding
procedure for chance constraint programs.

Limitations

Numerous studies have shown the effectiveness of E&C, however the method has limita-
tions. First, E&C works well for problems with binary first-stage variables, however it
cannot solve problems with continuous first-stage variables. Secondly, experiments have
shown that the algorithm finds the optimal solution rather quickly, often within the first
few iterations. However, proving optimality can be lengthy, as the nogood cuts added in
each iteration are weak, each excluding only one solution at a time. In chapter 4, we ad-
dress this limitation by proposing a method that finds nogood constraints that prune more
strongly compared to the candidate nogoods used in standard E&C. Thirdly, E&C is an
algorithm to solve two-stage stochastic problems; however as introduced earlier, in certain
circumstances, stochastic programs are modelled using multiple stages. In chapter 5, we
develop a multi-stage version of E&C.

CHAPTER 2. BACKGROUND 36

Algorithm 1 Evaluate and Cut for Two-Stage Problems
1: procedure solveSCOP(PS)
2: Initialize: UB = ∞, LB = -∞, sol = null
3: [PD1,. . . ,PDk] = get_scenarios(PS)
4: while LB < UB do
5: LB = 0, S= ∅
6: % Find first-stage candidates (lower bound)
7: for i in 1..k do
8: < σ,obj> = solve(PDi)
9: LB += obj

10: S ∪= {σ|V }

11: % Evaluate first-stage candidates (upper bound)
12: for σV ∈ S do
13: tUB = 0
14: for i in 1..k do
15: < _,obj> = solve(PDi[C ∪= {σV }])
16: tUB += obj
17: addNogood(PDk,σV)
18: if tub < UB then
19: sol = σV
20: UB = tUB
21: return sol

2.8 Conclusion

In this chapter, we introduced the most relevant concepts required to understand the rest of
the thesis. First, we introduced what combinatorial optimisation is and how to solve these
types of problems. We made a distinction between CP and MIP modelling and solving
techniques. The difference is important as subsequent chapters will utilise CP as well as
MIP solvers to solve subproblems. Depending on the instance used for the experiments,
one or the other technology will be more suitable. In addition, we introduced two- and
multi-stage stochastic programming, relevant modelling frameworks and algorithms to
solve stochastic programs.

The main take away messages of this chapter are the following. First, solving stochastic
combinatorial optimisation problems is difficult and specialised algorithms are required,
to tackle problems with more than just a few scenarios. Secondly, a number of modelling
frameworks have been developed to formalise stochastic programs and solve them either
with a standard MIP or CP solver technology or by using specialised back-end solvers.
However, most of these systems are built on top of algebraic modelling frameworks and
do not incorporate the paradigm and progress made in constraint programming.

This thesis will examine how to advance stochastic programming modelling frameworks
that are based on the CP modelling paradigm. However, all methods we develop are
equally applicable to modelling frameworks that are build on top of algebraic modelling
systems.

CHAPTER 3. MODELLING 37

Chapter 3

Modelling

3.1 Introduction

Stochastic programming is a powerful tool for decision making under uncertainty. To en-
able non-specialists the use of stochastic programming, two factors must be addressed (Wat-
son et al.; 2012). First, it should easily be possible to express, i.e. model, stochastic pro-
grams in a similar fashion to traditional deterministic optimisation problems. Secondly,
as solving stochastic programs is computationally hard, technologies that effectively ex-
ploit the underlying structure of stochastic problems must be available. This chapter is
concerned with the modelling aspect of stochastic programming.

Multiple modelling frameworks that support optimisation practitioners to formulate
stochastic problems have been proposed in the past. Tarim et al. (2006) implemented a
framework on top of the OPL constraint modelling language (Van Hentenryck; 1999). A
standard OPL model consists of declarations and instructions. Declarations define data
types, constants and decision variables. Instructions on the other hand, define whether
the user seeks a variable assignment that simply satisfies the constraints or is interested
in finding the optimal solution which is measured by an objective function. Tarim et al.
(2006) extended the declarations of OPL to include stochastic variables, instructions to
define chance constraints, and a range of objectives, such as minimising the expectation.
Watson et al. (2012) proposed PySP, an extension of the Pyomo open-source algebraic
modelling language (Hart et al.; 2012). To formulate a stochastic program in PySP, the
user specifies a deterministic base model, essentially a single scenario, and a scenario tree
that contains the uncertain parameters. The model is then automatically transformed into
a stochastic program; Watson et al. (2012) suggest to use Progressive Hedging for finding
solutions. The algebraic modelling system GAMS (Bussieck and Meeraus; 2004) provides
support to express and solve stochastic programs as part of its extended mathematical
programming (EMP) package. Similar to PySP, GAMS requires a deterministic base
model and additional information about the stochastic structure of the problem, specified
using EMP annotations. Hochreiter (2016) introduced a modelling language independent
concept for modelling multi-stage stochastic programs that decouples the optimisation
model from the stochastic “meta” model. Hochreiter (2016) argues that the variables
and constraints in the deterministic base model can be split into three parts; the root,

CHAPTER 3. MODELLING 38

1 include "stochastic.mzn";
2 int: n;
3 set of int: Items = 1..n;
4 int: capacity;
5
6 array[Items] of int: weights :: stage(1);
7 array[Items] of int: profits :: stage(2);
8
9 array[Items] of var 0..1:knapsack :: stage(1);

10 var int: obj :: stage(2);
11 %capacity constraint
12 constraint sum (i in Items)(knapsack[i] * weights[i]) <= capacity;
13 %objective function
14 constraint obj = sum (i in Items) (knapsack[i] * profits[i]);
15
16 solve maximize obj :: expected;

1 %determinisic data
2 n = 5;
3 capacity = 6;

1 %stochastic data
2 %the scenario set
3 set of int: SCENARIOS = 1..3;
4
5 profits = [|
6 2, 3, 6, 3, 1| %scenario 1
7 3, 4, 3, 7, 1| %scenario 2
8 4, 2, 8, 1, 3| %scenario 3
9];
10 %define the likelihood of each
11 %scenario
12 array[SCENARIOS] of int:
13 weights = [2,5,3]
14 :: scenario_weights;

Figure 3.1: Knapsack problem with uncertain profits modelled in stochastic Minizinc

recourse and terminal stage. In contrast to the root and terminal stage that are unique for
each stochastic program, multiple recourse stages are used to define a multi-stage problem.
Finally, Stochastic MiniZinc (Rendl et al.; 2014) is an extension of the constraint modelling
language MiniZinc (Nethercote et al.; 2007). In Stochastic MiniZinc, annotations are used
to embed the uncertainty model into the standard (deterministic) constraint optimisation
model, which in turn is automatically transformed into a stochastic program

Figure 3.1 displays how to model a knapsack problem with uncertain profits in Stochas-
tic MiniZinc. Lines 2 to 16 formalise a standard (deterministic) knapsack problem. In
addition, the parameters weights and profits and the variables knapsack and obj

are annotated with stage to denote whether they belong to the first or second stage.
The solve item is annotated with expected to indicate that we are interested in max-
imising the expected profit, essentially the probability weighted sum over all scenarios.
An additional data file that describes the uncertainty using scenarios and their respective
probabilities is required. The three files together are then transformed into a stochas-
tic program; either the deterministic equivalent or into a form that can be solved using
the scenario decomposition (the scenario decomposition in stochastic MiniZinc is not yet
available).

CHAPTER 3. MODELLING 39

We introduced the most relevant frameworks for modelling stochastic programs. All
these frameworks are extensions of standard modelling languages and aim to exploit the
strength of the underlying modelling system. The idea of formulating a deterministic de-
cision model and using an additional “meta” model to describe the uncertainty is common
throughout all these systems. In the following, we discuss modelling techniques that aim
to improve the performance of solving a stochastic program.

Contributions

This chapter is composed of two main contributions, both study the role of adding extra
constraints to the decision model, which in turn support the solver in finding solutions.
The first contribution discusses how to use symmetry and dominance breaking constraints
in stochastic programming modelling frameworks and the second contribution explores
how to use redundant constraints, a technique that can be used to improve the scenario
decomposition.

Constraint Programming models often contain symmetries and dominance relations
that can be exploited to improve the search performance. We will first showcase challenges
that arise with symmetry and dominance breaking constraints in the context of Stochastic
MiniZinc. Thereafter we introduce a correct handling of these extra constraints, which is
important to A) transform the model correctly into a stochastic program and B) utilise
symmetry and dominance breaking constraints effectively during the solving process.

In the second part of the chapter we show how the scenario decomposition can be
strengthened by adding auxiliary constraints to the scenario subproblems to reduce the
number of infeasible candidates generated during the search. This is achieved by changing
the scope of certain constraints from being local to a specific scenario to be globally visible
and applied to each scenario.

3.2 Symmetry and Dominance

Many constraint problems exhibit dominance relations and give rise to symmetric solu-
tions. The n-queens problem as introduced in Fig. 2.2 is a classic example that contains
multiple symmetries one is displayed in Fig. 3.2. The challenge is to place a queen in
each column while only assigning a single queen to each row and diagonal. The queens on
the right side of Fig. 3.2 exactly mirror (with respect to the dashed line) the queens on
the left. These two solutions are symmetric; it is possible to map one solution to another
with equal quality. To avoid enumerating symmetric solutions and non-solutions, which
improves the search performance, the constraint q[1] < q[2] (and possibly others) can be
added to the model definition, as in Fig. 2.2, without compromising the solution quality.
Note: a non-solution refers to a symmetric, yet infeasible variable assignment that has
been proven to be infeasible in a previous search step. This additional constraint is called
symmetry breaking constraint.

Many optimisation problems, e.g. assignment problems such as packing a knapsack,
exhibit dominance relations. Consider the task of choosing a subset of items from the set

CHAPTER 3. MODELLING 40

q[1] q[2] q[3] q[4] q[1] q[2] q[3] q[4]

Symmetry line

Additional constraint:
q[1] < q[2]

Figure 3.2: Symmetric solutions for the n-queens problem

of items as modelled in Fig. 3.1 and a specific instance displayed in Fig. 3.3. The goal is to
maximise the profit with respect to a capacity constraint. It is implied that if two items
have equal weight, e.g. items 1 and 2 (green) or items 4 and 5 (blue), the item with the
higher profit must be chosen before considering the less valuable item. This implication
can be added explicitly to the model as a dominance breaking constraint to avoid the
exploration of solutions that are guaranteed to be inferior.

Symmetry and dominance relations can be exploited to achieve reductions in the search
space and therefore improve search performance. Symmetry breaking is well studied, and
its effects demonstrated, see Fahle et al. (2001); Chu and Stuckey (2016); Walsh (2006);
Chu et al. (2014); Walsh (2010); Cohen et al. (2006). Similarly, dominance relations, a
generalisation of symmetries, have been studied and shown to be effective in Prestwich
and Beck (2004); Chu and Stuckey (2015); Proll and Smith (1998); Getoor et al. (1997).

Modelling Symmetry and Dominance relations

Chu and Stuckey (2016) argue that declaring symmetries explicitly should be a standard
part of modelling, e.g. by using annotations or dedicated predicates. If the modeller is
aware of symmetries, they should be declared such that the solver can take advantage
of them. The same argument can be made for dominance constraints. A solver may
choose to ignore symmetries, for example when constraint based local-search techniques
are employed as in OSCAR.CBLS (Björdal et al.; 2015) to not interfere with the search
strategy.

In the following, we will show that not declaring symmetries and dominance relations
explicitly when using Stochastic MiniZinc can lead to wrong model definitions. First, we
introduce an example to demonstrate the problems and thereafter, we will introduce how
to deal with symmetry and dominance relations in Stochastic MiniZinc and emphasise
the importance of declaring those extra constraints explicitly as introduced in (Chu and
Stuckey; 2016).

CHAPTER 3. MODELLING 41

Item: 1 2 3 4 5
Value: 4 5 5 6 7
Weight: 5 5 7 9 9

Set of items:

Figure 3.3: Dominance relations in the knapsack problem

3.2.1 Stochastic template design problem

As introduced earlier, stochastic programming modelling frameworks such as Stochastic
MiniZinc are based on the idea of using a standard (deterministic) model to describe the
decisions and augment it with some meta-model that describes the uncertainty. Con-
straint programming practitioners will therefore use symmetry and dominance breaking
constraints to improve the decision model, as they normally would.

Fig. 3.4 contains the essential parts of the template design model introduced by Proll
and Smith (1998) (the complete model can be found in the appendix) and Fig. 3.5 supports
the explanation. An animal food factory would like to print cardboard packages for each
of the different products they produce. For example, Fig. 3.5 displays on the left side
a problem with four different food types, rabbit, bird, dog, and cat. For each product,
we know the number of packages that must be produced, the demand. We are asked to
design two templates, each with six slots. The templates are modelled as one-dimensional
arrays where each position corresponds to a product and the respective value defines the
number of slots designated to the product. The sum over each template array is equal to
the number of slots on the template. The goal is to design the templates such that the
total number of prints is minimised.

The constraints starting on line 45 in Fig. 3.4 are symmetry breaking constraints.
These constraints are active if the demand of two consecutive products is the same, e.g.
the demand of packages for rabbits and birds is both equal to 200. An example of two
symmetric solutions is illustrated in Fig. 3.5 on the top right. To break the symmetries,
we create an auxiliary array for each packaging type; the composition of the respective
element in the first and second template. A lex_lesseq constraint is used to enforce a
lexicographical relationship between the two resulting arrays. For example, the number
of slots assigned to rabbits on the first and second template must be smaller or equal to
the number of slots assigned for birds.

The constraints starting on line 54 are dominance breaking constraints. If the demand
for a package type is smaller than its successor product, the overall production must also
be smaller. For example, in Fig. 3.5 the number of packages produced for bird food must
not exceed the dog food packaging production, as the demand for dog food packages is
higher compared to bird food.

CHAPTER 3. MODELLING 42

9 include "globals.mzn";
10 include "stochastic.mzn";
11
12 int: S; % Number of slots per template.
13 int: t; % Number of templates.
14 int: n; % Number of variations.
15 % How much of each variation we must print?
16 array[1..n] of int: d :: stage(2);

21 % # Slots allocated to variation i in template j
22 array[1..n,1..t] of var 0..S: p :: stage(1);
23
24 % # Pressings of template j.
25 array[1..t] of var 1..lupper: R :: stage(2);
26
27 % Sum of all Rj.
28 var llower..lupper: Production :: stage(2);

33 % First, set up Production to be the sum of the Rj
34 constraint Production = sum(i in 1..t)(R[i]);
35
36 % The number of slots occupied in each template is S.
37 constraint forall(j in 1..t)(sum(i in 1..n)(p[i,j]) = S);
38
39 % Enough of each variation is printed.
40 constraint forall(i in 1..n)(sum(j in 1..t)(p[i,j]*R[j]) >= d[i]);
41
42 %% Symmetry breaking constraints
43 % Variations with the same demand are symmetric.
44 constraint symmetry_breaking_constraint(
45 forall(i in 1..n-1) (
46 d[i] == d[i+1] ->
47 lex_lesseq([p[i, j] | j in 1..t],
48 [p[i+1,j] | j in 1..t])
49)
50);
51
52 %% Dominance breaking constraints
53 constraint dominance_breaking_constraint(
54 forall(i in 1..n-1) (
55 d[i] < d[i+1] ->
56 sum (j in 1..t) (p[i,j]*R[j])
57 <= sum (j in 1..t) (p[i+1,j]*R[j])
58)
59);

71 % Minimize the production.
72 solve :: int_search(array1d(1..n*t,p) ++ R,
73 input_order, indomain_min, complete)
74 minimize Production :: expected;

Figure 3.4: Template design problem (extract)

CHAPTER 3. MODELLING 43

Template Design Problem
How to design packaging printing templates?

Template 1 Template 2

Demand: 200 200 250 300

Number of prints (R[2]): 120Number of prints (R[1]): 80

1 2 1 21 1 2 2

Total number of prints R[1] + R[2]: 200

Symmetric solution
Template 1

1 1 2 2 1 2 1 2

1 2 1 2 1 1 2 2

Template 2

1 1

1 11 2

1 2

Dominant solution
If demand for dog packaging is lower than for cats,
the overall production of dog packaging must not
be more:

#dog prints = R[1] x p[1,3] + R[2] x p[2,3]
#cat prints = R[1] x p[1,4] + R[2] x p[2,4]
#dog prints <= #cat prints

p[1,1] p[1,2] p[1,3] p[1,4] p[2,1] p[2,2] p[2,3] p[2,4]

Figure 3.5: A template design problem

3.2.2 Stochastic MiniZinc and symmetries/dominance

The template design problem displayed in Fig. 3.4 is modelled using Stochastic MiniZinc
syntax. In contrast to the problem introduced by Proll and Smith (1998), we assume that
the demand is uncertain. In the first stage, we design the templates and in the second
stage we decide how many times to print each template given the observed demand,
specified using scenarios. The objective is to minimise the expected number of prints
whilst satisfying the constraints in each scenario. A similar model was studied by Tarim
and Miguel (2005), however the first stage in their model was composed of designing the
templates and deciding on how many times to print each template, with the aim to reduce
the expected sum of surplus and scrap in the second stage, given a random demand.

Great care has to be taken when compiling the core model, Fig. 3.4, into a stochastic
program, as neither the scenario dependent symmetry nor dominance constraint in the
template design model are valid in the stochastic model. In Fig. 3.6 we show the result,
when compiling the extra constraints naively into the stochastic program. The problem
is the following; a solution that is symmetric with respect to one scenario might not
be symmetric with respect to another scenario. However, unless specified, the compiler
cannot know that the extra constraints are not an integral part of the problem description.
Therefore, it is important to mark symmetry and dominance constraints as auxiliary
constraints.

CHAPTER 3. MODELLING 44

41 % Symmetry breaking constraints
42 % naive compliation into a deterministic equivalent
43 % Variations with the same demand are symmetric.
44 constraint forall(s in SCENARIOS)(
45 forall(i in 1..n-1) (
46 %local (scenario specific) scope
47 d[s,i] == d[s,i+1] ->
48 %activates constraints in the shared scope
49 lex_lesseq([p[i, j] | j in 1..t],
50 [p[i+1,j] | j in 1..t])
51)
52);
53
54 % Dominance breaking constraints
55 % naive compliation into a deterministic equivalent
56 constraint forall(s in SCENARIOS)(
57 forall(i in 1..n-1) (
58 %local (scenario specific) scope
59 d[s,i] < d[s,i+1] ->
60 %activates constraints in the shared scope
61 sum (j in 1..t) (p[i,j]*R[j])
62 <= sum (j in 1..t) (p[i+1,j]*R[j])
63)
64);

Figure 3.6: A native transformation in stochastic MiniZinc

Compiling Symmetry and Dominance constraints

To compile symmetry and dominance constraints in the context of Stochastic MiniZinc
correctly, the scope of their impact must be considered. In a two-stage stochastic program
four situations regarding scope can occur, as illustrated in Fig. 3.7.

1. Local scope in first stage:

• If a symmetry or dominance constraint reasons only over the first-stage variables
and parameters, no attention in the model transformation is required. Only
solutions that are symmetric across all scenarios are removed and the constraint
is therefore globally valid.

2. Local scope second stage:

• If a symmetry or dominance constraint only reasons over the second-stage vari-
ables and parameters, no attention in the model transformation is required. The
scope of the constraints is scenario specific and therefore they do not invalidate
globally valid solutions.

3. An implication from the first stage to the second stage:

• No attention is required, as this situation complies with the nonanticipativity
principle. In other words, the scope of the first stage is consistent over all
scenarios and a first-stage event can imply a set of constraints in the second
stage (local scope) without any special considerations.

CHAPTER 3. MODELLING 45

Stage 1 Stage 2

21

4

3

Figure 3.7: The impact of a symmetry or dominance constraint

4. An implication from the second stage to the first stage:

• Attention is required! The symmetry and dominance constraints are not valid
and must be omitted when compiling the core model intro a stochastic program.
A solution that is symmetric in one scenario, may not be symmetric with respect
to another scenario.

Marking symmetry and dominance constraints is important to support the compiler in
creating strong and correct stochastic programs. The first three situations can directly be
compiled into the stochastic program, however when the last situation arises, the symmetry
and dominance breaking constraints must be ignored.

This section showed how symmetry and dominance constraints can be added to improve
the decision model when formalising stochastic programs at a high-level of abstraction. In
the following section we will see how general constraints can be lifted from the scenario
level to the model level.

3.3 Global View on the Scenario Decomposition

The scenario decomposition is the foundation of numerous algorithms to solve stochastic
problems. It has been shown that the performance of scenario decomposition based algo-
rithms can be improved by grouping sets of scenarios into single subproblems, essentially
creating a DE for each scenario group (Ryan, Ahmed, Dey and Rajan; 2016). The result
is an interesting trade-off between A) an increased time to solve the subproblems yet B)
decreased number of steps required to solve the stochastic problem. This trade-off is illus-
trated in Fig. 3.8. On the left side, the stochastic program is represented using only one

CHAPTER 3. MODELLING 46

Complete scenario
decomposition

Scenario GroupingOne DE model that
contains all scenarios

Time to solve subproblem: low mediumhigh

Time to solve the Stochastic Problem: medium lowhigh
Number of steps in algorithm: one few many

Group
scenarios

Figure 3.8: Scenario Grouping

model, the DE. On the right side, the problem is completely decomposed into single sce-
narios and in the middle, scenarios are grouped. The time to solve a subproblem decreases
from left to right, however the number of steps required to solve the stochastic program,
e.g. with E&C, increases along the same axis. Scenario grouping aims to exploit this
trade-off and has been applied successfully. Crainic et al. (2014) use k-means clustering
to group similar scenarios and dissimilar scenarios. Deng et al. (2017) use a mixed-integer
program that groups scenarios optimally to solve chance-constrained programs and Ryan,
Ahmed, Dey and Rajan (2016) use a mixed integer based approach to group scenarios op-
timally with respect to the lower bound obtained in the first iteration of E&C. And lastly,
results that showcase the effectiveness of scenario grouping are presented in chapter 4 of
this thesis.

In this section we propose a method that is orthogonal to scenario grouping and aims
to reintroduce information back into subproblems lost when decomposing the stochastic
program by scenarios. On the one end of the spectrum, the DE can be seen as the complete
set of variables and constraints required to represent the stochastic program. On the
other end, a single scenario can be viewed as the smallest unit of variables and constraints
that is considered in light of the scenario decomposition. Note: a single scenario can be
further decomposed and solved using a decomposition algorithm, however we define a single
scenario as the smallest entity. In scenario grouping a set of scenarios is selected and all
associated variables and constraints are used to formalise one model. In contrast, we
propose to select a single constraint or set of constraints, instantiate it with the scenario
specific parameters and introduce the resulting constraints into all other subproblems, as
shown in Fig. 3.10. Let us use an example to illustrate the intuition behind the idea.

Consider a facility location problem with capacity constraints, where a number of
facilities are used to satisfy customer demand in each scenario. In the first stage, we
decide which facilities to open; each facility has limited capacity. In the second stage, the
customers are assigned to exactly one facility; the availability of customers is random. We
assume that all facilities have a capacity of 30 and all customers a demand of 10. The
problem is composed of two scenarios, as displayed in Fig. 3.9, a high-demand scenario

CHAPTER 3. MODELLING 47

with ten customers on the left side and a low-demand scenario with five customers on
the right side. When using E&C to solve the problem, the first iteration might produce
the following situation. The optimal solution to the high-demand scenario requires four
open facilities (green circles) and the optimal solution to the low-demand scenario requires
only two facilities to be opened. Clearly, all solutions with less than four open facilities
are not feasible as they do not satisfy the customer demand in the high-demand scenario.
Our goal is to completely avoid or reduce the number of candidates generated that are
infeasible.

To avoid generating infeasible solutions, let us assume that we instantiate a constraint
with parameters from the high-demand scenario and add the resulting concrete constraint
to the low-demand scenario. We consider a feasibility constraint, which ensures that
the number of facilities opened in the first stage are sufficient to satisfy the customer
demand in the second stage. To make this more concrete: scenario one implicitly contains
the constraint that four facilities must be opened. Adding this constraint explicitly to
the low-demand scenario model avoids generating infeasible candidates with less than four
available facilities. While this additional constraint does not provide any guarantee that no
further infeasible candidates are generated, it reduces the number of infeasible candidates
during the search and therefore improves the performance.

Scenario 1 – high demand Scenario 2 – low demand

Facilities

Customers

Figure 3.9: Facility location problem with two scenarios

Chapter 2, the background, introduced a two-stage stochastic program as
< V, [PD1, . . . ,PDk]> where PDi = < Vi,Di,Ci,fi > describes a scenario. The variables
Vi of each PDi are the union of the first- and second-stage variables and likewise, the
constraints Ci are the union of the first- and second-stage constraints. Using the same
notation, we formalised a deterministic equivalent, a single model containing all scenarios,
as:

PSDE =<
⋃
i∈K

Vi,
⋃
i∈K

Di,
⋃
i∈K

Ci,
∑
i∈K

fi(x)>, (3.1)

where K is the set of scenarios used to define the stochastic program.
As introduced above, scenario bundling yields an interesting trade-off between time to

solve a subproblem and the number of iterations required to solve the stochastic program.
A scenario bundle is essentially a DE composed of only a subset of scenarios. For example,

PSBj
=<

⋃
i∈Bj

Vi,
⋃
i∈Bj

Di,
⋃
i∈Bj

Ci,
∑
i∈Bj

fi(x)>, (3.2)

CHAPTER 3. MODELLING 48

where Bj is the set of scenarios that belong to bundle j.
In contrast to scenario bundling, we propose to select a constraint or set of constraints

Cs, which are restricted to the subset of constraints that do not constrain any second-stage
variables, and add it to all scenarios,

Cs =
⋃

j : scope(cj)⊆V
cj

PDi =< Vi,Di,Ci∪Cs,fi > ∀j ∈K
(3.3)

The constraint set Cs is composed of one or multiple constraints that act only on the
shared variables but contain second-stage parameters. In Fig. 3.10 we illustrate how the
two-stage problem is decomposed into subproblems and a single scenario constraint lifted
to be globally visible and enforced in all subproblems. A constraint in the set C1 is selected
and added to all other subproblems.

!1 = !2 = !3

!1
!2
!3

!

Stage 1 Stage 2

A two-stage SCOP

Introduce a copy of the
first-stage variables and
introduce a consistency
constraint

&'() = < +), -), &), .) >

&'(0

&'(1

234ℎ &) = {&)), … , &)8 , … , &)9}

&'()

&'(0

&'(1
Select a constraint in
one scenario and
enforce it in all others

Figure 3.10: Enforce a scenario constraint in all subproblems

Numerous stochastic problems exhibit a structure where the scenario decomposition
can be improved by making certain constraints globally visible. Consider for example the
facility location problem with capacity constraints as introduced earlier. When decom-
posing the model, we lift the capacity constraints to become globally visible and therefore
reduce the number of infeasible candidates. Many investment problems follow a similar
structure, such as designing an optimal fleet of vehicles for a logistics company or invest-
ment decisions into the electricity network. In both cases, a certain demand revealed in
the second stage must be met. Lastly, consider the template design problem as introduced
earlier with four types of packages. Let us assume that there is a scenario in which the
demand for a specific package type is zero. When solving this scenarios, no slot on the
templates will be allocated for the package type with zero demand, as no reward is given.
It is evident that such a candidate is infeasible when evaluating over a scenario that de-
mands packages of the very same type. Lifting a constraint that enforces one or more slots

CHAPTER 3. MODELLING 49

per package type would ensure feasibility without compromising global optimality. The
impact of lifting a constraint is twofold. First, the number of candidates that are infeasible
is reduced and secondly, the lower bound increases. This yields an overall reduced time
to solve the stochastic program. The concept of lifting constraints to avoid enumerating
infeasible constraints can be generalised to multistage problems, with the difference that
the feasibility constraints added in stage two and subsequent are restricted in scope. In
the subsequent section we provide evidence that lifting constraints can be beneficial.

3.3.1 Experiments

Lifting constraints to be globally visible when using the scenario decomposition helps to
improve the performance when using algorithms such as E&C. To showcase this effect,
we use a four-stage facility location problem with capacity constraints. In the first stage,
a number of facilities is opened to serve customer demand revealed in the second stage.
Thereafter, in the second stage, all customers are assigned to the facilities opened in the
first stage and additionally a new set of facilities might be opened. The same decisions are
repeated in the third stage before reaching the final (fourth) stage, in which no further fa-
cilities are opened. The complete model can be found in the appendix and a mathematical
description of the problem is presented in chapter 5.

3.3.2 Results

The facility location problem was solved using a multi-stage variant of E&C, which is
introduced in chapter 5. The same chapter contains a section that discusses the results
comprehensively, however for now we focus only on the impact of lifting capacity con-
straints. Two sets of results are compared, firstly the stochastic problem was decomposed
and solved without lifting any constraints to be globally visible. Thereafter, using the
same algorithm, we solved the problem with lifted capacity constraints.

When using the improved scenario decomposition, with globally visible capacity con-
straints, all candidates were feasible. In contrast, we display the number of infeasible
candidates when using the standard decomposition in Fig. 3.11. More candidates are
infeasible with an increased number of scenarios used to model the uncertainty in the
stochastic program. This does not come at a surprise as the overall number of candidates
generated while solving the problem is higher when more scenarios are used. The overall
effect on the runtime is shown in Fig. 3.12. The time to solve the problem is on aver-
age 20.9% lower when using the strengthened scenarios, independently of the number of
scenarios used in the stochastic program.

CHAPTER 3. MODELLING 50

Figure 3.11: Number of infeasible candidates

Figure 3.12: Standard versus strengthened scenario subproblems

CHAPTER 3. MODELLING 51

3.4 Related Work

To the best of our knowledge, there are no modelling frameworks for stochastic pro-
grams that support symmetry and dominance breaking constraints nor the automatic or
semi-automatic lifting of scenario specific constraints. However, conversations with other
researchers have led to the conclusion that modelling techniques as we just proposed are
implicitly used in practice.

3.5 Conclusion

We presented two techniques for improving stochastic programs modelled in a high-level
modelling language for decision problems under uncertainty. Firstly, we have shown that
symmetry and dominance breaking constraints must be identified and annotated correctly,
to ensure the correct compilation of the decision and uncertainty model into a stochastic
program. Secondly, we presented a technique that is orthogonal to scenario grouping
and aims to increase the performance of scenario decomposition-based algorithms, such as
E&C. We have demonstrated how lifting constraints improves the scenario decomposition
algorithm E&C.

3.5.1 Limitations

As introduced earlier in this chapter, various works have shown that symmetry and domi-
nance breaking constraints are beneficial when applied to deterministic combinatorial opti-
misation problems. Similarly, exploiting symmetries and dominance relations in stochastic
programming can only be done if a model exhibits these relations. Furthermore, the effect
on performance is strongly dependent on the individual use case. However, we have shown
how to correctly deal with symmetry and dominance breaking constraints and the result
of failing to mark them as such.

We proposed to lift constraints to improve the performance of scenario decomposition
based approaches such as E&C for certain types of problems, such as the facility location
problem with capacity constraints. Needless to say, lifting constraints will only be ben-
eficial when solving model where A) some scenarios yield infeasible candidates and B) a
constraint can be identified that reduces the number of infeasible candidates when lifted
and introduced into all subproblems.

3.5.2 Future Work

Both contributions presented in this chapter are not yet made available in any modelling
framework. Chu and Stuckey (2016) showed how to annotate symmetry and dominance
breaking constraints when modelling deterministic optimisation problems in MiniZinc.
The same annotations can be used in Stochastic MiniZinc; however, the extra compiler
functionality is required.

We presented experiments that show how lifting constraints can improve the perfor-
mance of algorithms such as E&C. However, further experiments are required to establish

CHAPTER 3. MODELLING 52

a better understanding of situations where the lifting technique is beneficial. Furthermore,
an interesting question that arises is whether it is possible to automatically identify con-
straints that can be lifted. For example, the capacity constraint in the facility location
example might not be explicitly stated but inferred from other constraints. Ideally, the
compiler would automatically identify and propose constraints that can be lifted.

CHAPTER 4. EVALUATE AND CUT WITH DIVING 53

Chapter 4

Evaluate and Cut with Diving

4.1 Introduction

Solving stochastic problems is challenging and numerous algorithms that exploit the prob-
lem structure of stochastic programs have been developed in the past. Chapter 2 intro-
duced the scenario decomposition and the Evaluate and Cut (E&C) algorithm (Ahmed;
2013) as a method that is based on the scenario decomposition. E&C is an iterative three
step procedure; first, each scenario is solved to obtain a lower bound (given a minimisation
problem) and a set of first-stage variable assignments, also called candidates. Secondly,
each candidate is evaluated over the complete set of scenarios to obtain an upper bound.
And lastly, the evaluated candidates are excluded from the search using nogood con-
straints. By iteratively repeating these three steps, the optimal solution is found and
optimality proven. As mentioned in chapter 2, E&C has been applied successfully to solve
stochastic programs and is especially strong at finding the optimal solution quickly, often
in the first few iterations. However, proving optimality can take a very long time, as the
candidate nogoods exclude only small parts of the search space.

Contributions

The focus of this chapter is to improve the performance of E&C. The chapter presents
two main technical contributions, illustrates the effect of scenario bundling, an established
technique, and introduces a new stochastic programming benchmark. We are the first
to use E&C, intended to solve problems with binary variables, in a CP setting. First,
we propose to use a Lazy Clause Generation CP solver for solving the subproblems and
show how inter-instance learning, can be used to improve the solver performance when
finding candidates, the first step of E&C. The second contribution introduces diving, a
technique that aims to reduce the time required to prove optimality by adding strong
nogood constraints that prune larger parts of the search space than the original algorithm
does. The benchmark used for the experiments can be found in the appendix and has been
made public on the CSPLib (Gent and Walsh; 1999). The content of this chapter has been
published by Hemmi et al. (2017) at the International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research 2017.

CHAPTER 4. EVALUATE AND CUT WITH DIVING 54

Solver

Instance 1

Result
Solver

Instance 2Set of nogoods

Reuse nogoods to learn
from solving a similar
instance previously

Result

Figure 4.1: Inter-instance learning using a lazy clause generation CP solver

4.2 Scenario decomposition and Lazy Clause Generation

Traditional CP solvers use a combination of propagation and search. Propagators reduce
the variable domains until no further reduction is possible or a constraint is violated.
Backtracking search, usually based on variable and value selection heuristics, explores the
options left after propagation has finished. In contrast to traditional CP solvers, Lazy
Clause Generation (LCG) (Ohrimenko et al.; 2009) solvers learn during the search. Every
time a constraint is violated the LCG solver analyses the cause of failure and adds a
constraint to the model that prevents the same failure from happening during the rest
of the search. The added constraints are called nogoods, and they can be seen as the
CP equivalent of cutting planes in integer linear programming – they narrow the feasible
search space.

Chu and Stuckey (2012) showed how nogoods can be reused across multiple instances
of the same model if the instances are structurally similar. They called this technique
inter-instance learning; its concept is illustrated in Fig. 4.1. Solving the first instance
yields a result, the solution to the problem, and a set of nogood constraints. Instead
of discarding the nogood constraints learned during the search, Chu and Stuckey (2012)
propose to augment the second instance with the just learnt set of nogood constraints.
Reusing the nogoods learned while solving one instance can yield a substantial reduction
in the search space of another instance. Empirical results published in Chu and Stuckey
(2012) indicate that for certain problem classes, a high similarity between instances yields
a high reusability of nogoods and therefore increased performance.

In E&C, very similar instances are solved repeatedly. As shown in Fig. 4.2, in every
iteration, all scenarios are solved over again. The only difference between two iterations is
the additional candidate nogoods that result from the E&C coordination algorithm. As a
consequence, inter-instance learning can be used to increase the performance when solving
the scenarios to obtain candidates. We call this concept vertical learning, as the learnt
nogoods are reused within the same subproblem. No changes are required to the standard
E&C algorithm, except we assume that solving the subproblems works incrementally and

CHAPTER 4. EVALUATE AND CUT WITH DIVING 55

Solver

Instance 1

Result
Solver

Instance 1Set of nogoods

Result

Candidate nogoods

Iteration 1

Iteration 2

Figure 4.2: Inter-instance learning applied to E&C

the solver remembers the nogoods learned in the previous iteration for each PDi . To the
best of our knowledge, we are the first to make use of inter-instance learning in a vertical
fashion. Inter-instance learning will be evaluated empirically in Section 4.4.

4.3 Search Over Partial Assignments

As introduced earlier, the E&C algorithm quickly finds high quality solutions by evaluating
candidates, obtained from solving scenario COPs to optimality, over the complete set of
scenarios. However, to prove optimality, evaluateAndCut relies on the lower bound,
which is computed as the probability weighted sum over all scenario objectives. The
quality of the lower bound, and the number of iterations required to reach the upper
bound and thus prove optimality, is solely dependent on the candidate nogoods added in
each iteration.

Candidate nogoods as used in E&C are rather weak: They only cut off a single, com-
plete first-stage assignment. Furthermore, in the absence of Lagrangian multipliers or
similar methods, candidate nogoods are the only information about the lower bound of
PS that is available to each scenario problem PDi.

Stronger nogoods: To illustrate the candidate nogoods produced by E&C, consider
a set of shared variables V of size five, and the candidate x = [3,6,1,8,3]. The resulting
candidate nogood added to the constraint set of each scenario subproblem PDi is:

Pi = Pi[C∪= {x1 , 3∨x2 , 6∨x3 , 1∨x4 , 8∨x5 , 3}]

The added constraint cuts off exactly one first-stage assignment. A nogood composed of
only a subset of the shared variables would be much stronger. For example, assume that
it would be possible to prove that even the partial assignment x1 = 3∧x2 = 6∧x3 = 1
cannot be completed to an optimal solution to the stochastic problem. We could add the

CHAPTER 4. EVALUATE AND CUT WITH DIVING 56

Algorithm 2 Evaluate and Cut for Two-Stage Problems
1: procedure solveSCOP(PS)
2: Initialize: UB = ∞, LB = -∞, sol = null
3: [PD1,. . . ,PDk] = get_scenarios(PS)
4: while LB < UB do
5: LB = 0, S= ∅
6: % Find first-stage candidates (lower bound)
7: for i in 1..k do
8: < σ,obj> = solve(PDi)
9: LB += obj

10: S ∪= {σ|V }

11: % Evaluate first-stage candidates (upper bound)
12: for σV ∈ S do
13: tUB = 0
14: for i in 1..k do
15: < _,obj> = solve(PDi[C ∪= {σV }])
16: tUB += obj
17: addNogood(PDk,σV)
18: if tub < UB then
19: sol = σV
20: UB = tUB
21: % Evaluate partial first stage assignments
22: dive(PS ,UB,S,sol)
23: return sol

following nogood,
Pi = Pi[C∪= {x1 , 3∨x2 , 6∨x3 , 1}],

which in contrast to the original candidate nogood that eliminates exactly one solution, is
able to prune a much larger part of the search space. We call this stronger kind of nogood
a partial candidate nogood.

Diving - algorithm:

We now develop a method for finding partial candidate nogoods that we call diving. The
main idea is to iteratively assign values to a subset of first-stage variables across all sce-
narios, essentially enforcing partial consistency, solve the subproblems and continue with
assigning further variables until the resulting bound exceeds the incumbent upper bound
of PS . In that case, the fixed variables can be added as a partial nogood, since no complete
variable assignment can be found that is better than the incumbent.

The modification to standard E&C as displayed in Algorithm 2 (same as Algorithm 1 in
chapter 2) consists of a single call, to a procedure called dive in line 22, which is executed
in each iteration after evaluating the candidates. The definition of dive is described in
Algorithm 3. A constraint c is created that fixes a subset of the first-stage variables, line 5.
The selection of the respective variable assignments is done according to a heuristic. The
loop in lines 7 to 10 is very similar to the computation of candidates, except that the

CHAPTER 4. EVALUATE AND CUT WITH DIVING 57

partial consistency constraint c is enforced in all scenarios. As in standard E&C, a bound
is calculated based on the probability weighted sum of all scenarios. If this bound meets
or exceeds the incumbent upper bound (line 20), the partial consistency constraint c is
turned into a nogood and added to all subproblems.

Enforcing partial consistency can result in one of three states:

1. The new bound does not exceed the incumbent upper bound, but all scenarios agree
on a common first-stage variable assignment (even if c does not constrain all first-
stage variables). This means that a new incumbent solution is found (lines 12–18)
and the constraint c can be added as a partial candidate nogood.

2. The new bound meets or exceeds the upper bound. In this case, the partial consis-
tency constraint c cannot be extended to any global solution that is better than the
incumbent (lines 20–23). We can therefore add c as a partial candidate nogood.

3. The new bound is below the upper bound, and the shared variables of all scenarios
did not converge. In this case, an additional constraint is added to the partial
consistency constraint c.

Algorithm 3 Searching for partial candidate nogoods using diving
1: procedure dive(PS ,UB,S,sol)
2: tLB = -∞
3: while tLB < UB do
4: tLB = 0
5: c = selectFixed(S,V) % Select first stage variables to fix
6: S= ∅
7: for i in 1..k do
8: <σ,obj> = solve(PDi[C ∪= {c}])
9: tLB += obj

10: S ∪= σ|V
11: % new incumbent found
12: if tLB < UB ∧ S = {σV } then
13: UB = tLB
14: sol = σV
15: % Add partial candidate nogood
16: for i in 1..k do
17: PDi = PDi[C ∪= {¬c}]
18: return
19: % Proof: incumbent solution (UB) is better than all possible candidates (tLB)
20: if tLB >= UB then
21: for i in 1..k do
22: PDi = PDi[C ∪= {¬c}]
23: return

The dive procedure terminates because in each iteration, selectFixed fixes at least
one additional first-stage variable, which implies that either case (1) or (2) above must
eventually hold.

CHAPTER 4. EVALUATE AND CUT WITH DIVING 58

Note, the candidates obtained during each iteration of diving are not evaluated over all
scenarios, as one might expect based on standard E&C. Firstly, evaluating all candidates
can be computationally expensive. Furthermore, the optimal solution would either way be
found in a subsequent iteration given it is an extension of the partial consistency.

Diving heuristic:

Let us now propose a heuristic for choosing the consistency constraints that are added
in each iteration of a dive. Our goal is to produce short, yet relevant partial candidate
nogoods and achieve convergence across all scenarios quickly. The motivation behind the
heuristic we are proposing is the following; a partial nogood that invalidates the variable
assignment that is most commonly found across the set of candidates prunes strongly. The
motivation is based on the assumption that candidates yield likely high quality solutions,
without having any formal explanation.

The heuristic we are proposing selects candidate variables that are already converged,
plus an additional assignment. The procedure selectAndFix in Algorithm 4 implements
this heuristic. At first, all candidate variables that are already converged are chosen,
including those fixed in previous steps of this dive (line 5 right side of ∧). In addition,
another first-stage variable assignment is selected (line 5 left side of ∧), based on the
variable/value combination that occurs most often over all scenarios.

Given the current set of candidates S, the algorithm constructs a mapping Count

from variables to multisets of their assignments (line 3). Thereafter, the most frequently
observed, yet not completely converged, variable/value combination is selected (line 4).
For example, if variable x3 is assigned to the value 4 in three candidates, and twice
to the value 7, then Count would contain the pair < x3,{4,4,4,7,7} >. The value 4
would be assigned to x3 as it is the most prevalent variable/value combination. Finally,
the algorithm constructs a constraint that assigns xe to ve, in addition to assigning all
variables that are already converged (line 5).

Algorithm 4 Diving heuristic
1: procedure selectAndFixed(S,V)
2: V als=< {σi(x) : σi ∈ S} : x ∈ V >
3: Count=< card({i : σi(x) = val,σi ∈ S}) :< x ∈ V,val ∈ V alsx >>
4: < xe,ve >= argmax

<x,v>
val∈V alsx

Count<x,v>< k

Count<x,val>

5: c= (xe = ve∧
∧
x∈V

val∈V alsx
Cout<x,v>= k

x= v)

6: return c

CHAPTER 4. EVALUATE AND CUT WITH DIVING 59

Scenario Bundling:

The final extension to E&C is scenario bundling. When using the scenario decomposition,
the subproblems can be a group of scenarios that are modelled as a DE, as described in
chapter 3. Since the evaluation procedure in evaluateAndCut has O(k2) behaviour for
k scenarios, bundling can have a positive effect on the runtime, as long as the time to solve
a bundle is not significantly higher than that for an individual scenario. Furthermore, the
bundling of scenarios yields stronger lower bounds, as each resulting candidate is opti-
mal with respect to a set of scenarios rather than just a single one. Scenario bundling
therefore combines the fast convergence of evaluateAndCut for large numbers of sce-
narios with the good performance of methods such as the DE on low numbers of scenarios.
Scenario bundling has been applied to progressive hedging (Crainic et al.; 2014) and to
evaluateAndCut in (Ryan, Ahmed, Dey and Rajan; 2016).

4.4 Experiments

This section reports on our empirical evaluation of the algorithms discussed above. As
benchmark we use a stochastic assignment problem with recourse, similar to the stochastic
generalised assignment problem (SGAP) described in Albareda-Sambola et al. (2006); the
most relevant parts of the model are displayed in Fig. 4.3 and the complete model can be
found in the appendix, Fig. A.1.4; the subsequent line references refer to these models,
the lines are consistent. A set of jobs (line 18), each composed of multiple tasks (line 22),
is to be scheduled on a set of machines (line 17). Precedence constraints, starting in
line 93, ensure that the tasks in a job are executed sequentially. Furthermore, tasks may
be restricted to a sub-set of machines, the constrains start on line 131. The processing
time of the tasks varies across the set of machines, and in the stochastic version of the
problem, this is a random variable (line 102). In the first stage, tasks must be assigned
to machines. An optimal schedule with respect to the random variables is created in the
second stage. The objective is to find a task to machine assignment that minimises the
expected makespan over all scenarios.

Work on the SGAP with uncertainty on whether a job must be executed is described
by Albareda-Sambola et al. (2006). However, to the best of our knowledge, there are no
public benchmarks for the SGAP with uncertain processing times. We created benchmarks
for our experiments on the basis of the deterministic flexible job shop instances introduced
by Brandimarte (1993). The scenarios are created by multiplying the base task durations
by a number drawn from a uniform distribution with mean 1.5, variance 0.3, a lower limit
of 0.9 and upper limit of 2.

To model the benchmarks, we used MiniZinc. Each scenario is described in a separate
MiniZinc data file and compiled separately. This enables the MiniZinc compiler to optimise
the COPs individually before solving. The models use a fixed search strategy (preliminary
studies using activity-based search, usually a high performing search strategy, did not
improve the performance). The solver is implemented using Chuffed (Chu; 2011) and
Python 2.7. The scenarios are solved using Chuffed and learned nogoods are kept for

CHAPTER 4. EVALUATE AND CUT WITH DIVING 60

subsequent iterations to implement vertical learning. A Python program implements the
main E&C algorithm with diving as presented in section 4.3. Up to twenty scenarios are
solved in parallel. The experiments were carried out on a 2.9 GHz Intel Core i5, Desktop
with 8 GB RAM running OSX 10.12.1. A time-out of 3600 seconds was enforced.

4.4.1 Results

Table 4.2 contains the results for 9 representative problem instances with a range of 20 to
400 scenarios. In every instance, E&C is able to retrieve the optimal solution within the
first few iterations and the remaining time is used to prove optimality. No results for the
deterministic equivalent are presented as the runtime is not competitive once the number
of scenarios exceeds 20.

The impact of diving:

The first two rows per instance in Table 4.2 contain the time it takes to solve the problem
instances without scenario bundling. No substantial time difference can be reported for
finding the optimal solution when dives are enabled; we therefore do not show these times.
However, using dives improves the overall search performance in every instance. Figure 4.4
contains a set of plots that display the impact of dives when solving 100 scenarios without
bundling. The monotonically increasing graphs are the lower bounds. The horizontal
black line is the value of the optimal solution. The upper bound progression towards the
optimal solution is not displayed, as it is consistently found within a few seconds. Once
the lower bound meets the upper bound, optimality is proven, and the search terminates.
The lower bound can increase erratically, especially when diving is enabled. This is the
reason that the lower bound exceeds the value of the optimal solution, once optimality
is proven (not an error in the plot). In both cases, the lower bound increases quickly
at the beginning of the search. However, over time the standard E&C method without
diving flattens and the lower bound converges slowly towards the upper bound. This is
strongly contrasted by the lower bound characteristics when using diving. At first during
the initial iterations, the partial candidate nogoods are not showing any effects and the
two curves are similar. However, after the initial phase, strong partial candidate nogoods
are generated, and thus pay off by dramatically reducing the optimality gap.

Using DE to prove optimality:

CP solvers perform well when strong bounds are provided. The third row displays the
time it takes to prove optimality given the DE and a constraint that forces the objective
value to be lower than the optimal objective value.

Scenario bundling:

The last two rows per instance display the time it takes to solve the instances using
scenario bundling. Four scenarios are randomly grouped to form a DE. Each scenario
group becomes a subproblem solved with evaluateAndCut with and without diving

CHAPTER 4. EVALUATE AND CUT WITH DIVING 61

9 % Including files
10 include "globals.mzn";
11 % Parameters
12 int: no_mach; % Number of machines
13 int: no_jobs; % Number of jobs
14 int: no_task; % Number of total tasks
15 int: no_optt; % Number of total optional tasks
16
17 set of int: Mach = 1..no_mach;
18 set of int: Jobs = 1..no_jobs;
19 set of int: Tasks = 1..no_task;
20 set of int: OptTs = 1..no_optt;
21
22 array [Jobs] of set of int: tasks;
23 array [Tasks] of set of int: optts;
24
25 array [OptTs] of int: optt_mach;
26 array [SCENARIOS1,OptTs] of int: optt_dur;

93 % Precedence relations
94 %
95 constraint
96 forall(s in SCENARIOS)(
97 forall(j in Jobs, i in tasks[j] where i < last_task[j])(
98 start[s,i] + dur[s,i] <= start[s,i + 1]
99)

100);

102 % Duration constraints
103 %
104 constraint
105 forall(o in OptTs,s in SCENARIOS)(
106 let { int: t = optt_task[o] } in (
107 if card(optts[t]) = 1 then
108 b[o] = true
109 else
110 b[o] -> dur[s,t] = optt_dur[s,o]
111 endif
112)
113);

131 % Resource constraints
132 %
133 constraint
134 forall(m in Mach,s in SCENARIOS)(
135 let {
136 set of int: MTasks = { o | o in OptTs where optt_mach[o] = m }
137 } in (
138 cumulative(
139 [start[s,optt_task[o]] | o in MTasks],
140 [optt_dur[s,o] | o in MTasks],
141 [bool2int(b[o]) | o in MTasks],1)));
142
143 constraint forall(s in SCENARIOS)(
144 forall(j in Jobs)(start[s,last_task[j]] + dur[s,last_task[j]]
145 <= de_objective[s]));

Figure 4.3: Generalised assignment problem

CHAPTER 4. EVALUATE AND CUT WITH DIVING 62

dh5\17 dh5\16 dh5\20

dh5\18 dh6\17\1 dh6\15

dh6\17\2 dh6\16 dh61\18

Figure 4.4: Time to prove optimality: E&C vs. diving

CHAPTER 4. EVALUATE AND CUT WITH DIVING 63

20 20 40 40 80 80 100 100 200 300 400
E&C mean 23.4 29.6 15.8 19.2 9.7 27.4 7.2 26.0 21.8 19.6 17.6

variance 6.0 17.2 5.0 37.1 2.4 13.8 3.3 12.0 10.7 10.6 8.4
Dive mean 21.4 32.7 13.7 28.7 8.1 29.9 5.9 23.8 17.1 14.7 12.4

variance 6.3 23.6 4.0 21.9 2.4 16.6 2.1 11.5 8.9 6.8 5.8
Speedup: 100 - 100 / time no learning * time with learning
Colored: Speedup in [%] when using vertical learning without bundling scenarios
White: Speedup in [%] when using vertical learning and bundling scenarios

Table 4.1: Speedup using vertical learning

enabled. The runtime decreases in every instance. For the benchmark instances, diving
is less powerful when using scenario bundles. This can be explained by the decreasing
number of iterations required to find the optimal solution. More time is spent solving the
subproblems and less effort is required to coordinate the scenarios.

Vertical learning:

Table 4.1 shows the speed-up when using vertical learning. Each column displays the
speed-up over a scenario group. Overall the solving time decreased by 19.3% with 10.7%
variance; the maximal increase observed was 72%.

4.5 Related Work

Ryan, Rajan and Ahmed (2016) propose a series of algorithmic improvements, such as
using the LP relaxation when evaluating candidates and only solving the non-relaxed sub-
problem if required; many candidates can be discarded on the basis of solving the LP
relaxation. Similar to their work, the LP relaxation can also be applied when using diving
to find partial nogoods. Furthermore, Ryan, Rajan and Ahmed (2016) introduce an asyn-
chronous parallelisation scheme that doesn’t require each iteration to be finished before
proceeding to the next iteration. Basçiftci et al. (2017) solve a generator maintenance
and operations scheduling problem under uncertain failure times. They improve on E&C
by introducing strong, problem specific nogood cuts. And lastly, Ryan, Ahmed, Dey and
Rajan (2016) use various strategies to group scenarios to improve the search performance,
similarly to the scenario grouping method we used in our experiments, however with a
focus on grouping heuristics.

4.6 Conclusion

This chapter introduced the first successful application of E&C in a CP setting and two
algorithmic innovations to improve the performance of the standard E&C algorithm. First,
we presented how vertical learning, an application of inter-instance learning, can be used
to speed up the search in each subproblem. Secondly, and perhaps most significantly, we

CHAPTER 4. EVALUATE AND CUT WITH DIVING 64

presented a method to decrease the time to prove optimality using diving to create strong
nogoods. Finally, we empirically evaluated both improvements on a two-stage stochastic
generalised assignment problem, for which we created instances that we published on the
CSPLib (Gent and Walsh; 1999) with the problem id prob077.

4.6.1 Limitations

Our experiments confirm that using partial nogoods can substantially reduce the time
to prove optimality when solving a stochastic problem using E&C. After demonstrating
the effectiveness of diving, we would like to address its limitations. Ahmed (2013) used
two benchmarks in his seminal paper to showcase the performance of E&C, a stochastic
knapsack problem as well as a stochastic server location problem. Ahmed (2013) reports
the number of iterations required to solve the problems. Most instances were solved in less
than 10 iterations and of those, most required only two iterations. Clearly, if an instance
is solved within only few iterations, diving will not improve the search performance. There
is an overhead associated with diving, each dive requires multiple iterations, and for this
overhead to pay off a large number of standard E&C iterations are required.

4.6.2 Future Work

Multiple future research directions in relation to diving can be identified. First, the heuris-
tic used to determine the variables to be fixed strongly impacts the performance of the
search. A good heuristic is able to produce strong, relevant nogoods. A heuristic based
on variable activity during the search in COPs might produce strong results.

For the vertical learning experiments, we have used the standard system to manage
nogoods within Chuffed. Further investigating the role of nogoods might help to improve
the performance of inter-instance learning.

CHAPTER 4. EVALUATE AND CUT WITH DIVING 65

Instance Algorithm 20 40 80 100 200 300 400
dh_5_17 E&C 24 343 1748 2060

Dive 12 152 584 716
DEupperBound 7 215 1342 1923 - - -
E&Cbundle 1 8 19 17 27 49 46
Divebundle 1 11 20 17 26 45 64

dh_5_16 E&C 36 111 436 638
Dive 23 56 212 318

DEupperBound 20 131 877 1136 - - -
E&Cbundle 2 5 9 11 34 69 91
Divebundle 3 7 12 13 41 72 93

dh_5_20 E&C 338 196 - -
Dive 87 880 713 1304

DEupperBound 43 293 2355 - - - -
E&Cbundle 3 17 36 72 240 423 645
Divebundle 7 18 43 71 190 328 510

dh_5_18 E&C 163 719 - -
Dive 50 179 984 1566

DEupperBound 3 50 1547 3467 - - -
E&Cbundle 7 31 162 226 407 712 1233
Divebundle 8 32 157 218 401 629 873

dh_6_17_1 E&C 94 735 2328 3242
Dive 33 152 447 712

DEupperBound 6 62 647 1073 - - -
E&Cbundle 2 3 15 15 59 91 156
Divebundle 2 3 14 15 52 75 114

dh_6_15 E&C 10 35 209 338
Dive 5 14 95 147

DEupperBound 5 69 495 1142 - - -
E&Cbundle 1 3 16 21 67 81 138
Divebundle 1 4 19 25 61 66 183

dh_6_17_2 E&C 253 755 3345 -
Dive 58 153 725 1014

DEupperBound 0 31 477 386 2159 - -
E&Cbundle 7 8 33 49 89 182 303
Divebundle 6 7 24 24 48 121 178

dh_6_16 E&C 21 69 141 214
Dive 13 36 71 97

DEupperBound 12 111 777 1921 - - -
E&Cbundle 11 24 29 42 125 206 336
Divebundle 11 25 37 54 76 122 199

dh_6_18 E&C 134 672 2140 3548
Dive 44 150 454 645

DEupperBound 9 157 1790 3323 - - -
E&Cbundle 7 11 19 29 120 219 338
Divebundle 9 20 24 31 131 212 310

Table 4.2: Time to prove optimality [sec]

CHAPTER 5. RECURSIVE EVALUATE AND CUT 66

Chapter 5

Recursive Evaluate and Cut

5.1 Introduction

The previous chapter presented improvements for the two-stage E&C algorithm. However,
in reality, stochastic problems often have a structure where the uncertainty is revealed over
time, and multiple decision stages are the result. Consider for example, the management
of inventory, where new stock is ordered periodically. Another example where the un-
certainty is observed over time and appropriate decisions are required periodically is the
electric power generation and expansion planning; an optimal construction and genera-
tion plan of both new and existing power plants is required and regularly updated to meet
future demand (Ahmed et al.; 2003). Previous chapters addressed two-stage stochastic
programming, where problems are formalised under the assumption that the value of the
random variables are observed at once. The scenario decomposition based E&C algorithm
and extensions thereof were used to tackle two-stage problems. This chapter is looking
at solving multi-stage combinatorial stochastic problems and will show how to extend
two-stage E&C into a recursive multi-stage algorithm. At first, we illustrate how a naïve
recursion of the algorithm looks like using a four-stage stochastic program. Thereafter,
we present the new, improved version.

Contributions

Previous chapters introduced E&C as an algorithm to solve two-stage stochastic problems
with discrete first-stage variables. The main contribution of this chapter is the generali-
sation of E&C to multi-stage problems. Every algorithm for two-stage problems can be
used to solve multi-stage problems if called recursively, however a naïve recursive approach
may not exploit the problem structure effectively. We will present a new recursive algo-
rithm that is different to the naïve approach as it makes use of shortcuts in the recursion
to converge quickly to a feasible solution, while remaining complete. Computational re-
sults on a four-stage facility location problem with capacity, and other side constraints,
demonstrates the performance of the algorithm. The contributions of this chapter have
been published at the AAAI (Association for the Advancement of Artificial Intelligence)
conference 2018 by Hemmi et al. (2018).

CHAPTER 5. RECURSIVE EVALUATE AND CUT 67

5.2 Recursive multistage E&C

5.2.1 Naïve E&C Recursion

This section describes the naïve recursion of E&C for multi-stage stochastic problems on
a high level. Standard E&C requires two types of calls. Firstly, candidates are generated
by solving the subproblems with enforced candidate nogoods, and secondly candidates are
evaluated by projecting a variable assignment onto the shared variables before solving the
subproblems. In standard E&C, the subproblems are deterministic optimisation problems
(COP) and solved using a off-the-self MIP or CP solver. To tackle multi-stage problems
with E&C, all that is required is a solver that is able to solve a n−1 subproblem, e.g. in
a three-stage problem, a solver that is able to solve a two-stage problem.

To support the explanation or recursive E&C we use a four-stage minimisation problem
as displayed in the picture below on the left. First, a copy of the shared variables is
introduced for each of the subproblems, e.g. X11 and X12. The four-stage SCOP is
composed of two three-stage (n= 3) subproblems. To generate candidates and to calculate
a lower bound, the subproblems are solve to optimality. The resulting candidates are
evaluated over the subproblems to obtain an upper bound, as in standard E&C. As long
as the subproblems are also multi-stage SCOPs, the recursive algorithm calls itself to solve
the n−1 subproblems.

Scenario tree
Stage 1 Stage 2 Stage 3 Stage 4

!1

!21

!22

!31

!32

!33
%4
%5
%6

%1
%2
%3

Naïve version

!11

!12

n = 3

Naïve version

!12

!13

!221

!222 n = 2

In classical recursive fashion, the two
n−1 stage subproblems are solved
using the same methodology as just
introduced. The three-stage suproblems
are themselves composed of two
subproblems with n= 2. Finally,
standard E&C is able to solve the
resulting two-stage problems.

The naïve recursive E&C algorithm is guaranteed to find the optimal solution for com-
binatorial problems. However, it may take many iterations to even find the first set of
n= 4 candidates, as the subproblems have to be solved to optimality. In the following, we
propose an improved recursive algorithm.

CHAPTER 5. RECURSIVE EVALUATE AND CUT 68

5.2.2 Improved E&C Recursion

In the previous section, we introduce the naïve E&C recursion. We now proceed with
an improved version that requires fewer iterations, finds convergence quick and therefore
solves the SCOP fast.

Standard E&C for two-stage problems requires that each scenario COP is solved to
optimality and so does the naïve recursion; firstly, to obtain promising candidates, and
secondly, to calculate the lower bound. In the two-stage case, the lower bound is only valid
if the subproblems are solved to optimality. However, when solving multi-stage problems,
the subproblems (n > 1) do not necessarily have to be solved to optimality; the difference
will become apparent later.

The four-stage SCOP, as introduced before, is recursively decomposed until reaching
the n= 1 level, see graph below on the right. In the naïve recursion, the next step would
be to solve the two-stage (n= 2) problems to optimality, which provides in turn candidates
for the n = 3 stage problem. This bottom-up approach is repeated until a candidate is
found for the n= 4 stage problem. In contrast, we propose to not solve the subproblems
bottom-up, but instead directly seek convergence in a top-down approach.

Improved

Why fully evaluate?
!1

!2

!1
!2
!3
!4
!5
!6

Improved

Solving each scenario COP immediately yields a valid lower bound on the four-stage SCOP,
without having solved the subproblems to optimality. This lower bound is valid, in contrast
to the two-stage case, as not enforcing the consistency constraints in the subproblems is a
valid relaxation of the overall four-stage problem. Note: The lower bound is monotonically
increasing when enforcing more consistency constraints.

Once a set of candidates for the n = 4 stage problem is obtained, we evaluate them
over all scenarios of the current SCOP without enforcing the consistency constraints in
the subproblems, see illustration below on the left. This yields a candidate lower bound,
as the consistency constraints in the subproblems are not enforced. If a candidate lower
bound exceeds the objective value of the incumbent solution, the respective candidate
can be discarded immediately (picture bottom right). Otherwise, the procedure continues
recursively with each n−1 sub SCOP.

CHAPTER 5. RECURSIVE EVALUATE AND CUT 69

Improved

Candidate
lower bound Keep the scenario tree

Relaxed!

Candidate
elimination Sorted by

Lower bound

Incumbent
objective

The advantage of our improved recursive E&C algorithm are the following:

• Immediate lower bound: After solving each scenario COP once, a lower bound
for the original SCOP can be calculated immediately. In contrast, the naïve version
requires to solve the subproblems to optimality before obtaining a lower bound.

• Quick convergence: A valid, converged solution is found after few steps, as we
enforce consistency in a top-down approach.

• Reject Candidates: Candidates can be rejected very quickly, because of the can-
didate lower bound. There is no necessity to solve the subproblems to optimality
before A) obtaining candidates and B) rejecting candidates.

We conceptually introduced our new and improved Recursive E&C algorithm. In the next
section, we will introduce the algorithm formally.

Formal Algorithm

The implementation of the recursive E&C is written down in Algorithm 5. Firstly, the
current SCOP PS is unpacked into all its scenarios COPs (PD1, . . . ,PDk), in line 8. Solving
the COPs (line 13) yields a lower bound on the current SCOP PS and a set of candidates
S; σp is initially the empty assignment. Note, each candidate σv match the scope of the
shared variables of the current SCOP PS , denoted by σ|V . In line 17, a method to obtain
candidate lower bounds is called, which evaluates the candidates over the complete set
of scenarios that belong to the current SCOP, e.g. PD1. . . . ,PDk. This bound is a lower
bound on the candidate, because the consistency constraints in the subproblems are not
enforced. If the candidate lower bound (lb) is not strictly smaller than the incumbent,
tested in line 20 , it is rejected immediately and a nogood is added to all subproblems
PD1, . . . ,PDk in line 29. Otherwise, the algorithm proceeds in line 23 with solving the
n− 1 subproblems, with σV ∧σp projected onto the respective variables. The algorithm
returns a policy tree as T as introduced in chapter 2.

CHAPTER 5. RECURSIVE EVALUATE AND CUT 70

Algorithm 5 Recursive Multistage Evaluate and Cut
1: procedure solveMSCOP(PS , σp)
2: if PS = PD then
3: < σ, obj > = solve(PD[C ∪= {σp}])
4: T = < σ|V , []>
5: return < T , obj >
6: else PS =< V, [PS1, . . . ,PSn]>
7: Initialize: UB = ∞
8: [PD1,. . . ,PDk] = get_scenarios(PS)
9: while LB < UB do

10: % Obtain a lower bound and candidates
11: LB = 0, S= ∅
12: for i in 1..k do
13: < σ,obj> = solve(PDi[C ∪= {σp}])
14: LB += obj
15: S ∪= {σ|V }

16: % Obtain candidate lower bound
17: CLB = getCandidateLB(S,[PD1,. . . ,PDk],σp)
18: % Evaluate candidates
19: for (σV , lb) ∈ CLB ordered by lb do
20: if lb < UB then
21: tUB = 0
22: for i in 1..n do
23: < Ti, obj > = solveMSCOP(PS i, σV ∧σp)
24: tUB += obj
25: if tub < UB then
26: UB = tUB
27: T =< σV , [T1, ..,Tn]>

28: for i in 1..k do
29: addNogood(PDi,σV ∧σp)

30: return < T ,UB>
31:

32: procedure getCandidateLB(S,[PS1,. . . ,PSk],σp)
33: CLP = {}
34: for σV ∈ S do
35: lb = 0
36: for i in 1..k do
37: < _, obj > = solve(PS i[C ∪= {σV ∧σp}])
38: lb += obj

CLB ∪= {(σV , lb)}

39: return CLB

CHAPTER 5. RECURSIVE EVALUATE AND CUT 71

Memorisation:

At every recursion level, the candidates are evaluated against all the scenarios that match
the scope of a given SCOP. At least one, and possibly many COPs already explored the
variable assignment that matches that candidate, which results in redundant computa-
tions. This redundancy can be avoided by introducing a memory for each scenario PD
that recalls whether a specific variable assignment has already been explored.

5.3 Experiments

To evaluate the performance of the proposed algorithm we are using two variations of the
stochastic facility location problem with capacity constraints.

Multi-Stage Stochastic Facility Location Problem

The classical facility location problem has many applications, such as deciding where to
open a warehouse in a supply chain, determining the best location of a database in a
computer network, or selecting the most appropriate vendors when expanding into a new
market (Arabani and Farahani; 2012). We motivate and evaluate our work using a multi-
stage stochastic facility location problem with capacity constraints; Farahani et al. (2014)
present a comprehensive review. The task is to open a number of facilities, assign each
customer to a single facility, whilst minimising the combined cost of setting up facilities
and distributing goods. The problem is composed of four stages and the number of cus-
tomers (including locations) is uncertain and revealed over time. Each scenario describes
a different set of customers.

Equation 5.1 contains the model for a single scenario and the complete model can be
found in the appendix. The goal is to minimise the combined cost of setting up facilities
and delivering goods to customers, where fti denotes the cost of setting up facility yi in
stage t and ctij is the cost of delivering goods from facility i to customer j. Each customer
is assigned to exactly one facility that might be different in each stage. Ci is the total
capacity of facility i and dj the demand of customer j.

The second variant of the problem contains an additional “balancing” constraint that
enforces a similar customer count for each facility. The aim is to minimise the expected
cost while satisfying the consistency constraints. For the experiments we generated 15
four-stage instances with 7 concrete realisations of the random variables in each stage,
ending up with a total of 343 scenarios. For the 15 instances, we extracted further 9
problems, each contains a subset of the 343 scenarios, chosen such that a balanced tree
results, e.g. 3 realisations in each stage yields 27 scenarios. We used a total count of 150
problems ranging from 27 to 343 scenarios for each of the problem classes. The instance
parameters are: 6 facilities, 150 customers, the total warehouse capacity is 60% higher
than the maximal customer demand, K3 (the third-stage balancing constant) is set to 15
and the balancing constraints in stage one and two, K1 and K2, are set to 150. Essentially,
the balancing constraint is only enforced in stage four.

CHAPTER 5. RECURSIVE EVALUATE AND CUT 72

We compare our algorithm with the performance of CPLEX on the DE. Both instances,
the DE and the subproblems for Recursive E&C, are modelled in MiniZinc. The DE was
solved using CPLEX (12.6.3) parallel optimiser and the Recursive E&C was implemented
in Python 2.7 with CPLEX (12.6.3) as the subproblem solver. The experiments were
carried out on a single computer that is part of the MonARCH HPC Cluster provided by
Monash eResearch Centre with 16 physical cores (32 hyper threaded cores) at 3.20 GHz,
with a time out of 1800 seconds per instance.

Basic model

min
{ ∑
t∈T,i∈I

fti ∗yti+
∑
t∈T

∑
i∈I,j∈J

ctij ∗xtij
}

s.t.
∑
i∈I

xtij = 1 ∀j ∈ J,t ∈ T

∑
j∈J

xtij ∗dj ≤ Ci ∀i ∈ I, t ∈ T

xtij ≥ 0,yti = {0,1} ∀t ∈ T,i ∈ I,j ∈ J

Balancing constraint∣∣∣∑
j∈J

xti1j−
∑
j∈J

xti2j
∣∣∣<Kt ∀i1, i2 ∈ I, t ∈ T

(5.1)

5.4 Results

Basic Model:

Fig. 5.1 shows the time to solve the basic facility location problem using E&C and CPLEX
on the DE. As expected, CPLEX is able to solve the DE for small instances in a reason-
able amount of time but does not scale well when increasing the number of scenarios,
as illustrated by the large number of instances that did not finish the search within the
time out. For example, when looking at the instances with 343 scenarios, 11 out of 15
problems did not finish within the given 1800 seconds. In contrast, the E&C algorithm
always finishes within the time out. The runtime of E&C increases approximately linearly
with the number of scenarios per instance.

Model with extra constraint:

Fig. 5.2 shows the time to solve the facility location problem with balancing constraints
using E&C and CPLEX on the DE. The additional constraints make it substantially
harder for CPLEX to solve the DE, with only few instances solved to optimality within
the time out. For most DE instances CPLEX cannot even determine an initial feasible
solution (number in square brackets in Fig. 5.2). Proving optimality is a great challenge
for CPLEX. This can even be observed when solving individual scenarios.

When solving subproblems in the E&C routine, we do not always require a full proof
of optimality – all we need is a lower bound. Therefore, setting the relative optimality
gap in CPLEX to 10−3 (instead of the default value of 10−4) makes each scenario COP

CHAPTER 5. RECURSIVE EVALUATE AND CUT 73

- Average runtime of solving 15 instances grouped by number of scenarios.
- ([0-15]) top: number of instances that reach time-out
- ([0-15]) bottom: number of instances that are solved successfully
- Recursive E&C never reaches time-out.

Figure 5.1: Time vs. number of scenarios (basic model)

terminate much faster, without compromising on the completeness of the overall algorithm.
The results in Fig. 5.2 clearly demonstrate the effectiveness of E&C. While CPLEX cannot
cope with the DE formulation except in 13 out of 150 instances, recursive multistage E&C
can find the optimal solution for all 150 instances within the time out.

CHAPTER 5. RECURSIVE EVALUATE AND CUT 74

- ([0-15]) top: number of instances that reach time-out
- ([0-15]) bottom: number of instances that are solved successfully
- [[0-15]] top: number of instances for which no integer solution was retrieved
- Recursive E&C never reaches time out.

Figure 5.2: Time vs. number of scenarios (extended model)

5.5 Related Work

Challenges in solving multi-stage stochastic optimisation problems with integer variables
are well documented (Schultz; 2003). Various research directions have been explored,
however a substantial amount of work has focused on decomposition algorithms. One
line of work has developed algorithms that decompose stochastic problems by stages.
An example of this decomposition is the L-shaped method (Van Slyke and Wets; 1969)
inspired by Benders decomposition. Solver systems such as DECIS (Infanger; 1999) and
FortSP (Ellison et al.; 2010) implement the nested L-Shaped method to solve multistage
problems. However, those solvers are restricted to solve problems with linear constraints
and continuous variables. In contrast, Recursive E&C can be used to solve problems with
combinatorial structure.

Another line of work is based on the scenario decomposition. Watson et al. (2012) pro-
pose to use Progressive Hedging (PH) as a back-end solver for their modelling framework
PySP. Rockafellar and Wets (1991) originally proposed the PH methodology to solve con-
vex problems. The drawback of using PH is twofold; firstly, optimality is only guaranteed
for continuous convex problems; and secondly, PH is not as flexible as Recursive E&C,
as it requires parameter tuning that can be expensive in practice. Alonso-Ayuso et al.
(2003) introduce an algorithm that relaxes the integrality requirements in addition to the
consistency constraints, named Branch-and-Fix (BF). The scenarios are solved using a
linear programming based branch-and-bound (b&b) procedure. To enforce consistency,

CHAPTER 5. RECURSIVE EVALUATE AND CUT 75

a common branching tree is used to fix nodes in the scenario b&b tree. Aldasoro et al.
(2017) introduced a parallel BF coordination scheme that increases performance but does
not remain complete. To the best of our knowledge, BF is not publicly available, it’s
implementation is not trivial and it is not clear how to implement it in a generic fashion
to solve combinatorial problems.

In the context of multistage stochastic programming it is also worth mentioning dy-
namic programming, or stochastic dynamic programming (SDP) when applied to problems
under uncertainty. When using SDP to model stochastic optimisation problems, the fo-
cus is typically on problems with a large number of decision stages or infinite horizons
problems where the impact of future decisions is discounted (Birge and Louveaux; 2011).
These problems are solved using either backward of forward recursion based algorithms
or extensions thereof (Prestwich et al.; 2018). In the context of CP, dynamic program-
ming has been addressed by Prestwich et al. (2018), who have shown that any discrete
DP algorithm can be directly modelled and solved as a constraint satisfaction problem.
Similar to the problems we are interested in, SDP models have discrete time steps and
are modelled using discrete variables. In contrast, our work has focussed on exploring
search algorithms that utilise standard MIP and CP solvers as back-ends to solve the
subproblems. Furthermore, the problems studied in this chapter have a moderate number
of decision stages.

Scenario clustering or bundling is a line of research orthogonal to the scenario de-
composition that aims to tighten the bounds by bundling multiple scenarios into a DE.
Clustering reduces the number of subproblems by strategically enforcing a subset of the
consistency constraints throughout the entire search procedure. It capitalises on the fact
that the DE can be solved efficiently for problems with a small number of scenarios. The
effectiveness of scenario clustering has been demonstrated by Sandikci and Özaltın (2014),
Aldasoro et al. (2017), and Escudero et al. (2016), amongst others. To incorporate sce-
nario clustering into Recursive E&C is straightforward, however the focus of this chapter
was on the introduction of the new algorithm.

5.6 Conclusion

The main contribution of this chapter is the generalisation of standard (two-stage) E&C
to solve multi-stage stochastic problems. Unlike other algorithms, our method can be ap-
plied to solve problems with complex structure such as non-linear constraints and integer
variables. No complicated problem reformulation is required to use Recursive E&C, mak-
ing our method a prime candidate to be used as back-end solver for modelling frameworks
such as GAMS, AMPL, AIMMS or Stochastic MiniZinc.

5.6.1 Limitations

Recursive E&C suffers from the same limitations as the standard two-stage algorithm, as
it can only solve problems that produce candidates over discrete variables. Furthermore,

CHAPTER 5. RECURSIVE EVALUATE AND CUT 76

as shown in chapter 4, depending on the problem structure, many iterations are required
to prove optimality when solving a two-stage stochastic problem with E&C.

5.6.2 Future Work

We demonstrated the effectiveness of Recursive E&C on two sets of benchmarks, by com-
paring E&C to solving DE formulation, the only available and applicable solver option. For
future work, it will be interesting to investigate how information learned in one scenario,
e.g. feasibility cuts, can be generalised and used in other scenarios, to improve the lower
bound computations. Furthermore, ideas from logic-based benders decomposition (Hooker
and Ottosson; 2003) and branch-and-check (Thorsteinsson; 2001) might lend themselves
well to combine scenario decomposition with stage wise decomposition.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 77

Chapter 6

Simulation Based Evaluate and
Cut

6.1 Introduction

Until now, this thesis has been concerned with solving scenario based stochastic optimi-
sation problems to optimality. This chapter will extend the context to problems that
cannot easily be solved using a scenario based stochastic program as the number of sce-
narios required to represent the uncertainty appropriately is prohibitively large. First, we
show that scenario-based SCOPs are not always the actual problem of interest, but rather
an approximation thereof. Secondly, we present an algorithm that has been used widely
with great success to solve stochastic problems. Thirdly, we propose a new algorithm and
empirically demonstrate its effectiveness.

We will now use an example to show that the uncertainty model used for scenario
based stochastic programs is often an approximation of the random variables. Consider a
two-stage facility location problem as displayed in Fig. 6.1, with uncertainty around the
available set of customers. In the first stage, we decide where to open distribution centres,
also called facilities, and in the second stage, once the set of available customers is known,
we assign them to the open facilities. After reaching out to all potential customers we
have a list of locations and commitment statements. Each prospective customer indicates
that the likelihood of opening a shop is 50% irrespective of what all others decide (a
set of independent probabilities). There are 20 possible shop locations and therefore, to
completely capture the uncertainty, about one million scenarios (220) are required. Clearly,
as the number of customers grows it becomes impossible to consider the complete set of
scenarios and a subset must be chosen to approximate the random variables.

In reality, the number of scenarios required to sufficiently approximate the problem
is often much lower than a million. Wu et al. (2017) demonstrate, using a simulation
approach, that a few thousand scenarios (∼3000) sufficiently approximate the uncertainty
in the road network investment problem they study. However, Wu et al. (2017) are not
able to solve problems with more than 30 to 200 scenarios to optimality.

Generating scenarios from random distributions is an important topic in stochastic
programming. However, we will not address how to sample scenarios as this is a field of

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 78

Facility
location

P(Customer = true) = 0.5
Number of customers = 20
Number of scenarios = 1,048,576

Figure 6.1: A two-stage facility location problem

research by itself. There is a vast body of research regarding scenario generation (Váz-
sonyi; 2006; Høyland and Wallace; 2001) and reduction techniques to select a subset of all
scenarios (Dupačová et al.; 2003; Heitsch and Römisch; 2003). For the rest of this chap-
ter, we assume that the set of scenarios is given and focus on how to solve the stochastic
problem.

The time to solve a SCOP generally depends on the number of scenarios considered,
as seen in previous chapters. The graph in Fig. 6.2 conceptually describes the relationship
between the number of scenarios and the time to solve the resulting SCOP. The super linear
function (purple) indicates that solving SCOPs with a relatively low number of scenarios
can be done effectively, however as the scenario count increases it becomes increasingly
challenging to solve the SCOP. In contrast, the linearly increasing line (green) describes
the time to evaluate or simulate the quality of a given candidate over a set of scenarios.
The characteristics of the two graphs suggests that a small number of scenarios can be
considered to solve an optimisation problem and a large number of scenarios can be used
to simulate the objective value of a given policy.

Kleywegt et al. (2002) proposed an approach, that combines optimisation with simu-
lation techniques, to solve SCOPs with a large number of scenarios. The idea is straight-
forward and displayed in Fig. 6.2; firstly, a small number of scenarios is sampled, and
the resulting SCOP is solved. Secondly, the obtained candidate, the optimal solution to
the SCOP, is evaluated over a much larger set of scenarios to approximate the objective
function more accurately. The two steps are repeated until a given stopping criteria is
satisfied. In this chapter we propose an algorithm that is inspired by the work of Kleywegt
et al. (2002) but intended to solve problems that are computationally more challenging
than what the algorithm by Kleywegt et al. (2002) can solve.

Contributions

The main contribution of this chapter is called Simulation Based Evaluate and Cut, a
method that augments standard E&C with simulation, to solve stochastic problems that

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 79Statistical
Evaluate & Cut

Ti
m

e

Number of Scenarios
Use a low number of
scenarios to solve the
stochastic problem

Use a large number of
scenarios to evaluate the
quality of a candidate

Figure 6.2: Time to solve a stochastic problem

require a large number of scenarios for describing the random variables. The chapter
starts with a background section that introduces the Monte Carlo sampling based algo-
rithm by (Kleywegt et al.; 2002). Thereafter, we show how to combine standard E&C
with simulation to end up with an algorithm that performs strongly at solving stochastic
problems with a large number of scenarios. Simulation based E&C is developed with very
challenging decision problems in mind, where even a SCOP with fewer than ten scenarios
cannot be solved to optimality. To evaluate the performance of our new algorithm we
use the stochastic template design problem introduced in chapter 3 and compare it to the
method proposed by (Kleywegt et al.; 2002).

6.2 Background - Monte Carlo Simulation

Kleywegt et al. (2002) proposed a Monte Carlo sampling based approach, called Sample
Average Approximation method, to solve stochastic discrete optimisation problems of the
following form.

Definition 6 The true or real stochastic problem is defined as:

g(x) = EG(x,S)

argmin
x∈D

g(x)
(6.1)

Where S are the stochastic variables drawn from a probability distribution P ; D is the
finite domain of x; G(x,S) is a real valued function of the two (vector) variables x and S;
and E G(x,S) =

∫
G(x,s)P (ds) is the corresponding expected value. The random variables

S have either continuous or infinite discrete support. We assume that the expected value
function g(x) is well defined, i.e., for every x ∈D the function G(x, ·) is measurable and
E{G(x,S)}<∞. Furthermore, we define v∗=minx∈Dg(x) to be the optimal solution.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 80

The main features of the problem we study are:

1. We only study two-stage problems.

2. The expected value problem g(x) = min
x∈D

E G(x,S) cannot easily be solved, e.g. no
closed-form is available, and the number of scenarios used to approximate the random
variables is prohibitively large.

3. Given x and s the function G(x,s) reduces to a COP PD and the objective can easily
be computed. It is therefore possible to evaluate a candidate over a large number of
scenarios.

4. It is possible to generate an iid (independent identically distributed) set of samples
from the random variables S.

5. The problem has relatively complete recourse. In other words, for every feasible
x ∈D the second-stage problem is also feasible; E{G(x,S)}<∞. This is important
as we approximate the quality of a candidate over a non-complete set of scenarios.
An infeasible second stage would yield an infinite objective value and therefore an
infinite variance.

6.2.1 Sample Average Approximation Method

The basic idea behind the sample average approximation method as introduced by Kley-
wegt et al. (2002), is straightforward. First, a set of samples of S is generated to ap-
proximate the original problem. The sampled SCOP is then solved to obtain a candidate,
which is evaluated over a large number of scenarios to approximate the objective more
accurately. The two steps are repeated until a stopping criterion is satisfied.

A sampled SCOP is defined as:

Definition 7 A two-stage sample average approximation (SAA) problem is a pair:

P̂S =< V, [PD1, . . . ,PDN]>

with one set of shared variables V and N iid sampled scenarios, PD1, . . . ,PDN .

Solving P̂S yields a candidate that can be evaluated over a larger number of scenarios to
get a better approximation of the objective value.

6.2.2 Evaluating Candidate Solutions

To evaluate the quality of a candidate, Kleywegt et al. (2002) proposes to calculate the
optimality gap between the objective value of the candidate and the “true” optimal objec-
tive value with statistical confidence. To calculate the optimality gap, an estimate of the
“true” optimal objective value is required and an estimate of the candidate objective value.
Given feasible solution x̂ ∈D, a candidate, we now show how to calculate the optimality
gap.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 81
Proof of
Optimality

!"#$ %&2 =)*+ %&2 − -*,/

x5

x1

x2

x3

x4

x2 Best solution

Upper bound

Lower bound %012
%022

%032

%042

%052

)26 = %"26 %&4 + 89 %:26 %&4

-*,/ = 0̅*,/ − <=,> %:*,/

Figure 6.3: SAA illustration

For every x̂, it is known that g(x̂)≥ v∗ given that v∗ is the “true” optimal objective of
6.1. The quality of any given candidate x̂ can be measured by the optimality gap

gap(x̂) = g(x̂)−v∗.

However, since v∗ cannot be calculated, a statistical procedure to estimate its quality is
required.

Optimality Gap - Upper Bound

First, we show how to estimate the value of g(x̂) using Monte Carlo sampling, with a
random set of iid samples PDj with j = 1, . . . ,N ′ of S, which results in a SCOP P̂SN ′ .
The value of the candidate can be estimated by

ĝN ′ (x̂) =N
′−1

N ′∑
j=1

fj(x̂)

where fj(x̂) is the resulting objective value of evaluating the candidate over scenario j and
the variance is,

σ̂2
N ′(x̂) = 1

N ′(N ′−1)

N ′∑
j=1

[fj(x̂)− ĝN ′(x̂)]2.

The sample size N ′ can be large as evaluating a candidate x̂ over a set of scenarios requires
only solving the second-stage problem. The value of a candidate is estimated by calculating
the one-sided confidence interval (Colquhoun; 1971),

UN ′(x̂) = ĝN ′(x̂) +zασ̂N ′(x̂),

which provides an approximate 100(1−α) confidence upper bound for g(x̂). The one-sided
confidence interval, as opposed to the two-sided, is chosen because we are interested in
stating the confidence of a value being below a certain value, the upper bound. Kleywegt

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 82

et al. (2002) argues that this bound is justified by the Central Limit Theorem, which
states that given a sufficiently large number of iid samples, the resulting distribution will
approximately follow a normal distribution. To calculate the upper-tailed test, we require
the critical value zα, e.g. for α = 5% we get zα ≈ 1.64 and for α = 1% we get zα ≈ 2.33
(Maddala and Lahiri (1992) provides tables with corresponding values for zα). A critical
value is the point on the scale of the test statistic beyond which the null hypothesis is
rejected. A concrete example of calculating the upper bound for a set of candidates is
illustrated in Fig. 6.3. The upper bound UN ′ is calculated for each candidate, x1, . . . ,x5.

Optimality Gap - Lower Bound

The result of evaluating the set of candidates obtained by solving the SAA problems
yields an upper bound. We now proceed with an estimator for v∗. Let us define v̂N as
the optimal objective of the sampled SCOP P̂SN , as illustrated in Fig. 6.3 on the bottom
with v̂1

N , . . . , v̂
5
N . Note, v̂N is a function based on a set of random samples and is therefore

random itself.
The sample average ĝN (x) is an unbiased estimator of the expectation of g(x) and

therefore E[ĝN (x)] = g(x) holds.

g(x) = E[ĝN (x)]≥ E[v̂N]

When minimising the left-hand side of the above inequality we obtain that v∗ ≥ E[v̂N].
To estimate E[v̂] we solve multiple SAA problems and average the resulting optimal

values, as in Fig. 6.3 on the bottom right. We generate M SAA problems based on iid
samples, each of size N and solve them to optimality. Let v̂1

N , . . . , v̂
M
N be the matching

optimal values. Then

v̄N,M = 1
M

M∑
j=1

v̂jN

is an unbiased estimator of E[v̂N] with the variance

σ̂2
N,M = 1

M(M −1)
M∑
j=1

(v̂jN − v̄N,M)2

As previously to estimate the upper bound, we calculate the lower bound with a confidence
interval using a one-tailed test to determine E[v̂N] with 100(1−α)% confidence. When
calculating the confidence interval for the upper bound, we used the z-score, which was
justified by a large sample, e.g. N ′. However, since the number of samples to calculate
the confidence interval for the lower bound is in practice often small, e.g. M = 10, using
the t-test is correct (Colquhoun; 1971).

LN,M = v̄N,M − tα,ν σ̂N,M

where ν = M − 1 and tα,ν is the α-critical value of the t-distribution with ν degrees of
freedom. The degrees of freedom ν is equal to the number of samples, e.g. M , minus one.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 83

Since v∗ ≥ E[v̂N], we have that LN,M provides a valid statistical lower bound on v∗,
consequently

ĝap(x̂) = UN ′(x̂)−LN,M (6.2)

gives a statistically valid bound on the true gap, with confidence 1−2α.

SAA Algorithm

The previous section introduced the concept of a sampled SCOP and how to estimate an
optimality gap. The resulting algorithm as proposed by Kleywegt et al. (2002) is displayed
in Alg. 6. First, the size of N , N ′, M and a stopping criteria are defined. Kleywegt et al.
(2002) propose a formula to determine N that is based on problem specific parameters
such as the dimension of the solution space and the variance of the approximated objective
function. They admit that for many problems it is not easy to compute the size of N and
even if possible Wu et al. (2017) mention that in practice the resulting size of N can easily
grow to become prohibitively large. However, a small, well chosen set of samples is often
sufficient. The size of N ′ can exceed N substantially as evaluating a candidate over a set
of scenarios is cheap compared to finding the optimal solution for the same scenarios. No
strict rule to determineM is given, yet Shapiro and Philpott (2007) argue that in practice
5 to 10 replications are sufficient. The stopping criteria can be defined using the estimator
gap (6.2) or its variance. If the stopping criteria is not satisfied, then N orM is increased.

After all parameters are defined a sampled SCOP is generated in line 4 and solved in
line 5. The result is a first estimator v̂1

N and candidate x1, as in Fig. 6.3 on the left side.
The upper bound UN ′ for x1 is then calculated for estimating the optimality gap ĝap in
line 6. If the stopping criterion is not satisfied after repeating these steps M times, either
N or N ′ are increased and the algorithm starts over again.

Algorithm 6 Monte Carlo based SAA
1: procedure solveSAA
2: Choose: N,N ′,M and a stopping criteria
3: for m in 1,. . . ,M do
4: sample N scenarios and generate P̂SmN
5: < x̂mN , v̂

m
N >= solve(P̂SmN)

6: estimate gap ĝap(x̂) = UN ′(x̂N)−LN,1..m
7: if stopping criteria is satisfied, go to line 9
8: If stopping criteria is not satisfied, increase N and/or N ′ and go back to line 4
9: Choose the best solution x̂ among all candidate solutions x̂mN .

6.2.3 Discussion

Monte Carlo simulation-based methods have been applied successfully to solve stochastic
problems, see Shapiro et al. (2009); Kim et al. (2015). However, in practice the sample
size N is often smaller than what the calculations proposed by Kleywegt et al. (2002)
would suggest. On the one hand, Sheldon et al. (2012) and Wu et al. (2017) argue and
experimentally demonstrate that a small (e.g. < 30) yet well representative set of samples

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 84

is sufficient to find good policies. On the other hand, solving SCOPs even with a small
number of scenarios is often expensive or not feasible; Wu et al. (2017) use the SAA scheme
to solve a stochastic network design problem and report a runtime of 2.5 hours to solve
a SCOP with 20 scenarios. In addition, finding representative scenarios is a challenge
by itself. In the next section we propose an algorithm that does not require solving a
SCOP and therefore scales to problems that cannot be solved by the method introduced
by Kleywegt et al. (2002).

6.3 Simulation-based Evaluate and Cut

We now proceed with the main contribution of this chapter, which is a method that
combines E&C with the simulation based Monte Carlo method. As in standard E&C,
candidates are generated by solving scenarios. In contrast to the SAA method as intro-
duced above, we generate a large number of candidates. To evaluate the quality of the
candidates, we propose a three step procedure that is able to eliminate weak candidates
quickly and evaluate promising candidates over a large number of scenarios.

Our new algorithm is based on the following observations. Firstly, Kleywegt et al.
(2002) have shown that solving an SAA with a low number of scenarios yields promising
candidates for the true stochastic problem. Secondly, when solving a SCOP with E&C,
the optimal or a near optimal solution is often retrieved in the first iteration. If this
assumption holds true, all remaining iterations of the E&C scheme are only required to
prove that the incumbent candidate is optimal. Now, instead of solving the SAA problem
(P̂SmN) to optimality, we directly use the set of candidates obtained in the first iteration of
E&C as candidates for the true stochastic problem and obtain candidates of equal quality
compared to the method by Kleywegt et al. (2002). The subsequent sections formalise our
intuition and provide empirical evidence.

6.3.1 Algorithm

The algorithm we propose is composed of two parts. First, we generate candidates and
secondly the quality of the candidates is approximated using an iterative simulation ap-
proach.

Candidate generation

As in the E&C algorithm, individual scenarios are used for obtaining candidates. However,
in contrast to E&C, where nogoods are added only after the first iteration, which includes
the evaluation phase, we add candidate nogoods directly to a pool after generating them.
This is done, because we are interested in obtaining a large set of candidates without any
duplicates.

Algorithm 7 illustrates how to generate candidates. A scenario based stochastic prob-
lem PSgenerate, or SAA, is given as input. In line 2 we define an empty set of candidates
and specify the number of candidates to be generated. Thereafter, in line 4 to 9 the re-
quested number of candidates is generated. First, in line 6, we add the already generated

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 85

candidates as nogoods to the next scenario PD, before solving it. The first-stage variable
assignment is then added to the set of candidates S and the objectives are summed up
to compute a lower bound. The stopping criteria can also be replaced by other measures,
for example total time passed. Note: If M1 is greater than the number of scenarios in
PSgenerate, multiple candidates can be generated from the same scenario, until the size of
S is equal to M1.

The next section will illustrate how to evaluate the quality of the candidates.

Algorithm 7 Generate Candidates
1: procedure generateCandidates(PSgenerate)
2: Initialize: S = ∅, LB = 0, M1
3: [PD1,. . . ,PDk] = get_scenarios(PS)
4: for i in 1..M1 do
5: for σV ∈ S do
6: addNogood(PDi,σV)
7: < σ,obj> = solve(PDi)
8: S ∪= {σ|V }
9: LB += obj

10: return <S,LB>

Candidate evaluation

To evaluate the quality of the candidates effectively, we propose an iterative ranking
method. Kleywegt et al. (2002) proposed to evaluate a small number of candidates over a
large number of scenarios. This approach does not work well for Simulation Based E&C
as the number of candidates M1 can be very large. Therefore, we propose to simulate all
candidates in S over a small number of scenarios, rank them by objective and reject all
candidates that are not promising.

Algorithm 8 describes the simulation procedure. A sampled SCOP PSevaluate is used
to evaluate the candidates. First, in lines 5 to 8, a PSevaluate with a small number N1 of
scenarios is used for the evaluation. The candidates and resulting objectives are added to
a map, which is ordered by objective value. As the scenarios are chosen randomly, the
resulting objective is an unbiased estimator of the true objective value. Thereafter, in
lines 11 to 16, the highest ranked subset (size M2) is chosen for further evaluation and the
remaining candidates are discarded. The objective value obtained in the second evaluation
phase is combined with the previously calculated objective and added to the candidate
map, line 16. Lastly, in line 19 to 24, a small subset (M3) of candidates is evaluated over
a much larger number of scenarios to reduce the variance of the objective value.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 86

Algorithm 8 Evaluate Candidates
1: procedure evaluateCandidates(PSevaluate, S)
2: Initialize: cnd_ranking = ∅
3: % extract a SCOP with a low number of scenarios to
4: % evaluate a large number of candidates
5: PSsmall = get_subProblem(PS , N1)
6: for σV ∈ S do
7: < _, obj> = solve(PSsmall[C ∪= {σV }])
8: cnd_ranking.add(<obj, σV >)

9: % extract a SCOP with a medium number of scenarios to
10: % evaluate a small number of selected candidates
11: S = ∅
12: S = get_m_best_candidates(cnd_ranking, M2)
13: PSmedium = get_subProblem(PS , N2)
14: for σV ∈ S do
15: < _, obj> = solve(PSmedium[C ∪= {σV }])
16: cnd_ranking[σV].add(obj)

17: % extract a SCOP with a large number of scenarios to
18: % reduce the objective variance on the few best candidates
19: S = ∅
20: S = get_m_best_candidates(cnd_ranking, M3)
21: PS large = get_subProblem(PS , N3)
22: for σV ∈ S do
23: < _, obj> = solve(PS large[C ∪= {σV }])
24: cnd_ranking[σV].add(obj)

25: return cnd_ranking.get_best()

6.3.2 Experiments

For the empirical evaluation of Simulation Based E&C, we use the stochastic template
design problem as introduced in section 3 in Fig. 3.5. The complete model can be found in
the appendix, Fig. A.1.2. Hereafter, the lines refer to Fig. 3.5 or Fig. A.1.2 as the lines are
consistent across both models. To recap; in the first stage (line 22), we design a number
of templates that will later be used to print animal food packages; in the second stage
(line 25), after observing demand, we decide how many times to print each template. The
goal is to minimise the expected number of prints (line 74) while satisfying the demand
(line 40). This problem complies with the five features defined earlier:

1. It is a two-stage problem.

2. The expected value problem g(x) = min
x∈D

EG(x,S) is difficult to solve.

3. Evaluating a candidate is cheap. Given a first-stage assignment, the problem be-
comes linear and the LP relaxation is tight.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 87

4. It is possible to generate an iid set of samples.

5. The problem has complete recourse as the parameters are chosen accordingly. This
means in practice that the demand of each package type is always greater than zero.

We designed two types of benchmarks. Both the model and the instances can be found
in the appendix. The parameters to generate the benchmarks are chosen such that the
resulting instances have a similar scenario count to problems solved by others including
Wu et al. (2017), who have solved a real-world road network investment problem.

Two-template (easy) benchmark

This is an easy benchmark where a PS with a moderate number of scenarios, e.g. 30,
can be solved within an hour. Two templates, each with nine slots, must be designed to
print six different food packages. For each food type we drew four random numbers. The
number of scenarios required to represent all possible combinations is 4096, too many to
be solved optimally.

Three-template (difficult) benchmark

This is a difficult benchmark where a PS even with a small number of scenarios, e.g. 2,
cannot be solved to optimality within an hour. Three templates, each with nine slots,
must be designed to print five different food packages. For each food type we drew five
random numbers. The number of scenarios required to represent all possible combinations
is 3125.

6.3.3 Results

We compare our new algorithm, Simulation Based E&C, with the established Monte Carlo
based SAA algorithm as introduced earlier. In Table 6.1 we display the relevant results.

Monte Carlo based SAA

We used the easy benchmark (with two templates) to assess the impact of N , the number
of scenarios used to construct the SAA P̂SN . The parameter N impacts the quality of
the retrieved candidates and the optimality gap.

To obtain the SAA’s, we sampled four times ten (M=10) P̂SN replications with (N)
10, 20, 30 and 50 scenarios. The P̂SN are then solved using the deterministic equivalent
and CPLEX 12.62 and the resulting candidates (≤ 10) are evaluated over the complete
set of 4096 scenarios.

Preliminary results have shown that E&C does not perform well on the template
design instances, while E&C finds an optimal or near optimal candidate quickly, proving
optimality requires many iterations. The ten P̂SN with 50 scenarios could not be solved
within the time out of 1 hour and we therefore did not include them in the results.

The difficult benchmark with three templates turned out to be too hard to be solved
using the SAA method. Even a P̂SN with two scenarios could not be solved within 1 hour.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 88

On average an optimality gap of about 30% remained. Therefore, we cannot report any
results for the difficult benchmark in Table 6.1.

The grey columns in Table 6.1 clearly confirm that SAA, when applicable, works
extremely well even with a low N . The optimality gap, especially with N = 30 is tight.

Simulation Based E&C

To analyse the performance of Simulation Based E&C we conducted multiple experiments.
Firstly, we retrieved 1000 candidates using the easy benchmark and evaluated all of them
over the complete set of 4096 scenarios. As seen in the right column in Table 6.1, the
quality of the candidates matches SAA. However, as expected, the optimality gap is not
as tight compared to the Monte Carlo based SAA method.

Secondly, to assess how well the order of candidates (ordered by objective value) can
be approximated using simulation, we evaluated each candidate over a small subset of
samples, ranked them and compared the ranking with the “real” ranking, the result of
evaluating each candidate over the complete set of samples. The result of comparing the
simulated rankings is displayed in Fig. 6.4. First, each candidate is evaluated over the
complete scenario set (4096) and sorted by objective value. Secondly, the candidates are
evaluated over a randomly chosen subset of 10, 20, 30, 50 and 100 scenarios and sorted
by objective value. The indices of each ranking are then displayed using a scatter plot.
Plotting a perfectly approximated ranking would produce a diagonal with an increasing
slope of 45 degrees as displayed in yellow; the simulated and true ranking would match.
Clearly, the accuracy of simulating the ranking increases when more scenarios are used,
however already a relatively small number (<100) of scenarios is sufficient to approximate
the ranking of candidates relatively well.

Choosing the parameters N1 and M2 in Algorithm 8 appropriately is important as
otherwise the most promising candidates are discarded due to a poor approximation of
the ranking or a too aggressive candidate rejection. It is essential to determine the number
of scenarios that are required for the initial simulation and the number of candidates to
keep afterwards. In Fig. 6.5 we print the simulated index of the best candidate. For
example, a data point with x-value 10 and y-value 100 shows that the best candidate of an
instance when simulated using 10 scenarios was ranked 100 in simulation. Clearly, when
choosing N1 > 30 it is sufficient to keep a few hundred candidates for the second evaluation
iteration.

Runtime

We have shown that Simulation Based E&C produces candidates of similar quality com-
pared to the SAA method for the easy benchmarks and that SAA fails on the difficult
problems, as it is impossible to solve the stochastic problem. In this paragraph we will
relate the above results to execution times. The relevant execution times are displayed in
Table 6.2. As mentioned before, preliminary results indicated that E&C is not competi-
tive in solving the template design problem, as the number of iterations required to prove
optimality is large. As expected, the time to solve a deterministic equivalent model of

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 89

SAA E&Cstatistical
scenarios 10 20 30

template_design_easy_a upper bound 574 566 566 562
lower bound 523 549 554 440
gap [%] 8.8 3.0 0.35 21.7

template_design_easy_b upper bound 557 557 557 563
lower bound 534 550 551 440
gap [%] 4.1 1.2 1.1 21.8

template_design_easy_c upper bound 560 553 553 553
lower bound 535 542 547 462
gap [%] 4.4 1.9 1.1 16.4

template_design_easy_d upper bound 594 591 591 598
lower bound 564 580 587 488
gap [%] 5.1 1.9 0.7 18.3

template_design_difficult_a upper bound - - - 455
lower bound - - - 413
gap [%] - - - 9.2

template_design_difficult_b upper bound - - - 433
lower bound - - - 375
gap [%] - - - 13.3

Table 6.1: Comparison of SAA method and Statistical E&C

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 90

Template design easy a

10 scenarios

Template design easy b

10 scenarios

Template design easy c

10 scenarios

Template design easy d

10 scenarios

20 scenarios 20 scenarios 20 scenarios 20 scenarios

30 scenarios 30 scenarios 30 scenarios 30 scenarios

50 scenarios 50 scenarios 50 scenarios 50 scenarios

100 scenarios 100 scenarios 100 scenarios 100 scenarios

Figure 6.4: Ranking of candidates by objective value

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 91

Figure 6.5: Simulated ranking of best candidate

the easy benchmark scales super linearly with respect to the number of scenarios. When
solving a P̂SN with N = 2 for the difficult benchmark an optimality gap of 32% remained
on average after 3600 seconds. While the CP solver Chuffed outperforms CPLEX when
solving a single scenario, Chuffed was also not able to solve any DE within the time out.
The symmetry and dominance breaking constraints improved the performance by about
10% when solving a single scenario with Chuffed. Finally, to assess the time required to
evaluate candidates we created models composed of 10 to 1000 scenarios with a fixed first
stage and solved them using CPLEX. Clearly, evaluating a candidate is cheap, even for
the three template benchmark.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 92

scenarios 1 2 10 20 30 50 100 1000

Template design generate Chuffed 0.03 - - -

easy generate CPLEX 2.9 367 1373 2925 -

evaluate 0.08 0.08 0.98 0.12 0.17 1.04

Template design generate Chuffed1 3.8

difficult generate Chuffed2 4.2 - -

generate CPLEX 77 - -

evaluate 0.07 0.09 0.12 0.15 0.15 3.2

The symbol - indicates that the problem can not be solves in 3600 seconds

A blank cell indicates that no experiments where conducted
1 Solved including symmetry and dominance breaking constraints
2 Solved without symmetry and dominance breaking constraints

Table 6.2: Time to generate or evaluate a single candidate

In conclusion, our experiments have demonstrated that Simulation Based E&C is a
valuable approach for solving stochastic problems with a large number of scenario, espe-
cially when solving an SAA is computationally challenging. As expected, the resulting
optimality gap of Simulation Based E&C is not as tight as the gap obtained when using
SAA.

6.4 Related work

Shapiro (2013) mentions that finding the precise origin of Monte Carlo sampling based
methods to solve stochastic programs is difficult. He points out that the idea is rather nat-
ural and was discovered multiple times in different variations and contexts. In stochastic
programming, early works can be attributed to Rubinstein and Shapiro (1990) and Robin-
son (1996), where this approach was called stochastic counterpart method and sample-path
optimisation. In statistics the foundation for this type of Monte Carlo methods was laid
by Geyer and Thompson (1992). In recent years however, most applications of the Monte
Carlo based SAA method are based on works by Kleywegt et al. (2002) and Ahmed et al.
(2002). We build upon their works, however our algorithm is different as it uses indi-
vidual scenarios, instead of stochastic programs, to propose a large number of candidates
rather than only few. In Constraint Programming, (Prestwich et al.; 2015) proposed a
metaheuristic approach to solve SCOPs using standard filtering algorithms to handle hard
constraints effectively. Our work is different as it does not focus on filtering algorithms,
which are typically embedded in solvers and as such require modification in the solver
itself, which we use as back-end.

Birattari et al. (2005) proposed a simulation based scheme to solve combinatorial
optimisation problems that uses ant colony optimisation to propose candidates and racing

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 93

techniques for the evaluation. Racing has origins in machine learning (Maron; 1994) and
has been widely applied in solver configuration (Birattari et al.; 2010). In a nutshell,
racing techniques, e.g. the F-race (Birattari et al.; 2010), aim to minimise the number
of evaluations required to reject a candidate. The candidates are sequentially evaluated
over an increasing set of scenarios, until the low quality candidates can be rejected with
confidence. Our ordering approach is different to racing as we reject candidates without
statistical confidence, use instead an ordering approach, and therefore possibly lower the
number of evaluation steps required.

6.5 Conclusion

We introduced Simulation Based E&C, an algorithm that scales well and is able solve
problems that cannot be solved by the SAA method. To evaluate the performance of our
algorithm, we compared it to the Monte Carlo based SAA method introduced by Kleywegt
et al. (2002).

First, we demonstrated that the Monte Carlo based SAA method performs well on the
stochastic template design problem, if one seeks to solve computationally easy instances.
For more challenging problems, the SAA method fails to produce any results. Furthermore,
we have demonstrated that the fundamental idea proposed by Ahmed (2013) remains true
in the studied setting; the set of optimal scenario solutions is likely to contain a high
quality solution for the true problem. To simulate the quality of candidates, we propose a
three-stage algorithm. First, a moderate number of scenarios is used to reject all but the
most promising candidates. Secondly, a large number of scenarios is used to determine
the best few candidates. Lastly, a very large number of scenarios shall be used to reduce
the variance of the objective value if required. We have shown experimentally that the
evaluation scheme works in the proposed setting.

In conclusion we presented an algorithm that combines optimisation with simulation
techniques to produce high quality policies. However, in contrast to the SAA procedure by
Kleywegt et al. (2002) that requires solving sampled SCOPs to optimality, our algorithm
scales to difficult problem instances where solving a SCOP is computationally challenging
or simply not possible.

6.5.1 Limitations

Our experiments confirm that Sampling Based E&C is able to retrieve solutions of compa-
rable quality to the Monte Carlo SAA method. However, in comparison, a relatively large
optimality gap remains when using Simulation Based E&C. In conclusion, if the Monte
Carlo SAA method is applicable, e.g. for problems where solving the SAA SCOP is trivial,
it is likely to outperform our approach, due to the tight optimality gap . However, Sim-
ulation Based E&C scales well and is therefore well positioned to solve computationally
challenging stochastic programs.

CHAPTER 6. SIMULATION BASED EVALUATE AND CUT 94

6.5.2 Future work

We introduced a promising algorithm that opens multiple research directions. First, it
would be interesting to quantify the number of candidates required to have statistical con-
fidence that a high quality candidate has been found. Likewise, determining the minimal
number of scenarios required to simulate the candidate ranking with confidence would
be beneficial, such that the parameters N1 . . .N3 and M1 . . .M3 can be determined auto-
matically. Secondly, the presentation of the algorithm and the experiments of Simulation
Based E&C where based on sampling scenarios randomly. Investigating the impact of
introducing bias when sampling scenarios for candidate generation might be interesting as
it could produce better results, without compromising the expected value (upper bound)
simulation.

CHAPTER 7. CONCLUSIONS 95

Chapter 7

Conclusions

The use of analytical methods to improve decision making is important to manage the
ever increasing complexity of organisations, ensure that resources are used effectively and
to progress in automating procedures. In many situations, decisions are implemented in
environments that are governed by uncertainty and decision makers have to account for
this uncertainty.

Stochastic programming is a common approach to solve combinatorial optimisation
problems that are subject to uncertainty. Separating the modelling and solving of opti-
misation problems enabled traditional, deterministic optimisation its breakthrough and a
similar separation is used to solve stochastic programs. Multiple modelling systems that
cater for decision making under uncertainty have evolved over the years and share many
aspects. All these systems are built on top of a modelling framework that was originally
developed to model and solve deterministic optimisation problems. Thereafter, the ex-
pressiveness of the language was extended to allow for uncertainty models. Since solving a
stochastic program as one single large deterministic equivalent model is notoriously hard,
specialised back-end solvers have been developed.

This thesis proposed multiple improvements for existing frameworks to model and solve
stochastic programs. While Stochastic MiniZinc has been used throughout the thesis to
illustrate how our novel concepts can be applied in practice, all contributions are equally
applicable to be integrated in comparable systems. First, we have shown how to create
better stochastic programming models. Secondly, we developed algorithms to solve com-
binatorial stochastic programs using decomposition methods and off-the-self solvers. And
lastly, we proposed a method that combines E&C with simulation. This chapter presents
the conclusions and addresses the contributions.

7.1 Modelling

Chapter 3 looked at improving stochastic programming formulations using modelling tech-
niques that are common practice in constraint programming.

Firstly, we addressed the role of symmetry and dominance breaking constraints in
the context of stochastic programming. We highlighted problems that occur if symme-
try and dominance breaking constraints are used in the decision model without explicitly

CHAPTER 7. CONCLUSIONS 96

marking them as auxiliary. Thereafter, we showed how to compile symmetry and dom-
inance breaking constraints correctly when compiling a decision model into a stochastic
program. In conclusion, using auxiliary constraints to break symmetries and dominance
relations improves the decision model, however unless the modelling frameworks provides
the appropriate support, auxiliary constraints must be used with care.

Secondly, we proposed a compilation technique to strengthen the subproblems for sce-
nario decomposition based algorithms. The goal of this technique is to reduce the number
of infeasible solutions explored during the search by lifting appropriate constraints from
being local to a specific scenario to act in every subproblem. We compared our approach
conceptually to scenario bundling, a well known technique to improve the scenario decom-
position. Finally, we used an empirical study to showcase the positive effects of lifting
constraints.

This chapter has shown how to compile symmetry and dominance breaking constraints
correctly. However, the additional functionality has not yet been implemented in the
Stochastic MiniZinc compiler, we considered this future work. Furthermore, we proposed
the idea of lifting constraints to strengthen the scenario subproblems and demonstrated its
effect using a facility location problem with capacity and other side constraints. However,
further experiments are required to determine contexts in which lifting a constraint is
beneficial. Thereafter, a design decision is required; should appropriate constraints be
automatically lifted or is it better to let the modeller annotate appropriate constraints
explicitly?

7.1.1 Evaluate and Cut with Diving

Chapter 4 looked at improving an algorithm to solve two-stage stochastic problems with
binary first-stage variables introduce by Ahmed (2013) that we call Evaluate and Cut
(E&C). The algorithm is based on the scenario decomposition, composed of three steps
and utilises off-the-shelf solvers. Firstly, solving each scenario yields a set of candidates.
A candidate is a first-stage variable assignment that matches the optimal solution of a sce-
nario. Thereafter, the candidates are evaluated across all scenarios to assess their quality
with respect to the stochastic problem. And lastly, by adding a nogood constraint to each
scenario the candidates are excluded from the search in subsequent iterations. Repeating
the three steps is guaranteed to retrieve the optimal solution. The E&C algorithm can
be applied to solve stochastic combinatorial optimisation problems that are formalised in
a high-level modelling language. The algorithm performs strongly in finding the optimal
solution quickly, however, depending on the problem class requires a long time to prove
optimality. We proposed two techniques to improve E&C, demonstrated empirically their
performance and published the benchmark we used for the experiments.

Firstly, we have shown how to use E&C in combination with constraint programming
solvers to tackle problems with integer variables in the first stage. We also introduced
vertical learning, a technique to solve subproblems faster by reusing information that was
learnt in previous iterations. Lacy Clause Generation, or learning solvers, are a type of CP
solver that explains why a decision led to failure and constructs constraints that prevent

CHAPTER 7. CONCLUSIONS 97

the solver from repeating the same decision later during the search. In vertical learning
these learnt constraints, are reused for solving subproblems in subsequent iterations faster.

Secondly, we introduced diving, a method aimed at proving optimality faster when
using E&C to solve stochastic programs. The diving procedure is able to retrieve nogood
constraints that prune multiple candidates at once without compromising the completeness
of E&C. We created, used and published a two-stage generalised assignment problem to
evaluate the effects of vertical learning and diving.

Vertical learning has shown to be effective, however further analysis into how to ef-
fectively utilise learnt constraints could yield additional improvements. Furthermore, the
diving method uses a variable selection heuristic that impacts the performance of diving
greatly and exploring the impact of alternative selection heuristics would be interesting.

7.1.2 Recursive Evaluate and Cut

Chapter 5 looked at generalising the E&C (Ahmed; 2013) algorithm to multi-stage prob-
lems.

We have shown how the E&C algorithm can be used to recursively solve combinatorial
multi-stage problems. Firstly, we illustrated how to implement a naïve recursive version
of E&C and highlighted its weaknesses. Thereafter, we developed an alternative imple-
mentation and evaluated its performance empirically using a four-stage facility location
problem with capacity and other side constraints. As in standard E&C, the multi-stage
version utilises off-the-shelf solvers and is therefore well positioned as back-end solver for
stochastic programming modelling frameworks, such as Stochastic MiniZinc.

Evaluate and Cut and its recursive version are limited to solve problems with discrete
variables. The algorithm is complete as only a finite number of candidates with discrete
variables can be retrieved during the search, a property that does not hold true for contin-
uous variables. It would be interesting to develop a version of E&C that is not restricted to
discrete variables. Essentially, the challenge is to find ways of creating nogood constraints
that are only composed of discrete variables.

7.1.3 Simulation Based Evaluate and Cut

Chapter 6 looked at solving stochastic problems that cannot be solved optimally, either
because of their size (e.g. too many scenarios) or because the scenario-based uncertainty
model is only an approximation of the random variables.

We introduced Simulation Based Evaluate and Cut, an algorithm that combines op-
timisation with simulation. As in standard E&C, candidates are generated by solving
individual scenario subproblems. The novel idea is to then evaluate the candidates using
a Monte Carlo based simulation approach. We demonstrated the effectiveness of our algo-
rithm using a two-stage template design problem with uncertain demand and compared
it to the state of the art technique to solve prohibitively large stochastic programs. In
conclusion, on easy instances Simulation Based E&C produced solutions of comparable
quality, however our algorithm scales much better compared to the other approach and is

CHAPTER 7. CONCLUSIONS 98

therefore able to solve computationally challenging instances that could not be solved oth-
erwise. The state of the art technique requires solving multiple stochastic programs and
is therefore restricted by the complexity of those stochastic problems. In contrast, Sim-
ulation Based E&C only requires solving scenarios, essentially deterministic optimisation
problems, which is computationally much less expensive.

We presented an unbiased version of simulation based E&C. In other words, scenarios
were randomly selected to generate and to evaluate candidates. However, introducing
bias into the sampling is an interesting future research direction. Firstly, to generate
candidates; so far, we randomly sampled scenarios to obtain one candidate per scenario.
Introducing a measure that ranks scenarios by how likely they are to return high quality
solutions might improve the search. Secondly, to evaluate the quality of candidates; in
our experiments we evaluated the quality of a candidate over a randomly sampled set of
scenarios. A more representative set of samples, for example by using the xor-sampling
techniques as proposed by Gomes et al. (2007), may be able to reduce the number of
samples required to achieve the same evaluation quality.

7.1.4 Concluding Remarks

This thesis contributes to decision making under uncertainty by improving on existing
technologies and combining ideas from constraint programming and stochastic program-
ming. Firstly, we have shown that providing functionality that enables a modeller to
express strong models is an important aspect with regard to improved solving perfor-
mance. Secondly, we developed algorithms and extensions thereof that utilise off-the-self
solvers to effectively tackle stochastic programs. We focussed on algorithms that use ex-
isting solver technology because of the following reasons. Firstly, by choosing appropriate
technology to solve the subproblems, the algorithms show strong performance on a variety
of problem classes. Secondly, improving off-the-self solver performance is an active field
of research, and our algorithm benefit automatically as the performance of these solvers
increases.

The focus of this thesis is on how to effectively solve stochastic programs. To continue
our line of research, it would be interesting to develop methods that communicate the im-
pact of a policy effectively. To implement a policy in practice, the decision maker requires
a solid understanding of how the proposed actions affect their operations. This could pos-
sibly be achieved using visualisation or interactive optimisation, where the decision maker
is able to interfere with the search.

In conclusion, this thesis presents contributions at the intersection of stochastic and
constraint programming. We addressed both aspects of a modelling system: firstly, mod-
elling and secondly solving a stochastic problem. We are convinced that our work has
shown that solving stochastic programs using high-level modelling systems is promising.

APPENDIX A. BENCHMARK MODELS 99

Appendix A

Benchmark Models

A.1 Template Design

The deterministic version of the template design model was originally published by Proll
and Smith (1998) and a MiniZinc model including instances can be found on the CSPLib (Gent
and Walsh; 1999).

A.1.1 Template Design in Stochastic MiniZinc

The following model is based on the original model by Proll and Smith (1998) and anno-
tated with Stochastic MiniZinc instructions.

1 % Template design

2 % Problem 002 in CSPLib

3 %---%

4 % Based on "ILP and Constraint Programming Approaches to a Template

5 % Design Problem", Les Proll and Barbara Smith, School of Computing

6 % Research Report 97.16, University of Leeds, May 1997.

7 %---%

8
9 include "globals.mzn";

10 include "stochastic.mzn"

11
12 int: S; % Number of slots per template.

13 int: t; % Number of templates.

14 int: n; % Number of variations.

15 % How much of each variation we must print?

16 array[1..n] of int: d :: stage(2);

17
18 % Lower and upper bounds for the total production.

19 int: llower = ceil(sum(i in 1..n)(int2float(d[i]))/int2float(S))::stage(2);

20 int: lupper = 2*llower :: stage(2);

21
22 % # Slots allocated to variation i in template j

23 array[1..n,1..t] of var 0..S: p :: stage(1);

24
25 % # Pressings of template j.

26 array[1..t] of var 1..lupper: R :: stage(2);

APPENDIX A. BENCHMARK MODELS 100

27
28 % Sum of all Rj.

29 var llower..lupper: Production ::stage(2);

30
31 % Production x S - sum(d[i])

32 var 0..lupper-llower: Surplus;

33
34 % First, set up Production to be the sum of the Rj

35 constraint Production = sum(i in 1..t)(R[i]);

36
37 % The number of slots occupied in each template is S.

38 constraint forall(j in 1..t)(sum(i in 1..n)(p[i,j]) = S);

39
40 % Enough of each variation is printed.

41 constraint forall(i in 1..n)(sum(j in 1..t)(p[i,j]*R[j]) >= d[i]);

42
43 %% Symmetry breaking constraints

44 % Variations with the same demand are symmetric.

45 constraint symmetry_breaking_constraint(

46 forall(i in 1..n-1) (

47 d[i] == d[i+1] ->

48 lex_lesseq([p[i, j] | j in 1..t],

49 [p[i+1,j] | j in 1..t])

50)

51);

52
53 %% Dominance breaking constraints

54 constraint dominance_breaking_constraint(

55 forall(i in 1..n-1) (

56 d[i] < d[i+1] ->

57 sum (j in 1..t) (p[i,j]*R[j])

58 <= sum (j in 1..t) (p[i+1,j]*R[j])

59)

60);

61
62 % Set up surplus, which is bounded as production is bounded.

63 constraint Surplus = Production*S - sum(i in 1..n)(d[i]);

64
65 % The surplus of each variation is also limited by the surplus.

66 constraint forall(k in 1..n)(sum(j in 1..t)(p[k,j]*R[j]-d[k]) <= Surplus);

67
68 % The surplus of the first k variations is limited by the surplus.

69 constraint forall(k in 2..n-1)

70 (sum(j in 1..t, m in 1..k)(p[m,j]*R[j]-d[m]) <= Surplus);

71
72 % Minimize the production.

73 solve :: int_search(array1d(1..n*t,p) ++ R,

74 input_order, indomain_min, complete)

75 minimize Production :: expected;

APPENDIX A. BENCHMARK MODELS 101

A.1.2 Template Design Deterministic Equivalent

The following model contains a deterministic equivalent formulation for the template de-
sign model.

1 % Two-stage template design deterministic equivalet

2 int: S; % Number of slots per template.

3 int: t; % Number of templates.

4 int: n; % Number of variations.

5 array[SCENARIOS,1..n] of int: d; % Scenario dependent Demand

6
7 int: nb_scen;

8 set of int: SCENARIOS = 1..nb_scen;

9
10 % # Slots allocated to variation i in template j

11 array[1..n,1..t] of var 0..S: p;

12
13 % # Pressings of template j.

14 array[SCENARIOS, 1..t] of var intr: R;

15 array[SCENARIOS] of var int: Production;

16 array[SCENARIOS] of var int: Surplus;

17
18 % First, set up Production to be the sum of the Rj in each scenario

19 constraint forall(sc in SCENARIOS)(

20 Production[sc] = sum(i in 1..t)(R[sc,i]));

21
22
23 % The number of slots occupied in each template is S.

24 constraint forall(j in 1..t)(sum(i in 1..n)(p[i,j]) = S);

25
26 % Enough of each variation is printed.

27 constraint forall(sc in SCENARIOS)(

28 forall(i in 1..n)

29 (sum(j in 1..t)(p[i,j]*R[sc,j]) >= d[sc,i]));

30
31 % Set up surplus, which is bounded as production is bounded.

32 constraint forall(sc in SCENARIOS)(

33 Surplus[sc] = Production[sc] * S - sum(i in 1..n)(d[sc,i]));

34
35 % The surplus of each variation is also limited by the surplus.

36 constraint forall(sc in SCENARIOS)(

37 forall(k in 1..n)

38 (sum(j in 1..t)(p[k,j]*R[sc,j]-d[sc,k]) <= Surplus[sc]));

39
40 % The surplus of the first k variations is limited by the surplus.

41 constraint forall(sc in SCENARIOS)(

42 forall(k in 2..n-1)

43 (sum(j in 1..t, m in 1..k)(p[m,j]*R[sc,j]-d[sc,m])

44 <= Surplus[sc]));

45
46 constraint expectedProduction = sum(sc in SCENARIOS)

47 (Production[sc])/nb_scen;

48

APPENDIX A. BENCHMARK MODELS 102

49 % Minimize the production.

50 solve :: int_search(array1d(1..n*t,p) ++ array1d(1..nb_scen*t,R),

51 input_order, indomain_min, complete)

52 minimize expectedProduction;

A.1.3 Template Design Data

For each package (n) four or five random numbers where drawn. To get the scenarios,
we considered all possible combinations. The instruction all_possible_combinations_of
is not actual MiniZinc syntax, but rather used to describe that we consider all possible
combinations as the complete set of scenarios.

1 %template_design_4069_t2_a

2 %number of slots on each template

3 S = 9;

4 %number of templates

5 t = 2;

6 %number of different packages

7 n = 6;

8 %number of scenarios

9 nb_scen = 4096;

10 %demand

11 d = all_possible_combinations_of(

12 [|465,960,955, 960,865,480|

13 490,335,380, 560,375,675|

14 820,820,365, 650,990,560|

15 1015,295,270,1060,855,565|]);

1 %template_design_4069_t2_b

2 %number of slots on each template

3 S = 9;

4 %number of templates

5 t = 2;

6 %number of different packages

7 n = 6;

8 %number of scenarios

9 nb_scen = 4096;

10 %demand

11 d = all_possible_combinations_of(

12 [|1040,800,660,520,315,480|

13 425,265,710,465,990,850|

14 635,795,550,970,750,895|

15 755,600,815,345,990,615|]);

1 %template_design_4069_t2_c

2 %number of slots on each template

3 S = 9;

4 %number of templates

5 t = 2;

6 %number of different packages

7 n = 6;

APPENDIX A. BENCHMARK MODELS 103

8 %number of scenarios

9 nb_scen = 4096;

10 %demand

11 d = all_possible_combinations_of(

12 [|640,320,665,290, 810,1000|

13 600,345,530,355, 940, 280|

14 885,315,790,870, 885, 930|

15 990,820,625,290,1005, 955|]);

1 %template_design_4069_t2_d

2 %number of slots on each template

3 S = 9;

4 %number of templates

5 t = 2;

6 %number of different packages

7 n = 6;

8 %number of scenarios

9 nb_scen = 4096;

10 %demand

11 d = all_possible_combinations_of(

12 [| 320,785,440,720,785,745|

13 465,970,385,920,810,860|

14 1075,485,995,445,995,990|

15 755,830,615,775,740,265|]);

1 %template_design_3125_t3_a

2 %number of slots on each template

3 S = 9;

4 %number of templates

5 t = 3;

6 %number of different packages

7 n = 5;

8 %number of scenarios

9 nb_scen = 3125;

10 %demand

11 d = all_possible_combinations_of(

12 [|985, 530,520, 880,745|

13 795, 595,890, 955,490|

14 660, 900,635, 590,660|

15 470,1070,675,1070,765|

16 755, 790,750, 935,615|]);

1 %template_design_3125_t3_a

2 %number of slots on each template

3 S = 9;

4 %number of templates

5 t = 3;

6 %number of different packages

7 n = 5;

8 %number of scenarios

9 nb_scen = 3125;

10 %demand

APPENDIX A. BENCHMARK MODELS 104

11 d = all_possible_combinations_of(

12 [|385, 800, 665, 865,480

13 450,1025, 275,1010,640|

14 540, 890, 940, 315,875|

15 890, 400,1070, 845,300|

16 655, 625, 935, 495,305|]);

A.1.4 Stochastic Assignment and Scheduling Problem

1 % Including files

2 include "globals.mzn";

3 % Parameters

4 int: no_mach; % Number of machines

5 int: no_jobs; % Number of jobs

6 int: no_task; % Number of total tasks

7 int: no_optt; % Number of total optional tasks

8
9 set of int: Mach = 1..no_mach;

10 set of int: Jobs = 1..no_jobs;

11 set of int: Tasks = 1..no_task;

12 set of int: OptTs = 1..no_optt;

13
14 array [Jobs] of set of int: tasks;

15 array [Tasks] of set of int: optts;

16
17 array [OptTs] of int: optt_mach;

18 array [SCENARIOS1,OptTs] of int: optt_dur;

19
20
21 array [Jobs] of int: last_task = [max(tasks[j]) | j in Jobs];

22 %---------implications for multi scenarion solving ---------------

23 int: nbScenarios;

24 set of int: SCENARIOS1 = 1..nbScenarios;

25 int: first_scen;

26 int: last_scen;

27 set of int: SCENARIOS = first_scen..last_scen;

28 array[SCENARIOS1] of int: weights;

29
30 %-------end of multi scenario addons ----------------

31 array [Tasks] of int: task_job =

32 [min(j in Jobs where t in tasks[j])(j) | t in Tasks];

33 array [SCENARIOS,Tasks] of int: task_mins =

34 array2d(SCENARIOS,Tasks,[sum(k in tasks[task_job[t]])(if k < t

35 then task_mind[s,k] else 0 endif)

36 | s in SCENARIOS, t in Tasks]);

37 array [SCENARIOS,Tasks] of int: task_maxs =

38 array2d(SCENARIOS,Tasks,[t_max[s] -

39 sum(k in tasks[task_job[t]])(if k < t then 0 else task_mind[s,k] endif)

40 | s in SCENARIOS, t in Tasks]);

41
42 array [SCENARIOS,Tasks] of int: task_mind =

APPENDIX A. BENCHMARK MODELS 105

43 array2d(SCENARIOS,Tasks,[min(o in optts[t])(optt_dur[s,o])

44 | s in SCENARIOS,t in Tasks]);

45
46 array [SCENARIOS,Tasks] of int: task_maxd =

47 array2d(SCENARIOS,Tasks,[max(o in optts[t])(optt_dur[s,o])

48 | s in SCENARIOS, t in Tasks]);

49
50 % Additional deirved parameters for optional tasks

51 %

52 array [OptTs] of int: optt_task =

53 [min(t in Tasks where o in optts[t])(t) | o in OptTs];

54
55 array[SCENARIOS1] of int: min_dur = [min([optt_dur[s,t] | t in OptTs])

56 | s in SCENARIOS1];

57 array[SCENARIOS1] of int: max_dur = [max([optt_dur[s,t] | t in OptTs])

58 | s in SCENARIOS1];

59 set of int: Durs = min(min_dur)..max(max_dur);

60
61 % Parameters related to the planning horizon

62 %

63 array[SCENARIOS1] of int: t_max = [sum(t in Tasks)(max(o in optts[t])

64 (optt_dur[s,o])) | s in SCENARIOS1];

65
66 set of int: Times = 0..max(t_max);

67 % Variables

68
69 % Start time variables for tasks

70 %

71 array [SCENARIOS,Tasks] of var Times: start =

72 array2d(SCENARIOS,Tasks,[let { var task_mins[s,t]..task_maxs[s,t]: k }

73 in k | s in SCENARIOS, t in Tasks]);

74
75 % Duration variables for tasks

76 %

77 array [SCENARIOS,Tasks] of var Durs: dur =

78 array2d(SCENARIOS,Tasks,[if task_mind[s,t] =

79 task_maxd[s,t] then task_mind[s,t] else

80 let { var task_mind[s,t]..task_maxd[s,t]: d } in d endif

81 | s in SCENARIOS,t in Tasks]);

82
83 % Variables whether an optional task is executed

84 %

85 array [OptTs] of var bool: b;

86
87 array[SCENARIOS] of var Times: de_objective;

88
89 set of int: StochTimes = 0..sum(t_max);

90 var StochTimes: objective;

91 % Constraints

92
93 % Precedence relations

94 %

APPENDIX A. BENCHMARK MODELS 106

95 constraint

96 forall(s in SCENARIOS)(

97 forall(j in Jobs, i in tasks[j] where i < last_task[j])(

98 start[s,i] + dur[s,i] <= start[s,i + 1]

99)

100);

101
102 % Duration constraints

103 %

104 constraint

105 forall(o in OptTs,s in SCENARIOS)(

106 let { int: t = optt_task[o] } in (

107 if card(optts[t]) = 1 then

108 b[o] = true

109 else

110 b[o] -> dur[s,t] = optt_dur[s,o]

111 endif

112)

113);

114
115 % Optional tasks’ constraints

116 %

117 constraint

118 forall(t in Tasks where card(optts[t]) > 1)(

119 (sum(o in optts[t])(bool2int(b[o])) <= 1)

120 /\ (exists(o in optts[t])(b[o]))

121);

122
123 constraint

124 forall(t in Tasks where card(optts[t]) = 2)(

125 let {

126 int: o1 = min(optts[t]),

127 int: o2 = max(optts[t])

128 } in (b[o1] <-> not(b[o2]))

129);

130
131 % Resource constraints

132 %

133 constraint

134 forall(m in Mach,s in SCENARIOS)(

135 let {

136 set of int: MTasks = { o | o in OptTs where optt_mach[o] = m }

137 } in (

138 cumulative(

139 [start[s,optt_task[o]] | o in MTasks],

140 [optt_dur[s,o] | o in MTasks],

141 [bool2int(b[o]) | o in MTasks],1)));

142
143 constraint forall(s in SCENARIOS)(

144 forall(j in Jobs)(start[s,last_task[j]] + dur[s,last_task[j]]

145 <= de_objective[s]));

146

APPENDIX A. BENCHMARK MODELS 107

147 constraint objective = sum(s in SCENARIOS)(weights[s]*de_objective[s]);

148 % Solve item

149 solve minimize objective;

A.2 Four-stage stochastic facility location problem

The following model contains a deterministic equivalent model formulation of the four-
stage stochastic facility location problem.

1 int: nbFacility;

2 int: nbCustomers;

3 int: nbStages;

4 int: nb1Scen;

5 int: nb2Scen;

6 int: nb3Scen;

7 int: relocationPenalty;

8
9 set of int: FACILITIES = 1..nbFacility;

10 set of int: CUSTOMERS = 1..nbCustomers;

11 set of int: STAGES = 1..nbStages;

12 set of int: SCENARIOS1 = 1..nb1Scen;

13 set of int: SCENARIOS2 = 1..nb1Scen*nb2Scen;

14 set of int: SCENARIOS3 = 1..nb1Scen*nb2Scen*nb3Scen;

15
16 array[FACILITIES,CUSTOMERS] of int: distance;

17 array[1..nbStages-1,FACILITIES] of int: setupCost;

18 array[FACILITIES] of int: capacity;

19 array[CUSTOMERS] of int: demand;

20 array[SCENARIOS1,CUSTOMERS] of 0..1: c2_availability;

21 array[SCENARIOS2,CUSTOMERS] of 0..1: c3_availability;

22 array[SCENARIOS3,CUSTOMERS] of 0..1: c4_availability;

23
24 %vaiables

25 array[FACILITIES] of var 0..1: fl1;

26 array[SCENARIOS1,FACILITIES] of var 0..2: fl2;

27 array[SCENARIOS2,FACILITIES] of var 0..3: x;

28
29 array[SCENARIOS1,CUSTOMERS] of var 0..nbFacility: c2f2;

30 array[SCENARIOS2,CUSTOMERS] of var 0..nbFacility: c2f3;

31 array[SCENARIOS3,CUSTOMERS] of var 0..nbFacility: c2f4;

32
33 array[STAGES] of var 0.0..1000000.0: transportCost;

34 array[STAGES] of var 0.0..1000000.0: warehouseCost;

35 array[STAGES] of var 0.0..1000000.0: relocationCost;

36
37 var float: obj;

38
39 %auxiliary variables

40 array[SCENARIOS1,FACILITIES] of var 0..10000: aggregateDemand2;

41 array[SCENARIOS2,FACILITIES] of var 0..10000: aggregateDemand3;

42 array[SCENARIOS3,FACILITIES] of var 0..10000: aggregateDemand4;

APPENDIX A. BENCHMARK MODELS 108

43
44 %warehouse setup cost

45 constraint warehouseCost[1] = sum(f in FACILITIES)

46 (fl1[f] * setupCost[1,f]);

47 constraint warehouseCost[2] = sum(s1 in SCENARIOS1,f in FACILITIES)

48 (bool2int(fl2[s1,f] == 2) * setupCost[2,f]) / (nb1Scen);

49 constraint warehouseCost[3] = sum(s2 in SCENARIOS2,f in FACILITIES)

50 (bool2int(x[s2,f] == 3) * setupCost[3,f]) / (nb1Scen*nb2Scen);

51 constraint warehouseCost[4] = 0;

52
53 %warehouse consistency

54 constraint forall(s1 in SCENARIOS1, f in FACILITIES)(

55 fl1[f] = 1 <-> fl2[s1,f] = 1

56);

57 constraint forall(s2 in SCENARIOS2, f in FACILITIES)(

58 fl1[f] = 1 <-> x[s2,f] = 1

59);

60 constraint forall(s1 in SCENARIOS1, s2 in 1..nb2Scen, f in FACILITIES)(

61 fl2[s1,f] = 2 <-> x[(s1-1)*nb2Scen + s2,f] = 2

62);

63
64 %transport cost

65 constraint transportCost[1] = 0;

66 constraint transportCost[2] = sum(s1 in SCENARIOS1, c in CUSTOMERS)(

67 c2_availability[s1,c] * distance[c2f2[s1,c],c]) / nb1Scen;

68 %third transport cost

69 constraint transportCost[3] = sum(s2 in SCENARIOS2, c in CUSTOMERS)(

70 c3_availability[s2,c] * distance[c2f3[s2,c],c])

71 / (nb1Scen * nb2Scen);

72 constraint transportCost[4] = sum(s3 in SCENARIOS3, c in CUSTOMERS)(

73 c4_availability[s3,c] * distance[c2f4[s3,c],c])

74 / (nb1Scen * nb2Scen * nb3Scen);

75
76 %total demand for each facility

77 constraint forall(s1 in SCENARIOS1, f in FACILITIES)(

78 aggregateDemand2[s1,f] = sum(c in CUSTOMERS)(

79 c2_availability[s1,c] * bool2int(c2f2[s1,c] == f) * demand[c])

80);

81 constraint forall(s2 in SCENARIOS2, f in FACILITIES)(

82 aggregateDemand3[s2,f] = sum(c in CUSTOMERS)(

83 c3_availability[s2,c] * bool2int(c2f3[s2,c] == f) * demand[c])

84);

85 constraint forall(s1 in SCENARIOS1, s2 in 1..nb2Scen, f in FACILITIES)(

86 aggregateDemand3[(s1-1)*nb2Scen + s2 ,f] > 0

87 -> fl2[s1,f] > 0 /\ fl2[s1,f] < 3

88);

89
90 %Auxiliary constraints to sum up the total demand per facility

91 constraint forall(s2 in SCENARIOS2, f in FACILITIES)(

92 aggregateDemand3[s2,f] = sum(c in CUSTOMERS)(

93 c3_availability[s2,c] * bool2int(c2f3[s2,c] == f) * demand[c]));

94 constraint forall(s2 in SCENARIOS2, f in FACILITIES)(

APPENDIX A. BENCHMARK MODELS 109

95 aggregateDemand3[s2,f] = sum(c in CUSTOMERS)(

96 c3_availability[s2,c] * bool2int(c2f3[s2,c] == f) * demand[c]));

97 constraint forall(s3 in SCENARIOS3, f in FACILITIES)(

98 aggregateDemand4[s3,f] = sum(c in CUSTOMERS)(

99 c4_availability[s3,c] * bool2int(c2f4[s3,c] == f) * demand[c]));

100
101 %Capacity constraint on each of the facilities in each stage

102 constraint forall(s1 in SCENARIOS1,f in FACILITIES)(

103 aggregateDemand2[s1,f] <= capacity[f]);

104 constraint forall(s2 in SCENARIOS2,f in FACILITIES)(

105 aggregateDemand3[s2,f] <= capacity[f]);

106 constraint forall(s3 in SCENARIOS3,f in FACILITIES)(

107 aggregateDemand4[s3,f] <= capacity[f]);

108
109 %ensure that a facility is open if demand is assigned to it

110 constraint forall(s1 in SCENARIOS1, f in FACILITIES)(

111 aggregateDemand2[s1,f] > 0 -> fl1[f] = 1);

112 constraint forall(s1 in SCENARIOS1, s2 in 1..nb2Scen, f in FACILITIES)(

113 aggregateDemand3[(s1-1)*nb2Scen + s2 ,f] > 0

114 -> fl2[s1,f] > 0 /\ fl2[s1,f] < 3);

115 constraint forall(s2 in SCENARIOS2, s3 in 1..nb3Scen, f in FACILITIES)(

116 aggregateDemand4[(s2-1)*nb3Scen + s3 ,f] > 0

117 -> x[s2,f] != 0);

118
119 %relocation cost

120 constraint relocationCost[1] = 0;

121 constraint relocationCost[nbStages] = 0;

122 constraint relocationCost[2] = sum(s1 in SCENARIOS1, c in CUSTOMERS)(

123 sum(s2 in 1..nb2Scen)(c2_availability[s1,c] *
124 bool2int(c2f2[s1,c] != c2f3[(s1-1)*nb2Scen + s2,c]))

125) / (nb1Scen * nb2Scen) * relocationPenalty;

126 constraint relocationCost[3] = sum(s2 in SCENARIOS2, c in CUSTOMERS)(

127 sum(s3 in 1..nb3Scen)(c3_availability[s2,c] *
128 bool2int(c2f3[s2,c] != c2f4[(s2-1)*nb3Scen + s3,c]))

129) / (nb1Scen * nb2Scen * nb3Scen) * relocationPenalty;

130
131 constraint obj = sum(i in STAGES)(warehouseCost[i]

132 + transportCost[i] + relocationCost[i]);

133
134 solve minimize obj;

References

Ahmed, S. (2013). A scenario decomposition algorithm for 0–1 stochastic programs, Op-
erations Research Letters 41(6): 565–569.

Ahmed, S., King, A. J. and Parija, G. (2003). A multi-stage stochastic integer program-
ming approach for capacity expansion under uncertainty, Journal of Global Optimization
26(1): 3–24.

Ahmed, S., Luedtke, J., Song, Y. and Xie, W. (2017). Nonanticipative duality, relaxations,
and formulations for chance-constrained stochastic programs, Mathematical Program-
ming 162(1-2): 51–81.

Ahmed, S., Shapiro, A. and Shapiro, E. (2002). The sample average approximation method
for stochastic programs with integer recourse, Submitted for publication pp. 1–24.

Albareda-Sambola, M., Van Der Vlerk, M. H. and Fernández, E. (2006). Exact solutions
to a class of stochastic generalized assignment problems, European journal of operational
research 173(2): 465–487.

Aldasoro, U., Escudero, L. F., Merino, M. and Pérez, G. (2017). A parallel branch-and-fix
coordination based matheuristic algorithm for solving large sized multistage stochastic
mixed 0–1 problems, European Journal of Operational Research 258(2): 590–606.

Alonso-Ayuso, A., Escudero, L. F. and Ortuno, M. T. (2003). Bfc, a branch-and-fix
coordination algorithmic framework for solving some types of stochastic pure and mixed
0–1 programs, European Journal of Operational Research 151(3): 503–519.

Applegate, D. L., Bixby, R. E., Chvatal, V. and Cook, W. J. (2006). The traveling salesman
problem: a computational study, Princeton university press.

Apt, K. R. and Wallace, M. (2006). Constraint logic programming using ECLiPSe, Cam-
bridge University Press.

Arabani, A. B. and Farahani, R. Z. (2012). Facility location dynamics: An overview of
classifications and applications, Computers & Industrial Engineering 62(1): 408–420.

Babaki, B., Guns, T. and De Raedt, L. (2017). Stochastic constraint programming with
and-or branch-and-bound, Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, pp. 539–545.

110

REFERENCES 111

Barták, R. (1999). Constraint programming: In pursuit of the holy grail, Proceedings of
the Week of Doctoral Students (WDS99), pp. 555–564.

Basçiftci, B., Ahmed, S., Gebraeel, N. and Yildirim, M. (2017). Integrated generator
maintenance and operations scheduling under uncertain failure times.

Beldiceanu, N., Carlsson, M., Demassey, S. and Petit, T. (2007). Global constraint cata-
logue: Past, present and future, Constraints 12(1): 21–62.

Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B. (2017). Julia: A fresh approach
to numerical computing, SIAM review 59(1): 65–98.

Birattari, M., Balaprakash, P. and Dorigo, M. (2005). Aco/f-race: Ant colony optimization
and racing techniques for combinatorial optimization under uncertainty, MIC 2005: The
6th Metaheuristics International Conference, Vienna, Austria: University of Vienna,
Department of Business Administration, pp. 107–112.

Birattari, M., Yuan, Z., Balaprakash, P. and Stützle, T. (2010). F-race and iterated f-
race: An overview, Experimental methods for the analysis of optimization algorithms,
Springer, pp. 311–336.

Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming, Springer
Science & Business Media.

Bisschop, J. and Roelofs, M. (2006a). Aimms language reference, Lulu.com.

Bisschop, J. and Roelofs, M. (2006b). Aimms language reference, Lulu.com, chapter 19,
pp. 307–326.

Bixby, R. E. (2012). A brief history of linear and mixed-integer programming computation,
Documenta Mathematica pp. 107–121.

Björdal, G., Monette, J.-N., Flener, P. and Pearson, J. (2015). A constraint-based local
search backend for minizinc, Constraints 20(3): 325–345.

Boland, N., Christiansen, J., Dandurand, B., Eberhard, A., Linderoth, J., Luedtke, J.
and Oliveira, F. (2018). Combining progressive hedging with a frank–wolfe method
to compute lagrangian dual bounds in stochastic mixed-integer programming, SIAM
Journal on Optimization 28(2): 1312–1336.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search,
Annals of Operations research 41(3): 157–183.

Bussieck, M. R. and Meeraus, A. (2004). General algebraic modeling system (gams),
Modeling languages in mathematical optimization, Springer, pp. 137–157.

Carøe, C. C. and Schultz, R. (1999). Dual decomposition in stochastic integer program-
ming, Operations Research Letters 24(1-2): 37–45.

REFERENCES 112

Chu, G., De La Banda, M. G., Mears, C. and Stuckey, P. J. (2014). Symmetries, almost
symmetries, and lazy clause generation, Constraints 19(4): 434–462.

Chu, G. G. (2011). Improving combinatorial optimization.

Chu, G. and Stuckey, P. J. (2012). Inter-instance nogood learning in constraint program-
ming, Principles and Practice of Constraint Programming, Springer, pp. 238–247.

Chu, G. and Stuckey, P. J. (2015). Dominance breaking constraints, Constraints
20(2): 155–182.

Chu, G. and Stuckey, P. J. (2016). Symmetry declarations for minizinc.

Cohen, D., Jeavons, P., Jefferson, C., Petrie, K. E. and Smith, B. M. (2006). Symmetry
definitions for constraint satisfaction problems, Constraints 11(2-3): 115–137.

Colombani, Y. and Heipcke, S. (2002). Mosel: an extensible environment for modeling
and programming solutions, Proceedings of CP-AI-OR, Vol. 2, pp. 277–290.

Colquhoun, D. (1971). Lectures on biostatistics: an introduction to statistics with appli-
cations in biology and medicine, David Colquhoun.

Crainic, T. G., Hewitt, M. and Rei, W. (2014). Scenario grouping in a progressive hedging-
based meta-heuristic for stochastic network design, Computers & Operations Research
43: 90–99.

Dantzig, G. B. and Infanger, G. (1991). Large-scale stochastic linear programs: Impor-
tance sampling and benders decomposition, Technical report, STANFORD UNIV CA
SYSTEMS OPTIMIZATION LAB.

de la Banda, M. G., Marriott, K., Rafeh, R. and Wallace, M. (2006). The modelling
language zinc, International Conference on Principles and Practice of Constraint Pro-
gramming, Springer, pp. 700–705.

Deng, Y., Ahmed, S., Lee, J. and Shen, S. (2017). Scenario grouping and decompo-
sition algorithms for chance-constrained programs, Available on Optimization Online
http://www. optimizationonline. org/DB HTML/2017/02/5853. html .

Dunning, I., Huchette, J. and Lubin, M. (2017). Jump: A modeling language for mathe-
matical optimization, SIAM Review 59(2): 295–320.

Dupačová, J., Gröwe-Kuska, N. and Römisch, W. (2003). Scenario reduction in stochastic
programming, Mathematical programming 95(3): 493–511.

Ellison, F., Mitra, G. and Zverovich, V. (2010). Fortsp: a stochastic programming solver,
OptiRisk Systems .

Escudero, L. F., Garín, M. A. and Unzueta, A. (2016). Cluster lagrangean decomposition
in multistage stochastic optimization, Computers & Operations Research 67: 48–62.

REFERENCES 113

Fahle, T., Schamberger, S. and Sellmann, M. (2001). Symmetry breaking, International
Conference on Principles and Practice of Constraint Programming, Springer, pp. 93–
107.

Farahani, R. Z., Hekmatfar, M., Fahimnia, B. and Kazemzadeh, N. (2014). Hierarchical fa-
cility location problem: Models, classifications, techniques, and applications, Computers
& Industrial Engineering 68: 104–117.

FICO Xpress (2016). http://www.fico.com/en/products/

fico-xpress-optimization. Accessed: 2018-08-01.

Forrest, J., Ralphs, T., Vigerske, S., LouHafer, Kristjansson, B., jpfasano, EdwinStraver,
Lubin, M., Santos, H. G., rlougee and Saltzman, M. (2018). coin-or/cbc: Version 2.9.9.
URL: https://doi.org/10.5281/zenodo.1317566

Fourer, R., Gay, D. M. and Kernighan, B. (1993). Ampl, Vol. 117, Boyd & Fraser Danvers,
MA.

Frisch, A. M., Grum, M., Jefferson, C., Hernández, B. M. and Miguel, I. (2007). The
design of essence: A constraint language for specifying combinatorial problems., IJCAI,
Vol. 7, pp. 80–87.

Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J.,
Miltenberger, M., Müller, B., Pfetsch, M. E. et al. (2016). The scip optimization suite
3.2.

GAMS - A User’s Guide (2017). https://www.gams.com/24.8/docs/

userguides/GAMSUsersGuide.pdf. Accessed: 2018-08-01.

Gassmann, H. I. (2005). The smps format for stochastic linear programs, Applications of
stochastic programming, SIAM, pp. 9–19.

Gent, I. P., Jefferson, C. and Miguel, I. (2006). Minion: A fast scalable constraint solver,
ECAI, Vol. 141, pp. 98–102.

Gent, I. P. andWalsh, T. (1999). Csplib: a benchmark library for constraints, International
Conference on Principles and Practice of Constraint Programming, Springer, pp. 480–
481.

Getoor, L., Ottosson, G., Fromherz, M. and Carlson, B. (1997). Effective redundant
constraints for online scheduling, AAAI/IAAI, Citeseer, pp. 302–307.

Geyer, C. J. and Thompson, E. A. (1992). Constrained monte carlo maximum likelihood
for dependent data, Journal of the Royal Statistical Society. Series B (Methodological)
pp. 657–699.

GLPK (2006).
URL: http://www.gnu.org/software/glpk

http://www.fico.com/en/products/fico-xpress-optimization
http://www.fico.com/en/products/fico-xpress-optimization
https://www.gams.com/24.8/docs/userguides/GAMSUsersGuide.pdf
https://www.gams.com/24.8/docs/userguides/GAMSUsersGuide.pdf

REFERENCES 114

Gomes, C. P., Sabharwal, A. and Selman, B. (2007). Near-uniform sampling of combina-
torial spaces using xor constraints, Advances In Neural Information Processing Systems,
pp. 481–488.

Guesgen, H. W. and Hertzberg, J. (1992). A perspective of constraint-based reasoning: an
introductory tutorial, Springer.

Gurobi Optimization Inc. (2014). Gurobi Optimizer Reference Manual.
http://www.gurobi.com.
URL: http://www.gurobi.com

Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L., Hackebeil, G. A., Nichol-
son, B. L. and Siirola, J. D. (2012). Pyomo-optimization modeling in python, Vol. 67,
Springer.

Haugen, K. K., Løkketangen, A. and Woodruff, D. L. (2001). Progressive hedging as
a meta-heuristic applied to stochastic lot-sizing, European Journal of Operational Re-
search 132(1): 116–122.

Hebrard, E. and Siala, M. (2017). Solver engine.

Heitsch, H. and Römisch, W. (2003). Scenario reduction algorithms in stochastic pro-
gramming, Computational optimization and applications 24(2-3): 187–206.

Hemmi, D., Tack, G. andWallace, M. (2017). Scenario-based learning for stochastic combi-
natorial optimisation, International Conference on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Springer, pp. 277–292.

Hemmi, D., Tack, G. and Wallace, M. (2018). A recursive scenario decomposition al-
gorithm for combinatorial multistage stochastic optimisation problems, Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana,
USA, February 2-7, 2018.
URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16699

Hochreiter, R. (2016). Modeling multi-stage decision optimization problems, Computa-
tional Management Science, Springer, pp. 209–214.

Hooker, J. N. and Ottosson, G. (2003). Logic-based benders decomposition, Mathematical
Programming 96(1): 33–60.

Høyland, K. and Wallace, S. W. (2001). Generating scenario trees for multistage decision
problems, Management science 47(2): 295–307.

IBM CPLEX (2011). IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual.

Infanger, G. (1999). Gams/decis user’s guide.

Jaffar, J. and Lassez, J.-L. (1987). Constraint logic programming, Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, ACM,
pp. 111–119.

REFERENCES 115

Jorion, P. (2000). Value at risk.

Kallrath, J. (2013). Modeling languages in mathematical optimization, Vol. 88, Springer
Science & Business Media.

Kim, S., Pasupathy, R. and Henderson, S. G. (2015). A guide to sample average approxi-
mation, Handbook of simulation optimization, Springer, pp. 207–243.

Kleywegt, A. J., Shapiro, A. and Homem-de Mello, T. (2002). The sample average ap-
proximation method for stochastic discrete optimization, SIAM Journal on Optimization
12(2): 479–502.

Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A survey,
Data Mining and Constraint Programming, Springer, pp. 149–190.

Laporte, G. and Louveaux, F. V. (1993). The integer l-shaped method for stochastic
integer programs with complete recourse, Operations Research Letters 13(3): 133 – 142.
URL: http://www.sciencedirect.com/science/article/pii/016763779390002X

Lauriere, J.-L. (1978). A language and a program for stating and solving combinatorial
problems, Artificial intelligence 10(1): 29–127.

Lei, S., Wang, J., Chen, C. and Hou, Y. (2016). Mobile emergency generator pre-
positioning and real-time allocation for resilient response to natural disasters, IEEE
Transactions on Smart Grid .

Løkketangen, A. and Woodruff, D. L. (1996). Progressive hedging and tabu search ap-
plied to mixed integer (0, 1) multistage stochastic programming, Journal of Heuristics
2(2): 111–128.

Maddala, G. S. and Lahiri, K. (1992). Introduction to econometrics, Vol. 2, Macmillan
New York.

Maron, O. (1994). Hoeffding Races–model selection for MRI classification, PhD thesis,
Massachusetts Institute of Technology.

MOSEK (2016). http://docs.mosek.com/7.1/toolbox/index.html. Accessed:
2018-08-01.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J. and Tack, G. (2007).
Minizinc: Towards a standard cp modelling language, International Conference on Prin-
ciples and Practice of Constraint Programming, Springer, pp. 529–543.

Ohrimenko, O., Stuckey, P. J. and Codish, M. (2009). Propagation via lazy clause gener-
ation, Constraints 14(3): 357–391.

Opturion CPX (2018). https://www.opturion.com/about. Accessed: 2018-08-01.

Powell, W. B. (2014). Clearing the jungle of stochastic optimization, Bridging data and
decisions, Informs, pp. 109–137.

http://docs.mosek.com/7.1/toolbox/index.html
https://www.opturion.com/about

REFERENCES 116

Prestwich, S. and Beck, J. C. (2004). Exploiting dominance in three symmetric prob-
lems, Fourth international workshop on symmetry and constraint satisfaction problems,
pp. 63–70.

Prestwich, S. D., Tarim, S. A., Rossi, R. and Hnich, B. (2015). Hybrid metaheuristics for
stochastic constraint programming, Constraints 20(1): 57–76.

Prestwich, S., Rossi, R., Tarim, S. and Visentin, A. (2018). Towards a closer integration
of dynamic programming and constraint programming.

Proll, L. and Smith, B. (1998). Integer linear programming and constraint programming
approaches to a template design problem, INFORMS Journal on Computing 10(3): 265–
275.

Prud’homme, C., Fages, J.-G. and Lorca, X. (2014). Choco documentation, TASC, INRIA
Rennes, LINA CNRS UMR 6241.

Rahmaniani, R., Crainic, T. G., Gendreau, M. and Rei, W. (2017). The benders de-
composition algorithm: A literature review, European Journal of Operational Research
259(3): 801 – 817.
URL: http://www.sciencedirect.com/science/article/pii/S0377221716310244

Rendl, A., Guns, T., Stuckey, P. J. and Tack, G. (2015). Minisearch: a solver-independent
meta-search language for minizinc, International Conference on Principles and Practice
of Constraint Programming, Springer, pp. 376–392.

Rendl, A., Tack, G. and Stuckey, P. J. (2014). Stochastic minizinc, International Confer-
ence on Principles and Practice of Constraint Programming, Springer, pp. 636–645.

Robinson, S. M. (1996). Analysis of sample-path optimization, Mathematics of Operations
Research 21(3): 513–528.
URL: https://doi.org/10.1287/moor.21.3.513

Rockafellar, R. T. and Wets, R. J.-B. (1991). Scenarios and policy aggregation in opti-
mization under uncertainty, Mathematics of operations research 16(1): 119–147.

Rossi, F., Van Beek, P. and Walsh, T. (2006). Handbook of constraint programming,
Elsevier.

Rossi, R., Hnich, B., Tarim, S. A. and Prestwich, S. (2015). Confidence-based reasoning
in stochastic constraint programming, Artificial Intelligence 228: 129–152.

Rubinstein, R. Y. and Shapiro, A. (1990). Optimization of static simulation models by the
score function method, Mathematics and Computers in Simulation 32(4): 373 – 392.
URL: http://www.sciencedirect.com/science/article/pii/0378475490901426

Ryan, K., Ahmed, S., Dey, S. S. and Rajan, D. (2016). Optimization driven scenario
grouping.

REFERENCES 117

Ryan, K., Rajan, D. and Ahmed, S. (2016). Scenario decomposition for 0-1 stochastic
programs: Improvements and asynchronous implementation, Parallel and Distributed
Processing Symposium Workshops, 2016 IEEE International, IEEE, pp. 722–729.

Sandikci, B. and Özaltın, O. Y. (2014). A scalable bounding method for multi-stage
stochastic integer programs.

Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H. and Stuckey, P. J. (2013). Search
combinators, Constraints 18(2): 269–305.

Schulte, C., Lagerkvist, M. and Tack, G. (2006). Gecode, Software download and online
material at the website: http://www. gecode. org pp. 11–13.

Schultz, R. (2003). Stochastic programming with integer variables, Mathematical Pro-
gramming 97(1-2): 285–309.

Shapiro, A. (2013). Sample average approximation, Encyclopedia of Operations Research
and Management Science, Springer, pp. 1350–1355.

Shapiro, A., Dentcheva, D. and Ruszczyński, A. (2009). Lectures on stochastic program-
ming: modeling and theory, SIAM.

Shapiro, A. and Philpott, A. (2007). A tutorial on stochastic programming, Manuscript.
Available at www2. isye. gatech. edu/ashapiro/publications. html 17.

Sheldon, D., Dilkina, B., Elmachtoub, A. N., Finseth, R., Sabharwal, A., Conrad, J.,
Gomes, C. P., Shmoys, D., Allen, W., Amundsen, O. et al. (2012). Maximizing the
spread of cascades using network design, arXiv preprint arXiv:1203.3514 .

Sutherland, I. E. (1964). Sketch pad a man-machine graphical communication system,
Proceedings of the SHARE design automation workshop, ACM, pp. 6–329.

Tarim, S. A., Manandhar, S. and Walsh, T. (2006). Stochastic constraint programming:
A scenario-based approach, Constraints 11(1): 53–80.

Tarim, S. A. and Miguel, I. (2005). A hybrid benders’ decomposition method for solving
stochastic constraint programs with linear recourse, International Workshop on Con-
straint Solving and Constraint Logic Programming, Springer, pp. 133–148.

Thorsteinsson, E. (2001). Branch-and-check: A hybrid framework integrating mixed in-
teger programming and constraint logic programming, Principles and Practice of Con-
straint Programming—CP 2001, Springer, pp. 16–30.

Valente, C., Mitra, G., Sadki, M. and Fourer, R. (2009). Extending algebraic modelling
languages for stochastic programming, INFORMS Journal on Computing 21(1): 107–
122.

Van Emden, M. H. and Kowalski, R. A. (1976). The semantics of predicate logic as a
programming language, Journal of the ACM (JACM) 23(4): 733–742.

REFERENCES 118

Van Hentenryck, P. (1999). The OPL optimization programming language, Mit Press.

Van Hentenryck, P., Michel, L., Perron, L. and Régin, J.-C. (1999). Constraint pro-
gramming in opl, International Conference on Principles and Practice of Declarative
Programming, Springer, pp. 98–116.

Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications to
optimal control and stochastic programming, SIAM Journal on Applied Mathematics
17(4): 638–663.

Vázsonyi, M. (2006). Overview of scenario tree generation methods, applied in financial
and economic decision making, Periodica Polytechnica. Social and Management Sciences
14(1): 29.

Walsh, T. (2002a). Stochastic constraint programming, ECAI, Vol. 2, pp. 111–115.

Walsh, T. (2002b). Stochastic opl, Proceedings of the Workshop on Modelling and Solving
with Constraints, Citeseer.

Walsh, T. (2006). General symmetry breaking constraints, International Conference on
Principles and Practice of Constraint Programming, Springer, pp. 650–664.

Walsh, T. (2010). Symmetry within and between solutions, Pacific Rim International
Conference on Artificial Intelligence, Springer, pp. 11–13.

Watson, J.-P. and Woodruff, D. L. (2011). Progressive hedging innovations for a class
of stochastic mixed-integer resource allocation problems, Computational Management
Science 8(4): 355–370.

Watson, J.-P., Woodruff, D. L. and Hart, W. E. (2012). Pysp: modeling and solving
stochastic programs in python, Mathematical Programming Computation 4(2): 109–149.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization,
IEEE transactions on evolutionary computation 1(1): 67–82.

Wu, X., Xue, Y., Selman, B. and Gomes, C. P. (2017). Xor-sampling for network design
with correlated stochastic events, arXiv preprint arXiv:1705.08218 .

Vita

Publications arising from this thesis include:

David Hemmi, Guido Tack, and Mark Wallace

”Scenario-based learning for stochastic combinatorial optimisation”. Integration of

AI and OR Techniques in Constraint Programming, CPAIOR 2017, Proceedings, pp.

277-292.

David Hemmi, Guido Tack, and Mark Wallace

”Decomposition-Based Solving Approaches for Stochastic Constraint Optimisation”.

Thirty-Second Conference on Artificial Intelligence, AAAI 2018, Proceedings, pp.

1322-1329.

Permanent Address: Caulfield School of Information Technology
Monash University
Australia

This thesis was typeset with LATEX2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this thesis were written by Glenn
Maughan and modified by Dean Thompson and David Squire of Monash University.

119

	List of Tables
	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Modelling and Solving Stochastic Programs
	Scope
	Research Questions and Objectives
	RQ1: What role can modelling techniques that have shown to improve deterministic optimisation problems play when modelling stochastic programs?
	RQ2: How can scenario based combinatorial stochastic programs, formalised in a high-level modelling language, be solved effectively using decomposition methods and off-the-shelf solvers?
	RQ3: How can simulation be used to improve the quality of a policy?

	Structure and Contributions
	Chapter 2: Background
	Chapter 3: Modelling
	Chapter 4: Evaluate and Cut with Diving
	Chapter 5: Recursive Evaluate and Cut
	Chapter 6: Simulation Based Evaluate and Cut
	Chapter 7: Conclusions

	Background
	Introduction
	Combinatorial Optimisation
	Mixed-Integer Programming
	Constraint Programming

	Modelling Combinatorial Problems
	Algebraic Modelling
	High-Level Constraint Modelling
	Modelling in MiniZinc
	A Comparison of Algebraic and Constraint Models
	Compiling MinZinc Models

	Stochastic Programming
	Two-Stage Stochastic Programming
	Multi-Stage Stochastic Programming

	Solving Stochastic Programs
	Decomposition Approaches
	Scenario Decomposition

	Stochastic Programming Frameworks
	Modelling
	Stochastic Extensions to Algebraic Modelling Systems
	Stochastic Extensions to Constraint Modelling Systems

	Formalism
	Constraint Optimisation Problem
	Stochastic Constraint Satisfaction Problem
	Scenario based Stochastic Constraint Optimisation Problem
	Evaluate and Cut

	Conclusion

	Modelling
	Introduction
	Symmetry and Dominance
	Stochastic template design problem
	Stochastic MiniZinc and symmetries/dominance

	Global View on the Scenario Decomposition
	Experiments
	Results

	Related Work
	Conclusion
	Limitations
	Future Work

	Evaluate and Cut with Diving
	Introduction
	Scenario decomposition and Lazy Clause Generation
	Search Over Partial Assignments
	Experiments
	Results

	Related Work
	Conclusion
	Limitations
	Future Work

	Recursive Evaluate and Cut
	Introduction
	Recursive multistage E&C
	Naïve E&C Recursion
	Improved E&C Recursion

	Experiments
	Results
	Related Work
	Conclusion
	Limitations
	Future Work

	Simulation Based Evaluate and Cut
	Introduction
	Background - Monte Carlo Simulation
	Sample Average Approximation Method
	Evaluating Candidate Solutions
	Discussion

	Simulation-based Evaluate and Cut
	Algorithm
	Experiments
	Results

	Related work
	Conclusion
	Limitations
	Future work

	Conclusions
	Modelling
	Evaluate and Cut with Diving
	Recursive Evaluate and Cut
	Simulation Based Evaluate and Cut
	Concluding Remarks

	Appendix A Benchmark Models
	Template Design
	Template Design in Stochastic MiniZinc
	Template Design Deterministic Equivalent
	Template Design Data
	Stochastic Assignment and Scheduling Problem

	Four-stage stochastic facility location problem

	References
	Vita

