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Abstract 

 
Traumatic brain injury (TBI) is a serious and debilitating health problem worldwide. In this study, an animal 

model of diffuse TBI (the most common form of TBI) in rat barrel cortex was studied using an established 

database of in vivo extracellular electrophysiology while naturalistic stimuli were applied to whiskers 

under anesthesia. Using this database, we characterised and compared the stimulus-evoked activity in 

cortical layers II and IV. Wistar rats were subjected to a sham surgery (n=13) or TBI (n=23) caused by an 

established weight-drop method. TBI animals were studied at three time-points after injury: 4-days (n=6), 

2-weeks (n=9), and 8-12-weeks (n=8). Past studies indicate some functional recovery across these time-

points, however have focused on broad, population-level spike statistics. In this study, we used an 

algorithm based on local maxima and another using graph theory to identify major temporal neuronal 

activity components on a unit-by-unit basis in 50ms post-stimulus recording windows for 1,210 online-

sorted units. Units were either non-responsive or contained 1-3 major components. Using these 

components and the categorization of units as non-responsive or containing major components, we 

analysed the timing of components with respect to the stimulus, the change of proportions in unit 

categories across conditions and between layers, as well as the temporal regularity of components 

occurring within the same units. We also analysed how non-stationary units’ components were and 

whether the activity of components within the same units were correlated. We found that the proportions 

of unit categories were significantly different between layers II and IV for some conditions, especially at 

the 4-days TBI timepoint where there was a marked increase in the proportion of non-responders and a 

general reduction in the number of temporal components. For both stimuli, it was possible to clearly 

associate component timings with prominent features in the stimulus, such as the stimuli’s maximum 

amplitude. Temporal regularity of components within the same units was consistent and significant for 

the sham condition but such relationships broke down after TBI, especially in the 2-weeks condition. 

Regularity did reappear, however, in the 8-12-weeks condition. Components were more stationary in layer 

IV in the 2-week condition compared to sham, and layer II components for both the sham and 2-weeks 

condition were significantly different than those in layer IV, perhaps indicating a compensatory 

mechanism. We conclude that microcircuits functionally maladapt and/or reorganize in barrel cortex after 

diffuse TBI, affecting its ability to encode naturalistic stimuli. Such maladaptation/reorganization is layer-

dependent, perhaps due to differences in inhibitory neuronal makeup.  
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II. Abbreviations 

TBI  traumatic brain injury 
VPM  ventroposterior medial nucleus  
POm  medial posterior nucleus  
NRT  nucleus of the thalamus  
PMBSF  posteromedial barrel subfield  
PW  principal whisker 
CBP  calcium-binding protein 
PV  parvalbumin 
SOM  somatostatin 
5-HT3AR  5-HT3A receptors 
GABA  gamma-aminobutyric acid 
FS  fast-spiking 
BC  basket cell 
MC  Martinotti cell 
ChC  chandelier cell 
NGFC  neurogliaform cell 
DBC  double bouquet cell 
BTC  bitufted cell 
BPC  bipolar cell 
vM1  vibrassal motor cortex 
CR  calretinin 
MPBC  multipolar bursting cell 
MPC  multipolar cell 
SSC  spiny stellate cell 
LBC  large basket cell 
SBC  small basket cell 
NBC  nest basket cell 
DBoC  double bouquet cell 
SBoC  single bouquet cell 
ENGFC  elongated neurogliaform cell 
EE  environmental enrichment 
CSD  cortical spreading depression 
PSTH  peristimulus time histogram 
4d TBI  TBI four-days post-injury 
2w TBI  TBI two-weeks post-injury 
8-12w TBI TBI 8-12-weeks post-injury 
KS  Kolmogorov–Smirnov 
Basic  the trapezoid stimulus 
Contact  the naturalistic object contact stimulus 
SE  standard error 
PCA  principle components analysis 
PC  principle component  
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1. Literature review: Neurophysiology of barrel cortex and traumatic brain 

injury 

Sensory information is vital for interacting with the world and fulfilling the basic requirements for human 

survival, socialization, and cooperation. We use combinations of sensory data streams – auditory, visual, 

touch, etc. – to interpret and form internal maps of the outside world. It is therefore often debilitating for 

humans to experience minor or major sensory deficits or perturbations in sensory processing pathways, 

and such debilitations come at broader social and economic costs 1,2. Thus, the study of such sensory 

systems and their deficits is important for human health and wellbeing. Sensory systems are also ideal for 

basic neuroscience study because sensory information is processed in dedicated, known and highly-

structured neural pathways from periphery to cortex and, for the purposes of experimentation, sensory 

input can be easily manipulated over scales from reductionist through to complex naturalistic stimuli. This 

allows detailed study of broad questions about how neurons connect and form networks to carry out 

computations, as well as how different alterations in health states affect these networks. This combination 

of reasons – understanding the brain in health and in injury with a view to creating the basic neuroscience 

knowledge base for improving human health – motivates the current thesis. 

For bioethical and practical reasons, it is not always preferable or possible to study neural tissues 

from humans. However, ethical guidelines have been developed for the use of non-human animals 3, and 

brain development and likeness to human brains in this context has been studied in detail in relevant non-

human animals, particularly rodents 4 which have become popular models for studying brain injury 5 and 

for basic neuroscience generally 6. Given the ecological niche they occupy, the rodent face whiskers act as 

important sensing organs to probe the environment and to interact with conspecifics, especially in the 

low-light nocturnal conditions when rodents are most active. The whiskers are readily manipulated and 

the relevant parts of somatosensory cortex are easily accessed via surgery; hence, study of whisker-

sensation in rodents has been ongoing in basic and sensory neuroscience for many years 7–11, including to 

test the effects of deficit or damage on neural function and structure 5,12,13. 

In this review, I will outline the basic state of knowledge of rodent whisker-sensation physiology 

and how this system is affected by animal models of traumatic brain injury (TBI). I will first outline the 

general structural elements in the pathways which allow rats to receive information about the world from 

their whisker movements. Next, I will discuss the importance of different neuron subtypes in the 

microcircuits of the somatosensory cortex, where perception occurs. I will then briefly introduce the 

concept of population coding, especially temporal coding, in the context of barrel cortex. I will summarise 
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findings from animal models of brain injury and the effect this perturbation has on different neuron 

subtypes, again with emphasis on the somatosensory cortex. Lastly, I will provide a short introduction to 

computational methods and concepts utilized in this thesis. 

 

1.1 Whisker-sensing pathways to barrel cortex 

Sensory whiskers, or vibrissae, are composed of a keratin shaft which extends out from a mammal’s body. 

The shaft itself does not contain nerve fibres but its mechanical manipulation activates mechanoreceptors 

at its base 14–19. In the case of the rat, first-order bipolar afferent neurons with terminals contacting the 

whisker base send axons to synapse in the trigeminal ganglion and the sensory trigeminal nuclei 20. From 

here, second-order afferents project to various subcortical nuclei in the brain21 in complex, detailed 

arrangements 22–24 (see Figure 1 for a summary of these pathways). This leads to independent levels of 

activation of the ventroposterior medial nucleus (VPM) and the medial posterior nucleus (POm), the two 

major thalamic nuclei which will relay the information to cortex. The connection patterns of second-order 

afferents to VPM and POm achieve two things: (1) it establishes VPM and POm as distinct, specialised 

information streams relaying different types of information to cortex (see Figure 1); and (2) it maintains a 

highly organised and systematic representation of information sent by the individual whiskers 25–27. 

The reticular nucleus of the thalamus (NRT) is a common source of inhibition to both VPM and 

POm. It is activated by corticothalamic feedback and can provide lateral inhibition to neighbouring 

segments of thalamus representing other, nearby whiskers to inhibit the primary whisker represented by 

another given segment of thalamus 28–31. VPM primarily receives inhibition via NRT whereas POm receives 

additional, intra- and extra-thalamic inhibition 32. These additional sources of inhibition normally silence 

POm activity during regular whisker activation 33–35. The activity of VPM and POm are also susceptible to 

corticothalamic feedback, especially from cortical layers V and VI 36–4242. Corticothalamic fibres sent to 

POm are thought to the main drivers of POm, and fibres sent to VPM help modulate incoming activity. 

Corticothalamic fibres originating from cortical layer VI have especially strong synapses 43 and are similar 

in strength to second-order afferent synapses 44 (while most other corticothalamic synapses are relatively 

weak). In addition to these cortical feedback mechanisms, VPM is additionally modulated by the 

brainstem 24. In combination, these sources of inhibition, feedback, and modulation (see Figure 1 for 

diagrammatic summary) therefore shape the responses of intrinsically excitable thalamocortical cells 22,45 

in VPM and POm, which receive sensory information from second-order afferents. This results in the 

cortex, specifically barrel cortex, receiving a partially filtered sensory signal and not the raw sensory signal 

itself. 
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Figure 1. Simplified summary of connections of the whisker-sensing thalamus. 
Abbreviations: PrV = principal trigeminal nuclei; SpVi = interpolaris subnucleus of the spinal trigeminal nuclei; SpVo = oralis 
subnucleus of the spinal trigeminal nuclei; BFR = brainstem reticular formation; APT = anterior pretectal nucleus; ZI = zona 
incerta; other abbreviations same as text. Based on review by Castro-Alamancos 24. 
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1.2 Barrel cortex somatotopy and microcircuitry 

In rodents, whisker sensation is represented in the posteromedial barrel subfield (PMBSF) region of 

somatosensory cortex, commonly known as barrel cortex due to specializations in the organization of 

neurons in the input layer IV as described below. The PMBSF occupies approximately 70% of primary 

somatosensory cortex and 13% of the cortical surface 46, a disproportionately large part of cortex relative 

to the small external physical size of the whiskers when compared to other parts of the rodent body. This 

indicates the ecological importance of whisker somatosensation in comparison to other tactile inputs. The 

PMBSF is organised somatopically, meaning each of the major facial whiskers is represented, whisker for 

whisker, in separate columns of neurons extending from the surface to the white matter. Each of these 

regions which receives a dominant principal whisker (PW) input is defined anatomically by the 

organization of layer IV neurons into ‘barrel’ like structures with a relatively hollow interior. They are laid 

out in a grid formation in the PMBSF. The cortical layers above and below a layer IV barrel are often 

referred to as a ‘barrel column’ and together represent the cortical column responsible for processing the 

sensory input from one whisker. The grid formation in PMBSF consists of arcs (columns) and rows of 

whisker barrels, each representing the same arcs and rows of whiskers found in the whisker pad on the 

rat face (see bottom-left panel of Figure 2 – notice that this organisation is maintained through the 

brainstem, thalamus, and cortex). A1 represents the top-most whisker at the nose bridge end, A2 the 

whisker one closer to the nose in the same row, and so on, right through to E8, which represents the 

bottom-most whisker at the nose end (n.b. some species-, individual-, and reporting-specific differences 

will mean a slightly different end whisker count, e.g. E7 as in Figure 2). 
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Figure 2. Simplified illustration of separate whiskers on the whisker pad demonstrating their organised 

distribution throughout the afferent pathway and ending in the PMBSF (adapted by Ilan Lampl, 

Weizmann Institute, from Schubert et al. 2007 47: 

http://www.weizmann.ac.il/Biology/open_day_2012/upload_images/70_32.jpg). 

 

Classically, each whisker barrel receives its primary thalamic input mainly at layer IV (Figure 2). 

This sensory information is then projected up to layers II and III for further processing (along with other 

local cortical areas), then down to layers V and VI for final output to more distant cortical areas, such as 

motor cortex (as well as sending feedback to sub-cortical areas) 48. Layer IV excitatory cells typically have 

strong, narrow tuning to single whiskers while cells in supra- and infra-granular layers typically show 

broader, mixed-strength tuning (indicating tuning to more precise, higher-order features, and possibly 

common to multiple whiskers). Neurons across all layers, but particularly infragranular layers, can be 

tuned to temporal or qualitative features of whisker deflection, e.g. directional sensitivity or initial versus 

sustained parts of deflection. Such differences are the result of interaction between the increasing 

number of complex microcircuits being identified 49–51 both within and between layers, and within and 
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between barrels 52. For instance, the septa are innervated by a separate thalamic pathway to the barrels 

(see Figure 1), and their lateral connections between barrels 51 likely modulate individual barrels' activity. 

Where 49 and how 53 thalamocortical cells connect within the cortical layers is another source of these 

differences. And while the VPM and POm pathways appear to target cortex in complementary ways, the 

relevant feedforward 34,54,55 and feedback 49,56 systems within cortex make the subsequent interlaminar 

interactions all the more complex, thus interesting and important for sensory processing. For these 

reasons, the classical, simple view of information flowing neatly and wholly from layer IV, up to II/III, then 

down to V is increasingly being reinforced in general principle while also undermined by long lists of 

special cases. In the following sub-sections, we will attempt to follow the general principle view in detail, 

layer-by-layer, and discuss the implications of relevant special cases. 

 

Layer IV 
Layer IV is the primary input layer from the thalamus and typically has narrow, strong tuning to a 

single PW. It helps to amplify and further filter the thalamic signal and distribute its activity to other 

cortical layers, primarily the supragranular layers 49,57,58. 

In the classical pathway, VPM afferents first synapse onto both excitatory and inhibitory cells in 

layer IV 59, with more synapses onto excitatory than inhibitory cells as the ratio of excitatory to inhibitory 

cells in layer IV is approximately 9:1 60. That said, the vast majority (approximately 85%) of synaptic 

contacts in layer IV are intracortical 59, i.e. from other areas of (mostly barrel) cortex. Thalamocortical 

synapses are only slightly more efficacious than intracortical synapses, with evidence that the relative 

strength of thalamocortical synapses is due to coincident activation of a number of such inputs rather 

than significantly stronger synapses 61 (although their synapses are slightly more proximal to somas of 

layer IV spiny stellate, excitatory cells than are intracortical synapses). 

The excitatory cells in layer IV are predominantly spiny stellates, star pyramids, and non-star 

pyramids 62–67, all innervated by VPM afferents. There are some morphological and functional differences 

between them 57,68, but they most differ in connectivity to other layers and columns 58,65,66,68: spiny 

stellates axons’ project almost exclusively within layer IV and to layer II and III, and very rarely to 

infragranular layers; star pyramids have dendrites which extend from layer IV into II and III and axons 

which project to layer II, III, within IV, and to infragranular layers; and non-star pyramids are very similar 

to star pyramids although can also project to neighbouring columns. Despite these differences, excitatory 

cells in layer IV mainly target layers II and III in the same column (with an overall connectivity probability 

of ~10-15% with layer II/III pyramidal cells; 60,69). Within layer IV, excitatory cells appear to form excitatory 
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clusters of ≤~10 cells in which the cells are highly interconnected 60, making individual cells in these 

clusters highly efficacious in causing action potentials in other cells of the same cluster 11. 

Excitatory cell activity in all cortical layers is modulated by interneuron cells located locally (from 

within the same layer of the same column), translaminarly (from other layers within the same column), 

and laterally (from layers within other columns). These interneurons come in different and complex 

morphological and electrical varieties, are present and connected in different proportions and manners 

throughout cortex, and can have inhibitory or excitatory synapses with other cells (though most are 

inhibitory) 70–72. This diversity can make precise identification of interneuron subtypes difficult under 

experimental conditions, and in many reports of microcircuits, only some features of the interneurons are 

known. However, a common technique to identify them takes advantage of their differential expressions 

of calcium-binding proteins (CBPs), neuropeptides, and other molecular markers 70,73,74 (see Table 1).  In 

the case of layer IV interneurons, VPM afferents activate cells positive for parvalbumin (PV+), somatostatin 

(SOM+), and 5-HT3A receptors (5-HT3AR+) 75–77. PV+ interneurons are also driven by layer IV excitatory cells 

52,78 and layer VI corticothalamic pyramidal cells 56. Together, these excitatory connections onto inhibitory 

cells can be considered feedforward inhibition, as they drive inhibitory interneurons’ activity forward onto 

other cells. Feedback inhibition occurs when inhibitory cells synapse back onto excitatory cells, typically 

releasing gamma-aminobutyric acid (GABA). PV+, SOM+, and 5-HT3AR+ layer IV interneurons cause 

feedback inhibition on layer IV excitatory cells 78–80 and SOM+ interneurons cause disinhibition (inhibiting 

other inhibitory cells, thus reducing their inhibition onto excitatory cells) on PV+ interneurons 80. 

Functionally, PV+ interneurons appear to be mostly fast-spiking (FS) and can produce very high, 

non-adapting firing rates (>100 Hz). They synapse almost exclusively onto excitatory cells in layer IV and 

are likely to be basket cells (BCs; see Table 1) which typically possess a dense axonal plexus that projects 

within a small area 75,78. These PV+-FS cells have very short latencies to cortical activation (0.6 ms), high 

release probabilities, and make an average of 3.5 synapses onto excitatory cell dendrites at proximal and 

distal locations 78. It has therefore been suggested 48 that as these PV+-FS cells are rapidly recruited by 

thalamocortical afferents and further driven by local excitatory cells, they may act to quickly ‘reset’ layer 

IV excitation and increase temporal resolution in that layer. Relatively FS (70-150 Hz), adaptive firing from 

SOM+ cells likely provides the required disinhibitry control of PV+-FS cells 81; synapses from SOM+ to PV+- 

FS cells are much stronger than those from SOM+ to excitatory cells within layer IV 80. However, a different 

subtype of SOM+ interneuron in layer IV are likely to be the Martinotti cells which are identifiable by axons 

projecting to layer I 81 and provide widespread cortical dampening to pyramidal neurons 82 (Table 1). Then, 

5-HT3AR+ interneurons – which appear in comparatively low numbers in this layer – show long firing 
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latencies and result in slow inhibition on excitatory cells within layer IV 77,79,83, acting weakly but surely 

against PV+-FS cells’ temporal sharpening. This could counteract excitation-inhibition imbalances or 

provide the wider temporal integration necessary for long-term neuroplasticity 48. 

 

Layer II and III 
The main layer IV excitatory output is to layers II and III, where it combines with additional VPM 

input to layer III pyramidal cells 10,53,84,85 and POm input to apical tufts of layer II pyramidal cells 48,86. 

Together, layers II and III act as the first and major integrative processing cortical layers. Pyramidal cells 

in layer II and III typically project their axons over several barrel columns in layers II, III, and V, and to 

secondary somatosensory and motor cortices 87,88. However, layer II pyramidal cells near the border of 

layers I and II have highly lateralized apical dendrites, and a small subset of layer III pyramidal cells restrict 

their projections to mostly within one barrel 89,90. Within layer II and III, pyramidal neurons form excitatory 

connections to one another with a probability of ~10-20%, as layer IV excitatory cells connect to layer II 

and III pyramidal cells 88,91. These intralayer connections between layer II and III pyramidal cells are 

typically on the order of ~3 synaptic connections per neuron (to mostly basal dendrites) 88,92, however the 

strength of these connections depends on sensory experience 93. Axons from layer II and III pyramidal 

neurons also project to layer V pyramidal neurons, typically forming weak synapses on basal dendrites 94–

96, and these connection patterns may ‘bind’ perceptual features in subnetworks of layer V pyramidal cells 

which are different to those subnetworks which form between layer II and III pyramidal cells 97. 

As in layer IV, the output of layer II and III pyramidal neurons is shaped by many interneurons, 

particularly in layer II where ~17% of cells are interneurons, whereas interneurons make up only ~9% in 

layer III and ~8-9% in layer IV 98. All major histological classes of interneurons are represented in layers II 

and III 99 but approximately half are 5-HT3AR+, meaning they can be driven by serotonergic neurons 83. 

Layer II and III interneurons are mainly driven by layer IV excitatory cells 100, causing feedforward 

inhibition, but layer II and III pyramidal neurons also activate feedforward inhibition circuits by synapsing 

with some FS (possible BC) layer II and III interneurons 91,101. A wide variety of interneurons, each with 

unique intrinsic properties and functions, are likely to exist in layer II and III, including BCs, Martinotti cells 

(MCs), chandelier cells (ChCs), neurogliaform cells (NGFCs), double bouquet cells (DBCs), bitufted cells 

(BTCs), and bipolar cells (BPCs) 70,72,102,103 (see Table 1 for basic descriptions of these cells and their 

identifying characteristics). ChCs target axon initial segments of layer II and III pyramidal neurons (where 

they can be uniquely excitatory 104), while BCs, DBCs, and some NGFCs synapse onto basal dendrites of 

local pyramidal neurons; BPCs target proximal apical dendrites; and MCs and BTCs synapse on apical tufts 
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and the middle portion of the apical dendrites. On average, most of these interneurons will synapse onto 

three to six pyramidal neurons in layer II and III and make similar kinds and numbers of connections with 

layer V pyramidal neurons. These interneuronal connections onto layer II and III pyramidal cells, in 

combination with the intricate excitatory connection patterns from layer IV and thalamus, allows cells to 

be finely tuned to complex, higher-order features of sensory input. 

In addition to these local interactions, there are also some interesting BC-involving microcircuits 

in which BCs are innervated by long-range vibrassal motor cortex (vM1) axons which synapse onto BCs’ 

apical dendrite extensions in layer I of barrel cortex. These BCs cause a strong disinhibition of SOM+ 

interneurons in layer II and III, and thus activity from vM1 projections can increase the excitability of layer 

II, III, and V pyramidal neurons, as seen during whisking behaviour in vivo 105,106. 

Highly peculiar layer II and III inhibitory microcircuits involving PV+ and calretinin-positive (CR+) 

interneurons have also been observed 107,108. These PV+ cells are called multipolar bursting cells (MPBCs) 

as they show burst rather than FS firing when depolarised and project densely within layer II, with some 

collaterals to layer V. The CR+ cells are BPCs and multipolar cells (MPCs) – BPCs project narrowly down to 

layer V and, like MPBCs, have a high-frequency burst upon initial depolarisation, whereas MPCs’ axons 

project laterally within layer II and III only. These peculiar circuits are driven and modulated by layer II and 

III pyramidal cells, with MPBCs receiving extra inputs from layer IV excitatory cells. 

 

Table 1. Summary of interneuron sub-types mentioned in text (abbreviations same as text). 

Name Basic description Identifying characteristics 48,70,73,109 

Spiny stellate 

cell (SSC) 

Filters and relays thalamic excitation 

from layer IV to layer II/III 65. 

Spiny morphology. 

Large basket 

cell (LBC) 

Most common basket cell found in 

cortex 70. Inhibits many pyramidal cells 

across barrels at or near the soma 110. 

FS, non-accommodating (N-Ac), non-

adapting (N-Ad). 

PV (+++), CB (++), NPY (+), CR (+), VIP (+), 

SOM (-), CCK (+). 

Small basket 

cell (SBC) 

Least common basket cell found in 

cortex 70. Inhibits few pyramidal cells, 

usually within a single layer and 

column, at or near the soma 110. 

FS, N-Ac, N-Ad. 

PV (-), CB (++), NPY (+), CR (-), VIP (+++), 

SOM (++), CCK (+). 
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Nest basket 

cell (NBC) 

Second-most common basket cell 

found in cortex 70. Inhibits few 

pyramidal cells within a barrel at or 

near the soma 110. 

FS, N-Ac, N-Ad. 

PV (+++), CB (++), NPY (+), CR (++), VIP 

(+), SOM (-), CCK (+). 

Chandelier cell 

(ChC) 

Inhibits the initial segment of pyramidal 

neurons and found in layers II to VI 

70,111–114 to control excessive excitation 

115, although some connections could 

themselves be excitatory 104. 

FS or late spiking (LS), N-Ad. 

PV (+) and/or CB (+), GABA transporter 1 

(GAT-1) (+), SOM (-). 

Neurogliaform 

cell (NGFC) 

Inhibits dendrites of pyramidal neurons 

70, especially in instances of persistent 

excitation 116,117. 

LS. 

PV (-), CB (-), NPY (+), reelin (+), COUP 

transcription factor 2 (+). 

Double 

bouquet cell 

(DBoC) 

Inhibits basal dendrites and somas of 

pyramidal neurons 70, typically 

extending its dendrites vertically, 

across multiple layers 118–120. 

Irregular spiking (IS) or regular non-

pyramidal (RSNP) firing (adapting). 

PV (-), CB (-), NPY (-), CR (++), VIP (+++), 

SOM (++). 

Bitufted cell 

(BTC) 

Inhibits distal dendrites of pyramidal 

neurons 70, often spanning its dendrites 

across the entire cortical column 121–123. 

RSNP and BSNP, adapting. 

PV (-), CB (++), NPY (+), CR (++), VIP (+), 

SOM (++) . 

Bipolar cell 

(BPC) 

Extends narrow bipolar or bitufted 

dendrites vertically within the column. 

Inhibits the basal dendrites of relatively 

few pyramidal neurons 70.  

IS, LS, or RSNP (adapting). 

PV (-), CB (-), NPY (-), CR (++), VIP (+++), 

SOM (++). 

Multipolar 

bursting cell 

(MPBC) 

Extends densely within layer II, with 

some collaterals to layer V. Inhibits the 

basal dendrites of local pyramidal 

neurons 107,108. 

Burst firing. 

CR (+). 

Martinotti cell 

(MC) 

Inhibit distal dendrites of pyramidal 

neurons 70, especially the apical tuft 

regions in layer I (of deeper pyramidal 

neurons). 

RSNP or burst-spiking non-pyramidal 

(BSNP). 

PV (-), CB (++), NPY (++), CR (-), VIP (-), 

SOM (+++). 
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Single bouquet 

cell (SBoC) 

Inhibits interneurons in supragranular 

layers, indirectly disinhibiting layer V 

pyramidal neurons 102,103,124. 

Varied spiking patterns. 

Typically VIP (+). 

Elongated 

neurogliaform 

cell (ENGFC) 

Inhibits distal dendrites present in layer 

I, typically the apical tufts, of layer II, III, 

and V pyramidal neurons 102,103,124. 

LS and varied spiking patterns. 

Typically NPY (+) and reelin (+). 

Cajal-Retzius 

cell 

Important for establishing intracortical 

and cortico-thalamic connections 

during development 125–129, although 

some may survive into adulthood 125,128. 

Glutamergic. 

Typically reelin (+). 
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Figure 3. Simplified drawings of some cortical interneuron subtypes reviewed (from Markram et al. 70).  
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Figure 4. Relative proportions of cortical interneuron subtypes present across cortical layers (from 

Markram et al. 70). 

 

 

Layer V 
Layer V receives excitation and inhibition from all overlying layers and, combined with excitatory 

input from VPM and POm, likely integrates the processing of the column as a whole before sending its 

processed output to downstream areas. Layer V pyramidal neurons receive innervation from 

supragranular and granular excitatory cells, as well as other layer V pyramidal neurons. Of these 

supragranular and granular cells, three morphologies are distinguishable: slender-tufted (found mostly in 

upper layer V), thick-tufted (found mostly in lower layer V), and untufted (found throughout layer V, 

though in relatively low numbers) 88,89. Slender-tufted pyramidal neurons receive thalamic input from 
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POm and project dense axons extensively within supragranular layers across the entire ipsilateral barrel 

cortex, ipsilateral vM1, and to contralateral barrel cortex, making them the primary output cells in layer 

V 130,131. Thick-tufted pyramidal neurons receive thalamic input mostly from VPM and make most of their 

synapses to other layer V pyramidal neurons and subcortical areas, thus providing local and subcortical 

feedback 130,132. Untufted pyramidal neurons receive a mix of VPM and POm thalamic input depending on 

their depth within layer V and project extensively to layer III and to the contralateral barrel cortex, making 

them important for intracolumnar feedback and inter-hemispheric coordination of sensory outputs 89,133. 

As in other layers of cortex, the activity of pyramidal neurons in layer V receives inhibitory 

modulation – from other layers, especially layer II and III interneurons as discussed above, as well as local 

layer V inhibition. Local Inhibition comes from PV+, FS and SOM+ cells driven by VPM 134, FS cells driven by 

upper layer VI pyramidal cells 56, and local MCs 82,135. Local PV+, FS and MCs generally behave as in other 

cortical layers but SOM+ cells synapse onto dendrites of layer IV spiny stellate cells instead of apical 

dendrites of local pyramidal cells as in other layers 134. Because of this, their delayed facilitation response 

effectively adds a late-onset inhibitory input to layer IV excitation during long periods of ongoing 

thalamocortical input and so could be important for excitation-inhibition balance at longer-time scales. 

 

Layer I 
Layer I, also known as the molecular layer, contains few neuron cell bodies and many glia. It 

receives input from thalamic matrix cells and acts as a medium through which feedback and transmission 

from ipsilateral and contralateral cortical areas can communicate  102,103,136,137. Except for Cajal-Retzius 

cells, which are important during neurodevelopment 126,127, the mature layer I almost exclusively contains 

GABAergic inhibitory neurons expressing 5-HT3AR+ and SOM+ 83,106, which are predominately driven by 

layer II/III pyramidal cells from the same column 137. These layer I interneurons have some functional 

spiking differences 137 and have recently been described as possessing two distinct morphologies, each 

being involved in two distinct microcircuits 102,103,124: (1) single bouquet cells (SBoCs) establish local, 

unidirectional inhibition to layer I interneurons and most inhibitory and pyramidal cells in layer II and III; 

and (2) elongated neurogliaform cells (ENGFCs) establish broad, reciprocal inhibition (directly and via gap 

junctions) to layer II and III MCs, NGFCs, and BTCs, as well direct inhibition to layer II, III, and V pyramidal 

neurons. Therefore, SBoCs exert an indirect, disinhibitory effect on layer V pyramidal cells whereas 

ENGFCs exert direct and indirect inhibition on layer V pyramidal cells (thus stipulated as a yin and yang 

system of inhibitory control for layer V 124). 
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Layer VI 
Relative to other cortical layers, much less is known about layer VI 138. Its involvement in 

thalamocortical feedback is well-established 139–142 but it also makes some unique and varied projections 

to other layers and acts as a supplementary output layer 60,141,143–145. In upper layer VI, pyramidal cells 

receive input from VPM and POm, and typically project either back into the thalamus, providing 

corticothalamic feedback, or project intracortically. Intracortical projections are made to other layers of 

the same cortical column, within layer VI itself, or to long-range cortical areas outside of barrel cortex. 

Pyramidal cells in lower layer VI are much more heterogeneous and typically synapse within layer VI, 

however longer-range connections to layer I, layer II, and the thalamus are also present 146–148. 

Interneurons in layer VI are significantly understudied, but are likely driven by thalamic nuclei and local 

pyramidal cells and appear to be involved in local and translaminar inhibition 55,140,142,149. Functionally, this 

makes layer VI highly important for thalamic-cortex interaction, supplementary corticocortical output, 

and specialised inhibition within a barrel. 

 

Throughout this discussion of barrel cortex microcircuits, some dendritic processing effects have 

been implied via mention of where presynaptic neurons synapse on postsynaptic cells (soma, perisoma, 

basal or distal dendrites, etc.). It is important to explicitly note that dendroarchitecture plays an important 

role in synapse (and, thus, postsynaptic cell) function 8,30,61,150–154. For example, GABAB receptors work by 

different biochemical mechanisms in the soma than in dendrites; mostly this means that they have the 

same resulting effect on postsynaptic firing 155 however exceptions can and do arise due to these 

differences 152. Complete exploration of such exceptions is beyond the scope of this review but 

underscores a caveat of dual intracellular somatic recordings (a technique which some studies discussed 

so far have used): if one is attempting to establish connection probability from presynaptic neurons to a 

postsynaptic cell, distal dendritic synapses may be so attenuated or filtered that they fail to register at the 

soma (where the experimenter is often recording from in such studies). However, despite their distal 

locations, there may be strategies such presynaptic neurons use to boost their signal in vivo (such as 

synchronous firing with other presynaptic neurons). Thus, in the absence of observing such strategies, 

studies may significantly underestimate the probability of these presynaptic connections 48. 

Nevertheless, much is known about barrel cortex and its microcircuits. The sum of interactions 

between cortical microcircuits across and within layers ultimately leads to corticocortical output 87, which 

transmits essential sensory information upstream to higher sensory, motor, and associative cortical areas.  
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1.3 Encoding of whisker movement 

What we have discussed up until this point – whisker-sensing pathways to barrel cortex, and the barrel 

cortex’s somatotopy and microcircuitry – ultimately serves to generate the neural encoding of whisker 

movements in the brain. Such encoding relies not on individual neurons alone, but rather on populations 

on neurons spread across the cortical column. While populations within the same barrel tend to do have 

redundancy 156,157, there exist different populations within each barrel, each of which encode 

complementary features of whisker movements in concert with one another to represent a wide diversity 

and complexity sensory information 158,159. For example, different populations can encode whisker 

deflection velocity, amplitude, or angle of deflection. Such populations can also place different emphases 

on certain quantitative metrics of their coding system, e.g. neurons encoding stimulus location appear to 

place an emphasis on the timing of individual spikes, especially of the first spike after stimulus onset 157. 

Within populations, nearby neurons can fire in pairs during both spontaneous and evoked activity 

160. This redundancy allows sampling pairs across the population to provide greater accuracy for 

determining stimulus onset times 160, which as mentioned is a vital and sensitive metric for encoding 

stimulus location 157 and many other complex stimulus features of whisker movement 158,159. However,  

such representations can and do change over time due to adaptation and sensory experience 159,160. 

These encoding mechanisms are important for the healthy function not only of barrel cortex but 

also of the upstream areas which barrel cortex projects to, such as those responsible for functions such 

as cognition and motor coordination. As discussed next, perturbations of the barrel cortex affect sensory 

processing and encoding of sensory information in specific ways across different timescales, which are 

also associated with cognitive and motor impairments. 

 

1.4 Animal models of brain injury and their effects on cortical inhibition 

In 2006, an estimated 5.3 million people in the United States of America 161 were living with medical 

disabilities resulting from TBI. Such injuries are frequently acquired from common sporting and 

recreational activities 162,163, as well as motor vehicle and other physical accidents 161. They are associated 

with increased risks of depression 164 and epilepsy 165,166, likely caused by damage to and/or reorganization 

of inhibitory microcircuits 167–172. Accordingly, animal models of TBI and similar brain injury have been 

developed to study their pathophysiology and possible avenues of medical intervention 5,173. 

Two major animal models of TBI involving rodents are closed and open skull TBI, where an object 

(usually a weight) makes a controlled impact with the intact head or opened skull (i.e. directly onto the 
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brain), respectively. These two models produce different severities of TBI and thus the primary and 

subsequent secondary damage is different in severity and kind 5,167,171,174. These models produce different 

combinations of diffuse and focal traumatic brain injury; closed skull TBI is more likely to produce only 

diffuse injury whereas open skull TBI produces a mixture of diffuse and focal injury 175. Focal injury refers 

to injury which is more localized to a particular brain area and is generally the result of severe mechanical 

forces impacting with that area. As such, focal injury is generally noticeable using current clinical imaging 

techniques due to bleeding, bruising, and other gross tissue damage. In comparison, diffuse injury is less 

localized and usually undetectable via clinical imaging techniques because damage is on a cellular scale 

and not grossly visible via normal clinical imaging techniques since there is an absence of noticeable 

bleeding and bruising. Diffuse TBI damage can be caused by hypoxia, meningitis, edema, or rapid fluid 

movement in the brain, like those caused by rapid acceleration/deceleration or rotational forces in 

vehicular accidents 176,177. It is important to remain cognizant of these differences when studying  or using 

data from different TBI animal models, since both types of injury – focal and diffuse – are acquired to 

different extents in different clinical cases and may be clinically detected or treated in different ways 

161,164,167,169,176,178. 
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Figure 5. Reported pathophysiological characteristics resulting from TBI over time, as a result of closed 

and open skull TBI animal models (from Carron et al. 2016 179; BBB = blood brain barrier). 

 

The immediate and primary damage in both focal and diffuse TBI is axonal injury and primary 

axotomy, i.e. the tearing of axons, swelling, enfolding and, in severe instances, total disconnection of the 

axon from the soma or cell death, which can also accumulate to cause secondary axotomy 180–184 (see 

Figure 5). This damage further compounds with glutamergic excitotoxicity, hypoxia-ischemia, general 

inflammation, oxidative stress, and possible microcircuit diaschisis 167,171,185,186. The specific loss and 

damage of axons and cells will differ between individuals and progress at different rates. However, 

animals that survive the mechanical impacts employed in these models of TBI show a series of changes in 

excitation and inhibition in the long- and short-term. Typically, in open skull TBI, at 24 hours post-injury, 

there is a brief, initial presence of hypoexcitation followed by continuing and prominent hyperexcitation 

13,178 and epileptiform activity is present at around four weeks post-injury 173. By six to eight weeks post-

injury, most layers return to regular levels of excitation, however animals demonstrate cognitive 

deficiencies, as indicated by behavioural changes 13,173,178. In cases of closed skull TBI, hypoexcitation 
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across cortical layers persists for several weeks (more so in supragranular layers) but by eight weeks post-

injury, the supragranular layers show hyperexcitation 12,187,188. This so-called ‘spontaneous recovery’ (or 

natural recovery) is slow and generally leaves permanent disability, despite multifaceted and interacting 

regenerative processes being triggered post-injury 189. Such adaptive neuroplastic processes appear to be 

strongly linked with behavioural experience 190, initiating axonal and collateral sprouting of neurons and 

– ultimately – cortical remapping. 

This has led to the hypothesis 5,12,174,187 that maladaptations of the recovering cortex, like potential 

synaptic changes between particular cell types due to specific cell type(s) death and circuit remapping, 

cause disruption to microcircuit function in such ways that cause these excitability changes. Further 

supporting this hypothesis are the observations that TBI has a range of complex effects on the 

homeostasis of GABA, glutamate, and dopamine 191,192, neurotransmitters vital in maintaining balance of 

excitation and inhibition in cortex. These effects include evidence 191,192 of short-, medium-, and long-term 

effects on receptor composition on postsynaptic cells, impaired reuptake or removal of neurotransmitter 

at synapses, and specific cell population deaths along excitatory pathways. 

Two additional sets of observations are noteworthy with respect to TBI. First, females tend to fare 

better than males in TBI and other neurotrauma 193. While there have been reported sex differences in 

gross neocortex size 194, it seems more likely that these differences arise because of hormonal 193,195 or 

other related differences, though results differ for hormonal therapy post-injury 196–199. However, it might 

also be possible that steroid-independent sex differences in cortical inhibition 200,201 or intrinsic differences 

in serotonergic pathways related to female sex steroids 202–204 are obtained during development (which 

could be important for inhibitory interneurons expressing 5-HT3AR). The second interesting set of 

observations are the effects of prolonged environmental enrichment (EE) in healthy barrel cortex (i.e., 

enhancing social and physical stimulation in rodents’ housing). EE causes significant potentiation of 

evoked sensory responses in supragranular and  granular layers, and additionally for some stimuli in 

infragranular layers 205, yet after closed skull TBI, EE attenuates cortical hyperexcitability, especially in 

layers II and III 206. This is somewhat perplexing, however could hold an important key to how and why 

particular changes in inhibition evolve post-TBI. 

Diffuse TBI appears to cause significant and long-lasting changes in inhibitory microcircuit function 

in barrel cortex 5. Additionally, these changes depend on the sex of the animal and whether or not it 

experiences EE. So, what causes or mediates these changes in inhibition? As the changes appear to evolve 

over time and are more prominent in different layers or cell types 5,173,179, it seems likely that intrinsic 

properties of inhibitory neurons or their networks in different cortical layers somehow facilitate these 
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different changes. For this reason, a general pathological feature of post-TBI, e.g. waves of slow-moving 

cortical spreading depression (CSD) (which spread throughout the whole cortex immediately following 

brain injury and which is a characteristic brain response following major brain perturbation 207), is unlikely 

to be the proximate cause of such changes. However, we cannot discount that general pathological 

features, like CSD, are not involved, e.g. the possibility that CSD affects inhibitory interneuron function in 

the long-term, and this effect changes according to intrinsic differences between interneuron subtypes. 

This logic (that intrinsic interneuron differences are partially responsible for post-TBI changes in inhibition) 

is supported by the wide variety of interneurons being differently affected post-injury 179,208–214 in 

combination with the apparent systematic loss of dendritic but not somatic inhibition (since different 

interneurons preferentially target somatic or dendritic sites on post-synaptic neurons) 179,209. In cortex it 

also appears that CR expression from interneurons changes significantly post-TBI (it is reduced in 

supragranular layers and increased in infragranular layers), while other common markers does not 5, 

which gives us some clues as to which types of interneurons are potentially responsible for these changes 

(per CR expression differences in Table 1 and interneurons appearing in different proportions depending 

on cortical layer per Figure 4). 

 

1.5 Computational methods  

As will be further discussed in section 3.3, the current work uses a number of computational methods, 

notably temporal component analysis and graph-theory methods. For completeness of this review, a brief 

introduction to each is included here. 

Temporal component analysis applied to neural data involves identification (or even 

segmentation) of temporally distinct components within neural activity. Two of the most common 

methods to achieve this are: (i) to directly measure and compare neural activities in terms such as mean 

amplitude over time, response onset delay, or the delay to maximum response 160,188; or, since neural data 

is often rich and complex, (ii) to reduce the dimensionality of the data using techniques such as principal 

components analysis (PCA) 215,216 or manifold learning 217 to then measure and compare neural activities 

in those terms. Section 3.3 and Appendix I describes how we applied and compared these methods in the 

current thesis. 

Graph theory is an area of mathematics which deals with the object of graphs, networks of 

vertices connected by edges. Graphs are generally described independent of a coordinate system and are 

instead described in terms of how the vertices and edges are connected to each other, i.e. instead of 

saying vertices A and B are distance C apart, we may say that they share a common connection to vertex 
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X and are therefore W vertices apart from one another. This is a very useful type of abstraction, since it 

lets us represent connectivity and spatial relationships explicitly while maintaining abstraction – and 

therefore generalisation – for the purposes of analysis. Note, however, that distance can still be 

incorporated implicitly via edge weightings. This set of features has made graph theory methods popular 

for analysing neural connectivity graphs created from neuroanatomical investigations to identify 

connectivity or the flow of activity in biological networks 218,219. However, and as discussed in section 3.3, 

to the best of our knowledge such methods have not previously been employed in the analysis of neural 

data to identify temporal components in the way we describe.  
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2. Project summary 

 

In this project, I performed advanced analyses on an electrophysiological database of barrel cortex 

experiments in healthy and perturbed states. I compared responses to a simple and a complex, naturalistic 

stimulus. These electrophysiological data have been previously collected at Monash University, 

Department of Physiology by various experimenters in the Rajan Lab from rats which have sustained TBI 

5,12,13,179,187,188,196,206,220–223, and make up the database used in this project. In these recordings, online 

sorting was conducted to differentiate between individual neuronal waveforms, using parameters of the 

spike sorting algorithms within the Cambridge Electronic Design Spike2 software which had been well 

tested in the laboratory 12,188,206. The sorting was monitored continuously online to ensure that the 

individual waveforms were sufficiently different to have confidence that each was from a different 

neuron. Thus, ‘unit’ in this context refers to an individual neuron from which data were obtained. 

 The aims of the project are to analyse the functional database on a unit-by-unit basis. While such 

analysis has been done for different purposes and in different ways for some data in this database, e.g. at 

the 24h post-injury time-point, it has not been done across multiple post-injury time-points in the 

systematic way this project does (see 3.2.1). The analyses presented here allow us to identify and quantify 

individual units’ temporal activity patterns in response to the simple and the complex stimulus – both in 

healthy and perturbed states. Such analyses allow us to observe how temporal activity patterns transform 

between cortical layers IV and II (the layers of interest, see below) and, when analysed with knowledge of 

the neuroanatomy, may give us indications as to how different layers process sensory information in 

barrel cortex in healthy and perturbed states. These processing roles and the transformation of unit 

temporal activity patterns between layers IV and II are particularly interesting to analyse in the context of 

TBI, since recent studies suggest that functional changes occur throughout the cortical column, especially 

the function of inhibitory microcircuits. As well as presenting a good opportunity to procure novel results 

in terms of barrel cortex function and the effects of TBI, this work helps to further describe the 

electrophysiological database and will be an important resource for future analysis or modelling studies. 

For three reasons, the general focus of this project is on layers II and IV of neocortex rather than 

other layers: (1) layer II has a high proportion of well-described interneurons 70; (2) layers II and IV are the 

first and major input and processing layers in the cortical column, respectively; and (3) data from TBI-

affected rats consistently show that more superficial layers have medium- and long-term changes in their 

excitability 188,223. Once layers II and IV have been analysed using the methods in this project, it will remain 
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possible for others to extend the analysis across other layers of cortex. Although it is also possible to relate 

particular results from this project back to histological or behavioural data (which has also been collected 

from many animals in the electrophysiological database), the current project focusses purely on the 

electrophysiological changes and especially on how individual units express different temporal activity 

patterns. However, another possible extension of the project could be to relate these histological or 

behavioural data with what we find in the present analyses. 

These analyses allow precise comparisons of how individual neurons respond to simple and 

complex stimuli in healthy and perturbed barrel cortex. Such comparisons may help to establish the 

importance of specific interneuron subtypes, microcircuits, and their biologically-plausible 

maladaptations relevant to TBI pathophysiology. Done in a systematic way, such information may help to 

identify the ultimate causer(s) of inhibitory imbalance associated with TBI and therefore help to identify 

potential therapeutic targets for future medical interventions. Whether or not the project has this indirect 

consequence for public health, it will also have the benefit of helping to elucidate the basic science of 

sensory processing in layers II and IV of barrel cortex. It also presents a novel analytical method for 

studying temporal activity patterns of neurons, which could be employed in other electrophysiological 

datasets. 
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3. Temporal neuronal activity patterns in layers II and IV of rat barrel 

cortex in response to simple and complex stimuli and the effects of 

traumatic brain injury 

 

3.1 Aims and hypotheses 

Aim 1: To identify and quantify significantly different unit temporal activity patterns (defined as times at 

which the unit firing rate is markedly higher than the apparent baseline) in layers II and IV of barrel cortex 

in response to different stimuli in healthy rats, including how temporal activity patterns transform 

between these layers. 

Hypotheses: 

a. There are significantly different distributions of unit temporal activity patterns in layers II and IV 

of barrel cortex for the same stimuli. 

b. There is less diversity in temporal activity patterns in layers IV than in layer II. 

c. Layer IV has proportionally fewer complex temporal activity patterns (temporal activity patterns 

with more than one major activity component) than simple temporal activity patterns (temporal 

activity patterns with only one major activity component) compared with layer II. 

d. The timing of components within temporal activity patterns is regular and consistent within 

individual layers, i.e. the time it takes between components regular between different units within 

the same layers. 

e. Peak response times for the same stimuli will occur later in layer II than in layer IV. 

 

Aim 2: To identify and quantify how unit temporal activity patterns in layers II and IV of barrel cortex are 

altered by traumatic brain injury when compared with healthy units. 

Hypotheses: 

a. There are fewer temporal activity patterns in layer II in the TBI conditions compared with the 

sham condition. 

b. Among the TBI conditions, the least diverse distribution of temporal activity patterns is found in 

TBI animals four days following perturbation, and the most diverse distribution of temporal 
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activity patterns are found in animals who received perturbation after eight-to-twelve weeks of 

recovery. 

c. Complex temporal activity patterns (temporal activity patterns with more than one major activity 

component) account for fewer temporal activity patterns in TBI conditions, proportionally, than 

units with simple temporal activity patterns (temporal activity patterns with only one major 

activity component). 

d. The timing of components of within temporal activity patterns is distorted in TBI conditions 

compared to sham. 

 

3.2 Methods 

3.2.1 Electrophysiological database 

This project relies on the meticulous and long-term work carried out by numerous experimentalists in the 

Rajan lab over the course of 2013 and 2014 5,12,13,179,187,188,196,206,220–223. The electrophysiological database 

is composed of data from 36 animals, across three time-points after traumatic brain injury (TBI) or sham 

surgery: four days (sham=4, TBI=6), two weeks (sham=4, TBI=9), and eight weeks (sham=5, TBI=8).  The 

TBI was caused by a modified version of the weight-drop impact acceleration method 224,225, which aims 

to make the primary injury a diffuse TBI. An impact velocity of 6.15 m/s was used to model a severe injury 

226. All animals were male, housed regularly, and received no forms of treatment or environmental 

enrichment (as has been used in some experiments). Animals which responded poorly to anaesthesia or 

surgery have been excluded. (Further details of this injury model method can be found here: 188). 

All animals had electrophysiological recordings made with a tungsten, single tip, extracellular 

microelectrode (2–4MΩ; FHC) across the cortical column in barrel cortex, at depths ranging from 150um 

to 1400um.  A principal whisker (PW) was identified for each penetration by observing neural activity 

while manually deflecting whiskers with a fine probe. Where no PW could be identified or where there 

was strong multi-whisker drive, the electrode was protracted and a new penetration at a different site in 

barrel cortex was made. Once identified, the PW was threaded through a motorised lever arm which 

stimulated the whisker in precise stimuli patterns 227. The two stimuli for which evoked 

electrophysiological data is analysed in this project (also depicted visually in Figure 6) were: 

a) “Basic”: A trapezoid stimulus had an on-ramp of varying velocity (30, 60, 150, 250, or 400mm/sec) 

to a distance of 3.6mm from the rest whisker position, a hold period of 20ms, and an off-ramp over 

40ms back to rest 12,188; and 
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b) “Contact”: A naturalistic object contact stimulus which lasted a total of 100ms and included an 

initial deflection followed by complex movement, reconstructed from high-speed video-tracking of 

awake behaving rats’ whiskers contacting an object and then brushing past it 228. 

The Contact stimulus was varied by maximum amplitude with the amplitudes of all other components of 

the stimulus being altered proportionally. Ten maximum amplitudes for the Contact stimulus were tested 

at 0.2mm, then 0.4mm to 3.6mm in steps of 0.4mm. 

 

All analyses from this database used online-sorted units, sorted separately during each stimulus 

trial at each recording depth. For example, while the extracellular electrode was at a depth of 200µm from 

pia, the basic stimulus was presented and evoked activity recorded. These spikes were sorted into 

separate units. The contact stimulus was presented and new units were sorted for those responses only. 

This online-sorting was performed by highly-experienced electrophysiologists using the Cambridge 

Electronic Design Spike2 software. The relative amplitudes of spikes were visualised and shape-based 

criteria (including rise time of the upstroke, the width of the action potential waveform, the size of the 

overshoot, etc.) were used to accept and reject units, ensuring units analysed were highly reliable and of 

excellent quality. An example unit is shown in Figure 7. This amounted to a total of 1,210 units. Recordings 

 
 
 
 
 
 
 
 
 
Figure 6. Stimulus waveforms for “Basic” and “Contact”, the two tactile stimuli presented to the 

rodents which were studied in this project. 

“Basic” “Contact” 

     

Figure 7. Example of an online-
sorted unit. The dark-green line 
indicates the mean normalized 
amplitude over 5ms for all spikes 
sorted into this unit, with the light-
green shading showing the range of 
all spikes. 
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obtained between 150–300µm deep from pia were classified as layer II units and recordings obtained 

between 750–1000µm deep from pia were classified as layer IV units. Unit activity profiles were then 

quantified for each unit by counting spikes in 1ms windows between  5-50ms post-stimulus onset, as has 

been used in a previous study 188 to encompass the responses of these stimuli (see 12,188 for further 

information). 

 

3.2.2 Response components analysed 

In past studies 5,12,13,179,187,188,196,206,220–223, the primary response features analysed of these units have been 

peak firing rate (including as a ratio of sham to TBI, and the temporal latency to this peak after stimulus 

onset) and normalised firing rates across time (including how this changed temporally and the area under 

the generated curve). This project represents the first effort to systematically analyse individual unit 

activity in layers II and IV, focussing on the major components of their activity (defined as times at which 

the unit firing rate is markedly higher than the apparent baseline). We analyse the number, timing, 

distribution, and qualities of such components in this database, and conduct several types of novel 

analyses thereafter. 

Before conducting our analyses, unit activity profiles were produced by calculating the peristimulus 

time histograms (PSTHs) for each unit at each velocity (for Basic) or amplitude (for Contact) across all the 

repetitions of that stimulus at that depth for that recording. Following the convention of recent studies 

206–209 and to allow for easier comparison to such studies, spikes were counted in 1ms bins up until 50ms 

post-stimulus onset. We then manually examined unit activity profiles in form seen in Figures 8 and 9 and 

found that a diversity of response patterns existed (see Figure 9). Most notably, some units appear to be 

non-responsive whereas other units contain one or more response components, i.e. one or more times 

at which the unit firing rate is markedly higher than the apparent baseline. Further, some of these 

components appeared to be relatively stationary in time whereas others are non-stationary and appear 

to occur earlier or later depending on the stimulus velocity (for Basic) or amplitude (for Contact). A PCA 

analysis based on the raw unit activities was also conducted (Appendix I) but the results were 

unsatisfactory due to the PCs being difficult to relate back to basic and interpretable unit features or 

components (such as those we had manually observed). The PCA analysis also showed an insufficient 

ability to, for example, reliably separate unit activity profiles of sham and TBI units (distinguishing between 

these units was vital to addressing aim two, see above). 
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  Amplitude 2mm     All amplitudes 

  
Figure 8. In this example, a unit’s PSTH in response to Contact at a maximum amplitude of 2mm is shown 

in the left panel. In the right panel, the PSTH has been converted into mean firing rates (Hz) and 

represented in a heatmap. This allows us to visualise how the unit’s responses change as a function of 

stimulus velocity (as in the case of Basic), or in this case as a function of stimulus amplitude. We can see 

in this example that the unit response consists of two major components, one occurring at ~10ms post-

stimulus onset and the second occurring at ~23ms post-stimulus onset. 
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Figure 9. Example units responding to the Contact stimulus identified as having 0 (top row), 1 (middle 

row), or ≥ 2 components (bottom row) by the independent neural response components analysis 

(extended local maxima algorithm). Units with 0 components are classed as non-responders and 

although they may show some tendencies to spike in general periods, e.g. offset periods, these responses 

are not as reliable as those in units with ≥ 1 components. Units with ≥ 2 exhibit a wide diversity of 

component strengths and timings. 
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3.3 Data Analyses and Results 

 
The following results relied on the aforenoted electrophysiological database (described in 3.2.1) and 
consisted of 1,210 online-sorted units. The number of units for each layer and condition is given in Table 
2. 
 

Table 2. Number of online-sorted units for each condition and layer for Basic and Contact stimuli. 

Condition Layer II Layer IV Total 

Basic stimulus 

Sham 88 142 230 

TBI four-days post-injury (4d TBI) 26 42 68 

TBI two-weeks post-injury (2w TBI) 39 65 104 

TBI 8-12-weeks post-injury (8-12w TBI) 55 88 143 

Contact stimulus 

Sham 103 142 245 

TBI four-days post-injury (4d TBI) 39 66 105 

TBI two-weeks post-injury (2w TBI) 71 94 165 

TBI 8-12-weeks post-injury (8-12w TBI) 63 87 150 

 
 

3.3.1 Independent neural response components analysis 

To objectively identify and quantify response components, an independent neural response 

components analysis was developed by extending the traditional local maxima algorithm. This analysis 

was done on a unit-by-unit basis and involved first identifying the local maxima in each PSTH for a given 

unit and noting the times at which these local maxima occurred. Local maxima were discarded if the mean 

firing rate for that 1ms bin was < 25% of max firing rate and the neighbouring 1ms bins had no spikes (or 

0% of max firing rate). Local maxima occurring within 5ms of each other were combined and the median 

1ms time bin between these bins was taken as a single local maxima. These combinations were performed 

iteratively, starting with the two local maxima nearest each other. This left an approximation of the times 

where mean firing rates in the PSTH were highest and at least > 25% of max firing rate. This analysis was 

conducted across all stimulus velocities (for Basic) or amplitudes (for Contact). We then used the same 

combination method to take the median times at which local maxima occurred and combine them across 

amplitudes to approximate, for the whole unit, when the major components of activity occurred. This 
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resulted in units being identified as having either none or one or more neural response components, 

where we considered the components to be temporally independent. 

Following on from this analysis, for layers II and IV separately, histograms were plotted for when 

and how many unit components occurred at each 1ms step post-stimulus onset for both Basic and 

Contact. Kolmogorov–Smirnov (KS) tests (which tests if the one-dimensional probability distributions of 

two populations are equal), were conducted using MATLAB to determine if the component timing 

distributions were significantly different between the groups. We also aligned the times at which these 

components occurred post-stimulus onset to estimate what stimulus features components at certain 

times were likely representing (see Figure 11). 

For units with multiple components, linear regressions were conducted to determine if the times 

at which independent components occurred within the same unit were related, and whether this 

relationship changed after TBI. All of these analyses were done independently for the healthy (sham) and 

TBI animals at each post-injury time-point. We then plotted circle charts (Figures 12 and 13) showing the 

relative proportions, for each layer and animal condition (and again independently for both Basic and 

Contact), of units which were non-responders (having no response components) and for units which had 

one or more components. These relative proportions were then compared between layers and animal 

conditions using KS tests. 
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Figure 10. Example unit activity profiles with, in the left column, red lines showing the component 

time(s) approximated by the independent neural response components analysis. The right column 

shows the same unit activity profiles as the left, but the red lines have for illustration purposes been 

edited to track the true component activity with more precision. 
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3.3.2 Component timings using the independent response components analysis 

Units were identified by the independent neural response components analysis as having either no 

components (in which case it was classed a ‘non-responder’) or having up to three components. The times 

at which these components occurred for Basic and Contact in layers II and IV in the sham condition are 

shown in Figure 11. For both stimuli and layers there is a tendency for components to occur earlier rather 

than later. This is especially true for layer IV, whereas layer II (for both stimuli) appears to have a more 

lognormal distribution. The most common times for components to occur in layer II was typically a few 

ms after the most common times for components to occur in layer IV, however this difference was less 

pronounced for the Basic stimulus than for the Contact stimulus. 

By overlaying the stimulus waveforms on to the histograms of Figure 11, it is possible to identify 

discrete modes or groups of components occurring together which may be representative of particular 

features. For instance, the component times in layer IV for Contact appear to have three separate modes: 

9ms-18ms representing the initial whisker deflection; 22ms-31ms representing a second ‘bump’ in the 

stimulus; and 39ms-44ms representing where the stimulus dips to its lowest point since the original 

whisker deflection. Further, the vast majority of the components in the second mode and all of the 

components in the third mode belong to units with two or three components, meaning that many units 

which respond to these later features of the stimulus also respond to earlier features. In comparison to 

layer IV, the component timings for Contact in layer II do not appear as well separated into distinct modes. 

Component timings in response to the Basic stimulus are more difficult to interpret, perhaps due to 

amplitude differences between the on-ramp velocity conditions at particular time-points. However, in the 

case of layer IV, all components occurring after 26ms come from units which have previously responded 

to earlier stimulus features. Such components could therefore be signaling velocity or amplitude 

accumulation over slower on-ramps, or the beginning or continuation of the holding period. Components 

which occur after 35ms could also be associated with the beginning of the off-ramp for the 400mm/s on-

ramp velocity condition. 

Component timings for TBI conditions for both stimuli are provided in Appendix II. These timing 

distributions are very similar to the sham component timings, with the exception of there being fewer 

components which can be associated with the initial whisker deflection caused by the stimulus (especially 

for the 4d TBI condition). 
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Layer II     Layer IV 

 
Figure 11. Histogram of times of identified components occurring in units from sham animals for the 

Basic (upper row) and Contact (lower row) stimuli. Component times are shown from units with one 

component (grey), two components (green), and three components (orange). Plotted in blue is the 

relative amplitude over time for the Basic and Contact stimuli. These amplitudes have been aligned 

with the x-axis to match what was being presented to the animal at the times these components are 

responding. In the case of the Basic stimulus, since five different on-ramp velocities were tested the 

five respective amplitude trajectories have been plotted in dashed lines. The blue solid line at the top 

of the Basic stimulus depiction is the hold period, and the beginning of one off-ramp period (from the 

400mm/sec on-ramp velocity variation) is also depicted with a dashed line. Using these plots, it is 

possible to approximate what particular components might be representing in the stimuli. For 

instance, the component times in layer IV for Contact appear to have three separate modes: 9ms-

18ms representing the initial whisker deflection; 22ms-31ms representing a second ‘bump’ in the 

stimulus; and 39ms-44ms representing where the stimulus dips to its lowest point since the original 

whisker deflection. 
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3.3.3 Proportions of units with different numbers of components and effect of brain injury 

Figures 12 and 13 show the proportions of units with different numbers of components (including 

with no components, which we term ‘non-responders’) in layers II and IV across the different animal 

conditions. Figure 12 shows the proportions for responses to the Basic stimulus indicates that in sham 

animals about half of all units are non-responders for both layers. A further 27% have a single component, 

and then the remainder have two or three components, although they together are outnumbered by units 

with single components. In the 4d TBI condition we notice that compared to sham, there is not much 

difference in the proportions of unit types – the only small difference is an increase in the proportion of 

units with single components and reduction in the proportion of non-responders, however this change 

was insignificant. In the 2w TBI condition for layer IV there is continuation of this trend, with proportionally 

fewer non-responders and more units with a single component, but this change is still insignificant. In 

layer II, there are also proportionally fewer non-responders, but instead of there being more single 

component units there are now proportionally more multi-component units than in sham or the 4d TBI 

condition (especially units which had three components). Nevertheless, this change is again insignificant 

as tested by KS tests. In the 8-12w TBI condition for layer IV the proportions return to very similar values 

as are seen in the sham animals. In layer II, however, the previously increasing proportion of single-

component units has now shrunk to 18% of total units and the proportion of non-responders has 

increased. The proportions of units here are significantly different (p<0.05) to the proportions found in 

layer II for the 4d TBI condition, which has a similar proportion of multi-component units but the 

proportions of non-responders and single-component units is much more even than in the 8-12w TBI 

condition. This was the only significant difference found with KS tests between layers (for the same 

condition) or conditions (for the same layer) for the Basic stimulus.  



Page 43 of 100 
 

 

 
Figure 12. Proportions of units with different numbers of components (non-responders = 0 
components) for the Basic stimulus in layers II and IV with different health statuses. KS tests were 
conducted to determine if any proportions were significantly from one another. * = p<0.05. 
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In contrast to the results from the Basic stimulus, the results from the Contact stimulus had more 

significantly different distributions (see Figure 13). Across all conditions, the proportions of unit types in 

layer IV do not change much or in any significant way, with approximately one third of units being non-

responsive, ~40-45% having single components, and the remainder being multi-component units. One 

small difference among the multi-component units, however, is a reduction in the number of units with 

three components in the TBI conditions compared to sham. Unlike in layer IV, unit type proportions in 

layer II for every condition were significantly different with to one or more other conditions, and in the 

case of the 4d TBI condition the layer II distribution was also significantly different to the layer IV 

distribution of the same condition. Overall, the sham and 8-12w TBI condition distributions are very 

similar, and both have extremely similar distributions to the distributions found in layer IV across all 

conditions. The major differences seen in the layer II distributions are for the 4d TBI and 2d TBI conditions, 

which are both have a much higher proportion of non-responders compared to sham and the 8-12w TBI 

condition. This makes the 4d TBI distribution significantly different to both the sham and 8-12w TBI 

distributions, and makes the 2w TBI distribution significantly different to the sham distribution. A general 

difference in layer II is also, like in layer IV, the proportional reduction in units with three components in 

the TBI conditions compared to sham. 
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Figure 13. Proportions of units with different numbers of components (non-responders = 0 
components) for the Contact stimulus in layers II and IV with different health statuses. KS tests were 
conducted to determine if any proportions were significantly from one another. ~ and & = p<0.05; # 
and ** = p<0.001. 



Page 46 of 100 
 

3.3.4 Peakiness and significance of components 

A concern about the definition of components using the independent neural response components 

analysis described above, was that some components, while being ‘local maxima’, may or may not be 

statistically significant. Therefore, we used two methods to analyse how statistically valid the components 

we identified were: (i) a ‘peakiness’ detection algorithm 229–231 ; and (ii) a t-test (which tests if the means 

of two populations are equal) conducted in MATLAB comparing the components’ firing rates with the 

surrounding, non-component firing rates. Both methods were used individual components on a 

component-by-component basis for all units which had been identified as having at least one component. 

To calculate the peakiness or conduct the t-test, we took the mean firing rates (averaged across all 

velocities, for Basic, or amplitudes, for Contact) at the 5, 1ms time bins occurring immediately before the 

identified component time, as well at the 5, 1ms time bins occurring immediately after the identified 

component time. Together with the identified component time bin, this represented an 11ms segment of 

mean firing rates for that unit, where the 6th ms bin represented the component time. 

In the case of the peakiness detection algorithm, we took mean firing rate (as a proportion of the 

mean firing rate at the identified component time) at the local minima within the segment and called this 

𝑔𝑘. Then, 𝑝𝑒𝑎𝑘𝑖𝑛𝑒𝑠𝑠 =  
𝑔𝑖+1

𝑔𝑘+1
 , where 𝑔𝑖 is the mean firing rate of the 6th ms bin, i.e. the identified 

component time. This provides us with a single number, ‘peakiness’, which described every component. 

This number varied on a scale of 0 to 2, where 0 represented that the identified component time had 

infinitely less firing than the local minima within ±5ms from the component time, where 2 represented it 

having infinitely more, and where 1 represented it being equal. In practice, this meant that a peakiness 

value of 1.25 indicates that the mean firing rate at the identified component time was > 25% than the 

surrounding mean firing rate minima within ±5ms from the component time; a value of 1.5 would indicate 

>50%, and so on. 

For conducting the t-tests, we took the 5th, 6th, and 7th ms bin mean firing rates and called this group 

the ‘component’ group. We then performed a one-tailed two-sample t-test, comparing the mean firing 

rates of the ‘component’ group with the remaining 8, 1ms bin mean firing rates of the original 11ms-long 

segment. By conducting this test, we assumed an equal variance of the mean firing rate across the 11ms 

segment. Also, we conceded that due to the small sample sizes, the ability to detect highly significant 

differences would be diminished and we would only detect differences if the group means were very 

different. Using this method, we calculated p-values representing how significantly or insignificantly 

different each component’s mean firing rates were from the surrounding mean firing rates. 
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Figure 14. Peakiness of components responding to the Contact stimulus, shown separately for each 
condition, layer, and unit type (how many components a unit had). The orange and red dotted 
horizontal lines mark the peakiness values of 1.25 and 1.5, respectively. L2 = layer II; L4 = layer IV; C1, 
C2, and C3 = unit type 1, 2, and 3 (i.e. units possessing one, two, or three components). 
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Figure 15. Significance of components’ mean firing rates compared to mean firing rates within ±5ms. 

All components are responding to the Contact stimulus and shown separately for each condition, layer, 

and unit type (how many components a unit had). The break in the y-axis is where p=0.05. The light 

and dark green horizontal lines mark the p-values of 0.01 and 0.001, respectively. L2 = layer II; L4 = 

layer IV; C1, C2, and C3 = unit type 1, 2, and 3 (i.e. units possessing one, two, or three components). 
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After calculating the aforementioned ‘peakiness’ and p-values for all components of all units, we 

repeated the earlier pie charts and KS tests, however this time we excluded units containing components 

which did not meet certain levels of statistical criteria. We created four separate levels based on the 

aforementioned ‘peakiness’ and p-values – two stringent conditions and two less stringent conditions. 

These conditions were: (a) p < 0.05; (b) p < 0.01; (c) peakiness ≥ 1.25; and (d) peakiness ≥ 1.5. We then 

examined and report the outcomes for each of those four criteria since there is no a priori way of knowing 

which criteria the brain uses to distinguish between significant and insignificant peaks in firing rate (or 

‘components’) during a stimulus. This gives the advantage of a broader and non-prejudiced approach to 

the data, and allows us to discuss how the information available about the stimulus might change 

depending on how stringently the brain filters peaks in unit activity. 

Almost all components had a peakiness of ≥1.25 (94% of Basic and 92% of Contact components), 

indicating that averaged across all velocities or amplitudes, the mean firing rate was ≥25% higher at the 

identified component time than at the local minima within ±5ms of the component. A large majority of 

components (76% of Basic and 79% of Contact components) also had a peakiness of ≥1.5. Figure 16 shows 

the peakiness of components for Contact for each condition, separated by layer and whether the unit 

came had one, two, or three components. From looking at this figure it seems that units with two and, 

more especially, with three components generally have lower peakiness values than units with just one 

component, indicating that multi-component unit responses are normally ‘weaker’ than single 

component unit responses. This difference becomes more pronounced at higher thresholds, e.g. for the 

Contact stimulus, 97% of units with one component and 87% of units with two or three components had 

≥1.25 peakiness, whereas these numbers fell to 87% and 68%, respectively, at peakiness values ≥1.5. 

These differences were more pronounced when looking at the t-tests performed using the mean 

firing rates on the components and the surrounding ±5ms. While a vast majority of components had 

significantly higher mean firing rates than the surrounding ±5ms at α=0.05 (91% of Basic and 87% of 

Contact components), far fewer reached significance at α=0.01 (46% of Basic and 52% of Contact 

components). Figure 17 shows the significance of components’ mean firing rates compared to mean firing 

rates within ±5ms for the Contact stimulus, for each condition, separated by layer and whether the unit 

came had one, two, or three components. It is clear that the most significant differences are found for 

units with a single component, whereas few units with two or three components reach similar levels of 

significance; at α=0.01 for Contact, 63% of single component units, 39% two component units, and 27% 

of three component units reached significance. Granted, 86% of multi-component units reached 

significance at α=0.05 (compared with 90% for single-component units). 
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3.3.5 Temporal regularity of components occurring within the same unit 

For both Basic and Contact stimuli, a number of significant relationships were found between the timings 

of first and second components in multi-component units. These relationships were particularly significant 

in the sham condition (p<0.001 for both stimuli in both layers II and IV). Relationships in the 8-12w TBI 

condition were also highly significant, especially in layer IV (p<0.0001 for Basic and p=0.0014 for Contact). 

However, there were irregular and insignificant timing relationships for both stimuli at the 4d TBI and 2w 

TBI conditions (see Figures 16 and 17), however in the case of the 4d TBI condition this may have been 

due to the relatively low numbers of units being analysed. The 2w TBI condition, however, analysed a 

comparable number of units as the 8-12w TBI condition (which found highly significant relationships) but 

failed to reach significance for three of four regressions. 

To see how the relationships between these timings might reflect changes in the intracortical 

information flow after TBI, we calculated the y-intercepts shown in Table 3. We notice that in both layers 

and for both stimuli there is a general increase in the SEs of the y-intercepts, reflective of the higher scatter 

seen in Figures 18 and 19 for these relationships. Interestingly, considering the y-intercepts from just the 

sham and 8-12w TBI conditions shows that where the intercepts in one layer increase, in the other it 

decreases – and the relationships are opposite in the two stimuli. This may suggest some temporal 

changes in thalamic input to cortex via layer IV which is then being compensated for in layer II. 

Table 3. Y-intercepts (±SEs) for linear regressions between the timings of first and second components 

of multi-component units responding to the Basic and Contact stimuli in layers II and IV, as shown in 

Figures 16 and 17. Y-intercepts from insignificant regressions are marked #. 

Condition Layer II Layer IV 

Basic stimulus 

Sham 9.459 ± 4.103 16.26 ± 3.393 

TBI four-days post-injury (4d TBI) # 13.28 ± 5.899 10.37 ± 3.678 

TBI two-weeks post-injury (2w TBI) 9.06 ± 5.682 # 22.49 ± 9.354 

TBI 8-12-weeks post-injury (8-12w TBI) 7.271 ± 7.403 4.711 ± 2.052 

Contact stimulus 

Sham 12.97 ± 2.618 8.248 ± 3.507 

TBI four-days post-injury (4d TBI) # -11.63 ± 8.814 21.05 ± 2.887 

TBI two-weeks post-injury (2w TBI) # 37.63 ± 13.38 # 15.47 ± 9.723 

TBI 8-12-weeks post-injury (8-12w TBI) 7.877 ± 8.245 12.15 ± 5.265 
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Figure 16. Linear regressions between the timings of first and second components of multi-component 
units responding to the Basic stimulus, separated by layer and condition. Red lines show line of best 
fit where the relationship is significantly correlated. L2 and L4 = layers II and IV; X.1 and X.2 = first and 
second components. 
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Figure 17. Linear regressions between the timings of first and second components of multi-component 
units responding to the Basic stimulus, separated by layer and condition. Red lines show line of best 
fit where the relationship is significantly correlated. L2 and L4 = layers II and IV; X.1 and X.2 = first and 
second components. 
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3.3.6 Graph-theoretic analysis 

The independent neural response components analysis which forms the basis of the analyses up 

until this point was shown to be good at identifying single, temporally stationary components. However, 

as previously mentioned, some components noticeably shifted in time as a function of velocity (for Basic) 

or amplitude (for Contact). The previous analysis therefore was unable to capture information about how 

stationary or non-stationary these components were (see Figure 10 for examples), and indeed the 

reported peakiness (Figure 14) or significance of peaks (Figure 15) would be negatively affected by non-

stationary components.  We thought the non-stationarity of components could be an important feature 

to measure since, for units which had more than one component, some components appeared to interact, 

e.g. while ascending in amplitude one component might increase its activity while the other 

simultaneously and proportionally decreases (see Figure 10, bottom row for one such example). Such 

interactions, if sufficiently separated in time, could be evidence of feedforward inhibition or disinhibition, 

known to be present, for example, in layer IV of barrel cortex 78–80. However, to accurately identify such 

interactions we cannot use the mean firing rates given by the independent neural response components 

analysis, as this represents essentially the median time at which the components occur across all velocities 

or amplitudes; in order to accurately identify such interactions, we need greater precision in the 

identification of the components across all velocities or amplitudes. For this we turn to a novel graph-

theoretic analysis. 

Although a wide variety of graph theoretic analyses have been employed in neuroscience datasets, 

such datasets have mostly been limited to neural network connectivity graphs created from 

neuroanatomical investigations to identify connectivity or the flow of activity in biological networks 218,219. 

This is due to the usefulness of graphs in representing spatial relationships between mathematical objects 

and data. Here, we use such methods to identify components of a unit’s activity. We do this by converting 

a unit’s firing rates across all times and all velocities or amplitudes – as mapped in the velocity-time or 

amplitude-time space via PSTHs (see Figures 8 and 9) – into a directed graphical representation. Vertices 

represent the neural activity at different velocities/amplitudes and times and are connected to 

neighbouring vertices via weighted, directed edges. Vertices receive weighted, directed edges from other 

vertices representing the neural activity at velocities/amplitudes of 𝑧 ± 1 and at times of 𝑡 ± 1 (including 

at combinations 𝑧 ± 1, 𝑡 ± 1), where 𝑧 is the receiving vertex’s velocity/amplitude and 𝑡 is its time. These 

edges are made for all vertices that exist, i.e. because our analysis window ends at 50ms there can be no 

incoming edge from a 51ms vertex to a vertex representing 50ms since no such 51ms vertex exists. The 
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edges are weighted according to the mean firing rate of the vertex they are directed towards so that edges 

leading to vertices with relatively high mean firing rates have lower weights than edges leading to vertices 

with relatively low mean firing rates, like so: 
𝑢𝑛𝑖𝑡 𝑚𝑎𝑥 𝑓𝑖𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝑣𝑒𝑟𝑡𝑒𝑥 𝑚𝑒𝑎𝑛 𝑓𝑖𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
. In the case of unit activity profiles for 

the Basic stimulus, this gives us a graph with 250 vertices in a grid spanning five velocities and 50ms; 

conversely, for the Contact stimulus, this gives us a graph with 500 vertices in a grid spanning 10 

amplitudes and 50ms (see Figure 18 for visual representations). 

By weighting the incoming, directed edges to all vertices by that respective vertex’s firing rate, 

and adding a starting vertex (e.g. connected to all 0.2mm amplitude vertices) and goal vertex (e.g. 

connected to all 3.6mm amplitude vertices), one can then attempt to calculate the shortest path through 

the graph using Dijkstra's shortest path algorithm 232, i.e. the route beginning at the starting vertex and 

ending at the goal vertex which travels through the graph along edges with the least accumulative weight. 

Such a path will preferentially travel through the vertices representing the highest mean firing rates (since 

edges leading to them had the least weight) but will ensure such vertices are as contiguous as possible 

according to the graph’s structure (which, as mentioned, is constructed in a way that vertices representing 

neighbouring velocities/amplitudes and times are closely connected). This therefore gives us the ability of 

identifying a component which is freely-determined by the data, i.e. the path to move through velocity-

time or amplitude-time space, as identified according to which velocity-time or amplitude-time bins 

possess the highest mean firing rates. 
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Once the shortest path is calculated, we can re-weight the edges leading to vertices in that shortest 

path with an arbitrarily large weight and re-run the shortest path algorithm to find the secondary shortest 

path, which does not re-visit any vertices from the primary shortest path. This process can be repeated as 

many times as desired. A copy of algorithm implemented in MATLAB is provided in Appendix II. However, 

for our purposes, since the independent neural response components analysis revealed units in our 

database had no more than three components within the analysis window, we chose to calculate only up 

 
Figure 18. Visual representations of the 50ms x 10 amplitude vertex grid of mean firing rates for a unit 

activity profile with the Contact stimulus. (Left) 2D projection, (right) 3D projection of the same graph. Each 

vertex is equivalent to one ms bin at one amplitude. There are 50, 1ms bins arranged in 10 layers of 

increasing amplitude, each connected to their neighbours (both in the time and intensity domains) via 

edges. Edges arriving at a vertex are weighted according to the firing rate at that vertex. A vertex with a 

high firing rate has a low edge weight and a vertex with no firing at all will have a much higher weight. Using 

Dijkstra's shortest path algorithm 232, the shortest possible path (travelling along edges which accumulate 

the lowest score, as determined by the sum of their weights) is searched for. Once found, this is plotted in 

red, along the edges and connecting the nodes with high firing rates (see Figure 19 for these paths plotted 

atop an example intensity-time heatmap). The colours of the nodes in both graphs in this figure are 

representative of the number of indegrees, or incoming edges arriving at that node, e.g. the green nodes 

are connected to by 8 other nodes. The yellow nodes at the top and bottom of the 3d projection (or the 

top centre of the 2d projection) are the start and goal nodes, as required by Dijkstra's algorithm, and are 

connected to the top and bottom layers of intensity-amplitude array, respectively. 
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to the tertiary shortest path. Figure 19 shows an example of the three shortest, non-overlapping paths 

through two units’ firing activity profiles, as mapped in the amplitude-time space for the Contact stimulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once identified, the following features of these components were calculated: the median time 

bin which the path vertices represent; the mean firing rates at each path step (and how these change as 

a function of mean firing rates at the equivalent steps of other components’ within the same unit); and 

how stationary or non-stationary the path is in time. These measures were calculated for all components 

across all units. 

To provide a common point of reference, we compared the median path times of the primary 

shortest paths (strongest components) with the component times given by the independent neural 

response components analysis. However, we did this only for units identified by the independent neural 

response components analysis as having a single component. This was because of a limitation of the 

graph-theoretic analysis in identifying multiple components; notice in the examples in Figure 19 that 

multiple paths can trace the activity of a single component. This is because the path widths are only 1ms 

and the re-weighting method is designed to reweight only this 1ms path before iterating to find the next 

shortest path. Therefore, in cases where a single component spreads across more than 1ms time bins in 

multiple velocities or amplitudes, there can be secondary or tertiary shortest paths which trace what is 

actually the same component as traced by the primary shortest path. It can also theoretically lead to cases 

 
Figure 19. Mean firing rates mapped in the amplitude-time domain for two healthy layer IV units 

responding to the Contact stimulus. Coloured stars are plotted over the amplitude-time bins along the 

three shortest, non- overlapping paths calculated via the graphic-theoretic method described in the text 

(black = primary shortest path, red = secondary shortest path, white = tertiary shortest path). 
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where if one component is at least 3ms wide across most velocities and amplitudes and has much higher 

mean firing rates than a second or third component, the shortest paths may all trace this large, single 

component. Returning to the comparison being made between the graph-theoretic analysis and the 

independent neural response components analysis, by comparing the median path times of the primary 

shortest path with the component times for units identified as having only one component, we ensure 

that the primary path times can only represent one component. If they could represent more than one 

component, we could not be confident of which component it was representing (the first or the second) 

and therefore we could not reliably compare the median path times with the component times given by 

the independent neural response components analysis. To compare the median path times and 

component times for single-component units we performed linear regressions for all such units, and also 

for units from animals of different health statuses or layers. 

For all components of all units, we quantified how non-stationary each component was as 

max(𝑣𝑒𝑟𝑡𝑒𝑥 𝑡𝑖𝑚𝑒) − min(𝑣𝑒𝑟𝑡𝑒𝑥 𝑡𝑖𝑚𝑒) to estimate how far the component shifted in time across 

velocities or amplitudes. We then plotted and compared the proportions of components which shifted 

(and to what degree, in ms) across all health conditions and for each layer using KS tests. We also plotted 

the median times for each component in groups depending on how non-stationary the component was 

to see if non-stationary components were more common at particular stimulus time-points.  

Finally, using the mean firing rates at each path step and comparing these rates between paths 

from the same units we performed linear regressions, calculating the Pearson correlation coefficients and 

associated p-values for regressions between the mean firing rates from the primary shortest paths and 

secondary (or tertiary) shortest paths. For paths which were highly positively correlated, this gave us an 

indication that these paths may well trace strong, single components that spread over at least 2ms at 

most velocities or amplitudes. Conversely, these positive correlations could indicate that two components 

had similar firing rates across most velocities or amplitudes. For paths which were negatively correlated, 

this gave us an indication that the paths had inversely proportional firing rates across 

velocities/amplitudes, which could be indicative of inhibitory mechanisms known to present in barrel 

cortex. 

 
3.3.7 Relationship between graph-theoretic and independent neural response components 

analyses 

Figure 20 shows the relationships between the median path times calculated from the graph-theoretic 

analysis and the component times calculated from the independent neural response components analysis 
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for units responding the Contact stimulus. Note that these mappings were only possible for units with one 

component (see 3.2.2 b). These relationships, where significant, are all positive. Similar relationships were 

seen for the Basic stimulus also, where all but the layer II, 8-12w TBI group were significantly correlated. 

These relationships serve as point of reference to relate the results obtained from the two analyses. We 

can see from Figure 20 that these mappings are different between layers and conditions. In the case of 

layer II, for the sham and 4d TBI conditions the mapping is close to 1:1 between the times obtained for 

the same components from the two analyses. However, at the 2w and 8-12w TBI conditions this 1:1 

mapping breaks down. In the case of layer IV, there is a weak positive correlation between the times 

obtained from the two methods, but this remains significant and relatively constant across animal 

conditions. Overall, the median path times tend to occur earlier than the local maxima component times 

calculated for the same unit components. While this comparison does not provide direct physiological 

insight, it serves as an important verification and comparison between these methods, and the 

physiological insights they provide. 

 

3.3.8 Non-stationarity of components 

Figure 21 shows the non-stationarity of components (how much components ‘shifted’ in time across 

different stimuli variations) for the Contact stimulus, separated by layer and condition. We can see that 

very few components are stationary, with most components moving across one or more ms as the 

stimulus varies in amplitude, the most common degree being 2ms and 3ms. This indicates that the 

function of microcircuitry controlling these temporal features are amplitude-dependent. 

Across the layer II conditions, most components move 2-3ms, with a few being stationary in the 

sham condition and a minority across all conditions moving >3ms. However, this minority of less stationary 

components seems to proportionally increase in TBI conditions compared to sham, although this trend in 

insignificant. What is significant are the of the differences between layer II and IV for the sham and 2w 

TBI conditions. In the case of sham, layer IV components are much less stationary than layer II 

components, e.g. only 9 components had a movement of 3ms in layer II, whereas in layer IV there were 

43 components. Conversely, for the 2w TBI condition, the significant difference between layers II and IV 

is due to a proportional increase in more stationary components – in layer II there were 8 components 

with a movement of 2ms, whereas in layer IV there were 28 components. This shift towards more 

stationary components also made the layer IV 2w TBI condition distribution significantly different to the 

layer IV sham condition, which proportionally had more non-stationary components. These results 

suggest that the amplitude-dependent microcircuit properties controlling these temporal features causes  
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   Layer II    Layer IV 

 
Figure 20. Linear regressions between the median path times calculated from the graph-theoretic 

analysis and the component times calculated from the independent neural response components 

analysis (local maxima component times) for single-component units responding the Contact 

stimulus. Red lines indicate lines of best fit. First (top) row = sham; second row = 4d TBI; third row = 

2w TBI; fourth (bottom) row = 8-12w TBI. 



Page 60 of 100 
 

 
 
 

       Layer II        Layer IV 

 
Figure 21. Proportions of units with different amounts of non-stationarity (0-5ms, indicated by the key 

top-right). Significantly different proportion pairs are marked with symbols and p-values given. First 

(top) row = sham; second row = 4d TBI; third row = 2w TBI; fourth (bottom) row = 8-12w TBI. 
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these changes in layers II and IV. Mechanistically, that components are more ‘mobile’ in layer IV than layer 

II could be due to a layer IV having more direct thalamocortical inputs than layer II or layer II having more 

interneurons which serve to lessen these amplitude-dependent effects. Most likely, it is some 

combination of these mechanisms.  

 

3.3.9 Relationships between components’ mean firing rates 

Figures 22 and 23 show the correlation (Pearson’s r and associated p-values) for multi-component units’ 

mean firing rates along their first and second (Figure 22) or first and third (Figure 23) shortest paths. We 

can see in both figures, across all layers and conditions, that there are many significant, positive 

correlations between the mean firing rates along these paths. Many of these paths are likely tracing 

segments of the same components (as discussed in 3.2.2 b), however it is also possible that these paths 

trace separate components which are affected by stimulus variations in a similar manner, e.g. see Figure 

9, bottom-right panel. Unfortunately, we do not find any significant (at α=0.05), negative correlations, as 

we might expect from a unit like that shown in Figure 12, right panel. However, it should be noted that 

the majority of paths were not significantly correlated, positively or negatively, and this may be due to 

the low statistical power resulting in a higher likelihood of type II errors. Where we do see weak negative 

correlations, we notice that the sham condition generally contains more units with such relationships than 

do the TBI conditions (especially for the 4d TBI and 2w TBI conditions). By the 8-12w TBI condition, 

however, these weak negative correlations appear in more frequently and are more comparable to the 

sham condition than either of the other TBI conditions in this respect. This suggests that, if such results 

are indicative of cells with components which have oppositely-weighted amplitude-dependence (e.g. 

Figure 12, right panel), then such cells are less frequent in the early-to-mid recovery stages of TBI. This 

may indicate that such cells are more fragile or susceptible to TBI. In neither Figure 22 nor 23 does there 

appear to be any noticeable differences between layers II and IV, and any subtle (insignificant) differences 

between the conditions are similar across both layers. 
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        Layer II    Layer IV 

 

 
Figure 22. Linear correlation statistics (Pearson’s r and associated p-value) for multi-component units’ 
mean firing rates along their first and second shortest paths. The horizontal dotted red line marks 
where p=0.05. First (top) row = sham; second row = 4d TBI; third row = 2w TBI; fourth (bottom) row = 
8-12w TBI. 
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        Layer II    Layer IV 

 

 
Figure 23. Linear correlation statistics (Pearson’s r and associated p-value) for multi-component units’ 
mean firing rates along their first and third shortest paths. The horizontal dotted red line marks where 
p=0.05. First (top) row = sham; second row = 4d TBI; third row = 2w TBI; fourth (bottom) row = 8-12w 
TBI. 
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3.4 Discussion 

This project developed and applied novel analytical methods on a large electrophysiological database of 

barrel cortex experiments in healthy and perturbed states to demonstrate a number of significant 

differences between the temporal activity patterns of individual units and the distributions thereof in 

these states. We found further differences in the degrees of difference for responses to different stimuli, 

comparing data in layers II and IV. 

 

3.4.1 Temporal activity patterns in healthy units 
Our first aim was to identify and quantify significantly different unit temporal activity patterns in layers II 

and IV of barrel cortex in response to different stimuli in healthy rats, including how temporal activity 

patterns transform between these layers. In relation to this aim, we hypothesised that there are 

significantly different unit activity pattern distributions in layers II and IV of barrel cortex for the same 

stimuli. This hypothesis was not supported by our results, which showed no significant differences 

between the activity pattern distributions of layers II and IV for Basic or Contact. 

We further hypothesised that there is less diversity in temporal activity patterns in layers IV than in 

layer II and that layer IV has proportionally fewer complex temporal activity patterns (temporal activity 

patterns with more than one major activity component) than simple temporal activity patterns (temporal 

activity patterns with only one major activity component) compared with layer II. This hypothesis must 

also be rejected based on our data, since no significant differences were observed for either Basic or 

Contact. However, although not statistically significant, we did observe a trend towards differences 

between layers II and IV for the Basic stimulus in in the proportions of tri-component units – layer II had 

4% whereas layer IV had 10%. 

These results suggest that, under healthy conditions for stimuli similar to those we tested, layer II 

units largely reflect the same sorts of temporal activity patterns as are seen in layer IV and in almost the 

same proportions. However, this does not mean that no transformation or filtering of the VPM input is 

occurring via layer IV, since we did observe significant timing differences (see 3.4.2). What this does 

suggest, however, is for any other differences discussed in the following sections, such differences do not 

significantly change the overall activity structure (whether a unit contains one, two, or three components, 

or if it is a non-responder). At first this seems like a counter-intuitive result given that layer II neurons 

typically encode higher-level features of stimulus activity in barrel cortex than layer IV neurons do, and so 

it seems strange that there would be no significant change. However, that would assume the brain 
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ultimately cares about and interprets the overall activity structure or pattern and not also the timing or 

temporal relationships between such activity components. Further, even if we assumed that the brain 

ultimately cares more about the overall structure of temporal activity patterns than it cares about the 

timing of individual components within these patterns, we do not know that the brain interprets such 

temporal activity patterns in layers II and IV in the same way(s); it could be the case that despite having a 

similar structure, the rules for interpreting that structure are different for the afferent connections of 

layer IV and layer II. Indeed, this seems likely given that the main layer IV excitatory output is to layers II 

and III whereas the main layer II excitatory output is laterally to other parts of layer II (typically over several 

barrel columns), as well as to other cells in layers III and V, and to secondary somatosensory and motor 

cortices 87,88. It also makes some intuitive sense that, mechanistically, it could be easier for layer II to 

transform the input in terms of timing than to completely abate major activity arriving via layer IV 

afferents, or to split such activity components into multiple components. 

Finally, it should also be noted that while we assume most of our extracellular electrophysiological 

recordings are detecting voltage changes caused by the activity of pyramidal neurons (since they are 

typically much larger than inhibitory cells), there is the possibility that some of the voltage changes 

detected are measuring the activity of inhibitory cells. The chances of this happening are small, however 

are slightly smaller again in the case of layer IV compared to layer II, since layer IV has far fewer inhibitory 

neurons. So, although by virtue of analysing a large electrophysiological database we might be able to 

assume these chances are evenly distributed across layers, the intrinsic differences between layers in 

terms of their inhibitory makeups (see Figure 4) and their ratios of inhibitory to excitatory cells mean that 

in layer II the chance is higher. 

 

3.4.2 Timing of components in healthy units 
Also in relation to aim one, we hypothesised that the timing of components within temporal activity 

patterns is regular and consistent within individual layers. This hypothesis was supported by our results, 

where we found that for both the Basic and Contact stimuli there were highly significant (p<0.001) 

relationships between the times of components within individual layers. However, we noted that for both 

stimuli the y-intercepts of the slope of the regression line between component timings for each layer were 

dissimilar, and that the direction of difference between the layers was opposite between the stimuli (see 

Table 3). In the case of the Basic stimulus, the y-intercept for layer IV units was 16.260ms (with a SE of ± 

3.393ms) whereas for layer II it was 9.459ms (with a SE of ± 4.103ms). In the case of the Contact stimulus, 
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the y-intercept for layer IV units was 8.248ms (with a SE of ± 3.507ms) whereas for layer II it was 12.97ms 

(with a SE of ± 2.618ms). This suggests that the way(s) layer II transforms temporal activity patterns from 

layer IV is stimuli-dependent. In both cases, the layer II y-intercept moves in the direction closer to ~10ms 

relative to the layer IV y-intercept. This might reflect an optimal inter-component timing for layer II for 

processing of higher features, whereas layer IV, not needing to perform such processing and primarily 

acting to amplify the thalamic signal and distribute it to other cortical layers 49,57,58, is capable of producing 

a wider variety of inter-component timings (perhaps courtesy of its computationally simpler task). As to 

why the inter-component timings are so different for the two stimuli, we must refer back to the stimuli 

themselves and their features (see Figure 13). In doing so, we can see that the stimuli were varied in 

different aspects and also had other intrinsic differences. For instance, Basic was varied in on-ramp 

velocity while Contact was varied in peak amplitude. And once Basic reached its peak amplitude, it stayed 

constant whereas in Contact the peak amplitude was not constant and had other ‘bumps’ or features. 

However, to further complicate things, we should also note that by varying stimulus amplitude we also 

vary velocity (but not stimulus timing) and by varying stimulus velocity we also vary timing (but not 

ultimate amplitudes, except when compared at identical times). Considering these differences, it is not 

surprising that the inter-component timing was so different for the two stimuli, since the components 

almost certainly signal different features occurring at different times. 

We also observed (as shown in Figure 13) that the component timings for the Contact stimulus were 

more neatly organised than were the timings for Basic, particularly in layer IV. In layer IV for the Contact 

stimulus, we noticed three apparent modes in which components occurred – the first corresponding with 

the initial whisker deflection, the second corresponding with a second ‘bump’ in the stimulus, and the 

third corresponding to the lowest amplitude since the initial deflection. Notably, however, a large majority 

of the components occurred during the initial stimulus onset period, which appears to be a common 

response characteristic in other sensory systems 233. 

Related to the same aim, we further hypothesised that peak response times will occur later for the 

same stimuli in layer II than in layer IV. This hypothesis was supported by our results from the Contact 

stimulus but not as well supported by our results from the Basic stimulus (see Figure 13). In the case of 

the Contact stimulus, the peak response time was around 12-13ms in layer IV and 14-15ms in layer II, 

whereas for the Basic stimulus, the earliest peak response times for both layers was ~12ms. The peak in 

layer IV ranges from ~12-15ms and the peak in layer II ranges from ~12-17ms, and the earliest components 

in layer IV occur at 7ms whereas the earliest components in layer II occur at 10ms. In this context it does 
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seem that components generally occur slightly later in layer II than in layer IV, however the fact remains 

that the earliest peak response time for both layers occurred in the same millisecond time bin. This could 

be due to errors relating to the method (see 3.2.2 a), since the components in Basic were observed to 

shift in their timing across stimulus velocity changes more than components in Contact shifted due to 

stimulus peak amplitude changes. However, this result might also indicate a difference in POm input to 

layer II 48,86, i.e. perhaps POm is more sensitive than VPM to changes in velocity than amplitude, and thus 

driving proportionally more thalamic input to layer II at an earlier time-point, before VPM input can arrive 

via layer IV amplification and relay. If so, this could also help explain why we see early components in layer 

II (e.g. at 8ms) for the Contact stimulus (since, as discussed, by virtue of increasing the amplitude we 

indirectly increase velocity, especially in that early part of the stimulus where there is a large amplitude 

change). 

 

3.4.3 Temporal activity patterns in TBI units 
Our second aim was to identify and quantify how unit temporal activity patterns in layers II and IV of barrel 

cortex are altered by TBI when compared with healthy/sham units. These processing roles and the 

transformation of unit temporal activity patterns between layers IV and II are particularly interesting to 

analyse in the context of TBI, since recent studies suggest that functional changes occur throughout the 

cortical column, especially the function of inhibitory microcircuits 5,173,179, which are known to be 

substantially different in layers II and IV of barrel cortex 70. We therefore hypothesised that there are 

fewer temporal activity patterns in layer II (given the large diversity and number of inhibitory cells) in the 

TBI conditions compared with the sham condition. This hypothesis was supported by our results from the 

Contact stimulus, which showed two significant differences between such pattern distributions in layer II 

for the TBI conditions compared to sham; both the 4d and 2w TBI layer II unit activity pattern distributions 

were significantly different (p<0.001 and p<0.05, respectively) compared to the layer II sham distribution. 

This was caused by a large increase in the proportion of non-responding cells in the 4d and 2w TBI 

condition compared to sham. These differences were also caused by a proportional decrease in the 

number of multi-component units in the TBI conditions, which confirmed another of our hypotheses, that 

complex temporal activity patterns (temporal activity patterns with more than one major activity 

component) account for fewer temporal activity patterns in TBI conditions, proportionally, than units with 

simple temporal activity patterns (temporal activity patterns with only one major activity component). In 

contrast, there were no significant differences for the Basic stimulus between the layer II activity pattern 
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distributions from sham and TBI conditions. This suggests that healthy inhibitory cell function in layer II 

might be more vital for accurate processing of the Contact stimulus compared to the Basic stimulus. We 

can be reasonably certain that the problem is in layer II moreso than layer IV since there are no significant 

differences between any of the layer IV activity pattern distributions for either stimulus, suggesting the 

temporal activity patterns are relatively consistent in TBI and sham conditions. However, there is a 

significant difference (p<0.05) between the 4d TBI layer II and layer IV distributions for the Contact 

stimulus. That this difference is found for the Contact stimulus and not the Basic stimulus further 

reiterates the possible importance layer II inhibitory cells in the processing of complex, naturalistic stimuli 

such as Contact as opposed to simpler stimuli such as Basic. 

We also hypothesised that among the TBI conditions, the least diverse distribution of temporal 

activity patterns is found in TBI animals four days following perturbation, and the most diverse distribution 

of temporal activity patterns is found in animals who received perturbation after eight-to-twelve weeks 

of recovery. This hypothesis was confirmed by our results, which showed for both the Basic and Contact 

stimuli that there were significant differences between the layer II activity pattern distributions at the 4d 

and 8-12w TBI conditions (p<0.05 for Basic and p<0.001 for Contact), where the 4d TBI condition has 

proportionally fewer responding units and also fewer multi-component units than the 8-12w TBI 

condition. This suggests that there is a gradual change between the 4d and 8-12w TBI condition time-

points. That there is also no significant difference found between the sham and 8-12w TBI conditions for 

either layer or stimulus suggests that this gradual change represents, in effect, a recovery to sham-like 

activity pattern distributions. Before the 8-12w TBI time-point, past studies using segments of this data 

have shown 12,187,188 there is general hypoexcitation (particularly in supragranular layers), so our results 

showing a gradual increase in responsive units observed in this project across the 4d and 2w TBI conditions 

in layer II comports with these results. However, the same studies 12,187,188 have also shown that the 

supragranular layers show hyperexcitation at the 8-12w TBI time-point, whereas we found that there are 

no significant differences between the activity pattern distributions of sham and 8-12w TBI conditions 

(although we do find there to be a general reduction in multi-component units and a proportional increase 

in single component units). So, it is possible that the previously-observed hyperexcitation arises mostly 

from the reduction in these multi-component units, or that despite cells being more responsive at this 

time-point, they constrain their responses to activity profiles which are proportionally sham-like. This is 

also an interesting finding given that at the 8-12w TBI time-point animals demonstrate cognitive 

deficiencies as indicated by behavioural changes 13,173,178, since our results show that not just is the cortex 

less responsive (especially in layer II, a supragranular layer), but that there are fewer units which we can 



Page 69 of 100 
 

classify as responsive – and of those which are responsive, fewer of them contain multiple components. 

This suggests that the cognitive deficiencies generated by TBI at the 8-12w TBI time-point may be partially 

due not only to hypoexcitation but also to a lack of responsive cells and multi-component, complex 

responsive cells. 

 

3.4.4 Timing of components in TBI units 
Also in relation to the second aim, we hypothesised that the timing of components within temporal 

activity patterns is distorted in TBI conditions compared to sham. This was supported by multiple analyses 

which show disruption in and significant differences between the timing of components for units from the 

sham and TBI conditions. In the case of the regressions between the component times for the multi-

component units, we found that for both layers and stimuli, the times between the first and second 

component were significantly positively correlated in the sham and 8-12w TBI conditions. However, in the 

4d and 2w TBI conditions these times were not always significantly correlated, especially in the 2w TBI 

condition. The y-intercepts (for those relationships which were significant), also gradually lowered (see 

Table 3) across the TBI conditions, e.g. Basic layer IV sham’s y-intercept was 16.26ms ± 3.393ms and 

reduced to 10.37ms ± 3.678ms in the 4d TBI condition, then 4.711ms ± 2.052ms in the 8-12w TBI 

condition. However, there was one exception to this general reduction – Contact layer IV y-intercept was 

8.248ms ± 3.507ms for sham but increased to 12.15 ± 5.265 for 8-12w TBI. What makes this particularly 

unusual is that in layer II the y-intercept decreased. This suggests that there are some stimuli-dependent 

changes occurring in the timing between components, which agrees with the previously-discussed sham 

timing data (see 3.4.2). Supporting this, we can also notice that while in the case of the Basic stimulus the 

inter-component timing y-intercept is longer for layer IV than layer II for the sham condition, the opposite 

is true for the Contact stimulus. And the ultimate changes (increases or decreases) caused by TBI, as 

observed in the 8-12w TBI condition, show that these relationships swap, so that layer II’s y-intercept is 

higher than layer IV’s for Basic, and vice-versa for Contact. This suggests either some considerable changes 

in the timing of thalamic efferent activity arriving in layer IV (via VPM) and layer II (via POm), or that there 

is a combination of thalamic change (e.g. predominately a change in VPM input) and that subsequent 

compensatory mechanisms in cortex lead to the ultimate timing disparities we have observed. Given that 

the primary input to layer II is via layer IV and therefore VPM, however, it seems reasonable to expect 

that if this was purely a cortical compensatory effect, the y-intercept change should be immediate for 

layer IV at the 4d TBI condition for both stimuli and would remain constant, whereas the layer II y-
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intercepts would slowly change, indicating compensation. However, in the case of Basic we find that while 

there is a change at this time-point, it is a gradual increase towards the values found for the 8-12w TBI 

condition. In the case of Contact there is a very large overshoot at the 4d TBI condition, before returning 

to a less extreme increase by the 8-12w TBI time-point. In both cases, however, the y-intercept is not 

constant across the TBI conditions, suggesting there are changes in the timing of VPM thalamic input to 

layer IV, and possibly additional changes happening in POm input and cortex to effect compensation of 

these timing changes. 

In addition to these changes we see in the timings between components in TBI conditions, we also 

see significant changes in the non-stationarity of these components. Per Figure 21, units responding to 

the Contact stimulus in layer IV of the 2w TBI condition distribution had significantly (p=0.008) fewer non-

stationary components compared to the sham condition. A similar, but less significant (p=0.035) 

relationship was also found for the Basic stimulus. This further suggests that there is a change in VPM 

input to layer IV as a result of TBI, but that we find this only for the 2w TBI time-point suggests that this 

change is not permanent. And while we do not find significant differences among the layer II non-

stationarity distributions for either stimulus, we do find significant differences for the Contact stimulus 

between layers II and IV for both the sham and 8-12w TBI conditions. In the case of sham, layer IV 

components, they were much less stationary than layer II components, e.g. only 9 components had a 

movement of 3ms in layer II, whereas in layer IV there were 43 components. Conversely, for the 2w TBI 

condition, the significant difference between layers II and IV is due to a proportional increase in more 

stationary components – in layer II there were 8 components with a movement of 2ms, whereas in layer 

IV there were 28 components. This mis-match between the direction of change for component timings 

agrees with our earlier results regarding multi-component unit timings and their regressions’ y-intercepts. 

It also supports the idea that POm input in layer II, cortical compensatory mechanisms, or some 

combination thereof, is attempting to work ‘against’ changes in layer IV activity, as driven by VPM. 

However, it is also possible that what we have been referring to as ‘compensatory’ mechanisms (whether 

in cortex or via POm input) are actually the malfunctioning of inhibitory microcircuits in layer II and that 

such malfunctioning is the driver of these mis-matches. If so, taken together with our results regarding 

the activity component distributions (see 3.4.3), it seems likely that the major impact of inhibitory 

malfunction in TBI relates to disrupting the timing of components and not the overall number of such 

components. 
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3.4.5 Future directions 
As well as presenting a good opportunity to procure novel results in terms of barrel cortex function and 

the effects of TBI, this work helps to further describe the electrophysiological database and will be an 

important resource for future analysis or modelling studies based on it. Having analysed layers II and IV 

using the methods in this project, it remains possible for others to extend the analysis across other layers 

of cortex, or to apply the novel analytical methods devised here to other datasets. It is also possible to 

relate particular results from this project back to histological or behavioural data (which has also been 

collected from many animals in the electrophysiological database). Another possible use of this work 

could be in developing computational models of barrel cortex, TBI, and TBI recovery; combined with 

knowledge of cortical neuroanatomy and the physiological changes post-TBI, results from this study allow 

specific predictions and constraints which can be placed on a model, e.g. in how unit-to-unit activity 

profiles transform between layers II and IV. 

 

3.4.6 Conclusions 
We have found evidence that microcircuits in layers II and IV functionally maladapt and/or reorganize in 

barrel cortex after diffuse TBI and that such maladaptation or reorganization is layer dependent. This layer 

dependency could be partially due to differences in the type and number of interneurons in the layers 

studied. Looking over the different time-points, we notice that in both layers II and IV of the 4d TBI 

condition many units were unresponsive, although those which did respond responded with more than 

one component had regular and consistent timing relationships between their components. For the 2w 

TBI condition in layer II, many units were still non-responsive and multi-component units which were 

responsive had timing disruptions, dissimilar to sham and 4d TBI conditions. The components were also 

less stationary than in layer IV for this condition. Layer IV had fewer non-responders than layer II, with a 

sham-like distribution. And multi-component responsive units had timing disruptions (but were less 

severe than those in layer II). For the 8-12w TBI condition in layer II, there was a return to sham-like unit 

activity pattern distributions, but far fewer tri-component/complex responsive units. These multi-

component responsive units had regular and consistent timing relationships. In layer IV there was also a 

return to sham-like unit activity pattern distributions, but far fewer tri-component/complex responsive 

units. Like in layer II, these multi-component responsive units had regular and consistent timing 

relationships. 

Collectively, along with the various stimulus-dependent and layer-dependent effects mentioned, 

these analyses suggest that TBI negatively effects the function of individual units in barrel cortex. Along 
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with the previously-established general reduction in inhibition after TBI 5, this emphasises the importance 

of fine-tuned inhibition on temporal qualities of sensory signals in layers II and IV. Simultaneously, it 

demonstrates that some units appear functionally unchanged despite global excitatory-inhibitory 

imbalance and microcircuit changes. Commutatively, however, these effects lead to an increase in non-

responsive units, changes in distributions of temporal activity patterns, and misalignment of the different 

components in multi-component temporal response patterns. While some of these changes appear 

transient, others appear to persist long after TBI. It is possible that some of these changes are partially 

responsible for the short- and long-term behavioural and cognitive changes which occur due to TBI. 
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5. Appendices 

5.1 Appendix I - Evaluating PCA as a method for identifying and distinguishing between unit 

activity patterns 

 

Although the methods employed in this project were capable of identifying and distinguishing between 

different activity patterns in an accurate way, they did so in rather crude ways insofar as ultimately 

reducing the complexity of the date to very low dimensional information. For instance, although the local 

maxima-based method identified units with 0 components (labelled ‘non-responders’ in the main text), 

some had an apparent tendency to fire in generally expected response periods, e.g. offset or onset. Yet 

because their activity was so low, they were not identified by this analysis as having any activity 

components and labelled a ‘non-responder’. As the online units have been hand sorted by experienced 

experimentalists, we can be reasonably confident of their validity as single units. Therefore, labelling they 

non-responders them on the basis of relatively weak responses may be short-sighted. Therefore, it may 

be more appropriate to use a technique which is suitable for identifying and distinguishing between high-

dimensional features in and then projecting down into a lower dimension for clustering and visualisation. 

One such method is PCA, which we will perform and evaluate in this appendix. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

S1. The cumulative explained variance 
of the PCA using a segment of online 
units from layers II and and IV (n=969). 
Six PCs were required to reach >50% of 
explained variance, 42 PCs were 
required to explain >75% of the 
variance, 125 PCs were required to 
explain >90% of the variance, 189 PCs 
were required to explain >95% of the 
variance, and 322 PCs were required to 
explain >99% of the variance. This 
reveals that despite PCA being a useful 
tool to reduce the dimensionality of the 
amplitude-time-firing rate variation for 
each online unit generally, such 
reduction is at the expense of a large 
amount of the original variability, even 
at very high dimensions. 
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To perform the PCA, each amplitude-time-firing rate bin was a set element i in a vector V, so that 

V = (𝑖1, 𝑖2, 𝑖3 … 𝑖500). Each vector was then used as a list of 500 features for the PCA analysis, where the 

969 online units were evaluated. The cumulative explained variance for all PCs (Figure S1) and the 

distribution in the first four PCs of each online unit (Figure S2) were calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the hallmarks of PCA is that the PCs are no longer directly interpretable in terms of the original 

data dimensions. To help establish what information the PCs used in Figure S2 contain, correlation 

 
S2. A segment of online units from layers II and IV (n=969) plotted in three-dimensional PC space (explaining 

41.52% of the total original variance) and shaded according to their values in the fourth PC (explaining an 

additional 4.52% of the total original variance). In this PC space the units do not appear to be forming local 

clusters. This may be because there is not a sufficient amount of variance available in this level of PC space 

or because the PCs used here do not include salient information with respect to unit activity patterns. 
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coefficients (Table S1) and their significance (Table S2) were calculated for the first four PCs, as well as the 

mean and max firing rates of the online units. Features derived from the graph theoretic analysis (path 

median times and total distance of all paths) were also included. 

Table S1. Correlation coefficients (r) of PCs and other features of online units 

 P1 P2 P3 Dist Mean Max PC1 PC2 PC3 PC4 

P1  0.168 0.143 0.169 -0.286 0.189 0.127 -0.147 -0.063 -0.254 

P2 0.168  0.079 0.195 -0.350 0.123 0.008 -0.135 -0.167 -0.296 

P3 0.143 0.079  0.087 -0.259 0.086 -0.043 -0.153 -0.119 -0.165 

Dist 0.169 0.195 0.087  -0.518 -0.119 -0.205 -0.024 -0.653 -0.436 

Mean -0.286 -0.350 -0.259 -0.518  -0.088 0.002 0.091 0.722 0.843 

Max 0.189 0.123 0.086 -0.119 -0.088  0.001 0.014 0.282 0.010 

PC1 0.127 0.008 -0.043 -0.205 0.002 0.001  0.001 0.252 0.024 

PC2 -0.147 -0.135 -0.153 -0.024 0.091 0.014 0.001  0.016 0.100 

PC3 -0.063 -0.167 -0.119 -0.653 0.722 0.282 0.252 0.016  0.773 

PC4 -0.254 -0.296 -0.165 -0.436 0.843 0.010 0.024 0.100 0.773  

 

Table S2. Significance of correlation coefficients (p) of PCs and other features of online units 

 P1 P2 P3 Dist Mean Max PC1 PC2 PC3 PC4 

P1  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.048 <0.001 

P2 <0.001  0.014 <0.001 <0.001 <0.001 0.802 <0.001 <0.001 <0.001 

P3 <0.001 0.014  <0.001 <0.001 0.007 0.183 <0.001 <0.001 <0.001 

Dist <0.001 <0.001 0.007  <0.001 <0.001 <0.001 0.446 <0.001 <0.001 

Mean <0.001 <0.001 <0.001 <0.001  0.006 0.941 0.005 <0.001 <0.001 

Max <0.001 <0.001 0.007 <0.001 0.006  0.991 0.665 <0.001 0.756 

PC1 <0.001 <0.001 0.183 <0.001 0.941 0.991  0.991 <0.001 0.463 

PC2 <0.001 <0.001 <0.001 0.446 0.005 0.665 0.991  0.608 0.002 

PC3 0.048 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.608  <0.001 

PC4 <0.001 <0.001 <0.001 <0.001 <0.001 0.756 0.463 0.002 <0.001  

 

As can be expected from PCA, which attempts to make each successive PC orthogonal and thus 

maximize the independence of each PC, the PCs, while they correlate with each other to some degree, 
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are the features which correlate with the least other features in Tables S1 and S2. It is noteworthy that 

the first PC, which accounts alone for 26.54% of the total original variance in the raw data, is significantly 

correlated with only the timing of the first shortest path (P1), but not the second (P2) or third (P3) shortest 

path – whereas PCs 2-4 do significantly correlate with the timings of the shortest paths. 

Also of interest is the fact that P1, P2, and P3 are all significantly correlated with each other. This is 

reassuring, since we expect that because patterned unit activity clusters rely on regularity in inhibition 

and excitation, each major component of activity should be occurring in time with a regular relationship 

to other major components of activity. P2 and P3 are significantly correlated but by an order of magnitude 

less than each other pair of path median times. This is also reassuring, since we expect (in a 50ms analysis 

window) for there to be a limited number of 1ms bin major activity components, as identified by the 

shortest paths. Two such components occurring within a 50ms window is reasonable, but three or more 

will be rarer, and thus should only be correlated when such a third component is real (or where a major 

activity component spreads across successive 2ms bins). 

Although there is no clear indication of clustering or separation of the online units in Figure S2, it is 

still worth checking to see if units from different conditions are noticeably separable. In Figure S3, units 

from our primary layers of interest, layers II and IV, are plotted in new three-dimensional PC space 

(calculated from just those data) and shaded by condition – Sham or TBI. Here, in fact, there appears to 

some level of clustering or separation between Sham and TBI, but not much; TBI units appear more 

frequent at higher scores of PC1 and potentially in some regions with higher scores of PC3. However, since 

we are only testing the first three PCs here, and there could be differences in the distributions of any of 

the 419 PCs in this PC space, one- and two-sample Kolmogorov-Smirnov tests were conducted to compare 

the Sham vs. TBI distributions in this new PC space for significant differences (Figure S5). Two-way 

Kolmogorov-Smirnov tests may help reveal which PCs are salient for the separation of Sham and TBI units 

and therefore provide better clustering agreement in these PC spaces. 

Also, to directly test how well the PCs in Figure S3 could cluster Sham and TBI units, k-means 

clustering with 50 replications using an online-update phase was conducted (Figure S4, where k=2, 

representing Sham and TBI) was conducted. 
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Figure S3. All online units from layers II and IV (n=420) plotted in new three-dimensional PC space 

(explaining 44.57% of the total original variance) and shaded by condition: Sham (n=168; blue) and TBI 

(n=252; red). Unlike in Figure S2, in this PC space the units do appear to be forming limited local clusters, 

and according to health status. However, the data is generally still not easily separable and other PCs might 

make these groups more separable; these PCs may represent an insufficient amount of variance or 

components of the original variance that is simply not as salient or important for distinguishing between 

Sham and TBI conditions as other PCs. 
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Since the clustering in the new PC space did not perform well (Figure S4; Cohen's kappa coefficient = 

0.017), Figure S5 gives us some potential important insights on which other PCs may hold more salient 

components of variability for the goal of separating Sham and TBI units. shows that while each PC is 

distributed significantly differently to a Poisson distribution, a minority (n=65; 13%) of the PC distributions 

are significantly different (p<0.05) between the Sham and TBI conditions. This indicates that while the PCA 

is doing its job in identifying variance amongst the online units, the vast majority of this variance is not 

 
Figure S4. All online units from layers II and IV (n=420) plotted in three-dimensional PC space and clustered 

using k-means, where k=2. Cohen's kappa coefficient = 0.017. The Pearson correlation coefficient between 

the cluster assignments and the ground truth = 0.023 (p=0.634). 
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useful for distinguishing between Sham and TBI conditions or their differing patterns of activity. However, 

this helps us identify potential PCs of interest for the purposes of future clustering, as mentioned above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So far, while PCA has reliably reduced the dimensions of the raw firing rate data, it has done so at a cost 

of salient variability in the context of separating Sham and TBI units from one another. These problems 

might be solved by including more PCA dimensions, however doing so comes at a cost of transparency 

and clarity, as well as making later analyses more complicated. To avoid this “curse of dimensionality” 

problem (which PCA is traditionally employed to solve in the first instance), we will attempt another 

clustering in the PC space, but this time choose PCs which show the most significant different distributions 

differences between Sham and TBI according to the two-sample Kolmogorov-Smirnov tests. These PCs are 

 
Figure S5. P-values for one- and two-sample Kolmogorov-Smirnov tests of all PCs from the 420-unit PCA 

(all Sham and TBI units from layer II and IV). In the left panel, we can see that the PCA is working properly 

in ensuring significant variance for nearly every PC (i.e. significantly different from Poisson), except for 

some of the very last PCs. In the right panel, two-sample Kolmogorov-Smirnov test results for each PC, 

comparing the Sham and TBI distributions in that PC is plotted. The red lines indicate a significance value 

of p=0.05, the blue lines indicate a significance value of p=0.01, and the green lines represent a significance 

value of p=0.001 – PCs which drop below these lines are significant to at least this level whereas PCs above 

them are not. Of the 419 PCs in this PC space, 50 PCs (11.93%) were significant at level of p<0.05, 21 PCs 

(5.01%) were significant at a level of p<0.01, and 8 PCs (1.91%) were significant at a level of p<0.001. For 

the PCs used in Figures S3 and S4, although their explained variance was high, only the first two PCs showed 

statistically significant differences in their distribution of scores for Sham vs TBI: PC1, p=0.007; PC2, 

p=0.001; PC3, p=0.079. 
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(in decreasing order of explained variability) PC5 (p=5.06x10-E05), PC6 (p=9.39x10-E04), and PC13 

(p=2.10x10-E06). The resultant clustering is shown in Figure S6. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unfortunately, and although the separability seems visually clearer in Figure S6, the clustering 

agreement metrics based on the results from clustering with PCs 5, 6, and 13 were only marginally better 

than those for PCs 1, 2, and 3 (Cohen's kappa coefficient difference = 0.003; Pearson correlation 

coefficient difference = 0.012 (p-value difference = -0.155), despite each of these PCs being highly 

significantly different in their distributions of Sham and TBI units. This is still an impressive result, since 

PCs 5, 6, and 13 collectively account for only 7.27% of the total original variance whereas PCs 1, 2, and 3 

 
Figure S6. All online units from layers II and IV (n=420) plotted in three-dimensional PC space (PCs 5, 6, and 

13) and clustered using k-means in the same dimensions, where k=2. Cohen's kappa coefficient = -0.020. 

The Pearson correlation coefficient between the cluster assignments and the ground truth = 0.035 

(p=0.479). 
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collectively account for 44.57% of the total original variance. This highlights very strongly, then, that it is 

a specific and complex subset of the overall unit activity variability on a raw scale which accounts for the 

differences between Sham and TBI units. One last method to attempt, but which is not plottable, is to 

perform the clustering with more than three PCs. Table S3 presents the clustering results for higher 

numbers of PC dimensions using k-means clustering, where k=2, and all clustering is repeated 50 times. 

 

Table S3. Evaluation of high-dimensional clustering results for successfully distinguishing between 
Sham and TBI units. 

PCs used Total explained variance Cohen's κ coefficient Pearson’s R (p-value) 

PC1-PC5 55.36% 0.002 0.003 (p=0.960) 

PC1-PC10 62.44% 0.011 0.016 (p=0.742) 

PC1-PC15 67.55% 0.011 0.016 (p=0.742) 

PC1-PC20 70.31% 0.007 -0.009 (p=0.849) 

PC1-PC25 73.13% 0.007 0.009 (p=0.849) 

PC1-PC50 82.75% 0.011 0.016 (p=0.742) 

PC1-PC100 91.83% 0.007 -0.009 (p=0.849) 

PC1-PC200 98.31% 0.007 -0.009 (p=0.849) 

8PCs with highly 

significant (p<0.001) 

two-sample KS tests 

(see Figure S6) 

9.24% 0.024 -0.042 (p=0.387) 

29PCs with very 

significant (p<0.01) two-

sample KS tests (see 

Figure S6) 

98.42% 0.011 0.016 (p=0.742) 

79PCs with significant 

(p<0.05) two-sample KS 

tests (see Figure S6) 

99.78% 0.015 -0.024 (p=0.631) 

 

The best separations of Sham and TBI units were found for combinations of high-dimensional PC 

space where scores for Sham and TBI units in the individual PCs had been shown previously (see Figure 

S4) to be significantly differently distributed according to two-sample Kolmogorov-Smirnov tests. 
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However, even the best of these results had low agreement (Cohen's κ coefficient = 0.024) and correlation 

(-0.042, p=0.387) with the ground truth categories of Sham and TBI units. This suggests that despite PCA 

identifying some regions of the high-dimensional variability space in raw unit activities which have 

significantly different scores for Sham and TBI units, such PCs – calculated from the raw activities alone 

(without the prior identification and statistical description of features) – are insufficient to reliably 

separate Sham and TBI unit activities. 

This, combined with the fact that the PCs are difficult to interpret, led to our decision not to base 

the main unit activity pattern analyses on PCA but rather the combination of the local maxima-based 

method and graph theoretic method described in the main text. 
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5.2 Appendix II – Time distributions of peak-based TBI components 
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5.1 Appendix III – MATLAB implementation of graph theoretic analysis 

function [G] = graph_of_2d_array(unit); 
% creates an unweighted graph of a 2d array with starting node and ending 

nodes, connected to 
% the first and last rows of the array, respectively (for purposes of Dijks-

tra's algorithm) 
  
% create adjacency matrix with nodes = elems of matrix, and connect all 
% numerical neighbours and up/down and diagonally (per heatmap matrix) 
elems = numel(unit); 
dims = size(unit); 
row_scale = dims(1)/dims(2)*100; 
col_scale = dims(2)/dims(1); 
graph_conn = zeros(elems) + diag([repmat(row_scale,elems-1,1)],1) + 

diag([repmat(row_scale,elems-1,1)],-1) + diag([repmat(row_scale*col_scale,el-

ems-50,1)],50) + diag([repmat(row_scale*col_scale,elems-50,1)],-50) + 

diag([repmat(row_scale*4,elems-49,1)],49) + diag([repmat(row_scale*4,elems-

49,1)],-49) + diag([repmat(row_scale*4,elems-51,1)],51) + diag([rep-

mat(row_scale*4,elems-51,1)],-51); 
  
% remove edges joining opposite sides of matrix ('cut the cylinder') 
unit_dims = size(unit); 
for K = unit_dims(1):unit_dims(1):elems 

graph_conn(K,K+1) = 0; % remove end-to-end joining, e.g. if unit_dims(1)= 

50, then remove 50-51 
    graph_conn(K+1,K) = 0; 
    try 
        graph_conn(K-49,K-50) = 0; % (mirror) 
        graph_conn(K-50,K-49) = 0; 

graph_conn(K+1,K-50) = 0; % remove end-to-end diagonals,  
% e.g. if unit_dims(1)= 50, then remove 101-50 

        graph_conn(K-50,K+1) = 0; 
        graph_conn(K,K-49) = 0; % (mirror) 
        graph_conn(K-49,K) = 0; 
    catch 

      fprintf('Error cutting ‘cylinder’ graph for this unit') 
        continue 
    end 
end 
  
graph_conn(1,50) = 0; graph_conn(50,1) = 0; 
graph_conn = graph_conn(1:elems,1:elems); % remove phantom nodes 
  
% create start and end nodes 
start_node = elems+1; 
end_node = elems+2; 
graph_conn(start_node,1:unit_dims(1)) = 1; % start node 
graph_conn(1:unit_dims(1),start_node) = 1; 
graph_conn(end_node,elems-unit_dims(1):elems) = 1; % end node 
graph_conn(elems-unit_dims(1):elems,end_node) = 1; 
  
% make directed graph 
G = digraph(graph_conn); 
  
end  
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sets = {'L4-Hartmann-sham','L4-Basic-sham','L4-Basic-tbi','L2-Hartmann-

sham','L2-Hartmann-tbi','L2-Basic-sham','L2-Basic-tbi'}; 
  
for set = 1:length(sets) 
    data = sets{1,set}; 
    dashes = strfind(data,'-'); 
    layer = data(1:2); 
    health = data(dashes(2)+1:end); 
    type = data(dashes(1)+1:dashes(2)-1); 
     
    events = eval([layer,health,'EventSummary_',type]); 
    name_col = set; 
    figDir = ['figures\',layer,'\']; 
  
    for K = 1:length(events(:,1,1)) 
        unit = events(K,:,:); 
        unit = squeeze(unit); 
        unit = unit*20; 
        len = numel(unit); 
         
        try 
            % create graph and weight edges 
            [G] = graph_of_2d_array(unit); 
            plot(G) % optional 
            weights = abs(unit/max(max(unit)) - 1) * 100; % normalise 
            weights(weights==0) = 1; % turn 0s into 1s 
            weights = reshape(weights,1,len); 
  
            % assign weights to graph 
            dest_nodes_list = G.Edges.EndNodes(:,2); 
            for node = 1:len 
                G.Edges.Weight(dest_nodes_list==node) = weights(node); 
            end 
  
            % use Dijkstra's algorithm to find shortest path 
            [path1,d1] = shortestpath(G,len+1,len+2,'method','positive'); 
  
            % find 'second' shortest path 

weights(path1(2:end-1)) = path1(2:end-1) + 1000; % add arb large 

weights to nodes from 'first' shortest path 
            for node = 1:len 
                G.Edges.Weight(dest_nodes_list==node) = weights(node); 
            end 

[path2,d2] = shortestpath(G,len+1,len+2,'method','positive'); % 

find path 
  
            % find 'third' shortest path 

weights(path2(2:end-1)) = path2(2:end-1) + 1000; % add arb large 

weights to nodes from 'second' shortest path 
            for node = 1:len 
                G.Edges.Weight(dest_nodes_list==node) = weights(node); 
            end 

[path3,d3] = shortestpath(G,len+1,len+2,'method','positive'); % 

find path 
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            paths1{set,K,:} = path1; 
            paths2{set,K,:} = path2; 
            paths3{set,K,:} = path3; 
  
            dists1(set,K,:) = d1; 
            dists2(set,K,:) = d2; 
            dists3(set,K,:) = d3; 
        catch 
            fprintf(['Error for: set ',set,', unit ',num2str(K)]) 
            continue 
        end 
         
         
    end 
     
    clear weights 
     
end 
  
dijkstra_analysis = {{paths1,paths2,paths3},{dists1,dists2,dists3}}; 
 

 




