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Abstract 
 

 

Intelligent visual surveillance (IVS) is one of the foremost practical applications of the actively 

researched field of pedestrian detection. In conventional IVS environments, pedestrian detection is of 

paramount importance and has been extensively studied for over two decades. Unfortunately, despite 

seemingly tremendous advancements, the performance of generic pedestrian detectors trained on 

publicly available datasets is still plagued by the dataset shift complication, whereby, the distribution of 

the test data in unseen, target surveillance scenes often differs significantly from that of the source 

training data. Recently, this problem has been considerably alleviated by the development of scene-

specific training algorithms, which handle each unseen scene independently and generate a pedestrian 

detector specific to that scene by collecting and utilizing target samples. However, there are serious 

practical limitations - some of these algorithms require manual labelling of the target samples, 

consequently compromising scalability, while others are dependent on a pre-trained generic detector for 

the acquisition of target samples, rendering them inapplicable in complex environments. 

The aim of this research is to develop a training framework that addresses the two aforementioned 

limitations, but through a paradigm shift from existing works. Rather than developing new detectors or 

adaptation approaches, the focus is transferred to the exclusive exploitation of target samples only, in 

an autonomous and practical way. Concretely, a Virtually Autonomous Training (VAT) framework is 

developed that trains scene-specific pedestrian detectors for unseen target surveillance environments 

with zero manual labelling of target samples, but simultaneously, does not utilize any source dataset or 

pre-trained generic detectors. To achieve automatic labelling of target samples, oracles are designed that 

evaluate miscellaneous generic attributes prevalent in pedestrians and exploit the resultant distributions 

to segregate pedestrians from non-pedestrians. By integrating oracles within the framework, VAT 

executes a sequence of carefully designed training stages that maximizes the exploitation of target 

samples and progressively improves the classifier to ultimately generate the scene-specific pedestrian 

detector. 

The proposed VAT was extensively tested on a large number of video surveillance datasets with varying 

levels of difficulty. To demonstrate the flexibility of VAT, it was implemented with both popular real-

time classifiers – support vector machines and adaptive boosting, on each dataset. Our designed oracles 

labelled pedestrians correctly with an average precision of above 90 % across all datasets, indicating 

their high reliability in automatic labelling of target samples in different surveillance environments. On 

fairly difficult datasets, such as PETS, VAT achieves similar or better performance than scene-specific 

training approaches that depend on generic detectors. However, for more complex, unconstrained 

datasets, such as QMUL-J, QMUL-R and KWSI, VAT outperforms them by substantial margins of up 
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to 40%. Compared to the state-of-the-art, VAT achieves amongst the best performances on the two most 

commonly used datasets, CUHK and MIT, for evaluating scene-specific training approaches. 

Specifically, on CUHK, VAT achieves a detection rate of 74.6 %, which is only 0.9 % behind the top-

performing scene-specific training approach, but on MIT, VAT achieves a detection rate of 86.7% which 

is not only 9.7% higher than the second best scene-specific training approach, but is remarkably the 

highest ever reached on the MIT dataset. 
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Primary Notations and Nomenclature 
 

 

As the core of this thesis involves exploitation of training samples, the symbols, x and 𝕏, will appear 

frequently, with superscripts and/or subscripts that have various meanings depending on the context, as 

explained next. Throughout this thesis, a training sample is denoted by x, in italics. It is important to 

remember its difference from ‘x’ to avoid confusion. The normal letter, x, refers to the x-coordinate of 

a point, for example, (x1,y1) and (x2,y2) denote the co-ordinates of points 1 and 2 respectively.  The 

symbol, 𝕏, represents the set of all training samples obtained from a particular domain. In this thesis, 

the domain is a visual surveillance environment/scene, denoted by Є. Hence, 𝕏Є represents the set of all 

training samples from Є. Given an arbitrary object class of interest, denoted by ℂ (in this research, ℂ = 

pedestrian) 𝕏+ denotes the set of training samples that belongs to ℂ and 𝕏‾ denotes the set of training 

samples that does not belong to ℂ.  Therefore, 𝕏Є = 𝕏+ ∪ 𝕏−. A single training sample is denoted by 

xi, where, i is the index of the training sample. If the training sample is obtained from Є, it is denoted by 

𝑥𝑖
Є. So if N training samples are obtained from Є, they are represented by  {𝑥𝑖

Є}𝑖=1
𝑁  and 𝕏Є =  {𝑥𝑖

Є}𝑖=1
𝑁 .  

 An oracle is an automatic labeller denoted by Ѫ, which is a hierarchical combination of training 

sample filters and pruners. Concretely, an oracle is composed of sequentially arranged training sample 

filters, denoted by T and each training sample filter can be composed of one or more pruners, denoted 

by ρ.  Tj is the j-th training sample filter in the oracle and ρjk is the k-th pruner in the j-th training sample 

filter. The subscript of 𝕏 indicates the level of the oracle under consideration. So, 𝕏Ѫ
+ /𝕏Ѫ

− , 𝕏T
+/𝕏T

− and 

𝕏𝜌
+/𝕏𝜌

− represent the set of training samples labelled at the oracle, training sample filter and pruner 

levels, respectively, as belonging/not belonging to ℂ. Correspondingly,  𝕏T𝑗

+ /𝕏T𝑗

−  denote the training 

samples labelled by the j-th training sample filter and  𝕏𝜌𝑗𝑘
+ /𝕏𝜌𝑗𝑘

−  denote the training samples labelled 

by the k-th pruner in the j-th training sample filter. 

 For clarity and brevity, the primary nomenclature utilized in this thesis is listed in the following 

table. 
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Symbol Meaning 

𝑥𝑖  i-th training sample 

𝑦𝑖  class label of the i-th training sample 

ℂ Object class of interest (ℂ = pedestrian in this thesis) 

𝕏 Set of training samples from a particular domain 

Є A surveillance environment or scene 

f An extracted feature representation of a training sample 

φ A DAE function that computes the CBA of a training sample based 

on f 

𝑧𝑖  An output score from the executed DAE function on the i-th sample 

N Number of training samples passed to a particular pruner 

Λ  A rejection function that segregates pedestrian from non-pedestrian 

instances based on the distribution of the output scores 

Ѫt t-th oracle 

T𝑗    j-the training sample filter in an oracle 

𝜌𝑗𝑘  k-th pruner of the j-th training sample filter in an oracle 

𝔼𝑖  i-th frame of video sequence from environment Є 

Ω Sample extractor based on background subtraction 

ar Aspect ratio of acquired potential pedestrian sample 

ℳ Potential pedestrian samples extracted by Ω 

𝜇  Mean 

𝜎  Standard deviation 

𝔼𝑖
−ve  i-th frame for collecting non-pedestrian instances 

(r, s, fr)  (Bootstrapping rounds, bootstrapping segments per round, 

bootstrapping frames per segment) 

ℜ Set of detection responses obtained by applying a detector to a video 

sequence from environment Є 

𝑃𝑜𝑠Ѫ𝑡   Samples labelled by Ѫt as pedestrian instances 

𝑁𝑒𝑔Ѫ𝑡    Samples labelled by Ѫt as non-pedestrian instances 

Đ Training Dataset 

Ξ Supervised classifier learning – AdaBoost/SVM  

Ж Pedestrian detector trained using classifier learning, Ξ, on training 

dataset, Đ 

§ Scene-specific 
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1 Introduction 

1.1 Intelligent visual surveillance (IVS) – State of market 

The world’s leading market research organizations estimate that the global video surveillance market 

will account for over USD 60 billion by the year 2023 [1, 2]. Compared to fewer than 10 million in 

2006, approximately 130 million surveillance cameras will be shipped worldwide in 2018 [3] . In china 

alone, where surveillance networks are expanding more rapidly than anywhere else in the world, there 

were 170 million surveillance cameras in operation at the end of 2017; it has been reported that this 

number is expected to skyrocket to 626 million by 2020 [4] . 

 The aforementioned figures are an indisputable testament to the magnitude of demand for video 

surveillance, but what is causing such unprecedented market escalation? The video surveillance industry 

is a complex ecosystem of cameras, storage, software and miscellaneous hardware, and it is the 

technological innovations across every sector of this ecosystem that is propelling market growth. Major 

factors include the shifting preference from analogue to Internet Protocol (IP) cameras, enhanced video 

compression standards like H.265 enabling more efficient data storage, cloud-based video surveillance 

called Video Surveillance as a Service (VSaaS) and increasingly sophisticated Video Management 

Software (VMS) [5]. However, one of the most significant drivers is the advent of Video Analytics (VA) 

- according to The Video Surveillance Report 2018 [6], 68% of the surveyed industry professionals are 

either already using VA or intend to do so in the coming years and 38% responded that VA is likely to 

motivate the next upgrade to their customers’ surveillance systems. 

In the video surveillance domain, VA or Video Content Analysis (VCA) are commercial terms 

for Intelligent Visual Surveillance (IVS), and video surveillance itself is used interchangeably with 

visual surveillance. To comprehend the need for IVS, it is important to first comprehend the limitations 

in the absence of IVS. Traditional visual surveillance systems require human operators in a control room 

monitoring live video feeds from surveillance cameras to spot any suspicious/dangerous activity. As the 

rising concerns for public safety coupled with the decreasing prices of surveillance equipment cause the 
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number of installed cameras to rapidly proliferate, the overwhelmingly large ratio of cameras to 

operators makes the task of handling the video information overload increasingly inefficient and 

impractical [7] (see Figure 1.1). This shortcoming is compounded by the fact that anomalous events 

occur infrequently, necessitating continuous observation but human focus degrades to an inadequate 

level after only 20 minutes of watching video monitors [8] . Inevitably, a significant portion of the video 

channels are usually not monitored, meaning potentially critical events go undetected. In the end, the 

surveillance system becomes undesirably passive, and large amounts of video footage are merely 

archived to be utilized retrospectively as a forensic tool. 

The ideal goal of visual surveillance should not be to just place cameras in the place of human 

eyes but to also embed “intelligence” for automating tasks that usually require considerable human 

efforts. The current massive interest in the video surveillance industry to achieve this goal is motivated 

by the substantial potential benefits such as time and cost savings, efficient security solutions that are 

capable of taking preventative action rather than simply reacting after an event and creation of business 

value through intelligent use of metadata. This has led IVS to become an intensively researched [9-13] 

multi-disciplinary field involving the topics of computer vision, pattern analysis, signal processing, 

image sensors and artificial intelligence. As defined by Elliott [14], IVS is generally “any video 

surveillance solution that utilizes technology to automatically, without human intervention, process, 

manipulate and/or perform actions to or because of either live or stored video images.”  

 

 
Figure 1.1: A typical surveillance control room  
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The plethora of developed applications of IVS include, but are not limited to:  

 motion detection to trigger a recording or sound alarms due to movement in restricted 

areas, like intrusion detection or line crossing [15] 

 abandoned or removed object detection to prevent terrorist attacks [16] 

 license plate recognition and vehicle detection, tracking and recognition for various 

purposes such as electronic toll collection, security monitoring, traffic flow analysis and 

illegal activity detection in Intelligent Transportation Systems (ITS) [17]  

 various customer analytics for business intelligence in retail, such as people counting, 

dwell time monitoring and queue management [18] 

 biometrics such as face or iris recognition and gait analysis to identify and track 

criminals/suspicious individuals or grant authorized access [19] 

 detection of anomalous/suspicious behaviour such as person falling [20] , loitering [21], 

or following/chasing [22] 

 detection of aggressive/violent behaviour such as kicking, punching or fighting [23] 

 crowd analysis such as flux statistics, congestion analysis and anomaly detection [24] 

IVS is applicable to an exhaustive array of visual surveillance environments ranging from 

private properties like apartments, condominiums, offices and factories to high security areas like banks, 

airports, prisons, casinos and ATMs to public spaces like shopping malls, museums, parking lots, stores, 

hospitals, educational institutions, government buildings and public transport to transit scenes like bus 

stations, railway stations, petrol stations, subways, highways, elevators and traffic intersections. In other 

words, IVS has penetrated every major industry vertical, including commercial, industrial, 

infrastructure, residential, institutional, financial, healthcare, government/public and transportation [25]. 

As IVS becomes increasingly pervasive, it is very important to realize that the motivation of developing 

such technology should not be the replacement of human operators with IVS systems, but to supplement 

a layer of intelligence in visual surveillance to assist the human operators so that, instead of performing 

routine and laborious tasks, they can engage their cognitive powers to make timely, higher-level 

decisions on how to deal with the incidents reported by IVS. 
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1.2 Pedestrian detection in IVS 

Figure 1.2: A standard IVS system 

 

An IVS system usually consists of low-level and high-level automated processes that execute in a 

sequential manner [26] (see Figure 1.2). First, background subtraction (or motion segmentation) [27] is 

applied to the video input to extract moving regions as objects of interest. As these moving objects could 

belong to various categories/classes such as humans or vehicles, the next step is to correctly classify the 

moving objects using object detection (or object classification) [28]. Then, by finding the corresponding 

locations of detected objects across a finite sequence of video frames, object tracking [29] generates a 

spatiotemporal trajectory for every detected object. Lastly, the motion patterns in the trajectories are 

analysed using behaviour recognition [30] to produce high-level description of the actions and 

interactions that occur in the scene. This kind of sequential processing, where the output of each process 

is fed as input to the next, enables each subsequent process to generate increasingly informative 

metadata, but at the same, it makes the higher-level processes critically dependent on the performance 

of the lower-level processes. 

Visual surveillance is synonymous with people; in most IVS environments, people or 

pedestrians are the primary targets under surveillance [10, 15, 21-23, 31, 32]. Pedestrian detection can 

be described as the task of identifying and labelling the location of pedestrians with rectangular 
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bounding boxes (see Figure 1.3). For IVS, reliable pedestrian detection is of paramount importance 

because A) Background subtraction simply segments moving regions without providing any knowledge 

of whether they are actually pedestrians or not – since pedestrian detection is able to obtain class-specific 

metadata by localizing pedestrian instances, it acts as the initial level of intelligence in IVS and B) As 

per the preceding elaboration of Figure 1.2, pedestrian detection directly impacts the performance of 

subsequent high level technologies [9] that require the detection responses as inputs, such as tracking, 

anomaly detection, suspicious/aggressive behaviour recognition and person identification. 

 

1.3 Focus of this thesis 

In this section, the limitations of existing pedestrian detection approaches in IVS are discussed before 

formulating the research objectives. 

1.3.1 The need for scene-specific pedestrian detectors 

Pedestrian detection has been extensively studied for over two decades. It has long been well established 

that the best approaches are based on binary classifiers trained using supervised learning algorithms [33-

35]. Under the supervised learning framework, a large set of N training samples, {(x1 , y1),…(xN , yN)}, 

is formed, where (xi , yi) is the i-th sample input-output pair, such that, xi is the feature vector of the i-th 

sample denoting the input and yi is its label (or class) denoting the desired output. Based on these labelled 

 

Figure 1.3: An illustration of pedestrian detection 
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training samples, a learning algorithm induces a function ɡ : X  Y, where X  is the input space and Y  is 

the output space. The ultimate objective is that the learned function, usually referred to as the model or 

classifier, should subsequently be able to correctly predict the labels of unseen instances. The most 

popular learning approaches are neural networks [36], adaptive boosting (AdaBoost) [37] and support 

vector machines (SVM) [38]. In order to apply a supervised learning paradigm to specifically perform 

the pedestrian detection task in IVS, the necessary steps are: 

1) Manually collect a large number of pedestrian (object class = pedestrian) and non-pedestrian 

(object class = non-pedestrian) images. 

2) Manually label every image to identify its class. For example, pedestrians can be assigned a 

label of 1 and non-pedestrians a label of -1. 

3) Extract appropriate feature vectors for all images and form them into training samples (input-

output pairs) by pairing with their corresponding class labels. 

4) Select a learning algorithm to train a model or classifier based on the labelled training samples. 

In the context of pedestrian detection, the model/classifier is referred to as a pedestrian detector. 

5) Apply the trained pedestrian detector to the target IVS environment to detect pedestrians. 

The main challenge is the extent to which such supervised learning approaches can generalize from the 

labelled training data to data in unseen target IVS environments/scenes. 

 Compared to early ground-breaking works based on Haar-like features [39] or Histogram of 

Oriented Gradients (HOG) [40], contemporary state-of-the-art generic pedestrian detectors utilizing 

Integral Channel Features (ICF) [41] or Deformable Part-based Models (DPM) [42] can achieve two-

fold increase in accuracy, at incredible speeds of over an order of magnitude faster [43-46]. With the 

most recent breakthroughs in deep neural networks such as Convolutional Neural Networks (CNN) [47], 

today’s state-of-the-art generic pedestrian detectors have pushed the increase in accuracy to five-fold 

[48-51] ! Unfortunately, despite such tremendous advancements, the performance of generic pedestrian 

detectors remains particularly prone to the dataset shift complication [52, 53], whereby, the distribution 

of the test data in target visual surveillance scenes often differs significantly from that of the source 

training data due to various scene-specific factors such as scale, viewpoint, illumination, resolution, 

image quality and background complexity. As a consequence, the performance of state-of-the-art 
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generic pedestrian detectors trained on publicly available datasets like INRIA [40] drops unacceptably 

when applied to unseen target surveillance environments [32-35, 54]. Even detectors based on deep 

neural networks are no exception to this performance drop [55]. [56-60] 

A definitive indication of the performance limitations inflicted by dataset shift can be found by 

taking a closer look at the most comprehensive evaluation of state-of-the-art generic pedestrian detectors 

in literature [61], which is an online version of the original works by Dollar et al. [34], and is kept up-

to-date with the 15 top-performing generic pedestrian detectors. All evaluated detectors are trained on 

INRIA, Caltech or both before evaluating on the datasets shown in Figure 1.4a. Of the six datasets, only 

Caltech provides a detailed breakdown of results with separate performance plots under various factors 

such as occlusion level, aspect ratio and scale – hence this is the only dataset ideal for in-depth analysis. 

It can be observed in [61] that though the overall detection rate of the best detectors is around 50%, they 

achieve near perfect detection rate (~100%) at near scale (at least 80 pixels), but this drops to 70% for 

medium scale (30-80 pixels) and plummets to 30% for far scale (under 30 pixels). This suggests that the 

                                             a                  b 

                Caltech [56]                          Caltech-Japan [56] 

   ETH [57]                               TUD-Brussels [58] 

     Daimler [33]                                 INRIA [40] 

(Top) Far scale pedestrians from bird’s eye view [59] 

 (Bottom) Far scale pedestrians from overhead view [60] 

Figure 1.4: a) Annotations of different datasets done by [34] for evaluating state-of-the-art generic pedestrian detectors and 

b) Examples of difficult surveillance environments, gathered from the internet. 
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poor performance at medium/far scale heavily influences the overall detection rate. Therefore, how 

much would the overall detection rate drop if the detectors are to be applied to the surveillance scene 

shown in Figure 1.4b (Top), where all pedestrians are solely at far scale? Additionally, note how if the 

detectors are trained on INRIA/Caltech and then evaluated on any of the six datasets in Figure 1.4a, the 

performance is reasonable because there is minimal variation in viewpoint between the training set and 

evaluation set. As INRIA/Caltech contain no samples of pedestrians from overhead view, the trained 

detectors would perform poorly if applied to an overhead surveillance scene. Thus, how much would 

the overall detection rate drop if the detectors are to be applied to the surveillance scene shown in Figure 

1.4b (Bottom), which is not only from an overhead view, but also at far scale that has already been 

proven problematic for the detectors? 

Intuitively, training scene-specific detectors is the effective and necessary solution to the dataset 

shift problem. Instead of making futile attempts to train one generic detector that works well in all 

scenes, each unseen target scene and its associated complications can be handled independently, and by 

exploiting training samples and other complementary cues acquired directly from the target scene itself, 

a pedestrian detector specifically optimized for that scene can be generated. Various methods for training 

scene-specific pedestrian detectors have been developed, such as co-training [62-64], active learning[65-

67], online incremental learning [68-70] and weakly supervised learning [71, 72], but domain adaptation 

[73-89] has emerged as the most popular and potent approach in recent years. 

1.3.2 Research motivation 

Scene-specific training approaches have made substantial progression [54] in tackling dataset 

shift, but they also have serious practical limitations. It can be observed that, for almost every existing 

method, training the scene-specific pedestrian detector entails the exploitation of either unlabelled or 

few manually labelled target samples. From an application standpoint, approaches [66, 71-73, 76, 80, 

85, 86] that require any form of manual labelling are highly undesirable due to the need for repetitive 

human effort and suffer from poor scalability when deployed on today’s large distributed camera 

networks [90, 91] - if a small network of just 50 cameras is considered, having to manually label as few 

as 100 samples per camera would demand the painstakingly laborious task of 5000 total annotations!  
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Figure 1.5: Samples from MIT (top), INRIA (middle) and QMUL Junction [92] (bottom). To gauge intra-dataset 

range of sample quality, view from left (better) to right (worse). Notice the dataset shift between INRIA-QMUL 

is considerably larger than that between INRIA-MIT 

 

On the other hand, approaches that can exploit unlabelled samples are naturally less susceptible 

to scalability issues.  To automate the labelling of target samples, these approaches invariably begin by 

applying a pre-trained generic detector on the target scene to acquire detection responses as potential 

target samples, which are then filtered by novel labelling algorithms to segregate the true positives 

(pedestrians) from the false positives. Promising results have been reported [70, 75, 78, 81-84]; however, 

it is crucial to perceive that the test surveillance datasets used to assess the performance of these 

approaches, such as MIT[93], CUHK[94] or PETS [95]  do not adequately manifest the extent of 

complications in real-world surveillance environments. Under common extreme conditions such as very 

poor image quality [96, 97], resolution [98, 99] or illumination [100], the dataset shift between the source 

dataset and pedestrians in the target scene may be so large (see Figure 1.5) that the pre-trained generic 

detector, which is trained on the source dataset, may fail to acquire enough true positives when applied 

to the target scene. During scene-specific training, this shortage of true target positives would severely 

deteriorate the “specialization” of the pedestrian detector to the target scene. Thus, methods that depend 

on a pre-trained generic detector may often be rendered inapplicable in difficult environments. 

Concretely, Figure 1.6 illustrates a typical visual surveillance network of multiple cameras 

monitoring different scenes, with a number of selected scenes zoomed in to highlight extreme scene-

specific complications usually present in such large networks, such as poor resolution, low/excessive   
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illumination, abnormal viewpoint and far scale. To perform optimal pedestrian detection in these 

difficult scenes, it is necessary to train scene-specific pedestrian detectors using target samples acquired 

directly from these scenes. However, as previously elaborated, a) manually labelling target samples for 

each problematic scene is too laborious and time-consuming, hence unscalable, while b) applying pre-

trained generic pedestrian detectors to acquire target samples is likely to fail in such extreme scenes. 

We now converge all the aforementioned limitations to a pivotal question: Given unseen target 

surveillance environments of arbitrary difficulty as demonstrated in Figure 1.6, is it possible to train 

optimal scene-specific pedestrian detectors for each scene separately, subject to the constraints: A) No 

manual labelling of target samples is allowed, and B) No source dataset (real or virtual) or pre-trained 

generic detector can be utilized? In this thesis, we provide the surprising but favourable answer: yes. 

Contrary to predominant research efforts that aim to alleviate dataset shift by adapting source 

dataset and/or source model to the target scene, we explore the possibility of eliminating dataset shift 

entirely by utilizing absolutely no source domain information. Essentially, we transcend the realm of 

domain adaptation, and propose to move towards an autonomous training framework that trains scene-

specific pedestrian detectors for unseen target surveillance environments with zero manual labelling of 

target samples, but simultaneously, does not utilize any source dataset or pre-trained generic detector.  

Our work stems from the following hypotheses: Pedestrians have rudimentary but measurable 

attributes that make them similar to each other, and different from other objects. The triviality of these 

attributes allow them to be exploitable regardless of the complexity of the surveillance environments. If 

a mechanism can be devised to exploit multiple attributes and aggregate enough discriminative 

information, pedestrians can be reliably labelled in any surveillance environment. By integrating such 

an automated labelling mechanism into a practical and robust training framework that alternates 

between sample acquisition and training, scene specific information can be maximally exploited and the 

trained classifier can be iteratively improved to ultimately generate optimal scene-specific pedestrian 

detectors, all in an autonomous fashion. 

In order to validate the above hypotheses, the following research problems must be addressed: 

 In the absence of both source training data and pre-trained generic detector, how to exploit 

pedestrian “attributes" to reliably label pedestrians/non-pedestrians in arbitrary scenes? 
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Figure 1.6: Scene-specific complications in different scenes of a typical visual surveillance network [101] 

            Poor resolution                                        Excessive illumination                                     Abnormal viewpoint 

          Far scale + poor lighting + low resolution           Far scale 
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 How to design a training framework that can be applied to arbitrary scenes to generate optimal 

scene-specific pedestrian detectors, with zero manual labelling and zero source domain 

information? How would potential target samples be acquired? What are the necessary stages 

of such a framework? How would the automated labelling method be optimally exploited in 

such a framework? 

 Given the limited experimental validation performed by existing works, how to carry out a 

comprehensive evaluation of the developed framework to ascertain its performance? 

 There exists a significant gap between most theoretical works and their application to real-world 

problems. Therefore, how to ensure that developed framework does not only achieve convincing 

results on experimental datasets, but can be readily deployed to real-world surveillance 

environments? 

1.3.3 Research aim and objectives 

Based on a summarization of the research motivation detailed in the previous subsection, the 

aim of this research is to develop a training framework that can train scene-specific pedestrian detectors 

for unseen target surveillance environments without requiring any manual labelling of target samples, 

nor utilizing any source training dataset and/or pre-trained generic pedestrian detectors. Accordingly, 

the formulated objectives are:  

 Develop mechanisms to automatically label target samples as pedestrians/non-pedestrians in 

surveillance environments, regardless of scene specifics or complexity. 

 Design a sequence of training stages, with appropriate integration of the developed automated 

labelling mechanisms, to build an end-to-end training framework. When applied to an unseen 

surveillance environment, each stage of the framework should progressively improve the trained 

classifier to ultimately generate an optimal scene-specific pedestrian detector. 

 Perform a thorough evaluation of the developed training framework by testing on a large number 

of experimental datasets, with different types of pedestrian detectors. 

 Validate the applicability of the developed framework on real-world visual surveillance scenes. 
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In order to fulfil the third objective of performing a comprehensive evaluation of the developed 

framework, it is necessary to test the framework on different datasets with varying levels of difficulty. 

Hence, the 10 datasets selected for performance evaluation can be categorized into 3 difficulty levels as 

follows: 

Hard 

1) MIT Traffic (MIT) [93]: It is a far-field video of a traffic intersection. 

2) CUHK Square (CUHK) [94]: It captures a pedestrian square at a university and is the most 

commonly used dataset for testing scene-specific pedestrian detectors. 

3) MONASH Frontgate (MONASH): This dataset was entirely constructed by us. We captured the 

scene at the front entrance of MONASH University, Malaysia Campus.  

Very Hard 

4) QMUL Roundabout (QMUL-R) [102]: It captures a traffic roundabout. 

5) QMUL Junction (QMUL-J) [92] : It captures a very busy traffic junction. 

6) Karl-Wilhelm-Straße Intersection (KWSI) [103] : It captures a traffic intersection from a bird’s 

eye view similar to MIT, but with a much larger camera tilt angle. 

Medium 

PETS 2009 [95] contains several clips of different scenarios enacted by a group of actors at a 

university campus. The selected clip is S1.L1, at timestamp 13-59, and the developed training 

framework is tested on four different views of this clip:  

7) PETS 2009 View 1 (PETS-01): The scene is captured from a side-view.  

8) PETS 2009 View 2 (PETS-02): The scene is captured from a frontal view. 

9) PETS 2009 View 3 (PETS-03): It captures the scene from a similar view-point as PETS-01, but 

from slightly further.  

10) PETS 2009 View 4 (PETS-04): It captures the scene from a rear view. 

The difficulty level is determined by combinations of various scene-specific factors such as image 

quality, video resolution, pedestrian scale, scene illumination, viewpoint, occlusion levels and 

background complexity. Details pertaining to these factors and further elaboration of the datasets is 

provided at the beginning of the experimental results in Chapter 4.  
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The research aim and objectives indicate that the direction of this work is not the development 

of novel pedestrian detectors or innovative extensions to existing learning algorithms - an enormous 

amount of effort has already been dedicated to develop newer pedestrian detectors and domain 

adaptation techniques. However, as explained in subsections 1.3.1 and 1.3.2, a substantial gap remains 

between the achieved and desired performances, due to dataset shift. Therefore, the focus of this research 

is shifted towards devising strategies for exclusive exploitation of the target samples to train optimal 

scene-specific pedestrian detectors, with autonomy and practicality as primary design requirements. 

 

1.4 Commercial output of this research 

The training framework developed in this research has been implemented in the security industry to 

build a commercial anti-tailgate product. The product, and the application of the training framework in 

the product, are described in Chapter 5. The brochure and some images of the product are attached in 

Appendix C and Appendix D, respectively. More details on the product can be obtained from:  

http://www.elid.com/index.php/products/vision-based-system2/elideye-ev100 

 

The commercial output of this research fulfils the final research objective listed in subsection 1.3.3. 

 

1.5 Organization of this thesis 

The remainder of the thesis is organized as follows: 

Chapter 2: Literature Review. In this chapter, an overview of the performance of generic pedestrian 

detectors is presented. Then the existing scene-specific training paradigms are discussed– active 

learning, co-training, incremental learning, weakly supervised learning and domain adaptation. 

Representative works from each sub-category are discussed, before the placement of this research is 

shown, relative to existing works in literature. 

Chapter 3: Virtually Autonomous Training (VAT). The definition of Class-Biased Attributes (CBA) 

is presented, which are derived from existing works on attributes [104]. The notion of how Direct 

http://www.elid.com/index.php/products/vision-based-system2/elideye-ev100
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Attribute Evaluation (DAE) computes CBAs to differentiate pedestrians from non-pedestrians is then 

detailed. Pruners are the modules that implement DAE on a specific CBA – their specifics are explained. 

The oracle structure is subsequently presented, which is a hierarchical combination of Training Sample 

Filters (TSF) and Pruners; hence the labelling procedure is detailed on the pruner level (low), the TSF 

level (mid) and the oracle level (high). Full implementation details of multiple pruners are discussed, 

including their role in the labelling procedures and the design considerations that influence their 

contribution and precision in different surveillance environments. 

Virtually Autonomous Training (VAT) is composed of three stages: Inception, Bootstrapping 

and Finalization. Inception generates the initial detector – procedures for automatic acquisition of 

potential target samples, application of the first oracle for labelling the target samples and training the 

initial detector with minimal errors are detailed. Bootstrapping reduces the false alarm rate and miss rate 

of the initial detector – optimal strategies for achieving these objectives are explored. Finalization aims 

to acquire target samples that may have been missed by the previous two stages – accordingly, 

procedures for deploying the retrained detector from the bootstrapping stage for obtaining the remaining 

potential samples, application of the second oracle for labelling these target samples and generating the 

final scene-specific pedestrian detector are presented. Various parameters that influence the 

performance of each stage, including the design of the applied oracles, are discussed in detail. 

Chapter 4: Experimental Results. The 10 datasets used for validation are described in detail, 8 of 

which are annotated as a contribution of this research. Next, the three different detectors that are to be 

tested with VAT are presented. All implementation details and evaluation criteria are listed out. The 

oracle results are shown in full detail – overall performance of both oracles are evaluated in terms of 

their precision and recall, and the progression of samples as they pass through the oracles are 

demonstrated. For the individual TSFs, exhaustive numerical statistics are reported, graphical plots are 

presented for comparison, and pictorial results are shown to illustrate the kind of samples rejected by 

each TSF as well as those passed by the oracle. For every detection algorithm implemented with VAT 

and every dataset combination, DET curves were generated to assess the progression of the VAT stages 

and to compare the performance of VAT with generic detectors and manually trained detectors. A 
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thorough comparison of VAT was performed against the state-of-the-art scene-specific training 

approaches on the two most commonly used datasets. Important aspects such as influential factors in 

comparisons with state-of-the-art, VAT performance, oracle performance and influence of the selected 

detection algorithm are thoroughly discussed. 

Chapter 5: Applications of VAT.  An overview of the commercial product that has been developed as 

a full-blown output of the VAT framework is provided. Other industry problems that VAT can be 

applied to are also briefly described.  

Chapter 6: Conclusions and Future Work. This chapter provides a brief summary of the developed 

VAT framework, the results achieved, and critiques the extent to which the objectives set out in the 

beginning of the thesis are met. The thesis concludes with various extensions, improvements and 

additional experiments of VAT suggested as future works. 
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2 Literature Review 

Despite extensive studies for over 20 years, research and progress on pedestrian detection display no 

signs of slowing down and a large number of research papers are published each year. The vast literature 

on pedestrian detection can be divided into two broad categories: 

 Generic pedestrian detectors 

 Scene-specific pedestrian detectors 

Accordingly, section 2.1 provides a short overview of the current performance of state-of-the-art 

pedestrian detectors. In section 2.2, the various scene-specific pedestrian detectors are reviewed, and 

representative state-of-the-art methods are compared to the approach developed in this research. 

 

2.1 Overall performance of generic pedestrian detectors 

The focus of this thesis is scene-specific pedestrian detection, therefore different generic pedestrian 

detectors are not reviewed in detail. Detailed reviews on state of the art prior to deep learning can be 

found in [34, 35]. For the current state-of-the-art pedestrian detectors, the reader is referred to  [55, 105]. 

 The most comprehensive pedestrian detection benchmarks are found at [34, 61]. The 

performance plots are presented under different conditions such as different levels of scale and 

occlusion. The overall results demonstrate performance inclusive of all conditions. Figure 2.1 compares 

the current state-of-the-art to the state-of-the-art prior to 2012, in terms of the overall performance (Top 

two plots in Figure 2.1) and when detecting far scale pedestrians (Bottom two plots in Figure 2.1). The 

most important takeaways are: 

1) Previous state-of-the-art approaches have been knocked out completely by deep-learning 

approaches (the top two are standard baselines), primarily CNN.  

2) Overall, compared to earlier approaches, the detection rates have improved considerably, but 

are still limited to 50% at 0.1 False Positives Per Image (FPPI). 
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3) On far scale, the performance compared to earlier approaches is once again better, but with 

detection rates of 25% at 0.1 FPPI (calculated by subtracting the miss rate from 100%), the 

performance on far scale pedestrians is still abysmal. 

The latest reviews on deep-learning approaches have reinforced that small scale accounts for the largest 

number of false negatives by CNNs [105] and most CNNs have a difficult time dealing with small scale 

due to generation of “plain” features [55]. Furthermore, it has been emphasized [55] that CNNs are often 

sub-optimal for specific applications, and need to go through a fine-tuning phase before achieving the 

required performance.  

 

 

Figure 2.1: Comparison of current state-of-the-art against the state-of-the-art prior to 2012 [34, 61] 

Overall (before 2012) Overall (now) 

Far scale (now) Far scale (before) 
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2.2 Scene-specific pedestrian detectors 

2.2.1 Overview of various approaches 

Co-training 

Amongst the earliest works on scene-specific training is co-training. From a small training set of 

manually labelled data, Levin et al. [106] trained two detectors based on separate feature sets. 

Subsequently, using the co-training framework, these detectors trained each other using unlabelled data 

from the scene. Examples confidently classified by one detector were used to enlarge the training set of 

another. Javed et al.[64] employed co-training to boost ensemble classifiers in a similar manner based 

on PCA features and used it for learning vehicle and pedestrian detectors. Roth et al. [63] use a PCA-

based reconstructive model and a discriminative boosted classifier to iteratively train each other. Sternig 

et al. [62] combined classifier grids [107] and co-training to form classifier co-grids, where individual 

grid classifiers operated with an overall compact classifier in co-training fashion. For co-training to be 

effective, the correlation between the detectors must be low. However this is difficult to achieve in 

practice and results in low detector performance. 

 

Active learning 

 Active learning approaches interactively query a human user for “informative” target training examples 

and iteratively train the classifier until the desired performance level is achieved. Munaro and Cendese 

[65] queried a human agent to validate and select training examples from motion regions. 

Comparatively, Joshi and Porikli [66] only selected those examples that lie closer to the SVM 

hyperplane. However this can impose significant limitations on the autonomy of the training approach. 

 

Online Incremental Learning 

Incremental learning approaches perform online adaptation of a pre-trained detector based on a 

continuous stream of incoming detection responses acquired by applying the detector to the target scene. 

The main challenge is to correctly label these detection responses as true/false target positives. . 
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Rosenberg et al. [108] only used online samples that were confidently classified by the generic detector. 

In [109], Grabner and Bischof  introduced a novel online boosting framework, where they trained a 

classifier in an incremental manner by performing on-line feature selection based on each new online 

training sample. This framework has been incorporated in multiple subsequent works on scene-specific 

detectors. Wu and Nevatia [68] made their labelling decisions by combining the responses of multiple 

part-based detectors and adapted their model by updating the base classifiers, cascade decision strategy 

and classifier complexity.  

Drift is an inherent problem in incremental learning that causes degradation of the detector by 

updating it with sub-optimal positive online samples. Grabner et al. [110] alleviated this problem by 

formulating an update process in a semi-supervised fashion as a combined decision of a given prior and 

an on-line classifier. Babenko et al [111] proposed multiple instance learning (MIL), where instead of 

just collecting a single positive sample, a collection of instances around the positive sample were 

gathered into a bag, and a label was assigned to the bag rather than the single positive sample, with the 

assumption the bag had at least one correct positive sample. MIL successfully resolves the drift issue 

and various works [112, 113] have proposed extensions for further performance improvement. Sharma 

et al. [70] incrementally learnt a boosted classifier by optimizing a hybrid loss function comprising an 

offline loss function and a MIL loss function based on bags of online samples generated from 

successfully tracked detections. 

 

Weakly supervised learning 

Weakly supervised learning approaches considerably reduce human efforts by employing less labour-

intensive labelling paradigms, such as annotating estimated centres of pedestrian instances rather than 

bounding boxes [71] or assigning labels to video frames to indicate the presence/absence of pedestrians 

[72]. 
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Domain adaptation 

The vast majority of scene-specific training approaches are based on domain adaptation. Strategies to 

achieve the “adaptation” are diverse due to the possible combinations of various system options such as 

supervision level, detector adaptation or detector retraining, iterative or non-iterative, target samples 

only or target plus source samples and normal or reweighed training samples. Since identifying a domain 

adaptation approach may be puzzling, we offer a generalized guideline: Given a target scene, a domain 

adaptation approach requires and utilizes some form of information from both the target domain and 

the source domain to train a scene-specific pedestrian detector. Note that incremental learning is 

technically domain adaptation too, but were presented separately to conform to the category those works 

were originally reported as. We discuss domain adaptation approaches that adapt the pre-trained 

detector, followed by those that retrain a scene-specific detector. 

 Cao et al. [73] adapted their pre-trained cascade classifier to the target scene by dynamically 

optimizing the threshold vector using cross entropy. In another approach [76], they generated a 

codebook which is a dictionary of visual key words extracted from HOG features via manifold learning. 

During detection, the codebook was dynamically updated by adding frequently occurring visual words 

as new key words and removing rarely used key words. Pang et al. [74] assessed the relationship between 

the source and target samples and shifted the features to the most discriminative locations and scales, 

and updated weak classifier coefficients using Covariate Boost. Xu et al. [81] used confident detection 

responses to predict the labels of uncertain detection responses by Gaussian Process Regression and 

adapted their pre-trained DPM-based SVM by perturbing the hyperplane. They extended this in [85] , 

where multiple target domains were arranged in a hierarchical structure and the pre-trained SVM was 

adapted to them jointly. Recently, proprietary classifiers have been generated for each target sample by 

dynamically adjusting the final layers of a pre-trained CNN [86] and using learnt regression networks 

that map samples to Exemplar SVMs [88]. 

For re-training approaches, a primary concern is to correctly label the target samples prior to 

training. Li-pin et al. [114] devised a converse approach to [85], and adapted multiple source domains 

to the target scene. Samples that were consistently predicted by multiple source detectors were assigned 

higher weight during retraining. Wang et al. [75] iteratively improved their pre-trained detector. In each 
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round, multiple context cues were exploited to reliably label the detection responses. The source samples 

were reweighed based on their similarity to target samples, whose detection confidences were 

incorporated to train a confidence-encoded SVM. In [82], they replaced the SVM with a deep model 

that automatically learnt discriminative features, the distribution of these features and scene-specific 

patterns. Zhang et al. [84] found a shared attribute space based on conditional distribution transfer sparse 

coding, where the target samples and the source samples have similar distributions. An attribute 

classifier was trained and subsequently used to label the target samples. Some approaches [78, 83] 

tracked the detection responses to verify labelling correctness and confident labels in a track were 

propagated across detection responses within that track. To address cases where a target-specific 

pedestrian detector is required prior to any on-site  observation of pedestrians, training using virtual 

samples have also been studied [80, 87].  

2.2.2 Comparisons with this research 

Scene-specific training approaches can be classified as supervised (labelled target samples), 

unsupervised (unlabelled target samples) or semi-supervised (both). An autonomous system is highly 

automated and independent. Automation would necessitate minimum human assistance, while 

independence mandates minimal reliance on any external factors not from within the system.  

  

Table 2.1:  Comparison of state-of-the-art scene specific training approaches for pedestrian detection 

(Year) Author 
Classifier  

compatibility 

Pre-trained 

model used 

Source    

samples used 

Target samples  

labelling 

No. of test 

datasets 
Difficulty 

(2011) Cao et al. [73] AdaBoost Yes No Supervised 2 ** 

(2011) Pang et al. [74] AdaBoost Yes Yes Supervised 2 *** 

(2012) Sharma et al. [70] AdaBoost 

 

Yes No Unsupervised 2 ** 

(2014) Wang et al. [75] SVM Yes Yes Unsupervised 2 *** 

(2014) Wang et al. [82] Deep Model Yes Yes Unsupervised 2 *** 

(2014) Xu et al. [81] SVM Yes No Unsupervised 6 *** 

(2014) Vasquez et al. [80] SVM No Virtual Supervised 3 *** 

(2014) Htike & Hogg [78] SVM Yes No Unsupervised 2 *** 

(2015) Zhang et al. [84] SVM Yes Yes Unsupervised 3 *** 

(2016) Xu et al. [85] SVM Yes Yes Supervised 5 *** 

(2017) Tang et al. [86] Deep Model Yes No N/A 2 *** 

(2017) Li et al. [89]  Deep Model Yes No Supervised 3 *** 

(2017) Ye et al. [72] SVM No No Weakly Supervised 6 *** 

(2018) Hattori et al. [87] Deep Model No Virtual N/A 3 ** 

This research SVM & AdaBoost No No Unsupervised 10 ***** 
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Accordingly, the autonomy of a scene-specific approach can be evaluated by the levels of a) 

supervision and b) dependence on prior information. Table 2.1 presents a comparison of the current 

state-of-the-art scene-specific training approaches for pedestrian detection with respect to autonomy, 

classifier compatibility and experimental validation. The “maximum difficulty” is a subjective 

indication of the difficulty level of the most difficult dataset tested.  The difficulty level is determined 

by combinations of various scene-specific factors such as image quality, video resolution, pedestrian 

scale, scene illumination, viewpoint, occlusion levels and background complexity. The reader is directed 

to Section 4.1 for detailed explanation of these factors. 

Evidently, state-of-the-art approaches tend to adopt unsupervised labelling to improve 

autonomy but depend on the pre-trained model and/or source samples. In contrast, our approach has 

maximum autonomy because it performs unsupervised labelling, yet requires no prior information. More 

importantly, we advocate that surveillance environments can be so varied and complex that a scene-

specific training approach must be tested on a large number of datasets to ascertain its performance. 

Except [81, 85], all approaches test at most 3 datasets and no approach was tested on extremely difficult 

datasets. Our extensive experimental validation exceeds the state-of-the-art in terms of number of 

classifiers tested, number of datasets tested and the upper bound of the dataset difficulty.  Lastly, 

unsupervised labelling is bound to err, yet no approach provides any qualitative or quantitative error 

reports whatsoever. We provide detailed error reports of our unsupervised labelling in Chapter 4. 
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3 Virtually Autonomous Training (VAT) 

This chapter commences with the conceptualization of the proposed training framework in Section 3.1. 

The conceptualized framework is then fully elaborated in Section 3.2 by presenting the complete 

algorithm and detailed pictorial overview of the end-to-end training framework. Finally, each individual 

stage of the end-to-end training framework is fully described in Sections 3.3-3.6. 

 

3.1 Conceptualization 

 

Figure 3.1: A block diagram of the research aim 

 The block diagram in Figure 3.1 presents a high-level overview of the research aim of this thesis 

introduced in Chapter 1. Given the highlighted constraints, a series of analytical questions arise (each 

Analytical Question is denoted by “AQ” subsequently): 

 AQ-1: If no manual labelling is allowed and no pre-trained generic detector can be used, how 

to acquire potential target samples for training the scene-specific pedestrian detector? 

 AQ-2: Once acquired, how to automatically and reliably label them as pedestrians and non-

pedestrians? 

 AQ-3: To train an optimal scene-specific pedestrian detector, various issues have to be 

addressed, such as: 

o AQ-3A: Maximizing exploitation of scene-specific information. 

o AQ-3B: Minimizing false positives (low false alarm rate). 

o AQ-3C: Minimizing missed positives (low miss rate). 

OUTPUT INPUT 

Training Framework 

Constraints 
 No manual labelling 

 No source domain information 

o No source training samples 

o No pre-trained generic detector 
 

Video from 

target Scene 

Scene-specific 

pedestrian 

detector 
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Can all the above be accomplished just by acquiring and correctly labelling the target samples, 

or is there a need to design a more intricate sequence of training stages? 

 AQ-4: What design strategies must be implemented in developing the framework to ensure that 

it is applicable, in the intended autonomous fashion, to different surveillance environments 

having considerable variations in and combinations of scene-specific complexities? 

To successfully operate under the imposed constraints and simultaneously address the 

abovementioned questions, the developed training framework must be able to induce a pedestrian 

detector, and progressively improve it to generate the optimal scene-specific detector. This mandates 

the careful design of a concatenation of training stages. Accordingly, the proposed framework (Figure 

3.2) is a sequence of three interlinked stages, where each stage serves a specific purpose as follows: 

Stage 1: Inception. The objective of this stage is to generate an initial detector. Scene-specific training 

usually initiates with the acquisition of potential target samples. Under the constraints outlined in Figure 

3.1, the robust option is to exploit motion to acquire moving regions as potential target samples [solves 

AQ-1]. To automatically label acquired target samples as pedestrians or non-pedestrians, automated 

oracles are engineered. The initial detector is trained using the initial training samples labelled by 

Oracle-1 [solves AQ-2]. It is critical to minimize labelling errors while training this initial detector to 

avoid error propagation as training progresses. By employing a high-precision oracle, a high percentage 

of correctly labelled initial target samples can be acquired, but at the same time, difficult and informative 

samples are likely to be rejected. Correspondingly, the initial detector is expected to have high recall, 

but high false alarm rate as well. 

Stage 2: Bootstrapping. This stage reduces the false alarm rate of the initial detector by retraining it 

with hard negatives (false positives) [solves AQ-3A]. Bootstrapping with hard negatives usually has an 

undesirable side-effect of suppressing detection rate. To compensate for the decline in detection rate, a 

second retraining step must be performed with hard positives (false negatives) [solves AQ-3B]. 

Stage 3: Finalization. The necessity of this stage arises from the realization that the motion-based 

Inception stage has a high likelihood of lacking the localization ability inherent in pedestrian detectors 

– this shortcoming results in failure to acquire possibly impactful target samples during inception 

wherever accurate localization is required. To maximize the total acquisition of target samples [solves 
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AQ-3C], the target scene is revisited, but this time the retrained detector from Stage 2 is applied, with 

the objective that the acquired detection responses will now include the missed potential target samples 

in Stage 1. The detection responses (final samples) are labelled by Oracle-2 [solves AQ-2], and the final 

detector is subsequently trained. The final detector is ultimately output as the scene-specific pedestrian 

detector. 

 

 

Figure 3.2: Conceptualization of the proposed VAT framework 

STAGE 1: INCEPTION 

 

 

 

 

Motion-based 

sample 

acquisition 

Apply Oracle-1 to 

assign labels to 

acquired samples 

Train Initial 
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STAGE 2: BOOTSTRAPPING 
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with hard 
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with hard 

positives 

STAGE 3: FINALIZATION 

 

 

 

Apply retrained detector 
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Scene-specific pedestrian detector 

Video from target scene 



27 

 

The conceptualized training framework is depicted in Figure 3.2, and is termed as Virtually 

Autonomous Training (VAT). Note that VAT is “virtually” autonomous due to the one-off human 

effort required to design the oracles. 

 The capability of VAT to generate optimal scene-specific pedestrian detectors in a wide range 

of visual surveillance environments depends on the oracle design and the implementation of each VAT 

stage [solves AQ-4]. The rest of this chapter provides comprehensive implementation details of the 

conceptualized VAT framework. First, the conceptualized framework is elaborated in Section 3.2; 

specifically, the full algorithm of the end-to-end VAT framework is presented, along with a pictorial 

overview that is a detailed version of Figure 3.2, illustrating all the components and process flow within 

each stage. Next, Section 3.3 introduces oracles, their hierarchical composition and the underlying 

concepts that enable their utilization for labelling target samples reliably. Finally, Sections 3.4, 3.5 and 

3.6 fully describe each of the three stages of VAT - the Inception stage, the Bootstrapping stage and the 

Finalization stage, respectively, including ideal execution strategies and design of relevant oracles and 

their integration, where applicable.  

 

3.2 The end-to-end VAT framework 

Figure 3.3 shows a detailed pictorial illustration of how all three training stages are concatenated 

to form the resultant end-to-end VAT framework. The illustration is meant to be utilized as a complete 

overview of the VAT framework, to observe the passage of the training data and the progression of 

detectors, and get comprehensive visualization of the exploited training samples at each step of every 

stage. The corresponding full algorithm of the VAT framework is detailed in Algorithm 1, with all the 

necessary notations listed in Table 3.1. 

Every step in Algorithm 1 has a corresponding visualization in Figure 3.3; therefore, using 

Figure 3.3 in conjunction with Algorithm 1 can provide a clearer understanding of the VAT framework. 

Particularly, in cases where ambiguities may arise in Algorithm 1 when trying to perceive certain steps 

such as the augmentation of samples to the training dataset or application of different detectors to video 

sequences/set of samples, referring to the relevant visualization in Figure 3.3 can provide clarity. 
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Figure 3.3: Detailed pictorial illustration of the end-to-end VAT framework implemented on MIT 
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Table 3.1:  Notations used in Algorithm 1 

Ω Motion detection based sample extractor 
{𝔼𝑖}𝑖=1

𝑛  Training sequence from the target surveillance environment, Є 

 ℳ Extracted potential pedestrian samples  
Ѫt Level t Oracle or tth Oracle  

𝑃𝑜𝑠Ѫ𝑡  Samples labelled by Ѫt as pedestrian instances 
𝑁𝑒𝑔Ѫ𝑡  Samples labelled by Ѫt as non-pedestrian instances 

Đ Dataset 

Ξ Supervised classifier learning – AdaBoost/SVM in this thesis 

Ж Pedestrian detector 

ℜ Detection responses acquired by applying a detector on {𝔼𝑖}𝑖=1
𝑛   

(r, s, fr) (Bootstrapping rounds, bootstrapping segments per round, bootstrapping frames per segment) 

{𝔼𝑖
−𝑣𝑒}𝑖=1

𝑘  Sequence of k frames for collecting initial negatives and hard negatives, k = s × fr + 1 

IN Initial negative samples 

HN Hard negatives or false positives 

RP Rejected positives of false negatives 

§ Scene-specific 
ℒz For training data [S, ℒz], where S = {xi}and ℒz = {yi}, x :  y = z                              

 

Algorithm 1: The Virtually Autonomous Training (VAT) Framework 

Input :  

Training video sequence of n frames from target surveillance environment -  {𝔼𝑖}𝑖=1
𝑛   

Output : 

Scene-specific detector - Ж§ 

 
Stage 1 – Inception 

1.1. Execute motion detection, perform post-processing and apply constraints to extract potential positive samples:  

ℳ =  Ω ({𝔼𝑖}𝑖=1
𝑛 ) 

1.2. Feed potential samples to Oracle-1, to be labelled as pedestrians / non-pedestrians: 

[𝑃𝑜𝑠Ѫ1  , 𝑁𝑒𝑔Ѫ1] = Ѫ1 (ℳ) 

1.3. Form {𝔼𝑖
−𝑣𝑒}𝑖=1

𝑘   for collecting initial negatives and bootstrapping by sampling {𝔼𝑖}𝑖=1
𝑛  at n/k interval 

1.4. Assemble the set IN  by sampling all possible patches from all non-motion regions in 𝔼1
−𝑣𝑒  

1.5. Label pedestrian instances obtained from Oracle-1 as positives, IN as initial negatives and learn ЖInitial : 

ĐInitial =  {[𝑃𝑜𝑠Ѫ1, ℒ+1] , [ IN, ℒ-1]} 
ЖInitial  =  Ξ (ĐInitial) 

 
Stage 2 – Bootstrapping 

2.1. Retrain with hard negatives (false positives) in bootstrapping manner to learn ЖHN 

Initialize: ЖHN  = ЖInitial  , and  ĐHN  = ĐInitial  

for bootstrapping round = 1: r, do 

for bootstrapping segment, b = 1 : s, do 

Search exhaustively with ЖHN for hard negatives : HN = ЖHN({𝔼𝑖
−𝑣𝑒}

𝑖=(𝑏−1)𝑓𝑟+2
𝑏×𝑓𝑟+1

) 

Augment dataset with acquired hard negatives and retrain to learn ЖHN: 

ĐHN  = { ĐHN, [ HN, ℒ-1]} 

ЖHN =  Ξ (ĐHN) 

end for 
end for 

2.2. Retrain with rejected positives (false negatives) to learn ЖRP 

Reacquire non-pedestrians from Oracle-1 if classified as positive by ЖHN : RP = ЖHN (𝑁𝑒𝑔Ѫ1)   
Augment dataset with reacquired rejected positives and retrain to learn ЖRP: 

ĐRP  = { ĐHN, [ RP, ℒ+1]} 

ЖRP = Ξ (ĐRP) 

 
Stage 3 – Finalization  

3.1. Apply ЖRP on the training video sequence and obtain detection responses : ℜ = ЖRP ({𝔼𝑖}𝑖=1
𝑛  ) 

3.2. Feed detection responses to Oracle-2, to be labelled as pedestrians / non-pedestrians: 

[𝑃𝑜𝑠Ѫ2  , 𝑁𝑒𝑔Ѫ2] = Ѫ2 (ℜ) 

3.3. Augment pedestrian/non-pedestrian instances labelled Oracle-2 as final positives/negatives respectively and 

 retrain to learn ЖFinal : 
ĐFinal =  { ĐRP , [𝑃𝑜𝑠Ѫ2, ℒ+1] , [ 𝑁𝑒𝑔Ѫ2, ℒ-1]} 

ЖFinal = Ξ (ĐFinal) 

3.4. Output ЖFinal as the trained scene-specific pedestrian detector : Ж§ = ЖFinal 
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3.3 Oracles 

Attributes are mid-level semantic features used in object description and classification [104, 115]. While 

low-level features such as HOG or Haar can only be processed by a computer, attributes such as “red”, 

“arm thickness” and “striped” are comprehensible to a human. We provide an expanded version of the 

definition of an attribute presented in [116] : A property of an object is an attribute, if a human can 

visually determine its presence or measure it in a given object. So an attribute like “red” is assigned a 

binary value based on its presence or absence, but an attribute like “arm thickness” would require 

determination of its presence followed by an evaluation of its thickness. Attributes have been employed 

in soft biometrics [117, 118] for person identification and attribute classifiers have been successfully 

applied to zero-shot classification [116, 119] and human pose estimation [120].  

3.3.1 Direct Attribute Evaluation 

Given an arbitrary object class of interest ℂ (in this research , ℂ = pedestrian) , if 𝕏 represents the sample 

set of all objects from a particular target domain, let sample set 𝕏+ comprise of objects that belong to ℂ 

(positive instances) and the sample set 𝕏‾ comprise of objects that do not belong to ℂ (negative 

instances). Depending on the target domain, 𝕏‾ may contain objects from various classes. A class-biased 

attribute or CBA of ℂ is a measurable appearance attribute that is highly prevalent amongst objects of ℂ 

and discriminative enough to distinguish objects of ℂ from objects of other classes. The critical 

difference between a CBA and a standard attribute is that a CBA should be highly exploitable regardless 

of the target domain, demanding it to be very generic in design. For example, a standard attribute like 

arm thickness can be evaluated in clear, close-range, frontal view surveillance scenes, but the limbs are 

often unclear in unconstrained surveillance environments due to poor resolution, far range or unusual 

camera angles, making this attribute unusable. Contrastingly, a CBA like sample alignment can always 

be evaluated, even under extreme conditions, as long as the person is visible. 

Direct attribute evaluation or DAE is the computation of a real-valued score for a given sample 

by executing a relevant function that is formulated to measure a CBA. If DAE is applied to 𝕏 to measure 
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a CBA of ℂ, the output values are expected to have two properties: a) instances of 𝕏+ would have similar 

values and b) there would be adequate differences between the values of instances of 𝕏+ and 𝕏‾. It is 

suggestive that if these properties are utilized jointly, 𝕏+ can be reliably distinguished from 𝕏‾. However, 

the first property may be rendered invalid if instances in 𝕏+ have large appearance variations and the 

second property may become infeasible if there are so many different classes in 𝕏‾ that some instances 

are inevitably too similar to instances of 𝕏+. For ℂ = pedestrian, both these complications are 

significantly subdued if the target domains are stationary surveillance environments. Firstly, because of 

fixed resolution and viewpoint, there would be limited appearance variations amongst instances of 𝕏+, 

producing similar values. Secondly, due to fixed scene, the total number of different object classes is 

limited compared to non-stationary scene, reducing the complexity of segregation. 

In light of the above-mentioned aptness of DAE in stationary scenes, we make some intuitive 

conjecture. Since a DAE function is formulated based on a CBA of ℂ, the range of expected values from 

objects of ℂ can be estimated a priori. When DAE is applied to 𝕏 acquired from a stationary scene, and 

the distribution of the resultant values is observed, the values corresponding to instances of 𝕏+ will be 

clustered in the proximity of the expected range, whereas values corresponding to instances of 𝕏‾ will 

lie further away and can be treated as outliers. Applying simple rejection criteria, these outliers can be 

removed. Obviously, a considerable number of instances from 𝕏‾ will not be removed by using a solitary 

CBA, because they belong to classes that cannot be adequately differentiated from ℂ. To effectively 

eliminate a very high percentage, if not all, of the instances of 𝕏‾, a combination of different CBAs must 

be used. The functionality becomes analogous to cascade classifiers [39]; only those instances not 

rejected as outliers are evaluated by subsequent DAE functions, and only an instance that is within the 

accepted range of the distribution for every CBA in the combination is ultimately labelled as an instance 

of 𝕏+ and hence, an object of class ℂ. 

3.3.2 Pruners and Training Sample Filters (TSF) 

A pruner is a module that executes DAE, and applies appropriate rejection criteria to segregate objects 

of interest. In order to construct a DAE function based on a CBA, a relevant first-order feature must be  
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Figure 3.4: Functionality of a pruner for CBA “Head presence” of object class “Pedestrian”. (a) Different 

surveillance environments/scenes. (b) N samples extracted from each surveillance environment, labelled by their 

index. (c) Binary foreground obtained as the feature to be passed as argument to the DAE function φ that evaluates 

the CBA. (d) Distribution of output values subjected to simple rejection criteria formulated from the μ and σ of 

the output values. The red regions indicate the rejection range and the green region indicates the expected range. 

Passed and rejected samples can be identified by the location of their index labels in the distribution 

 

selected to be utilized as an argument, for example, grayscale, foreground or gradient. Given a set of N 

samples from environment/scene Є, denoted by{𝑥𝑖
Є}𝑖=1

𝑁 , we select a feature f. The corresponding feature 

representations are denoted by{𝑓(𝑥𝑖
Є)} 𝑖=1

𝑁 . A discriminative DAE function φ can then be formulated 

based on feature f to compute the CBA for all samples:  

{𝑧𝑖
Є}𝑖=1

𝑁 = {φ[ 𝑓(𝑥𝑖
Є) ]} 𝑖=1

𝑁                                    (3.1) 

and the resultant distribution of output values {𝑧𝑖
Є}𝑖=1

𝑁  is subjected to an appropriate rejection function 

Λ to segregate the samples as follows:    

a                        b               c                 d 
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[{pass( 𝑗)}𝑗=1
𝑁𝑝𝑎𝑠𝑠

, {reject(𝑘)}𝑘=1
𝑁𝑟𝑒𝑗𝑒𝑐𝑡

] = Λ({𝑧𝑖
Є}𝑖=1

𝑁 ) | 𝑁𝑝𝑎𝑠𝑠 +  𝑁𝑟𝑒𝑗𝑒𝑐𝑡 = 𝑁

s. t. 𝑥𝑖 =  { 
 passed , if 𝑖 ∈ {pass(𝑗)}          

 rejected , if 𝑖 ∈ {reject(𝑘)}        
 

               (3.2) 

An elaborate illustration of the implementation of a pruner (for object class “Pedestrian”) in 

three different environments is presented in Figure 3.4. In Є1, the pedestrians appear very small due to 

far-field video, in Є2, they have unusual orientation due to large camera tilt angle and Є3 has low-contrast 

and smeared pedestrians (zoom in to view). Despite the considerable differences between the 

environments, the pruner can fairly differentiate pedestrians by focusing on a CBA of pedestrians. The 

accuracy of the segregation can be checked through the location of the index labels on the distribution. 

The pruner operates correctly for Є1 and Є3, but errs for Є2. In Є2, the target sample with label ‘N’ is an 

image of car part, i.e. non-pedestrian instance, but upon executing DAE, its output value narrowly falls 

within the expected range because the head region is similar to that of a pedestrian instance. 

Consequently, it is incorrectly passed as a pedestrian instance. As explained in subsection 3.3.1, such 

errors should be anticipated. When the set of target samples are subjected to a combination of pruners, 

each evaluating a different CBA, non-pedestrian instances which may be incorrectly passed by some 

pruners are likely to be correctly rejected by others. 

Two different pruners can be implemented based on the same feature but evaluating different 

CBA or they may evaluate the same CBA based on different features. For improved coherence and 

structure, a training sample filter (TSF) comprises of one pruner or a collection of pruners grouped 

together either because they utilize the same feature or evaluate the same CBA. Pruners in a TSF are 

arranged in series if they use the same feature but evaluate different CBAs, and in parallel if they use 

different features but evaluate the same CBA. 

3.3.3 Oracle configuration 

We now describe the hierarchical composition and functionality of an oracle. An oracle is constructed 

by sequentially combining multiple training sample filters (TSF), each of which may consist of one or 

more pruners, arranged in series or parallel. Figure 3.5 depicts the possible configuration of components  
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Figure 3.5: Oracle configuration. Green arrows indicate flow of passed samples and red arrows indicate flow of 

rejected samples 

 

within an oracle and the passage of samples. For the rest of this subsection, it is advised to refer to Figure 

3.5 for better comprehension and visualization of the discussed concepts. 

Denote an oracle by Ѫ, a TSF by T and a pruner by ρ. Given an object class of interest ℂ, let 𝕏Є 

represent the set of samples extracted from an environment Є, such that 𝕏Є = 𝕏+ ∪ 𝕏−, where 

𝕏+comprises samples that belong to ℂ and 𝕏−comprises samples that do not belong to ℂ. The goal of 

an oracle, Ѫ, is to segregate 𝕏Є into 𝕏Ѫ
+  and 𝕏Ѫ

− , aiming to achieve 𝕏Ѫ
+   𝕏+and 𝕏Ѫ

−   𝕏− To that end, 

the segregation is performed hierarchically via: 

[𝕏Ѫ
+ , 𝕏Ѫ

−] =  Ѫ( 𝕏Є )                                                                     

[𝕏T
+, 𝕏T

−] =  T( 𝕏T
Є ), s. t.  𝕏T

Є   𝕏Є , 𝕏T
+  𝕏Ѫ

+  and 𝕏T
−  𝕏Ѫ

−   

[𝕏𝜌
+, 𝕏𝜌

−] =  𝜌( 𝕏𝜌
Є), s. t.  𝕏𝜌

Є  𝕏T
Є , 𝕏𝜌

+  𝕏T
+ and 𝕏𝜌

−  𝕏T
−   

                                   (3.3)                                                                     

where, 𝕏Є, 𝕏T
Є  and 𝕏𝜌

Є are input samples at the oracle, TSF and pruner levels, respectively and 

𝕏Ѫ
+ /𝕏Ѫ

− , 𝕏T
+/𝕏T

− and 𝕏𝜌
+/𝕏𝜌

− represent the samples labelled at the oracle, TSF and pruner levels, 

respectively, as belonging/not belonging to ℂ. Pruners are the building blocks of the oracle as CBAs are 

evaluated and samples are segregated at this level. As such, the pruner level equation in (3.3) is a 

compact, combined representation of equations (3.1) and (3.2) described in subsection 3.2.2, where 

 𝕏𝜌
Є = {𝑥𝑖

Є}𝑖=1
𝑁  , 𝕏𝜌

+ = {𝑥pass(𝑗)
Є }𝑗=1

𝑁𝑝𝑎𝑠𝑠
  and 𝕏𝜌

− = {𝑥reject(𝑘)
Є }𝑘=1

𝑁𝑟𝑒𝑗𝑒𝑐𝑡
.     
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Denote the set of TSFs in an oracle by {T𝑗}𝑗=1
𝑚  , where m is the number of TSFs in the oracle 

and denote the set of pruners in the jth TSF by {𝜌𝑗𝑘}𝑘=1
𝑛𝑗

, where nj is the number of pruners in the jth TSF. 

The inputs and outputs of the jth TSF is given by:  

                                                    [𝕏T𝑗

+ , 𝕏T𝑗

− ] = T𝑗 ( 𝕏T𝑗−1

+ )                                         (3.4) 

Equation (3.4) indicates that samples passed by a TSF are forwarded to the next TSF as input samples. 

Note that for j=1, 𝕏T𝑗−1

+ = 𝕏Є. Within the jth TSF, the inputs and outputs of the kth pruner is given by:  

[𝕏𝜌𝑗𝑘

+ , 𝕏𝜌𝑗𝑘

− ] =  { 
 𝜌𝑗𝑘  ( 𝕏T𝑗−1

+ ) , if 𝑛𝑗 = 1 or 𝑛𝑗 > 1 in parallel                               

 𝜌𝑗𝑘  ( 𝕏𝜌𝑗(𝑘−1)

+ ) , if  𝑛𝑗 > 1 in series. For k = 1, 𝕏𝜌𝑗(𝑘−1)

+ = 𝕏T𝑗−1

+
        (3.5) 

Referring to (3.5), if pruners using different features but same CBA are arranged in series, it would be 

redundant to segregate passed samples from the previous pruner by evaluating the same CBA as the 

previous pruner. Hence, such pruners are executed concurrently on the passed samples from the previous 

TSF in a parallel configuration. The outputs of the jth TSF is a combination of the outputs of its 

constituent pruners as follows:  

𝕏T𝑗

+ = 𝕏𝜌𝑗1

+  ,  𝕏T𝑗

− = 𝕏𝜌𝑗1

− , if 𝑛𝑗 = 1                                                                                            

𝕏T𝑗

+ = 𝕏𝜌
𝑗𝑛𝑗

+  , 𝕏T𝑗

− = 𝕏𝜌𝑗1

−  ∪  𝕏𝜌𝑗2

− … ∪ 𝕏𝜌
𝑗𝑛𝑗

− , if 𝑛𝑗 > 1 in series                                       

𝕏T𝑗

+ = 𝕏𝜌𝑗1

+  ∩  𝕏𝜌𝑗2

+ … ∩  𝕏𝜌
𝑗𝑛𝑗

+  , 𝕏T𝑗

− = 𝕏𝜌𝑗1

−  ∪  𝕏𝜌𝑗2

− … ∪ 𝕏𝜌
𝑗𝑛𝑗

− , if 𝑛𝑗 > 1 in parallel  

   (3.6) 

The outputs of the oracle Ѫ can therefore be expressed in terms of the TSF outputs as:    

𝕏Ѫ
+ = 𝕏T𝑚                                     

+

𝕏Ѫ
− = 𝕏T1

− ∪  𝕏T2

− ∪  𝕏T𝑚

−                                                            (3.7) 

Referring to (3.4), the solution 𝕏T𝑚

+ is obtained from [𝕏T𝑚

+ , 𝕏T𝑚

− ] = T𝑚( 𝕏T𝑚−1

+ ) . This is a recursive 

procedure that requires the passed samples from the previous filter, and commences operation with 

initial input samples from the environment, denoted by 𝕏T0

+ = 𝕏Є . 
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3.3.4 Design guidelines 

There are fundamental differences between oracles and existing approaches [104, 115, 116, 120] that 

use attribute classifiers for labelling. Attribute classifiers usually output binary scores indicating the 

presence or absence of an attribute and the combination of these outputs are then processed to determine 

the object label. As a simple example, given an object and six trained attribute classifiers – black, white, 

brown, stripes, water and eats fish, if the outputs of the classifiers are  

a) black: 0, white: 1, brown: 0, stripes: 0, water: 1 and eats fish: 1, then object = polar bear 

b) black: 1, white: 1, brown: 0, stripes: 1, water: 0 and eats fish: 0, then object = zebra 

Attribute classifiers are similar to object classifiers in the sense that they also need to be trained on large 

datasets, such as the Animals with Attributes dataset [116] for labelling animals; except that their end 

goal is to determine the presence of attributes rather than objects. The need for training exposes them to 

the same dataset shift complications faced by generic object classifiers like pedestrian detectors. 

 The principal advantage of DAE is that by directly evaluating real-valued scores for CBAs, they 

eliminate the need for any training, consequently making the dataset shift problem non-existent. 

However, unlike attribute classifiers that can be used to output the corresponding object label when 

given a single object, pruners that execute DAE are not designed to operate on lone objects, but rather 

on a set of objects. As explained in subsections 3.2.1 and 3.2.2, a pruner applies DAE on a set of objects, 

and exploits the resultant distribution to collectively reject those instances that do not belong to the 

object class of interest. Thus, given a set of objects, an oracle constructed as a hierarchical composition 

of pruners performs multiple stages of rejections to ultimately segregate the set of objects into two 

groups: 1) instances that belong to the object class of interest, and 2) all the rejects, which are the 

instances that do not belong to the object class of interest. 

  The objective of designing oracles is to enable reliable labelling of object classes of interest in 

different environments of varying levels/combinations of complexities. However, the avoidance of 

training means that oracles have to be engineered for each object class of interest based on heuristics. It 

can be challenging to design oracles with widespread applicability as factors such as choice of CBAs or 
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formulated DAE functions, can affect the overall performance of the oracle. The following are important 

guidelines for designing optimal oracles: 

Collect enough datasets to represent object class variations. For a given object class of interest, collect 

multiple application scenarios or environments where the oracle may have to be applied. This facilitates 

taking into account as many scene-specific complications as possible that the oracle may need to tackle. 

Analyse the datasets collectively. Observe the instances that do not belong to the object class of interest 

and have to be rejected, across all datasets. Find CBAs that can be exploited to reject particular types; 

however, ensure the rejection ability of the selected CBA spans as many datasets as possible.  

String pruners. Combine pruners accordingly if their extracted features or their evaluated CBAs are 

similar. This provides better modularity and coherence as the oracle increases in size. 

Over-emphasize generalization. This is the single most important (and difficult) rule that governs 

optimal oracle design. Generalization should be the top priority when selecting a CBA and formulating 

the corresponding DAE function. If specific attention is not paid to this rule, the engineered pruners will 

only have limited applicability – this will make it necessary to design a large number of pruners in order 

to cover all the different types of objects that have to be rejected across all datasets. This not only adds 

redundancy to the resultant oracle but will also cause incorrect rejections due to poorly generalized 

pruners. 

Design based on input. Oracles are not object detectors – they are not meant to localize the object class 

of interest in images. Rather, when a set of objects are made available to them, oracles assign labels to 

these objects. For the same application domain, the input set of objects can be substantially different 

based on the acquisition mechanism. For example, in IVS environments, the types of objects in motion 

regions acquired by background subtraction will be different from those in detection responses acquired 

by applying a pedestrian detector. Attempting to devise a single oracle to deal with all kinds of input 

mechanisms is doable but is likely to increase oracle complexity and redundancy. Instead, designing an 

oracle with widespread applicability, but at the same time tuned to a specific input mechanism, can be 

a much more efficient approach. This, and the previous rule, reinforces that when designing an oracle, 

the focus should be to find the minimum number of CBAs that are able to reject all types of objects 

across all datasets. 
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Determine correct sequence of TSFs.  This requires a good understanding of any existing relationships 

between the different types of objects that needs to be rejected. For example, it is possible that the 

presence of objects of type A, can reduce the efficiency of rejection of objects of type B – in that case it 

becomes mandatory to apply the TSF for rejecting objects of type A first. Determining the correct 

sequence usually requires a combination of intuition and experimentation.  

Increase discriminative ability to maintain rejection capability. TSFs are required to be generic in order 

to be highly exploitable. However, as the objects that need to be rejected are gradually removed by the 

oracle, it becomes more difficult to segregate the remaining instances that do belong to the object class 

of interest. Therefore, each subsequent TSF in the sequence must perform DAE of increasingly 

discriminative CBAs, without compromising generality too much. 

 

3.4 VAT Stage 1: Inception 

This section provides full implementation details for the first stage of VAT: Inception. The reader is 

advised to frequently refer back to Figure 3.3 and Algorithm 1 as they progress through this section to 

enable a clearer understanding of the connections between various components/steps as well as their 

relevance to the overall framework. 

3.4.1 Motion-based sample acquisition 

The first step in training a scene-specific pedestrian detector is the automatic acquisition of potential 

pedestrian samples from the target environment. Unlike many existing scene-specific approaches that 

apply a pre-trained detector and acquire detection responses as potential pedestrian samples, VAT begins 

operation by relying solely on motion information and acquires moving objects as potential pedestrian 

samples. Motion-based sample acquisition is rational because pedestrians are likely to be in motion in 

most surveillance environments. Even stationary pedestrians would eventually need to move to get from 

one point to another, making them attainable as potential samples. Sample acquisition using motion 

detection has two important advantages over using pre-trained detectors: 1) Sample acquisition relying 

on pre-trained generic detectors may be substantially hindered in difficult environments (see Figure                    
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Figure 3.6: Green and red bounding boxes indicate pedestrian and non-pedestrian instances, respectively. a) 

Sample acquisition using pre-trained generic pedestrian detection. b) Sample acquisition using motion detection. 

c) Zoomed in version of a), demonstrating alignment of pedestrian in the acquired sample. d) Zoomed in version 

of b), solid boxes indicate the original bounding boxes proposed by motion detection and dashed boxes indicate 

the region to be acquired after 15% expansion. 

 

3.6a) due to dataset shift, but motion is a highly exploitable cue that is unaffected by dataset shift, making 

sample acquisition feasible even under extreme conditions (see Figure 3.6b), and 2) As detection 

responses are non-maximal suppressions of multiple overlapping output bounding boxes, they often 

have sub-optimal sample alignment (see Figure 3.6c), whereas, pedestrian instances obtained using tight 

bounding boxes around motion regions usually have near-perfect central alignment, both vertically and 

horizontally (see solid boxes in Figure 3.6d). 

The acquisition procedure is as follows. Given a video sequence {𝔼𝑖}𝑖=1
𝑛 , from a target 

surveillance environment Є, background subtraction is applied and the foreground pixels are subjected 

to morphological operations to remove noise and fill holes. Using connected component analysis on the 

                            a          b 

                            c          d 
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resultant foreground regions, tight bounding boxes are proposed. A margin of few pixels around a 

sample that is about 15% of the dimensions of the bounding box provides valuable context that improves 

detection rates [40]; similar expansion ratios are applied to the acquired samples (see dashed boxes 

Figure 3.6d). Lastly, using the facts that the aspect ratio, ar, of pedestrians is much smaller than that of 

vehicles and at the same time not too small; the foreground regions whose expanded bounding boxes 

satisfy the conservative constraint 0.2 < ar < 0.6, are extracted as the potential pedestrian samples (ℳ). 

The effectiveness of exploiting the aspect ratio can be inferred by observing Figure 3.6b - most of the 

samples with red bounding boxes will not be acquired by applying the aspect ratio constraint. 

3.4.2 Oracle-1 

ℳ is highly likely to contain several false positives from non-pedestrian moving objects. To segregate 

ℳ into pedestrian and non-pedestrian instances, Oracle-1 (Ѫ1) was designed. In order to engineer the 

pruners and TSFs, and to configure their optimal arrangement in Oracle-1, ℳ from different datasets 

(see Section 4.1) were jointly examined. Through experimentation based on the guidelines from 

subsection 3.2.4, it transpired that Oracle-1 has the highest precision when it is configured as a sequence 

of 4 TSFs. The full implementation details of these TSFs are presented in the next four subsections. 

Note that the value of 1.5𝜎 used in the rejection criteria of the pruners has been determined empirically. 

3.4.2.1 TSF 1 – Height analysis (Height) 

The heights of pedestrians increase as their foot locations are further from the top of a video frame. The 

rate of increase is inversely proportional to the camera tilt angle; the smaller the tilt angle, the greater 

the height of pedestrians at the bottom of the frame compared to those towards the top. It was found that 

a significantly large proportion of non-pedestrian instances in ℳ had different heights compared to 

pedestrians at the same location (see Figure 3.7). This TSF is placed at the beginning of the sequence 

because of its consistent ability to reject the largest number of non-pedestrians across most datasets. 

Implementation details are as follows: 
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Number of pruners: 1 

Pruner implementation  

[CBA: location based height, feature: sample bounding box] 

Given that the Inception stage acquires N samples from environment Є, {𝑥𝑖
Є}𝑖=1

𝑁 , via motion detection, 

for any particular sample, denote its bounding box by the top-left corner, (x1,y1) and bottom-right 

corner, (x2,y2), denote its height by z = y2-y1 and denote its foot location by l = y2. Generate the set of 

pairs, {𝑙𝑖
Є, 𝑧𝑖

Є}𝑖=1
𝑁 , where, 𝑙𝑖

Є is the foot location and 𝑧𝑖
Єis the height of the ith sample. Divide the frame 

height, h, into k intervals, where, k = h/r. r is empirically set to 20 pixels. Calculate the set of points, 

{𝑙_𝑚𝑖𝑑𝑗
Є, 𝑧_𝑚𝑜𝑑𝑗

Є}𝑗=1
𝑘 , where, 𝑧_𝑚𝑜𝑑𝑗

Є is the modal height in the interval (j-1)r – jr, and 𝑙_𝑚𝑖𝑑𝑗
Є is the 

Figure 3.7: Visualization of the Height TSF. a) Examples of sample acquisitions b). Plot of height of bounding 

box against location of bounding box for acquired samples. Green line indicates the linear model of height vs 

location and red lines indicate the upper and lower bounds of accepted variations. The projections of the samples 

from a) onto b) indicate their respective positions on the plot. 
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midpoint of that interval. Use linear regression to construct a linear model from these points and apply 

the model to calculate the expected heights, {𝑧_𝑒𝑥𝑝𝑣
Є}𝑣=1

ℎ , for all vertical locations, {𝑣}𝑣=1
ℎ  (see Figure 

3.7). 

 

Rejection Criteria:  |𝑧𝑖
Є  −  𝑧_𝑒𝑥𝑝𝑙𝑖 

Є | > 0.25×𝑧_𝑒𝑥𝑝𝑙𝑖 
Є , where, 𝑧𝑖

Є and 𝑧_𝑒𝑥𝑝𝑙𝑖 
Є are the observed height and 

expected height, respectively, at the foot location, 𝑙𝑖
Є of the ith sample. 0.25 is a conservative ratio, 

determined empirically. 

3.4.2.2 TSF 2 – Grayscale analysis (GraySc) 

It was observed that a considerable number of non-pedestrian instances in ℳ were obtained as a result 

of sporadic scene changes, rather than objects actually traversing. Some examples are movement of trees 

or changing regions on roads/buildings due to lighting fluctuations. These instances have limited intra- 

object intensity variations compared to pedestrians (see Figure 3.8). Implementation details are as 

follows: 

Number of pruners: 1 

Pruner implementation 

[CBA: grayscale variance, feature: grayscale] 

For every sample 𝑥𝑖
Є, denote its height by h, its width by w and its grayscale image by 𝑔𝑖

Є. Calculate  

𝑧𝑖
Є = ∑ 𝑉𝑎𝑟(𝑔𝑖

Є[𝑊𝑗])
𝑑𝑖𝑣_𝑤

𝑗=1
 + ∑ 𝑉𝑎𝑟(𝑔𝑖

Є[𝐻𝑘])
𝑑𝑖𝑣_ℎ

𝑗=1
 

where, 𝑑𝑖𝑣_𝑤 is empirically set at 15 and 𝑊𝑗 denotes the jth vertical partition with pixel co-ordinates 

(x,y), such that, 

𝑤

𝑑𝑖𝑣_𝑤
( 𝑗 − 1) < x ≤

𝑤

𝑑𝑖𝑣_𝑤
𝑗   and   0 < y ≤ h 

and where, 𝑑𝑖𝑣_ℎ is empirically set at 20 and 𝐻𝑘 denotes the kth horizontal partition with pixel co-

ordinates (x,y), such that, 

0 < x ≤ w    and    
ℎ

𝑑𝑖𝑣_ℎ
( 𝑘 − 1) < y ≤

ℎ

𝑑𝑖𝑣_ℎ
𝑘    

(3.8) 
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Figure 3.8: Visualization of the GraySc TSF. 

Rejection Criteria: 𝑧𝑖
Є  <  𝜇 ({𝑧𝑖

Є}
𝑖=1

𝑁
) − 1.5𝜎 ({𝑧𝑖

Є}
𝑖=1

𝑁
) 

3.4.2.3 TSF 3 – Foreground analysis (ForeGd) 

The binary foreground of moving pedestrians contains some very generic structural characteristics that 

are easily exploitable, but at the same time adequately specific to pedestrians. These include the presence 

of an identifiable blob corresponding to the pedestrian head, the ratio of head to torso and normally 

central alignment of the pedestrian foreground in the window (see Figure 3.9). A combination of these 

characteristics can be used to differentiate and reject the more challenging non-pedestrian instances in 

ℳ, such as cropped/misaligned pedestrians, portions of vehicles or complex agglomerations of multiple 

non-pedestrian moving objects. For small scale pedestrians, it may become very difficult to perform any 

of the aforementioned head analysis if the head region is too small. Therefore, for this particular TSF, 

all samples are resized to 200 pixels tall. Implementation details are as follows: 

 

 

Figure 3.9: Visualization of the ForeGd TSF. Note the different structural characteristics of pedestrians that can 

be exploited using foreground to differentiate from non-pedestrians 
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Number of pruners: 4, configuration: series 

For every sample 𝑥𝑖
Є, denote its height by h (set to 200), its width by w and its binary foreground image 

by 𝑏𝑖
Є. It is widely accepted that an average person is generally 7.5 heads tall [121], where the head and 

torso together make up 4 heads. The head is expected to be in the upper 1/7.5 portion of the sample, 

which corresponds to the vertical range of 0 - 0.133h in 𝑏𝑖
Є. Using connected component analysis, find 

and assume the largest blob in this range to be the head. Denote the centroid of this blob by 

(x_head𝑖
Є, y_head𝑖

Є). 

Pruner 1 implementation 

[CBA: head-region presence, feature: binary foreground] 

Define the head analysis region of the sample by the bounding box co-ordinates, (x1,y1) and (x2,y2), 

where, y1 = 1, y2 = 0.133h, x1 = x_head𝑖
Є − 0.133ℎ/2 and x2 = x_head𝑖

Є + 0.133ℎ/2. The analysis 

region is then a square of length l = y2 – 1 = x2 – x1. Calculate 

𝑧𝑖
Є =  ( ∑ ∑ 𝑏𝑖

Є(𝑗, 𝑘)

x2

𝑗=𝑥1

y2

𝑘=𝑦1

) (y2 − y1)(x2 − x1)⁄   

 

Rejection Criteria: 𝑧𝑖
Є  <  𝜇 ({𝑧𝑖

Є}
𝑖=1

𝑁
) − 1.5𝜎 ({𝑧𝑖

Є}
𝑖=1

𝑁
) 

 

Pruner 2 implementation 

[CBA: head-region consistency, feature: binary foreground]  

Denote n as the number of analysis points. n is set to 0.133*200 = 26 (h  = 200).  Using the bounding 

box notations defined in Pruner 1 implementation, calculate  

{𝑧𝑖
Є(𝑚)}

𝑚=1

𝑛
 =  { ∑ 𝑏𝑖

Є (𝑘, 𝑚
𝑙

𝑛
)  

𝑤

𝑘=1
  ∑ 𝑏𝑖

Є (x1 + 𝑚
𝑙

𝑛
, 𝑗)  

y2

𝑗=1
⁄ }

𝑚=1

𝑛

 

Note that for l < 26pixels, the same horizontal and/or vertical locations may processed more than once 

as l < n. 

Calculate the errors as  

(3.10) 

(3.9) 
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𝑒𝑟𝑟𝑖
Є(𝑚)  =  { 

 1 , if  | 𝑧𝑖
Є(𝑚) − 𝜇 ({𝑧𝑖

Є(𝑚)}
𝑖=1

𝑁
) | > 1.5𝜎 ({𝑧𝑖

Є(𝑚)}
𝑖=1

𝑁
) 

 0 , otherwise                                                                                
   

 

Rejection Criteria:   ∑ 𝑒𝑟𝑟𝑖
Є(𝑚)𝑑

𝑚=1  > 0.33𝑛 

 

Pruner 3 implementation 

[CBA: sample alignment, feature: binary foreground] 

𝑧𝑖
Є =  x_head𝑖

Є 

 

Rejection Criteria:   |𝑧𝑖
Є − 𝑤/2| / (𝑤/2)  >  0.5 

Pruner 4 implementation 

[CBA: torso-head ratio, feature: binary foreground] 

According to the previously mentioned human body proportions, the head and torso constitute 4 heads. 

The vertical range for head is 0 – t1, where t1 = (1/7.5)h , and the vertical range for torso is t2 – t3, 

where, t2 = (1.5/7.5)h and t3 = (3.5/7.5)h. Calculate 

𝑧𝑖
Є =  

1

t3 − t2
∑ ∑ 𝑏𝑖

Є(𝑘, 𝑏)

𝑤

𝑘=1

t3

𝑏=t2

1

t1
∑ ∑ 𝑏𝑖

Є(𝑘, 𝑎)

𝑤

𝑘=1

t1

𝑎=1

⁄  

 

Rejection Criteria:  | 𝑧𝑖
Є − 𝜇 ({𝑧𝑖

Є}
𝑖=1

𝑁
) | > 1.5𝜎 ({𝑧𝑖

Є}
𝑖=1

𝑁
) 

 

3.4.2.4 TSF 4 – Template analysis (Temp) 

The previous three TSFs successfully reject a large majority of the non-pedestrian instances; 

consequently, the remaining samples are mostly pedestrians. This predominance can be exploited to 

generate an average template that is bound to be highly representative of pedestrians and then identify 

those instances with insufficient similarity using template matching approaches (see Figure 3.10). 

Implementation details are as follows:  

 

(3.11) 

(3.12) 

(3.13) 
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Figure 3.10: Visualization of the Temp TSF. 

 

Number of pruners: 2, configuration: parallel 

Pruner 1 implementation 

[CBA: affinity to average template, feature: sample edges] 

For every sample 𝑥𝑖
Є, use any edge detection algorithm (Canny is used here) to extract the edge image, 

𝑐𝑖
Є. Compute the average of all edge images as 𝑐_𝑚𝑒𝑎𝑛Є =  𝜇 ({𝑐𝑖

Є}
𝑖=1

𝑁
). Denote the set of foreground 

pixels in 𝑐𝑖
Є by 𝑃 = {𝑝𝑘}𝑘=1

𝑁  and the set of foreground pixels in 𝑐_𝑚𝑒𝑎𝑛Є as 𝑄 = {𝑞𝑘}𝑘=1
𝑀 . Calculate the 

modified hausdorff [122]  distance between each sample and the average edge image 

𝑧𝑖
Є = max {𝒅(𝑃, 𝑄) , 𝒅(𝑄, 𝑃)}, 

where, 𝒅(𝑃, 𝑄) = (1 𝑁)⁄ ∑ 𝒅(𝑝𝑘 , 𝑄)𝑁
𝑘=1 , such that, 𝒅(𝑝𝑘 , 𝑄) =  min

𝑞∈𝑄
‖𝑝𝑘 , 𝑞‖ , 

and, 𝒅(𝑄, 𝑃) = (1 𝑀)⁄ ∑ 𝒅(𝑞𝑘, 𝑃)𝑀
𝑘=1 , such that, 𝒅(𝑞𝑘 , 𝑃) =  min

𝑝∈𝑃
‖𝑞𝑘, 𝑝‖ . 

 

Rejection Criteria: 𝑧𝑖
Є >  𝜇 ({𝑧𝑖

Є}
𝑖=1

𝑁
) + 1.5𝜎 ({𝑧𝑖

Є}
𝑖=1

𝑁
) 

 

Pruner 2 implementation 

[CBA: affinity to average template, feature: sample contour/perimeter] 

For every sample 𝑥𝑖
Є, obtain the contour or perimeter of the sample, 𝑢𝑖

Є. Repeat all steps outlined in 

Pruner 1 implementation. 

HIGH  

Affinity 

Mean contour image 

LOW  

Affinity 

(3.14) 
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3.4.3 Training the initial detector 

Recall that the objective of the inception stage is to train an initial detector with minimal labelling errors, 

to prevent error propagation through the subsequent stages. The following strategies fulfil that objective: 

1) Ѫ1 is designed to segregate pedestrian instances with high-precision. Therefore, samples that 

successfully pass all TSFs of Ѫ1 are confidently labelled as the initial positive samples.  

2) The above high-precision labelling consequently causes a number of pedestrian instances to be 

incorrectly rejected. Therefore, the samples that are rejected by Ѫ1 are not labelled as initial 

negative samples to avoid mislabelled training samples. Rather, step 3) is executed to acquire 

the initial negative samples. 

3) The training sequence is sampled at regular intervals to form a sequence of k frames {𝔼i
−ve}i=1

k  

to be utilized for bootstrapping hard negatives. The initial negatives are acquired by densely 

sampling the non-motion regions in the first frame, 𝔼1
−ve, only. Instead of performing multi-

scale sampling, the height model learnt from the TSF 1 in Ѫ1 is employed to determine the 

window size to be sampled at a given location based on the expected pedestrian height at that 

location. The initial positives and the initial negatives are then combined to train the initial 

detector, ЖInitial. 

The rejected samples may contain valuable pedestrian instances that can be utilized for 

improving the performance of the detector. Therefore, the rejects are not discarded; they are stored and 

revisited in Stage 2 to reacquire the incorrectly rejected pedestrian instances. 

 

3.5 VAT Stage 2: Bootstrapping 

This section provides full implementation details for the second stage of VAT: Bootstrapping. The 

reader is advised to frequently refer back to Figure 3.3 and Algorithm 1 as they progress through this 

section to enable a clearer understanding of the connections between various components/steps as well 

as their relevance to the overall framework. 
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3.5.1 Retraining with hard negatives 

Bootstrapping is the iterative retraining of a detector with “hard negatives”. It is an important technique 

employed in pedestrian detector training to effectively reduce the false alarm rate by focusing on 

negative samples that lie close to the decision boundary. The standard approach for training a pedestrian 

detector involves two steps [40, 42, 44] . First, the detector is trained using a dataset that comprises of a 

large number of pedestrian and non-pedestrian instances. Next, this detector is applied, or 

“bootstrapped” to background images containing no pedestrians, the obtained detection responses are 

augmented as hard negatives to the original datasets and the detector is retrained.  

 Despite the significance of bootstrapping in training pedestrian detectors, the literature on ideal 

bootstrapping practices is very limited [123]. There is no comprehensive research that indicates whether 

it is better to search all the frames at once or update the detector after searching every frame and how 

many times the frames must be searched to reach convergence. As the initial detector, ЖInitial, was 

trained using only a small set of initial negatives sampled from a single frame and consequently has high 

false alarm rate, the importance of optimal bootstrapping is more critical in VAT. 

 Therefore, detailed studies were performed to determine the best bootstrapping methodology. It 

was found that bootstrapping exhibits similar convergence behaviour as gradient descent – the most 

common optimization algorithm used in machine learning to minimize the cost function of the trained 

model by iteratively updating the parameter values. There are three variants of gradient descent that 

differ based on the amount of data processed for updating the parameters: 

 Batch gradient descent [124]: The training error over all samples in the dataset is computed 

before updating the model parameters. There is higher guarantee of convergence to the global 

minimum, but this stability itself can cause premature convergence to a sub-optimal set of 

parameters. This approach is usually slow. 

 Stochastic gradient descent [125]: For every sample in the dataset, the training error is 

computed and the model parameters are updated. The frequency of updates can result in a noisy 

learning process, which can cause the parameters to jump around and consequently prevent 

convergence to the global minimum. This approach is usually fast. 
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 Mini-batch gradient descent [126]: The training dataset is split into small batches and for each 

batch of samples, the training error is computed and the model parameters are updated. This 

approach creates a balance between the convergence abilities of batch gradient descent and 

speeds of stochastic gradient descent and is therefore the most widely used variant of the three. 

The batch size is a deciding factor on the speed and accuracy of the learning process. 

Analogously, ЖInitial can be bootstrapped on all the frames at once, one at a time or small batches 

of frames. It turned out that if all the frames are searched at once, convergence is certain, but the 

detection rate is undesirably suppressed. On the other hand, if each frame is searched individually, the 

detection rate fluctuates and does not converge to a stable optimum. The ideal approach proved to be 

the intermediate one based on small batches. Accordingly, the bootstrapping method was devised as 

follows. Given k frames sampled from the target surveillance environment, (k-1) frames are used for 

bootstrapping (the first of k frames is sampled for initial negatives during Inception) and divided into s 

segments, each consisting of (k-1)/s frames, fr. Bootstrapping commences by initializing the retrained 

detector ЖHN
 with ЖInitial. In each retraining iteration, the non-motion regions in the next fr frames are 

searched with ЖHN, the acquired hard negatives are augmented to the dataset and ЖHN is retrained. A 

single bootstrapping round is completed when all s segments are sequentially processed. The 

bootstrapping procedure either concludes when r bootstrapping rounds are repeated, or terminates if no 

hard negatives are acquired for 3 consecutive retraining iterations. Detailed experimental results for all 

three approaches are presented in subsection 4.3.2. 

3.5.2 Retraining with hard positives 

Unlike standard bootstrapping that involves searching for hard negatives only, the bootstrapping stage 

of VAT additionally retrains the detector with hard positives. In the context of VAT, the hard positives 

are the pedestrian instances that were incorrectly rejected (rejected positives) by Ѫ1, but not discarded. 

Retraining with these rejected positives serves dual purposes. Firstly, by revisiting the rejected samples 

to search for the rejected positives, the valuable information in the acquired rejected positives can be 

exploited to add improvements to the detector rather than being wasted. Secondly, despite selection of 
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the optimal bootstrapping strategy detailed in subsection 3.4.1, multiple iterations of retraining with hard 

negatives will inflict some suppression on the detection rate of ЖHN that is most likely inevitable; 

retraining with the acquired rejected positives can improve the detection rate while maintaining the 

achieved reduction in false alarm rate from previous step (retraining with hard negatives). This step is 

implemented by applying ЖHN to the samples rejected by Ѫ1, and those with positive classification 

scores are reacquired and augmented to the training set to train ЖRP
.  

 

3.6 VAT Stage 3: Finalization 

This section provides full implementation details for the third stage of VAT: Finalization. The reader is 

advised to frequently refer back to Figure 3.3 and Algorithm 1 as they progress through this section to 

enable a clearer understanding of the connections between various components/steps as well as their 

relevance to the overall framework. 

3.6.1 Detection-based sample acquisition 

Though motion-based sample acquisition is more robust in difficult surveillance environments and can 

achieve better sample alignment, it does not have localization ability like a pedestrian detector. When 

people move in a group or close to other moving objects like vehicles, the motion regions merge. Under 

such circumstances, the Inception stage has no means of localizing the pedestrian instances in these 

merged regions. These regions are either ignored based on aspect ratio, or rejected by Oracle-1.The 

Inception stage is designed to only acquire those pedestrian instances that are the sole moving objects 

in their corresponding motion regions. The ignored or rejected patches is highly likely to contain 

multiple true positives and false positives that could be exploited to further enhance the detector. 

Furthermore, as the Bootstrapping stage only searches the non-motion regions for hard negatives, all 

potential false positives in the motion regions that could have been acquired as hard negatives are 

ignored. 
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  a 

 

 b  

Figure 3.11: Samples acquisition during a) Inception, by applying motion detection and b) Finalization, by 

applying ЖRP. Green bounding boxes denote true positives and red boxes denote false positives 

 

To acquire the samples missed by the Inception and Bootstrapping stages, the Finalization stage 

applies the detector, ЖRP
 to the training sequence and extracts samples with positive responses, ℜ. 

Figure 3.11 compares the sample acquisitions, ℳ, during the Inception stage and ℜ, during the 

Finalization stage. During the Inception stage, people in groups and people near to vehicles are ignored 

by the motion-based acquisition because the merged motion regions have large aspect ratio (See the 

image and its foreground in Figure 3.11a). However, by densely scanning the whole frame, ЖRP
 is able 

to localize most of the previously missed pedestrians (see Figure 3.11b). Additionally, the new false 

positives (red bounding boxes in Figure 3.11b) amongst ℜ are valuable novel negatives, as they were 

not acquired in the previous stages, either because the motion region was rejected during Inception (as 

mentioned in the previous paragraph) or it was not searched during Bootstrapping. 
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3.6.2 Oracle-2 

The samples in ℳ, acquired in the Inception stage were based on motion and therefore, have minimal 

correlation amongst themselves. Contrastingly, ℜ comprises of detection responses acquired by 

applying the detector ЖRP to the target surveillance environment. This means that the non-pedestrian 

instances have substantial correlation with the pedestrian instances; else they would not have been 

mistakenly acquired as detections responses to begin with. Therefore, this does not only mandate (as per 

the guidelines in subsection 3.2.4) the design of a new oracle, but one that is composed of more 

discriminative pruners relative to those in Ѫ1, in order to reliably segregate the pedestrians from non-

pedestrians amongst the detection responses.  

Furthermore, as Finalization is the last stage of VAT, the rejected samples cannot be discarded; 

rather, they must be augmented to the training dataset as final negatives in order to maximize 

exploitation of scene-specific information. Therefore, this second oracle cannot be designed with merely 

high-precision as the objective, as this would result in a large number of incorrectly rejected pedestrian 

instances. A good balance of precision and recall must be targeted, which may require the oracle to be 

constructed using fewer TSFs. 

Taking the afore-mentioned factors into consideration, similar to Oracle-1, ℜ from different 

datasets (see Section 4.1) were jointly examined and the guidelines from subsection 3.2.4 were followed 

to design Oracle-2 (Ѫ2) as a combination of three TSFs. The full implementation details of these TSFs 

are presented in the next three subsections. Note that the value of 1.5𝜎 used in the rejection criteria of 

the pruners has been determined empirically. 

3.6.2.1 TSF 1 – Vertical structures analysis (VerStrct) 

Amongst the most salient features of pedestrians are the long edges extracted from the limbs (arms and 

legs). Therefore, there are various false positives in ℜ acquired by the detector ЖRP because of the 

presence of such long edges, such as portions of vehicles or buildings. However, unlike the limbs of 

pedestrians whose vertical length may extend to only half the total height of the pedestrian at best, those 

from vehicles/buildings are much longer (see Figure 3.12). Implementation details are as follows:  
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Figure 3.12: Visualization of the VerStrct TSF 

 

Number of pruners: 2, configuration: parallel 

Pruner 1 implementation 

[CBA: longest vertical edge, feature: edges] 

For every sample 𝑥𝑖
Є, denote its height by h, its width by w and use Canny edge detection algorithm to 

extract the edge image, 𝑐𝑖
Є. Divide 𝑐𝑖

Є into m partitions, where m = w/b. b is the partition width, set to 2 

pixels. Calculate 

{𝑧_𝑓𝑢𝑙𝑙𝑖
Є(𝑙)}

𝑙=1

𝑚
 = { ∑ ∑ 𝑐𝑖

Є(𝑗, 𝑘) 

ℎ

𝑘=1

𝑏𝑙

𝑗=1+𝑏(𝑙−1)

}

𝑙=1

𝑚

 

and 𝑧_𝑓𝑢𝑙𝑙𝑖
Є = max ( {𝑧_𝑓𝑢𝑙𝑙𝑖

Є(𝑙)}
𝑙=1

𝑚
 ) 

Every sample has vertical and horizontal context margin around it. Assume the vertical top and bottom 

vertical margins to be 7.5%, and split 𝑐𝑖
Є(𝑗, 𝑘) into three vertical ranges of 0-0.075h, 0.075h – 0.925h 

and 0.925h – h. Calculate   

{𝑧_𝑚𝑖𝑑𝑖
Є(𝑙)}

𝑙=1

𝑚
 = { ∑ ∑ 𝑐𝑖

Є(𝑗, 𝑘) 

0.925ℎ

𝑘=0.075ℎ

𝑏𝑙

𝑗=1+𝑏(𝑙−1)

}

𝑙=1

𝑚

 

𝑧_𝑚𝑖𝑑𝑖
Є = max ( {𝑧_𝑚𝑖𝑑𝑖

Є(𝑙)}
𝑙=1

𝑚
 ) 

Construct {𝑖𝑡, 𝑙𝑡}𝑡=1
𝑛 , where, 𝑖𝑡 is the index of the tth sample that satisfies the condition                     

𝑧_𝑚𝑖𝑑𝑖
Є >  𝜇 ({𝑧_𝑚𝑖𝑑𝑖

Є}
𝑖=1

𝑁
) + 𝜎 ({𝑧_𝑚𝑖𝑑𝑖

Є}
𝑖=1

𝑁
) and 𝑙𝑡 is the partition where the longest edge was 

found. Calculate 

{𝑧_𝑡𝑜𝑝𝑖𝑡

Є }
𝑡=1

𝑛
 = { ∑ ∑ 𝑐𝑖𝑡

Є (𝑗, 𝑘) 

0.075ℎ

𝑘=1

𝑏𝑙𝑡

𝑗=1+𝑏(𝑙𝑡−1)

}

𝑡=1

𝑛

 

(3.15) 

(3.16) 

(3.17) 

Determine longest 

vertical edge in sample 
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{𝑧_𝑏𝑜𝑡𝑡𝑜𝑚𝑖𝑡

Є }
𝑡=1

𝑛
 = { ∑ ∑ 𝑐𝑖𝑡

Є (𝑗, 𝑘) 

ℎ

𝑘=0.925ℎ

𝑏𝑙𝑡

𝑗=1+𝑏(𝑙𝑡−1)

}

𝑡=1

𝑛

 

 

Rejection Criteria:   𝑧_𝑓𝑢𝑙𝑙𝑖
Є >  𝜇 ({𝑧_𝑓𝑢𝑙𝑙𝑖

Є}
𝑖=1

𝑁
) + 1.5𝜎 ({𝑧_𝑓𝑢𝑙𝑙𝑖

Є}
𝑖=1

𝑁
) 

                      OR     𝑧_𝑡𝑜𝑝𝑖𝑡

Є >  𝜇 ({𝑧_𝑡𝑜𝑝𝑖𝑡

Є }
𝑡=1

𝑛
) + 1.5𝜎 ({𝑧_𝑡𝑜𝑝𝑖𝑡

Є }
𝑡=1

𝑛
) 

                      OR     𝑧_𝑏𝑜𝑡𝑡𝑜𝑚𝑖𝑡

Є >  𝜇 ({𝑧_𝑏𝑜𝑡𝑡𝑜𝑚𝑖𝑡

Є }
𝑡=1

𝑛
) + 1.5𝜎 ({𝑧_𝑏𝑜𝑡𝑡𝑜𝑚𝑖𝑡

Є }
𝑡=1

𝑛
) 

 

Pruner 2 implementation 

[CBA: longest vertical edge, feature: gradient] 

For every sample 𝑥𝑖
Є, denote its height by h, its width by w and extract the gradient image, 𝑔𝑖

Є. Set b to 

3 pixels and repeat all steps outlined in Pruner 1 implementation. 

3.6.2.2 TSF 2 – Masked gradient Analysis (MskGrad) 

Gradients are, in general, the most discriminative features used in training pedestrian detectors and are 

usually concentrated along the contour of pedestrians. For this reason, it is likely that, a considerable 

number of non-pedestrian instances will be acquired because the combination of their extracted 

gradients are holistically quite similar to the gradients along the contour of pedestrians. Such false 

positives will not be rejected by the previous TSF if long edges are absent. To differentiate such 

instances from pedestrians, a region enclosing pedestrians can be approximated and the gradient 

concentration inside this region can be exploited (see Figure 3.13). Implementation details are as 

follows: 

 

Figure 3.13: Visualization of the MskGrad TSF 

(3.18) 

  

MAX 

ROI Gradient Sum 

0 
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Number of pruners: 1 

Pruner implementation 

[CBA: gradient concentration, feature: gradient] 

For every sample 𝑥𝑖
Є, denote its height by h, its width by w and extract the gradient image, 𝑔𝑖

Є. Create a 

binary elliptical mask, E, to isolate the area of analysis. E has similar dimensions as 𝑥𝑖
Є; all regions 

within the ellipse are assigned a Boolean “true” and a Boolean “false” is assigned everywhere else. The 

major axis of E is along the y-axis from 0.075h – 0.925h and the minor axis is along the x-axis from 

0.075w – 0.925w. Centre E on 𝑔𝑖
Є and perform masking by 𝑔𝑖

Є =  𝑔𝑖
Є  × 𝐸. Calculate 

𝑧𝑖
Є = ∑ ∑ 𝑔𝑖

Є(𝑗, 𝑘)

𝑤

𝑗=1

ℎ

𝑘=1

 

 

Rejection Criteria: 𝑧𝑖
Є  <  𝜇 ({𝑧𝑖

Є}
𝑖=1

𝑁
) − 1.5𝜎 ({𝑧𝑖

Є}
𝑖=1

𝑁
) 

 

3.6.2.3 TSF 3 – SIFT analysis (SIFT) 

This TSF operates similar to TSF 4 (Temp) of Ѫ1 because it aims to exploit the predominance of 

pedestrian instances. However, the rejection logic must be relatively more complex due to higher 

correlation between the pedestrian and non-pedestrian instances. The scale-invariant feature transform 

or SIFT [127] is a powerful feature extraction algorithm that extracts object keypoints and computes 

their descriptors. The SIFT features of two objects can be matched to measure their similarity. If each 

sample is matched with every other sample using SIFT features, two useful trends will surface (see 

Figure 3.14). Firstly, as pedestrians are the dominant class, the pedestrian instances will have a much 

larger number of matches. Secondly, difficult non-pedestrian instances may also have a large number of 

matches; however, if the actual scores of their matches are examined, there should be extremely few 

matches with high scores. Implementation details are as follows: 

 

(3.19) 
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Figure 3.14: Visualization of the SIFT TSF. The green plot shows the matching scores between the pedestrian 

instance and all the other samples based on SIFT features. Similarly, the red plot shows the matching scores for 

the non-pedestrian instance. The non-pedestrian instance is a difficult one due to its similarity with pedestrians. 

Notice how even though it matches with a good number of samples, the non-pedestrian instance has only one high 

matching score. Comparatively, the pedestrian instance has several high matching scores. 

 

Number of pruners: 2, configuration: series 

Given a sample, 𝑥𝑖
Є, denote its height by h, its width by w. Form a grid of pixel locations,                             

𝔾 = {(𝐱𝑑 − 3 , 𝐲𝑑 − 3)} 𝐱=1
𝑎   𝐲=1

𝑏   , such that a = w/d and b=h/d. d is set to 6 pixels. Create custom SIFT 

keypoint frames, centred at each pixel location in 𝔾. Set the scale for every custom keypoint frame to 3, 

and leave the orientation unspecified. For every 𝑥𝑖
Є, extract the set of keypoint descriptors, K𝑖

Є =

 {𝑘𝑖
Є(𝑡)}𝑡=1

𝑘_𝑐𝑜𝑢𝑛𝑡
  from the above custom keypoint frames by applying SIFT. Note that 𝑘_𝑐𝑜𝑢𝑛𝑡 = 𝑎𝑏. 

Create the similarity matrix SЄ = {𝑠𝑖𝑗
Є } ∈  ℝ𝑁×𝑁 , where 𝑠𝑖𝑗

Є  is in itself a 2-D array that contains indices 

of the matching keypoints between K𝑖
Є and K𝑗

Є . 𝑠𝑖𝑗
Є  is generated by searching for the closest matching 

keypoint descriptor in K𝑗
Є for every keypoint descriptor in K𝑖

Є. The closeness is measured by computing 

the L2 norm between two keypoints. Denote 𝑠𝑖𝑗
Є _𝑟𝑜𝑤𝑠 as the number of matches between 𝑥𝑖

Є and 𝑥𝑗
Є, 

such that 0 ≤ 𝑠𝑖𝑗
Є _𝑟𝑜𝑤𝑠 ≤ 𝑘_𝑐𝑜𝑢𝑛𝑡, where 0 indicates no matches found and 𝑘_𝑐𝑜𝑢𝑛𝑡 indicates that all 

descriptors were matched. For the nth match entry in 𝑠𝑖𝑗
Є , 𝑠𝑖𝑗

Є (𝑛, 1) is the index of the descriptor in K𝑖
Є 

and 𝑠𝑖𝑗
Є (𝑛, 2) is the index of the descriptor in K𝑗

Є that matched each other, i.e. 𝑘𝑖
Є(𝑠𝑖𝑗

Є (𝑛, 1) ) matches  

𝑘𝑗
Є(𝑠𝑖𝑗

Є (𝑛, 2) ). 

 

Response Index 

M
a

tc
h

in
g

 s
c
o

re
 

Match with every other training sample 
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Pruner 1 implementation 

[CBA: inter-sample similarity extent, feature: SIFT Keypoints] 

For every sample 𝑥𝑖
Є, calculate the number of samples that it matched with by computing 

𝑧𝑖
Є =  ∑  𝑚𝑖𝑗

Є
𝑁

𝑗=1
 

where, 𝑚𝑖𝑗
Є =  { 

1 , if  𝑠𝑖𝑗
Є _𝑟𝑜𝑤𝑠 > 0          

 0 , if 𝑠𝑖𝑗
Є _𝑟𝑜𝑤𝑠 = 0           

  

 

Rejection Criteria: 𝑧𝑖
Є  <  𝜇 ({𝑧𝑖

Є}
𝑖=1

𝑁
) − 1.5𝜎 ({𝑧𝑖

Є}
𝑖=1

𝑁
) 

 

Pruner 2 implementation 

[CBA: false similarity extent, feature: SIFT Keypoints] 

For every sample 𝑥𝑖
Є, find the highest number of matches with another sample by computing 

𝑚𝑖
Є = max ({𝑠𝑖𝑗

Є _𝑟𝑜𝑤𝑠}
𝑗=1

𝑁
) 

 

Rejection Criteria: (𝑧𝑖
Є <  𝜇 ({𝑧𝑖

Є}
𝑖=1

𝑁
)) ∩ (𝑚𝑖

Є >  𝜇 ({𝑚𝑖
Є}

𝑖=1

𝑁
) + 1.5𝜎 ({𝑚𝑖

Є}
𝑖=1

𝑁
)) 

 

3.6.3 Training the final detector 

The confidence scores of the detection responses, ℜ, can be utilized to increase the labelling reliability 

of Ѫ2. A confidence barrier is applied such that those detection responses with confidence scores greater 

than (µconf 
+ conf) cannot be rejected, where µconf and conf are the mean and standard deviation of the 

confidence scores of ℜ, respectively. A high confidence score by the pedestrian detector, ЖRP, implies 

a very strong probability that the sample under consideration is a pedestrian and is therefore allowed to 

override the decisions of TSFs to reject such a sample. The segregated pedestrian instances and the 

(3.20) 

(3.21) 
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rejects are augmented to the training set as the final positives and final negatives, respectively, to train 

the final detector, ЖFinal, which is ultimately assigned as the scene-specific detector, Ж§, trained by 

VAT. 
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4 Experimental Results 

In real-world surveillance environments, there is a continuous incoming stream of video frames from 

the surveillance cameras. Therefore, if VAT were to be applied to a target surveillance environment, it 

would utilize a sequence of video frames to train the scene-specific pedestrian detector, which could 

then be deployed to detect pedestrians in subsequent frames. As a concrete example, a surveillance 

system executes VAT at 10.00 a.m. on a particular target scene. VAT takes 1 hour to finish, and 

generates the scene-specific pedestrian detector. From 11.00 a.m. onwards, the system can perform 

pedestrian detection on that target scene using the scene-specific pedestrian detector trained by VAT. 

The performance of the developed VAT framework is thoroughly evaluated using 10 static 

video surveillance datasets with different levels and combinations of scene-specific difficulties. To 

model real-world scenarios as described above, each dataset is split into training and testing sets. For 

each dataset, VAT is applied to the training set, which is created from the former portion of the dataset, 

and the trained scene-specific pedestrian detector is subsequently evaluated on the testing set, which is 

constructed from the latter portion of the same dataset. VAT comprises of various modules and training 

stages (see Figure 3.3); therefore detailed performance analysis of these components is necessary to 

make the evaluation of the VAT framework complete and to provide reasons, if necessary, for the 

performance of the final scene-specific pedestrian detector Ж§. Accordingly, the performed experiments 

were: 

 Evaluation of labelling performance for both the designed oracles, Oracle-1 and Oracle-2, as 

well as the individual TSFs comprising each oracle. 

 Evaluation of the detectors generated by each stage of the VAT framework, and comparison of 

the final scene-specific detectors trained using VAT against detectors that are generic, manually 

trained or dependent on pre-trained generic detectors for scene-specific training. 

 Comparison of VAT against several state-of-the-art scene-specific approaches on the two most 

commonly used datasets for testing scene-specific pedestrian detectors. 
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4.1 Datasets 

Figure 4.1 illustrates sample frames from the datasets. Detailed specifications of the datasets, 

including training and testing splits, are presented in Table 4.1 and the range and distributions of 

pedestrian heights in each testing set are depicted using box plots in Figure 4.2.  In the subsequent 

descriptions, the datasets are grouped according to their difficulty level. 

Hard (see Figure 4.1a) 

1) MIT Traffic (MIT) [93]: It is a far-field video of a traffic intersection. The main challenge is that 

the pedestrians are very small relative to the video frame size due to the large distance between the 

camera and scene.  

2) CUHK Square (CUHK) [94]: It is the most commonly used dataset for testing scene-specific 

pedestrian detectors. It captures a pedestrian square at a smaller camera tilt angle. A crucial point is that 

it is very difficult to detect pedestrians in the upper half of the video frames because there is significant 

degradation in image contrast as the distance from the camera increases. 

3) MONASH Frontgate (MONASH): This dataset was entirely constructed by us. We captured the 

scene at the front entrance of MONASH University, Malaysia Campus. The challenges of this dataset 

are the slanted orientations of the pedestrians and the inter-pedestrian occlusion scenarios simulated by 

a group of actors. 

Extremely hard (see Figure 4.1b) 

We discover and introduce three extremely challenging datasets for testing scene-specific 

pedestrian detection. 

4) QMUL Roundabout (QMUL-R) [102]: It captures a traffic roundabout at low resolution and has 

the worst image quality amongst all the test datasets. 

5) QMUL Junction (QMUL-J) [92] : It captures a traffic junction and is the most difficult dataset 

due to the combination of poor image quality, low resolution, small pedestrian scales and severe inter-

pedestrian occlusions as well as pedestrian-vehicle occlusions 
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Figure 4.1: Datasets for experimental evaluation of VAT. a) Hard datasets, b) Extremely hard datasets and c) 

Medium datasets. Zoom in for a better assessment of scene-specific factors like pedestrian scale or image quality. 

Note that size difference between different datasets in this figure is not an accurate representation of their true 

image sizes. For the real image size, refer to the video resolution in Table 4.1.  

 

6) Karl-Wilhelm-Straße Intersection (KWSI) [103] : It captures a traffic intersection from a bird’s 

eye view similar to MIT, but with a much larger camera tilt angle and poorer image quality. 

Medium (see Figure 4.1c) 

PETS 2009 [95]  is a relatively easier dataset because of better image quality and larger 

pedestrian scales (see Figure 4.2). Therefore, to make it more challenging and to increase the overall  

  a 

                               MIT                                                           CUHK                                                     MONASH 

  b 

                              QMUL-R                                                     QMUL-J                                                    KWSI 

  c 

                         PETS-01                                    PETS-02                                   PETS-03                                  PETS-04   
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Table 4.1: Specifications of experimental video surveillance datasets 

 

difficulty, we select one of the clips with heavy inter-pedestrian occlusion levels – S1.L1, at timestamp 

13-59. We perform experiments on all 4 views of this clip. 

7) PETS 2009 View 1 (PETS-01): This is the easiest of the 10 datasets; the pedestrians are large 

and clear, and the occlusion levels are lower relative to the other three PETS views because the scene is 

captured from a side-view.  

8) PETS 2009 View 2 (PETS-02): This dataset captures the scene from a frontal view and 

consequently has heavy occlusions. Also, image clarity is poor near the upper portion of the video frames 

due to excessive brightness levels. 

9) PETS 2009 View 3 (PETS-03): It captures the scene from a similar view-point as PETS-01, but 

from slightly further. However, it is far more challenging because a portion of the scene is obstructed 

by trees. 

10) PETS 2009 View 4 (PETS-04): It captures the scene from a rear view, but compared to PETS-

02, the camera has a smaller tilt angle and is positioned closer to the scene. 

Note that all datasets, except PETS-01 – PETS-04, have the added difficulty of various moving 

vehicles in the scenes (see Figure 4.1). For MIT and CUHK, the training and testing sets are prepared 

as per the original authors. For MONASH, KWSI, QMUL-R and QMUL-J, the training and testing sets 

were prepared by sampling frames from the former and latter portions of the same videos, respectively. 

However, for all PETS datasets, due to limited scene variation in S1.L1, frames were sampled from it 

to prepare the testing sets only; the training sets were prepared by sampling frames from a separate clip 

– S0.CC, at timestamp 12-34. Excluding MIT and CUHK, the ground truth for the testing sets have been  

Dataset 
Video 

Resolution 

Training Set Testing Set Image 

Quality 

Occlusion 

Level 

Overall 

Difficulty #Frame #Pedestrian #Frame #Pedestrian 

MIT 720×480 420 1573 100 481 Average Mild *** 

CUHK 720×576 352 2087 100 666 Average Mild *** 

MONASH 640×480 360 801 120 626 Average Moderate *** 

QMUL-R 360×288 620 N/A 100 184 Poor Mild ***** 

QMUL-J 360×288 441 N/A 110 1270 Poor Heavy ***** 

KWSI 704×568 121 N/A 78 786 Poor Mild **** 

PETS-01 768×568 397 N/A 81 1168 Good Moderate ** 

PETS-02 768×568 397 N/A 81 2049 Good Heavy ** 

PETS-03 768×568 397 N/A 81 1921 Good Moderate ** 

PETS-04 768×568 397 N/A 81 1628 Good Heavy ** 
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Figure 4.2: Range and distribution of pedestrian heights (in pixels) for all testing sets. Magenta crosses denote 

outliers 

 

manually annotated by us (see number of pedestrians annotated in Table 4.1). In terms of the annotations 

for the training sets, once again the ground truth from the original authors were used for MIT and CUHK, 

whereas the ground truth for MONASH was manually annotated by us. However, manual annotation 

demands extensive amounts of time and effort. Therefore, training annotations for the remaining datasets 

are currently unavailable (see Table 4.1).  

The ‘overall difficulty’ reported in Table 4.1 is a subjective metric determined by assessing 

critical scene-specific factors like image quality, pedestrian scale, video resolution, viewpoint, scene 

illumination, occlusion levels and background complexity. One of the most important factors is the 

image quality, which is primarily determined by the sharpness and contrast levels in the image.  By 

comparing QMUL-R and MIT in Figure 4.1, it can be observed that the tree regions in MIT appear clear 

and detailed due to good sharpness and contrast levels, while the tree regions in QMUL-R have very 

poor detail due to poor image quality. Pedestrian scale (refer to Figure 4.2) has a profound effect on the 

difficulty level of a dataset - if the pedestrian scale is smaller than 30 pixels, the difficulty level can 

significantly increase despite good image quality and resolution (such as MIT). This is because, at such 

small scales, the quantity and quality of the extracted features (of the pedestrian/non-pedestrian instance) 
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utilized by the detector for classification degrades markedly. Lower resolution can further amplify the 

difficulty of a dataset that is already hampered by small scale, for reasons similar to that mentioned for 

small scale previously. The viewpoint affects the orientation of the pedestrians in the surveillance scene. 

The pedestrians in MONASH dataset have a slanted orientation, which adds to the difficulty of the 

dataset. Inconsistent illumination can ruin the image contrast, consequently causing an increase in 

missed detections. Notice the upper portion of CUHK – the excessive illumination adds unnecessary 

glare that affects the clarity of pedestrians in that portion of the image.  PETS-02 has similar illumination 

problems towards the top portion of the image. In terms of occlusion levels in a dataset, they can be 

categorized as mild if there are pedestrians that are less than 10% occluded, moderate if there are 

pedestrians that are 10% -50% occluded and severe if there are pedestrians that are more than 50% 

occluded. Note that these occlusions could be between different pedestrians or between pedestrians and 

vehicles/non-moving structures. Lastly, the background complexity is a crucial factor which is 

determined by the extent to which the background (all regions in the image that is not occupied by 

pedestrians) resembles pedestrians. A more complex background would result in a higher false alarm 

rate. The most influential object class that increases background complexity is vehicles; thus, their 

absence substantially reduces background complexity which in turn, results in a considerable drop in 

false alarm rate. 

Based on the explanations of the factors that affect the difficulty level, QMUL-R and QMUL-J 

are the most difficult datasets (extremely hard, 5 * in Table 4.1) due to poor image quality, small scale, 

low resolution and complex background. Additionally, QMUL-J has severe occlusions as well. KWSI 

is also categorized as “extremely hard” (4 * in Table 4.1) because of poor image quality, small scale and 

complex background. Each of the datasets categorized as “hard” (3 * n Table 4.1) have complex 

backgrounds and one additional complication – MIT has small scale, CUHK has inconsistent 

illumination and MONASH has non-standard viewpoint. Finally, all the PETS datasets have been 

categorized as “medium” (2 * in Table 4.1) because they do not have any particular complication except 

occlusions. 

 All 10 datasets have been made publicly available online in a single repository[128], under the 

GNU General Public License(GPL) 3.0. 
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4.2 Pedestrian detectors evaluated with VAT 

VAT is designed to be compatible with any pedestrian detector that is based on any of the popular 

supervised learning algorithms like SVM, AdaBoost or deep neural networks. This is because it does 

not attempt to make any modifications to the selected learning algorithm itself; rather it dictates the 

quality of the trained detector by controlling what training samples the learning algorithm receives. 

There are practical limitations of implementing VAT based on deep neural networks in real-

world application scenarios. For a detailed discussion on these limitations, refer to section 5.3. Thus, 

deep neural networks are not tested with VAT; rather, the experimental evaluation focuses on training 

and testing pedestrian detectors that are based on popular real-time classifiers suitable for practical 

applications, namely SVM and AdaBoost. 

Three different pedestrian detectors are trained and tested. This is done to demonstrate the 

compatibility of the VAT framework with various detectors, as well as investigate and compare the 

performances of various detectors when trained using the VAT framework. The feature-classifier 

combinations of each evaluated pedestrian detector are as follows: 

1) HOG + Linear SVM (HOG) [40]: For pedestrian detection, Histogram of Oriented Gradients or 

HOG, remains the best performing single feature, and HOG + Linear SVM is the most widely used 

combination. 

2) HOG-LBP + Linear SVM (HOG-LBP) [129]: While HOG is apt for extracting shape 

information, local binary patterns (LBP) [130] are more suited for texture. It has been shown [34] that a 

combination of HOG and LBP performs consistently much better than HOG alone. The purpose of 

testing a second detector that is also based on SVM is to explore if the richer feature set of HOG+LBP, 

compared to HOG only, translates to a better scene-specific pedestrian detector using VAT relative to 

the generic and manual counterparts 

3) Aggregate Channel Features + AdaBoost (ACF) [44]: ACF is a variant of the original Integral 

Channel Features (ICF) [41], and is one of the top-performing AdaBoost based pedestrian detectors.  
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4.3 Implementation details 

4.3.1 Detector parameters 

Full frame detection is performed using a multiscale sliding-window paradigm, with a model window 

size of w×h = 36×84 pixels, detection stride of 4 pixels and 8 scales/octave. Individual detector 

parameters are as follows: 

HOG : 6×6 pixels/cell, 2×2 cells/block, block overlap 50%, 9 bins/cell unsigned,  L2-Hys 

normalization, feature vector dimensionality is (36/6)×(84/6)×(2×2×9) = 3024. 

HOG-LBP : HOG parameters are same as above. For LBP, 12×12 pix/cell, 1×1 cells/block, no block 

overlap, 58 uniform quantized patterns, feature vector dimensionality is (36/12)×(84/12)×58 = 1218 

are used. Dimensionality of concatenated HOG-LBP feature vector is 3024+1218 = 4242. 

ACF : Total of 10 feature channels comprising of normalized gradient magnitude (1 channel), HOG (6 

channels) and LUV (3 channels). 3×3 pixels/block, feature vector dimensionality is (36/3)×(84/3)×10 

= 3360, 2048 depth-two decision trees are trained using AdaBoost. 

 For HOG and LBP feature extraction, the MATLAB interface of VLFeat library [131] was 

utilized. The SVM classifiers for HOG and HOG-LBP were trained using LIBLINEAR [132], with C = 

0.01 and L2-loss L2-regularization. ACF was implemented using the open source MATLAB toolbox 

from the authors [44].  

4.3.2 Bootstrapping parameters 

As explained in subsection 3.4.1, bootstrapping can be done on all frames at once, one frame at a time 

or segments of frames and repeated till convergence. To determine the optimal bootstrapping strategy, 

one dataset from each category of difficulty was randomly selected: MIT, QMUL-J and PETS-02 from 

the hard, extremely hard and medium groups, respectively. Using HOG as the detector, ЖInitial from the 

Inception stage was bootstrapped with hard negatives using different number of frames to generate ЖHN. 

In all experiments, it turned out that three rounds of repetition were sufficient for all kinds of approaches. 

ЖHN is evaluated on the testing set to report the miss rate. Note that as the rounds progress and more  
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Table 4.2: Miss rates of ЖHN after bootstrapping with all frames, repeated three rounds. 

Dataset 
Round 

# 

Number of frames 

25 50 75 100 

MIT 

1 0.39 0.43 0.45 0.47 

2 0.41 - - - 

3 - - - - 

QMUL-J 

1 0.83 0.85 0.88 0.90 

2 0.87 0.89 - - 

3 0.88 - - - 

PETS-02 

1 0.37 0.38 0.39 0.39 

2 - - - - 

3 - - - - 

 

 

Table 4.3: Miss rates of ЖHN after bootstrapping with one frame at a time, repeated three rounds. Reported miss 

rates are after every round. 

Dataset 
Round 

# 

Number of frames 

25 50 75 100 

MIT 

1 0.23 0.26 0.26 0.28 

2 0.27 0.31 0.30 0.31 

3 0.28 0.30 0.32 0.32 

QMUL-J 

1 0.66 0.72 0.73 0.79 

2 0.71 0.74 0.79 0.76 

3 0.75 0.78 0.77 0.79 

PETS-02 

1 0.23 0.29 0.35 0.35 

2 0.26 0.29 0.33 0.34 

3 0.26 0.31 0.35 0.34 

 

hard negatives are acquired, the miss rate will increase until the detector reaches convergence. 

Table 4.2 shows the miss rates of the ЖHN when bootstrapped with all frames at once. 

Bootstrapping is deemed to have converged (entry in bold) if no hard negatives are obtained in any 

particular round – in that case no more values are reported for that round. Three important trends can be 

observed. Firstly, easier datasets converge faster (compare the number of rounds needed by the three 

datasets for 25 frames) compared to harder ones. Secondly, utilizing a larger number of frames also 

results in faster convergence; however, the miss rates are also greater, which indicates greater 

suppression of the detection rates. Lastly, using this approach guarantees convergence. 

Table 4.3 shows the miss rates of the ЖHN when bootstrapped one frame at a time. For any 

given number of frames (25, 50, 75 or 100), the detector is bootstrapped on one frame at time, but the 

miss rate is only evaluated at the end of each round when all the frames have been processed. Two  



68 

 

Table 4.4: Different number of frames spit into batches of segment size 5. Miss rates of ЖHN are reported after 

bootstrapping with each segment, repeated three rounds.  

Dataset Round # Number of frames at fixed segment size 

                                   25 Frames, segment size = 5 

MIT 

1 0.15 0.20 0.24 0.25 0.21 

2 0.23 0.25 0.26 0.28 0.29 

3 0.25 0.25 0.30 0.29 0.29 

QMUL-J 

1 0.21 0.51 0.63 0.69 0.73 

2 0.69 0.65 0.69 0.75 0.75 

3 0.72 0.74 0.76 0.75 0.77 

PETS-02 

1 0.19 0.25 0.28 0.31 0.30 

2 0.31 0.30 0.33 0.35 0.35 

3 0.35 - - - - 

                                  50 Frames, segment size = 5 

MIT 

1 0.15 0.20 0.24 0.25 0.21 0.26 0.29 0.29 0.28 0.32 

2 0.30 0.31 0.33 0.32 0.32 0.33 0.32 0.33 0.31 0.33 

3 0.32 0.33 0.33 0.33 - - - - - - 

QMUL-J 

1 0.21 0.51 0.63 0.69 0.73 0.73 0.76 0.74 0.78 0.72 

2 0.75 0.78 0.79 0.79 0.76 0.77 0.88 0.80 0.78 0.80 

3 0.79 0.80 0.80 0.80 0.80 0.80 - - - - 

PETS-02 

1 0.19 0.25 0.28 0.31 0.30 0.32 0.35 0.35 0.35 - 

2 - - - - - - - - - - 

3 - - - - - - - - - - 

                               75 Frames, segment size = 5 

MIT 

1 0.15 0.20 0.24 0.25 0.21 0.26 0.29 0.29 0.28 0.32 0.34 0.35 0.34 0.36 0.36 

2 0.37 0.35 0.37 0.37 0.34 0.36 0.37 0.37 0.37 - - - - - - 

3 - - - - - - - - - - - - - - - 

QMUL-J 

1 0.21 0.51 0.63 0.69 0.73 0.73 0.76 0.74 0.78 0.72 0.79 0.81 0.83 0.83 0.81 

2 0.83 0.83 0.81 0.82 0.83 0.81 0.82 0.82 0.81 0.82 0.83 0.83 0.83 - - 

3 - - - - - - - - - - - - - - - 

PETS-02 

1 0.19 0.25 0.28 0.31 0.30 0.32 0.35 0.35 0.35 - - - - - - 

2 - - - - - - - - - - - - - - - 

3 - - - - - - - - - - - - - - - 

 

crucial differences emerge compared to the results from Table 4.2. Firstly, convergence is not reached 

even after three rounds; rather the miss rates actually appear to fluctuate in successive rounds. Secondly, 

for every combination of Dataset-Number of frames, the miss rate at the end of three rounds in Table 

4.3 is significantly lower than the corresponding miss rate achieved after convergence in Table 4.2. 

Overall, though this approach does not guarantee convergence, the decline in detection rate is much 

lower compared to the previous approach. 

Table 4.4 shows the miss rates when the total frames are split into batches of 5 frames, and the 

detector is bootstrapped on each batch or segment. For better confidence, bootstrapping is deemed to 

have converged if no hard negatives are acquired for three consecutive segments (entry in bold).  If  



69 

 

Table 4.5: 50 frames spit into batches of different segment sizes. Miss rates of ЖHN are reported after 

bootstrapping with each segment, repeated three rounds 

Dataset Round # Number of segments 

                                        Segment size = 5 

MIT 

1 0.15 0.20 0.24 0.25 0.21 0.26 0.29 0.29 0.28 0.32 

2 0.30 0.31 0.33 0.32 0.32 0.33 0.32 0.33 0.31 0.33 

3 0.32 0.33 0.33 0.33 - - - - - - 

QMUL-J 

1 0.21 0.51 0.63 0.69 0.73 0.73 0.76 0.74 0.78 0.72 

2 0.75 0.78 0.79 0.79 0.76 0.77 0.88 0.80 0.78 0.80 

3 0.79 0.80 0.79 0.80 0.80 0.80 - - - - 

PETS-02 

1 0.19 0.25 0.28 0.31 0.30 0.32 0.35 0.35 0.35 - 

2 - - - - - - - - - - 

3 - - - - - - - - - - 

                                      Segment size = 10 

MIT 

1 0.19 0.25 0.29 0.31 0.31 

2 0.30 0.32 0.32 0.33 0.33 

3 0.33 - - - - 

QMUL-J 

1 0.28 0.64 0.73 0.78 0.77 

2 0.77 0.78 0.78 0.80 0.81 

3 0.81 0.81 - - - 

PETS-02 

1 0.31 0.35 0.35 0.35 - 

2 - - - - - 

3 - - - - - 

                                       Segment size = 15 

MIT 

1 0.23 0.3 0.32 0.32 

2 0.35 0.35 0.35 - 

3 - - - - 

QMUL-J 

1 0.34 0.71 0.76 0.79 

2 0.80 0.80 0.81 0.82 

3 0.82 0.82 - - 

PETS-02 

1 0.35 0.35 0.35 - 

2 - - - - 

3 - - - - 

 

bootstrapping is merely performed on newer segments of frames, the continuous exposure to newer hard 

negatives may prevent convergence. That is why the concept of repeating bootstrapping on the same 

frames for a pre-determined round is necessary - it allows the detector to reach convergence and 

complete the bootstrapping procedure rather than continuing indefinitely. The results from Table 4.4 

suggests that 25 frames may be too less to cause convergence for harder datasets in 3 rounds. However, 

for 50 frames or more, convergence is guaranteed. 

 The most significant finding was that this approach does not only guarantee convergence, but 

suppresses the detection rate lesser, particularly for harder datasets. Compared to the figures for 50 

frames in Table 4.2, the miss rates for MIT, QMUL-J and PETS-02 using 50 frames with segment size  
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5 is 10%, 9% and 3% lower, respectively in Table 4.4. 50 frames was found to be optimal; using 75 

frames did achieve convergence earlier, but also caused the miss rate to rise a bit further. 

 Despite achieving convergence, considerable fluctuations can be seen in the progression of the 

miss rates (see miss rates for 50 frames in Table 4.4). Therefore, additional segment sizes of 10 and 15 

were tested, while keeping the total number of frames at 50. The miss rates are reported in Table 4.5. 

While segment size 15 also guaranteed more stable convergence without fluctuations, segment size 10 

was selected because it achieved the best balance between stable convergence and minimum miss rates. 

Accordingly, for Step 2.1 outlined in Algorithm 1, the finalized parameter settings for 

bootstrapping are : number of frames k = 51, number of segments s = 5, segment size fr = (k-1)/s = 

10,  number of rounds r = 3. 

 

4.4 Evaluation criteria 

Assuming pedestrians as positives denoted by P and non-pedestrians as negatives denoted by N, true 

positives are denoted by TP, true negatives by TN, false positives by FP and false negatives by FN. For 

easier comprehension during comparative discussions, the standard classification terminologies of 

accuracy, recall, precision, specificity and negative predictive value of the oracles are reworded as 

ѪAcc, ѪRec+, ѪPre+, ѪRec- and ѪPre-, respectively, and calculated as:  

ѪAcc = (TP+TN)/(TP+TN+FP+FN) 

ѪRec+ = TP/(TP+FN) 

ѪPre+ = TP/(TP+FP) 

ѪRec- = TN/(TN+FP)  

ѪPre- = TN/(TN+FN) 

For individual TSF performance metrics, the correctly rejected samples are denoted by TNTSF 

and incorrectly rejected samples by FNTSF, and the following are calculated: 

(4.2) 

(4.1) 

(4.3) 

(4.5) 

(4.4) 
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TSF-Pre = TNTSF/( TNTSF + FNTSF) 

TSF-Con = TNTSF/( TN+FP) 

TSF-Pre indicates the rejection precision of the TSF and TSF-Con measures the contribution of the TSF 

in terms of the percentage of total negatives it is able to reject. 

For detector evaluation, the PASCAL measure is employed, which stipulates that a detection 

response is a true positive only if the area of intersection between a detection bounding box and a ground 

truth bounding box is at least 50% of their union. As most state-of-the-art methods report their detection 

performances using receiver operating characteristic (ROC) curves of recall rates against false positive 

per image (FPPI), the same is utilized when benchmarking. However, for detailed evaluation of the VAT 

detectors, detection error trade-off (DET) curves of  miss rate against FPPI using log-log plots similar 

to [34] are generated, as they are more linear compared to ROC curves. 

 

4.5 Performance evaluation of oracles 

4.5.1 Overall oracle performance 

Figure 4.3 displays the changes (on the primary axis) in the number of pedestrians (+ves) and non-

pedestrians (-ves) for all datasets, as they pass through the TSFs of the oracles, Ѫ1 and Ѫ2. For each 

dataset, the overall oracle performance metrics (according to Section 4.4) are plotted along the secondary 

axis. Regardless of the detector being used, the input samples to Ѫ1 are always the same for a particular 

dataset because they are obtained by motion-based sample acquisition during Inception. In contrast, the 

input samples to Ѫ2 for a particular dataset are detection responses acquired by applying the detector 

ЖRP during Finalization, and are different for each implemented detection algorithm. As three different 

detection algorithms are tested (refer to Section 4.2), there are three corresponding separate plots for Ѫ2 

(Figure 4.3b – 4.3d), while only one for Ѫ1 (Figure 4.3a). Additionally, while Ѫ2 labels both passed and 

rejected samples as pedestrians and non-pedestrians respectively, Ѫ1 labels only the passed samples as 

pedestrians, while ignoring the rejects (which are re-visited during bootstrapping). Therefore, only 

(4.7) 

(4.6) 
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,  

Figure 4.3: Performance of oracles on all datasets. For every dataset, each stacked bar (except the 1st one) indicates 

the total number of remaining samples after passing the respective TSF, as a combination of pedestrians instances 

or +ves (green portion of stacked bar) and non-pedestrian instances or -ves (red portion of stacked bar). For Ѫ1, 

the 1st bar indicates the number of motion regions (ℳ) acquired during Inception. For Ѫ2, the 1st bar indicates the 

number of detection responses (ℜ) from the detector ЖRP during Finalization. For all datasets, note that last bar 

also indicates the number of samples passed and labelled as pedestrians by the oracle. 
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Table 4.6. Complete Oracle-1 statistics. 

 MIT CUHK MONASH QMUL-R QMUL-J KWSI PETS-01 PETS-02 PETS-03 PETS-04 Mean 

P / N 812/871 965/1409 285/317 53/63 899/1615 277/261 1476/268 1197/383 806/846 925/424  

TNTSF+FNTSF

/ TSF-Pre / 

TSF-Con 

Height 436/.94/0.47 739/0.99/0.52 210/0.98/0.65 14/0.93/0.21 877/0.99/0.54 110/0.96/0.41 145/1/0.54 232/0.95/0.57 469/0.93/0.51 78/1/0.18 0.97/0.46 

GraySc 314/0.9/0.32 333/0.51/0.12 62/0.84/0.16 6/1/0.1 273/0.84/0.14 89/0.48/0.16 345/0.09/0.12 272/0.15/0.1 245/0.72/0.21 270/0.33/0.21 0.59/0.16 

ForeGd 241/0.44/0.12 380/0.82/0.22 136/0.4/0.17 43/0.77/0.52 491/0.71/0.22 101/0.76/0.3 347/0.19/0.25 339/0.24/0.21 240/0.48/0.14 295/0.52/0.36 0.53/0.25 

Temp 116/041/0.05 264/0.64/0.12 64/0.06/0.01 12/0.75/0.14 211/0.63/0.08 41/0.8/0.13 308/0.08/0.09 233/0.13/0.08 214/0.42/0.11 274/0.3/0.2 0.42/0.1 

TP+FP/ѪPre+/ѪRec+ 576/0.96/0.68 658/0.95/0.65 130/1/0.46 41/0.95/0.74 662/0.95/0.7 197/0.99/0.7 601/0.99/0.41 504/0.98/0.42 487/0.94/0.57 432/0.95/0.44 0.97/0.58 

 

Table 4.7. Complete Oracle-2 Statistics. 

  MIT CUHK MONASH QMUL-R QMUL-J KWSI PETS-01 PETS-02 PETS-03 PETS-04 Mean 

H
O

G
 

P / N 807/309 1883/1008 498/404 88/61 779/274 238/62 1807/268 2029/340 1422/380 2110/276  

TNTSF+FNTSF/ 

TSF-Pre / 

TSF-Con 

VerStrct 42/0.88/0.12 155/0.85/0.13 27/0.74/0.05 7/0.57/0.07 66/0.58/0.14 19/0.32/0.1 136/0.4/0.2 189/0.28/0.16 119/0.56/0.18 116/0.2/0.08 0.54/0.12 

MskGrad 165/0.84/0.45 527/0.8/0.42 168/0.92/0.38 15/0.93/0.23 137/0.72/0.36 49/0.65/0.52 318/0.42/0.5 366/0.45/0.49 289/0.63/0.48 376/0.37/0.5 0.67/0.43 

SIFT 91/0.93/0.28 371/0.86/0.32 164/0.96/0.39 18/0.61/0.18 87/0.74/0.23 23/0.78/0.29 215/0.21/0.17 225/0.37/0.25 205/0.36/0.19 239/0.36/0.31 0.62/0.26 

TP+FP/ѪPre+/ѪRec+ 818/0.94/0.95 1838/0.93/0.9 543/0.87/0.95 109/0.71/0.88 763/0.9/0.89 209/0.97/0.85 1406/0.98/0.76 1589/0.98/0.76 1189/0.95/0.79 1655/0.98/0.77 0.92/0.85 

TN+FN/ѪPre-/ѪRec- 298/0.87/0.84 1053/0.83/0.87 359/0.92/0.82 40/0.73/0.48 290/0.69/0.73 91/0.62/0.9 669/0.35/0.88 780/0.39/0.89 613/0.52/0.84 731/0.34/0.89 0.63/0.81 

ѪAcc 0.922 0.891 0.89 0.711 0.846 0.863 0.776 0.782 0.805 0.785 0.827 

H
O

G
-L

B
P

 

P / N 1001/431 2285/1323 582/432 157/86 1387/596 403/122 1903/276 2133/415 1581/465 2172/332  

TNTSF+FNTSF/ 

TSF-Pre / 

TSF-Con 

VerStrct 73/0.79/0.13 228/0.88/0.15 47/0.64/0.07 10/0.6/0.07 134/0.68/0.15 20/0.4/0.07 146/0.39/0.21 198/0.33/0.16 137/0.47/0.14 128/0.34/0.13 0.55/0.13 

MskGrad 221/0.79/0.41 706/0.78/0.42 145/0.84/0.29 36/0.86/0.36 325/0.78/0.42 81/0.75/0.5 343/0.38/0.47 422/0.53/0.54 343/0.73/0.54 410/0.35/0.44 0.68/0.44 

SIFT 116/0.95/0.26 422/0.85/0.27 202/0.92/0.43 28/0.75/0.24 180/0.78/0.24 48/0.73/0.29 233/0.28/0.24 247/0.37/0.22 235/0.29/0.15 246/0.41/0.3 0.63/0.26 

TP+FP/ѪPre+/ѪRec+ 1022/0.91/0.93 2252/0.91/0.89 619/0.85/0.9 169/0.83/0.90 1344/0.92/0.89 376/0.95/0.89 1457/0.98/0.75 1681/0.98/0.77 1331/0.94/0.79 1720/0.98/0.77 0.93/0.85 

TN+FN/ѪPre-/ѪRec- 410/0.84/0.8 1356/0.82/0.84 395/0.86/0.78 74/0.78/0.67 639/0.76/0.81 149/0.7/0.85 722/0.35/0.91 867/0.44/0.92 715/0.54/0.83 784/0.37/0.87 0.65/0.83 

ѪAcc 0.892 0.875 0.853 0.819 0.865 0.88 0.773 0.796 0.799 0.786 0.834 

A
C

F
 

P / N 1252/562 1811/1033 519/289 147/59 1445/1031 520/177 1983/484 1728/690 1462/674 1627/955  

TNTSF+FNTSF/ 

TSF-Pre / 

TSF-Con 

VerStrct 100/0.79/0.14

4 

177/0.89/0.15 32/0.72/0.08 13/0.69/0.15 339/0.79/0.26 24/0.79/0.1 175/0.43/0.16 444/0.37/0.24 397/0.49/0.29 147/0.67/0.1 0.66/0.17 

MskGrad 283/0.81/0.41 554/0.82/0.44 141/0.82/0.4 24/0.75/0.31 717/0.74/0.51 108/0.71/0.44 430/0.55/0.49 568/0.62/0.51 495/0.62/0.46 539/0.75/0.42 0.72/0.44 

SIFT 152/0.91/0.25 330/0.84/0.27 96/0.92/0.3 25/0.8/0.34 251/0.69/0.17 81/0.79/0.36 301/0.41/0.26 296/0.36/0.16 262/0.4/0.16 307/0.74/0.24 0.69/0.25 

TP+FP/ѪPre+/ѪRec+ 1279/0.91/0.93 1789/0.92/0.91 539/0.88/0.92 145/0.91/0.90 1169/0.95/0.77 484/0.96/0.9 1561/0.97/0.76 1110/0.94/0.61 982/0.93/0.63 1589/0.86/0.84 0.92/0.81 

TN+FN/ѪPre-/ѪRec- 535/0.83/0.79 1061/0.84/0.86 269/0.84/0.78 47/0.76/0.8 1307/0.74/0.94 213/0.75/0.9 906/0.48/0.9 1308/0.48/0.91 1154/0.53/0.9 993/0.73/0.76 0.7/0.85 

 
ѪAcc 0.886 0.889 0.869 0.869 0.838 0.899 0.791 0.692 0.714 0.809 0.825 
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Figure 4.4: Examples of the types of non-pedestrian instances rejected by the TSFs of Ѫ1. Each column illustrates 

the instances rejected in 10 datasets by a single pruner of a TSF.  TSFs with multiple pruners are assigned dedicated 

columns for each pruner. Only 10 examples are displayed in each montage – hence black spaces indicate there 

were less than 10 instances rejected by that pruner. Zoom in for better clarity. 
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Figure 4.5: For each dataset, a set of 100 instances from the samples passed by Ѫ1 and labelled as pedestrian 

instances. Black spaces indicate less than 100 instances were passed. Zoom in for better clarity.  
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ѪRec+ and ѪPre+ are evaluated for Ѫ1 (see Figure 4.3a). Complete numerical performance statistics 

for the oracles and their individual TSFs are reported in Table 4.6 and Table 4.7. 

For every dataset in each plot (10 datasets×4 plots = 40 overall oracle results) in Figure 4.3, it 

can be clearly observed that starting from the input sample set (first stacked bar), the number of non-

pedestrian instances or -ves steadily declines as they pass each subsequent TSF, until the percentage of 

-ves is very small in the samples passed by the oracle (last stacked bar) as pedestrians. This ubiquitous 

pattern suggests that the designed oracles are highly consistent in effectively segregating pedestrians 

from sample sets comprising pedestrian and non-pedestrian instances, in a wide variety of environments. 

To reinforce the above observations, Ѫ1 is considered as an example and detailed illustrations 

of the samples that are rejected and passed by Ѫ1 are depicted in Figure 4.4 and Figure 4.5, respectively. 

In order to extensively judge the consistency and effectiveness with which Ѫ1 segregates pedestrians 

from sample sets consisting of pedestrian and non-pedestrians instances, in different surveillance 

environments, Figure 4.3a, 4.4 and 4.5, and Table 4.6 can be examined as such.  For each dataset 

1) Refer to Figure 4.3a to visualize how the non-pedestrians are progressively rejected as the 

samples pass through each TSF. The overall recall and precision can be compared to other 

datasets. 

2) For the exact number of samples rejected by each TSF, the precision of rejection and the 

percentage of total non-pedestrians removed by that TSF, refer to Table 4.6. 

3) To view the type of samples rejected by each TSF, refer to Figure 4.4. 

4) To view the type of samples that ultimately pass all the TSFs, and are therefore labelled by Ѫ1 

as pedestrian instances, refer to Figure 4.5. Take particular note of the high percentage of the 

correctly labelled pedestrian instances. 

For Ѫ1, ѪPre+ is typically above 95%, with an average of 97% (See Table 4.6 and view Figure 

4.5). This high precision of Ѫ1 is unaffected by the size of the input sample set (ℳ) or the dataset (see 

Table 4.6). As Ѫ1 is designed for very high-precision labelling of pedestrians, the recall, ѪRec+ is 

relatively lower, with an average of 58%. ѪRec+ of Ѫ1 is usually worse for datasets with a lower 

percentage of -ves in the input sample set, which is common amongst datasets without non-pedestrian 
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moving objects, such as PETS-01 – PETS-04 (see Figure 4.3a). This is because the presence of fewer –

ves means the outlier ranges in the distribution of the computed CBA scores (see Figure 3.3) would 

actually encompass some +ves; inevitably, these +ves are rejected when the rejection criteria are applied 

by the pruners of each TSF (see Figure 4.4 for visualization). To view more samples labelled by Ѫ1 as 

pedestrians, refer to Appendix A. 

Compared to ℳ, the input sample set ℜ to Ѫ2 (Figure 4.3b - 4.3d) usually consists of more 

+ves and fewer –ves, as they are acquired using the detector ЖRP. ѪPre+ of Ѫ2 is still very high, but 

generally lower than Ѫ1, with an average of 92-93% for every detector (see Table 4.7). Note that Ѫ2 is 

designed to have lower ѪPre+; hence, it comprises of fewer TSFs compared to Ѫ1 even though ℜ 

includes harder negatives than ℳ. This is necessary because unlike Ѫ1 that ignores the rejects, Ѫ2 must 

label the rejects as non-pedestrians, and a high-precision setting would mean that too many pedestrians 

would be incorrectly rejected causing the accuracy, ѪAcc, to drop. There are two important correlations 

that exist between the four metrics for Ѫ2. It is important to understand them because unlike Ѫ1 whose 

performance solely depends on ѪPre+ (because it ignores the rejects and focuses only on high-precision 

labelling of pedestrian instances), the performance of Ѫ2 is measured by the accuracy ѪAcc, which can 

be impacted by each of these metrics. 

 A higher ѪPre+ means fewer non-pedestrians or –ves were labelled as pedestrians. This directly 

means more –ves were correctly labelled as non-pedestrians, resulting in a higher ѪRec-.  

 Correspondingly, lower ѪRec+ means more pedestrians or +ves were incorrectly rejected. This 

directly means more +ves were incorrectly labelled as non-pedestrians, resulting in a lower 

ѪPre-.  

Both these correlations can be verified from Figure 4.3b, 4.3c and 4.3d, particularly for the PETS 

datasets, where ѪPre- drops as a consequence of lower ѪRec+. The trends of all four performance 

metrics are consistent across all three plots of Ѫ2, indicating that the oracle performance is not 

influenced by detector choice. However, oracle performance can fluctuate when too few samples are 

available, as is the case for HOG on QMUL-R (see Figure 4.3b).  
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Overall, taking the above correlations into account, since ѪPre+ is always high, the accuracy 

of Ѫ2 is dependent on the labelling precision ѪPre-, of non-pedestrians. For MIT, CUHK and 

MONASH, ѪPre- and ѪAcc are in the range of 82-92% and 85-92%, respectively. For the extremely 

challenging datasets QMUL-R, QMUL-J and KWSI, the ѪPre- and ѪAcc have lower scores in the 

range of 62-78% and 82-90%, respectively. However, for the 4 PETS datasets, poorer scores of ѪRec+ 

causes ѪPre- and ѪAcc to drop considerably to 34-54% and 69-81%, respectively. For exact scores, 

refer to Table 4.7. See Appendix B for more illustration of samples labelled as pedestrians and non-

pedestrians by Ѫ2. 

4.5.2 Individual TSF performances 

To facilitate intra-TSF and inter-TSF performance comparisons across the 10 datasets, for each oracle, 

the TSF-Pre against TSF-Con of all its TSFs on every dataset is plotted, as shown in Figure 4.6. As 

before, there is a single plot for Ѫ1 (Figure 4.6a) and three separate plots for Ѫ2 (Figure 4.6b – 4.6d). 

Various implications of the subsequent observations are discussed in subsection 4.8.3. Overall, for both 

oracles, it can be observed that the TSF-Con scores of each individual TSF across the 10 datasets are 

clustered along the x-axis, such that the TSFs can be ranked in terms of the range of their TSF-Con 

scores (refer to the plotted TSF means for quick ranking, identified by the filled markers). As TSF-Con 

denotes the impact of a TSF by measuring the percentage of the total -ves the TSF is able to reject, the 

presence of these clusters (see Figure 4.6a – 4.6d) and furthermore, the homogeneity of the clustering 

despite applying Ѫ2 to different ℜ acquired by different detectors (compare Figure  4.6b, 4.6c and 4.6d) 

substantiates the stability of the configured TSF sequence within each oracle. Incorrect choice or 

sequence of TSFs is likely to have caused the TSFs to function inconsistently for different ℜ acquired 

by different detectors, resulting in a more haphazard pattern in the plots rather than exhibiting such 

clusters. 

Except for the Height filter of Ѫ1, TSF-Pre scores may appear dispersed along the y-axis without 

any noticeable pattern (see Figure 4.6a – 4.6d). Nonetheless, TSF-Pre of any given TSF actually depends 

on the ratio of the number of -ves that can be rejected by that TSF to the total number of remaining  
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Figure 4.6: Individual TSF Performances on all datasets. Filled markers represent the average performance of 

each TSF. 

 

samples. For example, as GraySc (blue squares in Figure 4.6a) evaluates grayscale variance, its rejection 

precision is much higher (TSF-Pre > 70% in Figure 4.6a) for datasets with poorer brightness levels due 

to the presence of more –ves with insufficient grayscale variance. However, for datasets with better 

brightness, such as CUHK (B) or KWSI (F) in Figure 4.6a, there are fewer -ves that can be rejected by 

GraySc, resulting in much lower TSF-Pre (compare blue squares with letters B and F with others). 

A = MIT     B = CUHK     C = MONASH      D = QMUL-R      E = QMUL-J      F = KWSI      G = PETS-01      H = PETS-02     I = PETS-03     J = PETS-04 

a               b 

c                                                                                      d 
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Additionally, TSF-Pre scores will most likely be below average when the percentage of total remaining 

-ves has already dropped significantly, because this automatically implies the aforementioned condition 

of fewer -ves being available for rejection by subsequent TSFs. This can be confirmed by carefully 

cross-checking the number of -ves of the preceding stacked bar in Figure 4.3 for TSFs whose TSF-Pre 

score is below 50% in Figure 4.6. 

According to Figure 4.6a, Height is, by far, the most effective TSF in Ѫ1 with highly precise and 

consistent rejection ability, as demonstrated by its TSF-Pre > 90% on every dataset (see Table 4.6 for 

specific scores). The precision of the other three TSFs are dependent on the conditions discussed in the 

previous paragraph. By examining the TSF-Con scores, it can be deduced that usually, Height also 

rejects the most -ves, ForeGd rejects slightly more -ves than GraySc, and Temp rejects the least. It is 

reiterated here that the lowest TSF-Con scores of the Temp TSF does not indicate poor performance; 

but rather the presence of fewer non-pedestrian instances that can be rejected by Temp.  Collective 

analysis of all TSFs on each dataset in Figure 4.6a shows that following: 

 The top TSF precisions are achieved for two of the extremely hard datasets, QMUL-R (D) and 

QMUL-J (E), indicated by TSF-Pre > 60% for every TSF. 

 The hard dataset CUHK (B) and the other extremely hard dataset KWSI (F) follow closely 

behind at second, indicated by TSF-Pre > 50% for every TSF. 

 The worst TSF precisions are for PETS-01 (G) and PETS-02 (H), indicated by TSF-Pre < 30% 

for 3 out of the 4 TSFs (see Figure 4.6a).  

 Compared to Ѫ1, it can be uniformly observed in Figure 4.6b, 4.6c and 4.6d that for Ѫ2, the 

TSF-Pre scores are less dispersed along the y-axis. With respect to the range of the TSF-Con scores of 

each TSF across the 10 datasets, there is clearer separation between the TSFs along the x-axis. As evident 

from the TSF-Con scores in Figure 4.6b – 4.6d, amongst the three TSFs, usually, MskGrad rejects the 

most -ves and VerStrct rejects the least. Overall, regardless of the chosen detector, the following trends 

are observed: 

 The top TSF-Pre scores are achieved by the hard datasets MIT (A), CUHK (B) and MONASH 

(C), usually > 70% for every TSF. 
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 The TSF-Pre scores of the extremely hard datasets QMUL-R (D), QMUL-J (E) and KWSI (F) 

are at a close second, usually > 60% for every TSF. 

 The worst TSF-Pre scores belong to the PETS datasets (G-H), usually < 50% for most TSFs. 

Notice how the TSF-Pre scores of all the PETS datasets increases for ACF relative to HOG-

LBP and HOG, as shown in Figure 4.6d due to the presence of more -ves (see stacked bars in 

Figure 4.3d and compare against Figure 4.3b and 4.3c). 

 

4.6 Performance evaluation of VAT detectors 

For a comprehensive evaluation of the VAT framework, the experimental results of the detectors listed 

in Table 4.8 are compared. The detectors from every stage of VAT were tested to assess how the 

performance improves as VAT progresses. SS, VAT+Generic and VAT+Generic-NS were trained to 

study how the dependence on a generic detector influences scene-specific training in target 

environments of varying difficulty, in comparison to VAT. For each of the 10 datasets, the detectors 

listed in Table 4.8 were tested for each of the three pedestrian detection algorithms – HOG, HOG-LBP 

and ACF. However, Manual-Initial and Manual-Final were tested only on MIT, CUHK and MONASH, 

as the training sets of the remaining datasets could not be annotated due to time constraints. Wherever 

available, detection results of the manually trained detectors serve as the upper bound in each dataset 

and represent the target performance that the proposed VAT strives to reach. DET curves for the hard 

datasets (MIT, CUHK & MONASH), the extremely hard datasets (QMUL-R, QMUL-J & KWSI) and 

the medium datasets (PETS-01 – PETS-04) are shown in Figure 4.7, Figure 4.8 and Figure 4.9, 

respectively, and some qualitative detection results are displayed in Figure 4.14, Figure 4.15 and Figure 

4.16, respectively. Between Figure 4.7, 4.8 and 4.9, the DET curves of over 250 evaluated detectors is 

presented. For any subsequent numerical performance comparisons, the reported miss rate is at FPPI=1. 

We present a detailed analysis of the results below. 
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Table 4.8: List of detectors tested for performance evaluation of VAT  

 

 

4.6.1 VAT progression 

Overall, the following observations can be made in almost every plot of Figure 4.7 and Figure 4.8 (see 

subsection 4.8.5 for explanation of observations) – A) VAT-HN achieves a significant drop in miss rate 

compared to VAT-Initial, B) the performance improvement attained by VAT-RP over VAT-HN is 

marginal and C) VAT-Final achieves a further, marked enhancement in performance but the achieved 

drop in miss rate relative to VAT-RP is smaller than that between VAT-HN and VAT-Initial. However, 

except a few plots (Figure 4.9g, 4.9j, 4.9h, 4.9c and 4.9l), the DET curves in Figure 4.9  suggest that 

full-blown VAT is generally not necessary to improve detector performance on easier datasets like PETS 

and dependence on a generic detector may suffice (refer to subsequent subsection 4.6.3 on Comparisons 

with SS, VAT+Generic and VAT+Generic-NS for more details). The performance improvement of 

VAT-Final over VAT-Initial is negligible for some PETS datasets (see Figure 4.9a, 4.9b and 4.9k). 

 

Generic Trained using the labelled source dataset, INRIA. 

 

SS Basic semi-supervised approach that uses INRIA dataset, and iteratively retrains a scene-specific 

detector with augmented confident positives and negatives obtained by applying the Generic detector to 

the target scene 

 

VAT+Generic Trained by executing VAT, but commences operation by applying Generic detector to the target scene 

to acquire potential training samples instead of relying solely on motion detection. Uses INRIA dataset 

+ target training samples acquired by VAT 

 

VAT+Generic-NS Similar to VAT+Generic, but NO SOURCE training samples are utilized. Only the target training 

samples acquired by VAT are used 

 

Manual-Initial Trained using manually labelled pedestrians from the target scene as positives + negatives sampled 

from 𝔼1
−𝑣𝑒 as per Step 1.4 of Algorithm 1. 

 

Manual-Final Trained by bootstrapping Manual-Initial with hard negatives, according to Step 2.1 

of Algorithm 1 

 

VAT-Initial ЖInitial, generated by the Inception stage of VAT , with initial training samples 

 

VAT-HN ЖHN, generated by the Bootstrapping stage of VAT, with augmented hard negatives 

 

VAT-RP ЖRP, generated by the Bootstrapping stage of VAT, with augmented rejected positives 

 

VAT-Final ЖFinal, generated by the Finalization stage of VAT, with augmented final training samples.  ЖFinal is 

the ultimate output of VAT, and represents the scene-specific pedestrian detector. 
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Figure 4.7: VAT performance evaluation results for MIT, CUHK and MONASH 

 

4.6.2 Comparison with generic detectors 

Generally, scene specific detectors trained by VAT (VAT-Final) outperform offline trained generic 

detectors (Generic) by huge margins.  The largest performance gaps, of upto 60% (see Figure 4.7c) are 

achieved on the hard datasets. The performance differences in Figure 4.8 are still substantial, but due to 

the sheer difficulty of these datasets, the achievable margins are lower, with the highest being 

approximately 40% (see Figure 4.8c). Amongst the PETS datasets, large performance gaps are still  

    a       d                            g 

    b      e                            h 

    c      f                            i 
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Figure 4.8: VAT performance evaluation results for QMUL-R, QMUL-J and KWSI 

achieved for HOG and HOG-LBP based detectors but the margins between generic detectors based on 

ACF and their VAT counterparts are far smaller, with some of them less than 5% (see Figure 4.9c, 4.9i 

and 4.9l.) 

4.6.3 Comparison with methods that depend on pre-trained generic 

detector 

Hard Datasets. SS achieves minimal improvement over Generic, unless the detection algorithm is  

a                           d                        g 

b                          e                                      h 

c                          f                                      i 
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Figure 4.9: VAT performance evaluation results for PETS-01, PETS-02, PETS-03 and PETS-04 

 

ACF. (see bottom row of Figure 4.7). A lower miss rate of VAT+Generic-NS (source samples not used 

in training) compared to VAT+Generic (INRIA source samples included in training) indicates that there 

is dataset shift due to the inclusion of INRIA source samples (see Figure 4.7a, 4.7b). If the opposite is 

true and VAT+Generic is lower, it can be interpreted that the utilization of source samples is actually 

beneficial to the detector training (see Figure 4.7i.). On MIT, VAT-Final consistently achieves a miss 

rate of at least 10% lower than these three detectors (see Figure 4.7a-4.7c), On CUHK, the performance 

of VAT-Final is either better (see Figure 4.7d, 4.7e) or equal to VAT+Generic and VAT+Generic-NS 

(see Figure 4.7f). As for MONASH, the miss rate of VAT-Final is lower than VAT+Generic and 

VAT+Generic-NS for HOG and HOG-LBP, but VAT+Generic achieves 7% lower miss rate than VAT-

Final when using ACF. 

    c                 f              i          l 

   b                 e              h          k 

   a                 d             g          j 
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Extremely hard datasets. Except Figure 4.8h, it can be seen that the performance of SS actually 

degrades relative to Generic. On QMUL-R, the miss rate of VAT-Final is 25-40% lower compared to 

SS, VAT+Generic and VAT+Generic-NS. It can be seen that VAT+Generic and VAT+Generic-NS 

worsen compared to Generic for HOG and HOG-LBP (see Figure 4.8a, 4.8b) and achieve slight 

performance improvement when ACF is used (see Figure 4.8c). A similar performance gap exists 

between VAT-Final and these detectors on QMUL-J, but the miss rates of VAT+Generic and 

VAT+Generic-NS are the worst amongst the 10 datasets (see Figure 4.8d - 4.8f). On KWSI, 

VAT+Generic and VAT+Generic-NS achieve similar or lower miss rates relative to Generic; yet, the 

miss rates remain very poor and VAT-Final still maintains large performance margins of 30-40%(see 

Figure 4.8g – 4.8i). Overall, the performance of these detectors are abysmal, which suggests that 

dependence on generic detectors in extremely challenging target environments is highly likely to result 

in poor scene-specific training. 

Medium datasets. The performance of SS relative to Generic is identical to the hard datasets. 

Except a few cases (Figure 4.9d, 4.9e), VAT+Generic and VAT+Generic-NS generally achieve similar 

or lower miss rates compared to VAT-Final. More notably, VAT+Generic achieves the lowest miss rates 

on a number of datasets (see Figure 4.9g, 4.9j, 4.9f, 4.9i and 4.9l), indicating the similarity between the 

distributions of INRIA and PETS datasets. Overall, the competitive performance of VAT-Final on easier 

datasets like PETS, as evident from all plots of Figure 4.9, validates the wide applicability of the VAT 

framework. Furthermore, the lower miss rates of VAT+Generic and VAT+Generic-NS reaffirms that 

on datasets like PETS that are less prone to dataset shift, dependence on a generic detector is unlikely 

to have any negative impact on scene-specific training. 

4.6.4 Comparison with manually trained detectors 

On MIT, the performance of VAT-Final is almost as good as Manual-Final (see Figure 4.7a – 4.7c). 

Notice how VAT-Initial is much worse than Manual-Initial in Figure 4.7c, but performance improves 

as VAT progresses and VAT-Final converges to Manual-Final. VAT achieves similar convergence on 

CUHK for HOG and HOG-LBP (see Figure 4.7d, 4.7e) but for ACF, a performance margin of 10% 

exists between VAT-Final and Manual-Final (see Figure 4.7f). On MONASH, despite the apparent  
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Figure 4.10: Visualization of the model weights for HOG-SVM detectors. Detectors for a particular dataset are 

arranged row-wise and detectors of the same type are arranged column-wise. For optimal viewing, zoom in at least 

200%. For full clarity, position eye level above top of the screen and look at a downwards angle  

 

detector improvement as VAT progresses (see Figure 4.7g – 4.7i), performance gaps of 2%, 9% and 9% 

remain between VAT-Final and Manual-Final, for HOG, HOG-LBP and ACF, respectively. 

To visualize the “closeness” of VAT detectors to manually trained detectors, pictorial renditions 

of the model weights for HOG detectors trained using VAT are compared with manually trained 

detectors in Figure 4.10. It can be seen that initial detectors trained manually (Manual-Initial) are rather 

crude for all datasets – the weights are too focused along the centre of the pedestrian structure. These 

detectors will have high false alarm rate in the presence of upright structures like poles, traffic signals, 

vehicle parts or building gates, which have similar concentration of edges along the centre. As the 
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detector is retrained with hard negatives, the weights are spread out and redistributed to more 

discriminative locations (see Manual-Final). 

The initial detector trained by VAT during Inception (VAT-Initial) shows similar issues of 

limited discriminative ability as Manual-Initial. As VAT progresses to completion, careful observation 

shows that the position of reassigned weights in VAT-Final have high similarity to those in Manual-

Final. This may explain why the performance of VAT detectors converges to that of manually trained 

detectors. For CUHK and MONASH, it can be seen that the intensity of the weights do have some 

differences but the location of the weights are very similar.  

For MIT, the comparison is intriguing – the weight distribution of VAT-Final is visually more 

discriminative compared to Manual-Final, as it appears to capture the pedestrian structure more 

accurately. However, this can be explained by the fact there is a large number of very small scale and 

blurry pedestrians in the training set for MIT. As manual training incorporates all such instances, the 

model gets fine-tuned accordingly – notice how the pedestrian rendition for Manual-Final is smaller 

than VAT-Final due to influence from such small instances. Contrastingly, VAT may have missed such 

difficult instances; therefore, even though the trained model seems more representative of pedestrians, 

VAT-Final ultimately would miss very small, blurry instances during testing, resulting in slightly lower 

performance compared to Manual-Final. 

 

4.7 Comparison with state-of-the-art 

VAT is compared against the state-of-the-art on the two most commonly used datasets for benchmarking 

scene-specific training approaches, namely CUHK and MIT. To the best of our knowledge, the 

comparison against the state-of-the-art shown in Figure 4.12 is the most extensive to-date, with the 

largest number of scene-specific training approaches considered. However, though it can be readily 

assessed which approach achieves the higher performance on a given dataset, it is difficult to conclude 

which approach is actually the better one because while some are based on just HOG, others utilize the 

far superior CNN. Therefore, an additional comparison of all available scene-specific training 

approaches that are based on the commonly used HOG is performed and presented in Figure 4.11. For 
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Figure 4.11: Comparison with state-of-the-art scene-specific training approaches based on HOG 

    a 

b 
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Figure 4.12: Comparison with all state-of-the-art scene-specific training approaches 

    a 

    b 
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any subsequent numerical performance comparisons, the detection rates at FPPI=1 are reported. 

First, brief descriptions of the HOG-based methods compared in Figure 4.11 is provided. AGPD 

[93] transfers a generic pedestrian detector to the target scene using confident target samples acquired 

by exploiting multiple context cues. CESVM [75] is the extension of AGPD that assigns confidence 

scores to the acquired target samples, weighs source samples based on their similarity to target samples 

and then incorporates all of them in a Confidence-Encoded SVM. AGPD and CESVM are iterative 

training approaches; accordingly, AGPD(Best) and CESVM(Best) represent the converged detectors. 

These are often excluded during benchmarking, but have been included here for a comprehensive 

comparison. TRACKLET [83] obtains trajectories of the detection candidates and then applies multiple 

criteria to determine their labels. ENIDA [78] also employs tracking, but the tracks are labelled by 

spatio-temporal verification, done by applying the generic detector to classify each patch in a track. CPD 

[84] projects source and potential target samples onto a shared attribute subspace, and trains an attribute 

classifier which subsequently labels the target samples. Lastly, VAT represents the detector VAT-Final, 

based on HOG. 

Next, the approaches compared in Figure 4.12 are described. VAT is  compared against three 

state-of-the-art deep model based approaches – CNNDAC [86] , ADCNN[89] and MLCNN [82]. 

CNNDAC uses a modulating neural network to dynamically adjust the final layer of pre-trained CNN 

and generates a proprietary classifier for every candidate window. ADCNN transfers a pre-trained CNN 

by selecting useful kernels layer wise, and then embeds context information to enhance localization 

ability. MLCNN trains a deep-model by optimizing a multi-objective function that jointly learns 

discriminative features, their distributions and scene-specific visual patterns. PLM [72] treats object 

locations as latent variables and solves them with a progressive latent model that formulates the iterative 

steps of object discovery, spatial regularization and label propagation. CovBoost [74]shifts features to 

the most discriminative locations and scales and updates the weak classifier coefficients. UOLF [133] 

uses background subtraction to select target samples and CESVM~DPM applies the CESVM framework 

to DPM. Note that the approaches from Figure 4.11 are included again in the comparison here for the 

sake of completeness (AGPD is excluded, as CESVM is its extension). VAT~HOG, VAT~HOG-LBP 

and VAT~ACF represent the VAT-Final detectors based on HOG, HOG-LBP and ACF respectively. 
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 According to the ROC curves of Figure 4.11a and 4.11b, VAT achieves the best performance 

amongst the HOG-based approaches on both CUHK and MIT, respectively. Moreover, it can also be 

observed that on both CUHK and MIT, the performance achieved by VAT detectors are very close to 

the upper bound represented by the manually trained detectors.  On CUHK (see Figure 4.11a), the 

detection rate of VAT is the highest at 63.7%, and TRACKLET is second at 61%. On MIT (see Figure 

4.11b), VAT is once again the highest at 71.8%, and CESVM(Best) is second at 69%. These results, 

where all assessed methods utilized the same detection algorithm, strongly indicate that VAT is a highly 

effective scene-specific training approach. 

 Figure 4.12a and 4.12b show that the performances of VAT detectors are amongst the best when 

compared with all the state-of-the-art scene specific training approaches. Of all the assessed methods on 

CUHK, only PLM, ADCNN and CNNDAC are competitive with VAT detectors. Though PLM gets 

64.5% detection rate, which is just 0.9% higher than VAT~HOG, it is important to note how the 

performance of PLM drops almost linearly compared to VAT~HOG for FPPI<1 (see Figure 4.12a). On 

CUHK, CNNDAC achieves the highest detection rate at 75.5%, with VAT~HOG-LBP being a very 

close second at 74.6%. VAT~ACF is third at 70.28%, with ADCNN closely behind at 69.5%. All three 

VAT detectors outperform CESEVM~DPM and MLCNN on CUHK. On MIT (see Figure 4.12b), VAT 

detectors outperform all state-of-the-art approaches, except CESVM~DPM. VAT~ACF and 

VAT~HOG-LBP achieve the best detection rates of 86.7% and 81.7% respectively, which are both, 

remarkably, the highest ever reached on MIT. CESVM~DPM is third at 77% and is 4.7% lower than 

VAT~HOG-LBP, with VAT~HOG placing fourth at 71.8%. The deep model based approaches, 

ADCNN and MLCNN, are both outperformed by all three VAT detectors on MIT. 
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4.8 Discussions 

In this section, the significance of the reported results is discussed and some final insights are provided. 

4.8.1 Significant factors to consider in comparisons with state-of-the-art 

Firstly, according to Figure 4.12a, CNNDAC and ADCNN achieve the 1st and 4th ranks, respectively, 

on CUHK while VAT~HOG-LBP and VAT~ACF place 2nd and 3rd, respectively. However, it is crucial 

to note that CNNDAC and ADCNN are based on CNN, which is the absolute state-of-the-art in 

pedestrian detection and thus, a far superior detection algorithm compared to ACF or HOG-LBP[49, 

51]. Yet, 75.5% achieved by CNNDAC is only marginally better than the 74.6% achieved by 

VAT~HOG-LBP on CUHK. CNNDAC[86] and ADCNN[89] have already been shown to outperform 

various representative state-of-the-art generic CNN pedestrian detectors such as R-CNN[134], Fast R-

CNN[135] and Faster R-CNN[136]. Table 4.9 compares the detection rates of the three VAT detectors 

against some of these state-of-the-art generic CNN pedestrian detectors, as well as the scene-specific 

CNN pedestrian detectors from Figure 4.12. On CUHK, VAT~HOG-LBP is almost as good as the top-

performing CNN approach, while on MIT, each of the three VAT detectors outperforms all CNN based                             

 

Table 4.9: Comparison of the three VAT detectors against state-of-the-art approaches based on CNN. Methods 

that perform scene-specific pedestrian detection are marked with an asterisk (*). Those without an asterisk are 

generic pedestrian detectors. VAT detectors are highlighted in grey. 

CUHK  MIT 

Method Detection Rate  Method Detection Rate 

MCDNN[137] 42.0%  R-CNN[134] - 

R-CNN[134] 42.6%  Fast R-CNN[135] - 

Fast R-CNN[135] 56.1%  Faster R-CNN[136] - 

DCNN[138] 60.5%  *CNNDAC[86] - 

*MLCNN[82] 62.0%  MCDNN[137] 23.0% 

VAT~HOG 63.7%  DCNN[138] 43.1% 

Faster R-CNN[136] 65.8%  *MLCNN[82] 64.9% 

*ADCNN[89] 69.2%  *ADCNN[89] 66.8% 

VAT~ACF 70.3%  VAT~HOG 71.8% 

VAT~HOG-LBP 74.6%  VAT~HOG-LBP 81.7% 

*CNNDAC[86] 75.5%  VAT~ACF 86.7% 
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approaches. The detection rate of the top-performing VAT detector, VAT~ACF is 20.1% higher than 

the top-performing CNN approach, ADCNN. The highly competitive performance of VAT detectors 

compared to the state-of-the-art CNN based approaches in Table 4.9 strongly indicate the following: 

 VAT is a highly effective approach for training scene-specific pedestrian detectors 

 Focusing on optimal exploitation of target samples may be more useful than developing 

more complex pedestrian detectors or adaptation algorithms for training better scene-

specific pedestrian detectors. 

Secondly, there are several pedestrians in the upper third region of the frames in CUHK but this 

region is excluded during detector evaluation by all the compared methods. We tackle a much harder 

detection challenge by searching this region in our evaluations (see detection responses on CUHK in 

Figure 4.14). 

Thirdly, a critical observation is the performance gap between VAT detectors and ADCNN. For 

CUHK, the detection rate of the top performing VAT detector VAT~HOG-LBP is 5.4% higher than 

ADCNN; however, on MIT, VAT~ACF is 20.1% higher than ADCNN. The primary difference between 

MIT and CUHK is small scale, and is likely to be the influential factor for such a bigger difference in 

performance on MIT compared to CUHK (20.1% against 5.4%). It has been reported [89] that CNN 

based approaches have difficulty detecting small scale pedestrians. Therefore, there is a high probability 

that the performance gap would be larger on the extremely difficult datasets which have the additional 

complexities of poor resolution or image quality on top of small scale. 

 Lastly, CUHK and MIT are the most commonly used difficult datasets for evaluating scene-

specific training approaches and both were created by [94]; therefore, the reliability of approaches that 

evaluate one dataset but exclude the other can be logically questioned. From Figure 4.11a and 4.11b, it 

can be observed that CPD and TRACKLET are two of the best performing approaches on CUHK, but 

were not tested on MIT. Similarly, CNNDAC and PLM were evaluated on CUHK (see Figure 4.12a), 

but not MIT (see Figure 4.12b). It is reiterated that evaluation of a scene-specific approach on a large 

number of datasets of varying difficulty is important and necessary to arrive at a consensus on its 

performance. 
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4.8.2 Effect of selected pedestrian detection algorithm 

Between the two SVM based detectors, the richer feature set of HOG-LBP enables it to outperform 

HOG on every single dataset in terms of A) detection rate of VAT-Final (see Figure 4.13a) and B) 

performance progression of VAT measured by the performance gap between VAT-Final and VAT-

Initial (compare HOG against HOG-LBP for Figure 4.7-4.9). With respect to both the afore-mentioned  

 

 

Figure 4.13: Comparison of detection rates of different detectors on all datasets. a) Comparison of HOG, HOG-

LBP and ACF detectors trained using VAT. Comparison of VAT against different tested methods based on b) 

HOG, c) HOG-LBP and d) ACF. Manually trained detectors are not included because they are always the top-

performing and are only available for MIT, CUHK and MONASH. 
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criteria, ACF, in turn, outperforms HOG-LBP but only on datasets with smaller pedestrian sizes - MIT, 

MONASH, QMUL- R, QMUL-J and KWSI (compare VAT~ACF against VAT~HOG-LBP in Figure 

4.13a). For CUHK and PETS-01 – PETS-04 with larger pedestrian size (refer to Figure 4.2 for pedestrian 

sizes), HOG-LBP outperforms ACF (compare VAT~ACF against VAT~HOG-LBP in Figure 4.13a), 

which is consistent with the reported performance advantage of HOG- LBP over ACF in literature [34], 

on large-scale pedestrians. Further verification of lower ACF performance relative to HOG-LBP on 

CUHK and PETS-01 – PETS-04 can be done by comparing the number of ℜ acquired by their respective 

ЖRP (compare Figure 4.3c and 4.3d). Lower ℜ results in much lower number of labelled pedestrians by 

Ѫ2 for ACF compared to HOG-LBP (see Table 4.7), which may be a primary reason that VAT-Final is 

unable to converge to Manual-Final on CUHK (see Figure 4.7f), when ACF is being used. It must also 

be noted that the greater improvements of SS, VAT+Generic and VAT+Generic-NS relative to Generic 

when using ACF instead of HOG (compare the bottom row with the top and middle rows in Figure 4.7 

and Figure 4.9) indicates that ACF is less susceptible to dataset shift compared to SVM based detectors. 

4.8.3 Interpretation of TSF performance scores 

TSF-Pre is an absolute metric that measures the efficiency of the TSF in terms of the percentage of 

correctly rejected samples, while TSF-Con is a comparative metric that measures the contribution of the 

TSF towards rejecting –ves in terms of the percentage of total –ves rejected by that TSF. TSF-Con is 

relative to other TSFs, and higher score indicates that there is a higher number of the type of –ves that 

can be rejected by that TSF. Based on these facts, multiple deductions can be made. TSFs in the top 

right portion in the plots of Figure 4.6 achieve the best performance and are the most essential (high 

TSF-Pre + high TSF-Con), while TSFs in the bottom left portion perform the worst and are redundant 

(low TSF-Pre + low TSF-Con). TSFs in the top-left corner are extremely accurate because they have 

high TSF-Pre scores even though there are few –ves that can be rejected (indicated by low TSF-Con 

scores). If majority of the TSFs have low TSF-Pre scores on a dataset, then it is impractical to apply the 

oracle to that dataset. It is straightforward to estimate the overall performance of an oracle on any given 

dataset from Figure 4.6 by making the following observations:  
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Figure 4.14: Qualitative detection results of best-performing detection algorithm when trained with VAT, for 

difficult datasets. Green bounding boxes denote correct detections, red bounding boxes denote incorrect detections 

and blue bounding boxes denote missed detections. Zoom in 300% for optimal viewing 

 

 if the TSF-Pre scores of the TSFs are mostly high for a dataset, that would mean most TSFs 

have high precision of rejecting –ves. This equates to a high overall rejection precision of the 

oracle for –ves, represented by ѪPre- (percentage of correctly rejected non-pedestrians). 

According to the correlation discussed in subsection 4.5.1, a high ѪPre- will consequently result 

in a high ѪRec+. 

 if the summation of the TSF-Con scores is closer to 1, that would mean most of –ves have been 

successfully rejected. This equates to a high recall for –ves, represented by ѪRec- (total number 

of correctly rejected non-pedestrians). According to the correlation discussed in subsection 

4.5.1, a high ѪRec- will consequently result in a high ѪPre+. 

 

            MIT, ACF                         

CUHK, HOG-LBP                         

MIT, ACF                         
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Figure 4.15: Qualitative detection results of best-performing detection algorithm when trained with VAT for 

extremely difficult datasets. Green bounding boxes denote correct detections, red bounding boxes denote incorrect 

detections and blue bounding boxes denote missed detections. Zoom in 300% for optimal viewing 

 

4.8.4 Oracle performances 

Based on the deductions in subsection 4.8.3, it is evident from Figure 4.6a that some TSFs are redundant 

(focus on region where TSF-Pre and TSF-Con are both < 0.3), mostly for PETS datasets with fewer –

ves. Nevertheless, a few redundant TSFs cannot affect Ѫ1
 adversely because the rejects are not used for 

training ЖInitial and only the overall precision of Ѫ1 matters. Therefore, by observing the trend in Figure 

4.3a, the values in Table 4.6 of ѪPre+ and particularly, the examples of labelled pedestrian instances in 

Figure 4.5, it can be reasoned that Ѫ1 performs optimal labelling on a wide variety of target scenes.  On 

the other hand, poor TSF performance strongly influences the statistics of Ѫ2, which can be verified by 

observing the low scores of ѪPre- and ѪRec+ of the PETS datasets on Figure 4.3b, 4.3c and 4.3d as a  

            QMUL-R, ACF                         

            QMUL-J, ACF                         

            KWSI, ACF                         
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Figure 4.16: Qualitative detection results of best-performing detection algorithm when trained with VAT, for 

medium datasets. Green bounding boxes denote correct detections, red bounding boxes denote incorrect detections 

and blue bounding boxes denote missed detections. Zoom in 300% for optimal viewing. 

 

result of low TSF-Pre scores in Figure 4.6b, 4.6c and 4.6d, respectively. Even for the hard/extremely 

hard datasets, Ѫ2
 achieves accuracies of less than 90% (see Table 4.7), which equates to a possibly 

objectionable, albeit small, number of incorrectly labelled samples. Hence, unlike Ѫ1, the labelling 

performance of Ѫ2 needs further improvement in order to reach optimal labelling capability. 

PETS -01, HOG-LBP                         

PETS -02, HOG-LBP                         

PETS -03, HOG-LBP                         

PETS -04, HOG-LBP                         
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Table 4.10: Statistics of ЖHN applied to the Oracle-1 rejects 

 MIT CUHK MONASH QMUL-R QMUL-J KWSI PETS-01 PETS-02 PETS-03 PETS-04 

TN+FN/FN 1107/259 1716/337 472/155 75/14 1852/273 341/82 1145/878 1076/704 1168/350 917/514 

TP+FP/ 

Pre/        

Rec 

HOG 94/0.99/0.34 223/0.98/0.65 84/0.98/0.53 2/1/0.14 43/0.98/0.15 21/1/0.26 710/0.96/0.77 584/0.94/0.78 313/0.94/0.84 508/0.94/0.93 

HOG-LBP 147/1/0.57 298/0.98/0.87 112/0.97/0.7 5/1/0.34 99/1/0.36 47/1/0.57 757/0.97/0.83 640/0.93/0.85 375/0.86/0.92 550/0.91/0.98 

ACF 186/1/0.72 345/0.95/0.97 104/0.98/0.66 9/1/0.64 250/0.98/0.9 74/0.99/0.89 728/0.95/0.79 683/0.93/0.9 421/0.81/0.97 356/0.92/0.64 

 

 

4.8.5 VAT performances 

Bootstrapping with hard negatives reduces the FPPI but it is usually at the expense of increased miss 

rate (see subsection 4.3.2). Therefore, even though the lower curves of VAT-HN relative to VAT-Initial 

suggest its achieved performance improvement (see Figure 4.7 and Figure 4.8), the detection rate of 

VAT-HN are clearly diminished compared to VAT-Initial (compare the lowest points of both curves). 

VAT-RP is trained to boost this reduced detection rate by bootstrapping the rejected positives as hard 

positives (compare the lowest points of VAT-RP and VAT-HN on Figure 4.7 and Figure 4.8). The 

statistics reported in Table 4.10 indicate that acquisition of rejected positives from 𝑁𝑒𝑔Ѫ1 is generally 

accurate. The higher detection rate ensures the acquisition of a higher number of ℜ when VAT-RP is 

applied to the target scene during Finalization. However, the trade-off between miss rate and false alarm 

rate means the FPPI of VAT-RP increases as its miss rate falls (preventing a gap to form between the 

curves of VAT-RP and VAT-HN), causing the performance improvement to be marginal, as reported 

earlier. This explains why the curves of VAT-Final are distinctly lower than VAT-RP – the augmented 

final positives reduces the miss rate further, but the augmented final negatives simultaneously reduces 

the FPPI.  

Given the labelling errors of Ѫ2 discussed previously, VAT-Final still achieves drops in miss-rate 

in most datasets and even converges to Manual-Final in some cases (see Figure 4.7a, 4.7c, 4.7d and 

4.7e). This clearly indicates the robustness of the VAT framework despite the presence of few 

incorrectly labelled samples. However, a more thorough study is still required to better understand the 

correlation between labelling errors and VAT performance, and to determine the maximum performance 

achievable by VAT when labelling is optimal for both oracles.  

By observing the 30 plots from Figures 4.7 – 4.9, it can be concluded that VAT does not fail, as 

VAT-Final never worsens relative to VAT-Initial, but is clearly more worthwhile on certain datasets. 
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The detection rates of all tested detectors as per table 4.8, on all datasets, are summarized using spider 

graphs in Figure 4.13b, 4.13c and 4.13d for HOG, HOG-LBP and ACF, respectively, where VAT 

corresponds to VAT~Final detector for each of the three detection algorithms. Overall, the following 

final interpretations can be made from Figure 4.13b – 4.13d 

 On easier target scenes like PETS-01 - PETS-04, VAT does not achieve significant 

detector improvement relative to other approaches and may be considered overkill, 

regardless of the detection algorithm. Nonetheless, its performance remains competitive 

indicating its applicability in such easier scenes. 

 On more challenging target scenes (MIT, CUHK and MONASH), VAT is the optimal 

approach for training scene-specific pedestrian detectors (except on MONASH based on 

ACF).  

 On extremely challenging scenarios with prominent dataset shift (QMUL-R, QMUL-J 

and KWSI), VAT achieves substantial performance gaps over other approaches. It can be 

seen that in such scenarios, scene-specific approaches like VAT+Generic and 

VAT+Generic-NS that depend on pre-trained generic detectors fail, but VAT, relatively, 

is very effective. 

4.8.6 Training time 

In real-world visual surveillance environments, different variables control the times taken for different 

training stages of VAT, causing the total training time for generating the scene-specific pedestrian 

detector to considerably fluctuate from one scene to another. The number of motion regions (ℳ) to be 

acquired during the Inception stage and the number of detection responses (ℜ) to be acquired during the 

Finalization stage have to be set before commencing training. These parameters act as stopping criteria 

for the sample acquisition steps of these stages. The values of these parameters are dependent on the 

scene; for an easier scene with relatively larger pedestrians and better image quality, the values can be 

lower but for a more difficult scene with poor resolution and small scale, the values will have to be much 

higher. Even if the same values are set for two different scenes, the acquisition times can be very 



102 

 

different based on how frequently pedestrian instances appear in the video sequences of those two 

scenes. Additionally, the time taken by the Bootstrapping stage can also vary depending on the number 

of batches/rounds needed to converge - an environment with a simple background will converge faster 

than one with a more complicated background. 

 For standard experimental datasets such as MIT or CUHK (or any other dataset listed in Section 

4.1), the number of frames to be utilized for training is usually fixed and no limit is imposed on the 

number of acquired samples. However, one scene-specific approach may acquire a larger number of 

target samples than another and consequently require more training time. Under such circumstances, the 

longer training time cannot be considered a shortcoming if the trained detector has higher performance 

due to acquisition of more target samples. The same argument applies to the algorithms of different 

scene-specific training approaches – if one approach has a more complex algorithm with more 

steps/stages compared to another and therefore achieves superior performance, the quicker training time 

of the inferior approach is no longer a merit. 

 Based on the afore-mentioned discussion, there is little meaning in comparing the training times 

when benchmarking scene-specific training approaches. This could be the reason why scene-specific 

training approaches in literature do not report training times in their performance evaluations. Therefore, 

in a similar fashion, training times for VAT are not reported nor compared with other approaches. 
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5 Applications of VAT 

5.1 Commercialized product based on VAT 

This section describes the commercialized product that has been developed using VAT. An overview 

of the industry problem is presented first, followed by a description of the developed solution, and 

finally, the role of VAT in the developed solution is elaborated.  

5.1.1 The security threat of tailgating 

An access control system determines who is allowed to enter or exit a secure premise, including where 

and when they are allowed to enter or exit. When a credential is presented at the reader usually located 

at the entrance door to a secure premise, the credential information is relayed to a control panel, where 

the information is compared to a database of stored credentials. Depending on whether a match is found 

or not, access is granted or rejected. The credentials could be a card number, fingerprint or face. Almost 

every private facility around the world implements some form of access control. 

 The ultimate purpose of an access control system is to ensure that access to a secure area is 

restricted to “authorized” personnel only. Tailgating is the most prevalent security breach that defeats 

this purpose, consequently jeopardizing the privacy/safety of the information/people in a secure area. 

This phenomenon occurs when an authorized individual uses standard access techniques (card, 

fingerprint, face) to gain access to a secure area, and with or without his/her consent or knowledge, an 

unauthorized person enters the secure area before the door closes. There are three types of tailgating 

offences: 

Classic Tailgating (see Figure 5.1a) occurs when an unauthorized person follows an authorized person 

to a restricted area without the knowledge of the authorized person. This is usually done with malicious 

intent. 

Piggybacking (see Figure 5.1b) occurs when an unauthorized person tags along with an authorized 

person into a restricted area, often with the knowledge of the authorized person. This is a very common 
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Figure 5.1: Different types of tailgating. a) Classic tailgating b) piggybacking c) crossing 

 

scenario in most workplaces and is normally not as dangerous as classic tailgating. 

Crossing (see Figure 5.1c) occurs when an authorized person leaves a secure area, and an unauthorized 

person seizes the opportunity to enter the secure area before the door closes. This may/may not be 

malicious depending on whether the “crosser” is a co-worker or an intruder. 

 Common scenes where tailgating is problematic are high security offices/buildings, server 

rooms, storage/production rooms, factories and public facilities. Existing solutions are mostly 

mechanical such as turnstiles, revolving doors, man-traps or lasor sensors. These are extremely 

expensive, intrusive, require high maintenance, difficult to install and easy to circumvent due to limited 

intelligence. 

5.1.2 Developed anti-tailgating system: ELIDEye EV-100 

 

Figure 5.2: ELIDEye EV-100 anti-tailgate device 

                     a                            b                               c 

Camera 

module 
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ELIDEye EV-100 (see Figure 5.2) is a vision-based anti-tailgating device that can be integrated with 

any standard access control system to detect and alert against all tailgating offences, hence providing 

enhanced security. It is installed on the ceiling monitoring the secure area. A detailed illustration is 

shown in Figure 5.3, with relevant descriptions listed in Table 5.1. Upon installation, it can then be 

integrated with any standard access control. An example of such an integration is shown in Figure 5.4.  

 Once integration is complete, anti-tailgating can be executed as follows. When an individual 

badges his/her card at the entry reader (see Figure 5.4), the access control checks the database. If a match 

is found, access is granted by unlocking the door, but simultaneously, a signal is sent to the ELIDEye 

unit (see ‘Valid Entry Signal’ in Figure 5.4). ELIDEye then checks the actual number of entering people,  

 

 

 

 

 

 

 

 

 

Figure 5.3: Installation of ELIDEye 

 

Table 5.1: Installation descriptions of ELIDEye 

No. Description 

1 Door 

2 Partition separating secure area from non-secure area 

3 ELIDEye unit 

4 Camera 

5 Green Indicator LED for monitoring system status 

6 Various connections – Inputs/Outputs, Power & LAN 

7 Device installation height 

8 Distance between ELIDEye and Door 

9 Distance between ELIDEye and Wall 

10 Width of the secure area 

SECURE 

AREA 

SECURE AREA 

NON-

SECURE 

AREA 

1 
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Figure 5.4: System configuration for integration of ELIDEye with standard access controller 

 

detected by the camera, against the number of valid entry signals received from the access controller. 

If the number of entering people is found to be greater than the number of valid entry signals, the 

system triggers an alarm or other alert responses as setup by the user. 

5.1.3 The role of VAT  

To perform anti-tailgating, the primary function of ELIDEye is to count the number of entering and 

exiting people by determining the direction of moving individuals. The core technologies required to 

achieve this objective are overhead pedestrian detection and tracking. An illustration is shown in Figure 

5.5. As the detection responses from the overhead pedestrian detection stage directly impacts the 

tracking performance, which ultimately governs the reliability of the system, it is of the highest 

importance to ensure that the accuracy of the overhead pedestrian detector is optimal. 
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Figure 5.5: Examples of overhead pedestrian a) detection and b) tracking executed by ELIDEye 

 

Reliable overhead pedestrian detection for anti-tailgating can be challenging due to several reasons:  

 Complete absence of publicly available overhead pedestrian detectors and datasets for training 

overhead pedestrian detectors – this not only makes the generation of detectors difficult, but 

also eliminates the possibility of implementing domain adaptation algorithms that depend on 

pre-trained detectors. 

 Poor lighting and unpredictable variations in illumination 

 Limited contrast in the target environment 

 Low object discriminability 

 Different installation heights 

 Cluttered backgrounds with objects highly similar to pedestrian instances. 

To tackle the above challenges, overhead pedestrian detectors must be trained for each target 

environment using target samples acquired directly from the target environment. ELIDEye is designed 

to achieve this in an autonomous manner for different environments using VAT. The usual procedure is 

as follows: Once ELIDEye has been installed at the target environment and integrated with the access 

control system, the user can access ELIDEye from their browser (see Figure 5.4) and run VAT. Once 

VAT commences, it utilizes the incoming video stream from the camera module to execute the VAT 

training stages. Usually, it takes approximately 30 minutes to complete in “normally” busy environments  

a

 

b
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Figure 5.6: Examples of a) pedestrian instances and b) non-pedestrian instances autonomously acquired and 

labelled by VAT, from Site 1, during scene-specific training of the overhead-pedestrian detector. 

a

 

b
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Figure 5.7: Examples of a) pedestrian instances and b) non-pedestrian instances autonomously acquired and 

labelled by VAT, from Site 2, during scene-specific training of the overhead-pedestrian detector 

a

 

b

 



110 

 

(offices or factories), but may take upto several hours if the movement in the secure area is less. Once 

the scene-specific detector is generated, the user is notified that the system is ready for anti-tailgating. 

Subsequently, when the user activates anti-tailgating, the system actively determines the number of 

entering/exiting people by performing overhead pedestrian detection (using the scene-specific 

pedestrian detector trained by VAT) and tracking. 

 Figure 5.6 and 5.7 depicts examples of the target samples acquired and labelled for training the 

overhead scene-specific pedestrian detector by VAT, in two different environments. Due to the 

proprietary nature of the product, exact details such as the specific samples labelled by Inception and 

Finalization or the types of samples rejected by the individual TSFs cannot be shared. 

5.2 Extension to similar industry applications 

The applicability of VAT to standard visual surveillance scenarios has been extensively validated in 

Chapter 4. In this section, some important applications in retail analytics are discussed. Each of these 

applications relies on overhead pedestrian detection; hence the developed technology for ELIDEye, 

based on VAT, is readily adaptable to such applications. 

People counting at the entrance/exit of a store can be combined with sales data to determine the store 

conversion rate, which indicates the ratio of visitors to buyers. This metric can be valuable for store 

managers to evaluate the performance of the store. Furthermore, the same statistics can be used to 

determine the number of people within a building at different times of day; places like malls or 

entertainment outlets can exploit this information to improve the usage of the space, assess revenue 

opportunities or determine optimal opening hours. 

Hot zone and dwell time is the analysis of where customers spend most of their time. This is equally as 

important as people counting – while it does not contribute to the evaluation of the sales efficiency 

discussed previously, it reveals the customers’ interests to the retailers and can be utilized to restructure 

the store layout for optimal product positioning. 



111 

 

Queue management: Long queues are likely to result in frustrated customers who may consequently 

abort their decision to purchase products. By measuring queue lengths and durations, appropriate actions 

can be taken, such as allocating extra personnel per queue or opening up a new cash register. 

Direction detection: This simple application can protect against massive losses due to theft in retail 

stores. By detecting people moving in the wrong direction, particularly at blocked entrances/exits in 

large retail outlets, it eliminates the need for the presence of physical security at such locations. 

5.3 Limitations of CNN in real-world applications 

Due to its undisputed superiority in classification performance, CNNs are preferred as the go-to 

algorithm for any image recognition task, particularly for difficult applications like pedestrian detection. 

This often incites the preconceived notion that selection of any other algorithm other than CNN is a sub-

par approach for pedestrian detection. However, there are significant limitations on utilizing CNNs for 

pedestrian detection in real-world application scenarios. In this section, the major limitations are 

discussed and it is shown how real-time classifiers like SVM trained with VAT are more suitable for 

practical deployments.  

 Practical applications of pedestrian detection require edge computing, which means the 

pedestrian detectors have to run on devices with limited processing capabilities, close to the source of 

data (the camera), rather than running on desktop computers or cloud servers. Accordingly, the 

subsequent discussions are related to the deployment of pedestrian detectors on edge devices. 

5.3.1 Training limitations 

For training CNNs, two criteria must be fulfilled: 

1) Availability of large amounts of training data 

2) Hardware architecture with massive processing capability 

These two criteria already make it clear that CNNs cannot be trained at the edge; popular architectures 

like AlexNet [47], GoogLeNet [139], VGG [140] and ResNet [141] need multiple GPUs, several 

gigabytes of training data and multiple days to generate the CNN. The availability of large amounts of 
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training data can be satisfied due to the endless stream of incoming video frames in standard surveillance 

scenarios, but the memory for processing (RAM) and storage (DISK space), as well as the speed of the 

CPUs are extremely limited. 

 Even if it is assumed that training can be performed on a desktop to generate the model which 

can subsequently be deployed to the edge device to merely execute inference, there is still an imposed 

need to expend on a powerful GPU. NVIDIA’s Tesla and Titan GPUs are the most widely used for 

training CNNs and cost upwards of USD 2000. Cost constraints are a priority in most application 

scenarios, which makes such GPU-based training feasible to a very small minority who are ready to 

invest in extravagant computational resources. 

 The final option is to train the model using cloud services and then deploy to the edge device. 

However, this cannot be presumed as a one-off transaction. In realistic scenarios, it may be necessary to 

retrain the model and resend it to the edge. Such repetitive communications renders the whole system 

highly dependent on the server and mandates the need for stable connectivity. Under any network 

failures, the edge device will fail to update the model if required. This could be solved if the edge device 

could retrain the model itself without needing to depend on the central server. 

5.3.2 Inference limitations 

Two of the state-of-the-art CNN based detectors, with top-performance in terms of speed and accuracy 

are Faster R-CNN [136] and SA-Fast RCNN [51] - they require Tesla K40 and Titan X GPUs, 

respectively, for inference. As this computational demand during inference reiterates the limitation 

discussed in the previous subsection, it can be deduced that both training and inference of the top-

performing CNNs on edge devices is not feasible. 

 To address these limitations, detectors based on simpler CNN architectures with reduced 

processing demands have been developed such as MobileNet [142] and SqueezeNet [143]. These 

architectures require less memory and execute much faster due to parallelization in the convolution 

layers and massive reductions in the number of parameters. However, careful analysis reveals 

noteworthy losses in accuracy in attempts to achieve faster inference speeds: 
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 Though these architectures have high information density (accuracy per parameter), their 

performance is 20% worse than the best CNN models [144]. Furthermore, this difference in 

performance is on the ImageNet benchmark dataset involving recognition of multiple object 

classes [145]. Pedestrian detection in challenging scenarios is a much more complex task; hence, 

there is high likelihood that the performance gaps will widen further for this task. 

 None of the top-performing pedestrian detectors reported by the most comprehensive 

benchmarking for pedestrian detection [61] are based on this efficient architectures; rather, they 

mostly used VGG or ResNet – this is the strongest indication of the limited accuracy of these 

approaches that utilize simpler CNN architectures. 

5.3.3  Comparison of VAT based on CNN and SVM  

VAT is compatible with any detection algorithm – it boils down to which is most suitable for practical 

applications. Based on the discussions in the previous two subsections, Table 5.2 provides a comparison 

of implementing VAT with a competitive CNN approach (Faster R-CNN or SA-Fast RCNN) for an 

anti-tailgating solution against the current implementation of VAT based on SVM in ELIDEye. There 

is little dispute over the superiority of the pedestrian detector that can be generated using VAT based on 

CNN compared with VAT based on SVM. Unfortunately, as the statistics in Table 5.2 suggest, the 

computational demands of CNN make its implementation on edge devices with limited processing 

capabilities highly infeasible. 

Table 5.2: Comparison of implementing VAT with CNN against its implementation with SVM in ELIDEye 

   CNN SVM 

Training 

Requirements 

Training at edge possible? NO YES 

# training samples required ~1000,000  < 3000 

Disk space for training Several Gb ~10 Mb 

Memory requirements  Needs GPU 1 GB of RAM 

CPU requirements Needs GPU 1.2 GHz single core (at edge) 

Model size >100 Mb ~50 Kilobytes 

Training time Several hours - days ~30 minutes 

   

Inference 

Requirements 

   

CPU requirements Needs GPU 1.2 GHz quad-core (at edge) 

Processing speed  5-20FPS 35 FPS 
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6 Conclusions and Future Work 
 

6.1 Summary of research 

This research commenced by identifying the susceptibility of the state-of-the-art generic pedestrian 

detectors to the dataset shift problem. The progress achieved by existing scene-specific pedestrian 

detectors was acknowledged, but it was also shown that important practical limitations still existed – 

specifically, the need for manual labelling was undesirable and affected scalability, while the 

dependence on pre-trained generic detectors limited the applicability of the scene-specific approaches 

in more challenging surveillance environments. It was noted that significant effort had already been 

made to develop newer generic pedestrian detection as well as scene-specific ones to tackle the current 

limitations. Therefore, this research took a different route – the focus was shifted to design strategies 

that can generate optimal scene-specific pedestrian detectors through exclusive exploitation of target 

samples, with autonomy and practical applicability as primary design requirements. 

 Concretely, a paradigm shift from popular domain adaptation approaches for training scene-

specific detectors was proposed to tackle the dataset shift problem as well as address the limitations of 

scalability and robustness. A Virtually Autonomous Training (VAT) framework was developed that 

trains optimal scene-specific pedestrian detectors for unseen target surveillance environments without 

requiring any manual labelling of target samples or utilizing any source dataset or pre-trained generic 

detector. To perform automatic labelling of target samples, oracles were constructed that can segregate 

pedestrians from non-pedestrians using a sequential combination of training sample filters designed to 

reject non-pedestrians. Equipped with these automated oracles for labelling target samples, VAT 

executes a sequence of three training stages, namely Inception, Bootstrapping and Finalization, that 

maximize the acquisition of target samples and iteratively improves the classifier to generate the scene-

specific pedestrian detector. 

 Extensive experimental evaluation of the oracles and the VAT framework was carried out on 

10 different datasets of varying levels of difficulty – medium, hard and extremely hard. To validate the 

compatibility of the VAT framework with different real-time classifiers, three different detectors were 
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trained with VAT, namely, HOG with SVM, HOG-LBP with SVM and ACF with AdaBoost. The 

performance of the VAT detectors were benchmarked against several state-of-the-art scene-specific 

approaches, including multiple CNN based methods. 

 The experimental results showed the capability of the oracles to label target samples in different 

kinds of surveillance environments. If the objective is the high-precision labelling of pedestrian 

instances only, as was the case during Inception, Oracle-1 has a precision of > 95% on all datasets. 

However, if high-precision labelling of both pedestrians and non-pedestrians are required, as was the 

case during Finalization – then the task is more challenging. The important factor was the presence of 

insufficient non-pedestrian instances. Overall, for more difficult datasets, Oracle-2 demonstrated better 

performance but in the case of easier datasets with insufficient non-pedestrian instances, TSFs become 

redundant as there are few non-pedestrians to reject, consequently causing a decline in the oracle 

performance. Analysis showed that the overall accuracy of the oracle reduced when more pedestrians 

were incorrectly rejected due to the presence of fewer non-pedestrians – this can be solved by relaxing 

the rejection criteria of the pruners. 

 The performance of VAT was evaluated using multiple criteria. Firstly, the progression of VAT 

was assessed – it was found that as training progressed, the classifier continuously improved. The 

improvement was more noticeable for difficult datasets. The final detector from the Finalization stage 

was always found to have improved relative to the initial detector from Inception stage, indicating the 

stability of the training framework. Secondly, when compared to generic detectors, VAT always 

outperformed. Thirdly, the performance of VAT was found to have converged to that of manually 

trained detectors for most cases.  Lastly, when compared to approaches using pre-trained detectors, VAT 

achieved higher performance on difficult datasets and significantly outperformed on the most difficult 

datasets, indicating that usefulness of VAT in challenging scenarios.  

 On two of the most commonly used datasets for benchmarking scene-specific pedestrian 

detectors, VAT achieved amongst the highest performances, despite being compared to multiple CNN 

based approaches. On CUHK, VAT based on HOG-LBP was second, behind the top performing CNN 

based detector by only 0.9%. Additionally, VAT detectors outperformed multiple CNN based detectors 

on the CUHK dataset. On MIT, VAT based on ACF achieved the highest detection rate reported to date, 
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and outperformed the top-performing CNN based detector by 20%. These statistics, where CNN based 

detectors have been shown to be outperformed by inferior detectors trained with VAT, were strong 

indicators that efficient utilization of target samples is much more effective than designing more 

powerful models for generating optimal scene-specific pedestrian detectors. 

 In conclusion, the first objective of developing mechanisms to automatically label target 

samples was fulfilled by designing oracles. To fulfil the second objective of developing an end-to-end 

framework that incorporates the oracles from the first objective, and executes a sequence of training 

stages to generate the scene-specific pedestrian detector when applied to a target scene, VAT was 

developed.  The third objective of extensive experimental evaluation was met by testing all components 

of the VAT framework on 10 different datasets of varying difficulty, validating the compatibility of 

VAT with three different detectors and comparing the performance of VAT against several state-of-the-

art approaches. The final objective of validating the applicability of VAT in real-world surveillance 

scenarios was achieved by implementing VAT to develop a commercialized anti-tailgate product. 

 

6.2 Future Work 

The proposed VAT framework is a very different approach to existing literature on scene-specific 

training. In this thesis, the foundation of this approach has been developed. Therefore, various works 

are planned to extend the capabilities of the VAT framework. 

6.2.1 Crowded and dynamic scenes 

Exploiting motion to initialize VAT has proven highly effective for surveillance scenarios, but it is likely 

to be problematic if the pedestrians in the target surveillance environment are so crowded that extraction 

of solitary pedestrian instances becomes exceedingly difficult. To solve this, the acquisition mechanism 

must be based on selective search [146] rather than motion detection. Selective search can perform 

hierarchical segmentation on crowds to propose various possible pedestrian locations, which can then 

be passed to the oracles for labelling. A similar necessity arises when deploying VAT to dynamic scenes. 

Dependence on motion makes it difficult to apply VAT to video acquired from moving cameras. By 
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using selective search, sample proposals can be obtained directly from each frame and eliminate 

dependence on the spatiotemporal differences across multiple frames. Therefore, using selective search 

with VAT can extend the current capability of training pedestrian detectors in static surveillance scenes 

to other application domains like driver assistance systems.  

6.2.2 Extension to other objects 

The VAT framework has been developed, tested and implemented for pedestrian detection. However, 

the framework can be applied to other objects by designing the corresponding oracles. For instance, 

apart from pedestrians, the other common object class of interest in surveillance scenes is vehicles. 

Therefore, appropriate oracles can be designed to label vehicles in surveillance scenes. Provided 

separate oracles are available for pedestrians and vehicles, two instances of VAT can be concurrently 

run within the same IVS system to generate scene-specific detectors for pedestrians and vehicles. 

6.2.3 Incorporation of clustering 

Clustering aims to partition data into groups based on the similarities between them. The design 

objectives are usually to maximize the homogeneity within a group and the heterogeneity between 

groups. One of the most difficult data for clustering techniques is images – a significant amount of work 

has been done [147]. However, there appears to be no studies on clustering techniques for scene specific 

pedestrian detection, which is surprising, because it can be applied for unsupervised grouping of target 

samples into pedestrians and non-pedestrians. Two important studies will be done: a) Evaluation of 

different clustering techniques for grouping a given set of target samples from different surveillance 

environments into pedestrians and non-pedestrians b) Analysis of VAT performance by replacing 

Oracle-2 in finalization with clustering techniques, if part a) reveals competent labelling. 

6.2.4 Long-term performance improvements 

Surveillance scenes usually have an endless stream of incoming video. This allows for periodic updates 

of the scene-specific pedestrian detector, which essentially means repeating Stage 2 and Stage 3 of VAT 
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at pre-defined intervals. Exploiting the availability of new video to improve the detector is not only a 

rational extension, but probably necessary. This is because the VAT detector is trained within 

approximate 30 minutes, which is unlikely to encompass the wide range of potential scene variations. 

As time passes, the natural illumination may fluctuate, the background may change drastically, the 

lighting can be manually altered, and the most extreme of all, the camera position itself might be 

changed! Therefore, in real-world scenarios, it is most likely that a one-off training will be insufficient; 

rather the system must be designed to update itself periodically. For studies on such long-term 

performance, it is important to gather datasets representing video from target scenes over several days. 

6.2.5 VAT on distributed systems 

Distributed IVS through a large network of edge devices is the future of intelligent visual surveillance. 

Each device can execute VAT to generate the optimal scene-specific detector for the target scene that it 

is responsible for monitoring. However, in addition to distributing the computational load from a 

centralized server to multiple edge nodes, distributed systems can also implement inter-device 

communication to enhance performance. Devices can compare their respective target scenes, and if they 

are deemed to have sufficient similarity, the target samples labelled in one scene by a device can be 

shared with another device. 

6.2.6 Fully Autonomous Training (FAT) 

VAT is ‘virtually’ autonomous because the oracles have to be designed by a human. The next step would 

be to remove this dependence – either the labelling is done without the oracles or the oracles are designed 

without human assistance. At this point, it is still unclear how either of them can be accomplished; 

nonetheless if it can be achieved, then a Fully Autonomous Training (FAT) framework can be created. 

FAT would be the pinnacle of autonomous training – by merely specifying the object class of interest, 

the system can be instructed to generate the optimal scene-specific object detector for that particular 

target environment. 
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Appendices 
 

Appendix A: Samples labelled as pedestrians by Oracle-1  

This appendix displays a subset of approximately the first 500 instances from the samples labelled as 

pedestrians by Oracle-1, for all 10 datasets. In the cases where fewer samples are displayed, the 

displayed samples represent the whole sample set and not a subset 
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Appendix B: Samples labelled by Oracle-2 

This appendix displays a subset of approximately the first 250 instances from the samples labelled as 

pedestrians and non-pedestrians by Oracle-2, for all datasets, excluding the four PETS datasets. In the 

cases where fewer samples are displayed, the displayed samples represent the whole sample set and 

not a subset. The detection responses that were fed to Oracle-2 were obtained with HOG. 
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Appendix C: ELIDEye EV-100 Brochure  
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Page – 2 of Brochure 
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Appendix D: Additional images of ELIDEye EV-100  
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