
Time Series Classification at Scale

Chang Wei Tan

Doctor of Philosophy

A thesis submitted for the degree of Doctor of Philosophy at

Monash University in 2018

Clayton School of Information Technology

Copyright notice

c©Chang Wei Tan (2018) Except as provided in the Copyright Act 1968, this thesis may not

be reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for third-

party content included in this thesis and have not knowingly added copyright content to my

work without the owner’s permission.

i

Abstract

Time series data are growing at an exponential pace. This growth is observed in applica-

tions such as the latest Earth observation missions that produce trillions of time series data,

generated from high resolution satellite images taken from the European Space Agency’s

Sentinel-2 satellites. Each pixel in the image is a time series describing the evolution of

the area it represents. The demand of using data in this scale is critical for producing more

accurate classification. However, current research in time series classification (TSC) lags

behind this demand of data. This is simply because most research in TSC was done with

datasets on the scale of thousands. Adding on to this, the most accurate TSC algorithm, Hi-

erarchical Vote Collection of Transformation-based Ensembles (HIVE-COTE) is impractical

for large real-world applications because it consists of ensembles-based classifiers with high

complexity, that requires huge training and classification time. The objective of this Ph.D. is

to develop scalable TSC algorithms that can handle time series datasets of this scale. More

specifically, this research focuses on the Nearest Neighbour (NN) classifiers that form the

Ensembles of Elastic Distances (EE), a core component of HIVE-COTE.

A novel algorithm, Time Series Indexing (TSI) is proposed to reduce the classification

time for the NN classifier coupled with Dynamic Time Warping distance (NN-DTW). TSI in-

dexes time series data in DTW-induced space, which was not possible before. Classification

performed with TSI is 1,000 times faster than the NN-DTW algorithm. Fast Warping Win-

dow Search (FASTWWS) and Fast Ensembles of Elastic Distances (FASTEE) are proposed

to reduce the training time of EE by two orders of magnitude. This reduction is achieved by

learning the parameters efficiently and introducing new lower bounds for distance measures

used in EE that do not have a lower bound. The tighter Enhanced lower bound is proposed

ii

for DTW, as the majority of the DTW lower bounds are sometimes not effective in pruning

candidates at larger warping windows, as shown empirically. Combining all these algorithms

will reduce the complexity of EE, which in turn will make HIVE-COTE more practical.

Furthermore, it is important to apply TSC to real-world problems such as improving rail-

way track maintenance. In collaboration with the Institute of Railway Technology (IRT) at

Monash University, a study was conducted to investigate the practicality of TSC in improving

railway track maintenance. IRT has more than 10 years of railway track data and provides

a good platform to demonstrate the application of TSC in real-world problems. Improving

and optimising railway track maintenance is crucial in reducing operation and maintenance

costs. The study shows that k-NN-DTW is able to predict maintenance (tamping) effective-

ness with high accuracy.

iii

Publications During Enrolment

Publications included in this thesis

1. C. W. Tan, G. I. Webb, and F. Petitjean, “Indexing and classifying gigabytes of time

series under time warping,” in Proceedings of the 2017 SIAM International Conference

on Data Mining, pp. 282–290, SIAM, 2017

2. C. W. Tan, G. I. Webb, F. Petitjean, and P. Reichl, “Tamping effectiveness prediction us-

ing supervised machine learning techniques,” in Proceedings of the First International

Conference on Rail Transportation (ICRT), 2017

3. C. W. Tan, M. Herrmann, G. Forestier, G. I. Webb, and F. Petitjean, “Efficient search of

the best warping window for dynamic time warping,” in Proceedings of the 2018 SIAM

International Conference on Data Mining, pp. 225–233, SIAM, 2018 - Best Research

Paper Award

Other publication not included in this thesis

4. C. W. Tan, P. Reichl, G. I. Webb, and F. Petitjean, “Machine learning approaches for

tamping effectiveness predictions,” in Proceedings of the 2017 International Heavy

Haul Association Conference (IHHA2017), IHHA, 2017

iv

Thesis Including Published Works

Declaration

In accordance with Monash University Doctorate Regulation 17.2 Doctor of Philosophy and

Research Master’s regulations the following declarations are made:

I hereby declare that this thesis contains no material which has been accepted for the award

of any other degree or diploma at any university or equivalent institution and that, to the best

of my knowledge and belief, this thesis contains no material previously published or written

by another person, except where due reference is made in the text of the thesis.

This thesis includes 3 original papers published in top data mining and railway engineering

conferences and 2 submitted publications. The core theme of the thesis is ’Scalable time se-

ries classification’. The ideas, development and writing up of all the papers in the thesis were

the principal responsibility of myself, the student, working within the Clayton School of Infor-

mation Technology and Institute of Railway Technology under the supervision of Professor

Geoffrey Webb, Dr François Petitjean and Dr Paul Reichl.

The inclusion of co-authors reflects the fact that the work came from active collaboration

between researchers and acknowledges input into team-based research.

In the case of Chapters 3, 4, 5, 6 and 7, my contribution to the work involved the following:

v

Thesis
Chapter Publication Title

Status
(published,
in press,
accepted or
returned for
revision,
submitted)

Nature and % of
student
contribution

Co-author name(s)
Nature and % of
Co-author’s contribution*

Co-
author(s),
Monash
student
Y/N*

3

Indexing and
classifying gigabytes
of time series under
time warping

Published

75%. Concept,
conducting
experiments and
writing the
manuscript.

1. François Petitjean,
Concept and input
into manuscript. 15%

2. Geoffrey Webb,
Supervised study and
input into manuscript.
10%

1. No

2. No

4

Efficient search of the
best warping window
for dynamic time
warping

Published

65% Concept,
conducting
experiments and
writing the
manuscript.

1. Matthieu Herrmann,
Conducting
experiments and input
into manuscript. 10%

2. Germain Forestier,
Concept and input
into manuscript. 5%

3. François Petitjean,
Concept, conducting
experiments, and
writing into
manuscript. 15%

4. Geoffrey Webb,
Supervised study and
input into manuscript.
5%

1. No

2. No

3. No

4. No

5

FastEE: Fast
Ensembles of Elastic
Distances for time
series classification

Submitted

80% Concept,
conducting
experiments and
writing the
manuscript.

1. François Petitjean,
Supervised study and
input into manuscript.
10%

2. Geoffrey Webb,
Supervised study and
input into manuscript.
10%

1. No

2. No

6

Elastic bands across
the path: A new
framework and
methods to lower
bound DTW

Accepted

80% Concept,
conducting
experiments and
writing the
manuscript.

1. François Petitjean,
Supervised study and
input into manuscript.
10%

2. Geoffrey Webb,
Concept and input
into manuscript. 10%

1. No

2. No

vi

7

Tamping effectiveness
prediction using
supervised machine
learning techniques

Published

70%. Concept,
designing the
system,
conducting
experiments and
writing the
manuscript.

1. Paul Reichl, Domain
knowledge and input
into manuscript. 10%

2. François Petitjean,
Supervised study and
input into manuscript.
10%

3. Geoffrey Webb,
Supervised study and
input into manuscript.
10%

1. No

2. No

3. No

I have renumbered sections of submitted or published papers in order to generate a consis-

tent presentation within the thesis.

Student signature: Date: 27 March 2019

The undersigned hereby certify that the above declaration correctly reflects the nature and

extent of the student’s and co-authors’ contributions to this work. In instances where I am

not the responsible author I have consulted with the responsible author to agree on the

respective contributions of the authors.

Main Supervisor signature: Date:

vii

28 March 2019

Acknowledgements

First and foremost, I would like to express my gratitude to all my supervisors, Professor Geoff

Webb, Dr François Petitjean and Dr Paul Reichl for their continuous support and guidance

throughout this whole Ph.D. period. They have been very encouraging and motivating. I

am truly grateful for their invaluable advice on both research and my career path, which

had and will continue to help me grow as a researcher. As I have always told people I met

during my Ph.D., I feel extremely lucky to have all three of them as my supervisors. From a

fresh Engineering graduate who knows nothing about machine learning and data science, to

now developing various competitive algorithms to solve real-world problems. All these would

have been impossible without them.

I am also very grateful to my collaborators especially Professor Germain Forestier and

Dr Matthieu Herrmann for the hard work that they put in, and the constructive comments that

facilitated and improved my Ph.D. publications.

I would like to also thank my panel members Professor Bala Srinivasan, Professor Bart

Goethals (University of Antwerp), A/Prof Michael Brand, A/Prof Vincent Lee, Dr Ron Stein-

field, Dr Christoph Rudiger, Dr Peter Tischer, and Dr Lan Du for all the insightful discussion

and suggestion that greatly improves the work in my Ph.D.. Their suggestion and feedback

have given me lots of useful directions for my Ph.D. research.

I want to also acknowledge the support from the Institute of Railway Technology (IRT) at

Monash University. Mr Ravi Ravitharan, Mr Glenn Hardie, Mr Cameron Thompson, and Mr

Joshua White had equipped me with the required domain knowledge on railway maintenance

and providing the required data for my Ph.D. work.

viii

Furthermore, I greatly appreciate the various workshops, seminars and networking events

organised by the faculty that help improving my research and communication skills, special

thanks to Professor Sue McKemmish, Ms Hellen Cridland, Ms Danette Deriane and Ms Julie

Holden. I also appreciate the hard work and valuable time spent by Ms Danette Deriane for

organising my milestones seminars as well as her assistance throughout my Ph.D. journey;

Ms Julie Holden for her help and support for organising my dissertation.

More importantly, I am very grateful for the financial support provided by my supervisors,

the university, and the faculty. I would like to take this opportunity to thank the Society of

Industrial and Applied Mathematics (SIAM), for awarding me with the SIAM Student Travel

Award, which allows me to attend the SIAM Data Mining conference for two consecutive

years and gaining invaluable experience. This research was also supported by an Australian

Government Research Training Program (RTP) Scholarship.

I would like to also thank Dr Ying Li, Dr Manai Giuseppe, and Dr Emin Aksehirli, who

are my internship mentors at DataSpark Singapore, for the insprising discussion and guid-

ance throughout my internship with them. They have brightened my future career as a data

scientist and software developer.

Finally, I want to express my deepest gratitude and appreciation to my family, parents,

siblings, and my partner, Katrina for their unconditional love, encouragement and support

that not only helped me go through my Ph.D. journey but also for everything that I have done

throughout my life.

ix

Contents

Abstract ii

Publication during enrolment iv

Thesis including published works declaration v

Acknowledgements viii

1 Introduction 1

1.1 Motivation . 4

1.2 Research Questions . 9

1.3 Contributions . 10

2 Literature Review 12

2.1 Time Series Classification . 13

2.1.1 Feature-based Algorithms . 14

2.1.2 Dictionary-based Algorithms . 15

2.1.3 Ensemble-based Algorithms . 16

2.1.4 Deep Learning for Time Series Classification 18

2.2 Distance-based Classification . 19

2.2.1 Lp-norm Distances . 19

2.2.2 Dynamic Time Warping . 21

2.2.3 Derivative Dynamic Time Warping . 22

2.2.4 Weighted Dynamic Time Warping . 23

x

2.2.5 Longest Common Subsequence . 24

2.2.6 Edit Distance with Real Penalty . 25

2.2.7 Move-Split-Merge Distance . 26

2.2.8 Time Warp Edit Distance . 27

2.2.9 Ensembles of Elastic Distances . 28

2.3 Scalable Time Series Classification . 29

2.4 Lower Bounds for Distance Measures . 34

2.4.1 DTW Lower Bounds . 34

2.4.2 ERP Lower Bounds . 38

2.4.3 LCSS Lower Bound . 39

3 Time Series Indexing under Time Warping 40

3.1 Introduction . 41

3.2 Background and Motivation . 44

3.2.1 Time Series Classification . 44

3.2.2 Nearest Neighbour Search . 44

3.2.3 Contract Time Series Classification 46

3.3 Our Approach: DTW-Indexing of Time Series for Classification 46

3.4 Empirical Evaluation . 51

3.5 Optimizing the Number of Clusters, K . 57

3.6 Conclusion and Future Work . 58

3.7 Acknowledgement . 58

4 Learning the Best Warping Window for Dynamic Time Warping Efficiently 59

4.1 Introduction . 60

4.2 Background and Related Work . 62

4.2.1 Dynamic Time Warping . 62

4.2.2 Warping Window . 62

4.2.3 Related Work . 64

xi

4.2.4 DTW Lower Bounds . 65

4.3 Fast Warping Window Search for DTW . 66

4.3.1 Properties for FASTWWSEARCH . 66

4.3.2 The FASTWWSEARCH Algorithms . 69

4.4 Empirical Evaluation . 75

4.4.1 Speed-up . 77

4.4.2 Scalability to 100,000 Time Series . 78

4.4.3 Incorporating PRUNEDDTW Within FASTWWSEARCH 79

4.5 Conclusion . 80

4.6 Acknowledgement . 80

5 Time Series Classification with Fast Ensembles of Elastic Distances 81

5.1 Introduction . 82

5.2 Background and Related Work . 84

5.2.1 Ensembles of Elastic Distances . 85

5.2.2 Elastic Distance Measures . 85

5.2.3 Related Work . 87

5.2.4 Learning the Parameters of an Elastic Distance Efficiently 89

5.3 Proposed Lower Bounds for Elastic Distances 91

5.3.1 WDTW Lower Bound . 91

5.3.2 MSM lower bound . 93

5.3.3 TWED Lower Bound . 95

5.4 FASTEE: FAST Ensembles of Elastic Distances 98

5.4.1 Properties for Fast Elastic Ensemble 99

5.4.2 The FASTEE Algorithms . 104

5.5 Experiments . 112

5.5.1 Speed-up Against EE . 112

5.5.2 Can FASTEE be Further Sped Up? . 115

xii

5.6 Conclusion . 118

6 A New Framework and Methods to Lower Bound DTW 120

6.1 Introduction . 121

6.2 Background and Related Work . 124

6.2.1 Dynamic Time Warping . 124

6.2.2 Existing DTW Lower Bounds . 125

6.3 Proposed DTW Lower Bound . 126

6.3.1 Enhanced Lower Bound . 128

6.4 Empirical Evaluation . 133

6.4.1 How to Choose the Right Tightness Parameter for LB ENHANCED? . . 134

6.4.2 Speeding Up NN-DTW with LB ENHANCED 135

6.5 Conclusion and Future Work . 138

7 Tamping Effectiveness Prediction With Time Series Classification 139

7.1 Introduction . 140

7.2 Background and Motivation . 141

7.2.1 Tamping Maintenance Procedure . 141

7.2.2 Instrumented Revenue Vehicles (IRV) 142

7.2.3 Motivation . 143

7.3 Methodology . 143

7.3.1 Time Series . 144

7.3.2 Dynamic Time Warping . 144

7.3.3 Nearest Neighbour (NN) Algorithm . 145

7.4 Experimental Design . 146

7.4.1 Data Acquisition and Processing . 146

7.4.2 Predicting Tamping Effectiveness . 148

7.4.3 Training and Testing: Cross Validation 150

7.4.4 Performance Evaluation . 150

xiii

7.5 Results and Discussion . 152

7.5.1 Classifiers Comparison . 152

7.5.2 Early Prediction of Tamping Effectiveness 155

7.6 Conclusion . 157

7.7 Acknowledgement . 157

8 Concluding Remarks 158

8.1 Conclusion . 158

8.2 Limitations . 160

8.3 Future Work . 161

A Fail-Safe Experiment for FASTWWS 162

B Comparison of all DTW lower bounds 165

Bibliography 169

xiv

List of Figures

1.1 Examples of satellite image time series (SITS). Different colours represent
different time series . 2

1.2 Average NN-DTW classification time on various datasets 5

2.1 Illustration of Euclidean distance for time series 20

2.2 Example of (a) DTW alignment (b) Cost matrix DDTW 21

2.3 DTW with warping window, w = 3 . 23

2.4 Modified logistic weight function for WDTW 24

2.5 Example of string matching with Longest Common Subsequence 24

2.6 (a) KIM and (b) KEOGH lower bound . 35

3.1 High-resolution image of Houston city near Westin Galleria taken by Sentinel-2A 41

3.2 Production of a time series dataset from satellite image series 42

3.3 Average NN-DTW classification time on different datasets 43

3.4 Comparative results of TSI and LB KEOGH NN-DTW on our 1 million SITS
dataset . 54

4.1 Training time for NN-DTW where the warping window is learned 61

4.2 Test error for NN-DTW on some datasets at various warping windows 63

4.3 DTW distance at different w . 68

4.4 Average 10 runs results for comparing FASTWWS with state of the art on the
benchmark datasets . 78

4.5 Comparison of FASTWWS with the PRUNEDDTW implementation on the bench-
mark datasets . 80

5.1 Training time of EE (17 days) and our proposed technique FASTEE (2 days)
on the ElectricDevices dataset at different sizes. 84

xv

5.2 Classification error for NN-DTW on some datasets from the UCR benchmark
archive at various warping window w . 86

5.3 Relationship between single parameter elastic distances and their parameters 105

5.4 Relationship between double parameter elastic distances and their parameters 106

5.5 Total training time on the benchmark datasets (better seen in color) 113

5.6 (a) Training time of DTW and DTW with LB KEOGH (b) EE and LBEE 114

5.7 Contributions from each elastic distance measures to the total training time . 115

5.8 (a) Speedup against EE and (b) classification accuracy for APPROXEE across
all the UCR benchmark datasets for all N . 116

5.9 Average (a) training time of FASTEE and APPROXEE2 and (b) classification
accuracy of the different EE classifiers over 5 runs 117

6.1 Tightness-Compute Time comparison of existing and our lower bounds at w =
0.1 · L over 250,000 time series pairs with L = 256 121

6.2 Tightness of different lower bounds at differing window sizes averaged across
all UCR datasets . 122

6.3 The cost matrix for calculating a lower bound using left bands with w = 4 . . 127

6.4 The cost matrix for calculating a lower bound using right bands with w = 4 . . 128

6.5 The cost matrix for calculating LB KEOGH4(S, T) with w = 4 129

6.6 Cost matrix for calculating LB ENHANCED4
4(S, T) with V = 4 and w = 4 129

6.7 Geometric mean of NN-DTW classification time with LB ENHANCED of differ-
ent tightness parameter V normalised by LB KEOGH 134

6.8 Ranking of all lower bounds in terms of NN-DTW classification time 137

6.9 Geometric mean (average) ratio of classification time for major existing lower
bounds to our proposed new lower bound LB ENHANCED5 across all bench-
mark datasets . 138

7.1 Standard tamping procedure . 142

7.2 Example of effective and ineffective tamping 147

7.3 Example of the 4-dimensional time series (LP1, LP2, LP3, LP4) extracted from
IRVs responses in the training database . 148

7.4 Accuracy of the different classifiers at predicting tamping effectiveness 153

7.5 (a) Precision and (b) Sensitivity of the different classifiers at predicting tamp-
ing effectiveness . 154

xvi

7.6 F1 score of the different classifiers at predicting tamping effectiveness 155

7.7 Accuracy for early prediction of tamping effectiveness at different days before
tamping . 156

A.1 Classification accuracy on the UCR Benchmark datasets using the best warp-
ing window found for each method . 164

B.1 Ranking of all lower bounds in terms of NN-DTW classification time for w =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} . 167

B.2 Ranking of all lower bounds in terms of NN-DTW classification time for w =
{0.1 · L, 0.2 · L, 0.3 · L, 0.4 · L, 0.5 · L, 0.6 · L, 0.7 · L, 0.8 · L, 0.9 · L,L} 168

xvii

List of Tables

3.1 Properties of 1 Million SITS dataset . 53

3.2 Wilcoxon test results - LB KEOGH NN-DTW vs TSI 57

4.1 Table of NNs to learn the best w for DTW . 69

5.1 Elastic distance measures in EE with their time complexity and parameters . 87

5.2 Table of NNs for each m. A cell (i,m) = Tk(dist) means Ti has Tk as its NN
for parameter m with distance dist. 90

7.1 Properties of IRV time series dataset . 148

7.2 Evaluation concept of classification results (effective tamping as positive class) 150

A.1 Learnt warping window from all the methods on the majority of the Benchmark
datasets . 163

xviii

Chapter 1

Introduction

In 2017, the world’s biggest retailer – Walmart generated 2.5 petabytes of data per hour

[5]. That is equivalent to 1 million customer transactions every hour [5]. Walmart’s Senior

Statistical Analyst Naveen Peddamail said that “If you can’t get insights until you’ve analysed

your sales for a week or a month, then you’ve lost sales within that time. If you can cut down

that time from two or three weeks to 20 or 30 minutes, then that saves a lot of money for

Walmart and stopped us losing sale.” [5]. This indicates three things: (1) petabytes of data

are now being produced every hour, (2) analysing data of this scale is extremely important

to create finer models that enable complex business decisions and (3) this large amount of

data needs to be processed in a timely manner.

The demand to learn from large amounts of data is observed for time series data as well.

A time series is a collection of data ordered in time that measures the evolution (dynamics)

of a phenomenon represented by the data. Time series classification (TSC) is a tool to

learn from time series data. It labels an unknown time series from a set of predefined

labels. For example, labelling time series created from satellite images (describe in more

detail later) as wheat, maize or sunflower fields. This is illustrated in Figure 1.1. Training

TSC algorithms using this wealth of data is important to create finer and more accurate

models. Unfortunately, existing TSC algorithms do not scale beyond datasets with more

than 10 thousand time series instances. The reason is simply because they were tested

and designed with the benchmark time series archive that holds 85 datasets, the largest of

which contains less than 10 thousand time series instances [6].

1

1 6 11 16 21 26 31 36 41 46
Weeks

(a) Maize

1 6 11 16 21 26 31 36 41 46
Weeks

(b) Wheat

1 6 11 16 21 26 31 36 41 46
Weeks

(c) Sunflower

Figure 1.1: Examples of satellite image time series (SITS). Different colours represent dif-
ferent time series

As a beacon for this research, TSC has been demonstrated on two real-world applica-

tions. In particular, TSC has been applied on Earth observation missions and railway track

maintenance. The latest Earth-monitoring satellite, Sentinel 2 launched by the European

Space Agency (ESA), is providing a full picture of Earth every five days at 10-60m resolution

[7]. By assimilating the Earth’s geographic areas into pixels, these images are transformed

into time series data, which are used to create temporal land-cover maps that describe the

evolution of that geographic area over time [8, 9, 10]. Each new satellite image, taken every

five days, gives a new observation for the areas in the image. Earth has a surface area of

500 million km2 and considering a 10m×10m area per pixel as a time series, this translates

to more than a trillion time series being produced [10]. The ability to analyse these high-

resolution satellite image time series (SITS) will have a significant impact in many domains

especially in the agriculture industry and for environmental monitoring.

Moving back to Earth, the Institute of Railway Technology (IRT) at Monash University

has been assisting for decades mining companies in monitoring heavy haul tracks using

Instrumented Revenue Vehicles (IRVs) that are equipped with on-board sensors [11, 12,

13]. These sensors measure the wagon’s dynamic activities to infer information about the

underlying track condition [11, 12, 14]. Irregular track conditions can increase track loading,

reduce infrastructure component life, and increase the risk of vehicle derailment. These

issues trigger a range of track maintenance operations and renewals that are very costly.

For example, one of the longest heavy haul tracks connecting ore mines in Australia spans

over 1,700km long and the entire network requires maintenance. These tracks are divided

into 50m sections, i.e. each of them gets a location ID. After multiple trips, over a period

2

of time, the measurements from the IRVs at each track section forms a time series that

measures the evolution of the track sections. This translates to more than 30 thousand time

series generated from these mining operations. Processing and analysing data generated

from these tracks will help in understanding how the track degrades and the consequences

of the degradation in terms of cost and safety. With this information, railway engineers are

then in a better position to estimate the timing of inspections, maintenance, and renewals,

which in turn minimises the maintenance costs and improves safety.

Many of the problems in these fields are time series classification problems, where a

location is labelled based on its evolution over time. The classification of time series data is

different from traditional tabular data because the ordering of data attributes in time series is

important in finding discriminating features. For example, differentiating a wheat, sunflower

or maize field from satellite images can only be achieved if the evolution of that location can

be observed over time. Figure 1.1 shows that maize has a single peak, indicating that there

is only one harvesting period during the warmer months; wheat has two peaks indicating

two harvesting period during winter and spring months.

The most accurate TSC algorithm to-date is the Hierarchical Vote Collective of Trans-

formation based Ensembles (HIVE-COTE) [15]. HIVE-COTE is a meta-classifier of five

state-of-the-art ensemble-based classifiers [15]. Despite the superior classification accu-

racy, classifying large time series datasets using these ensemble-based classifiers is very

computational demanding and they need to be trained to achieve state-of-the-art perfor-

mance [16]. For instance, one of the classifiers in HIVE-COTE, the Ensembles of Elastic

Distances (EE) takes 2-3 weeks to train on the ElectricDevices dataset [6] with only 8,926

training instances and 10 years to train on a million SITS dataset. EE is an ensemble that

consists of 11 Nearest Neighbour (NN) classifiers paired with various distance measures

[17]. Then, to classify a query, the NN classifiers in EE need to compare the query time se-

ries to each of the instances in the training dataset. The comparison of a pair of time series

with length L is computationally expensive as it typically requires O(L2) operations. Further-

more, there are four other ensembles in HIVE-COTE with similar or higher complexity than

EE [15].

3

It is important to realise that down-sampling the data to the size that is manageable for the

state-of-the-art classifiers is not sufficient to produce accurate models for these problems.

The reason being, datasets on a smaller scale are not enough to capture the diversity in

a dataset, which will result in creating models with high variance. Although datasets can

be down-sampled through stratified sampling, where every class in the dataset will have

equal amount of data, they are still not enough to represent the diversity in the dataset. For

instance, there have been 30 years of research into railway track maintenance, but there is

no general agreement on the best approach [18]. This is because the degradation of tracks

is dependent on a combination of many complex phenomena such as soil properties and

weather that are difficult to model and predict using small datasets [19, 20]. Furthermore,

the creation of the land-cover maps typically requires about 100 million time series [8, 9]

to be able to capture most of the surface evolution on Earth. Therefore, this thesis aims to

develop scalable TSC algorithms to handle time series data at the scale of millions to billions

at both training and classification time.

1.1 Motivation

The majority of TSC algorithms concentrate on similarity measures [17, 21, 22, 23, 24] that

capture the temporal structure of the time series. Most similarity measures transform a time

series to better match the other time series [17]. There are a dozen similarity measures

that have been proposed for time series matching and will be explained in Section 2.2.

These measures are normally paired with a NN classifier. When benchmarked on the UCR

benchmark time series archive [6], they are not significantly different from each other in

terms of classification accuracy. However, an ensemble of them (EE) is significantly more

accurate than each of them [17]. The NN classifier with Dynamic Time Warping (NN-DTW)

was the leading classifier [10, 16, 22, 23, 24, 25, 26] before the introduction of EE and the

other ensemble-based classifiers. The research in this thesis focuses on speeding up TSC

in the time domain, specifically the NN classifiers.

Current research in TSC lags behind large scale time series data. Majority of the TSC

algorithms including the state of the arts are impractical for large time series datasets, as

4

Figure 1.2: Average NN-DTW classification time on various datasets

they were designed using datasets that hold less than 10 thousand time series instances [6].

Figure 1.2 illustrates this problem. It shows the expected classification time for datasets of

various sizes using NN-DTW with lower bounds. A typical classification using NN classifiers

requires O(N · L2) operations. This is because, for each query time series of length L, the

algorithm needs to scan through all N training examples and the comparison of a pair of

time series requires O(L2) operations. Lower bounds are commonly used to speed up NN

classifiers by minimising the number of expensive distance computations and pruning off

unpromising NN candidates [27, 28, 29, 30, 31, 32] (more details in Section 2.4). Figure 1.2

shows that classifying 16 million time series queries (a land-cover map of the size of a city)

using a million training instances will take 8 to 12 months; 7 billion queries (the size of a

state) using 100 million training instances is impossible; while most of the publicly available

time series datasets [6] can be classified in less than 30 minutes.

Apart from lower bounds, efficient indexing strategies are also commonly used to speed

up NN algorithms. It allows faster retrieval of NN at classification time. However, typical

indexing structures such as the k-d tree [33] are not suitable to time series data because

the ordering of data attribute in time series is important. For instance, k-d tree partitions the

training dataset using the attributes of the data. And by doing so, the temporal structure of

the time series, which is required for distance measures to work, is lost. Furthermore, these

5

indexing strategy suffer from the curse of dimensionality [34], i.e. they cannot handle high-

dimensional data such as time series, where it is common to have thousands of dimensions.

There are various indexing techniques developed for time series [27, 28, 35, 36, 37, 38,

39, 40, 41, 42, 43]. Most of them index time series under the Euclidean distance; some

use symbolic representations such as iSAX. However, many TSC problems such as the

creation of land-cover maps are better tackled with the DTW distance, as many phenomena

of interest are periodic and can be modulated by weather [10]. Indexing techniques for DTW

[27, 38] typically use the GEMINI framework [39] by representing the time series at a higher

level representation using its lower bound function. Depending on the tightness of the lower

bounds (how close the lower bound is to the distance of interest), these techniques can be

ineffective at indexing the training dataset.

Most TSC algorithms including the state-of-the-art ensembles are only competitive if

given the right parameter [16, 23]. This right parameter needs to be learned through cross

validation from a set of values [23]. However, the learning time of most TSC algorithms in-

cluding the state of the arts is prohibitive for large datasets. Consider the NN classifiers in

EE, they are parametrized by one or two parameters of their paired distance measures. The

best parameter value is normally learned from a set ofM predefined values using leave-one-

out cross validation (LOO-CV). Thus, the task can be re-framed into creating a NNs table of

size N ×M that gives the NN for each time series in the training set. This means that, for

each instance, the algorithm has to do N − 1 expensive O(L2) comparisons and repeat it

over M values.

Furthermore, the number of values, M to learn from also significantly impacts the train-

ing time of the classifier. For instance, learning the exact best warping window (DTW’s

parameter and will be explained in Section 2.2) for DTW is a laborious task as it requires

the enumeration of all possible warping windows, i.e. M = L. Hence, algorithms like EE

are settled with a subset of warping windows, typically 100 windows (i.e. M = 100) [17, 23].

Apart from the risk of not learning the exact best warping window (parameter) and com-

promising on the classification accuracy, current approaches to learning the parameters are

very inefficient.

6

Consider if the nearest neighbour for a time series T1 with a parameter value of p is T25,

then the distance d(T1, T25, p) will be computed at cell NN(1, p). Then in order to find the

nearest neighbour for T25, the naı̈ve way will compute d(T25, T1, p) at cell NN(25, p). However

this computation is redundant because the value is the same as d(T1, T25, p). Note that this

example is only valid for symmetric distances, i.e. d(S, T, p) = d(T, S, p) and that all the

distances used satisfy this property. Moreover, some of the distance values may stay the

same for a wide range of values. For instance, if d(T1, T25, p) = d(T1, T25, p
?), the naı̈ve

way will compute the same distance for p and p?, which again is redundant and inefficient.

Therefore, building the table the naı̈ve way requires O(M · N2 · L2) operations, which is

impractical for most real-world applications with large and long time series dataset.

Typically the best warping window for a large dataset is small [22, 44] and this is where

most DTW lower bounds are effective. However, they lose their effectiveness when the

window size increases. Warping window is a global constraint applied on the alignments of

the two time series under the DTW distance [45]. In other words, only data-points that are

within a window range can be aligned (more details in later chapters). This has the effect of

speeding up NN-DTW by reducing the number of operations required in the distance com-

putation. Efficiently computing these lower bounds at larger warping windows is important

for reducing the training time of NN-DTW and EE. Recall that, learning the best warping

window for DTW usually requires the enumeration of 100 windows in the range of 0 to L.

This includes larger warping windows. On the other hand, tighter lower bounds [30, 31] are

more expensive to compute, requiring more computations, thus not effective at speeding up

NN-DTW. Moreover, most distance measures do not have a lower bound function that can

be used to speed up the nearest neighbour search process.

It is also interesting and important to apply TSC to real-world problems such as improving

railway track maintenance. TSC has not been applied to the challenge of improving railway

track maintenance. Understanding how the track degrades is important to improve railway

track maintenance. Existing track degradation models are developed uniquely for a particular

track location and cannot generalise [18]. This is due to various complex phenomena such

as soil properties and weather that are difficult to predict using small datasets that are unable

7

to capture the evolution of the tracks [18]. Furthermore, historical data show that track

maintenance is not always effective at restoring the track to the desired track geometry.

Ineffective and unnecessary maintenance can reduce the lifetime of existing track, which is

counter to the purpose of track maintenance.

To summarise, the following challenges motivate this Ph.D. research.

1. Current state-of-the-art TSC algorithms has high training and classification time com-

plexity that prohibits them from being practical for large datasets.

2. Existing indexing techniques that speed up the NN classifier are not applicable to time

series data and the DTW distance.

3. The learning algorithms for the NN classifier are inefficient because of many redundant

distance computations.

4. Existing DTW lower bounds are ineffective at speeding up NN-DTW at large warping

windows, which limits the potential of improving the training time.

5. Most distance measure do not have a lower bound function and thus the NN classifier

that is paired with it cannot be sped up.

6. A good railway track maintenance system will minimise maintenance costs and im-

prove safety but it is challenging to develop.

8

1.2 Research Questions

The main objective of this Ph.D. research is to develop scalable TSC algorithms to overcome

the limitations from previous works mentioned in Section 1.1. In particular, applying NN

classifiers that are paired with an distance measure to large time series datasets in the range

of millions are investigated. This includes designing scalable algorithms for both training and

testing time as well as optimising the distance computation. Specifically, this Ph.D. thesis

aims to address the following research questions (RQ).

RQ-1: Indexing techniques speed up the NN search process but they are not applicable to

time series data especially under the DTW distance. How to index time series data under

the DTW distance?

RQ-2: Existing learning algorithms for the NN classifiers are inefficient thus not scalable.

How to improve the efficiency of learning algorithms for NN classifiers?

RQ-3: Current DTW lower bounds are loose at large warping windows, which slows down

the learning of the best warping window. How to have tighter bounds at larger warping

windows (global constraints) that are not expensive to compute?

RQ-4: It is important to apply TSC to real-world problems such as improving railway track

maintenance. How can time series classification be applied to improve railway track

maintenance?

9

1.3 Contributions

This section outlines the contributions made in this Ph.D. research. This research proposes

an indexing algorithm to index time series data under the DTW distance. An efficient learn-

ing algorithm for the NN-DTW classifier is proposed and extended to other distance mea-

sures with the aim of scaling up the EE classifier. New lower bounds for the major distance

measures have been proposed to efficiently speed up the NN search process. A study is

conducted showing that TSC can be applied to improve railway track maintenance. More

formally, the following contributions (C) are made:

C-1: Chapter 3 introduces a new problem – Contract Time Series Classification to answer

RQ-1. The idea is to produce the most accurate time series classifier that is constrained

at classification time but without any constraints at training time. Specifically, Time Series

Indexing (TSI) is proposed to index time series data under the DTW distance using a hier-

archical K-means tree with priority search [46] and the DTW Barycenter Averaging (DBA)

algorithm [47]. K-means clustering was ill-defined for DTW-induced space, but it has shown

possible with DBA. The classification time of NN-DTW is reduced by representing the train-

ing set with a few average time series computed using DBA for each class [26]. TSI has

been evaluated against the state-of-the-art NN-DTW algorithm on dataset with a million in-

stances and the benchmark time series archive [6]. This research has been published as in

the 2017 SIAM Data Mining Conference (SDM 2017) [1].

C-2: The work in Chapter 4 and 5 answer RQ-2. In Chapter 4, the Fast Warping Window

Search (FASTWWS) algorithm is proposed to efficiently learn the best warping window for

DTW [3]. FASTWWS minimises the number of operations required to build the NNs table

by leveraging on the relationship between DTW and its warping window. FASTWWS has

been evaluated against state-of-the-art algorithms on all the datasets from the benchmark

time series archive [6] as well as a dataset with a million instances. This research has been

published in the 2018 SIAM Data Mining Conference (SDM 2018) [3] and received the Best

Research Paper Award.

10

In Chapter 5, the idea of FASTWWS is extended to other distance measures with the aim

of reducing the training time of the EE ensemble. The Fast Ensembles of Elastic Distances

(FASTEE) algorithm is proposed. The work also introduces new lower bounds for distance

measures for which no previous bounds have been derived. FASTEE has been evaluated

against the standard EE classifier on the benchmark time series archive [6]. This research

has been submitted to Data Mining and Knowledge Discovery Journal – the journal track

for the 2019 European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases (ECML PKDD 2019).

C-3: The third contribution of this thesis answers RQ-3. A new framework to lower bound

the DTW distance, the Enhanced lower bound (LB ENHANCED), is proposed and presented

in Chapter 6. LB ENHANCED exploits the tight constraints applied to the calculation of DTW.

The Enhanced lower bound has been evaluated against existing DTW lower bounds on the

benchmark time series archive [6]. It provides similar tightness with one of the tightest DTW

lower bound while having faster computation time. The research in this chapter has been

submitted to the 2019 SIAM Data Mining Conference (SDM 2019).

C-4: The study presented in Chapter 7 answers RQ-4. The aim of this study is to demon-

strate the application of TSC algorithms on real-world problems such as improving railway

track maintenance. This study is a collaboration with the Institute of Railway Technology

(IRT) at Monash University. IRT has decades of railway track data that provide a good

platform to demonstrate TSC applications. In particular, this study look at predicting the

effectiveness for tamping maintenance activity using a multivariate k-NN-DTW algorithm.

The system achieves 72% prediction accuracy in predicting tamping effectiveness and is

able to predict the effectiveness twelve weeks before tamping. Future work includes apply-

ing scalable TSC algorithms to improve the performance, using the wealth of railway data at

IRT. This study has been published to two top railway conferences – the 2017 International

Conference of Rail Transportation (ICRT 2017) [2] and the 2017 International Heavy Haul

Association Conference (IHHA 2017) [4].

11

Chapter 2

Literature Review

This chapter gives some general background and related work on time series classification

(TSC) to have a high level overview of the work done in this thesis. If a more detail back-

ground or related work is required, they will be presented in the respective chapters. This

chapter will also review some of the related work in scaling up time series classification.

Section 2.1 gives a general overview on TSC. Section 2.2 then gives some background on

distance-based classification algorithms that is used in this thesis. Then Section 2.3 reviews

the related work in scalable TSC and finally Section 2.4 gives an overview on the existing

lower bounds for distance measures that can be used to speed up the Nearest Neighbour

(NN) classifiers. Starting with the definition of a time series given in Definition 2.0.1 where

S(i) denotes the i-th element of time series S.

Definition 2.0.1. A time series S is an ordered time-variables pair of L real-valued variables,

S = {(S(1), t(1)), (S(2), t(2)), ..., (S(L), t(L))}, where t(1) to t(L) is the timestamps for the

measurements S(1) to S(L). The ordering of the data attribute is critical in finding the best

discriminating features in time series data.

12

2.1 Time Series Classification

Like any standard supervised classifiers, time series classification algorithms build a classi-

fier from a collection of labelled time series data [17]. Definition 2.1.1 gives a formal definition

of time series classification. For simplicity, the majority of work presented in this thesis as-

sume that all time series are of the same length (as given in the publicly available benchmark

datasets [6]) but can be extended to time series of different length.

Definition 2.1.1. Time series classification is defined as, given an unlabelled time series

S, assign it to a class ci from a set C = {c1, c2, ..., cK} of predefined class, where K is the

number of classes in a dataset.

Early work on TSC involve using classifiers such as the Support Vector Machines [48] and

Decision Trees [49, 50]. Some fit a model to each time series by assuming that time series

in a class are generated by an underlying model or probability distribution [51]. Some of

the popular ones are the Naı̈ve Bayes [52], Hidden Markov Model [53] and Auto-Regressive

models. As mentioned in [23], these models are not competitive for TSC tasks as they were

proposed for other tasks, for example regression. Hence will not be discussed in this thesis.

Time series classification algorithms can be divided into 4 major categories. They are the

distance-based, feature-based, dictionary-based and ensemble-based algorithms. Distance-

based algorithms perform classification by comparing two time series with a similarity mea-

sure. These techniques compute a distance between two time series. They are simple,

intuitive and was the leading classification algorithm before the introduction of state-of-the-

art ensemble-based algorithms. This thesis focuses on TSC algorithms in this area because

it is where most research in TSC are at [16, 22, 23, 24, 25, 51]. Section 2.2 will discuss this

in more details. This section reviews the different types of TSC algorithms, focusing on the

more accurate ones outlined in a recent benchmark on TSC algorithms [23] and the ones

that contribute to the most accurate TSC algorithm – HIVE-COTE [15].

13

2.1.1 Feature-based Algorithms

Feature-based algorithms perform classification by learning features from the time series

that best discriminate the different classes. Feature-based algorithms are more likely to

benefit problems with long series as more features can be extracted from the time series

[23]. Rather than using features extracted from a whole time series for classification, better

results are obtained by extracting features from subsequence of the time series, also known

as interval-based algorithms [23, 54].

A recent benchmark [23] ranks the Time Series Forest (TSF) algorithm [54] as one of the

top nine most accurate TSC algorithms when tested on the UCR benchmark datasets [6].

TSF extracts features such as mean, standard deviation and slope from an interval of the

time series. It then builds a forest of time series trees using the Random Forest approach,

where random intervals of size
√
L and

√
L starting positions are selected in each node of

a time series tree [54]. Then, classification is done through majority vote [54]. An extension

of the TSF algorithm is the Time Series Bag of Features algorithm [55] that builds a bag of

features from the same features derived from TSF. Time Series Bag of Features is also in

the top nine TSC algorithms and is not significantly worse than TSF [23].

Instead of using features extracted from the subsequence, the whole subsequence can

be used as the discriminating pattern between the different classes in a training dataset,

also known as time series shapelets [56]. A shapelet is usually used as the splitting criterion

at a node of a decision tree. However, the algorithm has very high training complexity as it

needs to scan through a high number of shapelet candidates. For instance, a time series

of length L has O(L2) shapelet candidates and a time series dataset of size N has O(NL2)

candidates [56]. For example, the Trace dataset [6] with N = 200, L = 275, MINLEN = 3,

and MAXLEN = 275, has 7,480,200 candidates [56]. Hence, many shapelet candidates are

required to build the decision tree, which is extremely prohibitive for large datasets and long

time series.

Several work has been done to improve on the original shapelet algorithm. The Fast

Shapelets algorithm [57] approximates the shapelets using the Symbolic Aggregation Ap-

14

proximation (SAX) algorithm [58], to speed up the shapelets discovery process. SAX is a

method to approximate time series using word (sequence of symbols) [58]. A SAX word

is formed by first segmenting the time series into equal-width segments, where each seg-

ment is represented by its mean. This is known as Piecewise Aggregated Approximation

(PAA) [41]. Then each segment is discretised using a fixed breakpoints along the y-axis and

labelled with a symbol.

The Learned Shapelets algorithm [59] uses a gradient descent heuristic to speed up the

shapelets discovery process. It finds k shapelets through K-means clustering and optimised

using a logistic loss function for each class [59]. The Shapelet Transform algorithm [60]

transforms time series data using the distance of a time series to all k shapelets, where each

distance is the new data attribute. Instead of K-means clustering, it finds top k shapelets in

a single scan [60]. The transformed data are used to construct the Shapelet Ensemble (SE)

classifier, which is an ensemble of 8 standard classifiers [21]. SE is the second most ac-

curate time series classifier [23] and is part of the most accurate ensemble-based classifier

HIVE-COTE [15] that will be described later.

2.1.2 Dictionary-based Algorithms

Dictionary-based algorithms build a dictionary, which is a histogram that represents the ob-

served frequency of a particular pattern or feature in the time series. Then, classification is

done by comparing the histograms. These algorithms are also known as the “bag of words”

algorithms, where the patterns are captured using words, a high level representation of the

time series. Words are created by sliding a window over the time series, extracting all pos-

sible subsequences, and labelling each subsequence with a symbol. The Bag of Patterns

(BOP) algorithm [61] builds the dictionary by labelling each subsequence with a SAX word.

An extension of BOP is to combine the SAX representation with the vector-space model,

forming the SAX Vector-Space Model (SAXVSM) algorithm [62]. SAXVSM builds the dic-

tionary using the frequency of words in each class rather than the series itself. It is more

scalable and accurate than the original BOP algorithm [23].

15

The Bag of SFA Words (BOSS) algorithm [63] is the current state of the art for dictionary-

based algorithms and the third most accurate time series classifier [23]. The ensemble ver-

sion of it is a core component of HIVE-COTE [15]. It builds the dictionary using SFA words

(Symbolic Fourier Approximation [64]). BOSS creates the SFA words for each subsequence

using truncated Discrete Fourier Transform, which makes it robust to noise [63]. It discre-

tises each subsequence using Multiple Coefficient Binning, which finds the breakpoints by

estimating the distribution of the Fourier coefficients [63].

2.1.3 Ensemble-based Algorithms

Ensemble-based algorithm is a set of classifiers, where the prediction from each clas-

sifier can be weighted to achieve better classification accuracy. A key requirement for

ensemble-based algorithms to perform well, is to have diversity in the ensembles. Diver-

sity in an ensemble can be achieved by using different classifiers; selecting different at-

tributes for each classifier; or through different re-sampling of the training data for each

classifier. There has been many growing interest in developing ensemble-based algorithms

for TSC [17, 17, 21, 54, 63] in the recent years. The main reason is because ensembling

improves the classification accuracy [21]. For instance, ensemble-based classifiers such as

the Ensembles of Elastic Distances (EE) [17], Collective of Transformation-based Ensem-

bles (COTE) [21] and Hierarchical Vote COTE (HIVE-COTE) [15] are all significantly more

accurate than their individual components.

A few of the ensemble-based algorithms have been reviewed in the previous sections.

The Time Series Forest extracts the summary statistics (features) from intervals of the time

series and builds a Random Forest classifier. The BOSS ensemble builds multiple BOSS

classifiers with different sliding window sizes [63]. The Shapelet Ensemble (SE) [21] is

formed using 8 heterogeneous classifiers such as the k Nearest Neighbours (k-NN), Naı̈ve

Bayes, C4.5 Decision Trees [50], Support Vector Machines [48] with linear and quadratic

kernels, Random Forest [65], Rotation Forest [66] and Bayesian Network [15, 21]. Instead

of extracting features or words from the time series, SE transforms the time series into the

shapelet representation, using the Shapelet Transform algorithm [60] (see Section 2.1.1).

16

The Ensembles of Elastic Distances (EE) is an ensemble that groups the distance-based

classifiers [17]. It is an ensemble of nearest neighbour (NN) classifiers paired with 11 dif-

ferent distance measures [17]. EE is significantly more accurate that the individual NN

classifiers [17] and is the fourth most accurate time series classifier without being signifi-

cantly worse than the BOSS classifier [23]. More detail on these distance-based algorithms

will be outlined in Section 2.2.

The Collective of Transformation-based Ensembles (COTE) is a collection of 35 clas-

sifiers in the time, shapelet, autocorrelation and power spectrum representation [21]. It

contains 11 classifiers in the time domain (EE) and 8 in each of the shapelet (SE), au-

tocorrelation and power spectrum representation. Time series data are transformed into

the autocorrelation and power spectrum representation [21]. Then, the same classifiers in

SE are used in these representations. Combining all the 35 classifiers in multiple domains

makes COTE a more accurate classifier than the individual classifiers in their respective

domains [21]. The authors [21] also demonstrated that choosing a transformation domain

based on the training accuracy makes COTE worse.

COTE has its own limitations. It treats each of the classifier as a single module, meaning

that the prediction from every single classifier is considered and weighted based on the

training accuracy. Since there are more time domain classifiers in COTE, COTE will be

more biased towards time domain classifiers [15]. The HIVE-COTE algorithm is proposed

to overcome this limitation and is significantly more accurate than COTE [15]. It treats the

ensemble in each domain as a module and outputs a single probabilistic prediction from

each module [15]. There are five ensembles in the HIVE-COTE structure. They are the

EE [17], SE [21], BOSS Ensemble [63], Time Series Forest [54] and a newly introduced

Random Interval Features (RIF) Ensemble [15]. The RIF Ensemble is analogous to the

autocorrelation and power spectrum representations in COTE. It uses intervals from data

transformed into these spectral representations [15].

The Proximity Forest is the most recent ensemble-based classifier that is scalable and

has similar classification accuracy with COTE [67]. It is also not significantly worse than

ResNet – one of the deep learning model for TSC that is competitive to COTE [68]. Similar

17

to Random Forest [65], Proximity Forest is an ensemble of proximity trees. The difference

between a proximity tree and a normal decision tree is the splitting criteria of each node,

where it selects a random distance measures from EE as the splitting criteria [67]. The

Proximity Forest has not been compared to the work in this thesis because it has just been

proposed, but nonetheless it will be an interesting and promising future work.

2.1.4 Deep Learning for Time Series Classification

Deep learning [69] has gain a lot of interest in the machine learning community in the recent

years. It has been very successful in many classification tasks such as computer vision

[70, 71], natural language processing (NLP) [72, 73] and speech recognition [74, 75]. These

successes spark the interest in developing deep learning models for TSC [68, 76, 77]. In

fact many of them such as speech recognition and NLP, share similarity with TSC tasks [68].

This thesis is not focused on deep learning methods, thus this section will only briefly review

some of the major deep learning architecture for TSC for future exploration. A detailed and

comprehensive review has been presented in [68].

One of the earliest work in deep learning for TSC is the work presented by [78] where a

Multi-scale Convolutional Neural Network (MCNN) is proposed. MCNN is very competitive to

the state-of-the-art TSC classifier COTE [78]. However, the method is complicated to deploy

because it requires some heavy data preprocessing such as down-sampling and sliding

windows, to prepare for the multi-scale setting. Then, Multi Layer Perceptron (MLP), Fully

Convolutional Networks (FCN) and Residual Network (ResNet) are proposed for TSC in

[76]. Their experiments show that FCN and ResNet are very competitive to MCNN and state

of the arts such as COTE and BOSS. On the other hand, the proposed MLP is competitive

with NN-DTW. More importantly, these models have small training and deploying complexity

compared to MCNN and the ensemble-based classifiers. In contrast to the results in [76],

a recent review of existing deep learning models [68] show that ResNet outperforms FCN

when evaluated on 85 benchmark time series datasets [6] instead of the original 44 [76].

18

Furthermore, deep learning models have the advantage over traditional machine learning

models for transfer learning [79]. The idea of transfer learning is to pre-train a model on a

problem (dataset) and use the trained model to train on a new problem [79, 80]. Transfer

learning is useful when the problem does not have enough labelled data [79]. A recent work

[80] investigated the transfer learning approach for TSC tasks. They concluded that the

choice of source dataset significantly impacts the generalisation of the models and proposed

a method to predict the choice of source dataset using the DTW measure [80].

2.2 Distance-based Classification

The majority of time series classification research has been focused on similarity in the time

domain. This involves comparing a pair of time series using a similarity measure and gives

a distance between the two time series. Most similarity measure find the optimal alignment

between the two time series in the time domain using dynamic programming. The optimal

alignment is the cheapest path that goes through a L × L cost matrix. Different similarity

measure have different cost of alignment. Then, the Nearest Neighbour (NN) algorithm is

employed for classification. It searches for the NN within the training set and labels the

query time series with the label of the NN. Algorithm 1 describes this process, which is

also known as sequential scan. First, the distance to the nearest neighbour is initialised to

infinity. Then the algorithm compares time series S to every candidate T in the training set

T . If the distance is less than the current distance to the nearest neighbour, the candidate

becomes the new nearest neighbour. Note that most distance functions are parametrised

by a parameter P, which will be explained in more detail later in this section.

2.2.1 Lp-norm Distances

The Lp-norm distances are the simplest and fastest distance to compute. They have O(L)

complexity and provides a one-to-one matching of the time series. Among all the Lp-norms,

the L2-norm which is also known as the Euclidean distance (ED) is most commonly used to

compare time series [22]. Figure 2.1 illustrates the alignment of ED between two time series

19

Algorithm 1: NNSEARCH(S, T ,P)
Input: S: Query
Input: T : Data
Input: P: Parameter for the distance
Result: NN: Nearest neighbor of S in T

1 NN .dist← +∞
2 foreach T ∈ T do
3 if DISTANCE(S, T,P) < NN .dist then
4 NN← T
5 end
6 end
7 return NN

Figure 2.1: Illustration of Euclidean distance for time series

S and T . ED is the sum of all the point-wise differences (length of the green lines in Figure

2.1) between S and T . Assuming both S and T are normalised, Equation 2.1 describes the

calculation of ED.

ED(S, T) =
L∑
i=1

(S(i)− T (i))2 (2.1)

ED is a metric and satisfies the triangle inequality. This allows it to be used with indexing

strategies [37, 38, 39, 40, 41, 42, 43] to support fast similarity searching. Interestingly, the

Euclidean distance is extremely competitive with other distance measures when the dataset

is large [22]. However due to its simplicity, ED is not robust to temporal misalignments and

noise [22]. This then leads to the development of elastic distances such as Dynamic Time

Warping (DTW) [45].

20

(a) (b)

Figure 2.2: Example of (a) DTW alignment for two time series. (b) Cost matrix DDTW with
warping path A (green)

2.2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) has been studied and tested extensively on the bench-

mark time series archive [6]. The NN-DTW algorithm was the leading classifier for TSC

[17, 22, 23, 24]. DTW was firstly introduced as a spoken word recognition tool [45, 81] to

handle distortions in the time axis, which could not be handled by the Euclidean distance.

It stretches a time series and realigns the time series to better match the another time se-

ries [45]. Figure 2.2a illustrates the alignment of two time series S and T using DTW, as

compared to the Euclidean Distance in Figure 2.1.

DTW has a complexity of O(L2) and finds the optimal alignment (warping) path along

a L × L cost matrix DDTW using dynamic programming. Each cell of the matrix DDTW(i, j)

represents the cumulative cost of aligning the two time series as described in Equation 2.2.

DDTW(i, j) = (S(i)− T (j))2 + min

DDTW(i− 1, j − 1)

DDTW(i, j − 1)

DDTW(i− 1, j)

(2.2)

An example of the optimal warping path is illustrated as the green path in Figure 2.2b.

The warping path of S and T is a sequence A = 〈A1, . . . ,AP 〉 of links. Each link is a pair

21

Ak = (i, j) indicating that Si is aligned with Tj. A must obey the following constraints:

• Boundary Conditions: A1 = (1, 1) and AP = (L,L).

• Continuity: for Ak = (ik, jk) and Ak+1 = (ik+1, jk+1), ik+1 − ik ≤ 1 and jk+1 − jk ≤ 1

• Monotonicity: for Ak = (ik, jk) and Ak+1 = (ik+1, jk+1), ik+1 − ik ≥ 0 and jk+1 − jk ≥ 0

Finding this optimal warping path can be very time consuming especially for long time

series. Hence, it is common to apply a global constraint to the path such that S(i) and T (j)

can only be aligned if they are within a window range [81, 82, 83]. This limits the points in

T that S(i) can be aligned [27, 45]. This is known as Constrained DTW. Furthermore, a

global constraint also reduces pathological warping that will often reduce the classification

accuracy [83, 84]. There are many variants of this constraint such as the Ratanamahatana-

Keogh Band [83], Itakura Parallelogram [82], and the most widely adopted Sakoe-Chiba

Band [81].

This thesis will only focus on the Sakoe-Chiba Band which is commonly known as the

warping window, w [45, 81] and this is written as DTWw(S, T). Note that 0 ≤ w ≤ L−1 where

DTW0 corresponds to the Euclidean distance and DTWL−1 is equivalent to unconstrained

DTW. Figure 2.3 shows an example with warping window w = 3, where the alignment of two

time series is constrained to be inside the gray band (see Figure 2.2b for unconstrained).

2.2.3 Derivative Dynamic Time Warping

The Derivative Dynamic Time Warping (DDTW) is a variant to DTW [84]. It aims to reduce

singularities by transforming the time series into first order derivative [84]. Singularities arise

for example when a point on a rising trend is mapped to a point on a falling trend, which is

counter-intuitive [84]. First order derivative eliminates this problem by considering the higher

level feature of shape rather than just the value of the data-point in the time series [84]. The

derivative for a time series S = {S(1), , ..., S(L)} is S ′ = {S ′(2), ..., S ′(L−1)} and is computed

using Equation 2.3. Here, S ′(i) is defined as the average of the slopes between S(i − 1),

S(i) and S(i+ 1) [84]. Note that, S ′(i) is not defined for the first and last element of the time

22

Figure 2.3: DTW with warping window, w = 3

series. Using the transformed time series, DDTW is computed the same way as DTW with

dynamic programming [84]. Similarly a warping window w can be applied to DDTW to better

reduce pathological warping and speeds up DDTW computation.

S ′(i) =
(S(i)− S(i− 1)) + (S(i+ 1)− S(i− 1))/2

2
(2.3)

2.2.4 Weighted Dynamic Time Warping

The Weighted Dynamic Time Warping (WDTW) is another variant of DTW that is proposed

to reduce pathological warping and singularities [85]. Instead of using a warping window

to prevent the alignment of S(i) with T (j) that are too far away, WDTW weights the cost of

aligning S(i) to T (j) using a modified logistic weight function [85]. The intuition is that, if S(i)

is far away from T (j) in the time dimension, i.e. i is far from j, it will have a larger weight and

vice versa. Equation 2.4 describes this weight function where Wmax is the upper bound for the

weights and is typically set to 1 [85]. The parameter g controls the level of penalization for

further points as illustrated in Figure 2.4 [85]. The optimal range for g should be distributed

between 0.01 to 0.6 as suggested by the authors [85]. Furthermore, weights can also be

applied to DDTW – giving the Weighted DDTW distance [85].

23

distance
0 10 20 30 40 50 60 70 80 90 100

w
ei

gh
t v

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Modified logistic weight function (MLWF)

g = 0

g = 0.05

g = 0.25

g = 3

Figure 2.4: Modified logistic weight function for WDTW from [85]

wa =
Wmax

1 + e−g·(a−L/2)
(2.4)

2.2.5 Longest Common Subsequence

The Longest Common Subsequence (LCSS) is an edit distance like DTW. It is commonly

used for pattern matching in the context of string sequences [86, 87]. It finds the longest

common subsequence that best matches the two string sequences. For example, the green

lines in Figure 2.5 shows the matching of these two sequences where the best subsequence

is ’TABCFD’ with a length of 6.

G T S A W B C F D D

H T U A Q B C F B D

Figure 2.5: Example of string matching with Longest Common Subsequence. Green line
indicates a match between two characters.

Although developed for string sequences, LCSS can be extended to numeric sequences

(time series) using a distance threshold ε. Two elements are considered a match if the

distance between them is less than ε. LCSS is also computed using a cost matrix DLCSS,

24

where each cell of the matrix DLCSS(i, j) indicates the number of matches between the two

time series (length of the longest common subsequence), described in Equation 2.5. A

global constraint can also be applied to LCSS and is commonly known as ∆ [17].

DLCSS(i, j) =

0 if i = 0, j = 0

1 +DLCSS(i− 1, j − 1) if |S(i)− T (j)| ≤ ε

max

DLCSS(i− 1, j)

DLCSS(i, j − 1)

otherwise

(2.5)

2.2.6 Edit Distance with Real Penalty

Most of the edit distances like DTW and LCSS are not metric and do not satisfy the trian-

gular inequality. Being a metric is important for indexing the training set, which can be used

for fast nearest neighbour retrieval. DTW does not satisfy the triangular inequality because

it replicates the previous element when a gap is added. The Edit Distance with Real Penalty

(ERP) on the other hand, is an edit distance that satisfies the triangular inequality [88, 89].

ERP uses the distance between the two points as the penalty cost if a gap is not added. If

a gap is added, the penalty will be the distance between that point and a constant penalty

parameter g [88]. This is described in Equation 2.6, where ERP is computed with dynamic

programming using a cost matrix DERP. Similarly the alignment path can also be constrained

with the bandsize parameter to prevent pathological alignment.

DERP(i, j) = min

DERP(i− 1, j − 1) + (S(i)− T (j))2

DERP(i− 1, j) + (S(i)− g)2

DERP(i, j − 1) + (g − T (j))2

(2.6)

25

2.2.7 Move-Split-Merge Distance

Previous distance measures have a few limitations. The Lp-norm distances are not robust

to temporal misalignment. Edit distances like DTW and LCSS are not metric, which prevent

them from being used in various data mining tasks such as indexing, clustering and visual-

isation [90]. Although ERP is a metric, but it is not translation invariant. In other words, the

similarity ranking can be altered radically by changing the origin of the coordinate system

[90]. Moreover, ERP does not treat all the values equally, i.e. it prefers to delete and insert

values close to zero [90]. Therefore, the Move-Split-Merge (MSM) distance is proposed to

satisfy this set of properties, that no other existing distance measures can satisfy [90].

The MSM distance uses a set of operations (Move, Split, Merge) to transform a time

series to better match the other one [90]. The cost for the move operation is the pairwise

distance between two points [90]. The cost for the split and merge operations includes a

constant penalty value c [90]. Equation 2.7 gives the cost function for MSM. Similar to DTW,

MSM has a quadratic complexity of O(L2) and is computed with dynamic programming.

Equation 2.8 describes the computation of the elements in the cost matrix DMSM [90].

C(S(i), S(i−1), T (j)) =

c
if S(i− 1) ≤ S(i) ≤ T (j)

or S(i− 1) ≥ S(i) ≥ T (j)

c + min

|S(i)− S(i− 1)|

|S(i)− T (j)|
otherwise

(2.7)

DMSM(i, j) = min

DMSM(i− 1, j − 1) + |S(i)− T (j)|

DMSM(i− 1, j) + C(S(i), S(i− 1), T (j))

DMSM(i, j − 1) + C(T (j), S(i), T (j − 1))

(2.8)

26

2.2.8 Time Warp Edit Distance

All the previous distance measures do not consider the timestamps of the time series.

Timestamps are important when time series are sampled with various sampling rates that

might be non-uniform [91]. The Time Warp Edit Distance (TWED) is proposed to compare

time series using their timestamps [91]. Other than comparing time series with different

sampling rate, considering the timestamps of the time series also allows the comparison

of approximate (down-sampled) representation of the time series. It provides a useful rela-

tionship between the original time series and the down-sampled time series [91]. It is also

computed with dynamic programming using a cost matrix DTWED.

There are three operations (deleteA, deleteB and match) in TWED that transform a time

series for better matching [91]. A constant λ penalty is used in the delete operations. The

match operation computes the distance of the current and previous data points. TWED

controls warping in time series by multiplying the timestamps differences with a constant

stiffness parameter v. v = ∞ means off-diagonal points of the cost matrix DTWED are not

considered and is similar to the Euclidean distance, while v = 0 is similar to DTW [91].

The cost of all the three operations and the computation of each elements in the cost matrix

DTWED are described in Equation 2.9 and 2.10 respectively. Note that tS(i) is the timestamps.

match : γM = (S(i)− T (j))2 + (S(i− 1)− T (j − 1))2+

v|tS(i)− tT (j)|+ v|tS(i− 1)− tT (j − 1)|

deleteA : γA = (S(i)− S(i− 1))2 + v|tS(i)− tS(i− 1)|+ λ

deleteB : γB = (T (j)− T (j − 1))2 + v|tT (j)− tT (j − 1)|+ λ

(2.9)

DTWED(i, j) = min

DTWED(i− 1, j − 1) + γM match

DTWED(i− 1, j) + γA deleteA

DTWED(i, j − 1) + γB deleteB

(2.10)

27

Algorithm 2: TRAINEE(T , C)

Data: T : training data with size N
Data: C: set of NN classifier paired with an elastic distance measure
Result: P?: best parameter value for each distances
Result: bestAccuracy: best LOO-CV accuracy for each distances

1 foreach Ci ∈ C do
2 bestNCorrecti ← −1
3 for P ip ← P i1 to P iM do
4 nCorrect← 0
5 foreach T ∈ T do
6 NN = Ci.NNSEARCH(T, T \ T,P ip)
7 if NN.class = T.class then nCorrect++
8 end
9 if nCorrect > bestNCorrecti then

10 bestNCorrecti ← nCorrect
11 P?i ← P ip
12 end
13 end
14 bestAccuracyi ← bestNCorrecti/|T |
15 end

2.2.9 Ensembles of Elastic Distances

These distance measures are paired with a NN classifier for classification. Each of them

are not significantly different from each other in terms of classification accuracy [17] and the

choice depends on the dataset of interest. However, combining them in an ensemble will re-

duce the variance, creating a more accurate classifier. The Ensembles of Elastic Distances

(EE) is a meta-classifier that consists of 11 NN classifiers with various distance measures

that is significantly more accurate than each of the individual NN classifiers [17]. The dis-

tance measures used in EE are (1) Euclidean distance; (2) Full DTW; (3) Constrained DTW;

(4) Full Derivative DTW; (5) Constrained Derivative DTW; (6) Weighted DTW; (7) Weighted

Derivative DTW; (8) Longest Common Subsequence; (9) Edit Distance with Real Penalty;

(10) Move-Split-Merge Distance; (11) Time Warp Edit Distance.

As shown in their respective sections, each distance measure has one or two parameters

that need to be learned [17] and learning of these parameters is done with leave-one-out

cross validation (LOO-CV). The process involves finding the NN of each time series inside

the training set across a set of M predefined values. Algorithm 2 describes the training

28

process of EE using LOO-CV. The algorithm searches for the parameter that gives the

highest LOO-CV accuracy for each of the NN classifiers. Line 2 initialises the best accuracy

for a NN classifier in EE. Lines 3-15 show the typical procedure of doing LOO-CV for the

NN classifier. Line 6 searches for the NN of a time series T from all the instances in the

training set T except T itself with respect to the distance di. The label (class) of NN is the

predicted label for T . The parameter that gives the highest accuracy is stored. Then for

classification, EE weights the prediction from each of the NN classifiers using their LOO-CV

accuracy [17]. EE is significantly more accurate than all its individual NN classifiers [17],

making it the most accurate classifier in the time domain. It is also part of the most accurate

HIVE-COTE [15].

2.3 Scalable Time Series Classification

The current research in time series classification [22, 23, 51] is lagging behind the demand of

processing large datasets. Most research in TSC [10, 15, 16, 17, 21, 24, 26, 32, 83, 92] was

tested with the standard benchmark time series datasets in the scale of thousands [6]. Clas-

sification performed using the state-of-the-art classifiers such as EE, Shapelet Ensemble

(SE), COTE and HIVE-COTE are very computational demanding on these small datasets

[6]. When it comes to large datasets, for example, the remote sensing dataset that contains

a million time series instances [1], they become even more impractical. Apart from the high

classification time, the state of the arts also have high training complexity. Training these

ensemble-based classifiers is similar to training their individual classifier, where the learning

algorithm has to repeatedly test the classifiers at different parameter values. Therefore, the

task to scale up TSC boils down to scaling up the classification algorithms that constitute

these ensembles.

Fast and scalable time series classification algorithms have been developed in the liter-

ature. Most of them are centred around scaling up NN classifiers [27, 32]. As mentioned

in Section 2.2, the NN-DTW algorithm was the state of the art before the ensemble-based

classifiers [15, 17, 21] were introduced. On the other hand, the bias of the NN algorithm

29

vanishes in the limit when the dataset size increases, which makes it a very competitive

classifier with large datasets. However, it is highly non-scalable because it has to compare

the query sample to all the samples in the training dataset (see Algorithm 1), which is pro-

hibitive for most large datasets. For instance, if given a dataset of size N and time series of

length L, NN-DTW has a classification complexity of O(N · L2) per query.

The simplest way of speeding up NN type classifiers is to use cheap O(1) to O(L) lower

bound functions to prune off unpromising candidates and reduce the search space. The

aim is to minimise the number of expensive O(L2) distance computations. Lower bounding

has been successful in speeding up NN-DTW [27, 32]. Moreover, DTW lower bounds have

been studied widely [27, 28, 29, 30, 31, 32]. In this work, lower bounds are used as the

foundation to speed up NN classifiers. Section 2.4.1 will explain more on lower bounds.

Instead of a single lower bound, different lower bounds can be cascaded with increasing

complexity to create a tighter lower bound while still having a complexity that is much less

than O(L2) [32]. Besides, we can also early abandon the distance computation [32]. This is

based on the observation that most of the computations in the DTW cost matrix, DDTW are

redundant, i.e. they have values larger than the distance between the query and the current

nearest neighbour. Rakthanmanon et al. [32] introduce the UCR SUITE algorithm to search

trillions of time series subsequences under DTW using all these optimisation techniques.

The PRUNEDDTW algorithm is proposed to prune off the cells in the cost matrix DDTW, that

are guaranteed to not be part of the DTW warping path [93].

Approximate NN (ANN) algorithms are popular to speed up NN type classifiers as they

reduces the search space [46]. Instead of the full training database, ANN only considers

the instances that have the potential to be the nearest neighbour. ANN algorithms may not

return the actual nearest neighbour, but could still return neighbours that have the same

label as the nearest neighbour. Often, the approximate NN is good enough if the datasets

is large, as it is more likely that the approximate NN has the same label with the actual NN.

ANN algorithms systematically index the training dataset so that the query will be compared

to just a few instances in the dataset. Indexing the training dataset prevents unnecessary

comparison of unpromising candidates, or candidates that are too far from the query, thus

30

saving the search time. Note that the indexing structure can also be used with an exact

search [35, 36]. ANN algorithms can be divided into three categories, partitioning trees,

hashing and graph techniques [46]. Partitioning trees method is more effective than the

other two. This method works by partitioning the data into several subspaces using clusters

or hyperplanes, which can then be used with a tree structure. The k-d tree [33, 94] is the

most popular partitioning tree method, but it is only effective for low-dimensional data [46],

thus it is not suitable for time series with hundreds and thousands of dimensions.

There are a few work done to improve k-d tree for high-dimensional data. Particularly,

the multiple randomised k-d tree with a priority search has shown to be the most efficient

[46, 95]. Although effective for high-dimensional datasets, it is still not suitable to time series

as it partitions the data based on its dimensions. Note that the dimension of a time series

data is its timestamps (data attribute). Partitioning time series data using timestamps will

lose information on the ordering of data attribute. This prevents them from being used by

distance measures that are paired with the NN classifier. Muja and Lowe [46] propose

another partitioning trees method for high-dimensional data, the Priority Search K-means

Tree (PSKMT) algorithm. PSKMT has a higher precision than the multiple randomised k-d

tree [46]. It partitions the data using the K-means clustering algorithm and searches the

tree with a priority queue. The authors show that PSKMT is about an order of magnitude

faster than the previous ANN algorithms [46].

Locality Sensitive Hashing (LSH) [96, 97] is also known to be an effective ANN search

algorithm for high-dimensional data. It is sometimes referred to as the c-Approximate r-Near

Neighbour. The idea is that any two points in a high-dimensional space that are within a

range r, will have the same hash value and hashed into the same bucket. Far points outside

of the range cr will be hashed into a different bucket [97]. The performance of LSH highly

depends on the hashing family and functions. Usually, multiple hash tables with various

hash functions of the same family are used to ensure that the nearest neighbour and the

query are at least in one of the buckets. LSH provides a theoretical guarantee on the search

quality that can be done in near O(1) time, but in practice, partitioning trees methods often

outperform them, as shown in [46]. There are many LSH families, the most suitable one for

31

time series is the Exact Euclidean LSH (E2LSH) [96]. E2LSH computes the hash value of a

high-dimensional data using random projections. Consider a time series S with the length L,

the hash function projects S from a L-dimension space onto a set of integer using Equation

2.11 [97].

ha,b(S) =
a · S + b

w
(2.11)

where a is a L dimensional random vector, and b is chosen uniformly from the range [0, w].

The random projection method has also been used to search for time series subse-

quence by first converting them into symbols [98, 99]. One major disadvantage of LSH

algorithms is that, it requires high storage cost [46].

Lastly, nearest neighbour graph techniques are the least popular. They find the nearest

neighbours using a graph structure where edges connect the objects in the dataset to its

nearest neighbours [46]. Experiments in [100] show that k-NN graph can be competitive

with randomised k-d trees. Despite the good performance of k-NN graph, constructing the

graph itself is expensive, which leads to the construction of approximate k-NN graph [101].

Most of the indexing techniques mentioned in previous paragraphs are not suitable for

time series matching as they suffer from the curse of dimensionality [34]. Specific techniques

have been developed for time series data by having a higher level representation of the time

series [22] and use some kind of lower bounds for similarity search [35, 36, 37, 38, 39, 40,

42, 43, 102]. This is commonly known as the GEMINI Framework [39].

Agrawal et al. [102] are the first to index time series datasets for time series matching.

They index time series using Discrete Fourier Transform (DFT) and R∗-trees [102]. DFT is

used because it preserves the Euclidean distance in time and frequency domains as proven

in the Parseval’s Theorem [102]. Similar technique is proposed in [39] to index time series

subsequence. Singular Value Decomposition reduces the dimensionality of the time series

for fast time series matching [43]. Piecewise Aggregate Approximation (PAA) segments the

time series and represents each segment with the mean value [38, 40, 41]. Usually the

number of segments is much less than the time series length which can then be used with

32

multidimensional indexing structures [38]. Haar Wavelets together with R-tree are also used

to index time series data [37]. The iSAX algorithm builds an indexing tree structure using

symbolic representations of time series [36]. Then, raw time series are compared using ED

or DTW at the leaf nodes [36]. iSAX2.0 is proposed to overcome the scalability issue in

building the iSAX index [35].

The search space can also be reduced using the average time series in each of the

classes of the training database [26]. The average time series is computed using DTW

Barycenter Averaging (DBA) [47] and has shown to significantly reduces the classification

time and improves the classification accuracy [26].

There are also few work done in scaling up other TSC algorithms as well as reducing

the training time. Notably the Proximity Forest [67] (explained in Section 2.1.3) is proposed

recently to speed up EE and has the potential to scale and outperform HIVE-COTE. An-

other recent work proposed c-RISE [103] that gives a contract training time for the Random

Interval Spectral Ensemble (RISE) – a component of HIVE-COTE [15]. Giving a contract

time to train a classifier allows the classifier to be trained within a short time and without

compromising on the accuracy. Recall that the shapelet algorithm [56] is not scalable as

there are many shapelet candidates to scan through. Rakthanmanon et al. [57] propose the

Fast Shapelets algorithm for fast shapelets discovery. The Fast Shapelets algorithm repre-

sents the shapelets at a higher level representation using SAX words [57]. There are also

some work done to scale up bag of word approaches. For instance, the SAX Vector-Space

model (SAX-VSM) [62], an extension to the BOP algorithm, is competitive to NN-DTW with

lower bounding and early abandoning [62]. Then the Bag-of-SFA-Symbols in Vector Space

(BOSS-VS) algorithm was proposed to speed up the BOSS algorithm [104]. The authors

[104] show that the BOSS-VS algorithm is more accurate and is multiple order of magnitude

faster than NN-DTW.

It is important to realise that although all these works presented good results in scaling

TSC and time series mining, most of them were designed for the Euclidean space. Besides,

most of them were also tested with the standard benchmark time series datasets, where the

largest dataset contains a total of 9,236 time series in both training and testing set [6]. The

33

largest known publicly available dataset is the Phoneme dataset that contains 370 thousand

time series [105, 106], but their method was not designed for scalable TSC [106]. They are

not scalable enough for the one million SITS dataset. Although the iSAX2.0 algorithm has

shown to index a billion time series, but it was done under the Euclidean distance, which

is not suitable for the task of creating land-cover maps, where the phenomena of interests

are usually modulated by weather (see Chapter 3 for more details). The authors [36] did

suggest that it is possible to apply iSAX2.0 with DTW, but it was unclear as to how effective

it will be. More importantly, these techniques do not tackle the problem of inefficient learning

algorithm for NN classifiers.

2.4 Lower Bounds for Distance Measures

This section describes the existing lower bound functions for some of the distance mea-

sures. Lower bounds are very useful for speeding up NN type classifiers. In particular, lower

bounds for DTW has been studied widely [27, 28, 29, 30, 31] and has been successful in

speeding up NN-DTW algorithm [27, 32]. Lower bounds speed up NN classifiers by min-

imising the number of the expensive O(L2) distance computations and reducing the search

space. Typically an effective lower bound has cheap O(1) to O(L) complexity. Algorithm

3 describes a NN search with lower bound. The main difference with a typical NN search

(Algorithm 1) lies in line 3 where a lower bound is used before the actual distance compu-

tation to prune the candidates. Note that some lower bound functions require the distance

function’s parameter P to compute.

2.4.1 DTW Lower Bounds

The simplest and loosest DTW lower bound is the Kim lower bound (LB KIM) [28] described

in Equation 2.12. LB KIM uses the maximum differences of the maximum, minimum, first

and last points of S and T as the lower bound for DTW. With initialisation, LB KIM can be

computed very quickly with O(1) time. Figure 2.6a illustrates this lower bound.

34

Algorithm 3: LBNNSEARCH(S, T ,P)
Input: S: Query
Input: T : Data
Input: P: Parameter for the distance
Result: NN: Nearest neighbor of S in T

1 NN .dist← +∞
2 foreach T ∈ T do
3 if LOWERBOUND(S, T,P) < NN .dist then
4 if DISTANCE(S, T,P) < NN .dist then
5 NN← T
6 end
7 end
8 end
9 return NN

First

Last

Maximum

Minimum

(a) (b)

Figure 2.6: (a) KIM and (b) KEOGH lower bound

LB KIM(S, T) = max

|S(1)− T (1)|

|S(L)− T (L)|

|max(S)−max(T)|

|min(S)−min(T)|

(2.12)

The Yi lower bound (LB YI) [29] takes advantage that all the points in S that are larger

than max(T) or smaller than min(T) must at least contribute to the final DTW distance. Thus

the sum of their distances to max(T) or min(T) forms a lower bound for DTW as described

in Equation 2.13.

35

LB YI(S, T) =
L∑
i=1

(S(i)−max(T))2 if S(i) > max(T)

(S(i)−min(T))2 if S(i) < min(T)

0 otherwise

(2.13)

The Keogh lower bound (LB KEOGH) [27] is arguably one of the most used lower bound

for DTW due to its simplicity and medium-high tightness. First, it creates two envelopes

encapsulating the candidate time series. The upper envelope (UE) is built by finding the

maximum value within a warping window w range, and the lower envelope (LE) is by finding

the minimum, as shown in Equation 2.14.

UET
w(i) = max(T (i− w) : T (i+ w))

LET
w(i) = min(T (i− w) : T (i+ w))

(2.14)

Then LB KEOGH distance of S and T is the Euclidean distance of all the points in S that

are outside of the envelope, to the envelope of T , UET
w and LET

w . Equation 2.15 describes

the computation of LB KEOGH. Figure 2.6b illustrates LB KEOGH, where the sum of the

length of the green lines is the LB KEOGH distance. Note that LB KEOGHw represents

LB KEOGH with warping window w.

LB KEOGHw(S, T) =

√√√√√√√√√√√
L∑
i=1

(S(i)− UET

w(i))2 if S(i) > UET
w(i)

(S(i)− LET
w(i))2 if S(i) < LET

w(i)

0 otherwise

(2.15)

The Improved lower bound (LB IMPROVED) [31] first computes LB KEOGH and finds S ′,

the projection of S on to the envelope of T using Equation 2.16, where UET
w(i) and LET

w(i)

are the envelope of T . Then, it builds the envelope for S ′ and computes LB KEOGH(T, S ′).

Finally, LB IMPROVED is the sum of the two LB KEOGH, described in Equation 2.17.

36

S ′(i) =

UET

w(i) if S(i) > UET
w(i)

LET
w(i) if S(i) < LET

w(i)

S(i) otherwise

(2.16)

LB IMPROVEDw(S, T) = LB KEOGHw(S, T) + LB KEOGHw(T, S ′) (2.17)

LB IMPROVED is tighter than LB KEOGH, but has higher computation overheads, requir-

ing multiple passes over the series. However, to be effective, it is usually used with an early

abandon process, whereby the bound determined in the first pass is considered, and if it is

sufficient to abandon the search, the expensive second pass is not performed.

The New lower bound (LB NEW) [30] takes advantage of the boundary and continuity

conditions for a DTW warping path to create a tighter lower bound than LB KEOGH. The

boundary condition requires that every warping path contains (S(1), T (1)) and (S(L), T (L)).

The continuity condition ensures that every S(i) is paired with at least one T (j), where

j ∈ {max(1, i− w) . . .min(L, i+ w)} and searched using binary search.

LB NEWw(S, T) = (S(1)− T (1))2 + (S(L)− T (L))2 +
L−1∑
i=2

min
b∈T (i)

(S(i)− b)2 (2.18)

Instead of using standalone lower bounds, multiple lower bounds with increasing com-

plexity can be cascaded, to form an overall tighter lower bound [32]. This greatly increases

the pruning power and reduces the overall classification time. The UCR SUITE [32] cas-

cades LB KIM, LB KEOGH(S, T) and LB KEOGH(T, S) to achieve a high speed up in time

series search. Note that LB KEOGH is not symmetric and by reversing the role of S and T

can sometimes produce tighter bounds. It is important to realise that DDTW is a variant of

DTW, so the lower bounds for DTW are directly applicable to DDTW.

37

2.4.2 ERP Lower Bounds

ERP is very similar to DTW, thus by taking into account ERP’s penalty parameter g, DTW

lower bounds are easily adapted for the ERP distance [88]. For instance, LB KIM for ERP

needs to consider that the first and last point may be a gap as described in Equation 2.19,

where S ′(1) = S(1) or g, S ′(L) = S(L) or g. Then, max(max(S), g) and min(min(S), g) are

used instead. The same applies to time series T .

LB KIMERP(S, T) = max

|S ′(1)− T ′(1)|

|S ′(L)− T ′(L)|

|max(max(S), g)−max(max(T), g)|

|min(min(S), g)−min(min(T), g)|

(2.19)

To adapt LB YI for ERP, the new minimum and maximum values are computed the same

way as LB KIMERP.

LB YIERP(S, T) =
L∑
i=1

(S(i)−max(max(T), g))2 if S(i) > max(max(T), g)

(S(i)−min(min(T), g))2 if S(i) < min(min(T), g)

0 otherwise

(2.20)

Then to adapt LB KEOGH for ERP, the envelopes need to be adjusted for g where the

maximum and minimum values have to consider g, described in Equation 2.21. Note that

bandsize is used instead of w. Then LB KEOGHERP is computed exactly the same way as

LB KEOGH for DTW using Equation 2.15 by substituting with the ERP envelopes.

UET
bandsize(i) = max(g,max(T (i− bandsize) : T (i+ bandsize)))

LET
bandsize(i) = min(g,min(T (i− bandsize) : T (i+ bandsize)))

(2.21)

38

All the previous lower bounds are developed specifically for DTW. Thus, a new lower

bound specifically for ERP is proposed [88]. By setting g = 0, LB ERP is defined in Equa-

tion 2.22 as the absolute difference of the sum of both time series. The authors [88] show

that LB ERP has better pruning power than LB KEOGHERP. Currently LB ERP is only de-

fined for g = 0 and there are no further proofs for g 6= 0.

LB ERP(S, T) =
∣∣∣∑S −

∑
T
∣∣∣ (2.22)

2.4.3 LCSS Lower Bound

The LCSS distance is computed using the percentage of points that are not a match – hav-

ing distance larger than ε. Then, with the LCSS global constraint parameter ∆, lower bound

for LCSS can be derived using similar idea as LB KEOGH, i.e. constructing an envelope

around the time series. This lower bound function is proposed in [107]. The envelope for T

is constructed using ε and ∆ as described in Equation 2.23.

UET∆(i) = max(T (i−∆) : T (i+ ∆)) + ε

LET∆(i) = min(T (i−∆) : T (i+ ∆)) + ε
(2.23)

The sum of all S(i) ∈ S within the envelope creates an upper bound (UB) to the longest

common subsequence. Then the lower bound distance for LCSS (LB LCSS) is 1 − UB,

defined in Equation 2.24, as the percentage of points that are not within the envelope.

LB LCSS(S, T) = 1− 1

L

L∑
i=1

1 if LET∆(i) ≤ S(i) ≤ UET∆(i)

0 otherwise
(2.24)

39

Chapter 3

Time Series Indexing under Time

Warping

In this chapter, we study the classification of large time series datasets using the Nearest

Neighbour algorithm coupled with Dynamic Time Warping (NN-DTW). The NN-DTW algo-

rithm is the core of time series classification (TSC) and has shown to be very competitive

across various TSC algorithms [23, 24]. The NN algorithm compares the unknown time

series to every other time series in a training database. With training database of N time

series of lengths L, each classification requires O(N · L2) computations. The databases

used in almost all prior research have been relatively small (with less than 10,000 samples)

and much of the research has focused on making DTW’s complexity linear with L, leading

to a runtime complexity of O(N ·L). As we demonstrate with an example in remote sensing,

real-world time series databases are now reaching the million-to-billion scale. This wealth

of training data brings the promise of higher accuracy, but raises a significant challenge be-

cause N is becoming the limiting factor. As DTW is not a metric, indexing objects induced by

its space is extremely challenging. We tackle this task in this chapter by developing TSI, a

novel algorithm for Time Series Indexing which combines a hierarchy of K-means clustering

with DTW-based lower-bounding. We show that on large databases, TSI makes it possible

to classify time series 2-3 orders of magnitude faster than the state of the art.

40

Figure 3.1: High-resolution image of Houston city near Westin Galleria taken by Sentinel-2A.
c© Copernicus Sentinel data [2016] for Sentinel data.

3.1 Introduction

The European Space Agency’s Sentinel-2 satellites provide a full picture of Earth, every 5

days, at 10m resolution [7]. This and the corresponding NASA Landsat-8 programs intro-

duce unprecedented opportunities to monitor the dynamics of any region of our planet over

time and understand the constant flux that underpins the bigger picture of our world (more

details at www.esa-sen2agri.org/SitePages/EOData.aspx). A high resolution satellite view

of Houston city taken by the Sentinel-2A satellite, obtained from the Sentinels Scientific Data

Hub (https://scihub.copernicus.eu/s2) is shown in Figure 3.1.

All images from these satellites are, by default, geometrically and radio-metrically cor-

rected. Geometric corrections ensure that every pixel (x, y) always maps to the same ge-

ometric area. Radiometric corrections ensure that the spectral information is comparable

from one image to the next of the series. This provides for each geographic coordinate on

Earth, a time series of the “colours” that it underwent over the study period. One of the

core tasks is to create temporal land-cover maps that describe the evolution of an area over

time. This task is summarized in Figure 3.2: mapping the spectral evolution of a “pixel”

(geographic coordinate) to a land-cover class such as “wheat crop”, “broad-leaved tree” or

“urban”. Evolution is critical because, from space, all crops look the same; what makes it

possible to correctly differentiate one from another is the temporal evolution (when the crop

grows, when it is harvested etc.).

41

www.esa-sen2agri.org/SitePages/EOData.aspx
https://scihub.copernicus.eu/s2

Tim
e

Satellite Images Time Series Land-Cover Map (Classes)

Figure 3.2: Production of a time series dataset from satellite image series.

Quite simply, research into time series classification lags behind the demands of modern

space imagery, which produce terabytes of data each day. Why? Most research into time

series classification has addressed datasets that hold no more than 10 thousand time series

[6]. In contrast, the Sentinel-2 satellite provides over 10 trillion time series, capturing Earth’s

land surfaces and coastal waters at resolutions of 10 to 60m [7]. Although much research

has gone into classifying remote sensing images, few studies have analysed time series

extracted from sequences of satellite images.

The go-to time series classification method in terms of accuracy for this type of task is

Nearest Neighbour coupled with Dynamic Time Warping (NN-DTW) [81, 108]. This is for

two main reasons: (1) many phenomena of interest – vegetation cycles, for instance – have a

periodic behaviour which can be slightly modulated by weather artifacts. These modulations

result in distortions of canonical temporal profiles that are well handled by DTW [10]. (2)

Time series are too short for Bag-of-word-type approaches [62, 104] to perform best.

NN-DTW cannot scale to the typical size of satellite datasets where it is common to have

100 million example time series [8, 9]. Even making the most of lower-bounding [27, 31],

this is completely infeasible. Figure 3.3 illustrates this point: while all benchmark time series

datasets [6] can be classified in less than 30 minutes, creating a temporal land-cover map

for a city like Houston (16 million time series) using a bare minimum of 1 million training

examples would take about a year. To create a land-cover map of Texas (7 billion time

series) with 100 million samples would require 30k years of computation.

42

Figure 3.3: Average NN-DTW classification time on different datasets

With these motivations, this work tackles Contract Time Series Classification, where

we would like to produce the most accurate classifier under a contracted time (obviously sig-

nificantly smaller than running the NN-DTW). We propose a new algorithm that efficiently

indexes the training database using a hierarchical K-means tree structure specifically de-

signed for DTW. We will show that our algorithm reduces the time per query while retaining

similar error to the state of the art, NN-DTW.

This chapter is organized as follows. In Section 3.2, we review some background and de-

fine the problem statement for our work. Then in Section 3.3 we introduce and describe our

approach. Section 3.4 shows the empirical evaluation for our approach. Lastly, Section 3.5

offers some direction for future work and we conclude our work in Section 3.6.

43

3.2 Background and Motivation

3.2.1 Time Series Classification

Many time series classification algorithms in the literature such as Time Series Shapelets

[56, 57], 1-NN BOSS [104] and SAX-VSM [62] have been shown to be competitive (and

sometimes superior) to the state of the art, NN-DTW.

Nonetheless, as explained in the introduction,classification of the Satellite Image Time

Series (SITS) is better tackled by NN-DTW. NN-DTW has been shown to be extremely

competitive for many other applications [10, 16, 24, 26, 32, 83, 92]. It has been argued that

the widespread utility of NN-DTW is due to time series data having autocorrelated values,

resulting in high apparent but low intrinsic dimensionality. Experimental comparison of DTW

to most other highly cited distance measures on many datasets concluded that DTW almost

always outperforms other measures [24].

3.2.2 Nearest Neighbour Search

The nearest neighbour (NN) classifier (out of the context of time series) is one of the sim-

plest classification algorithms but is nonetheless highly effective. It is a non-parametric,

lazy learning algorithm and does not require any abstraction/training phase on the training

dataset [109]. Its behaviour is also very interesting for large datasets, as its bias vanishes

in the limit when the dataset size increases. k-NN classifier finds k nearest neighbours of

the query in the training dataset and returns the dominating class as the class for the query

sample [109]. Despite its nice behaviour in the limit, k-NN has the major drawback of not

being scalable: it has to compare the query sample to all samples in the training dataset,

which is infeasible for most large datasets.

An efficient and popular method of scaling up NN classification on large datasets is to

use the k-d tree tree structure, where k is the dimensionality of the Euclidean search space

[33]. k-d tree allows faster retrieval of the nearest neighbour to the query sample in a short

44

amount of time. It is very efficient in the Euclidean space. However, it is not applicable for

DTW-induced space as k-d tree tree partitions each dimension of the data recursively while

DTW makes associations across dimensions. Because of that, k-d tree will not be applicable

to NN-DTW for time series classification.

A large amount of research has been done to scale up NN-DTW for time series classifi-

cation such as early abandoning [110] and lower bounding [27, 31, 32]. As DTW has time

complexity of O(L2), these methods speed up classification by minimizing DTW computa-

tions. In this work, we focus on approximate nearest neighbour search, where it is typical to

be two or more orders of magnitude faster than linear search [46].

Approximate nearest neighbour search algorithms index the data in the training dataset

in a systematic manner so that the query sample will be compared to only a few promising

candidates from the training dataset within a given time. It may not return the actual nearest

neighbour, but with sufficient data it is highly likely that the approximate nearest neighbour

will be of the same class.

The Priority Search K-means Tree (PSKMT) algorithm [46] is a recent breakthrough

approach to nearest neighbour search that performs a priority search in a hierarchy of K-

means clusterings. It has high precision on large high-dimensional datasets and is still

one order of magnitude faster than previous approximate search algorithms [46, 111]. The

algorithm outperforms existing approximate nearest neighbour algorithms on the 31 million

sample SIFT dataset [46]. This algorithm offers an incredible opportunity for time series

because, unlike k-d tree, it does not require that the data be tabular.

This work adapts and extends PSKMT to time series creating a novel efficient time se-

ries classification algorithm. Such adaptation was not possible before because K-means

clustering was ill-defined for the DTW-induced space. Hence, we leverage our recent work

on clustering time series consistently for DTW [26, 47] using DTW Barycenter Averaging

(DBA) and adapt PSKMT to make the most out of the available lower bound for DTW. DBA

has been extensively studied in [26, 47, 112] and a proof of convergence can be found in

[26, 112].

45

Our experiments demonstrate that our method makes it possible to classify large time

series datasets two orders of magnitude faster than the state of the art, NN-DTW with

LB KEOGH [27, 113].

3.2.3 Contract Time Series Classification

In recent years there has been an increasing interest in using any-time algorithms for data

mining [114, 115]. However, the variant known as contract algorithms have received less

attention. Contract algorithms are a special type of any-time algorithms that require the

amount of run-time to be determined prior to their activation. In other words, contract al-

gorithms offer a trade-off between computation time and quality of results, but they are not

interruptible.

Problem Statement Contract Time Series Classification: produce the most accurate time

series classifier given (1) set constraints on computational resources available at classifica-

tion time and (2) no constraints on computational resources at training time.

We assume that the computational resource constraint will be time, not space, and that

it will be given to us in the form of the number of CPU cycles available for each query to

classify. We assume that the constraint will be given as a positive integer L which is the

number of time series to examine; for ease of exposition, we will report the result of our

algorithm on different datasets at regular time intervals (i.e. with different L).

3.3 Our Approach: DTW-Indexing of Time Series for Clas-

sification

Our algorithm, Time Series Indexing (TSI) is an adaptation of Priority Search K-means Tree

(PSKMT) [46] to index time series embedded in a space induced by DTW. The general

outline is as follows.

46

At training time, we construct a hierarchy of K-means clusterings over the training

dataset; this prepares the indexing data structure that will allow fast querying at testing time.

The K-means clustering is performed using DTW as the similarity measure for associating

time series to their closest centroids. DBA [26, 47] is used to create and refine the centroids

from the associated time series in the expectation phase.

At testing time, we maintain three priority queues. The first two queues store the po-

tential branches to explore once exploration of the current branch is complete. The first

stores those for which full DTW to the query has been calculated and the second stores

those for which only lower bound have been computed. The third queue stores the nearest

neighbours.

Since we prune off DTW with lower bound (LB), having 2 priority queues ensures that

we always traverse from the actual closest branch without having to compute the full DTW

distance for all potential branches. We start by descending the tree from the root to the

first leaf, at each internal node following the branch closest to the query but pushing the

alternatives to the priority queues. Those alternatives that can be excluded just on the lower

bound go to the second queue while those for which the full DTW distance is computed go

to the first queue. We explore the leaf, and then proceed to the closest branch that was not

explored on the path to that leaf (stored as the head of the first queue). We continue in this

cycle, stopping when we have exhausted our “contracted time” (or explored the full tree).

Algorithm 4 presents the algorithm for building the tree. The root node contains all the

training data. The algorithm recursively clusters the data associated to each node into K

clusters. A branch is formed leading to each of the K child nodes, each child node asso-

ciated with the data in one cluster. The branch is labelled with the DTW average of the

time series in the node to which it leads. The data associated with each child node is then

clustered into K sub-clusters; and so on recursively. All nodes are labelled with the majority

class of the data associated with them. This allows the algorithm to give a plausible class

prediction even when we have not yet reach a leaf node. Every recursion is initialized using

the standard non-deterministic K-means++ algorithm [116]. The recursion stops when a

node contains K or fewer time series.

47

Algorithm 4: BUILDTREE(D, K, Imax , w)
Input: D: Time series dataset
Input: K: Branching factor
Input: Imax : Maximum K-means iterations
Input: w: Warping window
Result: T : Hierarchical K-means tree

1 if |D| ≤ K then
2 T .createLeaf(D)
3 else

// do K-means clustering

4 P ← kmeanspp(D, w) // initialize centroids

5 for iterations← 1 to Imax do
6 C ← ASSIGNTOCENTROIDS(P,D, w) // cluster assignment

7 foreach Ci ∈ C do
8 Pi = DBA(Pi, Ci, w) // update centroids

9 end
10 end
11 foreach Ci ∈ C do // recursively build tree

12 BUILDTREE(Ci, K, Imax, w)
13 end
14 end

Algorithm 5: ASSIGNTOCENTROIDS(P,D, w)

Input: P : Cluster centroids
Input: D: Time series dataset
Input: w: Warping window
Result: cluster: Clusters of time series

1 cluster = ∅
2 foreach Si ∈ D do
3 nearest = LBNNSEARCH(Si, P, w) // see Algorithm 3

4 cluster[nearest].add(Si)

5 end
6 return cluster

To further speed up the clustering process, LB KEOGH is used with NN-DTW in the

LBNNSEARCH sub-routine to assign each time series to the nearest cluster centroid, as

described in Algorithm 5. Our algorithm is not limited to just LB KEOGH. It can be used with

any DTW lower bounding functions such as LB IMPROVED [31], depending on the applica-

tion. In this work, we chose to use LB KEOGH because in general, it performs well for most

time series datasets.

Algorithm 6 describes the tree search algorithm. The tree is searched by first traversing

down the tree to the first leaf node, outlined in Algorithm 7. At each level of the tree, the

48

Algorithm 6: SEARCHTREE(T , S,L, w)
Input: T : Hierarchical K-means tree
Input: S: Query time series
Input: L: Number of time series to examine
Input: w: Warping window
Result: k-NN: k nearest neighbours

1 Initialize priority queues & seen = 0
2 W = envelope(S,w)
3 TRAVERSETREE(T , S,W, PQs,L, seen, w)
4 while (PQs not empty) & (seen < L) do

/* find nearest branch */

5 while lbPQ.top < dtwPQ.top do
6 branch = lbPQ.dequeue
7 d = DTWw(S, branch.centroid)
8 dtwPQ.enqueue(branch)

9 end
10 if dtwPQ not empty then
11 T = dtwPQ.dequeue
12 TRAVERSETREE(T , S,W, PQs,L, seen, w)

13 end
14 end
15 return nnPQ.data

algorithm proceeds with the nearest branch to the query time series. To efficiently search

for the nearest branch, we first sort all the branches in ascending lower-bound distance to

the query using Algorithm 8, then use NN-DTW to find the closest branch. This further

minimizes DTW computations. The unexplored branches where DTW have been computed

will be enqueued into the DTW priority queue while the remaining ones will be enqueued

into the LB priority queue. These priority queues are implemented as min-heaps [117], with

standard enqueue and dequeue functions.

When the query reaches a leaf node, the algorithm searches for the nearest time series

using the same method as searching for the nearest branch. The k nearest time series

found in the search so far are kept in the nearest neighbour priority queue, implemented as

a max-heap. A max-heap allows faster retrieval of the kth nearest neighbour from the query.

After exploring the leaf node, the algorithm proceeds to the next branch by dequeuing

the DTW priority queue. Both DTW and LB priority queues are compared to ensure that

the closest branch to the query is in the DTW priority queue: if the head of the LB priority

queue is smaller than the head of the DTW priority queue, we dequeue that branch, com-

49

Algorithm 7: TRAVERSETREE(T , S,W, PQs,L, seen, w)
Input: T : Hierarchical K-means tree
Input: S: Query time series
Input: W : Envelope for query time series
Input: PQs: dtwPQ, lbPQ and nnPQ
Input: L: Number of time series to examine
Input: seen: Time series seen so far
Input: w: Warping window

1 if T is leaf then
2 T = T .data
3 lbDistance = SORTWITHLB(W,T)
4 foreach Ti ∈ T do
5 worstDistance = nnPQ.firstDistance
6 if lbDistancei < worstDistance then
7 d = DTWw(S, Ti)
8 if d < worstDistance then nnPQ.enqueue(Ti, d)

9 end
10 if ++seen == L then terminate

11 end
12 else
13 C = T .children
14 dtwF lag = [false, ..., false]
15 bestSoFar =∞
16 distances = SORTWITHLB(W,C)
17 foreach Ci ∈ C do
18 if distancesi < best so far then
19 distancesi = DTWw(S,Ci)
20 dtwF lagi = true

21 if distancesi < bestSoFar then
22 bestSoFar = distancesi
23 Cq = Ci
24 end
25 end
26 end
27 foreach Ci ∈ C except Cq do
28 if dtwF lagi then dtwPQ.enqueue(Ci, di)
29 else lbPQ.enqueue(Ci, di)

30 end
31 TRAVERSETREE(Cq, S,W, PQs,L, seen, w)

32 end

pute its DTW distance and enqueue it into the DTW priority queue. The algorithm stops

searching the tree when it has seen at least L time series from the leaf nodes. Here, L can

also represent the “contracted” classification time. Our source code has been uploaded to

Github1.
1https://github.com/ChangWeiTan/TSI

50

https://github.com/ChangWeiTan/TSI

Algorithm 8: SORTWITHLB(W, T)
Input: W , Upper and lower envelope for query
Input: T , Set of time series
Output: lbDistance, Sorted LB distances
Output: T , Sorted set of time series

1 lbDistance = ∅
2 foreach Si ∈ T do
3 lbDistancei = LB KEOGH(W,Si)
4 end
5 sort(T , lbDistance)

3.4 Empirical Evaluation

In this section, we comparatively assess the performance of our algorithm for large-scale

time series classification against the state-of-the-art method:

• LB KEOGH NN-DTW: This is the state-of-the-art approach of doing NN-DTW [27,

113] and serves as the baseline algorithm in this work. Time series are taken one

by one in a random order: if their lower-bound distance to the query is greater than

the best-so-far neighbour, then the time series is pruned and the method proceeds

to the next series, else its actual DTW distance with the query is computed and it

becomes the best-so-far neighbour if it is closer than the current best-so-far. Because

the pruning power depends on how close are the neighbours found early in the search,

we report the average results over 10 different shuffling of the data.

• Time Series Indexing (TSI): This is our proposed method described in Section 3.3.

As we use the non-deterministic K-means++ [116] initialization, we report the average

results over 10 different runs.

Since our task is contract classification, we provide – for all methods – their results at

different time intervals. It is worth noting that the results for all methods tend to the full NN-

DTW as the time constraint tends to infinity. Our experimental datasets and results have

been uploaded to [118]. Our experiments are divided into two parts:

51

A. First, we begin with a real world case study to show the practical utility of our technique.

B. Then, we assess the performance of the different methods on a diverse range of

datasets. We show that our approach is more accurate than the conventional approach

under a contracted time.

A. Satellite Image Time Series (SITS) Classification

As motivated in the introduction, the new-generation Earth Observation (EO) satellites have

begun imaging Earth frequently, completely and in high-resolution. This introduces unprece-

dented opportunities to monitor the dynamics of any regions on our planet over time and

revealing the constant flux that underpins the bigger picture of our world.

To the best of our knowledge, there has been little prior research into the classification

of time series extracted from satellite image series – also called Satellite Image Time Se-

ries (SITS). The ability to monitor and classify these time series will have strong impact in

many domains especially in the agriculture industry, marine applications and for environment

monitoring. In prior work [10], we showed that DTW is a good measure for such time series,

because of the non-linear distortions of prototypical ground surfaces, i.e., the fact that two

neighbouring surfaces might have slightly different growth rates, although belonging to the

same class of crop/tree.

In this work, we used 46 geometrically and radio-metrically corrected images taken by

FORMOSAT-2 satellite. These images are corrected such that every pixel corresponds to the

same geographic area on Earth. Each of these images consists of 1 million pixels and each

pixel represents a geographic area of 64m2, resulting in an area of 64km2 per image. Each

geographic area (x, y) (∼pixel) in the image forms a time series with a length of 46, creating

a dataset with 1 million time series. The series have been manually collected by experts in

geoscience by a mix of photo-interpretation, ground campaigns and urban databases. All

time series thus have a label about their temporal class such as “wheat”, “maize”, “broad-

leaved tree”, etc. The formation of Satellite Image Time Series is illustrated in Figure 3.2,

labelled with their temporal classes, represented in different colours.

52

SITS 1 Million

Length, L 46
Size of Dataset, N 1,000,000
Number of classes 24
Warping window size 4
1-NN-DTW Error-Rate (10 fold cv) 0.168

Table 3.1: Properties of 1 Million SITS dataset

To ensure reproducibility of our results and encourage researchers to work on large time

series datasets, we have obtained permission from the CesBIO and French Space Agency to

make our satellite dataset available online in [118]; note that this is a very high-cost dataset

(images are worth more than USD100,000 and collecting the labels required months of

work) which we hope will be a significant motivation to the field. As there are no pre-defined

train/test sets for this dataset, we used 10-fold cross validation results. In this experiment, a

warping window of 4 was used: this is aligned with the phenology of observed phenomena

for which similar stages of growth cannot be distant by more than about a month [10]. The

properties of this dataset that will be used in this case study are shown in Table 3.1.

The case study was conducted by varying the contract time from the least to the more

permissive, i.e. with more and more time allowed in the contract to perform the classification

of each query until we have gone through the whole training dataset. We record the error for

each query as we go through the whole training dataset. Note that at smaller time intervals,

TSI was not able to predict the error because the algorithm has not reached a leaf node. In

this case, we predict the error using the majority class of the time series set in the nearest

branch explored to date.

We present our results in Figure 3.4 where the x-axis is in log-scale. The first element

to note is that our algorithm, TSI is significantly better than the state of the art; having its

curve consistently under the state of the art. Second, we can see that if we had a ‘contract’

to classify each time series in no more than 1ms, then TSI would obtain error rate of 0.195

as opposed to 0.374. The same observation holds for 0.1ms (error of 0.283 vs 0.5), 10ms

(error of 0.178 vs 0.287) and 100ms (error of 0.17 vs 0.220).

53

Figure 3.4: Comparative results on our 1 million SITS showing the average error rate per
query as we go through the whole training dataset

This is a very important result: imagine if you were satisfied with an average error-rate of

0.2, then using our approach would classify each query within 1ms, as opposed to 500ms

for the state-of-the-art approach. Having a million time series to classify, this would translate

to our approach, TSI finishing in 17 minutes as opposed to 138 hours for LB KEOGH NN-

DTW; a 500 times speed-up. It is only when getting to the far right of the curve that the

overheads of TSI – linked to the exploration of the tree and maintenance of the priority

queues – would become disadvantageous. This makes sense because if the contract is that

you have the time to explore all of the training set, then you might as well just do that rather

than using our approximate search.

Another point to note in Figure 3.4 is the slight jump in error for TSI at approximately

0.2ms. This is when the first leaf is expanded and the first class of an actual example is

used in place of the majority class of a traversed branch.

54

B. Contract Time Series Classification

To show that our algorithm, TSI can classify more accurately within a contracted time, we run

a statistical comparison of classifiers [119] on all the datasets from the standard UCR time

series archive2 [6] plus our SITS dataset, all together 85 datasets. We use the train/test split

from [6] and warping window size reported in [6] for the time series archive. Note that, the

datasets from the standard time series archive are relatively small, ranging from training size

of 20 to 1,800 [6]. The different classifiers are compared using the Wilcoxon Signed-Ranks

Test described in [119]. Wilcoxon Signed-Ranks Test is a test which ranks the differences in

performance of two classifiers for each dataset [119]. We want to assess if 85 datasets is a

large enough sample to show that our algorithm is statistically different.

Similar to the methodology in our case study, we record the error for each query at differ-

ent time intervals, for every dataset and algorithm. To make the comparison fair for different

datasets with different training size, we align the time intervals on the time of processing

the whole dataset with LB KEOGH NN-DTW. We consider 6 time intervals from 1% to 50%

(of the time it takes LB KEOGH NN-DTW to process one query). Similarly at smaller time

intervals, we use the majority class of the nearest branch to predict the error. Let us take an

example to ensure that our methodology is clear. We run LB KEOGH NN-DTW for a dataset

and found that it takes, on average, 1s to classify a query. We then study the error-rate of

TSI at 10ms(1%), 100ms(10%), etc. up to 500ms(50%).

Using the error-rate at these time intervals, we calculate the difference in error-rate, di

of LB KEOGH NN-DTW and TSI on the i-th out of the N datasets. We then rank the

differences by their absolute values at each time intervals [119]. Average ranks are assigned

in case of ties [119]. These ranks are then used to calculate R+ and R− using Equation 3.1

and 3.2 respectively [119]. R+ represents the sum of ranks for the datasets where the

second algorithm outperforms the first and R− the opposite [119]. In our context, the first

algorithm refers to LB KEOGH NN-DTW and the second refers to TSI.
2We exclude ElectricDevices, as most series are identical under time warping, thus preventing any clus-

tering.

55

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (3.1)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (3.2)

With 85 datasets (N = 85), the critical value is calculated using Equation 3.3 that is dis-

tributed approximately normal [119]. To reject the null-hypothesis (where the two algorithms

perform equally well) with α = 0.05, the test statistic has to be less than the critical value,

z < −1.96. The results are shown in the last column of Table 3.2 where we reject the null

hypothesis highlighted in bold.

z =
min(R+, R−)− 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

(3.3)

Table 3.2 shows the results of the statistical comparison where we report the average

rankings of LB KEOGH NN-DTW and TSI across all datasets at the different time intervals

and the Wilcoxon Test statistics. The average ranking allows us to identify the better per-

forming classifier (emphasized in bold) if we reject the null hypothesis. In this case, our

algorithm, TSI performs more accurately than the state of the art under a contracted time.

The results show that TSI is more accurate than LB KEOGH NN-DTW at all time intervals

except for 1%, where we are unable to reject the null hypothesis. As the majority of datasets

tested are small, the algorithms are unable to find even an approximate nearest neighbor

at the 1% time interval, as a result of which they predict the majority class. Note that if the

classes are very similar and the clusters do not well separate the classes, TSI can under-

perform LB KEOGH NN-DTW. This is, for example, the case for the Computers dataset; the

associated plot is available at [118].

56

LB KEOGH NN-DTW vs TSI
Average Ranks Wilcoxon Test Statistics

Intervals NN-DTW TSI R+ R− z
1% 1.529 1.471 2034.5 1620.5 -0.907

10% 1.841 1.159 3449 206 -7.105
20% 1.871 1.129 3451 204 -7.114
30% 1.806 1.194 3219.5 435.5 -6.099
40% 1.741 1.259 2903 752 -4.713
50% 1.671 1.329 2616 1039 -3.455

Average 1.743 1.257

Table 3.2: Wilcoxon test results

3.5 Optimizing the Number of Clusters, K

From the experiments, we observed that the number of clusters (branching factor), K is an

important parameter that determines the convergence rate of the algorithm. In our experi-

ments K was chosen to be 3. Although this is not the optimal K for the algorithm, we had

shown that TSI still outperforms the state of the art if we just have 50% of the full 1-NN time.

However, we believe that for each dataset there exists an optimal K that allows the

algorithm to converge faster to the full 1-NN error rate. This will be a trade-off between

numerous factors. Larger K means that the length of each complete branch in the tree will

be shorter and hence there will be fewer internal nodes to traverse to reach the leaf nodes

that contain candidate nearest neighbors. However, it also means that at each internal node

more DTW calculations must be performed to select the branch to follow.

There are many potential ways to optimize K. Here, we suggest an intuitive way to

optimize K without compromising the error rate of the algorithm. We can vary K and record

the average time per query to find the exact nearest neighbor at each K value. Then, we

keep the K value that gives the minimum time per query.

57

3.6 Conclusion and Future Work

In this work, we have proposed the first algorithm to index DTW-induced space and showed

that it is essential for the classification of time series when a large amount of data is available.

We demonstrated that on a large remote sensing data where time series classification is

critical, we are able to obtain the same accuracy up to 2 orders of magnitude faster than

the state of the art, NN-DTW search; we can thus classify the entire 1 million dataset in 17

minutes instead of 5 days. This is extremely promising for larger remote sensing datasets

that contain hundreds of millions of examples [8, 9].

Besides optimizing the branching factor, K, our future work will also include speeding

up the search for the best warping window for large datasets and improved approaches for

selecting a branch to follow. The current way of finding the best warping window, is to repeat

LB KEOGH NN-DTW with different warping windows, which is computationally expensive

for large datasets. With the fast error convergence rate of our method, we can find the best

warping window for large datasets in a short amount of time.

3.7 Acknowledgement

The authors would like to thank the researchers from CESBIO (D. Ducrot, C.Marais-Sicre,

O. Hagolle and M. Huc) for providing the land cover maps and the geometrically and radio-

metrically corrected FORMOSAT-2 images. This material is based upon work supported by

the Air Force Office of Scientific Research, Asian Office of Aerospace Research and Devel-

opment (AOARD) under award number FA2386-16-1-4023. This work was supported by the

Australian Research Council under awards DE170100037 and DP140100087, and by the

2016 IBM Faculty Award (F. Petitjean). We would also like to thank Germain Forestier for his

comments.

58

Chapter 4

Learning the Best Warping Window for

Dynamic Time Warping Efficiently

In this chapter, we study the training time of the Nearest Neighbour algorithm coupled with

Dynamic Time Warping (NN-DTW) on large datasets. The NN-DTW algorithm is the lead-

ing algorithm for time series classification and a component of the current best ensemble-

based classifier for time series [15, 17, 21]. However, NN-DTW is only a winning combina-

tion when its meta-parameter – its warping window – is learned from the training data. The

warping window (w) intuitively controls the amount of distortion allowed when comparing a

pair of time series. With a training database of N time series of lengths L, a naı̈ve approach

to learning the w requires O(N2 · L3) operations. This often results in NN-DTW requiring

days for training on datasets containing a few thousand time series only. In this paper, we

introduce Fast Warping Window Search (FASTWWSEARCH): an efficient and exact method

to learn w. We show on 86 datasets that our method is always faster than the state of the

art, with at least one order of magnitude and up to 1,000x speed-up.

59

4.1 Introduction

Since its introduction in the 70s, Dynamic Time Warping (DTW) [81] has played a critical role

for the analysis of time series, with hundreds (if not thousands) of papers published every

year that make use of it. Many studies [16, 17, 21, 24, 32, 83, 92, 93] have shown that the

One Nearest Neighbour Search with DTW (NN-DTW) outperforms most other algorithms

when tested on the benchmark datasets [6], in spite of its simplicity.

In addition, the 2017 comprehensive benchmark of all time series classification methods

[23] ranked COTE [21] as the most accurate classifier. COTE is an ensemble of classifiers

– one of its base learners is NN-DTW with learned warping window (w). It directly follows

that the complexity of NN-DTW is a lower bound on COTE’s complexity. This becomes

ever more problematic as the size of the training data increases. Figure 4.1 shows that

the state-of-the-art method UCR SUITE takes more than a day to learn the best w from

50,000 or more examples for this satellite image time series data. State-of-the-art methods

LB KEOGH [27] and PRUNEDDTW [93] pass the day threshold with just 20,000 time series.

The blue curve shows that our Fast Warping Window Search (FASTWWSEARCH) method

learns the best w in just 2 hours for 50,000 time series and can learn w for 100,000 time

series in about 6 hours, a quantity of data that that is infeasible to process with the state of

the art. With a training database of N time series of lengths L, a naive approach to learning

the w requires O(N2 · L3) operations.

On the importance of the L3 term. Figure 4.1 actually shows quite an optimistic picture,

because this large dataset holds only very short series (with the length, L = 46), hence

limiting the impact of the L3 factor. For most datasets, L is typically ten times larger, which

strongly influences runtime. We will see in Section 4.4 that speed-up can be up to 1,000x

for datasets with longer series. Note that this dataset comes from the problem of creating a

temporal land-use map from a series of satellite images [1, 10].

On the importance of the N2 term. It has been shown that for a specific task, the larger

the training data available, the smaller the warping window [44]. One could thus wonder if

60

Size of training dataset #104
0 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

ti
m

e
(s

)

10-2

100

102

104

106

1 day

1 week

DTW with LB_Keogh
DTW with UCR Suite
PrunedDTW with LB_Keogh
Our Method - FastWWSearch

Figure 4.1: Training time for NN-DTW where the warping window is learned.

there is a need for a fast technique, because one could limit the scope of the search for the

best warping window to a small subset of w values. However, for large datasets, the N2 term

takes over and becomes too important to even consider testing a few values of w.

In this work, we propose FASTWWSEARCH: a novel approach to speed up the learn-

ing process of the warping window for DTW. Our approach builds on the state of the art

and introduces new bounds and exact pruning strategies with associated algorithms. FAST-

WWSEARCH is always at least one order of magnitude faster than state-of-the-art methods,

and with speed-ups that can reach 1000x for some datasets. In essence, this algorithm

takes a systematic approach to filling a vector representing the nearest neighbor for each

w for each series in the training data. It searches efficiently and systematically to complete

this vector, exploiting numerous bounds to avoid most computations. We release our code

open-source to ensure reproducibility of our research, and to enable researchers and prac-

titioners to directly use FASTWWSEARCH as a subroutine in further algorithms, including in

the state-of-the-art methods for classification: COTE [21] and EE [17].

This chapter is organized as follows. In Section 4.2, we review some background and

related work. Section 4.3 shows the intuition of our work and outlines our approach. Sec-

tion 4.4 shows an evaluation of our method with the standard methods. Lastly, Section 4.5

concludes our work with some future work.

61

4.2 Background and Related Work

In this chapter, we use T = {T 1, · · · , TN} to denote a training dataset of size N where all

time series are of length L, the letters S and T to denote two time series, and T (i) to denote

the i-th element of T .

4.2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) was introduced in [45, 81]. As it has been presented numer-

ous times in the literature and in Section 2.2.2, we simply define the elements that are the

most critical for the understanding of this chapter and refer the reader to [27] for more infor-

mation. DTW uses dynamic programming to find an optimal alignment of two time series

S and T ; it solves Equation 2.2 where a cell (i, j) of the cost matrix DDTW accounts for all

elements of S and T , up to i and j respectively. We then have DTW(S, T) =
√
DDTW(L,L).

Using dynamic programming, the alignment is solved in O(L2).

The warping path associated with DTW(S, T) is the sequence of minimum values taken

consecutively by the cost matrix DDTW(·, ·). We note such warping path A = 〈A1, · · · ,AP 〉

and illustrate it on an example in Figure 2.2b. A couple Ak = (i, j) belonging to the warping

path translates into an association (S(i)− T (j)) when aligned by DTW (illustrated in Fig-

ure 2.2a). Again here, as this has been covered in numerous papers, we refer the reader to

[27] and Section 2.2.2 for more details about the warping path and its conditions (boundary,

continuity and monotonicity).

4.2.2 Warping Window

A warping window w is a global constraint on the re-alignment that DTW finds (originally

called Sakoe-Chiba band [81]), such that elements of S and T can be mapped only if they

are less than w elements apart, and we write DTWw(S, T). Formally, this results in a warping

path having as constraint ∀(i, j) ∈ A, |i− j| 6 w. Figure 2.3 illustrates such a constraint with

62

- the largest UCR dataset

e
rr

o
r

Figure 4.2: Test error on some datasets at various warping windows

w = 3 – the warping path is found within the gray band. Note that we have 0 6 w 6 L − 1,

DTW0 corresponds to the Euclidean distance, and DTWL−1 is equivalent to unconstrained

DTW. This added constraint has two main benefits: (1) preventing pathological alignments

(and thus increasing the accuracy of the classifier) and (2) reducing the time complexity of

DTW from O(L2) to O(w · L). Note that other types of constraints have been developed in

the literature, including the Itakura Parallelogram [82] and the Ratanamahatana-Keogh band

[83]. In this work, we focus on the warping window which, arguably, is by far the most used

constraint in the literature [44, 92].

Why should the warping window be learned? The choice of the warping window (w) has

long been known to have a strong influence on accuracy [6, 44, 92]. One of many examples

is the CinC ECG Torso dataset [6], for which using a learned window reduces the error-rate

from 35% to 7% [6]. We illustrate in Figure 4.2 the importance of learning the warping win-

dow on some datasets. In an extensive set of experiments Bagnall et al. [16] demonstrated

that DTW is only competitive when the warping window is set via cross-validation. It is im-

portant to note that learning w can be critical even for large datasets. This is illustrated in

Figure 4.2 with the largest dataset in the UCR archive – ElectricDevices – for which se-

lecting an appropriate w reduces error by 7 percentage points relative to Euclidean distance

(DTW0).

63

Algorithm 9: SOTAWWSEARCH(T)
Input: T : Data
Result: w?: The w with lowest CV error

1 bestErrors← |T |+ 1
2 for w ← 0 to L− 1 do
3 errors← 0
4 foreach S ∈ T do
5 nn← LBNNSEARCH(S, T \ {S}, w) // see Algorithm 3

6 if nn.class 6= S.class then
7 errors← errors+ 1
8 end
9 end

10 if errors < bestErrors then
11 w? ← w
12 bestErrors← errors

13 end
14 end
15 return w?

Finally, it is important to realise that the two state-of-the-art ensembles for time series

classification – COTE [21] and EE [17] – include NN-DTW with learned warping window

as one of their constituents. The time complexity of learning the w has become even more

significant since Bagnall et al. [23] showed that COTE outperforms all existing methods for

time series classification.

How do we learn the warping window? Learning of the warping window is not a simple

problem; accepted methods in the field are all based on cross-validation: either on leave-

one-out (LOO-CV) [16, 23] or on x-fold cross-validation [120]. In this work, we focus on LOO-

CV for the sake of clarity, with all our algorithms directly usable for x-fold cross-validation.

We illustrate the learning/search for LOO-CV in Algorithm 9.

4.2.3 Related Work

As learning the warping window involves leave-one-out cross-validation, the task boils down

to being able to find the nearest neighbor of each time series in the training dataset (within

the training dataset excluding themselves). We review below the state-of-the-art methods to

perform this task efficiently.

64

Silva et al. [93] propose PRUNEDDTW to speed up DTW computation itself. They first

compute an upper bound and skip the cells of the cost matrix DDTW that are larger. The

authors are able to learn the optimal window size faster than the naı̈ve method [93]. How-

ever, as we will show in the experiments, the improvement for warping window search is only

minimal.

Rakthanmanon et al. [32] propose the UCR SUITE, which includes 4 optimization tech-

niques: early abandoning, reordering early abandoning, reversing query and data roles in

LB KEOGH (see Section 4.2.4), and cascading lower bounds. Although they did not directly

use their method to learn the warping window, it is natural to re-purpose it for this task.

However, as shown in Figure 4.1 (and described later in Section 4.4), those methods do

not scale well for large datasets. This is mostly because they only try to tackle the impact of

the length L on the O(N2 · L3) complexity. We will see that our FASTWWSEARCH method

tackles both the impacts of L and N .

4.2.4 DTW Lower Bounds

Learning the warping window via cross-validation involves being able to efficiently find the

neighbour of a time series within the training dataset, i.e. to perform a NN-DTW query for

each time series. Lower-bounds to DTW have long been used in this context, they allow

us to avoid the (expensive) DTW calculation if it is not needed. Several bounds have been

introduced including LB KIM [28], LB KEOGH [27] (see Figure 2.6) and LB IMPROVED [31].

Refer to Section 2.4 for more details. Lower bounds can also be used in cascade, starting by

the looser (and computationally cheap) one and progressing towards tighter lower bounds

[32]. Algorithm 3 shows a simple nearest neighbour search with lower bounds and can easily

be modified for cascading lower bounds by changing the LB function in line 3.

65

4.3 Fast Warping Window Search for DTW

In this section, we introduce our approach: FASTWWSEARCH. In the first subsection, we

start by introducing the mathematical properties that constitute the basis for our algorithm,

which we introduce in the second subsection.

It is interesting to start by noting that, to find the best warping window via cross-validation,

it is sufficient to know the nearest neighbour T of each time series S (T ∈ T \S) for each value

of the warping window we want to test. The naı̈ve (and almost state-of-the-art) algorithm for

finding the best warping window is given in Algorithm 9. In this algorithm, we can observe

that the loops are independent. The aim of this paper is to make the most of the inter-relation

between the iterations of these two loops. As mentioned earlier, we focus our explanation

on LOO-CV, but our method is directly extensible for any type of x-fold cross-validation.

4.3.1 Properties for FASTWWSEARCH

Property #1: Warping path can be valid for several windows

Theorem 1. Let S, T be two time series, w1 and w2 two warping windows, and Aw1 and

Aw2 their associated warping paths. Aw1 = Aw2 ⇒ DTWw1(S, T) = DTWw2(S, T). In other

words, DTW(S, T) can only differ if the warping path differs.

Proof. Let Aw1 = 〈(iw1
1 , jw1

1), · · · , (iw1
P , k

w1
P)〉, Aw2 = 〈(iw2

1 , jw2
1), · · · , (iw2

P , k
w2
P)〉. We have:

DTWw1(S, T) =
∑P

k=1(S(iw1
k)− T (jw1

k))2 Eq 2.2

=
∑P

k=1(S(iw2
k)− T (jw2

k))2 (By hyp.)

= DTWw2(S, T)

Theorem 2. Let S, T be two time series, w a warping window, andAw = 〈(i1, j1), · · · , (iP , kP)〉,

then

(|ik − jk| < w)∀k ⇒ DTWw(S, T) = DTWw−1(S, T)

66

In other words, if no point of a warping path ‘touches’ the extremity of the warping window

at w, then the DTWw(S, T) = DTWw−1(S, T).

Proof. By definition, DTWw(S, T) finds the warping path Aw such that the
∑P

k=1(S(ik) −

T (jk))
2 is minimized respecting constraint (|ik − jk| 6 w). Our additional requirement (|ik −

jk| < w) ensures that (|ik − jk| 6 w − 1). It results that the warping paths are equal, and by

Theorem 1 so are the distances.

In the following, we say that DTWw(S, T) has a “window validity” of [[v, w]] if all the warping

paths Aw,Aw−1, · · · Av are the same and thus that the distances are all identical. We will see

in Section 4.3.2 how we can use these theorem to prune many DTW computations, by

starting with finding the NNs with larger warping window down to w = 0.

Property #2: DTW is monotone with w

Theorem 3. Let S, T be two time series, and w a warping window, we have DTWw(S, T) 6

DTWw−1(S, T).

Proof. Reductio ad absurdum: Assume DTWw(S, T) > DTWw−1(S, T), then this means that

there exists a warping path Aw−1 such that the associated cost is lower than the one for

Aw. This translates in DTW not having found the optimal solution at window w, which is a

contradiction [81].

Figure 4.3 illustrates the combination of Theorem 1, 2 and 3, by showing the value of

DTWw(S, T{1,2,3}) as a function of w. It shows that DTW decreases monotonically with w

(Theorem 3), while the flat sections on the right section of the plot illustrate Theorems 1 and

2. Figure 4.3 also shows that the path computed for w = 24 remains valid down to w = 1 for

T1.

Property #3: LB KEOGH is monotone with w

Theorem 4. Let S, T be two time series, and w a warping window, we have LB KEOGHw(S, T) 6

LB KEOGHw−1(S, T).

67

Warping Windows, w
0 5 10 15 20

D
T
W

 D
is

ta
n
ce

0.5

1

1.5

2

2.5

3

warping path for T1 is valid until w=1

warping path for T2 is valid until w=3

warping path for T3 is valid until w=3

DTW distance is constant when

the warping path is valid

T
1

T
2

T
3

Figure 4.3: DTW distance at different w

Proof. Let us define UET and LET as the upper and lower envelopes for any time series T ,

such that the ith element of the envelopes are defined as UET
w(i) = max(T (i−w) : T (i+w))

and LET
w(i) = min(T (i− w) : T (i+ w)) [27]. Reductio ad absurdum using [27, Eq. 9]:

LB KEOGHw(S, T) > LB KEOGHw−1(S, T)

⇒
L∑
i=1

 UT
w (i) if S(i) > UT

w (i)

LTw(i) if S(i) < LTw(i)
<

L∑
i=1

 UT
w−1(i) if S(i) > UT

w−1(i)

LTw−1(i) if S(i) < LTw−1(i)

which contradicts the definition of lower and upper envelopes that gives UT
w (i) 6 UT

w−1(i) and

LTw(i) > LTw−1(i),∀i.

Intuitively, the smaller the window, the closer the envelopes are to the reference time

series. This then results to a larger lower bound (the green part in Figure 2.6b). We will see

in Section 4.3.2 that we use LB KEOGHw+1 as themselves lower bounds to LB KEOGHw.

68

Nearest neighbor at warping windows
0 1 · · · L− 2 L− 1

T 1 T 24(2.57) T 55(0.98) · · · T 55(0.98) T 55(0.98)
...

...
TN T 60(4.04) T 47(1.61) · · · T 47(1.61) T 47(1.61)

Table 4.1: Table of NNs for each w. A cell (i, w) = T k(dist) means T i has T k as its NN for
window w with distance dist.

4.3.2 The FASTWWSEARCH Algorithms

We have presented the theoretical basis for our work; we now proceed with our algorithm.

Intuition behind FASTWWSEARCH Learning the warping window can be seen as creating

a (N×L)-table, illustrated in Table 4.1, giving the nearest neighbour (NN) of every time series

for all windows. Once that table is filled, the best value of the window can be learned in one

pass over it. We can frame the aim of FASTWWSEARCH as the construction of such an

(N × L)-table. Filling it naively, i.e. by computing DTW for each nearest neighbour NN(i, w)

using DTW only, requires O(N2 · L3) operations. Note that, an exhaustive search of all L

warping windows for large L and N can be extremely computationally demanding. Thus,

most practitioners settle with a subset of w [17]. Our method applies to either all or a subset

of the possible warping windows, simply starting from the largest and scanning through the

windows down to the smallest.

Until recently, most of the research had focused on finding bounds for a fixed value of a

warping window. Our method will explore bounds across columns of this table. Section 4.3.1

gives us two additional lower bounds that we use to prune potential nearest neighbors before

we have to compute DTWw:

Lower Bound name Complexity
LB KIM O(1)
LB KEOGHw+k O(L)
LB KEOGHw O(L)
DTWw+k O(w · L)

69

Note that we also use the fact that LB KEOGH is not symmetrical in FASTWWSEARCH

below. To take advantage of Theorems 3 and 4, we order our computations by decreasing

window size. Our algorithm iterates from larger values of windows down to smaller ones.

This has the consequence of obtaining either LB KEOGHw+k or DTWw+k ‘for free’ when as-

sessing window w (if pruning at step w + k wasn’t possible with LB KIM), because those

will have been calculated in a previous step with a higher w. We will see that these bounds

should only be used if they have already been computed; there is indeed no point in com-

puting DTWw+k to potentially prune DTWw of which the value is less expensive to compute.

Moreover, ordering our computation by decreasing window size also allows us to make

the most of Theorem 1 and 2. Referring to Figure 4.3, the long flat tails correspond to large

validity windows for DTWL−1. It means that, in that flat section (and any subsequent other),

no bounds are at all necessary, because we already know that the value of DTW (previously

computed) has not changed. This element actually has two important consequences.

First imagine that we did find the nearest neighbor for a time series at window w = L;

this implies that we had to calculate DTWL for those 2 series. If the warping path is valid

down to w = 0, then a consequence of our Theorem 1, 2 and 3 is that we know that this will

also be its nearest neighbor down to w = 0, and this without any additional calculations.

Second, when calculating an actual DTWw(S, T), even if the candidate T does not be-

come the nearest neighbor of S at w, we know nonetheless that we do not need to recompute

DTWw′(S, T) for all windows w′ such that the warping path is valid (see Theorem 1 and 2).

Lazy Nearest Neighbor Assessment We now have all the elements necessary to the

presentation of our FASTWWSEARCH algorithm. We start by presenting LAZYASSESSNN in

Algorithm 10. LAZYASSESSNN is a function that, given a pair of time series (S, T), estab-

lishes if they can be less than a given distance d apart for a warping window w. It functions in

a lazy fashion, by making the most of all possible bounds that we presented in Section 4.3.2.

The algorithm tries lower bounds of increasing complexity until one of two things happen:

(1) either a lower bound or DTWw(S, T) itself is greater than d, in which case the procedure

aborts; or (2) we have DTWw(S, T) < d, and we have actually calculated DTWw(S, T).

70

LAZYASSESSNN is lazy in that it postpones calculations for as long as it is possible to do

so. As we will see next, one has to imagine here that LAZYASSESSNN will be called several

times for the same pair of time series (S, T) for decreasing values of w. When w decreases,

any value that was previously calculated for a larger window, becomes a lower bound for the

current w. We use a cache C(S,T) to store the previous results of LAZYASSESSNN obtained

for larger w.

We first start by checking if the cache has been initialized; if not we compute LB KIM,

which is valid regardless of the warping window (line 1). On line 2, we then test where the

cache last stopped, i.e. was it computing a lower bound for that target window w, was it

computing a lower bound for another window w′ > w, or was it computing an actual DTW

distance (that might be still valid). We then assess if it last stopped having had calculated

DTW for a larger window (lines 3–5); if that DTWw′ has a path that is still valid and its value is

smaller than d, then we return that value of the distance. We then assess if it had calculated

DTWw′ that is still valid and smaller than d. It is important to observe here that the code

terminates when a distance is larger than d or DTWw is computed. If we cannot prune with

DTWw′, we proceed and check if we are able to prune using previously computed bounds

(lines 6–7). Otherwise from lines 8 to 12, we use cascading lower bounds, testing if we can

prune after each of them. Finally, if all the bounds fail to prune T , we compute DTWw, store

the results and if DTWw < d, T is the new NN for S (line 13). We will see in our main

algorithm that the next call to LAZYASSESSNN for the pair (S, T) will be with a smaller w.

Although our scheme does make it possible to use Early Abandon on LB KEOGH [32]

and to use LB IMPROVED [31], we disregarded them after observing that they both increased

computation time: early abandoning because it significantly increases the number of times

the function has to be restarted; LB IMPROVED because it requires to compute a projection

of a series onto the other, which has an additional cost not justified by the added pruning

power in our case.

We take the bounds ordered by computational complexity, which in practice usually cor-

relates with tightness [32]. DTWw′ will also generally be tighter than LB KEOGHw, especially

when w′ is close to w.

71

Algorithm 10: LAZYASSESSNN(C(S,T), w, d, S, T)

Input: C(S,T): cache storing the previous measure between S and T
Input: w: Warping window
Input: d: Distance to beat
Input: S, T : Time series to measure
Result: DTWw(S, T) if > d, else pruned

1 if C(S,T) = ∅ then C(S,T) ← LB KIM(S, T)
2 switch C(S,T).stoppedAt do

// LB calculated with larger window w′

3 case DTWw′ do
4 if w ∈ C(S,T).valid ∧ C(S,T).value < d then
5 return C(S,T).value
6 end
7 case LB KIM or LB KEOGHw′ do
8 if C(S,T).value > d then return pruned

9 end
// Cascading LB Keogh and DTW

10 otherwise do
11 C(S,T) ← LB KEOGHw(S, T)
12 if C(S,T).value > d then return pruned

13 C(S,T) ← LB KEOGHw(T, S)
14 if C(S,T).value > d then return pruned

15 C(S,T) ← DTWw(S, T)
16 if C(S,T).value > d then return pruned

17 return C(S,T).value

18 end
19 end

Our core FASTWWSEARCH algorithm We now turn to our core algorithm: FASTWWSEARCH.

Let us recall that the central aim of our algorithm is to build an (N×L)-table that contains the

nearest neighbour of each time series (out of N) and for each value of the warping window

(out of L) – illustrated in Table 4.1. Once this table has been calculated, one pass over it is

sufficient to determine the best value of the warping window. That pass is the entry point

to FASTWWSEARCH and is presented in Algorithm 11. It assumes there exists a method to

fill the table and returns the warping window with the lowest leave-one-out cross-validation

error on T .

The result of Algorithm 11 is identical to the state-of-the-art presented in Algorithm 9 –

obviously assuming that the (N ×L)-table is calculated correctly, which is illustrated with our

fail-safe experiments in Appendix A.

72

Algorithm 11: FASTWWS(T)

Data: T : Training data
Result: w?: Best warping window

1 NNs← FASTFILLNNTABLE(T)
2 bestErrors← |T |+ 1
3 for w ← 0 to L− 1 do
4 errors← 0
5 foreach Tt ∈ T do
6 if NNs[t][w].class 6= T.class then errors+ +
7 end
8 if errors < bestErrors then
9 w? ← w

10 bestErrors← errors

11 end
12 end

Obviously, the core of our approach resides in how we calculate this table, which we

present in Algorithm 12. At the highest level, our algorithm works by building this table for

a subset T ′ ⊆ T of increasing size, until T ′ = T . We start by building the table for TSet′

comprising only 2 first time series T1 and T2, and fill this (2 × L)-table as if TSet′ was the

entire dataset. At this stage it is trivial that T2 is the nearest neighbour of T1 and vice versa.

We then add a third time series T3 from T \ T ′ to our growing set T ′. At this point, we have

to do two things: (a) find the nearest neighbor of T3 within T ′ \ {T3} = {T1, T2} and (b) check

if T3 has become the nearest neighbor of T1 and/or T2. We can then add a fourth time series

T4 and so on until T ′ = T .

We now describe Algorithm 12 line by line. We start by initializing the NNs (N × L)-table

to (,+∞), which means that the table is empty and the distances are thus +∞ (line 2). We

then initialize T ′ in line 3. Line 4: we start the iteration at 2 as the definition of NN only

makes sense if there is at least 2 time series. We then proceed with some initializations

(lines 5–7), including for the cache associated with S (line 7). We are then ready to find (a)

the NN of S within T ′, and (b) update the NN for all T ∈ T ′ now that S has been added. We

will do this operation for all w in descending order, starting with the largest value L− 1 (line

8). Note that to only assess a subset of all possible L values for w, one only need to modify

this line; our only requirement is for the values to be taken in descending order.

73

Line 9: we start by checking if we already have a NN for S from previous (i.e. larger)

windows. Note that NNs[s][w] here comes compulsorily from DTWw′,w′>w(S,) for which its

path is still valid. We then already have the NN of S and only need to check whether S

has also become a NN for other time series in T ′ (lines 10–14). To this end, we get the

previously calculated NN for such T ∈ T ′ (line 11), which we will use as the threshold of

distance that we have to ‘beat’ (i.e. be smaller than) for S to become the NN of T . On line 12

we then call our LAZYASSESSNN function to assess if S has actually become the NN of T .

If LAZYASSESSNN exits with pruned, it then means that S is not the NN of T , and thus that

the previous NN of T is still valid, hence nothing has to be done. LAZYASSESSNN only exits

with something else than pruned if DTWw(S, T) < toBeat, which means that S has indeed

become the NN of T ; we update this information on line 14.

The else case starting on line 15 is if we didn’t already have the NN of S from a previous

window. We will then analyse all couple (S, T)T∈T ′ and perform the NN update for S and

T simultaneously. At this stage, it is possible that we will already have – from previous

windows – some information about which S ∈ T ′ might be a better candidate to be the NN

of S. This information is stored in the cache C, which may contains different types of lower

bounds. The number of calculations will be minimized if the very first T is actually the NN

of S, because it will give the tightest possible pruning threshold first. This is why we should

first examine the time series that have highest potential to become the NN of S and order

the time series.1

At line 17, we obtain the distance threshold from NNs[s][w]; the first time, we will have

NNs[s][w] = ∅ which is associated with a value of +∞, there will thus be computation

of DTWw(S, T), which will later on be stored in NNs[s][w] (line 20). From the second T ,

NNs[s][w].distance stores the distance to the so-far NN of S; we use LAZYASSESSNN to

prune candidates or replace the current one if it is better (lines 19–20). We then proceed by

checking if S is the NN of T on lines 21–24 (same as lines 11–14). Finally on line 25, having
1Ranking LB KEOGH lower bounds has been previously studied in [1]. Here, we however have different

types of lower bounds to interlace. LB KIM often has a smaller value than LB KEOGH simply because it only
looks at 4 elements of series (vs L for LB KEOGH). In addition, because DTWw′,w′>w has tried to align S and
T , it will probably represent a better estimate of DTWw than LB KEOGH. To reflect this, we rank the time series
in T ′ using LB KIM /4, LB KEOGH /L, 0.8 · DTW /L (the 0.8 factor is used to push DTW forward when close
to the LB KEOGH values).

74

processed all T ∈ T ′, NNs[s][w] contains the actual NN of S at w, and we propagate this

information for all w′, w′ < w for which the warping path is also valid. Note that the cache C

is never reused once the row NNs[s] is computed, which makes it possible for our algorithm

to have Θ(N) memory complexity.

4.4 Empirical Evaluation

This section describes the experiments that evaluate our FASTWWSEARCH method. To

facilitate others to build on our work, as well as to ensure reproducibility, we have made

our code available open-source at https://github.com/ChangWeiTan/FastWWSearch and

the full raw results at http://bit.ly/SDM18. We compare FASTWWSEARCH’s ability to

learn the warping window compared to the state of the art:

• LB KEOGH [27]: It searches for the best warping window as described in Algorithm 9

using LB KEOGH as LB.

• UCR SUITE [32]: It is the state of the art for fast NN-DTW and uses cascading lower

bounds to replace LB in Algorithm 9. Note that we omitted the optimisation on z-

normalisation for UCR SUITE as all the datasets [6] are already z-normalised.

• LB KEOGH–PRUNEDDTW: The PRUNEDDTW algorithm [93] was introduced to speed

up the calculation of DTW using upper bounds (instead of lower bounds). It assesses

warping windows in ascending order and uses the results for a smaller w as the upper

bound for the larger w. Note that we actually improve here on the original paper [93]

by adding LB KEOGH to the search mechanism.

• UCR SUITE–PRUNEDDTW: To make the comparison as fair as possible, we propose

to combine the power of UCR SUITE’s lower bounding and of PRUNEDDTW’upper

bounding. Again, this method is an improvement on both methods.

We performed our experiments using all of the 85 freely available benchmark UCR time

series datasets [6] and use the original train/test split from [6]. Note that these datasets

are provided z-normalized but our method is directly applicable to unnormalized series. We

75

https://github.com/ChangWeiTan/FastWWSearch
http://bit.ly/SDM18

Algorithm 12: FASTFILLNNTABLE(T)
Input: T the set of time series
Result: NNs[N][L] the nearest neighbors table

1 Define LANN as LAZYASSESSNN
2 NNs.fillAll(,+∞)
3 T ′ ← ∅
4 for s← 2 to N do

// We want to update NNs wrt adding S
5 S ← Ts
6 T ′ ← T ′ ∪ {Ts−1}
7 foreach T ∈ T ′ do CS,T ← ∅
8 for w ← L− 1 down to 0 do

// If we already have NN of S for w
9 if NNs[s][w] 6= ∅ then

// Update table NNs[t][w]16t6s−1

10 for t← 1 to s− 1 do
11 toBeat← NNs[t][w].distance
12 res← LANN(C(S,Tt), w, toBeat, S, Tt)
13 if res 6= pruned then
14 NNs[t][w]← (S, res)
15 end
16 end
17 else

// Check S against previous T ∈ T ′
18 foreach T ∈ T ′ in asc. order using C do
19 toBeat← NNs[s][w].distance
20 res← LANN(C(S,T), w, toBeat, S, T)
21 if res 6= pruned then
22 NNs[s][w]← (T, res)
23 end

// Update NNs[t][w] if needed

24 toBeatT← NNs[t][w].distance
25 resT← LANN(C(S,T), w, toBeatT, S, T)
26 if resT 6= pruned then
27 NNs[t][w]← (S, resT)
28 end
29 end

// Propagate NN for path validity

30 for w′ ∈ NNs[s][w].valid do NNs[s][w′]← NNs[s][w]

31 end
32 end
33 end

perform an exhaustive search for all methods; as mentioned in Section 4.3.2, all methods

are directly applicable to any subset of [[0, L−1]] that one might want to use instead of the full

set. All methods have linear memory complexity, so we were able to conduct all experiments

76

on a small machine (64-bit Linux with AMD Opteron 63xx Class CPU @1.80GHz and 6GB

RAM). As the ordering of the time series in T affects all compared methods, the time to

search for the best warping window, we report the average results over 10 runs for different

reshuffles of T . We report the full leave-one-out cross-validation running time.

All methods are exact: they all learn the same value of the warping window, and thus

all return the same accuracy, which is why we focus on running time. A fail-safe check is

presented in Appendix A and shows that all methods indeed learn the same warping window.

4.4.1 Speed-up

Figure 4.4 shows the scatter plot of learning time for our FASTWWSEARCH method (x-axis)

vs all competitors (y-axis). This is a clear-cut and significant result: our method is faster than

the state of the art for all datasets (above the line means that our method is faster). There is

also a slight upwards trend: as the task becomes more and more complicated, it seems that

so is the improvement of our FASTWWSEARCH method over the state of the art. For easy

task requiring less than 10 seconds with the state of the art, FASTWWSEARCH gains one

order of magnitude and performs in less than 1 seconds. This makes sense and this is not

where the gain is the most interesting. However, as the task becomes harder, so is the ad-

vantage of our method over others getting more important. This even reaches up to 3 orders

of magnitude speed-up for very demanding tasks. For dataset HandOutlines for instance,

the fastest state-of-the-art method requires 100 days (9 ·106 s), while FASTWWSEARCH only

needs 2.5 hours (9 · 103s).

It is also interesting to summarize the results depending on size of the data and length

of the series. We calculated the average speed-up for datasets with smaller training size

(N 6 200) and larger training size (N > 200). The average speed-up for smaller datasets

was of 106x, while it was of 184x for larger ones. Regarding length, we calculated the

average speed-up for datasets with shorter series (L 6 300) and longer ones (L > 300). The

average speed-up for datasets with shorter series was of 67x, while it was of 250x for longer

ones. These results confirm that our algorithm is tackling both the N and L terms.

77

FastWWSearch, search time (s)
10-2 100 102 104 106 108

C
om

p
et

it
or

s,
se

ar
ch

ti
m

e
(s

)

10-2

100

102

104

106

108

FastWWSearch is faster here

Competitor is faster here

LB_Keogh
UCR Suite
LB_Keogh-PrunedDTW
UCRSuite-PrunedDTW

Figure 4.4: Average 10 runs results on the benchmark datasets (better seen in color)

4.4.2 Scalability to 100,000 Time Series

It is now interesting to comment again on Figure 4.1 that was presented in the introduction.

This dataset corresponds to 100,000 time series, associated to 100,000 ‘pixels’ observed

over time (over a series of satellite images) (more details in [10]). In this task, the aim is to

establish the land-use of a geographic area based on its radiometric evolution over a series

of satellite images. Time series are required because, for instance, one needs the temporal

dynamic to distinguish between types of crops (when they grow and are harvested, how fast

they grow, etc). Note that we used a computer with 16GB memory for this experiment to be

able to store the data.

This dataset is also particularly interesting because the time series are short with L = 46,

which tends to isolate the influence of N on the scalability. We can see in Figure 4.1 that

when N = 100, FASTWWSEARCH makes it possible to gain 1.5 orders of magnitude in run-

ning time over UCR SUITE and 2 orders over the other state-of-the-art methods; and those

gains seem very stable when N grows. For N = 100, 000, FASTWWSEARCH only requires

6 hours to complete, while the fastest state-of-the-art method – in this case UCR SUITE –

requires 7 days (and more than 18 days for the others).

78

4.4.3 Incorporating PRUNEDDTW Within FASTWWSEARCH

It is interesting to examine if PRUNEDDTW could provide further improvements to our method.

As the PRUNEDDTW algorithm [93] is able to speed up DTW computations, it is interesting

to study if its incorporation into our algorithm could bring further benefits. Our method re-

quires the different windows to be tested in descending order, in order to reuse previously

calculated results as lower bounds to current ones. This is incompatible with a PRUNEDDTW

search, which requires the windows to be assessed in ascending order, to use previous re-

sults as upper bounds to the next ones [93]. However, we could still use PRUNEDDTW

whenever we have to calculate DTW, and use the Euclidean distance as a general upper

bound [93]. This is how we incorporate PRUNEDDTW into FASTWWSEARCH.

Figure 4.5 compares our original FASTWWSEARCH with a version incorporating PRUNED-

DTW. The results show that both methods have similar running times, with the addition

of PRUNEDDTW making it possible to gain some speed-up for low-runtime datasets (i.e.

datasets that are either small or have short time series or both). Using FASTWWSEARCH

vanilla seems to be even faster for high-runtime datasets. Overall, for approximately 55%

of the UCR archive, FASTWWSEARCH vanilla is faster than having added PRUNEDDTW.

This is because for high-complexity datasets, it seems that the added pruning power doesn’t

outweigh the additional computations of the upper bound that PRUNEDDTW requires. Over-

all, the take-home message here is that our method is totally compatible with PRUNEDDTW

and that its incorporation is left at the discretion of the data practitioner, depending on their

application.

79

FastWWSearch, search time (s)
10-2 10-1 100 101 102 103 104

Fa
st

W
W

S
ea

rc
h

+
Pr

u
n
ed

D
T
W

,
se

ar
ch

ti
m

e
(s

)

10-2

10-1

100

101

102

103

104

FastWWSearch is faster here
46 datasets

FastWWSearch--PrunedDTW is faster here
39 datasets

Figure 4.5: Comparison of FASTWWSEARCH with the PRUNEDDTW implementation on the
benchmark datasets [6]

4.5 Conclusion

In this work, we proposed FASTWWSEARCH: a novel algorithm and underlying theory to

efficiently learn the warping window for Dynamic Time Warping. Our experiments show that

it is one to two orders of magnitude faster than the state of the art. This result is important

both for the use of NN-DTW and also for incorporation into the state-of-the-art classifiers

EE and COTE.

4.6 Acknowledgement

This work was supported by the Australian Research Council under grant DE170100037.

This material is based upon work supported by the Air Force Office of Scientific Research,

Asian Office of Aerospace Research and Development (AOARD) under award number FA2386-

16-1-4023. The authors would like to thank Professor Eamonn Keogh, Hoang Anh Dau and

anonymous reviewers for their comments on this paper.

80

Chapter 5

Time Series Classification with Fast

Ensembles of Elastic Distances

In recent years, many new ensemble-based time series classification (TSC) algorithms have

been proposed. Each of them is significantly more accurate than their predecessors. The

Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is currently

the most accurate TSC algorithm when assessed on the UCR repository. It is a meta-

ensemble of 5 state-of-the-art ensemble-based classifiers. The time complexity of HIVE-

COTE – particularly for training – is prohibitive for most datasets. There is thus a critical need

to speed up the classifiers that compose HIVE-COTE. This paper focuses on speeding up

one of its components: Ensembles of Elastic Distances (EE), which is the classifier that

leverages on the decades of research into the development of time-dedicated measures.

Training EE can be prohibitive for many datasets. For example, it takes 2-3 weeks on the

ElectricDevices dataset with 9,000 instances. This is because EE needs to cross-validate

the hyper-parameters used for the 11 similarity measures it encompasses. In this work, Fast

Ensembles of Elastic Distances is proposed to train EE faster. There are two versions to it.

The exact version makes it possible to train EE 10 times faster. The approximate version

is 40 times faster than EE without significantly impacting the classification accuracy. This

translates to being able to train EE on ElectricDevices in 13 hours.

81

5.1 Introduction

Time series data are growing at an unprecedented rate. One of the largest publicly available

training datasets currently holds 1,000,000 satellite image time series instances [1]. These

data describe the evolution of an area on Earth and are used to create land-cover maps.

Data of this scale are just the tip of the iceberg. Typically, the creation of land-cover maps

require at least 100 million time series [8, 9]. The computational demands of learning from

these huge amounts of data challenges state-of-the-art techniques [1, 3]. For instance,

searching through long ECG queries with 0.3 trillion data-points using the Nearest Neighbour

classifier with Euclidean distance (NN-ED) without any optimisation took a week [32]. Note

that Euclidean distance is the fastest to compute out of the standard similarity measures,

as it is linear with the length of the time series. At a smaller scale, processing 45 minutes

of speech data using the Dynamic Time Warping (DTW) distance took 3 hours on a single

core machine [121].

Time series classification (TSC) is an important tool for these applications. Currently the

most accurate TSC algorithm is the Hierarchical Vote Collective of Transformation-based En-

sembles (HIVE-COTE) [15]. HIVE-COTE is an ensemble of five groups of classifiers that

uses a hierarchical voting scheme to weight the predictions from each group of classifiers

[15]. The intuition is that, combining classifiers from different domains should perform better

than using classifiers from a single domain [21]. The superiority in classification accuracy

requires learning of the parameters at training time [16].

Unfortunately, training these ensemble-based classifiers is very computationally demand-

ing and is infeasible for large datasets. Two of the core classifiers in HIVE-COTE with the

highest training time are the Shapelet Ensembles (SE) [15] and the Ensembles of Elas-

tic Distances (EE) [17]. SE is an ensemble that combines 8 base learners and uses the

transformed time series data from the Shapelet Transform (ST) algorithm [60]. Given a

training set of N time series with length L, the ST algorithm has a training time complexity

of O(N2 · L4).

82

EE is an ensemble of NN classifiers with 11 different time series distance measures.

State-of-the-art learning of the parameters for all 11 classifiers is done through leave-one-

out cross validation (LOO-CV). It has a training complexity of O(M ·N2 ·L2), where M = 100

is the number of parameter values to learn for each classifier in EE [15, 23]. The high

training complexity is because the learning algorithm needs to compare each of the time

series in the training set of size N with N − 1 other instances and each comparison typically

requires expensive O(L2) operations. This process is then repeated for all M parameter

values, which is very inefficient and impractical for time series datasets with large N and

long L.

In this work, we propose the Fast Ensembles of Elastic Distances (FASTEE) to reduce EE

training time. FASTEE extends recent work on speeding up the training time for the NN-DTW

algorithm [3] to other distance measures. There are 2 versions of FASTEE. The exact version

trains FASTEE using the full LOO-CV. The approximate version uses approximate LOO-CV.

FASTEE minimizes the number of distances that need to be calculated by determining for

each value calculated the range of parameter values for which that distance value applies,

thus saving the majority of distance calculations undertaken by the standard approach. It

also uses lower bounds on the distance measures to speed up each of the NN classifiers,

where new lower bounds are proposed for distances for which no previous bounds have

been derived.

We show the significance of our FASTEE algorithms in Figure 5.1, which compares the

training time of EE to our FASTEE algorithms as a function of training set size. To gener-

ate this plot, we sampled the ElectricDevices dataset – the largest dataset from the UCR

benchmark time series archive [6] at different sizes and report the average training time. The

red line shows that training EE on this dataset with merely 9,000 instances takes 17 days.

Our exact FASTEE, in blue, reduces this time to 2 days, while the approximate FASTEE, in

green, reduces it to 13 hours. The exact version is 10 times faster than EE, while learn-

ing the exact same classifier. The approximate version is 40 times faster, but may slightly

compromise classification accuracy.

83

Figure 5.1: Training time of EE (17 days) and our proposed technique FASTEE (2 days) on
the ElectricDevices dataset at different sizes.

This chapter is organised as follows. We provide the necessary background to under-

stand our work and review key related work in TSC in Section 5.2. As lower bounding a dis-

tance measure has shown numerous successes in speeding up NN classifiers [27, 31, 32],

we believe that it can also speed up EE. Section 5.3 describes the lower bounds required

to speed up EE. We also propose new lower bounds for distance measures for which lower

bounds have not previously been derived. Then in Section 5.4, we introduce FASTEE to

speed up the training time for EE. We evaluate the performance of FASTEE in Section 5.5.

Finally, we conclude our chapter and provide some future direction in Section 5.6.

5.2 Background and Related Work

Most of the background knowledge have been presented in Chapter 2. This section provides

the necessary background information to understand our proposed method and describes

some related work in speeding up time series classification (TSC), specifically the nearest

neighbour (NN) type classifiers. For simplicity, we assume that all the time series are of the

same length L. However, it is trivial to generalize the algorithm to different lengths.

84

5.2.1 Ensembles of Elastic Distances

Similarity in the time domain has been a major focus for a large body of TSC research

[1, 10, 16, 17, 22, 23, 27, 93]. The Ensembles of Elastic Distances (EE) is the most accu-

rate TSC classifier in the time domain [17, 23]. EE is a meta classifier that consists of 11

NN classifiers, each of which uses a different time series distance measure [17] (see Sec-

tion 2.2.9 for more details). A NN classifier searches for the nearest neighbour within the

training set and labels the query time series with the label of the nearest neighbour. Two time

series are compared using a distance measure such as Euclidean distance or Dynamic Time

Warping (DTW), that tries to achieve the optimal alignment between the two time series.

Many distance measures are proposed for TSC in the last decade [23, 45, 88, 89, 90, 91].

When tested on the UCR benchmark archive, they are not significantly different from each

other in terms of classification accuracy [17]. An ensemble (EE) generalises this so that the

contributions from all the distance measures are considered, which significantly improves

the classification accuracy [17].

As is typical for supervised classifiers, EE needs to be trained before performing any

classification tasks. One of the key aspects of learning for EE is to find values for the pa-

rameters that affect the behaviour of the distance measures [17]. For instance, the choice

of warping window (parameter) for one of the distance measures – Dynamic Time Warping

(DTW) significantly affects the error rate of NN-DTW, as shown in Figure 5.2. EE learns the

values of these parameters by trying all of a predefined set of potential values and selecting

the one that performs best using leave-one-out cross validation (LOO-CV) on the training set

[17]. Since EE is composed of NN type classifiers, this task then boils down to finding the

nearest neighbour of each time series inside the training dataset for each of M parameter

values. Algorithm 2 in Section 2.2.9 describes the process of training EE.

5.2.2 Elastic Distance Measures

Since EE consists of NN type classifiers, the ultimate aim of this work is to minimise the

training time of NN type classifiers. The NN type classifiers are each paired with a distance

85

0 0.05 0.1 0.15 0.2 0.25
Warping Window, w (Percentage of time series length, L)

0

0.1

0.2

0.3

0.4

0.5

C
la

ss
if
ic

at
io

n
 E

rr
or

,
e

ElectricDevices - Largest UCR dataset
ShapesAll
Trace
CinC ECG torso

Figure 5.2: Classification error for NN-DTW on some datasets from the UCR benchmark
archive [6] at various warping window w

measure, also known as a similarity measure, that returns a distance, or similarity, score for

a pair of time series. Thus it is important to first understand the principles of each distance

measure. There are 7 different distance measures that are commonly used in the literature

[17]. Together with their variants, they form with 11 distance measures used in EE [17].

This section briefly describes the different measures in order to understand our work in this

chapter. We refer interested readers to Section 2.2 and the paper [17] for more technical

details.

An elastic distance measure E transforms a time series to better match and align with

another time series. All distance measures in EE are elastic other than Euclidean distance.

Most of the elastic distance measures have O(L2) complexity to calculate. They can all

be solved with dynamic programming using a L × L cost matrix D. Thus, we say that E

has an alignment path A = {A1, ...,AK} along the cost matrix D that aligns the two time

series S and T . Each of the element Ak = (i, j) is a link indicating S(i) is aligned to T (j).

Equation 5.1 shows a general equation for elastic distance measures, where A1
k indicates

the first element in Ak, A2
k the second, costP(S(A1

k), T (A2
k)), represents the cost of aligning

the two points S(A1
k) and T (A2

k), given a parameter P and is explained in Section 2.2.

E(S, T) =
K∑
k=1

costP(S(A1
k), T (A2

k)) (5.1)

86

Elastic Distance Measures Time
Complexity

Path
Constraint

Alignment
Penalty Threshold

Euclidean Distance O(L) - - -
Dynamic Time Warping O(L2) - - -
Constrained DTW O(w · L) w - -
Derivative DTW O(L2) - - -
Constrained DDTW O(w · L) w - -
Weighted DTW O(L2) - g -
Weighted DDTW O(L2) - g -
Longest Common Subsequence O(δ · L) δ - ε
Edit Distance with Real Penalty O(bandsize ·L) bandsize g -
Move-Split-Merge Distance O(L2) - c -
Time Warp Edit Distance O(L2) v λ -

Table 5.1: Elastic distance measures in EE with their time complexity and parameters

The elastic distance measures are usually parametrised by one or two parameters that

need to be learned at training time. Table 5.1 outlines the respective time complexity and

parameters for each of the elastic distance measures. Overall, the parameters for elastic

distance measures can be categorised into three types. First, is the alignment constraint

parameter on the alignment path such as the warping window in DTW. Second, is a penalty

cost to the alignment in case of misalignment and lastly, a threshold parameter which deter-

mines if two points are the same. Most elastic distance measures are parametrised by one

or two of these forms of parameters.

Algorithm 13 presents a general algorithm to fully compute any given elastic distance

measure E (without a global alignment constraint) given their threshold or alignment penalty

parameters, denoted by a single variable P and the cost of aligning two points. For the case

where the warping path is constrained, one only need to modify the start and end variables.

For a constraint variable C, we replace the respective start and end variables: end ← C in

Line 3, start ← max(2, i− C) in Line 12 and end ← min(L, i + C) in Line 13. Note that C = r

for DTWr and DDTWr; C = ∆ for LCSS; C = bandsize for ERP.

5.2.3 Related Work

The accuracy of the EE classifier, comes at a cost of polynomial time complexity, which is

prohibitive for large datasets. As shown in the previous section, elastic distance measures

generally have polynomial O(L2) time complexity. A single classification of a query using the

87

Algorithm 13: Full Elastic Distance, E(S, T , P, D)
Input: Q: Query time series
Input: C: Candidate time series
Input: P: Parameters for elastic distance measure, E
Input: D: Cost matrix for elastic distance measure, E
Output: d: Value of the elastic distance measure

1 L← S.length
2 Let D be an L× L matrix initialized to∞
3 end← L
4 D(1, 1)← costP(S(1), T (1)
5 for i← 2 to end do // first column

6 D(i, 1)← costP(S(i), T (1))
7 end
8 for j ← 2 to end do // first row

9 D(1, j)← costP(S(1), T (j))
10 end
11 for i← 2 to L do // the rest

12 start← 2
13 end← L
14 for j ← start to end do
15 D(i, j)← costP(S(i), T (j))
16 end
17 end
18 if LCSS then
19 return 1−D(L,L)/L
20 else
21 return D(L,L)
22 end

NN classifier requires O(N ·L2) operations, as the the algorithm needs to compare the query

time series with all the N training instances. On the other hand, as indicated in Algorithm 2,

with M parameter values to select between, a typical training time for a single NN classifier

in EE requires O(M ·N2 ·L2) operations. This is because for each of the N instances in the

training set T , the algorithm needs to scan through all N − 1 examples to find its nearest

neighbour and repeat for all M parameter values. This is infeasible when L is long and

N is large as illustrated in Figure 5.1. An exhaustive search of all M parameters is time

consuming, thus many applications use a subset of parameter values by setting M = 100.

However as we will show in Section 5.5, training with M = 100 is still inefficient and slow.

A great amount of research has been done to speed up NN type classifiers, in particular

the NN-DTW classifier [1, 26, 27, 28, 31, 32, 93]. A common way is to use efficient lower

bound functions with O(1) to O(L) complexity to minimise the expensive O(L2) distance

88

computation and to reduce the search space [27, 28, 30, 31, 32]. Different lower bounds can

be cascaded to create tighter lower bounds that are more effective at pruning unpromising

candidates [32]. It may be possible to determine lower bounds on the final distance during

the dynamic programming process. Thus, the computation of an elastic distance measure

can also be early abandoned [32]. The idea is to abandon the distance computation as soon

as the cumulative distance in the cost matrix D is greater than the distance to the nearest

neighbour [32]. Cells in the cost matrix DDTW that are guaranteed to not be part of the DTW

warping path can be skipped as well [93].

Contract algorithms are also popular to speed up a classification algorithm in terms of

training and classification time without compromising on the classification accuracy [1, 26,

103]. A recent work proposed c-RISE [103] that gives a contract training time for the Random

Interval Spectral Ensemble (RISE) – a component of HIVE-COTE [15]. Indexing techniques

such as building a hierarchical K-means tree when combined with contract algorithms [1]

are effective in reducing the classification time. Moreover, we can also classify a time series

by comparing it to the average time series in each of the classes in the training set [26]. This

significantly reduces the classification time and can improve the classification accuracy [26].

Since most elastic distance measures are very similar, these techniques developed for

NN-DTW can be extended to other elastic distance measures to speed up this process. As

will be discussed in Section 5.4, FASTEE leverages off a recent work that utilises some of

these techniques.

5.2.4 Learning the Parameters of an Elastic Distance Efficiently

Most of the elastic distance measures require learning the parameter from a set of M pa-

rameter values [16, 23]. Typically, the training time for a single NN classifier in EE requires

O(M · N2 · L2) operations and is infeasible for large N . Although there has been much re-

search into speeding up the NN classifier (Section-5.2.3), they are still not efficient in dealing

with hundreds of parameter values. For instance, our experiments in Section 5.5 show that

there is no significant improvement in training time by using just the lower bounds. Further-

89

Nearest neighbour at different parameters
0 1 · · · M − 1 M

T1 T24(2.57) T55(0.98) · · · T55(0.98) T55(0.98)
...

...
TN T60(4.04) T47(1.61) · · · T47(1.61) T47(1.61)

Table 5.2: Table of NNs for each m. A cell (i,m) = Tk(dist) means Ti has Tk as its NN for
parameter m with distance dist.

more, as demonstrated in [3], learning the exact best warping window (parameter) for DTW

requires the enumeration of all possible windows (M = L) which is a laborious process [3].

This process can be seen as searching for the nearest neighbour of all N time series for all

windows, creating a (N ×M) NNs table as shown in Table 5.2 [3]. Filling this table naively

requires O(N2 ·L3) operations. Thus, it is common to explore just a subset of these windows,

giving an approximate best warping window. Usually at least 100 windows in the range of 0

to L are considered [23]. However this is still not efficient, as the complexity of N2 · L2 takes

over very quickly for large N and long L.

The Fast Warping Window Search (FASTWWS) is an exact and efficient algorithm to

learn the best warping window for DTW that is at least 2 orders of magnitude faster than

the state of the art [3]. The algorithm is based on the observation that many distance com-

putations are redundant in the standard approach to learning the best warping window [3].

It takes advantage of the relationship between DTW and its warping window [3]. There are

three main properties that form the basis of FASTWWS [3]. First, a DTW warping path can

be valid for several windows. When unconstrained, DTW finds the optimum path that goes

through the cost matrix D. This optimum path has a maximum width w? from the diago-

nal. If the window w is larger than w?, then the path will not change for any smaller window

w? ≤ w′ ≤ w and thus will return the same distance, as illustrated in Figure 4.3. Warping

windows whose DTW distances are predetermined need not be computed. Second, DTW is

monotone with the warping window. Lastly, The Keogh lower bound (lower bound of DTW)

is monotone with warping window as well. Section 2.4 explains the lower bounds in more

detail. These three properties allow the searching for the best warping window to start with

the largest window L and proceed through ever smaller windows, skipping the computation

of many of the DTW distances. We refer the interested reader to the paper [3] or Chapter

90

4 for a detailed explanation of the algorithm. With the aim of speeding up EE, this work

generalises these properties and extends FASTWWS to other elastic distance measures.

5.3 Proposed Lower Bounds for Elastic Distances

Lower bounding has shown a lot of success in speeding up the NN classifier especially the

NN-DTW classifier [1, 27, 32]. If a sequential search is performed through potential nearest

neighbours for series S, if a lower bound on the distance to T exceeds the distance to the

nearest neighbour found so far, then T can be discarded as a potential nearest neighbour

without the need to calculate its distance. This speeds up NN type classifiers by minimising

the number of expensive O(L2) distance computations. Typically an effective lower bound

has cheap O(1) to O(L) complexity. EE is an ensemble of 11 NN classifiers with different

elastic distance measures, thus it is possible to speed up EE using lower bounds. Section

2.4 describes the existing lower bounds that are used in this work.

To the best of our knowledge, no prior lower bounds have been derived for WDTW, MSM

or TWED. In this section, we present new lower bounds for these measures. Note that

some of these lower bounds may not be tight. Nonetheless, they are sufficient to provide

reasonable speed ups. With the addition of these lower bounds, we have useable lower

bounds for all the elastic measures in EE. We do not use a lower bound for Euclidean

distance because its complexity is linear with respect to series length and hence it is efficient

5.3.1 WDTW Lower Bound

We define the lower bound for WDTW (LB WDTW) in Equation 5.2 using similar intuition

as LB KEOGH. First, we build the envelope time series for T . Since there are no alignment

constraints on WDTW, we have the upper envelope UE = max(T) and the lower envelope

LE = min(T). Then LB WDTW distance is computed using Equation 5.2 by multiplying the

sum with the minimum weight penalty w0.

91

LB WDTW(S, T) =

√√√√√√√√√√√w0

L∑
i=1

(S(i)−max(T))2 if S(i) > max(T)

(S(i)−min(T))2 if S(i) < min(T)

0 otherwise

(5.2)

Theorem 5. For any two time series S and T of length L, and an alignment path A =

{A1, ...,AK}, where Ak = (i, j) indicates Si is aligned to Tj, the following inequality holds:

LB WDTW(S, T) ≤ WDTW(S, T)

Proof. We can rewrite the equation of WDTW using A and the weights from Equation 2.4

into the following

WDTW(S, T) =

√√√√ K∑
k=1

w|A1
k−A

2
k|(S(A1

k)− T (A2
k))

2

where A1
k = i,A2

k = j and we wish to proof the following

w0

L∑
i=1

(S(i)−max(T))2 if S(i) > max(T)

(S(i)−min(T))2 if S(i) < min(T)

0 otherwise

≤
K∑
k=1

w|A1
k−A

2
k|(S(A1

k)− T (A2
k))

2

Note that both sides are squared as the terms under the square root are both positive.

We know that L ≤ K, so we can match every term on the left hand side (LHS) with a term

on the right hand side (RHS) giving K − L terms unmatched.

w0

L∑
i=1

(S(i)−max(T))2 if S(i) > max(T)

(S(i)−min(T))2 if S(i) < min(T)

0 otherwise

≤

∑
k∈matched

w|A1
k−A

2
k|(S(A1

k)− T (A2
k))

2+

∑
k∈unmatched

w|A1
k−A

2
k|(S(A1

k)− T (A2
k))

2

Let us consider the relationship between the matched terms on the RHS and the LHS

terms. There are three cases to be considered on the LHS of the inequality. We start with

the first one S(i) > max(T). From Equation 2.4, w0 is the minimum weight, so w0 ≤ w|i−j|.

92

Since max(T) ≥ T (j) and if S(i) > max(T), then (S(i) − max(T))2 ≤ (S(i) − T (j))2. Thus

w0(S(i)−max(T))2 ≤ w|j−i|(S(i)−T (j))2. Similarly if S(i) < min(T), and min(T) ≤ T (j), then

(S(i)−min(T))2 ≤ (S(i)− T (j))2. Since (S(i)− T (j))2 is non-negative, the third case yields

0 ≤ (S(i)− T (j))2.

If all the matched terms are larger than the LHS terms, then the unmatched terms will

need to be negative for the inequality to be false. Fortunately, it is impossible for the un-

matched terms to be negative since w|i−j| > 0 (from Equation 2.4) and the squared terms can

never be negative. Therefore our inequality holds and LB WDTW(S, T) ≤ WDTW(S, T).

5.3.2 MSM lower bound

We define the lower bound for MSM (LB MSM) in Equation 5.3. The first term of LB MSM

is |S(1)−T (1)| and is extracted directly from MSM [90]. Following Equation 2.7, if S(i−1) ≥

S(i) > max(T), the lower bound adds the minimum of |S(i) − max(T)| and c. Similarly if

S(i− 1) ≤ S(i) < min(T), the lower bound adds the minimum of |S(i)−min(T)| and c.

LB MSM(S, T) = |S(1)−T (1)|+
L∑
i=2

min(|S(i)−max(T)|, c) if S(i− 1) ≥ S(i) > max(T)

min(|S(i)−min(T)|, c) if S(i− 1) ≤ S(i) < min(T)

0 otherwise
(5.3)

Theorem 6. For any two time series S and T of length L, and an alignment path A =

{A1, ...,AK}, where Ak = (i, j) indicates S(i) is aligned to T (j), the following inequality

holds: LB MSM(S, T) ≤ MSM(S, T)

Proof. We can rewrite the equation of MSM from Equation 2.8 using A into the following:

MSM(S, T) = |S(1)− T (1)|+
K∑
k=2

cost(S(A1
k), T (A2

k))

where A1
k = i,A2

k = j, cost(S(A1
k), T (A2

k)) represents the cost of aligning S(A1
k) to T (A2

k)

under MSM. From Equation 2.8, MSM is based on three different cost values.

93

cost(S(A1
k), T (A2

k)) =

|S(i)− T (j)|

C(S(i), S(i− 1), T (j))

C(T (j), S(i), T (j − 1))

where C(x, y, z) is defined in Equation 2.7. The cost is c + min(|x − y|, |x − z|) if x is not

between y and z otherwise the cost is c. And we wish to proof the following

L∑
i=2

min(|S(i)−max(T)|, c) if S(i− 1) ≥ S(i) > max(T)

min(|S(i)−min(T)|, c) if S(i− 1) ≤ S(i) < min(T)

0 otherwise

≤
K∑
k=2

cost(S(A1
k), T (A2

k))

The proof for the first term is trivial as they are equal on both sides. We know that L ≤ K, so

we can match every term on the LHS with a term on the RHS, givingK−L terms unmatched.

L∑
i=2

min(|S(i)−max(T)|, c) if S(i− 1) ≥ S(i) > max(T)

min(|S(i)−min(T)|, c) if S(i− 1) ≤ S(i) < min(T)

0 otherwise

≤

∑
k∈matched

cost(S(A1
k), T (A2

k))+∑
k∈unmatched

cost(S(A1
k), T (A2

k))

Let us consider the relationship between the matched terms on the RHS and the LHS

terms. We wish to proof that for each i > 1 term, all the 3 cases inside LB MSM is less than

or equal to the minimum of the cost functions.

For the first case S(i − 1) ≥ S(i) > max(T),max(T) ≥ T (j), and assuming |S(i) −

max(T)| ≤ c,

• |S(i) − max(T)| ≤ |S(i) − T (j)| because max(T) ≥ T (j), i.e. T (j) is further from S(i)

than max(T).

• |S(i)−max(T)| ≤ C(S(i), S(i−1), T (j)) because |S(i)−max(T)| ≤ c, c ≤ C(S(i), S(i−

1), T (j)) and S(i− 1) ≥ S(i) > max(T) ∴ C(S(i), S(i− 1), T (j)) = c from Equation 2.7.

94

• |S(i) − max(T)| ≤ C(T (j), S(i), T (j − 1)) because |S(i) − max(T)| ≤ c and c ≤

C(T (j), S(i), T (j − 1)) from Equation 2.7.

Assuming if c ≤ |S(i)−max(T)|, then c ≤ |S(i)−max(T)| ≤ |S(i)−T (j)|, c ≤ C(S(i), S(i−

1), T (j) and c ≤ C(T (j), S(i), T (j − 1)) are still valid and thus the above proof holds.

For the second case S(i− 1) ≤ S(i) ≤ min(T),min(T) ≤ T (j), and |S(i)−min(T)| ≤ c,

• |S(i) − min(T)| ≤ |S(i) − T (j)| because min(T) ≤ T (j), i.e. T (j) is further from S(i)

than min(T).

• |S(i)−min(T)| ≤ C(S(i), S(i− 1), T (j)) because |S(i)−min(T)| ≤ c, c ≤ C(S(i), S(i−

1), T (j)) and S(i− 1) ≤ S(i) < min(T) ∴ C(S(i), S(i− 1), T (j)) = c from Equation 2.7.

• |S(i)−min(T)| ≤ C(T (j), S(i), T (j−1)) because |S(i)−min(T)| ≤ c and c ≤ C(T (j), S(i), T (j−

1)) from Equation 2.7.

Similarly, the above proof holds for the case where c ≤ |S(i)−min(T)|. The third case is

always true because all of the cost functions are non-negative.

Since all the matched terms are larger than LHS, then the sum of the unmatched terms

has to be negative for the inequality to be false. This is not possible because c ≥ 0 is non

negative and the absolute differences in the cost values and Equation 2.7 can never be

negative. Therefore LB MSM(S, T) ≤ MSM(S, T) holds.

5.3.3 TWED Lower Bound

TWED takes into account the differences in timestamps ti−ti−1 in the cost of aligning a time

series pair. Since in this work, we only consider time series that are equally spaced and use

the indexes of the time series points as the timestamps, we will always have ti − ti−1 = 1.

A lower bound for TWED was proposed in [91] for range query search. The lower bound

down-samples the time series and computes the TWED distance of the down-sampled time

series. In a worst case scenario, the down-sampled time series could be the full time series

95

and the lower bound will be more expensive to compute than the full distance. Thus, we

define a new lower bound for TWED (LB TWED) in Equation 5.4. Note that this lower

bound is also applicable for ti − ti−1 > 1.

LB TWED(S, T) = min

(S(1)− T (1))2

S(1)2 + v + λ

T (1)2 + v + λ

+

L∑
i=2

min(v, (S(i)−max(max(T), S(i− 1)))2) if S(i) > max(max(T), S(i− 1))

min(v, (S(i)−min(min(T), S(i− 1)))2) if S(i) < min(min(T), S(i− 1))

0 otherwise

(5.4)

Theorem 7. For any two time series S and T of length L, a stiffness parameter v ≥ 0 and a

constant penalty λ ≥ 0, and an alignment path A = {A1, ...,AK}, where Ak = (i, j) indicates

S(i) is aligned to T (j), the following inequality holds: LB TWED(Q,C) ≤ TWED(Q,C)

Proof. We can rewrite the equation for TWED using A as the following

TWED(S, T) =
K∑
k=1

cost(S(A1
k), T (A2

k))

where A1
k = i,A2

k = j, cost(S(A1
k), T (A2

k)) represents the cost of aligning S(A1
k) to T (A2

k)

under TWED. From Equation 2.9, TWED is based on three different cost values.

cost(S(A1
k), T (A2

k)) =
(S(i)− T (j))2 + v|tS(i)− tT (j)|+ (S(i− 1)− T (j − 1))2 + v|tS(i− 1)− tT (j − 1)|

(S(i)− S(i− 1))2 + v|tS(i)− tS(i− 1)|+ λ

(T (j)− T (j − 1))2 + v|tT (j)− tT (j − 1)|+ λ

where S(0) = 0, T (0) = 0, tS(0) = 0 and tT (0) = 0. and we wish to proof the following

96

LB TWED(S, T) ≤
K∑
k=1

cost(S(A1
k), T (A2

k))

We know that L ≤ K, so we can match every term on the LHS with a term on the RHS,

giving K − L terms unmatched.

LB TWED(S, T) ≤
∑

k∈matched

cost(S(A1
k), T (A2

k)) +
∑

k∈unmatched

cost(S(A1
k), T (A2

k))

Let us consider the relationship between matched terms on the RHS and the LHS terms.

We wish to proof that for all i > 0, all the terms in Equation 5.4 is less than or equal to all

the cost functions on the RHS. Due to boundary conditions, TWED must aligns the points

at i = 1, j = 1. So for i = 1 it is trivial to see that,

min

(S(1)− T (1))2

S(1)2 + v + λ

T (1)2 + v + λ

≤
(S(1)− T (1))2

(S(1)− 0)2 + v · tS(1) + λ

(T (1)− 0)2 + v · tT (1) + λ

There are three cases for i ≥ 2, and we shall start with the first one S(i) > max(max(T), S(i−

1)), assuming max(T) ≥ S(i− 1) then S(i) > max(T). We will first show the proof by assum-

ing (S(i)−max(T))2 ≤ v.

• (S(i)−max(T))2 ≤ (S(i)−T (j))2 +v|tS(i)− tT (j)|+(S(i−1)−T (j−1))2 +v|tS(i−1)−

tT (j − 1)| because max(T) ≥ T (j) implies that T (j) is further from S(i) than max(T),

so (S(i)−max(T))2 ≤ (S(i)− T (j))2. All the other terms cannot be negative.

• (S(i)−max(T))2 ≤ (S(i)−S(i−1))2 +v|tS(i)− tS(i−1)|+λ because max(T) ≥ S(i−1)

implies that S(i − 1) is further from S(i) than max(T), so (S(i) − max(T))2 ≤ (S(i) −

S(i− 1))2. All the other terms cannot be negative.

• (S(i)−max(T))2 ≤ (T (j)−T (j−1))2+v|tT (j)−tT (j−1)|+λ because (S(i)−max(T))2 ≤

v, |tT (j)− tT (j − 1)| > 0 and all the other terms cannot be negative.

97

Assuming v ≤ (S(i)−max(T))2, v ≤ (S(i)− T (j))2 because (S(i)−max(T))2 ≤ (S(i)−

T (j))2. v ≤ |tS(i) − tS(i − 1)| and v ≤ |tT (j) − tT (j − 1)| because |t(i) − t(i − 1)| > 0. Thus

the proof still holds.

For the case S(i−1) ≥ max(T) then S(i) > S(i−1), and assuming (S(i)−S(i−1))2 ≤ v,

the opposite v ≤ (S(i)− S(i− 1))2 will still hold by applying the same reasoning.

• (S(i)− S(i− 1))2 ≤ (S(i)− T (j))2 + v|tS(i)− tT (j)|+ (S(i− 1)− T (j − 1))2 + v|tS(i−

1)− tT (j − 1)| because S(i) > S(i− 1), S(i− 1) ≥ max(T) and max(T) ≥ T (j) implies

that T (j) is further from S(i) than S(i− 1) so (S(i)−S(i− 1))2 ≤ (S(i)− T (j))2. All the

other terms cannot be negative.

• (S(i)− S(i− 1))2 ≤ (S(i)− S(i− 1))2 + v|tS(i)− tS(i− 1)|+ λ is trivial because all the

terms cannot be negative.

• (S(i)−S(i−1))2 ≤ (T (j)−T (j−1))2+v|tT (j)−tT (j−1)|+λ because (S(i)−S(i−1))2 ≤ v,

|tT (j)− tT (j − 1)| > 0 and all the other terms cannot be negative.

Similar proof can be applied to the second case S(i) < min(min(T), S(i − 1)). The third

case is trivial as all of the costs are non-negative. Since all the matched terms are larger than

the LHS, the unmatched terms has to be negative for the inequality to be false. Fortunately,

it is not possible because v ≥ 0, λ ≥ 0, |t(i)− t(j)| ≥ 0 and the squared terms can never be

negative. Therefore LB TWED(S, T) ≤ TWED(S, T) holds.

5.4 FASTEE: FAST Ensembles of Elastic Distances

Given an elastic distance measureE,N training instances andM parameters to learn, learn-

ing the best parameter for E can be seen as creating a N ×M table, similar to Table 5.2,

giving the NN for every time series for all parameters. As demonstrated in [3], training just

a single classifier (NN-DTW) is very computationally expensive. This is even more prob-

lematic when there are 11 classifiers to train. In this section, we introduce Fast Ensembles

98

of Elastic Distances (FASTEE), an extension of FASTWWS to speed up the training time for

EE.

5.4.1 Properties for Fast Elastic Ensemble

We can generalise the main properties of FASTWWS to other elastic distance measures.

As indicated in Section 5.2.2, an elastic distance measure, E is typically parametrised by

an alignment penalty, path constraint and threshold parameter. We let Pp, Pc and P t be the

alignment penalty, path constraint and threshold parameter respectively.

Property #1: For any elastic distance measure E, it is monotone with its alignment

penalty constraint parameters Pp

Theorem 8. Let E be the elastic distance measure of interest, S, T be two time series, Pp be

an alignment penalty, P̂p the smaller penalty and APp the associated alignment path. Then

we have EPp(S, T) > EP̂p(S, T).

Proof. Let costPp(S(i), T (j)) be the cost of aligning the two points S(i) and T (j). If Pp ≥

P̂p, then costPp(S(i), T (j)) ≥ costP̂p(S(i), T (j)). Otherwise, the alignment path will not be

optimum.

Property #2: For any elastic distance measure E, alignment path can be valid for

several path constraint parameters Pc

Theorem 9. Let E be the elastic distance measure of interest, S, T be two time series, Pc1
and Pc2 two path constraint parameters and APc

1 and APc
2 their associated alignment paths.

APc
1 = APc

2 ⇒ EPc
1
(S, T) = EPc

2
(S, T). In other words, EPc

1
(S, T) can only differ from EPc

2
(S, T)

if the alignment path differs.

99

Proof. Let APc
1 = 〈(iP

c
1

1 , j
Pc
1

1), · · · , (iP
c
1

K , j
Pc
1

K)〉, APc
2 = 〈(iP

c
2

1 , j
Pc
2

1), · · · , (iP
c
2

K , j
Pc
2

K)〉. We have:

EPc
1
(S, T) =

∑K
k=1 cost(S(i

Pc
1

k), T (j
Pc
1

k)) Eq 5.1

=
∑K

k=1 cost(S(i
Pc
2

k), T (j
Pc
2

k)) (By hyp.)

=EPc
2
(S, T)

Theorem 10. Let E be the elastic distance measure of interest, S, T be two time series, Pc

be a path constraint, P̂c the smaller path constraint and APc the associated alignment path.

Then

(|ik − jk| < Pc)∀k ⇒ EPc(S, T) = EP̂c(S, T)

In other words, if all the points in an alignment path are within the boundaries of the path

constraint Pc, then EPc(S, T) = EP̂c(S, T).

Proof. All elastic distance measures find an alignment path APc such that

K∑
k=1

cost(S(ik)T (jk))

is minimized respecting the constraint |ik − jk| 6 Pc.

In FASTWWS, this property is known as the “window validity” [3]. Thus, similarly we say

that EPc(S, T) has a “path validity” if all the alignment paths are the same. Note that this

property is valid only for a fixed alignment penalty parameter Pp and threshold parameter

P t.

Property #3: For any elastic distance measure E, it is monotone with its path con-

straint parameters Pc

Theorem 11. Let E be the elastic distance measure of interest other than TWED, S, T be

two time series, and Pc a parameter of E, P̂c < Pc, we have EPc(S, T) 6EP̂c(S, T) and

TWEDPc(S, T) > TWEDP̂c(S, T).

100

Proof. Assume EPc(S, T) >EP̂c(S, T), then this means that there exists an alignment path

AP̂c such that the associated cost is lower than the one for APc. This translates in E not

having found the optimal solution at Pc, which is a contradiction.

Note that larger path constraint parameter for TWED, v gives larger distance which is

the opposite of the path constraint parameters for all the other elastic distance measures.

Despite that, the proof is still applicable by just inverting the signs.

Property #4: For any elastic distance measure E with a path constraint Pc, its lower

bound (in this work) is monotone with Pc

Theorem 12. Let E be the elastic distance measure of interest except TWED, S, T be two

time series, Pc a parameter of E, P̂c < Pc, and LB a lower bound of E used in this work, we

have LBPc(S, T) 6 LBP̂c(S, T) and LB TWEDPc(S, T) > LB TWEDP̂c.

Proof. To proof this property, we have to look at each of the lower bounds for distances with

path constraint parameter – DTW, ERP, LCSS and TWED. The proof for DTW can be

found in [3]. The lower bound for ERP is an adaptation of LB KEOGH for DTW. Thus, its

proof is the same as DTW.

The lower bound for LCSS is bounded by an upper UE and lower LE envelopes. Let

Pc = ∆, UE∆(i) = max(qi−∆ : qi+∆) + ε be the elements in the upper envelope and LE∆(i) =

min(S(i−∆) : S(i+ ∆)− ε as the lower envelope. We wish to proof

LB LCSS∆(S, T) 6 LB LCSS∆−1(S, T)

101

We will assume the opposite and show that it leads to a contradiction:

LB LCSS∆(S, T) > LB LCSS∆−1(S, T)

1− 1

L

L∑
i=1

1 if LE∆(i) ≤ S(i) ≤ UE∆(i)

0 otherwise
> 1− 1

L

L∑
i=1

1 if LE∆−1(i) ≤ S(i) ≤ UE∆−1(i)

0 otherwise

L∑
i=1

1 if LE∆(i) ≤ S(i) ≤ UE∆(i)

0 otherwise
<

L∑
i=1

1 if LE∆−1(i) ≤ S(i) ≤ UE∆−1(i)

0 otherwise

The above implies that larger envelope at Pc gives a larger lower bound distance than

smaller envelopes, which contradicts with Equation 2.24 that defines LB LCSS as the per-

centage of points that are inside the envelope. When Pc increases, the envelope gets larger,

thus more points from S will fall into the envelope. Hence, the number of S(i) points in the

larger envelopes will be larger than the smaller envelopes giving longer common subse-

quence and consequently a smaller distance.

TWED monotonically increases with its path constraint parameter Pc = v and we let

v′ < v. Since v > v′ and the rest of the Equation 5.4 is constant regardless of v, it is trivial to

see that the inequalities for all the terms in Equation 5.4 holds.

LB TWEDv(S, T) > LB TWEDv′(S, T)

min

(S(1)− T (1))2

S(1)2 + v + λ

T (1)2 + v + λ

> min

(S(1)− T (1))2

S(1)2 + v′ + λ

T (1)2 + v′ + λ

L∑
i=2

min(v, (S(i)− A)2) if S(i) > A

min(v, (S(i)−B)2) if S(i) < B

0 otherwise

>
L∑
i=2

min(v′, (S(i)− A)2) if S(i) > A

min(v′, (S(i)−B)2) if S(i) < B

0 otherwise

where A = max(max(T), S(i− 1)), B = min(min(T), S(i− 1)).

102

Property #5: For any elastic distance measure E with a penalty parameter Pp, its lower

bound (in this work) is monotone with Pp

Theorem 13. Let E be the elastic distance measure of interest, S, T be two time series,

Pp a parameter of E, P̂p < Pp, and LB a lower bound of E used in this work, we have

LBPp(S, T) > LBP̂p(S, T).

Proof. Since the penalty parameter Pp ≥ 0 and all lower bounds for elastic distance mea-

sures are additive, it is trivial that LBPp(S, T) > LBP̂p(S, T) because Pp > P̂p

Note that LB WDTW is not considered although WDTW has a penalty parameter g

which controls the level or penalisation for far points using Equation 2.4. This is because

LB WDTW only considers the minimum weight, w0 which is invariant to g.

Property #6: For any elastic distance measure E with a threshold parameter P t, its

lower bound (in this work) is monotone with P t

Theorem 14. Let E be the elastic distance measure of interest, S, T be two time series,

P t a parameter of E, P̂ t < P t, and LB a lower bound of E used in this work, we have

LBPt(S, T) > LBP̂t(S, T).

Proof. Considering the elastic distance measures used in this work, only the LCSS dis-

tance has the threshold parameter, thus the proof will be based on LB LCSS. Let P t = ε,

LB LCSS is bounded by an upper UE(i) = max(T (i − ∆) : T (i + ∆)) + ε and lower

LE(i) = min(T (i − ∆) : T (i + ∆)) − ε envelopes which is built based on ε. From Equa-

tion 2.24, LB LCSS is defined as the percentage of points that are inside the envelope.

When P t increases, the envelope gets larger, thus more points from S will fall into the en-

velope. Hence, the number of points in the larger envelopes will be larger than the smaller

envelopes giving longer common subsequence and consequently a smaller distance.

103

Figure 5.3 and 5.4 illustrate the combination of all the properties for each of the elastic

distance measures. In this work, to be consistent with EE, only 100 parameters are chosen

for each of the distances [23]. Figure 5.3 shows the properties for elastic distance measures

with a single parameter, while Figure 5.4 with two parameters. For distances with two pa-

rameters, 10 values are chosen uniformly for each of the parameters, creating a combination

of 100 parameter values. There are no distances used with three parameters. Note that the

nearest neighbour (lowest distance) changes as the parameter changes.

DTW, DDTW, WDTW and WDDTW monotonically decreases with increasing param-

eter as shown in Figure 5.3a, 5.3b, 5.3c and 5.3d. Figure 5.3c and 5.3d only show 15

parameters as the WDTW distances are very small for larger parameters. The parameter

for DTW and DDTW – warping window w is selected from the range [0, L] with an incre-

ment of 0.01 × L. The parameter g for WDTW and WDDTW is chosen from an uniform

distribution of U(0, 1) with 100 values. MSM monotonically increases with its parameter as

shown in Figure 5.3e. Its parameter c is sampled from an exponential sequence in the range

[0.01, 100] [23].

LCSS has a monotonically decreasing relationship with its parameters as shown in Fig-

ure 5.4a. The threshold parameter for LCSS, ε is chosen from the range [σ/5, σ] where

σ is the standard deviation of the training set. The path constraint parameter, δ is chosen

from the range of [0, L/4] [23]. Figure 5.4b shows the monotonically increasing relationship

of TWED and its parameters. The constraint parameter for TWED, v is chosen from an

exponential distribution ranging from [10−5, 1]. The penalty parameter λ is chosen uniformly

from the range [0, 0.1]. ERP distance increases when its alignment penalty g increases and

decreases when its path constraint, bandsize increases as shown in Figure 5.4c. Both of its

parameters are chosen the same way as LCSS.

5.4.2 The FASTEE Algorithms

The previous sections show the theoretical basis of our work. We are now in a better po-

sition to explain our algorithms. The FASTEE algorithm applies the strategy that underlies

104

0 10 20 30 40 50 60 70 80 90 100
Parameter ID

0

5

10

15

20

25

30

35

40

45

D
T
W

 D
is

ta
n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(a) DTW

0 10 20 30 40 50 60 70 80 90 100
Parameter ID

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
D

T
W

 D
is

ta
n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(b) DDTW

0 5 10 15
Parameter ID

0

0.5

1

1.5

2

2.5

3

3.5

4

W
D

T
W

 D
is

ta
n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(c) WDTW

0 5 10 15
Parameter ID

0

0.02

0.04

0.06

0.08

0.1

0.12

W
D

D
T
W

 D
is

ta
n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(d) WDDTW

0 10 20 30 40 50 60 70 80 90 100
Parameter ID

0

10

20

30

40

50

60

70

80

90

M
S
M

 D
is

ta
n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(e) MSM

Figure 5.3: Relationship between single parameter elastic distances and their parameters

FASTWWS [3] to all the components of EE. Like FASTWWS, FASTEE is an exact algorithm

that is capable of giving the exact best parameter (with respect to LOO evaluation on the

training data) and can also be applied to a subset of parameters. To take advantage of

all the properties of FASTEE, we order the computations across the columns of the NNs

table systematically for each distance measure. This allows FASTEE to prune most of the

computations across the columns of the table.

105

0 10 20 30 40 50 60 70 80 90 100
Parameter ID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LC
S
S
 D

is
ta

n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(a) LCSS

0 10 20 30 40 50 60 70 80 90 100
Parameter ID

0

20

40

60

80

100

120

T
W

E
 D

is
ta

n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(b) TWED

0 10 20 30 40 50 60 70 80 90 100
Parameter ID

15

20

25

30

E
R
P

D
is

ta
n
ce

T
0
-T

1

T
0
-T

2

T
0
-T

3

(c) ERP

Figure 5.4: Relationship between double parameter elastic distances and their parameters

FASTEE starts scanning the parameter values for DTW, DDTW, WDTW and WDDTW

from the largest to the smallest. Distances at larger parameter values can be used as a

lower bound to the smaller parameter. Both DTW and DDTW distances are constant at

larger windows as illustrated in Figure 5.3a and 5.3b. This has the effect of pruning the com-

putations for DTW and DDTW at the windows where they are constant. The sigmoid weight

function makes WDTW and WDDTW a continuous function as illustrated in Figure 5.3c and

5.3d, preventing them from having a constant value. Since it does not satisfy property 2, the

computations of WDTW cannot be pruned. For this reason, FASTEE will only make use of

the distances computed at a larger g as the lower bounds for smaller g. Lower bounds for

WDTW are also used to speed up the process.

As MSM has a monotonically increasing relationship with its parameter c, FASTEE starts

from the smallest c – using distances at smaller c as a lower bound for larger c. Note that at

larger c, MSM is constant and thus the computations can be pruned.

106

The spikes in Figure 5.4 correspond to the changeover of a new penalty and threshold

parameter for elastic distances with two parameters. Currently, FASTEE resets the scan at

the spikes. We note that it is possible to use the distances at larger penalty value as the

lower bound to a smaller penalty value but this exploration will be left for future work.

FASTEE starts from the largest parameter combination (∆, ε) for LCSS. For a fixed ε,

LCSS distance stays constant for a range of ∆. Thus the computation can be pruned when

the distance is constant. Smaller threshold ε means that less points will be a match and

thus larger distance. Hence, LCSS distance at larger ε can be used as the lower bound at

smaller ε.

For TWED, FASTEE starts scanning from the smallest parameter combination (v, λ). It is

interesting to see that in Figure 5.4b, TWED is continuous at smaller v and does not satisfy

property 2. However, it remains constant at larger v. Hence FASTEE is still applicable to

TWED but will not yield good speed up at these smaller v.

Figure 5.4c shows that the ERP distance decreases with increasing bandsize, FASTEE

starts searching from the largest parameter combination and resets at every new g. Larger

g corresponds to larger penalty and thus larger ERP distance. It is important to note that

ERP at bandsize = 0 has the same value regardless of g which means that we can reuse

this value.

Lazy Nearest Neighbour Assessment

Our LAZYASSESSNN algorithm, presented in Algorithm 14, generalizes FASTWWS so that it

can be used for all EE’s elastic distance measures. It assesses whether a pair of time series

can be less than a distance d apart for a given parameter P. LAZYASSESSNN assesses

each of the potential nearest neighbours in a lazy fashion, by making the most out of all

possible lower bounds. It is lazy in that it postpones calculations for as long as possible. The

ordering of the elastic distance measure computations from small to large allows any value

previously calculated to become a lower bound to the current parameter value. A cache C is

used to store the results from the previous parameter value.

107

Algorithm 14: LAZYASSESSNN(C(S,T),P , d, S, T)

Input: C(S,T): cache storing the previous measure between S and T
Input: P: parameter
Input: d: the distance to beat
Input: S, T : the time series to measure
Result: EP(S, T) if > d, else pruned

1 if C(S,T) = ∅ then C(S,T) ← init(S, T)
2 switch C(S,T).stoppedAt do

// LB calculated with previous parameter P̂
3 case EP̂ do
4 if P ∈ C(S,T).valid ∧ C(S,T).value < d then
5 return C(S,T).value
6 end
7 case LBP̂ do
8 if C(S,T).value > d then return pruned

9 otherwise do
// Calculate LB and E at P
// Possible to cascade LBs for more than 1 lower bound starting

from the lowest complexity

10 C(S,T) ← LBP(S, T)
11 if C(S,T).value > d then return pruned

12 C(S,T) ← EP(S, T)
13 if C(S,T).value > d then return pruned

14 return C(S,T).value

15 end
16 end

First, we have to initialise the cache if it was not initialised previously. For most elastic

distance measures, the initialisation is simply creating the cache. But for DTW, DDTW

and ERP the cache is initialised with the LB KIM distance. The reason is that LB KIM is

not well-defined for the other distances. LB KIM is the loosest and cheapest lower bound

to compute. It is sufficient to filter out the obvious unpromising candidates in the training

set T . Then we test where the cache last stopped, i.e. was it computing a lower bound

for the target parameter value P, was it computing a lower bound for previous parameter

value P̂, or was it computing a distance for previous parameter value EP̂ . If it stopped at

EP̂ , then we have to assess if EP̂ is still valid and having a value less than d. On line 7-

9, if we cannot prune with EP̂ , then we check if we can prune using previously computed

bounds. Otherwise, we have to compute the lower bound for the target parameter and test

if we can prune them. Note that we can cascade the bounds for distances with more than

one bound. The bounds are ordered by their complexity which usually corresponds to their

108

Algorithm 15: FASTEE(T , C)

Data: T : training data
Data: C: set of NN classifier paired with an elastic distance
Result: P?: best parameter for each distances
Result: bestAccuracy: best LOO-CV accuracy for each distances

1 foreach ci ∈ C do
2 P i ← {P i1, ...,P iM}
3 NNS ← ci.FastFillNNTable(T ,P i)
4 bestAccuracy ← −1
5 for P ip ← P i1 to P iM do
6 nCorrect← 0
7 foreach Tt ∈ T do
8 if NNS[t][p].class 6= Tt.class then
9 nCorrect++

10 end
11 end
12 if nCorrect > bestAccuracy then
13 bestAccuracy ← nCorrect
14 P?i ← P ip
15 end
16 end
17 end

tightness [3, 32]. In this work, we cascade DTW lower bounds in the order – LB KIM(S, T),

LB KEOGH(S, T) and LB KEOGH(T, S). Reversing the role of S and T in LB KEOGH can

sometimes provide better bounds [32]. Finally if all bounds failed to prune the candidate,

then we have to compute EP – the elastic distance measure E at the target parameter P.

FASTEE Algorithm

Recall that the problem of learning the best parameter for an elastic distance measure, E

can be re-framed into creating a (N × M) NNs table, which gives the NN of every time

series in the training set for all M parameters. Such a table is depicted in Table 5.2 (in

Section 5.2.3). Once this table is built, the best parameter can be learned in one pass over

it as described in Algorithm 15. The algorithm uses Algorithm 16 to fill the table and returns

the parameter value with the highest LOO-CV accuracy on the training set T of size N .

The core of FASTEE actually depends on how efficient we can compute this table. Algo-

rithm 16 describes how we build this table efficiently for a particular elastic distance measure.

109

At the highest level, the algorithm builds this table for a subset T ′ ⊆ T of increasing size

until T ′ = T . For example we start by building the table for T comprising of only time series

T1 and T2 and fill the table as if T is the entire dataset. It is trivial to see that T1 is the nearest

neighbour for T2 and vice versa. Then a third time series T3 is added to the set T ′ from

T \ T ′. Now we have to find the nearest neighbour for T3 from T ′ \ T3 = {T1, T2} and check

if T3 is the nearest neighbour for both T1 and T2. This process is repeated until T ′ = T .

Algorithm 16 starts by initialising the N × M , NNs table to (,+∞). This means that

the table is empty and the distances are +∞. The iteration starts from 2 in line 4 as there

need to be at least 2 time series. Lines 5 to 7 are some initialisations including creating

the cache associated with S to store the results. After initialisation, we start the NN search

with the set of parameters P̄p in the order mentioned in the previous section. Then in line

9, we check if S already has a NN found from previous parameters. If S already has a NN,

then we only need to check if S is the NN for the other time series in T ′. At this point, the

LAZYASSESSNN algorithm assess if S “beats” the previous NN for each of the time series

in T ′. If LAZYASSESSNN exits with pruned then it means that S is not the NN, otherwise the

NNs table has to be updated with S as the new NN.

If we do not have the NN for S from the previous parameter value, then we will need

to analyse all (S, T)T∈T ′ and update the NNs table simultaneously for S and T . At this

stage, we already have some information stored in the cache C about which T ∈ T ′ might

be a better NN candidate for S. Note that the number of computations will be minimised

if the first T is actually the NN of S. Hence, it is important to first assess the candidate

with the highest NN potential by ordering the candidates. This method has been previously

studied in [1] and used in FASTWWS [3]. As mentioned in [3], it is possible that C contains

different type of lower bounds leading to distances with different magnitude. Thus the lower

bounds have to be normalised. Most of the lower bounds for the elastic distance measures

are of O(L) complexity, so we normalise them by the number of point-wise calculations.

Elastic distance measures are then being normalised by a factor of 0.8/L which pushes the

distances forward. This is because EP ′ represents a better estimate of EP than its lower

bound.

110

Algorithm 16: FASTFILLNNTABLE(T , P̄)
Input: T the set of time series
Input: P̄ ordered parameters to scan
Result: NNs the nearest neighbors table

1 Define LANN as LAZYASSESSNN
2 NNs.fillAll (,+∞)
3 T ′ ← ∅
4 for s← 2 to N do
5 S ← Ts
6 T ′ ← T ′ ∪ {Ts−1}
7 foreach T ∈ T ′ do CS,T ← ∅

8 for p←M down to 1 do
9 if NNs[s][p] 6= ∅ then

// Update table NNs[t][p]16t6s−1

10 for t← 1 to s− 1 do
11 toBeat← NNs[t][p].distance
12 res← LANN(C(S,Tt), P̄p, toBeat, S, Tt)
13 if res 6= pruned then
14 NNs[c][p]← (S, res)
15 end
16 end
17 else

// Check S against previous T ∈ T ′
18 foreach Tt ∈ T ′ in asc. order using C do
19 toBeat← NNs[s][p].distance
20 res← LANN(C(S,Tt), P̄p, toBeat, S, Tt)
21 if res 6= pruned then
22 NNs[s][p]← (Tt, res)
23 end
24 toBeatT ← NNs[t][p].distance
25 resT ← LANN(C(S,Tt), P̄p, toBeatT, S, Tt)
26 if resT 6= pruned then
27 NNs[t][p]← (S, resT)
28 end
29 end

// Propagate NN for all valid parameters

30 for p′ ∈ NNs[s][p].valid do NNs[s][p′]← NNs[s][p]

31 end
32 end
33 end

Line 19 gives the distance threshold from NNS[s][p] where each candidate has to beat in

order to be the NN of S. The candidate is assessed using the LAZYASSESSNN algorithm in

Algorithm 14. Initially, this value will be∞ as NNs[s][p] = ∅ and a distance computation has

to be done which will then be stored into NNs[s][p] in line 22. Then we check if S is the NN

111

of each candidate T ∈ T ′. Finally after all T ∈ T ′ have been processed, NNS[s][p] contains

the actual NN of S at the parameter value Pp. This information is then propagated across all

P where the distance is valid.

5.5 Experiments

This section describes the experiments that evaluate our FASTEE algorithm. Our experi-

ments were performed using all the 85 freely available benchmark UCR time series datasets

and the original train/test split [6]. We performed a search over the 100 parameters speci-

fied in Section 5.4.1. We conducted all of our experiments on a 16 core Xeon-E5-2667-v3

@3.20GHz machine with 16GB RAM. Our source code has been made open-source at

https://github.com/ChangWeiTan/FastEE and the full results at http://bit.ly/FastEE.

5.5.1 Speed-up Against EE

We first perform an experiment comparing FASTEE to the following:

• EE [17]: The standard implementation of the EE classifier. This naı̈ve version is used

as the baseline. We use the code from [17].

• LBEE: EE with lower bounds. This is the improvised version of naı̈ve EE. It uses lower

bounds for the elastic distance measures in all the NN search. NN search with lower

bound has a lot of success with speeding up NN-DTW [27, 32].

All methods are exact – they all learn the same best parameter, the same LOO-CV

accuracy and thus the same classification accuracy. This is shown in Figure 5.9b which

shows the classification accuracy of FASTEE compared to EE. Hence our experiments are

more focused on the training time.

Figure 5.5 compares the training time of EE (x-axis) to LBEE and FASTEE. Points under

the red line indicate that the method is faster than standard EE. The result is significant and

it shows that FASTEE is faster than the standard implementation of EE with all the red points

112

https://github.com/ChangWeiTan/FastEE
http://bit.ly/FastEE

101 102 103 104 105

Baseline (EE)

101

102

103

104

105

C
om

p
et

it
or

s

LbEE
FastEE

Figure 5.5: Total training time on the benchmark datasets (better seen in color)

consistently under the red line. The result in Figure 5.5 shows that using lower bounds on

the elastic distance measures has no effect in reducing the training time, and sometimes

increases it. This is a surprising result because lower bounds have proven to be successful

in speeding up many time series tasks, such as NN-DTW similarity search [1, 27, 32]. We

believe that there are two main reasons for this. For simplicity, we will explain the reasons

using the DTW distance. The same reasoning applies to all other elastic distance measures

as well.

First is due to the tightness of the lower bounds which is highly dependent on the param-

eters, especially the path constraint parameter. All lower bounds used in this work are similar

to LB KEOGH. They build an envelope to encapsulate the candidate time series (shown in

Figure 2.6b), and sum the distances of all the points in the query time series that fall outside

of the envelope. They are designed to ensure that if a point of a query time series that

is outside of the envelope is compared to either the upper or lower envelope, the distance

between them must at least contribute to the actual distance computation. For instance,

the path constraint parameter affects the envelope in the horizontal direction, i.e. larger path

constraint makes the envelope wider and bigger. Similarly larger penalty or threshold param-

eter increases the vertical direction, making the envelope taller and bigger. If the envelope

113

0 10 20 30 40 50 60 70 80 90 100
Parameters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
T
im

e,
 s

DTW
DTW with LbKeogh

LbKeogh is effective only here

(a)

0 10 20 30 40 50 60 70 80 90 100
Parameters

19

20

21

22

23

24

25

26

27

28

T
im

e,
 s

EE
LbEE

(b)

Figure 5.6: (a) Training time of DTW and DTW with LB KEOGH (b) EE and LBEE on the
ProximalPhalanxOutlineAgeGroup dataset [6]

is bigger, fewer points will be outside of the envelope. As a consequence, the lower bound

has a smaller distance and thus decrease in tightness.

This is illustrated in Figure 5.6a, which compares the training time for NN-DTW and NN-

DTW with LB KEOGH at different parameters. Initially, LB KEOGH is effective at the small

warping windows but loses its effectiveness in pruning NN candidates as the warping win-

dow gets larger. In other words, computing lower bounds for DTW at these larger windows

becomes redundant. A similar result is observed for the other elastic distance measures.

Second, using lower bounds across the columns of the NNs table is not efficient as they

lose their tightness and need to be recomputed multiple times. As shown in Figure 4.3 and

Figure 5.3a, DTW distance monotonically increases as the warping window decreases and

is constant for a wide range of warping windows. This allows FASTEE to use DTW from

larger windows as the lower bound for a smaller window to skip as many computations as

possible and preventing from recomputing DTW at parameters that give the same value.

LBEE does not make use of this information and thus has to recompute the distances mul-

tiple times. As a consequence of these two reasons, when all the distances are combined,

on average the training time of EE does not improve as shown in Figure 5.6b.

114

E
u
cl

id
ea

n

D
T
W

_
R
1

D
T
W

_
R
n

D
D

T
W

_
R
1

D
D

T
W

_
R
n

W
D

T
W

W
D

D
T
W

T
W

E

LC
S
S

M
S
M

E
R
P

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
on

tr
ib

u
ti
o
n
s

fr
om

 e
ac

h
 d

is
ta

n
ce

,
% EE

LbEE
FastEE

Figure 5.7: Contributions from each elastic distance measures to the total training time

5.5.2 Can FASTEE be Further Sped Up?

FASTEE is at most 10 times faster than the standard EE. This brings up the question of

whether we can further reduce the training time of FASTEE.

Figure 5.7 shows the average contribution of each elastic distance measure to EE’s total

training time across the UCR benchmark archive [6]. TWED, MSM and WDDTW are the 3

distances that contribute the most to the training time of EE and LBEE. FASTEE significantly

reduces the training time of MSM, which leaves WDDTW, WDTW and TWED the top 3 for

FASTEE.

Recall that learning the best parameter for each elastic distance measures is typically

done with LOO-CV and can be re-framed as filling up a N ×M NNs table. This means that

for each T ∈ T , we search for its nearest neighbour from T \ T . However, it is possible that

we do no need the full N instances to learn the best parameter. In other words, we want

to estimate the best parameter (which could be slightly different) based on a few instances

N from the training set without compromising the classification accuracy. Hence, instead of

N ×M , we wish to build a N ×M NNs table where N � N . This has the consequence of

speeding up the training time since less training instances are examined.

115

2 3 4 5 10
N

5

10

15

20

25

30

35

40
S
p
ee

d
u
p
 -

-
E
E
 /

 A
p
p
ro

xE
E

N

(a)

2 3 4 5 10
N

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
if
ic

at
io

n
 A

cc
u
ra

cy
 f
or

 A
p
p
ro

xE
E

N

(b)

Figure 5.8: (a) Speedup against EE and (b) classification accuracy for APPROXEE across
all the UCR benchmark datasets [6] for all the N

A similar method has been proposed to speed up the training time of a classifier [103].

The authors proposed a contract algorithm to build the Random Interval Spectral Ensemble

(RISE) classifier without compromising the classification accuracy. The authors estimate the

interval r in RISE, based on the remaining contract time. They used a least squares linear

regression model, which models the relationship of the interval r with training time. Note that

it is possible to implement a contract version of FASTEE but this will be left for future work.

In this work, we propose a simple technique to approximate the LOO-CV process while

not affecting the classification accuracy. Our technique – APPROXEE builds a N ×M table

but using the full T of size N , i.e. we still search for the nearest neighbour from the full

training set T . This ensures that the nearest neighbour for each of the N is the same

as exact LOO-CV – giving a better estimate of the parameters. Currently only the three

distances – TWED, WDTW and WDDTW are approximated as they contribute the most to

the training time of FASTEE. Approximating other distances is possible but the effect will not

be great because they do not contribute much to the total training time.

We report the average training time and classification accuracy of APPROXEE at N =

{2, 3, 4, 5, 10} over 5 runs and we write APPROXEEN . Note that N = 1 was not tested

because it does not make sense to train with just a single instance.

Figure 5.8a compares the speed up of APPROXEE against EE across all the UCR bench-

116

101 102 103 104 105

FastEE

101

102

103

104

105
A
p
p
ro
xE
E
2

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1
Baseline (EE)

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

p
et

it
or

s

LbEE
FastEE
ApproxEE

2

(b)

Figure 5.9: Average (a) training time of FASTEE and APPROXEE2 and (b) classification
accuracy of the different EE classifiers over 5 runs

mark datasets [6] for all N . The result is expected as more time is required for training as

N tends to N . This is indicated by the decreasing median (red line in the middle of the box

plot) over multipleN . Note that the training time across all theN is not significantly different.

Since APPROXEE estimates the exact best parameter and the training time is similar for all

N , we are interested to know the effect on classification accuracy. Figure 5.8b compares the

classification accuracy of APPROXEE across all the UCR benchmark datasets [6] for all N .

The result shows that there is no significant difference for all N . This suggests that a small

N is sufficient to provide a good speed up to both FASTEE and EE without compromising

the classification accuracy.

Therefore, we choose N = 2 and compare APPROXEE2 to FASTEE. Figure 5.9a com-

pares the total training time of APPROXEE to FASTEE. It shows that APPROXEE is always

much faster than FASTEE. This is expected because N � N . The largest speed-up gained

from APPROXEE is 40 times on the ElectricDevices dataset where FASTEE is only 10

times faster than EE.

Finally we show the classification accuracy of the different EE classifiers in Figure 5.9b.

As expected, the classification accuracy of LBEE and FASTEE is exactly the same as EE

because they are exact, i.e. finding the same best parameter and training accuracy. The

classification accuracy of APPROXEE is not significantly different from EE as most of the

points fall very closely on the red diagonal line.

117

If N is sufficiently large, the best parameter estimated can be similar to learning with

the full N time series but much faster. Then the estimated LOO-CV accuracy will be closer

to the exact LOO-CV accuracy and thus does not significantly affect the final classification.

However for very small N , it is very likely that the NN classifier will not learn the best pa-

rameter. This is because the estimated LOO-CV accuracy can only be 0, 0.5 or 1 if N = 2.

This suggests that the classifiers in EE with approximate LOO-CV do not contribute much in

classification accuracy.

The results from this experiment suggest that it is possible to ignore an elastic distance

in EE without compromising on the classification accuracy. It is possible that EE does not

need all 11 elastic distance measures to achieve such high classification accuracy. The

exploration of this possibility is left for future work.

5.6 Conclusion

We propose the FASTEE algorithm – an extension of FASTWWS to the other elastic dis-

tance measures. New lower bounds have also been proposed for elastic distances without a

previous bound, specifically WDTW, MSM and TWED. Lower bounds help in reducing the

search space and are critical to the FASTEE algorithm. Our results showed that FASTEE

is significantly faster than the standard implementation of EE and LBEE which uses lower

bounds. To our surprise, we did not find any significant speed up in using a lower bound

search to speed up the training time of EE. The main reasons are due to the inefficiency

of computing the lower bound across all the parameters and that the tightness of the lower

bounds degrades as the parameters change.

We also showed that it is possible to do an approximate LOO-CV process to select pa-

rameters for WDDTW, WDTW and TWED without significantly impacting accuracy. The

approximation is done by learning from a subset N of the full training set T of size N . We

showed that even a small N is sufficient to provide similar classification accuracy while be-

ing 40 times faster. Although the approximate version can be applied to all the other elastic

distance measures, we leave it for future work. Our future work also includes the exploration

118

of the possibility of using fewer classifiers in EE, indexing the training set and applying a

contract time for training. The results presented in this work are important because if EE

can be trained in a shorter time, then HIVE-COTE (the most accurate TSC algorithm) can

also be made faster and more feasible.

119

Chapter 6

A New Framework and Methods to Lower

Bound DTW

This chapter studies DTW lower bounds at various warping window sizes. The NN-DTW

algorithm is at the core of state-of-the-art classification algorithms including the Ensembles

of Elastic Distances (EE) [17] and Collection of Transformation-Based Ensembles (COTE)

[21]. DTW’s complexity makes NN-DTW highly computationally demanding. To combat

this, lower bounds to DTW are used to minimize the number of times the expensive DTW

need be computed during NN-DTW search. Effective lower bounds must balance ‘time to

calculate’ vs ‘tightness to DTW’. On the one hand, the tighter the bound the fewer the calls to

the full DTW. On the other, calculating tighter bounds usually requires greater computation.

Numerous lower bounds have been proposed. Different bounds provide different trade-offs

between compute time and tightness. In this work, we present a new class of lower bounds

that are tighter than the popular Keogh lower bound, while requiring similar computation

time. Our new lower bounds take advantage of the DTW boundary condition, monotonicity

and continuity constraints. In contrast to most existing bounds, they remain relatively tight

even for large windows. A single parameter to these new lower bounds controls the speed-

tightness trade-off. We demonstrate that these new lower bounds provide an exceptional

balance between computation time and tightness for the NN-DTW time series classification

task, resulting in greatly improved efficiency for NN-DTW lower bound search.

120

102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LB_Kim
LB_Keogh
LB_Improved
LB_New
LB_Enhanced1

LB_Enhanced2

LB_Enhanced3

LB_Enhanced4

LB_Enhanced5

650 700 750 800

0.485

0.49

0.495

0.5

0.505

0.51

A
ve

ra
g
e

T
ig

h
tn

es
s,

 L
B
/D

T
W

Average LB Compute Time, t(s)

LB_Enhanced1 is both faster
and tighter than LB_Keogh

1

2

3

4

5

Figure 6.1: Tightness-Compute Time comparison of existing and our lower bounds at
w = 0.1 · L over 250,000 time series pairs with L = 256 randomly sampled from the bench-
mark UCR time series archive [6]. Figure on the right shows the zoomed in plot. Our
LB ENHANCED1 is faster and tighter than LB KEOGH.

6.1 Introduction

Dynamic Time Warping (DTW) lower bounds play a key role in speeding up many forms of

time series analytics [1, 26, 27, 32]. Several lower bounds have been proposed [27, 28, 29,

30, 31]. Each provides a different trade-off between compute time (speed) and tightness.

Figure 6.1 illustrates this, plotting average tightness (LB(S, T)/DTW(S, T)) against the av-

erage time to compute for alternative lower bounds. As shown in Figure 6.2, different bounds

have different relative tightness at different window sizes.

In this chapter, we present a family of lower bounds, all of which are of O(L) time

complexity and are in practice tighter than LB KEOGH. Two of these, LB ENHANCED1

and LB ENHANCED2, have very similar compute time to LB KEOGH, while providing tighter

bounds, meaning that their performance should dominate that of LB KEOGH on any stan-

dard time series analysis task.

121

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Window Sizes (% of L)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
g
e

T
ig

h
tn

es
s

Lb_Kim
Lb_Keogh
Lb_Improved
Lb_New

Lb_Enhanced1

Lb_Enhanced5

Figure 6.2: Tightness of different lower bounds at differing window sizes averaged across all
UCR datasets [6]. Our very efficient LB ENHANCED5 is tighter than any alternative at large
window sizes.

We focus on the application of lower bounds to DTW in Nearest Neighbor (NN-DTW)

Time Series Classification (TSC). NN-DTW is in its own right a useful TSC algorithm and

is a core component of the most accurate current TSC algorithms, COTE [21] and EE [17],

which are ensembles of TSC algorithms. NN-DTW is thus at the core of TSC algorithms,

but is extremely costly to compute [1, 3]. Given a training set with N time series and length

L, a single classification with standard NN-DTW requires O(N · L2) operations. Besides,

NN-DTW is only competitive when used with a warping window, w learned from the training

set [23]. Learning the best warping window is very time consuming as it requires the enu-

meration of numerous windows in the range of 0% to 100% of L and is extremely inefficient

for large training sets [3].

There has been much research into speeding up NN-DTW, tackling either the N part

[1] or the L2 part of the complexity [27, 28, 29, 30, 31, 92]. A key strategy is to use lower

bound search, which employs lower bounds on DTW to efficiently exclude nearest neighbor

candidates without having to calculate NN-DTW [27, 28, 29, 30, 31]. We show that different

speed-tightness trade-offs from different lower bounds prove most effective at speeding up

NN-DTW for different window sizes.

122

Of the existing widely used lower bounds, LB KIM [28] is the fastest, with constant time

complexity with respect to window size. It is the loosest of the existing standard bounds

for very small w, but its relative tightness increases as window size increases. For small

window sizes, LB KEOGH [27] provides an effective trade off between speed and tightness.

However, as shown in Figure 6.2, it is sometimes even looser than LB KIM at large window

sizes. The more computationally intensive, LB IMPROVED [31] provides a more productive

trade-off for many of the larger window sizes. LB NEW [30] does not provide a winning

trade-off for this task at any window size.

The new DTW lower bound that we propose has the same complexityO(L) as LB KEOGH.

Our new lower bound is parameterized, with a tightness parameter controlling a useful

speed-tightness trade-off. At its lowest setting, LB ENHANCED1, it is uniformly tighter than

LB KEOGH. It replaces two calculations of the distance of a query point (the first and last) to

a target LB KEOGH envelope with two calculations of distances between a query and a tar-

get point. This may or may not be faster, depending whether the query point falls within the

envelope, in which case LB KEOGH does not perform a distance calculation. However, due

to its greater tightness, this variant always supports faster NN-DTW. At V={2, 3, 4, 5}, our

tighter LB ENHANCED provide the greatest speed-up out of all standard DTW lower bounds

for NN-DTW over a wide range of window sizes.

This chapter is organised as follows. In Section 6.2, we review relevant background and

related work. Then we describe our proposed lower bound in Section 6.3. Section 6.4

presents an evaluation of our new lower bound in terms of its utility in TSC with NN-DTW.

Lastly, we conclude our paper in Section 6.5.

123

6.2 Background and Related Work

We let S = 〈S1, . . . , SL〉 and T = 〈T1, . . . , TL〉 be a pair of time series S and T that we want

to compare. Note that, for ease of exposition, we assume that the two series are of equal

length, but the techniques trivially generalize to unequal length series. Section 2.2.2 and

Section 2.4 give a detailed explanation for the DTW similarity measure and existing DTW

lower bounds. This section will only provide the necessary background to understand the

work presented in this chapter.

6.2.1 Dynamic Time Warping

DTW finds the global alignment of a time series pair, S and T , as illustrated in Figure 2.2a.

The warping path of S and T is a sequence A = 〈A1, . . . ,AP 〉 of links. Each link is a

pair Ak = (i, j) indicating that Si is aligned with Tj. A must obey the constraints outlined

in Section 2.2.2. The cost of a warping path is minimised using dynamic programming by

building a cost matrix DDTW, as illustrated in Figure 2.2b and computed using Equation 2.2.

Then DTW(S, T) is calculated using Equation 6.1, where A1
i is the first index in Ai and A2

i

the second.

DTW(S, T) =
√
D(L,L) =

√√√√ L∑
i=1

(SA1
i
− TA2

i
)2 (6.1)

A global constraint on the warping path can be applied to DTW, such that S(i) and T (j)

can only be aligned if they are within a window range, w. This constraint is known as the

warping window, w (previously Sakoe-Chiba band) [45, 81] and we write this as DTWw(S, T).

Figure 2.3 shows an example with warping window w = 3, where the alignment of S and T

is constrained to be inside the gray band. More details can be found in Sections 2.2.2 and

4.2.2.

124

6.2.2 Existing DTW Lower Bounds

For the rest of the chapter, we will refer a lower bound as LB 〈NAME〉 and consider S as the

query time series that is compared to T .

Kim Lower Bound (LB KIM) [28] has O(1) complexity and extracts four features – dis-

tances of the first, last, minimum, maximum points from the time series. Then the maximum

of all four features is the lower bound for DTW. Equation 2.12 describes this lower bound.

Yi Lower Bound (LB YI) [29] computes the sum of all the points in S that are larger than

max(T) or smaller than min(T) as the lower bound for DTW. Refer to Equation 2.13 for the

computation of this lower bound

Keogh Lower Bound (LB KEOGH) [27] computes the upper UET and lower LET (Equa-

tion 2.14) envelopes. These are the upper and lower bounds on T within the window of each

point in S. Then the lower bound is the sum of distances to the envelope of points in S that

are outside the envelope of T as shown in Equation 2.15. LB KEOGH is generally tighter

than LB KIM and LB YI.

Improved Lower Bound (LB IMPROVED) [31] computes a lower bound for DTW in two

passes as described in Equation 2.17. First it computes LB KEOGH and finds the projection

of S on to the envelope of T – S ′ using Equation 2.16. Then it builds the envelope for S ′ and

computes LB KEOGH(T, S ′). LB IMPROVED is normally tighter than LB KEOGH, but has

higher computation overheads. It is usually used with an early abandon process to make it

faster. If the first LB KEOGH is sufficient to abandon the search, the expensive second pass

is not performed.

New Lower Bound (LB NEW) [30] takes advantage of the boundary and continuity con-

ditions for a DTW warping path to create a tighter lower bound than LB KEOGH. However,

in general, LB IMPROVED is tighter and is more effective at pruning NN candidates. Equa-

tion 2.18 describes this lower bound.

125

6.3 Proposed DTW Lower Bound

Our proposed lower bounds are based on the observation that the warping paths are very

constrained at the start and the end of the series. Specifically, the boundary constraints

require that the first link, A1, is (1, 1). The continuity and monotonicity constraints ensure

that A2 ∈ {(1, 2), (2, 1), (2, 2)}. If we continue this sequence of sets we get the left bands,

Lwi ={(max(1, i− w), i), (max(1, i− w) + 1, i), . . . , (i, i), (i, i− 1), . . . , (i,max(1, i− w)}.

These are the alternating bands through the cost matrix shown in Figure 6.3. We can use

these bands to define a lower bound on DTW as explained in Theorem 15.

Theorem 15.
∑L

i=1 min(j,k)∈Lwi (S(j)− T (k))2 is a lower bound on DTWw(S, T).

Proof. The continuity constraint requires that for all 1 ≤ i ≤ L, any warping path A must

include (i, p) and (q, i), for some i−w ≤ p ≤ i+w and i−w ≤ q ≤ i+w. Either the indexes

for both S and T reach i in the same pair and p = q = i, or one of the indexes must reach i

before the other, and p < q or p > q. If p = q = i, (i, i) ∈ A. If p < q, A must contain one of

(i,max(1, i − w)), . . . (i, i − 1). If p > q, A must contain one of (max(1, i − w), i), . . . (i − 1, i).

Thus, A must contain (at least) one of Lwi . It follows that

DTWw(S, T) =
∑

(j,k)∈A

(S(j)− T (k))2

≥
L∑
i=1

∑
(j,k)∈Lwi ∩A

(S(j)− T (k))2

≥
L∑
i=1

min
(j,k)∈Lwi

(S(j)− T (k))2.

126

36

9

4

0

1

49

16

9

1

4

9

81

36

25

9

16

25

36

64

25

16

4

9

16

25

16

16

1

0

4

1

0

1

0

1

1

4

16

9

4

1

4

9

4

1

9

4

1

0

1

4

1

4

0

1

4

9

4

1

4

1

0

16

25

36

25

16

25

16

9

9

16

9

4

9

4

1

1

0

1

0

1

4

4

9

4

9

16

360

6

L4
1

9 16

49

1693

7

L4
2

4 9 25

81

36

2544

9

L4
3

0 1 9 4

64

25

16

406

8

L4
4

1 4 16 9 1

16

1

0

4

1

0

5

4

L4
5

9 25 16 0 4

1

4

16

9

404

2

L4
6

36 25 1 1 0

1

9

4

1

003

3

L4
7

16 0 4 1 4

0

1

4

9

404

6

L4
8

1 9 4 1 16

16

25

36

25

1615

9

L4
9

4 1 4 25 9

9

16

9

4

914

7

L4
10

4 1 16 4 1

1

0

1

0

1

0

5

4

L4
11

0 9 1 4 16

4

9

4

9

1606

2

L4
12

Lower bound (S, T) = 51

Figure 6.3: The cost matrix for calculating a lower bound using left bands with w = 4.
Alternating colors distinguish successive bands.

Figure 6.3 illustrates this lower bound in terms of the cost matrix with w = 4. The columns

are elements of S and rows the elements of T . The elements in the matrix show the pairwise

distances of each point in the time series pair S and T . Successive Lwi are depicted in

alternating colors. The minimum distance in each Lwi is set in bold type. The sum of these

minimums provides a lower bound on the DTW distance.

Working from the other end, the boundary constraints require that AP=(L,L). Continuity

and monotonicity constraints ensure that at least one of the right band

Rw
i = {(min(L, i+ w), i), (min(L, i+ w) + 1, i), . . . , (i, i), (i, i− 1), . . . , (i,min(L, i+ w)}

is in every warping path. Thus,

DTWw(S, T) ≥
L∑
i=1

min
(j,k)∈Rw

i

(S(j)− T (k))2. (6.2)

Figure 6.4 illustrates this lower bound in terms of the cost matrix. The proof of correctness

of this bound is a trivial variant of the proof for Theorem 15.

127

36

9

4

0

1

49

16

9

1

4

9

81

36

25

9

16

25

36

64

25

16

4

9

16

25

16

16

1

0

4

1

0

1

0

1

1

4

16

9

4

1

4

9

4

1

9

4

1

0

1

4

1

4

0

1

4

9

4

1

4

1

0

16

25

36

25

16

25

16

9

9

16

9

4

9

4

1

1

0

1

0

1

4

4

9

4

9

16

36 49 81 64 1636

9

4

0

1

0

0

6

R4
1

16 36 25 1 116

9

1

4

9

13

7

R4
2

25 16 0 4 125

9

16

25

36

04

9

R4
3

4 4 16 9 04

9

16

25

16

06

8

R4
4

1 9 4 1 161

0

1

0

1

0

5

4

R4
5

4 1 4 25 94

1

4

9

4

14

2

R4
6

0 9 36 16 10

1

4

1

4

03

3

R4
7

4 25 9 0 44

1

4

1

0

04

6

R4
8

16 4 1 916

25

16

9

15

9

R4
9

9 0 49

4

1

04

7

R4
10

1 91

4

15

4

R4
11

1616166

2

R4
12

Lower bound (S, T) = 20

Figure 6.4: The cost matrix for calculating a lower bound using right bands with w = 4.
Alternating colors distinguish successive bands.

LB KEOGH uses the minimum value from each band in Figure 6.5 so long as S(i) >

UET
w(i) or S(i) < LET

w(i). When LET
w(i) ≤ S(i) ≤ UET

w(i), the band is set in gray. For other

bands, the minimum is set in bold. Then the sum over all minimum distances in non-gray

bands gives LB KEOGH. It is notable that the leftmost of the left bands and the rightmost of

the right bands contain fewer distances than any of the LB KEOGH bands. All things being

equal, on average the minimum of a smaller set of distances should be greater than the

minimum of a larger set. Further, because the number of distances in these few bands are

small (and are invariant to window size), it is feasible to take the true minimum of the band,

rather than taking an efficiently computed lower bound on the minimum, as does LB KEOGH.

6.3.1 Enhanced Lower Bound

Based on these observations, our proposed lower bound exploits the tight leftmost and right-

most bands, but uses the LB KEOGH bands in the centre section where the left and right

bands are larger, and hence less tight and more expensive to compute. This is illustrated in

Figure 6.6.

128

36

9

4

0

1

49

16

9

1

4

9

81

36

25

9

16

25

36

64

25

16

4

9

16

25

16

16

1

0

4

1

0

1

0

1

1

4

16

9

4

1

4

9

4

1

9

4

1

0

1

4

1

4

0

1

4

9

4

1

4

1

0

16

25

36

25

16

25

16

9

9

16

9

4

9

4

1

1

0

1

0

1

4

4

9

4

9

16

36

9

4

0

1

0

6

49

16

9

1

4

9

1

3

7

81

36

25

9

16

25

36

9

4

9

64

25

16

4

9

16

25

16

46

8

16

1

0

4

1

0

1

0

1

5

4

1

4

16

9

4

1

4

9

4

1

4

2

1

9

4

1

0

1

4

1

4

3

3

0

1

4

9

4

1

4

1

0

4

6

16

25

36

25

16

25

16

99

5

9

9

16

9

4

9

4

11

4

7

1

0

1

0

1

4

5

4

4

9

4

9

16

4

6

2

LB Keogh4(S, T) = 29

Figure 6.5: The cost matrix for calculating LB KEOGH4(S, T) with w = 4. Alternating colors
distinguish successive bands. Where LET

w(i) ≤ S(i) ≤ UET
w(i), the band is set in grey. For

other bands, the minimum is set in bold.

36

9

4

0

1

49

16

9

1

4

9

81

36

25

9

16

25

36

64

25

16

4

9

16

25

16

16

1

0

4

1

0

1

0

1

1

4

16

9

4

1

4

9

4

1

9

4

1

0

1

4

1

4

0

1

4

9

4

1

4

1

0

16

25

36

25

16

25

16

9

9

16

9

4

9

4

1

1

0

1

0

1

4

4

9

4

9

16

360

6

9 16

49

1693

7

4 9 25

81

36

2544

9

0 1 9 4

64

25

16

406

8

16

1

0

4

1

0

1

0

1

5

4

1

4

16

9

4

1

4

9

4

1

4

2

1

9

4

1

0

1

4

1

4

3

3

0

1

4

9

4

1

4

1

0

4

6

16 4 1 916

25

16

9

15

9

9 0 49

4

1

04

7

1 91

4

15

4

1616166

2

LB Enhanced4
4(S, T) = 68

Figure 6.6: Cost matrix for calculating LB ENHANCED4
4(S, T) with V = 4 and w = 4. Alter-

nating colors distinguish successive bands. Where LET
w(i) ≤ S(i) ≤ UET

w(i), the band is set
in grey. For other bands, the minimum is set in bold.

129

LB ENHANCED is parametrized by a tightness parameter V , 1 ≤ V ≤ L/2, that specifies

how many left and right bands are utilized. This controls the speed-tightness trade-off.

Smaller V s require less computation, but usually result in looser bounds, while higher values

require more computation, but usually provide tighter bounds, as illustrated in Figure 6.1.

LB ENHANCED is defined as follows

LB ENHANCEDVw(S, T) =
L∑
i=1

min(j,k)∈Lwi (S(j)− T (k))2 if i ≤ V

min(j,k)∈Rw
i
(S(j)− T (k))2 if i > L− V

(S(i)− UET
w(i))2 if S(i) > UET

w(i)

(S(i)− LET
w(i))2 if S(i) < LET

w(i)

0 otherwise

(6.3)

where UET
w(i) and LET

w(i) are defined in Equation 2.14.

Theorem 16. For any two time series S and T of length L, for any warping window, w ≤ L,

and for any integer value V ≤ L/2, the following inequality holds: LB ENHANCEDVw(S, T) ≤

DTWw(S, T)

Proof. From the proof for Theorem 15, for every 1 ≤ i ≤ L, A must contain (at least) one of

Lwi and with trivial recasting this also establishes that for every 1 ≤ i ≤ L, A must contain

(at least) one of Rw
i .

To address the contribution of the LB KEOGH inspired bridge between the Ls and Rs,

we introduce the notion of a vertical band Vi for element S(i). Vi = {(i, j) : max(1, i − w) ≤

j ≤ min(L, i + w)} is the set of pairs containing S(i) that may appear in a warping path.

Note that Lw1 , . . . ,LwV , VV+1, . . . ,VL−V and Rw
L−V+1, . . . ,Rw

L are all mutually exclusive. None

of these sets intersects any of the others. It follows

130

DTWw(S, T) =
∑

(j,k)∈A

(S(j)− T (k))2

≥
V∑
i=1

∑
(j,k)∈Lwi ∩A

(S(j)− T (k))2 +
L−V∑
i=V+1

∑
(j,k)∈Vi∩A

(S(j)− T (k))2+

L∑
i=L−V+1

∑
(j,k)∈Rw

i ∩A

(S(j)− T (k))2

≥
V∑
i=1

min
(j,k)∈Lwi

(S(j)− T (k))2 +
L−V∑
i=V+1

min
(j,k)∈Vi

(S(j)− T (k))2+

L∑
i=L−V+1

min
(j,k)∈Rw

i

(S(j)− T (k))2

≥
L∑
i=1

min(j,k)∈Lwi (S(j)− T (k))2 if i ≤ V

min(j,k)∈Rw
i
(S(j)− T (k))2 if i > L− V

(S(i)− UET
w(i))2 if S(i) > UET

w(i)

(S(i)− LET
w(i))2 if S(i) < LET

w(i)

0 otherwise

To illustrate our approach, we present the differences between LB KEOGH and LB ENHANCED4
w

with respect to S in Figures 6.5 and 6.6 respectively. In Figure 6.5, the ith column represents

Vi, the possible pairs for S(i). The columns are greyed out if LET
w(i) ≤ S(i) ≤ UET

w(i),

showing that they do not contribute to LB KEOGH. For the remaining columns, the numbers

in bold are the minimum distance of S(i) to a T (j) within S(i)’s window, either LET
w(i)− S(i)

or S(i) − UET
w(i). The lower bound is the sum of these values. In Figure 6.6, alternate

bands are set in alternating colors. The columns are greyed out if V < i ≤ L − V and

LET
w(i) ≤ S(i) ≤ UET

w(i), showing that they do not contribute to LB ENHANCED4
w. For the

remaining columns, the numbers in bold are the minimum distance of S(i) to T (j) within the

band. The lower bound is the sum of these values. These figures clearly show the differ-

ences of LB KEOGH and LB ENHANCED4
w, where we take advantage of the tighter left and

right bands.

131

Algorithm 17: LB ENHANCED(S, T, UET
w , LE

T
w , w, V, D)

Input: S: Query time series
Input: T : Candidate time series
Input: UET

w : Upper Envelope for T
Input: LET

w : Lower Envelope for T
Input: w: Warping window
Input: V : Speed-Tightness parameter
Input: D: Current distance to NN

1 res← (S(1)− T (1))2 + (S(L)− T (L))2

2 nBands← min(L/2, V)
// Do L, R bands

3 for i← 2 to nBands do
4 minL ← δ(Si, Ti)
5 minR ← δ(SL−i+1, TL−i+1)
6 for j ← max(1, i− w) to i− 1 do
7 minL ← min(minL, (S(i)− T (j))2)
8 minL ← min(minL, (S(j)− T (i))2)
9 minR ← min(minR, (S(L−i+ 1)− T (L−j + 1))2)

10 minR ← min(minR, (S(L−j + 1)− T (L−i+ 1))2)

11 end
12 res← res+minL +minR
13 end
14 if res ≥ D then
15 return∞
16 end

// Do LB Keogh

17 for i← nBands+ 1 to L− nBands do
18 if S(i) > UET

w(i) then
19 res← res+ (S(i)− UET

w(i))2

20 end
21 else if S(i) < LET

w(i) then
22 res← res+ (S(i)− LET

w(i))2

23 end
24 end
25 return res

We apply a simple technique to make LB ENHANCED more efficient and faster. In the

naı̈ve version, LB ENHANCED has to compute the minimum distances of Ls andRs. Usually,

these computations are very fast as Ls and Rs are much smaller compared to V, especially

when L is long. To optimise LB ENHANCED, we can first sum the minimum distances for the

Ls and Rs. Then, if this sum is larger than the current distance to the nearest neighbour, D,

we can abort the computation for V.

132

Algorithm 17 describes our proposed lower bound. First, we compute the distance of the

first and last points as set by the boundary condition. In line 2, we define the number of L

and R bands to utilise. This number depends on the warping window, w, as we can only

consider the points within w no matter how big V is. Line 3 to 11 computes the sum of the

minimum distances for L and R. If the sum is larger than the current distance to the nearest

neighbour, we abort the computation in line 12. Otherwise, we do standard LB KEOGH in

lines 13 to 15.

6.4 Empirical Evaluation

Our experiments are divided into two parts, we first study the effect of the tightness param-

eter V in LB ENHANCED. Then we show how well LB ENHANCED can speed up NN-DTW

compared to the other lower bounds. We used all the 85 UCR benchmark datasets [6] and

the given train/test splits. The relative performance of different lower bounds varies greatly

with differing window sizes. In consequence we conduct experiments across a variety of dif-

ferent window sizes, drawn from two sets of values. The set w={1, . . . , 10}, spans the best

warping windows for most of the UCR benchmark datasets. The set, w={0.1·L, 0.2·L, . . . , L}

shows that using NN-DTW with LB ENHANCED is always faster across the broad spectrum

of all possible windows.

A NN-DTW with lower bound search can be further sped up by ordering the candidates

in the training set based on a proxy for their relative distances to the query, such as a lower

bound on that distance [1]. However, using a lower bound to order the candidates would

unfairly advantage whichever bound was selected. Hence we order the training set by their

Euclidean distance to the query time series (an upper bound on their true distance) and start

with the candidate that gives the smallest Euclidean distance. Note that our LB ENHANCED

has even greater advantage if random order is employed.

All experiments were optimised and implemented in Java 8 and conducted on a 64-bit

Linux AMD Opteron 62xx Class CPU @2.4GHz machine with 32GB RAM and 4 CPUs. Our

source code are open-source at https://github.com/ChangWeiTan/LbEnhanced and the full

results at http://bit.ly/SDM19.

133

https://github.com/ChangWeiTan/LbEnhanced
http://bit.ly/SDM19

W=3

5 10 15 20
0

0.5

1

W=5

5 10 15 20
0

0.5

1

W=7

5 10 15 20
0

0.5

1

W=9

5 10 15 20
0

0.5

1

W=0.1 L

5 10 15 20
0

0.5

1

W=0.3 L

5 10 15 20
0

0.5

1

W=0.5 L

5 10 15 20
0

0.5

1

W=0.7 L

5 10 15 20
0

0.5

1

W=0.9 L

5 10 15 20
0

0.5

1

Tightness Parameter, V

G
eo

m
et

ri
c

M
ea

n
 o

f
N

N
-D

T
W

 T
im

e
R
at

io

Lb_EnhancedV
W / Lb_KeoghW

W=1

5 10 15 20
0

0.5

1

Figure 6.7: Geometric mean of NN-DTW classification time with LB ENHANCED of different
tightness parameter V normalised by LB KEOGH. Smaller ratio means faster, and values
below 1 (under the red line) indicate LB ENHANCED is faster than LB KEOGH.

6.4.1 How to Choose the Right Tightness Parameter for LB ENHANCED?

Recall that our LB ENHANCED is parametrized by a tightness parameter V that specifies the

number of bands to be used. This parameter controls the speed tightness trade-off. Higher

values require more computations but usually gives tighter bounds. We conducted a simple

experiment by recording the classification time of NN-DTW with LB KEOGH as the base-

line and LB ENHANCED with different tightness parameter in the range of V={1, . . . , 20}.

Note that all the required envelopes have been pre-computed at training time and the time

is not included in the classification time. Then the classification time of NN-DTW with

LB ENHANCED is normalised by LB KEOGH. Finally the geometric mean is computed over

all 85 datasets.

The results are presented in Figure 6.7 where we show the performance for a subset of

windows. The x axis shows the different V s, the y axis shows the geometric mean of the

normalised time. Ratios below 1 (under the red line) means that LB ENHANCED is faster

than LB KEOGH and smaller ratio means faster LB ENHANCED.

134

These plots show that the optimal value of V increases with w. At w = 1, only V = 1 and

V = 2 outperform LB KEOGH. At w = 3, all V < 5 prove to speed up NN-DTW more than

LB KEOGH, and subsequently V < 10 for w = 5 and V < 15 for w = 7 and w = 9. At larger

window sizes, all V < 20 are more effective at speeding up NN-DTW than LB KEOGH. For

w = 0.1 × L, V = 5 proves to be most effective. For w ≥ 0.3 × L, there are a wide range

of values of V with very similar performance. One reason for this is that window size is not

the only factor that affects the optimal value of V . Series length and the amount of variance

in the sequence prefixes and suffixes are further relevant factors. V = 5 provides strong

performance across a wide range of window sizes. In consequence, in the next section we

choose V = 5 and compare the performance of LB ENHANCED5 to other lower bounds.

6.4.2 Speeding Up NN-DTW with LB ENHANCED

We compare our proposed lower bounds against four key existing alternatives, in total 5

lower bounds:

• LB KIM: The original LB KIM proposed in [28] is very loose and incomparable to the

other lower bounds. To make it tighter and comparable, instead of the maximum, we

take the sum of all the four features without repetitions.

• LB KEOGH: We use the original implementation of LB KEOGH proposed in [27].

• LB IMPROVED: We use the original implementation of LB IMPROVED and the opti-

mised algorithm to compute the projection envelopes proposed in [31].

• LB NEW: We use the original implementation of LB NEW proposed in [30].

• LB ENHANCED: We use LB ENHANCED5, selecting V = 5 as it provides reasonable

speed up across a wide range of window sizes.

Note that LB YI was omitted because it is similar to LB KEOGH when w = L. Similar

to before, we record the classification time of NN-DTW with the various lower bounds. For

each dataset we determine the rank of each bound, the fastest receiving rank 1 and the

135

slowest rank 5. Figure 6.8 shows the critical difference diagram comparing the classification

time ranks of each lower bound for w = {3, 6, 10, 0.1 ·L, 0.5 ·L}. The results for the remaining

of the windows can be found in Appendix B and http://bit.ly/SDM19. Each plot shows

the average rank of each lower bound (the number next to the name). Where the ranks are

not significantly different, their corresponding lines are connected by a solid line. Thus, for

w = 10, LB ENHANCED5 has significantly lower average rank than any other bound and the

average ranks of LB KEOGH and LB IMPROVED do not differ significantly but are significantly

lower than those of LB NEW and LB KIM; which in turn do not differ significantly from one

another.

Our LB ENHANCED5 has the best average rank of all the lower bounds at all window

sizes, significantly so at w = 6 to 10 and 0.5 · L to L. For smaller windows, LB KEOGH is

lowest ranked of the remaining bounds. For larger windows, the tighter, but more computa-

tionally demanding LB IMPROVED comes to the fore.

We further extend our analysis by computing the speed up gained from LB ENHANCED5

relative to the other lower bounds. We compute the NN-DTW time ratio of all the other lower

bounds to LB ENHANCED5 for w = {1, . . . 10} and present the geometric mean (average) in

Figure 6.9. The results show that LB ENHANCED5 is consistently faster than all the other

lower bounds.

It might be thought that our experimental comparison has unfairly penalized LB KEOGH

and LB NEW relative to LB IMPROVED and LB ENHANCED, as only the latter use a form of

early abandoning [32]. However, LB IMPROVED starts with LB KEOGH and LB ENHANCED

uses LB KEOGH for most of the sequence. Hence, each of these could benefit as much as

would LB KEOGH from the adoption of early abandoning in the LB KEOGH process.

136

http://bit.ly/SDM19

CD

5 4 3 2 1

1.44 Lb_Enhanced5
1.69 Lb_Keogh
3.54 Lb_Improved

3.8Lb_New
4.54Lb_Kim

(a) w = 3

CD

5 4 3 2 1

1.4 Lb_Enhanced5
2.21 Lb_Keogh
3.14 Lb_Improved

3.75Lb_New
4.5Lb_Kim

(b) w = 6

CD

5 4 3 2 1

1.45 Lb_Enhanced5
2.51 Lb_Keogh
2.82 Lb_Improved

3.85Lb_New
4.38Lb_Kim

(c) w = 10

CD

5 4 3 2 1

1.7 Lb_Enhanced5
1.99 Lb_Improved
3.14 Lb_Keogh

3.77Lb_New
4.39Lb_Kim

(d) w = 0.1 · L

CD

5 4 3 2 1

1.58 Lb_Enhanced5
2.32 Lb_Improved
3.37 Lb_Kim

3.72Lb_Keogh
4.01Lb_New

(e) w = 0.5 · L

Figure 6.8: Ranking of all lower bounds in terms of NN-DTW classification time.

137

1 2 3 4 5 6 7 8 9 10
Window Sizes

0.5

1

1.5

2

2.5

3

3.5

G
eo

m
et

ri
c

M
ea

n
 o

f
N

N
-D

T
W

 T
im

e
R
at

o
Lb_Enhanced5 is better here

Other lower bounds are better here

Lb_Kim / Lb_Enhanced5

Lb_Keogh / Lb_Enhanced5

Lb_Improved / Lb_Enhanced5

Lb_New / Lb_Enhanced5

Figure 6.9: Geometric mean (average) ratio of classification time for major existing lower
bounds to our proposed new lower bound LB ENHANCED5 across all benchmark datasets
[6] at w = {1, . . . 10}.

6.5 Conclusion and Future Work

In conclusion, we proposed LB ENHANCED, a new lower bound for DTW. The speed-

tightness trade-off of LB ENHANCED results in faster lower bound search for NN-DTW than

any of the previous established bounds at all window sizes. We expect it to be similarly

effective at a wide range of nearest neighbour retrieval tasks under DTW. We showed that

choosing a small tightness parameter V is sufficient to effectively speed up NN-DTW. Al-

though it is possible to learn the best V for a dataset (which will be future work), our results

show that when V = 5, NN-DTW with LB ENHANCED5 is faster and more efficient than with

the existing lower bounds for all warping window sizes across 85 benchmark datasets.

In addition, there is potential to replace LB KEOGH by LB IMPROVED within LB ENHANCED.

This would increase the computation time, but the strong performance of LB IMPROVED sug-

gests it should result in a powerful trade-off between time and tightness especially at larger

windows. Finally, since LB KEOGH is not symmetric with respect to S and T , LB ENHANCED

is not symmetric too. Thus, max(LB ENHANCED(S, T), LB ENHANCED(T, S)) is also a useful

bound. Our proposed lower bound could also be cascaded [32], which may further improve

pruning efficiency.

138

Chapter 7

Tamping Effectiveness Prediction With

Time Series Classification

In collaboration with the Institute of Railway Technology (IRT) at Monash University, this

chapter shows the application of TSC in real-world problem – improving railway track main-

tenance. Railway maintenance planning is critical in maintaining track assets. Tamping is

a common railway maintenance procedure and is often used when geometrical issues are

first identified. Tamping repacks ballast particles under sleepers to restore the correct ge-

ometrical position of ballasted tracks. However, historical data shows that tamping is not

always effective in restoring track to a satisfactory condition. Furthermore, ineffective, or

unnecessary tamping tends to reduce the lifetime of existing track.

An intuitive way of preventing ineffective tamping is to predict the likely tamping effective-

ness. This work aims to predict the likely tamping effectiveness ahead of time using super-

vised machine learning techniques that predict an outcome using labelled training data. In

this case, the training database consists of multivariate sensor data from the Instrumented

Revenue Vehicles (IRVs). The data between the previous and current tamping dates are

used. This forms a time series database labelled with the tamping effectiveness of each

track location based on the responses recorded from the IRVs before and after tamping.

The labelled time series database is then used to train a time series classifier for prediction.

139

This work uses the state-of-the-art time series classification algorithm, k-Nearest Neigh-

bour (k-NN) extended to the case of multivariate time series. k-NN is a non-parametric

algorithm that does not make assumptions on the underlying model of the training data.

With a sufficiently large training database, non-parametric algorithms can outperform para-

metric algorithms. Using k-NN, the tamping effectiveness of a potential tamping location

that is not in the training database, or locations in the next tamping cycle, is predicted using

the expected tamping effectiveness from a location in the training database that is the most

similar to the target. This allows the algorithm to effectively to identify locations where tamp-

ing is likely to be ineffective. This work achieves high accuracy in the prediction of tamping

effectiveness even at 12 weeks before tamping. It is hoped that the methodology will help in

assisting decision making for maintenance planning activities.

7.1 Introduction

Irregular track geometry can incite undesirable vehicle dynamic response modes that in-

crease track loading, reduce infrastructure component life, and increase the risk of vehicle

derailment. It is therefore necessary to maintain track geometry to prevent the cyclic loading

and vibrations from network traffic leading to the settlement of ballast formations, that can

further exacerbate the degradation of track geometry via the establishment of a feedback

process. Track geometry issues commonly trigger a range of track maintenance operations

and renewals that have a range of costs associated with them.

To both control and minimize these costs, track operations and maintenance procedures

need to be optimized. However, before this can be achieved, it is first necessary to under-

stand how the track degrades and the consequences of the degradation in terms of cost and

safety. With this information, railway operators are then in a better position to estimate the

timing of inspections, maintenance, and renewals.

There are many types of track maintenance and renewal activities with the common

one being tamping. Tamping is often used when geometrical issues are first identified.

It repacks ballast particles under sleepers to restore the track to its correct geometrical

140

position. Although tamping is a common maintenance procedure, historical data shows that

it is not always effective and appropriate in restoring the track to a desired track geometry.

Moreover, ineffective, or unnecessary tamping will reduce the lifetime of existing track, which

is counter to the purpose of track maintenance.

An intuitive way of preventing ineffective tamping is to predict the effectiveness of tamp-

ing, ahead of time. Being able to predict the likely tamping effectiveness in advance enables

planners to focus on the most appropriate alternative procedures, which in turn reduces the

operational and maintenance costs. Recent work [122] shows that it is possible to evalu-

ate the tamping effectiveness using continuous measured performance data collected from

Instrumented Revenue Vehicles.

This study proposes a method to predict the effectiveness of tamping by extending the

state-of-the-art time series classification algorithm, k-Nearest Neighbour (k-NN) to multivari-

ate time series data.

7.2 Background and Motivation

This section gives a background in railway maintenance and the importance of it.

7.2.1 Tamping Maintenance Procedure

Tamping is a common maintenance procedure for restoring the geometrical position of track

caused by ballast settlement. Tamping increases the supportive effect around and under the

sleepers by compacting the ballast. It is usually done with a tamping machine where tamping

tynes are inserted into the ballast on either side of the sleeper. The sleeper is then raised

to the target level creating a space under the sleeper. The cavities underneath the sleeper

are then filled by adjusting the ballast using tamping tools. The lining tool of the tamping

machine adjusts the position of both rails so that the track is straightened and parallel. A

typical tamping sequence is shown in Figure 7.1.

141

Figure 7.1: Standard tamping procedure [19].

Geometric irregularities in track that may benefit from tamping can be identified in sev-

eral ways which include: assessment during maintenance work, visual inspections by track

inspectors, reports from train drivers, track geometry car measurements or by monitoring for

wagon-track dynamic activity.

7.2.2 Instrumented Revenue Vehicles (IRV)

Instrumented Revenue Vehicles (IRVs) are continuous monitoring systems that use the mea-

sured wagon dynamic activity to infer information about the underlying track condition [12].

The IRV system is a flexible fully automated integrated condition monitoring platform, which

can be installed on the rolling stock used for normal revenue and it provides continuous

feedback on both rail condition and train operation [11, 13].

IRVs have several key advantages over other maintenance inspection methods. Firstly,

IRVs reduce the need for track downtime as they measure the condition of the system as part

of normal operations. Secondly, the measurement of the dynamic response of IRVs provides

a direct indication of the loads being imposed on the rail network, which are often not as

clearly defined when reviewing data collected by other methods such as track recording

vehicles and visual inspections. This study will demonstrate that the data from IRVs can

also be used to predict the likely tamping effectiveness.

142

7.2.3 Motivation

An assessment of the data shows that tamping is not always effective in restoring tracks to

their nominal condition. It was also observed that ineffective tamping tends to reduce the

lifetime of existing track and increase the risk of failure.

To the best of our knowledge, there has been little to no prior research into the predic-

tion of tamping effectiveness. Most research in railway track maintenance has tended to

focus on estimating train-track dynamics [123], predicting track degradation [124, 125] and

maintenance planning [126].

Tamping effectiveness prediction is a challenging problem due to the many complexities

involved, such as local geology, soil quality, weather, age of the tracks, time and more. It is

common for tracks sections in different locations that have nominally experienced the same

loading conditions to respond quite differently to tamping. Tamping effectiveness prediction

is therefore important in maintenance planning for three reasons:

1. It can minimize maintenance costs and time by assisting in the selection of more ap-

propriate maintenance procedures.

2. It can reduce unplanned track possessions, by minimizing unnecessary tamping.

3. It avoids the cost of failure recovery.

Given the above three reasons, we are motivated to develop a system that can predict

tamping effectiveness and which in turn will assist in decision making for track maintenance

planning activities.

7.3 Methodology

Machine learning techniques and time series analysis has been applied to analyse the track

geometry data for tamping effectiveness prediction. This section defines the terms required

to understand the work in this chapter and describes the methodology used.

143

7.3.1 Time Series

Time series is defined as a sequence of observations ordered in time, where time is the

independent variable. In this study, a univariate, one dimensional time series S is defined in

Equation 7.1 as a sequence of real numbers paired with a discrete timestamp in the form of:

S = {(S(1), t(1)), (S(2), t(2)), . . . , (S(L), t(L))} (7.1)

where L is the number of data points.

Then, a multivariate time series (MTS) S as defined in Equation 7.2 is a finite sequence

of univariate time series, Sj in a D-dimensional Euclidean space:

S = {S1, S2, . . . , SD} (7.2)

where D is the dimensionality of the multi-dimension series S.

7.3.2 Dynamic Time Warping

In this work, Dynamic time warping (DTW) is used to compare a pair of time series. Time

series in real-world applications are often shifted in time. Some have different lengths. For

example, a speech signal of the same word can be spoken at a different rate, which will be

shifted in time. The typical Euclidean distance (ED) metric will not be able to handle this.

DTW on the other hand, is robust to time shifts. It aligns time series that are shifted in time.

Figure 2.1 and 2.2a show a visual comparison of ED and DTW.

Section 2.2.2 describes the computation of DTW distance between two univariate time

series S and T . Following the definition for multivariate time series (MTS) in Equation 7.2,

the DTW distance between MTS S and T can be defined as the sum of all the DTW distances

across all the D dimensions as shown in Equation 7.3 [127].

144

DTWD(S, T) =
D∑
i+1

DTW(Si, Ti) (7.3)

7.3.3 Nearest Neighbour (NN) Algorithm

Time series classification is an important application of time series analysis and supervised

machine learning. It maps an unlabelled time series (the target) to a label by training a

classifier on a labelled example training database.

There are many classification algorithms such as Naı̈ve Bayes [128], and Classification

Trees [49, 50] that works based on features extracted from the time series. However, in most

applications, the extracted features change over time, which makes it “incorrect” to classify

by observing only the static features.

The NN algorithm on the other hand has shown to perform best on most datasets. It

is the state-of-the-art time series classification algorithm that has been applied in many

applications such as speech recognition [81], digit recognition [129], text mining [130] and

gene expression classification [131]. With sufficiently large data, the NN algorithm usually

outperforms the other algorithms.

The NN algorithm is one of the simplest yet highly effective classification algorithms. It

is a non-parametric, lazy learning algorithm that does not necessary require any training

phase on the training dataset [109]. It labels the unlabelled time series by searching for the

most similar (nearest) time series from a database based on a similarity measure.

Often, finding more neighbours is of interest. More neighbours help in improving the

confidence and reducing noise of the classified result. This is commonly known as the k

nearest neighbours (k-NN) classifier. A k-NN classifier finds k closest neighbours of the

unlabelled time series in the training database and returns the dominating class as the class

for the unlabelled time series [109]. k is often chosen as an odd number to be able to return

the dominating class (majority vote) in the k nearest neighbours set.

145

7.4 Experimental Design

In this study, we believe that there exist some patterns in the data that discriminate between

the different tamping effectiveness. For instance, a consistent high response might indicate

that tamping will not be effective. However, some locations might observe a different pattern

even if they have the same tamping effectiveness. Hence, the NN-DTW algorithm that finds

similar time series will be the first approach.

Our experiments are conducted using the Matlab R2015a software and are divided into

two parts:

A. First, k-NN-DTW is compared with the different classification algorithms such as Naı̈ve

Bayes and Classification Tree to show that it is the most appropriate classifier for this

task. The optimal k value will also be investigated

B. Then a study was performed to show the prediction performance of tamping effective-

ness at different leading intervals by truncating the time series to x number of days

before tamping. Typically, the earlier the tamping effectiveness can be predicted, the

better it will be for the purposes of maintenance planning.

7.4.1 Data Acquisition and Processing

This study uses the dynamic response data as measured by the IRV at four locations, one

on each side frame. This is known as Spring Nest Deflection (SND). The raw data is then

typically processed after each trip or journey to map the measured responses to locations

on track. Using multiple trips, the data is pre-processed to form a 4-dimensional time series

for each track location, where each dimension (known as LP) represents the responses for

each side frame. In this case, six months of trip data between February to July 2016 was

used. The responses were then aggregated by taking the maximum value over 50 metres

blocks of track and sorted in increasing time.

146

(a) (b)

Figure 7.2: Green series represents (a) effective tamping. Red series represents (b) ineffec-
tive tamping. Blue series represents data after tamp. Magenta series is the 12 days moving
average. Black line represents the tamping date.

IRV field recordings incorporate variability in both the operating environment as well as

other uncontrollable operational factors. It should be noted that different locations were

subjected to varying number of IRV trips. Those locations with fewer trips (less than 30 trips)

forming shorter time series were not considered. The reason being, that shorter time series

were considered to not have enough information about the track. Missing data from signal

loss or faulty sensors was interpolated linearly. Locations with more than 50% of the data

missing on one channel were also not considered.

Each of the locations are labelled with their respective tamping effectiveness. The tamp-

ing effectiveness label is calculated using the ratio of the average data after tamping com-

pared to that before. In this study, only effective and ineffective tamping are considered.

Note that it is possible to have more levels of tamping effectiveness. A ratio that is less than

1 is labelled as effective tamping, while a ratio that is more than 1 is ineffective tamping.

Figure 7.2a shows that tamping is effective in reducing the SND measurements but not the

case in Figure 7.2b.

Locations without tamping records are not considered as well. Lastly, the labelled data

are re-sampled to days by taking the average response in that day. This makes every point

comparable. Days with missing data are linearly interpolated as well. In this study, this

forms a 4-dimensional time series training database with 985 samples. Table 7.1 shows the

properties of the time series dataset used in this study.

147

IRV’s SND Recording

Dimensions 4 (LP1, LP2, LP3, LP4)
Length 37-184 days
Size of Dataset 985 track locations
Number of classes 2 (Effective and Ineffective)

Table 7.1: Properties of IRV time series dataset

Figure 7.3: Example of the 4-dimensional time series (LP1, LP2, LP3, LP4) extracted from
IRVs responses in the training database

Figure 7.3 shows a typical example of the 4-dimensional time series, LP1, LP2, LP3, LP4

extracted from the IRVs responses stored in the database. The black dotted line at the end

of each time series indicates tamping date. The time series has a continuous rising trend

before tamping.

7.4.2 Predicting Tamping Effectiveness

In this study, the k nearest neighbour classifier coupled with DTW is used to classify (or

predict) the tamping effectiveness for a track location. This is achieved by searching for the

k most similar time series of the targeted location from the time series database and returns

the dominating tamping effectiveness as the tamping effectiveness of the targeted location.

148

Algorithm 18: PREDICTEFFECTIVENESS(S, T)
Input: S: Query time series
Input: T : Training dataset
Result: ε: Tamping effectiveness
/* all elements in knn is initialised with no NN and ∞ distance to S */

1 Initialise knn queue with (−,∞)
2 foreach T ∈ T do
3 d = DTWD(S, T)
4 if d < knn.top then
5 knn.remove // remove the furthest neighbour

6 knn.add(T, d)

7 end
8 end
9 return ε = mode(knn.class)

The algorithm used in this work to predict a location with a tamping effectiveness is

shown in Algorithm 18. The algorithm is initialized by creating two lists for storing the k-NN

distances and class (effectiveness). The knn.distance stores the distances while knn.class

store the class of the k-NN found. The algorithm proceeds by comparing the target time

series with all instances in the training database and updates the two result lists. Finally, the

dominating effectiveness in the k closest neighbours is the effectiveness of the target.

The k value in the k-NN classifier is very important in determining the performance of the

classifier. Thus, it will need to be trained for the optimal k value. This is commonly done by

dividing the whole database into training and testing sets. This technique is known as cross

validation and will be described in the next section. Different k values are selected to train

for the optimal k that gives the best classification performance. Then, the test set is used to

verify and validate the performance of all the k values.

In this study, k is varied from 1 to 13, using only the odd numbers. It is important to note

that k-NN is sensitive to the similarity measure used. Only DTW distance is considered as

the responses from IRVs were too complicated for the Euclidean distance to handle. Hence,

it is expected that DTW will outperform ED.

149

7.4.3 Training and Testing: Cross Validation

There are many techniques to divide the database into training and testing sets. Here,

stratified K-fold cross validation is used to train and validate the best k value for the k-NN

classifier. K-fold cross validation reduces the bias of training and testing data and has been

used extensively as a method to estimate the generalization error based on ’re-sampling’.

The cross-validation technique estimates the learning ability of a classifier from a training

dataset to classify future unseen data in the testing phase.

Generally, stratified K-fold cross validation divides the database into K subsets of equal

size where each subset contains an equal distribution of classes. Then, the classifier is

trained and tested K times, where each time, one subset will be used as the testing set

while the rest K − 1 subsets will be used to train the classifier. A stratified 10-fold cross

validation was employed for all the experiments in this study.

7.4.4 Performance Evaluation

The classification is evaluated using only two classes, positive (effective) and negative (in-

effective). Then the four subsets of binary classification results as shown in Table 7.2 are

reported.

Actual \ Predict Effective tamping Ineffective tamping
Effective tamping True Positive False Negative

Ineffective tamping False Positive True Negative

Table 7.2: Evaluation concept of classification results (effective tamping as positive class)

1. True positive (TP) denotes the correct classification of positive class.

2. True negative (TN) denotes the correct classification of negative class.

3. False positive (FP) denotes the incorrect classification of negative class into positive

class.

4. False negative (FN) denotes the incorrect classification of positive class into negative

class.

150

Then, the total TP, FP, TN, and FN for all the 10-folds is used to compute 4 performance

metrics: accuracy (Equation 7.4), precision (Equation 7.5), sensitivity (Equation 7.6) and F1

score (Equation 7.7) as defined as follow:

accuracy =
TP + TN

TP + FP + TN + FN
(7.4)

precision =
TP

TP + FP
(7.5)

sensitivity =
TP

TP + FN
(7.6)

F1 score = 2
precision · sensitivity
precision + sensitivity

(7.7)

Accuracy measures the systematic error of the classifier and the ratio of correct predic-

tions to the total number of cases examined. Accuracy is not however sufficient to describe

the performance of the classifier. For this it is better to consider other metrics such as pre-

cision, sensitivity and F1. Precision (positive predictive value), measures the random error

of the classifiers. Sensitivity (recall) is the true positive rate of the classifier, it measures the

proportion of positive classes that are correctly being predicted. A similar metric, Specificity,

is the true negative rate of the classifier. The F1 score is the weighted average of precision

and sensitivity. It is often used in binary classification to measure the classifierś accuracy. It

ranges from 0 to 1, with 1 being the best.

The precision, sensitivity and F1 score for both effective and ineffective tamping are com-

puted in the experiments. This is done by treating one class as positive and the other as

negative and vice versa. It is also worth noting that sensitivity for ineffective tamping is the

specificity for effective tamping.

151

7.5 Results and Discussion

7.5.1 Classifiers Comparison

The NN-DTW classifier has shown to be very effective and competitive in many applications,

as discussed above. This experiment shows that it is also the case for this task, even for

multivariate time series. In this experiment, full length time series are used.

k-NN-DTW with different k values are compared with two other time series classification

algorithms, the Naı̈ve Bayes, and Classification Tree algorithm. These classifiers are differ-

ent from the instance based k-NN-DTW that uses a similarity metric to classify a target time

series. They use the ’features’ of the time series as the input to the classifier to train a model

that describes the training data. In this case, 6 statistical features, mean, standard deviation,

skewness, kurtosis, maximum and minimum value of the time series are chosen.

The classifiers that will be compared in this experiment are described as follows:

• Naı̈ve Bayes classifier is a popular probabilistic classification algorithm based on Bayes’

theorem. It assumes that all the features are independent of one another and assigns

probabilities of an instance to each of the class. The target is assigned to the class

with the highest posterior.

• Classification Tree is also a common classification algorithm. It builds a graph model

based on the features of the training database and maps the features of the target

to the targeted class, which is represented in the leaves. Matlab classification tree

function fitctree is used in this work to build the tree and classify the target.

• k-NN-DTW as described in Section 7.3.3 is used with k = [1, 3, 5, 7, 9, 11, 13]

The evaluation metrics described in the Section 7.4.4 are used to identify the best classifi-

cation algorithm and optimal k value. The TP, FP, TN, FN are reported for all the classifiers

and for all the 10-folds.

152

Figure 7.4: Accuracy of the different classifiers

Figure 7.4 shows the accuracy of the different classifiers. This shows that k-NN achieves

higher accuracy than the other two classifiers with an average accuracy of 71% compared

to 58% and 62% for Naı̈ve Bayes and Classification Tree. The highest being 11-NN with

accuracy of 72%.

Figure 7.5a and 7.5b show the precision and sensitivity of predicting effective and inef-

fective tamping respectively. The two plots show that k-NN has better performance than the

Naı̈ve Bayes and Classification Tree classifier. In terms of precision, k-NN has an average

precision of 78% in predicting effective tamping and 65% in predicting ineffective tamping.

This is higher than the other two, where the highest precision among the two for both effec-

tive and ineffective tamping is only 65%. k-NN is also more sensitive than the other two,

with an average sensitivity of 79% for ineffective tamping and 64% (higher for smaller k) for

effective tamping. The highest among the other two for both effectiveness is only 65%.

Lastly, Figure 7.6 shows the F1 score for all the classifiers. The plot shows that k-NN

has a higher F1 score for effective tamping with an average of 70% compared to 57% and

64% for the other two. It also has higher average F1 score of 71% in predicting in-effective

tamping compared to the other two at 59%. This means that it is better in predicting both

effective and ineffective tamping than the other two.

153

(a) (b)

Figure 7.5: (a) Precision and (b) Sensitivity of the different classifiers

A higher accuracy means that k-NN can predict tamping effectiveness well for all the

locations on track. However, as mentioned in previous section, this is not sufficient. High

precision and sensitivity in both effectiveness means that k-NN can identify those locations

on track where tamping that will and will not be effective. Higher F1 score indicates that

k-NN performs better in predicting tamping effectiveness than the other two classification

algorithm.

The other two classifiers are not able to predict well for two reasons. Firstly, the time

series ranges from 37 to 184 days which is not long enough to have sufficient information

that can be captured as features. Secondly, even if there are enough features to be captured,

they are static. However in reality, these features tend to change dynamically.

It is important to observe that in this case, k does not affect the performance of k-NN.

Hence, the k value that gives the best accuracy is chosen as the optimal k for the k-NN

classifier. In this case, k = 11 with accuracy of 71% is chosen and was used in the next

experiment. It is also worth noting that, the performance of k-NN will improve with the size

of the database. The bias for k-NN vanishes in the limit as the size of database increases.

This should make k-NN a more suitable classifier for predicting tamping effectiveness with

railway data.

154

Figure 7.6: F1 score of the different classifiers

7.5.2 Early Prediction of Tamping Effectiveness

Being able to predict the tamping effectiveness as early as possible is important in main-

tenance planning. The earlier we know about the likely tamping effectiveness; the better

alternative maintenance activities can be planned. This section presents a study on the

early prediction of tamping effectiveness using the 11-NN-DTW algorithm.

The study uses the same time series database that was used in previous experiment.

The study was conducted as follow:

1. Truncate the existing time series by the number of days before tamping. Locations with

time series that are shorter than the truncated length are not considered.

2. Run 11-NN-DTW to predict the tamping effectiveness of the targeted location.

3. Repeat with different number of days before tamping, ranging from 0 to 84 days (12

weeks). Note that, it is common to plan for tamping 12 weeks in advance.

155

Figure 7.7: Accuracy for early prediction of tamping effectiveness at different days before
tamping

Figure 7.7 shows the accuracy of predicting tamping effectiveness at different number of

days before tamping. As expected, the accuracy decreases as the number of days before

tamping increases. In other words, the time series are getting shorter, which means that

there is less information and patterns that can be extracted from the time series itself, re-

sulting in a reduction of accuracy. A simple linear regression suggests that the accuracy of

predicting tamping effectiveness as early as 12 weeks before tamping is 68%.

156

7.6 Conclusion

This study presents an approach to predict tamping effectiveness using the k-nearest neigh-

bour classifier. The prediction of tamping effectiveness should improve the efficiency of rail-

way maintenance. The prediction approach has been assessed and validated using 10-fold

cross validation on real-world rail data. This approach was found to achieve an accuracy

of around 70% when predicting tamping effectiveness one day before tamping and 68%

for 12 weeks before tamping. T his approach should help many railway corporations mini-

mize maintenance costs, reduce unplanned downtime, and avoid cost of failure recovery by

knowing the likely tamping effectiveness ahead of time. Future work includes optimizing the

approach with more data, using a weighted k-NN approach as well as a stacked classifier

to improve the confidence in the prediction.

7.7 Acknowledgement

We would like to thank Mr Cameron Thompson and Mr Joshua White from the Institute of

Railway Technology (IRT), Monash University for their assistance in preparing the data.

157

Chapter 8

Concluding Remarks

8.1 Conclusion

As time series data is growing at an exponential rate, mining large time series databases is

not a trivial task. Various algorithms had been studied and proposed in this thesis to scale

up time series classification to the range of millions and billions. In conclusion, this thesis

made the following contributions to the field of scalable time series classification.

A novel and efficient indexing algorithm, Time Series Indexing (TSI) is proposed in Chap-

ter 3 to index time series data in DTW-induced space. The TSI algorithm indexes time series

data using a hierarchical K-means tree structure, which was not possible before due to K-

means clustering being ill-defined for DTW-induced space. To overcome this limitation, TSI

leverage off a recent work in time series averaging – DTW Barycenter Averaging [47] to

perform K-means clustering in DTW-induced space. Experimental results show that using

TSI out of the box (using 3 clusters per tree level) is able to reduce the classification time of

NN-DTW by 1,000 times on the one million SITS dataset [1]. The actual number of clusters

is domain specific, which can be learned by testing different values of K and selecting the K

value that gives the minimum time per query. More importantly, if given only 50% of the full

classification time, TSI is significantly more accurate than NN-DTW on the 84 benchmark

datasets and the SITS dataset tested.

158

Chapter 4 in this thesis proposed the Fast Warping Window Search algorithm (FASTWWS),

a novel, exact and efficient learning algorithm to learn the best warping window for the NN-

DTW classifier. FASTWWS improves upon existing state of the art learning algorithms by

exploiting the relationship between DTW and its warping window. This work introduces new

bounds that can be used across multiple windows, which has the effect of pruning many of

the redundant distance computations. FASTWWS is always two to three orders of magni-

tude faster than existing learning algorithms. This work is important because it provides a

basis to speed up the learning process of other NN classifiers in EE, which is an important

module for the most accurate TSC algorithm, HIVE-COTE.

The Fast Ensembles of Elastic Distances (FASTEE) is proposed in Chapter 5 by ex-

tending FASTWWS to other distance measures. FASTEE exploits the relationship between

each of the distance measures and their parameters. This work also introduces new lower

bounds for distances for which no previous bounds have been derived, which is critical to

speeding up the NN algorithm. Specifically lower bounds for WDTW, MSM, and TWED are

introduced. An exact and approximate version of FASTEE are proposed. The exact FAS-

TEE learns the same parameters as EE and is 10 times faster than EE. The approximate

FASTEE approximates the leave-one-out cross validation process in EE and might not learn

the same parameters as EE. However, it is 40 times faster than EE without significantly

compromising on the classification accuracy.

The work in Chapter 6 proposes the Enhanced Lower Bound (LB ENHANCED) to lower

bound DTW. LB ENHANCED exploits the tight boundary conditions in DTW to achieve a

tighter lower bound, while havingO(L) complexity. The speed-tightness trade-off of LB ENHANCED

results in faster lower bound search for NN-DTW than any of the previous established

bounds at all window sizes. The experimental results show that choosing a small tight-

ness parameter V = 5 is sufficient to effectively speed up NN-DTW. It is also possible to

learn the best V for a dataset, which will be future work. Having a tighter DTW lower bound

will improve the effectiveness of nearest neighbour retrieval tasks under DTW. This includes

learning the best warping window, which usually requires the enumeration of 100 windows

in the range of 0 to L.

159

Finally, with two papers published in top railway conferences and receiving good feed-

back from the railway industry, this thesis also successfully shows that TSC can be applied

to predict track maintenance activity, particularly the tamping maintenance. Tamping effec-

tiveness is done by classifying time series taken from the Instrumented Revenue Vehicles,

where each of them is labelled with their tamping effectiveness. The k-NN-DTW algorithm

is used as the classification algorithm. The algorithm is able to predict tamping effectiveness

12 days before a tamping maintenance. This work is significant because it can minimise

maintenance cost by allowing railway engineers to plan and schedule the suitable mainte-

nance activity ahead of time.

8.2 Limitations

Despite the contributions and successes in the work presented in this thesis, there are a few

limitations that should be addressed.

1. Building the indexing structure for TSI is very time consuming and not feasible espe-

cially for large datasets.

2. Although the FASTWWS algorithm has successfully reduced the training time for NN-

DTW by two orders of magnitude, it is still impractical for many real-world applications.

For instance, learning the best warping window in 6 hours (see Section 4.4) is still not

very practical. The same limitation applies to FASTEE as well.

3. The experimental results show that NN-DTW when paired with LB ENHANCED is the

fastest compared to other DTW lower bounds. However, the speed up gained is still

not fast enough for large datasets.

4. A simple study (not presented in this thesis) found that the length of the time series

(maintenance history) is a major factor in predicting tamping effectiveness, i.e. shorter

time series are likely to have an ineffective tamp.

160

8.3 Future Work

This section outlines the potential future directions to address the limitations mentioned.

This section will also discuss about the some of the directions for time series classification.

As building TSI structure is time consuming, methods to reduce the time such as bulk

loading mechanism in iSAX2.0 [35] can be considered. The possibility of extending TSI and

state-of-the-art TSC algorithms to multivariate time series will be beneficial as many real-life

applications are multivariate in nature. TSI can also be modularised so that it can be used

with other clustering algorithms that might be better depending on the application. Since

the training of FASTWWS and FASTEE requires NN searches, indexing techniques such as

TSI can be applied to speed up the process. This means that TSI will need to be extended

to other elastic distances. Furthermore, tighter lower bounds can be investigated for other

elastic distances to speed up FASTEE. A possible direction is to extend LB ENHANCED to

other elastic distances, since most elastic distances share similar properties. It might also

be possible to further speed up LB ENHANCED using LB IMPROVED instead of LB KEOGH.

The exploration of alternatives, possibly HIVE-COTE can also be used to improve the

prediction of tamping effectiveness, while taking into consideration of the length of the time

series. A recent work on MATRIX PROFILE [132] can also be considered to improve the

prediction.

Overall, time series classification and time series analysis have gained lots of interest in

the recent years. Hundreds of TSC algorithms have been proposed in the past two decades.

Applications like railway maintenance are starting to look into applying TSC to solve their

problems and improve their systems. With the advancement in deep learning models, tradi-

tional classification algorithms are being outperformed or at least having similar performance

[68]. Deep learning models will be a very interesting direction for TSC as it has great po-

tentials for superior performance and the ability for transfer learning. Last but not least,

new scalable algorithms such as the Proximity Forest [67] has the potential to outperform

HIVE-COTE without the high complexity of HIVE-COTE.

161

Appendix A

Fail-Safe Experiment for FASTWWS

Table A.1 shows the warping window learnt by all the methods on some of the UCR bench-

mark datasets [6] using exhaustive search (searching all possible warping windows). Please

refer to http://bit.ly/SDM18 for the full detailed results. Note that the results reported here

are the actual warping window and not a percentage of the L (commonly done in the litera-

ture [6, 92, 133]. As expected, all the methods learnt the same warping window.

Figure A.1 shows the classification accuracy on the UCR Benchmark datasets [6] using

the best warping window found for each individual method. Since all the methods are exact

and that we are performing an exhaustive search (i.e. finding all possible warping windows

w = {0, 1, 2, ..., L}), the best warping window found for each method is the same. Hence, the

classification accuracy is the same. The only difference is the time which can be referred to

Figure 4.4 in Chapter 4.

162

http://bit.ly/SDM18

Best warping window learnt by the following methods
Datasets LB KEOGH UCR SUITE LB KEOGH–

PRUNEDDTW
UCR SUITE–
PRUNEDDTW

FASTWWS

50words 24 24 24 24 24
Adiac 6 6 6 6 6
ArrowHead 0 0 0 0 0
Beef 0 0 0 0 0
BeetleFly 36 36 36 36 36
BirdChicken 33 33 33 33 33
CBF 14 14 14 14 14
Car 9 9 9 9 9
ChlorineConcentration 0 0 0 0 0
CinC ECG torso 10 10 10 10 10
Coffee 0 0 0 0 0
Computers 74 74 74 74 74
Cricket X 31 31 31 31 31
Cricket Y 47 47 47 47 47
Cricket Z 15 15 15 15 15
DiatomSizeReduction 0 0 0 0 0
DistalPhalanxOutlineAgeGroup 1 1 1 1 1
DistalPhalanxOutlineCorrect 2 2 2 2 2
DistalPhalanxTW 0 0 0 0 0
ECG200 0 0 0 0 0
ECG5000 1 1 1 1 1
ECGFiveDays 0 0 0 0 0
Earthquakes 17 17 17 17 17
ElectricDevices 13 13 13 13 13
FISH 19 19 19 19 19
FaceAll 4 4 4 4 4
FaceFour 6 6 6 6 6
FacesUCR 16 16 16 16 16
FordA 2 2 2 2 2
FordB 6 6 6 6 6
Gun Point 0 0 0 0 0
Ham 1 1 1 1 1
HandOutlines 28 28 28 28 28
Haptics 21 21 21 21 21
Herring 18 18 18 18 18
InlineSkate 41 41 41 41 41
InsectWingbeatSound 2 2 2 2 2
ItalyPowerDemand 0 0 0 0 0
LargeKitchenAppliances 676 676 676 676 676
Lighting2 35 35 35 35 35
Lighting7 17 17 17 17 17
MALLAT 0 0 0 0 0
Meat 0 0 0 0 0
MedicalImages 20 20 20 20 20
MiddlePhalanxOutlineAgeGroup 4 4 4 4 4
MiddlePhalanxOutlineCorrect 1 1 1 1 1
MiddlePhalanxTW 2 2 2 2 2
MoteStrain 1 1 1 1 1
NonInvasiveFatalECG Thorax1 8 8 8 8 8
NonInvasiveFatalECG Thorax2 0 0 0 0 0
OSULeaf 30 30 30 30 30
OliveOil 0 0 0 0 0
PhalangesOutlinesCorrect 0 0 0 0 0
Phoneme 143 143 143 143 143
Plane 8 8 8 8 8
ProximalPhalanxOutlineAgeGroup 0 0 0 0 0
ProximalPhalanxOutlineCorrect 1 1 1 1 1
ProximalPhalanxTW 5 5 5 5 5
RefrigerationDevices 54 54 54 54 54
ScreenType 122 122 122 122 122
ShapeletSim 7 7 7 7 7
ShapesAll 27 27 27 27 27
SmallKitchenAppliances 117 117 117 117 117
SonyAIBORobotSurface 0 0 0 0 0
SonyAIBORobotSurfaceII 0 0 0 0 0
StarLightCurves 65 65 65 65 65
Strawberry 1 1 1 1 1
SwedishLeaf 5 5 5 5 5

Table A.1: Learnt warping window from all the methods on the majority of the Benchmark
datasets [6]

163

FastWWSearch, classification accuracy
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

p
et

it
or

s,
 c

la
ss

if
ic

at
io

n
 a

cc
u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Competitor is more accurate here

 FastWWSearch is more accurate here

LB_Keogh
UCR Suite
LB_Keogh-PrunedDTW
UCRSuite-PrunedDTW

Figure A.1: Classification accuracy on the UCR Benchmark datasets [6] using the best
warping window found for each method

164

Appendix B

Comparison of all DTW lower bounds

We used all theN=85 UCR benchmark datasets [6] and the given train/test splits to compare

the performance of all k=5 lower bounds. For each dataset, lower bound and window size,

we record the total classification time. Classification time is dependent on the ordering of

the training set, the results were averaged again over 10 runs, shuffling the training data

each time. Then we rank each of the lower bound for each of the dataset and compute the

average rank of the lower bounds across all datasets. For a given window, W , we let rji be

the rank of the j-th lower bound on the i-th dataset. Then the average rank of the lower

bounds is computed as Rj = 1
N

∑N
i=1 r

j
i . The average rank gives a general comparison

between the lower bounds, with rank 1 being the best and rank 5 being the worst. In case of

ties, we assign the average rank to both bounds. Then the average rank for each bound is

computed across all the datasets.

We also performed a Friedman test [119] to test the significance of our results. The Fried-

man test compares the average rank of the lower bounds and evaluates if the lower bounds

are not performing equally using the Friedman statistic [119] described in Equation B.1.

χ2
F =

12N

k(k + 1)

[
k∑
j=1

R2
j −

k(k + 1)2

4

]
(B.1)

Using 5 lower bounds, the Friedman statistic is distributed according to χ2
F with 4 degrees

165

of freedom. To reject the null hypothesis (all lower bounds perform equally) with α=0.05,

the Friedman statistic has to be larger than the critical value of 9.49. If we reject the null

hypothesis, then we proceed with the post-hoc test using the two-tailed Bonferroni-Dunn

test [119]. Here, we have to compute the critical difference between a pair of lower bounds

using Equation B.2.

CD = qα

√
k(k + 1)

6N
(B.2)

Comparing 5 lower bounds across 85 datasets and with α=0.05, qα=2.728 [119]. Then

to be statistically significant, the difference in rankings between two lower bounds has to be

greater than the critical difference, CD=0.6616. In other words, if R1 > R2 and R1−R2 > CD,

we say that LB1 performs significantly better than LB2.

Figure B.1 shows the average ranking of all lower bounds in terms of NN-DTW classi-

fication time for w = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Initially at smaller window sizes, there are no

significant differences between LB KEOGH and LB ENHANCED5. As window increases (at

w = 6), LB ENHANCED5 starts to be significantly faster than LB KEOGH. For larger window

sizes, the main competitor for LB ENHANCED5 is LB IMPROVED. Figure B.2 shows that for

W={0.1·L, . . . , 0.4·L}, there are no differences between LB IMPROVED and LB ENHANCED5.

However, using NN-DTW with LB ENHANCED5 after w = 0.5 · L proves to be significantly

faster than with other lower bounds.

166

(a) W=1 (b) W=2

(c) W=3 (d) W=4

(e) W=5 (f) W=6

(g) W=7 (h) W=8

(i) W=9 (j) W=10

Figure B.1: Ranking of all lower bounds in terms of NN-DTW classification time for w =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

167

CD

5 4 3 2 1

1.7 Lb_Enhanced5
1.99 Lb_Improved
3.14 Lb_Keogh

3.77Lb_New
4.39Lb_Kim

(a) W=0.1 · L

CD

5 4 3 2 1

1.63 Lb_Enhanced5
1.93 Lb_Improved
3.39 Lb_Keogh

4Lb_New
4.04Lb_Kim

(b) W=0.2 · L
CD

5 4 3 2 1

1.65 Lb_Enhanced5
1.96 Lb_Improved
3.52 Lb_Keogh

3.86Lb_Kim
4.01Lb_New

(c) W=0.3 · L

CD

5 4 3 2 1

1.58 Lb_Enhanced5
2.17 Lb_Improved
3.59 Lb_Kim

3.59Lb_Keogh
4.07Lb_New

(d) W=0.4 · L
CD

5 4 3 2 1

1.58 Lb_Enhanced5
2.32 Lb_Improved
3.37 Lb_Kim

3.72Lb_Keogh
4.01Lb_New

(e) W=0.5 · L

CD

5 4 3 2 1

1.54 Lb_Enhanced5
2.37 Lb_Improved
3.11 Lb_Kim

3.89Lb_Keogh
4.1Lb_New

(f) W=0.6 · L
CD

5 4 3 2 1

1.58 Lb_Enhanced5
2.56 Lb_Improved
3.01 Lb_Kim

3.87Lb_Keogh
3.97Lb_New

(g) W=0.7 · L

CD

5 4 3 2 1

1.51 Lb_Enhanced5
2.59 Lb_Improved
3.01 Lb_Kim

3.92Lb_New
3.97Lb_Keogh

(h) W=0.8 · L
CD

5 4 3 2 1

1.55 Lb_Enhanced5
2.59 Lb_Improved
3.03 Lb_Kim

3.9Lb_Keogh
3.93Lb_New

(i) W=0.9 · L

CD

5 4 3 2 1

1.59 Lb_Enhanced5
2.54 Lb_Improved
2.99 Lb_Kim

3.94Lb_Keogh
3.94Lb_New

(j) W=L

Figure B.2: Ranking of all lower bounds in terms of NN-DTW classification time for w =
{0.1 · L, 0.2 · L, 0.3 · L, 0.4 · L, 0.5 · L, 0.6 · L, 0.7 · L, 0.8 · L, 0.9 · L,L}

168

Bibliography

[1] C. W. Tan, G. I. Webb, and F. Petitjean, “Indexing and classifying gigabytes of time
series under time warping,” in Proceedings of the 2017 SIAM International Conference
on Data Mining, pp. 282–290, SIAM, 2017.

[2] C. W. Tan, G. I. Webb, F. Petitjean, and P. Reichl, “Tamping effectiveness prediction us-
ing supervised machine learning techniques,” in Proceedings of the First International
Conference on Rail Transportation (ICRT), 2017.

[3] C. W. Tan, M. Herrmann, G. Forestier, G. I. Webb, and F. Petitjean, “Efficient search of
the best warping window for dynamic time warping,” in Proceedings of the 2018 SIAM
International Conference on Data Mining, pp. 225–233, SIAM, 2018.

[4] C. W. Tan, P. Reichl, G. I. Webb, and F. Petitjean, “Machine learning approaches for
tamping effectiveness predictions,” in Proceedings of the 2017 International Heavy
Haul Association Conference (IHHA2017), IHHA, 2017.

[5] Forbes, “Really big data at walmart: Real-time insights from their 40+ petabyte data
cloud.”

[6] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista, “The UCR
Time Series Classification Archive,” 7 2015. www.cs.ucr.edu/~eamonn/time_series_
data/.

[7] E. S. Agency, “Sentinel 2 overview,” 2016. https://sentinel.esa.int/web/

sentinel/missions/sentinel-2/overview.

[8] J. Inglada, A. Vincent, M. Arias, and C. Marais-Sicre, “Improved early crop type iden-
tification by joint use of high temporal resolution sar and optical image time series,”
Remote Sensing, vol. 8, no. 5, p. 362, 2016.

[9] J. Inglada, M. Arias, B. Tardy, O. Hagolle, S. Valero, D. Morin, G. Dedieu, G. Sepulcre,
S. Bontemps, P. Defourny, and B. Koetz, “Assessment of an operational system for
crop type map production using high temporal and spatial resolution satellite optical
imagery,” Remote Sensing, vol. 7, no. 9, pp. 12356–12379, 2015.

[10] F. Petitjean, J. Inglada, and P. Gançarski, “Satellite image time series analysis under
time warping,” IEEE transactions on geoscience and remote sensing, vol. 50, no. 8,
pp. 3081–3095, 2012.

[11] M. Darby, E. Alvarez, J. McLeod, G. Tew, and G. Crew, “The development of an instru-
mented wagon for continuously monitoring track condition,” in AusRAIL PLUS 2003,
17-19 November 2003, Sydney, NSW, Australia, 2003.

[12] M. Darby, E. Alvarez, J. McLeod, G. Tew, G. Crew, et al., “Track condition monitor-
ing: the next generation,” in Proceedings of 9th International Heavy Haul Association
Conference, vol. 1, pp. 1–1, 2005.

[13] G. Hardie, G. Tew, G. Crew, S. Oswald, and M. Courtney, “Track condition assessment
and monitoring in heavy haul railroads,” in 2011 IHHA Conference, Calgary, 2011.

169

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/overview
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/overview

[14] J. Cowie, L. Taylor, B. Felsner, A. Stramare, and G. Hardie, “Use of instrumented
revenue vehicle to manage 40 tonne axle load operation at fortescue metals group
ltd,” in Proceedings of the 2015 11th International Heavy Haul Association (IHHA2015)
Conference, pp. 870–878, International Heavy Haul Association, 2015.

[15] J. Lines, S. Taylor, and A. Bagnall, “Hive-cote: The hierarchical vote collective of
transformation-based ensembles for time series classification,” in 2016 IEEE 16th In-
ternational Conference on Data Mining (ICDM), pp. 1041–1046, Dec 2016.

[16] A. Bagnall and J. Lines, “An experimental evaluation of nearest neighbour time se-
ries classification. technical report# cmp-c14-01,” Department of Computing Sciences,
University of East Anglia, Tech. Rep, 2014.

[17] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance
measures,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp. 565–592, 2015.

[18] M. Audley and J. Andrews, “The effects of tamping on railway track geometry degra-
dation,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of rail
and rapid transit, vol. 227, no. 4, pp. 376–391, 2013.

[19] I. Arasteh Khouy, Cost-effective maintenance of railway track geometry: A shift from
safety limits to maintenance limits. 2013.

[20] C. Esveld, Modern railway track, vol. 385. MRT-productions Zaltbommel, The Nether-
lands, 2001.

[21] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification with cote: the
collective of transformation-based ensembles,” IEEE Transactions on Knowledge and
Data Engineering, vol. 27, no. 9, pp. 2522–2535, 2015.

[22] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying and min-
ing of time series data: experimental comparison of representations and distance
measures,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1542–1552, 2008.

[23] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series clas-
sification bake off: a review and experimental evaluation of recent algorithmic ad-
vances,” Data Mining and Knowledge Discovery, vol. 31, no. 3, pp. 606–660, 2017.

[24] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, “Experi-
mental comparison of representation methods and distance measures for time series
data,” Data Mining and Knowledge Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[25] P. Esling and C. Agon, “Time-series data mining,” ACM Computing Surveys (CSUR),
vol. 45, no. 1, p. 12, 2012.

[26] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E. Keogh, “Dy-
namic time warping averaging of time series allows faster and more accurate classi-
fication,” in 2014 IEEE International Conference on Data Mining, pp. 470–479, IEEE,
2014.

[27] E. Keogh and C. Ratanamahatana, “Exact indexing of dynamic time warping,” Knowl-
edge and Information Systems, vol. 7, no. 3, pp. 358–386, 2005.

[28] S.-W. Kim, S. Park, and W. W. Chu, “An index-based approach for similarity search
supporting time warping in large sequence databases,” in Data Engineering, 2001.
Proceedings. 17th International Conference on, pp. 607–614, IEEE, 2001.

170

[29] B.-K. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time sequences
under time warping,” in Data Engineering, 1998. Proceedings., 14th International Con-
ference on, pp. 201–208, IEEE, 1998.

[30] Y. Shen, Y. Chen, E. Keogh, and H. Jin, “Accelerating time series searching with large
uniform scaling,” in Proceedings of the 2018 SIAM International Conference on Data
Mining, pp. 234–242, SIAM, 2018.

[31] D. Lemire, “Faster retrieval with a two-pass dynamic-time-warping lower bound,” Pat-
tern recognition, vol. 42, no. 9, pp. 2169–2180, 2009.

[32] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh, “Searching and mining trillions of time series subsequences
under dynamic time warping,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 262–270, ACM, 2012.

[33] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[34] E. Keogh and A. Mueen, “Curse of dimensionality,” in Encyclopedia of machine learn-
ing, pp. 257–258, Springer, 2011.

[35] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh, “isax 2.0: Indexing and mining one
billion time series,” in Data Mining (ICDM), 2010 IEEE 10th International Conference
on, pp. 58–67, IEEE, 2010.

[36] J. Shieh and E. Keogh, “i sax: indexing and mining terabyte sized time series,” in Pro-
ceedings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 623–631, ACM, 2008.

[37] F. K.-P. Chan, A. W.-c. Fu, and C. Yu, “Haar wavelets for efficient similarity search of
time-series: with and without time warping,” IEEE Transactions on Knowledge & Data
Engineering, no. 3, pp. 686–705, 2003.

[38] B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary lp norms,” in
VLDB, vol. 385, p. 99, Citeseer, 2000.

[39] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence matching in
time-series databases, vol. 23. ACM, 1994.

[40] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for datamining appli-
cations,” in Proceedings of the sixth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 285–289, ACM, 2000.

[41] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality reduction
for fast similarity search in large time series databases,” Knowledge and information
Systems, vol. 3, no. 3, pp. 263–286, 2001.

[42] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Locally adaptive dimension-
ality reduction for indexing large time series databases,” ACM Sigmod Record, vol. 30,
no. 2, pp. 151–162, 2001.

[43] F. Korn, H. V. Jagadish, and C. Faloutsos, “Efficiently supporting ad hoc queries in
large datasets of time sequences,” in Acm Sigmod Record, vol. 26, pp. 289–300,
ACM, 1997.

171

[44] C. Ratanamahatana and E. Keogh, “Three myths about DTW data mining,” in SIAM
SDM, pp. 506–510, 2005.

[45] H. Sakoe and S. Chiba, “A dynamic programming approach to continuous speech
recognition,” in International Congress on Acoustics, vol. 3, pp. 65–69, 1971.

[46] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high dimensional
data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 11,
pp. 2227–2240, 2014.

[47] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method for dynamic
time warping, with applications to clustering,” Pattern Recognition, vol. 44, no. 3,
pp. 678–693, 2011.

[48] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

[49] L. Rokach and O. Maimon, Data mining with decision trees: theory and applications.
World scientific, 2014.

[50] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[51] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,” ACM Sigkdd
Explorations Newsletter, vol. 12, no. 1, pp. 40–48, 2010.

[52] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs, vol. 25, no. 27, pp. 79–80, 1995.

[53] P. Smyth, “Clustering sequences with hidden markov models,” in Advances in neural
information processing systems, pp. 648–654, 1997.

[54] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for classification
and feature extraction,” Information Sciences, vol. 239, pp. 142–153, 2013.

[55] M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework to classify
time series,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 11, pp. 2796–2802, 2013.

[56] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,” in Pro-
ceedings of the 15th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 947–956, ACM, 2009.

[57] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm for discovering
time series shapelets,” in Proceedings of the 13th SIAM international conference on
data mining, pp. 668–676, SIAM, 2013.

[58] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series,
with implications for streaming algorithms,” in Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, pp. 2–11,
ACM, 2003.

[59] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learning time-series
shapelets,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 392–401, ACM, 2014.

172

[60] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classification of time
series by shapelet transformation,” Data Mining and Knowledge Discovery, vol. 28,
no. 4, pp. 851–881, 2014.

[61] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series using bag-of-
patterns representation,” Journal of Intelligent Information Systems, vol. 39, no. 2,
pp. 287–315, 2012.

[62] P. Senin and S. Malinchik, “Sax-vsm: Interpretable time series classification using sax
and vector space model,” in 2013 IEEE 13th International Conference on Data Mining,
pp. 1175–1180, IEEE, 2013.

[63] P. Schäfer, “The boss is concerned with time series classification in the presence of
noise,” Data Mining and Knowledge Discovery, vol. 29, no. 6, pp. 1505–1530, 2015.

[64] P. Schäfer and M. Högqvist, “Sfa: a symbolic fourier approximation and index for sim-
ilarity search in high dimensional datasets,” in Proceedings of the 15th International
Conference on Extending Database Technology, pp. 516–527, ACM, 2012.

[65] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[66] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new classifier
ensemble method,” IEEE transactions on pattern analysis and machine intelligence,
vol. 28, no. 10, pp. 1619–1630, 2006.

[67] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals, F. Petitjean, and G. I.
Webb, “Proximity forest: An effective and scalable distance-based classifier for time
series,” arXiv preprint arXiv:1808.10594, 2018.

[68] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for
time series classification: a review,” arXiv preprint arXiv:1809.04356, 2018.

[69] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436,
2015.

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in neural information processing systems,
pp. 1097–1105, 2012.

[71] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

[72] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[73] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, pp. 3104–3112,
2014.

[74] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep convolu-
tional neural networks for lvcsr,” in Acoustics, speech and signal processing (ICASSP),
2013 IEEE international conference on, pp. 8614–8618, IEEE, 2013.

173

[75] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups,” IEEE Signal pro-
cessing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[76] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep
neural networks: A strong baseline,” in Neural Networks (IJCNN), 2017 International
Joint Conference on, pp. 1578–1585, IEEE, 2017.

[77] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting multi-channels deep
convolutional neural networks for multivariate time series classification,” Frontiers of
Computer Science, vol. 10, no. 1, pp. 96–112, 2016.

[78] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks for time
series classification,” arXiv preprint arXiv:1603.06995, 2016.

[79] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep
neural networks?,” in Advances in neural information processing systems, pp. 3320–
3328, 2014.

[80] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Transfer learning
for time series classification,” arXiv preprint arXiv:1811.01533, 2018.

[81] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken
word recognition,” IEEE transactions on acoustics, speech, and signal processing,
vol. 26, no. 1, pp. 43–49, 1978.

[82] F. Itakura, “Minimum prediction residual principle applied to speech recognition,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 23, no. 1, pp. 67–72,
1975.

[83] C. A. Ratanamahatana and E. Keogh, “Making time-series classification more accu-
rate using learned constraints,” in Proceedings of the 2004 SIAM International Confer-
ence on Data Mining, pp. 11–22, SIAM, 2004.

[84] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proceedings of
the 2001 SIAM International Conference on Data Mining, pp. 1–11, SIAM, 2001.

[85] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic time warping for
time series classification,” Pattern Recognition, vol. 44, no. 9, pp. 2231–2240, 2011.

[86] G. Das, D. Gunopulos, and H. Mannila, “Finding similar time series,” in European Sym-
posium on Principles of Data Mining and Knowledge Discovery, pp. 88–100, Springer,
1997.

[87] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidimensional tra-
jectories,” in Data Engineering, 2002. Proceedings. 18th International Conference on,
pp. 673–684, IEEE, 2002.

[88] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,” in Proceedings of
the Thirtieth international conference on Very large data bases-Volume 30, pp. 792–
803, VLDB Endowment, 2004.

[89] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for moving object
trajectories,” in Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pp. 491–502, ACM, 2005.

174

[90] A. Stefan, V. Athitsos, and G. Das, “The move-split-merge metric for time series,”
IEEE transactions on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1425–1438,
2013.

[91] P.-F. Marteau, “Time warp edit distance with stiffness adjustment for time series match-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2,
pp. 306–318, 2009.

[92] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. Ratanamahatana, “Fast time series clas-
sification using numerosity reduction,” in Proceedings of the 23rd international confer-
ence on Machine learning, pp. 1033–1040, ACM, 2006.

[93] D. Silva and G. Batista, “Speeding up all-pairwise dynamic time warping matrix calcu-
lation,” in SIAM SDM, pp. 837–845, 2016.

[94] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches
in logarithmic expected time,” ACM Transactions on Mathematical Software (TOMS),
vol. 3, no. 3, pp. 209–226, 1977.

[95] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algo-
rithm configuration.,” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.

[96] A. Andoni and P. Indyk, “E2lsh: Exact euclidean locality-sensitive hashing,” Implemen-
tation available at http://web. mit. edu/andoni/www/LSH/index. html, 2004.

[97] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions,” in Foundations of Computer Science, 2006. FOCS’06.
47th Annual IEEE Symposium on, pp. 459–468, IEEE, 2006.

[98] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs,” in
Proceedings of the ninth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 493–498, ACM, 2003.

[99] L. Wei, E. Keogh, and X. Xi, “Saxually explicit images: Finding unusual shapes,” in
Sixth International Conference on Data Mining, ICDM’06, pp. 711–720, IEEE, 2006.

[100] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approximate nearest-
neighbor search with k-nearest neighbor graph,” in IJCAI Proceedings-International
Joint Conference on Artificial Intelligence, vol. 22, p. 1312, 2011.

[101] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-nn graph construc-
tion for visual descriptors,” in Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 1106–1113, IEEE, 2012.

[102] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence
databases,” in International conference on foundations of data organization and al-
gorithms, pp. 69–84, Springer, 1993.

[103] M. Flynn, J. Lines, and A. Bagnall, “c-rise: Contract random interval spectral ensemble
for time series classification,” in 3nd ECML/PKDD Workshop on Advanced Analytics
and Learning on Temporal Data, 2018.

[104] P. Schäfer, “Scalable time series classification,” Data Mining and Knowledge Discov-
ery, pp. 1–26, 2015.

175

[105] H. Hamooni and A. Mueen, “Dual-domain hierarchical classification of phonetic time
series,” 2014. www.cs.unm.edu/~hamooni/papers/Dual_2014/index.html.

[106] H. Hamooni and A. Mueen, “Dual-domain hierarchical classification of phonetic time
series,” in Data Mining (ICDM), 2014 IEEE International Conference on, pp. 160–169,
IEEE, 2014.

[107] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh, “Indexing multi-
dimensional time-series with support for multiple distance measures,” in Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 216–225, ACM, 2003.

[108] H. Sakoe and S. Chiba, “A dynamic programming approach to continuous speech
recognition,” in Proceedings of the seventh international congress on acoustics, vol. 3,
pp. 65–69, Budapest, Hungary, 1971.

[109] C. Sammut and G. Webb, eds., Encyclopedia of Machine Learning. Berlin: Springer,
2010.

[110] E. Keogh, L. Wei, X. Xi, M. Vlachos, S.-H. Lee, and P. Protopapas, “Supporting exact
indexing of arbitrarily rotated shapes and periodic time series under euclidean and
warping distance measures,” The VLDB journal, vol. 18, no. 3, pp. 611–630, 2009.

[111] M. Muja, “Flann-fast library for approximate nearest neighbors,” 2014. www.cs.ubc.

ca/research/flann/.

[112] F. Petitjean, G. Forestier, G. Webb, A. Nicholson, Y. Chen, and E. Keogh, “Faster and
more accurate classification of time series by exploiting a novel dynamic time warping
averaging algorithm,” Knowledge and Information Systems, vol. 47, no. 1, pp. 1–26,
2016.

[113] E. Keogh, “Welcome to the lb keogh homepage!,” 2001. www.cs.ucr.edu/~eamonn/

LB_Keogh.htm.

[114] P. Kranen and T. Seidl, “Harnessing the strengths of anytime algorithms for constant
data streams,” Data Mining and Knowledge Discovery, vol. 19, no. 2, pp. 245–260,
2009.

[115] Y. Yang, G. Webb, K. Korb, and K.-M. Ting, “Classifying under computational resource
constraints: Anytime classification using probabilistic estimators,” Machine Learning,
vol. 69, no. 1, pp. 35–53, 2007.

[116] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pp. 1027–1035, Society for Industrial and Applied Mathematics, 2007.

[117] J. L. Bentley, Programming pearls. ACM, 1986.

[118] “Additional material,” 2017. http://bit.ly/SDM2017.

[119] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Journal of
Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[120] H. Dau, D. Silva, F. Petitjean, A. Bagnall, and E. Keogh, “Judicious setting of DTW’s
warping window width allows more accurate classification of time series,” in IEEE Big
Data Conference, pp. 1–4, 2017.

176

www.cs.unm.edu/~hamooni/papers/Dual_2014/index.html
www.cs.ubc.ca/research/flann/
www.cs.ubc.ca/research/flann/
www.cs.ucr.edu/~eamonn/LB_Keogh.htm
www.cs.ucr.edu/~eamonn/LB_Keogh.htm
http://bit.ly/SDM2017

[121] S. Srikanthan, A. Kumar, and R. Gupta, “Implementing the dynamic time warping algo-
rithm in multithreaded environments for real time and unsupervised pattern discovery,”
in Computer and Communication Technology (ICCCT), 2011 2nd International Con-
ference on, pp. 394–398, IEEE, 2011.

[122] A. Shamdani, C. Thompson, F. Ahmed, and R. Penglase, “Analysis of track tamping
effectiveness using continuously measured performance data,” in Proceedings of the
2015 11th International Heavy Haul Association (IHHA2015) Conference, pp. 1273–
1278, International Heavy Haul Association, 2015.

[123] L. Baeza and H. Ouyang, “A railway track dynamics model based on modal substruc-
turing and a cyclic boundary condition,” Journal of Sound and Vibration, vol. 330, no. 1,
pp. 75–86, 2011.

[124] A. R. Andrade and P. F. Teixeira, “Hierarchical bayesian modelling of rail track ge-
ometry degradation,” Proceedings of the Institution of Mechanical Engineers, Part F:
Journal of rail and rapid transit, vol. 227, no. 4, pp. 364–375, 2013.

[125] H. Guler, “Prediction of railway track geometry deterioration using artificial neural net-
works: a case study for turkish state railways,” Structure and Infrastructure Engineer-
ing, vol. 10, no. 5, pp. 614–626, 2014.

[126] H. Guler, “Decision support system for railway track maintenance and renewal man-
agement,” Journal of Computing in Civil Engineering, vol. 27, no. 3, pp. 292–306,
2012.

[127] M. Shokoohi-Yekta, J. Wang, and E. Keogh, “On the non-trivial generalization of dy-
namic time warping to the multi-dimensional case,” in Proceedings of the 2015 SIAM
international conference on data mining, pp. 289–297, SIAM, 2015.

[128] N. J. Nilsson, “Stuart russell and peter norvig, artificial intelligence: A modern ap-
proach,” Artificial intelligence, vol. 82, no. 1-2, pp. 369–380, 1996.

[129] H. Z. A. C. B. Michael and M. J. Malik, “Svmknn: Discriminative nearest neighbor
classification for visual category recognition,” Computer Science Division, EECS De-
partment Univ. of California, Berkeley, CA, vol. 94720, 2007.

[130] Z. Yong, L. Youwen, and X. Shixiong, “An improved knn text classification algorithm
based on clustering,” Journal of computers, vol. 4, no. 3, pp. 230–237, 2009.

[131] L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen, “Gene selection for sample
classification based on gene expression data: study of sensitivity to choice of param-
eters of the ga/knn method,” Bioinformatics, vol. 17, no. 12, pp. 1131–1142, 2001.

[132] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen,
and E. Keogh, “Matrix profile i: all pairs similarity joins for time series: a unifying view
that includes motifs, discords and shapelets,” in Data Mining (ICDM), 2016 IEEE 16th
International Conference on, pp. 1317–1322, IEEE, 2016.

[133] V. Niennattrakul and C. A. Ratanamahatana, “Learning dtw global constraint for time
series classification,” arXiv preprint arXiv:0903.0041, 2009.

177

	Abstract
	Publication during enrolment
	Thesis including published works declaration
	Acknowledgements
	Introduction
	Motivation
	Research Questions
	Contributions

	Literature Review
	Time Series Classification
	Feature-based Algorithms
	Dictionary-based Algorithms
	Ensemble-based Algorithms
	Deep Learning for Time Series Classification

	Distance-based Classification
	Lp-norm Distances
	Dynamic Time Warping
	Derivative Dynamic Time Warping
	Weighted Dynamic Time Warping
	Longest Common Subsequence
	Edit Distance with Real Penalty
	Move-Split-Merge Distance
	Time Warp Edit Distance
	Ensembles of Elastic Distances

	Scalable Time Series Classification
	Lower Bounds for Distance Measures
	DTW Lower Bounds
	ERP Lower Bounds
	LCSS Lower Bound

	Time Series Indexing under Time Warping
	Introduction
	Background and Motivation
	Time Series Classification
	Nearest Neighbour Search
	Contract Time Series Classification

	Our Approach: DTW-Indexing of Time Series for Classification
	Empirical Evaluation
	Optimizing the Number of Clusters, K
	Conclusion and Future Work
	Acknowledgement

	Learning the Best Warping Window for Dynamic Time Warping Efficiently
	Introduction
	Background and Related Work
	Dynamic Time Warping
	Warping Window
	Related Work
	DTW Lower Bounds

	Fast Warping Window Search for DTW
	Properties for FastWWSearch
	The FastWWSearch Algorithms

	Empirical Evaluation
	Speed-up
	Scalability to 100,000 Time Series
	Incorporating PrunedDTW Within FastWWSearch

	Conclusion
	Acknowledgement

	Time Series Classification with Fast Ensembles of Elastic Distances
	Introduction
	Background and Related Work
	Ensembles of Elastic Distances
	Elastic Distance Measures
	Related Work
	Learning the Parameters of an Elastic Distance Efficiently

	Proposed Lower Bounds for Elastic Distances
	WDTW Lower Bound
	MSM lower bound
	TWED Lower Bound

	FASTEE: FAST Ensembles of Elastic Distances
	Properties for Fast Elastic Ensemble
	The FastEE Algorithms

	Experiments
	Speed-up Against EE
	Can FastEE be Further Sped Up?

	Conclusion

	A New Framework and Methods to Lower Bound DTW
	Introduction
	Background and Related Work
	Dynamic Time Warping
	Existing DTW Lower Bounds

	Proposed DTW Lower Bound
	Enhanced Lower Bound

	Empirical Evaluation
	How to Choose the Right Tightness Parameter for LB_Enhanced?
	Speeding Up NN-DTW with LB_Enhanced

	Conclusion and Future Work

	Tamping Effectiveness Prediction With Time Series Classification
	Introduction
	Background and Motivation
	Tamping Maintenance Procedure
	Instrumented Revenue Vehicles (IRV)
	Motivation

	Methodology
	Time Series
	Dynamic Time Warping
	Nearest Neighbour (NN) Algorithm

	Experimental Design
	Data Acquisition and Processing
	Predicting Tamping Effectiveness
	Training and Testing: Cross Validation
	Performance Evaluation

	Results and Discussion
	Classifiers Comparison
	Early Prediction of Tamping Effectiveness

	Conclusion
	Acknowledgement

	Concluding Remarks
	Conclusion
	Limitations
	Future Work

	Fail-Safe Experiment for FastWWS
	Comparison of all DTW lower bounds
	Bibliography

