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Abstract

Multi-fluid flow over and within porous media occurs frequently in nature and
plays an important role in engineering applications, such as seawater intrusion
into fresh groundwater aquifers, carbon dioxide migration in groundwater

aquifers and oil and water flow in petroleum reservoirs. The discontinuity in the properties
of different fluids and the presence of porous media lead to complex behaviours that can
be difficult to model. The challenges in modelling these types of flows are tracking the
interface between fluids, handling the abrupt discontinuity in the material properties,
describing the complex geometries and free surfaces, and dealing with the interaction
between the flow and porous media.

There are a number of different numerical methods to solve the equations deriving
these flows. In this thesis, Smoothed Particle Hydrodynamics (SPH) is chosen due to its
advantages in the mentioned challenges as well as limited number of studies applying
SPH to multi-fluid flows in porous media. Therefore, the overarching aim of the thesis
is to develop an SPH model of multi-fluid flow in porous media with applications to
seawater intrusion. The main objectives are (i) selecting a suitable SPH scheme, (ii)
developing a SPH multi-fluid solver in porous media, (iii) and investigating the flexibility
of the model in engineering applications.

An Explicit Incompressible SPH scheme (EISPH) and a compressible SPH scheme
(δ-SPH) were used to investigate their robustness in modelling fluid flow in porous media.
The comparison showed that both schemes led to similar and satisfactory results, with the
EISPH scheme producing pressure values closer to theoretical values. Furthermore, EISPH
employs physical viscosity term, while δ-SPH uses artificial viscosity and a diffusive term
in the continuity equation, which require ad hoc numerical parameters. Therefore, EISPH
was selected to develop the multi-fluid solver used here for simulating flow in porous
media.

EISPH was then applied to simulate multi-fluid lock-exchange over and within porous
media. The EISPH method led to results that are overall similar to observed experimental
data. The model was able to reproduce the behavior of the flow within media with different
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porosities. In addition, the model reproduced behavior of multi-fluid flow at the interface
between different fluids, such as reproducing Kelvin-Helmholtz instabilities and diffusion
of salt.

The multi-fluid solver was then used to simulate the dynamics of a freshwater lens
in an island and saltwater upconing below a groundwater well. The second application
required the simulation of groundwater pumping, which needed to introduce a sink term
in the continuity equation. The modelling of sinks in SPH is still unexplored, and new
methods are then developed.

Specifically, three methods to model water pumping from an aquifer are proposed
and compared. The chosen model is tested against data from published laboratory-scale
experiments and other numerical models. The inclusion of a sink for water particles to
simulate pumping did not affect the stability of the simulations, although one of the
three methods led to results that better compared to experimental data.

The results presented in this thesis show that SPH can be used to satisfactory simulate
multi-fluid flow across different media. Furthermore, this thesis lays a foundation to use
SPH in applications associated with water pumping.

To summarize, the main contributions of this study are i) to combine SPH technique
of modeling fluid flow in porous media and multi-fluid flow to generate a model capable
of modeling multi-fluid flow in porous media ii) to develop a SPH method to simulate
mass sink in a porous medium, with application to water pumping from ground water
aquifers.
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Introduction

Multi-fluid flow occurs in a wide range of industrial and natural processes. These
flows mostly occur over and within porous media and play an important role
in engineering applications. For example, the interaction between stream-flow

and a river bed affects flow structure over the bed, solute and heat transfer, and river
ecosystem. Flow in porous media is important in engineering applications, such as
irrigation, seawater intrusion, and transport of contaminants following their spillage over
a porous medium.

In a multi-fluid flow, heterogeneity often arises from the variation of fluid density
and viscosity. Density variation may be due to differences in temperature or salinity. A
common example of a multi-fluid flow is the lock-exchange gravity current, which usually
results from flow of two fluids with different densities (Simpson, 1982; Huppert, 2006).
This flow often occurs over or within porous media in situations such as a freshwater
river flowing into an ocean, oil spills on water bodies, sea-water intrusion in groundwater,
and water treatment (Zhao et al., 2013; Meiburg et al., 2015). Several factors govern the
hydrodynamics of multi-fluid flows in porous media, i.e. gravity and pressure-gradient
forces, viscous and turbulent stresses, diffusion, surface-tension, and flow characteristics
at the interface between the free flow and the porous medium (Rotunno et al., 2011;
Thomas and Marino, 2011).

A discontinuity in the fluid properties (e.g. density, viscosity, or temperature) at the
interface between fluids can cause a great deal of complexity from a mathematical and
computational perspective. Furthermore, extra complexities are added by the presence of
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CHAPTER 1. INTRODUCTION

porous media and the porous materials interaction with the fluid system. Tracking the
interface between phases and the description of complex geometries and free surfaces
are also challenging in modelling multi-fluid flow in porous media. The methods most
commonly used for simulating multi-fluid flows are grid-based, such as the finite-difference
method (FDM) and the finite volume method (FVM) (Birman et al., 2005; Bonometti
and Balachandar , 2008). However, grid-based methods lead to difficulties in generating
complex grids, modelling free surfaces and interfaces between different phases, and
deformable boundaries (Liu and Liu, 2003). Mesh-free numerical methods represent an
alternative. A variety of mesh-free numerical methods have been developed, such as
the molecular dynamics method (Li et al., 2010), discrete element method (Yeganeh-
Bakhtiary et al., 2009), the moving least squares method (Shobeyri and Afshar , 2010),
and Smoothed Particle Hydrodynamics (Gingold and Monaghan, 1977). In a particle
method, the computational domain is filled with a set of particles and each particle
carries fluid or solid properties such as density, viscosity, and velocity. The governing
equations drive the dynamics of particles and their properties. Compared with grid based
methods, particle methods facilitate tracking free surface and interfaces between different
fluids and media (Shao, 2012; Akbari, 2014).

The SPH method is a fully Lagrangian meshless method which has reached a certain
degree of maturity, showing acceptable accuracy for a wide range of applications from
fluid flow dynamics to astronomical studies (Liu and Liu, 2003).

In SPH, treating the fluid as either weakly-compressible or incompressible, led to
development of different schemes that employ different approaches in predicting flow’s
pressure field (Monaghan, 1994; Cummins and Rudman, 1999; Hosseini et al., 2007;
Molteni and Colagrossi, 2009). Although recent studies have improved the prediction of
the pressure field in weakly-compressible SPH scheme (WCSPH) (Molteni and Colagrossi,
2009), the incompressible schemes (ISPH) have been proven to produce a more accurate
flow pressure field (Violeau and Rogers, 2016). However, ISPH schemes require larger
computational time as the Poisson equation should be solved implicitly (Nomeritae et al.,
2016). To tackle this problem, explicit incompressible SPH (EISPH) that solves the
Poisson equation approximately has been proposed and tested in various applications
(Hosseini et al., 2007; Rafiee and Thiagarajan, 2009; Nomeritae et al., 2016; Bui and
Nguyen, 2017; Nomeritae et al., 2018).

SPH has been used to simulate multi-fluid flows owing to its advantages in tracking
free surfaces and multi-interfaces (Shao, 2012). SPH has also been employed to model
fluid flow in porous media (Shao, 2010; Akbari and Namin, 2013). Progresses in employing
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SPH in porous media have led to a corrected SPH algorithm, focusing on the behaviour
of the flow moving between different media (Akbari, 2014). However, this algorithm needs
strong validation against experimental observations. Despite the increasing interest in
SPH for modelling multi-fluid flows and fluid flow in porous media, the simultaneous
modelling of a multi-fluid flow that occurs over or within a porous medium has not been
comprehensively studied. Developing a method to simulate multi-fluid flows in media
with different porosities is important to study natural and man-made events, such as
seawater intrusion in groundwater (Zhao et al., 2013) and oil recovery through water
flooding in petroleum reservoirs (Coutinho et al., 2008).

Although large computational time is one of the drawbacks of SPH, the rapid progress
in computation technology, such as the development of Graphics Processing Units (GPUs),
has made it possible to use SPH in the larger scale problems (Violeau and Rogers, 2016).
Therefore, it is worthwhile developing an SPH multi-fluid solver and applying it to
environmental and engineering problems such as salt and fresh water dynamics in coastal
zones, and seawater upconing in freshwater aquifers (Werner et al., 2009; Stoeckl and
Houben, 2012; Stoeckl et al., 2016).

The overarching aim of the present study is to bring together SPH schemes for multi-
fluid flow and flow in porous media to generate a model capable of simulating multi-fluid
flow in porous media at scales significantly larger than pore scale. Furthermore, this
study aims to apply the SPH model to applications such as freshwater and salt water
dynamics in aquifers and salt water upconing below pumping wells.

This thesis comprises six chapters. A detailed literature review of the progress in
the modelling of flow in porous media and multi-fluid flow as well as research gaps
and aims are presented in Chapter 2. Chapter 3 includes the overview of the numerical
schemes applied in this study. In Chapter 4, the applicability of the numerical schemes
in modelling flow in porous media is investigated. Chapter 5 includes a published paper
that links modelling approaches of flow in porous media and multi-fluid flow to generate
a model capable of simulating multi-fluid flow in porous media. Chapter 6 includes a
submitted paper that presents the simulations of two engineering application (freshwater
lens formation in an island and upconing of salt water in a freshwater aquifer). Chapter
7 summarises the key findings, highlights the limitations of this study and proposes
opportunities for future studies.

3
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Literature review, research gaps and aims

Numerous experimental and analytical studies have been conducted to study
multi-fluid flow in porous media. Because computational modeling is focus of
the thesis, this chapter focuses on the studies that have employed numerical

techniques to model these flows. Readers are referred to Werner et al. (2013) and Werner
et al. (2017) for comprehensive review of experimental and analytical studies. Significant
effort has been dedicated to the modeling of gravity currents with multi-fluid flows
in porous media; however, less work has been devoted to multi-fluid flows over and
within porous media. Thus, to understand the theoretical background and modeling
approaches of such flows, this review focuses on studies of fluid flow across media with
different porosities and multi-fluid flow. Mathematical modeling to develop governing
equations and numerical modeling techniques applied to both types of flows are described.
Subsequently the research gaps and the aims of the thesis are presented.

2.1 Fluid flow over and within porous media

Fluid flow in the environment often occurs over porous media and interact with the flow
within the porous media. For example, in engineering applications, water flows in streams
that is affected by the porous bed, and groundwater in coastal aquifers that is influenced
by interaction with seawater. To study the physics of these applications, one of the main
approaches is numerical modeling. To facilitate modeling these flows many studies have
developed governing equations and numerical techniques to discretize the equations. One
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CHAPTER 2. LITERATURE REVIEW, RESEARCH GAPS AND AIMS

of the main challenges with modeling these flows is handling the boundary conditions at
the interface between a porous medium and outside the porous medium to match the
velocity and stress (Beavers and Joseph, 1967).

2.1.1 Governing equations

One of the first studies focused on fluid flow through porous media was published by
Darcy, and is applied to numerous practical applications. He investigated the flow of
water through a layer of sand and concluded that for creeping flows, the average flow rate
passing through the layer is proportional to the pressure gradient across the layer and the
constant of proportionality representing the hydraulic conductivity of the layer (Bear ,
2013). Although Darcy’s law has been found effective in many practical applications, it
has been found necessary to extend it for more complex circumstances, especially for
the case when flow might happen across the boundary of a porous medium and outside
the porous medium (i.e., a free flow domain) (Acton et al., 2001). This task has led to a
wide range of modeling approaches for predicting fluid behaviour over and within porous
media, that can be categorised into two approaches, i.e. two-domain and single-domain.

2.1.1.1 Two-domain approach

In the two-domain approach, a separate set of equations is defined in each domain
with coupling term at the interface. One of the early investigations associated with
this approach was the study of Beavers and Joseph (1967). They used the Poiseuille
flow equation and Darcy’s Law to formulate the solution method. Fig. 2.1 shows the
assumed velocity profiles over and within the porous medium. The Poiseuille law assumes
a smooth laminar flow and it is governed by pressure gradient and viscous force. To couple
the Poiseuille and Darcy laws, Beavers and Joseph (1967) proposed a semi-empirical
condition at the interface between the porous and free flow domains. The Poiseuille
equation reads

µ
∂2u

∂y2 = ∂p

∂x
, (2.1)

with the boundary conditions

u = 0 at y = h,

∂u
∂y

= α√
κ

(ui − U) at y = 0.
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2.1. FLUID FLOW OVER AND WITHIN POROUS MEDIA

Figure 2.1: Velocity profile above and within the porous medium assumed by Beavers
and Joseph (1967).

Here u is velocity, p is pressure, µ is the dynamic viscosity of the fluid, κ is the per-
meability of the porous medium, α is an empirical dimensionless quantity experimentally
obtained, ui is the slip velocity at the interface between the free flow domain and the
porous medium, and U is the Darcy velocity, i.e. the volume flow rate per unit area. The
Darcy equation for a flow through a homogeneous, isotropic permeable bed is written
(Bear , 2013)

U = −κ
µ

∂p

∂x
. (2.2)

The solution of Eq. (2.1) leads to a velocity profile in the free flow domain as

u = − κ

2µ(σ
2 + 2ασ
1 + ασ

)∂p
∂x

(1 + α√
κ
y) + 1

2µ(y2 + 2αy
√
κ )∂p
∂x
, (2.3)

where σ = h/
√
κ . Eq. (2.3) correlated well with the experimental data (Beavers and

Joseph, 1967). Several studies attempted to determine the empirical parameter α which
has been proven to be dependent on the geometry of the interface rather than the fluid’s
parameters (Goyeau et al., 2003; Richardson, 1971).

Neale and Nader (1974) questioned the physical validity of the approach employed by
Beavers and Joseph (1967) because the actual velocity profile within the porous medium
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Figure 2.2: Actual velocity profile for a coupled parallel flows in a channel and a porous
medium (Neale and Nader , 1974).

contains a boundary layer region and the discontinuity of the velocity across the interface
between the free flow domain and the porous medium is not physically realistic (see Fig.
2.2). Neale and Nader (1974) proposed the Brinkman’s extension of Darcy’s Law to be
applied as the shear term in Eq. (2.2); Brinkman’s extension is better suited for the
boundary layer at the interface and reads

0 = −∇p+ µeff∇2u− µκ−1u, (2.4)

where u hereafter denotes the local averaged velocity, ρ is density of fluid, µeff is effective
dynamic viscosity which is dependent on porosity and the fluid’s dynamic viscosity. The
second term on the right hand side of the Eq. (2.4) represents the Brinkman’s extension,
and its shear nature improves the Beaver and Joseph’s approach by providing a boundary
layer region at the interface. The boundary layer thickness is of order

√
κ . Although

the boundary layer at the interface within the porous medium is usually insignificant, it
can considerably affect flow in the free flow domain, above the porous medium (Neale
and Nader , 1974). The shear term outside the boundary layer region is insignificant, and
Darcy’s original law is applicable (Neale and Nader , 1974).

To capture macroscopic, rather than microscopic, behaviour of a flow above and
within a porous medium, some studies focused on volume averaging of the momentum
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Figure 2.3: Averaging volume of a system consisted of solid and fluid phases (Whitaker ,
1986).

equation. Whitaker (1986) developed a volume averaged momentum equation for a flow
within a homogeneous porous medium using the Brinkman’s extension. Whitaker (1986)
considered two types of averaging methods. In the first, averaging is carried out over the
whole averaging volume, consisting of fluid and solid materials (Fig. 2.3), and is called
phase or superficial averaging, while in the second, the averaging is carried out only over
fluid phase, ω-phase (Fig. 2.3), and is called intrinsic averaging. These two averaged
values are related by the porosity according to

〈ψ〉 = ε〈ψ〉ω, (2.5)

where ε is porosity, and 〈ψ〉 and 〈ψ〉ω represent superficial and intrinsic value of a function,
respectively.

A volume-averaged momentum equation within a porous medium was developed by
adding the Forchheimer correction to Brinkman’s extension, which accounts for the drag
force associated with inertial effects (Whitaker , 1996) as

0 = −∇〈pω〉ω + ρωg + µω∇2〈vω〉ω −
µω
K
〈v〉 − µω

K
F 〈vω〉, (2.6)

where g is the acceleration due to gravity, 〈vω〉 is the superficial averaged or Darcy seepage
velocity, 〈vω〉ω is intrinsic averaged velocity, 〈pω〉ω is the intrinsic averaged pressure and
K and F are permeability and Forchheimer tensors, respectively. Intrinsic averaged
pressure was used in Eq. (2.6) as it is the pressure that can be measured by a probe in
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an experimental apparatus (Scarselli, 2013). The volume averaged equations derived by
Whitaker were applicable to a flow that occurs in a porous medium.

Brinkman’s extension to Darcy’s law proposed by Neale and Nader (1974) has been
the most employed equation to describe flow in porous media. However, it has also been
a topic of extensive controversy, especially in its description of the interface. To model
a porous medium and a free flow domain interface there needs to be four matching
conditions (Nield, 1991), because the Navier-Stokes and Brinkman equations both have
second order derivatives. These four conditions are continuity of normal and tangential
velocity and stress. Although the velocity components are continuous functions at the
interface, the tangential viscous stress has a discontinuity at the solid sections of the
interface. The tangential shear stress is zero over the solid section, while it is non zero in
the clear fluid. Nield (1991) also mentioned that the situation of viscous normal stress is
somewhat similar to that of the tangential stress.

In two-domain approaches, a jump condition in stress is often employed along with the
governing equations to handle the discontinuity of stress at the interface (Ochoa-Tapia
and Whitaker , 1995). The jump condition often includes a parameter that must be
obtained experimentally. Furthermore, solving two sets of equations for two different
regions requires a boundary condition at the interface between the regions (Valdés-Parada
et al., 2013). In addition, determination of the thickness of the transition layer, also
requires experimental measurements (Goharzadeh et al., 2006). Due to these challenges,
the single-domain approach is considered in some studies.

2.1.1.2 Single-domain approach

In the single-domain approach the free flow domain and the flow in the porous medium
are considered to be driven by the same equations with different parameters dependent
on the medium (Tao et al., 2013). The transition from the free flow to the porous
medium is treated through variation of properties in the equations, such as permeability
and porosity (Goyeau et al., 2003). Therefore, there is no need to explicitly formulate
boundary conditions at the interface. The momentum equation for flow in a domain
consisting of free flow and a porous medium is given as (Goyeau et al., 2003)

ε−1∂(ρu)
∂t

+ ε−2∇ · (ρuu) = −∇p+ µ∇2u+ ρg − µκ−1u. (2.7)

According to Eq. (2.7), in the space associated with a free flow domain the porosity is
1 and permeability is infinite, so that the drag term becomes zero and Eq. (2.7) becomes
the Navier-Stokes equations (Goyeau et al., 2003).
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In the single-domain approach, the change in properties (i.e., porosity and perme-
ability) in an interface between a porous medium and a free flow domain is defined in
different ways such as sharp or gradual change. The variation of flow in the interface does
not have a general solution and is still an open research area. Experiments are usually
required to investigate the geometry of the interface, to formulate variation of porosity
and permeability (Duman and Shavit, 2010).

Due to its simplicity, this approach, has been widely employed in engineering ap-
plications, such as heat or solute and mass transfer, and erosion (Gobin et al., 2005;
Valdés-Parada et al., 2007; Panah and Blanchette, 2018).

The single-domain approach also has been the platform in studies associated with
particle methods such as SPH, due to their Lagrangian nature. As the particles tend
to travel throughout a domain, it is intuitive to assign parameters to a particle, in
accordance with the domain in which it resides, and solve a unified governing equation.

Pahar and Dhar (2016b) derived the Lagrangian form of the momentum equation for
flow across different media as

Du

Dt
= − ε

ρ
∇p+ ν∇2u+ ε~g − εµ

ρκ
u− εcF

κ1/2 |u|u, (2.8)

where the last term on the right hand side is the Forchheimer quadratic drag term that
accounts for an inertial drag when the pore scale Reynolds number is higher than unity
(Joseph et al., 1982; Nield, 2000); cF is the dimensionless Forchheimer coefficient that is
obtained experimentally (Pahar and Dhar , 2016a).

2.1.2 Numerical simulations

2.1.2.1 Grid based methods

Grid based, Eulerian methods, have been extensively used to simulate fluid flow in
porous media. These methods are the basis of many powerful tools. Grid based methods
suffer from drawbacks such as the need to update grid continuously to cover the area
when the fluid flows; additionally tracking free surfaces and interfaces is computationally
expensive (Liu and Liu, 2003). A method such as volume of fluid (VOF) is usually used
to track free surfaces (Del Jesus et al., 2012; Hu et al., 2012; Raeini et al., 2012). A
problem with VOF is the production of artificial numerical diffusion and free surface
smearing. Therefore, a reconstruction method is often used to reconstruct the free surface
throughout a simulation (Park et al., 2005).

11



CHAPTER 2. LITERATURE REVIEW, RESEARCH GAPS AND AIMS

Del Jesus et al. (2012) and Hu et al. (2012) studied the interaction of a dynamic
wave with porous media. They studied fluid motion across heterogeneous media with
variable porosity and used VOF to track the free surfaces, where variation density was
detected to track the position of the interface (del Jesus, 2011). In addition an interface
reconstruction technique (Kothe et al., 1999) was used to reconstruct the interface.

2.1.2.2 SPH simulations

With progress in particle methods such as SPH and their advantages in handling inter-
faces, they have attracted an increasing interest in modeling flow in porous media. The
Lagrangian nature of the method facilitates modeling free surface flows without the extra
procedure of tracking and moving the interface.

Due to the potential advantages of projection-based particle methods, such as
incompressible-SPH (ISPH), with higher accuracy in calculating pressure values and
conservation of volume, most SPH studies dedicated to flow in porous media have used
the projection-based methods.

In SPH, solid particles, fixed at their location or moving, are often employed to
represent porous media. The drag force due to the presence of the porous material is
accounted for by interaction of solid and fluid particles (Bui et al., 2007; Jiang et al.,
2007; Grabe and Stefanova, 2014). For moving solid particles, an extra set of equations
are used (Bui et al., 2007; Bui and Nguyen, 2017). Using two sets of particles (i.e., solid
and fluid) requires extra computational cost, as different sets of equations must be solved
and extra interactions are required between particles. The use of solid particles is required
when the medium can move, as in problems related to erosion, and landslides.

When the medium is fixed, to avoid the extra time imposed by the presence of the
solid particles, a drag force can be explicitly imposed on the particles that enter the
porous medium. This approach has been used in SPH for applications such as wave
interaction with porous media (Shao, 2010), and is often employed in other modelling
methods (Goyeau et al., 2003).

Recently, a new SPH approach has been developed (Akbari and Namin, 2013; Pahar
and Dhar , 2016a) to simulate free surface flow moving across media with different
porosities. In this method, the density or volume of a particle is adjusted according
to the porosity of media and SPH approximations are modified accordingly. In this
method, the equations are solved mostly with incompressible-SPH (ISPH) schemes (Aly
and Asai, 2015; Pahar and Dhar , 2016a), requiring large computational time due to
the implicit solution of the pressure Poisson equation (PPE). For weakly-compressible
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(WCSPH) schemes, limited studies have been conducted to validate the equivalent
approach (Ren et al., 2016). This approach has been employed in different applications,
such as wave interaction with porous structures (Akbari and Namin, 2013), fluid flow
through porous dams (Aly and Asai, 2015; Pahar and Dhar , 2016a) and lock-exchange
flow through a porous medium (Pahar and Dhar , 2017). In this method, smoothing
length is recommended to be adjusted for particles moving across different media (Pahar
and Dhar , 2017). To conserve momentum, smoothing lengths of a pair of interacting
particles need to be averaged (Rafiee et al., 2007).

Peng et al. (2017) used WCSPH with mixture theory to simulate fluid flow in porous
media. They used solid particles to carry porosity of the media. In a similar approach,
Khayyer et al. (2018) implemented an enhanced ISPH projection method capable of
simulating fluid flow across media with different porosities. The method calculates volume
fraction of fluid and porous material consistently, using two-phase mixture theory, to
reproduce fluid flow interactions with spatially varying porous media. The effect of porous
media is incorporated through a resistance force. The method is capable of satisfying
pressure and velocity continuity as well as volume conservation at interface between fluid
and porous media without any interface boundary condition.

2.2 Multi-fluid flow

Multi-fluid flow refers to any flow consisting of more than one fluid. Multi-fluid flow
frequently occurs in nature and plays a crucial role in a variety of engineering fields
and industrial processes, such as air entrainment at the ocean surface, cavitation, rising
of a air bubble in a viscous liquid, and gravity current of two or more fluids intruding
into each other under gravity (Huppert, 2006; Rotunno et al., 2011; Zainali et al.,
2013). Due to this importance, there is a necessity to model and predict the detailed
behaviour of these flows. They have been studied experimentally, through laboratory
models, theoretically, through mathematical modeling, and computationally (Brennen
and Brennen, 2005). Experimental methods are not applicable for most practical scales,
and reliable mathematical and computational techniques are required for extrapolation of
laboratory scales to the prototype scale. Alongside several experimental and theoretical
studies dedicated to multi-phase flows (Britter and Linden, 1980), numerical studies,
which mostly solve the Navier-Stokes equations, have provided an efficient way to study
multi-fluid flows.
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Figure 2.4: Schematic view of a lock-exchange flow (Rotunno et al., 2011).

2.2.1 Governing equations

The lock-exchange gravity current is a common example of multi-fluid flows that has
attracted a wide research interest, since it can be encountered in several engineering
applications. Herein, the governing equations employed to study these flows are explained,
because gravity currents are used in this study to validate the multi-fluid model. Gravity
currents result from two fluids with different densities, due to difference in salinity
or temperature. In this current, a denser fluid usually flows under a lighter fluid and
pushes the lighter fluid up. This phenomenon occurs frequently in the environment (e.g.
turbidity currents occurring under a sea, avalanches, lava flows, dam break, and salt
wedge propagation) (Adduce et al., 2011).

A schematic diagram of a lock-exchange gravity current is shown in Fig. 2.4. Based
on the ratio of density of lighter, ρl, to heavier fluid, ρh, the lock-exchange gravity
currents are classified as Boussinesq (ρl/ρh ≈ 1) and non-Boussinesq (ρl/ρh < 1). For
Boussinesq flow, both heavy and light gravity currents propagate at nearly the same
velocity and depth. For non-Boussinesq flow, the heavy current propagates faster than
the light current, and the depth of the heavy current reduces to fulfil the conservation of
volume.

A frequently used set of equations for studying lock-exchange problems, using the
description of the long wave of expansion, is solving the two-layer shallow-water equations
(Rottman and Simpson, 1983; Lowe et al., 2005; Ungarish, 2007). The shallow-water
equations arranged for a right moving heavier fluid’s, with velocity uh, and depth hh
(Fig. 2.4), are

∂hh
∂t

+ hh
∂uh
∂x

+ uh
∂hh
∂x

= 0, (2.9)

∂uh
∂t

+ a
∂uh
∂x

+ b
∂hh
∂x

= 0, (2.10)
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with

a = uh(hl − γhh) + 2γulhh
(γhh + hl)

, (2.11)

b = −γ(uh − ul)2 + (1− γ)ghl
(γhh + hl)

, (2.12)

where γ is the density ratio of lighter to heavier fluid, ρl/ρh, and ul and hl are the left
moving lighter fluid’s velocity and depth, respectively (Lowe et al., 2005). Although
shallow-water equations are often simple to implement, they neglect or simply represent
stress, friction and diffusivity terms. Moreover, they do not account for the vertical
component of velocity, which makes them not suitable for inclined surfaces or flows with
non-horizontal direction (Rotunno et al., 2011). Furthermore, these equations do not
account for a possible diffusion between miscible fluids.

A more robust approach is solving the Navier-Stokes equations for a multi-fluid
system. The Navier-Stokes equations consists of continuity, momentum and diffusion
equations as (Birman et al., 2005; Birman and Meiburg, 2006)

Dρ

Dt
= −ρ∇ · ~u, (2.13)

ρ
D~u

Dt
= −∇p+ µ∇2 · ~u+ ρ~g, (2.14)

Dρ

Dt
= Dm∇2 · ρ, (2.15)

where D/Dt denotes the total time derivative of a quantity, ~u is fluid velocity vector,
and Dm denotes molecular diffusivity. Eq. (2.15) accounts for the density change due to
a possible change in concentration of a scalar.

Eq. (2.13) shows the compressible form of the continuity equation. In the case of an
incompressible flow the continuity equation is written as (Birman et al., 2005; Birman
and Meiburg, 2006)

∇ · ~u = 0. (2.16)
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2.2.2 Numerical simulation of multi-fluid flow

2.2.2.1 Grid based methods

Eulerian methods have been applied intensively in simulating multi-fluid flows. Birman
et al. (2005) used the Navier-Stokes equations along with the diffusion equation for
solving non-Boussinesq lock-exchange flows. They used a finite-difference approach to
discretize the governing equations for each fluid. The numerical results showed good
agreement with the experiments of Lowe et al. (2005). In another approach, the Navier-
Stokes equation have been used for a mixture of two incompressible fluids with different
properties describing the lock-exchange system (Étienne et al., 2005). Étienne et al.
(2005) used a Direct Numerical Simulation approach for simulating exchange flows of
large density ratios. They discretized the problem domain using a finite-element method
and applied a dynamic mesh adaptation technique for refining the mesh at every time
step in areas of high density gradients. Finite-volume methods also along with VOF
interface tracking techniques have been employed to study gravity currents (Bonometti
and Balachandar , 2008). Grid-based methods are also the foundation of commercial
codes that solve multi-fluid flows across different media, and solute transfer. The most
commonly used codes are SUTRA (Voss et al., 2008) and SEAWAT (Langevin et al.,
2008), which solve the equations using finite-elements and finite differences, respectively.
The packages have been specifically developed to solve applications of multi-fluid flow in
porous media such as seawater intrusion in fresh groundwater. However, they also are
applied to heat transport (Werner et al., 2013).

The investigation of the literature shows that using grid-based techniques usually
requires the detection of the interface, between the fluids throughout a simulation, where
the Volume of Fluid technique is often employed (Serchi et al., 2012). Furthermore,
dynamic mesh adaptation, with mesh refinement at the interface, is often required
(Étienne et al., 2005; Meiburg et al., 2015). Due to these complications particles methods,
such as SPH, has been considered as an alternative to solve these problems, as its
Lagrangian nature makes it advantageous for automatically simulating the interfaces.

2.2.2.2 SPH simulations

As the earliest attempt to apply SPH to multi-fluid flows, Monaghan et al. (1999)
employed a WCSPH method to simulate gravity currents descending a ramp. Their
numerical approach predicted the denser fluid’s velocity with acceptable accuracy. Shao
(2012) proposed a two-step, prediction and correction, ISPH method to model multi-fluid
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systems of incompressible fluids. He proposed two different approaches (i.e., coupled
and decoupled ISPH algorithms) to solve multi-fluid problems. In the coupled method,
different fluids were not distinguished and the standard ISPH technique was applied
across the interface, while in the decoupled method, each phase was treated separately
first and then the pressure and shear stress continuity was satisfied across the interface.
The results appeared to show that the decoupled technique led to comparatively better
results. ISPH along with pressure-decoupling technique has also been used to simulate
Boussinesq lock-exchange flows in a confined domain (Firoozabadi et al., 2013); however,
the pressure decoupling appears to be problematic in free-surface flows (Leroy et al.,
2015).

Pahar and Dhar (2016c) used an ISPH scheme to simulate a lock-exchange flow
of salt water intruding into fresh water, by solving the Navier-Stokes equations along
with the diffusion equation (Eqs. 2.13 - 2.15). They adjusted the coefficient of molecular
diffusivity to account for the diffusivity arising from turbulence.

2.3 Research gaps

The review of the literature shows that SPH has been recently applied to fluid flow in
porous media as well as simulating multi-fluid flows due to its advantages in tracking
interfaces and time development of the interfaces between fluids. However, there are
limited studies and a lack of strong validation against experimental or field observations.
Therefore, this application still requires further study.

For fluid flow in porous media, the studies mostly use incompressible schemes. Al-
though incompressible schemes reproduce smoother pressure fields compared to weakly
compressible schemes, they require a larger computational time. An explicit incom-
pressible SPH scheme, explicitly solving the PPE, can be considered to reduce the
computational cost. Alternatively, weakly compressible schemes with corrective terms
to improve the pressure reproduction can be considered. Therefore, there is a need to
compare the advantages and disadvantages of different SPH schemes in modeling fluid
flow in porous media.

Furthermore, simultaneous SPH simulation of multi-fluid flow across media with
different porosities is something that has not been widely conducted using SPH. Modeling
these flows is important because a number of important multi-fluid flows in engineering
applications occur in porous media such as interaction of seawater and fresh groundwater
aquifers and seawater upconing below extraction wells.
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2.4 Aims

The overarching aim of the present study is to bring together SPH schemes for multi-fluid
flow and flow in porous media to generate a model capable of simulating multi-fluid flow
in porous media with applications such as seawater intrusion in fresh groundwater and
seawater upconing below groundwater pumping wells; The specific objectives are:

1. To identify an appropriate SPH scheme to model fluid flow in porous media.

Most previous studies have focused on SPH modeling of fluid flow in porous
media using ISPH schemes. The application of WCSPH schemes has rarely been
investigated. The main difference between ISPH and WCSPH schemes are in the
way pressure is calculated. ISPH calculates the pressure using a pressure Poisson
equation, while WCSPH schemes solve the pressure using an equation of state.
WCSPH often approximates the viscous force with an artificial viscosity term,
while ISPH employs a real viscosity approximation. A comparison of applications
of different SPH schemes in modeling fluid flow in porous media is required to
investigate possible advantages and disadvantages of these schemes.

2. To develop the modeling approach of multi-fluid flow over and within a porous
medium.

Although SPH has been used to model multi-fluid flows and fluid flow in porous
media, there are limited studies using this method. Strong validation against
experimental studies are required to validate and improve the modeling approach.
Furthermore, simultaneous SPH modeling of a multi-fluid flow that occurs over or
within a porous medium has not been widely studied.

3. To investigate the flexibility of the SPH model in engineering applications.

Generation of a method to simulate multi-fluid flows in porous media is important
to study natural problems, such as seawater intrusion in groundwater or seawater
upconing below groundwater wells due to pumping. Although there are several
grid based models developed to study these problems, the advantages of SPH in
simulating these flows and rapid progress in computational technologies encourage
to investigate the flexibility of SPH to model these flows. In addition, modeling the
seawater upconing requires an SPH algorithm to simulate point mass sinks, which
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has not been done in literature. This study also aims to develop the algorithm to
lay the foundation for future applicability of the SPH in these applications.
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An overview of Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method, that uses
moving nodes or particles instead of grids for the discretization of a domain. SPH
was first developed for astrophysical studies (Gingold and Monaghan, 1977; Lucy,

1977), and rapidly applied to a variety of engineering applications such as fluid dynamics.
This chapter presents a general overview of the method, and SPH schemes applied in

this study.

3.1 Governing equations

The governing equations for a flow of two or more incompressible fluids in saturated
porous media with mass sinks and solute transport are (Pahar and Dhar , 2016b,a,c; Bear
and Bachmat, 2012)

∇ · ~u = −Γ, (3.1)

D~u

Dt
= − ε

ρ
∇p+ µ

ρ
∇2~u+ ε~g + ~R, (3.2)

DC

Dt
= ∇ · (Dd∇C), (3.3)
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where Eqs. (3.1), (3.2) and (3.3) define mass, momentum and species conservation,
respectively, ~u is the Darcian velocity equal to ε~uf , ~uf being the fluid intrinsic velocity
and ε porosity, Γ is a flux per unit of volume due to point sinks, ρ is the fluid density, p
is pressure, µ is the dynamic viscosity, ~g is the gravitational acceleration, ~R is the porous
media drag force, Dd is the effective dispersion tensor, and C is concentration of a solute
such as salt.

When a fluid passes through a porous medium, the solid matrix of the medium
generates a resistance to the fluid motion. This drag force consists of a linear (Darcy)
and a quadratic (Forchheimer) term as (Nield, 2000)

~R = − εµ
ρκ
~u− εcF

κ1/2 |~u|~u, (3.4)

where κ is the permeability of the media through which the flow occurs, and cF is the
dimensionless Forchheimer coefficient. The Darcy term is dominant in flows with a pore
scale Reynolds number lower than unity (Nield, 2000). For larger Reynolds numbers, the
quadratic term dominates due to inertial effects (Joseph et al., 1982). In the absence of a
porous medium ε = 1 and κ→∞, such that both terms on the right hand side of Eq.
(3.4) are zero.

For compressible fluids, the continuity equation with no sink point is written as (Bear
and Bachmat, 2012)

D(ερ)
Dt

= −ερ∇ · ~uf ; (3.5)

because the simulations of the sink point (see Chapter 5) were conducted using an
incompressible scheme, the compressible continuity equation is presented without the
sink term.

3.2 SPH formulations

In SPH, a fluid is represented by an ensemble of particles. Each particle carries the fluid
properties such as mass, density, velocity, position, viscosity, porosity and pressure. The
fluid particles move in accordance with the governing equations. Fluid variables such
as velocity, position and pressure, associated with a particle are approximated through
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interpolation over its neighbouring particles that fall within a defined domain, called the
support domain.

To formulate a function in SPH, two steps are taken: integral representation and
particle approximation (Liu and Liu, 2003). The integral representation implies that a
function can be represented in form of an integral as

f(~x) =
∫

Ω
f(~x′)δ(~x− ~x′)d~x′, (3.6)

where Ω is the volume of the integration containing ~x, δ(~x− ~x′) is the Dirac function
given by

δ(~x− ~x′) =

∞ ~x = ~x′

0 ~x 6= ~x′
, (3.7)

and satisfies the condition given by

∫ +∞

−∞
δ(~x)d~x = 1. (3.8)

Using the Dirac function, Eq. (3.6) describes an exact integral representation of an
arbitrary function. The Dirac function can be replaced by a smoothing function to create
an approximating function that attempts to capture important patterns of the arbitrary
function. The integral representation is thus rewritten as

< f(~x) >=
∫

Ω
f(~x′)W (~x− ~x′, h)d~x′, (3.9)

where W is the smoothing or kernel function, and h is smoothing length that controls the
influence area of the kernel function (Liu and Liu, 2003). Eq. (3.9) is called the kernel
approximation in SPH literature and the angle brackets <> are used to represent the
kernel approximation.

The particle approximation of a function is achieved by replacing the infinitesimal
volume d~x′ in Eq. (3.9) with the finite volume of particles as (Monaghan, 1992)

< f(~xi) >=
N∑
j=1

mj

ρj
f(~xj)W (|~xi − ~xj|, h), (3.10)
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where i and j denote particle labels, mj and ρj represent mass and density of particle j,
and mj/ρj is the volume of particle j.

The SPH approximation of the gradient of an arbitrary function can then be approxi-
mated as the derivative of Eq. (3.10) (Monaghan, 1992)

< ∇f(~xi) >=
N∑
j=1

mj

ρj
f(~xj)∇iWij, (3.11)

whereWij = W (|~xi−~xj|, h), ∇iWij = ~xij

|~xij |
∂Wij

∂|~xij | , with |~xij| = |~xi−~xj| the distance between
particle i and j.

3.2.1 Spatial volume

The volume of particles in SPH is commonly calculated as m/ρ; however, special care
needs to be paid to define volume when a particle moves across media with different
porosities.

A porosity value is assigned to each particle in this study, that is defined to be a
function of position (~x). Thus the value of porosity assigned to a particle is only dependent
on the particles’ position. When particle j is in a free flow domain (ε = 1), the volume
of the fluid that the particle carries, Vp (Fig. 3.1a), is Vpj = mj/ρj. When the particle
enters a porous medium, the same mass of fluid occupies a larger volume, Vj (Fig. 3.1b),
referred to as spatial volume here, that accounts for both fluid and solid volumes, so that
mj = ρjVjεj, with Vpj = εjVj (Fig. 3.1c). In this study, the mass associated with each
particle is kept constant, except for mass change due to diffusion (Eq. 3.3) and mass
reduction due to a point sink; therefore, the spatial volume (i.e., the space) associated
with each particle is (Pahar and Dhar , 2016a)

Vj = mj

εjρj
. (3.12)

The spatial volume associated with each particle depends on the porosity of the
medium. Therefore, the spatial volume of a particle inside a porous medium will be larger
than that of particle within a fluid domain, with the same mass.
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Figure 3.1: Spatial volume of a particle within a (a) free flow domain (ε = 1) and (b) a
porous medium, (c) volume of fluid within a particle (Pahar and Dhar , 2016a).

3.2.2 Kernel function

The smoothing or kernel function in Eq. (3.9) is an even function and is normalized over
its influence area. The kernel function must satisfy several conditions.

The kernel summation over its influence domain, Ω, should be equal to unity, i.e.

∫
Ω
W (~x− ~x′, h)d~x′ = 1. (3.13)

The kernelW (~x−~x′, h) should approach the Dirac-δ function as the smoothing length
approaches zero:

lim
h→0

W (~x− ~x′, h) = δ(~x− ~x′), (3.14)

and has a support domain given by

W (~x− ~x′, h) = 0 when |~x− ~x′| > λh, (3.15)

where λh is the radius of the support domain or influence area of the kernel function
(Fig. 3.2), with λ a constant that depends on the nature of the kernel function.

There are several kernel functions introduced in literature. Two kernel functions, i.e.
cubic, 3rd order, and spline, 5th order, were tested in this study. The cubic spline kernel
function (Fig. 3.3a) used here reads (Monaghan and Lattanzio, 1985; Liu and Liu, 2003)
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Figure 3.2: Support domain of the kernel function, with radius λh, for particle i.

W (q, h) = αd ×


2
3 − q

2 + 1
2q

3 0 ≤ q < 1
1
6(2− q)3 1 ≤ q < 2

0 q ≥ 2,

(3.16)

where αd is a normalisation constant equal to 1/h, 15/(7πh2), or 3/(2πh3) in one-, two-
and three-dimensional domains, respectively, and q = |~xi − ~xj|/h = |~xij|/h.

The quintic spline kernel function (Fig. (3.3b)) used here reads (Morris, 1996; Liu
and Liu, 2003)

W (q, h) = αd ×



(3− q)5 − 6(2− q)5 + 15(1− q)5 0 ≤ q < 1

(3− q)5 − 6(2− q)5 1 ≤ q < 2

(3− q)5 2 ≤ q < 3

0 q > 3,

(3.17)

with αd equal to 1/(120h), 7/(478πh2), and 3/(359πh3) in one-, two- and three-dimensional
domains, respectively.

The selection of a kernel function and smoothing length in media with different
porosities is important. As described in section. 3.2.1, the spatial volume that SPH
particles occupy within a porous medium represents both fluid and solid phases volume;
therefore, a fluid particle with a given mass within a porous medium has a larger spatial
volume than a particle in a free flow domain with same mass. Having a larger spatial
volume causes the particles to move apart from each other, leading to a loss of resolution
inside the porous medium. Therefore, the number of particles inside the support domain
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Figure 3.3: The (a) cubic and (b) quintic, kernel functions and their derivatives used in
this study (Liu and Liu, 2003).

of the kernel function might not be sufficient to accurately approximate the variable and
its derivatives. To tackle this problem, a kernel function with a larger support domain,
such as the quintic function, can be used. In case of using a kernel function with a
smaller support domain such as the cubic spline, the smoothing length needs to be
adjusted (Pahar and Dhar , 2016a). To adjust the smoothing length, its length should
be inversely proportional to square root of porosity, so that in a medium with lower
porosity the smoothing length is larger. Using a variable smoothing length formally adds
extra terms involving the derivative of smoothing length in the momentum equation
(Price and Monaghan, 2004); however, these terms are neglected in this study. Because
the same value of smoothing length should be used for a pair of interacting particles to
conserve momentum, the smoothing length for interacting particles i and j is calculated
as hij = (hi + hj)/2 (Rafiee et al., 2007).

3.3 SPH approximations

The governing equations are discretized into a set of ordinary differential equations by the
particle approximations of a function (Eq. 3.10) and derivative of a function (Eq. 3.11).
To generate the particle approximations of the functions and derivatives in porous media,
the spatial volume concept is used, so that the spatial volume (Eq. 3.12) is replaced by
the conventional volume of particles (m/ρ) in the approximations provided in literature.
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3.3.1 Continuity equation for an incompressible fluid

There are several ways in the literature to approximate the divergence of velocity
in the continuity equation (Liu and Liu, 2003). However, one of the most common
approximations is applied here and Eq. (3.1) is written in discrete form as (Pahar and
Dhar , 2016a)

(∇ · ~u)i =
N∑
j=1

mj

εjρj
(~uj − ~ui) · ∇iWij = −Γi. (3.18)

where Γi is the contribution of the sink points around the particle i on the divergence of
velocity (section 3.8).

3.3.2 Continuity equation for a compressible fluid

The compressible continuity equation (Eq. 3.5) is approximated as

Dρi
Dt

=
N∑
j=1

mj

εj
(~ui − ~uj) · ∇iWij. (3.19)

The compressible SPH scheme used in this study, δ-SPH, benefits from a diffusive term
added to the approximation of the continuity equation (Eq. 3.19) to reduce the common
density and pressure fluctuations in weakly-compressible SPH schemes as (Marrone et al.,
2011)

Dρi
Dt

=
N∑
j=1

mj

εj
(~ui − ~uj) · ∇iWij + δhc0

N∑
j=1

mj

εjρj
~ψij · ∇iWij, (3.20)

with

~ψij = 2(ρj − ρi)
~xji
|~xij|2

−
[
〈∇ρ〉Li + 〈∇ρ〉Lj

]
, (3.21)

〈∇ρ〉La =
∑
b

mb

εbρb
(ρb − ρa)La∇aWb, (3.22)

La =
[∑

b

mb

εbρb
(~xb − ~xa)⊗∇aWb

]−1

, (3.23)

where δ is set to 0.1 (Marrone et al., 2011)
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3.3.3 Momentum equation

The momentum equation consists of the pressure gradient, the viscous force, acceleration
due to gravity and the drag force. The gravity and drag terms are calculated directly
without any approximation.

3.3.3.1 Pressure gradient

The pressure gradient term in Eq. (3.2) is approximated in two common ways, in this
thesis, as

(
ε

ρ
∇p

)
i

= εi
N∑
j=1

mj

εj

(
pi
ρ2
i

+ pj
ρ2
j

)
∇iWij, (3.24)

and (
ε

ρ
∇p

)
i

= εi
N∑
j=1

mj

εj

(
pi + pj
ρiρj

)
∇iWij. (3.25)

More sophisticated pressure gradient terms can be found in Khayyer et al. (2017a).

3.3.3.2 Viscous term

The viscous term in Eq. (3.2) is often used in incompressible SPH schemes and is
approximated as (Shao and Lo, 2003)

(
µ

ρ
∇2~u

)
i

=
N∑
j=1

4mj(µi + µj)~uij · ~xij
εj(ρi + ρj)2 (|~xij|2 + η2)∇iWij, (3.26)

where η is a small parameter included to ensure that the denominator remains non-zero
(η = 0.001hij, with hij = (hi + hj)/2), and ~unij = ~ui − ~uj.

In compressible SPH schemes, often an artificial viscosity term is used and is equivalent
to the viscous term in the momentum equation and stabilizes the numerical scheme.
The artificial viscosity in the compressible scheme employed in this study, δ-SPH, is
approximated as (Molteni and Colagrossi, 2009; Marrone et al., 2011)

(
µ

ρ
∇2~u

)
i

≡ αhc0
ρ0

ρi

N∑
j=1

mj

εjρj
πij∇iWij, (3.27)

with
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πij = (~uj − ~ui) · ~xji
|~xij|2

, (3.28)

where α is set to 0.02, ρo is the density at the free surface of flow, c0 is the speed of
sound and must be at least 10 times the maximum velocity of the flow. The speed of
sound was assumed to be 20

√
gH here, with H being the maximum depth of the flow

(Molteni and Colagrossi, 2009).

3.3.4 Diffusion equation

The diffusion of scalar in this study is handled in two different ways. In the first, the
effective dispersion tensor (Dd) only assumed to account for diffusivity; dispersivity is
neglected, so that Dd becomes a constant, while in the second, it is considered as a size 2
matrix to account for dispersivity effects. We will refer to the methods as Diffusion and
Dispersion-Diffusion.

3.3.4.1 Diffusion

Eq. (3.3) is solved assuming Dd as a scalar coefficient. We refer to the coefficient as the
effective coefficient of diffusivity (De). The SPH approximation of the equation reads
(Ghasemi et al., 2013; Zhu and Fox , 2001)

(∇ · (De∇C))i =
∑
j=1

mj

εjρj

(Dei +Dej)~xij · ∇iWij

|~xij|2 + η2 (Ci − Cj), (3.29)

where the effective coefficient of diffusivity, De, is determined using an empirical equation
based on the flow regime and the porosity of the medium. The empirical equation assumes
the porous medium is saturated (Simunek and Suarez , 1993; Pahar and Dhar , 2016c),
and is given by

Dei = (Dmi +Dti)(εi)4/3, (3.30)

where Dm and Dt are coefficients of molecular and turbulent eddy diffusivity, respectively.
Dt is only added for flows with Reynolds numbers higher than 1000 (Simpson, 1997).
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3.3.4.2 Dispersion-Diffusion

In this approach the effects of dispersivity is also accounted for, so that the Dd tensor is
determined using the effective coefficient of diffusivity, dispersivity, and particle velocities
as (Salamon et al., 2006)

Ddi = DeiI + dti|~ui|I + (dli − dti)
~ui ⊗ ~uTi
|~ui|

, (3.31)

where dl and dt are longitudinal and transverse dispersivity, I is identity matrix of size
2 (for 2D flow), and De is the effective coefficient of diffusivity. Dd in Eq. (3.31) is an
anisotropic and heterogeneous dispersion matrix. Eq. (3.31) is approximated using an
anisotropic SPH approximation (Tran-Duc et al., 2016). To simplify the approximation
procedure, Dd will be assumed to be a diagonal matrix. This assumption is reasonable
when bulk flow is vertical or horizontal, such that the second term on the right hand
side of Eq. (3.31) can be assumed to be diagonal. The variation of concentration is then
approximated as (Tran-Duc et al., 2016)

(∇ · (Dd∇C))i = 2
N∑
j=1

mj

εjρj

(
e2
ij,1

D̄dij,11
+

e2
ij,2

D̄dij,22

)−1
~xij · ∇iWij

|~xij|2 + η2 (Ci − Cj), (3.32)

where eij = ~xij/|~xij| is the unit vector from i to j, and D̄dij is average of the effective
diffusivity tensors of particles i and j. The numbers in subscript of eij and D̄dij reference
a particular element in the vector and the matrix, respectively.

3.4 Boundaries

3.4.1 Solid boundaries

A single layer of virtual particles is used to identify solid boundaries (Monaghan, 1994).
The virtual particles interact only with fluid particles and exert a repulsive force via a
Leonard-Jones potential given by (Monaghan, 1994)

F (~x)ij =

L
[(

r0
|~xij |

)p1 −
(

r0
|~xij |

)p2] 1
|~xij |

r0
|~xij | ≥ 1,

0 r0
|~xij | < 1.

(3.33)

Here p1 and p2 are constants equal to 4 and 2 respectively, L is the square of the largest
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velocity of flow, and r0 is a cut off distance assumed to be 0.8 times the initial distance
between virtual particles. Repulsive forces are applied perpendicularly to the boundaries,
and along 45◦ at corners. The distance between the virtual particles is set to half the
initial spacing of the fluid particles to ensure impermeable boundaries are maintained
(Fig. 3.4).

3.4.2 Free and no slip boundary conditions

Ghost particles are used to impose boundary conditions. For a fluid particle within a
distance of λh from the solid boundaries, where λ is determined in accordance with the
kernel, a ghost particle is produced symmetrically on the other side of the boundaries (Liu
and Liu, 2003) (Fig. 3.4a). Ghost particles are assigned the same density, concentration,
mass, pressure, porosity, dynamic viscosity, coefficients of molecular and turbulent eddy
diffusivity, and smoothing length as the corresponding fluid particles. To impose free-slip
boundary conditions, the component of velocity parallel to the boundary is unchanged,
while for no-slip it is reversed. The normal component of the velocity is reversed for both
free-slip and no-slip conditions (Marrone et al., 2011) (Fig. 3.4b).

Modified no-slip boundary condition

A mixed free-slip and no-slip boundary conditions, which are recommended for higher
Reynolds numbers, can also be implemented. The no-slip boundary condition is used
in calculating the viscous term in the momentum equation while the free-slip boundary
condition is used in calculating the pressure Poisson equation, the pressure gradient and
change in concentration (Marrone et al., 2013; Grenier et al., 2013). The mixed boundary
condition is called modified no-slip boundary condition here.

3.4.3 Free surface

A free surface pressure condition is assigned after calculating particle pressure. Free
surfaces are identified using particle densities. The particle densities are approximated
using a density summation (Liu and Liu, 2003) as

ρεi =
N∑
j=1

mj

εj
Wij. (3.34)

As the free surface particles reside within a non-complete support domain, their
particle density is significantly less than the fluid’s initial density. When the density of a
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Figure 3.4: Schematic representation of (a) virtual, fluid and ghost particles (Ghost
particles are only shown for the fluid particles adjacent to the lower horizontal solid
boundary), and (b) application of free-slip and no-slip boundary conditions.

particle drops below 99% of its initial density, it is considered as a free-surface particle
and zero pressure is assigned to that particle (Shao and Lo, 2003). Eq. (3.34) is only
used to detect free surfaces (i.e., it is not used to update the density of particles).

3.4.4 Interface conditions

When particles move between media with different porosities, the porosity values are
assigned depending on the particles’ position. However, the geometrical transition at an
interface between media is not usually sharp, and a sharp transition may not properly
represent the physics of the problem (Duman and Shavit, 2010). Furthermore, based
on investigations, in this thesis, this sharp change in porosity may lead to numerical
instabilities in some cases. In this study, in some cases (Chapter. 4), a gradual linear
change of porosity is applied at the interface between media with different porosities
to check its advantages and disadvantages. As shown in Fig. 3.5, the porosity linearly
changes in a transition layer between a fluid flow domain, ε = 1, and a porous medium,
ε = εm. The thickness of the transition layer is assumed to be equal to the diameter
of the support domain of the kernel function, δε = 2λh. A sharp interface can also be
simulated with no transition layer.
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Figure 3.5: Definition of the transition layer between a free flow and a porous medium
with porosity εm. The depth of the transition layer, δε, equals the diameter of the support
domain of the kernel function, 2λh.

3.4.5 Inflow boundaries

Inflow boundary condition is used to simulate a fluid recharge into porous media. Inflow
particles are used to simulate the inflow of fluid into the domain (Nomeritae et al., 2018).
The thickness of the zone occupied by inflow particles is set to be larger than the radius
of the support domain of the kernel function. Inflow particles within the inflow zone are
moved with a constant velocity determined by the inflow rate. Once an inflow particle
moves outside the inflow zone (Fig. 3.6), it is turned into a fluid particle and moves
according to the governing equations. The inflow particles’ velocity and pressure are used
in approximating the hydrodynamics of the fluid particles in a domain but not vice versa
(Federico et al., 2012).

3.5 Particle search

To approximate variables of particle i, a search algorithm is used to detect particles
around it that fall within a distance equal to support domain of the kernel function.
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Figure 3.6: Schematic view of an inflow boundary condition.

Figure 3.7: A schematic view of the all-pair search algorithm to find the nearest neigh-
bouring particles to approximate the variables in particle i (Section 3.5.1).

3.5.1 All pair search

Particles surrounding the particle i that fall within a distance equal to the support
domain of the kernel function are detected at each time step. The distance between
all particles within the domain Ω (Fig. 3.7) and the particle i needs to be checked to
determine whether they are within the support domain of particle i (Liu and Liu, 2003).
Although this algorithm is straightforward, it requires high computational time and it is
only applicable to small scale problems.
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Figure 3.8: (a) Link list and (b) the improved linked list algorithm to find the nearest
neighbouring particles (Section 3.5.2).

3.5.2 Linked list algorithm

In this algorithm, a background mesh is created by dividing a domain into a set of square
cells, with sizes equal to the radius of the support domain of the kernel function. For a
particle i only particles that are located within the same cell as i and the surrounding
cells can contribute to the summations (Fig. 3.8a). Therefore, the computational time is
significantly reduced compared to the all pair search. The linked list algorithm is further
improved by only searching across a few cells (i.e., north west, north, north east, east,
and the same cell that particle i resides) (Fig. 3.8b), as the rest of the cells surrounding
the centred cell are considered through sweeping. In this study the linked list approaches
are used.

3.6 Numerical schemes

In this study, Explicit incompressible-SPH (EISPH) (Nomeritae et al., 2016) and δ-SPH
(Marrone et al., 2011) were used to compare their advantages and disadvantages for fluid
flow in porous media. The scheme that was selected between these was further developed,
by incorporating Eq. (3.3), to solve multi-fluid flow in porous media.
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3.6.1 EISPH

3.6.1.1 Euler integration algorithm

The governing equations are solved with an EISPH scheme, which employs two steps,
prediction and pressure correction (Cummins and Rudman, 1999), with an approximate
solution of the Poisson equation. The time integration algorithm is first order in time for
velocity and second order in time for particle position. Although the algorithm is not
totally first order, it is referred as an Euler algorithm in this study.

In the prediction step, the viscous, gravity and the drag forces contribute to the
velocity and position of particles as

~u∗i = ~uni +
(
µ

ρ
∇2~u

)n
i

∆t+ εni

(
~g − µ

ρκ
~u

)n
i

∆t, (3.35)

where ~u∗ is intermediate velocity, ~un is particle velocity at time n∆t, with ∆t constant
throughout the simulations.

The viscous term is approximated using Eq. (3.26) as

(
µ

ρ
∇2~u

)n
i

=
N∑
j=1

4mn
j (µi + µj)~unij · ~xnij

εnj (ρni + ρnj )2
(
|~xnij|2 + η2

)∇iWij
n, (3.36)

The gravitational and drag terms are calculated directly, with the drag term calculated
only for particles inside a porous medium.

The intermediate particle positions (~x∗) are calculated using the intermediate intrinsic
velocity of the particles as

~x∗i = ~xni + ~u∗i
εn

∆t, (3.37)

where ~xn is particle position at time n∆t. Afterwards, the intermediate porosity of
particles, ε∗, are assigned using the intermediate position of particles.

In the second step, the particle velocities are calculated at the new time step as

~un+1
i = ~u∗i −

ε∗i
ρni
∇pn+1

i ∆t, (3.38)

where pn+1 is particle pressure at time (n+ 1)∆t. Eqs. (3.38) and (3.1) are combined to
form the pressure Poisson equation as
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∇ ·
(
ε∗

ρn
∇pn+1

)
i

=
(
∇ · ~u∗ + Γ

∆t

)
i

, (3.39)

where Γ is the contribution of the sink points around particle i (see Section 3.8).
The divergence of the intermediate velocity is approximated as in Eq. (3.18) as

(∇ · ~u∗)i =
N∑
j=1

mn
j

ε∗jρ
n
j

(~u∗j − ~u∗i ) · ∇iW
∗
ij. (3.40)

The Laplacian operator in Eq. (3.39) is expressed using an approximation of the
second derivative (Monaghan, 2005) and reads

∇ ·
(
ε∗

ρn
∇pn+1

)
i

=
N∑
j=1

mn
j

ε∗jρ
n
i ρ

n
j

(
ε∗i + ε∗j

)
~x∗ij · ∇iW

∗
ij

|~x∗ij|2 + η2

(
pn+1
i − pn+1

j

)
, (3.41)

so that the PPE becomes

N∑
j=1

mn
j

ε∗jρ
n
i ρ

n
j

(
ε∗i + ε∗j

)
~x∗ij · ∇iW

∗
ij

|~x∗ij|2 + η2

(
pn+1
i − pn+1

j

)
=
(
∇ · ~u∗ + Γ

∆t

)
i

. (3.42)

Eq. (3.42) is written for particle i as

pn+1
i =

Bi +∑N
j=1Aijp

n+1
j∑N

j=1Aij
, (3.43)

with

Aij =
mn
j

ε∗jρ
n
i ρ

n
j

(
ε∗i + ε∗j

)
~x∗ij · ∇iW

∗
ij

|~x∗ij|2 + η2 , (3.44)

and

Bi =
(
∇ · ~u∗ + Γ

∆t

)
i

. (3.45)

Eq. (3.43) should be solved using a linear solver; however, this is explicitly solved with
an approximation that has been proven to lead to satisfactory results in variety of
applications (Nomeritae et al., 2016; Bui and Nguyen, 2017; Nomeritae et al., 2018). The
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value of pn+1
j on the right hand side of Eq. (3.43) is assumed to be equal to pnj ; and the

time step value is set to a sufficiently small value. The pressure of each particle is thus
approximated explicitly as

pn+1
i =

Bi +∑N
j=1Aijp

n
j∑N

j=1Aij
. (3.46)

The initial pressure value of the free surface particles are set to zero. Therefore, the
pressure of free surface particles from the previous time step is always equal to zero.
After the calculation of pressure using Eq. (3.46), the pressure of particles of the free
surface is imposed to be zero, if Eq. (3.46) assigns non-zero values to them.

The calculated pressure values are used to calculate the pressure gradient using Eq.
(3.24) as

(
ε∗

ρn
∇pn+1

)
i

= ε∗i

N∑
j=1

mn
j

ε∗j

(
pn+1
i

ρn2
i

+
pn+1
j

ρn2
j

)
∇iW

∗
ij. (3.47)

Afterwards the velocity field at the new time step is calculated using Eq. (3.38). The
new position is calculated as

~xn+1
i = ~xni +

(
~un

i

εni

)
+
(
~un+1

i

ε∗i

)
2 ∆t, (3.48)

and new particle porosity, εn+1, associated with the new position is assigned.
In problems associated with multi-fluid flows, the new concentration of each particle

is calculated in this stage using Eq. (3.3) as (Pahar and Dhar , 2016c)

Cn+1
i = Cn

i +
(
∇ ·

(
Dn+1
d ∇C

))
i
∆t, (3.49)

where the second term in the right hand side of Eq. (3.49) is approximated depending on
the nature of the problem (i.e. whether diffusivity or dispersivity govern the physics of
the problem), using one of the approaches in section 3.3.4.

Subsequently, density and the mass of each particle are updated as (Pahar and Dhar ,
2016c)

ρn+1
i = Cn+1

i (ρs − ρf ) + 0.5(ρs + ρf ), (3.50)

mn+1
i = ρn+1

i V n+1
pi , (3.51)
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where Vp is volume of fluid a particle carries and is equal to Vp = mj/ρj.
The time step value, ∆t, is defined to satisfy the Courant stability and viscous

diffusion conditions as

∆t ≤ min(∆tCFL,∆tvisc), (3.52)

with

∆tCFL ≤ 0.25 h

umax
, (3.53)

and
∆tvisc ≤ 0.125h

2

ν
, (3.54)

where umax is the predicted maximum velocity in the computations and ν is the kinematic
viscosity (Morris et al., 1997).

3.6.1.2 Heun integration algorithm

In the Heun integration algorithm, velocity and position of the particles are solved in two
stages at each time step. In the first stage, an approximate value of velocity, ~̃un+1

i , and
position, ~̃xn+1

i at the new time step are predicted using the first order Euler method as

~̃un+1
i = ~uni +

(
D~u

Dt

)n
i[xn,εn,un,pn,ρn]

∆t, (3.55)

~̃xn+1
i = ~xni +

(
~uni
εni

)
∆t ⇒ ε̃n+1

i = f
(
~̃xn+1
i

)
. (3.56)

The variables inside the bracket in Eq. (3.55) are used in the corresponding stage. In
the second stage, the values of the variables are updated as

~un+1
i = ~uni +

(
d~u
dt

)n
i[xn,εn,un,pn,ρn]

+
(
d~u
dt

)n+1

i[x̃n+1,ε̃n+1,ũn+1,pn+1,ρn]

2 ∆t, (3.57)

~xn+1
i = ~xni +

(
~un

i

εni

)
+
(
~un+1

i

ε̃n+1
i

)
2 ⇒ εn+1

i = f
(
~xn+1
i

)
, (3.58)
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and finally the concentration and density of the particles are updated as

Cn+1
i = Cn

i +
(
∇ ·

(
Dn+1
d ∇C

))
i[xn+1,εn+1,Cn]

∆t, (3.59)

ρn+1
i = Cn+1

i (ρd − ρl) + 0.5(ρd + ρl) ⇒ mn+1
i = ρn+1

i Vpi. (3.60)

The approximate prediction-correction method (See 3.6.1.1) is used to calculate du/dt
and impose incompressibility at each stage.

Because the momentum and pressure steps must be calculated twice; therefore, the
Heun algorithm is approximately twice as expensive as the Euler.

3.6.2 δ-SPH

δ-SPH is an improved form of WC-SPH proposed by Molteni and Colagrossi (2009). The
method was further improved by Antuono et al. (2010) and Marrone et al. (2011). In
this method the pressure is explicitly calculated using the equation of state (Marrone
et al., 2011)

p = c2
o(ρ− ρ0), (3.61)

where c0 is the speed of sound and here is set to 20
√
gH (Molteni and Colagrossi, 2009).

In this scheme, an artificial viscosity is used instead of the viscous term in Eq. (3.2),
and a diffusive term is added to the continuity equation (Eq. (3.19)) to reduce density and
pressure fluctuations as in Marrone et al. (2011). The governing equations are written as

Dρi
Dt

=
N∑
j=1

mj

εj
(~ui − ~uj) · ∇iWij + δhc0

N∑
j=1

mj

εjρj
~ψij · ∇iWij, (3.62)

D~ui
Dt

= −εi
N∑
j=1

mj

εj

(
pi + pj
ρiρj

)
∇iWij + εi~g + αhc0

ρ0

ρi

N∑
j=1

mj

εjρj
πij∇iWij + ~Ri, (3.63)

The Leapfrog time integration scheme was applied to solve the δ-SPH equations as in
Bui et al. (2008)

ρ
n+1/2
i = ρ

n−1/2
i +

(
Dρ

Dt

)n
i

∆t, (3.64)
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~u
n+1/2
i = ~u

n−1/2
i +

(
D~u

Dt

)n
i

∆t, (3.65)

~xn+1
i = ~xni + ~u

n+1/2
i

εni
∆t. (3.66)

Shephard filtering is applied at each time step to renormalise the density field using
(Dalrymple and Rogers, 2006),

ρni =
∑N
j=1

mn
j

εnj ρ
n
j
ρnjW

n
ij∑N

j=1
mn

j

εnj ρ
n
j
W n
ij

, (3.67)

which reduces density oscillations especially at free surfaces.
The time step value, ∆t, is defined to satisfy the Courant stability conditions via

(Barcarolo, 2013; Nomeritae et al., 2016)

∆tCFL ≤ 0.75 h
c0
. (3.68)

3.7 A comparison between EISPH and δ-SPH

This section addresses the first objective, which is to identify an appropriate SPH scheme
to use in simulating fluid flow over and within porous media. The schemes are applied to
a case study of a fluid percolating into a porous medium.

The EISPH has been used to simulate a variety of engineering applications due to its
lower computational cost compared to ISPH (Hosseini et al., 2007; Nomeritae et al., 2016,
2018). Although the method uses approximation in solving PPE, studies have shown
the ability of the scheme to provide smooth and acceptable pressures and velocity fields
(Nomeritae et al., 2016, 2018). Because, δ-SPH has been proven to reproduce smoother
and more accurate pressures, compared to conventional weakly compressible schemes, in
a range of engineering applications (Molteni and Colagrossi, 2009; Marrone et al., 2011;
Nomeritae et al., 2016), it has been selected as the WCSPH scheme in this study.

3.7.1 Vertical percolation into a porous medium

An experimental measurement of percolation of glycerine in a porous medium made of
glass beads, reported in Acton et al. (2001), is simulated here using the EISPH and δ-SPH
schemes. The experiment was conducted in a Perspex tube of internal diameter 0.034
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Figure 3.9: (a) Schematic view of the experimental tank. (b) The extension of the fluid
from the free flow domain to the porous medium and the theoretical pressure distribution
(Section 3.7.1)

m. The tube was filled to a depth of 0.25 m with spherical glass beads with a nominal
diameter of D = 0.002 m (Fig. 3.7.1a). The porosity of the medium was measured as
ε = 0.37 ± 0.02, and the permeability was found to be κ = (3.13 ± 0.2) × 10−9 m2. A
volume of glycerine (6.78× 10−5 m3) was poured onto the top of the medium as rapidly
as possible. The depth of the poured glycerine, above top of the bed, was measured to
be initially as h0 = 0.075 m. The kinematic viscosity was given as 9.06× 10−4 m2s−1.

In the simulations, the density of the fluid was assumed to be ρ = 1260 kg m−3

(Association et al., 1963). The initial spacing between fluid particles (∆x = ∆y) was set
to 0.001 m, with total number of fluid particles equal to 2550. The smoothing length, h,
was 1.2∆x, and the time step was 5× 10−6 s. No-slip boundary conditions were imposed
at the wall boundaries. The pore scale Reynolds number, Re = uD/ν, was calculated
as Re = 3 × 10−4. Since the pore scale Reynolds number was much lower than unity,
the quadratic term of the drag force in Eq. (3.4) was neglected. The porosity was set to
ε = 0.37 and the linear gradual change from 1 to 0.37 (section 3.4.4) was imposed at the
transition layer, with a depth of δε = 0.0072 m. Not using this transition layer caused
numerical instability, likely due to the sudden change in porosity. The permeability value
was set to κ = 3.13× 10−9 m2 as given in the experiment.
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In EISPH, the viscous term was calculated as in Eq. (3.26), and the dynamic viscosity
was calculated to be µ = 1.14 Pa · s. In δ-SPH, the viscosity was calculated using the
artificial viscosity as in Eq. (3.27), with α equal to 0.02 and c0 equal to 20. The quintic
kernel function (see section 3.2.2) was used in both schemes.

The fluid was released over the porous medium at t = 0 s and it started to percolate
into the porous medium. The residual fluid level above the porous medium throughout
the simulation is given by h and the percolated depth of the fluid within the porous
medium is given by l (Fig. 3.7.1b). Due to the very small velocity of the fluid, the pressure
distribution can be assumed to be hydrostatic (Fig. 3.7.1b). Its value above the porous
medium is (Acton et al., 2001)

p(Y, t) = p0 + ρg(h+ 0.25− Y ), (3.69)

and inside the porous medium is

p(Y, t) = p0 + ρgh(1 + (0.25− Y )/l), (3.70)

with p0 assumed to be zero.
Fig. 3.10 shows the simulated pressure values for both schemes. The change in the

porosity of the media (from ε = 1 to ε = 0.37) is evident from the particles moving apart at
the surface of the porous medium (Y = 0.25 m), and this appears to be correctly handled.
Fig. 3.11 shows pressure values at two elevations, ±0.02 m from the interface. These values
were calculated as the average of the pressure values of the particles within a distance
equal to a smoothing length above and below the measurement level. The theoretical
pressure values were determined using Eqs. (3.69) and (3.70), and measured fluid depths
given in (Acton et al., 2001). As shown in Fig. 3.11, the both schemes reproduced smooth
pressure pattern, with EISPH reproducing pressure values comparatively closer to the
theoretical values.

Fig. 3.12a shows the drainage of the fluid through the porous medium, (h0 − h),
and Fig. 3.12b shows porosity multiplied by the percolated depth of the fluid within
the porous medium, εl, as a function of time. Both schemes were able to reproduce the
observed data in Acton et al. (2001). As shown in Fig. 3.12, the change of volume of
glycerine in the free flow domain is nearly equal to the change of volume occupied by
glycerine in the porous medium (i.e., h0− h ≈ εl). The error in volume conservation (the
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Figure 3.10: Simulated pressure distribution in the column of glycerine percolating
through a porous medium 0.25 m deep with a) EISPH and b) δ-SPH.
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Figure 3.11: Comparison of the time evolution of pressure between EISPH and δ-SPH at
(a) 0.02 m above and (b) 0.02 m below the porous medium.

Figure 3.12: (a) Time evolution of drainage of glycerine over the porous medium and (b)
porosity times percolated depth of glycerine within the porous medium in the test case
in Fig. 3.10

slight deviation between h0 − h and εl) might be due to the approach used to model the
interface between domains with different porosities; this requires further study.

In conclusion, both schemes reproduced satisfactorily results for fluid flow across media
with different porosities. However, the EISPH scheme led to pressure values comparatively
closer to the theoretical data. Additionally, the EISPH uses real viscosity term, in contrast
to the artificial viscosity in δ-SPH, which better takes into account the physical properties
of fluids. Furthermore, the δ-SPH scheme uses numerical parameters such as speed of
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sound, the parameters in approximating the viscous term of the momentum equation and
the parameter in the continuity equation. These parameters are often recommended by
numerical experiments and varies depending on the application (Molteni and Colagrossi,
2009; Marrone et al., 2011). Due to these reasons, EISPH was selected to develop a model
of multi-fluid flow in porous media.

3.8 Sink approximations

To carry out SPH simulations of problems such as seawater upconing below extraction
wells, a method to describe a sink for the extraction of water mass must be developed.

In a point sink, such as suction or pumping acting at a point, the fluid surrounding
the sink point moves toward the sink point. In SPH, this means that fluid particles should
move toward the sink point and a portion of the fluid’s mass should be removed at a
rate equal to the sink rate. The extraction of the mass from a point is included in the
continuity equation (Eq. 3.1) (Bear and Bachmat, 2012) in the form of fluid flux per unit
of volume, Γ , and is approximated as

Γ =
s∑

k=1
Qkδ(~x− ~xk), (3.71)

where k is the kth sink point, s denotes the number of sink points, Q is the sink rate and
δ is the Dirac function. Eq. (3.71) describes fluid flux per unit volume due to sinks. The
contributions of sinks for particle i is approximated as

Γi =
s∑

k=1
Qkδ(~xi − ~xk) ≈

s∑
k=1

QkζkWik, (3.72)

where ζ is a normalization factor equivalent to an approximation of constant 1 and
defined as (Monaghan et al., 2005; Monaghan, 2005)

1
ζk

=
N∑
j=1

mj

εjρj
Wjk. (3.73)

In Eq. (3.72), sink points within a distance equal to the radius of the support of the
kernel function from particle i are detected to calculate Γ ; therefore, a sink point directly
affects the particles (sink particles hereafter) inside the support domain at the sink point.
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The particles outside the direct influence of the sink point are indirectly affected through
their interaction with the sink particles.

The term Γ contributes to the pressure Poisson equation (Eq. 3.39), causing the
pressure of the particles surrounding the sink point to change in a way that they move
towards the sink point.

Each particle in SPH carries a certain amount of fluid mass and in order to account
for the mass extraction due to the sink, particles mass must be reduced and particles
deleted where and when necessary. Three different methods for deleting particles are
proposed to investigate their advantages and disadvantages.

3.8.1 Solely Particle Removal (SPR)

In this method, the mass reduction due to the sink is handled by just deleting particles.
One particle is deleted after a certain number of time steps. The duration, tp, required
to delete one particle is determined using the volume of fluid in a particle and the sink
rate, such that

tp = εV

Q
(3.74)

where V is a spatial volume associated with a particle, and εV is the volume of fluid that
each particle carries. Mass is reduced (i.e., one particle is removed) at every time step
that is a multiple of tp (i.e., at times t = αtp, α being an integer). Every time t = αtp,
the particle closest to the sink point is removed (Fig. 3.13a).

Because the sink particles move toward the sink point due to the inclusion of Γ in
the pressure Poisson equation (Eq. 3.39), the particle deletion does not lead to a void in
the vicinity of the sink point.

3.8.2 Mass Reduction and Particle Removal (MRPR)

Similar to SPR, one particle is removed every certain number of time steps. However,
differently from SPR, the mass of sink particles is gradually reduced every time step
before one particle is deleted. The amount of mass required to be removed in one time
step is divided among the sink particles and reduced from the mass of the particles. The
division of the mass, required to be removed, among the sink particles is handled in two
ways to investigate their advantages and disadvantages; (1) in accordance to the kernel
value (MRPRK), so that the particle closer to a sink point loses more mass than the
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Figure 3.13: The procedure for the reduction of mass due to a sink point using (a) Solely
Particle Removal (SPR), (b) Mass Reduction and Particle Removal (MRPR) and (c)
Constant Mass Reduction (CMR).

more distant ones (2) evenly (MRPRE). Therefore, the amount of the mass reduced
from each particle is determined using the sink rate, time step value, kernel value (used
in MRPRK), and number of sink particles (used in MRPRE). When the time required
to delete one particle, αtp, is reached, the closest particle to the sink point is removed
and the mass of the remaining sink particles is set back to their initial mass value (Fig.
3.13b).

3.8.3 Constant Mass Reduction (CMR)

In this method, the mass of the sink particles is gradually reduced every time step, as
in MRPR. The reduction of the mass of the sink particles continues until the mass of a
sink particle drops below a cut-off value, which here is set to 1% of particles initial mass
value, below which the particle is removed (Fig. 3.13c).
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SPH modelling of multi-fluid lock-exchange over and

within porous media

This chapter comprises the published paper:
Basser, H., Rudman, M., & Daly, E. (2017). SPH modelling of multi-fluid lock-
exchange over and within porous media. Advances in Water Resources, 108,

15-28.
The paper won the 2017 best departmental research paper award.

4.1 Introduction

Multi-fluid flow over and within porous media is ubiquitous in nature and engineering
applications. The SPH modeling of these flows and validation against observations have
not been largely conducted in literature. The explicit numerical scheme for incompressible
fluid using Smoothed Particle Hydrodynamics (EISPH) (section 3.6.1) was employed
due to its advantages compared to the δ-SPH scheme. Two integration algorithms, e.g.
Euler and Heun (see section 3.6.1), were employed to integrate the SPH schemes and
investigate a possible effect of the integration methods on the results.

To validate the model and explore its advantages and disadvantages, case studies
including percolation of a single fluid in a porous medium, gravity current of a single
fluid over a porous medium, multi-fluid flow over an impermeable bed, and a porous
medium were simulated and compared with experimental data.

51



CHAPTER 4. SPH MODELLING OF MULTI-FLUID LOCK-EXCHANGE OVER
AND WITHIN POROUS MEDIA

The section associated with the methods in the paper is also included in chapter 3 of
this thesis. Furthermore, some parts of one of the case studies in the paper (section 3.1
in the paper) was also presented in section 3.7 of this thesis.

4.2 Published paper

See the published paper starting from the following page.
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a b s t r a c t 

Multi-fluid flow over and within porous media occurs frequently in nature and plays an important role 

in engineering applications. The modeling of these flows and validation against experimental or field ob- 

servations have not been largely conducted in literature. An explicit numerical scheme for incompressible 

fluid using Smoothed Particle Hydrodynamics (EISPH) was employed and solved using two integration al- 

gorithms. To explore the capabilities and limitations of the model, case studies including percolation of a 

single fluid in a porous medium, gravity current of a single fluid over a porous medium, multi-fluid flow 

over an impermeable bed, and a porous medium were simulated and compared with experimental data. 

The EISPH method led to results overall similar to the observed experimental data. The model was able 

to reproduce the behaviour of the flow within media with different porosities. In addition, the model 

reproduced behaviour of multi-fluid flow at the interface between different fluids, such as reproducing 

Kelvin–Helmholtz vortices and diffusion of salt. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

A gravity current is a multi-fluid flow that occurs due to a 

density difference between fluids ( Huppert, 2006; Simpson, 1982 ). 

Gravity currents often occur in the presence of porous media, and 

play a crucial role in a variety of natural and industrial processes, 

such as sea water intrusion into groundwater, carbon dioxide mi- 

gration in groundwater ( Zhao et al., 2013 ) and oil recovery through 

water flooding in petroleum reservoirs ( Coutinho et al., 2008 ). 

Gravity currents have been often studied using lock-exchange 

laboratory experiments, where a dense fluid is released into an 

ambient fluid via removal of a lock. These experiments mostly fo- 

cused on the front velocity and often referred to flow over an im- 

permeable bed ( Adduce et al., 2011; Lowe et al., 2005; Rottman and 

Simpson, 1983 ), although some experiments have been conducted 

in porous media ( Acton et al., 2001; Huppert and Woods, 1995; 

Thomas et al., 2004 ). Although experimental studies have helped to 

explore the behaviour of gravity currents, they suffer from disad- 

vantages such as the difficulty in up-scaling to dimensions suitable 

for practical applications, and in porous media the opaqueness of 

the media makes it difficult to observe the dynamics of the flow 

∗ Corresponding author. 

E-mail address: (H. Basser). 

( Thomas et al., 2004 ). Therefore, analytical models and computa- 

tional techniques have been developed. 

Shallow water equations are the base of most analytical solu- 

tions proposed for lock-exchange flows ( Rotunno et al., 2011; Un- 

garish and Huppert, 2002 ). These equations can reproduce the key 

features of the flow, such as front position and speed; however, 

the interaction of the flow with boundaries and diffusion between 

fluids are not well captured ( Rotunno et al., 2011 ). Alternatively, 

the Navier–Stokes equations, including a diffusion equation for the 

density variations, have been employed to study these flows in fur- 

ther detail ( Birman et al., 2005; Cantero et al., 2007 ). From a nu- 

merical point of view, the main modelling challenges in these com- 

plex flows are handling the discontinuity in flow behaviour at the 

interface between the fluids and porous media, the abrupt discon- 

tinuity in fluid properties such as density for immiscible fluids, and 

the potentially complex geometry of the interface. To tackle these 

problems, it is necessary to track and recognise the interfaces; this, 

however, can be computationally expensive in grid based numer- 

ical methods. Therefore, there has been a rising interest in us- 

ing meshless methods, such as Smoothed Particle Hydrodynamics 

(SPH)( Liu and Liu, 2003 ). 

SPH is a fully Lagrangian meshless method that has shown 

good accuracy for many computational fluid dynamics applications 

( Liu and Liu, 2003 ). Due to its Lagrangian nature, it has been re- 

cently applied to multi-fluid flows with interfaces ( Monaghan and 

Rafiee, 2013; Shao, 2013 ); however, it still requires extensive vali- 

http://dx.doi.org/10.1016/j.advwatres.2017.07.011 

0309-1708/© 2017 Elsevier Ltd. All rights reserved. 
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dation against experimental data or high quality benchmark tests 

( Violeau and Rogers, 2016 ). SPH algorithms have been tested suc- 

cessfully for multi-fluid flows with high density ratios ( Lind et al., 

2015; Mokos et al., 2015; Monaghan and Rafiee, 2013 ), but their 

application to multi-fluid flows with small density ratios has not 

been widely studied ( Pahar and Dhar, 2016a ). The ability of SPH 

to simulate multi-fluid flow with density ratio close to one has 

been tested with some modifications to the Navier–Stokes equa- 

tions, using a pressure decoupling formula and Boussinesq approx- 

imation, in confined flows; however, its application in free surface 

flows requires further improvement ( Ghasemi et al., 2013; Leroy 

et al., 2015 ). 

SPH has also been employed to model fluid flow in porous me- 

dia. Some studies focused on pore-scale flow ( Kunz et al., 2016; 

Tartakovsky et al., 2016 ), soil and water interaction ( Fourtakas and 

Rogers, 2016 ), and, more in engineering applications, flow in fully 

saturated media has been considered ( Bui et al., 2007; Shao, 2010 ), 

with encouragement for further validation. The behaviour of the 

flow at the interface between porous media with different porosi- 

ties has not been well investigated. Recently, a corrected SPH al- 

gorithm has been proposed to solve the fluid flow in porous me- 

dia, focusing on the behaviour of the flow moving between differ- 

ent media ( Akbari, 2014 ). This algorithm needs a strong validation 

against experimental observations. 

Despite the increasing interest in SPH for modelling multi-fluid 

flows and fluid flow in porous media, the simultaneous modelling 

of a multi-fluid flow that occurs over or within a porous medium 

has not been largely studied. Developing a method to simulate 

multi-fluid flows in media with different porosities is important 

to study natural and man-made events, such as seawater intrusion 

in groundwater ( Zhao et al., 2013 ) and release of sewage liquids 

nearby coasts ( Thomas et al., 2004 ), that often occur in media with 

heterogeneous porosity. 

The contribution of this study is to bring together SPH schemes 

for multi-fluid flow and flow in porous media to generate a model 

capable of simulating multi-fluid flow in porous media at scales 

significantly larger than pore scale. Most studies employ weakly 

compressible SPH (WCSPH) or incompressible SPH (ISPH) schemes. 

The ISPH method is preferred owing to its more accurate pressure 

prediction ( Violeau and Rogers, 2016 ). However, ISPH is computa- 

tionally expensive as the Poisson equation to calculate pressure 

must be solved implicitly ( Nomeritae et al., 2016 ). To overcome 

this high computational cost, explicit incompressible SPH (EISPH) 

has been proposed and has shown the capability in reproducing 

experimental data for various applications ( Hosseini et al., 2007a; 

Nomeritae et al., 2016; Rafiee and Thiagarajan, 2009 ). The EISPH 

method is used in this study for its computational efficiency. The 

credibility of the model is tested against data from experiments 

available in the literature. 

2. Methods 

This section describes the Navier–Stokes equations for multi- 

fluid flows in porous media with a spatially varying porosity, ε( � x ) . 

In this study, ε( � x ) is fixed in time; however, this condition can be 

relaxed without much additional complexity. 

2.1. Governing equations 

The governing equations for a flow of two or more incom- 

pressible fluids with different densities in a medium with porosity 

changing in space are Akbari (2014) , Pahar and Dhar (2016a ), Pahar 

and Dhar (2016c ) 

∇ · �
 u = 0 , (1) 

D 

�
 u 

Dt 
= − ε

ρ
∇ p + 

μ

ρ
∇ 

2 �
 u + ε�

 g + 

�
 R , (2) 

DC 

Dt 
= D e ∇ 

2 C, (3) 

where �
 u is the Darcian velocity equal to ε�

 u f , �
 u f being the fluid 

intrinsic velocity, ρ is the fluid density, p is pressure, μ is the dy- 

namic viscosity, � g is the gravitational acceleration, D e is the effec- 

tive coefficient of diffusivity, which depends on the flow regime, 

fluid and scalar properties and characteristics of the porous me- 

dia, and C is concentration of a solute such as salt. Variations 

of fluid density were assumed to be a direct function of C as 

ρ = f (C) , where the form of the function f is defined according 

to the physics of the scenario being modelled. C is assumed to 

be an indicator function here, with −0 . 5 ≤ C ≤ 0 . 5 where C = −0 . 5 

and C = 0 . 5 correspond to the minimum and maximum density, 

respectively. C relates to density as 

ρ = C(ρd − ρl ) + 0 . 5(ρd + ρl ) , (4) 

where ρd and ρ l are the maximum and minimum densities, re- 

spectively. This function is more beneficial from a numerical point 

of view ( Ghasemi et al., 2013 ). C will be referred to as concentra- 

tion hereafter. 

When a fluid passes through a porous medium, the solid matrix 

of the medium generates a resistance to the fluid motion. This drag 

force consists of a linear (Darcy) and a quadratic (Forchheimer) 

term as Nield (20 0 0) 

�
 R = −εμ

ρκ
�
 u − εc F 

κ1 / 2 
| � u | � u , (5) 

where κ is the permeability of the media through which the flow 

occurs, and c F is the dimensionless Forchheimer coefficient. The 

Darcy term is dominant in flows with a pore scale Reynolds num- 

ber lower than unity ( Nield, 20 0 0 ). For larger Reynolds numbers, 

the quadratic term dominates due to inertial effects ( Joseph et al., 

1982 ). In the absence of a porous medium, ε = 1 and κ → ∞ , such 

that both terms on the right hand side of Eq. (5) are zero. A de- 

tailed derivation of the continuity and momentum equations are 

reported in the appendix of Pahar and Dhar (2016c ). 

2.2. SPH approximation 

A brief overview of SPH is provided here, but more detailed ex- 

positions can be found in Monaghan (1992) ; 1994 ); 2005 ). In SPH, 

fluids are discretised as ensembles of Lagrangian particles that in- 

teract with each other. The values of variables associated with each 

particle are approximated using the values of the same variables of 

surrounding particles. The contribution of each particle to the ap- 

proximation of the variable is determined by interpolation using a 

weighting function ( Liu and Liu, 2003 ). A generic function f ( � x ) is 

approximated as Monaghan (1992) 

f ( � x i ) = 

N ∑ 

j=1 

V j f ( � x j ) W (| � x i − �
 x j | , h ) , (6) 

where j (1,... , N ) denotes particle labels, V j represents the spatial 

volume of particle j, W is the kernel weighting function, the value 

of which depends on the distance between particles, | � x i − �
 x j | , h is 

a smoothing length that controls the support domain of the kernel 

function, with a radius equal to λh, λ being a coefficient that de- 

pends on the order of the kernel, and N is the number of particles 

within the support domain. 

A quintic spline weighting function ( Liu and Liu, 2003; Morris, 

1996 ) was used here because, for the cases analysed, it led to more 
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stable pressure values than a cubic B-spline ( Monaghan and Lat- 

tanzio, 1985 ). The quintic function is 

W (q, h ) = αd ×

⎧ ⎪ ⎨ 

⎪ ⎩ 

(3 − q ) 5 − 6(2 − q ) 5 + 15(1 − q ) 5 0 ≤ q < 1 

(3 − q ) 5 − 6(2 − q ) 5 1 ≤ q < 2 

(3 − q ) 5 2 ≤ q < 3 

0 q > 3 , 

(7) 

where αd is a normalisation constant equal to 1/(120 h ), 

7/(478 πh 2 ), and 3/(359 πh 3 ) in one-, two- and three-dimensional 

domains, respectively, and q = | � x i − �
 x j | /h = | � x i j | /h . 

The gradient of a function f ( � x ) can be approximated as 

Monaghan (1992) 

∇ f ( � x i ) = 

N ∑ 

j=1 

V j f ( � x j ) ∇ i W i j = 

N ∑ 

j=1 

V j f ( � x j ) 
�
 x i j 

| � x i j | 
∂ W i j 

∂ | � x i j | , (8) 

where W i j = W (| � x i − �
 x j | , h ) . 

2.2.1. Spatial volume 

Since the flow can occur in media with different porosities, 

particular care needs to be paid to the definition of spatial vol- 

ume. Porosity is defined to be a function of position ( � x ) and thus 

the value of porosity assigned to a particle is only dependent on 

the particles’ position. When particle j is not in a porous medium 

(ε = 1) , the volume of the particle, V p , is V pj = m j /ρ j . When the 

particle enters a porous medium, the same mass of fluid occupies 

a larger volume, V j , referred to as spatial volume here, that ac- 

counts for both fluid and solid volumes, so that m j = ρ j V j ε j , with 

V pj = ε j V j . In this study, the mass associated with each particle 

is kept constant, except for mass change due to diffusion ( Eq. 3 ); 

therefore, the spatial volume (i.e., the space) associated with each 

particle is Pahar and Dhar (2016b ) 

V j = 

m j 

ε j ρ j 

. (9) 

If the density changes due to variations in scalar concentration, 

the mass of fluid associated with particle j should be changed as 

m j = ρ j ε j V j = ρ j V pj . 

The spatial volume associated with each particle depends on 

the porosity of the medium. Therefore, the spatial volume of par- 

ticles inside a porous medium is expected to be larger than that 

of particles within a fluid domain; this leads to a coarser resolu- 

tion inside the porous medium ( Pahar and Dhar, 2016b ). In order 

to keep the number of particles inside the support domain in a cer- 

tain range, the smoothing length should be adjusted according to 

the value of porosity. However, having a variable smoothing length 

adds extra terms involving the derivative of smoothing length in 

the momentum equation ( Price and Monaghan, 2004 ). Another ap- 

proach is using a larger support domain to occupy a sufficient 

number of particles. The quintic kernel ( Eq. 7 ) has a larger support 

domain compared to more commonly used kernels, such as cubic 

spline, and is used here to avoid this problem. 

2.2.2. Numerical scheme 

EISPH was adopted to solve the governing equations ( Nomeritae 

et al., 2016 ). A two step, prediction-correction projection method 

( Cummins and Rudman, 1999 ), with an approximate solution of 

the Poisson equation, was employed to calculate velocity and par- 

ticle position of each particle at each time step. A time integration 

algorithm that is first order in time for velocity and second or- 

der in time for particle position was used. Although the algorithm 

is not totally first order, it will be referred as an Euler algorithm 

hereinafter. 

In the prediction step, an intermediate velocity ( � u ∗) is calcu- 

lated as 

�
 u 

∗
i = 

�
 u 

n 
i + 

(
μ

ρ
∇ 

2 �
 u 

)n 

i 

	t + εn 
i 

(
�
 g − μ

ρκ
�
 u − c F 

κ1 / 2 
| � u | � u 

)n 

i 

	t, (10) 

where �
 u n is particle velocity at time n 	t , with 	t constant 

throughout the simulations. 

The viscous term is approximated as Shao and Lo (2003) (
μ

ρ
∇ 

2 �
 u 

)n 

i 

= 

N ∑ 

j=1 

4 m 

n 
j 
(μi + μ j ) � u 

n 
i j 

· � x n 
i j 

εn 
j 
(ρn 

i 
+ ρn 

j 
) 2 

(| � x n 
i j 
| 2 + η2 

)∇ i W i j 
n 
, (11) 

where η is a small parameter included to ensure that the denom- 

inator remains non-zero ( η = 0 . 001 h i j , with h ij = ( h i + h j )/2), and 

�
 u n 
i j 

= 

�
 u n 
i 

− �
 u n 
j 

. The gravitational and drag terms are calculated di- 

rectly, with the drag term calculated only for particles inside a 

porous medium. 

The intermediate positions ( � x ∗) are calculated using the inter- 

mediate intrinsic velocity of the particles as 

�
 x ∗i = 

�
 x n i + 

�
 u 

∗
i 

εn 
	t, (12) 

where � x n is particle position at time n 	t . Afterwards, the inter- 

mediate porosity of particles, ε∗, associated with the intermediate 

position is assigned. 

In the correction step, the pressure of the particles is calculated 

in a way to approximately satisfy incompressibility. The velocity of 

a particle at time (n + 1)	t is 

�
 u 

n +1 
i 

= 

�
 u 

∗
i −

ε∗
i 

ρn 
i 

∇p n +1 
i 

	t, (13) 

where p n +1 is particle pressure at time (n + 1)	t . Combining Eqs. 

(1) and (13) yields the pressure Poisson equation 

∇ ·
(

ε∗

ρn 
∇ p n +1 

)
i 

= 

(∇ · �
 u 

∗

	t 

)
i 

. (14) 

The divergence of the intermediate velocity is the source term 

for the pressure Poisson equation, and is approximated using Eq. 

(8) as Pahar and Dhar (2016b ) 

( ∇ · �
 u 

∗) i = 

N ∑ 

j=1 

m 

n 
j 

ε∗
j 
ρn 

j 

( � u 

∗
j − �

 u 

∗
i ) · ∇ i W 

∗
i j . (15) 

The Laplacian operator in Eq. (14) is expressed using an approx- 

imation of the second derivative ( Monaghan, 2005 ) and reads 

∇ ·
(

ε∗

ρn 
∇ p n +1 

)
i 

= 

N ∑ 

j=1 

m 

n 
j 

ε∗
j 
ρn 

i 
ρn 

j 

(
ε∗

i 
+ ε∗

j 

)
�
 x ∗
i j 

· ∇ i W 

∗
i j 

| � x ∗
i j 
| 2 + η2 

(
p n +1 

i 
− p n +1 

j 

)
, 

(16) 

so that 

N ∑ 

j=1 

m 

n 
j 

ε∗
j 
ρn 

i 
ρn 

j 

(
ε∗

i 
+ ε∗

j 

)
�
 x ∗
i j 

· ∇ i W 

∗
i j 

| � x ∗
i j 
| 2 + η2 

(
p n +1 

i 
− p n +1 

j 

)
= 

(∇ · �
 u ∗

	t 

)
i 

. (17) 

Eq. (17) can be written for particle i as 

p n +1 
i 

= 

B i + 

∑ N 
j=1 A i j p 

n +1 
j ∑ N 

j=1 A i j 

, (18) 

with 

A i j = 

m 

n 
j 

ε∗
j 
ρn 

i 
ρn 

j 

(
ε∗

i 
+ ε∗

j 

)
�
 x ∗
i j 

· ∇ i W 

∗
i j 

| � x ∗
i j 
| 2 + η2 

, (19) 

and 

B i = 

(∇ · �
 u 

∗

	t 

)
i 

. (20) 
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Considering a small time step, the value of p n +1 
j 

on the right hand 

side of Eq. (18) in EISPH is assumed to be equal to p n 
j 
, so that 

the pressure of each particle can be approximated explicitly as 

Nomeritae et al. (2016) , Hosseini et al. (2007) 

p n +1 
i 

= 

B i + 

∑ N 
j=1 A i j p 

n 
j ∑ N 

j=1 A i j 

. (21) 

This is an approximation that is equivalent to diagonalising the 

Poisson problem matrix and was shown to work for various appli- 

cations ( Nomeritae et al., 2016 ). Since in the cases analysed here no 

negative pressure was expected physically, possible negative pres- 

sures arising from small numerical errors are set to zero. 

The initial pressure value of the free surface particles are set to 

zero. Therefore, the pressure of free surface particles from the pre- 

vious time step is always equal to zero. However, when pressure at 

the new time step is calculated, its value for the free surface par- 

ticles might be non-zero and needs to be re-set to the free surface 

boundary condition. Therefore, after the calculation of pressure us- 

ing Eq. (21) , the pressure of particles of the free surface is imposed 

to be equal to zero. The determination of the free surface parti- 

cles is explained in Section 2.2.4 . The pressure calculated from Eq. 

(21) is used in Eq. (13) to calculate � u n +1 
i 

. The pressure gradient is 

calculated as (
ε∗

ρn 
∇p n +1 

)
i 

= ε∗
i 

N ∑ 

j=1 

m 

n 
j 

ε∗
j 

( 

p n +1 
i 

ρn 2 
i 

+ 

p n +1 
j 

ρn 2 
j 

) 

∇ i W 

∗
i j . (22) 

Once � u n +1 
i 

is determined, the new position is then calculated as 

�
 x n +1 
i 

= 

�
 x n i + 

(
�
 u n 
i 

εn 
i 

)
+ 

(
�
 u n +1 
i 

ε∗
i 

)
2 

, (23) 

and new particle porosity, εn +1 , associated with the new position 

is assigned. Afterwards, the new concentration of each particle is 

calculated using Eq. (3) as Pahar and Dhar (2016a ) 

C n +1 
i 

= C n i + 

(
D e ∇ 

2 C 
)

i 
	t, (24) 

with Ghasemi et al. (2013) , Zhu and Fox (2001) 

(
D e ∇ 

2 C 
)

i 
= 

N ∑ 

j=1 

m 

n 
j 

εn +1 
j 

ρn 
j 

(D 

n +1 
ei 

+ D 

n +1 
e j 

) � x n +1 
i j 

· ∇ i W 

∗
i j 

| � x n +1 
i j 

| 2 + η2 

(
C n i − C n j 

)
. 

(25) 

The effective diffusivity coefficient, D e , is determined in ac- 

cordance with flow regime and the porosity of a medium using 

an empirical equation, assuming the porous medium is saturated 

( Simunek and Suarez, 1993 ), as 

D 

n +1 
ei 

= (D mi + D ti ) (ε
n +1 
i 

) 
4 / 3 

, (26) 

where D m 

and D t are coefficients of molecular and turbulent eddy 

diffusivity, respectively. D t is only added for flows with Reynolds 

numbers higher than 10 0 0 ( Simpson, 1997 ). Subsequently, den- 

sity and the mass of each particle are updated as Pahar and Dhar 

(2016a ) 

ρn +1 
i 

= C n +1 
i 

(ρd − ρl ) + 0 . 5(ρd + ρl ) , (27) 

m 

n +1 
i 

= ρn +1 
i 

V pi . (28) 

The time step value, 	t , is defined to satisfy the Courant stabil- 

ity and viscous diffusion conditions as 

	t ≤ min (	t CF L , 	t v isc ) , (29) 

with 

	t CF L ≤ 0 . 25 

h 

u max 
, (30) 

and 

	t v isc ≤ 0 . 125 

h 

2 

ν
, (31) 

where u max is the predicted maximum velocity in the computa- 

tion and ν = μ/ρ is the kinematic viscosity ( Morris et al., 1997 ). 

The time step used in the simulations was chosen to satisfy these 

conditions throughout the simulations, and its value was kept con- 

stant. 

A prediction-correction method (known as Heun’s method) was 

also applied in order to assess the accuracy of the Euler method. 

The method is second order in time, for both velocity and position, 

and is described in Appendix A . 

2.2.3. Initial conditions 

Initial values of velocity, density, mass, concentration, dynamic 

viscosity, smoothing length, and pressure were assigned to the 

fluid particles. Initial velocity components were set to zero, and 

density, mass, and concentration of each particle were assigned ac- 

cording to the fluids’ initial properties. Hydrostatic pressure pro- 

files were assumed at the start of each simulation. 

2.2.4. Boundary conditions 

Different types of particles are used to handle flow, solid 

boundaries, and boundary conditions. Three types of particles are 

used: fluid, virtual, and ghost particles. Fluid particles are associ- 

ated with moving fluids. A single layer of virtual particles is used 

to identify solid boundaries ( Monaghan, 1994 ). The virtual parti- 

cles interact only with fluid particles and exert a repulsive force 

on them as Monaghan (1994) 

F ( � x ) i j = 

{ 

L 

[ (
r 0 | � x i j | 

)p 1 

−
(

r 0 | � x i j | 
)p 2 ] 

1 
| � x i j | 

r 0 | � x i j | ≥ 1 , 

0 

r 0 | � x i j | < 1 , 
(32) 

where p 1 and p 2 are constants equal to 4 and 2 respectively, L 

is the square of the largest velocity, and r 0 is a cut off distance 

assumed to be 0.8 times the initial distance between virtual par- 

ticles. Repulsive forces are applied perpendicularly to the bound- 

aries, and along 45 ° at corners. The distance between the virtual 

particles is set to half the initial spacing of the fluid particles to be 

certain to maintain impermeable boundaries. 

Ghost particles are used to impose boundary conditions. For a 

fluid particle within a distance of 3 h from the solid boundaries, 

a ghost particle is produced symmetrically on the other side of 

the boundaries ( Liu and Liu, 2003 ) ( Fig. 1 (a)). Ghost particles are 

assigned the same density, concentration, mass, pressure, poros- 

ity, dynamic viscosity, effective diffusivity coefficient, and smooth- 

ing length as the corresponding fluid particles. To impose free- 

slip boundary conditions, the component of velocity parallel to the 

boundary is unchanged, while for no-slip it is reversed. The normal 

component of the velocity is reversed for both free-slip and no-slip 

conditions ( Marrone et al., 2011 ) ( Fig. 1 (b)). 

Free-slip or no-slip boundary conditions are used in calculating 

viscous force ( Eq. 11 ), pressure Poisson equation ( Eq. 15 and Eq. 16 ), 

pressure gradient (22) , and change in the concentration ( Eq. 25 ). 

Mixed free-slip and no-slip boundary conditions, which are recom- 

mended for higher Reynolds numbers, can also be implemented, 

as the no-slip boundary condition is used in calculating the vis- 

cous term in the momentum equation while the free-slip boundary 

condition is used in calculating the pressure Poisson equation, the 

pressure gradient and change in concentration ( Grenier et al., 2013; 

Marrone et al., 2013 ). The mixed boundary condition is called mod- 

ified no-slip boundary condition here. 

A free surface pressure condition is assigned after calculating 

particle pressure using Eq. (21) . Free surfaces are identified using 
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Fig. 1. Schematic representation of (a) virtual particles and initial distribution of fluid particles, and (b) application of free-slip and no-slip boundary conditions. 

particle densities. The particle densities are approximated using a 

density summation ( Liu and Liu, 2003 ) as 

ρε
i = 

N ∑ 

j=1 

m j 

ε j 

W i j . (33) 

As the free surface particles reside within a non-complete sup- 

port domain, their particle density is less than the fluid’s initial 

density. When the density of a particle drops below 99% of its 

initial density, it is considered as a free-surface particle and zero 

pressure is assigned to that particle ( Shao and Lo, 2003 ). Eq. (33) is 

only used to detect free surfaces, as the density of particles during 

integration are updated only by Eq. (27) . 

2.3. Interface conditions 

When particles move between media with different porosities, 

the porosity values are assigned depending on the particles’ posi- 

tion. However, the geometrical transition at an interface between 

media is not usually sharp, and a sharp transition may not prop- 

erly represent the physics of the problem ( Duman and Shavit, 

2010 ). Furthermore, based on our investigations this sharp change 

in porosity may lead to numerical instabilities. Therefore, a grad- 

ual change in porosity is usually applied at the interface ( Akbari, 

2014 ). In this study, a gradual linear change of porosity is applied 

at the interface between media with different porosities. As shown 

in Fig. 2 , the porosity linearly changes in a transition layer between 

a fluid flow domain, ε = 1 , and a porous medium, ε = εm 

. The 

thickness of the transition layer is assumed to be equal to the di- 

ameter of the support domain of the kernel function, δε = 2 λh . A 

sharp interface can also be simulated with no transition layer. 

3. Case studies 

In this section the method is applied to four different cases to 

test different aspects of the method and validate it where possi- 

ble. The cases are: (a) vertical percolation of a single fluid in a 

porous medium ( Acton et al., 2001 ) in order to check the accuracy 

Fig. 2. Definition of the transition layer between a free flow and a porous medium 

with porosity εm . The depth of the transition layer, δε , equals the diameter of the 

kernel function, 2 λh . 

and limitations of the method in modelling a flow moving in me- 

dia with different porosities, (b) gravity current of a single fluid 

over a porous medium in order to investigate the credibility of 

the model to simulate currents propagating over a porous medium 

( Acton et al., 2001 ), (c) Boussinesq lock-exchange over an imperme- 

able bed ( Adduce et al., 2011 ) to validate the model for simulating 

multi-fluid flows focusing on the evolution of the current front and 

diffusion at the fluids’ interface, and (d) Boussinesq lock-exchange 

over a porous medium ( Thomas et al., 2004 ) to bring together the 

models of the single fluid flows in porous media and multi-fluid 

flows over the impermeable bed to simulate a multi-fluid flow in 

a porous medium. 
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Fig. 3. Simulated pressure distribution in a case with a column of glycerine percolating through a porous medium 0.25 m deep. The Heun algorithm was used in the 

simulation. 

3.1. Percolation of a fluid in a porous medium 

The experiment of fluid percolation in a porous medium de- 

scribed in Acton et al. (2001) was simulated using both time in- 

tegration algorithms. The experiment was conducted in a Perspex 

tube of internal diameter 0.034 m. The tube was filled to a depth 

of 0 . 25 m with spherical glass beads with a nominal diameter 

of D = 0 . 002 m . The porosity of the medium was measured as 

ε = 0 . 37 ± 0 . 02 , and the permeability was found to be κ = (3 . 13 ±
0 . 2) × 10 −9 m 

2 . A volume of glycerine, V = 6 . 78 × 10 −5 m 

3 , was 

poured onto the top of the medium as rapidly as possible. The 

depth of the poured glycerine was measured as h 0 = 0 . 075 m . The 

kinematic viscosity was measured to be 9 . 06 × 10 −4 m 

2 s −1 . 

In the simulations, the density of the fluid was assumed to be 

ρ = 1260 kg m 

−3 , such that the dynamic viscosity was set to μ = 

1 . 14 Pa · s . The initial spacing between fluid particles ( 	x = 	y ) 

was set to 0.001 m, with total number of fluid particles equal 

to 2550. The smoothing length, h , was 1.2 	x , and the time step 

was 5 × 10 −6 s . No-slip boundary conditions were imposed at the 

wall boundaries. The pore scale Reynolds number, Re = uD/ν, was 

calculated as Re = 3 × 10 −4 . Since the pore scale Reynolds number 

was much lower than unity, the quadratic term of the drag force 

in Eq. (5) was neglected. The porosity was set to ε = 0 . 37 and a 

linear gradual change was imposed at the transition layer, with a 

depth of δε = 0 . 0072 m , as explained in Section 2.3 . Not using this 

transition layer caused numerical instability that might be due to 

the sudden change in porosity. The permeability value was set to 

κ = 3 . 13 × 10 −9 m 

2 . 

Fig. 3 shows the simulated pressure values. The change in the 

porosity of the media (from ε = 1 to ε = 0 . 37 ) is evident from the 

particles moving apart at the surface of the porous medium ( Y = 

0 . 25 m ), and this appears to be correctly handled. Fig. 4 shows 

pressure values at two elevations, ±0 . 02 m from the interface. 

These values were calculated as the average of the pressure val- 

ues of the particles within a distance equal to a smoothing length 

above and below the measurement level. The theoretical pressure 

values were determined using the analytical equations, derived as- 

suming a hydrostatic pressure, and measured fluid depths ( Acton 

et al., 2001 ). As shown in Fig. 4 , the model was able to reproduce 

these results using both time integration schemes; the comparable 

results of the two models might be due to the small time step. 

Fig. 5 a shows the drainage of the fluid through the porous 

medium, ( h 0 − h ) where h is the residual fluid level above the 

porous medium, and Fig. 5 b shows porosity times the percolated 

depth of the fluid within the porous medium, εl , as a function 

of time. Again both numerical algorithms were able to reproduce 

the observed data ( Acton et al., 2001 ), with the Heun integration 

scheme leading to results slightly closer to the experiment. As 

shown in Fig. 5 , the change of volume of glycerine in the free flow 

domain is equal to the change of volume occupied by glycerine 

in the porous medium (i.e., h 0 − h = εl). This appeared to be an is- 

sue in other studies that modelled a similar flow with SPH ( Akbari, 

2014; Aly and Asai, 2015 ). The error in volume conservation might 

be due to the approach used to model the interface between do- 

mains with different porosities; this requires further study. Fur- 

thermore, the SPH schemes in other studies are different. For ex- 

ample, Akbari (2014) changed the density of particles instead of 

their volumes when moving between media with different porosi- 

ties. This might be problematic as density also appears in the pres- 

sure gradient term in addition to the particles volumes. 

The CPU time for the Heun integration method was approxi- 

mately twice that of the Euler integration method. 

3.2. Gravity current over a porous medium 

The experiment of Acton et al. (2001) , who examined flow of 

a viscous gravity current over a dry porous medium, was simu- 

lated. In the experiment, a tank was used as sketched in Fig. 6 . The 

porous medium was composed of dried spherical glass beads with 
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Fig. 4. Time evolution of pressure (a) 0.02 m above and (b) 0.02 m below the porous medium in the case of glycerine percolating into a porous medium. 

Fig. 5. (a) Time evolution of drainage of glycerine over the porous medium and (b) porosity times percolated depth of glycerine within the porous medium in the test case 

in Fig. 3 . 

Fig. 6. Schematic view of the flume used in the experiment by Acton et al. (2001) ( Section 3.2 ). 

a nominal diameter of D = 0 . 002 m . The fluid behind the gate was 

glycerine with kinematic viscosity of ν = 7 . 2 × 10 −4 m 

2 s −1 . The 

gate was raised at t = 0 s to allow a volume of glycerine to flow 

over the porous medium. After one second the gate was rapidly 

closed. The porosity and averaged permeability were found to be 

ε = 0 . 37 ± 0 . 02 , and κ = 3 . 1 × 10 −9 m 

2 , respectively. The volume 

per unit width of glycerine released after the closure of the gate 

was measured to be q er = 3 . 1 × 10 −3 m 

2 . The initial volume per 

unit width, depth, and length of the fluid behind the gate were 

not specified in Acton et al. (2001) ; therefore, they were assumed 

using a trial and error approach to obtain a released volume close 

to that in the experiment. 
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Fig. 7. Simulated pressure distribution for the propagation of a gravity wave over 

and within a porous medium ( Section 3.2 ). The figure’s scale is 2:1 for better visu- 

alisation of the vertical scale. 

In the simulation, the initial volume per unit width, the ini- 

tial depth and length of the fluid behind the gate were set 

to q 0 = 4 . 16 × 10 −3 m 

2 , h 0 = 0 . 042 m , and x 0 = 0 . 099 m respec- 

tively. The initial spacing between fluid particles ( 	x = 	y ) was 

set to 0.001 m, with total number of fluid particles equal to 

4561. The smoothing length, h , was 1.2 	x , and the time step 

was 5 × 10 −6 s . No-slip boundary conditions were imposed at solid 

boundaries. The dynamic viscosity was set to μ = 0 . 91 Pa · s , as- 

suming ρ = 1260 kg m 

−3 . The gate was simulated using virtual 

particles ( Crespo et al., 2008 ) that exerted a repulsive force on 

the fluid particles ( Eq. 32 ). The gate was initially open and it was 

closed a second after the release of the fluid. The closing speed of 

the gate was set to 0 . 5 m s −1 . The modelled volume of glycerine 

released was calculated as q = 3 . 17 × 10 −3 m 

2 by comparing the 

depth of the fluid behind the gate before and after gate closure. 

The quadratic drag in Eq. (5) was neglected due to the slow flow 

within the porous medium. The porosity was set to ε = 0 . 37 . It was 

observed that imposing a linear change of porosity at the transition 

layer caused unrealistic behaviour of the current near the porous 

medium. This seems to be a problem when the dominant direction 

of a flow is in a direction perpendicular to the direction porosity 

gradient. The current front tended to jump over half of the tran- 

sition layer above the interface (i.e., δε /2 in Fig. 2 ). To avoid this 

problem, the transition layer was modified such that the porosity 

changed linearly starting from the surface of the porous medium, 

for a depth of δε /2. It should be added that using no transition 

layer at all caused numerical instability. 

Fig. 7 shows the pressure distribution and qualitative form of 

the gravity current after twenty seconds. The change in the poros- 

ity of the media is again evident from the particles moving apart 

in the porous medium. Pressure distribution data are not avail- 

able from the experiments. Qualitatively the model appears to give 

reasonable pressure distributions with maximum pressure at the 

interface decreasing to zero at the two fluid surfaces above and 

within the porous medium. 

The length of the gravity current from the gate, L , is non- 

dimensionalised as X N = L/ (q 4 / 3 κ) 1 / 6 , and the time, t , is non- 

dimensionalised as T = t/ (3 ν6 q 2 / g 6 κ5 ) 1 / 6 ( Acton et al., 2001 ). 

Fig. 8 shows the non-dimensional data for the propagation of the 

gravity current length, X N , as a function of non-dimensional time, 

T . As shown in Fig. 8 , the two integration methods led to compar- 

atively similar results. This might be due to the small time step. 

Both schemes generated a wave initially faster than the observed 

one. Differences between the model and experiments might be due 

to the lack of information about the initial conditions of the exper- 

iments. Additionally, the width of the experimental flume (0.15 m) 

might have slowed the wave, especially considering the large vis- 

Fig. 8. Non-dimensional length of the current, X N , as a function of non-dimensional 

time, T . The variables are X N = L/ (q 4 / 3 κ) 1 / 6 and T = t/ (3 ν6 q 2 / g 6 κ5 ) 1 / 6 . 

Table 1 

Characteristic of the experiments of Adduce et al. (2011) and values of the 

parameters ( Section 3.3 ). 

Run x 0 (m) ρd ( kg m 

−3 
) μd (Pa · s) D t (m 

2 s −1 ) Re m 

1 0.30 1090 1 . 27 × 10 −3 10 −5 38,724 

2 0.30 1064 1 . 14 × 10 −3 10 −5 30,432 

3 0.30 1037 1 . 07 × 10 −3 10 −6 24,137 

cosity of glycerine, which might be better studied using a three 

dimensional model. 

Another source of the error might be the uncertainty in the 

value of the permeability at the interface. The effect of change of 

permeability in the transition layer was tested using the Carman–

Kozeny equation ( Phillips, 1991 ), which relates permeability to 

porosity. Accordingly, the permeability in the transition layer was 

calculated using a linearly decreasing porosity. The position of 

the transition layer ( δε /2) was kept completely within the porous 

medium. As shown in Fig. 8 (the curve represented as Euler, linear 

κ), the results are sensitive to the permeability pattern in the tran- 

sition layer; therefore, care is required in handling the distribution 

of the permeability in this zone. 

3.3. Boussinesq lock-exchange over an impermeable bed 

Three different Boussinesq lock-exchange gravity currents of 

two fluids over an impermeable bed, presented in Adduce et al. 

(2011) , were simulated. In the experiments, a 3 m long tank, 

0 . 30 m deep, and 0 . 2 m wide was used. The tank was divided in 

two parts using a gate, located a distance x 0 from the left wall 

of the tank. The right and left parts of the gate were filled with 

fresh water, ρl = 10 0 0 kg m 

−3 , and salt water, ρd , respectively, to 

a depth of h 0 = 0 . 30 m . The density and initial length of the locks 

are shown in Table 1 . 

In the simulation, the EISPH scheme was solved with the Euler 

algorithm due to its comparable results with the Heun algorithm 

in the first two case studies. Two different initial spacing between 

fluid particles ( 	x = 	y ), 0.0 05 and 0.0 025 with total number of 

fluid particles equal to 36,0 0 0 and 144,0 0 0, respectively, were used 

to check the sensitivity to the spatial resolution. The smoothing 

length, h , was 1.2 	x , and the time step was 5 × 10 −5 s . It was ob- 

served that the no-slip boundary conditions led to loss of accuracy 

in the velocity of the currents; this is in agreement with Marrone 

et al. (2013) , Grenier et al. (2013) that question the accuracy of the 



H. Basser et al. / Advances in Water Resources 108 (2017) 15–28 23 

Fig. 9. Density evolution of the lock-exchange gravity current over an impermeable bed at different times for Run 1 ( Table 1 ), with (a) 	x = 	y = 0.0025 m and (b) 	x = 	y 

= 0.005 m. 

conventional implementation of the no-slip boundary conditions 

for flows with Reynolds numbers higher than 2400. Therefore, the 

modified no-slip boundary condition was used. The dynamic vis- 

cosity of fresh water was set to μl = 10 −3 Pa · s , and the dynamic 

viscosity of the salt water, μd , were assumed as in Table 1 ( Isdale 

et al., 1972 ). The coefficient of molecular diffusivity was assumed 

to be D m 

= 2 × 10 −9 m 

2 s −1 ( Lide, 2004 ). The turbulent eddy dif- 

fusivity was also accounted for, due to the high mean Reynolds 

number values for the experiments, and values within an approx- 

imated range provided in Jackson and Rehmann (2003) were used 

as shown in Table 1 . 

When the gate was removed, the salt water propagated over the 

tank’s bed displacing the fresh water. Fig. 9 shows the density evo- 

lution of the current for Run 1, with 	x = 	y = 0.0025 m. As the 

heavy current propagates, mixing occurs at the interface between 

the two fluids. The qualitative form of the current is in agreement 

with the observations of Adduce et al. (2011) , Rottman and Simp- 

son (1983) , as the fresh water current displaced the heavy current 

and it reached the left wall ( Rottman and Simpson, 1983 ). In ad- 

dition, Kelvin–Helmholtz vortices were reproduced at the interface 

between two fluids at the initial stage of the simulation ( Pahar and 

Dhar, 2016a ). The Kelvin–Helmholtz vortices were better captured 

using the finer resolution ( Fig. 9 ). 

Fig. 10 (a) shows the position of the gravity current front from 

the left wall as a function of time for Run 1, with 	x = 	y = 

0.0025 m. As shown in Fig. 10 (a), the results reasonably agree with 

the ISPH model developed by Pahar and Dhar (2016a ). It is also 

observed that the velocity of the simulated current (slope of the 

graph) is in agreement with that of the experimental current. The 

slight non-linearity in the initial trend of the observed data might 
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Fig. 10. (a) Comparison of the front positions, x f , as functions of time, t, for Run 1 ( Table 1 ), and (b) Non-dimensional front position as function of non-dimensional time for 

different experimental runs ( Table 1 ); x 0 is the initial length of the heavy current and t c = x 0 / 
√ 

g ′ 
0 
h 0 with g ′ 0 = g(ρd − ρl ) /ρd . 

Fig. 11. Schematic view of the tank used in the experiment by Thomas et al. (2004) ( Section 3.4 ). 

be due to the effect of the gate removal. In addition, the differ- 

ences between the simulated results and observed data might be 

also due to the gate effect. The difference between the leading po- 

sition in the EISPH model and the ISPH model ( Pahar and Dhar, 

2016a ) might be due to the calculation of turbulent stresses in 

Pahar and Dhar (2016a ), which caused extra resistance against the 

current propagation. The position of the gravity current as a func- 

tion of time for this simulation was observed to be dependent on 

the chosen spatial resolutions, showing around 4% difference be- 

tween the simulations with 	x = 	y = 0.005 m and 	x = 	y = 

0.0025 m. 

Fig. 10 (b) shows the non-dimensional data for the front posi- 

tion as a function of non-dimensional time for all the experiments. 

The position of the gravity currents from the left wall is non- 

dimensionalised as x f / x 0 , and the time, t , is non-dimensionalised as 

t / t c , where t c = x 0 / 
√ 

g ′ 
0 
h 0 , g 

′ 
0 

= g(ρd − ρl ) /ρd ( Adduce et al., 2011 ). 

The model was able to reasonably reproduce the observed data. 

The gap between the simulated results and observed data might 

be due to the gate effect. 

Using higher resolution in Run 3, where the density difference 

was smaller, led to better results such that the difference between 

the leading position of the heavy current in the two simulated res- 

olutions was five percent. 

3.4. Boussinesq lock-exchange in a porous medium 

The last example combines the previous cases by considering 

a multi-fluid flow over and within a porous medium. An exper- 

iment described in Thomas et al. (2004) was used for this test 

case. In the experiment, a tank 3 m long, 0 . 6 m deep, and 0 . 2 m 

wide was used as shown in Fig. 11 . An amount of dense salt wa- 

ter was released from behind a gate into the tank initially filled 

up with fresh water. The density of the salt and fresh water were 

ρd = 1075 kg m 

−3 and ρl = 10 0 0 kg m 

−3 , respectively. The gravity 

current generated by the salt water moved over and through a sat- 

urated porous medium with thickness of D p = 0 . 12 m composed 

of glass spheres with a nominal diameter of D = 0 . 00286 m . An 

empty space was left between the porous medium and the tank’s 

right wall to let the drained fresh water move upward through the 

opening. The kinematic viscosity of the salt water was given as 

νd = 1 . 1 × 10 −6 m 

2 s −1 , and it was assumed to be νl = 10 −6 m 

2 s −1 

for fresh water. The porosity of the porous medium was ε = 0 . 375 , 

and the permeability was calculated as κ = 6 . 14 × 10 −9 m 

2 using 

the Carman–Kozeny equation ( Phillips, 1991 ). The initial depth and 

width of the salt water behind the gate were h 0 = 0 . 26 m and 

x 0 = 0 . 2 m , respectively. 

In the simulation, the section underneath the salt water was 

not simulated, since the left wall of the container holding the 
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Fig. 12. Density evolution and the current propagation over and within the porous medium ( Section 3.4 ), with c F = 2 . 67 ( Brinkman, 1949 ). 

porous medium was impermeable ( Fig. 11 ) and there was no salt 

water penetrating from the porous medium to underneath the salt 

water tank. The Euler integration algorithm was used. The initial 

spacing between fluid particles ( 	x = 	y ) was set to 0.0025 m in 

the fluid domain, and 0 . 0025 / 
√ 

ε m in the porous medium, such 

that all the particles had the same mass. Consequently, 199,710 

fluid particles were used. The smoothing length, h , was set to 

1.2 	x , and the time step was 5 × 10 −5 s . The modified no-slip 

boundary conditions were imposed at solid boundaries. The dy- 

namic viscosities for the salt and fresh water were set to μd = 

1 . 18 × 10 −3 Pa · s and μl = 10 −3 Pa · s , respectively. The pore scale 

Reynolds number was Re ≈ 12; therefore, in addition to the lin- 

ear term the quadratic drag term in Eq. (5) was also considered 

to account for the inertial drag. The porosity and the permeabil- 

ity were set to ε = 0 . 375 and κ = 6 . 14 × 10 −9 m 

2 , respectively. To 

investigate the sensitivity of the results to the Forchheimer coef- 

ficient, three values, c F = 2 . 67 ( Brinkman, 1949 ), c F = 1 . 2 ( Joseph 

et al., 1982 ), and c F = 0 . 2 ( Irmay, 1958 ), were used. The coefficient 

of molecular diffusivity was assumed to be D m 

= 2 × 10 −9 m 

2 s −1 

( Lide, 2004 ). The Reynolds number associated with the current 

over the porous medium was Re = uh c /ν = 15 , 0 0 0 , h c being the 

current head’s height; therefore, a turbulent eddy diffusivity was 

also considered and a value within an approximated range from 

Jackson and Rehmann (2003) was used ( D t = 10 −5 m 

2 s −1 ). The 

flow within the porous medium was laminar; therefore, the tur- 

bulent eddy diffusivity was set to zero for particles within the 

porous medium. Using a transition layer for porosity and perme- 

ability led to unrealistic results so that the penetration of the cur- 

rent into the porous medium was significantly slow; this necessi- 

tates further study in simulating the interface under saturated con- 
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Fig. 13. (a) Evolution of the front position, and (b) non-dimensional remaining mass of the current over the porous medium. The variable x f is the current position from the 

left wall, T = t/τd , with τd = νd D p /κg ′ o , and M = m/m 0 . 

ditions. Therefore, a sharp change of porosity and permeability at 

the external surfaces of the porous layer was considered in this 

case study. 

Fig. 12 shows the density evolution and current propagation 

over and within the porous medium. The qualitative form of the 

current is comparable to the experiments with the salt water cur- 

rent front being deeper than the current following behind the 

front. Similar to the experiment, mixing occurred at the inter- 

face between the two fluids. The salt water percolated through 

the porous layer reaching larger depths near the gate than at the 

front. Fig. 13 (a) shows the front position from the left wall, x f , as 

a function of time, t . The slight difference between the simulated 

and experimental results might be due to the effects of removal of 

the gate. It is observed that using smaller Forchheimer coefficients 

caused a lower front speed. This might be due to the higher mass 

loss from above the porous medium ( Fig. 13 (b)) that decreased the 

driving force of the current. Fig. 13 (b) shows the non-dimensional 

remaining mass of the current above the porous medium, M = 

m/m 0 , as a function of non-dimensional time, T = t/τd , where 

τd = νd D p /κg ′ o ( Thomas et al., 2004 ). The remaining mass of the 

current over the porous medium was calculated as the ratio be- 

tween the number of the salt water particles remaining above the 

porous medium and the total number of salt water particles. The 

results associated with the mass loss were compared to the results 

of a theoretical model developed by Thomas et al. (2004) , since all 

the experimental results collapsed between two theoretical curves. 

It is evident that using a smaller Forchheimer coefficient led to the 

higher mass loss due to lower quadratic drag. 

One of the possible sources of the errors might be related to the 

simulation of the interface between domains with different porosi- 

ties. An error might arise in the calculation of the summation of 

the kernel function and its derivative at the interface between two 

media, because the kernel’s support domain at the interface sits 

between different media, and the numbers of particles inside the 

support domain that belong to different media are different. We 

are now working on improving the modeling approach near the 

interface. 

It is also reminded here that there is a controversy in the value 

of κ and c F in the case of porosity values close to ε = 1 / 3 ( Joseph 

et al., 1982 ); this has led to different values of κ and c F obtained 

from a series of experiments ( Brinkman, 1949; Irmay, 1958; Joseph 

et al., 1982 ). This might be a potential source of the discrepancy in 

Fig. 13 (b) that requires further study. In addition, the uncertainty 

in choosing a proper value for other parameters such as coefficient 

of turbulent eddy diffusivity might be another source of error. 

4. Conclusions 

An EISPH scheme, solved using two different time integration 

algorithms, was employed to simulate multi-fluid flows in porous 

media with a spatially varying porosity. Four cases, including per- 

colation of a single fluid in a porous medium, gravity current over 

a porous medium, Boussinesq lock-exchange over both an imper- 

meable bed and a porous medium, were simulated. 

The two time integration methods led to comparatively similar 

results in the test cases, likely due to the small time steps used. 

For the first two cases, the comparison of the EISPH results of 

the flows in the porous media against the experimentally observed 

data, which has rarely been done in the literature, showed the re- 

liability of the model applied to this application. 

According to the third case, the simulated front position of the 

lock-exchange flow over the impermeable bed was reasonably in 

agreement with the experimental data. In addition, the qualitative 

form of the currents was reproduced. 

In the fourth case, a multi-fluid flow over and within a porous 

medium was simulated using the EISPH model and tested success- 

fully for the first time against experimental data, where the EISPH 

approach captured the qualitative behaviour of the inertial wave 

over and within the porous medium. The variation of the mass of 

the current above the porous medium was compared with the ex- 

perimental data, with discrepancies that requires further studies. 

The results of the speed of the current agreed with the experi- 

ment reasonably. In addition, a sensitivity analysis was performed 

for a model parameter, i.e. Forchheimer coefficient, using the val- 

ues available in literature. Although using different values for the 

parameters led to expected changes in the results, it showed the 

importance of selecting the parameters appropriately to simulate 

experimental results. This usually seems to be an issue in other 

SPH studies that employ ad hoc values for parameters. 

In some cases with flow infiltrating a porous medium, the use 

of a transition layer for porosity appeared to be beneficial in cases 

with dry porous media and problematic in the case with saturated 

porous medium. The modelling of the flow near the surface of the 

medium thus requires further improvement. 
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In closing, it is highlighted and stressed how important it is 

to provide sufficient details in experimental work to allow the re- 

production of laboratory experiments. Although many experiments 

were found in the literature, only few had enough details to be 

successfully used in this study. 
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Appendix A. Heun algorithm 

In the Heun integration algorithm, velocity and position of the 

particles were solved in two stages at each time step. In the first 

stage, a value of velocity, � ˜ u 
n +1 
i , and position, � ˜ x 

n +1 
i at the new time 

step were predicted using the first order Euler method as 

�
 ˜ u 

n +1 

i = 

�
 u 

n 
i + 

(
d � u 

dt 

)n 

i [ x n ,εn ,u n ,p n ,ρn ] 

	t, (A.1) 

�
 ˜ x 
n +1 

i = 

�
 x n i + 

(
�
 u 

n 
i 

εn 
i 

)
	t ⇒ ˜ εn +1 

i 
= f 

(
�
 ˜ x 
n +1 

i 

)
. (A.2) 

The variables inside the bracket in Eq. (A.1) were used in the 

corresponding stage. In the second stage, the values of the vari- 

ables were updated as 

�
 u 

n +1 
i 

= 

�
 u 

n 
i + 

(
d � u 
dt 

)n 

i [ x n ,εn ,u n ,p n ,ρn ] 
+ 

(
d � u 
dt 

)n +1 

i [ ̃ x n +1 , ̃ εn +1 , ̃ u n +1 ,p n +1 ,ρn ] 

2 

	t, (A.3) 
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�
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(
�
 u n 
i 

εn 
i 

)
+ 

(
�
 u n +1 
i 

˜ εn +1 
i 

)
2 

⇒ εn +1 
i 

= f 
(
�
 x n +1 
i 

)
, (A.4) 

and finally the concentration and density of the particles were up- 

dated as 

C n +1 
i 

= C n i + 

(
D e ∇ 

2 C 
)

i [ x n +1 ,εn +1 ,C n ] 
	t, (A.5) 

ρn +1 
i 

= C n +1 
i 

(ρd − ρl ) + 0 . 5(ρd + ρl ) ⇒ m 

n +1 
i 

= ρn +1 
i 

V pi . (A.6) 

Approximate prediction–correction method (See 2.2.2 ) was used 

to calculate du / dt and impose incompressibility at each stage. 

Because the momentum and pressure steps must be calculated 

twice; therefore, the Heun algorithm is approximately twice as ex- 

pensive as the Euler. 
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4.3. ADDITIONAL RESULTS

4.3 Additional results

Further investigations were carried out to improve the results of the case study of
Boussinesq lock-exchange in a porous medium (section 3.4 of the paper). One of the
possible sources of the error might be related to the insufficient number of particles
inside the support of the kernel function in porous media due to the coarser resolution.
Although using a quintic kernel with a larger support domain can be used to tackle this
problem, this alone can not guarantee enough number of particles within a kernel. An
alternative approach is to adjust the radius of the support of the kernel in accordance
with the porosity of the domain (for a detailed description see section 3.2.2).

Therefore, the quintic spline kernel, used in the paper, was applied with a variable
smoothing length. The initial spacing between fluid particles (∆x = ∆y) was as in the
paper, i.e. 0.0025 m in the fluid domain, and 0.0025/

√
ε m in the porous medium. The

smoothing length, h, was set to 1.2∆x, with ∆x varying in different media. Therefore,
the smoothing length had an inverse ratio with the porosity; this led to a larger support
domain of the kernel function in the porous medium.

Fig. 4.1 shows the non-dimensional remaining mass of the current above the porous
medium, M = m/m0, as a function of the non-dimensional time, T = t/τd, where
τd = νdDp/κg

′
o (Thomas et al., 2004).

Figure 4.1: Non-dimensional remaining mass of the current over the porous medium,
with smoothing length varying in different media
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It is observed that there is an improvement in the rate of the loss of the mass. The
rates of the mass loss in Fig. 4.1 are parallel to the theoretical bounds, in contrast to the
rates in the paper where the rates are smaller than the theoretical ones at initial stages
and larger at the final stages of the experiments.

It is observed that the value of the Forchheimer coefficient has a considerable effect
on the results. According to Joseph et al. (1982) when spheres, consisting of a porous
medium, are closely packed and porosity value is close to ε = 1/3, the Forchheimer
equation fails to reproduce close match with experiments. The results in this thesis
appear to agree with their argument.

4.3.1 Comparing EISPH results with an analytical solution

In this section an analytical case study presented in Peng et al. (2017) and Khayyer
et al. (2018) is simulated using EISPH to further validate the EISPH method. The case
study presents a Darcy seepage flow through a porous layer, with a porosity equal to
ε = 0.4, as in Fig. 4.2. The fluid inside the U shape tube is water and it flows from left
to right. The flow is driven by gravity due to the head difference, ∆H, between the left
and right columns. ∆H is expected to gradually decrease until water levels in both sides
are balanced. By applying the Darcy law, the evolution of ∆H can be calculated as

∆H = ∆H0

exp(2Kht/L) (4.1)

where ∆Ho = 1.35 m is the initial head difference between two sides, L = 1.0 m is the
length of the porous medium and Kh is hydraulic conductivity of the porous medium.

In the simulation, similar to the cases in the published paper, the quintic spline
kernel was used. The initial spacing between fluid particles (∆x = ∆y) was set to
0.05 m (∆x/∆H0 = 27) as in (Peng et al., 2017; Khayyer et al., 2018), and it was set to
0.05/

√
ε m in the porous medium. The smoothing length, h, was set to 1.2∆x, with ∆x

varying in different media. The time step was set to ∆t = 2.5× 10−4 s. The quadratic
drag term of Eq. (3.4) is neglected as a linear Darcy seepage was assumed in Eq. (4.1)
(Peng et al., 2017; Khayyer et al., 2018). The permeability is calculated as

κ = µKh

ρg
. (4.2)

The linear gradual change, as explained in section 3.4.4, was used to gradually change
porosity from ε = 1 in the free flow domain to ε = 0.4 in the porous medium.
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Figure 4.2: Schematic view of the case study in section 4.3.1 (Peng et al., 2017; Khayyer
et al., 2018).

Fig. 4.3 shows the pressure distribution at different times for different hydraulic
conductivity values. It is observed that the model was able to reproduce a smooth
pressure distribution. Although the values for pressure is not mentioned in Peng et al.
(2017) or Khayyer et al. (2018), the model appears to reproduce values close to hydrostatic
pressure, which is expected due to low seepage velocity of the flow. Continuity of pressure
at the interface between different media is also visible in all the cases.

Fig. 4.4 compares the time variation of ∆H calculated in EISPH with the analytical
solution, WCSPH (Peng et al., 2017) and the Enhanced ISPH results (Khayyer et al.,
2018). It is observed that EISPH closely reproduced the analytical solution.

The simulation for hydraulic conductivity of Kh = 0.005 was repeated for three
different initial spacing between fluid particles. The simulation was tested for ∆x = ∆y =
0.045, 0.055, and 0.06 m. These particle spacing correspond to ∆x/∆H0 = 30, 24.5 and
22.5, respectively. Fig. 4.5 shows the time evolution of ∆H as a function of time for all
the resolutions. It is observed that the results for all the particles spacing are in good
agreement with the analytical solution.

Table. 4.1 shows the Root Mean Square Error (RMSE) for different particle spacing.
It is observed that reducing particle spacing increased the accuracy of the results.
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Figure 4.3: Pressure distribution for different hydraulic conductivity values, and at
different times, section 4.3.1. (The snapshots are shown at different times for different
hydraulic conductivities to present an equal head difference between the left and right
tubes)

Table 4.1: Root Mean Square Error (RMSE) for the EISPH time evolution of the water
level difference with different initial particle spacing.

∆x = ∆y (m) 0.045 0.05 0.055 0.06
RMSE (m) 0.0056 0.0076 0.0148 0.0341

4.3.2 Normal stress continuity

The continuity of stress at an interface between a porous medium and a free flow domain
was investigated using the case in section 3.1 of the published paper in this chapter. The
pressure distribution around the interface is illustrated at different times in Fig. 4.6. As
observed in Fig. 4.6, the EISPH method was able to reproduce smooth pressure across
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Figure 4.4: Comparison of the EISPH time evolution of the water level difference with
the analytical solution in Eq. (4.1), Enhanced ISPH (Khayyer et al., 2018) and WCSPH
(Peng et al., 2017), as a function of time for hydraulic conductivity of a) 0.001, b) 0.005,
c) 0.01 and d) 0.05, section 4.3.1.

different media. The continuity of the normal stress (pressure) is qualitatively observed
at the interface.

Fig. 4.7 shows a quantitative comparison of the averaged pressure value 1 mm above
and below the interface. It is observed that these pressure values are generally equal to
each other. The discrepancy at the start of the simulation is due to the passage of the
free surface through the measurement level below the interface. When the free surface
within the porous medium is close to the measurement point the pressure is not expected
to be continuous, because of the way the pressure values in Fig. 4.7 were calculated. The
pressure values were calculated as the average of the pressure values of the particles
within a distance equal to the radius of the support domain of the kernel function above
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Figure 4.5: Comparison of the EISPH time evolution of the water level difference with
the analytical solution in Eq. (4.1), as a function of time for different initial particle
spacing, section 4.3.1.

Figure 4.6: Pressure distribution around the interface between the free flow domain and
the porous medium

and below the measurement level.

4.4 Conclusion

The two time integration methods led to comparatively similar results in the first two
test cases, likely due to the small time steps used. Therefore, the Euler method was used
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Figure 4.7: Time evolution of the pressure values 1 mm above and below the interface.

to simulate the subsequent simulations owing to its faster computational speed.
The EISPH results were compared to experimental observations and an analytical

solution, which is often not done at a quantitative level in SPH investigations. The
EISPH results associated with the first two experimental cases, showed the reliabilities
of the model in simulating flow within and over porous media. The model reproduced
a smooth pressure field in the both cases, with values close to the expected analytical
pressures. According to the third case, the EISPH results of the multi-fluid lock-exchange
flow over the impermeable bed were qualitatively and quantitatively comparable to the
experimental data. In the fourth case, a multi-fluid flow over and within a porous medium
was simulated and tested successfully for the first time against experimental data. The
EISPH approach captured the qualitative behaviour of the current over and within
the porous medium. The quantitative investigation showed a discrepancy in the results.
Subsequent investigations showed that this could be further improved using a kernel
with variable smoothing length, varying across different media with different porosities
(see section 4.3). The use of the variable smoothing length considerably improved the
infiltration rate of the current mass into the porous medium. In addition, a sensitivity
analysis was conducted for the model parameters such as Forchheimer coefficient. The
change of the parameters led to the expected changes in the results. However, this shows
the importance of selecting a proper value for the model parameters, something that
is usually ignored in SPH studies. Because the porosity of the porous medium in this
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study was very small, where the Forchheimer equation fails to predict close match with
experiments (Joseph et al., 1982), there was uncertainty in determination of a suitable
Forchheimer coefficient.

The EISPH model was further validated by simulating an anlytical solution of a
Darcy flow. The invigorations showed that the model was able to reproduce the results
such as seepage depth variation and stress continuity at the interface between free flow
domain and the porous medium.

In conclusion, the model is able to reproduce multi-fluid flows in porous media with
sufficient accuracy. However, the effects of experimental parameters such as coefficient
of molecular diffusivity, turbulent eddy diffusivity, and Forchheimer coefficient require
further study.
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Applications of the multi-fluid SPH solver in porous

media

This chapter comprises the submitted paper:
Basser, H., Rudman, M., & Daly, E. Smoothed Particle Hydrodynamics modelling
of fresh and salt water dynamics in porous media. Journal of Hydrology.

5.1 Introduction

The EISPH model employed in Chapter. 4 is applied to simulating sea water intrusion in
a freshwater aquifer. The model is further developed to simulate pumping to model salt
water upconing below freshwater extraction wells.

To simulate the pumping, three methods were developed to simulate a mass sink to
account for the removal of mass required due to the extraction of water. To validate
the results two laboratory scale experiments including formation of a freshwater lens in
an island, induced by fresh water recharge, and salt water upconing in an experimental
island were used.

The method used in this chapter is also explained in Chapter. 3 of this thesis.

5.2 Submitted paper

See the submitted paper starting from the following page.
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Abstract

Seawater intrusion modelling is often used to assist with groundwater manage-

ment in coastal areas and islands. Although Smoothed Particle Hydrodynamics

(SPH) schemes are able to simulate multi-fluid flows in porous media, they have

not been widely tested against experimental observations yet. Additionally, nu-

merical methods for groundwater flow problems need to be able to simulate

pumping, which is an unexplored area in SPH. In this study, an Explicit In-

compressible SPH (EISPH) solver for multi-fluid flow in porous media is used

to simulate the dynamics of freshwater lenses in small islands, and is further

developed to simulate groundwater pumping and associated seawater upconing.

Three methods to implement a sink term that models water pumping from an

aquifer are proposed and compared. The model is successfully tested against

data from published laboratory-scale experiments and other numerical models.

The results of EISPH are comparable to other models. The inclusion of a sink

for water particles to simulate pumping did not affect the stability of the simu-

lations, although one of the three methods led to results that better compared

to experimental data. Hence, SPH modelling of groundwater flows in porous

media can be successfully achieved using the methods developed here.
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1. Introduction

Seawater intrusion in groundwater aquifers is a global issue that threat-

ens availability of potable freshwater in coastal zones. A naturally occurring

process, seawater intrusion is often enhanced by changes in fresh groundwater

levels caused by pumping through extraction wells and land-use change [1]. The5

change in groundwater levels causes reductions in the pressure exerted by over-

lying freshwater columns, leading to upward intrusion of underlying seawater

[2]. The intrusion reduces freshwater storage volume and might contaminate

freshwater extraction wells [1].

Seawater intrusion is also of great importance in oceanic islands, where fresh10

groundwater is often the only potable water source [3]. In oceanic islands, fresh

groundwater often floats over underlying seawater due to the density difference.

This floating body of freshwater is called a lens [3, 4]. Freshwater lenses in

oceanic islands often have limited thickness and are separated from the under-

lying seawater by a mixing zone. Dynamics of the mixing zone at the interface15

between freshwater and seawater are governed by a density-dependent multi-

fluid flow [5]. Factors associated with changes in rainfall regimes and excessive

pumping of freshwater can reduce the thickness of these lenses as well as increase

the possibility of seawater intrusion to extraction wells [3, 5].

To investigate the process of seawater intrusion and understand the vulnera-20

bility of fresh groundwater aquifers, numerous methods such as field monitoring

techniques, analytical studies, and numerical models have been developed [1].

Field techniques, such as direct sampling and remote sensing [6], are used as

the basis for empirical equations [5]. Analytical solutions have been developed
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to predict the position of an interface between freshwater and seawater. These25

methods mostly assume a sharp interface between two immiscible fluids and are

derived for simplified steady-state conditions in homogeneous aquifers [7, 8, 9].

Numerical methods have been developed to overcome the limitations of ana-

lytical solutions and are able to model transient development of the interface

of miscible fluids in aquifers with spatial hydraulic heterogeneity. Numerical30

models mostly solve a variable density multi-fluid flow coupled with a solute

transport equation [1]. The most commonly used codes are SUTRA [10] and

SEAWAT [11], which solve the equations using finite-elements and finite dif-

ferences, respectively. Readers are referred to [1] and [5] for a comprehensive

review of common analytical and numerical studies.35

Recently, particle methods, such as Smoothed Particle Hydrodynamics (SPH),

have been used to simulate multi-fluid flow in porous media, with applications

to lock-exchange [12, 13]. Further quantitative studies with applications to

engineering problems are required to test the capability of SPH to simulate

multi-fluid flow in porous media. Specifically, the simulation of problems in-40

cluding pumping from wells requires modelling a mass sink. SPH modelling of

sinks are rare in the literature. One of the challenges associated with simulating

a mass sink is tracking the particles around the sink point to ensure a well or-

ganised distribution of the particles, to ensure an accurate SPH approximation.

Another challenge is defining how to remove mass associated with the extracted45

freshwater.

The aim of this study is thus to investigate the applicability of an SPH

scheme, Explicit Incompressible SPH (EISPH) [12], to simulate freshwater lens

formations in islands and sea water upconing due to pumping. An algorithm to

simulate point mass sinks was developed and is presented here with applicability50

to water pumping.
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2. Methods

2.1. Governing equations

The 2D governing equations for a flow of two or more incompressible fluids

in saturated porous media with mass sinks and solute transport are [12, 14]55

∇ · ~u = −Γ, (1)

D~u

Dt
= − ε

ρ
∇p+

µ

ρ
∇2~u+ ε~g + ~R, (2)

DC

Dt
= ∇ · (Dd∇C), (3)

where Eqs. 1, 2 and 3 define mass, momentum and species conservation, respec-

tively, ~u is the Darcian velocity equal to ε~uf , ~uf being the fluid intrinsic velocity

and ε porosity, Γ is a flux per unit of volume due to point sinks, p is pressure, µ

is the dynamic viscosity, ρ is the density, ~g is the gravitational acceleration, ~R60

is the drag force imposed by porous media, Dd is the effective dispersion matrix

of size 2 for the scalar, and C is scalar concentration.

2.2. SPH approximation

In SPH, the fluid domain is represented as an ensemble of Lagrangian parti-

cles. The variable values at each particle are interpolated using the neighbouring65

particles. Readers are referred to [15], [16] and [17] for a general description of

the particle approximation; only key features of the model used in this study

are presented here. The spatial volume, V , of particles in porous media with
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spatially varying porosity is determined in accordance with the porosity of the

media, such that, when a particle moves into a medium with lower porosity, the70

same amount of mass occupies a larger volume (i.e., V = m/(ερ), where m is

the fluid mass of the particle) [12, 18].

The particle approximation of the governing equations reads [19, 20, 12]

∇ · ~ui =

N∑

j=1

mj

εjρj
(~uj − ~ui) · ∇iWij = −Γi, (4)

D~ui
Dt

= εi

N∑

j=1

mj

εj

(
pi
ρ2i

+
pj
ρ2j

)
∇iWij+

N∑

j=1

4mj(µi + µj)~uij · ~xij
εj(ρi + ρj)2 (|~xij |2 + η2)

∇iWij+εi~g+~Ri,

(5)

with75

~Ri = − εiµi
ρiκi

~ui, (6)

DCi
Dt

= 2

N∑

j=1

mj

εjρj

(
e2ij,1
D̄dij,11

+
e2ij,2
D̄dij,22

)−1
~xij · ∇iWij

|~xij |2 + η2
(Ci − Cj), (7)

where i and j refer to the ith and jth particles, κ is the permeability of the

medium, assumed to be constant, eij is a unit vector from i to j, D̄dij is the80

average of the effective dispersion matrices of particles i and j, the numbers in

subscript of eij and D̄dij reference a particular element in the vector and the
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matrix, respectively. Eq. (6) equals zero where there is no porous medium.

The EISPH method was used to solve Eqs. 1 - 3 [21]; a detailed description

of the numerical scheme used here is presented in Appendix A.85

2.3. Modelling a point sink

To carry out SPH simulations of problems including water extraction through

wells, a method to describe a sink for the extraction of water mass must be de-

veloped.

In a point sink, such as suction or pumping acting at a point, the fluid90

surrounding the sink point moves toward the sink point. In SPH, this means

that fluid particles should move toward the sink point and a portion of the

fluid’s mass should be removed at a rate equal to the sink rate. The extraction

of the mass from a point is included in Eq. (1) [14] in the form of fluid flux per

unit of volume, Γ , and is approximated as95

Γ =
s∑

k=1

Qkδ(~x− ~xk), (8)

where k is the kth sink point, s denotes the number of sink points, Q is the sink

rate and δ(·) is the Dirac function. Eq. (8) describes fluid flux per unit volume

due to sinks. The contributions of sinks for particle i is approximated as

Γi =
s∑

k=1

Qkδ(~xi − ~xk) ≈
s∑

k=1

QkζkWik, (9)

100

where ζ is a normalization factor equivalent to an approximation of constant 1

and defined as [22, 19]

1

ζk
=

N∑

j=1

mj

εjρj
Wjk. (10)
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In Eq. (9), sink points within a distance equal to the radius of the support

of the kernel function from particle i are used to calculate Γ ; therefore, a sink105

point directly affects the particles (sink particles hereafter) within a distance

equal to the radius of the support domain of the kernel function from the sink

point. The particles outside the direct influence of the sink point are indirectly

affected through their interaction with the sink particles.

The term Γ contributes to the pressure Poisson equation (Eq. A.5), causing110

the pressure of the particles surrounding the sink point to change in a way that

they move towards the sink point.

Each particle in SPH carries a certain amount of fluid mass and in order to

account for the mass extraction due to the sink, it is unavoidable to reduce the

particles mass and delete particles where and when necessary. Three different115

methods for deleting particles are proposed to investigate their advantages and

disadvantages.

2.3.1. Solely Particle Removal (SPR)

In this method, the mass reduction due to the sink is handled by just deleting

particles, while maintaining the total particle mass constant in between dele-120

tion. Individual particle mass still needs to be updated due to changes in scalar

concentration according to Eq. (7). One particle is deleted after a certain num-

ber of time steps. The duration, tp, required to delete one particle is determined

using the volume of fluid in a particle and the sink rate, such that

tp =
εV

Q
, (11)

125

where V is a spatial volume (Section 2.2) associated with a particle, and εV is
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the volume of fluid that each particle carries. Mass is reduced (i.e., one particle

is removed) at every time step that is a multiple of tp (i.e., at times t = αtp, α

being an integer). Every time t = αtp, the particle closest to the sink point is

removed (Fig. 1a).130

Because the sink particles move toward the sink point due to the inclusion

of Γ in the pressure Poisson equation (Eq. A.5), the particle deletion does not

lead to a void in the vicinity of the sink point.

2.3.2. Mass Reduction and Particle Removal (MRPR)

Similar to SPR, one particle is removed every certain number of time steps.135

However, in contrast to SPR, the mass of sink particles is gradually reduced

every time step before one particle is deleted. The amount of mass reduction

in one time step is divided among the sink particles and subtracted from each

sink particle’s mass. The mass required to be removed is partitioned between

sink particles in two ways: (1) in accordance to the kernel value (MRPRK), so140

that the particles closer to a sink point lose more mass than the distant ones,

or (2) evenly (MRPRE). Therefore, the amount of mass extracted from each

particle is determined using the sink rate, time step value, kernel value (used

in MRPRK), and number of sink particles (used in MRPRE). When the time

required to delete one particle, αtp, is reached, the closest particle to the sink145

point is removed and the mass of the remaining sink particles is set back to

their initial mass value (Fig. 1b).

2.3.3. Constant Mass Reduction (CMR)

In this method, the mass of the sink particles is gradually reduced every time

step, as in MRPRE . The reduction in mass of the sink particles continues until150

the mass of a sink particle drops below a cut-off value, which here is set to 1%

of particles initial mass value, at which time the particle is removed (Fig. 1c).
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Figure 1: The procedure for the reduction of mass due to a sink point using (a) Solely Particle
Removal (SPR) (Section 2.3.1), (b) Mass Reduction and Particle Removal (MRPR) (Section
2.3.2) and (c) Constant Mass Reduction (CMR) (Section 2.3.3).

The reduction of mass in accordance to the kernel value (as in MRPRK) was

found problematic as continuous reduction of particles mass causes clumping of

particles close to a sink point; this is further explained in section 3.2.155

2.4. Choice of kernel

The selection of a kernel function and smoothing length in a problem in

media with different porosities should be handled carefully. The spatial volume

that an SPH particle occupies within a porous medium represents both fluid

9



and solid phases volume. Therefore, a fluid particle with a given mass within a160

porous medium has a larger spatial volume than a particle in a free flow domain

with the same mass. Having a larger spatial volume causes the particles to

move apart from each other, leading to a loss of resolution inside the porous

medium. Therefore, the number of particles inside the support domain of the

kernel function reduces and might not be sufficient to accurately approximate165

the variable values and derivatives. To tackle this problem, a kernel function

with a larger support domain should be used or the smoothing length should

be adjusted [18]. The former approach might lead to an excessive smoothing

of the variable values at the free flow domain. Furthermore, using a larger

support domain increases the number of interactions in the free flow domain,170

leading to a higher computational cost. Here we use a variable smoothing length.

Additional terms associated with the derivative of smoothing length are added

to the momentum equation [23]; however, these terms are neglected here.

A cubic spline weighting function [24], with a variable smoothing length, was

used here and is given by175

W (q, h) = αd ×





2
3 − q2 + 1

2q
3 0 ≤ q < 1

1
6 (2− q)3 1 ≤ q < 2

0 q ≥ 2,

(12)

where αd is a normalisation constant equal to 1/h, 15/(7πh2), or 3/(2πh3) in

one-, two- and three-dimensional domains, respectively, and q = |~xi − ~xj |/h =

|~xij |/h. In 2D we choose the smoothing length to be inversely proportional

to square root of porosity, so that in a medium with lower porosity value the180

smoothing length is larger.

Because the same value of smoothing length should be used for a pair of in-
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teracting particles to conserve momentum, the smoothing length for interacting

particles i and j is calculated as hij = (hi + hj)/2 [25].

2.5. Boundaries185

2.5.1. Solid boundaries

A single layer of virtual particles is used to impose the impermeable bound-

aries at walls. Virtual particles interact with fluid particles and prevent them

from penetrating the walls by exerting a Lennard-Jones repulsive force given by

[16]190

F (~x)ij =





VL

[(
rc
|~xij |

)c1
−
(

rc
|~xij |

)c2]
1
|~xij |

rc
|~xij | ≥ 1,

0 rc
|~xij | < 1,

(13)

with c1 and c2 equal to 4 and 2 respectively, VL is the square of the largest

velocity in a flow, and rc represents a cut off distance which is set to 0.8 times

the initial distance between virtual particles. The virtual particles are fixed in

their position and never move. The initial distance between the virtual parti-195

cles is set to half the initial distance between the fluid particles to ensure the

impermeability of the walls.

2.5.2. Free/no-slip boundaries

Ghost particles are used to impose free-slip and no-slip boundary conditions.

Ghost particles are created by mirroring the fluid particles within a distance of200

2h from the solid boundaries [24]. A ghost particle carries the same properties

of the associated fluid particle. To impose no-slip boundary condition both

components of velocity, parallel and normal, are reversed, while for free-slip

conditions only the normal component is reversed [26].
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2.5.3. Inflow boundaries205

Inflow particles are used to simulate inflow of fluid into the domain [27]. The

thickness of the zone occupied by inflow particles, i.e., the inflow zone, is set to

be larger than the radius of the support domain of the kernel function. Inflow

particles within the inflow zone are moved with a constant velocity determined

by the inflow rate. Once an inflow particle moves outside the inflow zone, it210

is turned into a fluid particle and moves according to the governing equations.

The inflow particles’ velocity and pressure are used in approximating the hy-

drodynamics of the fluid particles in a domain but not vice versa [28].

2.5.4. Free surface boundaries

A pressure p = 0 is assigned to free surface particles. The free surface215

particles are detected using fluid particles’ densities as in [12].

3. Results

The model is applied to two experimental studies to test different aspects

of the method and validate it. The experimental coastal freshwater lens in

an isotropic porous medium studied in [3] is simulated to check the capability220

of the model to reproduce the dynamics of fresh and salt water in a porous

medium. The experiment of salt water upconing induced by fresh water pump-

ing studied in [29] was simulated to validate the proposed sink algorithm and

demonstrate the capability of the SPH scheme to reproduce upconing of salt

water in groundwater aquifers.225

3.1. Laboratory-scale coastal freshwater lens

An experiment of formation of a coastal freshwater lens in a cone shape strip

island was presented in [3]. In the experiment, a cone shape submerged island

1.8 m long, 0.3 m deep, and 0.05 m wide was utilized (Fig. 2). The porosity

12



and mean hydraulic conductivity of the porous medium were given as ε = 0.39230

and K = 4.5 × 10−3 m s−1, respectively. The salt and fresh water densities

were ρs = 1021.2 kg m−3 and ρf = 997.4 kg m−3, respectively. Initially the

island was saturated up to y = 0.3 m with salt water to represent the ocean.

Freshwater was recharged, with a rate equal to q = 1.33 × 10−5 m s−1, through

a set of drips above the sand cone. The recharged fresh water penetrated into235

the porous medium (i.e., island) and formed a freshwater lens as shown in Fig.

2. As the experiment progressed, an amount of freshwater discharged from the

island to the surrounding salt water representing the ocean. This water was

skimmed from the salt water surface (Fig. 2) to maintain a constant salt water

level [3].240

Figure 2: The experimental tank used in [3] (Section 3.1).

In the simulation, a plane of symmetry was assumed requiring only half

of the experimental domain to be simulated; this is similar to the numerical

study performed in [4]. The left side of the island was simulated, and a free-

slip boundary condition was used on the right wall of the domain to satisfy

the symmetry of the flow. The initial spacing between fluid particles (∆x =245

∆y) was set to 0.005 m in the ocean, and 0.005/
√
ε m in the island. The

smoothing length, h, was set to 1.2∆x, with ∆x varying in the ocean and

island. The time step was set to 2 × 10−4 s. The dynamic viscosity for the

13



fresh water was set to µf = 10−3 Pa · s and it was assumed to be µs = 1.05 ×

10−3 Pa · s for the salt water [30]. The calculated permeability was κ = 4.6 ×250

10−10 m2, using the properties of freshwater and hydraulic conductivity. No-

slip boundary conditions were imposed on the left and bottom solid boundaries.

The longitudinal and transverse dispersivity, included in Eq. (A.16), were set to

dl = 5×10−4 m and dt = 5×10−5 m, and the coefficient of molecular diffusivity

was set to Dm = 10−9 m2 s−1 [4]. The freshwater recharge at the surface of the255

island was simulated using an inflow boundary condition (Section 2.5.3). The

pressure within the inflow zone was set to be hydrostatic at every time step.

Outside the island, particles that moved above y = 0.3 m, were deleted to keep

the water level constant and mimic the experimental procedure.

Fig. 3 shows the freshwater lens and the pressure distribution at differ-260

ent times. The coarser resolution of particles in the porous medium is due to

the definition of spatial volume, that changes in accordance to porosity of the

medium. Experimental or numerical pressure measurements are not available

and a qualitative discussion is reported here. The value of maximum pressure in

the porous medium is higher than that of the free flow domain; this is due to the265

extra pressure imposed by the inflow particles over the surface of the island. It

was found that changing the thickness of the inflow zone, which changed the hy-

drostatic pressure at the surface of the island accordingly, affected the maximum

thickness of the lens predicted numerically. Our investigations showed that the

thickness of the inflow zone should be equal to the radius of the support domain270

of the kernel function. The definition of pressure at inflow boundary condition

in SPH is still an open issue, with examples [27] showing the need to adjust the

size of inflow zone to reproduce experimental data.

Oscillations in pressure values occurred at the interface between the free flow

domain and the porous medium (Fig. 3). This might be due to the fact that275
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for a support domain with its centre located right over the interface there are

different numbers of particles within it from the two media. Our investigations

showed that these oscillations do not significantly affect the numerical results.

It was found that with the proper boundary arrangements, the transient

formation as well as the maximum thickness of the lens were reasonably repro-280

duced. The numerical maximum thickness of the lens occurred close to the right

boundary which is in agreement with the experimental and numerical results in

[3, 4]. Fig. 4a shows the comparison of the experimental and numerical transient

development of the lens thickness. The maximum depth predicted numerically

was 16 cm and occurred in the middle of the island after 200 min; this was close285

to the maximum thickness measured experimentally, 15 cm, that occurred at

the same time.

It is observed in Fig. 3 that the density of salt water in the free flow domain,

at the interface between the free flow domain and the porous medium and close

to the free surface, is lower than the salt water density. This was due to a290

horizontal flow within the lens, from the symmetry boundary toward the left;

this was observed in the experiment [3] and numerical benchmark by [4]. It was

also found that an amount of the discharged fresh water into the ocean moved

back to the island, and again converged with the horizontal flow of lens water

into the salt water surface (Fig. 3, t = 200 min). This represents the direction295

of the salt water flow from the free flow domain into the porous medium. A

similar flow direction was observed in the simulation of [4].

It is observed that the thickness of the transition between freshwater and

salt water is larger close to the symmetry boundary; likely due to the higher

vertical velocity of particles close to the symmetry boundary as the effective300

dispersion matrix is proportional to the velocity of particles.

The simulation was repeated for four other recharge rates and the maximum

15



Figure 3: Distribution of fluid density (left) and pressure (right) at different times (Section
3.1).
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lens thickness was compared to numerical and analytical solutions [3, 8, 7] to

investigate the capability of the model to predict the maximum thickness as a

function of recharge rate. As observed in Fig. 4b, the EISPH results are in good305

agreement with the numerical and analytical results.

Figure 4: Comparison of the EISPH results against experimental data for (a) transient max-
imum lens thickness development (each cross sign represents numerical vs experimental max-
imum lens thickness at a specific time, continuous line represents the best fit for the cross
signs, and the dashed line represents an exact match) and (b) maximum lens thickness as a
function of recharge rate (Section 3.1).

The results show that the EISPH can be used to well simulate applications

associated with multi-fluid flows in porous media.

3.2. Salt water upconing in a two-dimensional aquifer

A series of experiments of salt water upconing were presented in [29] and310

their experiment 2 was used for comparison of the simulations here. In the

experiment, a tank 1.18 m long, 1.2 m deep, and 0.053 m wide was used, as

shown in Fig. 5. Four pipes fed freshwater and one pipe fed salt water to the

tank from both sides. The conductance (i.e., resistance of the porous medium

against the inflow) was measured as Mf = 2.84× 10−6 m2 s−1 and Ms = 1.62×315

10−6 m2 s−1 for the fresh water and salt water, respectively [31]. Initially the
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tank was filled up to 0.15 m with salt water and 1 m depth of fresh water

was filled over the salt water leading to an overall depth Hb = 1.15 m (i.e.,

the fresh water head measured from the base of the tank). Fresh water was

extracted, using an extraction well with diameter equal to 0.012 m, at the rate320

Qp = 7 × 10−5 m2 s−1. The well was placed in the middle of the tank at a

depth of 0.65 m from the top of the tank so that the distance between the well

bottom to the initial interface of freshwater and salt water was 0.4 m [31]. The

freshwater inflow to the well occurred at the lower 0.1 m of it. The porosity

and hydraulic conductivity were given as ε = 0.38 and K = 1.6 × 10−3 m s−1,325

respectively. The density of the salt and fresh water were ρs = 1025 kg m−3 and

ρf = 998 kg m−3, respectively [29, 31]. Two manometers were attached at the

boundaries at both sides to measure any drawdown in the fresh water and salt

water head. As the freshwater and salt water head dropped at the boundaries,

an inflow was induced to feed the domain with both freshwater and salt water.330

Therefore, the side boundaries acted as head dependent boundaries.

In the simulation, the initial spacing between fluid particles (∆x = ∆y)

was set to 0.005/
√
ε m. The smoothing length, h, was set to 1.2∆x and the

time step was 2 × 10−4 s. The dynamic viscosity for the fresh water was set

to µf = 10−3 Pa · s and it was assumed to be µs = 1.05 × 10−3 Pa · s for salt335

water [30]. The calculated permeability was κ = 1.67 × 10−10 m2, using the

parameters of salt water and hydraulic conductivity. The lower section of the

well (dashed zone in Fig. 5), where freshwater was flowing into, was treated as

a high permeability section (i.e., the drag force in Eq. 6 was set to zero), and

its length was assumed to be 0.05 m [31]. The sink point location was set at340

the middle of the permeable zone. A no-slip boundary condition was imposed

at the bottom solid boundary. The coefficient of molecular diffusivity was set

to Dm = 10−9 m2 s−1, and the longitudinal and transverse dispersivity were set
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Figure 5: The view of the tank used in the experiment by [29] (Section 3.2).

to dl = 2× 10−3 m and dt = 1× 10−4 m [31].

The fresh water and salt water recharge were simulated using an inflow345

boundary condition (Section 2.5.3), with the rate of the inflow determined ac-

cording to the boundaries’ time dependent head. The inflow was simulated as

a continuously distributed recharge rather than inflow nodes or pipes. This

was due to the nature of SPH, as a kernel close to the boundaries needs to be

filled with particles to result in an accurate approximation. The width of the350

inflow zones, on the left and right boundaries, were set to 0.04 m, which was

larger than the radius of the support of the kernel function. The inflow rate

for fresh water, qf (m s−1), and salt water, qs (m s−1), was calculated using the

conductance, initial boundary head (Hb), and time dependent internal head at
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the boundaries (Ht) as [31]355

qf = Mf (Hb −Ht)/(((Hb − 0.15)/4)× 0.053), (14)

and

qs = Ms(Hb −Ht)/(0.15× 0.053), (15)

where Ht was assumed to be the average of the freshwater heads on the left

and right boundaries, to ensure a symmetrical inflow, as it was observed in the

experiment [29].

Fig. 6 shows the numerical and experimental density distribution and tran-360

sient development of the upconing below the extraction well using the method

SPR (See section 2.3). The qualitative observation is generally in agreement

with the experiment in [29]. The larger dispersion of salt water near the sides

of the tank might be caused by salt water particles inside the tank and close the

inflow zones that were allowed to interact with the freshwater particles in the365

inflow zones. Our investigations showed that using a smaller values for longitu-

dinal and transverse dispersivity did not considerably affect the dispersion zone

width. A thicker dispersion zone, but with smaller extent, was also observed in

the simulations of [31]. This thicker dispersion zone might also be related to the

assumption in the SPH approximation of the diffusion equation (see Eq. A.15 -370

A.18).

Fig. 7 illustrates the upconing height as a function of time. The numeri-

cal height of the upconing was determined based on the simulated 50% salinity

contour [31]. It was observed that the SPR method led to results comparatively

closer to the experimental observations. The CMR method considerably overes-375
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Figure 6: Numerical and experimental transient development of the salt water upconing below
the single sink point using method SPR (the yellow lines, representing the bottom (high
permeable) section of the well, are only shown for visualisation purpose) (Section 3.2) [29].
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timated the upconing heigh, possibly because of the particle distribution pattern

around the sink point. Fig. 8a shows the particles and their density around the

sink point for the three methods. The particles have an ordered distribution

around the sink point in SPR, while the particles are clumped for CMR. The

clumping in CMR is due to the continuous reduction of mass for the sink par-380

ticles, until their mass drops to zero. With the density of the particles around

the sink point staying constant, the reduction in mass causes the particles to

get closer to the sink point. Therefore, any support domain of kernels located in

the vicinity of the sink area might be truncated causing an error in the particle

approximations. The clumping was also observed in the method MRPR, to a385

smaller extent, especially when implementing MRPRK , because particles mass

were set to their initial value when a particle was removed. Fig. 8b shows the

pressure distribution around the sink point. The sudden removal or mass reduc-

tion of sink particles have not caused unphysical pressure distribution around

the sink point. Fig. 8c shows the velocity vectors around the sink point. It is390

observed that the particles generally move toward the sink point in the three

methods. As the particles enter the area that is affected by the sink point,

the velocity of the particles increase considerably. It is observed that velocity

vectors have relatively organised distribution in MRPRK and SPR. Detailed

investigation of the velocity values for the sink particles requires further study.395

The stability of the simulations and the qualitative and quantitative results

show the capability of the sink algorithms to reproducing fresh water pumping

in aquifers.

4. Conclusion

Application of SPH schemes to multi-fluid flows in porous media with differ-400

ent porosities are not very common. In this paper, an EISPH numerical scheme
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Figure 7: Comparison of upconing height, apex rise, from the observed data and numerical
model (Section 3.2).

was used to investigate its applicability to seawater intrusion problems. The fo-

cus was on the dynamics of buoyant freshwater lenses in islands and salt water

upconing caused by pumping. The model was tested against published results

from laboratory experimental and models.405

In the case of the freshwater lens, the transient thickness and maximum

depth of the simulated lens were in reasonable agreement with experimental

data. The simulated maximum depth of the lens as a function of different

recharge rates were in agreement with observed, analytical and other numeri-

cal results. The imposition of flow boundary conditions to simulate recharge410

still represents a challenge in SPH. The lens dimensions obtained with EISPH

depended on the thickness of the inflow zone, as this controlled the value of hy-

drostatic pressure acting on the surface of the island. This depths was thus cal-

ibrated to best reproduce experimental data. The inclusion of pumping was the

main challenge to model salt water upconing. A new procedure for implement-415
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Figure 8: Distribution of particle (a) density, (b) pressure, and (c) velocity vectors around
the sink point, X = 0.63 m and Y = 0.55 m, t = 50 min (Section 3.2).
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ing a sink in SPH was developed. The divergence of the velocity for the particles

in the vicinity of the sink point was adjusted in accordance with the pumping

rate to make the particles move toward the sink. The extraction of mass was

handled using three different methods indicated as SPR, MRPR, and CMR.

SPR, where the mass reduction is handled solely through removal of particles,420

appeared to perform better when compared to experimental observations. The

quantitative results of the cases studied here show the effectiveness of EISPH

in simulating complex flow conditions and lay the foundation for the inclusion

of mass sinks in SPH numerical schemes applied to water pumping. Although

applied to 2D configurations, the algorithm developed is also applicable to 3D425

problems. To preserve reasonable computational times, future avenues to im-

prove the method point toward the extension of the model to radial coordinates

or, perhaps, the development of ad-hoc changes of the values of permeability

and porosity to generate 2D domains equivalent to 3D axisymmetric problems

(e.g., [11]).430
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Appendix A. EISPH scheme

This section presents a detail description of the numerical method used to

solve Eqs. (1) - (3) with SPH. Parts of the method are also described in [12, 21].435

The governing equations were solved with an EISPH scheme, which employs

two steps [32]. The Poisson equation is approximately solved.

In the first step, viscous, gravity and drag forces contribute to the velocity

25



and position of particles as

~u∗i = ~uni +

(
µ

ρ
∇2~u

)n

i

∆t+ εni

(
~g − µ

ρκ
~u

)n

i

∆t, (A.1)

440

where ~u∗ is intermediate velocity, ~un is particle velocity at time n∆t, with ∆t

kept constant in all the simulations.

The approximation of the viscous term reads

(
µ

ρ
∇2~u

)n

i

=
N∑

j=1

4mn
j (µi + µj)~u

n
ij · ~xnij

εnj (ρni + ρnj )2
(
|~xnij |2 + η2

)∇iWij
n, (A.2)

where η is a small parameter included to make sure the denominator is non-zero445

(η = 0.001hij , with hij = (hi + hj)/2), and ~unij = ~uni − ~unj . The gravitational

acceleration and the drag term are explicitly calculated.

The intermediate particle positions (~x∗) are calculated as

~x∗i = ~xni +
~u∗i
εn

∆t, (A.3)

where ~xn is particle position at time n∆t. Afterwards, the intermediate porosity450

of particles, ε∗, are assigned using the intermediate position of particles.

In the second step, the particle velocities are calculated at the new time step

as

~un+1
i = ~u∗i −

ε∗i
ρni
∇pn+1

i ∆t, (A.4)

where pn+1 is particle pressure at time (n + 1)∆t. Eqs. (A.4) and (1) are455
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combined to form the pressure Poisson equation as

∇ ·
(
ε∗

ρn
∇pn+1

)

i

=

(∇ · ~u∗ + Γ

∆t

)

i

, (A.5)

where Γ is the contribution of the sink points around particle i (see Section

2.3).

The approximation of the divergence of the intermediate velocity reads460

(∇ · ~u∗)i =
N∑

j=1

mn
j

ε∗jρ
n
j

(~u∗j − ~u∗i ) · ∇iW ∗ij . (A.6)

The left hand side of Eq. (A.5) is a Laplacian operator and is approximated

as

∇ ·
(
ε∗

ρn
∇pn+1

)

i

=

N∑

j=1

mn
j

ε∗jρ
n
i ρ

n
j

(
ε∗i + ε∗j

)
~x∗ij · ∇iW ∗ij

|~x∗ij |2 + η2
(
pn+1
i − pn+1

j

)
, (A.7)

so that

N∑

j=1

mn
j

ε∗jρ
n
i ρ

n
j

(
ε∗i + ε∗j

)
~x∗ij · ∇iW ∗ij

|~x∗ij |2 + η2
(
pn+1
i − pn+1

j

)
=

(∇ · ~u∗ + Γ

∆t

)

i

. (A.8)

Eq. (A.8) is written for particle i as

pn+1
i =

Bi +
∑N
j=1Aijp

n+1
j∑N

j=1Aij
, (A.9)

465
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with

Aij =
mn
j

ε∗jρ
n
i ρ

n
j

(
ε∗i + ε∗j

)
~x∗ij · ∇iW ∗ij

|~x∗ij |2 + η2
, (A.10)

and

Bi =

(∇ · ~u∗ + Γ

∆t

)

i

. (A.11)

Eq. (A.9) is explicitly solved with an approximation that has been proven470

to lead to satisfactory results in flow in porous media [12] as well as other

applications [21, 27]. It is assumed that the value of pn+1
j on the right hand

side of Eq. (A.9) is equal to pnj ; this is a reasonable assumption as the time step

is set to a sufficiently small value. In addition, the pressure field in the cases

studied here does not change considerably. The pressure of each particle is thus475

approximated explicitly as

pn+1
i =

Bi +
∑N
j=1Aijp

n
j∑N

j=1Aij
. (A.12)

The pressure of free surface particles are set to zero. The calculated pressure

values are used to calculate the pressure gradient as

(
ε∗

ρn
∇pn+1

)

i

= ε∗i

N∑

j=1

mn
j

ε∗j

(
pn+1
i

ρn2i
+
pn+1
j

ρn2j

)
∇iW ∗ij . (A.13)

Afterwards, the velocity field at the new time step is calculated using Eq. (A.4).480
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The new position is calculated as

~xn+1
i = ~xni +

(
~un
i

εni

)
+
(
~un+1
i

ε∗i

)

2
∆t, (A.14)

and new particle porosity, εn+1, is assigned. The particle concentration is cal-

culated using Eq. (3) as

Cn+1
i = Cni +

(
∇ ·
(
Dn+1
d ∇C

))
i
∆t, (A.15)

485

where the effective dispersion matrix, Dd, is determined as [33]

Dn+1
di = Dn+1

ei I + dti|~un+1
i |I + (dli − dti)

~un+1
i ⊗ ~un+1T

i

|~un+1
i | , (A.16)

where dl and dt are longitudinal and transversal dispersivity, I is identity matrix

of size 2, andDe is effective diffusivity coefficient. In a saturated porous medium,

De can be written as as [34]490

Dn+1
ei = Dmi × (εn+1

i )4/3, (A.17)

where Dm is the coefficient of molecular diffusivity.

Dd in Eq. (A.16) is a non-diagonal matrix leading to complications with

the SPH approximation [20]. To simplify the approximation procedure, Dd
is reasonably assumed to be a diagonal matrix. The contribution of terms495

associated with non-diagonal elements of the dispersion matrix in Eq. (A.16)

were checked in one time step and was found to be nearly three times smaller
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than the contribution of the diagonal elements in the cases studied here. The

variation of concentration is approximated as [20]

(
∇ · (Ddn+1∇C)

)
i

= 2

N∑

j=1

mn
j

εn+1
j ρnj

(
e2ij,1

D̄dn+1
ij,11

+
e2ij,2

D̄dn+1
ij,22

)−1
~xn+1
ij · ∇iW ∗ij
|~xn+1
ij |2 + η2

(
Cni − Cnj

)
,

(A.18)

500

where eij = ~xij/|~xij | is the unit vector from i to j, and D̄dij is the average of the

elements in the effective dispersion matrices of particles i and j. Afterwards,

the particles density and mass are calculated as [35]

ρn+1
i = Cn+1

i (ρs − ρf ) + 0.5(ρs + ρf ), (A.19)

mn+1
i = ρn+1

i V n+1
pi , (A.20)

where Vp is volume of fluid a particle carries and is equal to Vp = mj/ρj .505

The time step value, ∆t, is defined to satisfy the Courant stability and

viscous diffusion conditions as

∆t ≤ min(∆tCFL,∆tvisc), (A.21)

with

∆tCFL ≤ 0.25
h

umax
, (A.22)
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Figure B.9: Total mass reduction as a function of time using CMR, chapter 5, section 3.2.

and

∆tvisc ≤ 0.125
h2

ν
, (A.23)

510

where ν is the kinematic viscosity and umax is the maximum velocity predicted

in the computations [36].

Appendix B. Mass reduction calculations in CMR

In CMR, mass of a sink particle is continuously reduced until it approaches

zero (below 1% of its initial mass) and it is deleted. Total mass to be removed515

corresponds to Qp (sink rate) and can be calculated as ρ×Qp × t at any time.

Therefore, total mass to be removed in 100 minutes can be calculated as

ρ×Qp × t = 998× 7× 10−5 × 6000 = 419.2 kg.

The total reduced mass in CMR was recorded and is presented in Fig. B.9

In addition to the reduced total mass, the mass of a sink particle was also520

tracked during a simulation before it was deleted. Fig. B.10 shows the time
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evolution of mass of a sink particle. According to the method CMR, mass of

a sink particle is reduced until it drops below the cut off value (0.01 m0). The

initial mass of one particle in the simulation in section 3.2 of chapter 5 was set

to 0.02495 kg. As observed in Fig. B.10, the mass of the particle drops until it525

nearly approaches zero. The slope of the line is not straight because the number

of sink particles at each time step differs; this is due to the movement of particles

toward the sink point. As explained in section 3.8.3 and Fig 3.13 in Chapter 3,

the total mass to be reduced at each time step is divided evenly among the sink

particles. Therefore, if the number of the sink particles is different, the amount530

of the mass that is reduced from each particle is expected to vary at each time

step. For the specific particle investigated here, the average of number of sink

particles during 10.7 s was approximately 30. The following calculations show

that the mass reduced from the particle corresponds to the sink rate.

Total mass removed in 10.7 s is535

ρ×Qp × t = 998× 7× 10−5 × 10.7 = 0.7475 kg.

The specific particle investigated here was deleted after 10.7 s. In CMR

total mass required to be reduced at each time step is divided evenly among

the sink particles; therefore, the total mass (0.7475 kg) divided by 30 should be

approximately equal to the initial mass of the sink particle.540

0.7475/30 = 0.024792 kg.
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5.3. SUMMARY

5.3 Summary

In the freshwater lens formation, the qualitative and quantitative transient formation
of the lens, induced by freshwater recharge, were in agreement with the experimental
observations. The freshwater recharge was simulated using an inflow boundary condition.

The lens dimension as a function of recharge rate were investigated using available
experimental, numerical and analytical data in literature.

For the case of salt water upconing below the extraction well, a new SPH procdeure
was developed to describe a sink term to account for the freshwater extraction. Three
methods were proposed and compared against the experimental observations. The flow
dynamics around the sink was adjusted through changes in the source term of pressure
Poisson equation.
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Conclusions

Multi-fluid flow over and within porous media occurs frequently in nature and
engineering applications. Modelling of these flows are important to investigate
engineering problems such as seawater intrusion in groundwater; however, this

is complex due to possible travelling of the flow across media with different porosities
and movement of the interface between different fluids. This study aims to improve the
modelling of these flows; this is the overarching aim of this thesis. Given the presence
of complex geometries and interface between different fluids and porous media, SPH
was selected as the numerical method. A brief overview of the thesis is outlined in this
paragraph and the detailed contributions are presented in the following paragraphs. The
advantages and disadvantages of available SPH schemes in modelling fluid flow in porous
media were investigated. Two schemes, i.e. Explicit Incompressible SPH (EISPH) and
δ-SPH, were employed to simulate fluid flow in porous media with a spatially varying
porosity. After selecting the most appropriate candidate, EISPH, the SPH scheme of
flow in porous media was linked to a SPH scheme for multi-fluid flow to generate a
model capable of simulating multi-fluid flow in media with porosity varying in space.
The flexibility of the model to be used in practical applications, such as groundwater
interaction with seawater and seawater upconing, was also tested. To address problems
such as groundwater pumping, a method capable of simulating a mass sink in SPH was
developed. Therefore, two key contributions of this thesis are the development of a SPH
model for multi-fluid flow in porous media and an algorithm for the inclusion of sinks in
SPH.
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To compare the advantages and disadvantages of available SPH schemes in modelling
fluid flow in porous media, EISPH and δ-SPH results were compared. A case study, i.e.
an experiment of percolation of glycerine in a porous medium was used. It was found
that the results associated with the kinematics of the flow, e.g. position of particles
was comparable in both schemes, with EISPH resulting in pressure values closer to the
theoretical values. Furthermore, as δ-SPH uses ad-hoc parameters in approximation of
artificial viscous term and continuity equation; this was problematic as the parameters are
needed to be tuned for fluids with different properties. In addition, employing a physical
viscosity approximation by EISPH better takes into account the physical properties of
fluids. Due to the mentioned reasons, EISPH was selected for flows of interest and were
used in remainder of cases.

As mentioned earlier, multi-fluid flow across media with different porosities occurs
in variety of engineering applications. EISPH was employed and validated to simulate
multi-fluid flows in media with a spatially varying porosity. Experimental case studies
were used to validate the model; something which is not often done at a quantitative level
in SPH investigations. The case studies were: percolation of a single fluid in a porous
medium, gravity current over a porous medium, Boussinesq lock-exchange over both an
impermeable bed and a porous medium.

Two different time integration schemes were applied in the validation stage to in-
vestigate a possible effect of integration methods. The schemes included first order in
time for velocity and second order in time for position (Euler) and second order in time
for both velocity and position (Heun). The results of the two integration methods were
comparable in the first two cases, likely due to the small time steps used. Therefore, the
Euler method was employed in remainder of the cases due to the lower computational
cost.

The comparison of the results of the first two cases with experimentally observed
data showed the credibility of the model in reproducing pressure field and transient
movement of the fluids in the porous media. The EISPH reproduced a smooth pressure
field and the quantitative values of the simulated pressure well agreed with pressure
values obtained from experimental observations and analytical solutions. It was also
found that implementing a linear transition of porosity between media improved the
results in the first two cases. According to the third case, the EISPH results of the
multi-fluid lock-exchange flow over the impermeable bed were qualitatively comparable
to the experimental data so that the Kelvin-Helmholtz instabilities were captured in
the simulated current. The quantitative results, the position of the intruding current,
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was also well agreed with the observed data. It was found that the boundary conditions
had significant effect on the accuracy of the results, so that implementing the modified
no-slip boundary condition, reproduced more accurate current velocity compared to the
conventional no-slip boundary conditions. In the fourth case, a multi-fluid flow over and
within a porous medium was simulated and tested successfully for the first time against
experimental data. The qualitative behaviour of the current over and within the porous
medium was well captured using the EISPH scheme. It was also found that using a high
order kernel, quintic spline, reproduced the Kelvin-Helmholtz instabilities, while they
were not reproduced using a cubic spline kernel. The quantitative investigation showed
that using the linear transition layer at porous boundary was problematic in the fourth
case; therefore, the modelling of the flow at the transition requires further study. A kernel
with variable smoothing length, changing with porosity, was also tested for the fourth
case that led to improvement of the results; this was due to the maintaining constant
number of particles within support of the kernel function throughout the domain. A
sensitivity analysis was performed for the model parameter, Forchheimer coefficient.
Using different values of the parameter led to expected changes in the results; however,
this showed the importance of selecting appropriate parameters such as Forchheimer
coefficient, permeability and diffusion coefficients to reproduce experimental results.
This usually seems to be an issue in other SPH studies that employ ad hoc values for
parameters.

After validating the EISPH code, the scheme was used to investigate the flexibility of
the model to be applied in practical problems. The cases simulated were the dynamics of
a buoyant freshwater lens over seawater in islands and salt water upconing caused by
pumping.

In the case of the freshwater lens, the model well reproduced the transient thickness
and maximum depth of the experimental lenses. Furthermore, the ability of the model in
reproducing the simulated maximum depth of the lens as a function of different recharge
rates were successfully tested against observed, analytical and other numerical results. It
was found that the simulated lens dimensions depended on the thickness of the inflow
zone, as this controlled the value of hydrostatic pressure acting on the surface of the
island. The best inflow thickness, to reproduce the lens dimensions, was found to be
equal to the radius of the support domain of the kernel function.

In the case of the upconing induced by pumping, a new procedure was developed
to implement a sink term. The procedure was consisted of two main steps; making the
particles surrounding a sink point move toward it and delete mass of fluid due to the
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pumping. To induce the movement of the particles toward a sink point, the divergence of
the velocity for the particles in the vicinity of the sink point was adjusted in accordance
with the pumping rate in the pressure Poisson equation. To delete the mass, three different
methods indicated as SPR, MRPR, and CMR were developed. SPR, where the mass
reduction is handled solely through removal of particles, appeared to reproduce better
results compared to experimental observations.

The results of this study show the effectiveness of the EISPH scheme in simulating
multi-fluid flow in porous media. The study also lay a foundation to for the inclusion of
mass sink in SPH and facilitates applying SPH in problems associated with pumping.

6.1 Thesis limitations

The limitations of this study are
1. High computational time. Although, SPH is advantageous in the problems associated

with free surfaces and multi-fluid flows, its high computational time is one of its main
drawbacks, as variables on each particle are calculated via interpolation from surrounding
particles. Due to the larger computational time, it was necessary to focus on problems
that require relatively small number of particles. Therefore, the case studies were only
limited to the laboratory scale experiments. Furthermore, the CPU time of the simulated
experiments, in some cases, were relatively long; this caused long waiting time to analyse
the results. This limitation can be ameliorated with a parallel version of the code.

2. Insufficiency of details of the experiments found in the literature. Although many
experiments were found in the literature, only few presented enough details about how
the experiments were carried out, to be successfully used in this study. For instance,
values of Forchheimer coefficient, in modelling flow in porous media, is usually assumed
in literature.

3. Simulating the interface between media with different porosities. Although using
variable smoothing length, changing with porosity, provided sufficiently reasonable results,
this requires future study. The problem occurs due to the irregular distribution of particles
inside a kernel located at the interface. The kernel’s support domain at the interface
sits between different media, with different numbers of particles belonging to the media.
This causes an error in the calculation of the summation of the kernel function and its
derivative.

4. Simulation of the salt water upconing under a pumping well. This phenomenon
naturally occurs in cylindrical coordinates and an SPH model in cylindrical framework
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is recommended to be used. Therefore, an experiment was selected with nearly two
dimensional nature. Further study is required to investigate the sink simulation with an
SPH model in cylindrical framework, as analytical solutions have been mostly presented
in cylindrical coordinates.

6.2 Future works

6.2.1 Interface between media with different porosities

Further development is recommended to improve the modelling of the interface between
media with different porosities. The problem occurs because there is a jump in the
number density of particles at the interface. This happens because the distance between
particles is inversely proportional to porosity of media and the numbers of particles inside
the kernel that belong to different media are thus different.

To show this problem, two simulations are presented here. A set of particles that
are fixed at their positions were used to calculate the summation of the kernel at each
particle as

Ws =
N∑
j=1

mj

εjρj
Wij, (6.1)

where mj, ρj, and εj are mass, density, and porosity of particle j, respectively, and Wij

is the kernel value associated with particles i and j. The cubic spline weighting function
was used here (Liu and Liu, 2003).

In the simulations a set of particles fixed in their positions inside a square box
were simulated. The left half of the domain was set to have ε = 1, and the right half
was a porous medium with ε = 0.5. The distance between particles on the left was
∆xf = ∆yf = L

42 , and inside the porous medium was ∆xp = ∆yp = L
42
√
ε
. Two scenarios

were simulated, 1) one with constant smoothing length (Fig. 6.1a) and one with variable
smoothing length (Fig. 6.1b). For the first scenario the smoothing length was set to
h = 1.2∆xf for all the particles, while for the latter the smoothing length was set to
h = 1.2∆xp.

As it is observed in Fig. 6.1a, the kernel summation value in the two domains is
not constant throughout the domain. This is because the number of particles inside the
support domain of the kernel in the porous medium is not sufficient. This issue was
observed in the second scenario (Fig. 6.1b) with a less extent where the smoothing length
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Figure 6.1: Kernel function summation (Ws) for the scenario with (a) constant smoothing
length, (b) variable smoothing length.

was assigned according to the porosity of the media and the number of particles inside
the support domain was constant in the whole domain except at the interface.

For both cases, and for the particles close to the interface, it is observed that the value
of the summation was not accurately approximated. The reason for this is the irregular
distribution of particles inside a support domain of the kernel that falls over the interface.
This error occurs across a wider region in the second scenario (Fig. 6.1b). Because the
same value of smoothing length should be used for a pair of interacting particles to
conserve the momentum, the effective smoothing length for a pair of interacting particles
was calculated as the average of their smoothing lengths (Rafiee et al., 2007). This
especially is necessary for the particles at the interface between two media. The averaging
caused the particles on the left close to the interface to have a larger support domain
compared to the other particles on the left. This led to the inclusion of more particles
from the porous medium inside the support domain; that possibly is the reason for the
error in more layers in the second scenario.

It can be concluded from the simulations that using a variable smoothing length
increases the accuracy of the results by assuring sufficient number of particles inside a
support domain. However, the error at the interface requires further study and improve-
ment.
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6.2.2 Sink simulations

In coastal aquifers, when a larger amount of groundwater is abstracted through a
pumping well, seawater upconing can dramatically pollute drinking water. Although
many modelling and experimental studies have focused on studying the seawater upconing,
the SPH modelling of this phenomenon has not been conducted in the literature. Due to
the advantage of SPH in modelling multi-fluid flow with complex geometries and ease
of adding new physics, it is beneficial to further study the SPH modelling of seawater
upconing.

It is recommended to further investigate the particle distribution around a point sink.
Although, the observed clumping of particles around a point sink was expected due to
the constant reduction of the sink particles’ mass while keeping density constant, it is
beneficial to investigate the effect of particle regularisation techniques such as Particle
Shifting (PS) and Dynamic Stabilization (DS) on improvement of the results (Lind et al.,
2012; Tsuruta et al., 2013; Khayyer et al., 2017b).

It is recommended to further investigate the modelling of the point sink using
cylindrical SPH as the flow pattern especially around the sink is cylindrical. The study
can be started by simulating the simple hydrodynamic problem of a point sink as shown
in Fig. 6.2. The analytical radial velocity of the fluid moving toward the origin is

ur = q

2πr , (6.2)

where ur is the radial velocity, q is the flow rate or the sink intensity per unit thickness,
and r is the radial distance from the sink (Nakayama, 2018). The tangential velocity, uθ,
is zero in this case.
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Figure 6.2: A sink at the origin (Nakayama, 2018).
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