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Abstract

Swarms of autonomous Unmanned Aerial Vehicles (UAVs) will soon play a significant

role in challenging tasks such as the exploration of large unknown geographical regions,

mapping, and environmental monitoring. For an autonomous vehicle to be able to perform

these tasks, it may need to navigate through an environment without explicit human control,

often relying on embedded processing units, localisation algorithms and onboard sensors

to do so. Although most UAVs depend on Global Positioning Systems (GPS) for outdoor

navigation, it is unreasonable to assume GPS is available in all situations.

One of the most promising ways of enabling a UAV to autonomously explore a large

unknown GPS-denied environment is through the use of simultaneous localisation and map-

ping (SLAM). However, a fundamental problem when performing SLAM is that, without

absolute position measurements, the position estimations from SLAM may drift over time.

Loop closure is a well-known method of addressing the problem. This reduces the drift in

the position estimation by associating new observations of landmarks with those which are

already found on the map. Loop closure is especially challenging in large outdoor environ-

ments, as the computational complexity of the SLAM algorithm grows quadratically with

the number of observed landmarks. Also, incorrect landmark data association can cause

catastrophic failures in SLAM.
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Multi-session SLAM enables a UAV to avoid the problem associated with loop-closure

by combining observations from multiple smaller SLAM missions performed repeatedly

over time in the same environment. Even though this technique reduces the number of

observed landmarks in each run, it requires a single UAV to perform multiple missions,

which significantly increases total flight time and the risk of failure.

This PhD research aims to improve on the current limitations of SLAM and multi-session

SLAM by using a decentralised swarm of UAVs to fly over and accurately map large GPS-

denied outdoor environments in a single SLAM run. To achieve this task, the proposed

system fuses position information from the UAV’s sensors (inertial measuring unit, stereo

visual SLAM and relative localisation system) via an Error State Extended Kalman Filter

(ESEKF), thus creating a system that cooperatively reduces the drift of the position output

from every member of the swarm.

A set of outdoor experiments were conducted in a GPS-denied environment to assess the

error of the cooperative ESEKF’s trajectory estimates compared with the trajectory estimates

of the visual SLAM algorithm of each member of the swarm. These resulted in an average

reduction in error of the trajectory of each UAV, of approximately 39%, 74% and 48% in the

Longitudinal, Lateral and Height axes respectively. The algorithm collectively reduces the

drift in the position estimation of each UAV while performing SLAM simultaneously, thus

avoiding the need for multi-session SLAM or map-sharing. By using a swarm of UAVs, the

system is robust and scalable, enabling mapping and surveillance to be conducted efficiently

to a high degree of accuracy in GPS-denied environments.
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Abbreviations

CoSLAM Cooperative SLAM

CoRL Cooperative Relative Localisation

DoF Degrees of Freedom

EKF Extended Kalman Filter

ESC Electronic Speed Control

ESEKF Error State Extended Kalman Filter

FoV Field of View

GPS Global Positioning System

INS Inertial Navigation System

IMU Inertial Measuring Unit

RTK Real Time Kinematic

SLAM Simultaneous Localisation and Mapping

SRS Swam Robotics Systems

TDA Time Difference of Arrival

ToF Time of Flight
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UAV Unmanned Aerial Vehicles

UWB Ultra-Wideband

VSLAM Vision-based SLAM
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Nomenclature

∆tk The time interval.

δθ w
b The error in the rotation of the IMU frame with respect to world frame.

∆pw
b The difference between the real position and the estimated position of the IMU frame

expressed in the world frame.

p̂w
b The estimated position of the IMU expressed in the world frame.

v̂xc The estimated velocity of the coloured marker on the image’s x axis.

x̂ Estimated state.

x̂ The estimated state.

x̂c The estimated position of the coloured marker on the image’s x axis.

ω The true angular velocities of the IMU.

Ω(ω) The quaternion-multiplication matrix of ω .

ωm The angular velocity measurements of the IMU.

ωxb The angular rotations of in the x axis of the IMU frame.

ωyb The angular rotations of in the y axis of the IMU frame.

ωzb The angular rotations of in the z axis of the IMU frame.
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⊗ The quaternion multiplication.

θ j The angle between the optical axis and dUWB.

a The true linear accelerations of the IMU.

am The linear acceleration measurements of the IMU.

b The IMU frame or body frame.

bω The bias in the angular velocity measurements of the IMU.

ba The bias in the linear acceleration measurements of the IMU.

c The camera frame.

Fc The continuous time system matrix.

g The gravity vector in the world frame.

Gc The continuous time noise matrix.

H The observation matrix.

h The input histogram.

I(xi,yi) The intensity of the PDF of the image.

Id The identity matrix.

K The Kalman gain.

l The relative localisation frame.

M00,M10,M01 The first moments of the search window.

nω White Gaussian noise of the angular velocity measurements.
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na White Gaussian noise of the linear acceleration measurements.

pd f The probability distribution function.

Q The process noise covariance.

Qc The continous time process noise covariance.

R The measurement noise covariance matrix.

u = 1 Hue channel.

u = 2 Saturation channel.

v The vision frame.

w The world frame.

x The true state.

xc, yc The mean location (centroid).

xi,yi The pixel location within the search window.

xN x coordinate of the position of UAV− j in the NED frame.

yE y coordinate of the position of UAV− j in the NED frame.

zD z coordinate of the position of UAV− j in the NED frame.

Cq The rotational matrix corresponding to the quaternion q.

nbω
The noise in the angular velocity’s bias.

nba The noise in the linear acceleration’s bias.

pw
b The real position of the IMU with respect to world frame.
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Definition of Terms

Cooperative SLAM: is the process by which a swarm of multiple mobile robots cooper-

atively and distributively build a map of an environment, and simultaneously reduce the

computational complexity of the SLAM algorithm on each robot by sharing computational

resources [99].

Multisession SLAM: combines the results of multiple SLAM missions performed over

time over the same environment [45].

Loop closure: occurs when a robot returns to a previously mapped region and associates

landmarks with new position estimates of those landmarks held in the map from different

viewpoints to improve the robot’s position in the map [30].

Relative localisation: is the process of obtaining the positions of a neighbour based on

the range and bearing measurements of an observer [22].

SLAM: Simultaneous Localisation and Mapping is a process by which a mobile robot

can build a map of an environment and simultaneously use the map to deduce its location

[27].
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Visual odometry: is the process of estimating distance travelled, based on changes in

key visual features of sequential camera images. [53].

Unstructured environment: is used to refer to an environment without human made markers

or features.
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1. Introduction

1.1 Overview

Map making has long been an important part of human activity for communicating useful

information about the location of landmarks and other key features describing outdoor en-

vironments. Moreover, maps are used to help with critical tasks such as locating oneself

in the environment (localisation), path planning, and navigation for applications such as

exploration, search and rescue [53, 54]. Therefore, it is very important to construct accu-

rate maps. It is easy to understand that the process of constructing accurate maps is time

consuming, and even dangerous when performed manually in certain situations. Conse-

quently, mobile robots have recently gained attention from research groups and industry

because of their ability to be controlled remotely or automated, thereby giving their operator

safer access to dangerous, distant or otherwise inaccessible places for the purpose of mapping.

Ground-moving robots and unmanned aerial vehicles (UAVs) have been detailed in the

research literature as viable options for navigating and mapping outdoor unstructured en-

vironments [122, 14]. In this thesis, the term unstructured environment is used to refer

to an environment free from man-made markers or features. In outdoor locations, mobile

robots must navigate over a wide range of obstacles, such as rocks, trees, and changes in

gradient. UAVs have an advantage over ground-moving robots for these types of environ-
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ments, as they can fly over or under obstacles, and adapt to variations in terrain. UAV

systems can explore an unknown environment without explicit human control (beyond set-

ting a flight plan) by using onboard cameras, embedded central processing units (CPUs)

and inertial measurement units (IMUs) to create a map of the environment and estimate

their position within it. However, these position estimates may drift over time. To reduce

this error, the global positioning system (GPS) is typically used to correct position estimation.

Although most UAVs depend on GPS for outdoor navigation, it is unreasonable to as-

sume that GPS signals are available in all situations [28]. For example, mapping a dense

forest may result in GPS outages when tree canopies obstruct the line of sight to the sky

required to maintain a radio connection with GPS satellites [72]. To address this limitation of

current navigation systems, this PhD research aims to develop methods and technologies that

increase the accuracy of the position estimates of UAVs in outdoor GPS-denied environments

compared with existing approaches. In this thesis, mapping is mentioned as the ultimate

goal of the research, but this is beyond the current scope. However, localisation, which is a

precursor for mapping, is fully explored.

1.2 Problem Statement

For a UAV to autonomously navigate through an unknown GPS-denied environment, it must

be able to localise itself within a map of a given area in order to accurately estimate its

location. However, maps may not be available in many scenarios in practice. Because of this

limitation, UAVs must be able to sense the environment and create a map while navigating

[26, 17]. This approach is called simultaneous localisation and mapping (SLAM) [2, 11]

(see Fig. 1.1). However, when a UAV navigates through a large outdoor area, it must deal

with a considerable number of landmarks and noisy distance estimates in order to localise

itself, often resulting in a drift in the SLAM position estimate. One way to solve this problem
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is to revisit previously measured landmarks and associate the new position measurements

with those already held in the map [11, 26, 42, 62, 68]. This process is called loop closure

[12, 18, 19]. Although loop closure reduces the drift in SLAM after a long run through

an environment, the number of new landmarks that need to be associated with previously

seen landmarks may increase the computational complexity of the SLAM algorithm to an

unacceptably high level [3]. For this reason, multi-session SLAM is often employed to

reduce the complexity of a single long SLAM run. This technique combines the results of

multiple smaller SLAM runs that have been performed repeatedly over time in the same

environment. By having fewer features in each run, the complexity of loop closure is reduced

[9]. However, real-life implementations of this technique using UAVs pose many challenges.

For example, UAVs have limited onboard computational and communication resources,

battery life and sensor capabilities compared with ground-moving robots. This means that

the resources available may not be sufficient to navigate multiple times through a large

GPS-denied environment. Furthermore, a mapping system comprised of one UAV alone is

not robust against collisions with other objects, such as trees, hardware or software failures,

any of which could lead to the failure of the whole mission [31, 4].

Fig. 1.1 Example of camera position estimate using SLAM in 3D space [148].

To address these issues, this thesis proposes the use of a Swarm Robotic System (SRS)
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comprised of multiple UAVs to navigate in formation and map large outdoor GPS-denied

environments in a single SLAM run. Using a swarm of UAVs enables the creation of a

relatively simple system of agents using their limited resources cooperatively to improve the

position estimation of each member of the swarm faster, more accurately and more robustly

against hardware or software failures than a single agent could achieve [62, 66].

A swarm of UAVs can perform complex tasks cooperatively and efficiently without com-

promising the scalability of the system or computational resources [45, 27]. In the case of

performing SLAM in an outdoor area, this means that regardless of the size of the swarm, the

system can cooperatively reduce the drift in the SLAM position estimate of every member

of the swarm in one run through the environment. However, to achieve this objective, it

is necessary for each UAV to share position information about partly constructed maps

with other members of the swarm. Because UAVs have limited communication bandwidth,

sharing parts of the map may not be possible in all situations. For example, in flight, UAVs

may not be able to maintain a stationary position long enough to allow the transfer of map

data. To address this problem, this thesis proposes that the UAVs share their relative position

estimates as an efficient alternative to map sharing. This is achieved by performing relative

localisation, whereby each UAV measures the location of its nearest neighbours with respect

to its own body frame. The relative position estimates of the neighbour are then transformed

to a global coordinate frame, which allows each UAV in the swarm to share their relative

position estimates with their neighbours. This, in turn, aids in the coordination of the swarm

formation, in order to avoid collisions between members of the swarm or with external

objects [45, 25].

To share and use the relative position measurements, an Error State Extended Kalman

Filter (ESEKF) has been developed and implemented. The ESEKF fuses the information
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available from the sensors on each UAV with the shared relative position estimates of the

other members of the swarm. The filter reduces the drift of the position estimates compared

with standalone SLAM position estimates. The resulting system collectively reduces the drift

in the position estimation of every member of the swarm without adding to the computational

complexity of the SLAM algorithm for any individual UAV.

1.3 Limitations of Existing Technology

Previous researchers have investigated robotic mapping implementations to address the

difficulties associated with loop-closure in GPS-denied unstructured environments. The main

approaches and their limitations are:

• Researchers have proposed the use of a multi-robot system comprised of a slow ground-

moving robot fitted with a monocular camera, and a radio based ranging sensor for

mapping. The robot estimated its position in an environment using the monocular

camera and the SLAM algorithm without performing loop closure. This means that

the position estimates of the robot contained drift. To reduce this error, the distance

calculated by the robot between itself and a base station using a radio ranging sensor

were fused with the SLAM position estimates [67]. However, a base station may not be

available in all situations, for example war zone. Furthermore, the physical limitations

of ground moving robots reduce their applicability in environments where changes in

gradient or large obstacles may obstruct the navigation path.

• Other researchers have investigated the use of a single UAV system to perform several

SLAM runs in a large environment. This approach reduces the computational com-

plexity of mapping the environment, as the single system does not have to associate

a large number of landmark positions with ones that have been already mapped [85].

However, this method is not robust to failures in the single UAV. Furthermore, a single
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UAV system requires a larger amount of time to perform a SLAM run compared

to a multi-UAV system, which may not always be possible, for example during an

emergency.

• The use of a multi-UAV system to explore and map different regions of a large

environment has been proposed by previous researchers. In this approach, the UAVs

share and fuse partial individual maps through feature matching to create a global map.

Although this approach reduces the amount of time needed to map a large unstructured

environment compared with a single UAV, the multi-UAV system has to associate

landmarks based on the inaccurate position estimations of UAVs in the system. This

leads to inaccuracies in the global map. Moreover, the communication bandwidth

needed to share the individual maps between all members may not be available in

all situations because of the physical limitations of the UAVs. Furthermore, the time

needed to fuse the partial maps complicates real-time SLAM implementations [78].

1.4 Research Objectives

To address the limitations of previous approaches, and create a system that will enable an

autonomous swarm of UAVs to efficiently navigate through GPS-denied environments while

improving the accuracy of SLAM, this PhD thesis aims to answer the fundamental question:

How can an unstructured GPS-denied environment be explored efficiently by a swarm

of UAVs while avoiding multi-session SLAM?

To address this question, the following secondary research questions have been formu-

lated:
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• RQ1. How can a swarm of UAVs use the position estimation made by each UAV to

improve the accuracy of the relative localisation performed by other members of the

swarm?

Without access to GPS measurements, each UAV in the swarm must rely on inertial

measurements to estimate their position within the environment. However, stochastic

errors in onboard IMU measurements cause the position estimates to drift. To address

this, it is proposed that each UAV in the swarm cooperatively performs relative lo-

calisation in order to estimate the positions of their neighbours and in turn have their

own position estimated. These relative position estimates are then shared between

neighbours in order for each UAV to improve its own position estimates.

• RQ2. How can every agent in the swarm maintain or regain a visual line of sight with

its neighbour to update its relative position measurement?

For the swarm to maintain or recover a formation, the relative localisation system

on each UAV needs to be robust against short term failures in tracking and distance

estimations. For example, a UAV may be no longer able to locate the neighbour it was

tracking because of a temporary break of the visual line of sight due to an obstacle.

The system should be able to predict the position of the neighbour until the line of

sight is restored or the system determines that the object has been lost. To achieve

this, it is proposed to employ a sensor system comprised of a monocular camera with a

colour tracking algorithm and Kalman Filter, as well as an ultra wideband ranging

7



sensor. These, in combination, can estimate and track the position of a colour marker

on a neighbouring UAV even when the visual line of sight is temporarily broken.

• RQ3. How can a swarm use the relative position measurements of each member to

improve the accuracy and the performance of SLAM?

The SLAM algorithm scales quadratically with the number of features mapped, and

may become too large to compute in a complex environment. Therefore, using these

features exclusively incurs a high computational cost. However, each member of the

swarm can cooperatively perform relative localisation with neighbouring members of

the swarm and in turn, share these measurements. Sharing these measurements allows

each member of the swarm to correct the drift of their SLAM position estimates in real

time. This is achieved without performing multi-session SLAM or sharing partially

constructed maps through the use of the Error State Extended Kalman Filter.

1.5 Model Scenario

The type of scenario motivating this research is the problem of mapping of a large outdoor

area using UAVs, in an environment where GPS is unavailable. For example, a swarm of

UAVs is sent to perform SLAM in a GPS-denied environment, such as in a forest, under tree

canopies. In this scenario, the UAVs are assumed to have limited payload capacity, battery

life and communication capabilities, and the area to be mapped is greater than what a single

UAV can cover. Furthermore, in the presence of inherent sensor noise, the estimated positions

of each UAV may drift. Inaccurate position information may cause each individual navigation

system to fail, which could result in collisions with neighbours or obstacles. The objective is
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to devise a cooperative SLAM method that allows the swarm to efficiently and accurately

map this large unstructured environment without relying on constant GPS measurements.

1.6 Contributions of this Thesis

The main contributions of this research are as follows:

1. Cooperative SLAM has been proposed in recent literature as a way to reduce the

computational complexity of SLAM, and improve the exploration efficiency of UAVs.

To achieve this, UAVs share partial maps with their neighbours to create a global map

and improve each UAV’s individual position estimates. However, communication

links may be sporadic, and so sharing large amounts of data such as a map may prove

difficult in real time implementations. Therefore, this thesis proposes an innovative

approach to performing cooperative SLAM whereby the ESEKF is implemented in

every member of the swarm of UAVs. This decentralised ESEKF system cooperatively

reduces the drift of the standalone SLAM position estimate for every member of the

swarm without the need to perform loop closure, multi-session SLAM, or share a

partial or a global map.

2. A critical aspect of the implementation of an autonomous UAV is the data-fusion of its

inertial measuring unit and external sensors. Two options implemented in the research

literature to fuse data are the use of the direct Extended Kalman Filter and the indirect

approach, also referred to as Error State Extended Kalman Filter [137]. In the direct

formulation, total states such as orientation and position are inputs to the filter, along

with inertial measurements from the INS. The correction of the states is achieved using

external source signals such as the position estimates from VSLAM [13]. However,

there are some severe drawbacks to EKF implementation. In localisation applications

especially, the filter may present inconsistencies in the position estimates caused by
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accumulated errors in the linearisation process [13]. Therefore, this research proposes

the design of a cooperative ESEKF that fuses the position and attitude estimates from

SLAM with the inertial measurements of the UAV’s embedded IMU and the shared

relative localisation position estimates from neighbouring UAVs to improve on the

UAV position estimate obtained by SLAM

3. Without access to GPS measurements, each UAV in the swarm must rely on its

inertial navigation system to determine its position in the environment. However,

random errors in onboard IMU measurements can cause the position estimates to drift

exponentially [12]. Making matters worse UAVs have high constraints on payload

capacity, computational power, and battery. Therefore, this thesis proposes the creation

of a computationally lightweight relative localisation system that can be implemented

in a UAV with limited payload and limited computational resources. This system

provides reliable position estimates of nearby neighbours for real-time multi-robot

navigation using a 180◦ fish-eye camera, an IMU and an ultra-wideband (UWB) radio.

1.7 Thesis Structure

This thesis is comprised of six chapters as outlined below:

Chapter 1: Explains the motivation for this research and the rationale behind the spe-

cific objectives to be addressed. The limitations of existing approaches and technologies are

briefly outlined. The contributions to knowledge made in this thesis are briefly summarised.

Chapter 2: Reviews the research literature and summarises the limitations of existing

technologies relevant to the project. This includes recent developments in swarm robotics,

relative localisation, cooperative SLAM and cooperative data fusion.
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Chapter 3: Describes the theoretical approach and technology systems underpinning the

design and implementation of a novel relative localisation sensor for UAVs. The testing and

validation of the relative localisation system compared with ground truth position measure-

ments is reported.

The concepts and some of the results presented in this chapter have been published in:

RAMIREZ, B., CHUNG, H., DERHAMY, H., ELIASSON, J., AND BARCA, J. C. Relative

localization with computer vision and UWB range for flying robot formation control. In

Control, Automation, Robotics and Vision (ICARCV), 14th International Conference on

(2016), IEEE, pp. 1–6

Chapter 4: Presents the mathematical theory underpinning the design of an Error State

Extended Kalman Filter (ESEKF), which fuses all the available position estimates from the

sensors embedded in a UAV. The chapter presents a preliminary implementation of the filter

by testing its application in two UAVs within an indoor environment.

Chapter 5: Describes the implementation of the ESEKF, developed in Chapter 4, in a

cooperative swarm of flying UAVs. The accuracy of the new system is evaluated by com-

paring position estimates from the cooperative ESEKF with ground truth measurements

obtained from GPS.

Chapter 6: Concludes the thesis by summarising the contributions and limitations of this

research and outlines future research directions.
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2. Literature Review

This chapter focuses on one of the primary application of autonomous mobile robotics, that

is, the mapping of GPS-denied unstructured outdoor environments. In this environment, a

single robot may not be robust to overcome its limited computational and communication

resources, limited payload and the possibility of being lost or significantly damaged [28]. In

these situations, multiple UAVs can be used, but this introduces the problem of coordination,

map sharing and communication. Therefore, the following chapter provides a literature

review on the state of the art of autonomous UAV systems developed for mapping large

outdoor GPS-denied environments, as well as the terminology and basic concepts necessary

to understand the motivations behind this research.

Section 2.1 introduces cooperative SLAM in order to understand mapping in GPS-denied un-

structured environments. The Implementation of UAVs in these environments is discussed in

Section 2.2. Section 2.3 introduces the concept of swarm robotics to overcome the limitations

of UAVs followed by Section 2.4, which reviews recent approaches to Relative Localisation

required to coordinate the actions of the members in a swarm. To better understand the

coordination approaches of a swarm visual SLAM is discussed in Section 2.5. Section 2.6

reviews the most recent data-fusion methods that aim to improve the position estimation of

visual SLAM. Section 2.7 presents the limitations on current implementations of cooperative

SLAM and summarises the findings.
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2.1 Introduction: Cooperative SLAM

Simultaneous Localisation and Mapping (SLAM) was developed as a practical solution

for navigating and mapping unknown unstructured environments without the need for GPS

[12, 35]. The most robust type of SLAM for outdoor environments is vision-based SLAM

(VSLAM), which records detailed feature information about the surrounding environment

[139]. However, Gayathri et al. [48] noted that there are two major problems related to

VSLAM for UAV navigation. The first problem is that the resulting map will contain drift

because of inherent noisy sensor measurements. The second problem is to perform loop

closure, which requires high computational power to associate previously seen features with

new features and reduce the drift in the SLAM position estimation.

To avoid the computational complexity of loop closure in large environments, many re-

searchers have investigated how to use multiple smaller SLAM runs to generate a global

map [1, 28]. This approach generally uses a single UAV to map a large area by successive

runs. However, if the UAV gets lost or damaged, the whole SLAM run may fail. When a

swarm of UAVs is used instead, it is possible to take advantage of the cooperative nature of

the system to map the region faster, more accurately and more robustly than a single UAV

system [83]. Gamage et al. [47] called this approach cooperative SLAM (CoSLAM). This

approach decreases the computational complexity of SLAM and increases the robustness of

the operation to catastrophic failure either from software or hardware. The main challenge in

CoSLAM is, sharing parts of the map or relative position measurements between agents and

fusing this information to reduce the drift in the position estimate of each SLAM .

This review introduces the methods and technology developed by researchers to imple-

ment CoSLAM for the exploration and mapping of unstructured environments.
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2.2 Unmanned Aerial Vehicles

The two main robotic systems that have been detailed in the research literature as viable

technologies for mapping large unstructured environments are ground-moving robots and

UAVs [146]. Ground-moving robots can be equipped with high-powered processing units,

arrays of sensors and high-capacity batteries because this type of robot can carry a higher

payload without compromising maneuverability [109, 115]. However, this type of robot

has to overcome ground obstacles such as rocks and bushes, as well as changes in the ter-

rain’s gradient [83, 88]. By contrast, UAVs can efficiently travel through complex outdoor

environments, as they are typically lightweight and fast-moving, and can fly over or under

obstacles [96]. However, compared to ground-moving robots, UAVs are constrained by pay-

load capacity and battery life, which limits the computational, sensory and communication

resources that can be equipped in the system [97]. A subset of UAVs that manages to balance

navigation efficiency in cluttered environments and payload capacity are quadrotors (see Fig.

2.1) [100, 3].

Fig. 2.1 Quadrotor showing propeller direction to generate lift.
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Quadrotors have four rotors, which allow movement with six degrees of freedom (6DoF),

which includes up, down, left, right, forward and back. [119]. This configuration enables

vertical take-off and landing and offers high maneuverability. Because the weight of the

UAV is distributed over the four motors, quadrotors have a relatively high payload capacity

compared with fixed-wing aircrafts and require less space to take off and land. They are

also able to hover at a particular point in space, for example when a particular area is in

need of a more detailed inspection. The relative speeds of each rotor enable the UAV to

modify its pitch, roll and yaw angles, and to modify its position at any time (see Fig. 2.2)

[112]. These attitude changes allow the UAV to map and navigate efficiently in unstructured

environments. Because of advances in electronics, quadrotors can now be manufactured in a

large range of sizes, which means that they can be scaled to suit a wide variety of applications

such as search and rescue, mineral exploration, environmental monitoring (see Fig. 2.3)

[59, 141, 39].

Fig. 2.2 Quadrotor pitch, roll, and yaw angles.

To develop an autonomous UAV system that can navigate through an environment, the UAV

must accurately sense or measure its position within the environment. To perform these

measurements, recent research literature has detailed two primary sensors: proprioceptive
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sensors such as IMUs that determine the position of the system based on inertial measure-

ments [103, 42]. Exteroceptive sensors such as cameras and laser rangefinders that measure

the position of objects in relation to the pose of the sensor in order to avoid collisions with

obstacles in the environment or other UAVs [71].

Fig. 2.3 Picture taken at the Drone/UAV Search and Rescue Challenge May 17th 2014
Marshall Virginia US [86].

2.3 Swarm Robotics

Multi-UAV systems can share individual resources and coordinate actions to provide greater

functionality, robustness to individual failures, better area coverage and shorter mission

completion times compared with single-UAV systems [18]. However, the implementation of

multi-UAV systems also creates additional challenges, such as overcoming the uncertainty

about the collective state of the team [31]. For a multi-UAV system to perform autonomous

cooperative tasks, each team member has to maintain information about its state in the envi-

ronment, the state of the neighbouring UAVs as well as potential changes in the environment.
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Many coordination algorithms for multi-robot systems have been based on biological

behaviour-based control, which exploits the social characteristics of insects and animals such

as swarm behaviour [27]. This type of control is implemented individually in every UAV,

detailing communication and resource-sharing mechanisms, as well as reflective and reactive

actions to avoid collisions. This method allows interactions between each UAV as well as

between the environment, leading to the emergence of a system with intelligent, cooperative

behaviour [119, 97].

2.3.1 Swarm Cooperative Behaviour

The deployment of autonomous UAV swarms has the potential to enable fast information

gathering, such as mapping, and more efficient coverage of vast areas, by sharing compu-

tational resources, sensor position measurements and by coordinating actions in 3D space.

Some applications of autonomous UAV swarms detailed in the recent research literature are:

• Manipulating large structural elements in environments that are difficult for humans to

access, such as deserts or over oceans [96].

• Collaborating between different types of robots to achieve a common goal. For

example, in a large-scale disaster UAVs can locate areas where victims are likely to be

found while ground-moving robots search these areas [140].

• Performing simultaneous measurements in different locations, such as sensing mineral

deposits in different parts of an outdoor unstructured area [5] and monitoring pollution

after an industrial accident [100].

Coordination between the agents in a swarm is essential in order for the system to perform any

autonomous cooperative task. However, the implementation of coordination algorithms in

the real world UAV systems poses many technical challenges, ranging from communication,

task allocation and distributed sensor fusion [71, 119].
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2.3.2 Coordination Topologies

There are two main approaches to designing cooperative systems composed of multiple

UAVs: centralised and distributed approach. The centralised approach uses one of the UAVs

or an external node to coordinate the system in order to map an unstructured environment

[97]. The advantage of a centralised system is that it is relatively simple to implement in

UAVs. However, the main disadvantage is that the centralised approach has computational

complexity, which limits the size of the system. Because adding members into the system

increases the processing load of the central UAV where all the information and communi-

cation are concentrated [28]. Another disadvantage of a centralised system is that, if the

central UAV stops working, the entire communication network breaks down. Therefore, this

approach is not robust against the failure of a single component [54].

In a distributed approach, independent UAVs work together to achieve the common goals of

the entire population, without the need of a central node. This type of approach models the

group’s coordination generally based on animal behaviour. For example, Colorni et al. [86]

detailed how ants optimise their path to food sources by distributing task among the members

of the colony. In another example, Vásárhelyi et al. [133] how birds localise neighbours

to create different formations to reduce wind resistance during flight. Like ant colonies

and birds, cooperative and decentralised UAV systems are generally scalable, meaning that

the system will not increase its computational complexity with the addition or reduction

of members to perform a common task [53]. However, effectively coordinating the system

is governed by internal and external factors. For example, a few of the internal factors are

the communication set-up used to share position measurements with other members and

the implemented sensors that enable the UAVs to navigate through an environment. Some

external factors are obstacles that change the direction of the system to avoid them and the

type of environment mapped by the system, [59, 142].
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To achieve the coordination of a swarm of UAVs, it is generally an advantage to have

each sensory resource in the system as a resource available to any member of the swarm. The

ability to share sensory information, appropriately translated to another UAV’s perspective,

can extend the capabilities and robustness of a swarm [72]. However, in practice, this is

difficult to achieve because each UAV’s sensory resource generally provides information

based only on that UAV’s reference perspective, which is typically its moving coordinate

system or body frame. A simple solution detailed in the research literature is to determine a

stationary global reference frame that any individual UAV in the swarm can orient its sensor

measurements in order to be interpreted by other UAVs [96].

In swarm robotics research literature, relatively simple nature-inspired coordination mecha-

nisms are presented that make distributed systems feasible:

• Information-based coordination: where the interaction is in the form of communica-

tions between swarm members. The exchange of information can be either direct, by

explicitly passing electronic messages, or indirect, by placing messages in the environ-

ment, such as modifying an aspect or adding a distinctive feature to the environment

[141].

• Physical coordination: where individual members of the swarm interact at a mechanical

level, either directly or indirectly. For example, each member of the swarm directly

exerts attracting or repelling forces on each other, such as potential fields or indirectly

manipulating a common object, such as modifying the colour of a visible landmark.

[142].

Recent research on multi-UAV systems has proposed several methods for coordinating an

SRS. These include leader–follower, graph theory and virtual structures (formations) [3].
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Meng et al. [86] detailed the leader-follower approach, where the UAV designated as the

leader transmits location and orientation information to its follower UAVs. However, leaders

do not receive any information from the other members of the system, which means that

communication is one sided [8]. Therefore if the communication link is broken the network

fails. Also, this system is not robust against the failure of the leader as it solely depends on it

to guide the swarm’s motion [54].

Coordination using graph theory treats each robot as a node in a graph [100]. The graph

models reroute the information of all the other nodes through information-exchange methods

which are algebraic graph theory and proximity graphs. These methods assume that the multi-

robot system consists of several agents, evolving in a N-dimensional state and every agent is

a vertex in a graph. These vertices are interconnected in order to communicate information

to a leader from any vertex [113]. These methods play a direct role in the improvement

of performance, stability and robustness to variation in the communication topology. For

example while using this approach the swarm can select a new leader in case of the failure

of the current leader [71]. However, this approach relies on constant communication and

knowledge of each UAV’s localisation. Therefore, it is not robust against communication

interference or when communication dropouts occur [59].

Virtual structures are formations that behave as a single entity, where all the members of

the swarm measure the distance and angle with other neighbouring members in order to

maintain a predefined geometric relation with its neighbours (see Fig. 2.4) and to commu-

nicate position estimates. UAVs in a formation typically move in a certain direction and

orientation, maintaining the required geometrical relationship with its neighbouring members

[1]. This coordinated motion can, therefore, be considered a system of virtual springs and

dampers, which adapt to the changes in the shape of the unstructured environment [122].
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Fig. 2.4 Example of a triangular formation

For example, M. Anthony et al. [145] detailed that in a formation each robot performs an

identical optimisation computation of its next position and orientation based on the position

of other neighbouring robots in the formation and the maximum and minimum separation

between members that has to be maintained for the formation to be stable. Furthermore, the

communications requirements to maintain a formation are a function of four factors: 1) the

number of robots in the formation, 2) the bits needed to encode the position of a single robot,

and 3) the update period of the robot control cycle. Swarms have the flexibility to choose

any geometrical formation depending on the environment. For example, if a swarm of UAVs

that is navigating in a triangular formation is required to map an area that is not wider than

two UAVs. The system can change its triangular formation into a linear formation to fit the

desired area and recover its original state at a later time [133, 119].

2.4 Relative Localisation

For formations of UAVs to coordinate their movements, all the UAVs in a formation must

know the location of neighbouring members relative to their position based on a common

reference frame [136]. Traditionally in outdoor environments, UAVs have access to the global

frame via GPS. However, GPS signals may be lost in unstructured outdoor environments such
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as a forest. Approaches to overcome GPS occlusions, for example optical motion-tracking

systems, use cameras placed in the environment to determine the position of an UAV [136].

Another example is relative localisation, where a UAV or an external node can determine

the position of its neighbour based on its position in relation to a global coordinate frame

[143, 30].

Without access to GPS measurements, each UAV in the swarm must rely on its inertial

navigation system (INS) to perform dead reckoning, which estimates the UAV’s position

relative to a starting point. Dead reckoning uses the linear accelerations and angular veloci-

ties measured from the UAV’s IMU to determine its position in the environment. However,

random errors in onboard IMU measurements can cause the position estimates to drift

exponentially [12]. As a result, the drift in the IMU’s inertial frame cannot be modelled

deterministically [9, 34]. Therefore, external localisation systems, such as radios, ultrasound

and (multi-) camera systems [34, 15, 78] are still widely used for closed-loop control and

ground truth position measurements. However, these systems are prohibitively expensive and

difficult to set up in unstructured outdoor environments. Moreover, many of these systems

cannot determine the position and rotation of a large number of UAVs, as they only allow

localisation of up to 30 UAVs in real time [130].

Relative localisation is another way to localise a UAV. This is achieved by measuring

and then estimating the position of the UAV of interest based on neighbouring UAVs current

positions in the environment [76]. In a swarm setting, each UAV estimates the position of

its immediate neighbours in relation to a fixed global coordinate system [89, 95]. Typically

an relative localisation system measures the range and angle of nearby UAVs, in order to

establish inter-UAV relative position measurements [77, 84].
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2.4.1 Cooperative Relative Localisation

Two main types of relative localisation have been proposed in the research literature. They

are network relative localisation and cooperative relative localisation (CoRL) [99]. Network

relative localisation places static nodes and moving nodes, such as neighbouring UAVs, in an

attempt to reconstruct the relative positions of one UAV. This is achieved by triangulating the

distance measurements made between the UAV and the neighbouring UAVs. However, this

approach may not be feasible in unstructured or unknown outdoor environments, because

the accurate positions of the measuring nodes have to be known to the system to function

properly. Alternatively, CoRL considers the different moving body frames attached to each

UAV and then attempts to estimate the relative distance, and angle among all neighbouring

moving body frames [99, 104]. This approach gives more flexibility to the system, as all the

UAVs in the system can estimate the positions of their neighbours and in turn have their own

position estimated, all while in motion as shown in Fig. 2.5.

Fig. 2.5 Example of distance and angle measurements from each UAV body frame based on
a global coordinate frame

One of the earliest implementations of relative localisation was reported by Sperati et al.

[124], in their approach, ground-moving robots were split into two groups. One group of
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robots moved while the other remained stationary, essentially serving as landmarks for the

first group of robots to locate themselves. Although this implementation could determine

the position of a robot, applying it to UAVs might prove difficult, because of the UAVs

limitations on battery life. Another method was detailed by Stegagno et al. [125], in this

approach, a multi-robot system performed CoRL by measuring the distance between all

neighbouring robots to later share these measurements with concerning robots. Therefore,

allowing the multi-robot system to fuse the distance measurements of all the members in

the system and estimate the bearing of each robot. This approach was implemented in

decentralised Extended Kalman Filter (EKF), where each robot shared the computational

load of estimating the relative localisation of all the robots in the system. However, when an

update to all filters occurred, the system required all robots to communicate with each other

and share their position estimates.

Wanasinghe et al. [135], detailed an approach where a mobile robot determined the bearing

of a stationary robot from a series of different distance and angle measurements. However,

the system required that the robot being localised remain stationary. This approach might not

be possible when applied to UAVs because a UAV cannot hover in one place for long periods

of time due to battery constraints. Mourikis et al.[89] detailed a more flexible approach to

CoRL. This work described how two ground-moving robots performed a circular motion at

alternating times in order to be identified and tracked. Although this method allowed the

robots to remain mobile, the requirement to perform circular motions may be incompatible

with operational objectives.

2.4.2 Sensors used for Relative Localisation

To perform CoRL in any environment, it is highly desirable to have precise and high-

frequency sensor measurements, such as the position measurements from sonar, cameras and
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laser rangefinders [129]. Using sensor readings, a measuring UAV can accurately measure

the relative range and angle of other neighbouring UAVs based on the measuring UAV’s

location in the environment [27].These measurements can then be fused with the measuring

UAV’s own inertial sensor data (IMU) to relate the relative localisation measurements to a

single coordinate frame [15].

Sonar is one of the most frequently used sensors for localisation, as it is simple, rela-

tively inexpensive and provides distance information. However, sonar has difficulty in

measuring the accurate bearing of objects. Monocular cameras are another option detailed in

the research literature to localise neighbouring UAVs, as they are inexpensive compared to

laser-rangefinders. Cameras can identify and determine the position of specific colours or

shapes of a UAV, when paired with visual tracking algorithms [45]. For example, Dugas et al.

[34] used wide-angle cameras to create a panoramic image with a 360◦ horizontal Field of

View (FoV), where neighbouring robots could be identified and tracked in order to compute

their relative positions.

Active and passive markers have been detailed by researchers to identify and visually track

the positions of UAVs [4, 59]. For example, Ioannis et al. [78] noted that this approach

could lead to tracking systems that have low computational cost because the system has only

to identify the colour placed on the robot and not the individual physical characteristics of

the robot. Moreover, Luft et al. [77] developed a computationally lightweight localisation

system equipped with target modules, which included four active light emitting diodes (LED)

emitters arranged in a particular shape and a monocular camera to identify the predefined

shape. However, in outdoor environments the light emitted from the LEDs could be washed

out by sunlight and obstacles could occlude the predefined shape, making the tracking of

the UAVs difficult. Alternatively, passive markers with distinctive colours can be tracked,
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even when occlusions are present, using colour-tracking algorithms that can detect colour

in any lighting conditions and a Kalman Filter to improve the position estimation [137, 25].

However, this method requires additional distance measurements to complete the 3D relative

position estimation.

For a monocular camera to determine the 3D relative localisation of a marker, it has to

be paired with another monocular camera to create a stereoscopic system [46]. However, this

approach will increase the computational complexity of the system, because it computes the

position of the marker based on the disparity between the two images. Alternatively, radio

range measurements like ultra wide-band (UWB) radios paired with a monocular camera can

avoid the computational overhead of determining the 3D location of objects [77]. For exam-

ple, Zihajehzadeh et al. [148] described a system which used UWB radios and Multi-camera

system to determine the position of an object. The UWB radios determined the distance

to the object being tracked in order to fuse this information with position estimates of the

cameras to improve their accuracy. Therefore, improving the position estimates, without the

need for more cameras. UWB radios offer interesting properties and capabilities such as low

weight, low power consumption, high bandwidth, low sensitivity for multi-path interference

and centimetre accurate ranging [144].

2.5 Outdoor SLAM

Absolute position measurements are desirable for outdoor UAV navigation. GPS has been

the preferred sensor used to acquire this type of information. However, GPS is unreliable

if the line of sight to the sky is occluded, thereby nullifying the effectiveness of the sensor

in unstructured environments such as a forest [35]. An alternative localisation approach

detailed in the research literature is to estimate a UAV’s position through dead reckoning

[50]. Although, as stated in Section 2.4, in this approach the position estimate drifts over
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time, nevertheless, localisation is still possible by performing Simultaneous Localisation,

and Mapping (SLAM) which improves on dead reckoning position estimates [38].

SLAM is performed without the need for any a priori knowledge of location [39]. To

perform SLAM, the UAV requires two types of sensors. As stated in Section 2.2, these are

proprioceptive and exteroceptive sensors [40] (as shown in Fig. 2.6). To perform SLAM,

a UAV estimates its current position by measuring the distances between itself (xk) and

environmental landmarks (zik), then associates these measurements with a bearing command

given or control vector to the UAV (uk), at a discrete time k, as the following quantities are

defined [35, 12]:

Fig. 2.6 Diagram representing the simultaneous estimate of both UAV and landmark locations,
and the inherent error in the position estimation due to noisy measurements [35, 12].

• xk: the state vector describing the location and orientation of the vehicle.

• uk: the control vector, applied at time k−1 to drive the UAV to a state xk at discrete

time k.

• mi: a vector describing the location of the ith landmark whose actual location is

assumed time-invariant.
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• zik: an observation taken from the UAV of the location of the ith landmark at a discrete

time k.

In Fig.2.6, it can be seen that for the most part, the error between the estimated and true

landmark locations is approximately the same between all landmarks position estimates.

This is because of errors in the UAV’s dead reckoning position estimates when the landmark

observations are made [49, 35]. To estimate these errors, the state–space model of the system

comprising the observation model and the motion model have to be defined. The observation

model describes the probability of making a measurement zk when the vehicle location and

landmark locations are known and are typically described as below. The motion model for

the vehicle can be described as a probability distribution on the previous position and control

vector as described below.

P(zk|xk,m) (2.1)

P(xk|xk−1,uk) (2.2)

Estimating the position of the UAV based on measured landmark locations involves finding

an appropriate representation of the observation model and the motion model. The most

common representation of these models is in the form of a state–space model with additive

Gaussian noise, leading to the use of a Kalman Filter to reduce the error or drift in SLAM

position estimates [45, 51].

2.5.1 Loop Closure

SLAM can be used to determine the local position of a UAV in an environment when absolute

position measurements are unavailable. However, the estimated position will drift over time

because of noise in the sensor measurements. To overcome this error, the UAV returns to

a previously mapped region after a long excursion to correctly associate visible landmarks
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with landmarks held in the map, thereby closing a loop. This method has been named in

the research literature as loop-closure [52]. Although performing loop closure can reduce

the drift, errors in associating previously mapped landmarks locations with current position

measurement can lead to the failure of the SLAM algorithm [56].

Most loop-closure detection approaches are appearance based because they exploit the

distinctiveness of the environment in a captured image [65, 115]. Appearance based loop-

closure detection is done by comparing all the features of previous images with the most

recently captured image features [85]. Implementing this approach in real time requires to

analyse the incoming images faster than the time required to acquire them [61, 118]. Thus,

as the map grows, the time required for loop-closure detection increases and computational

complexity scales quadratically, with the number of features held in the map. This complexity

eventually limits the size of the environment that can be mapped and the applicability of the

system in real time [90].

Research literature has detailed sub-mapping as an approach to address the computational

complexity of loop closure. Sub-mapping avoids computational scaling by combining smaller

SLAM runs, and thus involves smaller data associations [101]. However, the UAV must start

in an already mapped portion of the environment. Alternatively, the UAV can initialise a new

map with a referential map on start-up, when a previously visited location is encountered, a

transformation between the two maps is computed to merge the maps [43]. The transforma-

tions between the maps can be saved explicitly, with unique nodes called anchor nodes, or

implicitly, with links added between each map to facilitate map merging [102, 116].

A type of sub-mapping detailed in the research literature is multi-session SLAM, which

is the task of aligning two partial maps of the environment collected by the UAV during
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different periods of operation [107, 109] (see Fig. 2.7). In multi-session SLAM, concurrent

autonomous navigation is required, in which one UAV performs small SLAM runs over

different parts of the same environment until the whole area has been mapped. For example,

McDonald et al. [85] noted that it is challenging for a single UAV to perform multi-session

mapping given the limitation inherent to UAVs such as battery life and payload capacity,

which hinder the UAV system ability to complete map an environment. Therefore, the need

for a better solution is required

Fig. 2.7 Example of overlapping regions of sub-maps to create a global map.

2.5.2 Visual SLAM

In order to perform appearance based loop closure, cameras offer a larger bandwidth of

information compared to laser-rangefinders or sonar. Cameras can capture unique features of

landmarks in unstructured outdoor environments, which allows for data association through

feature recognition [26, 42], thus creating Visual SLAM (VSLAM) [43, 128]. However, de-

pending on the method for recognising features, VSLAM may be computationally expensive

in applications that need to run in real time [61].

30



Two main approaches have been developed to identify landmarks on an image and to

determine their positions based on the position of the camera. They are the direct method

and the feature-based method [62]. The direct method exploits all the information from the

environment, even from areas where intensity gradients are small. Although this method is

capable of providing accurate position estimates, it is computationally intensive, because

SLAM scales quadratically with the number of mapped landmarks [68]. For real-time imple-

mentations in unstructured environments, where the potential number of landmarks may be

unlimited, the computational complexity of SLAM is potential limitation .

The feature-based method uses a set of features dependent on the environment as land-

marks, such as points and lines. These are then extracted in each image in successive frames.

However, features may appear different in consecutive images depending on the position

from which the camera made the observation [139]. To overcome the changing appearance

of the features is with the use of scale-invariant feature descriptors, where image gradients

are measured at a selected scale in the region around key features (points and lines). The

key features are then transformed into a representation that allows for the visual system to

recognise them even when shape distortions occur [81, 128].

To recognise the features as landmarks, two approaches have been detailed in the research

literature. The first approach groups the extracted features from the scene as landmarks, rather

than the features themselves, thereby reducing the number of landmarks to a manageable

set, which in turn reduces the computational complexity of the algorithm [91]. The second

approach to VSLAM landmark recognition is model-based, where images are searched in a

database that contains the images of previously seen landmarks. Although this method re-

duces computational complexity, it may not be suitable in unstructured outdoor environments

as features differ in different lighting conditions [103].
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Based on feature recognition, a navigating UAV embedded with a camera can determine the

distance and direction it has travelled. This method is called visual odometry, where the

position of the UAV is determined using a sequence of images [114]. This method is often

used in conjunction with stereo cameras or monocular cameras, where the features third

dimension is used in combination with their appearance in consecutive images to determine

the distance travelled by the camera [113, 136].

Monocular cameras can provide the positions of outdoor landmarks, but at a high computa-

tional cost [146]. The camera captures a single image of the environment where landmarks

are located. This is performed at every time step during its movement, the features from

consecutive images are then extracted and combined in order to determine the distance

between the sensor and the features [143]. For example, a position estimate can be computed

using images captured from two UAV at two different time steps, to determine the location

of a landmark. However, both UAVs need to know precise relative localisation between them

at the two time steps and to associate them with the captured images [43, 91].

Jakob and Schöps et al. [38], presented a monocular VSLAM algorithm. This work used

pixel intensity errors of image patches, instead of traditional point feature detection. In

this approach, a bearing vector and distance were identified parametrised features in the

environment. A Kalman Filter was then designed to estimate the position of the camera,

based on the intensity errors. Eryong et al. [39] presented a monocular VSLAM system for a

UAV to map a GPS-denied environment. This approach followed a hierarchical structure

from the observations of the camera module, meaning that the system calculated the position

only using keyframes, thereby losing important image information in the process. Finally,

Edmundo et al. [51] developed a low-cost quadrotor that was capable of monocular visual
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navigation in unstructured environments by using scale invariant features and off-board

processing.

Stereo cameras provide numerous advantages, For example, the set baseline between the cam-

eras perceives the scene at a solid angle, allowing the development of accurate 3D VSLAM

approaches [134, 8]. For example, Pradeep et al. [103] presented a visual position estimation

system from multiple cameras in a 360° configuration on board a robot, to determine its

accurate position within the area as well as possible obstacles. Congdao et al. [26], mounted

a stereo camera on board a robot, while the system used scale-invariant features as landmarks.

Although using this type of features is computationally complex, this approach makes motion

estimation accurate and robust against large translations and rotations. [31, 101].

Despite substantial research progress in VSLAM, many issues remain to be solved be-

fore a robust visual mapping and navigation solution can be widely deployed on UAVs

[40, 12]. A key issue is that of persistence, which is the capability of a UAV to operate for

long periods of time without collisions or hardware failure as well as reliably associating

previously seen landmarks with new ones [107, 52]. Because of battery and payload con-

straints this key issue still remains, as UAVs cannot treat the mapping of an outdoor area as a

single large mission, instead, data should be collected from multiple SLAM runs and then

processed to determine the accurate locations of the UAV and landmarks [85, 9].

2.5.3 Cooperative SLAM

Cooperative SLAM (CoSLAM) is an efficient framework for solving the problem of drift in

SLAM. This method is based on the cooperation of multiple UAVs to estimate each UAV

positions in the environment as well as to build a map of the area. The individual maps

built by the multiple UAVs should then be merged to obtain a global map [109]. CoSLAM
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also increases the navigation system’s robustness against failure, reduces the computational

complexity and improves the exploration efficiency and range [57]. In the research litera-

ture, special attention has been paid to estimation consistency and robust data association

involving CoSLAM. To optimally map an unstructured environment cooperatively, different

implementations of estimation techniques have been proposed, including EKFs, information

filters and particle filters [23].

CoSLAM is closely related with CoRL and performing state estimations within sensor

networks, where the positions of all UAVs are cooperatively estimated. The main difference

is that, in CoSLAM, UAVs need to share and fuse the partial maps of all agents by using

distinctive overlapping features or landmarks between the maps, as well as the estimated UAV

position [50]. However, communication links may be sporadic and sharing large amounts of

data like a map will complicate real time implementations.

Several multi-robot CoSLAM approaches have been devised in the recent research literature.

For example, Lemaire et al. [43] proposed a collaborative vision system for localisation

and mapping by using IMUs and RGBD (red, green, blue and depth) sensors. A monocular

VSLAM algorithm was used for localisation tasks, and depth data processed from the sensor

was used to solve the scaling of the mapped features [58]. The position estimates and maps

from multiple robots were then transmitted to a ground station where, in the case of sufficient

overlap between robot views, the maps were merged based on a global coordinate frame [64].

Similarly, León et al. [69] employed a fleet of UAVs to form a collaborative stereo camera for

the localisation of robots in an environment. The sensors used in the proposed scheme were

a monocular camera, an IMU and a sonar for each robot. The sensor position measurements

were fused in an EKF for state estimation. Finally, a formation control algorithm was devel-

oped to maximise the overlapping FoV of the individual cameras embedded in the robots.
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Leung et al. [70], presented an approach for accomplishing multi-UAV CoSLAM, where

every UAV in the system was equipped with an IMU and a stereo camera system. A VSLAM

algorithm was implemented each UAV, and the position estimates from VSLAM were filtered

through a non-linear controller. The system accuracy for both the position of the vehicle and

the map cartography depended on feature re-observation, where a UAV observed features

already registered by another robot. Madhavan et al. [80] presented a multi-robot mapping

method based on multiple position graphs. This work utilised anchor nodes, equivalent to

base nodes to decompose the mapped area into sub-maps and optimise the position estimates

with a batch optimisation approach, called Tectonic Smoothing and Mapping. Roumeliotis et

al. [110] also presented a SLAM algorithm where robots only communicated parts of the

map of the environment, in order to reduce communication bandwidth. However, this method

can yield highly conservative estimates compared to sharing each robot’s complete map.

To fuse the information from multiple maps, Rashid et al. [108] introduced a sparse extended

information filter to merge key features of the map, in this approach robots, do not need

to be aware of each other’s starting location as the filter will match similar visual features.

Similarly, in the approach proposed by Zhan et al. [145], a robot localises itself in another

robot’s map to confirm their relative positions before merging their maps. As detailed above,

most of the CoSLAM methods are based on either map or image merging, which requires

overlapping exploration areas and significant amounts of data to be transmitted. To avoid

these issues, Paull et al. [98] presented a method in which the relative positions between

the two rovers were estimated by using mono cameras and range measurements, without

transmitting any image or feature point. One robot’s mono camera estimated a landmark’s

position as well as a neighbouring robot’s position. The estimated position of a neighbour

with respect to a landmark as well as the distance between robots was then shared with the
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other robot. This information is the fused in order to improve the position estimates of the

robot.

Recent research literature details EKF-based cooperative localisation algorithms to reduce the

communication overhead of CoSLAM’s map sharing. This cooperative approach is not de-

pendent on timely updates as position estimates can be back-propagated once they are shared

and rely only on pairwise communication in the context of the relative position measurements

[145]. Approaches in which the UAVs treat the positions of other neighbouring UAVs as

deterministic parameters and cross-correlations entail the risk of becoming overconfident

or forces the robots to follow certain motion patterns. A more elaborate approach is to treat

incorporation of relative measurements as a fusion of estimates with unknown correlations

[69, 110].

2.6 Data Fusion to Improve SLAM

UAVs autonomously exploring an unstructured environment must estimate their location

within it. However, none of the existing localisation technologies alone can meet the desired

performance specifications, such as accuracy and speed [5]. For example, dead reckoning

uses high refresh rate IMUs to estimate the fast changing position of a UAV. However, this

position estimate will drift because of noise in the inertial measurements [16]. The integration

of additional sensor measurements has been detailed in the research literature as a possible

way to improve the accuracy of IMUs’ position estimates [82]. One example is the use

of the position and rotation estimates from VSLAM as an aiding sensor measurement to

reduce the drift in dead reckoning [20]. The integration of additional sensor measurements is

called sensor data fusion, as it combines measurements from different information sources

to overcome the disadvantages of each sensor with the advantages of other aiding sensors [22].
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The most widely used data-fusion methods in robotics originated in the fields of statis-

tics, Bayes’ theorem, estimation and control [33]. Probabilistic Bayesian methods are now

considered the standard approach to data fusion in all robotics applications for combining

measurements in order to estimate a UAV’s true position. These estimation methods are im-

plemented in a number of ways such as the Kalman Filter, sequential Monte Carlo estimators

or functional density estimates [36].

An estimator is a decision rule which takes as an argument a sequence of observations

or measurements (IMU, stereo camera) and whose action is to compute a value for the state

of interest (position) [41]. Sensor state models are required by the estimator in order to

understand what type of information comes from the sensor. Environment state models are

also required in order to relate the position measurements from the sensors to states to be

estimated. Finally, some concept of information value or gain is needed in order to judge the

performance of the measurements [63]. For example:

• The state of the system is x ∈ X , this quantity describes an environment or process

such as the position estimate from dead reckoning. A state model comprises a set of

possible states together with any knowledge of how the elements of this set are related

[63].

• The information about the observations or measurements that a sensor yield describes

a quantity z. For example, the position estimate from VSLAM is a single realisation

z ∈ Z from this set. For each specific state of nature, x ∈ X an observation model is

required that describes what observations the system will make z = z(x) ∈ Z [63].

• Given the information obtained through observation z, the goal of the data fusion

process is to infer the underlying state x. To do this, a gain or decision rule is described

K which maps observations to states, K(z)→ x ∈ X and enables the prediction or the

update to be fused [63].
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In summary, the estimator incorporates information about the nature of the observation

process, beliefs about the state and the value placed on the accuracy of the measurement

[79]. The decision rule is essential in data-fusion problems, it is the function that takes in

all information and produces a single decision or resulting estimate. The most important

problem in data fusion is the definition of appropriate models of uncertainty associated with

both the state and observation models [82].

2.6.1 Kalman Filter

The Kalman Filter assumes that the states and their noise have Gaussian distribution and

that the current state is linearly dependent on the previous state [13]. The Kalman Filter

is an optimal estimator in the sense that it minimises the mean-squared error under the

linear-Gaussian system assumption [29]. The simple and robust nature of this recursive

algorithm has made it particularly appealing in the field of mobile robotics [10].

The Kalman Filter employs an explicit statistical model of how the parameter of inter-

est x(k) (prediction) evolves over a discrete time interval k and an explicit statistical model

on how the measurements z(k) (correction) that are made are related to the prediction. The

gain or decision rule K employed in a Kalman Filter is chosen to ensure that, the observation

and state models used, provide a resulting estimate x̂(k) minimises the mean-squared error,

rather than a most likely value [60].
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The Kalman Filter may be considered a specific instance of a recursive Bayesian filter for the

case where the probability densities of states are Gaussian. The starting point for the filter is

to define a model for the states to be estimated in the standard state-space form at a discrete

time k as shown below [60]:

x(k) = F(k)x(k−1)+B(k)u(k)+G(k)v(k) (2.3)

Where x(k) is the state vector of interest, u(k) is a known control input, v(k) is a random

variable describing uncertainty in the evolution of the state and where F(k), B(k) and G(k)

are matrices describing the contribution of states, control input if it exists and noise to state

transition respectively. An observation (measurement) model is also defined in the standard

state-space form as shown below [60, 73]:

z(k) = H(k)x(k)+R(k)w(k) (2.4)

Where z(k) is the observation vector, w(k) is a random variable describing uncertainty in the

observation, and where H(k) and R(k) are matrices describing the contribution of state and

noise in the observation respectively at a discrete time k [60, 74]. When the measurement

model and the state model are defined, the Kalman Filter then proceeds recursively to esti-

mate the true state, as shown in Fig. 2.8.

In the real world, the state model and the observation model may not be linear, because of

the intrinsic properties of the sensors used in a UAV such as drift in the bias of the input

sensor measurements. When the state model, the observation model or both are non-linear, an

Extended Kalman Filter (EKF) can be employed. This filter assumes a non-linear Gaussian
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Fig. 2.8 Block diagram of the Kalman filter cycle [60]
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process model and a non-linear measurement model and applies the first-order Taylor series

approximation to linearise both models [75].

2.6.2 Extended Kalman Filter

The EKF has several features which make it ideally suited when dealing with complex

multi-sensor position estimation. The explicit description of processes and observations

allows a wide variety of different sensor models to be incorporated within the basic algorithm

[120]. Also, the consistent use of statistical measures of uncertainty makes it possible to

quantitatively evaluate the role that each sensor plays in overall system performance [131].

In multi-sensor data fusion, a group of sensors can be considered as a single sensor with

a large and possibly complex observation model [132]. This approach may be limited to

relatively small numbers of sensors that can be grouped [87]. A second approach is to con-

sider each position observation made by each sensor as independent according to a specific

observation model. The observations can be sequentially incorporated into the estimate.

Single-sensor estimation techniques can be applied to the sequential formulation of the

multi-sensor estimation [111]. However, this sequential approach requires that a new predic-

tion and gain matrix be calculated for each observation from each sensor at every time step,

and so it is computationally expensive for real time applications [121]. Another approach is

to explicitly derive equations for integrating multiple sensor position measurements made at

the same time into a common state estimate. Starting from the formulation of the multi-sensor

EKF algorithm and employing a single model for a group of sensors. Therefore, a set of

recursive equations for integrating individual sensor observations can be derived [123].
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2.6.3 Error State Extended Kalman Filter

A critical aspect of the UAV implementation of a data-fusion filter in conjunction with an INS

is the use of the direct (EKF) or the indirect approach, also referred to as Error State Extended

Kalman Filter (ESEKF) [137]. In the direct formulation, total states such as orientation and

position are among the variables in the filter, such as inertial measurements from the INS.

The correction of the states come from external source signals such as the position estimates

from VSLAM [13].

However, there are some severe drawbacks to EKF implementation. Especially in localisa-

tion applications, the filter may present inconsistencies in the position estimates caused by

accumulated errors in the linearisation process [13]. An EKF implemented in the navigation

system loop of a UAV, the filter has to maintain explicit, accurate awareness of the vehicle’s

angular motion. For instance by incorporating the dynamic model of the UAV which may

not be accurate, as well as attempting to suppress noisy and erroneous data at a relatively

high frequency. [29].

In the case of the ESEKF, the errors in orientation and position are among the estimated

variables, and each measurement presented to the filter is the difference between the inertial

measurements of an IMU and position estimates from external sensors such as a stereo

camera or relative localisation. In the case of a failure in the position estimate of an external

sensor, the ESEKF can continue to provide estimates by acting as an integrator of the inertial

measurements of the IMU [29, 60]. The IMU itself can follow the high-frequency motions

of the vehicle very accurately, and there is no need to model these dynamics explicitly in the

ESEKF compared with EKF approaches [74, 20].
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ESEKF uses two states: the estimated state x̂ which is the estimation of the true state x, and

the error state x̃ which is the difference between the true state and the estimated state x̃ = x− x̂

[10]. The ESEKF determines the error recursively, and then uses the error to calculate the

corrections which must be performed on the estimated state [147, 132].

In summary, the ESEKF allows for a continuous vehicle position estimation by integrating

the IMU inertial measurements with correcting sensors such as a stereo camera or relative

localisation. Practical applications of this type of solution to real vehicles with 6DoF can

be found in a UAV’s navigational system, where all available sensors aid in the position

estimation [138].

2.7 Summary

This chapter has summarised recent research literature and technology relevant to the appli-

cation of UAVs for mapping outdoor unstructured GPS-denied environments. The topics

reviewed include the basic concepts of UAVs and their limitations, such as limited payload

capacity, processing power and battery life, as well as SLAM and its recent implementations

in outdoor environments and its challenges. These challenges include the increasing compu-

tational complexity of the algorithm with the number of observed landmarks and errors in

data association which may cause drift in the position estimates of SLAM. This chapter has

also detailed the most recent methods that use swarms robotics to solve the data-association

problems of SLAM. For example, the cooperative behaviour of a swarm can aid in accurate

localisation of every agent by fusing all available measurements of the system, and ultimately

improving the position estimation of the system mapping a large outdoor area.
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From the literature review, the following major research challenges have been identified:

Outdoor GPS-denied mapping and robustness against failures. UAVs navigating in

GPS-denied environments must reason over, and act under, the uncertainty about the state of

the environment. Making matters worse, the low payload capacity of UAVs limits the sensors

and the processing power that can be carried on board. It is not hard to envision a single UAV

performing several runs to thoroughly explore and map an unstructured environment without

the need for a GPS. However, if this single UAV gets lost or damaged in the environment, the

whole mapping mission may fail.

Cooperative decentralised systems. The key challenges in a swarm robotic system are

sharing information about the environment generated by individual UAVs and coordinating

the members in the system. The underpinning architecture needed to perform these tasks

determines the applicability of the swarm to helping each member navigate the unstruc-

tured outdoor environment. In the research literature, CoSLAM implemented in UAVs

relies heavily on a centralised architecture to share and fuse individual map estimates into

an accurate global map [118]. A centralised architecture requires a reliable communica-

tion network, often depending on external infrastructure such as anchors. This limits the

usability of such systems in applications like outdoor mapping. Moreover, centralisation re-

duces the scalability and robustness of the system against failures of a single member or node.

CoSLAM for unstructured outdoor environments. CoSLAM has been proposed to re-

duce the loop-closure computational complexity, improve the exploration efficiency and

range in unstructured environments. In CoSLAM, a swarm of UAVs share partial maps to

all the members in order to be merged by every UAV, in order to create a global map and

improve each member individual position estimates. However, communication links may be
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sporadic and so sharing large amounts of data such as a map may prove difficult in real time

implementations.

To address these research problems, this PhD proposes to develop a computationally lightweight

system for relative localisation and to implement it in a swarm of UAVs for cooperative

SLAM via an ESEKF. This would enable a swarm of UAVs equipped with stereo cameras

and other localisation systems to efficiently and accurately estimate the position of each

member of the swarm in order to navigate unstructured GPS-denied outdoor environments.
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3. Relative Localisation for Swarms of UAVs

When a swarm of UAVs performs a complex task such as mapping, the system must be able

to coordinate the movements of its members to avoid internal collisions with neighbouring

UAVs or with external obstacles such as trees. To achieve the coordination of the swarm, it is

necessary for each UAV to measure or estimate the relative positions between itself and its

immediate neighbours in relation to common navigation frame or world frame [15, 76]. This

is called relative localisation.

This chapter presents a relative localisation system, that is suitable for use by every UAV in

the swarm. The system measures the angle and distance between two neighbouring UAVs

(a measuring or sensing UAV, and a target UAV). These measurements are then used by the

measuring UAV to estimate relative position of a neighbouring UAV in three-dimensional

(3D) space. It will be further shown in Chapter 4 how this relative localisation system can

then be used to reduce the drift in the position estimates of VSLAM, using an Error State

Extended Kalman Filter (ESEKF).

The chapter begins by introducing the proposed approach for estimating the relative po-

sitions of UAVs in a swarm. This section includes the methods used to measure the angle

and distance between UAVs even when the visual line of sight is temporarily broken. The

platform design of the UAVs, as well as the hardware used to create a swarm for later

experimentation, is described in Section 3.2. Section 3.3 describes the sets of experiments
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performed to evaluate the accuracy of the relative localisation system in two settings: with

and without visual occlusions. The results obtained from the experiments are discussed in

Section 3.4. A summary of the chapter is presented in Section 3.5.

3.1 A Proposed Relative Localisation Method

For a swarm of UAVs to perform relative localisation in any environment, it is necessary for

each UAV in the swarm (UAV j, j = 1,2,3, ...,N) to estimate the position of a neighbouring

UAV, UAV− j, in relation to UAV j’s frame of reference or body frame (IMU frame). Note:

the subscript − j is used to denote a neighbouring UAV. In order for all members of the

swarm to be able to share position estimates, UAV j must rotate and translate the position

estimates of UAV− j to conform to the common navigation frame or world coordinate frame.

Fig. 3.1 Relative localisation coordinate frames.

The formulation of the relative localisation system is illustrated by the situation where

UAV j estimates the position of UAV− j according to the world frame North, East, and Down

(NED). Fig. 3.1 shows the three coordinate frames that comprise the relative localisation
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system. These are: w, which represents the world coordinate frame, b, which represents the

IMU frame or body frame of a UAV, and l, which is the coordinate frame of a UAV’s relative

localisation system. This figure also shows the position (p) and rotation (q) between the

coordinate frames, p j
w
b denotes the position of the origin of UAV j’s IMU frame expressed in

the world frame, p j|− j
l denotes the relative position of UAV− j measured by UAV j’s relative

localisation system based on the angle θ j, and distance d j|− j between the UAVs. The first

step to developing a system that can perform relative localisation is to identify the moving

IMU and relative localisation frames of each UAV as well as the transformations between

them. The second step is to measure θ j and d j|− j in order to estimate p j|− j
l .

Relative localisation is performed as follows. A monocular camera placed on UAV j was

used in combination with a colour tracking algorithm to estimate the position of UAV− j on

an image as described in Subsection 3.1.1. Two ultra-wideband (UWB) radios were used to

measure the distance between UAV j and UAV− j as described in Subsection 3.1.2. Using the

position UAV− j on an image and distance measurements between UAVs, the angle θ j can

be calculated by using the geometric pinhole camera model. This angle was then be used to

triangulate the real world position of UAV− j relative to UAV j body frame. In order to share

the position estimates UAV j then uses the attitude or orientation estimations from its IMU

(accelerometer, gyroscope and magnetometer) to transform the relative localisation posi-

tion estimates of UAV− j with respect to the NED frame. This is described in Subsection 3.1.3.

When performing relative localisation, it is desirable to estimate the positions of the neigh-

bouring UAVs even if obstacles temporarily break the visual line of sight between the UAVs.

This can be achieved by using a Kalman Filter in the colour tracking algorithm. The filter

predicts the positions of the tracked UAV in the image at a time step tk+1 by estimating the
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velocity of the UAV at time tk. The filter continues to predict the position of the UAV until

the visual line of sight is recovered. This is described in Subsection 3.1.4.

3.1.1 Establishing a Visual Line of Sight for UAV Tracking

For UAV j’s camera to track the position of UAV− j on an image, a passive coloured marker

was attached to UAV− j to distinguish it from the environment. A colour that was not pre-

dominant in an unstructured outdoor environment was chosen in order that it could be easily

detected and consequently tracked. The Camshift colour tracking algorithm [7] was used to

track the coloured marker on UAV− j. This algorithm is included as a part of the OpenCV set

of libraries [93].

The Camshift algorithm is an adaptation of the Meanshift algorithm for colour tracking. It

is a non-parametric method, robust to changes in the shape and lighting of a marker that is

to be tracked [76]. The Meanshift algorithm is used to locate the maxima of a Probability

Distribution Function (PDF), representing the marker’s colour histogram or an image’s

histogram. Therefore, the Meanshift algorithm requires a colour histogram as input in order

to convert the image into a probability distribution relative to the input colour’s histogram.

The Camshift algorithm builds on this method as it uses continuously adaptive probability

distributions, which means the colour’s probability distribution will be recomputed in every

frame. This allows the position of the colour on the image can be computed even if the

marker’s size, shape and appearance change in every frame or image [31].

The Camshift Algorithm can be summarised in the following steps [7]:

1. Set a region of interest within the entire image, which contains the marker’s colour in

order to determine the PDF of interest.
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2. Select an initial location of a search window. The selected location should be the target

probability distribution (histogram) to be tracked.

3. Calculate the colour probability distribution (histogram) of the region centred at search

window.

4. Iterate to find the centroid with the highest probability. Store the zero-th moment

(distribution area) and centroid location.

5. For the following frame, centre the search window at the mean location found in Step

4 and set the window size to a function of the zero-th moment.

To determine the PDF, an initial histogram is computed from the colour in the image’s region

of interest. Although colour histograms are typically computed according to the RGB (red,

green, blue) colour space, these are not robust to brightness changes, which change the

colour tone. Therefore, the HSV (hue, saturation, value) colour space was used, which

is robust to changes in lighting conditions. This makes it especially suitable for outdoor

applications where lighting condition may change over time. The hue and saturation channels

represent the main characteristics of any colour. Thus, they were used to calculate the

input histograms [33]. The input histograms are quantised into bins, which reduces the

computational complexity and allows similar colour values to be clustered together. The

histogram bins are then scaled between the minimum and maximum PDF of the image

intensities as:

pd f u = min
(

255
max(hu)

hu,255
)
,u = 1,2 , (3.1)

where h denotes the histogram, pd f denotes the probability distribution function, and the

subscript u = 1,2 represents the hue and saturation channels respectively.

Histograms are rescaled from [0, max(qu)] to the new range [0, 255], where the image

pixels with the highest probability of being in the sample histogram will appear as visible
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intensities in the image’s histogram back projection. This is an operation that associates

the pixel values in the image with the value of the corresponding histogram bin. The back

projection of the target histogram with any consecutive frame generates a probability image

where the value of each pixel characterises probability that the input pixel belongs to the

histogram that was used [7, 76].

The mean location (centroid) within the search window (xc, yc) of the image’s PDF, computed

in Step 3, is the probable location of the UAV’s colour marker projected on the image. This is

found using the zero-th and first moments (M00,M10,M01) of the search window as follows:

M00 = ∑
xi

∑
yi

I(xi,yi)

M10 = ∑
xi

∑
yi

xI(xi,yi)

M01 = ∑
xi

∑
yi

yI(xi,yi)

(3.2)

xc =
M10

M00
; yc =

M01

M00
,

where I(xi,yi) is the intensity of the PDF of the image at (xi,yi) pixel location within the

search window.

The Camshift algorithm continually recomputes new values of xc, and yc until there is

no significant shift in their position. Because the limit of the accuracy is one pixel, a conver-

gence criterion is set as a shift of one pixel in either the x or y axis of the image. A further

criterion of convergence to limit the number of iterations. This was set at 10 to 20 iterations

per frame in order to avoid infinite calculations of the centroid positions [7].
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3.1.2 Ultra Wide-Band Radio Ranging

To measure the distance between both UAVs, the ranging system was constructed using

the Decawave DW1000 radio and the Mulle wireless sensor platform. The DW1000 radio

is an IEEE802.15.4-2011 UWB wireless transceiver. It can measure the distance between

itself and another DW1000 radio at an accuracy of +/−0.10 m over a distance up to 300

m within line of sight, and with a resolution of 0.00001 m [32]. This allowed the relative

localisation system to measure the range between UAVs over a large distance accurately. The

Mulle wireless sensor platform consists of two main components: a wireless sensor module

and an internet gateway device. These allow the processing and transmitting the ranging

measurements from the Decawave UWB radio directly to an embedded CPU.

The Mulle wireless sensor module is equipped with a microcontroller having an IEEE

802.15.4 radio (868 MHz radio frequency). The Mulle sensor node runs the open-source Con-

tiki or RIOT operating systems. Both operating systems feature a full IPv6 (Internet Protocol

version 6) stack [37]. This means that the Mulle platform allows the swarm robotic system to

have a maximum size of 2128 members. The Mulle can be connected to the internet or a CPU

via the gateway device. This contains an IEEE 802.15.4 radio and a USB port that allows for

wired connections. The gateway contains an ARM Cortex A9 processor, which runs a full

Linux system. Therefore, the Mulle platform can interpret and compute the distance infor-

mation from the UWB radio in order to transmit the measurements to an embedded CPU [37].

The Decawave UWB radio supports two forms of distance calculations: Time Difference of

Arrival (TDA), and Time of Flight (ToF). TDA uses three radios or nodes to calculate the

distance between the nodes. The initial time of sending the initiating node or central node

is not required to be known to the three-node system, only the time the signal was received

by two target nodes, and the signal’s speed. This means that the clocks in the three nodes
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have to be synchronised. Once the signal is sent by the initiating node and received by the

two targets, the time difference of arrival can be calculated in order to determine the distance

through triangulation. On the other hand, ToF measures the time a signal takes to travel from

the one initiating node to a target node and back to the initiating node. For this research, ToF

was used for distance calculations as it only required a minimum of two radios to perform

measurements, and also because the times of transmission and reception of each pair are

only determined by the initiating node. This means that ToF measurements do not rely on

clock synchronisation between nodes compared with the TDA method. This approach makes

the relative localisation system robust to clock offsets and allows the swarm system to be

decentralised.

The UWB radios can be set-up in two modes: as an anchor or as a tag. Anchors are

actively listening/waiting for messages from any tag to start the ranging process. There are

a total of six messages between the two nodes used in the ranging process: 1-blink, 2-init,

3-poll, 4-response, 5-final, and 6-measurement report [106]. The ranging process is listed

below, and summarised in Fig. 3.2.

1. The tag starts in sleep mode, and when is required, it broadcasts a blink message

searching for an anchor within range. (The anchor is always listening for messages).

This blink is the discovery message to start the distance measurement.

2. Once the anchor receives a blink, the tag will begin a handshaking process by sending

an init message.

3. The tag responds with a poll message at time Tsp and is received by the anchor at time

Trp.

4. The anchor then sends a response message at time Tsr, which is received by the tag at

time Trr
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5. The tag, in turn, responds with a final message at time Ts f , which is received by the

anchor at time Tr f .

6. The sixth and final message is a measurement report sent from the anchor to the tag.

This message contains the ToF calculated from the four timed messages from Tsp to

Tr f as well as the IP address or ID from tag, and the number of measurement (Ms

s = 1,2,3...N).

Fig. 3.2 UWB ranging procedure [106].

A tag can range with several anchors, and this process will generate measurement reports

that contain the information from all the anchors visible to the tag. This allows the tag

to keep a record of the anchors around it as well as the rates at which the measurements

occur. However, having one tag and several anchors would make the relative localisation

system centralised because only a tag can initiate the ranging process. Therefore, to create a

decentralised system, in the experiments conducted for this research the tags and anchors
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were setup to switch roles at given time intervals. This enabled every member of the swarm

to initiate the ranging process with its immediate neighbours. Role switching also has the

advantage of reducing the strain on the UAV’s battery because it reduces the amount of time

a UAV is listening for a blink message.

3.1.3 3D Location Based on the Common Navigation Frame

Once the distance and image data (location) of the target UAV have been obtained, the location

of the target UAV in 3D space can be estimated. Fig. 3.3 shows the geometric pinhole camera

model [44], which was used to triangulate the position of UAV− j’s marker in 3D space.

This geometric model is comprised of the distance (dUWB) between UAVs measured by

the Mulle-UWB sensor, the focal length of the camera lens ( f ), the pixel coordinates of

UAV− j’s marker projected onto the image plane (xc,yc), the angle (θ j) between the optical

axis and dUWB, and the real world coordinates of UAV− j’s marker according to the relative

localisation frame (xrl,yrl,zrl) [44]. The geometric pinhole camera model uses the location

of the pixel coordinates of UAV’s colour marker on the image plane (xc,yc) relative to the

image’s centre point (0,0) and the focal length ( f ) to calculate the angle (θ1) between the

optical axis and dUWB. This allows the real world coordinates xrl,yrl , and zrl of UAV− j’s

marker to be determined as:

θ j = arctan
(

yc

xc

)
yrl = dUWB sinθ j

zrl =
dUWB sinθ j f

yc

xrl =
xc

f
zrl .

(3.3)
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Fig. 3.3 Geometric pinhole camera model [44].
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The 3D position calculations (p j|− j
l(xrl,yrl,zrl)) obtained using the relative localisation

system are highly sensitive to the change of the direction in which the camera is pointing.

Small changes in the attitude (pitch, roll or yaw) of UAV j will modify the position estimates

of the relative localisation system. However, rotating the position measurements with respect

to the NED frame enables the system to estimate the position UAV− j relative to common

coordinate frame. This is achieved by determining the rotation of the l frame expressed in the

w frame (q j
w
l ). From Fig.3.1 it can be seen that the rotation of the l frame, with respect to the

w frame is comprised of the rotation q j
b
l and the rotation q j

w
b . Also, it can be deduced that the

l frame is fixed to the b frame, therefore the resulting rotation is defined as q j
b
l = (1,0,0,0).

The rotation between the b and w frames can be obtained through the UAV j’s IMU attitude

measurements in quaternions (q j
w
b = (qb0,qb1,qb2,qb3)). Therefore, q j

w
b is equal to q j

w
l . This

rotation can be implemented using the rotation matrix (Rot) to orient xrl,yrl,zrl to the NED

frame as follows:


xN

yE

zD

= Rot


xrl

yrl

zrl

 , (3.4)

where

Rot =


q2

b0
+q2

b1
+q2

b2
+q2

b3
2(qb1 +qb2−qb0qb3) 2(qb1 +qb3−qb0qb2)

2(qb1 +qb2−qb0qb3) q2
b0
+q2

b1
+q2

b2
+q2

b3
2(qb2 +qb3−qb0qb1)

2(qb1 +qb3−qb0qb2) 2(qb2 +qb3−qb0qb1) q2
b0
+q2

b1
+q2

b2
+q2

b3

 ,

and xN , yE and zD are the coordinates of the position of UAV− j in the NED frame.
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3.1.4 Tracking the UAV when the Line of Sight is Temporarily Broken

The Camshift algorithm can estimate the position of a colour marker even if its size, shape and

appearance change on the image. However, the position calculation of the search window’s

centroid (xc, yc) may be affected by the lighting conditions in the environment. Moreover,

if the visual line of sight to the marker is temporarily broken, the algorithm can no longer

be used to determine the position of the marker until the visual line of sight is restored. To

overcome these potential limitations of the Camshift algorithm, the position estimates xc and

yc were tracked using a Kalman Filter [76]. This filter predicts the positions of xc and yc

based on the kinematics of the UAV’s movement. The kinematics of the UAV projected on

the image are described as:

xctk+1|tk
= xctk |tk

+ ẋctk |tk
∆t

vxctk+1|tk
= vxctk |tk

+nx

yctk+1|tk
= yctk |tk

+ ẏctk |tk
∆t

vyctk+1|tk
= vyctk |tk

+ny ,

(3.5)

and the dynamics of the system described as:

vxctk
=

(
xctk
− xctk−1

)
∆t

vyctk
=

(
yctk
− yctk−1

)
∆t ,

(3.6)

where nx and ny denote the noise in the measurement in the image’s x and y axes respectively,

∆tk is the time interval between position measurements, tk|tk denotes the current measure-

ment.
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The state variables in Equation (3.5) are the position (xc, yc) and velocity (vxc,vyc) per

axis. In order to estimate the position of the marker at time tk+1, the filter has two steps: the

prediction step and the correction step. The prediction step estimates the states at tk+1 from

Equation (3.5) at tk. The correction step then improves the estimation of the prediction step,

whenever the position measurement and calculated velocity are available.

The prediction step can be expressed as:

x̂tk+1|tk = F∆t x̂tk|tk

Ptk+1|tk = F∆tPtk|tkFT
∆t +Q ,

(3.7)

where

x̂ =



x̂c

ŷc

v̂xc

v̂yc


; F∆t =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


; Q =



1 0 0 0

0 1 0 0

0 0 σ2
nx

0

0 0 0 σ2
ny


, (3.8)

x̂ is the estimated state, x̂c is the estimated position of the coloured marker on the image x

axis, and v̂xc is the estimated velocity of the coloured marker. The state (x̂tk+1|tk) is predicted

according to the process F∆t and the current predicted state x̂tk|tk . The process covariance

Ptk+1|tk is calculated according to the process F∆t , and the process noise covariance Q.

The next step in the Kalman Filter formulation corrects the prediction by adjusting the

predicted state according to the error between the predicted and measured state. This is

achieved by:
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Ktk+1|tk+1
= Ptk+1|tkHT (HPtk+1|tkHT +R)−1

x̂tk+1|tk+1
= x̂tk+1|tk +Ktk+1|tk+1

(xtk+1− x̂tk+1|tk)

Ptk+1|tk+1
= (Id−Ktk+1|tk+1

H)Ptk+1|tk ,

(3.9)

where

H =

1 0 0 0

0 1 0 0

 ; R =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (3.10)

K is the Kalman gain, H is the observation matrix, R is the measurement noise covariance

matrix, xtk+1 is the measurement of xc and yc made by the CamShift algorithm at a time tk+1,

and Id is the identity matrix. R is defined as the identity matrix because velocity is calculated

based on the position of the UAV on the planar image. This means that both position and

velocity measurements can be trusted equally in this situation.

3.1.5 Algorithm for the Proposed Relative Localisation Method

The complete process of determining the relative localisation of UAV− j is given in Algorithm

1, which is summarised as follows:

• The first step to determine the relative location of UAV− j based on UAV j’s body frame

is to measure the angle between UAVs. This is achieved by using the Camshift colour

tracking algorithm to estimate the position of UAV− j’s coloured marker on an image.

The algorithm requires the hue and saturation histograms of the marker’s colour in

order to find its most likely location on the image (see Equation (3.2)). This step is

performed in lines 3 through 10 of Algorithm 1.
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• The second step is to reduce the noise in the position estimates from the camera

as well as to predict the states (x̂) of the marker on the image. This is achieved by

implementing the Kalman Filter prediction step (Equation (3.7)), and the correction

step (Equation (3.9)). This step is performed in lines 11 through 20 of Algorithm 1.

• The third step is to obtain the measurement report. This contains the measured distance

(d j|− j), UWB− j’s IP address (ID), and measurement number (Ms). The relative locali-

sation system uses this information to determine when a new measurement is obtained

in order to triangulate the position of the marker (Equation (3.3)). The position estimate

of UAV− j is then rotated to the NED frame (Equation (3.4)). This step is performed in

lines 21 through 29 of Algorithm 1.

3.2 Hardware design

A prototype UAV was designed and built. This was then replicated to create a swarm

system capable of performing relative localisation, and cooperative SLAM for experiments

in following chapters. Each UAV was constructed from the following components:

• A glass fibre quadcopter frame (48 cm × 48 cm × 48 cm) was used as the flying

platform to mount the sensors.

• Two ELP 1920x1080Pp 180◦ FoV cameras [6], which have a 2 MP sensor and can

record video at 30 fps were used to determine the angle between the UAV and two of

its nearest lateral neighbours.

• One Mulle-UWB ranging sensor measured the distance to a neighbouring UAV’s

Mulle-UWB ranging sensor at a rate of 4 Hz.

• A passive colour marker was used to differentiate the UAV from the environment.
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Algorithm 1 Relative Localisation
Input: histogram (qu) (u = 1,2, where 1=hue and 2=saturation), image I(x,y),
prediction process F∆tk , process noise covariance Q, measurement noise covariance
R, focal length of the camera f , IMU’s roll,pitch,yaw measurements in quaternions
(qbo,qb1,qb2,qb3) and UWB measurement report (dUWB, ID,Ms)
Output:North, East, Down position coordinates xN ,yE ,zD of UAV− j

1: tk← 1
2: loop
3: Colour Tracking
4: Select the colour of the marker in the image, to determine the hue and saturation

histograms
5: pu = min

(
255

max(qu)
qu,255

)
,u = 1,2

6: M00← ∑
xi

∑
yi

I(xi,yi)

7: M10← ∑
yi

∑
yi

xI(xi,yi)

8: M01← ∑
yi

∑
yi

yI(xi,yi)

9: xc← M10
M00

10: yc← M01
M00

11: Kalman Filter
12: vxctk

← xctk
− xctk−1∆t

13: vyctk
← yctk

− yctk−1∆t

14: x̂tk+1|tk ← F∆t x̂tk|tk
15: Ptk+1|tk ← F∆tPtk|tkFT

∆t +Qtk
16: if a new measurement xtk+1 is available then
17: K(tk+1)← Ptk+1|tkHT (HPtk+1|tkHT +R)−1

18: x̂tk+1|tk+1
← x̂tk+1|tk +K(tk+1)(xtk+1− x̂tk+1|tk)

19: Ptk+1|tk+1
← (I−K(tk+1)H)Ptk+1|tk

20: end if
21: 3D Position Estimation

62



Algorithm 1 Relative Localisation (continued)
22: if a new Ms is available then
23: θ ← arctan(ŷtk+1/x̂tk+1)
24: yrltk+1

← dUWB(tk+1)∗ sin(θ j)

25: zrltk+1
← dUWB(tk+1)∗ sin(θ j) f/ŷtk+1

26: xrltk+1
← x̂tk+1/ f ∗ zrltk+1

27: Use (q0(tk+1),q1(tk+1),q2(tk+1),q3(tk+1)) to calculate the rotation matrix Rot
as described in Equation(3.4)

28: [xNtk+1
,yEtk+1

,zDtk+1
]T ← Rot(tk+1)[xrltk+1

,yrltk+1
,zrltk+1

]T Rotate according to ID
29: end if
30: tk← tk +1
31: end loop

• A Pixhawk autopilot [105] was used to stabilise the UAV in the air as well as to use its

IMU (accelerometer, gyroscope and magnetometer) to determine the attitude of the

UAV with respect to the NED frame.

• An ODROID-XU4 CPU [55] was used to compute the relative localisation estimates.

• An external IMU (UM7) [24] was used to measure the linear accelerations and angular

velocities of the UAV at a 100Hz (described in Chapter 4).

• A Stereolabs ZED stereo camera [126] was used to capture the images of the environ-

ment in order for the VSLAM algorithm from the ZED Software Development Kit

(SDK) to estimate the position of the UAV (described in Chapter 4).

• An Nvidia TX1 Graphical Processing Unit (GPU) [92] was used to implement the

ZED SDK VSLAM algorithm and process the images from the ZED stereo camera

(described in Chapter 4).

• A SwiftNav Real-time Kinematic differential GPS (RTK-DPS) [127] was used to

determine the position of the UAV in an outdoor environment. This RTK-DGPS is

comprised of a GPS antenna and an RTK-DGPS receiver to process the signals from

the satellites (described in Chapter 5).
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• A Wi-Fi dongle was used to remotely initialise the system through a ground station via

Secure Shell.

• A radio transmitter that was used to control the flight of the UAV manually.

• Four motors, four propellers and four Electronic Speed controllers for propulsion of

the UAV.

• A 6200 mAh lithium polymer battery was used to power the whole system including

sensors, the processing units, ESCs and the motors.

The connections between the sensors, CPU, GPU, ESCs, and radio manual control are shown

in Fig.3.4. The fisheye cameras were calibrated in order to estimate their intrinsic parame-

ters: the focal length, skew, distortion, and the image centre. This enabled the fisheye lens

distortion to be corrected in order for the relative localisation system to use the geometric

pinhole camera model. Because of the limited space on the UAVs, all the equipment had to

be mounted in a 10 cm × 10 cm × 10 cm volume. To reduce the interference between the

Mulle-UWB and ODROID-XU4, and between the GPS antenna and the RTK-DGPS receiver,

a ferrite choke was placed on each communication line. This suppressed high frequency

noise and maintained the functionality. With all the equipment placed on the UAV, the weight

of the system was approximately 2.6 kg. This allowed a maximum flight time of 2 minutes,

enabling a UAV to travel approximately 80 meters forward at a speed of 1.4 m/s for the

experiments described in Chapter 5.
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Fig. 3.4 Connections between the sensors, CPU, GPU, ESCs, and radio manual control.

(a) Side view (b) Back view (c) Front view

Fig. 3.5 Sensors mounted on all UAVs, where 1. GPS antenna, 2. Marker, 3. RTK-DGPS
receiver, 4. 180◦ Field of view camera, 5. Mulle-UWB, 6. ODROID-XU4, 7. NVIDIA TX1,
8. IMU (UM7), 9. ZED stereo camera
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3.3 Design of Experiments

To determine the accuracy of the relative localisation system, two set of experiments were

conducted. Each used two UAVs: a measuring UAV (UAV1), and a target UAV (UAV2). The

first experiment was performed in order to determine the accuracy of the relative localisation

system position estimates without occlusions. The second experiment was performed to

determine the accuracy of the relative localisation system position estimates when occlusions

temporarily broke the visual line of sight of the 180◦ field of view camera. This second

experiment simulated the situation when the UAVs pass through trees. Each experiment

consisted of 15 trials, conducted in an indoor environment with constant lighting.

In each trial, the Root Mean Square Error (RMSE) was used to quantify the deviation

of the UAV estimated position from the externally measured true position as determined by a

ground truth motion capture system. This metric is also referred to as the absolute trajectory

error as it measures the overall consistency of the estimated trajectory of the UAV com-

pared with the ground truth measured trajectory. This method takes as inputs the estimated

trajectory, P̂1, ..., P̂N , and the ground truth trajectory measurements, P1, ...,PN , of UAV2.

The RMSE calculation requires both set of measurements to be aligned to the same coordi-

nate frame, time synchronised, with samples of equal length. The RMSE is calculated as [21]:

RMSE =

√√√√ 1
N

N

∑
tk=1

(P(x,y,z)tk− P̂(x̂, ŷ, ẑ)tk)2 (3.11)

In both experiments, the position of UAV2 was estimated according to the measurements

made by UAV1. These measurements were then represented in the world frame. UAV2 could

move in all directions (6-DoF) while UAV1 remained stationary and its bearing aligned with

the world frame. To calculate the RMSE, the true positions of UAV2 were measured with
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a motion capture system (Optitrack [94]), to give ground truth position measurements. In

all trials, the calculations of the relative localisation system were performed in real time by

UAV2’s ODROID-XU4 CPU. The environment where the experiments were performed had a

volume of approximately 84 m3. The world frame in all experiments was oriented according

to the Longitudinal, Lateral, Height coordinate system (see Fig. 3.6), which in this case was

aligned to the North, East, and Down (NED) frame.

Before the start of the experiments, the internal clock on UAV1 and the motion capture

system’s clock were synchronised by using a network time protocol (NTP) server running on

UAV1. This clock synchronisation protocol allowed the clock in the motion capture system

to converge to a set time in the NTP server. The clock synchronisation between UAV1 and

the motion capture system ensured that all position estimates were recorded on the same time

frame. For the image captured at the start of the tests, a region of interest that contained the

colour of the maker on UAV2 was selected by an operator. This was then used to determine

the hue and saturation histograms required by the CamShift algorithm.
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Fig. 3.6 Experimental set-up for the relative localisation system with occlusions.

3.4 Results and Discussion

Fig. 3.7a and 3.7b show one representative trial for each experiment (with and without

occlusion respectively). The figures show UAV2’s estimated trajectory along each axis by

the relative localisation system in UAV1. The figures also show UAV2’s trajectories recorded

by the motion capture system. It can be seen in the figures that the relative localisation

system can estimate the trajectory of UAV2 in every direction, even if a temporary occlusion

occurs. It can also be noticed in the figures that the relative localisation system’s estimated

trajectories of UAV2 in the Longitudinal and Height axes are smoother than the estimated

trajectory in the Lateral axis. In the Lateral axis, the trajectory estimated by the relative

localisation system shows small oscillations along the true trajectory measured by the motion

capture system. This is because the Longitudinal and Lateral axes are approximately aligned

with the North and the East axes. This means that the relative localisation frame and the

world frame are aligned and that no rotation of the estimated positions was necessary.
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From Equation (3.3) it can be noted that the calculated angle (θ j) is more important in

the estimation of UAV2’s position in Longitudinal and Height axes than the distance mea-

surements. Also, Equation (3.3) shows that the angle calculations are based on the Kalman

Filter’s position estimate of UAV2 on the image (x̂c,ŷc), which explains the smoothing of

the estimated trajectories. This figure also shows that the Kalman Filter cannot follow fast

changes in the trajectory of UAV2’s in the Longitudinal and Height axes compared to the

relative localisation system’s estimated trajectory in the Lateral axis. This is because the

the distance measurement, which is more accurate than the estimation of x̂c and ŷc, is more

important than the angle measurement in the estimation of the position in the Lateral axis.

Fig. 3.7 shows that the error in the relative localisation system’s estimated trajectories

of UAV2 do not increase significantly when the visual line of sight is temporarily broken,

compared with the estimated trajectories when the visual line of sight is unimpeded. It is

shown in the figures that even though the error in the trajectory estimates from the relative

localisation system increases when the visual line of sight is broken, the trajectories are still

being estimated by the system. Fig. 3.8a and 3.8b show the error between UAV2’s actual and

estimated trajectories. In Fig. 3.8 it is noticeable that the error in the trajectory estimates

increase when UAV2 is temporarily occluded. The increase in the error is greater in the

Longitudinal and Lateral axes than in the Height axis. This is because the movement of

UAV2 was kept at a constant height during the trial. From the error plots, it can also be seen

that the error in the estimated lateral trajectory oscillates with a smaller magnitude than in

the estimated longitudinal and height trajectories.

Table 3.1 presents the average RMSE of the relative localisation system’s trajectory es-

timates of UAV2 over the 15 trials in each experiment. The 15 trials without occlusions yield

an average RMSE of 0.38 m, 0.18 m, and 0.26 m in the Longitudinal, Lateral, and Height
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axes respectively. These show that the relative localisation system’s estimated trajectories of

UAV2 in the Longitudinal and Height axes have lower accuracy than the estimated trajectory

in the Lateral axis. The 15 trials with occlusions yield an average RMSE of 0.45 m, 0.20

m and 0.27 in the Longitudinal, Lateral, and Height axes respectively. These show the

degradation of the accuracy of the relative localisation system’s trajectory estimates when

the UAV2 is temporarily occluded. This are consistent with the results in Fig. 3.7 and 3.8,

for a single trial, and mean that the relative localisation system can estimate the trajectory of

a UAV to reasonable level of accuracy even when the visual line of sight is temporarily broken.

It can be observed from Fig. 3.7, 3.8, and Table 3.1 that when an occlusion is present,

the worst degradation of accuracy happens in the Longitudinal axis. This is because the

Kalman Filter predicts the position (x̂c, ŷc) of UAV2 according to the measurements of its last

position (x̂ctk |tk
, ŷctk |tk

) and velocity (v̂xctk |tk
, v̂yctk |tk

) before the occlusion occurs. This means

that when UAV2’s marker is occluded, the estimated velocity is assumed to be constant as in

Equation (3.5). It can also be seen that if the navigation trajectory of the swarm is aligned

with the world frame, the position estimates in the Longitudinal and Height axis are mainly

calculated by the CamShift algorithm and the Kalman Filter, with the Mulle-UWB ranging

sensor mainly responsible for calculating the position estimates in the Lateral axis.

Fig. 3.9 shows the distribution of the RMSE of the relative localisation system’s posi-

tion estimates of UAV2 from the 15 trials for each experiment. It can be seen in the figure

that the RMSE is approximately normally distributed in both experiments an in all axes.

These distributions yield a standard deviation in the experiment without occlusions of 0.003

m, 0.002 m, and 0.005 m in the Longitudinal, Lateral, and Height axes receptively. In the

experiment with occlusions yield a standard deviation of 0.008 m, 0.004 m, and 0.007 m in

the Longitudinal, Lateral, and Height axes receptively. These results show that errors in all
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(a) No Occlusions present

(b) Occlusions present

Fig. 3.7 UAV2 actual and estimated trajectories. Blue: Optitrack trajectory measurements.
Green: relative localisation estimated trajectories. Red Box: Presence of an occlusion.

axes, with and without occlusions are relatively consistent within this experimental setting.
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(a) No Occlusions present

(b) Occlusions present

Fig. 3.8 Error in the relative localisation system’s estimated trajectories. (a) Without occlu-
sions. (b) With occlusions Red Box: Presence of an occlusion.
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Axis Average RMSE without
occlusions (m)

Average RMSE with
occlusions (m)

Longitudinal 0.3811 0.4532
Lateral 0.1845 0.2006
Height 0.2560 0.2667

Table 3.1 Average RMSE of the relative localisation system’s estimated trajectories, with and
without occlusions.

Fig. 3.9 Distribution of the RMSE a) Longitudinal axis without occlusions; b) Lateral axis
without occlusions; c) Height axis without occlusions; d) Longitudinal axis with occlusion;
e) Lateral axis with occlusions; f) Height axis with occlusions.
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3.5 Summary

This chapter has described the development and testing of the proposed relative localisation

system for UAVs. The system estimates the position of a neighbouring UAV (UAV2) accord-

ing to the angle and distance measurements of a UAV (UAV1). The measured relative position

is then transformed into the world frame. Two types of experiments with 15 repetitions each

were performed in an indoor environment while the ground truth was measured by the motion

capture system. The first experiment comprised of UAV1 estimating the position of UAV2

without any occlusions. The second experiment comprised of UAV1 estimating the position

of UAV2 when an obstacle temporarily broke the visual line of sight between UAVs.

The results from these experiments show that the relative localisation system estimates

the trajectory even when the visual line of sight is temporarily broken to a reasonable level

of accuracy. The estimated trajectories of the relative localisation system have a greater error

in Longitudinal and Height axes than in the Lateral axis. Therefore, this relative localisation

system is an effective option when applied to a swarm of UAVs that fly in a linear formation.

This is because the estimation of the position in the Lateral axis is important in order to

avoid collisions between members. However, this is only the case when the relative locali-

sation frame is aligned with the NED frame. Consequently this approach was taken in the

experiments performed in the following chapters.
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4. Error State Extended Kalman Filter for Coopera-

tive Sensor Data Fusion

Choosing an appropriate position estimation method is one of the main challenges when

developing a UAV’s navigation system in order to explore GPS-denied environments. This

is because there is not one method (dead reckoning or VSLAM) that alone can meet the

accuracy required for a UAV to navigate such environments. Therefore, Error State Extended

Kalman Filters (ESEKF) have been used by previous researchers to fuse the position esti-

mates from all the available sensors in a UAV in order to improve the accuracy of the UAV’s

position estimates. Moreover, if a swarm system comprised of UAVs is used, each UAV in the

swarm can take advantage of cooperation to share its position estimates with neighbouring

UAVs. For example, by using the relative localisation system described in Chapter 3.

This chapter presents the design and implementation of a cooperative ESEKF to reduce the

drift in the position estimates of the VSLAM algorithm. The chapter begins by describing the

use of Kalman filters applied to data fusion. Section 4.2 explains the motivation to develop a

cooperative ESEKF. Section 4.3 describes the mathematical design of the proposed ESEKF.

The design of experiments in an indoor environment is given in Section 4.4. The results from

the experiments are discussed in Section 4.5. Section 4.6 summarises the finding from this

chapter.
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4.1 Kalman Filter

One efficient way to reduce the drift in the position estimates of VSLAM is to fuse them with

the position estimates of other available sensors. For example, In the Kalman Filter formula-

tion, it is possible to relate position estimates from multiple sensors to a vector of internal

states containing the parameters of interest, such as position, velocity, and acceleration [17].

The basic idea of using a Kalman Filter to fuse the position estimates of several sensors is

to increase the trust in the sensors measurements where they each perform best. Therefore,

the system provides more accurate and stable position estimates than a system based on one

sensor alone. Although, the Kalman Filter can fuse the position estimates from different

sensors, the UAV system has to be modelled linearly, which is not always feasible. Thus,

the Extended Kalman Filter (EKF) has been derived. This filter uses the multivariate Taylor

Series expansions, to linearise the state model. However, the Taylor series expansion is a poor

approximation of most non-linear functions. The accuracy of the linearisation depends on

two factors: the degree of uncertainty and the amount of local non-linearity in the functions

being approximated. Therefore, the EKF is only as good as its approximation about the mean

of the estimated state [15].

Another formulation of the EKF is the Indirect Extended Kalman Filter or Error State

Extended Kalman Filter filter (ESEKF) shown in Fig. 4.1. This filter was devised to address

the Markov assumption used in the EKF that the current estimate encapsulated the current

state, and all of the previous states of the system. Therefore, the EKF assumed that the

measurements from the sensors or IMU estimated the state of the system exactly, that is,

without error or bias [84]. However, the error is a part of the state of the system [84]. Thus,

in the error state space (indirect) formulation, the errors in the indicated position and velocity
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are among the estimated variables. This means that the ESEKF continually estimates the

error based on sensor measurements to correct the inertial position estimates [117].

Fig. 4.1 Representation of the ESEKF [117].

4.2 Motivation for a Cooperative Error State Extended Kalman

Filter

UAVs have been equipped with IMUs to measure linear acceleration and angular velocity

in order to estimate the position of the UAV. These measurements are performed at a high

refresh rate to follow the fast changing movements of the UAV. However, these position

estimates drift exponentially over time due to noise in the measurements. Therefore, VSLAM

algorithm and estimate the position of the UAV within an environment. Although the position

estimates of the VSLAM algorithm are more accurate than the position estimates from the

IMU, its refresh rate is slower. Moreover, without loop closure, the position estimates of the

VSLAM can drift due to error accumulation and can grow unboundedly with time.

In this situation, an ESEKF can be implemented to fuse the position estimates from each

sensor (stereo camera and IMU). This allows the correction of the drift in the position es-

timates from the IMU with the position estimates of the VSLAM algorithm. This is done
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while maintaining a high refresh rate of the estimation. However, this correction alone is

insufficient as the position estimates by the VSLAM still drift over time, meaning that the

correction performed on the inertial position estimate comes from an erroneous source. One

method to reduce the positional drift of VSLAM is to use a swarm of UAVs, which can

perform cooperative relative localisation. This allows the ESEKF to reduce the drift in each

UAV’s VSLAM position estimates. It is performed by implementing the ESEKF in each

UAV, which enables the system to perform cooperative SLAM without map sharing.

4.3 Cooperative Error State Extended Kalman Filter Design

The filter described in this section is an ESEKF, which fuses the position estimates from an

IMU, VSLAM algorithm and relative localisation system. The ESEKF requires two states of

the UAV’s motion: the estimated state (x̂), which is the prediction of the true state (x); and

the error state (x̃), where x̃ = x− x̂. To define the states of the swarm system, the coordinate

frames of relevant sensors on a UAV must be defined, as well as the kinematics of the UAV.

Therefore, five frames: World, IMU, Vision, Stereo camera, and Relative Localisation are

introduced as shown in Fig. 4.2.

The design of the ESEKF is based on the work performed by Weiss et al. [138], Post

et al. [102], Trawny et al. [131], and Maybeck et al. [84]. These works refer to the formu-

lation of an ESEKF to estimate the position and attitude of a UAV by using an IMU and

VSLAM. The contribution of this section is the fusion of a relative localisation system’s

position estimates (as develop in Chapter 3) with the inertial measurements of an IMU and

the position and rotation estimates of the VSLAM. This allows the ESEKF to correct the drift

of the position estimates of each UAV’s VSLAM algorithm with the position estimates from

the relative localisation system in a neighbouring UAV. Thus, creating a cooperative ESEKF.
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Fig. 4.2 Visualisation of the different coordinate frames

Fig. 4.2 shows the five coordinate frames necessary for the ESEKF formulation. w, repre-

sents the origin of the swarm system (which is the world frame), b, is the IMU frame (the

UAV’s body frame), c, is the camera frame (which is the centre of projection of the stereo

camera), v, is the vision frame (which is the position and rotation of the camera when the

first image is captured), l, is the relative localisation frame (which is the origin of the relative

localisation system). The transformations between these frames requires translation (p) and

the rotation (q). Superscripts denote the reference frame of the transformation and subscripts

denote where the transformation is being applied. For example, p j
b
c , denotes the position

of the origin of the camera frame with respect to the IMU frame of the j-th UAV. q j
b
c is the

quaternion representation of the orientation of the camera frame with respect to the IMU

frame from the j-th UAV. The same holds for the transformations between the other frames.

p j|− j
w
l describes the relative position of UAV− j measured by the relative localisation system

on UAV j, which is expressed in the world frame.

79



It is assumed that the angular velocity measurements (ωm) and the linear acceleration

measurements (am) of the IMU contain biases bω and ba respectively. It is also assumed

the inertial measurements have white Gaussian noise (nω , na). Therefore, the true angular

velocities (ω) and the true accelerations (a) in the body frame can be defined as [138]:

ω = ωm−bω −nω a = am−ba−na, (4.1)

With these assumptions, a kinematic model of the motion (6-DoF) of a UAV can be derived.

This kinematic model can be expressed as a set of differential equations based on the b and

w frames as:

ṗw
b = vw

b

v̇w
b = Cqw

b
(am−ba−na)−g

q̇w
b = 1

2Ω(ωm−bω −nω)qw
b

ḃω = 0, ḃa = 0, ṗb
c = 0

q̇b
c = 0, ṗv

w = 0, q̇v
w = 0, ṗw

l = 0

, (4.2)

where Cq is the rotational matrix corresponding to the quaternion q, g is the gravity vector

in the world frame, and Ω(ω) is the quaternion-multiplication matrix of ω [138], which is

defined as

Ω(ω) =



−ωxb −ωyb −ωzb 0

0 ωzb −ωyb ωxb

−ωzb 0 ωxb ωyb

ωyb −ωxb 0 ωzb


, (4.3)

where ωxb , ωyb , ωzb are the angular rotations of in each axis in the body frame.
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The ESEKF algorithm consists of two steps: a prediction step and a correction step. The

prediction step uses the IMU’s linear accelerations and angular velocities to estimate the

position of the UAV according to its kinematic model (Equation (4.2)). In this step, the pose

(position and rotation) estimate of the stereo camera’s VSLAM algorithm and the relative

localisation position estimates are used to compensate for the IMU’s bias and noise along the

three axes. This process is summarised in Algorithm 2

4.3.1 Prediction Step

Using the five coordinate frames of reference shown in Fig. 4.2 and Equation (4.2), the

estimated state vector x̂ ∈ R30, and the error state vector x̃ ∈ R30 can be now defined. To

simplify the notation of the states in the formulation of the ESEKF, the index j is omitted in

the description below as it is for UAV j and the index will be only shown when necessary.

These vectors are defined as:

x̂ =



p̂w
b

v̂w
b

q̂w
b

b̂ω

b̂a

q̂v
w

p̂v
w

q̂b
c

p̂b
c

p̂w
l



; x̃ =



∆pw
b

∆vw
b

δθ w
b

∆bω

∆ba

δθ v
w

∆pv
w

δθ b
c

∆pb
c

∆pw
l



, (4.4)
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where ∆pw
b = pw

b − p̂w
b , δθ w

b is the error in the rotation of the IMU with respect to world

frame, which can be computed by

δθ
w
b = q̂w

b
−1⊗qw

b (4.5)

where the operator ⊗ represents quaternion multiplication.

As is the case for the real states, the predicted states and the error states are governed

by a set of differential equations as:

˙̂pw
b = v̂w

b

˙̂vw
b = Cq̂w

b
(am− b̂a)−g

˙̂qw
b = 1

2Ω(ωm− b̂w)q̂w
b

˙̂bω = 0, ˙̂ba = 0, ˙̂pb
c = 0

˙̂qb
c = 0, ˙̂pv

w = 0, ˙̂qv
w = 0, ˙̂pw

l = 0

(4.6)

∆ṗw
b = ∆vw

b

∆v̇w
b = −Cq̂w

b
⌊am− b̂a⌋×δθ w

b −Cq̂w
b
∆ba−Cq̂w

b
na

δ θ̇ w
b = −⌊ωm− b̂ω⌋×δθ w

b −∆bω −nω

∆ḃω = nbw ,∆ḃa = nba,∆ṗb
c = 0

δ q̇b
c = 0,∆ṗv

w = 0,δ q̇v
w = 0,∆ ṗw

l = 0

, (4.7)

where ⌊x⌋× is the skew-symmetric matrix composed from the vector x.

The error state dynamics can be described in the linearised continuous time error state

as:

˙̃x = Fcx̃+Gcn, (4.8)
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with

n =



na

nba

nω

nbω


; Gc =



03 03 03 03 03×15

−Ĉ(qw
b )

03 03 03 03×15

03 03 −I3 03 03×15

03 03 03 I3 03×15

03 I3 03 03 03×15

015×3 015×3 015×3 015×3 015


; (4.9)

Fc =



03 I3 03 03 03 03×15

03 03 −Cq̂w
b
⌊am− b̂a⌋× 03 −Cq̂w

b
03×15

03 03 −⌊ωm− b̂ω⌋× −I3 03 03×15

03 03 03 03 03 03×15

03 03 03 03 03 03×15

015×3 015×3 015×3 015×3 015×3 0315


,

where the coefficients for Qc were obtained from the manufacturer’s specifications of the

IMU.

For the implementation of the ESEKF in the discrete time domain, the system Equation (4.8)

needs to be discretised. From the Zero-Order-Holder equivalence:

Fd = exp(Fc∆t) = Id +Fc∆t +
1
2!

F2
c∆t2

k + ... , (4.10)

where ∆t = tk− tk−1.

A repetitive and sparse structure can be found in the matrix expansion, which allows Fd to be
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expressed in the discrete time domain [138]. Accordingly,

Fd(tk) =



I3 ∆t A B −Cq̂w
b

(∆t)2

2 03×15

03 I3 C D −Cq̂w
b
∆t 03×15

03 03 E F 03 03×15

03 03 03 I3 03 03×15

03 03 03 03 I3 03×15

015×3 015×3 015×3 015×3 015×3 I15


(4.11)

with

A = −C(q̂w
b )
⌊am− b̂a⌋×

(
(∆t)2

2 −
(∆t)3

3! ⌊ωm− b̂w⌋×+ (∆t)4

4! (⌊ωm− b̂w⌋×)2
)

B = −C(q̂w
b )
⌊am− b̂a⌋×

(
−(∆t)3

3! + (∆t)4

4! ⌊ωm− b̂w⌋×− (∆t)5

5! (⌊ωm− b̂w⌋×)2
)

C = −C(q̂w
b )
⌊am− b̂a⌋×

(
∆t− (∆t)2

2 ⌊ωm− b̂w⌋×+ (∆t)3

3! (⌊ωm− b̂w⌋×)2
)

D = −A

E = I3−∆t⌊ωm⌋×+ (∆t)2

2! (⌊ωm⌋×)2

F = −∆t + (∆t)2

2! ⌊ωm⌋×− (∆t)3

3! (⌊ωm⌋×)2

(4.12)

The discrete time system noise covariance matrix Qd can now be calculated [84]. Thus,

Qd(tk) =
∫ tk+1

tk
Fd(τ)GcQcGT

c Fd(τ)
T dτ . (4.13)

During the prediction step, the position and rotation of the UAV is estimated according to the

inertial measurements of the IMU. For every new IMU measurement the following steps are

performed:

1. Predict the state variables according to their difference equations.

2. Calculate Fd(tk) according to Equation (4.11)

3. Calculate Qd(tk) according to Equation (4.13)
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4. Compute the predicted error state covariance matrix as:

Ptk+1|tk = Fd(tk)Ptk|tkFT
d (tk)+Qd(tk) (4.14)

In the discrete time domain the position and velocity are estimated according to:

p̂w
itk+1|tk

= p̂w
btk |tk

+ ˙̂pw
btk |tk

∆t

v̂w
itk+1|tk

= v̂w
btk |tk

+ ˙̂vw
btk |tk

∆t
(4.15)

To estimate the quaternion, a first order quaternion integrator can be used [131]. This gives

q̂w
i (tk+1) =

(
exp

(
1
2

Ω(ω̇m)∆t
)

+
1

48

(
Ω(ωm(tk−1))Ω(ωm)(tk)−Ω(ωm(tk))Ω(ωm)(tk−1)

)
∆t2

k

)
q̂w

b (tk),
(4.16)

where Ω(ω̇m) is:

Ω(ω̇m) = Ω

(
Ω(ωm)(tk−1)−Ω(ωm)(tk)

∆t

)
. (4.17)

The prediction step in the ESEKF is summarised in lines 5 through 11 of Algorithm 2.

4.3.2 Correction Step

If the prediction step is repeated, the covariance of the error state will grow, which means

that estimation becomes increasingly inaccurate. Measurements from other sensors (stereo

camera and relative localisation) can provide extra information to correct the position esti-

mates. These measurements are:

The VSLAM algorithm estimates position as well as the rotation of the stereo camera.
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Therefore, the position of the stereo camera pv
c can be computed by

zp = pv
c =Cqv

w(pw
b +Cqw

i
pb

c), (4.18)

and the rotation of the camera expressed in the vision frame (qv
c) by

zq = qv
c = qv

w⊗qw
b ⊗qw

c . (4.19)

The relative localisation system position estimate of UAV j is modelled as:

zl = P− j| j
w
l = Pj

w
b +Cq̂ j

w
b
Pj

b
l . (4.20)

From these equations, the observation matrix H, and the measurement noise covariance

matrix R, can be determined. The observation matrices for the position and rotation of the

camera, H_stp and H_stq , can be defined by Equations (4.18) and (4.19) respectively [102].

The observatility matrix for the position estimates of the relative localisation system H_lp is

defined by Equation (4.20). Detailed definitions are as shown below.
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H_stp =



R̂v
w

03×3

−Cq̂v
wCq̂w

b
⌊p̂b

c⌋×

03×3

03×3

−Cq̂v
w⌊(p̂w

b +Cq̂w
b

p̂b
c)⌋×

I3×3

03×3

Cq̂v
wCq̂w

b

03×3



T

; H_stq =



03×3

03×3

1
2Cq̂c

b

03×3

03×3

1
2Cq̂c

b
Cq̂b

w

03×3

1
2 I3×3

03×3

03×3



T

(4.21)

H_lp =



I3×3

03×3

03×3

03×3

03×3

03×3

03×3

03×3

03×3

Cq̂ j
w
b



T

(4.22)

H_stp , H_stq , and H_lp are computed separately and then combined into one observation
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matrix H, where

H =


H_stp

H_stq

H_lp

 .

The residual, z̃, is calculated as z− ẑ. Thus

z̃ =


zp−Cq̂v

w(p̂w
b +Cq̂w

b
p̂b

c)

(q̂v
c)
−1⊗ zq

zl− p̂w
b

 . (4.23)

The measurement noise covariance matrix, R, is based on the position and rotation measure-

ments of the VSLAM algorithm and the position shared by the relative localisation system in

UAV− j. Accordingly

R =


Rp3 03 03

03 Rq3 03

03 03 Rl3

 , (4.24)

where

Rp3 =


σ2

zpx
0 0

0 σ2
zpy

0

0 0 σ2
zpz

 ; Rq3 =


σ2

zqx
0 0

0 σ2
zqy

0

0 0 σ2
zqz

 ; (4.25)

Rl3 =


σ2

zlx
0 0

0 σ2
zly

0

0 0 σ2
zlz

 .

The magnitude of the covariances determine the level of trust in the corresponding measure-

ments, with a smaller covariance implying higher level of trust. It is difficult to compute

covariances from experimetal results becasuse of errors in sensor measurements. Because of
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this uncertainty covariance values have been tuned by trial and error to control the behaviour

of the ESEKF.

The ESEKF procedure for the correction step is as follows:

1. Compute the residual: z̃ = z− ẑ

2. Compute the innovation: S = HPHT +R

3. Compute the Kalman gain: K = PHT S−1

4. Compute the correction: ˆ̃x = Kz̃

5. Update states: x̂tk+1|tk+1
= x̂tk+1|tk +

ˆ̃x

6. Update the error state covariance matrix:

Ptk+1|tk+1
= (Id−KH)Ptk+1|tk(Id−KH)T +KRKT

The correction stage of the ESEKF is summarised in lines 12 through 29 of Algorithm 2. It

is important to note that in Algorithm 2, H_stp and H_stq are the main measurements used to

predict the position of the UAV, and H_lp is used to correct the prediction. If H_lp were to be

used as the main sensor, the prediction of the UAV’s position would become unstable because

the refresh rate of the relative localisation is not frequent enough to sustain a stable flight path.

Algorithm 2 Error State Extended Kalman Filter
Input: IMU measurements (am,ωm), VSLAM position and rotation measurements
(zp,zq), relative localisation position estimates (zl), measurement noise covariance
matrix R, process noise covariance matrix Qc

Output: x̂
1: k← 0
2: tk← 0
3: x̂tk ← 0
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Algorithm 2 Error State Extended Kalman Filter (continued)
4: loop
5: Prediction step
6: p̂w

btk+1|tk
← p̂w

btk |tk
+ ˙̂pw

btk |tk
∆tk

7: v̂w
btk+1|tk

← v̂w
btk |tk

+ ˙̂vw
btk |tk

∆tk
8: compute q̂w

b (tk+1) according to the first order quaternion integrator (Equation (4.16))
9: compute Fd(tk) according to Equation (4.11)
10: compute Qd(tk) according to Equation (4.13)
11: Ptk+1|tk ← Fd(tk)Ptk|tkFT

d (tk)+Qd(tk)
12: Correction step
13: if any measurement update is available then
14: if a new measurement from the VSLAM algorithm is received then
15: z̃← z− ẑ

16: S← HPHT +R based on the observation matrix H =

H_stp

H_stq
0


17: K← PHT S−1

18: ˆ̃x← Kz̃
19: x̂tk+1|tk+1

← x̂tk+1|tk +
ˆ̃x

20: Ptk+1|tk+1
← (Id−KH)Ptk+1|tk(Id−KH)T +KRKT

21: end if
22: if a new measurement from the the relative localisation system in UAV− j

is shared then
23: z̃← z− ẑ

24: S← HPHT +R based on the observation matrix H =

 0
0

H_lp


25: K← PHT S−1

26: ˆ̃x← Kz̃
27: x̂tk+1|tk+1

← x̂tk+1|tk +
ˆ̃x

28: Ptk+1|tk+1
← (Id−KH)Ptk+1|tk(Id−KH)T +KRKT

29: end if
30: else
31: Ptk+1|tk+1

← Fd(tk)Ptk|tkFT
d (tk)+Qd(tk)

32: k← k+1
33: end if
34: end loop
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4.4 Design of Indoor Experiments

In order to test the ESEKF’s ability to improve position estimates of VSLAM a set of

experiments similar to those conducted in Chapter 3, but now including the ESEKF were

run. For these experiments, UAV2 estimated its position using the VSLAM algorithm. At

the same time, UAV1 estimated the position of UAV2 using the relative localisation system

developed in this chapter, including the ESEKF, to measure the position of UAV2. The

experimental setup is shown in Fig. 4.4. This experimental setup was chosen because the

indoor environment has constant lighting, and is rich in static and distinctive visual features

that improve the accuracy of the VSLAM algorithm.

For the experiments, three sensors were used: an IMU for the prediction step, a stereo

camera and the relative localisation system (Chapter 3) for the correction step. To select

the IMU, it was necessary to take into account the refresh rate of the measurements to be

performed by the sensor. A choice was made to select the UM7-IMU [24], which filters

the high frequency noise of the inertial measurements at 100 Hz. This high refresh rate

enables the ESEKF to estimate the fast changes in motion of a UAV during the prediction

step. For VSLAM, the ZED stereo camera and the NVIDIA TX1 GPU were used. Stereo

images from the ZED camera were processed by the ZED Software Development Kit (SDK),

which included a VSLAM algorithm that ran on the TX1 GPU. The VSLAM algorithm

estimated the position and rotation of the camera at a rate of 20 Hz. To correct the estimated

position from the VSLAM algorithm, the position estimates from the relative localisation

system described in Chapter 3 was also used. The relative localisation system estimated the

position of a neighbouring at 4 Hz. Therefore, the proposed ESEKF is a multi-rate state

estimator with three different sample rates. The different sampling times of measurements

are illustrated in Fig. 4.3. In the case of real-time applications, the inherent time offset
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between when a position estimate is made by the sensors and the transfer of the data to a

processing unit can delay the correction step of the ESEKF. This time delay can be reduced

by back-propagating the correcting measurement. This can be achieved by time stamping

all the sensor measurements and re-computing correction step of the ESEKF based on the

correct time given by the time-stamps and propagate the correction until it reaches the most

recent prediction.

With this experimental set-up, 15 repetitions (trials) of the experiment were performed. The

Fig. 4.3 Measurement refresh rates. Red is the IMU = 100 Hz, blue is the ZED
stereo camera = 20 Hz and green is the relative localisation system = 4 Hz.

internal clocks of UAV1, UAV2, and the Optitack motion capture system were synchronised

using an NTP server running in UAV1. To process the data compute the position estimates,

the proposed ESEKF was coded in Matlab 2017b and ran on a Core i7 computer with 8 Gb

of RAM.

4.5 Experimental Results and Discussion

The experiment allowed the measurement noise covariance matrix, R, in Equation (4.24), to

be tuned in order to improve the performance of the ESEKF trajectory estimates. During the
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Fig. 4.4 This image shows how the indoor experiments were performed. UAV2 moved in any
direction (green arrows), performing VSLAM. UAV1 was stationary and its bearing aligned
with the world frame. UAV1 estimated the position of UAV2 while it was in motion (red
arrow). UAV2 moved within a volume of 84 m3 while the Optitrack motion capture system
measured the true positions of the two UAVs.

tuning of R, it was found that trusting the position estimates and the attitude estimates of the

VSLAM algorithm more than the position estimates of the relative localisation system gave

smoother trajectory estimates. By contrast, trusting the relative localisation system’s position

estimates more than those of the VSLAM algorithm produced more oscillatory trajectory

estimates. This is because the covariances dictate the amount of correction performed by

each sensor. Therefore, if the correction arrives at a slow rate compared to the prediction,

oscillatory trajectory estimates can result.

In this case, the testing environment has static and distinctive visual features. Thus, it

can be assumed that the VSLAM’s estimates can be trusted more than the relative localisation

system’s position estimates. From the position and orientation of UAV1, it can be derived

the noise covariance of the relative localisation system’s position estimates remain constant.

Also, as the Longitudinal and Lateral axes were approximately aligned with the North and the

East axes, the diagonal form of the covariance matrix can be used for the relative localisation

system’s position estimates. Moreover, from the findings in Chapter 3 the relative localisation

93



system’s lateral position estimates can be trusted more than the position estimates in the

Longitudinal and Height axes. Based on this reasoning the noise covariance matrix for UAV2

was estimated as:

R2 =



1.2 0 0 0 0 0 0 0 0

0 1.2 0 0 0 0 0 0 0

0 0 1.2 0 0 0 0 0 0

0 0 0 .5 0 0 0 0 0

0 0 0 0 .5 0 0 0 0

0 0 0 0 0 .5 0 0 0

0 0 0 0 0 0 5.4 0 0

0 0 0 0 0 0 0 2.3 0

0 0 0 0 0 0 0 0 6.6



(4.26)

It is worth mentioning, that the calculations needed to estimate the position of the UAV

remain the same even with the added measurement of the relative localisation. However, the

speed at which the ESEKF has to compute a correction when a relative localisation measure-

ment is available does increase momentarily. This means that when a relative localisation

measurement becomes available between two VSLAM measurements the ESEKF needs to

compute the correction.

Table 4.1 presents the results from the 15 trials showing the average RMSE for the two

set of position estimates: ESEKF’s trajectory estimates, and the VSLAM algorithm’s trajec-

tory estimates compared with the ground truth measurements. It can be seen that there is an
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overall reduction of the RMSE when the ESEKF is used. This reduction is approximately

24%, 75% and 11% in the Longitudinal, Lateral and Height axes respectively.

Fig. 4.5 shows the distribution of the RMSE of the ESEKF’s trajectory estimates of UAV2

from the 15 trials. It can be seen in the figure that the RMSE is approximately normally

distributed in all axes. These distributions yield standard deviations of 0.005 m, 0.002 m,

and 0.006 m in the Longitudinal, Lateral, and Height axes respectively. The results show

that variations of the error in the 15 trials is relatively small. When estimates of the relative

localisation system are shared from a stationary UAV (UAV1).

The calculated RMSE shows that the trajectory estimates of the relative localisation system

can reduce the drift of the VSLAM algorithm. Fig. 4.6 and Fig. 4.8 show one representative

trial of the ESEKF experiment. In these figures, it can be seen that the ESEKF’s trajectory

estimates of UAV2 tend to converge to the true trajectory measurements of the motion capture

system, whereas the trajectory estimates of the VSLAM algorithm drift over time. This

tendency is more evident in the Lateral axis where the trajectory estimates from the VSLAM

algorithm have the biggest error.

Fig. 4.7 shows the error of the ESEKF’s trajectory estimates of UAV2 and the error of

the VSLAM algorithm’s trajectory estimates of the same trial as in Fig. 4.6 and Fig. 4.8.

These are consistent with the RMSE summarised in Table 4.1 where the ESEKF’s trajectory

estimates of UAV2 in the Lateral axis are more accurate than in other axes. These results

are similar to the findings in Chapter 3, which shows that the trajectory estimates with the

highest degree of accuracy from the relative localisation system are on the Lateral axis.
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Axis
Average RMSE of the
VSLAM algorithm’s

trajectory estimates (m)

Average RMSE of the
ESEKF’s trajectory

estimates (m)
Longitudinal 0.0986 0.0752

Lateral 0.2613 0.1316
Height 0.0426 0.0380

Table 4.1 RMSE of the trajectory estimates of the VSLAM algorithm and RMSE of the
trajectory estimates of the ESEKF

Fig. 4.5 Distribution of the ESEKF RMSE a) Longitudinal axis; b) Lateral axis; c) Height
axis.
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Fig. 4.6 ESEKF’s estimated trajectories in the indoor environment. Blue: Optitrack trajectory
measurements, Red: VSLAM algorithm’s trajectory estimates, Green: ESEKF’s trajectory
estimates.

Fig. 4.7 Error of the ESEKF’s estimated trajectories vs. error the VSLAM algorithm’s
trajectory estimates. Red: Error of the VSLAM algorithm’s trajectory estimates, Green:
Error of the ESEKF’s trajectory estimates.
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Fig. 4.8 ESEKF’s 3D estimated trajectory. Blue: Optitrack 3D trajectory measurement, Red:
VSLAM algorithm’s 3D trajectory estimate, Green: ESEKF’s 3D trajectory estimate.

4.6 Summary

This chapter has presented the design and testing of the improvement in position estimates

when an ESEKF and relative localisation system is used for cooperative SLAM. The filter

aims to reduce the drift of the VSLAM algorithm’s position estimates in each UAV in the

swarm. To achieve this, the ESEKF can be implemented individually in every member of the

swarm. The ESEKF fuses the inertial measurements from the UAV’s IMU with the position

and rotation estimates from its VSLAM algorithm, and the shared position estimates from

neighbouring UAVs relative localisation system. An experiment comprising of 15 trials was

performed to determine the improvement of the position estimates when the ESEKF was

used. The experiment consisted of UAV2 estimating its position in the environment with

the VSLAM algorithm while UAV1 remained stationary estimating the position of UAV2

through relative localisation.

The results from the experiments show that the ESEKF reduces the drift of the estimated

trajectory of the VSLAM algorithm when compared with the true trajectory measurements

of the motion capture system. This reduction was approximately 24%, 75% and 11% in the
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Longitudinal, Lateral and Height axes respectively. It can also be noted that in the Lateral

axis the ESEKF’s trajectory estimates are more accurate than the trajectory estimates in

the Longitudinal and Height axes. This experiments show that the proposed ESEKF is a

viable option to be implemented in a swarm of UAVs for GPS-denied outdoor navigation.

Therefore, the following chapter describes the implementation of this filter in multiple UAVs

as well as testing in outdoor environments.
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5. Cooperative Localisation in GPS-denied

Environments

This chapter describes the implementation of the ESEKF, designed in Chapter 4, and testing

with a swarm of UAVs in outdoor experiments. The chapter begins by describing the

implementation the ESEKF in a cooperative swarm. Section 5.2 describes the design of the

outdoor experiments. The results of the outdoor experiments are discussed in Section 5.4.

Section 5.5 summarises and concludes the chapter.

5.1 A Proposed Cooperative Localisation Approach

In order for a swarm of UAVs to perform cooperative SLAM without map sharing, a

cooperative ESEKF algorithm is implemented in each member of the swarm, UAV j ( j =

1,2,3, ...,N). In each UAV j the ESEKF fuses the sensor measurements (IMU, VSLAM)

of UAV j with the shared position estimates made by neighbouring UAVs using each of

their relative localisation systems, at a time tk (k = 1,2,3, ...,N). The cooperative ESEKF

algorithm required to implement the fusion can be summarised in the following steps. the

complete implementation is given in Algorithm 3.

• The first step of the cooperative ESEKF algorithm, is to predict the position, p̂ j
w
b tk+1|tk ,

of each UAV j in the swarm using its own ESEKF. This is calculated by using the

inertial measurements of each UAV’s IMU j (a jm(tk) and ω jm(tk)) to propagate the
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estimated states and error states of each UAV j. The propagation of UAV j’s states is

performed by Equation 4.15 and 4.16. This process is described in lines 3 through 9 of

Algorithm 3.

• The second step corrects the position of UAV j predicted by the ESEKF (p̂ j
w
b tk+1|tk)

when new position and attitude estimates from UAV j’s VSLAM algorithm (z jp(tk),

z jq(tk)) are available. The correction of p̂ j
w
b tk+1|tk yields a new position estimate of

UAV j ( p̂ j
w
b tk+1|tk+1

). This process is described in lines 11 through 18 of Algorithm 3.

• The third step is to perform a second correction of UAV j’s position by the ESEKF

when UAV− j shares its position estimate of UAV j. To achieve this, UAV− j uses its

relative localisation system to estimate the position of UAV j (z jl(tk)). This position

estimate is relative to UAV− j’s position p̂− j
w
b at time tk. The correction of p̂ j

w
b tk+1|tk

with the shared position estimate from UAV− j yields a new position estimate of UAV j

( p̂ j
w
b tk+1|tk+1

). This process is described in lines 19 through 26 of Algorithm 3.

This cooperative ESEKF shares sensory measurements available (a jm, ω jm, z jp, z jq and z jl )

to the swarm with all its members, as shown in Fig. 5.1. In the general case a UAV could

be connected to multiple neighbours to share and receive relative localisation. However, the

number of neighbours connected to one UAV is dictated by the formation and the hardware

setup. Sharing the relative localisation with multiple UAVs allows the swarm system to

cooperatively reduce the positional drift in each UAV j’s VSLAM algorithm position estimate

without map sharing or loop closure. Furthermore, this method also allows the swarm to add

or reduce its members without modifying the formulation of each ESEKF j, since the ESEKF

is performed by each UAV j for itself.
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Fig. 5.1 Cooperative ESEKF system architecture.

Algorithm 3 Cooperative Error State Extended Kalman Filter
Input: IMU measurements (a jm(tk) and ω jm(tk)), VSLAM algorithm position and

attitude estimates (z jp(tk),z jq(tk)), relative localisation system position estimates
(z jl(tk))

Output: p̂ j
w
i tk+1|tk+1

1: loop
2: k← 0
3: tk← 0
4: p̂ j

w
b tk+1|tk ← 0

5: p̂ j
w
btk+1|tk

← p̂ j
w
btk |tk

+ ˙̂p j
w
btk |tk

∆t

6: v̂ j
w
btk+1|tk

← v̂ j
w
btk |tk

+ ˙̂v j
w
btk |tk

∆t

7: compute q̂ j
w
b (tk+1) using Equation (4.16)

8: computeF jd(tk) using Equation (4.11)
9: compute Q jd(tk) using Equation (4.13)

10: P jtk+1|tk ← F jd(tk)Ptk|tkF j
T
d (tk)+Q jd(tk)

11: if a new position and attitude estimate from UAV j’s VSLAM algorithm is received
or a new measurement from the the relative localisation system in UAV− j is shared
then

12: if a new position and attitude estimate from UAV j’s VSLAM algorithm
is received (z jp(tk),z jq(tk)) then

13: z̃ j← z j− ẑ j
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Algorithm 3 Distributed ESEKF (continued)

14: S j← H jPjHT
j +R j using the observation matrix H j =

H j_stp

H j_stq
0


15: K j← PjHT

jS−1
j

16: ˆ̃x j← K j z̃ j
17: x̂ jtk+1|tk+1

← x̂ jtk+1|tk +
ˆ̃x j

18: P jtk+1|tk+1
← (Id−K jH j)Pjtk+1|tk(Id−K jH j)

T +K jR jK j
T

19: end if
20: if a new measurement from the the relative localisation system in UAV− j

is shared (z jl(tk)) then
21: z̃ j← z j− ẑ j

22: S j← H jPjHT
j +R j using the observation matrix H j =

 0
0

H j_lp


23: K j← PjHT

jS−1
j

24: ˆ̃x j← K j z̃ j
25: x̂ jtk+1|tk+1

← x̂ jtk+1|tk +
ˆ̃x j

26: P jtk+1|tk+1
← (Id−K jH j)Pjtk+1|tk(Id−K jH j)

T +K jR jK j
T

27: end if
28: else
29: P jtk+1|tk+1

← F jd(tk)Pjtk|tkFT
jd(tk)+Q jd(tk)

30: end if
31: k← k+1
32: end loop

5.2 Design of Outdoor Experiments

In order to evaluate the accuracy of the proposed cooperative ESEKF, flying experiments with

three UAVs (UAV1, UAV2, and UAV3) in two types of outdoor environments (GPS-denied

and open field) were run. Each UAV was equipped with the same sensors, as described in

Chapter 4. A Real Time Kinematic Differential GPS (RTK-DGPS) receiver was installed

on each UAV for ground truth measurements. Importantly the RTK-GPS receiver was only

used for error calculations and did not form part of the cooperative ESEKF formulation.

The RTK-DGPS had a maximum ground truth accuracy of 2 cm [127]. This is superior to
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the standalone GPS accuracy of 5 m [123] and was obtained using a base station, which

transmits correction signals to each UAV’s RTK-DGPS receiver.

Before the start of all experiments, the GPS base station was placed in a location near

where the experiments occurred, with a clear line of sight to the sky. The base station was

then left for an hour to average the GPS solutions in order to find the mean of its position.

This allowed the transmission of a correction signal to the mobile GPS receivers. The internal

clocks of all three UAVs were synchronised by using a network time protocol (NTP) server

running on one UAV.

The data collected from these experiments includes: the IMU’s linear acceleration and

angular velocities, the position estimates of the VSLAM algorithm running on the TX1-

GPU, the relative localisation system’s position estimates, and the RTK-DGPS’s ground

truth position measurements. These were captured from all UAVs. The data was used as

input for the the proposed cooperative ESEKF, which was coded in Matlab 2017b, running

on a Core i7 computer with 8 Gb of RAM. For all experiments, the world frame, w, em-

ployed was as a fixed position within the environment and oriented along the navigation

path as shown in Fig. 5.2. Therefore, all position estimates were rotated and translated to

conform to the world frame. The characteristics of each experiment are now described in turn.

Experiment 1

Experiment 1 was performed under tree canopies, which is a GPS-denied environment,

like the model scenario. This type of environment is rich in visual features and therefore,

it allowed the VSLAM algorithm to perform better in estimating the position of the UAV

compared with an environment that lacks visual features. Because GPS could not reliably
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be used as ground truth to determine the accuracy of the position estimates of the ESEKF,

the GPS positions at the start and the end of the flights were measured to visually assess the

trajectory of the UAVs in a satellite image.

Two flying trials were performed in the GPS-denied environment, in which the three UAVs

were flown manually 80m in a forward direction, in a straight line under tree canopies. This

is shown in Fig. 5.2a. See also a video of this (https://youtu.be/QIqRG7jf3lQ). The UAVs

maintained an average separation of eight metres and an average height of two meters to

avoid collisions with trees or other UAVs. In this environment, the onboard relative locali-

sation systems experienced intermittent outages due to the tree line at the centre (see Fig. 5.3).

To determine the measurement noise covariance matrix (R) of the ESEKF for all UAVs

in Experiment 1, it was decided at first to use similar values as in Chapter 4 (Equation (4.24)),

which yielded smooth trajectory estimates. However, the forward motion performed by the

UAVs in the outdoor experiments had to be taken into account when determining the noise

covariances of the VSLAM’s position estimates. The forward motion enabled the VSLAM

algorithm to produce more accurate position estimates in the forward direction because the

features in this direction were a lot richer than those in the lateral and height directions.

The results in Chapter 3 showed that the relative localisation system’s position estimates

in the lateral direction had a higher degree of accuracy than in the longitudinal and height

directions. Moreover, in Experiment 1, the UAVs were flown in a forward direction along

a straight line with a fixed heading. This meant that the noise covariance of the relative

localisation system’s position estimates were constant. Also, as the Longitudinal and Lateral

axes were approximately aligned with the North and the East axes, the diagonal form of

the covariance matrix was used for the relative localisation system’s position estimates. To
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determine the most adequate R for the environment in Experiment 1, it was decided to test

three different combinations of covariance coefficients, and implement them in the two trials.

In these three test cases, the noise covariance of the position and rotation estimations of

VSLAM algorithm remained constant. The noise covariance coefficients of the relative local-

isation system’s position estimates were modified as follows: Case 1. The noise covariance

coefficients of the relative localisation system’s position estimates were set to a higher level

than those of the VSLAM’s position estimates. This means that the position estimates of the

relative localisation system were trusted less than the position estimates from the VSLAM

algorithm.

Case 1

σ
2
zpx

= 3.53 ; σ
2
zpy

= 5.23 ; σ
2
zpz

= 6.45

σ
2
zqx

= 0.32 ; σ
2
zqy

= 0.42 ; σ
2
zqz

= 0.52

σ
2
zlx

= 18.91 ; σ
2
zly

= 10.26 ; σ
2
zlz

= 20.91

Case 2. The noise covariance coefficients of the relative localisation system’s position

estimates were set to a lower level than those of the VSLAM’s position estimates.This meant

that the relative localisation system was trusted more than VSLAM.

Case 2 σ
2
zlx

= 1.15 ; σ
2
zly

= 0.91 ; σ
2
zlz

= 3.23

Case 3. The noise covariance coefficient of the relative localisation system’s position estimate

in the Lateral direction was set to a lower level than the one of the VSLAM’s position estimate

in the same direction. The noise covariance coefficients of the relative localisation system’s

position estimates in the longitudinal and height directions were set to a higher level than

those of the of the VSLAM’s position estimate in the same direction. This meant that the

relative localisation system was trusted more than VSLAM, but only in the lateral direction.

106



Case3 σ
2
zlx

= 4.91 ; σ
2
zly

= 2.45 ; σ
2
zlz

= 8.85

Experiment 2

Experiment 2, was performed in an open field with a clear line of sight to the sky. This

meant that the high-accuracy RTK-DGPS measurements could be recorded. This enabled the

RMSE calculation over the entire trajectory of the three UAVs in Experiment 2. However,

this environment lacked visual features, which degraded the performance of the VSLAM

algorithm. This meant that in this environment the position and attitude estimates of the

VSLAM algorithm were less accurate than those made in the GPS-denied environment,

which had richer visual features.

Two trials were performed where three UAVs were flown manually 80 m in forward di-

rection along a straight line at the height of about two meters.The average separation between

UAVs of about 8 meters to avoid collisions between UAVs (see Fig. 5.2b). In this environ-

ment, the visual line of sight of the 180◦ FoV camera was not occluded at any point (see

Fig. 5.4). These meant that the position estimates of the relative localisation systems were

performed without any interruption.

The lack of visual features had to be taken in to account in order to estimate the noise

covariance matrix for VSLAM position and rotation estimates. Therefore, noise covariance

coefficients of the VSLAM position and rotation estimates were increased to a higher de-

gree compared with Experiment 1. Because the UAVs followed a similar trajectory as in
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Experiment 1 and the axes were also approximately aligned with the NED frame, similar

coefficients to Case 3 of Experiment 1 were used for the relative localisation. The coefficients

used in the two trials of Experiment 2 are shown below.

σ
2
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= 25.58 ; σ
2
zpy

= 20.83 ; σ
2
zpz

= 10.85

σ
2
zqx

= 0.82 ; σ
2
zqy

= 0.72 ; σ
2
zqz

= 0.62

σ
2
zlx

= 3.45 ; σ
2
zly

= 1.67 ; σ
2
zlz

= 7.65

(a) GPS-denied environment (b) Open field environment

Fig. 5.2 Satellite image of the outdoor areas where the experiments were performed a)
Outdoor GPS-denied area (parking lot) and the starting positions of the UAVs with the
orientation of the world frame. b) Outdoor open field area (oval) and the starting positions of
the UAVs with the orientation of the world frame. In both experiments, the UAVs moved 80
m forward in a straight line while maintaining a linear formation.
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(a) UAV2 left side camera

(b) UAV2 right side camera

Fig. 5.3 Images from the side looking cameras of the neighbouring UAVs during the GPS-
denied test. The green circle shows the tracked marker. a) UAV2 left side looking camera. b)
UAV2 right side looking camera
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(a) UAV3 left side camera

(b) UAV1 right side camera

Fig. 5.4 Images from the side looking cameras of the neighbouring UAVs during the open
field test. The green circle shows the tracked marker. a) UAV3 left side looking camera. b)
UAV1 right side looking camera
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5.3 Results and Discussion

Experiment 1

For Case 1: Fig. 5.5 shows the estimated trajectories of each UAV using VSLAM alone (red)

and cooperative ESEKF (green) for Trial 1. In this environment, the RTK-DGPS trajectory

measurements of each UAV are intermittent. Thus, the RMSE of the whole trajectories of

each UAV could not be calculated. It can be observed from Fig. 5.5 that only the position

estimates inside the red boxes can be used to calculate the RMSE, as this when the GPS

measurement was reliable. Thus, RMSE was only calculated over this parts of the UAV’s

trajectory. Table 5.1 and 5.2 show the calculated RMSE of the ESEKF and the VSLAM

trajectory estimates for Trial 1 and Trial 2 respectively. In these tables, it can be seen that

ESEKF in each UAV reduces the error of the trajectories estimated by VSLAM in all axes.

This reduction of the error in both trials is approximately 22%, 78% and 48% in the Longitu-

dinal, Lateral and Height axes respectively. Even though the RMSE of the UAVs trajectory

estimates can only be partially calculated in this experiment, the accuracy of the entire esti-

mated trajectories from the cooperative ESEKF and VSLAM can be visually assessed by the

GPS positions at the start and end of both trials. Fig. 5.6 shows the estimated trajectories of

each UAV using the cooperative ESEKF (green) and VSLAM alone (red) on a satellite image

of the environment as well as the measured start and end points of the three UAVs from Trial 1.

The results from Case 1 in both trials show that the estimated trajectories of the coop-

erative ESEKF have higher accuracy than VSLAM alone in all three axes. It can be seen

in Fig. 5.6 that the estimated trajectories of the cooperative ESEKF follow the true path

of the UAVs in Trial 1. This figure also shows that the cooperative ESEKF yields smooth

trajectories in all axes. From the results of both trials, the estimated trajectories of UAV2’s
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ESEKF are the most accurate because UAV2 corrects its position estimates with the shared

position estimates from UAV1 and UAV3. It can also be noted from the figures and tables

of Case 1 that the trajectories estimated by the cooperative ESEKF in the Longitudinal axis

do not have the same degree of accuracy as in the Lateral and Height axes. Fig. 5.6 shows

the error of the estimated trajectories of the ESEKF in the longitudinal axis. This error is

the difference in distance between the measured GPS position and the estimated position of

the ESEKF at the end of Trial 1. This error is approximately UAV1= 10 m, UAV2= 6 m, and

UAV3= 5 m.

For Case 2: Fig. 5.7 shows the estimated trajectories of each UAV using VSLAM alone (red)

and cooperative ESEKF (green) for Trial 1. This figure shows that the UAV’s estimated tra-

jectories using the ESEKF are more accurate in the longitudinal direction than the estimated

trajectories of Case 1 in the same direction. This increase in accuracy is because the relative

localisation system’s position estimates are trusted more than the position estimates of the

VSLAM algorithm. The error in distance is approximately UAV1= 8 m, UAV2= 4 m, and

UAV3= 3 m. in the longitudinal axis of Trial 1. However, in Fig. 5.7, it is also shown that

the UAV trajectories estimated by the ESEKF oscillated to a higher degree than the for Case

1. This is because the correction form the relative localisation system is trusted more but

evaluated less frequently, leading to a more aggresive correction than for case 1.

Case 3: Fig. 5.8 shows the estimated trajectories of each UAV using VSLAM alone (red) and

cooperative ESEKF (green) for Trial 1. This figure shows a similar improvement in accuracy
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of the estimated trajectories in the Longitudinal axis as in Case 2. The error in distance is

approximately UAV1= 9 m, UAV2= 5 m, and UAV3= 4 m in the longitudinal axis. Moreover,

Fig. 5.8 also shows that the estimated trajectories are smoother than the for Case2. However,

the estimated trajectories are not as smooth as for Case 1. This es because they still undergo

a relatively aggressive correction.

Experiment 2

Fig.5.9 shows the estimated trajectories of each UAV using VSLAM alone (red), coop-

erative ESEKF (green) and GPS ground truth measurements (blue) for Trial 1. This figure

confirms that the trajectories estimated by VSLAM in Experiment 2 are less accurate than

those in Experiment 1 due to the lack of visual features in the environment. Fig. 5.10 shows

the error between the trajectories estimated by ESEKF (green) and VSLAM (red) and each

UAV’s GPS ground truth trajectories for Trial 1. It can be seen in this figure that the trajectory

estimated by VSLAM for UAV3 in the Longitudinal axis has a higher accuracy than for

UAV1 and UAV2. This is because was closer to some visual features such as a fence than the

other two UAVs. However, this figure also shows that the trajectory estimated by ESEKF

for UAV3 in the Longitudinal axis is less accurate than trajectory estimated by VSLAM on

the same axis. This is confirmed by Table 5.3 and Table 5.4, which show the RMSE of the

trajectories estimated by ESEKF and VSLAM in each axis for Trial 1 and Trial 2 respectively.

From these tables, it can be seen that the trajectory of UAV3 estimated by ESEKF in the

Longitudinal axis has an approximate increase of 0.7 m when compared with the RMSE of

the trajectory estimated by VSLAM in the same axis.

The propagated errors of the ESEKF position estimates for UAV1 and UAV2 are trans-

mitted to UAV3 by the relative localisation system’s position estimates. Moreover, the shared
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position estimates are also bounded the linear formation. This means that the trajectory

estimates of UAV3 are affected by the error of UAV1 and UAV2 as well as the linear formation

followed by the UAVs. Also, the oscillations that are present in Fig.5.9 and Fig. 5.10 are

because the selected noise covariance matrix trusted the relative localisation measurement

more than the VSLAM position estimate. This forced an aggressive correction of the position

estimates at a rate of approximately 4 Hz, while a mild correction was performed at a rate of

20 Hz and the prediction at a rate of 100 Hz. The different rates of the corrections and the

difference in the amount of correction performed generated the oscillations.

The results of experiment 2 also showed that proposed ESEKF can correct the position

estimates of the UAVs, even when the VSLAM algorithm lacks sufficient features to deter-

mine the position of the UAV at an acceptable level. However, the proposed method heavily

relies on the position estimates of the VSLAM algorithm in order to correct the position of

the UAVs.
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(a) UAV1

(b) UAV2

(c) UAV3

Fig. 5.5 ESEKF’s etimated trajectories in the GPS-denied environment of Trial 1 Case 1,
where the red squares show when the RTK-float solution is available. Blue: GPS trajectory
estimate, Red: VSLAM algorithm’s trajectory estimate, and Green: ESEKF’s position
estimate.
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UAV Axis RMSE VSLAM
(m)

RMSE ESEKF
(m)

Longitudinal 15.00 11.13
1 Lateral 7.70 2.43

Height 27.38 15.34
Longitudinal 9.40 5.79

2 Lateral 11.06 1.49
Height 9.07 6.08

Longitudinal 6.27 4.95
3 Lateral 9.49 2.35

Height 29.74 10.93
Table 5.1 GPS-denied environment: Trail 1 Case 1 RMSE of the trajectories estimated by
VSLAM alone and the ESEKF per UAV.

UAV Axis RMSE VSLAM
(m)

RMSE ESEKF
(m)

Longitudinal 16.83 12.29
1 Lateral 6.38 3.48

Height 26.51 13.50
Longitudinal 8.89 4.98

2 Lateral 13.32 2.27
Height 8.07 6.68

Longitudinal 5.87 3.56
3 Lateral 8.96 1.88

Height 26.94 9.39
Table 5.2 GPS-denied environment: Trail 2 Case 1 RMSE of the trajectories estimated by
VSLAM alone and the ESEKF per UAV.
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Fig. 5.6 Satellite image (sourced from Google maps) for Trial 1 Case 1 trajectories estimated
by the ESEKF in the GPS-denied environment showing the starting point and end point in
the trial. Green: UAV1, UAV2, and UAV3 ESEKF’s trajectory estimates, RED: UAV1, UAV2,
and UAV3 VSLAM algorithm’s position, and BLUE dotted line: expected trajectory.
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Fig. 5.7 Satellite image (sourced from Google maps) for Trial 1 Case 2 trajectories estimated
by the ESEKF in the GPS-denied environment showing the starting point and end point in
the trial. Green: UAV1, UAV2, and UAV3 ESEKF’s trajectory estimates, RED: UAV1, UAV2,
and UAV3 VSLAM algorithm’s position, and BLUE dotted line: expected trajectory.
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Fig. 5.8 Satellite image (sourced from Google maps) for Trial 1 Case 3 trajectories estimated
by the ESEKF in the GPS-denied environment showing the starting point and end point in
the trial. Green: UAV1, UAV2, and UAV3 ESEKF’s trajectory estimates, RED: UAV1, UAV2,
and UAV3 VSLAM algorithm’s position, and BLUE dotted line: expected trajectory.
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(a) UAV1

(b) UAV2

(c) UAV3

Fig. 5.9 trajectories estimated by the ESEKF in the open field for Trial 1. Blue: GPS
trajectory estimate. Red: VSLAM algorithm’s trajectory estimate, and Green: ESEKF’s
position estimate. 120



(a) UAV1

(b) UAV2

(c) UAV3

Fig. 5.10 Error plot trajectories estimated by the ESEKF in the open field for Trial 1. Red:
VSLAM algorithm’s trajectory estimate, and Green: ESEKF’s position estimate.
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UAV Axis RMSE VSLAM
(m)

RMSE ESEKF
(m)

Longitudinal 24.88 18.01
1 Lateral 1.03 1.02

Height 2.96 1.28
Longitudinal 30.95 24.49

2 Lateral 5.44 1.96
Height 2.96 1.45

Longitudinal 12.45 13.19
3 Lateral 5.72 4.07

Height 1.46 1.00
Table 5.3 Open field environment: Trail 1 RMSE of the trajectories estimated by VSLAM
alone and the ESEKF per UAV

UAV Axis RMSE VSLAM
(m)

RMSE ESEKF
(m)

Longitudinal 27.49 17.18
1 Lateral 1.91 1.77

Height 3.96 1.70
Longitudinal 33.52 25.61

2 Lateral 6.24 2.85
Height 3.28 1.65

Longitudinal 15.52 16.12
3 Lateral 6.59 3.28

Height 1.15 0.91
Table 5.4 Open field environment: Trail 2 RMSE of the trajectories estimated by VSLAM
alone and the ESEKF per UAV.

5.4 Summary

This chapter has presented the implementation and outdoor testing of the proposed coopera-

tive ESEKF. The filter aims to reduce the positional drift of VSLAM’s position estimates

of every member of a swarm in real time. The cooperative ESEKF fuses the IMU measure-

ments (linear acceleration and angular velocity), the stereo camera’s position and rotation

estimates, and the relative localisation system’s position estimates in order to reduce the drift
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of the VSLAM’s position estimates. Two flying experiments of two repetitions each were

performed in different outdoor environments using three UAVs to determine the accuracy of

the cooperative ESEKF’s position estimates.

The first experiment was conducted in a GPS-denied environment where the three UAVs flew

in a forward direction while maintaining a linear formation. This experiment was used to

determine the accuracy of the cooperative ESEKF’s trajectory estimates as well as to tune the

noise covariance matrix for the GPS-denied environment using three cases. The results show

that the ESEKF reduces the error of the VSLAM position estimates by approximately 22%,

78% and 48% in the Longitudinal, Lateral and Height axes respectively. For the tuning of

the noise covariance matrix, the results show that trusting the relative localisation system’s

position estimates more in lateral axis and the VSLAM algorithm in the Longitudinal and

Height axes yield accurate trajectory estimates with oscillations.

The second experiment was performed in an open field environment where the three UAVs

flew in a forward direction while maintaining a linear formation. This experiment was used

to asses the RMSE of the entire estimated trajectories of the cooperative ESEKF in all axes.

The results for the experiment show that the cooperative ESEKF reduces the error of the

VSLAM algorithm’s trajectory estimates. However, for the UAV3 trajectory estimated by

the ESEKF in the Longitudinal axis has a greater error than VSLAM in the same axis. This

is because the trajectory estimates of UAV3 are affected by the error of UAV1 and UAV2 as

well as the linear formation followed by the UAVs.

The experimental results presented in this chapter have shown that the proposed coop-

erative ESEKF improves the accuracy of the VSLAM position estimates in visually rich

GPS-denied environments. The open field experiments have shown that the benefits of
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ESEKF are reduced in visually poor environments when the VSLAM is less effective for

position estimates. However, it is most likely that this visually poor environments would have

access to GPS. Using the system developed in this chapter, a swarm of UAVs could perform

cooperative SLAM without map sharing, loop closure or multi-session SLAM. This would

enable a decentralised swarm of UAVs with limited resources to navigate a GPS-denied

unstructured environment.

124



6. Conclusion

6.1 Thesis Summary and Research Contributions

The research presented in this thesis has developed methods and technologies that enable a

swarm of UAVs with limited resources to perform cooperative simultaneous localisation and

mapping (SLAM) efficiently in unstructured outdoor environments when GPS is unavailable.

This research was motivated by the difficulty of accurately mapping under tree canopies

using sensor technologies, but could be applied to many other GPS-occluded environments.

The objective of this research was to use a swarm of UAVs to cooperatively reduce the

drift of each UAV’s SLAM position estimate in order to map an unstructured outdoor area

faster, more accurately and more robustly than a single UAV could. Such a system has been

realised by addressing the following specific research objectives:

• Creating an accurate, computationally efficient and lightweight relative localisation sys-

tem that can be mounted on UAVs to estimate the position of its immediate neighbours

and share this position.

• Designing an Error Sate Extended Kalman Filter that fuses the visual SLAM’s position

estimates with the IMU measurements for each UAV and the shared relative localisation

system’s position estimates from other UAVs.
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• Creating a decentralised Error Sate Extended Kalman Filter that can cooperatively

reduce the drift in the position estimate of each UAV’s visual SLAM algorithm in the

swarm.

In Chapter 3, this research presented a novel, computationally efficient relative localisation

sensor based on a 180◦ FoV camera, a Mulle-UWB ranging sensor and an IMU placed on a

measuring UAV. A distinctive coloured marker and Mulle-UWB were placed on a second

target UAV whose position was to be estimated. The measuring UAV used the Camshift

algorithm for colour tracking algorithm to determine the position of the marker on an image.

To estimate the position of the UAV in 3D space the geometric pinhole camera model was

used. This model allows the triangulation of the position based on the ranging measurements

from the Mulle-UWB and the position of the marker on the image. When the line of sight

between UAVs is temporarily broken, a Kalman Filter was implemented in the Camshift

algorithm. This enabled to predict the position of the marker until the line of sight was

restored. In order to share the position estimates from the relative localisation system, these

were translated the world frame.

To determine the accuracy of the relative localisation system, two types of experiments

with 15 repetitions each were performed in an indoor environment while the ground truth

was measured by the motion capture system. The first experiment comprised of the mea-

suring UAV estimating the position of the target UAV without any occlusions. The second

experiment explores the case when an obstacle temporarily broke the visual line of sight

between UAVs. The results from these experiments show that the relative localisation sys-

tem estimates the trajectory even when the visual line of sight is temporarily broken. The

estimated trajectories of the relative localisation system have a greater error in Longitudinal

and Height axes than in the Lateral axis. Therefore, relative localisation system is a viable
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option when applied to a swarm of UAVs that fly in a linear formation. This is because the

estimation of the position in the Lateral axis is the important in order to avoid collisions

between members. However, this is only the case when the relative localisation frame and is

aligned with the NED frame.

In Chapter 4, an Error State Extended Kalman Filter (ESEKF) was developed in order

to reduce the drift of the VSLAM’s position estimates. This was achieved by fusing the

IMU’s linear acceleration and angular velocity measurements with the VSLAM position

an rotation estimates and the shared relative position estimate from a neighbouring UAV.

The filter predicted the position of the UAV based on the IMU measurements and corrected

this prediction every time the VSLAM algorithm computed a position estimation or when a

relative position was shared with the UAV.

To assess whether the position yielded by the ESKEF reduced the drift of the VSLAM

algorithm and to determine whether it could be implemented in a swarm of UAVs, a set of

indoor tests with 15 repetitions was performed. The RMSE between the VSLAM and the

ground truth measured trajectories from the motion capture system was calculated, as well

as the RMSE between the ESKEF estimated trajectories and the ground truth. The tests

used two UAVs, where UAV1 remained stationary and oriented with the world frame while

measuring the position of UAV2. UAV2 determined its position within the environment via

the VSLAM algorithm. Comparing the errors in position estimates given by each of these

systems, it was shown that using the ESKEF trajectory estimates resulted in a reduction in

drift compared VSLAM estimated trajectories by Longitudinal = 24%, Lateral = 75%, and

Height = 11%. These results show that with the help of a neighbouring UAV1 and its relative

localisation system, the implemented ESEKF reduces the drift of the VSLAM algorithm

from UAV2 in all axes, without the necessity of sharing a map of the environment.
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In Chapter 5, a novel approach to cooperative SLAM for a swarm of UAVs was devel-

oped. the system did not require sharing parts of the maps produced by each UAV to improve

the position estimation of single VSLAM by an individual UAV. To achieve this, for each

UAV the ESEKF and relative localisation system were used to determine the position of a

neighbouring UAV. This position estimate was then shared with the neighbour, to be used as

an input into the neighbour’s ESEKF. This resulted in an approach that reduced the drift in

the single VSLAM position estimates of every UAV compared with VSLAM alone. This

approach also made the swarm scalable, because the number of UAVs could be increased

without increasing the computational complexity of the individual ESKEF in each UAV.

The experimental results show that, in a setting where the UAVs only move forward, the

position estimate from the VSLAM alone will drift and, without correction, this may cause

collisions within the swarm or with trees and other obstacles. Therefore, correction using the

distributed ESEKF is an effective method for a UAV navigation system to reduce position

estimate error. For the trials conducted in this research, the average reduction in error was

approximately Longitudinal = 39%, Lateral = 74%, Height = 48%. These results show that

in a GPS-denied environment the standalone VSLAM algorithm will drift without loop

closure even if the area to be mapped is rich in features. Therefore, without this distributed

swarm system the UAVs might collide with obstacles such as trees or other members of the

swarm. The approach implemented corrected the position estimation in all UAVs when GPS

was occluded without map sharing. Drift in position estimation was reduced even when the

VSLAM had reduced effectiveness due to the lack of features, although this benefit was

reduced. This system is also scalable as the increase in of UAVs into the system will not

impact the formulation of the individual filters.
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In summary, the main research contributions of this thesis are:

1. A novel distributed approach for cooperative SLAM to be implemented in a swarm

of UAVs; this approach improves the estimation of the single SLAM output of every

member of the SRS and allows the system to be scalable.

2. The design of an ESEKF that fuses the position output from a stereo camera, an IMU

and the shared relative position.

3. The development and implementation of an relative localisation system that is compu-

tationally lightweight and robust to the temporary loss of the line of sight with other

members of the swarm.

6.2 Limitations and Future Research

During the experimentation of the proposed cooperative ESEKF for a swarm of UAVs, it

was noted that the accuracy of the position estimates is affected by three main factors: the

alignment of the world frame, the trajectory followed by the UAVs, and the environment

that the swarm of UAVs is exploring. In the proposed system, a UAVs’ longitudinal and

lateral navigational trajectories have to be aligned with the North and the East axes. This is

to allow the use of the diagonal form of the covariance matrix for the relative localisation

system’s position estimates in the ESEKF formulation. Moreover if the longitudinal and

lateral navigational trajectories of the UAVs change during flight, the covariance matrix for

the relative localisation system’s position estimates has to be re-estimated when the change

occurs. This will also make the use of diagonal form of the covariance matrix invalid in the

ESEKF formulation. Therefore it is necessary to orient the swarm system’s trajectory to the

NED frame to use the current model.
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Also, during experimentation, it was noticed that the sunlight affected the cameras used for

the relative localisation system when they were facing towards the sun. This caused the

images to become overexposed, which meant that the relative localisation system lost track of

the UAVs. One possible solution is to use an algorithm to adjust the exposure of the camera

to adapt to environmental conditions. In general, the relative localisation system and the

stereo cameras used for VSLAM are affected by the environmental light. Therefore, when

performing experiments, one has to be mindful that these systems may lose accuracy in such

conditions.

The accuracy of the VSLAM algorithm’s trajectory estimates is affected by the visual

features available in the environment. This means that the measurement noise covariance

matrix has to be tuned accordingly to reflect the accuracy of the VSLAM algorithm in

different environments. Moreover because the error is propagated between the UAVs, the

accuracy of the cooperative ESEKF’s trajectory estimates are affected by the accuracy of the

VSLAM algorithm. To guarantee accurate trajectory estimates, the UAVs have to be placed

in an environment rich in visual features.

This PhD research has built a framework for improving the position estimation of VSLAM by

using cooperative ESEKF in swarm of UAVs. The tests performed show that the cooperative

system can reduce the drift in the individual VSLAM position estimations. However, drift

could potentially be reduced even further if the number of members was increased or the

formation adopted by the swarm. To explore this more fully, the next stage in this research

is to implement the cooperative ESEKF in a larger number of UAVs in order to create an

autonomous swarms of varying sizes and configurations to test this hypothesis.

130



References

[1] ABBAS, R., AND QINGHE, W. Formation tracking for multiple quadrotor based
on sliding mode and fixed communication topology. In Intelligent Human-Machine
Systems and Cybernetics (IHMSC), (2013) 5th International Conference on, vol. 2,
pp. 233–238.

[2] ACHTELIK, M., BACHRACH, A., HE, R., PRENTICE, S., AND ROY, N. Stereo vision
and laser odometry for autonomous helicopters in GPS-denied indoor environments.
(2002). vol. 7332, p. 733219.

[3] ADAMS, M. SLAM — algorithmic advances, loop closing, measurement classification
and outdoor implementations. Robotics and Autonomous Systems 55, 1 (2007), 1–2.

[4] AHMAD, A., AND LIMA, P. Multi-robot cooperative spherical-object tracking in
3D space based on particle filters. Robotics and Autonomous Systems 61, 10 (2013),
1084–1093.

[5] AHMADI, M., KHAYATIAN, A., AND KARIMAGHAEE, P. Orientation estimation by
error-state extended kalman filter in quaternion vector space. In SICE, (2007) Annual
Conference, IEEE, pp. 60–67.

[6] AILIPU TECHNOLOGY COLTD. ELP. http://www.webcamerausb.com/
180degree-fisheye-lens-1080p-wide-angle-pc-web-usb-camerausb-camera-module
-for-android-windows-p-85.html. Accessed: 22-11-2018.

[7] ALLEN, J. G., XU, R. Y., AND JIN, J. S. Object tracking using camshift algorithm and
multiple quantized feature spaces. In Proceedings of the Pan-Sydney area workshop
on Visual information processing (2004), Australian Computer Society, Inc., pp. 3–7.

[8] ALMURIB, H. A. F., NATHAN, P. T., AND KUMAR, T. N. Control and path planning
of quadrotor aerial vehicles for search and rescue. In SICE Annual Conference (SICE),
Proceedings of (2011), pp. 700–705.

[9] ANDERSONE, I. The characteristics of the map merging methods: A survey. Scientific
Journal of Riga Technical University 43 (2010), 113–121.

[10] ASCORTI, L. An application of the extended kalman filter to the attitude control of a
quadrotor. (2013).

[11] ASMAR, D. C., ZELEK, J. S., AND ABDALLAH, S. M. Tree trunks as landmarks
for outdoor vision SLAM. In Computer Vision and Pattern Recognition Workshop,
(2006). CVPRW-2006. Conference on, pp. 196–196.

131

http://www.webcamerausb.com/180degree-fisheye-lens-1080p-wide-angle-pc-web-usb-camerausb-camera-module
http://www.webcamerausb.com/180degree-fisheye-lens-1080p-wide-angle-pc-web-usb-camerausb-camera-module
 -for-android-windows-p-85.html


[12] BAILEY, T., AND DURRANT-WHYTE, H. Simultaneous localization and mapping
(SLAM): part ii. Robotics Automation Magazine, IEEE 13, 3 (2006), 108–117.

[13] BAROOAH, P., RUSSELL, W. J., AND HESPANHA, J. P. Approximate Distributed
Kalman Filtering for Cooperative Multi-agent Localization. (2010), pp. 102–115.

[14] BEN-ARI, M., AND MONDADA, F. Elements of Robotics. Springer, (2018).

[15] BINAZZI, G., CHISCI, L., CHITI, F., FANTACCI, R., AND MENCI, S. Localization
of a swarm of mobile agents via unscented kalman filtering. In IEEE ICC (2009)
proceedings.

[16] BONIN-FONT, F., BELTRAN, J.-P., AND OLIVER, G. Multisensor aided inertial
navigation in 6DOF AUVs using a multiplicative error state kalman filter. In OCEANS-
Bergen, (2013) MTS/IEEE, IEEE, pp. 1–7.

[17] CADENA, C., AND NEIRA, J. SLAM in with the combined kalman-information filter.
Robotics and Autonomous Systems 58, 11 (2010), 1207–1219.

[18] CARLONE, L., KAOUK NG, M., DU, J., BONA, B., AND INDRI, M. Simultaneous
localization and mapping using rao-blackwellized particle filters in multi robot systems.
Journal of Intelligent Robotic Systems 63, 2 (2011), 283–307.

[19] CARLONE, L., MACCHIA, V., TIBALDI, F., AND BONA, B. Quaternion-based
EKF-SLAM from relative pose measurements: observability analysis and applications.
Robotica 33, 06 (2015), 1250–1280.

[20] CARLONE, L., NG, M. K., JINGJING, D., BONA, B., AND INDRI, M. Rao-
Blackwellized particle filters multi robot SLAM with unknown initial correspondences
and limited communication. In Robotics and Automation (ICRA), IEEE International
Conference on (2010), pp. 243–249.

[21] CHAI, T., AND DRAXLER, R. R. Root mean square error (rmse) or mean absolute
error (mae)?–arguments against avoiding rmse in the literature. Geoscientific model
development 7, 3 (2014), 1247–1250.

[22] CHAMBERS, A., SCHERER, S., YODER, L., JAIN, S., NUSKE, S., AND SINGH, S.
Robust multi-sensor fusion for micro aerial vehicle navigation in GPS-degraded/denied
environments. In American Control Conference (ACC), (2014), IEEE, pp. 1892–1899.

[23] CHOUDHARY, S., CARLONE, L., NIETO, C., ROGERS, J., CHRISTENSEN, H. I.,
AND DELLAERT, F. Distributed mapping with privacy and communication con-
straints: Lightweight algorithms and object-based models. The International Journal
of Robotics Research 36, 12 (2017), 1286–1311.

[24] CHROBOTICS. UM7 DATASHEET, (2014). Rev. 1.3.

[25] CIHAN, U., AND HAKAN, T. 3D multi-layered normal distribution transform for fast
and long range scan matching. Springer Science+Business Media B.V. (2012).

[26] CONGDAO, H., ZHIYU, X., JILIN, L., AND ERYONG, W. Stereo vision based slam
in outdoor environments. In Robotics and Biomimetics, (2007). ROBIO 2007. IEEE
International Conference on, pp. 1653–1658.

132



[27] CORNEJO, A., AND NAGPAL, R. Long-lived distributed relative localization of robot
swarms. cs.RO (2013).

[28] COUCEIRO, M. S., ROCHA, R. P., FERREIRA, N. M. F., AND VARGAS, P. A. Dar-
winian robotic swarms for exploration with minimal communication. In Evolutionary
Computation (CEC), IEEE Congress on (2013), pp. 127–134.

[29] CRASSIDIS, J. L. Sigma-point kalman filtering for integrated gps and inertial naviga-
tion. IEEE Transactions on Aerospace and Electronic Systems 42, 2 (2006), 750–756.

[30] DAS, A. K., FIERRO, R., KUMAR, V., OSTROWSKI, J. P., SPLETZER, J., AND
TAYLOR, C. J. A vision-based formation control framework. Robotics and Automation,
IEEE Transactions on 18, 5 (2002), 813–825.

[31] DAVISON, A. J., AND KITA, N. Active visual localisation for cooperating inspection
robots. In Intelligent Robots and Systems.(IROS 2000). Proceedings. IEEE/RSJ
International Conference on (2000), vol. 3, IEEE, pp. 1709–1715.

[32] DECAWAVE. Ultra Wideband (UWB) Transceiver, (2015). Rev. 2.07.

[33] DEL BIMBO, A., AND DINI, F. Particle filter-based visual tracking with a first order
dynamic model and uncertainty adaptation. Computer Vision and Image Understand-
ing 115, 6 (2011), 771–786.

[34] DUGAS, O., GIGUERE, P., AND REKLEITIS, I. 6DoF cooperative localization for
mutually observing robots.(2013).

[35] DURRANT-WHYTE, H., AND BAILEY, T. Simultaneous localization and mapping:
part i. Robotics Automation Magazine, IEEE 13, 2 (2006), 99–110.

[36] DURRANT-WHYTE, H., AND HENDERSON, T. C. Multisensor data fusion. Springer,
(2008), pp. 585–610.

[37] EISTEC AB. Mulle wireless sensor platform. http://www.eistec.se/mulle/. Accessed:
22-11-2018.

[38] ENGEL, J., SCHÖPS, T., AND CREMERS, D. LSD-SLAM: Large-Scale Direct Monoc-
ular SLAM, vol. 8690 of Lecture Notes in Computer Science. Springer International
Publishing, (2014), book section 54, pp. 834–849.

[39] ERYONG, W., WENHUI, Z., GUOJUN, D., AND QICONG, W. Monocular vision
SLAM for large scale outdoor environment. In Mechatronics and Automation. ICMA
(2009). International Conference on, pp. 2037–2041.

[40] FORSMAN, P., AND HALME, A. 3D mapping of natural environments with trees by
means of mobile perception. Robotics, IEEE Transactions on 21, 3 (2005), 482–490.

[41] FORSTER, C., CARLONE, L., DELLAERT, F., AND SCARAMUZZA, D. IMU prein-
tegration on manifold for efficient visual-inertial maximum-a-posteriori estimation.
Georgia Institute of Technology. (2015).

133

http://www.eistec.se/mulle/


[42] FORSTER, C., LYNEN, S., KNEIP, L., AND SCARAMUZZA, D. Collaborative
monocular SLAM with multiple micro aerial vehicles. In Intelligent Robots and
Systems (IROS), IEEE/RSJ International Conference on (2013), pp. 3962–3970.

[43] FORSTER, C., PIZZOLI, M., AND SCARAMUZZA, D. SVO: Fast semi-direct monoc-
ular visual odometry. In Robotics and Automation (ICRA), IEEE International Con-
ference on (2014), pp. 15–22.

[44] FORSYTH, D. A., AND PONCE, J. Computer vision: A modern approach. Computer
vision: A modern approach (2003), 88–101.

[45] FRANCHI, A., ORIOLO, G., AND STEGAGNO, P. Mutual localization in multi-
robot systems using anonymous relative measurements. The International Journal of
Robotics Research (2013).

[46] FRAUNDORFER, F., ENGELS, C., AND NISTER, D. Topological mapping, localiza-
tion and navigation using image collections. In Intelligent Robots and Systems. IROS
(2007). IEEE/RSJ International Conference on, pp. 3872–3877.

[47] GAMAGE, R., AND TUCERYAN, M. An experimental distributed framework for
distributed simultaneous localization and mapping. (2016).

[48] GAYATHRI, T., ANEESH, R., AND NAYAR, G. R. Feature based simultaneous locali-
sation and mapping. In Circuits and Systems (ICCS), IEEE International Conference
on (2017), IEEE, pp. 419–422.

[49] GENTNER, C., AND ULMSCHNEIDER, M. Simultaneous localization and mapping
for pedestrians using low-cost ultra-wideband system and gyroscope. In Indoor
Positioning and Indoor Navigation (IPIN), (2017) International Conference on, IEEE,
pp. 1–8.

[50] GIL, A., REINOSO, S., BALLESTA, M., AND JULIÁ, M. Multi-robot visual SLAM
using a rao-blackwellized particle filter. Robotics and Autonomous Systems 58, 1
(2010), 68–80.

[51] GUERRA, E., MUNGUIA, R., AND GRAU, A. Monocular SLAM for autonomous
robots with enhanced features initialization. Sensors (Basel, Switzerland) 14, 4 (2014),
6317–6337.

[52] GUIVANT, J. E., MASSON, F. R., AND NEBOT, E. M. Simultaneous localization
and map building using natural features and absolute information. Robotics and
Autonomous Systems 40, 2–3 (2002), 79–90.

[53] GUNEY, M. A., AND UNEL, M. Formation control of a group of micro aerial vehicles
(MAVs). In Systems, Man, and Cybernetics (SMC), IEEE International Conference
on (2013), pp. 929–934.

[54] GUTIÉRREZ, L., CAMPO, A., DORIGO, M., AMOR, D., MAGDALENA, L., AND
FÉLIX, M.-H. An open localization and local communication embodied sensor.
Sensors (Basel, Switzerland) 8, 11 (2008), 7545–7563.

[55] HARDKERNEL. ODROID-XU4, (2017). Rev. 2170310.

134



[56] IACONO, M., AND SGORBISSA, A. Path following and obstacle avoidance for an
autonomous UAV using a depth camera. Robotics and Autonomous Systems 106
(2018), 38–46.

[57] JENNINGS, C., MURRAY, D., AND LITTLE, J. J. Cooperative robot localization with
vision-based mapping. In Robotics and Automation, (1999). Proceedings. 1999 IEEE
International Conference on, vol. 4, IEEE, pp. 2659–2665.

[58] JEONG, J., YOON, T. S., AND PARK, J. B. Multimodal sensor-based semantic 3D
mapping for a large-scale environment. Expert Systems with Applications 105 (2018),
1–10.

[59] JIE, Z., XIANGGUO, S., AND JIHONG, Y. A novel strategy for distributed multi-
robot coordination in area exploration. In Measuring Technology and Mechatronics
Automation, (2009). ICMTMA ’09. International Conference on, vol. 2, pp. 24–27.

[60] KAMALI, C., AND JAIN, S. Multiplicative error state kalman filter vs nonlinear
complimentary filter for a high performance aircraft attitude estimation. Defence
Science Journal 66, 6 (2016).

[61] KANELLAKIS, C., AND NIKOLAKOPOULOS, G. Survey on computer vision for uavs:
Current developments and trends. Journal of Intelligent Robotic Systems. 87, 1 (2017),
141–168.

[62] KARLSSON, N., GONCALVES, L., MUNICH, M., AND PIRJANIAN, P. The VSLAM
algorithm for navigation in natural environments. Korean Robotics Society, 2 (2005),
51–67.

[63] KIRCHMAIER, U., HAWE, S., AND DIEPOLD, K. Dynamical information fusion of
heterogeneous sensors for 3D tracking using particle swarm optimization. Information
Fusion 12, 4 (2011), 275–283.

[64] KNUTH, J., AND BAROOAH, P. Distributed collaborative 3D pose estimation of robots
from heterogeneous relative measurements: an optimization on manifold approach.
(2014).

[65] KWON, H., AHMAD YOUSEF, K. M., AND KAK, A. C. Building 3D visual maps
of interior space with a new hierarchical sensor fusion architecture. Robotics and
Autonomous Systems 61, 8 (2013), 749–767.

[66] LE, C., AND LI, X. Sparse3D: A new global model for matching sparse RGB-D
dataset with small inter-frame overlap. Computer-Aided Design 102 (2018), 33–43.

[67] LEE, Y.-H., ZHU, C., GIORGI, G., AND GÜNTHER, C. Fusion of monocular vision
and radio-based ranging for global scale estimation and drift mitigation. arXiv preprint
arXiv:1810.01346 (2018).

[68] LEMAIRE, T., BERGER, C., JUNG, I.-K., AND LACROIX, S. Vision-Based SLAM:
Stereo and monocular approaches. International Journal of Computer Vision 74, 3
(2007), 343–364.

135



[69] LEÓN, A., BAREA, R., BERGASA, L., LÓPEZ, E., OCAÑA, M., AND SCHLEICHER,
D. Multi-robot SLAM and map merging. (2008). In IX Workshop of Physical Agents
(WAF 08), pp. 171–176.

[70] LEUNG, K. Y., BARFOOT, T. D., AND LIU, H. H. Decentralized cooperative slam for
sparsely-communicating robot networks: A centralized-equivalent approach. Journal
of Intelligent Robotic Systems 66, 3 (2012), 321–342.

[71] LEWIS, F. L., ZHANG, H., HENGSTER-MOVRIC, K., AND DAS, A. Cooperative
control of multi-agent systems: optimal and adaptive design approaches. Springer
Science Business Media, (2013).

[72] LEWIS, M. A., AND TAN, K.-H. High precision formation control of mobile robots
using virtual structures. Autonomous Robots 4, 4 (Oct 1997), 387–403.

[73] LI, J., WEI, X., AND ZHANG, G. An extended kalman filter-based attitude tracking
algorithm for star sensors. Sensors 17, 8 (2017), 1921.

[74] LI, M., AND MOURIKIS, A. I. Improving the accuracy of EKF-based visual-inertial
odometry. (2006). In ICRA, Citeseer, pp. 828–835.

[75] LIGORIO, G., AND SABATINI, A. M. Extended kalman filter-based methods for
pose estimation using visual, inertial and magnetic sensors: Comparative analysis and
performance evaluation. Sensors 13, 2 (2013), 1919–1941.

[76] LIU, C. B., CHEN, C. C., AND LI, X. Object tracking system in dynamic scene based
on improved camshift algorithm and kalman filter. (2014). In Applied Mechanics and
Materials, vol. 602, Trans Tech Publ, pp. 2061–2064.

[77] LUFT, L., SCHUBERT, T., ROUMELIOTIS, S. I., AND BURGARD, W. Recursive
decentralized localization for multi-robot systems with asynchronous pairwise commu-
nication. The International Journal of Robotics Research (2018), 0278364918760698.

[78] M., I., REKLEITIS, G., DUDEK, E., AND MILIOS, E. On the positional uncertainty
of multi-robot cooperative localization. In (2002) NRL Workshop on Multi-Robot
Systems: From Swarms to Intelligent Automata, L. E. P. Alan C. Schultz, Ed., Springer
Netherlands.

[79] MACHADO SANTOS, J., COUCEIRO, M., PORTUGAL, D., AND ROCHA, R. A
sensor fusion layer to cope with reduced visibility in SLAM. Journal of Intelligent
and Robotic Systems (JINT), Special Issue on Autonomous Robot Systems, Springer,
London (2015).

[80] MADHAVAN, R., FREGENE, K., AND PARKER, L. E. Distributed cooperative outdoor
multirobot localization and mapping. Autonomous Robots 17, 1 (2004), 23–39.

[81] MAE, Y., CHOI, J., TAKAHASHI, H., OHARA, K., TAKUBO, T., AND ARAI, T.
Interoperable vision component for object detection and 3D pose estimation for
modularized robot control. Mechatronics 21, 6 (2011), 983–992.

[82] MARKLEY, F. L., CHENG, Y., CRASSIDIS, J. L., AND OSHMAN, Y. Quaternion
averaging. (2007).

136



[83] MASAR, M. A biologically inspired swarm robot coordination algorithm for ex-
ploration and surveilance. In Intelligent Engineering Systems (INES), IEEE 17th
International Conference on (2013), pp. 271–275.

[84] MAYBECK, P. S., AND SIOURIS, G. M. Stochastic models, estimation, and control,
volume i. IEEE Transactions on Systems, Man, and Cybernetics 10, 5 (1980), 282–282.

[85] MCDONALD, J., KAESS, M., CADENA, C., NEIRA, J., AND LEONARD, J. J. Real-
time 6-DOF multi-session visual SLAM over large-scale environments. Robotics and
Autonomous Systems 61, 10 (2013), 1144–1158.

[86] MENG, Z., LIN, Z., AND REN, W. Leader–follower swarm tracking for networked
lagrange systems. Systems & Control Letters 61, 1 (2012), 117–126.

[87] MITCHELL, H. B. Multi-sensor data fusion: an introduction. Springer Science
Business Media, (2007).

[88] MLADENOVIC, D., JOVANOVIC, D., AND DENIC, N. Open source solutions in the
development of military unmanned aerial systems. Scientific Technical Review 63, 1
(2013), 36–46.

[89] MOURIKIS, A. I., AND ROUMELIOTIS, S. I. On the treatment of relative-pose
measurements for mobile robot localization. In Robotics and Automation, ICRA 2006.
Proceedings (2006) IEEE International Conference on, IEEE, pp. 2277–2284.

[90] MULLANE, J. S., VO, B.-N., ADAMS, M. D., AND VO, B.-T. Random Finite Sets for
Robot Mapping SLAM: New Concepts in Autonomous Robotic Map Representations,
vol. 72. Springer Science Business Media, (2011).

[91] NALPANTIDIS, L., SIRAKOULIS, G. C., CARBONE, A., AND GASTERATOS, A.
Computationally effective stereovision SLAM. In Imaging Systems and Techniques
(IST), IEEE International Conference on (2010), pp. 458–463.

[92] NVIDIA. JETSON TX1 DEVELOPER KIT, (2016). 24.1 Release.

[93] OPENCV TEAM. Open Source Computer Vision Library. https://opencv.org/. Ac-
cessed: 22-11-2018.

[94] OPTITRACK. FLEX 13, (2017). 402.1207.

[95] OZKUCUR, N. E., KURT, B., AND AKIN, H. L. A Collaborative Multi-robot
Localization Method without Robot Identification. Springer Berlin Heidelberg, (2009),
pp. 189–199.

[96] PARKER, L. E., KANNAN, B., XIAOQUAN, F., AND YIFAN, T. Heterogeneous
mobile sensor net deployment using robot herding and line-of-sight formations. In
Intelligent Robots and Systems. (IROS 2003). Proceedings. IEEE/RSJ International
Conference on (2013), vol. 3, pp. 2488–2493 vol.3.

[97] PARKER, L. E., SCHNEIDER, F. E., AND SCHULTZ, A. C. Multi-robot systems.
From swarms to intelligent automata, vol. 111. Springer, (2005).

137

https://opencv.org/


[98] PAULL, L., SETO, M., LEONARD, J. J., AND LI, H. Probabilistic cooperative
mobile robot area coverage and its application to autonomous seabed mapping. The
International Journal of Robotics Research 37, 1 (2018), 21–45.

[99] PILZ, U., POPOV, A. P., AND WERNER, H. Robust controller design for formation
flight of quad-rotor helicopters. In Decision and Control, 2009 held jointly with the
28th Chinese Control Conference. CDC/CCC (2009). Proceedings of the 48th IEEE
Conference on, pp. 8322–8327.

[100] PINTO, L. R. Aerial Multi-hop Sensor Networks. PhD Thesis, Carnegie Mellon
University, (2018).

[101] PIZARRO, D., MAZO, M., SANTISO, E., MARRON, M., JIMENEZ, D., COBRECES,
S., AND LOSADA, C. Localization of mobile robots using odometry and an external
vision sensor. Sensors (Basel, Switzerland) 10, 4 (2010), 3655–3680.

[102] POST, T. Precise localization of a UAV using visual odometry. PhD thesis, University
of Twente, (2015).

[103] PRADEEP, V., MEDIONI, G., AND WEILAND, J. Visual loop closing using multi-
resolution SIFT grids in metric-topological SLAM. In Computer Vision and Pattern
Recognition, (2009). CVPR 2009. IEEE Conference on, pp. 1438–1445.

[104] PUGH, J., RAEMY, X., FAVRE, C., FALCONI, R., AND MARTINOLI, A. A fast on-
board relative positioning module for multirobot systems. Mechatronics, IEEE/ASME
Transactions on 14, 2 (2009), 151–162.

[105] PX4 DEV TEAM. PixhawkSeries. https://docs.px4.io/en/flight_controller/pixhawk_
series.html. Accessed: 22-11-2018.

[106] RAMIREZ, B., CHUNG, H., DERHAMY, H., ELIASSON, J., AND BARCA, J. C.
Relative localization with computer vision and UWB range for flying robot formation
control. In Control, Automation, Robotics and Vision (ICARCV), 14th International
Conference on (2016), IEEE, pp. 1–6.

[107] RAMOS, F. T., NIETO, J., AND DURRANT-WHYTE, H. F. Recognising and modelling
landmarks to close loops in outdoor SLAM. In Robotics and Automation, (2007) IEEE
International Conference on, pp. 2036–2041.

[108] RASHID, A. T., FRASCA, M., ALI, A. A., RIZZO, A., AND FORTUNA, L. Multi-
robot localization and orientation estimation using robotic cluster matching algorithm.
Robotics and Autonomous Systems 63, Part 1, 0 (2015), 108–121.

[109] RIBAS, D., RIDAO, P., AND NEIRA, J. Underwater SLAM for structured environments
using an imaging sonar, vol. 65. Springer, (2010).

[110] ROUMELIOTIS, S., AND BEKEY, G. A. Distributed multirobot localization. Transac-
tions on Robotics and Automation (2002), 781 – 795.

[111] ROUMELIOTIS, S. I., AND BEKEY, G. A. Collective localization: a distributed
kalman filter approach to localization of groups of mobile robots. In Robotics and
Automation, (2000). Proceedings. ICRA ’00. IEEE International Conference on, vol. 3,
pp. 2958–2965 vol.3.

138

https://docs.px4.io/en/flight_controller/pixhawk_series.html
https://docs.px4.io/en/flight_controller/pixhawk_series.html


[112] SANTAMARIA-NAVARRO, A., LOIANNO, G., SOLÀ, J., KUMAR, V., AND
ANDRADE-CETTO, J. Autonomous navigation of micro aerial vehicles using high-rate
and low-cost sensors. Autonomous Robots (2017), 1–18.

[113] SARKAR, A., SRIVASTAVA, S., AND MANOJ, B. S. Elevation mapping using stereo
vision enabled heterogenous multi-agent robotic network. In Global Humanitarian
Technology Conference: South Asia Satellite (GHTC-SAS), IEEE (2013), pp. 340–345.

[114] SCARAMUZZA, D., ACHTELIK, M. C., DOITSIDIS, L., FRIEDRICH, F.,
KOSMATOPOULOS, E., MARTINELLI, A., ACHTELIK, M. W., CHLI, M.,
CHATZICHRISTOFIS, S., KNEIP, L., GURDAN, D., HENG, L., GIM HEE, L., LYNEN,
S., POLLEFEYS, M., RENZAGLIA, A., SIEGWART, R., STUMPF, J. C., TANSKA-
NEN, P., TROIANI, C., WEISS, S., AND MEIER, L. Vision-Controlled micro flying
robots: From system design to autonomous navigation and mapping in GPS-Denied
environments. Robotics Automation Magazine, IEEE 21, 3 (2014), 26–40.

[115] SEN, Z., LIHUA, X., AND ADAMS, M. Gradient model based feature extraction for
simultaneous localization and mapping in outdoor applications. In Control, Automa-
tion, Robotics and Vision Conference, (2004). ICARCV (2004) 8th, vol. 1, pp. 431–436
Vol. 1.

[116] SÁEZ, J. M., AND ESCOLANO, F. 6DOF entropy minimization SLAM for stereo-
based wearable devices. Computer Vision and Image Understanding 115, 2 (2011),
270–285.

[117] SHEIJANI, M. S., GHOLAMI, A., DAVARI, N., AND EMAMI, M. Implementation and
performance comparison of indirect Kalman filtering approaches for AUV integrated
navigation system using low cost IMU. In 21st Iranian Conference on Electrical
Engineering (ICEE), (2013), pp. 1–6.

[118] SIAGIAN, C., AND ITTI, L. Biologically-inspired robotics vision monte-carlo local-
ization in the outdoor environment. In Intelligent Robots and Systems,( 2007). IROS
2007. IEEE/RSJ International Conference on, pp. 1723–1730.

[119] SICILIANO, B., AND KHATIB, O. Springer handbook of robotics. Springer, 2016.

[120] SIRTKAYA, S., SEYMEN, B., AND ALATAN, A. A. Loosely coupled kalman filtering
for fusion of visual odometry and inertial navigation. In Information Fusion (FUSION),
16th International Conference on (2013), IEEE, pp. 219–226.

[121] SOLA, J. Quaternion kinematics for the error-state kalman filter. arXiv preprint
arXiv:1711.02508 (2017).

[122] SOLANAS, A., AND GARCIA, M. A. Coordinated multi-robot exploration through
unsupervised clustering of unknown space. In International Conference on Intelligent
Robots and Systems. (2004)., vol. 1, IEEE, pp. 717 – 721.

[123] SONG, Y., NUSKE, S., AND SCHERER, S. A multi-sensor fusion mav state estimation
from long-range stereo, IMU, GPS and barometric sensors. Sensors 17, 1 (2016), 11.

[124] SPERATI, V., TRIANNI, V., AND NOLFI, S. Self-organised path formation in a swarm
of robots. Swarm Intelligence 5, 2 (2011), 97–119.

139



[125] STEGAGNO, P., COGNETTI, M., ROSA, L., PELITI, P., AND ORIOLO, G. Relative
localization and identification in a heterogeneous multi-robot system. In Robotics and
Automation (ICRA), IEEE International Conference on (2013), IEEE, pp. 1857–1864.

[126] STEREOLABS INC. Stereo labs. https://www.stereolabs.com/docs/getting-started/.
Accessed: 22-11-2018.

[127] SWIFT NAVIGATION. PIKSI MULTI, (2017). Version 1.0.7.

[128] TESSIER, C., DEBAIN, C., CHAPUIS, R., AND CHAUSSE, F. Map aided localization
and vehicle guidance using an active landmark search. Information Fusion 11, 3
(2010), 283–296.

[129] TODA, Y., AND KUBOTA, N. Self-localization based on multiresolution map for
remote control of multiple mobile robots. Industrial Informatics, IEEE Transactions
on 9, 3 (2013), 1772–1781.

[130] TOMATIS, N., NOURBAKHSH, I., AND SIEGWART, R. Hybrid simultaneous localiza-
tion and map building: a natural integration of topological and metric. Robotics and
Autonomous Systems 44, 1 (2003), 3–14.

[131] TRAWNY, N., AND ROUMELIOTIS, S. I. Indirect kalman filter for 3D attitude
estimation. University of Minnesota, Dept. of Comp. Sci. Eng., Tech. Rep 2 (2005),
2–5.

[132] UMAMAGESWARI, A., IGNATIOUS, J. J., AND VINODHA, R. A comparitive study
of kalman filter, extended kalman filter and unscented kalman filter for harmonic
analysis of the non-stationary signals. International Journal of Scientific Engineering
Research 3, 7 (2012), 1–9.

[133] VÁSÁRHELYI, G., VIRÁGH, C., SOMORJAI, G., TARCAI, N., SZÖRÉNYI, T., NE-
PUSZ, T., AND VICSEK, T. Outdoor flocking and formation flight with autonomous
aerial robots. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Interna-
tional Conference on (2014), IEEE, pp. 3866–3873.

[134] WALCOTT-BRYANT, A., KAESS, M., JOHANNSSON, H., AND LEONARD, J. J.
Dynamic pose graph SLAM: Long-term mapping in low dynamic environments. In
Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on (2012),
pp. 1871–1878.

[135] WANASINGHE, T., I. MANN, G., AND GOSINE, R. Relative localization approach
for combined aerial and ground robotic system. Journal of Intelligent Robotic Systems
77, 1 (2015), 113–133.

[136] WEI, T., HAOMIN, L., ZILONG, D., GUOFENG, Z., AND HUJUN, B. Robust monoc-
ular SLAM in dynamic environments. In Mixed and Augmented Reality (ISMAR),
IEEE International Symposium on (2013), pp. 209–218.

[137] WEISS, S., ACHTELIK, M. W., CHLI, M., AND SIEGWART, R. Versatile distributed
pose estimation and sensor self-calibration for an autonomous MAV. In Robotics and
Automation (ICRA), IEEE International Conference on (2012), pp. 31–38.

140

https://www.stereolabs.com/docs/getting-started/


[138] WEISS, S. M. Vision based navigation for micro helicopters. PhD Thesis, ETH
Zurich, (2012).

[139] WENDEL, A., IRSCHARA, A., AND BISCHOF, H. Natural landmark-based monocular
localization for MAVs. In Robotics and Automation (ICRA), IEEE International
Conference on (2011), pp. 5792–5799.

[140] WU, E.-Y., LI, G.-Y., XIANG, Z.-Y., AND LIU, J.-L. Stereo vision based SLAM
using rao-blackwellised particle filter. Journal of Zhejiang University SCIENCE A 9,
4 (2008), 500–509.

[141] YANMAZ, E., YAHYANEJAD, S., RINNER, B., HELLWAGNER, H., AND BETTSTET-
TER, C. Drone networks: Communications, coordination, and sensing. Ad Hoc
Networks 68 (2018), 1–15.

[142] YOUNG-CHEOL, C., AND HYO-SUNG, A. Formation control of quad-rotors in three
dimension based on euclidean distance dynamics matrix. In Control, Automation and
Systems (ICCAS), 11th International Conference on (2011), pp. 1168–1173.

[143] YUFENG, L., AND THRUN, S. Results for outdoor-SLAM using sparse extended
information filters. In Robotics and Automation, (2003). Proceedings. ICRA ’03. IEEE
International Conference on, vol. 1, pp. 1227–1233 vol.1.

[144] ZETIK, R., JOVANOSKA, S., AND THOMÄ, R. Simple method for localisation of
multiple tag-free targets using UWB sensor network. In Ultra-Wideband (ICUWB),
IEEE International Conference on (2011), IEEE, pp. 268–272.

[145] ZHAN, W., SHOUDONG, H., AND DISSANAYAKE, G. Multi-robot simultaneous
localization and mapping using D-SLAM framework. In Intelligent Sensors, Sensor
Networks and Information,(2007). ISSNIP 2007. 3rd International Conference on,
pp. 317–322.

[146] ZHU, C., GIORGI, G., LEE, Y.-H., AND GÜNTHER, C. Enhancing accuracy in
visual SLAM by tightly coupling sparse ranging measurements between two rovers.
In Position, Location and Navigation Symposium (PLANS), (2018) IEEE/ION, IEEE,
pp. 440–446.

[147] ZHUANG, Y., WANG, Z., YU, H., WANG, W., AND LAURIA, S. A robust ex-
tended filtering approach to multi-robot cooperative localization in dynamic indoor
environments. Control Engineering Practice 21, 7 (2013), 953–961.

[148] ZIHAJEHZADEH, S., YOON, P. K., KANG, B.-S., AND PARK, E. J. Uwb-aided
inertial motion capture for lower body 3D dynamic activity and trajectory tracking.
IEEE Transactions on Instrumentation and Measurement 64, 12 (2015), 3577–3587.

141


	Nomenclature
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Problem Statement
	1.3 Limitations of Existing Technology
	1.4 Research Objectives
	1.5 Model Scenario
	1.6 Contributions of this Thesis
	1.7 Thesis Structure

	2 Literature Review
	2.1 Introduction: Cooperative SLAM
	2.2 Unmanned Aerial Vehicles
	2.3 Swarm Robotics
	2.3.1 Swarm Cooperative Behaviour
	2.3.2 Coordination Topologies

	2.4 Relative Localisation
	2.4.1 Cooperative Relative Localisation
	2.4.2 Sensors used for Relative Localisation

	2.5 Outdoor SLAM
	2.5.1 Loop Closure
	2.5.2 Visual SLAM
	2.5.3 Cooperative SLAM

	2.6 Data Fusion to Improve SLAM
	2.6.1 Kalman Filter
	2.6.2 Extended Kalman Filter
	2.6.3 Error State Extended Kalman Filter

	2.7 Summary

	3 Relative Localisation for Swarms of UAVs
	3.1 A Proposed Relative Localisation Method
	3.1.1 Establishing a Visual Line of Sight for UAV Tracking
	3.1.2 Ultra Wide-Band Radio Ranging
	3.1.3 3D Location Based on the Common Navigation Frame
	3.1.4 Tracking the UAV when the Line of Sight is Temporarily Broken
	3.1.5 Algorithm for the Proposed Relative Localisation Method

	3.2 Hardware design
	3.3 Design of Experiments
	3.4 Results and Discussion
	3.5 Summary

	4 Error State Extended Kalman Filter for Cooperative Sensor Data Fusion
	4.1 Kalman Filter
	4.2 Motivation for a Cooperative Error State Extended Kalman Filter 
	4.3 Cooperative Error State Extended Kalman Filter Design
	4.3.1 Prediction Step
	4.3.2 Correction Step

	4.4 Design of Indoor Experiments
	4.5 Experimental Results and Discussion
	4.6 Summary

	5 Cooperative Localisation in GPS-denied Environments
	5.1 A Proposed Cooperative Localisation Approach
	5.2 Design of Outdoor Experiments
	5.3 Results and Discussion
	5.4 Summary

	6 Conclusion
	6.1 Thesis Summary and Research Contributions
	6.2 Limitations and Future Research

	References

