
Advances in Decision Forests and Ferns with

Applications in Deep Representation Learning

for Computer Vision

by

Yan Zuo

Supervisor: Prof. Tom Drummond

A thesis submitted for the degree of Doctor of Philosophy at

Monash University, May, 2019.

Copyright Notice

c©Yan Zuo (2019)

Except as provided in the Copyright Act 1968, this thesis may not

be reproduced in any form without the written permission of the

author. I certify that I have made all reasonable efforts to secure

copyright permissions for third-party content included in this thesis

and have not knowingly added copyright content to my work

without the owners permission.

Abstract

In recent years, the field of computer vision has seen remarkable

progress that has led to the emergence of new and useful technologies

which have both aided our day-to-day lives and improved upon vari-

ous aspects of industry. This is in part due to the rise in popularity of

deep learning, which has shown that powerful, learned representative

features can offer a level of performance that is often hard to match

using more traditional handcrafted features. Currently, deep learning

has largely embedded itself within computer vision as an extremely

useful tool for accomplishing a range of vision-based tasks such as im-

age classification, object detection and semantic segmentation. With

this surge in popularity in deep learning, more traditional computer

vision methods such as decision forests have somewhat fallen out of

favour in the community despite their benefits. This thesis hopes to

bridge this gap; it focuses on advancing the ensemble methods of de-

cision forests and ferns and incorporating them within deep learning

frameworks for computer vision applications.

First, a novel ensemble learning approach that constructs a decision

forest model which takes cues from boosting approaches under a resid-

ual framework setting is presented. This framework creates an ensem-

ble of decision trees designed to cooperate with one another, using the

complementary information between each other to minimise a global

loss. This approach allows for highly compact shallow decision forests

to be constructed without the expected drop in performance normally

associated with shallow tree models.

Subsequently, this thesis also investigates methods for incorporating a

decision forest within a deep learning framework. A piecewise method

is offered, whereby a pretrained Convolutional Neural Network is used

as a feature extractor alongside the residual forest classifier to perform

various semantic segmentation tasks.

This is then extended upon such that the residual forest classifier is

used to learn representation features, offering an end-to-end approach

for learning both features and a classifier. This is demonstrated to

improve training speed over the baseline pure deep learning approach

and offers improved performance in semantic segmentation tasks on

data sets with limited training data.

Following this, the conditioning of deep neural networks is investi-

gated where it is shown incorporating a decision forest in these frame-

works greatly improves conditioning of the network and aids training

stability. This is used in an application of decision forests within a

Generative Adversarial Network to significantly improve performance

on the task of image generation.

Finally, this thesis investigates the application of decision ferns for

controlled operations in the latent space of a Variational Autoen-

coder. A novel decision fern controller for operating on latent vari-

ables is introduced and demonstrates improved performance over spa-

tial transformation tasks and the more complex inference task of video

prediction.

iii

Declaration

This thesis contains no material which has been accepted for the award

for any other degree or diploma at any university or equivalent insti-

tution and that, to the best of my knowledge and belief, this thesis

contains no material previously published or written by another per-

son, except where due reference is made in the text of the thesis.

Print Name: Yan Zuo

Date: Tuesday 21st May, 2019

Acknowledgements

First and foremost, I would like to sincerely thank my supervisor

Professor Tom Drummond. You have provided me with guidance and

support and pushed me to pursue interesting and worthwhile research

under your supervision. I have been fortunate enough to be your

student and have learned a lot under your guidance during the course

of my PhD.

Thank you to the Australian Government Research Training Program

and the Australian Centre for Robotic Vision, which have supported

me financially and enabled me to pursue research that is both inter-

esting and challenging within the field of robotics and vision.

I would like to thank my fellow colleagues Andrew, Ben Harwood,

Ben Meyer, Gil, Thanuja, Vincent, Winston and Yanming. I have

thoroughly enjoyed the numerous coffee runs, board game nights and

discussions on research we have had during my PhD. In particular, I

would like to thank Gil, whom I have collaborated with for multiple

works which have contributed significantly to the research contained

in this thesis.

I would like to thank my family for all their love and support. Thank

you to my father, Xinyi, for encouraging me during the difficult times

of my PhD. Thank you to my mother, Qing, who has always looked

after and taken care of me. Thank you to my sister, Helen, who has

always lent a listening ear and been there for me.

Finally, I would like to thank my partner Sophia, for her continued

patience, love and understanding during this arduous (but often times

enjoyable) process. The support you have provided me, both physi-

cally and emotionally, was an integral part of this journey and I could

not have done this without you.

vi

Contents

1 Introduction 1

1.1 Computer Vision . 2

1.1.1 Applications of Computer Vision 2

1.1.2 Difficulties of Computer Vision 4

1.1.3 Machine Learning for Computer Vision 5

1.1.4 Deep Learning . 6

1.1.5 Remaining Challenges . 7

1.2 Decision Forests . 8

1.3 Contributions . 9

1.4 Collaborations . 12

1.5 Publications . 13

1.6 Thesis Layout . 14

2 Background 15

2.1 Ensemble Methods . 16

2.1.1 Decision Forests . 16

2.1.1.1 Induction of Decision Trees 16

2.1.1.2 Random Forests 17

2.1.1.3 Applications of Decision Forests 18

2.1.2 Random Decision Ferns 20

2.1.3 Boosting . 21

2.1.3.1 PAC Framework 21

2.1.3.2 Discrete Boosting 22

2.1.3.3 Gradient Boosting 23

2.2 Representations of Data . 24

vii

CONTENTS

2.2.1 Feature Extraction . 24

2.2.2 Feature Learning . 26

2.3 Artificial Neural Networks 28

2.3.1 Perceptron Models . 28

2.3.1.1 Multi-Layer Perceptrons 28

2.3.2 Convolutional Neural Networks 30

2.4 Generative Neural Network Models 32

2.4.1 Variational Autoencoders 32

2.4.2 Generative Adversarial Networks 33

3 Preliminaries 35

3.1 Model and Data . 36

3.1.1 Independent and Identically Distributed Data 36

3.1.2 Model Smoothness . 36

3.1.3 Limited Model Complexity 37

3.1.4 Model Selection . 37

3.1.4.1 Model Bias and Variance 37

3.1.4.2 Over-fitting and Under-fitting 39

3.2 Learning from Data . 41

3.2.1 Maximum Likelihood Estimation 41

3.2.2 Supervised Learning . 43

3.3 Optimisation . 44

3.3.1 Gradient Ascent . 44

3.3.2 Stochastic Gradient Ascent 45

3.3.3 Newton’s Method . 46

3.3.4 Gauss-Newton Method . 47

3.4 Ensemble Methods . 49

3.4.1 Derivative-Free Optimisation 49

3.4.2 Decision Forests . 50

3.4.2.1 Decision Trees 51

3.4.2.2 Ensembles of Decision Trees 52

3.4.3 Induction of Decision Trees 52

3.4.3.1 Information Entropy 53

viii

CONTENTS

3.4.3.2 Iterative Dichotomiser 3 Algorithm 53

3.4.3.3 C4.5 Algorithm 56

3.4.3.4 C5.0 Algorithm 57

3.4.4 Boosting . 57

3.4.4.1 Probably Approximately Correct Learning 57

3.4.4.2 Discrete AdaBoost 59

3.4.5 Gradient Boosted Trees 61

3.5 Artificial Neural Networks 63

3.5.1 Feed-forward Neural Networks 63

3.5.2 Convolutional Neural Networks 64

3.5.2.1 Convolution Layer 65

3.5.2.2 Activation Layers 67

3.5.2.3 Downsampling Layers 69

3.5.2.4 Strided Convolution Layer 70

3.5.2.5 Transposed Convolution Layer 71

3.5.3 Training Neural Networks 72

3.5.3.1 Backpropagation 72

3.5.3.2 Regularisation During Training 74

3.5.3.3 Exploding and Vanishing Gradients 77

3.5.3.4 Initialisation . 77

3.5.3.5 Batch Normalisation 78

3.5.3.6 Residual and Highway Connections 79

3.6 Software . 80

4 Residual Likelihood Forests 81

4.1 Introduction . 82

4.1.1 Contributions . 83

4.2 Related Work . 84

4.2.1 Residual Representations 84

4.3 Residual Likelihood Forests 85

4.3.1 Weak Learners Generating Likelihoods 86

4.3.2 Residual Forest Framework 87

4.3.2.1 Minimising a Global Loss 87

ix

CONTENTS

4.3.2.2 Computing Residual Likelihoods 89

4.3.3 Implementing RLF . 90

4.3.3.1 Selecting Decision Node Splits 90

4.3.3.2 Residual Rescaling 91

4.3.4 Summary . 91

4.4 Experiments . 93

4.4.1 Experiment Settings . 93

4.4.2 Comparison with Random Forests 94

4.4.3 Comparison with Gradient Boosting 95

4.4.4 Parameter Efficiency of RLF 96

4.4.5 Comparison with Global Refined Forests 97

4.4.5.1 Model Performance 99

4.4.5.2 Model Compactness 100

4.4.5.3 Computation Complexity 101

4.5 Discussion and Summary . 102

5 A Hybrid Deep Learning Model using Forests 103

5.1 Introduction . 104

5.1.1 Contributions . 104

5.2 Related Work . 106

5.2.1 Random Forests in Semantic Segmentation 106

5.2.2 Deep Learning in Semantic Segmentation 106

5.3 System Overview . 108

5.3.1 Using CNN Features . 108

5.3.1.1 Choosing Convolution Layers 110

5.3.1.2 Coarse-to-Fine Upsampling 110

5.3.2 Learning Residual Representation Trees 111

5.3.2.1 Decision Function Selection 111

5.3.2.2 Batch Learning 112

5.3.2.3 Updating Residuals 112

5.3.3 Objective Function Approximations 113

5.3.3.1 Class Label Approximation 113

5.3.3.2 Loss Function Approximation 113

x

CONTENTS

5.4 Experiments . 115

5.4.1 Pascal VOC . 115

5.4.2 NYUDv2 . 117

5.4.3 MSRC-21 . 118

5.5 Discussion and Summary . 121

6 Fast Residual Forests for Deep Representation Learning 122

6.1 Introduction . 123

6.1.1 Contributions . 124

6.2 Related Work . 125

6.2.1 Deep Learning with Decision Forests 125

6.3 Framework . 126

6.3.1 Assigning Channels to Decision Nodes 126

6.3.2 Learning Prediction Nodes 128

6.3.3 Learning Features . 130

6.3.3.1 Approximating the Loss Function 130

6.3.3.2 Generating Backward Gradients 132

6.4 Experiments . 134

6.4.1 KITTI . 134

6.4.1.1 Ablation Study for Tree Depth 136

6.4.2 NYUDv2 . 137

6.4.3 Training Computation Complexity 138

6.5 Discussion and Summary . 141

7 Soft Residual Forests in Generative Adversarial Networks 142

7.1 Introduction . 144

7.1.1 Contributions . 146

7.2 Related Work . 147

7.2.1 Generative Adversarial Networks 147

7.3 Background . 148

7.3.1 Generative Adversarial Networks 148

7.3.2 Wasserstein Generative Adversarial Networks 149

7.4 A Better Conditioned Discriminator 151

xi

CONTENTS

7.4.1 Example: XOR . 152

7.4.2 Example: CIFAR-10 . 154

7.5 Generative Adversarial Forests 157

7.5.1 Soft Decision Trees . 158

7.5.1.1 Soft Decision Functions 158

7.5.2 Soft Residual Forest . 159

7.6 Experiments . 161

7.6.1 Experiment Settings . 161

7.6.2 Datasets . 162

7.6.2.1 CIFAR-10 . 162

7.6.2.2 CUB Birds . 162

7.6.2.3 Oxford Flowers 162

7.6.3 Quantitative Results . 162

7.6.4 FID Scores and Conditioning 164

7.6.5 Training Computation Complexity 167

7.6.6 Measuring the Critic Loss 167

7.7 Discussion and Summary . 169

8 Traversing Latent Space using Decision Ferns 170

8.1 Introduction . 171

8.1.1 Contributions . 171

8.2 Related Work . 173

8.2.1 Learning Representations for Complex Inference Tasks . . 173

8.3 Background . 175

8.3.1 Variational Autoencoders 175

8.3.2 Decision Ferns . 176

8.4 Operating in Latent Space 177

8.4.1 Constructing a Latent Space 177

8.4.2 Traversing the Latent Space 178

8.4.3 Latent Space Traversal Network 179

8.4.3.1 Fern-based Transformer Network 181

8.5 Experiments . 184

8.5.1 Imposing Spatial Transformation 184

xii

CONTENTS

8.5.1.1 Rotation . 185

8.5.1.2 Thickening . 186

8.5.1.3 Combining Operations 186

8.5.2 Imposing Kinematics . 187

8.5.3 Latent Space for Prediction 189

8.5.3.1 Moving vs. non-moving objects 190

8.5.3.2 Auxiliary Parameter Predictions 191

8.6 Discussion and Summary . 193

9 Conclusion 194

9.1 Summary of Contributions 195

9.2 Discussion and Future Work 197

xiii

Chapter 1

Introduction

The field of Artificial Intelligence (AI) is defined as the study of intelligent agents ;

machines which are able to perceive their environment, form understandings and

take actions which maximise their chance of achieving a set of objectives [164]. On

the sensory side, researchers have long sought to create such machines which can

extract semantic information from their surroundings through equipping them

with a variety of sensors.

Of these sensors, cameras have provided machines with arguably the most im-

portant of the five senses for visualising the world around them: sight. Often,

visual perception of the real world is all humans need to gain an understanding

of a scene. We exploit knowledge from both past experiences, as well as from the

local scene to give the required context to make complex inferences such as inter-

preting visual information. Enabling a machine to recognise and learn through

the visual data it receives is an incredibly important task; this has opened up an

entire field of research known as Computer Vision.

1

1.1. Computer Vision

sink

cabinet

floor

objects

wall

counter

chair

road
grass

tree

building

car

roadgrass

sky

Semantic Segmentation

Image Classification

Cat Flower Sheep Car

Figure 1.1: Visual recognition tasks of image classification (top) and semantic seg-
mentation (bottom). The examples provided for semantic segmentation are actual
results from the work done in Chapter 5.

1.1 Computer Vision

Computer vision is an interdisciplinary field that is concerned with enabling ma-

chines to gain a high-level understanding from digital images or videos. One

of the long-standing goals of computer vision is to allow computers to perform

complex visual inference tasks in a general and robust manner. From an engi-

neering perspective, computer vision investigates the automation of tasks that

are performed by the human visual system [202]. This ability to process visual

information is incredibly important and the estimates are that the human brain

dedicates more than 30% of its capacity towards visual processing [109].

1.1.1 Applications of Computer Vision

Imbuing machines with the power of the human visual system serves as one

of the inspirations for this investigation of computer-based visual recognition

approaches. Aside from scientific curiosity, advancing the area of computer visual

2

Chapter 1. Introduction

recognition improves the feasibility of several important applications:

Robotics & Automation: In robotics, the field has drastically advanced in

recent years. Humanoid robots are now able to perform a range of actions; from

simple ones such as grasping objects to more advanced actions such as climbing

a ladder. A better visual understanding of the world will allow robotics to find

applications of automation in the real world.

Image Search: In the current information age, the world-wide web is an ocean

of information. Search engines can now reliably index the vast quantity of tex-

tual information, allowing for access to billions of documents that exists (and

growing). However, visual data such as images and videos still cannot be as

reliably indexed. The capability to accurately access images and videos on the

web would be immensely beneficial in many areas including research, web brows-

ing, data collection, amongst others. The ability to index images and videos

based on extracted semantic content (rather than just relying on meta-data and

accompanying textual information) would prove invaluable.

Medicine: Diagnosis of tumours and other health-related abnormalities from

medical scan is often times difficult and requires expert knowledge. An auto-

mated system would be able to improve diagnosis accuracy, improve efficiency in

diagnosis and cut down on human-related errors.

Transport: Improving safety systems of vehicles is still a very active area of

research. Modern vehicles are equipped with a wide array of sensors to improve

the driving experience. For example, it is now common to find anti-lock braking

or anti-skid braking systems (ABS) in most vehicles which automatically assist

3

1.1. Computer Vision

drivers during braking, preventing the wheels from locking up and avoiding un-

controlled skidding. By enabling technology which equip computers with scene

understanding, we are now starting to see the deployment of self-driving vehicles

to further improve road safety.

Security: Automated recognition of individuals of interest or suspicious activ-

ity would improve safety in public spaces. This same technology could also be

extended towards private home security systems; a security system with seman-

tic understanding of its environment would be able to differentiate between false

alarms such as movements from domestic animals and real alarms such as distur-

bances created by an intruder.

1.1.2 Difficulties of Computer Vision

Often it is easy for us to forget just how difficult the task of visual understanding

of the real world is since this task feels so natural and effortless to perform. As an

example, looking at Figure 1.1, it would be an almost trivial task to classify the

depicted images of various objects shown (as in the case of image classification)

or to form an understanding of the scene by segmenting out objects of interest

in a scene and assigning them correct semantic labels (as in the case of semantic

segmentation). Although we would like machines to inherit this ability to distil

semantic information effortlessly from visual data, the method for achieving this

is not so clear.

First, a computer represents an image as a large array of numbers which indicates

brightness and colour at a position in the image. Each number in this array is

referred to as a pixel. Any given image may contain millions of these pixels. In

order for a machine to understand the content of an image, it must transform

these pixels from patterns of brightness and colour into high level features which

represent the semantic content within the image. Adding to this difficulty, any

4

Chapter 1. Introduction

changes to the visual information, whether it be different lighting conditions,

differences in camera viewpoints or variances in object pose could alter these

brightness and colour patterns to be completely different. This presents the

difficult challenge of creating a model that accurately describes a mapping from

low-level pixel patterns in the image to high-level semantic concepts which can

generalise across variations in images under similar semantic content.

1.1.3 Machine Learning for Computer Vision

A lot of the practical applications in computer vision we wish to perform can be

described as finding a mapping from some input space to a corresponding target

output space (i.e. we are trying to find some model which describes the mapping

from a non-meaningful input to a meaningful output). As an example, consider

the task of image recognition - something we perform several times on a day to

day basis with relative ease. Although we are able to do this with relative ease, for

a machine, this task is far from a trivial one. The difficulties associated with such

problems become more apparent upon closer inspection: how does one explicitly

specify a set of tangible properties which attribute an image of some object to a

particular class or meaningful label (e.g. an image contains cat or dog objects)?

Machine learning benefits from the fact that often it is far easier to obtain samples

of the desired mapping we are wishing to model. It covers a class of algorithms

that are data-driven; rather than trying to explicitly construct a model given a set

of observations, machine learning algorithms differ from conventional algorithms

by learning from samples drawn from a data distribution. Mitchell’s definition of

machine learning describes it as the following: “A computer program is said to

learn from experience E with respect to some class of tasks T and performance

measure P , if its performance at tasks in T , as measured by P , improves with

experience E” [145].

In real world tasks, there exists a wide variety of experiences, tasks and perfor-

5

1.1. Computer Vision

mance measurements. For the task of vision-related learning, these experiences

usually involves observing some set of visual examples such as RGB images. Given

visual recognition tasks such as that of trying to describe a face, a conventional

non-machine learning approach may be to try to model this by identifying the

important attributes of what compose a face: an oval or circular coloured shape,

darker areas where the eyes and mouth are expected, an elevated contour in the

centre for a nose and so forth. Normally, these characteristics would be explic-

itly specified by the programmer. By contrast, a machine learning algorithm

would not have such a coded definition, instead relying on a learn-by-examples

approach; it would eventually learn the defining characteristics of a face using a

collected dataset of faces and face annotations (commonly referred to as labels)

provided by an expert (typically a human annotator).

Data-driven machine learning approaches have played a large role in semantic

understanding of image data for computer vision. These approaches aim to learn

some non-linear mapping from an input image (commonly RGB images) to a

target output which represents the underlying semantics of the input. Modern

computer vision techniques rely heavily on machine learning and more recently,

deep learning algorithms. As discussed earlier, an important aspect of vision is

representation; that is, the ability to extract key features which help in assigning

semantic meaning to raw image data. Machine learning approaches allow for

automated learning of these representations and this has been a key component

for their dominance in solving a variety of computer vision related tasks.

1.1.4 Deep Learning

Despite the difficult nature of computer vision tasks, in recent times we have seen

significant progression in the area of visual recognition. In particular, perfor-

mance in image classification tasks has dramatically risen since the introduction

of state-of-the-art deep models based on Convolutional Neural Networks (CNNs).

The ability for these models to learn powerful representations which capture the

6

Chapter 1. Introduction

underlying intrinsic characteristics of images have enabled the categorising of

images belonging to thousands of classes at performance levels comparable to

humans [117] or more recently, surpassing them [78, 79]. In related tasks such

as objection detection and semantic segmentation, we have seen similar levels of

improvements in performance [25,63,64,135,170,229,230]. These recent advances

have enabled real world applications of tasks that would otherwise have been in-

feasible such as face detection and recognition, self-driving cars and advanced

image searching to name a few.

1.1.5 Remaining Challenges

In spite of the benefits of deep learning, there still remain open challenges within

computer vision. Although deep learning techniques have dramatically improved

our ability to perform many visual understanding tasks, they are known to be

very data-hungry, often requiring millions of hand labelled samples to achieve the

levels of performance in visual recognition they are known for [182]. In addition,

deep models are often computationally expensive both to train and to infer. There

exists a tradeoff between accuracy and speed; we have yet to achieve human levels

of performance in visual recognition tasks at real time levels of performance.

7

1.2. Decision Forests

1.2 Decision Forests

Without a doubt, deep learning has propelled the field of computer vision for-

ward in recent years; we are now able to perform a range of vision-related tasks

which would otherwise have been infeasible without modern CNN approaches.

However, with the success that modern deep learning techniques have found in

computer vision, classical computer vision methods have now taken a backseat

in the field. Of these classical approaches, the once-popular ensemble method of

decision forests has seen a steady decline as a topic of interest in relation to visual

learning tasks.

Despite this, ensemble methods such as decision forests possess several favourable

attributes which can help address many of the relevant challenges associated

with modern deep learning for vision-based applications. They are compact and

efficient learners, offering lots of non-linearity in a small space [21]. This allows

decision forests to train efficiently, build compact models and learn with less data

when compared to their deep learning counterparts.

With this in mind, we show that integrating decision forests within deep networks

can bring many of the aforementioned benefits into the deep learning space. Our

findings indicate that the incorporation of decision forests allow for improved

performance across a range of vision tasks, increased training speed and efficiency

and extra robustness to limited training data. As we will show in Chapter 7, the

usage of decision forests in a deep learning context can significantly improve the

conditioning of the learning problem during training. This subsequently increases

training stability and offers insights towards why they can be a beneficial inclusion

within deep learning frameworks.

8

Chapter 1. Introduction

1.3 Contributions

This thesis investigates and explores improving upon ensemble learning approaches

related to decision forests and ferns and the subsequent deep learning applications

for vision with these ensemble methods. A majority of the work presented cen-

tres around the gains that decision forests and ferns can offer towards improving

existing deep learning approaches for a variety of computer vision applications.

Throughout our investigations, we find that decision forests and ferns offer im-

provements ranging from improved training speed, more favourable tradeoffs to

model capacity to model complexity and improved performances for a wide vari-

ety of inference tasks.

Chapter 4 begins with the introduction of a novel ensemble learning method which

utilises a technique for combining residual information between base decision tree

learners in the ensemble. The aim of this chapter is to exploit the complementary

information between decision trees in the ensemble and minimise a global loss for

the ensemble, rather than using a locally greedy, entropy minimising approach

found in conventional random forests. We demonstrate that our model can be

optimised in closed form, simplifying the model tuning process. Additionally, this

approach allows for the construction of much shallower models which results in a

large compression in model size, with minimal tradeoff to model performance.

In Chapter 5, we look at incorporating our decision forests within a deep learning

framework. For this, we implement a hybrid model consisting of a Convolutional

Neural Network (CNN) component and a decision forest component. The CNN

is pretrained on a general, large scale image dataset where it learns to extract

generic features to be used by the decision forest for classification. We show that

by using our decision forest to replace the solver component of the CNN, we are

able to achieve improved performance on scene segmentation tasks.

Integrating a decision forest within a deep learning framework is a difficult task.

9

1.3. Contributions

Although it is relatively straightforward to directly combine a pretrained CNN

and decision forest where the former acts as a general feature extractor and the

latter classifies, learning features for the decision forest in an end-to-end training

context is not so straightforward. Since the routing function of decision forests

is not differentiable and much of deep learning relies on backpropagation to train

models, this presents an issue in applying decision forests within a deep learning

framework. In Chapter 6, we continue to look for ways to address this issue. We

develop a method which approximates the forward pass of a decision forest using a

novel loss blending technique during the backward pass which compute gradients.

This allows for the derivation of backward gradients to update the CNN using the

decision forest as a classifier. Additionally, we show that generating the statistics

stored in the leaves of a decision tree can be treated as an optimisation problem

and learned using gradient descent.

Following this, Chapters 7 & 8 explore the learning of latent representations

using decision forests and ferns. Chapter 7 presents the first application which

looks at using decision forests to improve image generation tasks by combining

decision forests with Generative Adversarial Networks (GANs). We demonstrate

how a decision forest can greatly improve the conditioning of model learning when

applied to the discriminator network of the GAN. This in effect addresses a known

issue in GAN training by improving training stability, which subsequently leads

to increased performance on image generation tasks. Additionally, we develop

the residual forest framework to use soft decisions, where instead of hard routing

to a single prediction leaf node, a proportion is routed to all prediction nodes.

This allows the decision forest to be treated as a layer within a deep learning

model and trained in true end-to-end fashion.

Finally, Chapter 8 shows another potential application of ensemble methods

within generative models. We show how an ensemble of decision ferns can serve

as an effective controller within the latent space of a Variational Autoencoder

and perform complex inference tasks such as video prediction. We demonstrate

how decision ferns can be constructed in this latent space using common neural

10

Chapter 1. Introduction

network components such as fully-connected linear layers and hyperbolic tangent

functions through a reparameterisation trick. We show that our approach can of-

fer performance improvements over other contemporary works which also perform

video prediction.

11

1.4. Collaborations

1.4 Collaborations

On top of the research work carried out by myself under the supervision of Prof.

Tom Drummond, I have been fortunate to be part of a successful collaborative

effort with Gil Avraham at Monash University during the last year of my PhD.

My collaboration with Gil occurred internally within the ECSE Robotics Labo-

ratory at Monash University, which is a research node of the Australian Centre

of Excellence for Robotic Vision. The collaborative work between Gil and myself

mainly looked at the benefits that ensemble methods could offer when working

with latent representations of data which targeted both our research interests.

The work presented in Chapters 7 & 8 are drawn from submitted work or publi-

cations jointly authored with Gil Avraham. Gil and I are equal contributors in

both these publications and in both chapters, I described the percentage break-

down which describe the contributions I have personally made for the production

of the referenced work, which both Gil and I have agreed upon.

12

Chapter 1. Introduction

1.5 Publications

The main body chapters of this thesis are based on the following peer-reviewed

or currently under review articles:

• Residual Likelihood Forests

Y. Zuo & T. Drummond

Submitted to Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019

• Fast Residual Forests: Rapid Ensemble Learning for Semantic

Segmentation

Y. Zuo & T. Drummond

In Conference on Robot Learning (CoRL), November 2017 [234]

• Generative Adversarial Forests for Better Conditioned Adversar-

ial Learning

Y. Zuo∗, G. Avraham∗ & T. Drummond

Submitted to Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019 [232]

• Traversing Latent Space with Decision Ferns

Y. Zuo∗, G. Avraham∗ & T. Drummond

In Asian Conference on Computer Vision (ACCV), December 2018 [233]

∗indicates equal contribution

13

1.6. Thesis Layout

1.6 Thesis Layout

In Chapter 2, we perform a review of existing works in the literature with a focus

on decision forest and boosting ensemble methods as well as neural networks. In

Chapter 3, we layout the necessary preliminaries for concepts used in this thesis

which describe to mathematics of related ensemble methods and fundamentals of

deep neural networks.

Following this, the primary contributions outlined in this introduction are ex-

panded upon in Chapters 4 to 8. Chapter 4 introduces the Residual Likelihood

Forest framework, a novel ensemble learning approach which serves as the base-

line framework for a majority of this thesis. Chapter 5 extends upon the Residual

Likelihood Forest framework, demonstrating how the method can be transitioned

into a hybrid deep learning framework. Chapter 6 further develops upon the

Residual Likelihood Forest framework; we describe a technique which allows for

deep representation features to be learned alongside the forest classifier. In Chap-

ters 7 & 8, we move from discriminative tasks to the generative tasks and describe

some applications of decision forests and ferns within this area. Chapter 7 looks

at incorporating decision forests together with Generative Adversarial Networks

to improve model conditioning and hence their training stability. Chapter 8 de-

scribes the application of decision ferns within the latent space of a Variational

Autoencoder to perform complex inference tasks such as video prediction.

Finally, we conclude the thesis in Chapter 9, provide a summary of the contribu-

tions and discuss future avenues of research.

14

Chapter 2

Background

In this chapter, we outline the past and current research in the areas relevant

to the work present in this thesis. This includes various ensemble methods such

as decision forests and boosting, perceptron-based approaches including multi-

layered perceptron models and deep learning methods utilising convolutional

neural networks for various computer vision tasks such as classification and seg-

mentation.

15

2.1. Ensemble Methods

2.1 Ensemble Methods

The practice of combining the predictions of multiple learning algorithms to pro-

duce a single model is referred to as an ensemble method. The resulting ensemble

model generally performs at a level higher than any of the individual classifiers

making up the ensemble [157]. The individual learning algorithm can be any

classification method; commonly chosen methods are support vector machines,

decision trees and neural networks. In this section, we focus our discussion around

ensembles of decision trees, decision ferns and boosting algorithms due to their

relevance to this thesis.

2.1.1 Decision Forests

Breiman first introduced the term Classification and Regression Trees (CART) [17]

to refer to decision tree algorithms that can be used for classification and regres-

sion predictive modelling tasks. In general, this algorithm is simply referred to

as decision trees or decision forests. For the remainder of this thesis, unless oth-

erwise specified, we refer to this class of algorithms as decision forests. Decision

forests have established themselves as a prominent ensemble learning method,

finding a wide range of applications across various fields including computer vi-

sion, where they are used in numerous tasks including object recognition [58],

semantic segmentation [198] and data clustering [149]. Although decision forests

are well known for their strong discriminating power [166], they initially suffered

from variance and stability issues, having a tendency to overfit to a problem.

2.1.1.1 Induction of Decision Trees

One of the earliest and most well-known algorithms in the literature for building

decision trees is the Iterative Dichotomiser 3 (ID.3) algorithm [166]. This algo-

16

Chapter 2. Background

rithm builds decision trees from a set of training data, using an information gain

maximisation criteria (or entropy minimisation) to determine a splitting decision

that separates data most effectively. Trees are constructed in a recursive manner

and optimisation of split node decision is performed in a greedy, top-down man-

ner, where the optimal split is found for each local decision node. This ensures

that at each node, a feature of the data is chosen so that the data is split into

subsets such that they are enriched in largely one class. The ID.3 algorithm then

recursively applies itself on the smaller subsets in the same manner until a leaf

node is reached and a prediction can be made about input data. The C4.5 al-

gorithm [167] was subsequently developed as an extension to the ID.3 algorithm.

C4.5 builds decision trees from a set of training data in the same way as ID.3,

however several improvements were made over the original algorithm. These

included the ability to accept both continuous and discrete features, handling

incomplete data point and using a bottom-up leaf pruning technique to address

overfitting.

2.1.1.2 Random Forests

The general method of random forests was first proposed by [83] as a way to

overcome the variance and stability issues of binary decision trees. The work

showed that an ensemble of binary tree classifiers could improve in performance

as the trees are grown but did not overfit, as long as the subspace of feature

for training was randomly chosen. A subsequent follow up work to this showed

that this extended to other splitting methods as long as feature subspace was

randomly restricted [84]. At the time, this was in strong contrast to the belief that

the complexity of a classifier can only grow to a certain level before classification

performance was hurt by overfitting. Amit & Geman introduced the idea of

using a restricted random subset of available features for making a split decision

when growing a single tree [1]. Dietterich proposed the concept of Randomised

Node Optimisation in which a randomly selected subset of possible parameters is

trained at each node [36].

17

2.1. Ensemble Methods

These aforementioned works were used by [16] to finally compile the random

forest method into its current form, with the final step of incorporating the

bootstrap aggregation technique in [13] into the random forest approach. This

method enhanced the original random forest approach, bootstrapping the data

from the original training set by creating many random subsets of the data set

(with replacement) and training each individual tree classifier on a selected sub-

set. Geurts et al. introduced Extremely Randomised Trees which selected an

attribute common amongst all instances in a subset of data to be classified and

drew a random cut-point uniformly between the minimum and maximum values

that the selected attribute can take [62]. It then performs a split on the data

by comparing the value of the selected attribute in all instances of data with the

randomly generated cut-point.

2.1.1.3 Applications of Decision Forests

Due to their efficiency, flexibility, good generalisation capability and inherent

ability to handle multi-class problems, decision forests have found numerous ap-

plications in the field of computer vision. Moosmann et al. introduced Extremely

Randomised Clustering Forests which used Extremely Randomised Trees as a

baseline to efficiently perform data clustering [149], using various visual descrip-

tors including SIFT [137] and Haar wavelet transforms. They found that this

approach was more robust to image background clutter, offered performance im-

provements and was much faster in training and testing than conventional K-

means approaches. The work of Bosch et al. proposed to use random forests

as a classifier in conjunction with various feature descriptors to perform image

classification [11]. Shotton et al. extended upon this method, using it to per-

form image categorisation and semantic segmentation [198]. A random forest was

used as a global image classifier to quickly and efficiently provide priors which

was subsequently pipelined into the framework of [199] to improve performance

in semantic segmentation. Their work differed from [149] by learning directly

from pixels instead of visual descriptors and maintaining hierarchical clusters

within branch nodes. Schroff et al. used random forests to perform semantic seg-

18

Chapter 2. Background

mentation using HOG features as inputs [190] and Brostow et al. demonstrated

that Extremely Randomised Trees could be used with motion and structure cues

alongside appearance-based features to improve object recognition in challenging,

dynamic environments [18].

The work of Gall et al. introduced Hough Forests, which extended upon the

random forest method by incorporating the Hough Transformation to perform

object detection [58]. The approach used class-specific random forests to learn a

direct mapping between the appearance of an image patch and its corresponding

Hough vote. In [197], random decision forests were used to predict 3D posi-

tions of body joints from a single depth image. The approach used an object

recognition approach, separating the body into intermediate parts and allowing

for per-pixel classification of each part. This work was extended upon by Ke-

skin et al. which used random decision forests for hand skeleton tracking [105].

Subsequently, Kontschieder et al. extended on the work of [58] using priority

queuing in order to incorporate contextual features into the training process of

a decision forest [113]. Dollar et al. showed that random decision forests could

act as a structured learning framework for predicting local edge masks [37]. The

approach used structured labels to train random forests, allowing them to map

these structured labels to a discrete set of labels of a given node in a decision tree.

Ultimately, this enabled random forests to be trained using standard information

gain maximisation procedures.

The work of Montillo et al. proposed the use of entangled random forests to

augment the feature space [147]. The entangled random forests were grown in a

breadth-first manner where the progress of the trained subtree was used to refine

the feature space using the class posterior distributions. Schulter et al. combined

the global loss minimisation benefit of boosting approaches whilst retaining the

benefits from the original random forests method [191]. An alternating update

algorithm approach was proposed which alternated between weight updates and

parallelised tree growing in a breadth-first manner. In [169], a global optimisation

scheme was used to globally refine a random forest after it had been constructed.

19

2.1. Ensemble Methods

This approach used a global loss function to iteratively refine values in the leaf

node to minimise redundancy in information between tree classifiers in the en-

semble. This was combined with leaf pruning to significantly reduce model size

for various classification and regression tasks whilst retaining a competitive level

of accuracy.

2.1.2 Random Decision Ferns

A related ensemble classifier to random forests are random decision ferns. Deci-

sion ferns are closely related to decision trees, with the key difference that ferns

are non-hierarchical in nature; they can be thought of as a constrained version

of a decision tree where the same question is asked at each level in the tree.

Decision ferns represent a faster, alternative solution to random decision trees

and allows for more parallelised construction of the ensemble classifier due to its

non-hierarchical nature, with a tradeoff being that less questions can be asked

for the same given model size. Of the works that use decision ferns in com-

puter vision, arguably the work of Ozuysal et al. is the most well known, which

proposed a method using random decision ferns to classify image patches for

keypoint detection [159]. For each image patch instance, each random decision

fern would perform a series of pixel intensity comparisons. This allowed for the

implementation of a simple, but efficient and robust keypoint detector where the

outputs of multiple decision ferns were combined to give consensus on valid key-

points. The work of Villamizar et al. proposed a boosting algorithm which used

random decision ferns as a base weak learner and binary features in the HOG

space to perform efficient rotation invariant object detection [214]. In a follow up

work, Villamizar et al. employed random decision ferns for object detection and

classification [215]. This approach used random ferns to create a shared feature

pool, and subsequently used this shared feature pool with class specific ensemble

classifiers composed of random ferns as the base weak learner.

20

Chapter 2. Background

2.1.3 Boosting

The core idea behind boosting algorithms is based around the idea of combining

multiple weak learners into a single strong learner. This concept differs from the

bootstrap aggregation approaches described in the previous section. Bootstrap

aggregation relies on averaging large numbers of individual learners to create a

single learner; it relies on the law of large numbers to reduce variance and over-

fitting in the final model. In contrast, the boosting approach aims to iteratively

create a strong learner; it does this by giving emphasis on misclassified data for

subsequently created weak learners. Boosting algorithms are based on the PAC

learning framework which proposes an idea of weak learnability versus strong

learnability.

2.1.3.1 PAC Framework

Valiant introduced the notion of strong learnability where a class of concepts is

defined as such by the existence of a polynomial-time algorithm which achieves

low error with high confidence for all concepts in the class [211]. This led to

the initial development of the Probably Approximately Correct (PAC) learning

framework that boosting algorithms would later extend upon. The PAC learn-

ing framework tries to define a learner which attempts to select a generalisation

function (model) from a certain class of possible functions to fit a set of sample

data. This defines the overall goal of PAC learning: selection of a function that

will probably have low generalisation error and hence be approximately correct.

Under this criteria, the learner must be able to learn the concept given any arbi-

trary approximation ratio, probability of success, or distribution of the samples.

Subsequently, Kearns defined a model to have weak learnability if it could not

achieve arbitrarily high accuracy but could output a hypothesis which performed

slightly better than random guessing [103]. This left open the question of whether

there was an equivalency between the notions of weak and strong learnability.

21

2.1. Ensemble Methods

2.1.3.2 Discrete Boosting

The work of Schapire addressed this question, showing that weak and strong PAC

learning are equivalent [188], which introduced the concept of boosting, using an

algorithm called the Recursive Majority Gate of Hypotheses which selectively

combined several weak hypotheses into a single strong hypothesis. Freund ex-

tended upon this algorithm to combine the outputs of all weak hypotheses [47]

and Kearns & Valiant showed that under a uniform distribution on the instance

space, monotone Boolean functions are weakly, but not strongly, learnable [104].

This indicated that strong and weak learnability were not equivalent when cer-

tain restrictions are placed on the instance space distribution and that strong and

weak learning models would prove to be inequivalent under the distribution-free

case as well.

Freund introduced the Boost by Majority algorithm which improved upon the al-

gorithm of [188] through increasing efficiency of the algorithm [48]. The recursive

element of the algorithm was removed, favouring a final hypothesis serving as a

single majority gate which combined the outputs of all weak hypotheses in the

ensemble. Freund & Schapire would subsquently develop a method which took

advantage of the adaptability of weak learners, leveraging this into an adaptive

boosting algorithm called Adaptive Boosting (AdaBoost) where each subsequent

weak learner was tuned towards favouring misclassified training instances through

increased weighting of these data points [50]. Although AdaBoost was a success-

ful algorithm which saw wide use in practice due to its simplicity and adaptiv-

ity, [36] showed that AdaBoost was particularly susceptible to classification noise

when compared to other ensemble methods such as bootstrap aggregation. The

work showed that AdaBoost had a tendency to assign higher weights to noisy

examples over other examples. This resulted in hypotheses generated in later

iterations which were overfit to noise. Freund would later address this with the

BrownBoost algorithm, which ignored instances that were repeatedly misclassi-

fied, under a core assumption that instances which are constantly misclassified

are afflicted with noise [49]. This allows the classifier to forfeit correctly classify-

ing these noisy instances in favour of making the final classifier more robust to

22

Chapter 2. Background

noise.

2.1.3.3 Gradient Boosting

Breiman first observed that boosting could be interpreted as an optimisation al-

gorithm on a suitable cost function [14]. Following this, in [15], Breiman recast

the Adaboost algorithms as a statistical framework in which they were referred

to as ARCing (Adaptive Reweighting and Combining) algorithms. This class of

algorithms was described as stagewise additive; each new weak learner is added

one at a time and existing learners in the model were left frozen and unchanged.

This led to the generalisation of AdaBoost and related algorithms into a class of

algorithms known as Gradient Boosting. Similar to boosting approaches, gradient

boosting iteratively builds a prediction model composed of an ensemble of weak

prediction models (typically, the base weak learner is a decision tree or neural

network). However, it generalises the boosting approach by allowing optimisation

over an arbitrary differentiable loss function. This allowed boosting to be cast

as a numerical optimisation problem which used a procedure similar to gradient

descent to minimise the loss of the model through adding of weak learners. This

framework was subsequently further developed by Friedman and called Gradi-

ent Boosting Machines [55] which was later known as simply Gradient Boosted

Trees [54]. This framework extended gradient boosting to decision trees of a fixed

size as base learners and a modification to the gradient boosting method allowed

for an improved quality of fit for each base tree learner.

23

2.2. Representations of Data

2.2 Representations of Data

In its raw form, real world images collected via sensors such as an RGB camera is

usually high dimensional, non-linear and correlated in nature. For a machine to

perform a direct interpretation of data in this form is difficult; an extensive line

of research tries to address this issue by preprocessing or preparing real world

data into a form that is more digestible for machines to interpret. This process

is known as feature extraction where an initial set of measurements (data) is

processed such that redundant information is removed so that the derived values

(features) are more informative.

2.2.1 Feature Extraction

Feature extraction is in large part motivated by the fact that many tasks we wish

for machines to learn (such as image classification) often require an input which

is both mathematically and computationally convenient to process. However,

most real world data such as images, video, and sensor measurement does not

come in a form which fits these properties: they are usually highly non-linear,

often redundant and highly variable. Thus, feature extraction offers a method for

discovering useful features or representation from raw data such that it is easier

to process. Commonly, feature extraction is a dimensionality reduction process

where raw data that is high dimensional and usually redundant is reduced to

a lower dimensional representation which still accurately captures and describes

the information in the original data [209].

Feature extraction typically consists of two distinct stages. The first stage involves

finding points of interest in the images; these are usually spatial locations or points

in the image which are interesting or stand out in the image. Good keypoints are

typically chosen to be scale and rotation invariant such that after distortions to

the image, the same keypoints can still be recovered from the distorted image.

24

Chapter 2. Background

The second stage involves describing keypoints once they are detected using a

feature descriptor. These feature descriptors are engineered by a human using

prior knowledge of the real world. This allows for a set of descriptive features to

be created which ideally should capture the intrinsic properties of the raw input

data.

Lowe first introduced the Scale Invariant Feature Transform (SIFT) descriptor,

which detected interest points in a grayscale image, accumulating statistics of

local gradient directions of image intensities to give a summarising description of

local image structures in a local neighbourhood around each interest point [137].

Similarly, in [31], Dalal & Triggs proposed the Histogram of Oriented Gradi-

ents (HOG) descriptor for describing local object appearances and shapes using

distributions of intensity gradients. The method divided the image into small

connected regions called cells and a histogram of gradients directions is created

for the pixels within each cell. The HOG descriptor was the concatenation of

these histograms and was applied to pedestrian detection in static images. Bay et

al. proposed Speeded Up Robust Features (SURF), using a blob detector to find

points of interest and Haar wavelet response to describe these points [6]. This was

followed by the work by Calonder et al. which proposed the Binary Robust Inde-

pendent Elementary Features (BRIEF) descriptor [20]. This method generated

a binary descriptor by directly computing binary strings from point pairs within

image patches. The BRIEF descriptor was extended upon by the ORB descrip-

tor [180] and the BRISK descriptor [128]. The former approach combined the

Features from Accelerated Segment Test (FAST) detector [176] with the BRIEF

descriptor, modifying the feature descriptor by computing unambiguous orienta-

tions and making it robust to viewpoint changes. The latter approach introduced

the Binary Robust Invariant Scalable Keypoints (BRISK); unlike BRIEF or ORB

descriptors, pixels were sampled in a predefined pattern over concentric rings. It

achieved rotation invariance by rotating the sampling pattern by the computed

orientation of a given keypoint.

25

2.2. Representations of Data

2.2.2 Feature Learning

Feature learning (also known as representation learning) is a set of techniques

which allows for automatic discovery of representation features from raw data.

These representation features are effectively a transformation of raw data input

to a representation that can be effectively exploited in machine learning tasks.

As discussed in the previous section, feature extraction involves the use of hand-

crafted features. This requires expert knowledge about the problem at hand,

and often does not generalise well across tasks. This serves as motivation for the

design of efficient feature learning techniques which are able to generalise well

across tasks. Feature learning removes the need for manual feature engineering

and instead allows a machine to learn both a specific task and the necessary fea-

tures themselves. In recent times, this approach has been widely adopted within

the machine learning community as the method of choice for a variety of vision-

based tasks such as image classification [79,117,201], object detection [63,64,229]

and semantic segmentation [44, 77, 135]. The power of representation learning

allows for both features as well as classifier to be jointly learned and has recently

demonstrated enormous success in tasks where input data is high dimensional

and complex (as is often the case with image data). Feature learning can be sep-

arated into two categories: supervised and unsupervised learning. In supervised

feature learning, features are learned which represent the semantic labels under-

lying the data, whilst unsupervised feature learning involves discovering features

that capture some underlying structure about the input data.

One of the earliest forms of representation learning can be traced back to Principal

Component Analysis (PCA) [161] which was a statistical method for converting

a set of observations that were possibly correlated into a set of values that were

linearly uncorrelated called principal components. Following this, Linear Dis-

criminant Analysis (LDA) was proposed by Fisher. LDA offered a way to reduce

dimensionality while preserving as much of the class discrimination information

as possible, allowing for boundaries around clusters of classes to be found [46].

Data points are projected and separated out on a line with each cluster occupy-

26

Chapter 2. Background

ing areas in a relatively close distance to a centroid. This method was closely

related to PCA as both methods searched for linear combinations of variables

which best explain the observed data. The work of Rumelhart et al. introduced

what is arguably one of the most well-known and widely used methods for learn-

ing representations [181]. This method allowed for the weights of a model to be

estimated via backward propagation of errors (backpropagation). The method

is commonly used to train deep neural networks and is often used by the gra-

dient descent optimisation algorithm to learn representations by calculating the

gradient of the loss function with respect to parameters of the model. Comon

proposed the method of Independent Component Analysis (ICA) which was a

technique for revealing latent factors that underlie a set of random variables [28].

Local methods have also been deployed to discover the intrinsic structure of high

dimensional data such as Isometric Feature Mapping (Isomap) [207] and Locally

Linear Embedding (LLE) [179].

The first successful application of deep neural networks to dimensionality reduc-

tion by Hinton & Salakhutdinov introduced the concept of deep representation

learning [82]. Following this, Deng & Yu defined the concept of deep learning as a

class of machine algorithms that utilise a stack of many layers with nonlinear pro-

cessing units for feature extraction and transformation, with each successive layer

using the output from the previous layer as its input [35]. In this setup, higher

level features are derived from the lower level feature to form a hierarchical rep-

resentation of the data. Vincent et al. proposed the idea of stacked denoising au-

toencoders to locally remove noise from corrupted versions of the input data [217].

The introduction of the AlexNet framework paved the way for powerful represen-

tation (feature) learning methods. Donahue et al. proposed a feature extraction

method which used an ImageNet [34] pretrained AlexNet and repurposed these

featured to novel generic tasks. These features were named Deep Convolutional

Activation Features (DeCAF) [38]. Subsequently, Razavian et al. used these fea-

tures to improve performance on standard image classification tasks [196]. The

work of Zeiler & Fergus visualised the features learned by AlexNet in order to try

and form a better understanding of why they performed so well [227].

27

2.3. Artificial Neural Networks

2.3 Artificial Neural Networks

2.3.1 Perceptron Models

Perceptron-based models are approaches to learning which try to simulate the

human brain in a computer. They follow the principals of roughly how a brain

operates. A perceptron tries to artificially simulate a brain neuron in action. This

brain neuron is a cell made of two significant components: some dendrites and

an axon; these components were used to receive and send impulses respectively.

Axons and dendrites propagate signals to each other via a connection called a

synapse. Over time, the connections between axons and dendrites change; the

brain learns as the conditions under which neurons become excited evolve. Rosen-

blatt first proposed the concept of a perceptron as an algorithm for supervised

classification [175]. Since then, various linear perceptron methods would be pro-

posed [51, 133]. In the following section, we detail the more relevant multi-layer

perceptrons, which serve as a precursor to modern neural network models.

2.3.1.1 Multi-Layer Perceptrons

For most real applications, we use data that is complex and non-linear, which is

difficult for linear models to deal with. If instances are not linearly separable,

learning will never reach a point where all instances are classified properly. Multi-

layer perceptrons are a type of feed-forward neural network designed to try to

address this problem. A multi-layer perceptron (feed-forward network) consists

of a large number of connected units (neurons). The units in the network usually

consist of three classes: input units which receive information to be processed,

output units which output the results of processing, and hidden units which lie

in between the input and output units in the network and process the data.

Feed-forward Networks (FNNs) allow signals to travel one way only, from input

to output. A FNN relies on three fundamental aspects: input and activation

28

Chapter 2. Background

functions of the unit, architecture of the network and the weight of each input

connection. Since the first two aspects are fixed, the behaviour of the FNN is

determined by the current values of the input connection weights. The network is

initially seeded with random values for the connection weights, and then instances

of the training set are repeatedly exposed to the network. The values for the

input of an instance are placed on the input units and the output of the network

is compared with the desired output for this instance. Weights in the network are

then adjusted slightly so that the output values of the network converge towards

the values for the desired output.

Prior to the use of backpropagation to train multi-layer networks, Ivakhnenko

proposed the first general working learning algorithm using feed-forward multi-

layer perceptrons for supervised learning [93] alongside other early works on

multi-layer perceptrons with a single hidden layer [100, 213]. Ivakhnenko sub-

sequently proposed a deep network consisting of 8 layers [97], trained using the

Group Method of Data Handling (GMDH) algorithm [96]. The units within these

GMDH networks had activation functions that implemented Kolmogorov-Gabor

polynomials [94] which were a more general form of other widely used activa-

tion functions used today. The method involved incrementally growing layers

and training them using regression analysis [127] on a training set. The layers

were then pruned using a validation set using Decision Regularisation to remove

redundant units in the layer. This was followed by numerous applications of

GMDH-style networks [45,90,95,110,111,139,222].

Hornik et al. demonstrated that standard multi-layer feed-forward networks were

a class of universal approximators, being capable of approximating any Borel

measurable function from a finite dimensional space, provided that enough hidden

units were available [85]. In [146], feed-forward networks were trained using

genetic algorithms to improve classification on sonar images over networks trained

via backpropagation. Hagan & Menhaj showed that the Marquardt algorithm for

non-linear least squares could be incorporated into the backpropagation algorithm

to train feed-forward networks, demonstrating that this method was more efficient

29

2.3. Artificial Neural Networks

for small networks of a few hundred weights [74]. Huang et al. developed the

Extreme Learning Machine (ELM), which randomly assigned the weight values

in the hidden layers of a feed-forward network and instead tuned the output

weights; this allowed the networks to be trained extremely fast [87]. Liang et

al. extended upon this approach, by presenting a fast online sequential learning

algorithm for training ELMs [129]. The work of [65] looked at understanding

why deep feed-forward networks were so difficult to train. Specifically, Glorot &

Bengio wanted to understand why learning using gradient descent from random

initialisation fails in deep feed-forward networks. This led to the proposal of a

new initialisation scheme that allowed for significantly faster convergence in deep

neural networks.

2.3.2 Convolutional Neural Networks

Fukushima proposed the first ever Convolutional Neural Network (CNN) in the

form of the Neocognitron [56], which was based on the idea of simple and complex

cells, with simple cells basically performing what is known as the convolution

operation and complex cells performing average pooling. This model was inspired

by a model proposed by Hubel & Wiesel which had found simple and complex

cells in the visual cortex and proposed a model which cascaded these two types

of cells for solving pattern recognition tasks [88]. Although architecturally, the

Neocognitron shares many similarities with the modern CNN designs, it is not

trained using supervised backpropagation; rather, it adopts local Winner-Take-

All-based unsupervised learning rules during training [57].

The first use of backpropagation to a neural network specific application was de-

scribed in [221]. Several related works followed this which further explored the use

of backpropagation within neural network architectures [123,126,160]. LeCun et

al. proposed [124], where the standard backpropagation algorithm was first ap-

plied to a CNN framework to recognise handwritten ZIP codes in mail. This

framework would serve as an essential baseline for many modern CNN works

30

Chapter 2. Background

to follow and also introduced one of the most famous benchmarks in machine

learning, the MNIST data set. Following this, CNNs were used across a variety

of applications including fingerprint recognition [5] and object recognition [125].

Bengio et al. introduced a method called Greedy Layerwise Unsupervised Pre-

training, in which a hierarchy of features was learned one layer at a time [8]. The

approach utilised unsupervised feature learning to identify new transformations

at each layer composed from transformations learned at the previous layer. This

allowed each iteration of transformations to add one layer of weights to the deep

neural network so that the layers could be assembled together to initialise a deep

supervised predictor such as a neural network classifier.

However, for computer vision tasks, CNNs would still arguably take the backseat

to other machine learning methods such as support-vector machines (SVMs) and

decision forests which would typically outperform them on several benchmarks.

The hallmark work of [117] would change the field through the introduction of

the AlexNet framework for large scale image classification on the ImageNet data

set [34]. This CNN-based framework introduced the now popular Rectified Lin-

ear Unit (ReLU) activation, combining this with dropout [203] and weight decay

regularisation [118]. The combined result allowed AlexNet to achieve unrivalled

performance on the image classification task. This was subsequently followed by

the Visual Geometry Group Network (VGGNet) [201]. This network offered a

deeper architecture and used smaller kernel spatial sizes of 3× 3 windows which

would go on to become a standard for subsequent network architectures. He et

al. would create the next baseline CNN architecture which featured the use of

“skip” connections and employed a residual learning framework [79]. The re-

sulting framework was aptly named Residual Networks and enabled the training

of networks with hundreds to thousands of layers by addressing a key limita-

tion of vanishing gradients in (very) deep networks at the time. Since these

developments, CNNS have been successfully applied by numerous works to a

wide-variety of vision-related tasks including image classification [79,86,117,201],

object detection [63,64,170], semantic segmentation [131,132,135,230] and depth

estimation [41,120,134,187].

31

2.4. Generative Neural Network Models

2.4 Generative Neural Network Models

Generative neural network models are a subset of generative models which try

to learn a data distribution given samples from a distribution. Generally, there

are two major categories of generative neural network models: Variational Au-

toencoders (VAE) [108], and Generative Adversarial Networks (GAN) [68]. In

this section, we briefly outline recent works in both categories. Whilst there are

many works that approximate probability distributions, here we have described

a selection that are most related to the work in this thesis. For the interested

reader, we encourage them to refer to more comprehensive reviews in [7] and

more recently [174].

2.4.1 Variational Autoencoders

Autoencoders are known for being an efficient method for reducing the dimen-

sionality of data, which rapidly gained popularity since [82] first implemented

the encoder-decoder setup using neural networks. Kingma & Welling introduced

the Variational Autoencoder (VAE) that minimises the Variational Lower Bound

by formulating it as an encoder-decoder scheme [108]. Since its introduction,

VAEs have found a wide use of applications. The work of Salimans et al. intro-

duced a variational approximation to the Markov Chain Monte Carlo (MCMC)

method [185], proposing the Conditional Variational Autoencoder (CVAE) which

models latent variables and data both conditioned to some random variables.

Rezende et al. used variational inference to train a generative model using an

approach which performed stochastic backpropagation through a latent Gaussian

representation [172]. The work of Kulkarni et al. used a method to divide the

learned latent space of a VAE into extrinsic and intrinsic components [119]. This

allowed the extrinsic variables to represent controllable parameters of the image

whilst the intrinsic parameters represented aspects of the image that were in-

variant to the extrinsic values. Walker et al. performed forward prediction from

32

Chapter 2. Background

static images using a probabilistic prediction framework using VAEs [219].

2.4.2 Generative Adversarial Networks

Generative Adversarial Networks [68] are a another subset of generative models

- instead of explicitly trying to form an expression for the density function of

the input data space, GANs learn to sample from the distribution by learning a

mapping from some source of noise to the input data space. Following their in-

troduction by Goodfellow et al. , GANs have faced various training issues due to

the unstable nature of the minimax loss functions they were typically trained on.

Several works since have contributed ways to ease training of GANs; most notably

the work of Radford et al. explored architectural changes and utilised deep con-

volutional networks which opened up using regularisation methods such as batch

normalisation [92], significantly improving on training stability and mitigating

mode collapse [168]. Other works looked at modifying the objective function

GANs were trained on. In particular, Arjovsky et al. proposed the Wasser-

stein Generative Adversarial Network which considered using the Earth-Mover’s

Distance (EMD) as an alternative loss function [2]; this better coupled training

with quality of generated samples. This was followed up by a extension work

by Gulrajani et al. which improved upon this by using gradient penalisation

to enforce the Lipschitz continuity instead of the weight clipping method of the

original work [70]. Modern works in the literature investigate the task of high

resolution image generation [102, 228] by adopting a popular technique of pro-

gressively growing a GAN, which first tries to generate a low resolution image

or estimate a low dimensional distribution, and gradually stack layers of higher

resolutions, using the lower resolutions as a preconditioning. Recently, the condi-

tioning of a GAN has been studied in order to improve stability of training. The

work of Mescheder et al. showed that local convergence and stability properties

of GAN training was tied to the eigenvalues of the Jacobian of its associated

gradient vector field [143]. This work was followed up with a large scale study

which investigated the convergence properties of various GAN training methods,

33

2.4. Generative Neural Network Models

which found that simple descent-ascent update rules might not converge in a

GAN setting [141].

34

Chapter 3

Preliminaries

In order to make this thesis as self-contained as possible, this chapter presents

mathematical concepts that are commonly used throughout the remainder of the

thesis. First, we give a brief outline of machine learning and its basic premise.

We then detail some assumptions made about our models and data. Following

this, we cover some of the common optimisation methods used including gradient

descent and its stochastic variant. We provide an overview of ensemble methods

related to this thesis, including various forms of decision forests and boosting

algorithms. Subsequently, we summarise various deep learning concepts including

various neural network layer components, how these components are initialised as

well as various methods for regularising these deep models. Finally, we conclude

this chapter by outlining the software packages used to implement the frameworks

described in this thesis.

35

3.1. Model and Data

3.1 Model and Data

In the context of learning from data, we make some general assumptions about

the nature of the data itself as well as the functions obtained from our learning

algorithms. Here, we detail the key assumptions about our data as well as our

model which learns a function to map input data to target outputs.

3.1.1 Independent and Identically Distributed Data

A key ability that a machine learning algorithm should possess is the ability to

generalise to new data that was not seen during training. Generally, we assume

there is some common structure between the data in order to generalise from the

training set to a test set. We typically make a i.i.d assumption; that is, data is

independently and identically distributed. In other words, we assume that each

sample is generated independently from other samples, with each sample drawn

from the same distribution pdata [29]. We can express this formally as:

pdata(X, y) =
∏
i

pdata(Xi, yi) (3.1)

3.1.2 Model Smoothness

Smoothness is an underlying assumption in machine learning, since prediction is

feasible when the behaviour of a system is locally smooth. A key assumption

we make is that the “true” model we are trying to learning is smooth - the

underlying function that the model represents which maps data features to target

outputs is not too steep anywhere: an input X produces an output Y and a

corresponding input close to X should produce an output proportionally close

to Y (i.e. similar samples should have similar target outputs). Indeed, the

36

Chapter 3. Preliminaries

accuracy of correct predictions improves with increasing smoothness of the local

neighbourhood between samples from the data [42]; the addition of more training

data makes this smoothness more probable since these neighbourhoods are now

smaller.

3.1.3 Limited Model Complexity

We assume that the model is not overly complex and can be represented fairly

simply. This assumption follows Occam’s razor [10], where given two explanations

for an occurrence, the explanation that requires less speculation is usually better.

This assumption allows for regularisation methods to be applied to our model

which correspond to priors from a Bayesian viewpoint.

3.1.4 Model Selection

For supervised learning tasks, when learning in high-dimensional input spaces

with limited training data (as is often the case with image data), we make a

simplifying assumption on the structure of the best model f ∗. More specifically,

for supervised learning algorithms, we assume that f ∗ (or a good enough approx-

imation) belongs to a family of candidate models F , also known as hypotheses,

of restricted structure. Under this setting, model selection is defined as finding

the best model amongst F given the training data.

3.1.4.1 Model Bias and Variance

When selecting models, generally there are two important aspects to consider: its

bias and variance. The bias of a model is the error due to incorrect assumptions

made by the model’s learning algorithm and describes the overall mean error of

the model. A high model bias indicates that the model may not be able to infer

37

3.1. Model and Data

(a) Too Simple (b) Too Complex (c) Good

Figure 3.1: (a) When the model is too simple, it lacks the capacity to capture the
structure of the data and relate this to the target output resulting in poor predictive
performance on both seen and unseen data. (b) When the model is too complex, it
mistakenly relates random noise to the underlying structure of the data and relates
this to this target output which leads to poor performance on unseen data. (c) A
good model finds a compromise between bias and variance in which there is enough
complexity in the model to capture the regularities of the data, but not too much such
that small irregularities in the training data are also captured.

the structure of the data and relate this to the target output. This is illustrated

in Fig. 3.1a. The variance of a model describes the error due to sensitivity to

small irregularities in the training data. A model with high variance can fit to

the random noise in training data, instead of capturing the relations between the

data’s features and target output. This is illustrated in Fig. 3.1b.

Ideally, we would like to select a model which minimises both bias and variance.

However, the bias-variance tradeoff makes this a difficult task; it describes a

property in predictive models where models with a lower bias in parameter esti-

mation tend to exhibit higher variance in parameter estimates across samples and

vice versa. This makes it difficult to choose a model which both accurately cap-

tures the regularities in the training data but also generalises well to unseen data:

complex models have fitting power which enables them to represent the training

data well, however they are at risk of over-fitting to the noise in the training

data. In contrast, simpler models tend to under-represent the training data and

although offer lower variance predictions between training and unseen data, they

may fail to capture key relevant relations between features in the training data

and target outputs. Good model selection involves selecting a model that offers

a compromise between bias and variance (shown in Fig. 3.1c).

38

Chapter 3. Preliminaries

Iterations

L
os
s

Training
Validation

(a) Over-fitting

Iterations

L
os
s

Training
Validation

(b) Under-fitting

Figure 3.2: (a) A model over-fitting to the training data. Initially, validation loss
decreases proportionally with training loss as the model learns from the data. As
training progresses, the model shows signs of over-fitting to the training data and
the validation loss begins to diverge from the training loss and rapidly increases. (b)
A model under-fitting to the training data. Over the training schedule, although the
validation loss never drastically diverges from training loss, the model lacks the capacity
to fully learn from the training data resulting in poor predictive performance on the
training data and subsequently the validation data.

3.1.4.2 Over-fitting and Under-fitting

The ability for a model to generalise is a key criteria that defines its ability to per-

form robust pattern recognition. For a learning algorithm to be useful, not only

does it need to perform well on the training data it has learned from, but it must

be able to generalise to samples unseen during the learning process. An over-

fitted model will be unable to generalise to unseen samples since it has been too

finely tuned towards its training set; in this case, the model is considered to con-

tain more parameters than can be justified by its training data [43]. Over-fitted

models tend to perform very well when considering samples from its training set

since they have essentially memorised the entire training set, but tend to perform

poorly when shown samples outside of its training set. This is due to the model

capturing the noise in its training data. This is illustrated in Fig. 3.2a. Gener-

ally, over-fitted models exhibit low bias but high variance. On the other hand,

a model is said to be under-fitted if it does not possess the capacity to correctly

capture the underlying trend or structure of its training data. Intuitively, under-

fitting occurs in models that cannot fit the data well enough because the model

39

3.1. Model and Data

is too simple. Under-fitted models tend to show low variance, but a high bias.

This is illustrated in Fig. 3.2b. Both over-fitted and under-fitted models result in

poor performance. Generally, in deep models, over-fitting is more common than

under-fitting and it is important to utilise a validation set to assess a model’s

true predictive power.

40

Chapter 3. Preliminaries

3.2 Learning from Data

Many problems that we wish to solve in the real world can be thought of as

finding a mapping from some input space X to a corresponding output space

Y (i.e. we are trying to find some function f which describes this mapping

f : X → Y). For example, in image classification tasks we require some image

data X to be correctly classified with their corresponding class labels Y . In this

case, we can specify Y to be some probability value in the interval of [0, 1] which

indicates the probability of that an image X contains an object of the required

class. However, specifying a function f which performs this mapping is non-trivial

using conventional means. It is not clear how one could hand-engineer a function

which recognises an image of a cat.

3.2.1 Maximum Likelihood Estimation

One of the most well-known approaches for modelling data is Maximum likelihood

estimation (MLE). This method estimates parameters of a statistical model given

observations of some data, through finding parameter values which maximise the

likelihood of the observed data, given the parameters of the model. MLE defines

a probabilistic model that is controlled by a set of parameters θ. This model gives

a probability distribution pmodel(x; θ) over the examples x. We can then find the

correct value of θ ∈ Θ where Θ defines the set of all possible values. Assuming

all samples are drawn from a data distribution pdata and are i.i.d, we can define

the likelihood function as:

L(θ) =
∏
i

pmodel(Xi; θ) (3.2)

Hence, the estimator for maximum likelihood estimation as:

θ∗ = arg max
θ ∈Θ

∏
i

pmodel(Xi; θ) (3.3)

41

3.2. Learning from Data

Equation 3.3 indicates that the objective of maximum likelihood estimation is to

choose parameters θ∗ which maximises the probability that the given model will

generate the training data. We can do this by finding the values for θ such that

the first-order derivatives equal zero, i.e:

∂L
∂θ

= 0 (3.4)

Normally, instead of optimising Equation 3.2, we exploit the monotonically in-

creasing property of the logarithm to optimise the log likelihood, which is max-

imised for the same value of θ. Maximising the log likelihood addresses two key

issues that can arise in digital numerical computation; namely numerical under-

flow as a result of taking the product of several factors in the interval of [0, 1]

as well as conveniently decomposing this product into a sum of separate exam-

ples which is much more convenient from a mathematical perspective. Hence, in

practice we find the estimator which maximises the log likelihood:

θ∗ = arg max
θ ∈Θ

∑
i

log pmodel(Xi; θ) (3.5)

We can recover the true probability distribution pdata using maximum likelihood

estimation, if we fulfil two criteria:

1. pmodel(x; θ) possesses enough model capacity such that pdata(x) is contained

in the set of samples generated by pmodel(x; θ).

2. We have an infinite number of samples drawn from pdata which are inde-

pendent and identically distributed.

Practically of course, the training set contains a finite set of data in which case

the maximum likelihood estimator must also generalise well. This is generally

infeasible when very little data is available. In the case of very little data be-

ing available, maximum likelihood estimation of parametric models can perform

quite poorly as its sample set is simply too small to properly represent the true

distribution it is trying to estimate.

42

Chapter 3. Preliminaries

3.2.2 Supervised Learning

In supervised learning, we have a training data set of n examples with their

corresponding labels (x1, y1), (x2, y2), ...(xn, yn). Again, we assume our data is

made of independent and identically distributed (i.i.d) samples drawn from a

data distribution pdata (i.e. (xi, yi) ∼ pdata∀i). f is then a function which learns

the mapping from X to Y , F : X → Y . In this case, f belongs to a class

of potential functions F that we can choose from. Supervised learning involves

finding the f which best fits the training examples. This learning is enabled

through a training signal commonly known as a loss function L. Here, L(ŷ, y)

denotes a function which outputs a scalar-value which measures the dissimilarity

between the annotated label yi (commonly referred to as ground truth) and the

predicted label output by ŷ = f(xi). Ideally, we would like to find f ∗ ∈ F that

satisfies the following:

f ∗ = arg min
f∈F

E(x,y)∼D[L(f(x), y)] (3.6)

This indicates that in order to find f ∗, we need to minimise the expected loss

over the data generating distribution Pdata. f ∗ describes the mapping function

we could learn if we had access to an infinite amount of training data; once

f ∗ is learned we can then use it to map any element from X to Y . However,

this optimisation problem is intractable since we do not have access to all the

elements in the data distribution Pdata. In practice, we use the i.i.d assumption

of our training data so that we can approximate the expected loss in Equation 3.6

by averaging loss over available samples from the training data:

f ∗ ≈ arg min
f∈F

1

N

N∑
i=1

L(f(xi), yi) (3.7)

43

3.3. Optimisation

3.3 Optimisation

Optimisation lies at the heart of machine learning; a majority of machine learning

problems can be reduced to optimisation problems. In this section, we detail

some of the optimisation techniques that are relevant to the work presented in

this thesis.

3.3.1 Gradient Ascent

In Section 3.2.1, we discussed a closed-form optimisation solution in the form

of maximum likelihood estimation. In other words, we can define an objective

function given by the log likelihood:

L(θ) =
∑
i

log pmodel(Xi; θ) (3.8)

solving for the optimisation problem:

maximise L(θ)

subject to θ ∈ Θ

Sometimes, as in the case of maximum likelihood estimation, this can be achieved

simply by solving ∇θL(θ) = 0 for θ. However, there is often no closed-form that

can be recovered to Equation 3.8 in which case an iterative optimisation method

must be employed to obtain the solution.

One such iterative optimisation method is gradient ascent for maximising likeli-

hood functions, or gradient descent if we are minimising loss functions. The key

idea behind this algorithm is that ∇θL(θ) gives the direction where L increases

most rapidly in a local neighbourhood around θ. Hence, in order to optimise L,

we should iteratively take small steps in the direction given by the gradient ∇L.

44

Chapter 3. Preliminaries

Using the gradient ascent algorithm, we can compute the update to apply to θ

for iteration t using the following:

θ(t) = θ(t−1) + α(t)∇θL(θ) (3.9)

where α(t) controls the step size to be taken in the direction given by ∇θL(θ)

(also commonly known as the learning rate) [27].

3.3.2 Stochastic Gradient Ascent

Consider a data set with a large redundancy in examples; it may only take a small

number of examples from this data set to get a good representation of the data

set. Subsequently, to get a good estimate of the direction of the gradient from the

current value of θ, only a small number of examples are required as well. Using

gradient ascent, we would need to compute the gradients contributed by every

example in the data set; this would be the case even if some examples are the

exact same as others in the data set. Moreover, we know that the mean standard

error of our estimate of the true gradient will decrease at a rate of slower than

linearly as more examples are added. Since computation of the estimate increases

linearly, it is usually not computationally cost effective to use the entire data set

to estimate the gradient.

Fortunately, an alternative algorithm to gradient ascent resolves this problem.

Stochastic Gradient Ascent [27] is an approximation of the gradient ascent algo-

rithm and uses a modified update rule:

θ(t) = θ(t−1) + α(t)∇θ

∑
i∈B

log pmodel(Xi; θ) (3.10)

where B is a randomly selected subset of 1, ...,m. This randomly selected set of

examples are called a mini-batch. Typically, mini-batch sizes range from 1 to 128.

Stochastic gradient ascent alleviates the computational load issues associated

45

3.3. Optimisation

with gradient ascent by assuming that a randomly (stochastically) selected set

of samples represents the entire data set well and thus can provide accurate

estimates of the true gradient. Stochastic gradient ascent is also believed to

offer other benefits aside from reducing redundancy in computations. The main

additional benefit would be improving learning through injection of noise which

allows saddle points or local maxima to be escaped [59] and incidentally reducing

over-fitting.

So far, we have looked at optimisation in terms of ascending the log likelihood.

In practice however, optimisation is most commonly performed as stochastic gra-

dient descent (SGD). Instead of maximising the log likelihood, we can think of

learning as descending a cost function instead. Referring back to ascending the

log likelihood, we can of course treat the problem as descending the negative log

likelihood and estimate the same values for θ.

3.3.3 Newton’s Method

Newton’s method (also known as the Newton-Raphson method) is an efficient

approach to gradient ascent. It is an iterative root-finding algorithm which uses

the first few terms of the Taylor series of a function f around the neighbourhood

of a candidate root. Given a function f , the Taylor series of f about the point

x = x̂+ ε is given by:

f(x̂+ ε) = f(x̂) + f ′(x̂)ε+ 0.5f ′′(x̂)ε2 + ... (3.11)

where x̂ is the estimate of x and ε is an offset needed to land closer to the root

starting at an initial guess x̂0. Assuming that f is convex around the neighbour-

hood of the true solution x∗, we can approximate f using the first-order Taylor

series expansion for the current iteration i around the estimate of the model

parameters x̂i:

f(x̂i + ε) ≈ f(x̂i) + f ′(x̂i)ε (3.12)

46

Chapter 3. Preliminaries

This can be expanded to the gradient of f , where the solution x∗ should exist

where f ′(x∗) = 0, where we can again approximate this function using the first-

order Taylor series expansion for the gradient of the function f for the current

iteration i:

f ′(x̂i + ε) ≈ f ′(x̂i) + f ′′(x̂i)ε (3.13)

We start with an initial estimate x̂0 and set f ′(x̂0 + ε) = 0. Solving Eq. 3.13 for

ε ≡ ε0 yields the update step needed to land closer to the root starting from the

initial guess x̂0:

ε0 = − f
′(x̂0)

f ′′(x̂0)
(3.14)

This update can then be iteratively applied to obtain an update procedure:

x̂n+1 = x̂n − f ′(x̂n)

f ′′(x̂n)
(3.15)

For n = 1, 2, 3, ... and, given an initial good estimate of the root’s position x̂0,

safe convergence of Newton’s method is called an approximate zero.

3.3.4 Gauss-Newton Method

For minimisation problems in which the objective function is expressed as a sum

of squares, it is often beneficial to take advantage of the special structure of the

problem. We can express the objective function as the norm squared of a residual

error r(x):

f(x) = r(x)2 (3.16)

The first and second-order derivatives of Eq. 3.16 are:

f ′(x) = 2r(x)r′(x)

f ′′(x) = 2(r(x)r′′(x) + (r′(x))2)
(3.17)

The Gauss-Newton method uses the approximation to the second derivative

f ′′(x). It assumes that the Hessian of the residual r′′(x) becomes more and more

47

3.3. Optimisation

negligible as the error reduces and hence drops this term from f ′′(x) in Eq. 3.17.

The approximation to f ′′(x) is then:

f ′′(x) ≈ 2(r′(x))2 (3.18)

Hence the update procedure for the Gauss-Newton method becomes:

x̂n+1 = x̂n − 2r(x̂n)r′(x̂n)

2(r′(x̂n))2
(3.19)

This allows the Gauss-Newton method to be an efficient approximation of New-

ton’s method: this approximation does not lose the robustness of Newton’s

method but significantly reduces the average computation cost due to remov-

ing the requirement of computing second-order derivatives.

48

Chapter 3. Preliminaries

3.4 Ensemble Methods

Ensemble methods are meta-algorithms which combine several machine learn-

ing methods (or base learners) into a single predictive model with the intent of

decreasing variance, bias or improving overall predictions. Generally, ensemble

methods can be divided into two groups:

• Sequential ensemble methods generate base learners iteratively, with each

base learner conditioned upon the information learned by the existing en-

semble (e.g. Adaptive Boosting). These methods exploit the dependence

between base learners in the ensemble and their main mechanism for im-

proving overall performance is by assigning higher weights to previously

misclassified samples for each iteration of base learner being learned.

• Parallel ensemble methods generate base learners in parallel (e.g. Random

Forests). These methods exploit the independence between base learners

since variance (and in general, error) can be reduced by averaging across

multiple base learners.

In this section, we cover some details related to the ensemble methods relevant

to this thesis.

3.4.1 Derivative-Free Optimisation

In the previous section, we discussed some optimisation methods which utilised

gradient information to update the parameters in a model. An alternative ap-

proach to solving an optimisation problem is to use derivative-free optimisation.

As the name implies, this approach does not rely on derivative information to find

optimal solutions. This could be due to the derivative of the objective function

49

3.4. Ensemble Methods

f being unavailable, unreliable or impractical to acquire (i.e. f could be non-

smooth, expensive to evaluate, or possess noise such that methods which rely on

derivatives are of little use).

Finding the optimal points for these types of problems is referred to as derivative-

free optimisation; this involves using a stochastic hill-climbing method that ef-

fectively guesses and checks potential θ which are randomly selected from some

distribution. This method involves drawing a large number of θ at random, check-

ing each one and making a selection based on the parameter that maximises

the objective. This approach ties derivative-free methods closely to black-box

optimisation since both approaches do not obtain any gradient information for

optimisation [4].

Ensemble methods commonly use derivative-free optimisation techniques to train

their models, particularly in the case of those using decision trees as their base

learner since it is infeasible to obtain derivatives for the routing operations they

perform (although there also exist gradient-based optimisation methods such as

Gradient Boosted Trees [55]).

3.4.2 Decision Forests

Decision forests are an ensemble learning method for performing tasks such as

classification and regression. This approach constructs a series of decision trees

during the training schedule. Each individually constructed decision tree outputs

a distribution which is computed from observed class labels sampled from the

training data set and these distributions are subsequently aggregated to form an

overall prediction for the entire ensemble as whole.

50

Chapter 3. Preliminaries

3.4.2.1 Decision Trees

The basic premise for a decision tree is to use a splitting criteria to separate

out data. This is achieved through routing of data through the internal decision

nodes of the decision tree which determines the path taken to the terminating

leaf node. The internal nodes of each decision tree are a set of decision nodes,

D = {d0, · · · , dN−1}, each of which holds a decision function dk(x; θk), where θk

are the parameters for decision node k. For binary decision trees, the decision

function for each decision node is defined as dk(x; θk) : X → [0, 1], which routes a

sample to its left or right child node. Collectively the decision nodes route data,

x, through the tree until a terminal leaf node is reached: ` = δ(x; Θ). Here, δ

signifies the routing function which directs data x to the terminal leaf node `,

given the tree’s decision node parameters Θ. This is illustrated in Fig. 3.3. The

leaf nodes contain classification information in the form of class label probability

distributions, q = Q(`). These distributions are formed from the training data

and accompanying ground truth class labels. For a terminal leaf node `, the

stored probability for class j is given as:

q`,j =

∑
i cij
n`

(3.20)

where n` is the total number of samples routed into leaf node ` and cij is the

observed class label for sample i in class j i.e:

cij =

1, if sample i has class label j

0, otherwise
(3.21)

Typically, decision trees are trained greedily at the local decision node level, where

each decision node selects a decision function which best splits the incoming data

according to some criteria such as Shannon entropy or the Gini index [16].

51

3.4. Ensemble Methods

d0

d1

d3 d4

d2

d5 d6

Figure 3.3: A typical decision tree layout with a data sample being routed highlighted
in blue

3.4.2.2 Ensembles of Decision Trees

An ensemble of T number of decision trees forms a decision forest. Each deci-

sion tree in the decision forest outputs a prediction about the data in the form

of a marginal probability distribution as described in Eq. 3.20. The final pre-

diction offered by the decision forest is the average of the marginal probability

distributions delivered by each decision tree:

P (class j|x,Θ,Q) =
1

T

T∑
t=1

Qt(δt(x; Θt))j (3.22)

where Qt, δt and Θt are the respective distributions, routing functions and pa-

rameters of tree t, while Θ and Q are the collected parameters of decisions and

distributions of the ensemble.

3.4.3 Induction of Decision Trees

Training decision trees involves locally searching and choosing the best split func-

tion at each node in the decision tree. The most common methods for training

a decision tree are the Iterative Dichotomiser 3 (ID.3) [166] and C4.5 algorithms

(an extension to the earlier ID.3 algorithm) [167]. Both ID.3 and C4.5 utilise the

concept of information entropy as a criteria for selecting split nodes during the

52

Chapter 3. Preliminaries

tree construction process.

3.4.3.1 Information Entropy

Information entropy is used to measure the amount of information there is in a

state. In general, the more uncertainty or randomness there is in the state, the

more information it will contain (increasing information will result in a decrease

in uncertainty or entropy). Whilst training decision trees, at each decision node,

the state represents the class distribution of observed labels from the data set. In

this context, information entropy for a discrete random variable X is measured

for each possible data point i using the negative logarithm of its probability mass

function pi: H(X) = −
∑

i pi logb pi, where b is the logarithm base (usually 2).

3.4.3.2 Iterative Dichotomiser 3 Algorithm

One of the earliest algorithms for constructing decision trees was the Iterative

Dichotomiser 3 (ID.3) algorithm [166]. The ID.3 algorithm starts with a root

node and recursively splits the data set into subsets. For each decision node,

a set of potential attributes A, is randomly selected for the node. From this,

each potential parameter in the set is independently evaluated and the weighted

information entropy of the potential child nodes is measured. The parameter

which produces the lowest weighted entropy (and subsequently offers the largest

information gain) is selected. The set of data is then partitioned according to the

selected parameter to produce subsets of the data. This is illustrated in Fig. 3.4.

Information Gain The splitting criteria that ID.3 uses for determining the local

optimal decision node split is to select a decision which maximises the information

gain. For a split function being considered, the information gain is measured

as the difference in weighted information entropy (or Shannon entropy [195])

53

3.4. Ensemble Methods

d0

d1 d2

Lowest Entropy

d0

Figure 3.4: The ID3 algorithm selects a decision function based on an entropy min-
imising criteria. A decision tree is recursively constructed in this manner.

between the pre-split observed class distributions and post-split observed class

distributions in the resulting child nodes. Formally, the expected information

gain IG is the change in information entropy H from its prior state to its state

after it takes some information as a result of splitting on a selected split attribute

a.

Let T denote the set of all training samples, with each sample in the form (x, y) =

(x1, x2, x3, ..., xk, y), where xa is the value of the ath attribute of sample x and y

is the corresponding class label. The information gain for the attribute a can be

defined in terms of the information entropy H(·), which is the difference between

the a priori information entropy H(T) and the conditional entropy H(T |a):

IG(T, a) = H(T)−H(T |a) (3.23)

The ID.3 algorithm will recursively apply the same procedure to each child node

created and stop when one of the following stopping criteria is met:

• a subset only contains elements of the same class. In this case, a leaf node

54

Chapter 3. Preliminaries

is created and labelled with the class of the elements in the subset.

• there are no attributes left to select. In this case, a leaf node is created and

labelled with the most common class amongst elements in the subset.

• the subset contains no elements. In this case, a leaf node is created with

the most common class amongst elements in the parent node.

• a maximum specified tree depth is reached. In this case, a leaf node is

created and labelled with the most common class amongst elements in the

subset

Algorithm 3.1 summarises the full procedure for the ID3 algorithm for construct-

ing a single decision tree. Whilst the ID.3 algorithm was a powerful algorithm

Algorithm 3.1 ID3 Algorithm

Require: N : training set
Require: Feature pool size S
Require: Maximum tree depth Dmax

while m < Dmax do
In parallel:
for all s ∈ {1, ..., 2Dmax−1} do

In parallel:
for all p ∈ {1, ..., S} do

Choose an attribute a
Calculate total weighted entropy H for both child nodes

end for
Choose value for a for node d that minimises H

end for
end while=0

it had some shortcomings. Attributes must be nominal values, the data set was

not allowed to include missing data and the algorithm had a tendency to over-fit

to the training data.

55

3.4. Ensemble Methods

3.4.3.3 C4.5 Algorithm

The ID.3 algorithm was extended into the C4.5 algorithm, which made a number

of improvements over the the original ID.3 algorithm. Similar to the ID.3 algo-

rithm, C4.5 builds decision trees from a set of training data using information

entropy as a splitting criteria for selecting the internal decision split functions in

the tree. However, the C4.5 algorithm addressed several of the limitations of the

original ID.3 algorithm.

A key improvement was that C4.5 allowed for handling of both continuous and

discrete attributes; for continuous attributes, C4.5 uses a threshold which parti-

tions the list of samples to those whose attribute value lies above the threshold

and those whose attribute are less than or equal to it. Additionally, to account for

ID.3’s limitation to being overly sensitive to features with large values, it used the

information gain ratio for selecting decision functions. This was a modification of

the information gain splitting criteria which reduced the bias towards favouring

attributes with a large number of distinct values.

Information Gain Ratio The information gain ratio describes the ratio between

the mutual information of two random variables and the entropy of one of them.

This value is guaranteed to be in the range of [0, 1], except for cases where it

is undefined. We first define the split information value SI which represents

the potential information generated when splitting the training data T into m

partitions, which corresponds to m outcomes on the chosen attribute a (i.e. the

intrinsic value of the attribute):

SI(T, a) = −
m∑
j=1

Tj
|T |

logb
Tj
|T |

(3.24)

Where Tj corresponds to the jth partition of the training set T . Hence, the split

information penalises information gain criteria; it is used as a normalisation term

which scales the information gain depending on the number of choices available

56

Chapter 3. Preliminaries

for a given attribute. We can subsequently compute the gain ratio GR as the

ratio between the information gain and split information:

GR(T, a) =
IG(T, a)

SI(T, a)
(3.25)

3.4.3.4 C5.0 Algorithm

The C5.0 Algorithm further extended upon the C4.5 algorithm. The largest

improvement was towards C4.5’s speed where C5.0 was significantly faster by

several orders of magnitude. C5.0 offered further memory usage improvements via

training of smaller decision trees when compared to C4.5. Additionally, support

for boosting was added as well as a weighting mechanism for handling different

cases and misclassification types.

3.4.4 Boosting

Boosting algorithms are a set of related ensemble learning methods which iter-

atively construct a strong classifier by combining a series of weak classifiers (or

weak learners). The core concept of boosting algorithms relates together strong

and weak learners through a notion of weak and strong learnability from the Prob-

ably Approximately Correct learning framework. The choice of the weak learner

can be any classifier, although decision trees and kernel-based classifiers such as

support vector machines have historically been a popular choice [52,54,188].

3.4.4.1 Probably Approximately Correct Learning

Probably approximately correct (PAC) learning theory helps analyse whether

a learner H will probably output an approximately correct classifier, and under

what conditions this occurs. The notion of weak learnability was first introduced

57

3.4. Ensemble Methods

in [103] which first considered the equivalence between weak and strong learn-

ability. First we give the definitions of weak and strong learnability as follows:

Definition 3.4.1 (Weak PAC Learnability). A concept class C is weakly PAC

learnable using a model class F if there exists a learner H and a value γ ¿

0 such that for any c ∈ C, for any distribution P over the input space, for any

δ ∈ (0, 0.5), given access to a polynomial (in 1/δ) number of examples drawn i.i.d.

from P and labelled by c, H outputs a function f ∈ F such that with probability

at least 1− δ, err(f) ≤ 0.5− γ.

Definition 3.4.2 (Strong PAC Learnability). A concept class C is strongly

PAC learnable using a model class F if there exists a learner H such that for

any c ∈ C, for any distribution P over the input space, for any ε ∈ (0, 0.5) and

δ ∈ (0, 0.5), given access to a polynomial (in 1/ε and 1/δ) number of examples

drawn i.i.d. from P and labelled by c, L outputs a function f ∈ F such that with

probability at least 1− δ, err(f) ≤ ε.

In other words, the learner H will output a classifier with probability bounded

by δ which will achieve an error over the distribution of inputs bounded by ε. If

we know that a target concept is PAC-learnable, we can bound the sample size

n required to probably learn an approximately correct classifier:

n ≥ 1

ε
(ln |F|+ ln

1

δ
) (3.26)

From Eq. 3.26, we observe the following: as the allowable error decreases, the

required sample size must increase. Likewise, n increases with the probability of

an approximately correct learner and with the size of the model space F (the set of

models that the algorithm considers). Hence, n represents the sample complexity ;

that is, the minimum number of training samples necessary to successfully learn

a target concept, given an error ε and probability of an approximately correct

58

Chapter 3. Preliminaries

learner δ [212].

3.4.4.2 Discrete AdaBoost

The Adaptive Boosting (AdaBoost) algorithm [188] can be used to improve the

performance of any given learning algorithm. Like other boosting methods, it

enables the construction of a strong classifier using a set of weak classifiers, where

the resulting strong classifier has an improved performance over its weak classifier

components. The AdaBoost algorithm achieves this by selecting and combining

discriminative features using an iterative process that weights training samples

based on how difficult they are to classify.

The following describes the Discrete AdaBoost algorithm for a two-class classifica-

tion problem. Suppose we have a set of training samples (x1, y1), (x2, y2), ...(xN , yN)

where xn refers to a training sample from the sample space X and yn is its corre-

sponding class label Y ∈ {−1,+1}. Our boosted classifier is composed of a set of

weak classifiers {h1, ..., hK}, each of which outputs a prediction hk(xi) ∈ {−1,+1}
for each training sample. Each iteration constructs and adds a weak classifier to

our boosted classifier H where after the (k− 1)-th iteration the boosted classifier

can be expressed as a linear combination of the weak classifiers:

Hk−1(xi) = α1h1(xi) + ...+ αk−1hk−1(xi) (3.27)

For the k-th iteration, we want to boost H such that it improves in performance

after the k-th weak classifier is added to the ensemble:

Hk(xi) = Hk−1(xi) + αkhk(xi) (3.28)

Hence, we would like to determine the best choice for the weak classifier hk as well

as its weight value when being added to the boosted classifier Hk. At iteration

k, the total loss of the strong classifier Lk is the sum of its exponential loss on

59

3.4. Ensemble Methods

each sample:

Lk =
N∑
i=1

exp−yiHk(xi) (3.29)

Initially, each training sample is assigned a weight value wki which determines

their contribution to the expected loss of the strong classifier. Initially, w is

uniform across all samples and is adaptively adjusted over iterations according

to the loss by the strong classifier (i.e. we let w1
i = 1 and wki = exp−yiHk−1(xi) for

k > 1 for each training sample xi). Hence, the total weighted loss of H at the

k-th iteration is given by:

Lk =
N∑
i=1

wki exp−yiαkhk(xi) (3.30)

Eq. 3.30 can be split into correctly classified samples and misclassified samples:

Lk =
∑

yi=hk(xi)

wki exp−αk +
∑

yi 6=hk(xi)

wki expαk (3.31)

=
N∑
i=1

wki exp−αk +
∑

yi 6=hk(xi)

wki
(
expαk − exp−αk

)
(3.32)

Since the only term in Eq. 3.32 that depends on the selection of the weak classifier

hk is
∑

yi 6=hk(xi)
wki , we select the weak classifier that minimises the total weighted

loss Lk of the boosted classifier Hk at iteration k.

Selecting our weak classifier hk allows its weight value αk to be determined.

For this, we again wish to choose αk which minimises the total weight loss Lk.

Differentiating the total error with respect to αk, setting the partial derivative to

zero and solving for αk yields:

αk =
1

2
ln

(∑
yi=hk(xi)

wki∑
yi 6=hk(xi)

wki

)
(3.33)

At iteration k, the weighted classification error εk of the weak classifier is defined

as the ratio of the sum of weights of incorrectly classified samples to the total

60

Chapter 3. Preliminaries

sum of weights of all samples (i.e. εk =
∑

yi 6=hk(xi)
wki /

∑N
i=1w

k
i). Hence, Eq. 3.33

can be expressed as:

αk =
1

2
ln

(
1− εk
εk

)
(3.34)

This derives the AdaBoost algorithm. For the k-th iteration, we summarise the

procedure of adding a weak classifier to the ensemble as follows:

1. choose the weak classifier hk which minimises the total weighted error∑
yi 6=hk(xi)

wmi

2. use the total weighted error to compute the classification error rate εk =∑
yi 6=hk(xi)

wki /
∑N

i=1w
k
i

3. use εk to calculate the weight value assigned to the weak classifier hk, αk =

1
2

ln

(∑
yi=hk(xi)

wk
i∑

yi 6=hk(xi)
wk

i

)
4. update the boosted classifier using αk and hk: Hk = Hk−1 + αkhk

3.4.5 Gradient Boosted Trees

Gradient Boosted Trees (GBT) [54] are another popular ensemble method that

utilises the gradient boosting algorithm alongside decision trees as its weak learner.

Like Random Forests, Gradient Boosted Trees also use an ensemble of multiple

trees to create more powerful prediction models for classification and regression.

Unlike the Random Forest method which builds and combines a forest of ran-

domly different trees in parallel, in GBTs, a series of trees are built in a sequential

order, where each subsequent tree attempts to correct the mistakes made by the

previous tree built in the ensemble. Like boosting methods, gradient boosting

builds a model in a sequential manner. However, it generalises the method by

allowing optimisation on an arbitrary loss function that is differentiable.

In general, we wish to solve some task by learning a model H which predicts

values ŷ = H(x) and minimising some loss function 1
N

∑N
i L(yi, ŷi) where yi is

61

3.4. Ensemble Methods

the corresponding output value from training sample i from a training set of

size N . For each iteration k, gradient boosting assumes there is some imperfect

model Hk which can be improved on by constructing a new model that adds an

estimator h to improve on Hk: Hk+1 = Hk(x) + h(x). To find the estimator h,

gradient boosting begins with the scenario of a perfect h, which would allow Hk+1

to predict the exact output value y:

Hk+1(x) = Hk(x) + h(x) = y =⇒ h(x) = y −Hk(x) (3.35)

Gradient boosting fits h on the residual term y − Hk(x) in Eq. 3.35. Like in

other boosting methods, each subsequent iteration of the strong classifier Hk+1

attempts to correct the errors of the previous iteration Hk. In the simplest case of

least square regression where we require a modelH to predict the values ŷ = H(x)

and want to minimise the mean squared error 1
N

∑
i(ŷi−yi)2, we can observe that

the residuals y −H(x) for a given model are the negative gradients (w.r.t H(x))

of the square error loss function 1
2
(y −H(x))2.

62

Chapter 3. Preliminaries

3.5 Artificial Neural Networks

3.5.1 Feed-forward Neural Networks

A Feed-forward Neural Network (FNN) [181] is a model composed of several

fully-connected linear layers. We first review a neural network model for a single

hidden layer; this is done for didactic purposes and generalisation to multiple

layers is straightforward. For models with a single hidden layer, we denote W1 as

a weight matrix which represents the first fully-connected (FC) layer with a set

of parameters which provides a linear mapping of the input (or input layer) x to

the output h1. b1 is the FC linear layer’s set of biases which translate the input

x under the affine transformation h1 = W1 +b1. Following this, an element-wise

non-linear activation σ(·) (such as ReLU [152] or Hyperbolic Tangent) is usually

applied to h1. σ(h1) is referred to as a hidden layer and each element in the

hidden layer is referred to as a network unit. The hidden layer is followed by

a second linear transformation applied by a second FC linear layer with weight

matrix W2 with a set of biases b2 which maps the hidden layer to the model’s

output layer. We can express a standard FNN with a single hidden layer which

maps an input x to an output ŷ as:

ŷ = σ(xW1 + b1)W2 + b2 (3.36)

We can see that Eq. 3.36 can be easily extended to multiple hidden layers. A

simplified network architecture of a FNN with multiple hidden layers is shown in

Fig 3.5.

One immediate issue with FNNs is that they do not scale well to full image data.

For example, consider a small RGB image of size 32× 32× 3 (32 pixels high, 32

pixels wide and 3 colour channels). This would indicate that the input layer would

require 32× 32× 3 = 3072 neurons. For larger images of respectable size (e.g. a

256×256×3 image) would require many more neurons (256×256×3 = 1732608)

63

3.5. Artificial Neural Networks

Input Layer Hidden Layer Output Layer

Figure 3.5: A typical feed-forward network architecture. The network consists of
stacked fully-connected linear layers (non-linear activations are not shown). Each neu-
ron of each layer is connected to all neurons in the proceeding layer.

and since for a FNN we would like to have several hidden layers in order to

represent complex functions, the number of parameters can quickly grow out of

control. The full connectivity of the linear layer does not account for the structure

of image data and this is largely wasteful in terms of model parameters, leading

to over-fitting of the model.

3.5.2 Convolutional Neural Networks

For image processing, the popular tool of choice are Convolutional Neural Net-

works (CNNs) [117, 135, 201]. Similarly to FNNs, CNN models are made of a

recursive application of network layers. The key difference is that instead of be-

ing composed of just FC linear layers, CNNs are typically made up of convolution

and pooling layers, with FC linear layers found at the end of the network. Com-

bined with a Softmax [9] layer, these FC linear layers serve as classifiers whilst the

convolution layers extract the required features used to classify. Fig 3.6 shows a

64

Chapter 3. Preliminaries

Input

Downsampling Convolution Fully-Connected Softmax

Prediction

co
w

low-level
features

mid-level
features

high-level
features

Figure 3.6: A common CNN architecture used for image classification consisting of
convolution and downsampling layers, followed by a fully connected linear layer and
Softmax [9] layer. As shown, features extracted by filters earlier in the CNN architecture
are simpler, extracting points and edges. These earlier layers build up to more complex
features in deeper convolution layers in the CNN to detect more complex shapes.

common CNN architecture that would be used for image classification. Features

that are learned in the deeper parts of the CNN contain more semantic content

about the input image, whilst earlier layers in the CNN extract low-level features

such as edges and points [63].

3.5.2.1 Convolution Layer

A convolution layer is the core building block of a CNN. A convolution layer’s

parameters are composed of a set of learnable filters (also commonly referred to

as kernels). Each kernel occupies a small spatial region (along width and height),

but extend across all channels of the input. As an example, a typical kernel size

of the first convolution layer of a CNN may be of size 5 × 5 × 3, representing 5

pixels in height and width, across the 3 colour channels of an 3D input image

of size hin × win × 3. During the forward pass, each kernel convolves across the

entire height and width of the input volume, where the dot product between the

65

3.5. Artificial Neural Networks

Kerne
l

Input

Outp
ut

Figure 3.7: A convolution operation on an image patch. The kernel is operated on a
sliding window across the entire input image where it is convolved with patches in the
input image. The result of each convolution of an image patch with the kernel results
in an output pixel value as shown.

weights in the kernel and the values in the input volume at a given (x, y) position

is computed. This convolution operation is illustrated in Fig. 3.7.

Each convolution layer is composed of a set of kernels of size nkernel × ckernel ×
hkernel×wkernel, representing the number of kernels, input channels, spatial heights

and widths of each kernel respectively. When applied to an input, hkernel and

wkernel determine the spatial region of a patch the kernel operates on, ckernel

matches the number of channels of the input so that each kernel is applied across

all channels in the input and nkernel dictates the number of channels in the output.

Each kernel performs a sliding window convolution operation across patches in the

input image (shown in Fig 3.8), producing a 2D matrix of values. This convolution

operation is a linear transformation which preserves spatial information in the

input, making it particularly suited towards image data. Unlike the FC linear

layer, neurons in a convolution layer are only connected to a small region of the

layer preceding it.

66

Chapter 3. Preliminaries

Kernel 1

Kernel 2

Input

Kernels

Output

Figure 3.8: A convolution layer in a CNN. In this case, the input is an RGB image
with height hin, width hw, and channels cin (in this case 3 colour channels). Each of
the two kernels is convolved with a patch in the input image corresponding to the size
of the kernel hin×win. Each convolution operates across all channels of the input for a
given patch area: we can see that Kernel 1 preserves the green channel, whilst Kernel
2 preserves the red and blue channels, outputting blue and purple pixels.

3.5.2.2 Activation Layers

Although convolution layers excel at learning good representations that capture

important features of the underlying data, the convolution operation is a linear

operation. For many real world problems, the goal of the model is to find a

non-linear mapping from the input to output. Hence, the recursive stacking

of convolution layers in deep models only achieves this required non-linearity if

there exists some non-linearity between convolution layers as we would be able to

represent multiple stacked convolution layers with a single convolution layer since

their convolution operations are linear. Activation layers are a way to break this

linearity and allows neural networks to model complex, non-linear functions that

are useful for real world data. Generally, an activation layer follows a convolution

layer; its main function is to introduce non-linearity into the model. In a neural

network, an activation function decides whether a neuron should be “fired” or

not. Here, we briefly outline some of the commonly used activation layers [67]

and plot them in Fig. 3.9.

Step The Step function (shown in Fig. 3.9a) is a threshold based activation

67

3.5. Artificial Neural Networks

0

1

0.25

0.5

0.75

0

(a) Step

0

1

0.25

0.5

0.75

0

(b) Sigmoid

-1

1

-0.5

0

0.5

0

(c) Hyperbolic Tangent

0

1

0.25

0.5

0.75

0 1

(d) Rectified Linear Unit

Figure 3.9: Commonly used activation functions employed in deep neural networks.
Each activation function serves to break the linearity that exists between successive
convolution or fully connected layers in a network, allowing them to model complex
non-linear functions.

function. In other words, if the value of the input is above a threshold value, it

will activate. Typically, the threshold value is zero [12]. The step activation can

be expressed as the following:

y =

1, if x > 0

0, otherwise
(3.37)

Sigmoid The Sigmoid function (shown in Fig. 3.9b) is a smooth, step-like func-

tion. It is non-linear in nature and hence combinations of this function are also

non-linear. Since it is smooth for x ∈ R, it will have a smooth gradient too. The

sigmoid activation can be expressed as the following:

y = σ(x) =
1

1 + e−x
(3.38)

68

Chapter 3. Preliminaries

Hyperbolic Tangent The Hyperbolic Tangent (TanH) function (shown in Fig. 3.9c)

is a scaled sigmoid function where:

tanhx = 2σ(2x)− 1 (3.39)

As such, it has characteristics similar to the sigmoid function, but with stronger

derivatives since its slope is steeper. The TanH activation can be expressed as

the following:

y =
2

1 + e−2x
− 1 (3.40)

Rectified Linear Unit The Rectified Linear Unit (ReLU) [152] (shown in Fig. 3.9d)

is linear (identity) for all x > 0 and zero for all x < 0. It offers a non-linearity at

its “elbow” (i.e. the point of discontinuity where x = 0). As such, it is non-linear

in nature and combinations of ReLU are also non-linear. Unlike the previous

activation functions, ReLU is unbounded for x > 0 and its range is [0, inf]. The

ReLU activation can be expressed as the following:

y = max(x, 0) (3.41)

3.5.2.3 Downsampling Layers

Downsampling layers play an important role in a CNN. They are periodically in-

serted between successive convolution layers where their function is to reduce the

spatial size of the representation. This serves two important purposes: first, each

downsampling layer increases the effective receptive field of the proceeding convo-

lution layer, allowing its kernels to capture more context of the surrounding area

around a given centre point. Fig. 3.11 shows how downsampling can increase the

effective receptive field of a kernel. Second, periodic downsampling progressively

reduces the spatial size of the representation which serves to decrease the number

of parameters. This yields more manageable models from a computational cost

69

3.5. Artificial Neural Networks

downsample
Downsampled Input

Input

Kernel

Convolution

(a)

Input

Max Pooling

Average Pooling

(b)

Figure 3.10: (a) For a 3 × 3 kernel operating on a downsampled input, the effective
receptive field the kernel has on the original input is increased to 5 × 5. In this way,
downsampling layers allow smaller kernels to capture more context of the surrounding
area around a given centre point. (b) Two common downsampling operations, max
pooling and average pooling.

perspective and limits the model’s ability to over-fit to the data.

Typically there are two commonly used types of downsampling methods: max

pooling and average pooling [67]. In max pooling, the maximum value over a

window region is taken as the output, whilst in average pooling, the average over

a window region is taken as the output. Commonly, the window is a 2× 2 region

with a stride of 2 (as shown in Fig. 3.10b). As shown, this has the effect of

downsampling the spatial size of the input. Generally for a 3D input, pooling

operates on every channel independently and resizes it spatially [67].

3.5.2.4 Strided Convolution Layer

An alternative to using downsampling layers is the use of strided convolutions [67].

Usually, a convolution layer operates densely on an input where each pixel in the

input acts as a centre point and a patch around the pixel is convolved with each

kernel (shown in Fig. 3.11a). With strided convolutions, the convolution layer

instead samples pixels in a sparse manner. For example, a convolution layer with

stride size of 2 samples every second pixel along the spatial dimensions of the

input (shown in Fig. 3.11b). This sparse sampling has a similar effect to pooling

70

Chapter 3. Preliminaries

(a) Convolution

(b) Strided Convolution

Figure 3.11: (a) A 2D convolution layer operating on the input with a stride of 1 and
a kernel size of 3× 3. In this case, each pixel is densely sampled and the output is not
downsampled (reduction in size of the output is due to the size of the kernel). (b) A
strided 2D convolution layer with 3×3 kernel size and stride of 2. Due to the increased
stride, the spatial size of output is downsampled from the spatial size of the input.

and results in a downsampling of the output.

3.5.2.5 Transposed Convolution Layer

A hypothetical deconvolution operation can be described as follows: given the

output of a convolution operation, if we were to feed this output to a deconvolu-

tion operation, we should get the original input again. A transposed convolution

attempts to mimic this described process by producing an output of the same spa-

tial resolution that a hypothetical deconvolution layer would. However, instead

of producing the mathematical inverse of the convolution operation, a transposed

convolution layer instead uses padding on the input along with regular convolu-

tion operations to revert the spatial transformation of a convolution. Fig. 3.12

illustrates this idea. Transposed convolution layers are sometimes conveniently

named deconvolution layers, but it is important to clarify that from a numerical

71

3.5. Artificial Neural Networks

Figure 3.12: A transposed 2D convolution with stride size of 2, kernel size of 3 and
no padding. This operation produces a 5× 5 output with a 2× 2 input.

standpoint, the transposed convolution does not reverse the process of a convolu-

tion; it simply reconstructs the spatial resolution of the pre-convolution input and

performs a convolution, relying on its parameters to learn an inverse mapping of

its target convolution operation.

3.5.3 Training Neural Networks

The most common method for training a neural network is to use a (stochastic)

gradient descent approach [67], taking small steps in the direction of the negative

gradient which minimises the loss function. The loss function defines a cost that

the model is trying to minimise. Loss functions vary depending on the training

task: for a discrete problem such as classification, the cost function could be the

logarithmic loss of the model’s prediction of the input image given its ground

truth class label. For a continuous problem such as depth estimation, the loss

could be the difference between the model’s predicted depth and ground truth

depth. Here, we briefly discuss some key aspects for training a network.

3.5.3.1 Backpropagation

Optimising the model through gradient descent involves optimising the model’s

trainable parameters with respect to the loss function, updating the parameters

72

Chapter 3. Preliminaries

(a) Forward-Propagation (b) Backward-Propagation

flo
w
er

Backpropagation

parameters activations

(c) Backward-Propagation through Model

Figure 3.13: (a) Forward propagation on the last part of a neural network. Input
activations hi are propagated through and multiplied with the parameters of the net-
work θi. (b) Backward propagation propagates derivatives back through the network
to the corresponding parameters in the network via use of the chain-rule. (c) Backward
propagation through a model for an image classification task. Gradients are computed
via the chain rule.

of the model to minimise the loss. This requires computing the gradient of each

parameter with respect to the loss function which is intractable for a model

with millions of parameters (typical for deep neural networks). Fortunately, we

can take advantage of the fact that backward propagation of gradients through

the model is possible via application of the chain rule as shown in Fig. 3.13c.

Through a combination of backpropagation and the stochastic gradient descent

optimisation method which operates on batches of data, we can learn relatively

deep models which would otherwise be infeasible to train.

Mini-batch Training Neural networks are commonly trained using batches to

reduce training time [67]. Optimisation methods that work at the batch level

73

3.5. Artificial Neural Networks

(such as stochastic gradient descent) relies on the fact that on average, the gradi-

ents from a batch approximate “well-enough” the average of the gradients from

the entire training set, provided we select a reasonable sized batch [189]. Further-

more, regularisation methods such as momentum also help mitigate any issues

that may arise from inconsistencies between the batch and the entire training set.

Batches are generated by randomly grouping training samples together and the

entire batch is forward propagated through the network in a single pass which

generates gradients for backpropagation. The values of the weights in the network

are subsequently updated by the average gradient for the batch.

Learning Rate When optimising models using gradient descent methods, choice

of learning rate is extremely important to the overall performance of the model.

Training a model using gradient descent is an iterative optimisation process which

involves gradually stepping towards a solution that the computed gradients pre-

dict will most minimise a loss. Under this setting, the learning rate α is a hy-

perparameter that controls how much we adjust the weights of our model with

respect to the loss gradient. The lower this value is, the slower we traverse along

the downward slope to the local minima. Low learning rates ensure that local

minimas are not missed, but could also result in long training times. Model con-

vergence is intricately tied to the learning rate; if the learning rate is either too

high or low, the model may never learn either because it continuously overshoots

the minima or approaches it too slowly. Fig. 3.14 shows the effects that different

learning rates can have on the final performance of a model. In practice, learning

rates are reduced via an annealing or step schedule from a base learning rate

and this has shown to help training [67], with the hope that the model finds an

optimal local minima.

3.5.3.2 Regularisation During Training

A well-posed problem is defined by [73] if it fulfils the following three criteria:

74

Chapter 3. Preliminaries

low
high
too high

good

1

2

1

2

1

1

2

Figure 3.14: When the learning rate is too high (red) or too low (blue), the model
either fails to converge to a solution or converges very poorly. Setting a relatively high
learning rate (yellow) may lead to short term gains in performance but this can quickly
saturate as the model approaches the local minima and begins to overshoot it. A good
learning rate (green) should be able to learn quickly but should not miss any local
minima it can converge towards.

1. it has a solution.

2. the solution is unique.

3. the solution depends continuously on data and parameters.

If a problem does not fulfil any of these three criteria, it is said to be ill-

posed. Generally, many of the real world problems that we wish to solve are

ill-posed [101]. As such, for training deep models, typically we apply various

forms of regularisation in order to introduce additional information to the model

to solve an ill-posed optimisation problem or prevent over-fitting. Regularisation

constrains or shrinks the model parameters toward zero and by extension discour-

ages learning a more complex or flexible model [19]. Regularisation can adopt

many forms; in the following, we discuss some of the more common methods for

regularising training of a model.

Momentum A technique that can enhance stochastic gradient descent for train-

ing deep neural networks is momentum. Momentum is a relatively easy modifica-

tion on the stochastic gradient descent algorithm that adds a low computational

overhead. The key idea is that parameters should move with a velocity which is

75

3.5. Artificial Neural Networks

(a) (b)

Figure 3.15: (a) Without momentum, learning may be unstable and non-smooth,
resulting in a failure to converge. (b) Momentum stabilises learning, smooths out
convergence and may help the model converge towards a solution.

influenced by the estimated gradient at each time step:

v(t) = µ(t)v(t−1) + α(t)∇θ

∑
i∈B

log pmodel(Xi; θ) (3.42)

θ(t) = θ(t−1) + v(t) (3.43)

Momentum partially observes the curvature of the function; it adds an inertia

which both smooths and accelerates the downwards traversal towards the min-

imum. It dampens oscillations, allowing the algorithm to roll through narrow

valleys, small humps and local minima. This has been shown to stabilise learn-

ing, allowing this method to perform on par with more complicated second-order

methods such as Hessian-free optimisation [205]. Fig 3.15 shows how momentum

can aid a model converge towards a solution.

Weight Decay Another common form of regularisation is weight decay [118].

Weight decay is implemented through minimisation of the L2 norm of the param-

eters in the model. Weight decay is a regularisation term which penalises large

weight values of parameters, with the goal of reducing large, imbalanced weight

value distributions across parameters in the model. This has the effect of sta-

bilising the network. The weight decay term is typically scaled by a small value

(usually between 1e-4 to 5e-4) [117] before being added to the main loss function

so that it is given comparatively low priority by the model when considering the

76

Chapter 3. Preliminaries

objective.

3.5.3.3 Exploding and Vanishing Gradients

Exploding and vanishing gradients were significant initial issues with training

deep networks [67]. Vanishing gradients are the result of gradients exponentially

decreasing as they are backpropagated through a network, where the choice of

sigmoid or hyperbolic tangent activation layers reduces these gradients at each

stage [65]. For deep enough networks, this results in the gradient reaching such

small numerical values that they effectively vanish and thus the network stops

learning. In contrast to this, exploding gradients demonstrate the exact oppo-

site issue, where large initial gradients are backpropagated through the network,

resulting in instabilities in training or non-convergence of models [78].

3.5.3.4 Initialisation

Along with excessively large or low learning rates, exploding and vanishing gra-

dients have been attributed to incorrect initialisation of weight values of the

parameters in the model [144]. Glorot & Bengio first showed that initialisation

of weight values for parameters in a model from a standard normal distribution

can lead to either poor convergence or in some cases, stops convergence alto-

gether [65]. The main outcome was that initialising all weight values in a model

from the same distribution was suboptimal since different layers in the network

contained varying numbers of parameters. As a remedy for this, a new type of

initialisation heuristic was proposed called Xavier initialisation where the set of

weight values for parameters in a layer were initialised to account for the size of

the previous layer. These weight values were initialised by randomly sampling

from a uniform distribution [−r, r] with the range r defined as:

r =

√
1

FANin × FANout

(3.44)

77

3.5. Artificial Neural Networks

where FANin and FANout are the respective number of inputs and outputs of

the layer being initialised. Following this, He et al. subsequently demonstrated

that when training deep networks with ReLU activation layers, the weight values

of the model should be initialised from a distribution with twice the range since

the ReLU activation zeroes out approximately half the activations [78]. A slight

modification was made to initialisation heuristic, where weight values would be

initialised from a normal distribution with variance σ2, where:

σ2 =

√
2

FANin × FANout

(3.45)

3.5.3.5 Batch Normalisation

The method of batch normalisation is a technique for normalising outputs across

a mini-batch to stabilise gradients and increase the speed of model training. This

method was first introduced by Ioffe and Szegedy in [92]. Generally, a batch

normalisation layer is placed between a convolution layer and activation layer

where its role is to normalise values across the mini-batch to have zero mean and

unit variance. The key idea is to reduce the amount that the hidden unit values

in a model shift around (called covariate shift), which should improve stability

of the network. To achieve this, for the output of each convolution layer in the

model, the following affine transformation is applied:

x̂i =
xi − µB√
σ2
B + ε

(3.46)

Where xi is the input, x̂i is the normalised output and µB and σ2
B are the re-

spective mean and variance of the batch B. However, this transformation has

the potential to change the underlying information that the activations represent

which may impede learning. Hence, two trainable parameters are used to ad-

dress this potential issue which enables the layer to learn the inverse operation

78

Chapter 3. Preliminaries

of Eq. 3.46 and allows the layer to simply represent an identity transformation:

yi = γx̂i + β (3.47)

Where γ and β are the two trainable parameters that scale and offset the input

respectively. During the forward pass in training, each batch normalisation layer

also keeps track of a moving average global mean and variance, which is used

during the inference stage after the model is trained. Since both Eq. 3.46 and

Eq. 3.47 are differentiable, backpropagation can be easily applied with batch

normalisation layers in a model. Employment of batch normalisation has since

become standard practice for training deep models and has heavily mitigated the

requirement for careful initialisation to achieve convergence during training.

3.5.3.6 Residual and Highway Connections

Another recent technique which mitigated vanishing gradients involved training

a network which utilised “skip” connections to preserve gradient flow. This was

achieved by learning either residual functions [79] or a gating mechanism that

directed the flow of gradients [204] during training. These approaches were shown

to make the model more mathematically stable; the use of skip connections aided

gradient flow which was particularly useful for deep networks. Residual and

highway networks offer two branches for gradient to flow through: a main branch

which maintains the overall state of the learned representations and a residual

branch which learns the residual information at a layer level which is added to

the representations of the main branch. The main branch is composed of a small

number of convolution layers and skip connections (represented by the identity

function). This allows gradients to flow through this path relatively unchanged

since the gradient is simply scaled by a unit value when flowing through an

identity function. At the layer level, the residual branch does most of the heavy

lifting when it comes to learning rich representations and layers in the residual

branch are “turned on” when they become useful during training; otherwise,

gradients are able to flow relatively unimpeded through the main branch.

79

3.6. Software

3.6 Software

The following software libraries were used to produce the work described in this

thesis:

• libCVD (Cambridge Vision Dynamics) is a portable and high perfor-

mance C++ based library for computer vision, image and video processing.

This is available at https://github.com/edrosten/libcvd.

• OpenCV (Open Computer Vision) is an open source computer vision

and machine learning software library which supports C++, Python, Java

and MATLAB interfaces.

This is available at https://github.com/Itseez/opencv.

• Caffe (University of California, Berkeley) is one of the earlier machine

learning frameworks built for Python and C++.

This is available at https://caffe.berkeleyvision.org.

• TensorFlow (Google Brain) is an open source software library for nu-

merical computation using data flow graphs.

This is available at https://www.tensorflow.org.

• PyTorch (Facebook AI Research) is an open-source machine learning

library for Python, based on Torch, used for deep learning applications.

This is available at https://www.pytorch.org.

• MATLAB (MathWorks) is a numerical computing environment. This

was mainly used for some early prototyping of ideas, pre-processing of

datasets and data analysis.

This is available at https://www.mathworks.com/products/matlab.html.

80

https://github.com/edrosten/libcvd
https://github.com/Itseez/opencv
http://caffe.berkeleyvision.org
https://www.tensorflow.org
https://www.pytorch.org
https://www.mathworks.com/products/matlab.html

Chapter 4

Residual Likelihood Forests

In this chapter, we first look to improve upon existing ensemble learning ap-

proaches. Here, we introduce an ensemble learning method called Residual Like-

lihood Forests (RLF) which will serve as a baseline framework and will be built

upon in subsequent chapters.

In contrast to other ensemble methods, our weak learners produce conditional

likelihoods that are sequentially optimised using global loss in the context of pre-

vious learners within a boosting-like framework (rather than probability distribu-

tions that are measured from observed data) and are combined multiplicatively

(rather than additively). This dramatically increases the efficiency of our strong

classifier, allowing for the design of classifiers which are extremely compact in

terms of model capacity. In contrast to gradient boosting, our method computes

the residual likelihoods in closed form which simplifies model tuning.

We apply our method to several machine learning classification tasks, showing

significant improvements in performance. When compared against several en-

semble approaches including Random Forests and Gradient Boosted Trees, RLF

offers a significant improvement in performance whilst drastically reducing re-

quired model size.

81

4.1. Introduction

4.1 Introduction

The method of Random Forests (RF) was introduced by Breiman [16] and was

quickly shown to be a powerful and efficient learning method. Since then, RFs

have found use across a wide range of computer vision tasks including applications

in image classification [11], semantic segmentation [198], object recognition [58]

and data clustering [149]. RFs have shown the appealing properties of dealing

well with data that is non-linear and high-dimensional [22], being well-suited

for parallel hardware architectures and being inherently well-equipped to handle

multi-class problems [190].

Despite their success, much is still unknown about RFs from both a theoretical

and practical perspective. Theoretically, RFs are constructed such that each

individual tree in the ensemble is learned greedily at the decision node level.

This approach can be suboptimal in terms of objective maximisation: there are no

guarantees that a global loss is being minimised and learning in this manner does

not leverage the complementary information that can potentially exist between

different trees in the ensemble [191]. Practically, for RFs to fit complex real

data, the non-linearity offered by (very) deep trees is usually required, resulting

in ensembles with large overlaps of information between trees and redundancy in

the model.

Whilst there have been several works which have improved upon the original

RF approach in certain aspects, there still remain key limitations which have

yet to be addressed. Notably, the ensemble approaches of Friedman [55] and

Schulter et al. [191] utilised gradient boosting via fitting of weak learners to

pseudo-residuals or to a set of adaptive weights allowing for minimisation of a

global loss via gradient descent. Although these methods have demonstrated

improved performance over their RF counterpart, they are harder to tune and

are more susceptible to overfitting. An alternative approach proposed by Ren et

al. tried to retain RFs as a baseline classifier, employing a global refinement

82

Chapter 4. Residual Likelihood Forests

technique combined with leaf pruning to gain improvements in performance and

reduce model size [169]. However, this method still required the relatively large

overhead of constructing the original RF before refinement could be performed.

4.1.1 Contributions

In this chapter, we propose a novel method which constructs a decision forest

model that benefits from the boosting approach of creating complementary base

tree learners through minimisation of a global loss, yet retains the simplicity

in model tuning found in the bootstrap aggregation approach of RFs. Our ap-

proach actively seeks to construct weak learners for the ensemble such that the

mutual information between learners in the ensemble is accounted for as each

new weak learner is added to the ensemble. We show that our method allows

for construction of extremely compact and shallow forest models that yield much

higher performance when compared to their competing counterparts. The main

contributions of this work are as follows:

• A sequential ensemble learning approach which constructs weak learners in

the context of previously added learners, explicitly taking account of the

mutual information between them, so that their combined outputs offer a

more powerful predictor of a class label.

• Unlike gradient boosting methods which also minimise a global loss using

gradient descent, our method of optimising residual likelihoods permits the

use of large efficient Gauss-Newton like steps.

• Empirically, we show that our method offers vastly improved parameter

efficiency when selecting decision functions to construct a tree. In conse-

quence, our method significantly outperforms several competing ensemble

learning baselines across several standard machine learning datasets, whilst

offering significant reductions in model size.

83

4.2. Related Work

4.2 Related Work

The work in this chapter builds upon works related to Random Forests and

Boosting which have already been outlined in Section 2.1. Additionally, there is

residual representation component in the work which we outline in the following

section.

4.2.1 Residual Representations

Arguably, the Fisher Vector (FV) was the first representation of a residual vec-

tor, describing the direction that the parameters of a model should be modified

to best fit some set of data [162]. Vector of Linearly Aggregated Descriptors

(VLAD) extended upon this by encoding residual vectors with respect to a vi-

sual vocabulary dictionary for image recognition [99]. Both these methods used

residual vectors for data fitting to indirectly model the original data and this pro-

vided the insight that for vector quantisation, mapping residual vectors is more

effective than mapping the original, unreferenced vectors [98]. Finally, He et al.

transferred residual fitting into deep learning, demonstrating their power by using

extremely deep network architectures with “skip” paths and achieving state-of-

the-art results in image classification tasks [79].

84

Chapter 4. Residual Likelihood Forests

4.3 Residual Likelihood Forests

In contrast to other ensemble methods, our framework constructs weak learners

to output likelihoods (rather than probability distributions). We illustrate why

we take this approach with the following didactic example: first, consider two

weak learners evaluating some input data to perform a classification task: we

denote 1qj and 2qj to represent the probabilities given by each weak learner for

the underlying class label j given the input. The correct approach to combining

these two weak learners depends on the correlation between them. If 1qj and 2qj

are independent of one another, the correct class probability should be given by

normalised product for the class j:

P (class j) =
1qj

2qj∑
k

1qk2qk
(4.1)

On the other hand, when the two weak learners are fully correlated (i.e. they

are reporting the same information), then 1qj = 2qj. In this instance, applying

Eq. 4.1 would result in an incorrect estimate of the class probabilities as the nor-

malised squared distribution and we should instead simply average their marginal

distributions.

We can see that the correlation between learners can be problematic if we wish

to have a consistent approach for correctly combining weak learners within an

ensemble since the approach that should be adopted depends on this correlation.

Since it is difficult to determine whether weak learners are learning independent

information or correlated information, we approach the problem from a different

perspective: instead of deciding how to combine distributions from each weak

learner, we can instead modify the stored q distributions of each weak learner

and simply choose a consistent approach to combining weak learners which gives

a correct estimate irrespective of their correlation. In the case of Eq. 4.1, we note

that manipulating the stored distributions and replacing 1qj and 2qj with their

85

4.3. Residual Likelihood Forests

square roots gives the correct answer for the fully correlated case:

P (class j) =

√
1qj
√

2qj∑
k

√
1qk
√

2qk
= 1qj = 2qj (4.2)

4.3.1 Weak Learners Generating Likelihoods

In practice, 1q and 2q will rarely be fully independent or fully correlated; rather

there will be some overlap in information between them. As such, deciding the

amount each weak learner should contribute to the strong classifier’s prediction

is a non-trivial task. Typically, ensemble methods combine their weak learners

by averaging their marginal distributions [13,47,188], relying on the law of large

numbers to obtain a good estimate of the underlying distribution of the data and

smooth out variance between learners.

If we were to manipulate the stored distributions as shown in Eq. 4.2, each weak

learner would no longer output a probability distribution. Instead, we can think

of each weak learner generating a likelihood which is designed to be combined with

likelihoods from other weak learners in the ensemble. This forms the basis for

our ensemble learning framework: we construct the q values stored in the leaves

of each decision tree as likelihoods, conditioned upon the information stored in

the trees previously incorporated into the strong classifier. Henceforth, we refer

to the q generated by our weak learners as residual likelihoods. We can generate

these residual likelihoods such that they can be treated as independent sources

of information, forming the strong classifier distribution by taking their product

and normalising:

P (class j|x,Θ,Q) =

∏T
t=1 Q

t(δt(x; Θt))j∑
k

∏T
t=1 Q

t(δt(x; Θt))k
(4.3)

86

Chapter 4. Residual Likelihood Forests

4.3.2 Residual Forest Framework

Our method departs from the greedy, entropy minimisation approaches of RFs

and instead minimises a global loss function, similar to gradient boosting ap-

proaches [54]. The key difference in our approach is that the importance al-

located towards hard-to-classify samples during the training process is implicit

rather than explicit, as in the case of gradient boosted trees. Our method still

chooses decisions from a random subset of the feature space (as in RFs) but these

decisions are selected with the objective of minimising a global loss function. In-

cidentally, this removes the need for weighted training samples or specialised loss

functions found in traditional boosting techniques and simplifies the model tuning

process.

4.3.2.1 Minimising a Global Loss

For a new tree to be added to the ensemble, we can derive a solution which

optimises the residual likelihood it contributes. Let us consider a tree to be added

to the ensemble. We wish to find {qj} such that the loss function is minimised

when this tree is added to the ensemble. We define the following terms:

• P−ij is the value of class j for sample i obtained by combining likelihoods

from all existing weak learners in the ensemble (excludes the new tree to

be added).

• qj is the stored value for class j of the residual likelihood to be contributed

by the new tree.

• P+
ij is the normalised probability of class j for sample i of the combined

likelihoods from the ensemble including the new tree:

P+
ij =

P−ij qj∑
k P
−
ikqk

(4.4)

87

4.3. Residual Likelihood Forests

• cij is the ground truth class label for sample i taking the class label j,

as defined in Eq. 3.21 in the Preliminaries section. For completeness, we

redefine it here:

cij =

1, if sample i has class label j

0, otherwise
(4.5)

We can define the loss function L for the ensemble after adding each new tree as:

L = −
∑
i

∑
j

cij log
(
P+
ij

)
= −

∑
i

∑
j

cij log

(
P−ij qj∑
k P
−
ikqk

)

= −
∑
i

∑
j

cij

(
log
(
P−ij qj

)
− log

(∑
k

P−ikqk

)) (4.6)

Hence, we require a qj to be chosen such that L is minimised (i.e. the derivative

of L with respect to the qj is zero):

∂L

∂qj
= 0, ∀j (4.7)

=⇒ −
∑
i

cij
P−ij
P−ij qj

+
∑
i

P−ij∑
k P
−
ikqk

= 0

=⇒ nj
qj

=
∑
i

P−ij∑
k P
−
ikqk

=⇒ nj =
∑
i

P−ij qj∑
k P
−
ikqk

=⇒ nj =
∑
i

P+
ij

(4.8)

where nj is the total number of samples with class label j within the given leaf.

We can show this is a convex optimisation problem where a single global solution

88

Chapter 4. Residual Likelihood Forests

exists. For a convex loss function:

∂2L

∂q2
j

≥ 0 (4.9)

Hence, under the assumption that our loss function is convex:

∂2L

∂q2
j

=
∑
i

cij
1

q2
j

−
∑
i

(P−ij)2

(
∑

k P
−
ikqk)

2
≥ 0

=⇒
∑
i

cij ≥
∑
i

(P−ij qj)
2

(
∑

k P
−
ikqk)

2
=
∑
i

(P+
ij)2

(4.10)

Thus, our loss function is convex since Eq. 4.10 holds for each sample i where

0 <
∑

k(P
+
k)2 ≤ 1 and

∑
k ck = 1 across all classes k.

4.3.2.2 Computing Residual Likelihoods

Eq. 4.8 indicates that for a leaf node and samples routed to that leaf node, the

solution for the residual likelihood q exists when the sum of strong classifier

probabilities across samples is equal to the sum of class labels associated with

those samples for a given class. For computing a q that fulfils this criteria, we

adopt a straightforward strategy: using Eq. 4.8, we first initialise the residual

likelihoods of the new tree q = 1 and solve for the updated residual:

Initialise: qj ← 1 (4.11)

Iterate: qj ←
qjnj∑
i P

+
ij

(4.12)

which converges quickly and stabilises when Eq. 4.8 holds, solving for qj for all

j. In theory, the estimate for qj at the solution can be improved arbitrarily

by continuously iterating on Eq. 4.12; in practice, we found that only a single

iteration was required for Eq. 4.8 to hold.

This update strategy will design subsequent weak learners to focus on harder-to-

89

4.3. Residual Likelihood Forests

classify samples and as such, it shares similarities with Adaptive Boosting [50].

However, the key difference is that our method implicitly raises the importance

of misclassified examples through their contribution to the derivative of the loss

function defined in Eq. 4.6 (i.e. each weak learner constructed tries to max-

imise information gain of the entire ensemble through its residual contribution),

rather than adapting a global set of weights tied to misclassifications of samples.

As we will show empirically, this implicit accounting of mutual information be-

tween weak learners in the ensemble during the forest construction phase allows

the residual forest framework to drastically increase its parameter efficiency and

maximise information gain.

4.3.3 Implementing RLF

4.3.3.1 Selecting Decision Node Splits

As previously mentioned, our RLF method differs from RFs [16] since it does not

adopt an entropy minimisation strategy to decide decision node splits. Instead,

we select decisions which minimise the global loss defined in Eq. 4.6. Similarly

to [16], starting at a root decision node for a tree to be added to the ensemble, we

randomly select a subset of the feature space and evaluate each feature/threshold

pair. Residual likelihoods are generated for each feature/threshold pair (according

to Eq. 4.11 and 4.12) and these residuals are added to the ensemble to determine

the log loss for each feature/threshold pair. We then select the decision split for

the decision node that minimises the overall global loss. This decision node is

then fixed and we grow the tree by one level before repeating for the next level,

until a specified maximum tree depth is reached. This is summarised as part of

our overall learning procedure specified in Algorithm 4.2.

90

Chapter 4. Residual Likelihood Forests

4.3.3.2 Residual Rescaling

Since the residuals of each tree is conditioned towards maximising information

gain given the information already learned by the ensemble, this naturally con-

ditions early constructed trees in the ensemble to generate residuals with more

information than trees constructed later in the ensemble. Under this setting, the

ensemble will be at risk to overfit a small set of early constructed trees in the

ensemble. To address this, we adopt a simple residual rescaling method as a form

of regularisation: for each tree added to the ensemble, we first convert each like-

lihood to a log-likelihood, obtain the largest absolute log-likelihood value for each

tree and use this value to downscale all log-likelihood values in the tree. This

guarantees that the maximum residual contribution of any given log-likelihood

from a tree in the ensemble will lie in the range of [−1, 1]. This corresponds to

raising the likelihood values to a fractional power, with a scale factor that is less

than 1, ensuring that information will be spread more evenly across the trees and

helps smooth out variance in the ensemble’s overall prediction.

4.3.4 Summary

We summarise our method in Algorithm 4.2: each weak learner ensemble gen-

erates a class label distribution from observed class labels of instances routed to

its leaf nodes. This class label distribution serves as a ‘truth’ distribution for

instances routed to the leaf. Each instance routed to a leaf node has a combined

distribution from the ensemble and contributes to the stored averaged combined

probability distribution in that leaf node. This averaged probability distribution

maintains the overall ‘state’ of the information learned by trees in the ensemble

for instances routed to this particular leaf node. Each routed instance also con-

tributes a residual distribution that tries to shift the prediction of the ensemble

towards what it views as the true underlying class distribution. This represents

the additional information that tree has learned given what the ensemble has

learned. Our framework uses weak learners to model this residual information

and relies on the ensemble to maintain the overall state of information learned.

91

4.3. Residual Likelihood Forests

Algorithm 4.2 RLF Training

Require: N : training set
Require: Number of trees in forest T
Require: Feature pool size S
Require: Maximum tree depth Dmax

0: for all t ∈ {1, ..., T } do
0: for all m ∈ {1, ..., Dmax} do
0: In parallel:
0: for all s ∈ {1, ..., 2Dmax−1} do
0: In parallel:
0: for all p ∈ {1, ..., S} do
0: Choose a random θp
0: Calculate cj and

∑
i P
−
ij for both leaves

0: Calculate qj for both leaves
0: Rescale qj within the range of [−1, 1]
0: Calculate the loss for both leaves
0: end for
0: Choose θp for node d that minimises loss
0: end for
0: end for
0: Copy the winning qj into the leaves of the tree t
0: end for=0

92

Chapter 4. Residual Likelihood Forests

Data set # Train # Test # Features # Classes

G50c [24] 50 500 50 2
Letter [3] 16000 4000 16 26
USPS [3] 7291 2007 256 10
MNIST [89] 60000 10000 784 10
Chars74k [33] 66707 7400 64 62

Table 4.1: Properties of datasets used in our experiments

4.4 Experiments

To evaluate our proposed RLF classifier, we perform machine learning experi-

ments on several standard classification benchmarks. Throughout our experi-

ments we use 5 standard machine learning datasets to compare RLFs against

competing related approaches as well as investigating various parameter settings.

The properties of these datasets are summarised in Table 4.1.

4.4.1 Experiment Settings

For all our experiments, we follow the settings described in [191]. We set the

default number of trees in an ensemble to 100, keeping in line with the experiments

in [169, 191]. For each data set, we test a number of random features equal to

the square root of the feature dimensions, as recommended in [16], allocating 10

random thresholds per feature. In each case, we report mean error and standard

deviation across 10 separate runs to account for variance due to randomness

during training, except for the G50c data set which we report the mean error

and standard deviation across 250 separate runs as was done in [191]. Due to our

training method differing from the conventional entropy minimisation schemes

of competing approaches, we do not specify an early node termination policy.

Instead, we rely on the efficiency of our decision node split choices and construct

considerably shallower models. Hence, for practical purposes, we construct trees

93

4.4. Experiments

up to a maximum specified depth of 15. For the overall results shown in Table 4.2,

we follow the tree depth settings in [191], except for the Chars74k data set in

which we set a tree depth of 15 (as opposed to 25 in [191]).

4.4.2 Comparison with Random Forests

We vary hyperparameters of RLFs and RFs for the MNIST data set, observing the

classification error and log loss on the test data. The results of these experiments

are shown in Figs. 4.1 and 4.2. In Fig. 4.2, we observe that when the maximum

tree depth is limited, our method vastly outperforms the competing RF approach.

In Fig. 4.2a and 4.2b, we show the classification error and log loss of RFs and

RLF when the number of weak learners is fixed to 100 trees and the total number

of split nodes is changed by varying the maximum tree depth between the range

of [1, 15]. We observe that our RLF method can achieve a classification error of

6.6% using just 300 split nodes, compared to the approximately 25,000 split nodes

required by its RF counterpart. Fig. 4.2b shows that this property also transitions

over to log loss, where the difference between RFs and RLF is even more apparent.

To achieve a log loss of 0.22, our method again only requires approximately

300 split nodes, compared to the approximately 400,000 split nodes required

by a conventional RF. This is indicative of the efficiency of split node selection

that our method offers; the classification errors indicate that our RLF requires

vastly less split nodes to acquire similar levels of information when compared to

a conventional RF.

Additionally, we perform an ablation study comparing our method to RFs on the

Chars74k data set, where we vary hyperparameters of number of trees T and tree

depth Dmax between the ranges of [1, 300] and [5, 15] respectively. We list our

results in Table 4.3. We observe similar trends as with the MNIST data set: at

shallower tree depths (< 5) there is a significant performance gap between RLF

and RFs. Additionally, we note that across all maximum tree depth levels, the

performance of RFs begins to saturate after around 50 trees have been constructed

94

Chapter 4. Residual Likelihood Forests

50 100 150 200 250 300
Number of Trees

0

5

10

15

20

25

30

Er
ro

r(
%

)

RF
RLF

(a)

50 100 150 200 250 300
Number of Trees

0

5

10

15

Er
ro

r(
%

)

RF
RLF

(b)

50 100 150 200 250 300

Number of Trees

0

1

2

3

4

5

6

7

8

9

10

E
rr

o
r

(%
)

RF
RLF

(c)

Figure 4.1: Classification error of RLF vs. RFs varying the number of trees from
[1, 300] for a fixed maximum tree depth of (a) 5, (b) 10 and (c) 15 on the MNIST test
data. For shallower trees, our RLFs significantly outperforms RFs. In each case, we
report mean result across 10 separate runs.

for the ensemble. Our RLF continues to improve as trees are constructed past

the 50 tree mark; this is especially noticeable at shallower tree depths.

4.4.3 Comparison with Gradient Boosting

Next, we compare our RLF method to two gradient boosted ensemble approaches,

Gradient Boosted Trees (GBT) [54] and the more recent method, Alternating

Decision Forests (ADF) [191]. Table 4.2 gives an overall comparison between our

RLF method, Gradient Boosted Trees and Alternating Decision Forests across

all 5 datasets. We observe that RLF offers significant improvements over both

gradient boosted baselines.

Furthermore, we perform an ablation study to compare RLF with ADFs on the

Chars74k data set. We vary the number of trees T as well as the maximum tree

depth Dmax between the ranges of [1, 300] and [5, 15] respectively. The results

are shown in Table 4.3. Similarly to the comparison with RFs, we observe similar

trends with ADFs: classification performance begins to saturate when the number

of trees in the ensemble approaches 50. At lower maximum tree depths, the

difference in performance between RLF and ADFs is apparent.

95

4.4. Experiments

RF [16] GBT [54] ADF [191] RLF

G50c 18.91±1.33 18.90±1.31 18.71±1.27 17.75±1.20
Letter 4.75±0.10 4.70±0.18 3.52±0.12 2.59±0.06
USPS 5.96±0.21 5.93±0.27 5.59±0.16 4.89±0.09
MNIST 3.21±0.07 3.15±0.05 2.71±0.10 1.81±0.03
Chars74k 17.76±0.13 17.59±0.29 16.67±0.21 16.33±0.25

Table 4.2: Overall performance of our method when compared with its main com-
petitors on 5 datasets. The best performing methods are bolded. For [16, 54, 191], we
list results given by training under the settings specified by [191]. We train our RLF
model using the same settings as described by [191] for each of the 5 datasets shown.
In each case, we report mean result across 10 separate runs except for the G50c dataset
where the mean result across 250 separate runs is shown.

4.4.4 Parameter Efficiency of RLF

Referring to Table 4.3, we can observe that initially our RLF appears to under-

perform the competition when the number of weak learners is low (≤ 10) but a

general trend emerges at all maximum tree depth levels: as the number of weak

learners increases, the performance of RLF rapidly overtakes the performance of

both [16] and [191]. We can attribute this to the residual rescaling we employ

to mitigate overfitting of the model; since we explicitly dampen the contribution

of a single tree in the ensemble to make room for other trees in the ensemble

to contribute, when the number of learners in the ensemble is low, the ensemble

holds back the contribution of weak learners in the ensemble, expecting additional

weak learners to join the ensemble. Incidentally, this accounts for the observed

phenomenon of early classification performance saturation that both RFs and

ADFs suffer from which does not appear to affect our RLF method as much: for

each competing method, there is no expectation of additional weak learners join-

ing the ensemble and hence no mechanism which accounts for this. Each weak

learner under this scheme has a sole objective of maximising information gain

which leads to rapid overlapping of information between learners accumulating

as new trees are added to the ensemble. As a result, the classification perfor-

mance begins to saturate as additional weak learners added to the ensemble are

unable to contribute additional information and are simply there to smooth out

variance in the final classifier’s output.

96

Chapter 4. Residual Likelihood Forests

Number of trees T
Dmax Model 1 10 25 50 100 200 300

5

RF [16] 79.82 ± 0.81 55.78 ± 1.02 51.07 ± 0.67 49.08 ± 0.38 48.25 ± 0.15 47.87 ± 0.18 47.78 ± 0.23

ADF [191] 83.12 ± 0.68 53.75 ± 0.69 48.15 ± 0.58 46.34 ± 0.54 44.97 ± 0.29 44.20 ± 0.13 44.38 ± 0.14

RLF 88.09 ± 1.03 46.95 ± 0.38 34.35 ± 0.25 27.52 ± 0.15 23.04 ± 0.24 20.62 ± 0.40 19.85 ± 0.24

10

RF [16] 47.62 ± 1.02 32.40 ± 0.33 30.57 ± 0.46 29.82 ± 0.16 29.68 ± 0.23 29.38 ± 0.15 29.31 ± 0.14

ADF [191] 55.63 ± 1.75 34.32 ± 0.35 32.17 ± 0.37 31.23 ± 0.19 30.60 ± 0.25 30.49 ± 0.08 30.40 ± 0.15

RLF 84.08 ± 1.53 43.90 ± 0.23 29.59 ± 0.22 20.93 ± 0.24 18.06 ± 0.17 16.92 ± 0.08 16.65 ± 0.15

15

RF [16] 34.92 ± 0.51 22.18 ± 0.24 20.05 ± 0.14 19.02 ± 0.19 18.52 ± 0.24 18.31 ± 0.12 18.12 ± 0.11

ADF [191] 39.76 ± 1.18 24.64 ± 0.43 21.66 ± 0.38 20.38 ± 0.17 19.79 ± 0.20 19.61 ± 0.13 19.41 ± 0.14

RLF 81.90 ± 0.98 42.88 ± 0.36 28.89 ± 0.29 18.84 ± 0.27 16.33 ± 0.25 16.11 ± 0.20 15.86 ± 0.22

Table 4.3: RLF compared with RFs and ADFs on the Chars74k data set. Various
parameter choices of number of weak learners T and maximum tree depth Dmax are
shown. We note RLF offers dramatic performance improvements in classification when
maximum tree depth is limited, indicating an efficiency in choosing split node decisions.
In each case, we report mean result across 10 separate runs.

In contrast, with our residual ensemble approach accounting for mutual infor-

mation between weak learners in the ensemble, performance saturates at a much

later stage (around 100 trees in the ensemble) and more importantly, classifi-

cation error saturates at a significantly lower value. This is especially evident

when the weak learners are shallow in depth, as we can observe that our RLF

method more than halves the overall classification error when compared to its

competitors. These observations are very encouraging for supporting the use of

a residual framework. It indicates that under our residual framework where the

information learned by the ensemble is considered during the construction phase,

we can construct weak learners that are much more efficient in the split decisions

they choose. This efficiency in choosing split decisions allows for construction

of significantly more compact models which perform as well or better than their

competing, deeper ensemble counterparts.

4.4.5 Comparison with Global Refined Forests

A recent work that tries to infuse global information into the RF approach is

the method of [169]. This approach uses a global leaf refining scheme along with

leaf pruning as a means to allow weak learners to account for mutual information

between each other as well as reducing model size. However, this approach still

requires the training of the full RFs before iterative refinement and pruning can

97

4.4. Experiments

10 2 10 3 10 4 10 5 10 6

Num Split Nodes

0

10

20

30

40

50

60

70

Er
ro

r (
%

)

RF
RLF

(a)

10 2 10 3 10 4 10 5 10 6

Num Split Nodes

0

0.5

1

1.5

2

2.5

Lo
g

Lo
ss

RF
RLF

(b)

Figure 4.2: (a) Classification error and (b) log loss of RFs compared to RLF across a
range of depths from [1, 15] on the MNIST test data, fixing the number of weak learners
in the ensemble to 100 trees. Tree depth is measured as total number of decision nodes
in the model. We can observe that when the trees in the ensemble are shallow and
the number of decision nodes is limited, there is a dramatic difference in classification
performance between models. We also note a similar trend for log loss between RFs
and our approach. In each case, we report mean result across 10 separate runs.

occur as global information is not injected until after the initial forest construction

stage has completed. We compare the accurate refined model (Refined-A) and

economic refined model (Refined-E) from [169] with a shallow and deep variant of

RLF (RLF-S and RLF-D respectively). The maximum tree depth for RLF-S and

RLF-D models is varied depending on the data set; we list the full conditions for

each data set regarding maximum tree depth in Table 4.5. The maximum tree

depths were chosen such that competitive or better results were obtained in com-

parison to the models in [169]. This allows us to investigate the accuracy/memory

trade off between shallow and deep models and offer a fair comparison.

We compare both model performance in classification error as well as model

compactness using the compression ratio defined in [169] between our approach

and the approach in [169]. Similar to [169], the compression ratio is defined

relative to model capacity of the original RF [16] and ADF [191] which have

similar model sizes.

98

Chapter 4. Residual Likelihood Forests

Performance Error (%)

Data set
Refined-A

[169]
Refined-E

[169]
RLF-D
(Ours)

RLF-S
(Ours)

USPS 5.10±0.10 5.69±0.15 5.01±0.04 5.46±0.16
Letter 2.98±0.15 4.33±0.08 2.68±0.06 4.30±0.22
MNIST 2.05±0.02 2.95±0.03 1.81±0.03 2.41±0.05
Chars74k 15.40±0.1 18.00±0.09 16.33±0.25 18.51±0.17

Compression Ratio

Data set
Refined-A

[169]
Refined-E

[169]
RLF-D
(Ours)

RLF-S
(Ours)

USPS 2.86 15.14 5.58 22.32
Letter 2.33 30.32 3.49 446.42
MNIST 6.29 76.92 6.98 111.61
Chars74k 1.70 37.04 5.75 368.30

Table 4.4: Residual Likelihood Forests compared with [169] for perfor-
mance/compression tradeoff on 4 datasets. For a fair comparison, the best performing
method for each data set comparing across Refined-A and RLF-D is bolded, and the
best performing method comparing across Refined-E and RLF-S is shaded in blue . We
note that when compared to the best performing accurate model of [169], our method
(RLF-D) achieves higher performance on 3 out of the 4 datasets and achieves com-
petitive results on the Chars74k data set, using a much smaller fraction of the model
capacity of [169]. When compared to the economic model of [169], our method is able to
achieve better than or competitive performance whilst further reducing model capacity
by more than an order of magnitude. In each case, we report mean result across 10
separate runs.

4.4.5.1 Model Performance

In terms of classification error, our deep model (RLF-D) handily outperforms the

accurate version of the refined model in [169] on 3 out of the 4 datasets compared

against. It is worth noting that even on the Chars74k data set, we achieve

competitive results, despite limiting our maximum tree depth to 15 (compared to

the 25 depth trees used in [169]). In Table 4.4, we show our RLF model’s results

compared to the model of [169].

99

4.4. Experiments

Maximum Tree Depth

Data set RF\ADF\ [169] RLF-D RLF-S

USPS 10 7 5
Letter 15 13 6
MNIST 15 12 7
Chars74k 25 15 10

Table 4.5: Comparison of maximum tree depths of our method compared to competing
ensemble methods. Our method is able to train significantly shallower models without
any significant to classification performance.

4.4.5.2 Model Compactness

Here, we offer a discussion on the efficiency of our method when utilising the

feature space to decide split nodes. The right hand side of Table 4.4 shows

the compression ratio of our RLF-D and RLF-S models when compared to the

Refined-A and Refined-E models of [169]. We note that our model demonstrates a

drastic decrease in model capacity whilst only giving a minor trade off in accuracy.

These results further highlight the efficiency of our RLF method in constructing

compact models which offer strong classification performance. Unlike the method

in [169] which uses leaf refinement and pruning to gain a reduction in model

size and accuracy improvement, our method yields the reduction in model size

during the construction process of the strong classifier, rather than as a step after

the entire forest has been constructed. This is beneficial for our RLF method

as we are able to avoid a large part of the process of building deep trees and

subsequent leaf pruning our forest for model compactness that the method in [169]

requires. Compared with the global refined models Refined-A and Refined-E, our

method manages to further improve model compression whilst offering additional

improvements to classification performance.

100

Chapter 4. Residual Likelihood Forests

4.4.5.3 Computation Complexity

Finally, we provide a brief discussion on the model computation complexity of

RLF. Our RLF model offers improvements when compared to other decision

forest models which is evidenced by the large decreases model sizes. Table 4.4

demonstrates that RLF can achieve competitive performances using significantly

less model parameters. This is largely in part due to our RLF method requiring

much shallower trees when compared to other ensemble methods. Our empirical

results in Fig. 4.2 and Tables 4.3, 4.4 and 4.5. Furthermore, our experiments

also show that RLFs require less tree learners in the ensemble when compared

to Random Forests which also contribute to the reduced computation complexity

of our model. In terms of training samples, we trained all our RLF models with

the same standard datasets as the competing ensemble methods to ensure a fair

comparison between models.

101

4.5. Discussion and Summary

4.5 Discussion and Summary

In this chapter, we have proposed a novel classifier called Residual Likelihood

Forests which offers a new approach for combining weak learners within an en-

semble learning framework. Our method shows that weak learners in an ensemble

can be constructed to optimise a global loss in a complementary manner through

the generation of residual likelihoods instead of probability distributions in the

base tree weak learner. Empirically, we show that this allows for construction

of much shallower and more compact models whilst yielding higher classification

performance over competing ensemble methods across several machine learning

datasets.

102

Chapter 5

A Hybrid Deep Learning Model using Forests

In this chapter, we extend on the framework introduced in the previous chapter

to utilise the rich space of representative features of a CNN. Additionally, we

illustrate how the framework can be incorporated as part of a CNN framework

to create a hybrid model. We apply our hybrid model to the more complex task

of semantic segmentation and show that our model can outperform several pure

deep learning approaches.

We highlight some key architecture choices in our framework to enable it to

perform semantic segmentation, using a Fully Convolutional Network (FCN) [135]

as a baseline network, replacing its convolutional solver component with our RLF

classifier. We demonstrate empirical results which show that the CNN modified

with our RLF classifier is able to offer improved performance in segmentation on

the PASCAL VOC, NYUv2-40 and MSRC-21 datasets.

103

5.1. Introduction

5.1 Introduction

Recently, deep learning approaches have become more popular; deep networks

have demonstrated that targeted, learned features allow for a powerful distributed

representation of data and have used this to surpass the competition in tasks

such as image classification [79,117,201]. In this chapter, we combine the power-

ful representational capabilities offered by deep convolutional networks with the

concentrated non-linear discriminative capabilities of decision trees. The early

work of Sethi described a method for converting a decision tree into a neural

network. These tree structured networks were then retrained and called Entropy

Nets [194]. In this work, we take an approach parallel to this which aligns with

earlier work where decision forests have been used to learn intermediate represen-

tations of data [91,177]. The work of Montillo et al. [148] and Kontschieder et al.

[115] used intermediate predictions of the input data and injected the input space

with this information, which can be seen as an earlier version of representational

learning using decision forests. Fanello et al. [183] learned a cascade of image

priors, using a random forest which held a linear prediction model within each

leaf nodes.

5.1.1 Contributions

The work presented in this chapter builds upon the decision forest framework

introduced in Chapter 4, extending it to utilise the activations from various con-

volution layers in a CNN to perform semantic segmentation tasks. Due to the

use of representation features of CNNs with the Residual Likelihood Forests of

Chapter 4, we refer to this approach as Residual Representation Forests (RRF).

This chapter details how through specific model architecture choices, the two

different frameworks of a decision forest and CNN can be combined into a single

hybrid approach. This chapter highlights the following contributions:

104

Chapter 5. A Hybrid Deep Learning Model using Forests

• We develop a hybrid framework which combines decision forests with CNNs

to perform semantic segmentation.

• We empirically demonstrate that our decision forest classifier can be suc-

cessfully used to replace the solver component of a CNN and gain significant

improvements over the baseline on the PASCAL VOC 2012, NYUv2-40 and

MSRC-21 datasets.

105

5.2. Related Work

5.2 Related Work

5.2.1 Random Forests in Semantic Segmentation

Random forests have found a wide use of applications in vision-related problems,

including segmentation. The early work by Shotton et al. approached semantic

segmentation using dense hand-crafted features as inputs to graph-based meth-

ods [199]. Shotton et al. subsequently extended upon this work with random

forests to generate global priors of images for the framework [198]. Schroff et

al. used single-histogram class models which were mapped within a random

forest classifier for segmentation tasks [190]. Following this, other graph-based

techniques incorporated more scene information such as contextual and joint re-

lations between objects [69, 80, 223, 224]. The work of Kontschieder et al. used

random forests to learn structured class labels which incorporated joint statistics

around a small neighbourhood and used this to perform semantic labelling [112].

Kontschieder et al. introduced Geodesic forests which enriched the input space

with intermediate predictions from a random forest and used this feature space

to perform semantic segmentation [115]. Montillo et al. used random forests to

search for boundaries in a high-dimensional feature space. These boundaries were

then utilised to perform segmentation on tumours in medical images [148].

5.2.2 Deep Learning in Semantic Segmentation

A number of recent approaches have found success in semantic segmentation

tasks by utilising CNNs. Pinheiro et al. employed a feed-forward network which

performed pixel-wise classification on pooled, raw pixel data [163] . Similarly,

Sermanet et al. adopted fully convolutional computation to perform sliding win-

dow detection by densely sampling image patches [193]. The work of Long et

al. introduced the Fully Convolutional Network (FCN), which adapted CNNs

to be trained end-to-end for semantic segmentation by coupling the learning of

106

Chapter 5. A Hybrid Deep Learning Model using Forests

the weights with a linear solver that combines residual information from multiple

layers in the network using a coarse-to-fine approach [135]. Noh et al. utilised a

deconvolutional network to upsample and combine features from different convo-

lutional layers of the FCN [154].

107

5.3. System Overview

5.3 System Overview

This section discusses the modifications made to the Residual Likelihood Forests

framework presented in Chapter 4 which allow it to be integrated into a CNN

framework and perform semantic segmentation. The baseline CNN used for the

feature extraction step is a Fully Convolutional Network (FCN) [135]. Fig. 5.1

shows a system overview of RRF, showing the modifications made to the baseline

FCN model. In the following section, we discuss the implementation details of

our method, including the model architecture, how the model is trained and

particular approximations made to the objective function.

5.3.1 Using CNN Features

We enrich the input space of our decision trees with features extracted from the

FCN baseline model [135]. Top layer features have large effective receptive fields

which extract global information about a scene. Features from lower layers of the

CNN have much smaller effective receptive fields and describe local information

that tells the classifier “where” the semantic information is located.

We treat a pretrained FCN as a generic feature extractor and train our RRF on

features extracted from various convolution layers of the network. Each convolu-

tion layer outputs a feature map consisting of C channels. The decision function

in each decision node consists of a channel index and a threshold value. The

decision function’s channel index is a randomly selected channel from a corre-

sponding convolutional layer’s output. The threshold value is randomly chosen

from a normal distribution generated from the mean and variance across all ob-

served instances routed to its corresponding decision node. Thus, for a given

decision node, the parameters θ consist of a channel and a threshold: θ = {c, tn}.

108

Chapter 5. A Hybrid Deep Learning Model using Forests

Downsampling Convolution Transposed Convolution

Input

Baseline FCN

Prediction

C
on

vo
lu

ti
on

al
 S

ol
ve

r

RRF

Prediction

Fo
re

st
 S

ol
ve

r

Figure 5.1: Our RRF model replaces the fully convolutional solver component of a
baseline FCN. Instead of using skip connections to the activations of earlier convolution
layers in the network, we build a decision forest directly from the activations of specified
convolution layers in the CNN.

109

5.3. System Overview

The decision function d(x; θ) is defined as:

d(x; θ = {c, tn}) =

0, if xc ≤ tn

1, otherwise
(5.1)

where xc is the feature value of a sample in channel c in the convolutional layer’s

output, and tn is the threshold value belonging to decision node n of a tree. We

extract features before they are passed through the Rectified Linear Unit (ReLU)

to increase their expressiveness.

5.3.1.1 Choosing Convolution Layers

We train directly on features extracted from FCN convolutional layers, adopting a

coarse-to-fine approach when building forests in our RRF. FCN outputs features

which capture various levels of context depending on the convolution layer the

feature maps are extracted from. Our model uses a group of forests, with a forest

dedicated to learning from features for a selected convolution layer in the FCN

model. A top down approach is employed; we start by building forests for the

coarse, stride-32 feature maps first (fc7 layer) before transitioning to the stride-

16 feature maps (conv5 3 layer). This is followed by the stride-8 feature maps

(conv4 3 layer) and finally, the stride-4 feature maps (conv3 3 layer). At this

point, we stop training additional forests since this yields diminishing returns

beyond the stride-4 feature maps.

5.3.1.2 Coarse-to-Fine Upsampling

For an input feature map of H ×W dimensions, each tree in its corresponding

forest outputs an image of H × W dimensions, where each pixel in the image

is mapped to an image of residual likelihoods for each tree in the forest. These

images are then multiplied and normalised to generate an image of pixel-wise

probability distributions for the entire forest. Following this, we transition to the

110

Chapter 5. A Hybrid Deep Learning Model using Forests

next convolution layer which outputs a feature map at a higher resolution (i.e.

from the fc7 layer to the conv5 3 layer), where a new forest is constructed. In

order to combine images from a lower resolution (i.e. fc7) with images from a

higher resolution (i.e. conv5 3), we need to upsample the lower resolution image;

for this, we perform bilinear interpolation on the image of per-pixel probability

distributions. The upsampled image of distributions is used as the image prior

for the new forest in the proceeding convolutional layer.

5.3.2 Learning Residual Representation Trees

Similarly to the Residual Likelihood Trees detailed in Chapter 4, our learning

approach departs from the entropy minimisation methods of conventional random

forests. Rather than trying to locally minimise entropy of the left and right class

label distributions for each decision node in the tree, we instead minimise a global

loss function which accounts for all trees.

5.3.2.1 Decision Function Selection

Each tree is added iteratively to the RRF and grows one level at a time, starting

with a root decision node. Similar to the Residual Likelihood Forest framework of

Chapter 4, to select the best decision function from the pool of available decision

functions at each node, we generate potential residual likelihoods for the tree to be

added and evaluate the log loss of the RRF, inclusive of the residual likelihoods of

the currently constructed tree. A decision function is selected such that it locally

minimises the global log loss. Since each decision node in the level is independent

of one another, choosing decision functions this way allows us to minimise overall

log loss for decision functions selected for the level in the tree. After the decision

functions for a level in the tree is selected, we fix these decision functions for

each decision node and continue to grow the tree by one level. This process

described above is repeated and we continue to add levels of decision nodes to

111

5.3. System Overview

the incomplete tree until a specified maximum depth is reached, at which point

we add the completed decision tree to the RRF and begin building the next tree.

5.3.2.2 Batch Learning

We adopt a batch learning method, where a mini-batch of images is used for

the selection of each decision node. In the context of decision forests, this ap-

proach can be likened to the bootstrap aggregation method in [16]. For each

tree constructed for the ensemble, we randomly select a batch of images from the

training data to generate leaf node likelihoods. For each level of decision nodes

to be added to the current tree being built, we select a new batch of images,

doubling the initial batch size for each level added (to account for the doubling

of nodes as we move deeper into the tree). The initial batch size is chosen such

that the leaf likelihoods are generated from approximately N ≈ 1000 training

samples.

5.3.2.3 Updating Residuals

As each tree is iteratively added to the ensemble, we apply mini-updates to the

overall ensemble to ensure each tree’s residual likelihoods are regularly updated

and conditioned upon not only the residual likelihoods of trees built before it,

but subsequent trees added later in the ensemble. After we add a tree to the

ensemble, we select a random batch of images (with batch size equal to the

number of samples used to train the deepest level of a tree) and simultaneously

generate residual likelihood updates for all existing trees in the ensemble in this

manner. Each residual likelihood update term is downscaled by a factor equal to

the current number of trees in the ensemble before being applied to each residual

likelihood in the ensemble.

112

Chapter 5. A Hybrid Deep Learning Model using Forests

5.3.3 Objective Function Approximations

5.3.3.1 Class Label Approximation

The class label distributions are generated from observed samples from the train-

ing set which are paired with each CNN feature being routed through the decision

forest. The training data consists of pairs of raw RGB images and corresponding

dense, per-pixel class label images. Once the RGB image is passed through the

CNN, features from the coarse-level layers will have multiple pixel-wise class la-

bels associated with it, which makes it difficult to construct observed class label

distributions for these feature maps. To address this, we downsample the ground

truth class label image to match the size of the CNN feature map for which we

are constructing a forest. The area in the original class label image that corre-

sponds to the coarse-level feature being considered is condensed into a class label

distribution. The coarse-level feature is routed through each tree as per usual

and is aggregated with the class label distribution stored in the corresponding

leaf node.

5.3.3.2 Loss Function Approximation

During training, for the coarse features extracted in the deeper layers of the

network, we make an approximation on the training loss computed to select

decision functions for each decision node. The loss function defined in Eq. 4.6

from Chapter 4 represents the average global log loss of the RRF at full image

resolution. For completeness, we repeat the loss function here:

L = −
∑
i

∑
j

cij log
(
P+
ij

)
(5.2)

Where P+
ij is the normalised probability of class j for coarse feature i of the com-

bined likelihoods from the ensemble including the new tree. When using coarse

feature maps from top level convolutional layers, we modify our loss function as

113

5.3. System Overview

an approximation:

Lapprox = −
∑
i

∑
j

sij log
(
P+
ij

)
(5.3)

where sij is the ratio of pixels with class label j for a coarse feature i with n

number of corresponding pixels to the coarse feature i:

sj =
cj
n

(5.4)

Here, we are approximating the loss function since we take the average loss for

class j over the area of pixels the coarse-level feature corresponds to from the full

resolution image. We find this method is a good approximation for the actual

loss function and minimise on this approximate loss function during training.

114

Chapter 5. A Hybrid Deep Learning Model using Forests

5.4 Experiments

For our experiments, we use the highest performing pretrained models: all mod-

els used in our experiments were obtained from the online repository of [135]

(https://github.com/shelhamer/fcn.berkeleyvision.org). These models are collec-

tively referred to as fcn-heavy and trained using the SGD algorithm with a

momentum of 0.99 and mini-batch size of 1.

We fix the weights of the pretrained models up to and including the fc7 layer and

replace the solver layers of the network with our classifier (as shown in Fig. 5.1).

We use a 4 stride model of RRF (RRF-4s), starting at 25 trees for the finest

resolution convolution layer, conv3 3, and double the number of trees as we move

up to coarse resolution layers. This is done in a similar manner to [135], which

roughly doubles the modelling capacity between transpose convolution layers as

we transition to coarse resolutions with more semantic information. We adjust

the depth of our trees in accordance to the size of the data set, using deeper trees

(more modelling capacity) for larger datasets. To assess and compare our model’s

performance, we use the three metrics defined in [135]: mean IU, mean accuracy

and global pixel accuracy.

5.4.1 Pascal VOC

We train our RRF-4s model using the training and validation data of the PASCAL

VOC 2012 data set in addition to the augmented PASCAL data set of [75] (12031

total images) and evaluate on the test data (1456 images), specifying a tree depth

of 7 levels. Table 5.1 shows the performance of our RRF-4s on the test data of

PASCAL VOC 2012 and compares with other methods that work directly with

features from a CNN. We outperform the methods of [30,76,135] and achieve very

competitive results with [154]. In Fig. 5.2, we show qualitative results comparing

our method the baseline FCN model [135].

115

5.4. Experiments

(a) Image (b) FCN-8s (c) RRF-4s (d) Truth

Figure 5.2: RRF-4s results on PASCAL VOC 2012 Validation data: Column (b)
shows the segmentations produced by the model in [135]. The output of our highest
performing model, RRF-4s, is shown in column (c). Comparatively, our system seems to
be more robust at dealing with irregular camera rotations (first row), handles occlusion
better (second row), better discerns between inconsistent surface appearances (third
row) and is more robust to irregular lighting conditions (fourth row).

116

Chapter 5. A Hybrid Deep Learning Model using Forests

mean IU (%)

SDS [76] 51.6
CFM [30] 61.8

FCN-8s-heavy [135] 67.2
DeconvNet [154] 69.6
RRF-4s (Ours) 69.4

Table 5.1: PASCAL VOC 2012 Results. We report mean result across 10 separate
runs.

5.4.2 NYUDv2

We report results on the NYUDv2 [200] data set, using the 40 class semantic

segmentation set with pixel-wise labels provided by [71]. We use the standard

split of 795 training images and 654 testing images. We lower our tree depth to 5

levels to account for the relatively smaller data set size in comparison to PASCAL

VOC data set.

Table 5.2 shows our model trained on only RGB colour information and compared

to other colour-only models from [132] and [135]. To offer a fair comparison, we

compare our model to the baseline CNN with sliding pyramid pooling of [132]

(up to the parts that interact directly with the feature maps generated by the

CNN). Here, we demonstrate the advantage of our method with datasets with

limited training data; we offer a significant increase in performance in the mean

IU, mean accuracy and global accuracy metrics compared to [132] and [135].

pixel
acc. (%)

mean
acc. (%)

mean
IU (%)

FCN-32s-heavy RGB [135] 60.0 42.2 29.2
Lin et. al [132] 63.5 45.3 32.4
RRF-4s (Ours) 64.1 46.3 33.7

Table 5.2: NYUDv2 Results (RGB only). The mean result across 10 separate runs is
shown.

We also train our model using both colour and depth information following the

procedure from [72] and compare against methods from [41], [72] and [135]. We

117

5.4. Experiments

open up each decision node in our trees to choose from both colour and depth

information resulting in hybrid trees with a mixture of decision nodes that learn

based on either colour or depth. We list our comparison in Table 5.3, outper-

forming all other methods significantly across mean IU, mean accuracy and global

accuracy metrics. In Fig. 6.6, we show qualitative results comparing our method

the baseline FCN model [135].

pixel
acc. (%)

mean
acc. (%)

mean
IU (%)

Gupta et al. [72] 60.3 35.1 28.6
FCN-32s-heavy RGBD [135] 61.5 42.4 30.5

FCN-32s-heavy RGB-HHA [135] 64.3 44.9 32.8
FCN-16s-heavy RGB-HHA [135] 65.4 46.1 34.0

Eigen et al. [41] 65.6 45.1 34.1
RRF-4s (Ours) 67.3 46.9 36.2

Table 5.3: NYUDv2 Results (RGB + Depth). The mean result across 10 separate
runs is shown.

5.4.3 MSRC-21

Finally, we show performance of our method on the MSRC-21 data set [199].

It consists of 591 colour images with 21 different class categories. We train our

RRF-4s model on this data set. Once again, to account for the comparatively

smaller size of the MSRC-21 data set, we scaled back the depth of our trees using

a tree depth of 3 levels.

pixel
acc. (%)

mean
acc. (%)

mean
IU (%)

Yao et al. [224] 86.2 79.3 -
FCN-8s-heavy ∗ [135] 91.2 85.7 76.6

Ours 94.0 91.5 85.4

Table 5.4: MSRC-21 Results. The mean result across 10 separate runs is shown.

In Table 5.4, we compare the performance of RRF against the previous methods.

Our results offer a large performance gain over the pure deep learning approach

118

Chapter 5. A Hybrid Deep Learning Model using Forests

(a) Image (b) FCN-32s (c) RRF-4s (d) Truth

Figure 5.3: RRF-4s results on NYUv2-40 Test data: Column (b) shows the segmen-
tations produced by the baseline CNN model [135]. Column (c) shows the output of
our highest performing model, RRF-4s. Our system is able to recover more information
when dealing with irregular textures (first row), recover fine structures (second row),
handle poor lighting conditions better (third row) and deal with ambiguity between
similar class objects (fourth row).

119

5.4. Experiments

(a) Image (b) FCN-8s (c) RRF-4s (d) Truth

Figure 5.4: RRF-4s results on MSRC-21 Test data: Column (b) shows the segmenta-
tions produced by the baseline CNN model [135]. The output of our highest performing
model, RRF-4s, is shown in column (c). Comparatively, our system seems to be more
robust at detecting changes in texture (first row), handles occlusion better (second row)
and better handles irregular lighting conditions (third row).

of the FCN baseline across global accuracy, mean accuracy and mean IU metrics.

In Fig. 5.4, we show qualitative results comparing our method the baseline FCN

model [135].

∗Since no trained network was available, we fine-tuned a pretrained FCN-8s network using
the procedure detailed in [135] on the MRSC-21 training set for 100 epochs, with batch size of
1 and high momentum of 0.99, initialising weights from a FCN-8s network model trained on
the PASCAL-Context data set [150]

120

Chapter 5. A Hybrid Deep Learning Model using Forests

5.5 Discussion and Summary

The system presented in this chapter combines a CNN with a decision forest

framework and offers a hybrid model to perform semantic segmentation tasks.

This approach shows that the incorporation of decision forests to an existing

CNN baseline can offer noticeable improvements to performance and in particular,

shows a greater robustness to datasets with limited training data over its pure

deep learning counterpart. The current implementation of the model relies on the

CNN being a pretrained component which extracts features for the decision forest

classifier to learn from. In the following chapter, we show how this framework

can be extended upon to additionally learn powerful representation features which

have been tuned to the decision forest classifier.

121

Chapter 6

Fast Residual Forests for Deep Representation

Learning

This chapter further develops upon the decision forest framework described the

previous two chapters. In Chapter 5, we offered a method for combining decision

forests with a pretrained CNN to create a hybrid model where the CNN acts as

a feature extractor and the decision forest acts as a classifier using the extracted

features of the CNN as an input. However, under this setting, the CNN is fixed

after its initial pretraining and cannot utilise the information learned by the

decision forest to adjust its parameters and offer more suitable features for the

decision forest to learn from. To address this, we extend upon our Residual Forest

framework to efficiently learn both deep representations and a classifier.

This work introduces an efficient learning approach which utilises decision forests;

it substantially reduces the time required to learn and provides much higher per-

formance when training data is limited. Our model demonstrates noticeable per-

formance improvements over its pure deep learning baseline, notably on datasets

with limited training data. We apply our method to the outdoor and indoor seg-

mentation datasets of KITTI and NYUv2-40, outperforming multiple pure deep

learning methods whilst using a fraction of training time normally required.

122

Chapter 6. Fast Residual Forests for Deep Representation Learning

6.1 Introduction

Recently, deep learning approaches have shown success in a range of computer

vision tasks, learning both feature representations together with their classifiers,

yielding large performance gains over classical methods that rely on conventional

feature descriptor and classifier frameworks [79, 117]. However, these models are

often difficult to train, both in terms of the training time required as well as the

amount of data necessary to ensure generalisation in the trained model [201]. This

can be especially problematic in applications where learning speed and robustness

to limited training data is required such as in robotic learning. Whilst effective,

pure deep learning approaches can often fall short for these types of robotic

applications due to their data hungry nature.

In the domain of robotics, learning the task of semantic segmentation plays a

vital role in scene understanding since the spatial information in an environment

is often just as important as the semantic information within it. Deep learning has

been successfully applied to curated semantic segmentation tasks [135, 154] such

as the PASCAL VOC data set. For segmentation datasets relevant to robotics,

segmentation tasks are not as straightforward; the scenes are often cluttered with

many classes and are considered challenging due to the high ratio of classes to

training data [72,200]. Furthermore, due to the nature of segmentation tasks, the

amount of training data available is often limited by the difficulty of providing

accurate labelled data to learn from [61, 200]. Despite this, research towards

investigating approaches that generalise well when there is insufficient training

data available has been limited. The popular approach for training deep neural

networks for semantic segmentation tasks with limited training data involves

fine-tuning from network weights that have been trained on a much larger, more

general data set [30, 135, 163]. However, even this does not properly address

the situation when the training data is too limited to sufficiently fine-tune the

network to perform adequately on a given task.

123

6.1. Introduction

6.1.1 Contributions

In this chapter, we present a learning approach called Fast Residual Forests (FRF)

which not only dramatically reduces time required to learn, but significantly

outperforms many pure deep learning methods on datasets with limited training

data. Our method learns feature representations from a CNN which are used to

train a decision forest framework. We formulate a method which enables the joint

training of both features from the CNN together with a decision forest classifier,

unifying the two different frameworks. The benefits of our approach include:

• Joint optimisation of information across all the leaf node predictions of trees

in the ensemble, allowing for large numbers of tree classifiers to be trained

in parallel. This drastically reduces the required training time of the model.

• Our model combines highly non-linear random decision forests with a con-

volutional neural network, using a novel technique to train the entire system

via backpropagation.

• Empirically, our approach demonstrates a significant increase in perfor-

mance on datasets with limited training data, such as the KITTI 6-class

and NYUv2 40-class segmentation datasets, when compared against multi-

ple pure deep learning methods.

124

Chapter 6. Fast Residual Forests for Deep Representation Learning

6.2 Related Work

6.2.1 Deep Learning with Decision Forests

As deep learning rose to prominence, it quickly became the de facto standard

for several vision related tasks, including semantic segmentation. Initial works

used the strong features learned by neural networks and leveraged their rich in-

formation to train conventional, off-the-shelf classifiers [63,72,76]. Following this,

end-to-end deep methods which jointly trained CNN features in parallel with a

classifier emerged as a natural progression from the typical decoupled frameworks

of CNN extractors and classifier pairs [135, 154, 163, 193]. Since then, works in

the literature have sought to train conventional CNNs with methods inspired by

decision trees [91, 151, 173]. Most notably, our approach shares similarities with

methods that look to directly combine convolutional neural networks with deci-

sion forests [114, 177]. Bulo et al. replaced the decision nodes in decision trees

with multi-layer perceptrons and used these modified forests to perform semantic

segmentation [177]. Kontschieder et al. reformulated split node functions as a

soft, differentiable stochastic function, enabling backpropagation to learn both

the weights in the network and a decision forest classifier [114].

125

6.3. Framework

6.3 Framework

In contrast to [114] and [177], our method does not modify the hard split func-

tion conventionally found in decision trees. Instead, it maintains the expected

behaviour of a decision forest during the forward pass and employs a technique

to approximate the gradient during the backward pass. Additionally, our method

reformulates the problem of learning leaf node distributions to learning leaf node

likelihoods which subsequently allows for parallelised training of thousands of

tree classifiers at once. In the following section, we discuss the details of how our

model learns prediction leaf nodes and CNN features.

This approach builds upon the Residual Forest framework detailed in the previ-

ous two chapters. We now extend the method so that the representation features

produced by a deep convolutional neural network can be jointly optimised along-

side our decision forest classifier. Unlike the Residual Forest framework discussed

in the previous two chapters, instead of iteratively optimising each decision tree,

we now look to jointly optimise all decision trees in parallel across the entire

ensemble.

6.3.1 Assigning Channels to Decision Nodes

The decision forest classifier component of the FRF model must first be initialised

before the model can be trained. This involves selecting which CNN feature acti-

vations will serve as the inputs to the decision forest classifier component of the

model. For this, we simply observe the number of channels in the feature map

we are constructing the forest for and randomly choose a channel index for our

desired activation value for each decision node in the forest (e.g. the fc7 con-

volution layer outputs a feature map with 4096 channels; for each decision node,

we randomly select a discrete channel index value in the range of [1, 4096]). This

assigns each decision function for a decision node in the forest with a correspond-

126

Chapter 6. Fast Residual Forests for Deep Representation Learning

1
2

4
3

10
9

7
8

6
5

2

10

6

10

ActivationsCNN

Figure 6.1: Each decision node is initialised by being randomly assigned a channel
index from the feature activation map of its corresponding convolution layer. The deci-
sion function in each decision node consists of a channel index value which indexes into
a channel of the input feature map to obtain an activation value. This is then compared
with the decision node’s assigned threshold value to determine routing direction.

ing CNN activation value for the convolution layer it is constructed for. This is

illustrated in Fig. 6.1. Additionally, each decision node is assigned a randomly

sampled threshold term, which is generated by sampling from a normal distri-

bution where the mean and standard deviation is computed from all the values

of the activation tensor. This threshold term is used for comparing against its

assigned activation value.

Recall from Chapter 5 that for a given decision node, its parameters θ consist of

a channel index and a threshold value: θ = {c, tn}. The decision function d(x; θ)

is defined as:

d(x; θ = {c, tn}) =

0, if xc ≤ tn

1, otherwise
(6.1)

where xc is the feature value of a sample in channel c in the convolutional layer’s

output, and tn is the threshold value belonging to decision node n of a tree. Thus,

127

6.3. Framework

forward inference through any tree in the forest proceeds as usual; for a decision

node, when the selected activation value exceeds its assigned threshold value, the

sample is routed right, otherwise it is routed left.

6.3.2 Learning Prediction Nodes

To optimise the residual likelihoods in the leaf prediction nodes, we can treat the

task as a standard optimisation problem across all residual likelihoods, where we

would like to minimise the global log loss of the model, given the representation

features we have selected from the output of the convolution layers of the CNN.

For any tree d in the ensemble, we can derive the required update term for its

leaf prediction nodes. Recall the following terms from Chapter 4:

• P−ij is the value of class j for sample i obtained by combining likelihoods from

all existing weak learners in the ensemble (excludes the residual likelihood

term added by tree d).

• qj is the stored value for class j of the residual likelihood to be contributed

by the tree d.

• P+
ij is the normalised probability of class j for sample i of the combined

likelihoods from the all the trees in the ensemble (including tree d):

P+
ij =

P−ij qj∑
k P
−
ikqk

(6.2)

• cij is the ground truth class label for sample i taking the class label j.

Hence, for each residual {qj} contributing to the final prediction, we look to

128

Chapter 6. Fast Residual Forests for Deep Representation Learning

minimise the following global loss term:

L = −
∑
i

∑
j

cij log
(
P+
ij

)
(6.3)

We can construct the learning of our prediction nodes in the ensemble of trees

as a convex optimisation problem; we use Stochastic Gradient Descent (SGD)

to jointly optimise all residuals likelihoods in all leaves, across all trees in the

ensemble. Substituting Eq. 6.2 into Eq. 6.3:

L = −
∑
i

∑
j

cij log

(
P−ij qj∑
k P
−
ikqk

)

= −
∑
i

∑
j

cij

(
log
(
P−ij qj

)
− log

(∑
k

P−ikqk

)) (6.4)

Thus, for the class l of a particular instance i, we can generate its first-order

derivatives of the log loss with respect to the residual term, ql, to minimise the

global loss term:

∂L

∂ql
= −cil

P−il
P−il ql

+
P−il∑
k P
−
ikqk

= −cil
ql

+
P−il∑
k P
−
ikqk

= 0

=⇒ ∂L

∂ql
= −(cil − P+

il)

(6.5)

Where for the coarser feature maps produced by deeper convolution layers in the

model, cil represents a ground truth probability value of instance i for the given

class l. We use Stochastic Gradient Descent (SGD) to minimise our loss with

respect to the residual likelihoods stored in our ensemble of trees:

q
(t+1)
l = q

(t)
l + µφ (6.6)

129

6.3. Framework

Where µ is the momentum and φ is an update term given by:

φ = −η ∂L
∂ql
− ηωq(t)

l (6.7)

Where η > 0 is the learning rate and ω > 0 is the weight decay. This allows us

to build all residual likelihoods in all trees in the decision forest in parallel, where

each residual contribution from each tree is jointly optimised in the context of

contributions from all other trees in the forest.

6.3.3 Learning Features

A standard CNN is composed of convolution layers, downsampling layers and non-

linear activation layers with a final classifier layer typically made up of some fully

connected linear layers (for classification) or additional convolution layers (for

segmentation). This is usually followed by a loss layer such as Softmax [9] which

provides a loss to drive the training. The key is that each of these components

apply operations which are differentiable and enables training of the entire model

via propagation.

Since we are replacing the classifier component of the model with a decision forest,

which performs a routing in the forward pass, our model is no longer completely

differentiable in the conventional sense and training the model via backpropaga-

tion is no longer viable. Here, we offer a modification to the backwards pass of

the model, which generates the required gradients for training through approx-

imation of each decision node’s routing function and the loss generated by the

forest.

6.3.3.1 Approximating the Loss Function

We generate derivatives to drive training by considering an actual and divergent

loss from each node in each tree in the decision forest. For each instance routed

130

Chapter 6. Fast Residual Forests for Deep Representation Learning

Actual Path
Diverted Path

Figure 6.2: For an input activation and a selected decision node (highlighted with
dotted box), we reroute the sample from its intended path to a diverted path. This
routes the sample to two different prediction leaf nodes, of which one is its actual leaf
node and the other which is a diverted leaf node. As a result, two different losses are
generated; comparing these two losses allows us to generate a gradient to push the
input activation value closer or further away from the selected node’s threshold value.

through each tree in the decision forest, we define the actual loss of that instance

to be the loss computed if the instance was routed normally through each tree.

We define the divergent loss assigned by a node in the tree to be the computed

loss if, for a node n in tree t, the instance is instead routed the other direction

(but proceeding through all other nodes in the tree as normal). This is illustrated

in Fig.6.2.

Using this concept, we can form an approximation of the loss function for our

decision forest which is differentiable and use this to generate derivatives to drive

training of the weights in the CNN. For each input instance, we approximate the

loss function of our forest solver as a blend of sigmoids of the actual and divergent

loss, for a given decision node n:

L =
1

1 + eα(x−tn)
L1 +

1

1 + e−α(x−tn)
L2 (6.8)

Where x is the feature value, tn is the split threshold which the feature is compared

against for a given decision node, dn. For x ≤ tn, L1 and L2 are the respective

actual and divergent losses; for x > tn, L1 and L2 are the respective divergent and

actual losses. α indicates the steepness of the sigmoid function which dictates

131

6.3. Framework

how close a feature needs to be to its respective threshold to affect the backward

derivative generated.

6.3.3.2 Generating Backward Gradients

We can use the loss function defined in Eq. 6.8 to generate backward derivatives

and use SGD to train the weights in the CNN. The first-order derivatives of the

loss L in Eq. 6.8, with respect to the feature activations x is given by:

∂L

∂x
= δ

(
− αeα(x−tn)

(1 + eα(x−tn))2
L1 +

αe−α(x−tn)

(1 + e−α(x−tn))2
L2

)
= δ

αe−α(x−tn)

(1 + e−α(x−tn))2
(L1 − L2)

(6.9)

Where δ is defined by:

δ =

−1, if x > tn

1, otherwise
(6.10)

Eq. 6.9 indicates that for a given feature activation x, the backward gradient

generated is dependent on the difference between actual and divergent losses

computed at the node n the instance was diverted on. For any divergence point,

if the divergent loss is lower than the actual loss, this indicates that the feature

activation would be better off on the other side of its threshold value. Hence,

a gradient is generated which pulls x towards tn, such that it may cross the

threshold. Likewise, if the actual loss is lower than the divergent loss, the gradient

generated would push x away from tn.

For each sample being routed through a tree, we divert its path once for each

depth level in the tree (i.e. for a tree with 3 levels, each instance routed through

the tree will generate a set of 3 divergent losses). This means that each sample

generates 3 sets of gradients for each tree in the ensemble. From this, we can

compose a tensor of gradients for the feature map of activations in the CNN and

transplant this gradient tensor as initial gradients for the standard backpropaga-

132

Chapter 6. Fast Residual Forests for Deep Representation Learning

2

10

6

1017

5

1
2

4
3

10
9

7
8

6
5

Activations

CNN

1
2

4
3

10
9

7
8

6
5

Gradients

B
ackpropgation

Figure 6.3: Our method generates gradients from our decision forest classifier using
an approximation of the loss function using an actual and diverted loss. Each sample
is routed through the decision tree as normal until it reaches the decision node for
the selected tree depth level. At this decision node, the sample is diverted to the
other direction of its normally routed path. After this single diversion, it proceeds as
normal. This generates two separate losses which generate a differentiable loss function
to compute gradients from. We then transplant these gradients and assign them to the
input activation tensor, using backpropagation to update the entire model.

tion algorithm to compute updates for the entire model. Fig. 6.3 illustrates this

technique.

133

6.4. Experiments

6.4 Experiments

We use FCN-8s [135] as a feature extractor to which we attach our forest classifier

as a solver; FCN-8s also serves as a baseline comparison in all experiments. All

training experiments were performed on a PASCAL GeForce GTX1080 to ensure

consistent timing values for training and inference. We use features extracted

from the fc7, conv5 3 and conv4 3 layers of the network in [135] to train our

decision forest solver. For all our experiments, we build three forests comprising of

1024, 512 and 256 10-level depth trees for each of the fc7, conv5 3 and conv4 3

convolutional layers respectively. We train the “at-once” FCN-8s model of [135]

with default specified hyperparameters (high momentum of 0.99, mini-batch size

of 1, weight decay of 5e−4 and fixed learning rate of 1e-6). For our model, we

use the exact same hyperparameter settings, and we set our value of α = 1 for

all experiments. We initialised both our model and [135] with the same network

weights, trained on PASCAL-Context [150].

We present results in a small-size outdoor scene segmentation data set (KITTI) [61]

and a medium-size indoor scene segmentation data set (NVYv2) [200]. These

smaller datasets are used to highlight the robustness of our model to datasets

with limited training data and demonstrate the improvements we gain in terms

of speed of learning and segmentation performance over our baseline model. To

measure our performance, we use the metrics defined in [135]: mean IU, mean

accuracy and global pixel accuracy.

6.4.1 KITTI

KITTI is a small outdoor scene segmentation data set with 11 classes, com-

prising of 146 images in total [61] (100 training and 46 testing images). We

follow [220] and exempt under-represented classes like poles and pedestrians for

evaluation. This turns the data set into a 6 class problem and we follow [220],

134

Chapter 6. Fast Residual Forests for Deep Representation Learning

using intersection-over-union (IU) as a measurement of performance.

We compare our results in Table 6.1, outperforming all other listed methods

significantly in 4 out of 6 classes and offering a significant improvement to the

mean IU metric. We train the model of [135] for 20,000 iterations after which

it shows performance improvements over the graph-based methods of [171, 208]

and [220]. Comparatively, our approach further improves on the result of [135],

using the same amount of training data but vastly less training iterations (2000

iterations).

sky building road sidewalk vegetation car overall

Ren et al. [171] 87.4 78.7 72.6 41.3 80.9 59.5 71.9
Tighe et al. [208] 81.41 72.7 51.2 17.3 69.9 52.3 60.7
Wang et al. [220] 88.6 80.1 80.9 43.6 81.6 63.5 74.8

FCN-8s-heavy
(20k iterations) [135]

78.9 84.4 87.3 68.3 86.6 80.4 81.0

FRF (Ours)
(2k iterations)

84.5 85.9 92.3 78.8 87.8 80.3 84.9

Table 6.1: KITTI test data performance results: intersection-over-union. The mean
result across 10 separate runs is shown.

Next, we demonstrate improvements towards speed of learning that our method

offers. The graph on the left side of Fig. 6.5 shows the relative performance of

our method compared to [135] across a range of training iterations. We can see

that given the same base learning rate (1e-6), our model learns more than an

order of magnitude faster than [135]. After approximately 20,000 iterations, the

model of [135] begins to converge at a performance point of around 81% mean IU.

In contrast, our model reaches this performance point much earlier (within 500

iterations of training) and continues to improve in performance for another 1,500

iterations before converging at the significantly higher point of approximately

85% mean IU. This represents a reduction by a factor of 40 in the number of

training iterations required by our model compared to [135].

135

6.4. Experiments

Table 6.4 shows the timings for both training and inference between our model and

the model in [135]. We drastically reduce the training time required, using only

4.81 minutes compared to [135], which requires 150.11 minutes to reach the same

mean IU performance point of 81%. This represents an increase in training speed

by a factor of approximately 31. Inference across both models is approximately

the same; we gain a small reduction of 2.67 milliseconds in inference time per

inference iteration compared to the model in [135].

6.4.1.1 Ablation Study for Tree Depth

Additionally, we perform an ablation study on performance of our model versus

tree depth selection. Table 6.2 shows the mean IU performance from shallow

trees (1 depth) up to the relatively deep trees used in our final evaluation (10

depth). This shows some limitations of our model - performance converges to

approximately the same mean IU (84.5%), regardless of tree depth up to 4 depth.

However, for any depth shallower than 4 depth, mean IU performance begins to

suffer, indicating that our trees cannot be too shallow if we want to converge in

learning. The results also seem to indicate that deeper trees learn faster (itera-

tions 100 to 500); this is possibly due to the extra non-linearity in the classifier

and higher modelling capacity offered by deeper trees.

Tree Depth
No. of Training Iterations

100 200 500 1000 2000

1 36.3 58.9 58.3 54.1 53.9
2 62.5 48.7 57.2 63.6 71.6
3 66.5 66.3 65.0 68.6 70.5
4 41.2 62.9 64.4 72.1 84.3
5 39.5 65.3 73.8 81.3 84.6
6 54.8 60.6 67.5 81.9 84.7
7 51.6 74.4 80.4 81.7 84.9
8 57.1 57.6 75.1 83.9 85.0
9 53.7 74.2 79.7 79.4 84.5
10 63.8 75.3 81.5 82.0 84.9

Table 6.2: Ablation study on tree depth for KITTI

136

Chapter 6. Fast Residual Forests for Deep Representation Learning

Image

Truth

[135]

Ours

(a) 100 (b) 500 (c) 2k (d) 10k

Figure 6.4: Qualitative results on KITTI Test data. The first and second rows show
the test image and corresponding ground truth segmentation respectively. The third
row shows the output of [135] over training iterations. Our model’s output is shown in
the fourth row over the same training iterations.

6.4.2 NYUDv2

We now show that our method can be extended to larger, more complex scene seg-

mentation datasets. The NYUDv2 [200] data set is a challenging 40 class indoor

scene segmentation problem with pixel-wise labels provided by [71], considered

a medium-sized data set (1449 total images). We use the standard split of 795

training images and 654 testing images. First, we list our best results comparison

in Table 6.3 - note that our method and [132] use only colour information for

training whilst [41, 72, 135] use the method of [72] to utilise additional depth in-

formation for training. We show that we outperform all colour only methods by a

significant margin across all metrics. Furthermore, we even outperform methods

that use both colour and depth information for training across the mean accuracy

and mean IU metric, and obtain a competitive result in global accuracy compared

to [41].

We again offer a more in-depth analysis of the performance of our model against

our baseline model [135]. The graph on the right side of Fig. 6.5 compares the

performance of our method to [135] across a range of training iterations. After

approximately 100,000 iterations, the model of [135] begins to converge at a per-

137

6.4. Experiments

pixel
acc. (%)

mean
acc. (%)

mean
IU (%)

Gupta et al. (RGB-HHA) [72] 60.3 35.1 28.6
FCN-32s-heavy (RGBD) [135] 61.5 42.4 30.5

FCN-32s-heavy (RGB-HHA) [135] 64.3 44.9 32.8
FCN-16s-heavy (RGB-HHA) [135] 65.4 46.1 34.0

Eigen et al. (RGB-HHA) [41] 65.6 45.1 34.1

FCN-8s (100k iterations) (RGB) [135] 60.6 41.6 29.0
Lin et al. (Basemodel) (RGB) [132] 63.5 45.3 32.4

Ours (10k iterations) (RGB) 64.6 48.3 34.3

Table 6.3: NYUDv2 test results: the models below the horizontal line only use RGB
information to perform segmentation. The mean result across 10 separate runs is shown.

formance point of around 29% mean IU (consistent with the published results

in [135]). Our model reaches this performance point much earlier (after approxi-

mately 4000 iterations of training) and continues to improve in performance until

10,000 iterations of training, at a significantly higher point of approximately 34%

mean IU. This represents a reduction by a factor of 25 in the number of training

iterations required by our model compared to [135].

Table 6.4 shows the timings for both training and inference between our model

and the model in [135]. We improve on training time, using only 21.08 minutes

compared to [135], which requires 533.21 minutes to reach the same mean IU

performance point of 29%. This represents an increase in training speed by a

factor of approximately 25. We gain a significant reduction in inference time,

cutting inference down by more than 20 milliseconds per iteration of inference

over the model in [135].

6.4.3 Training Computation Complexity

The timings in Table 6.4 indicates that our FRF benefits from an improved level

of training computation complexity. A large part of the heavily reduced training

138

Chapter 6. Fast Residual Forests for Deep Representation Learning

Figure 6.5: Training iteration timings vs. mean IU performance on KITTI (left) and
NYUv2 (right) test data. The mean result across 10 separate runs is shown.

Im
ag

e
T

ru
th

[1
35

]
O

u
rs

(a) 1k (b) 2k (c) 10k (d) 25k (e) 50k

Figure 6.6: Qualitative results on NYUv2-40 Test data. The first and second rows
show the test image and corresponding ground truth segmentation respectively. The
third row shows the output of [135] over training iterations. Our model’s output is
shown in the fourth row over the same training iterations.

139

6.4. Experiments

Method
KITTI NYUv2

Total training
time (min)

Avg. inference
time (ms)

Total training
time (min)

Avg. inference
time (ms)

FCN-8s-heavy [135] 150.11 109.02 533.21 69.46
Ours 4.81 106.35 21.08 48.36

Table 6.4: Training and inference timings for KITTI and NYUv2. The mean result
across 10 separate runs is shown.

times for FRF across both the KITTI and NYUv2 datasets in Table 6.4 is due

to FRF requiring far fewer iterations than the competing FCN model. However,

training complexity at the iteration level is also further reduced due to the nature

of the forest solver component in FRF. When compared to a fully-connected linear

solver, in which a point-wise multiplication of the output of the preceding linear

layer occurs, the decision forest solver of FRF only requires computation of a

small part of the decision forest (i.e. along the branches routes of the actual and

diverted paths), with the large majority of the forest remaining untouched during

a forward pass through the decision forest. This in turn affects the computation

complexity of the backwards pass and in turn, the training complexity of the

model.

140

Chapter 6. Fast Residual Forests for Deep Representation Learning

6.5 Discussion and Summary

This work presented an ensemble learning method for segmentation which demon-

strates vast improvements in training speed through the use of decision forests.

We introduce a hybrid-model which utilises the representational learning of CNNs

together with the discriminating power of decision forests. Moreover, we formu-

late a method that allows for end-to-end learning of both representations and leaf

distributions in our decision forest solver. We use this approach to demonstrate

successful segmentation results on the KITTI and NYUv2 datasets, outperform-

ing multiple pure deep learning approaches and cutting down training time by

more than an order of magnitude.

141

Chapter 7

Soft Residual Forests in Generative Adversarial

Networks

The following chapter is largely drawn from a collaborative work performed with

Gil Avraham and will likely appear in a similar form in his thesis. The relative

contribution between myself and Gil was equal in essentially all relevant areas.

This work looks at the application of decision forests in another prominent area

of deep learning within the domain of generative models. Specifically, we look

towards an implicit type of generative model called the Generative Adversarial

Network (GAN) which are known to be highly unstable in training. For this, we

look at improving the conditioning of GANs by using a soft form of the decision

forest framework from the previous chapters.

The relevant contribution percentages from my end to produce this work are

listed as follows (mutually agreed upon by both first authors):

• Idea conception (50%)

• Network architecture design (50%)

• Loss function design (50%)

• Coding the network (50%)

142

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

• Training of models (50%)

• Testing and evaluation (50%)

In this chapter, we demonstrate how the training speed and stability of a deep

network is governed by the condition number of the Jacobian matrix of partial

derivatives of the square root loss of each training sample w.r.t. each model param-

eter. We illustrate this with reference to a didactic example (multi-dimensional

XOR) and a classification example that speeds up training on the CIFAR-10 data

set. Following this, we show how including a highly non-linear layer at the output

stage of the discriminator/critic network of a GAN in the form of a decision forest

can substantially improve its conditioning, increase stability and in return offer

greater learning efficiency.

143

7.1. Introduction

7.1 Introduction

In numerical analysis, conditioning is used to measure the sensitivity of a func-

tion towards changes or errors in the input [32]. Well-conditioned learning prob-

lems have played an integral role towards the recent significant advances within

the field of deep learning. The key contribution of the Rectified Linear Unit

(ReLU) [152] over Sigmoid enabled deep networks to be trained by preventing

derivatives from vanishing. Leaky ReLUs further improved upon this by dealing

with the “dying ReLU” problem (which can arise due to bad initialisation) where

large numbers of negative activations zero out too many derivatives [138]. Batch

Normalisation [92] explicitly reconditioned the learning problem at the layer level:

scaling activations ensured the derivatives on all weights were of similar magni-

tudes, while shifting the activations to zero mean removed the systematic corre-

lation between derivatives on the weights and those on the biases. Regularisation

methods such as Dropout [117] discouraged a network from being sensitive to

small differences between highly correlated activations and hence discouraged

such high correlations, which in turn improves its conditioning. Residual Net-

works [79] replaced X ′ = f(X) with X ′ = X + f(X). This continually re-centers

the learning problem to a point near the solution (f only has to learn a small

correction, rather than having to model the entire function). This improves the

conditioning on learning f and also provides a means of propagating significant

derivatives back up the processing chain, much like Highway Networks [204].

Despite the benefits these techniques have provided for various vision-based tasks

that utilise deep learning (such as image classification), this has not fully trans-

lated towards the realm of Generative Adversarial Networks (GANs) [68]. Ill-

conditioned models are particularly problematic in GANs [68], where the adver-

sarial training setup creates a fragility in the learning process. Recent works in

the literature have approached the task of improving GAN stability by making

modifications on the loss [2] or adding regularisation to the model [70, 168, 178].

Ultimately, these techniques can be seen as an implicit conditioning on the back-

144

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

propagated gradients which leads to improving the stability of training [2, 155].

This indicates that improving the conditioning of learning a GAN may be crucial

towards stable learning.

In this work, we analyse the conditioning of a deep neural network by inspect-

ing the condition number of a matrix containing the individually backpropagated

derivatives for each sample within a training set. Other works have examined

the condition number of the forward computation (i.e. of the model parameters).

This has been shown to be effective in obtaining models which are resilient to

adversarial attacks [192] and less sensitive to small perturbations of the input

data [165]. Although this is a desired property to have in the inference stage, this

does not give as strong insights regarding characteristics of the learning proce-

dure. We adopt an approach similar to [143] and instead observe the conditioning

of a model from a backward perspective. The key difference in our method is that

rather than observing the behaviour of the average gradient for a set of exam-

ples (as was done in [143]), we look at the distribution of per-exemplar gradients

within the set. Empirically, we show that using a highly nonlinear layer in the

form of a decision forest improves the conditioning of the learning problem and

as a result, gives increased training stability and efficiency. Whereas ReLU (or

other activation functions) are sensitive to the distribution of activations in each

channel independently, decision forests are able to disentangle complex joint de-

pendencies between different channels, leveraging their ability to model complex

real data [23].

145

7.1. Introduction

7.1.1 Contributions

In this chapter, we introduce Generative Adversarial Forests (GAF). This method

incorporates a decision forest as a layer into the discriminator/critic network of a

GAN. Our results show that this improves GAN conditioning and subsequently

increases stability in training. In summary, we make the following contributions:

• We introduce a methodology which connects the conditioning of a deep

neural network with its training performance. Through examples, we show

how better conditioned gradients accelerates learning and increases stability.

• This leads us to propose a novel and general approach which incorporates

decision forests into deep neural networks. We demonstrate how a decision

forest can be represented as a network layer which allows it to be embedded

within an end-to-end trainable framework.

• We empirically show that a GAN possessing a well-conditioned discrimi-

nator/critic with a decision forest offers both qualitative and quantitative

improvements over its baseline counterpart. We show large improvements

in FID scores over GAN baselines on the CIFAR-10, CUB Birds and Oxford

Flowers datasets.

146

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

7.2 Related Work

7.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first introduced in [68]; they are

a member in the taxonomy tree of Generative Models [66] which attempt to

derive an explicit estimate of the density distribution [53, 156]. Generative Ad-

versarial Networks however, do not explicitly form an expression for the density

function, but implicitly allow for sampling of the probability distribution once

trained. The original GAN formulation [68] introduced the adversarial loss and

showed that with enough capacity, the true data distribution can be recovered.

However, issues prevalent with the unstable nature of training these networks

due to their minimax loss functions gave rise to several works that attempt to

address this issue, either by network architectural solutions or modifications to

the loss function. Most notably, Radford et al. proposed the Deep Convolutional

Generative Adversarial Network (DCGAN), an architecture involving deep con-

volutional networks and regularisation methods such as batch normalisation and

empirically showed this to help with stabilising the training of a GAN and de-

lay mode collapse [168]. Other works offered regularisation techniques which

built around the base architecture of the DCGAN to try and stabilise training

by altering its training scheme or adding components around it [121, 178, 231].

Arjovsky et al. introduced the Wasserstein GAN, which proposed a modification

on the loss function by considering the Earth-mover’s distance (EMD), showing

how progress of training can be better coupled with the evolution of generated

samples using this new objective [2]. Other works have offered regularisation

techniques which were built around the base architecture of DCGAN to try and

stabilise training by altering its training scheme or adding components around

it [121,155,178,206,231].

147

7.3. Background

Real
Discriminator

Generator

Fake

Downsampling Convolution Transposed Convolution

Figure 7.1: A typical generator/discriminator setup in the original formulation of
the GAN. The generator’s role is to generate fake images from a source of energy
(typically Gaussian or uniform distribution) that can fool the discriminator, whose role
is to distinguish between real and fake images. Correct training between these two
adversaries results in an equilibrium state where they are evenly matched

7.3 Background

7.3.1 Generative Adversarial Networks

Generative Adversarial Networks implicitly estimate a data distribution using the

following minimax objective loss function:

min
G

max
D

V (D,G) = Ex∼Pr(x)[logD(x)]

+Ez∼Pz(z)[log (1−D(G(z)))]
(7.1)

This loss function narratively describes a game between two opponents, a dis-

criminator and a generator. The discriminator’s goal, given an example, is to

judge whether that example was drawn from the true distribution Pr(x), or from

the generated fake distribution G(z). This is illustrated in Fig 7.1. Hence, the

correct optimisation over the loss function in Eq. 7.1 results in an equilibrium

state where the discriminator and generator are evenly matched and the discrim-

inator cannot distinguish between real and fake generated samples, assigning a

half probability to any sample it receives [68].

148

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

7.3.2 Wasserstein Generative Adversarial Networks

A relatively new development in GANs is the Wasserstein GAN [2], which tries to

stabilise training of GANs by approaching the problem of matching distributions

from a perspective of mass transportation. In this context, the Wasserstein dis-

tance is the measure between two distributions. For the set of all joint probability

distributions Γ(xr, xg), we have probability distributions Pr, Pg over X ⊆ Rd and

the cost function c(xr, xg) : X × X → R+. The transport plan γ∗ ∈ Γ(xr, xg)

minimises the following:

Wc(Pr, Pg) = inf
γ∈Γ(Pr,Pg)

E(xr,xg)∼γ[c(xr, xg)] (7.2)

Arjovsky et al. compared different distance metrics for measuring distribution

distances [2] and showed the advantages of using the Wasserstein distance over

other probability distances including the Jensen-Shannon (JS) distance which

was used in the original GAN formulation. To address the expensive nature

of estimating Eq. 7.2 for distributions of high dimensions, Arjovsky et al. [2]

suggested using the Kantorovich-Rubinstein duality [216]:

W1(Pr, Pg) = sup
f∈FLip

Exr∼Pr [f(xr)]− Exg∼Pg [f(xg)] (7.3)

With the special case of (X , c) as a metric space and FLip are bounded 1-Lipschitz

functions. This form of computing the Wasserstein distance replaced the conven-

tional way of estimating the JS distance in Eq. 7.1, resulting in a new GAN

objective:

min
G

max
D

V (D,G) = min
θ∈Θ

max
ω∈Ω

Exr∼Pr [Dω(xr)]

−Ez∼Pz [Dω ◦Gθ(z)]
(7.4)

With G, D being neural networks parameterised by θ, ω and Pr, Pz being the

data distribution and noise distribution respectively. In the original formulation

of the Wasserstein GAN, Arjovsky et al. [2] adopted a weight clipping approach

to maintain the 1-Lipschitz bound on D; this was recently extended upon by

149

7.3. Background

Gulrajani et al. [70] which used gradient penalty instead to enforce the Lipschitz

constraint, by directly constraining the gradient norm of the critic’s output with

respect to its input. The method enforced a soft version of the constraint by

modifying the objective function with a penalty term on the gradient norm for

random samples x̂ ∼ Px̂, where Px̂ is defined as sampling uniformly along straight

lines between pairs of points sampled from the data distribution Pr and the

generator distribution Pg:

min
G

max
D

V (D,G) = min
θ∈Θ

max
ω∈Ω

Exr∼Pr [Dω(xr)]

−Ez∼Pz [Dω ◦Gθ(z)] + λEx̂∼Px̂
[(||∇x̂Dω(x̂)||2 − 1)2]

(7.5)

150

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

(a) (b)

Figure 7.2: (a): Isotropic loss surfaces of a well-conditioned network. This circular loss
surface shows how the minima can be reached from all directions (b): Loss contours of
an ill-conditioned model. Due to its non-ideal shape, there are several ways to overshoot
and leave the surrounding well, or never enter it.

7.4 A Better Conditioned Discriminator

We first take a step back and look at the underlying problem at hand. More

importantly, what does it mean for a model to be ill-conditioned? From the

perspective of gradient-based optimisation (as is often the case with learning

methods), networks which learn in a stable manner should possess an isotropic

loss surface which contain local minimas that are surrounded by spherical-shaped

wells. These spherical wells allow the minima to be reached from any direction

as well as reducing the chance of overshooting the minima. This is illustrated

in Fig. 7.2a. On the other hand, the source of instability in learning can often

be traced back to minimas that are surrounded by non-spherical wells [226]; the

minimas will be hard to reach and it is easy to overshoot and leave the local area

surrounding the minima. Fig. 7.2b illustrates this idea with a ellipsoid-shaped

well. These non-spherical wells around a local minima indicate an ill-conditioning

of the model.

Here, we propose a method for observing the conditioning of a model. Minimising

the loss function w.r.t the parameters in the network can be treated as an iterative

151

7.4. A Better Conditioned Discriminator

least squares problem:

L(Θ) =
∑
i∈N

L(i,Θ) =
∑
i∈N

(√
L(i,Θ)

)2

=⇒ ∆Θ = −
[
∂
√
L(i,Θ)

∂Θ

]†√
L(i,Θ)

(7.6)

where L represents the loss, and i are samples from the data, N . The first line

of Eq. 7.6 converts the global loss into a sum of root losses per example so that

the problem is re-expressed as a sum of squares minimisation. Then, defining the

matrix M of partial derivatives and vector v of root loss errors:

Mij =
∂
√
L(i,Θ)

∂Θj

and vi =
√
L(i,Θ) (7.7)

would enable a Gauss-Newton update: ∆Θ = −M †v (i.e. the second line of

Eq. 7.6). The condition number of this matrix M corresponds to the eccentricity

of the iso-loss ellipsoids in Fig. 7.2 and hence the efficiency of gradient descent.

This offers a general method for obtaining the condition number of the Jacobian of

the backpropagated gradients on a per-exemplar basis for any given model. In the

following sections, we provide examples of increasing difficulty, tying observations

from this approach to successful learning of a given task.

7.4.1 Example: XOR

We start with a didactic example to illustrate how poorly conditioned networks

can fail to learn an apparently simple 3-dimensional XOR function. For this

task, we construct two models: the first model consists of two FC linear layers

with a ReLU non-linearity in between, the second model consists of a FC linear

layer connected to a decision tree of depth 2. Across both models, the first FC

linear layer consists of 3 hidden nodes which ensures both models have the same

modelling capacity.

152

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

Theoretically, we would expect both models to learn the XOR function. Looking

at the model with two FC linear layers, one possible solution for the 3-dimensional

XOR problem using 3 hidden nodes is the following: for the first FC layer, its

parameters consist of a 3 × 3 matrix of ones, W1 and biases b1 = 2, b2 = 0 and

b3 = −2. The output of this FC layer before a ReLU activation is applied is

shown in the second column of Table 7.1. The ReLU activation zeroes out any

negative output values and is shown in the third column of Table 7.1. For the

second FC layer, its 4 parameters consist of a 3× 1 vector W2 = [1,−3, 5] and a

bias of b4 = −0.5. This gives the output shown in the final column of Table 7.1

which solves the 3 dimensional XOR problem.

Input FC1 ReLU FC2

x1 x2 x3 h1 h2 h3 h1 h2 h3 y

1 1 1 5 3 1 5 3 1 0.5
1 1 -1 3 1 -1 3 1 0 -0.5
1 -1 1 3 1 -1 3 1 0 -0.5
1 -1 -1 1 -1 -3 1 0 0 0.5
-1 1 1 3 1 -1 3 1 0 -0.5
-1 1 -1 1 -1 -3 1 0 0 0.5
-1 -1 1 1 -1 -3 1 0 0 0.5
-1 -1 -1 -1 -3 -5 0 0 0 -0.5

Table 7.1: A possible solution to the 3 dimensional XOR problem using 2 FC linear
layers using 3 hidden nodes.

Similarly, for the FC linear layer and 2 depth decision tree, one possible solution

for the 3-dimensional XOR problem using 3 hidden nodes is the following: for

the first FC layer, its parameters consist of a 3× 3 matrix of ones, W1 and biases

b1 = −1, b2 = 1 and b3 = −1. The output of this FC layer is shown in the second

column of Table 7.2. This is followed by a 2 depth soft decision tree with 4 leaf

parameters `1 = −1, `2 = 10, `3 = −40 and `4 = 20. This gives the output shown

in the final column of Table 7.2 which solves the 3 dimensional XOR problem.

However, in practice we do not observe the model of two FC linear layers with

ReLU learning this function; in contrast, the FC linear layer with decision tree

is able to learn the function. Fig. 7.3a shows the log loss across 1000 epochs of

153

7.4. A Better Conditioned Discriminator

Input FC1 FC2

x1 x2 x3 h1 h2 h3 y

1 1 1 2 4 2 12.48
1 1 -1 0 2 0 -0.66
1 -1 1 0 2 0 -0.66
1 -1 -1 -2 0 -2 0.05
-1 1 1 0 2 0 -0.66
-1 1 -1 -2 0 -2 0.05
-1 -1 1 -2 0 -2 0.05
-1 -1 -1 -4 -2 -4 -0.39

Table 7.2: A possible solution to the 3 dimensional XOR problem using an FC linear
layer and 2 depth decision tree using 3 hidden nodes.

training for the two models. We can see that the 2 FC linear layer model with

ReLU fails to learn the XOR function and resorts to random guessing. The FC

linear layer with decision tree successfully learns the XOR function and its log

loss quickly converges towards zero.

Fig. 7.3b shows the condition number as a result of applying Eq. 7.6 to the two

models. We observe that the FC linear layer model with a decision tree has a

much lower condition number compared to its 2 FC linear layer counterpart. This

result provides an insight into why the FC linear layer with decision tree is able

to learn the XOR function: it is better conditioned and thus provides gradients

that reliably decrease the loss function. We observe this result consistently across

higher dimensions of XOR.

7.4.2 Example: CIFAR-10

Transitioning to real data, we construct two models for classification on the

CIFAR-10 data set [116]: the first model uses the discriminator in DCGAN [168];

the second model is a modified version of the DCGAN discriminator with the last

FC layer replaced with a decision forest. We train the DCGAN discriminator for

image classification on the CIFAR-10 data set [116], using the settings described

154

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

100 200 300 400 500 600 700 800 900 1000

Training Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
g

Lo
ss

Tree
Linear

(a)

100 200 300 400 500 600 700 800 900 1000

Training Iterations

0
5

100

C
o
n
d

it
io

n
 N

u
m

b
e
r

(L
o
g

1
0

)

Tree
Linear

(b)

Figure 7.3: (a): Log loss of 2 FC linear layer model and FC linear + Decision Tree
solving a 3-dimensional XOR function. (b): Conditioning of the 2 FC linear layer and
FC linear + Decision Tree models, shown on a logarithmic scale.

2000 4000 6000 8000 10000 12000

Training Iterations

0

0.5

1

1.5

2

2.5

1e11

Lo
g
 L

o
ss

Tree lr=2e-3
Tree lr=2e-4
Linear lr=2e-3
Linear lr=2e-4

(a)

2000 4000 6000 8000 10000 12000 14000

Training Iterations

4.5

5

5.5

6

6.5

7

7.5

8

8.5

C
o
n
d
it

io
n
 N

u
m

b
e
r

(L
o
g
1

0
)

Tree lr=2e-4
Linear lr=2e-4

(b)

2000 4000 6000 8000 10000 12000 14000

Training Iterations

5

10

15

20

25

30

C
o
n
d
it

io
n
 N

u
m

b
e
r

(L
o
g
1

0
)

Tree lr=2e-3
Linear lr=2e-3

(c)

Figure 7.4: Using a DCGAN discriminator architecture for CIFAR-10 supervised
classification task. (a): Log loss of DCGAN discriminator with FC layer and DCGAN
discriminator with decision forest for various learning rates. (b), (c): Condition num-
bers of DCGAN discriminator with FC layer and DCGAN discriminator with decision
forest for various learning rates. We note the increased efficiency in learning that a
well-conditioned model can provide; in this example, we can increase the learning rate
by a factor of 10 for the tree variant of the model, maintain well-conditioned gradients
and subsequently learns the given task at an accelerated rate. For the same learning
rate (2e-3), the baseline model suffers from ill-conditioning and as a consequence, fails
to converge.

155

7.4. A Better Conditioned Discriminator

in its respective paper [168]. Similarly, we also train the DCGAN discrimina-

tor with decision forest on the same task. The maximum forest tree depth is

chosen such that the number of parameters between both models are similar.

Fig. 7.4a shows the log loss of the two models where we can clearly see that the

DCGAN discriminator with decision forest converging to a lower loss compared

to its counterpart. Similarly, we can use Eq. 7.6 to compute the condition number

of the gradients backpropagated from the FC layer and decision forest of their

respective models. Fig 7.4b shows the conditioning of the two models where we

can observe that the conditioning for the discriminator with the decision forest

remains relatively well-conditioned compared to the discriminator with the FC

layer.

Incidentally, looking at Fig. 7.4, one of the key takeaways from this analysis is that

the conditioning of backpropagated gradients allows for points of instability to

be identified during the training process. The same cannot be said when merely

observing the training log loss. With this insight, we would expect the better

conditioned model to learn in a more stable way if we increase the learning rate.

Figs. 7.4a and 7.4c show the effect of increasing the learning rate by a factor of 10

on both models to their respective log losses and condition numbers. The DCGAN

discriminator with decision forest is able to train in a stable manner whereas the

vanilla DCGAN discriminator cannot; in this case, both the log loss and condition

number reflect this. In the following section, we describe implementation details

of our method; we show how a decision forest can be constructed as a network

layer and specified as a component within the discriminator/critic of a GAN.

156

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

7.5 Generative Adversarial Forests

Our approach modifies the architecture of the discriminator/critic network in a

GAN by replacing the final fully-connected (FC) layer of the network with a

decision forest. This is shown in Fig. 7.5a. We reformulate the decision nodes

in our decision forest such that they are differentiable; hence, the decision forest

can be inserted seamlessly into the discriminator/critic network and the whole

model can be trained end-to-end. Our method is similar to the approach used

in [114] in that we replace the normally hard decision routing function in each

decision node with a soft, differentiable sigmoid function. However, we differ in

two important aspects:

1. We reconstruct the task of learning leaf node values to jointly learn all values

in parallel across the ensemble instead of iteratively learning the values.

2. This in turn allows the use of the soft functionality of decision nodes in our

ensemble instead of requiring a stochastic hard routing approximation on

the forward pass through the trees, as was done in [114].

In this way, we ensure that the forward pass through our model is consistent

with its backward pass and maintain symmetry. Furthermore, in contrast to our

method from Chapter 6, this method allows for updating both decision and leaf

nodes simultaneously instead of alternating between updates of the two. Our

decision forest is used to replace the last FC layer of the discriminator/critic

network in a GAN. The set of activations output from the last convolution layer

(conv4) of the discriminator are reshaped and assigned across the decision nodes

in our decision forest (shown in Fig. 7.5b).

157

7.5. Generative Adversarial Forests

(a)

Conv4 Activations

Prediction

(b)

Figure 7.5: An overview of our proposed changes. (a) shows our architecture which
modifies the discriminator/critic network by replacing its fully-connected layer with a
decision forest (Batch Normalisation/Layer Normalisation is not shown). (b) shows
reshaping of conv4 activations in DCGAN/WGAN-GP to form our decision node
parameters.

7.5.1 Soft Decision Trees

Fig. 7.5b shows how each soft decision tree is constructed in our forest. Each tree

in the ensemble outputs a single prediction value which is the result of blending

the values in all leaves in the tree according to their generated proportion values.

7.5.1.1 Soft Decision Functions

Each decision function in a decision node delivers a value that indicates the

proportion of each left and right subtree:

dn(x,Θ) = σ(αn(xn − bn)) (7.8)

where σ(x) = (1 + e−x)−1 is a sigmoid function which is similar to the sigmoidal

splits described in [194], with αn indicating its steepness. xn and bn are the

respective activation and bias values assigned to decision node n. We define

µ`(x,Θ) as the blending function which determines the proportion of contribution

158

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

by leaf ` towards the tree’s final output:

µ`(x|Θ) =
∏
n∈N

dn(x,Θ)1`↙n d̄n(x,Θ)1`↘n (7.9)

where d̄n(x,Θ) = 1− dn(x,Θ). 1C is an indicator function which equals 1 when

its condition C is met and 0 otherwise. ` ↙ n and ` ↘ n is defined in [114],

and is true if ` belongs to either the left or right subtree of node n respectively.

Hence, the final prediction value generated by a soft decision tree is given by:

Q(x,Θ) =
∑
`

µ`(x|Θ)q` (7.10)

Our decision forest changes the role of each output activation of the last convolu-

tion layer of the discriminator network; instead of delivering the final prediction,

the activation drives the blending proportions output by its assigned decision

node. Furthermore, by enforcing our decision trees to make soft decisions which

blend leaf values instead of hard routing samples, our model becomes fully dif-

ferentiable and we are able to easily generate gradients to update our model via

backpropagation.

7.5.2 Soft Residual Forest

To combine our ensemble of soft decision trees, we extend upon the method in

Chapter 6 and create a layer that acts as an ensemble of residual decision trees

which are designed to be jointly optimised in parallel to model the underlying

input data. Each decision tree in the ensemble contributes a residual value which

is combined with all other residual contributions from other trees in the ensemble.

This is achieved by multiplicatively combining the predictive contributions from

each tree. Hence, for an input sample the forest outputs a final score value, S,

given by:

S(x,Θ,Q) =
T∏
t=1

Qt(Dt(x,Θt)) (7.11)

159

7.5. Generative Adversarial Forests

We modify our residual forest framework by adopting a soft approach in both the

forward pass and backward passes. Unlike the training schemes in [114] and the

approach in Chapter 6, which relied on alternating between updates of the leaf

nodes and split nodes, our modification allows for true end-to-end training of the

decision forest, where both leaf and split nodes are simultaneously updated.

160

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

7.6 Experiments

For our experiments, we compared our GAF model to two well-established GAN

baselines, DCGAN [168] and WGAN-GP [70], across three datasets: CIFAR-

10 [116], CUB Birds [218] and Oxford Flowers [153]. We use both DCGAN and

WGAN-GP as baseline GANs in which we replace the final fully-connected (FC)

layer in their discriminator/critic networks with our forest layer. This creates two

variants of our GAF model and for all our experiments, we refer to our two forest

variants of DCGAN and WGAN-GP as DCGAN-Forest and WGAN-GP-Forest

respectively.

7.6.1 Experiment Settings

For choice of parameters used in the soft residual forest, we deployed a 16 tree

forest with each tree being 8 levels in depth for the CIFAR-10 data set and

9 levels in depth for the CUB Birds and Oxford Flowers datasets. Specifying

forest configurations in this manner allows us to maintain approximately the

same number of parameters as the FC layer that is being replaced. The CIFAR-

10 models consist of 2.6M parameters and the larger models (Oxford Flowers and

CUB Birds) consist of 9.7M parameters. We set α = 1 and keep all other aspects

of the baseline networks consistent in our model, including the hyperparameters

with a batch size of 64. For all settings in our models, we keep them consistent

with the settings specified in the respective papers of DCGAN and WGAN-GP.

161

7.6. Experiments

7.6.2 Datasets

7.6.2.1 CIFAR-10

The CIFAR-10 data set [116] consists of 50,000 32×32 training images and 10,000

32×32 testing images evenly distributed across 10 different object class categories.

We trained our models along with the DCGAN [168] and WGAN-GP [70] baseline

models for 100k iterations.

7.6.2.2 CUB Birds

The CUB Birds data set [218] consists of 11,788 images in 200 different bird cate-

gories. We trained our models along with the DCGAN [168] and WGAN-GP [70]

baseline models for 50k generator iterations. In Fig. 8.9, we show qualitative

samples of our models where a significant improvement in sample quality can be

observed over the DCGAN and WGAN-GP baselines.

7.6.2.3 Oxford Flowers

The Oxford Flowers data set consists of 8,189 images separated into 102 different

flower categories [153]. We trained our models along with the DCGAN [168] and

WGAN-GP [70] baseline models for 50k generator iterations. In Fig. 8.9, we

show qualitative samples of our models where we can again observe a significant

improvement in sample quality over the DCGAN and WGAN-GP baselines.

7.6.3 Quantitative Results

For quantitatively comparing our model’s performance against their respective

baselines, we evaluate using the Frechet-Inception Distance (FID) [81] which

is now generally considered an improvement on the previously used Inception

162

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

(a) DCGAN [168] (b) DCGAN-Forest
(Ours)

(c) WGAN-GP [70] (d) WGAN-GP-Forest
(Ours)

Figure 7.6: Qualitative results on CIFAR10, Oxford Flowers and CUB Birds datasets.
We show considerable image quality improvements over both DCGAN and WGAN-GP
baselines. Note the increased level of detail in our generated samples, resulting in
sharper looking images.

163

7.6. Experiments

FID Score : m−mw
2
2 + Tr(C +Cw − 2(CCw)1/2

DCGAN [168] DCGAN-Forest (Ours)

CIFAR-10 [116] 37.7 35.2
Oxford Flowers [153] 82.0 67.2
CUB Birds [218] 59.0 53.4

WGAN-GP [70] WGAN-GP-Forest (Ours)

CIFAR-10 [116] 35.3 33.2
Oxford Flowers [153] 80.4 35.3
CUB Birds [218] 60.3 49.6

Table 7.3: FID scores (lower is better) for DCGAN and WGAN-GP compared to
DCGAN-Forest and WGAN-GP-Forest on CIFAR-10, Oxford Flowers and CUB Birds
datasets. The mean result across 5 separate runs is shown.

Score [184]. Hence, the FID score is commonly used as a quantitative measure

of a GAN’s performance where a lower FID score indicates the better performing

GAN. In Table 7.3, we list FID scores of the baseline DCGAN and WGAN-GP

models, comparing them with the FID scores of our DCGAN-Forest and WGAN-

GP-Forest models. We can see that our models offer a significant improvement

over both baselines on FID scores across all three datasets. Note in particular

the large improvement that our WGAN-GP-Forest model offers over the baseline

WGAN-GP model on the Oxford Flowers data set, which is also consistent with

the sample quality shown in Fig. 8.9.

7.6.4 FID Scores and Conditioning

In Fig. 7.7 we show the FID score curves for the CIFAR-10, CUB Birds and Oxford

Flowers datasets over 50/100k training iterations. The top row of Fig. 7.7 observes

the FID score performance of our DCGAN-Forest model and the baseline DCGAN

model. We can observe that our DCGAN-Forest model achieves a lower FID score

curve when compared to the baseline DCGAN model across all three datasets.

Similarly, the bottom row of Fig. 7.7 observes the FID score performance of

our WGAN-GP-Forest model and the baseline WGAN-GP model. We can again

observe that our WGAN-GP-Forest model achieves a lower FID score curve when

164

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

0 2 4 6 8 10
Training Iterations #104

30

32

34

36

38

40

42

44

46

48

50

FI
D

DCGAN
DCGAN-Forest

0 1 2 3 4 5
Training Iterations #104

50

60

70

80

90

100

110

120

FI
D

DCGAN
DCGAN-Forest

0 1 2 3 4 5
Training Iterations #104

50

55

60

65

70

75

80

85

90

95

100

FI
D

DCGAN
DCGAN-Forest

0 2 4 6 8 10
Training Iterations #104

30

32

34

36

38

40

42

44

46

48

50

FI
D

WGAN-GP
WGAN-GP-Forest

(a) CIFAR-10

0 1 2 3 4 5
Training Iterations #104

40

45

50

55

60

65

70

75

80

85

90

FI
D

WGAN-GP
WGAN-GP-Forest

(b) CUB Birds

0 1 2 3 4 5
Training Iterations #104

30

40

50

60

70

80

90
FI

D

WGAN-GP
WGAN-GP-Forest

(c) Oxford Flowers

Figure 7.7: Top: FID curves for DCGAN and DCGAN-Forest models on the CIFAR-
10, CUB Birds and Oxford Flowers datasets. Bottom: FID curves for WGAN-GP and
WGAN-GP-Forest models on the CIFAR-10, CUB Birds and Oxford Flowers datasets.
Across both baseline models of DCGAN and WGAN-GP, we note that our model
achieves a lower FID score over 100k training iterations for CIFAR-10 and 50k training
iterations for CUB Birds and Oxford Flowers.

165

7.6. Experiments

0 2 4 6 8 10
Training Iterations #104

1

1.5

2

2.5

3

3.5

4

C
o
n
d
it

io
n

N
u
m

b
e
r

(l
o
g
1

0
)

DCGAN
DCGAN-Forest

0 1 2 3 4 5
Training Iterations #104

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

C
o
n
d
it

io
n

N
u
m

b
e
r

(l
o
g
1

0
)

DCGAN
DCGAN-Forest

0 1 2 3 4 5
Training Iterations #104

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

C
o
n
d
it

io
n

N
u
m

b
e
r

(l
o
g
1

0
)

DCGAN
DCGAN-Forest

0 2 4 6 8 10
Training Iterations #104

1

2

3

4

5

6

7

C
o
n
d
it

io
n
 N

u
m

b
e
r

(l
o
g
1

0
)

WGAN-GP
WGAN-GP-Forest

(a) CIFAR-10

0 1 2 3 4 5
Training Iterations #104

1

2

3

4

5

6

7

8

9

10

C
o
n
d
it

io
n

N
u
m

b
e
r

(l
o
g
1

0
)

WGAN-GP
WGAN-GP-Forest

(b) CUB Birds

0 1 2 3 4 5
Training Iterations #104

2

4

6

8

10

12

14

16

18

20

C
o
n
d
it

io
n
 N

u
m

b
e
r

(l
o
g

1
0

)

WGAN-GP
WGAN-GP-Forest

(c) Oxford Flowers

Figure 7.8: Top: Condition Number curves for DCGAN and DCGAN-Forest models
on the CIFAR-10, CUB Birds and Oxford Flowers datasets. Bottom: Condition
Number curves for WGAN-GP and WGAN-GP-Forest models on the CIFAR-10, CUB
Birds and Oxford Flowers datasets. Across both baseline models of DCGAN and
WGAN-GP, we note that our model is better conditioned than the baseline over 100k
training iterations for CIFAR-10 and 50k training iterations for CUB Birds and Oxford
Flowers.

compared to the baseline WGAN-GP model across all three datasets.

Correspondingly, looking at Fig. 7.8, we show the condition number curves for

the CIFAR-10, CUB Birds and Oxford Flowers datasets over the same 50/100k

training iterations. The top row of Fig. 7.8 observes the condition number curves

of our DCGAN-Forest model and the baseline DCGAN model. We can observe

that our DCGAN-Forest model achieves a consistently lower condition number

curve when compared to the baseline DCGAN model across all three datasets.

Similarly, the bottom row of Fig. 7.8 observes the condition number curves of our

WGAN-GP-Forest model and the baseline WGAN-GP model where we can again

observe that our WGAN-GP-Forest model achieves a lower condition number

curve when compared to the baseline WGAN-GP model across all three datasets.

166

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

B
as

el
in

e
F

or
es

t

(a) DCGAN (Top) DCGAN-Forest (Bottom) (b) WGAN-GP (Top) WGAN-GP-Forest
(Bottom)

Figure 7.9: Evolution of generator samples on the CIFAR-10, CUB Birds and Oxford
Flowers datasets over 50k training iterations for DCGAN, DCGAN-Forest, WGAN-GP
and WGAN-GP-Forest models.

7.6.5 Training Computation Complexity

In Table 7.4, we show the training time required for our GAF models and re-

spective GAN baselines for the Oxford Flowers and CUB Birds datasets. Since

our forest now makes soft decisions, each branch in each tree in the ensemble

must now be evaluated during the forward pass to compute the full set of routing

probabilities for leaf nodes. However, our GAF models incur only a minor train-

ing time penalty of a relative 2.6% and 9.8% when compared to their respective

DCGAN and WGAN-GP baselines.

Training Time (iters/sec)

DCGAN DCGAN-Forest WGAN-GP WGAN-GP-Forest

0.379 0.369 0.113 0.103

Table 7.4: Training and inference timings for Oxford Flowers and CUB Birds datasets.
The mean result across 5 separate runs is shown.

7.6.6 Measuring the Critic Loss

Finally, we look towards the critic loss for further evidence that our method

improves GAN training. As demonstrated in [2], one of the advantages the

Wasserstein distance offers in the critic network is an interpretable loss func-

167

7.6. Experiments

1 2 3 4 5 6 7 8 9 10
Training Iterations #104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Lo
ss

WGAN-GP
WGAN-GP-Forest

(a) CIFAR-10

0 1 2 3 4 5
Training Iterations #104

0

5

10

15

20

25

30

Lo
ss

WGAN-GP
WGAN-GP-Forest

(b) CUB Birds

0 1 2 3 4 5
Training Iterations #104

0

5

10

15

20

25

30

35

40

Lo
ss

WGAN-GP
WGAN-GP-Forest

(c) Oxford Flowers

Figure 7.10: Critic loss curves for WGAN-GP and WGAN-GP-Forest over (a) 100k
training iterations for CIFAR-10 (b) 50k training iterations for CUB Birds and (c) 50k
training iterations for Oxford Flowers. Across all 3 datasets, we note that the critic
loss for our WGAF-GP model shows better critic loss convergence over the WGAN-GP
baseline.

tion for assessing the progression of GAN training. [2] showed that the critic loss

decreases consistently as training progresses, along with an increase in sample

quality. In Fig. 7.10, we show critic losses of the baseline WGAN-GP model

with the critic losses of our WGAN-GP-Forest model over 100k training itera-

tions for the CIFAR-10 data set and 50k training iterations for CUB Birds and

Oxford Flowers datasets. We can observe that across all 3 datasets, the critic loss

of our WGAN-GP-Forest model converges significantly better than the baseline

WGAN-GP model. In Fig. 7.9b, we show sample evolution of our WGAN-GP-

Forest model compared to the WGAN-GP baseline model on the CUB Birds and

Oxford Flowers datasets. Qualitatively, the evolution of generated samples for our

DCGAN-Forest and WGAN-GP-Forest models appears to be better than their

respective DCGAN and WGAN-GP baselines. The generator’s sample evolution

for WGAN-GP and WGAN-GP-Forest for CUB Birds and Oxford Flowers also

appears consistent with the critic loss curves shown in Figs. 7.10b and 7.10c - the

samples from our WGAN-GP-Forest model appears to evolve to a higher level of

visual quality when compared to samples from the WGAN-GP baseline.

168

Chapter 7. Soft Residual Forests in Generative Adversarial Networks

7.7 Discussion and Summary

This work investigates the optimisation of deep neural networks from a perspec-

tive of conditioning on per-exemplar backpropagated gradients w.r.t its param-

eters. Our analysis gives a key insight that the training speed and stability of a

deep network is tightly connected to this distribution of gradients. As such, we

offer an architectural modification which improves conditioning of deep networks;

we demonstrate that decision forests can provide better conditioning to achieve

greater training stability and offer increased learning efficiency. We assess our

method by applying it to GANs and offer comparisons with two well-established

GAN baselines. We show significant improvements in FID scores on 3 datasets

(CIFAR-10, CUB Birds and Oxford Flowers) demonstrating both qualitative and

quantitative performance gains in image generation. Finally, we show that our

better conditioning of a GAN correlates favourably with critic loss curves in a

WGAN-GP setup when compared to the baseline.

169

Chapter 8

Traversing Latent Space using Decision Ferns

The following chapter is largely drawn from a collaborative work performed with

Gil Avraham and will likely appear in a similar form in his thesis. In this work,

we investigated how a constructed latent space can be explored in a controlled

manner and demonstrate that this complements well founded inference meth-

ods. We use a Variational Autoencoder for constructing the latent space, using

a novel, decision fern controller to smoothly traverse the latent space. This ap-

proach allowed for improved performance of complex inference tasks such as video

prediction over existing methods.

The relevant contribution percentages from my end to produce this work are

listed as follows (mutually agreed upon by both first authors):

• Idea conception (10%)

• Network architecture design (70%)

• Loss function design (50%)

• Coding the network (50%)

• Training of models (80%)

• Testing and evaluation (20%)

170

Chapter 8. Traversing Latent Space using Decision Ferns

8.1 Introduction

Interpreting visual information from the surrounding environment to subsequently

perform meaningful actions is a large part of human perception and understand-

ing. However, these interpretations are not applied directly to what is being

seen; rather, there exists an abstraction mechanism from the image space into a

more informative space so that complex inferences can be made in this abstracted

space [210]. Similarly in machine learning, we would like machines to inherit this

ability to abstract as it is the key towards understanding and learning about data

from the real world.

Although deep learning has shown great success across various vision-related tasks

such as image classification, object detection and semantic segmentation [63, 79,

117, 135, 201], this level of success has yet to transition across to more compli-

cated tasks such as video prediction. Many of the popular deep learning methods

approach these more challenging tasks in a similar manner to image classification

or segmentation, choosing to learn directly from the image space [136,140]. This

presents a challenge because often the image space is high-dimensional and com-

plex; there exists a large semantic gap between the input pixel representation of

the data and the desired transformation of said data for complex inference tasks

(such as prediction).

8.1.1 Contributions

To address this challenge, we leverage the compact encoding space provided by

a Variational Autoencoder (VAE) [108] to learn complex, higher order tasks in a

more feasible way. Inference in the latent space takes advantage of solving a far

more tractable problem than performing the operation in the image space as it

gives a more natural way of separating the task of image construction and inferring

semantic information. Other works have similarly utilised a compact encoding

171

8.1. Introduction

space to learn complex functions [119,130,186,225]; however, even this encoding

space can be strongly entangled and highly non-linear. As such, we construct

a residual decision fern based architecture which serves as a controller module

that provides the necessary non-linearity to properly disentangle encodings in

the latent space. To this end, we introduce a novel framework for controlled

traversal of the latent space called the Latent Space Traversal Network (LSTNet)

and offer the following contributions:

• We discuss the benefits of operating in a latent space for complex infer-

ence tasks, introducing a novel decision fern based controller module which

enables the use of control variables to traverse the latent space.

• We create a unified, end-to-end trainable framework which incorporates

our controller module with a residual VAE framework, offering an encoding

space for learning high order inference tasks on real world data. Addition-

ally, this framework offers a key insight into separating the tasks of pixel

reconstruction and high order inference.

• We demonstrate significant qualitative and quantitative improvements of-

fered by LSTNet over popular models that impose geometrical and kine-

matic constraints on the prediction search space across the MNIST and

KITTI datasets.

172

Chapter 8. Traversing Latent Space using Decision Ferns

8.2 Related Work

8.2.1 Learning Representations for Complex
Inference Tasks

Operating in the latent space for demonstrating certain properties has been shown

in several works. The work of Radford et al. applied a convolution architecture

to a GAN framework [168] and observed the construction of the latent space.

They showed that applying arithmetic operations between two latent vectors ob-

serves the corresponding semantic logic in the image space we would expect from

such an operation. Similarly, InfoGAN [26] added a regularisation term which

maximises mutual information between image space and some latent variables,

allowing visual aspects of images generated from their corresponding latent vari-

ables to be controlled. Both these works claim to yield a disentangled latent

vector representation of the high dimensional input data, demonstrating this by

choosing a specific latent variable and interpolating across two values and showing

smooth image transformation. However, due to their unsupervised nature, there

are no guarantees on what attributes they will learn and how this will distort the

intrinsic properties of the underlying data.

The work of Kulkarni et al. divides the learned latent space in a VAE into extrin-

sic and intrinsic variables [119]. The extrinsic variables are forced to represent

controllable parameters of the image and the intrinsic parameters represent the

appearance that is invariant to the extrinsic values. Although it is trained in a

VAE setting, this method requires full supervision for preparing training batches.

Yoo et al. demonstrated a fully supervised method, introducing a Gaussian Pro-

cess Regression (GPR) in the constructed latent space of a VAE [225]. However,

using GPR imposes other limitations and assumptions that do not necessarily

apply in training a VAE. Santana et al. used a semi-supervised approach for

video prediction, training a VAEGAN [121] instead of a standard VAE [186].

173

8.2. Related Work

The VAEGAN leads to sharper looking images but imposes a discriminator loss

which complicates the training procedure drastically. This work is similar to ours

in that control variables are used to guide learning in the latent space. However,

this method is not end-to-end trainable and uses a simple framework for process-

ing the latent space; Lotter et al. [136] showed this framework underperformed

in next frame prediction and next frame steering prediction.

Mathieu et al. [140] and Liang et al. [130] offered a video prediction frame-

work which combines an adversarial loss along with an image gradient differ-

ence/optical flow loss function to perform next frame prediction and multi-step

frame prediction. Similarly, Lotter et al. [136] performed predictive coding by

implementing a convolutional LSTM network that is able to predict the next

frame as well as perform multi-step frame prediction in a video sequence. In

contrast to our work and the work of Santana et al. [186], these works optimise

learning in the image space. This approach suffers from poor semantic inference

(especially over large time intervals) and will be a focus of investigation in our

work.

174

Chapter 8. Traversing Latent Space using Decision Ferns

8.3 Background

8.3.1 Variational Autoencoders

Backpropagation

Figure 8.1: An autoencoder with encoder-decoder setup. The autoencoder attempts
to encode the input into a latent vector (shown here as h3) through the encoder network
and then subsequently reconstructs the latent vector back to the input image via the
decoder network. The loss is generated using the mean-squared error across all pixels
between the reconstruction ŷ and the input y.

Variational Autoencoders (VAEs) minimise the Evidence Lower Bound LELBO or

variational bound:

logP (X)−D[Q(z|X)||P (z|X)] =

Ez∼Q[logP (X|z)]−D[Q(z|X)||P (z)]
(8.1)

As the name implies, VAEs use an encoder-decoder setup of autoencoders as

shown in Fig. 8.1. They minimise the variational bound by constructing an

encoder to act as Q(z|X) and decoder for P (X|z). The prior probability P (z)

is conveniently chosen to be a normal distribution so that the KL divergence

on the right hand side of Eq. 8.1 can be computed in a closed form. In the

case that the encoder matches the decoder perfectly (meaning the encoded latent

vector z can perfectly reconstruct sample X), the KL divergence on the left

hand side of Eq. 8.1 will zero out, and the lower bound will be hit. Minimising

175

8.3. Background

Figure 8.2: A decision tree can be easily converted into a decision fern by changing
the decision function for each decision node at each tree level depth to be the same. In
this way, each decision can be evaluated independently, regardless of the outcomes of
preceding decision nodes.

the KL divergence between approximation of the true distribution towards the

true distribution is equivalent to Maximum Likelihood Estimation. As a result,

Variational Autoencoders are characterised as generative models that produce a

diverse set of generated samples, which attempt to minimise an objective function

that satisfies all the samples in an empirical true distribution.

8.3.2 Decision Ferns

A decision fern is related to a decision tree. Similarly to decision trees, decision

ferns are non-hierarchical models which route samples from the root decision

node to a prediction leaf node. The key difference between a decision fern and

decision tree is that the former consists of a set of binary tests which are evaluated

simultaneously rather than in a sequential, hierarchical manner [158]. In Fig 8.2,

we illustrate how a decision tree can be reconstructed as a decision fern. As

shown, a decision tree can easily be converted into a decision fern by using the

same decision function for all nodes at any given tree depth level. Thus, a decision

fern can be thought of as a constrained decision tree, where the same binary test

is performed at each depth level of the tree. This allows all decisions in a decision

fern to be evaluated simultaneously, rather than in the hierarchical manner of

decision trees.

176

Chapter 8. Traversing Latent Space using Decision Ferns

8.4 Operating in Latent Space

To operate in latent space, there must exist a mechanism which allows for tran-

sition between the latent space and image space. Hence, there is an inherent

trade off between obtaining a good semantic representation of the image space

via its corresponding latent space, and the reconstruction error introduced when

transitioning back to the image space. In this work, we show that the benefits

of working in a compact latent space far outweigh the loss introduced by image

reconstruction. The latent space emphasises learning of the underlying changes

in semantics related to an inference task which is paramount when learning high

order inference tasks.

8.4.1 Constructing a Latent Space

When constructing a latent space, several viable options exist as candidates. The

most naive method would be to perform Principal Component Analysis (PCA)

directly on images [209], selecting the N most dominant components. However,

for high dimensional spaces such as the natural image space, this method can

result in a large loss in information and is less than ideal. Generative Adversarial

Networks (GANs) [2, 68, 168] can produce realistic looking images from a latent

vector but lack an encoder for performing inference and are difficult to train.

Techniques which combine GANs with Variational Autoencoders [39,40,121,142,

174] offer an inference framework for encoding images but prove to be cumbersome

to train due to many moving parts and instability accompanying their adversarial

training schemes.

Hence, to construct our latent space, we use the relatively straightforward frame-

work of a Variational Autoencoder (VAE) [108]. VAEs contain both a decoder

as well as an encoder; the latter of which is used to infer a latent vector given

an image. This encoding space offers a low dimensional representation of the

177

8.4. Operating in Latent Space

input and has many appealing attributes: it is semi-smooth and encapsulates the

intrinsic properties of image data. It is separable by construction; it maintains an

encoding space that embeds similar objects in the image space near each other in

the latent space. Furthermore, a VAE can be trained in a stable manner and in

an unsupervised way, making it an ideal candidate to learn complex higher order

inference tasks.

8.4.2 Traversing the Latent Space

Recent works attempted to learn the latent space transformation using various

models, such as RNNs [186] and a Gaussian Process Regression [225]. In our

work, we recognise that although the original input data is reduced to a lower

dimension encoding space, inference on this space is a complex operation over

a space which, if constructed correctly, has no redundant dimensions; hence all

latent variables should be utilised for the inference task. Under the assumption of

a smooth constructed manifold and a transformation that traverses this smooth

manifold under a narrow constraint (in the form of a control variable or side

information), a reasonable model for the controller module is:

zt+h = zt + F (zt, zt−1, zt−2, ..., θ) (8.2)

where {zt, zt−1, zt−2...} are the latent vectors corresponding to input data

{xt, xt−1, xt−2...}, θ is the control variable and zt+h is the output of the model

corresponding to given the inputs. The operator F (z, θ) can be interpreted as:

zt+h − zt
h

=
1

h
F (zt, zt−1, zt−2, ..., θ)

∂zt
∂h

= F (zt, zt−1, zt−2, ..., θ)

(8.3)

where 1
h

can be absorbed into F (z, θ) and by doing so, we can interpret it as a

residual term that is added for smoothly traversing from input zt to zt+h, given

178

Chapter 8. Traversing Latent Space using Decision Ferns

side information θ and the history {zt, zt−1, zt−2...}. This construction allows us

to implement Eq. 8.3 using a neural network, which we denote as the Transformer

Network. Eq. 8.2 encapsulates the complete controller, which is a residual frame-

work that delivers the final transformed latent vector (denoted as the Controller

Module). The Transformer Network will be doing the heavy lifting of inferring

the correct step to take for obtaining the desired result ẑt+h and as such, should

be carefully modelled. In the following section, we discuss our chosen implemen-

tation and the considerations that were taken when constructing the Transformer

Network.

8.4.3 Latent Space Traversal Network

Our Latent Space Traversal Network (LSTNet) consists of two main components:

1. A VAE with an encoder and decoder. The encoder learns a latent represen-

tation to encode the real set of training images into this space. The decoder

learns a mapping from latent space back to the image space.

2. A Controller Module (C) with a Transformer Network (TN), that applies

an operation in the latent space offered by the VAE.

An overview of our model is shown in Fig. 8.3. In the remainder of this section,

we detail and justify the choice of architecture for the components of our model.

To construct our latent space, we adopt the approach in [107] and construct a

residual encoder and decoder to form our VAE. This residual VAE offers a low-

dimensional, dense representation of input image data, allowing for a latent space

which makes higher order inference tasks easier to learn in. LSTNet is trained

179

8.4. Operating in Latent Space

Figure 8.3: Overview of our LSTNet model architecture. x denotes input data and y
denotes the output with a transformation applied in the latent space.

on a loss function composed of three terms:

LV AE =
1

N

∑
i∈B

Îi − Ii
2

+
1

N

∑
i∈B

KL(zi,N (0, U)),

z ∼ N (µenc(I), σ2
enc(I))

(8.4)

Lz =
1

N

∑
i∈B

ztarget − ẑtarget2, ẑtarget = C(zt−n, ..., zt−1, θ),

ztarget = µenc(It)

(8.5)

LI =
1

N

∑
i∈B

Itarget − Îtarget
2
, Îtarget = P(It−n, ..., It−1, θ),

Itarget = It

(8.6)

where LV AE is the loss for the VAE which updates the encoder and decoder

parameters, Lz is the controller loss which updates the controller network’s

parameters and LI is the predicted image loss which updates the controller and

decoder of the VAE. In this case, I is an image, z is a latent vector in the encoding

space, B is a minibatch, U is an identity matrix, µenc and σ2
enc are the respective

mean and variance of the encoder’s output, C is the controller network and P
denotes the LSTNet (passing an input image(s) through the encoder, controller

and decoder to generate a transformation/prediction).

180

Chapter 8. Traversing Latent Space using Decision Ferns

Figure 8.4: A decision fern with soft routing. Each decision node determines a routing
portion to subsequent child nodes. The decision nodes along a route determine the final
routing portion to all terminating leaf nodes, instead of the hard route approach which
selects a single path to a single leaf node.

8.4.3.1 Fern-based Transformer Network

Even in the latent space, learning complex tasks such as video prediction can

be difficult. In the experiments section, we motivate the use of the fern-based

controller over a linear variant composed of stacked fully connected layers with

ReLU non-linearities.

Layer Reparameterisation of Ferns Our transformer network employs an en-

semble of soft decision ferns as a core component. The use of soft decision ferns

allows them to be differentiable such that they can be integrated and trained

within an end-to-end framework. One way to achieve this is to construct decision

functions which apply a sigmoid to each input activation biased with a threshold

value, yielding a soft value between [0, 1]:

dn(x, t) = σ((xn − tn)) (8.7)

where σ(x) is a sigmoid function. xn and tn are the respective input activation

and corresponding threshold values assigned towards the decision. To illustrate

this, for a depth two fern using two activations which create the soft routes to its

181

8.4. Operating in Latent Space

corresponding four leaves, its output Q is:

Q = q0 × p0 × p1 + q1 × p0 × (1− p1)

+q2 × (1− p0)× p1 + q3 × (1− p0)× (1− p1)
(8.8)

where p0 and p1 are the respective probability outputs of the decision functions

of the decision ferns. q0, q1, q2 and q3 are the corresponding leaf nodes of the

decision fern (illustrated in Fig. 8.4). Eq. 8.8 can be reparameterised as:

Q = b+ d0 × w1 + d1 × w2 + d0 × d1 × w3 (8.9)

where:

d0 = tanh(x0), d1 = tanh(x1)

b =
1

2h
× (q0 + q1 + q2 + q3), w1 =

1

2h
× (q0 − q1 + q2 − q3)

w2 =
1

2h
× (q0 + q1 − q2 − q3), w3 =

1

2h
× (q0 − q1 − q2 + q3)

(8.10)

x0 and x1 are the assigned activations to the decision fern and h is the fern depth.

The biases for all ferns are collected together into a single bias term b. w1, w2, w3

can be represented by fully connected linear layers which encapsulates all decision

ferns in the ensemble.

Fig. 8.5a shows the architecture of our transformer network. We adopt the resid-

ual framework in [79], modifying it for a feed-forward network (FNN) and adding

decision fern blocks along the residual branch in the architecture. In Fig.8.5b, we

outline the construction of a decision fern building block in the TN, consisting of

ferns of two levels in depth. The decision nodes of the fern are reshaped from in-

coming activations, to which Batch Normalisation [92] and a Hyperbolic Tangent

function is applied. This compresses the activations between the range of [−1, 1]

and changes their role to that of making decisions on routing to the leaf nodes. A

split and multiply creates the conditioned depth two decisions of the fern, which

is concatenated with the depth one decisions. Finally, a FC linear layer serves to

interpret the decisions made by the decision fern and form the leaf nodes which

182

Chapter 8. Traversing Latent Space using Decision Ferns

(a) (b)

Figure 8.5: (a) The architecture of our proposed transformer network. (b) The
structure of a fern block used in our transformer network. We use a reparameterisation
trick which allows for the construction of soft decision ferns using common network
components such as FC linear layers and Hyperbolic Tangent activation layers.

are free to take any range of values.

Hence, our final controller network is expressed as:

C(zt−n, ..., zt−1, θ) = zt−1 + TN(zt−n, ..., zt−1, θ) (8.11)

183

8.5. Experiments

8.5 Experiments

In our experiments, we explore operation sets that can be achieved by working

in the latent space. We choose two applications to focus on - the first appli-

cation looks towards imposing a spatial transformation constraint on the latent

vector whereas the second application is more complex, looking at video predic-

tion. For the first application, we use the MNIST data set [122] as a toy example

and investigate rotating and dilation operations on the data set. For the sec-

ond application, we use the KITTI data set [60] and perform video prediction

and steering prediction. For all experiments, we trained using the ADAM Opti-

miser [106] with learning rate of 1e-4, first and second moment values of 0.9 and

0.999 respectively, using a batch size of 64.

8.5.1 Imposing Spatial Transformation

For imposing spatial transformations, we present rotating and dilation operations

and demonstrate how to constrain the direction a latent vector will traverse by

using a spatial constraint. This constrained version of LSTNet applies a transfor-

mation to a single image which either rotates or erodes/dilates the given image.

For both rotation and dilation experiments, we use a small residual VAE architec-

ture along with our specified controller module with 1 residual layer with decision

fern blocks (refer to Fig. 8.5a & 8.5b for details). We choose a latent vector size

of 100 dimensions. The encoder consists of 2 residual downsampling layers (refer

to [107] for details on the residual layers), Batch Normalisation and ReLU activa-

tions in between, ending with 2 fully connected linear layers for emitting the mean

and variance of the latent vector. The decoder also consists of 2 residual upsam-

pling layers, Batch Normalisation and ReLU activations in between, ending with

a Hyperbolic Tangent function. To compare our method, we use two baselines.

The first method is the most obvious comparison; we implement a baseline CNN

which learns a target transformation, given an input image and corresponding

184

Chapter 8. Traversing Latent Space using Decision Ferns

control variable θ (CNN-baseline). This CNN-baseline is composed of 2 strided

3x3 convolution layers, 2 FC linear layers and 2 strided 3x3 deconvolution layers

with ReLU non-linearities used for activation. The number of output channels

in the hidden layers was kept at a constant 128. Additionally, we implement the

Deep Convolutional Inverse Graphics Network [119] as specified in their paper for

comparison. For each of the three methods compared, we use the same conditions

by providing the control variable θ as an input during training and testing.

8.5.1.1 Rotation

We create augmented, rotated samples from the MNIST data set. Specifically,

we randomly choose 600 samples from the data, ensuring an even distribution of

60 samples per class label are chosen. For each sample, we generate 45 rotation

augmentations by rotating the sample in the range of −45◦ < θ < 45◦. We add

this augmented set to the original MNIST data and train the VAE with controller

module end-to-end for 20k iterations. To inject the control variable into the input,

we concatenate it to the encoded latent vector before feeding it to the controller

module.

To train our controller module, we note that there are
(

45
2

)
possible pairs in each

example, giving us much more training data than needed. Hence, for every it-

eration of training, we randomly choose a batch of triplets (Ii, Ij, θ), where θ

is a rotation control variable specifying the rotation in radians. For inference,

we randomly sample images from the MNIST data set that were not selected to

be augmented and perform a rotation parameter sweep. This results in smooth

rotation of the image, while preserving the shape (see Fig. 8.6a). Note that

other works (i.e [26]) have shown that by altering a variable in the latent space,

a rotated image can be retrieved, but fails to preserve image shape, leading to

distortion. This indicates that the specific variable for rotation is not only re-

sponsible for rotation, but has influence over other attributes of the image. In

contrast, we observed this difference across several variables between zi and zj.

This gives the insight that in order to perform a rotation (or similar spatial trans-

185

8.5. Experiments

(a) (b)

Figure 8.6: (a) Rotation and dilation operations performed by LSTNet on samples
from MNIST. The top two rows show rotation, whilst the bottom two rows show di-
lation. The original samples are shown in the middle highlighted in blue (b) LSTNet
applying a combination of rotation and dilation operations to a sample from MNIST.

form operation) and preserve the original image shape, several variables in the

latent vector need to change which justifies the use of a highly non-linear network

to approximate this operation.

8.5.1.2 Thickening

For learning the dilation operation we created augmentations in a similar manner

to rotation operations. We randomly choose 5000 samples (evenly distributed

across the 10 class labels) from the original data set, and augmented every sample

4 times with 2 steps of dilation (thickening) and 2 steps of erosion (thinning). We

train our VAE and controller module in a similar way to the rotation operation

for 20k iterations, specifying batches of triplets (Ii, Ij, θ); θ changes its role to

specifying a dilation factor that takes one of 5 discrete values in the range of

[−2, 2]. Note that although the network was trained on 5 discrete levels of dilation,

it manages to learn to smoothly interpolate when performing the operation sweep

during inference (as shown in Fig. 8.6a).

8.5.1.3 Combining Operations

One immediate extension that LSTNet offers when performing spatial transfor-

mation operations is the ease in which multiple spatial transformation operations

186

Chapter 8. Traversing Latent Space using Decision Ferns

can be combined together into a single framework. In Fig. 8.6b, we show the sam-

ples produced by an LSTNet with 2 controller modules, sharing a single latent

space offered by the VAE. It is important to note here that neither the rotation or

dilation controller modules saw the other’s training data. Hence, both operations

are applied consecutively in the latent space and decoded back for visualisation.

In Table 8.1, we show the mean squared error (MSE) of LSTNet, comparing

against the two baseline methods across rotation, dilation and combined rotation

plus dilation operations. We can see that LSTNet outperforms in Rotation and

Dilation MSE and handily outperforms in the combined operation. This indicates

a generality in learning in the latent space; LSTNet has learned the semantics

behind rotation and dilation operations and thus can seamlessly combine these

two operations.

Model Rotation (MSE) Dilation (MSE) Rotation+Dilation (MSE)

DCIGN [119] 0.07373484 0.02599725 0.08349568
CNN-baseline 0.02819574 0.00841950 0.06508310
LSTNet 0.02380177 0.00835836 0.04410466

Table 8.1: Mean squared error values on MNIST for rotation, dilation and rota-
tion+dilation operations across CNN-baseline, DCIGN and LSTNet. Note the signifi-
cant improvement LSTNet offers for the combined operation of rotation and dilation,
indicating modularity.

8.5.2 Imposing Kinematics

We now move towards the more complex inference task of video prediction. Simi-

lar to imposing spatial transformation, we use a larger, residual VAE architecture

along with a larger controller module to account for the more complex inference

task. We increase the base dimension of our latent vector to 256 dimensions. The

VAE’s encoder consists of 3 residual downsampling layers, Batch Normalisation

and ReLU activations in between, ending with a fully connected linear layer. The

decoder consists of 3 residual upsampling layers, Batch Normalisation and ReLU

187

8.5. Experiments

activations in between, ending with a Hyperbolic Tangent function. For the con-

troller network we experiment using two variants. The first is the fern-based

controller as described in Section 8.4.3. For motivating the use of the fern-based

controller, a linear variant controller network is also used: this is a feed-forward

linear network consisting of 4 FC linear layers with ReLU activations, matching

the fern-based controller in terms of model capacity.

Similarly to imposing spatial transformations, we randomly create batches of

triplets (Ii, Ij, θ), where Ii and Ij are the respective current frame and target

future frame (randomly chosen to be within 5 time steps of the current frame)

and θ is the corresponding time step from the current frame to the target frame.

Our controller module receives the latent vectors of the current frame as well as a

sequence of latent vectors belonging to the previous 5 frames to the current frame.

We train our framework end-to-end for 150k iterations; the VAE is trained to min-

imise reconstruction loss along with KL regularisation, the controller is minimised

using the latent error between the target latent and predicted latent vectors and

both decoder and controller are jointly optimised using the error between target

frames and predicted frames (refer to Eqs. 8.4, 8.5 and 8.6). Empirically, we found

that training the VAE at a ratio of 5:1 against the controller module resulted in

the best performance to training time tradeoff.

Fig. 8.9 shows qualitative results comparing our model with the PredNet model

in [136]. We observe that the further the prediction is over time, the less accurate

PredNet becomes, whilst LSTNet remains much more robust to changes in the

scene over time. Observing the samples of PredNet, a recurring phenomena is that

in areas of the frame where object movement should occur, moving objects are

instead smeared and blurred. In the case of LSTNet, predicted movement is better

observed (particularly over large time steps), whilst vehicles and street furniture

(i.e. road signs and markings) are better placed. This gives an indication that

LSTNet is more reliable for prediction mechanism within the context of the task.

PredNet implicitly learns to predict on a fixed timestep and hence predicts over

a large time interval by rolling out over its predicted images. On the other

188

Chapter 8. Traversing Latent Space using Decision Ferns

Model Avg. MSE Avg. SSIM

Copy Last Frame 0.03829 0.615
PredNet [136] 0.02436 0.604
PredNet (Finetuned) [136] 0.01524 0.679
Linear Controller Variant 0.02083 0.631
LSTNet (Ours) 0.01316 0.694

(a)
1 2 3 4 5

Time Steps Ahead

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

M
S
E

Copy Last Frame
PredNet
PredNet (FineTuned)
LSTNet (Ours)

(b)

Figure 8.7: (a) Averaged MSE and SSIM over 5 timesteps of frame prediction (b)
Individual MSE for each predicted time step plotted for Copy Last Frame, PredNet
and LSTNet.

hand, LSTNet offers a more general approach via the control variable θ. It

learns a transformation which allows it to directly predict the target video frame

without the computational overhead of rolling out fixed timesteps to reach the

target. In Table 8.7a, we depict the average MSE and SSIM over 5 future frames

(500ms time lapse) for the KITTI test set. We note that LSTNet outperforms

the compared methods of Copy Last Frame, PredNet and a Linear Controller

Variant (as discussed in Section 8.4.3). Looking at Fig. 8.7b, we can see that

LSTNet achieves lowest MSE for all timesteps, except Ît+1 , where PredNet has

slightly lower MSE. However, despite slightly higher initial MSE, the performance

of LSTNet quickly exceeds both methods as inferring good prediction begins

playing a larger factor over time (see Section 8.5.3 for a full discussion). These

quantitative results correlate well with our qualitative results and again indicate

that LSTNet is able to outperform on the task of prediction rather than on image

reconstruction.

8.5.3 Latent Space for Prediction

In addition to the computational and memory footprint benefits, we show that

projecting an image onto the latent space, operating on the latent vector using

189

8.5. Experiments

our controller module and reprojecting back into the pixel space has on average

a lower MSE in the pixel space over operations that are increasingly harder to

perform; for example: chaining spatial transformations and predicting more than

1 time step into the future.

8.5.3.1 Moving vs. non-moving objects

An attribute that does not favour a latent space framework is the inference of

the fine grained detail in images with a lot of static, non-moving components.

Fig. 8.8 shows an example of a Ît+1 prediction for PredNet (Finetuned) [136], our

LSTNet and the ground truth for comparison. Across these three images, red and

green highlighted patches show texture and movements of objects respectively.

Across the patches, it is visually apparent that LSTNet does not generate a fine

detailed texture of the tree leaves, although it captures the movement of a car

well as the camera viewpoint changes. Conversely, PredNet is able to capture

the fine grain texture of the tree leaves, but fails to capture the movement of the

stationary car from a camera viewpoint change.

We perform a simple patch-based test to illustrate the importance of emphasising

prediction on moving objects versus non-moving objects. For Ît+1, we randomly

choose 20 patches of 20×20 pixels that we identify where movement occurs; com-

puting the average MSE yielded values for LSTNet=0.0020 and PredNet=0.0134

showing we significantly improve on predicting movement. Similarly, we sample

20 patches identified as being static with no moving objects which yielded an MSE

for LSTNet=0.0024 and PredNet=0.0021, with the results favouring PredNet.

This result correlates well with the competitive results shown on Ît+1 in Fig. 8.7b;

between two consecutive frames, the majority of parts in a scene are static with

little to no movement. Hence, prediction plays a smaller role in pixel space MSE

over such a short time frame. However, as the time between predicted and cur-

rent frame increases, getting better predictions on movements plays a larger role,

which accounts for the results shown in Fig. 8.7b.

190

Chapter 8. Traversing Latent Space using Decision Ferns

Model
Steering Angle MSE

(Degrees2)

Copy Last Frame 1.3723866
PredNet (FineTuned) [136] 2.4465750
LSTNet (Ours) 0.5267124

Table 8.2: Steering angle prediction MSE on the KITTI test data.

8.5.3.2 Auxiliary Parameter Predictions

Furthermore, inferring auxiliary tasks such as steering angle does not require the

fine detailed knowledge contained in the pixel space of a scene. For performing

such inference tasks, the main requirement is the semantic information contained

in the scene. For this task, we used a pretrained LSTNet and added a FC layer

to the controller to output a single value and finetuned it to learn the steering

angle. This is where LSTNet shines; it considerably outperforms PredNet [136]

and copying of steering angles from the last seen frame as shown in Table 8.2.

This further correlates with our MSE prediction results that LSTNet is inherently

able to distill the semantics from a scene for complex inference tasks.

Figure 8.8: On the left hand side we present the next frame prediction (t + 1) for
the Ground-Truth, PredNet (Finetuned) and our LSTNet. On the right hand side
are patches that match the rectangular markings on the images with corresponding
labels. Our LSTNet excels at predicting the semantic changes that are important
for maintaining the correct structure of a scene; and at times may fail (as shown) at
outputting the fine-grained details of the scene objects, due to reconstruction.

191

8.5. Experiments

Figure 8.9: Multi-Frame predictions. This figure depicts of 6 sequences selected from
the KITTI test set where {It+1, It+2, It+3, It+4, It+5} are predicted using a past sequence
of 5 frames. Each example is organised into 3 rows depicting PredNet (FineTuned) [136],
our LSTNet and the ground-truth for comparison.

192

Chapter 8. Traversing Latent Space using Decision Ferns

8.6 Discussion and Summary

In this work, we present a novel, end-to-end trainable framework for operating

on a latent space constructed using a VAE. We explore the power of learning in

latent space on two operations: spatial transformations and video prediction, and

show semantic gains for increasingly harder inference tasks which subsequently

translates to a more meaningful result in the pixel space. Furthermore, as a direct

extension to this work, the use of a VAE presents an opportunity to explore multi-

model predictions for further robustness in predictive tasks.

193

Chapter 9

Conclusion

In this thesis, we present a number of research outcomes which aim to improve

the ensemble learning approaches of decision forests and ferns. Furthermore,

we develop a method for integrating these ensemble learning methods into deep

learning frameworks, showing that this results in improved performance across a

variety of computer vision tasks such as image classification, semantic segmen-

tation and video prediction. We discuss in detail the new techniques introduced

and compare our methods with previous related approaches.

194

Chapter 9. Conclusion

9.1 Summary of Contributions

The primary contributions of this thesis are as follows:

• In Chapter 4, we introduce a novel ensemble learning approach called Resid-

ual Likelihood Forests, which constructs a decision forest model that com-

bines the benefits from boosting approaches with random forests. This al-

lows our method to leverage the complementary information between base

tree learners via minimising a global loss, but still retain the simplicity

in model tuning attributed to random forest. We show that this frame-

work demonstrates improved parameter efficiency when selecting split node

decisions, which enables the construction of much shallower forest models

but retains the performance levels of the deeper tree models of competing

decision forest approaches.

• Chapter 5 investigates an approach to extend the residual forest framework

towards utilising deep representational features. To this end, we use a

pretrained Convolutional Neural Network (CNN) as a feature extractor,

which serves to extract meaningful features from images to serve as input

to our residual forest classifier. We use the activations of various convolution

layers in the CNN to construct our decision forest and apply this model to

various semantic segmentation tasks. We detail various architecture choices

in our model, objective function modifications and parameter settings which

enable our model to combine the two different frameworks of a decision

forest and CNN into a single cohesive framework.

• Following this, we extend the residual framework to learn both representa-

tions and a classifier in Chapter 6 of this thesis. We develop an efficient

learning approach which is able to enables end-to-end training of a hy-

brid model consisting of a CNN and decision forest. We apply this model

towards semantic segmentation tasks; compared to the pure deep learn-

195

9.1. Summary of Contributions

ing CNN baseline, this approach substantially reduces training time and

provides noticeable improvements in segmentation performance on training

data sets with limited data.

• In Chapter 7, we demonstrate that our decision forests have applications

within the domain of generative models. We first show that the application

of a soft version of our residual forest framework within a Generative Adver-

sarial Network (GAN) can significantly improve model conditioning and by

extension, improve the stability of the model during training. We demon-

strate how a soft decision forest can be represented as a network layer, using

it to replace the last fully-connected linear layer of the discriminator of the

GAN and show that the improved stability yields higher performances over

baselines on image generation tasks across several datasets.

• Finally, we show in Chapter 8 that decision ferns can be used to effec-

tively learn controlled traversal within the latent space of a Variational

Autoencoder (VAE). We show how a soft variant of decision ferns can be

constructed using common neural network building blocks through a repa-

rameterisation trick. Empirically, we show that the additional non-linearity

offered by decision ferns can aid in complex inference tasks in the latent

space and apply this to image spatial transformation and video prediction

tasks. We demonstrate that our decision fern controller can offer significant

improvements over competing methods.

196

Chapter 9. Conclusion

9.2 Discussion and Future Work

The contributions outlined in this thesis opens up several areas of extension to the

ideas presented. Here, we discuss some of the possible future avenues of research

in this area.

Extending Residual Likelihood Forests The proposed method presented in

Chapter 4 can be further explored. Since the method determines the splits made

by the decision nodes of a decision tree using a global loss minimising criteria

rather than a local, greedy entropy minimisation criteria, in this regard, investi-

gating different global loss criteria may be of interest. The current method uses

cross-entropy loss as its global loss function; this leaves room for a variety of

different loss functions to be explored which may improve performance of model

such as Hinge Loss, Exponential Loss and Tangent Loss to name a few.

Binary Representation Forests A natural extension of the decision forest frame-

work presented in Chapter 6 is in the area of binary neural networks. In the

context of operating on the activations of a CNN, a decision forest effectively

binarises the input activation value to [0, 1] by comparing it against a threshold

term. Once the activation value is binarised, there is a loss of information that

cannot be recovered from this process. The tradeoff from this process is that

decision trees offer a large amount of non-linearity for a given model size. We

can avoid the loss of information from the binarising process of decision trees if

the original activation inputs are binary. Since binary networks use binary rep-

resentations as their activations throughout, this makes them an ideal candidate

for investigating a hybrid framework which incorporates decision forests or ferns.

Human Pose Generation The method presented in Chapter 7 offers a general

197

9.2. Discussion and Future Work

method for improving the conditioning of a Generative Adversarial Network.

As such, there are numerous applications such a framework could be employed

towards as future avenues of research. One area is in the relatively recent task of

performing human pose generation. Given the history of decision trees in human

pose estimation tasks, this would be an interesting task to investigate whether a

model with decision forests can offer performance benefits. In this case, we can

modify the method introduced in Chapter 7 to that of a conditional Generative

Adversarial Network which receives an input image and a target pose (e.g. as

motion captured points) as inputs and tries to generate an output image where

the pose of the input image changes to that of the target pose. This could be

used to enhance performance on pose estimation tasks whereby the training data

is augmented by generated image poses.

Latent Space Traversal for Reinforcement Learning The video prediction

framework presented in Chapter 8 could also serve as a baseline for improving

upon reinforcement learning methods. The proposed video prediction framework

could serve as a mechanism for forward predicting into the future for an agent

in a reinforcement learning framework. This could allow the agent to predict

future events as a result of taking some specified action, along with the associ-

ated reward from that action. Allowing the agent to forward predict using this

video prediction framework could allow it to decide upon certain actions that

are deemed beneficial as well as eliminate actions that could potentially harm its

progress later into the future.

198

References

[1] Y. Amit and D. Geman. Shape quantization and recognition with random-

ized trees. Neural computation, 9(7):1545–1588, 1997.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial

networks. In International Conference on Machine Learning, pages 214–

223, 2017.

[3] A. Asuncion and D. Newman. Uci machine learning repository, 2007.

[4] C. Audet and M. Kokkolaras. Blackbox and derivative-free optimization:

theory, algorithms and applications, 2016.

[5] P. Baldi and Y. Chauvin. Neural networks for fingerprint recognition. Neu-

ral Computation, 5(3):402–418, 1993.

[6] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.

In European conference on computer vision, pages 404–417. Springer, 2006.

[7] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

199

REFERENCES

[8] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise

training of deep networks. In Advances in neural information processing

systems, pages 153–160, 2007.

[9] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[10] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s

razor. Information processing letters, 24(6):377–380, 1987.

[11] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random

forests and ferns. In 2007 IEEE 11th International Conference on Computer

Vision, pages 1–8. IEEE, 2007.

[12] R. N. Bracewell and R. N. Bracewell. The Fourier transform and its appli-

cations, volume 31999. McGraw-Hill New York, 1986.

[13] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[14] L. Breiman. Arcing the edge. Technical report, Technical Report 486,

Statistics Department, University of California at Berkeley, 1997.

[15] L. Breiman. Prediction games and arcing algorithms. Neural computation,

11(7):1493–1517, 1999.

[16] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[17] L. Breiman. Classification and regression trees. Routledge, 2017.

[18] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation

and recognition using structure from motion point clouds. In European

conference on computer vision, pages 44–57. Springer, 2008.

200

REFERENCES

[19] P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data:

methods, theory and applications. Springer Science & Business Media, 2011.

[20] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust inde-

pendent elementary features. In European conference on computer vision,

pages 778–792. Springer, 2010.

[21] R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evalua-

tion of supervised learning in high dimensions. In Proceedings of the 25th

international conference on Machine learning, pages 96–103. ACM, 2008.

[22] R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evalua-

tion of supervised learning in high dimensions. In Proceedings of the 25th

international conference on Machine learning, pages 96–103. ACM, 2008.

[23] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised

learning algorithms. In Proceedings of the 23rd international conference on

Machine learning, pages 161–168. ACM, 2006.

[24] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised learning (chapelle,

o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,

20(3):542–542, 2009.

[25] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.

Deeplab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected crfs. IEEE transactions on pat-

tern analysis and machine intelligence, 40(4):834–848, 2017.

[26] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel.

Infogan: Interpretable representation learning by information maximizing

generative adversarial nets. In Advances in Neural Information Processing

Systems, pages 2172–2180, 2016.

201

REFERENCES

[27] M. B. Christopher. PATTERN RECOGNITION AND MACHINE

LEARNING. Springer-Verlag New York, 2016.

[28] P. Comon. Independent component analysis, a new concept? Signal pro-

cessing, 36(3):287–314, 1994.

[29] T. M. Cover and J. A. Thomas. Elements of information theory. John

Wiley & Sons, 2012.

[30] J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object

and stuff segmentation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3992–4000, 2015.

[31] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-

tection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE,

2005.

[32] B. David, E. Kuh, and R. Welsch. Regression diagnostics: identifying

influential data and sources of collinearity, 1980.

[33] T. E. De Campos, B. R. Babu, M. Varma, et al. Character recognition in

natural images. VISAPP (2), 7, 2009.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A

large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee,

2009.

[35] L. Deng, D. Yu, et al. Deep learning: methods and applications. Founda-

tions and Trends R© in Signal Processing, 7(3–4):197–387, 2014.

202

REFERENCES

[36] T. G. Dietterich. Ensemble methods in machine learning. In International

workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[37] P. Dollár and C. L. Zitnick. Structured forests for fast edge detection.

In Proceedings of the IEEE International Conference on Computer Vision,

pages 1841–1848, 2013.

[38] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and

T. Darrell. Decaf: A deep convolutional activation feature for generic visual

recognition. In International conference on machine learning, pages 647–

655, 2014.

[39] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning.

arXiv preprint arXiv:1605.09782, 2016.

[40] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Ar-

jovsky, and A. Courville. Adversarially learned inference. arXiv preprint

arXiv:1606.00704, 2016.

[41] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture. In Proceedings

of the IEEE International Conference on Computer Vision, pages 2650–

2658, 2015.

[42] G. Einicke. Smoothing, filtering and prediction: Estimating the past,

present and future. rijeka, croatia: Intech. Technical report, ISBN 978-

953-307-752-9, 2012.

[43] B. Everitt and A. Skrondal. The Cambridge dictionary of statistics, volume

106. Cambridge University Press Cambridge, 2002.

203

REFERENCES

[44] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchi-

cal features for scene labeling. IEEE transactions on pattern analysis and

machine intelligence, 35(8):1915–1929, 2013.

[45] S. J. Farlow. Self-organizing methods in modeling: GMDH type algorithms,

volume 54. CrC Press, 1984.

[46] R. A. Fisher. The use of multiple measurements in taxonomic problems.

Annals of eugenics, 7(2):179–188, 1936.

[47] Y. Freund. Boosting a weak learning algorithm by majority. In COLT,

volume 90, pages 202–216, 1990.

[48] Y. Freund. Boosting a weak learning algorithm by majority. Information

and computation, 121(2):256–285, 1995.

[49] Y. Freund. An adaptive version of the boost by majority algorithm. Ma-

chine learning, 43(3):293–318, 2001.

[50] Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-

line learning and an application to boosting. In European conference on

computational learning theory, pages 23–37. Springer, 1995.

[51] Y. Freund and R. E. Schapire. Large margin classification using the per-

ceptron algorithm. Machine learning, 37(3):277–296, 1999.

[52] Y. Freund, R. E. Schapire, et al. Experiments with a new boosting algo-

rithm. In icml, volume 96, pages 148–156. Citeseer, 1996.

[53] B. J. Frey. Graphical models for machine learning and digital communica-

tion. MIT press, 1998.

204

REFERENCES

[54] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, NY, USA:, 2001.

[55] J. H. Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics, pages 1189–1232, 2001.

[56] K. Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36:193–202, 1980.

[57] K. Fukushima. Artificial vision by multi-layered neural networks: Neocog-

nitron and its advances. Neural networks, 37:103–119, 2013.

[58] J. Gall and V. Lempitsky. Class-specific hough forests for object detection.

In Decision forests for computer vision and medical image analysis, pages

143–157. Springer, 2013.

[59] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle pointsonline

stochastic gradient for tensor decomposition. In Conference on Learning

Theory, pages 797–842, 2015.

[60] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The

kitti dataset. The International Journal of Robotics Research, 32(11):1231–

1237, 2013.

[61] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driv-

ing? the kitti vision benchmark suite. In Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE,

2012.

205

REFERENCES

[62] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Ma-

chine learning, 63(1):3–42, 2006.

[63] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies

for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

580–587, 2014.

[64] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Region-based convo-

lutional networks for accurate object detection and segmentation. IEEE

transactions on pattern analysis and machine intelligence, 38(1):142–158,

2016.

[65] X. Glorot and Y. Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pages 249–256, 2010.

[66] I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv

preprint arXiv:1701.00160, 2016.

[67] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,

2016.

[68] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

[69] S. Gould, T. Gao, and D. Koller. Region-based segmentation and object

detection. In Advances in neural information processing systems, pages

655–663, 2009.

206

REFERENCES

[70] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Im-

proved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

[71] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recog-

nition of indoor scenes from rgb-d images. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 564–571,

2013.

[72] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features

from rgb-d images for object detection and segmentation. In European

Conference on Computer Vision, pages 345–360. Springer, 2014.

[73] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification

physique. Princeton university bulletin, pages 49–52, 1902.

[74] M. T. Hagan and M. B. Menhaj. Training feedforward networks with the

marquardt algorithm. IEEE transactions on Neural Networks, 5(6):989–

993, 1994.

[75] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic

contours from inverse detectors. In Computer Vision (ICCV), 2011 IEEE

International Conference on, pages 991–998. IEEE, 2011.

[76] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous de-

tection and segmentation. In European Conference on Computer Vision,

pages 297–312. Springer, 2014.

[77] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Computer

Vision (ICCV), 2017 IEEE International Conference on, pages 2980–2988.

IEEE, 2017.

207

REFERENCES

[78] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In Proceedings

of the IEEE international conference on computer vision, pages 1026–1034,

2015.

[79] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Computer Vision and Pattern Recognition (CVPR), 2016

IEEE Conference on, 2016.

[80] G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded classification

models: Combining models for holistic scene understanding. In Advances

in Neural Information Processing Systems, pages 641–648, 2009.

[81] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter.

Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In Advances in Neural Information Processing Systems, pages

6626–6637, 2017.

[82] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of

data with neural networks. science, 313(5786):504–507, 2006.

[83] T. K. Ho. Random decision forests. In Document Analysis and Recognition,

1995., Proceedings of the Third International Conference on, volume 1,

pages 278–282. IEEE, 1995.

[84] T. K. Ho. The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8):832–

844, 1998.

[85] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural networks, 2(5):359–366, 1989.

208

REFERENCES

[86] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely

connected convolutional networks. In CVPR, volume 1, page 3, 2017.

[87] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: a

new learning scheme of feedforward neural networks. In Neural Networks,

2004. Proceedings. 2004 IEEE International Joint Conference on, volume 2,

pages 985–990. IEEE, 2004.

[88] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the

cat’s striate cortex. The Journal of physiology, 148(3):574–591, 1959.

[89] J. J. Hull. A database for handwritten text recognition research. IEEE

Transactions on pattern analysis and machine intelligence, 16(5):550–554,

1994.

[90] S. Ikeda, M. Ochiai, and Y. Sawaragi. Sequential gmdh algorithm and its

application to river flow prediction. IEEE Transactions on Systems, Man,

and Cybernetics, (7):473–479, 1976.

[91] Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown,

and A. Criminisi. Decision forests, convolutional networks and the models

in-between. arXiv preprint arXiv:1603.01250, 2016.

[92] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[93] A. Ivakhnenko. Cybernetic predicting devices.

[94] A. Ivakhnenko. Heuristic self-organization in problems of engineering cy-

bernetics. Automatica, 6(2):207–219, 1970.

209

REFERENCES

[95] A. Ivakhnenko and G. Ivakhnenko. The review of problems solvable by algo-

rithms of the group method of data handling (gmdh). Pattern Recognition

And Image Analysis C/C Of Raspoznavaniye Obrazov I Analiz Izobrazhenii,

5:527–535, 1995.

[96] A. G. Ivakhnenko. The group method of data of handling; a rival of the

method of stochastic approximation. Soviet Automatic Control, 13:43–55,

1968.

[97] A. G. Ivakhnenko. Polynomial theory of complex systems. IEEE transac-

tions on Systems, Man, and Cybernetics, (4):364–378, 1971.

[98] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. IEEE transactions on pattern analysis and machine intel-

ligence, 33(1):117–128, 2011.

[99] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid.

Aggregating local image descriptors into compact codes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 34(9):1704–1716, 2012.

[100] R. D. Joseph. Contributions to perceptron theory. Cornell Univ., 1961.

[101] S. I. Kabanikhin. Definitions and examples of inverse and ill-posed prob-

lems. Journal of Inverse and Ill-Posed Problems, 16(4):317–357, 2008.

[102] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing

of gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017.

[103] M. Kearns. Learning boolean formulae or finite automata is as hard as fac-

toring. Technical Report TR-14-88 Harvard University Aikem Computation

210

REFERENCES

Laboratory, 1988.

[104] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean

formulae and finite automata. Journal of the ACM (JACM), 41(1):67–95,

1994.

[105] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Hand pose estimation and

hand shape classification using multi-layered randomized decision forests. In

European Conference on Computer Vision, pages 852–863. Springer, 2012.

[106] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[107] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and

M. Welling. Improved variational inference with inverse autoregressive flow.

In Advances in Neural Information Processing Systems, pages 4743–4751,

2016.

[108] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[109] B. Kolb and I. Q. Whishaw. Fundamentals of human neuropsychology.

Macmillan, 2009.

[110] T. Kondo. Gmdh neural network algorithm using the heuristic self-

organization method and its application to the pattern identification prob-

lem. In SICE’98. Proceedings of the 37th SICE Annual Conference. Inter-

national Session Papers, pages 1143–1148. IEEE, 1998.

[111] T. Kondo and J. Ueno. Multi-layered gmdh-type neural network self-

selecting optimum neural network architecture and its application to 3-

211

REFERENCES

dimensional medical image recognition of blood vessels. International Jour-

nal of innovative computing, information and control, 4(1):175–187, 2008.

[112] P. Kontschieder, S. R. Bulo, H. Bischof, and M. Pelillo. Structured class-

labels in random forests for semantic image labelling. In Computer Vision

(ICCV), 2011 IEEE International Conference on, pages 2190–2197. IEEE,

2011.

[113] P. Kontschieder, S. R. Bulò, A. Criminisi, P. Kohli, M. Pelillo, and

H. Bischof. Context-sensitive decision forests for object detection. In Ad-

vances in neural information processing systems, pages 431–439, 2012.

[114] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo. Deep neural

decision forests. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1467–1475, 2015.

[115] P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi. Geof: Geodesic

forests for learning coupled predictors. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 65–72, 2013.

[116] A. Krizhevsky and G. Hinton. Learning multiple layers of features from

tiny images. 2009.

[117] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[118] A. Krogh and J. A. Hertz. A simple weight decay can improve generaliza-

tion. In Advances in neural information processing systems, pages 950–957,

1992.

212

REFERENCES

[119] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep con-

volutional inverse graphics network. In Advances in Neural Information

Processing Systems, pages 2539–2547, 2015.

[120] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper

depth prediction with fully convolutional residual networks. In 3D Vision

(3DV), 2016 Fourth International Conference on, pages 239–248. IEEE,

2016.

[121] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Au-

toencoding beyond pixels using a learned similarity metric. arXiv preprint

arXiv:1512.09300, 2015.

[122] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/.

[123] Y. LeCun. Une procedure d’apprentissage ponr reseau a seuil asymetrique.

proceedings of Cognitiva 85, pages 599–604, 1985.

[124] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel. Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4):541–551, 1989.

[125] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with

gradient-based learning. In Shape, contour and grouping in computer vision,

pages 319–345. Springer, 1999.

[126] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski. A theoretical frame-

work for back-propagation. In Proceedings of the 1988 connectionist models

summer school, volume 1, pages 21–28. CMU, Pittsburgh, Pa: Morgan

Kaufmann, 1988.

213

REFERENCES

[127] A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des

comètes. F. Didot, 1805.

[128] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invariant

scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 2548–2555. IEEE, 2011.

[129] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan. A fast

and accurate online sequential learning algorithm for feedforward networks.

IEEE Transactions on neural networks, 17(6):1411–1423, 2006.

[130] X. Liang, L. Lee, W. Dai, and E. P. Xing. Dual motion gan for future-flow

embedded video prediction. arXiv preprint, 2017.

[131] G. Lin, A. Milan, C. Shen, and I. D. Reid. Refinenet: Multi-path refinement

networks for high-resolution semantic segmentation. In Cvpr, volume 1,

page 5, 2017.

[132] G. Lin, C. Shen, A. van den Hengel, and I. Reid. Efficient piecewise training

of deep structured models for semantic segmentation. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages

3194–3203, 2016.

[133] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.

Information and computation, 108(2):212–261, 1994.

[134] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth

estimation from a single image. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5162–5170, 2015.

[135] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for se-

214

REFERENCES

mantic segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3431–3440, 2015.

[136] W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding net-

works for video prediction and unsupervised learning. arXiv preprint

arXiv:1605.08104, 2016.

[137] D. G. Lowe. Object recognition from local scale-invariant features. In

Computer vision, 1999. The proceedings of the seventh IEEE international

conference on, volume 2, pages 1150–1157. Ieee, 1999.

[138] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve

neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[139] H. R. Madala and A. G. Ivakhnenko. Inductive learning algorithms for

complex systems modeling, volume 368. cRc press Boca Raton, 1994.

[140] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction

beyond mean square error. arXiv preprint arXiv:1511.05440, 2015.

[141] L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for gans

do actually converge? In International Conference on Machine Learning,

pages 3478–3487, 2018.

[142] L. Mescheder, S. Nowozin, and A. Geiger. Adversarial variational bayes:

Unifying variational autoencoders and generative adversarial networks.

arXiv preprint arXiv:1701.04722, 2017.

[143] L. Mescheder, S. Nowozin, and A. Geiger. The numerics of gans. In Ad-

vances in Neural Information Processing Systems, pages 1825–1835, 2017.

215

REFERENCES

[144] D. Mishkin and J. Matas. All you need is a good init. arXiv preprint

arXiv:1511.06422, 2015.

[145] T. M. Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw

Hill, 45(37):870–877, 1997.

[146] D. J. Montana and L. Davis. Training feedforward neural networks using

genetic algorithms. In IJCAI, volume 89, pages 762–767, 1989.

[147] A. Montillo, J. Shotton, J. Winn, J. E. Iglesias, D. Metaxas, and A. Crim-

inisi. Entangled decision forests and their application for semantic segmen-

tation of ct images. In Biennial International Conference on Information

Processing in Medical Imaging, pages 184–196. Springer, 2011.

[148] A. Montillo, J. Tu, J. Shotton, J. Winn, J. Iglesias, D. Metaxas, and A. Cri-

minisi. Entangled forests and differentiable information gain maximiza-

tion. Decision Forests in Computer Vision and Medical Image Analysis,

5:1, 2013.

[149] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks

using randomized clustering forests. In Twentieth Annual Conference on

Neural Information Processing Systems (NIPS’06), pages 985–992. MIT

Press, 2006.

[150] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun,

and A. Yuille. The role of context for object detection and semantic seg-

mentation in the wild. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 891–898, 2014.

[151] V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and D. Comaniciu. Deep

decision network for multi-class image classification. In Proceedings of

216

REFERENCES

the IEEE Conference on Computer Vision and Pattern Recognition, pages

2240–2248, 2016.

[152] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

[153] M.-E. Nilsback and A. Zisserman. A visual vocabulary for flower classifica-

tion. In Computer Vision and Pattern Recognition, 2006 IEEE Computer

Society Conference on, volume 2, pages 1447–1454. IEEE, 2006.

[154] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic

segmentation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1520–1528, 2015.

[155] A. Odena, J. Buckman, C. Olsson, T. B. Brown, C. Olah, C. Raffel, and

I. Goodfellow. Is generator conditioning causally related to gan perfor-

mance? arXiv preprint arXiv:1802.08768, 2018.

[156] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural

networks. arXiv preprint arXiv:1601.06759, 2016.

[157] D. Opitz and R. Maclin. Popular ensemble methods: An empirical study.

Journal of artificial intelligence research, 11:169–198, 1999.

[158] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition

using random ferns. IEEE transactions on pattern analysis and machine

intelligence, 32(3):448–461, 2010.

[159] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines

of code. In Computer Vision and Pattern Recognition, 2007. CVPR’07.

217

REFERENCES

IEEE Conference on, pages 1–8. Ieee, 2007.

[160] D. B. Parker. Learning logic. 1985.

[161] K. Pearson. Liii. on lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, 2(11):559–572, 1901.

[162] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image

categorization. In 2007 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2007.

[163] P. H. Pinheiro and R. Collobert. Recurrent convolutional neural networks

for scene labeling. In ICML, pages 82–90, 2014.

[164] D. Poole, A. Mackworth, and R. Goebel. Computational intelligence: a

logical approach. 1998.

[165] H. Qian and M. N. Wegman. L2-nonexpansive neural networks. arXiv

preprint arXiv:1802.07896, 2018.

[166] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,

1986.

[167] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[168] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning

with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

218

REFERENCES

[169] S. Ren, X. Cao, Y. Wei, and J. Sun. Global refinement of random forest.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 723–730, 2015.

[170] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: towards real-time ob-

ject detection with region proposal networks. IEEE transactions on pattern

analysis and machine intelligence, 39(6):1137–1149, 2017.

[171] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features and algo-

rithms. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on, pages 2759–2766. IEEE, 2012.

[172] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropaga-

tion and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082, 2014.

[173] D. L. Richmond, D. Kainmueller, M. Yang, E. W. Myers, and C. Rother.

Mapping stacked decision forests to deep and sparse convolutional neu-

ral networks for semantic segmentation. arXiv preprint arXiv:1507.07583,

2015.

[174] M. Rosca, B. Lakshminarayanan, D. Warde-Farley, and S. Mohamed. Varia-

tional approaches for auto-encoding generative adversarial networks. arXiv

preprint arXiv:1706.04987, 2017.

[175] F. Rosenblatt. The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6):386, 1958.

[176] E. Rosten and T. Drummond. Machine learning for high-speed corner detec-

tion. In European conference on computer vision, pages 430–443. Springer,

2006.

219

REFERENCES

[177] S. Rota Bulo and P. Kontschieder. Neural decision forests for semantic

image labelling. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 81–88, 2014.

[178] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. Stabilizing training

of generative adversarial networks through regularization. arXiv preprint

arXiv:1705.09367, 2017.

[179] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally

linear embedding. science, 290(5500):2323–2326, 2000.

[180] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient

alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE inter-

national conference on, pages 2564–2571. IEEE, 2011.

[181] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representa-

tions by back-propagating errors. nature, 323(6088):533, 1986.

[182] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale vi-

sual recognition challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[183] S. Ryan Fanello, C. Keskin, P. Kohli, S. Izadi, J. Shotton, A. Criminisi,

U. Pattacini, and T. Paek. Filter forests for learning data-dependent con-

volutional kernels. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1709–1716, 2014.

[184] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and

X. Chen. Improved techniques for training gans. In Advances in Neural

Information Processing Systems, pages 2234–2242, 2016.

220

REFERENCES

[185] T. Salimans, D. Kingma, and M. Welling. Markov chain monte carlo and

variational inference: Bridging the gap. In International Conference on

Machine Learning, pages 1218–1226, 2015.

[186] E. Santana and G. Hotz. Learning a driving simulator. arXiv preprint

arXiv:1608.01230, 2016.

[187] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single monoc-

ular images. In Advances in neural information processing systems, pages

1161–1168, 2006.

[188] R. E. Schapire. The strength of weak learnability. Machine learning,

5(2):197–227, 1990.

[189] J. Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[190] F. Schroff, A. Criminisi, and A. Zisserman. Object class segmentation using

random forests. In BMVC, pages 1–10, 2008.

[191] S. Schulter, P. Wohlhart, C. Leistner, A. Saffari, P. M. Roth, and H. Bischof.

Alternating decision forests. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 508–515, 2013.

[192] H. Sedghi, V. Gupta, and P. M. Long. The singular values of convolutional

layers. arXiv preprint arXiv:1805.10408, 2018.

[193] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.

Overfeat: Integrated recognition, localization and detection using convolu-

tional networks. In International Conference on Learning Representations

(ICLR 2014), page 16. CBLS, 2013.

221

REFERENCES

[194] I. K. Sethi. Entropy nets: from decision trees to neural networks. Proceed-

ings of the IEEE, 78(10):1605–1613, 1990.

[195] C. E. Shannon. A mathematical theory of communication. Bell system

technical journal, 27(3):379–423, 1948.

[196] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features

off-the-shelf: an astounding baseline for recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition workshops,

pages 806–813, 2014.

[197] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake. Real-time human pose recognition in parts from

single depth images. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 1297–1304. Ieee, 2011.

[198] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image

categorization and segmentation. In Computer vision and pattern recogni-

tion, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[199] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint

appearance, shape and context modeling for multi-class object recognition

and segmentation. In European conference on computer vision, pages 1–15.

Springer, 2006.

[200] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and

support inference from rgbd images. In European Conference on Computer

Vision, pages 746–760. Springer, 2012.

[201] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

222

REFERENCES

[202] M. Sonka, V. Hlavac, and R. Boyle. Image processing, analysis, and ma-

chine vision. Cengage Learning, 2014.

[203] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[204] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep net-

works. In Advances in neural information processing systems, pages 2377–

2385, 2015.

[205] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of

initialization and momentum in deep learning. In International conference

on machine learning, pages 1139–1147, 2013.

[206] C. Tao, L. Chen, R. Henao, J. Feng, and L. C. Duke. Chi-square generative

adversarial network. In International Conference on Machine Learning,

pages 4894–4903, 2018.

[207] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric

framework for nonlinear dimensionality reduction. science, 290(5500):2319–

2323, 2000.

[208] J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and

per-exemplar detectors. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3001–3008, 2013.

[209] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In

Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91.,

IEEE Computer Society Conference on, pages 586–591. IEEE, 1991.

223

REFERENCES

[210] D. J. Utgoff, P. E.; Stracuzzi. ”many-layered learning”. Neural Computa-

tion, 8:2497–2529, 2002.

[211] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134–1142, 1984.

[212] V. Vapnik. The nature of statistical learning theory. Springer science &

business media, 2013.

[213] S. Viglione. 4 applications of pattern recognition technology. In Math-

ematics in Science and Engineering, volume 66, pages 115–162. Elsevier,

1970.

[214] M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, and A. Sanfeliu. Ef-

ficient rotation invariant object detection using boosted random ferns. In

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference

on, pages 1038–1045. IEEE, 2010.

[215] M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, and A. Sanfeliu.

Shared random ferns for efficient detection of multiple categories. In Pat-

tern Recognition (ICPR), 2010 20th International Conference on, pages

388–391. IEEE, 2010.

[216] C. Villani. Optimal transport: old and new, volume 338. Springer Science

& Business Media, 2008.

[217] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked

denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. Journal of machine learning research,

11(Dec):3371–3408, 2010.

224

REFERENCES

[218] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-

ucsd birds-200-2011 dataset. 2011.

[219] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future:

Forecasting from static images using variational autoencoders. In European

Conference on Computer Vision, pages 835–851. Springer, 2016.

[220] S. Wang, S. Fidler, and R. Urtasun. Holistic 3d scene understanding from

a single geo-tagged image. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3964–3972, 2015.

[221] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In

System modeling and optimization, pages 762–770. Springer, 1982.

[222] M. Witczak, J. Korbicz, M. Mrugalski, and R. J. Patton. A gmdh neu-

ral network-based approach to robust fault diagnosis: Application to the

damadics benchmark problem. Control Engineering Practice, 14(6):671–

683, 2006.

[223] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered object detec-

tion for multi-class segmentation. In Computer vision and pattern recogni-

tion (CVPR), 2010 IEEE conference on, pages 3113–3120. IEEE, 2010.

[224] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint

object detection, scene classification and semantic segmentation. In Com-

puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,

pages 702–709. IEEE, 2012.

[225] Y. Yoo, S. Yun, H. J. Chang, Y. Demiris, and J. Y. Choi. Variational

autoencoded regression: high dimensional regression of visual data on com-

plex manifold. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3674–3683, 2017.

225

REFERENCES

[226] Y.-x. Yuan. Step-sizes for the gradient method. AMS IP Studies in Ad-

vanced Mathematics, 42(2):785, 2008.

[227] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833.

Springer, 2014.

[228] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas.

Stackgan: Text to photo-realistic image synthesis with stacked generative

adversarial networks. arXiv preprint, 2017.

[229] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based r-cnns for

fine-grained category detection. In European conference on computer vision,

pages 834–849. Springer, 2014.

[230] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing

network. In IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 2881–2890, 2017.

[231] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial

network. arXiv preprint arXiv:1609.03126, 2016.

[232] Y. Zuo, G. Avraham, and T. Drummond. Generative adversarial forests for

better conditioned adversarial learning. arXiv preprint arXiv:1805.05185,

2018.

[233] Y. Zuo, G. Avraham, and T. Drummond. Traversing latent space using

decision ferns. arXiv preprint arXiv:1812.02636, 2018.

[234] Y. Zuo and T. Drummond. Fast residual forests: Rapid ensemble learning

for semantic segmentation. In Conference on Robot Learning, pages 27–36,

226

REFERENCES

2017.

227

	Introduction
	Computer Vision
	Applications of Computer Vision
	Difficulties of Computer Vision
	Machine Learning for Computer Vision
	Deep Learning
	Remaining Challenges

	Decision Forests
	Contributions
	Collaborations
	Publications
	Thesis Layout

	Background
	Ensemble Methods
	Decision Forests
	Induction of Decision Trees
	Random Forests
	Applications of Decision Forests

	Random Decision Ferns
	Boosting
	PAC Framework
	Discrete Boosting
	Gradient Boosting

	Representations of Data
	Feature Extraction
	Feature Learning

	Artificial Neural Networks
	Perceptron Models
	Multi-Layer Perceptrons

	Convolutional Neural Networks

	Generative Neural Network Models
	Variational Autoencoders
	Generative Adversarial Networks

	Preliminaries
	Model and Data
	Independent and Identically Distributed Data
	Model Smoothness
	Limited Model Complexity
	Model Selection
	Model Bias and Variance
	Over-fitting and Under-fitting

	Learning from Data
	Maximum Likelihood Estimation
	Supervised Learning

	Optimisation
	Gradient Ascent
	Stochastic Gradient Ascent
	Newton's Method
	Gauss-Newton Method

	Ensemble Methods
	Derivative-Free Optimisation
	Decision Forests
	Decision Trees
	Ensembles of Decision Trees

	Induction of Decision Trees
	Information Entropy
	Iterative Dichotomiser 3 Algorithm
	C4.5 Algorithm
	C5.0 Algorithm

	Boosting
	Probably Approximately Correct Learning
	Discrete AdaBoost

	Gradient Boosted Trees

	Artificial Neural Networks
	Feed-forward Neural Networks
	Convolutional Neural Networks
	Convolution Layer
	Activation Layers
	Downsampling Layers
	Strided Convolution Layer
	Transposed Convolution Layer

	Training Neural Networks
	Backpropagation
	Regularisation During Training
	Exploding and Vanishing Gradients
	Initialisation
	Batch Normalisation
	Residual and Highway Connections

	Software

	Residual Likelihood Forests
	Introduction
	Contributions

	Related Work
	Residual Representations

	Residual Likelihood Forests
	Weak Learners Generating Likelihoods
	Residual Forest Framework
	Minimising a Global Loss
	Computing Residual Likelihoods

	Implementing RLF
	Selecting Decision Node Splits
	Residual Rescaling

	Summary

	Experiments
	Experiment Settings
	Comparison with Random Forests
	Comparison with Gradient Boosting
	Parameter Efficiency of RLF
	Comparison with Global Refined Forests
	Model Performance
	Model Compactness
	Computation Complexity

	Discussion and Summary

	A Hybrid Deep Learning Model using Forests
	Introduction
	Contributions

	Related Work
	Random Forests in Semantic Segmentation
	Deep Learning in Semantic Segmentation

	System Overview
	Using CNN Features
	Choosing Convolution Layers
	Coarse-to-Fine Upsampling

	Learning Residual Representation Trees
	Decision Function Selection
	Batch Learning
	Updating Residuals

	Objective Function Approximations
	Class Label Approximation
	Loss Function Approximation

	Experiments
	Pascal VOC
	NYUDv2
	MSRC-21

	Discussion and Summary

	Fast Residual Forests for Deep Representation Learning
	Introduction
	Contributions

	Related Work
	Deep Learning with Decision Forests

	Framework
	Assigning Channels to Decision Nodes
	Learning Prediction Nodes
	Learning Features
	Approximating the Loss Function
	Generating Backward Gradients

	Experiments
	KITTI
	Ablation Study for Tree Depth

	NYUDv2
	Training Computation Complexity

	Discussion and Summary

	Soft Residual Forests in Generative Adversarial Networks
	Introduction
	Contributions

	Related Work
	Generative Adversarial Networks

	Background
	Generative Adversarial Networks
	Wasserstein Generative Adversarial Networks

	A Better Conditioned Discriminator
	Example: XOR
	Example: CIFAR-10

	Generative Adversarial Forests
	Soft Decision Trees
	Soft Decision Functions

	Soft Residual Forest

	Experiments
	Experiment Settings
	Datasets
	CIFAR-10
	CUB Birds
	Oxford Flowers

	Quantitative Results
	FID Scores and Conditioning
	Training Computation Complexity
	Measuring the Critic Loss

	Discussion and Summary

	Traversing Latent Space using Decision Ferns
	Introduction
	Contributions

	Related Work
	Learning Representations for Complex Inference Tasks

	Background
	Variational Autoencoders
	Decision Ferns

	Operating in Latent Space
	Constructing a Latent Space
	Traversing the Latent Space
	Latent Space Traversal Network
	Fern-based Transformer Network

	Experiments
	Imposing Spatial Transformation
	Rotation
	Thickening
	Combining Operations

	Imposing Kinematics
	Latent Space for Prediction
	Moving vs. non-moving objects
	Auxiliary Parameter Predictions

	Discussion and Summary

	Conclusion
	Summary of Contributions
	Discussion and Future Work

