
Understanding the dynamic contribution to future changes in tropical precipitation from low-1 

level convergence lines 2 

 3 

Evan Weller
1,2,3

*, Christian Jakob
1,2

, and
 
Michael J. Reeder

1,2
 4 

1
School of Earth, Atmosphere and Environment, Monash University, Victoria, Australia 5 

2
Centre of Excellence for Climate System Science, Monash University, Victoria, Australia 6 

3
School of Environment, The University of Auckland, Auckland, New Zealand 7 

 8 

 9 

Revised submission to Geophysical Research Letters (2019-1-14) 10 

 11 

 12 

 13 

 14 

 15 

 16 

* Corresponding author: 17 

Evan Weller 18 

School of Environment, The University of Auckland, Private Bag 92109, Auckland, 1004, New 19 

Zealand. 20 

E-mail: evan.weller@auckland.ac.nz  21 



Key Points 22 

The spatial patterns of future precipitation change, and most of the regional uncertainty, are 23 

dominated by the dynamic contributions. 24 

The dynamic contribution to future precipitation change is strongly related to frequency and 25 

strength changes of transient convergence lines. 26 

Accurate future precipitation predictions require accurate simulations of short-lived weather 27 

systems of which convergence lines are a part. 28 

 29 

Abstract 30 

Future precipitation changes include contributions from both thermodynamic and dynamic 31 

processes. Given that precipitation in the tropics is commonly associated with convergence lines, 32 

we construct a simple linear regression model relating the convergence line frequency and 33 

strength to precipitation at sub-daily time-scales, and use it to show that changes in the 34 

convergence lines are related to the dynamical change in the precipitation. Given GCM-predicted 35 

convergence line changes, we predict precipitation changes using the regression model. The so-36 

predicted precipitation change is equivalent to the dynamical component of the precipitation 37 

change identified in earlier studies that used very different methods. The difference between the 38 

precipitation change in GCMs and that predicted from changes in convergence lines accounts for 39 

thermodynamic and other potentially important dynamical contributions. More accurate 40 

predictions of future precipitation therefore require the accurate simulations of the relatively 41 

short-lived weather features responsible for convergence lines in the tropics in GCMs. 42 



 43 

Plain Language Summary 44 

Future changes in precipitation have been shown to have contributions from both thermodynamic 45 

and dynamic processes. Although the thermodynamic part is reasonably well understood 46 

(through the Clausius-Clapeyron relationship), the dynamical part is not. Moreover, the spatial 47 

pattern of the precipitation change and much of the regional uncertainty in projections of this 48 

change, especially in the tropics, are dominated by the dynamic contributions. Therefore, we 49 

have investigated the underlying processes for the dynamical part and discovered that changes in 50 

the "weather" of atmospheric convergence lines constitute a large part of the dynamic 51 

contribution to precipitation changes in a future climate. The implications of this are not only 52 

that we now know the main ingredient for change, but also that it is the weather time-scales that 53 

we need to simulate well in models for us to predict this important contribution to climate change. 54 

  55 



Introduction 56 

Predicting changes in regional precipitation due to greenhouse warming remains an 57 

important challenge (e.g., Knutti and Sedláček, 2013). The two main contributors to this change, 58 

both to the mean and the extremes, are increases in atmospheric moisture due to warming (the 59 

primary thermodynamic contribution to precipitation changes) and changes in the atmospheric 60 

circulation (the primary dynamic contribution to precipitation changes) (Allen and Ingram, 2002; 61 

Ma and Xie, 2013; O’Gorman, 2015; Pfahl et al., 2017; Tandon et al., 2018; Wills et al., 2016). 62 

The dynamical change in the tropical precipitation is mostly consistent with changes in the 63 

spatial patterns of the low-level convergence and convection, which are thought to be driven by 64 

changes in the sea surface temperature (SST) gradient, land-sea temperature contrast, and the 65 

local atmospheric circulation (Chadwick et al., 2013; Huang et al., 2013; Kent et al., 2015; 66 

Lambert et al., 2017; Ma and Xie 2013; Xie et al., 2010). Over the oceans, the spatial pattern of 67 

the change in the vertical motion also appears to be consistent with the idea that changes in the 68 

spatial pattern of SST drive most of the change in the low-level convergence and the location of 69 

the convection (Chadwick et al., 2013; Huang et al., 2013; Kent et al., 2015; Xie et al., 2010). 70 

Although changes in the precipitation cannot be separated into thermodynamic and dynamic 71 

contributions unambiguously, the idea is useful nonetheless. Several previous studies have 72 

devised methods based on the convective mass flux to decompose the precipitation changes 73 

predicted by GCMs into their thermodynamics and dynamic contributions (e.g., Chadwick et al., 74 

2013; Kent et al., 2015). Other studies have used the vertically averaged vertical motion to define 75 

the dynamic contribution to precipitation change (e.g., Bony et al., 2013; Endo and Kitoh 2014). 76 

All of these previous studies have been based on monthly mean data. 77 



Large amounts of precipitation in the tropics (30-60% over land and >65% over oceans) fall 78 

in relatively short-lived events associated with convergence lines (Weller et al., 2017a, 2017b). 79 

The convergence of mass along these lines is associated with low-level upward motion which 80 

commonly triggers convection, although there has been much debate over the decades as to 81 

whether convergence should be thought of as a consequence or a cause of (trigger for) 82 

convection. It is not the intention of the present study to address this debate and assign causality; 83 

instead it is to simply exploit the close relationship between low-level convergence lines and 84 

precipitation. Convergence lines can be formed by weather features such as the equatorward 85 

extension of fronts, gravity waves, boundary layer rolls, evaporatively-driven cold pools, and 86 

topographically generated weather systems such as mountain waves and sea and land breezes 87 

(Weller et al., 2017a). However, when averaged over longer time- and space-scales, these short-88 

lived convergence lines form the well-known tropical convergence zones (Berry and Reeder, 89 

2014; Hastenrath, 1995; Widlansky et al., 2013; Wodzicki and Rapp, 2016), such as the Inter-90 

Tropical Convergence Zone (ITCZ) and South-Pacific Convergence Zone (SPCZ) that dominate 91 

the larger-scale, longer-term rainfall variability (Borlace et al., 2014; Cai et al., 2012; Vincent et 92 

al., 2011; Weller et al., 2014).  93 

Weller et al. (2017b) made the point that changes in convergence lines, at least qualitatively, 94 

appear to account for the dynamical component of the change in precipitation. The present work 95 

builds on Weller et al. (2017b) and addresses quantitatively the question as to whether or not 96 

convergence lines are the tropical weather systems underpinning the dynamical change in the 97 

precipitation. To this end, we develop a simple linear regression model relating the frequency 98 

and strength of convergence lines to the precipitation at sub-daily time-scales and show that the 99 

model successfully reconstructs the observed precipitation. Then, using climate simulations from 100 



the models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor 101 

et al., 2012) for the late 21
st
 century, we calculate the future changes in precipitation related 102 

solely to changes in the sub-daily convergence line occurrence and strength and compare these 103 

changes to the dynamic precipitation changes identified by other methods that use monthly-104 

averaged fields. We then discuss the relationship of the residual precipitation change (the 105 

difference between the total and dynamic contribution) to the thermodynamic contribution and 106 

other dynamical changes not explained by changes in the convergence lines. 107 

 108 

Methods 109 

Observation-based convergence lines and precipitation.  110 

Instantaneous convergence lines were identified objectively in the European Centre for 111 

Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-Interim, Dee et al., 2011) using 112 

1.5° horizontal resolution wind fields and applying the method detailed in Weller et al. (2017a). 113 

The convergence lines are identified in 6-hourly divergence fields calculated at 850 hPa for the 114 

period 1979–2005. In addition, the minimum divergence threshold is set to zero (i.e., all regions 115 

of convergence are included), following Weller et al. (2017b). Note, only two points are required 116 

by the joining algorithm that is used to link minima points in the divergence fields for a 117 

convergence line to be identified (Weller et al., 2017b). However, objectively identified 118 

convergence lines are not always geometrically linear when more than two points constitute an 119 

identified synoptic feature. The method also identifies geometrically complicated convergence 120 

lines. We refer to all identified convergence features as lines only when they are recognized to be 121 

a singular feature by the joining algorithm. Note, convergence lines with only two points 122 



constitute only a small proportion (~0.1%) of all lines that are identified in the ERA-Interim 123 

reanalysis. Further, <15% of all convergence lines identified in ERA-Interim exhibit a length less 124 

than the peak (~600km) in their distribution, which has a long tail and 50% of lines are longer 125 

than ~1400 km. 126 

Once the convergence lines are identified, they are associated with the National Oceanic and 127 

Atmospheric Administration (NOAA)/Climate Prediction Center (CPC) morphing technique 128 

(CMORPH, Joyce et al., 2004) 6-hourly accumulated precipitation when a convergence line is 129 

found sufficiently close (i.e., adjacent grid points) to the precipitation grid point (see Weller et al. 130 

(2017a) for details). It is noted that ERA-Interim winds are often based on relatively few 131 

observations over the tropics, and therefore the degree to which they represent reality is 132 

uncertain. Similarly, CMORPH has been shown to capture the spatial precipitation distribution 133 

patterns well, although it overestimates the precipitation in the tropic to subtropics, 134 

underestimates it in the middle to high latitudes, and overestimates (underestimates) weak 135 

(strong) intensities (e.g., Joyce and Xie, 2011). However, CMORPH provides higher temporal 136 

(sub-daily) resolution compared to other datasets, such as the Global Precipitation Climatology 137 

Project (GPCP). 138 

CMIP5 model convergence lines and precipitation.  139 

A total of 10 CMIP5 models (Taylor et al., 2012; see Supplementary Table 1) are used given 140 

their availability of the required sub-daily (6-hourly) data (Weller et al., 2017b). Objectively 141 

identified convergence lines and the associated precipitation are calculated from current climate 142 

(Historical) simulations with anthropogenic forcing (greenhouse gases, aerosols, and other 143 

anthropogenic forcing agents) and natural forcing (solar and volcanic activities) for the period 144 



1979–2005, and high emissions future climate (Representative Concentration Pathway 8.5, 145 

RCP8.5) simulations for the period 2080–2099. Output from each model is interpolated onto the 146 

ERA-Interim 1.5° horizontal grid prior to the calculation of divergence, identifying the 147 

convergence lines, and the proportion of precipitation associated with these convergence lines 148 

(see Weller et al. (2017b) for extended details of the calculations of convergence lines from 149 

models). Although the interpolation of GCM output (or the stage at which it is performed) is not 150 

always ideal, Weller et al. (2017b) show that it did not determine the results of their study. For 151 

example, there are no clear relationships between the original resolution of a model and the 152 

respective bias in the historical simulations (see Supplementary Table 1), nor future changes in 153 

the dynamical contribution to precipitation. For all results that show spatial maps, regions with 154 

surfaces above 850 hPa are shaded gray as they are not analyzed. 155 

Regression model  156 

We use simple linear regression to estimate the precipitation associated with a convergence 157 

line using the equation PRdyn = a1 · CLS + b, where PRdyn is the grid-point precipitation 158 

associated with a convergence line, and CLS is the instantaneous grid-point strength of the 159 

convergence line (i.e., the strength of the convergence line point closest to the precipitation is 160 

assigned to that precipitation point). Using the grid-point relationships found for the observations 161 

and the individual CMIP5 models over the odd years (e.g., 1999, 2001, etc.) during the periods 162 

1998–2013 and 1979–2005, respectively (Supplementary Fig. 2 shows maps of the observed and 163 

MMEM regression coefficients), we reconstruct the climatological precipitation associated with 164 

convergence lines over the even years (e.g., 1998, 2000, etc.) during the same periods. For 165 

example, when a convergence line occurs, the precipitation is calculated using the strength of the 166 

convergence line, then for each grid-point, the precipitation is averaged over the historical period 167 



to generate climatological maps. Here the reconstructed precipitation is used to represent the 168 

dynamical component of precipitation. For CMIP5 RCP8.5 simulations, we similarly reconstruct 169 

the component of the precipitation associated with convergence lines over the period 2080–2099. 170 

However, we use the historical grid-point regression relationship so that atmospheric moisture 171 

content changes (i.e. the thermodynamic contribution to total precipitation changes) do not 172 

contribute to the reconstruction of the dynamical component of precipitation associated with 173 

convergence lines. We discuss the implications of this in following sections. However, the 174 

difference between the future total precipitation changes and the reconstructed precipitation 175 

changes is taken to represent the thermodynamic contribution and other contributions not 176 

explained using convergence lines to future total precipitation changes. 177 

 178 

Results 179 

Although varying in detail, climate models reproduce the overall distribution of precipitation 180 

over recent decades (Fig. 1a and b) with a spatial correlation of 0.86 and a root mean square 181 

difference of 1 mm day
−1

. Observations show that over much of the globe large fractions of the 182 

total precipitation can be associated with a convergence line (Fig. 1c). This is most evident in 183 

high precipitation regions (> 5 mm day
−1

) of the deep tropics, such as the Indo-Pacific warm 184 

pool, but also mid-latitude oceanic regions, and even over land regions such as South America, 185 

with fractions greater than 90%. Areas in which a large fraction of the precipitation cannot be 186 

associated with convergence lines are confined to the subtropics, where the average precipitation 187 

is small (i.e., < 1 mm day
−1

). Although models slightly (around 10%) overestimate the 188 

percentage of the precipitation not associated with convergence lines, they reproduce the spatial 189 



pattern of the convergence line to precipitation relationship well (Fig. 1d). It is important to note 190 

that in the main tropical convergence zones the models associate the majority of the precipitation 191 

(> 75%) with convergence lines (Supplementary Fig. S1). 192 

As precipitation in the tropics is frequently associated with a convergence line, we construct 193 

a simple linear regression model for both the observations and each GCM relating the 194 

convergence line strength, when present, to the associated six-hourly precipitation (see Methods 195 

for the model construction and Supplementary Fig. S2 for the distribution of regression 196 

coefficient and intercept terms). We then apply the regression model using the occurrence and 197 

strength of the convergence lines to both observations and GCMs to estimate the precipitation at 198 

each point. The precipitation is estimated for periods different from those used to develop the 199 

regression model. We find that the proportion of the precipitation associated with convergence 200 

lines can be faithfully reconstructed (Fig. 2a and b) with large errors confined to regions away 201 

from the major convergence zones where the mean precipitation is small. The slight 202 

overestimation of the reconstructed precipitation (Fig. 2c and 2d) is partly because some 203 

convergence lines are dry (Weller et al., 2017a, 2017b). The regions with large overestimations 204 

in the models are where the regression coefficients are large compared with those from 205 

observations (Supplementary Fig. S2). The inability of the simple regression model to account 206 

for these dry convergence lines leads to an overestimation of the reconstructed precipitation. This 207 

overestimation is most evident on the eastern flanks of the subtropical highs and northern Africa, 208 

where the atmospheric moisture is low and the frequency of dry convergence lines is high. As 209 

our focus is on the regions of high-precipitation, where the errors are small, we conclude that the 210 

regression model adequately represents the relationship between convergence strengths and 211 

precipitation. 212 



Assuming the only change in a future climate is a change in frequency and strength of 213 

convergence lines (Fig. 3), the future precipitation can be predicted for each GCM by applying 214 

the regression model developed for the current climate to the occurrence and strength changes of 215 

convergence lines predicted by each model. In this case the relationship between the 216 

convergence strength and the precipitation in the current climate defines the contribution to the 217 

precipitation change by the dynamical processes that control convergence line occurrence and 218 

strength, but excludes the direct thermodynamic effects of a higher water vapour content in a 219 

warmer atmosphere. Note that a possible indirect effect of the increased water vapour in 220 

changing the characteristics of convergence lines that form the predictors of the regression model 221 

cannot be excluded by this technique. 222 

We first assess the influence of greenhouse warming on changes in the occurrence and 223 

strength of convergence lines, by using future greenhouse-gas emission scenarios of RCP8.5, 224 

covering the 2080–2099 period (Supplementary Fig. S3). Projections for this future climate 225 

period show a general reduction in the frequency and strength of convergence lines over the mid-226 

latitudes consistent with warming-related widening and poleward expansion of subtropical dry 227 

zones (Chou et al., 2013; Huang et al., 2013; Lu et al., 2007; Scheff and Frierson, 2012; Seager 228 

et al., 2010). In the tropics, large changes in the convergence line frequency are associated with 229 

shifts in the major low-latitude convergence zones (Huang et al., 2013; Widlansky et al., 2013). 230 

Using the regression model, we now predict the precipitation change due to changes in 231 

convergence line occurrence and strength (Fig. 4b). By construction, this provides a simple yet 232 

physically-based representation of a contribution to the dynamical changes hypothesized by 233 

other studies (Bony et al., 2013; Chadwick et al., 2013; Endo and Kitoh, 2014; Kent et al., 2015). 234 

Importantly, the spatial patterns obtained using our simple prediction strongly resemble those of 235 



the previous studies, which are based on completely different techniques. This strong 236 

resemblance implies that much of the dynamic contribution to precipitation changes in a warmer 237 

climate can be interpreted in terms of changes in the occurrence and strength of low-level 238 

convergence lines. Whilst the reasons for these precipitation changes can be manifold, the 239 

similarity highlights the importance of synoptic scale dynamical processes. For example, in deep 240 

convective situations the strength of the low-level convergence and that of vertical motion at 241 

mid-levels are very strongly related. However, the advantage of using the convergence algorithm 242 

is that one can search for lines and sub-sample results based on weather feature (i.e., 243 

convergence line), rather than grid point properties such as vertical velocities. 244 

Nonetheless there are some notable exceptions. For example, the large increases in the 245 

equatorial Pacific in the total precipitation change predicted by the GCMs (Fig. 4a; a modified 246 

version of that presented in Fig. 4a of Weller et al. (2017b)) are usually included in previous 247 

estimates of the dynamical component of precipitation changes (Bony et al., 2013; Chadwick et 248 

al., 2013; Kent et al., 2015; Seager et al., 2010). Our analysis reveals that this large increase in 249 

the total precipitation (particularly the western Pacific, indicated by the box in Fig. 4b and 4c) is 250 

associated with only a modest increase in convergence line strength (Fig. 3a) and little to no 251 

change in frequency (Fig. 3b). Instead, this increase is associated with a relatively large increase 252 

in SST (contours in Fig. 4a) and, consequently, atmospheric moisture. Therefore, the difference 253 

between the total precipitation changes and the convergence-line-based estimates of precipitation 254 

changes (Fig. 4c) is a combination of the thermodynamic contribution and other dynamical 255 

contributions that can not be explained using the regression model based on changes in 256 

convergence lines alone.  257 



Climate projections show large changes in vertical structure and convective mass-flux in the 258 

equatorial Pacific and other regions that are likely to be extremely important to the total 259 

precipitation changes (Chadwick et al., 2013; Huang et al., 2013; Seager et al., 2010; Tandon et 260 

al., 2018). The difference pattern therefore predominantly highlights the wet-get-wetter, dry-get-261 

drier regions. That is, increases in the moisture convergence in moist, rising branches of the 262 

broad circulation, and moisture divergence in the dry, subsidence regions, respectively cause 263 

increased and decreased precipitation changes in the future (Bony et al., 2013; Chou et al., 2013; 264 

Held and Soden, 2006). It has been suggested that, as the world warms, there will be small 265 

changes in the sensitivity of precipitation to convergence (i.e., the slope (a1) of the regression 266 

model as shown in Supplementary Fig. S4a) (e.g., Singh and O'Gorman, 2013; Byrne and 267 

O'Gorman, 2016). However, we cannot simply construct the regression model based on the 268 

future relationships as it will automatically, by convention, include large contributions due to 269 

thermodynamic changes (i.e., changes in the intercept (b) of the regression model as shown in 270 

Supplementary Fig. S4b). Such convergence-related signals would also inherently be included in 271 

the difference pattern.  272 

 273 

Discussion and Conclusion 274 

Changes to the SST pattern are likely to drive shifts in the position of the mean low-level 275 

convergence and convection (Ma and Xie, 2013; Windlansky et al., 2013; Xie et al., 2010). This 276 

appears to be the case over the equatorial Pacific where changes in the reconstructed 277 

precipitation show the off-equatorial convergence zones shifting closer to equator. In the 278 

equatorial western Pacific, there is only a small increase in the precipitation associated with 279 



changes in the convergence lines; and this increase is more connected to increases in the strength 280 

of the convergence lines than increases in their occurrence (c.f. Fig. 3 and 4). In the tropical 281 

Indian Ocean (indicated by the box in Fig. 3 and 4), an overall decrease in the total precipitation 282 

is linked to decreases in both the convergence line occurrence and strength that outweighs an 283 

increase from thermodynamic contributions. Generally, regions showing decreases in the total 284 

precipitation are characterized by a decrease in the convergence line frequency and/or strength. 285 

The reduction of the convergence line strength is particularly marked in the mid-latitudes and is 286 

likely to be the result of weaker meridional temperature gradients in a future climate.  287 

Transient low-level convergence lines, defined here using an objectively based line 288 

identification technique, are highly important dynamical features associated with precipitation in 289 

the current climate. Using vertical motion or any other scalar field such as convergence, tells us 290 

little about the synoptic-scale phenomena organizing the precipitation. Imposing geometry on the 291 

diagnosis adds information on the synoptics, which is rarely done in tropical meteorology, but is 292 

central to mid-latitude meteorology. Overall, we show that the dynamic contribution to the 293 

precipitation change in a warmer world as identified in earlier studies can almost entirely be 294 

accounted for by changes in the convergence lines. This result reveals a key physical mechanism 295 

associated with the change in the precipitation, and highlights that an accurate representation of 296 

the weather in climate models, as expressed by the modeled convergence lines, is essential for 297 

reliable predictions of the future behaviour of the Earth’s climate. 298 
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 391 

Figure 1 | Comparison of observed and modelled historical climatological precipitation and 392 

the proportion not associated with convergence lines. a,b, Annual mean total precipitation (in 393 

units of mm day
−1

) from observations and the CMIP5 multi-model ensemble mean (MMEM). 394 

The black contour in b indicates regions where the observed precipitation is greater than 8 mm 395 

day
−1

. c,d, Proportion (in units of %) of the total precipitation shown in a and b, respectively, 396 

that does not occur in the presence of convergence lines. In c and d, the dashed and solid black 397 

contours, respectively, indicate regions where the annual mean precipitation is less than 1 mm 398 

day
−1

 and greater than 5 mm day
−1

.  399 



 400 

Figure 2 | Reconstruction of the observed and modelled historical precipitation associated 401 

with convergence lines. a,b, Annual mean precipitation (in units of mm day
−1

) estimated via a 402 

reconstruction using convergence line frequency and strength in linear regression models from 403 

observations and the CMIP5 multi-model ensemble mean (MMEM). c,d, Differences between 404 

the amount of precipitation that occurs in the presence of convergence lines and the 405 

reconstructed precipitation (in units of %) from observations and MMEM. In c and d, the dashed 406 

and solid black contours, respectively, indicate regions where the annual mean precipitation is 407 

less than 1 mm day
−1

 and greater than 5 mm day
−1

. Red shading indicates an over-estimation of 408 

the reconstructed precipitation.  409 



 410 

Figure 3 | Future changes in modelled convergence line frequency and strength. a,b, The 411 

CMIP5 multi-model ensemble mean (MMEM) changes (RCP8.5 2080–2100 minus Historical 412 

1979–2005) in convergence line frequency and convergence line strength (in % of the Historical 413 

climatology). The boxes in both panels indicate the western tropical Pacific Ocean and central 414 

tropical Indian Ocean regions referred to in the text.  415 



 416 

Figure 4 | Future changes in modelled climatological precipitation and its decomposition. a, 417 

The CMIP5 multi-model ensemble mean (MMEM) changes (RCP8.5 2080–2100 minus 418 

Historical 1979–2005) in annual mean total precipitation (shading) and SST (contours, relative to 419 

the tropical (20°S–20°N) mean warming; in units of °C). Blue or red shading indicate increased 420 

or decreased precipitation and solid or dashed contours indicate larger or smaller SST warming 421 

relative to the tropical mean warming, at intervals of0.25°C. b, The MMEM change in annual 422 

mean precipitation estimated via the reconstruction using future changes of convergence line 423 

frequency and strength, but applying the current climate linear relationship between convergence 424 

line strength and precipitation. c, The MMEM difference between the change in total 425 



precipitation in a, and the change in the reconstructed precipitation in b. All color scales indicate 426 

precipitation changes in units of mm day
−1

. 427 
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