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Abstract 

A eukaryotic microalga, Microchloropsis gaditana CCMP526, which belongs to the Class 

Eustigmatophyceae, produces high amount of lipid that makes it a good potential source of 

biofuel in algal biotechnology. Manipulation of this alga for enhanced productivity of lipid is 

well-appreciated but requires a better understanding of its metabolic functioning. Improved 

understanding of metabolism and metabolic flux control can be achieved through the analysis of 

a metabolic model constructed for this alga. The systematic approach of metabolic engineering 

of the alga involves physiological studies of the microalga, generation of a genome-scale 

metabolic network, flux balance analysis of the metabolic model and identification of the key 

regulatory pathways.  

The curated genome based pathway database for M. gaditana CCMP526, MgdCyc, that 

currently involves 141 metabolic pathways with 1163 metabolic reactions, associated genes, 

enzymes and metabolites, was developed from the organism-specific genome annotation and 

data sources such as the KEGG database and the Metacyc database. MgdCyc with its Pathway 

Tools graphical interface facilitates visualization of pathways and genes in Genome Browser and 

visualization of functional genomic datasets. 

The curated genome-scale metabolic model for M. gaditana CCMP526, constituting 720 

reactions, was developed to represent the primary metabolism of the alga. The metabolic model 

was analysed using flux balance analysis to predict the flux of intracellular metabolites in the 

metabolic network of the alga under different trophic conditions such as phototrophic, 

heterotrophic and mixotrophic conditions. The metabolic model was validated by comparing the 

predicted values of the specific growth rate, photosynthetic coefficient and ratio of cyclic 

electron flow and linear electron flow involved in photosynthesis with their experimental values.  

Physiological studies of Microchloropsis gaditana CCMP526 were conducted to obtain 

the experimental values of parameters such as growth rate, fatty acid profile, sugar and protein 

content that were used to validate the genome scale metabolic model of the alga. Studies on 

growth of the alga in different media with different inoculum concentrations and antibiotic 

sensitivity were conducted as a preliminary step towards genetic transformation of the alga.  
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Introduction 

The unicellular eukaryotic microalga, Microchloropsis gaditana CCMP526 (previously 

known as Nannochloropsis gaditana) belongs to the Class Eustigmatophyceae that includes fresh 

water, marine and terrestrial microalgae (Fawley, Jameson, & Fawley, 2015). The alga is an 

oleaginous marine microalga that has the potential to be commercially used as a lipid producer in 

the production of biodiesel and as feedstock in mariculture. Therefore, there is renewed interest 

in metabolic engineering of Microchloropsis sp. to increase its growth and lipid productivity.  

Traditionally the targets for metabolic engineering have been selected on the basis of the 

literature or intuitive engineering based on specialised metabolic knowledge. In such cases, the 

gene predictions turned out to be suboptimal due to the complexity of the metabolic network 

caused by the regulatory processes at various levels of cellular functioning (Oberhardt, Palsson, 

& Papin, 2009) . Therefore, the first step in the systematic approach towards metabolic 

engineering of Microchloropsis gaditana CCMP526 is the development of its biochemical 

pathway database and a metabolic model that represents the primary metabolism in the alga.  

The genome based pathway database is an overview of the metabolic pathways (at least 

the central metabolic pathways namely the biosynthetic pathways of lipid, amino acids, 

nucleotides, pigments and sugars) in the target organism with the corresponding reactions, the 

associated enzymes and genes. The pathway database helps to understand the metabolism and 

study the presence of specific variant pathways in the alga. It can be improved with further 

advancement in genome sequencing level and annotation and it can be used to generate a 

template of genome scale metabolic model. The analysis of metabolic model predicts the 

physiological behaviour of algae under different trophic conditions and helps to identify the key 

regulatory reactions in metabolic functions.  

Based on genome annotation, literature analysis, physiological studies and gene 

expression analysis, a pathway database for M. gaditana CCMP526 can be developed. A flux-

consistent metabolic model can be derived from the pathway database followed by curation. 

Analysis of the metabolic model predicts the metabolic flux patterns in the alga cultivated under 
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different trophic conditions such as photoautotrophic, heterotrophic and mixotrophic condition.  

The developed metabolic model can be used to predict genes for gene knock-out studies. The 

analysis of the metabolic model can help to find the trophic conditions for better growth or for 

the better production of target metabolites. 

 

Organization of Thesis 

This report is focused on carrying out the initial steps for metabolic engineering of the alga. This 

involves primarily development of a curated pathway database for M. gaditana CCMP526 and a 

validated genome scale metabolic model for the alga and its analysis that will help to design 

approaches for metabolic engineering of the alga. This report is organized into seven chapters, 

including this chapter.  

This first chapter defines the topic and explains the scope of development of a metabolic 

model. The second chapter presents a critical assessment of related work reported in the 

literature. It presents studies of metabolic models available for other alga, analysis and their 

conclusions. It also points out gaps in literature that makes the current work relevant and the 

objectives of this project are defined. The third chapter details the methodologies involved in 

experiments and computational studies on development of the pathway database and genome 

scale metabolic model, its analysis and validation of the model. In chapters 4 to 6, the results of 

the work are presented and discussed. In the last chapter, the conclusions drawn from this work 

are presented together with a section outlining the future scope of the work. 
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Literature Review 

2.1 Microalgae  

Microalgae constitute a group of unicellular or multi-cellular photosynthetic organisms, 

which inhabit diverse fresh water, marine and terrestrial environments. It is a polyphyletic group 

that involves taxa in five out of eight eukaryotic groups. Algae evolved through a primary 

endosymbiotic event in which a cyanobacterium (a photosynthetic prokaryote) was engulfed by 

an aerobic eukaryote to form an organelle named the plastid. Subsequently, a photosynthetic alga 

was engulfed by an unrelated heterotrophic eukaryote to form a plastid in them. The primary and 

multiple secondary and tertiary endosymbiotic events brought novel combinations of genomes, 

and thus led to a broad phylogenetic distribution in algae (Cock & Coelho, 2011).  

Microalgae have a simple cell structure which allows them to grow efficiently at a higher 

growth rate with an increased photosynthetic efficiency as compared to vascular plants. Some of 

them are potentially known for their suitability for bio-fuel production in an economically cost-

effective and eco-friendly manner (Lee, Chou, Ham, Lee, & Keasling, 2008). Among eukaryotic 

unicellular microalgae, Chlamydomonas reinhardtii (Dal’Molin et al., 2011; Liu, Vieler, Li, 

Jones, & Benning, 2013; May, Christian, Kempa, & Walther, 2009), Ostreococcus tauri, 

Phaeodactylum tricornutum (Radakovits, Eduafo, & Posewitz, 2011) and Thalassosira 

pseudonona (Armbrust et al., 2004; Hockin, Mock, Mulholland, Kopriva, & Malin, 2012; Jiang, 

Yoshida, & Quigg, 2012) have been well studied. However, these microalgae do not normally 

exhibit higher lipid content as compared to other naturally lipid-producing micro algal species. 

They require extensive genetic modification to enhance their lipid content beyond what that can 

be achieved through manipulating their cultivation conditions. More importantly, a 

comprehensive understanding of biosynthetic metabolic pathways related to lipid production is 

needed to engineer such organisms for biofuel production. Therefore, selection of microalgae 

that natively express high lipid content and have a completely sequenced genome and genome 

annotation are good target candidates for metabolic engineering (Radakovits et al., 2012; Thiele 

& Palsson, 2010). 
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2.1.1 Eustigmatophyceae 

The Eustigmatophyceae are a class of stramenopiles that have evolved through multiple 

secondary or tertiary endosymbiotic events (Cock & Coelho, 2011). This class was drawn from 

the algal class of Xanthophyceae based on the morphological unique features (Hibberd & 

Leedale, 1970). The species of Nannochloropsis belong to the family Monodopsidaceae from the 

class of Eustigmatophyceae (Hibberd, 1981). Members of this genus are found mostly in marine 

environments but can occur in fresh and brackish water. Recently, a new genus of 

Microchlorospsis that constitutes M. salina (previously known as N. salina ) and M. gaditana 

(previously known as N. gaditana ) was drawn from the class of Eustigmatophyceae (Fawley et 

al., 2015). Therefore, reports related to Nannochloropsis sp. that were published before 2015, are 

applicable to Microchloropisis sp. as well.  

Some of the Eustigmatophyceae, such as N. oculata (Converti, Casazza, Ortiz, Perego, & 

Del Borghi, 2009), M. salina (Boussiba, Vonshak, Cohen, Avissar, & Richmond, 1987) and M. 

gaditana (Simionato et al., 2011) have been reported to have high lipid producing characteristics, 

high biomass accumulation rates and an ability to tolerate a wide range of pH, temperature and 

salinity. Therefore, they were seen as potential candidates for the commercial production of 

biofuels. The growth of Nannochloropsis sp. has been tested and proven in large scale cultivation 

such as outdoor ponds (Boussiba et al., 1985, 1987). They can be used as feed stocks in marine 

aquaculture for mass production especially to cultivate rotifers due to the high fatty acid content 

of this marine alga (Hirayama, Maruyama, & Maeda, 1989; Koven et al., 1990). The high 

unsaturated fatty acid content of Nannochloropsis sp. makes it highly favourable for larval 

nutrition (James & Al-Khars, 1990). Due to the high content of eicosapentaenoic acid of 

Nannochloropsis sp., it can also be used as source of EPA in human diet and it was reported to 

be effective in reducing cholesterol levels (Werman, Sukenik, & Mokady, 2003). Nutrient 

profiles of EPA-enriched alga were studied and research has been carried out on optimization of 

EPA production from Microchloropsis gaditana (Mitra, Patidar, George, Shah, & Mishra, 2015; 

Mitra, Patidar, & Mishra, 2015). Studies were conducted to determine the efficiency of 

Nannochloropsis sp. as a potential supplement to chicken’s diet to produce poultry products with 

ω3 fatty acids (Nitsan, Mokady, & Sukenik, 1999). The potential use of Nannochloropsis sp. as 

feedstock in aquaculture, biofuel production and human diet supplements, encouraged research 
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to study its physiology and conduct optimization studies and genetic engineering to obtain 

desired products from the algae. 

Much research has been conducted to investigate the effect of various cultivation 

conditions on the growth and biomass composition of microalgae that belong to Nannochloropsis 

species. The environment variables under investigation include light, temperature, pH, sources of 

carbon and nitrogen and their availability. It was observed that the amino acid composition of 

Nannochloropsis sp. did not vary with changes in light intensity, temperature and nitrogen 

availability though there was variation in protein content of the cell (Sukenik, Zmora, & Carmeli, 

1993).  

The growth of Nannochloropsis sp. was reported to be light saturated at 200 µmol quanta 

m-2 s-1 (Sukenik, 1991). A decrease in cellular content of carbohydrate and lipid with an increase 

in chlorophyll content was observed for Nannochloropsis sp. cultivated under low light, i.e.~ 35 

µmol quanta m-2 s-1 (Renaud et al., 1991; Sukenik et al., 1993). However, an increase in the ratio 

of content of unsaturated fatty acids to that of saturated fatty acids in Nannochlorospis was 

observed while reducing the light intensity for their cultivation (Renaud et al., 1991). A similar 

increase was observed in the profile of relative distribution of eicosapentaenoic acid (20:5(n-3)) 

with a decreased light intensity for cultivation (Sukenik, 1991). The optimum temperature for 

maximum growth rate of Nannochlorospis sp. was found to be 250C (Sukenik, 1991). Low 

temperature for cultivation of Nannochloropsis sp. increases the cellular content of ω3 poly 

unsaturated fatty acids in the algae, but this condition discourages growth and thus overall it does 

not affect the EPA productivity significantly (Sukenik, 1991). 

Generally, in microalgae, the storage compounds of lipid and carbohydrate can be 

accumulated with a decrease in protein content during nitrogen starvation. Similarly, an increase 

in total carbohydrates and a decrease in protein content and total carotenoids were observed in 

marine Nannochloropsis species (Sukenik et al., 1993). However, the amino acid composition 

does not vary significantly in Nannochloropsis sp. in spite of variations in protein content of the 

algae with the change in nitrogen availability (Sukenik et al., 1993). Considering the potential of 

the microalgae as biofuel producers and feedstocks in aquaculture, fatty acid content and 

composition of the microalgae is important. Nannochloropsis sp. can accumulate high amounts 

of lipid during the stationary phase of growth. Some investigators have concluded that the higher 
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lipid synthesis in Nannochloropsis sp. during stationary phase of growth was due to nitrogen 

starvation (Suen, Hubbard, Holzer, & Tornabene, 1987). Under nitrogen limitation, the cells fix 

carbon in presence of light and the carbon tends to flow through biosynthesis pathways to 

storage molecules such as fatty acids and carbohydrate rather than to protein (Sukenik, 1991).  

However, there have been other reports which state that lipid accumulation is not due to nitrogen 

starvation but is due to microelement deficiency that occurs at higher pH (Ben-Amotz, 1985; 

Boussiba et al., 1987).   

The growth rate of Nannochloropsis sp. seemed to be adversely affected by the low 

initial concentration of nitrogen source in the medium, i.e. < 3 mM nitrogen (Sukenik, 1991). It 

was observed that though the lipid content of Nannochloropsis sp. was higher, the lipid 

production rate was significantly lower in nitrogen-starved culture due to lower growth rate 

(Boussiba et al., 1985). As the availability of the nitrogen source is reduced, the cellular content 

of triacylglycerol increases and this in turn affects the relative abundance of fatty acids in the 

algae (Sukenik, 1991). Triacylglycerol, a storage compound containing neutral lipid that 

constitutes saturated fatty acids, can be used to produce energy for cellular maintenance during 

energy shortage (dark period of light-dark cycle) (Sukenik, 1991). It was observed that the 

cellular content of eicosapentaenoic acid (20:5(n-3)) (EPA), found in a galactolipid,  remain 

consistent even during nitrogen starvation (Sukenik, 1991). This was due to the fact that such 

polyunsaturated fatty acids primarily form structural lipids like galactolipids which were not 

affected by such environmental variations. Nitrogen availability can be considered as an 

operational parameter in the commercial production of Nannochloropsis sp. with the desired 

biochemical composition. 

As the biochemical composition of the microalgae changes with the variation in 

environmental conditions, many studies have been carried out to produce the desired biomass 

composition by varying the cultivation conditions. The environmental conditions were optimized 

to increase the content of eicosapentaenoic acid (EPA) in marine Nannochloropsis sp. at the cost 

of the productivity of EPA, since those conditions affected the growth rate adversely (Sukenik, 

1991). The cultivation conditions to increase EPA content of the marine alga were nutrient 

sufficient medium, low light and a lower temperature compared to that optimized for maximum 

growth rate (Sukenik, 1991).  
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Polyunsaturated fatty acids (PUFA) are essential for the growth of marine invertebrates 

and they also play a major role in human diet. Though a significant increase in lipid content in 

Nannochloropsis sp. was observed under nitrogen limitation, the relative distribution of 

polyunsaturated fatty acids (PUFA) decreased in the alga (Sukenik et al., 1993). Therefore, 

Sukenik et al. (1993) suggested nutrient sufficient condition with high light intensity at 

temperature optimal for growth, to cultivate marine Nannochloropsis sp. with high PUFA 

productivity for application in aquaculture (Sukenik et al., 1993). It was reported that an increase 

in the ratio of content of unsaturated fatty acids (especially C16 and C18 fatty acids) to that of 

saturated fatty acids in N. oculata can be  achieved by low light intensity, i.e. ≤ 490 E m-2 s –1 

(Renaud et al., 1991). In the optimization using biochemical engineering that involve 

optimization of cultivation medium and conditions, there has been a compromise between the 

growth rate and the cellular content of specific component (Sukenik, 1991). 

 

2.1.2 Microchloropsis gaditana 

Microchloropsis gaditana sp. which was previously known as Nannochloropsis gaditana,  

was isolated and was found to have features different from other species of Nannochloropsis 

such as Nannochloropsis oculata and Microchloropsis salina in 1982 (Lubian, 1982).   Recently, 

Microchloropsis species have attracted considerable attention by biofuel researchers, as they 

exhibit high photoautotrophic biomass accumulation rates with a capability to be scaled up to 

high volume cultures and have a high lipid producing ability.   

M. gaditana CCMP526 was isolated from Lagune de Oualidia, Morocco by Billard in 

1985. This alga was reported to be a good choice of a model organism for metabolic engineering 

for biofuel production, as it exhibits higher lipid content with a potential to grow at cell densities 

greater than 10 gL-1 (Jinkerson, Radakovits, & Posewitz, 2013). A feature of this organism is that 

it can accumulate a large quantity of lipid in the form of triacylglycerides (TAG) during the 

logarithmic growth stage (Jinkerson et al., 2013). A genetic transformation method involving 

electroporation at high field strength is established for Microchloropsis gaditana CCMP526 

(Radakovits et al., 2012) . Experimental findings suggest that the Nannochloropsis sp. genome is 

haploid, which enables the organism to exhibit the phenotype instantly after dominant and 

recessive gene mutations (Jinkerson et al., 2013; Kilian, Benemann, Niyogi, & Vick, 2011; 
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Radakovits et al., 2012; Weeks, 2011). Therefore, a systematic genome-scale metabolic model 

approach can be used to engineer this type of organism in order to achieve high lipid production 

at commercial level as high productivity and high lipid yield of the alga can be achieved by 

metabolic engineering. 

 

2.2 Genome-scale metabolic reconstruction 

Metabolic networks are cascades of enzyme-enzyme relations. It is considered complete only if 

the enzymes are linked according to its biological context and tagged with its genomic 

information (Reed et al., 2006). To understand the whole functioning of an organism, a 

comprehensive reconstructed metabolic network is always required. Metabolic network 

reconstruction (MNR) provides necessary biological information to develop suitable microbial 

metabolic models for predicting the cellular phenotype of an organism. MNR is performed 

through assigning Gene-Protein-Reaction (GPR) associations to the annotated genes from the 

sequenced genome. It integrates the genome annotation data, metabolic biochemistry and 

physiology of an organism to annotate the GPR associations. In addition, it tags the active 

metabolic pathways that are linked to GPR associations.  

The real value and challenge of a reconstructed network lies in accomplishing a successful 

annotation. A high-quality of genome annotation only can assist in understanding the metabolic 

process of an organism (Stein, 2001). Further, a meaningful annotation only can guide to 

investigate the possible and impossible biochemical reactions that are present in the metabolic 

network of an organism. Thus, a reconstructed network includes the number of genes, proteins 

(i.e., enzymes catalysing metabolic reactions), metabolites and reactions that take part in the 

metabolic activity of an organism, wherein they are categorized, interconnected and represented 

in a network fashion (Feist, Herrgård, Thiele, Reed, & Palsson, 2009). Furthermore, genome-

scale reconstruction directs hypothesis-driven discovery, by integrating high throughput data 

with biological discovery process and bridging the genotype-phenotype gaps in unicellular or 

multi-cellular microbial systems. 

However, obtaining a high-quality MNR is challenging nowadays as automated 

reconstructed network are prone to errors, which are caused by incomplete annotations and poor 
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sequence similarities. Consequently, the automated MNR are subjected to an additional step of 

refinement process, where the gaps and the errors in the MNR are fixed and validated through 

exploring various functional prediction computational tools, literature based context and 

integrating high-throughput experimental ‘omics’ datasets, such as genomics, proteomics and 

metabolimics (Saha, Chowdhury, & Maranas, 2014). The metabolic networks thus completely 

re-constructed with no gaps are typically used to develop genome-scale metabolic models for 

deducing the metabolic potential and fitness of an organism. 

 

2.2.1 Development of Metabolic reconstruction  

The metabolic network reconstruction process consists of four major stages. The four stages are 

creating a draft reconstruction, manual reconstruction refinement, conversion of a network into a 

mathematical model and network evaluation. (Thiele & Palsson, 2010) 

The draft reconstruction is a collection of genome-encoded metabolic functions which 

depends mainly on the genome annotation available. The generation of draft reconstruction 

involves obtaining genome annotation, identifying candidate metabolic functions, obtaining 

candidate metabolic reactions for these functions, assemble draft reconstruction. The first stage 

of creating a draft reconstruction for M. gaditana was thus to obtain the genome annotation 

(mainly the genes and their proteins with the database links and evidences). The accuracy of 

metabolic pathways in the draft reconstruction strongly depends on the accuracy of genome 

annotation used for the reconstruction. The more the gene annotations available, the more 

reliable is the metabolic reconstruction. So it is important to collect the most recent version of 

the genome annotation. (Thiele & Palsson, 2010) 

In the next stage, i.e. manual reconstruction refinement, the draft construction is re-evaluated, 

curated and refined. The metabolic reactions and their Gene-Protein-Reaction (GPR) 

associations in the metabolic pathways are individually considered for organism-specific 

literature and refinement. The manual re-evaluation is important because not all the annotations 

have a high confidence score and the databases referred to are organism-unspecific so 

consequently the reactions that are not there in the target organism may be included in the 

pathways predicted (Thiele & Palsson, 2010). 
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In the third stage of metabolic network reconstruction, the reconstruction is converted into 

mathematical format and condition-specific models are defined. The final metabolic model is 

obtained after multiple iterations of validation and refinement. The fourth stage involves the 

verification, re-evaluation and validation of the metabolic model. 

 

2.2.2 Pathway Tools software 

Using genome annotation, the draft reconstruction can be generated and refined using the 

Pathway Tools software. This software infers metabolic pathways by analyzing the metabolic 

annotations with respect to a reference database of metabolic pathways such as Metacyc. The 

pathway prediction is based on a computed score that reflects the likelihood that the pathway is 

present. The score value depends on the total number of reactions in the pathway, the number of 

reactions for which the annotated genes of the target organism are available and the number of 

pathways in which the same enzyme is involved. (Thiele & Palsson, 2010) 

Pathway Tools software can also be used to infer which genes are likely to code for the 

missing enzymes in the metabolic pathways. It identifies the transport proteins in the genome 

and infers transport reactions from the free text transport function descriptions that are present in 

the genome. It facilitates the editing of information regarding genes, proteins, reactions, 

pathways, and chemical compounds (Peter D Karp et al., 2010).  

 

2.2.3 Metabolic Flux Analysis 

Metabolic flux analysis (MFA) quantifies the flow of materials in metabolism resulting in 

generation of flux maps, which in turn help to revise the metabolic model developed. There are 

several approaches for MFA which can be selected on the basis of network size, whether the 

biological system can be evaluated at the steady state, and the availability of details of reactions. 

The flux analysis using FBA that give insights regarding the key regulatory pathways involved in 

the lipid biosynthesis, are selected based on the data available and the feasibility. This basically 

helps to identify the critical branch points and reactions of which the manipulations may produce 

a significant effect on lipid content of microalgae (Allen, Libourel, & Shacharâ€� Hill, 2009; 

Thiele & Palsson, 2010) . 
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Flux balance analysis defines the metabolic network as a linear programming 

optimization problem. The constraints are imposed by the steady state mass conservation of 

metabolites in the system. The intracellular flux of the metabolites and the flux ratios of the 

pathways can be estimated computationally using flux balance analysis (FBA). The flux and its 

ratios can be obtained at branching points in the pathways using the tool such as COBRA (Thiele 

& Palsson, 2010) . 

 

2.2.4 Metabolic reconstruction of algae 

Constructing genome-scale metabolic models assists in contextualization of high-throughput data 

by imposing constraints on genome scale reconstructed metabolic networks based on known 

experimental measurements. Further, it provides complete insights on critical pathways by 

investigating the flux distributions in the metabolic network. Besides, metabolic modelling helps 

to study multi-cellular systems by comparing the metabolic models of the species with their 

phenotypic differences and the analysis. It also enables the discovery of network properties, 

which includes the existence of loops, optimal pathway usage, pathway redundancy and 

metabolite connectivity (Oberhardt et al., 2009). 

However, during construction of metabolic models, the occurrence of mis-annotation of 

genes, the existence of inactive isozymes and pleiotropy reduces the reliability of the predictions 

that are obtained from the constructed model. In some cases, uncharacterized enzyme kinetics, 

complexity in network interaction, and unexpected regulation may demand a dynamic modelling 

process such as ensemble modelling for specific pathways to improve predictions. As the 

common targets for genetic manipulation are regulatory genes, the lack of characterization of 

regulatory networks makes it unreliable to predict the metabolic engineering targets. The 

metabolic network is a simplified representation of cellular function and the very simplification 

may make the metabolic reconstruction challenging to involve novel phenomena in the model. 

Thus, the application of modelling is limited to analysis and refinement of the knowledge of 

already characterized cellular systems. In the metabolic modelling of eukaryotic microalgae, the 

major challenge is the lack of data regarding the compartmentalization and the transport 

mechanisms between compartments (Contador, Rizk, Asenjo, & Liao, 2009; Dal’Molin et al., 

2011; Oberhardt et al., 2009) . 
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Cristiana et al. (2011) has reported a genome-based metabolic network model named 

AlgaGEM for Chlamydomonas reinhardtii, which covered the metabolism of a 

compartmentalized algae cell. This model considered the compartments as cytoplasm, 

mitochondrion, plastid and microbodies. It included functions of 866 unique open reading 

frames, 1862 metabolites, 2249 gene-enzyme-reaction association entries and 1725 unique 

reactions. The model also agreed with the simulation of growth and algal metabolic functions 

obtained from the literature. Likewise, a genome-scale metabolic model called ‘AraGEM’ for 

Arabidopsis thaliana represented the primary metabolism of a compartmentalized plant cell. This 

model considered 1419 unique open reading frames, 1748 metabolites, 5253 gene- enzyme- 

reaction association entries and 1567 unique reactions (de Oliveira Dal’Molin, Quek, 

Palfreyman, Brumbley, & Nielsen, 2010). The model was validated through the simulation of 

plant metabolic functions based on literature context. Moreover, the compartments that included 

in AraGEM model was primarily based on the literature search and the current databases that 

related to Arabidopsis thaliana. The compartmentalization was manually performed through 

considering the knowledge of organelle functions and the localization of some isozymes. 

In 2010, the Dal'Molin research group reported a C4 genome-scale model to investigate 

flux distribution in mesophyll cells and bundle sheath cells during C4 photosynthesis in C4 

grasses, such as maize, sugarcane and sorghum (Dal’Molin, Quek, Palfreyman, Brumbley, & 

Nielsen, 2010). This model seems to be the first large scale genomic model, which involved 

metabolic interactions between two cell types, that is, M and BS cells. Katsunori et al.(2011) 

developed a genome-scale metabolic model for the cyanobacterium Synechocystis sp. PCC6803 

and this was validated using 13C metabolic flux analysis (Dal’Molin et al., 2011; Yoshikawa et 

al., 2011) . 

 In Chlamydomonas reinhardtii, AraGEM based compartmentalization data was 

considered for constructing the genome-scale metabolic model. However, as the transport 

reactions between the cytoplasm and organelles or extracellular spaces were poorly annotated, 

some reactions were added manually based on literature. Likewise, the compartmentalization 

data of Chlamydomonas reinhardtii can be used to include compartmentalization in the 

metabolic modelling of Microchloropsis (Dal’Molin et al., 2011; de Oliveira Dal’Molin et al., 

2010) . 
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2.3 Gaps in Literature 

Microchloropsis gaditana seems to be a promising renewable feedstock for biofuel production. 

The annotated genome and the genetic transformation method for M. gaditana are reported in 

literature. This may help to rapidly implement the engineering techniques to improve the 

organism into a high lipid producing strain (Jinkerson et al., 2013; Radakovits et al., 2012; Yee, 

Ahmad, & Cha, 2012).  

The main challenge in the genetic modification of Microchloropsis gaditana is to find 

key regulatory reactions that can be manipulated by metabolic engineering to produce a desirable 

strain. Biochemical pathway database with genes, enzymes and reactions that represent 

metabolism in an organism can facilitate the systematic analysis of cellular functions in the 

organism. Development of a pathway database for the alga can contribute towards the generation 

of a metabolic model and the pathway database can be further improved with advancements in 

genome sequencing and genome annotation. There are accessible biochemical pathway databases 

available for bacteria (P. D. Karp, 2002),  protozoa (Doyle et al., 2009), green algae (May et al., 

2009), plants (Mueller, Zhang, & Rhee, 2003; Urbanczyk-Wochniak & Sumner, 2007; Van 

Moerkercke et al., 2013) and trees (P. Zhang et al., 2010). As there is no biochemical pathway 

database developed for M. gaditana CCMP526, the work of developing a pathway database 

included in the thesis can contribute towards the further advancement of genome annotation and 

analysis of metabolic capability of the alga. 

The development of a genome-scale metabolic model facilitates the identification of key 

regulatory pathways and strategies to reroute the metabolite so that a higher amount of the 

desirable product is produced. Then the study of the regulatory networks, along with the 

genome-scale metabolic model, helps to suggest the possible gene manipulations necessary to 

improve the characteristics of the strain (Dal’Molin et al., 2011; de Oliveira Dal’Molin et al., 

2010; Jinkerson et al., 2013; Radakovits et al., 2012; Vieler et al., 2012). Though, there is 

metabolic model available for Microchloropsis sp. (Loira et al., 2017; Shah, Ahmad, Srivastava, 

& Jaffar Ali, 2017), there is no metabolic model developed for M. gaditana CCMP526. There 

were physiological studies reported for M. gaditana CCMP526. However, the biomass 

composition such as sugar content, protein content and the fatty acid profile, required for the 
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formulation of biomass objective function in the flux balance analysis of the metabolic model 

were not reported in literature. 

 

2.4 Objective 

The overall objective of this thesis was to develop a validated metabolic network reconstruction 

as the first step towards metabolic engineering of M. gaditana CCMP526. 

 

Objective 1: Construction of a pathway database for M. gaditana CCMP526 

The first step towards metabolic engineering of Microchloropsis gaditana CCMP526 is the 

development of its biochemical pathway database. The pathway database helps to understand the 

metabolism and study the presence of specific variant pathway in the alga. Unlike metabolic 

model, the pathway database can afford to involve flux-inconsistent pathways that can be further 

investigated with experiments. Moreover, the pathway database can be investigated for 

improvement or metabolic modelling of the alga using a user-friendly web interface. Our 

objective was to construct a pathway database from genome information and literature that 

represents the metabolism of Microchloropsis sp. as completely as possible. Development of the 

pathway database is based on genome annotation, literature, physiological studies and gene 

expression analysis. The genome annotation, based on which pathway database is generated, is 

very limited. Therefore, extensive curation of the pathway database is required to make it as 

complete as possible. 

 

Objective 2: Development of metabolic model and analysis 

This objective was to construct a genome-scale metabolic model which is an overview of 

metabolic pathways (at least the central metabolic pathways, biosynthesis pathways of lipid, 

amino acids, nucleotides, pigments and sugars) in the target organism with the corresponding 

reactions, the associated enzymes and genes. The metabolic network can be curated to make the 

metabolic model flux consistent. The metabolic model can be analysed using flux balance 

analysis of the metabolic model to predict the metabolic fluxes in the alga under different trophic 
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conditions such as phototrophic, heterotrophic and mixotrophic conditions. The analysis also 

predicts the growth rate of the alga under different trophic conditions. The predictions from 

analysis of the metabolic model can be compared with experimental values and the metabolic 

model can be validated. 

 

Objective 3: Physiological study of M. gaditana CCMP526  

Physiological studies of the alga can be used for validation of developed metabolic model. 

The objective was to study the physiology and the biomass composition of the target organism 

from the literature and experiments. The biomass composition of the alga is required to 

formulate the biomass formation equation. In addition, the physiological studies allow 

comparison of metabolic model predictions with the experimental values and thus support the 

reconstruction and refinement of the metabolic model. These studies involve monitoring growth, 

estimation of macromolecular biomass composition and preliminary studies required for genetic 

transformation of M. gaditana.  
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Materials and Methods 

 

3.1 Development of MgdCyc, a biochemical pathway database for M. gaditana 

CCMP526 

3.1.1 Development of initial build  

Genome sequence and annotation of genome assembly version 1.2 of Microchloropsis gaditana 

CCMP526 submitted by the Colorado School of Mines (Radakovits et al., 2012), was obtained 

from The National Centre of Biotechnology (https://www.ncbi.nlm.nih.gov/). The details of the 

genome annotation of assembly v.1.2 which was used as input file for creating pathway database 

are given in Table 12 (Appendix). The pathway database of M. gaditana CCMP526 was 

constructed from genome annotation in Genbank file format and the genome sequence in 

FASTA format using the pathologic module of Pathway Tools software v20.0 (P. D. Karp, 

Paley, & Romero, 2002).  Taxonomic pruning of reactions to reduce false positive pathway 

predictions was enabled during the automated build of the database. The inclusion of pathways 

in the network depends on the pathway score which is based on genome annotation and nature of 

reactions. Pathway score indicates the likelihood that the pathway is present in this alga. Pathway 

prediction score cut-off for the automated build was set to the default value of 0.15 without 

compromising specificity and sensitivity of pathway inclusion in pathway database. The default 

value was reported to give the best trade-off between sensitivity and specificity where the value 

of pathway prediction score cut-off ranges from zero to one.   

 

Pathway prediction algorithm 

The pathologic component of Pathway Tools software infers reactions present in organism based 

on the enzymes in the annotated genome. It can also predict the metabolic pathways present in 

the organism based on the inferred reactions and other factors such as the expected taxonomic 

range of the pathway and the presence of GPR associated key reactions in the pathway. This can 

https://www.ncbi.nlm.nih.gov/
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be carried out by computing the pathway score for all pathways in MetaCyc, a multiorganism 

database of metabolic pathways and enzymes that are curated from scientific literature (Caspi et 

al., 2006). Pathway score of a pathway gives a measure of the likelihood that the pathway is 

present in the subject organism.(Peter D Karp, Latendresse, & Caspi, 2011)  

Pathway score (PS) is calculated as follows: 

𝑃𝑆 =  ∑ 𝑅𝑆(𝑟)𝑟 ∈ 𝑅|𝑅| + 𝑇 

Where 𝑅𝑆(𝑟) is reaction score of all enzyme-catalysed reactions r in the pathways and |R| is the 

number of reactions in the pathway. T is given a value higher than zero if the subject organism is 

in the taxonomic range of the pathway. The reaction score is computed as follows: 𝑅𝑆 = 𝑃 + 𝑈 + 𝐾 

Where P is the presence score that carries a value of 0.2 if an enzyme catalysing reaction is 

present in the subject organism and otherwise the value becomes zero. U is the uniqueness score 

that carries a value between 0.6 where the reaction is present in a single pathway and 0 where the 

reaction is present in a large number of Metacyc pathways. K is given a value of 0.5 if the 

reaction is the key reaction in the pathway.  The pathologic component includes the pathway if 

its pathway score is higher than the pathway prediction score cut-off.  

  

3.1.2 Curation of pathway database 

The pathway database for M. gaditana CCMP526 was curated based on the genome annotation, 

literature, physiology of the alga and homology search analysis. The steps involved in curation of 

initial build are given in Figure 1. 
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Figure 1: Steps in curation of pathway database, MgdCyc 

 

3.1.2.1 Assigning probable metabolic enzymes 

Some enzymes that were not recognized by automated name matching procedure were curated 

using the Pathologic component of Pathway Tools software version 20.0 (Peter D Karp et al., 

2010), that involves creating additional enzyme-to-reaction assignments. This involves assigning 

Initial build Assign probable enzymes

Rescore pathway score

Add pathways based on pathway score

Add pathways based on literature

Add missing enzymes using bayesian 

method

Remove variant pathways based on 

pathway score

Add missing reactions and pathways 

based on physiology and bayesian 

method

Add missing enzymes using homology-

based gene prediction
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reactions to the probable enzymes found by the software by referring KEGG, Metacyc and other 

reference databases. 

 

3.1.2.2 Identification of missing enzyme using Bayesian method 

The reactions that are not associated with GPR (gene-protein-reaction) can be assigned to 

corresponding annotated genes by using the Pathway Hole Filler (PHF). The PHF, a component 

of Pathway Tools software, is used to find the pathway holes that are reactions for which the 

genome of target organism lacks enzymes (Green & Karp, 2004). The program identifies and re-

evaluates the candidate sequences in the genome based on evidence from a homology search 

(such as E-value, alignment length, the rank of the candidate in the BLAST output), from the 

pathway context of the missing reactions and operon-based data. The BLAST of the target 

genome was carried out against the collection of protein sequences from entries from GenPept, 

Swissprot, PDB, PRF, PIR and NCBI Reference Sequence (RefSeq) project. 

The PHF runs in two phases: training and prediction. The initial phase involves training 

of the Bayes classifier with the known reactions in pathway-genome database (PGDB) to predict 

which candidates have the desired function and which do not. The program will then make 

predictions for pathway holes in the PGDB of interest. Those pathway holes could be manually 

filled based on the values of probability. Probability was calculated based on obtained 

suggestions based on evidence from a homology search (such as E-value, alignment length, the 

rank of the candidate in the BLAST output), from the pathway context of the missing reaction, 

operon-based data and the requirement of the associated pathway in the model (Green & Karp, 

2004). Candidates predicted with probability threshold of 0.9 were reported to be 71% precise 

(Green & Karp, 2004). 

 

3.1.2.3 Curation using FBA 

Most of the gaps in the metabolic network that makes the metabolic model flux inconsistent can 

be filled by Metaflux. Metaflux is a multiple gap filling method, component of Pathway Tools 

software version 20.0. General development mode of metaflux develops a feasible model that 

can generate non-zero fluxes for some reactions given a biomass reaction, nutrients and 

secretion.  Metaflux carries out flux balance analysis considering the try sets and numerical value 
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parameters, called weights, provided by the user. The trial set is a set of candidates to be 

considered for filling the incomplete model to get a non-zero flux through the network. The 

weight associated with every candidate is added to the global objective function and MILP 

maximizes that objective. A positive weight indicates the need to include the associated 

candidates to the metabolic model of interest.  

 The given biomass reactions included (7Z)-hexadecenoyl-CoA, (9Z,12Z)-hexadeca-9,12-

dienoyl-CoA, alpha-linolenoyl-CoA, oleoyl-CoA,  myristoyl-CoA, linoleoyl-CoA, linoleoyl-

CoA, icosapentaenoyl-CoA, stearoyl-CoA, palmitoyl-CoA, palmitoleoyl-CoA, gamma-

linolenoyl-CoA, arachidonoyl-CoA, 4-hydroxy-l-proline, pentadecanoyl-CoA, di-homo-γ-

linolenate, ATP, CTP, UTP, GTP, dATP, dCTP, dGTP, dTTP, chlorophyll-a, D-ribopyranose, 

GDP-L-fucose, L-alanine, L-arabinopyranose, UDP-L-rhamnose, , UDP-alpha-D-galactose, 

UDP-alpha-D-glucose, alpha-D-xylopyranose, L-arginine, L-aspartate, L-cysteine, L-glutamate, 

L-histidine, L-isoleucine, glycine, L-leucine, L-lysine, L-methionine, L-ornithine, L-

phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine. The 

general development mode was run with nutrients set to be glucose, nitrate, sulphate, phosphate, 

protons, magnesium, water, oxygen and bicarbonate. The secretions were set to be phosphate, 

protons, water, oxygen and carbon dioxide.  

The cost for adding one reaction outside the taxonomic range of the PGDB from 

MetaCyc to the model was set to be -200. The weight for adding the reverse of an irreversible 

reaction from the PGDB to the model was -100. The weight for adding the reverse of an 

irreversible reaction from MetaCyc to the model was -200. The weight for adding one reaction 

within the taxonomic range of the PGDB from MetaCyc to the model was -40. The weight for 

adding one reaction from MetaCyc with an unknown taxonomic range was -80. The weight for 

adding a spontaneous reaction was -1. The weight for adding a transport reaction from MetaCyc 

to the model was -300. 

 

3.1.2.4 Curation based on homology search analysis 

Homology sequences of genes of enzymes involved in pathways such as the TCA (tricarboxylic 

acid) cycle, photosynthesis, the pentose phosphate pathway and amino acid (alanine, arginine, 

cysteine, glutamate, glutamine, proline, pyrrolysine) biosynthesis pathways in phylogenetically 

closely related algae such as M. gaditana B-31 are searched against the genome assembly of M. 
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gaditana CCMP526 using BLASTN 2.7.0+ (Z. Zhang, Schwartz, Wagner, & Miller, 2000). 

BLAST (Basic Local Alignment Search Tool), is a heuristic algorithm to find the similarity in 

primary sequences such as nucleotide and protein sequence. A function was assigned to 

nucleotide sequence based on the E-value, query coverage, identity score and bit score, resulting 

from BLAST analysis. 

 

3.2 Development and analysis of metabolic model for M. gaditana CCMP526 

The PGDB (Pathway/Genome database), MgdCyc was exported in SBML format from Pathway 

Tools software to the Matlab environment. The SBML file was then converted to mathematical 

model and carried out FBA using COBRA toolbox (Hyduke et al., 2011). The biomass 

formulation equation was formed using experimental from literature. The experimental values 

were taken from graphs using WebPlotDigitizer (Drevon, Fursa, & Malcolm, 2017). The 

development of genome-scale metabolic model from the pathway database is outlined in Figure 

2. 

 

 

Figure 2: Steps in development of metabolic model for M. gaditana 
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3.2.1 Curation and refinement 

The curation of reactions in metabolic network involved correction of directionality and addition 

of annotations by reviewing literature and the database such as KEGG (Kyoto Encyclopaedia of 

Genes and Genomes), Biocyc, and metabolic models of other microalgae.  

A dead end metabolite (DEM) is a metabolite that lacks requisite metabolic or transport 

reaction for its production or consumption in the metabolic network (Mackie, Keseler, Nolan, 

Karp, & Paulsen, 2013). The analysis of the DEMs was carried out by understanding the 

biochemistry and metabolic context of the DEM and by reviewing the literature and databases 

such as Metacyc (curated database of metabolic pathways) and Biocyc (pathway/genome 

database). The dead end metabolites were analysed and removed, if required, by removing or 

adding metabolic reactions or transport reactions associated with DEM to the metabolic network. 

The gaps associated with dead end metabolites were analysed and any of the following actions 

was taken.  

• If the reaction (associated with DEM) is a general reaction that associates with general 

terms like protein, lipid, sugar, then the reaction is removed since the network refers the 

metabolites more specifically.  

• If the reaction is isolated and plays no significant role in the physiological behaviour of 

the organism, the reaction is removed from the draft network, thus the dead end 

metabolite.  

• If a relevant reaction is isolated and there is no upstream reaction, gene annotation, 

presence of this reaction in phylogenetically closely related microalgae was referred to 

add upstream reaction to the draft network. 

If necessary, pathways associated with dead end metabolites are included in the network if any of 

the following was satisfied.  

• If the presence of the pathway in Microchloropsis species is supported by literature.  

• If other relevant or unique reactions in the pathway are associated with annotated gene.   
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3.2.2 Flux Simulation  

Constraint-based reconstruction and analysis (COBRA) uses various linear, quadratic, mixed 

integer linear quadratic and nonlinear optimization programming solvers (Schellenberger et al., 

2011) to quantify and predict the cellular metabolism and phenotype of an organism. It integrates 

the physiochemical and biochemical information from the MNR, and with implied biological 

constraints it predicts the possible phenotypic states for the metabolic network, under the given 

set of conditions. COBRA performs multiple tasks, such as FBA analysis, flux variability 

analysis (FVA), MOMA, gene deletion studies, gap filling and visualization of flux distributions 

(Schellenberger et al., 2011).  

 

3.2.3 Linear programming formulation 

A system of linear algebraic equations is formed from the steady state material balance of all 

metabolites in metabolic network reconstruction. The linear equations are represented in the 

form of 𝑆 ∗ 𝑣 = 0 

where S is the stoichiometric matrix that includes the coefficient of the metabolites in the 

reaction equation and v is the flux vector that includes objective function. Since the algal system 

is assumed to be at the steady state, the stoichiometric matric is the steady state mass balances on 

metabolites and the flux vector is zero except the reaction which is the objective function. The 

stoichiometric matrix is in the form of 𝑚 ∗ 𝑛 where m represents metabolites and n represents 

reactions. (Shastri & Morgan, 2005; Stephanopoulos, Aristidou, & Nielsen, 1999) 

Maximize biomass subject to: ∑ 𝑠𝑖𝑗𝑣𝑗 = 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 ∈ 𝑀𝑖𝑗  

𝑣𝑚𝑖𝑛 ≤  𝑣𝑖 ≤  𝑣𝑚𝑎𝑥 
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where 𝑠𝑖𝑗 is the stoichiometric coefficient of the ith metabolite in the jth reaction and  𝑣𝑗  is the 

flux of the jth reaction. The flux can take values from a given range, which is generally 0 to 1000 

for intracellular metabolites and -1000 to 1000 for reversible reactions.  

 The above-mentioned constraints were applied to the model and flux balance analysis of 

metabolic model was carried out. 

 

3.3 Physiological studies of M. gaditana CCMP526 

Physiological studies were carried out to help the metabolic network reconstruction of M. 

gaditana CCMP526 and the validation of the metabolic model. The physiological aspects that 

were explored involve growth, macromolecular composition and photosynthesis. Preliminary 

study for genetic transformation of M. gaditana is also conducted that may help metabolic 

engineering of this strain. 

 

3.3.1 Algal strain and Culturing 

The marine microalga, Microchloropsis gaditana CCMP526 was isolated from 32.8333°N  9°W 

Lagune de Oualidia, Morocco and the axenic culture is preserved in National Center for Marine 

Algae and Microbiota (NCMA) in Maine, USA. The microalga was cryopreserved using 6% 

dimethyl sulfoxide (Cañavate & Lubián, 1997; Cañavate & Lubińn, 1995). The microalga was 

precultured in f/2 medium  (Guillard, 1975; H. Ryther & Guillard, 1962) with pH 8.0 in 100mL 

Erlenmeyer flask under continuous light of 74 μmol/m2/s with constant orbital shaking (110 rpm) 

at 24oC. The alga was subcultured every two weeks after checking for bacterial or fungal 

contamination by streaking on LB plates. 

 

3.3.2 Growth study 

The growth of M. gaditana CCMP526 was monitored by counting cells using a hemocytometer 

or by measuring absorbance at 680nm and 750nm using a UV/visible light spectrophotometer. 

These measurements can be used to calculate specific growth rate, doubling time, divisions per 

day and maximum biomass productivity of alga (Neidhardt, Ingraham, & Schaechter., 1990).  
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Specific growth rate (μ) in h-1
 can be calculated by the following equation where xt is the 

absorbance of culture at time t.  

 

The doubling time (td), division per day and maximum biomass productivity can be calculated 

using the following equations where mt is the biomass at the time of t.  

 

 

 

3.3.2.1 Selection of media for cultivation 

M. gaditana CCMP526 was cultivated in 100 mL media in 500mL Erlenmeyer flask under 

continuous light of 74 μmol/m2/s with constant orbital shaking (110 rpm) at 24oC. The growth 

was monitored and growth parameters were calculated. Since the algal cells started turning pale 

from 4th day of the growth onwards, we attempted to prevent the culture from turning pale by 

maintaining pH of the media and using high concentration of nitrate in media. The following 

media were used to find the effect of Tris-Cl buffer (pH 8) and high concentration of nitrate (17 

mM) on growth of M. gaditana. Note that f/2 medium normally has 0.88 mM sodium nitrate.  

• f/2 medium with 40 mM Tris Cl buffer and 17mM sodium nitrate 

• f/2 medium with 17mM sodium nitrate 

• f/2 medium with 40 mM Tris Cl buffer  

• f/2 medium  
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3.3.2.2 Selection of different nitrate concentration 

M. gaditana CCMP526 was cultivated in 100 mL f/2 medium in 500mL Erlenmeyer flask under 

continuous light of 74 μmol/m2/s with constant orbital shaking (110 rpm) at 24oC. The culture 

was cultivated in media with different nitrate concentrations of 0.05 mM, 0.1 mM, 0.3 mM, 0.9 

mM and 17mM. The growth in each medium was monitored and growth parameters were 

calculated. 

 

3.3.3 Sugar estimation 

A sample (1 mL) of the alga was harvested during steady state growth under sterile conditions 

and centrifuged at 4,500 rpm for 5 minutes. The supernatant was discarded and the pellet was 

washed with 0.5 M ammonium bicarbonate to remove medium constituents. The pellet was 

resuspended in 0.5M ammonium bicarbonate and taken for estimation of sugar content using the 

phenol sulfuric acid method (DuBois, Gilles, Hamilton, Rebers, & Smith, 1956; Zhu & Lee, 

1997). The standard curve obtained for estimation of sugar is given in Figure 12 (Appendix). 

 

3.3.4 Protein estimation 

A sample (10 mL) of the alga was harvested during steady state growth and centrifuged at 4000 

rpm for 5 minutes. The supernatant was removed and 1 mL of 1N sodium hydroxide solution 

was added. The sample was vortexed and incubated at 90oC for 10 minutes. The sample was, 

then, centrifuged to collect the supernatant and the treatment of pellet 1N sodium hydroxide 

solution was repeated three times. The supernatant was collected after every centrifugation of 1N 

sodium hydroxide solution treated sample. The supernatant was then taken for protein estimation 

using Bradford’s protein assay reagent kit. The standard curve obtained for estimation of protein 

is given in Figure 13 (Appendix). 

 

3.3.5 Dry Biomass estimation 

Aliquots of 10 mL algal suspension was filtered onto preweighed glass fiber filters (0.22 µm 

Millipore) under reduced pressure. The filtered biomass was washed with 20 mL of 0.5M 
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ammonium bicarbonate to remove medium components from the filter and biomass. The filtered 

biomass was then dried at 100oC to a constant weight, cooled down in vacuum desiccator and 

weighed. (Zhu & Lee, 1997) 

 

3.3.6 Estimation of fatty acid profile 

Gas chromatography - Mass Spectrometry (GCMS) was used for the estimation of fatty acids 

present in M. gaditana using Omegawax 250 column (30m * 0.25mm * 0.25µm) that produces 

reproducible analyses with fatty acid methyl esters. The fatty acid derivatization involved one-

step lipid extraction and fatty acid methylation described by Garcés and Mancha (1993) and 

Jacobsen et al. (2011). The GC method was developed based on the protocol described by de la 

Vega et al. (2011). (de la Vega, Díaz, Vila, & León, 2011; Garcés & Mancha, 1993; Jacobsen, 

Rosgaard, Sakuragi, & Frigaard, 2011) 

 

3.3.7 Preliminary studies for genetic transformation of M. gaditana CCMP526 

The growth characteristics of culture in f/2 medium and TAP medium with inoculum sizes of 

1%, 5% and 10% were analysed by measuring absorbance at 750nm using a UV/visible light 

spectrophotometer . The cell concentrations (cells mL-1) are calculated from optical density of 

culture at wavelength of 750nm (Lopes & Vasconcelos, 2011). This study gives insights 

regarding the better medium for the cultivation of culture, the duration of growth phases and the 

cell density which would help to design the protocol for genetic transformation. The antibiotic 

sensitivity study of M. gaditana was carried out with the antibiotics chloramphenicol, kanamycin 

and hygromycin with each antibiotic supplied at concentrations of 30µg/mL, 100µg/mL and 

300µg/mL. This supports the selection of a vector to be used for genetic transformation of M. 

gaditana in which the selection process of the genetically transformed strains would be based on 

the resistance of the culture against an antibiotic. 
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MgdCyc – a biochemical pathway database for 

Microchloropsis gaditana CCMP526 

4.1 Introduction 

Understanding the metabolism of algae is crucial to metabolic engineering of algae. An 

organism-specific pathway database that represents at least the reactions and metabolites that are 

relevant to the targeted physiology helps to understand the metabolism of algae. Such a database 

can help to construct a metabolic model to predict the metabolic behaviour of the alga in a given 

set of external conditions or a given genetic perturbation. However, the accuracy of the 

prediction using a metabolic model depends on how precise the process of development of the 

metabolic network was. Moreover, the pathway database can be investigated for improvement or 

metabolic modelling of the alga using a user-friendly web interface.  

In M. gaditana, many enzymes that are relevant in central carbon metabolism are not 

assigned a gene in the available genome annotation; however, it is currently needed to 

understand the metabolism in Microchloropsis gaditana. Therefore, the genome annotation 

available for M. gaditana CCMP526 was used to develop the best possible approximation for its 

integrated pathway-genome database. The pathway database can be used to predict the metabolic 

composition of M. gaditana CCMP526. 

Our objective was to construct a pathway database from genome information and 

literature that represents the metabolism of Microchloropsis sp. as complete as possible. 

 

4.2 Initial build 

The initial build of MgdCyc, the pathway database for M. gaditana CCMP526, involved 65 

pathways, 836 enzymatic reactions with 485 enzymes and 814 metabolites, which constitute 11% 

of the genome annotation. The distribution of pathways (other pathways such as 

activation/inactivation, tRNA charging, aromatic compounds metabolism, protein modification, 
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metabolic regulator metabolism and sugar derivative synthesis are not included in the Table 1 ) 

in different subsystems in the initial build is shown in Table 1.  

Table 1 : Subsystems and pathways in the initial build and MgdCyc database  

Subsystems 
Number of pathways 

in initial build 

Number of pathways in 

final version of 

MgdCyc 

Amine and polyamine metabolism 3 6 

Amino acid metabolism 12 24 

Carbohydrate metabolism 3 6 

Cofactors, prosthetic groups, electron 

carrier metabolism 7 14 

Fatty acid and lipid metabolism 9 18 

Nucleoside and nucleotide metabolism 14 28 

Secondary metabolism 2 4 

Inorganic nutrients metabolism 3 6 

Generation of precursor metabolites and 

energy 3 21 

 

It was found that the pathways that are crucial to central carbon metabolism such as the 

TCA cycle, the Calvin cycle and the pentose phosphate pathway were not present in the initial 

build of MgdCyc. This is due to the absence of enzymes catalysing the reactions in those 

pathways in the database. Therefore, extensive curation of the initial build was required to 

develop a pathway database that represents the primary metabolism of M. gaditana CCMP526.  
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4.3 Curation of pathway database 

4.3.1 Assigning probable metabolic enzymes 

Out of 220 candidates, 79 probable metabolic enzymes were assigned reactions by manually 

analysing them by referring to KEGG (Kyoto Encyclopedia of Genes and Genomes) and 

Metacyc databases. The unassigned probable metabolic enzymes were found to be either not 

metabolic enzymes or non-specific enzymes or duplicates of other enzymes. There were 26 

probable enzymes that were found to be not metabolic enzymes and 65 non-specific enzyme 

names that cannot be assigned any reaction. Specific metabolic enzymes could not be found for 

18 probable enzyme matches. Thus, a total of 188 probable enzymes was analysed and the 

remainder were found to be duplicates or isozymes of other probable matches. The assigned 

probable enzyme matches are given in Table 13 (Appendix). 

Rescoring pathways using a pathway scoring algorithm, after assigning reactions to 

probable metabolic enzymes, with pathway prediction score cut-off of 0.15, resulted in the 

addition of another ten pathways (listed in Table 2) to the pathway database.  

 

Table 2 : Inferred pathways in the pathway database, MgdCyc 

Pathway ID in MgdCyc Pathway name 

PWY3DJ-12 Ceramide de novo biosynthesis 

PWY-4081 Glutathione-peroxide redox reactions 

PWY-46 Putrescine biosynthesis III 

PWY-5136 Fatty acid & beta oxidation II  

PWY-6019 Pseudouridine degradation 

PWY-6368 3-phosphoinositide degradation 

PWY-6368 3-phosphoinositide degradation 

PWY-6599 Guanine and guanosine salvage II 

PWY66-21 Ethanol degradation II 

PYRUVDEHYD-PWY Pyruvate decarboxylation to acetyl CoA 
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4.3.2 Addition of pathways based on literature 

There were missing pathways in the initial build that were reported to be present in M. gaditana. 

Based on literature (listed in Table 14 (Appendix) with references), some pathways with their 

variant pathways were added to the database.  Thus pathways such as the tricarboxylic acid 

(TCA) cycle, the glyoxylate cycle, acetyl-CoA biosynthesis II, β oxidation, biosynthesis of 

amino acids except that of glycine, aspartate and serine, galactolipid biosynthesis I, ceramide de 

novo biosynthesis, CDP-diacylglycerol biosynthesis I, phosphatidate biosynthesis (yeast), 

sulfoquinovoysl diacylglycerol biosynthesis, tetrapyrrole biosynthesis, methyl erythritol 

phosphate pathway, mevalonate pathway, mono trans. poly-cis decaprenyl phosphate 

biosynthesis, ergosterol biosynthesis, 7-dehydroporiferasterol biosynthesis, plant sterol 

biosynthesis and cholesterol biosynthesis were added.  

 

4.3.3 Identification of missing enzyme using Bayesian method 

The pathway-genome database (PGDB) of Saccharomyces cerevisiae S288c, YeastCyc of 

version 19.5 was used to train the Bayes classifier involved in Pathway Hole filler (PHF) 

program since its PGDB was built with genome annotations of higher quality. Using PHF, 717 

pathway holes (reactions that lack associated enzymes in database) were found in 187 pathways 

in the database of M. gaditana and one or more candidates were found to fill 470 of these holes. 

Given a probability threshold of 0.9, 29 enzymes were assigned to fill pathway holes in the 

database (given in Table 15). 

The procedure was repeated by training the Bayes classifier with the PGDB of E.coli, 

EcoCyc of version 20.0. Using PHF, the number of pathway holes found in the draft network 

was 688 in 183 pathways and one or more candidates were found to fill 441 of these holes in the 

database of M. gaditana. 19 pathway holes (given in Table 16) were filled by assigning 

candidate enzymes that scored probability value above 0.9 to the pathway holes.  

In total, 48 enzymes were assigned to reactions in the pathway database of M. gaditana 

CCMP526. The pathway prediction score was again calculated for the base pathways in the 

database and 55 variant pathways with lower prediction score were removed from the database. 
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This curation process involving pathway hole filler and removal of low scoring variant pathways 

resulted in the addition of 76 pathways (given in Table 17) to the pathway database. 

Macromolecule reactions were removed from the database because either they are 

general reactions or not directly relevant to the metabolic behaviour of the alga. Some generic 

small molecule reactions were also removed from the pathway database. 

 

4.3.4 Gap filling based on physiology 

Based on gap filling method using Metaflux, 81 reactions were found to fill the gaps in the 

pathway database so that the resulting metabolic network can produce biomass in flux balance 

analysis. Those reactions and corresponding pathways were manually analysed and added to the 

pathway database. Considering ChlamyCyc, PGDB of Chlamydomonas reinhardtii and AraCyc, 

PGDB of Arabidopsis thaliana as reference models, pathways involved in 5-aminoimidazole 

ribonucleotide biosynthesis, nucleotide biosynthesis, tetrahydrofolate biosynthesis, folate 

transformation, chlorophyll a biosynthesis, coenzyme A biosynthesis, phosphopantothenate 

biosynthesis, chorismate biosynthesis, icosapentaenoate biosynthesis, alanine biosynthesis II, 

gluconeogenesis, nucleotide sugar synthesis and sulfate reduction were added to the pathway 

database. Ten enzymes corresponding to the pathway holes in some of the pathways added were 

found using pathway hole filler (listed in Table 18). Then, those pathways were removed from 

database since their pathway prediction score was lower than the default value of 0.15.  

 

4.3.5 Homology-based gene prediction 

There were some pathways and its variants which were reported to be in M. gaditana but not 

present in the database due to pathway prediction score lower than the default threshold value, i.e 

0.15. The holes in some of those pathways could not be improved by Bayesian method using 

Pathway Hole Filler. Therefore, an attempt was carried out to predict gene and enzymes 

corresponding to reactions involved in such pathways. Homolog genes of corresponding enzyme 

were searched in the genome of M. gaditana CCMP526 using BLAST (Basic Local Alignment 

Tool) for those reactions in the Calvin cycle, the pentose phosphate cycle, glycolysis and the 

TCA cycle.  



33 

 

 The genome annotation of M. gaditana B-31 (Corteggiani Carpinelli et al., 2014) in 

which 10695 genes are annotated, is significantly better than the genome annotation  of the 

CCMP526 strain (Radakovits et al., 2012) in which 3557 genes are annotated. Therefore, the 

gene sequence of corresponding enzyme in M. gaditana B-31 was used as query to find a 

homolog in the genome of the CCMP526 strain. 

The predicted enzymes involved in glycolysis, TCA, calvin cycle and pentose phosphate 

pathway with the best hits obtained in the genome of M. gaditana CCMP526 using BLASTn 

search are given in Table 19, Table 20, Table 21 and Table 22 (Appendix) respectively. The % 

identity shows the extent to which two sequences have the same residues at the same position at 

an alignment. The alignment coordinates of the sequence are given by s.start and s.end. Bit score 

is a log-scaled version of total score, i.e., it gives the magnitude of the search space you would 

have to look through before you would expect to find a score as good as or better than this one 

by chance.  The expectation value, E-value is the indicator of the validity of match. Smaller the 

E-value, better the match is (McGinnis & Madden, 2004). The prediction of genes involved in 

TCA cycle suggests the presence of at least the partial pathway.  

Genes corresponding to two enzymes involved in the glycolysis (given in Table 3), five 

enzymes in the TCA cycle (given in Table 4 ), two enzymes in the Calvin cycle (given in Table 

5) and three enzymes in the pentose phosphate pathway (PPP) (given in Table 6 ) were found in 

the genome of M. gaditana CCMP526.  

 

Table 3: Predicted genes corresponding to enzymes involved in reactions in glycolysis 

Gene ID Enzyme name Reaction ID 

NGA_A000018 Glucose-6-phosphate isomerase PGLUCISOM-RXN 

NGA_A000019 
Enolase 

2PGADEHYDRAT-

RXN NGA_A000020 

 

Table 4: Predicted genes corresponding to enzymes involved in reactions in TCA cycle 

Gene ID Enzyme name Reaction ID 

NGA_A000001 Citrate synthase CITSYN-RXN 
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NGA_A000002 

NGA_A000003 Isocitrate dehydrogenase RXN-9951 

NGA_A000004 2-oxoglutarate dehydrogenase E1 

component 

2OXOGLUTARATEDEH-

RXN NGA_A000005 

NGA_A000006 
Succinate dehydrogenase iron 

sulfur protein 

SUCCINATE-

DEHYDROGENASE-

UBIQUINONE-RXN 

NGA_A000007 
Succinate dehydrogenase 

flavoprotein subunit 

NGA_A000008 Succinate dehydrogenase subunit 4 

NGA_A000009 
Succinate dehydrogenase 

cytochrome b subunit 

NGA_A000010 
Fumarate hydratase FUMHYDR-RXN 

NGA_A000011 

 

 

Table 5: Predicted genes corresponding to enzymes involved in reactions in calvin cycle 

Gene ID Enzyme name  Reaction ID 

NGA_A000012 

Fructose-1,6-bisphosphatase F16BDEPHOS-RXN 
NGA_A000013 

NGA_A000014 

NGA_A000015 

NGA_A000016 
Phosphoribulokinase 

PHOSPHORIBULOKINASE-

RXN 
NGA_A000017 

 

Table 6 : Predicted genes corresponding to enzymes involved in reactions in PPP 

Gene ID Enzyme name Reaction ID 

NGA_A000021 6-phosphogluconolactonase 6PGLUCONOLACT-RXN 

NGA_A000022 

Transketolase 1TRANSKETO-RXN 
NGA_A000023 

NGA_A000024 

NGA_A000025 



35 

 

NGA_A000026 

NGA_A000027 

NGA_A000028 

Transaldolase TRANSALDOL-RXN 

NGA_A000029 

NGA_A000030 

NGA_A000031 

NGA_A000032 

NGA_A000033 

NGA_A000034 

NGA_A000035 

NGA_A000036 

 

Some reactions that involve tRNA charging and those containing generic terms such as DNA, 

electron acceptor and protein were excluded from the database since they are not specific 

reactions. Some of the reversible reactions, especially the ones that involve transfer of phosphate 

from ATP and quinone were made irreversible by referring to the databases such as MetaCyc 

and KEGG. 

 

4.4 MgdCyc  

The curated pathway database for M. gaditana CCMP526, MgdCyc currently features 141 

pathways with 1163 reactions with 537 enzymes, 1007 compounds and associated genes. The 

inclusion of reactions in the database was based on presence of corresponding enzyme in the 

database or evidence based on literature or corresponding pathway score. This database has 739 

dead-end metabolites and 495 reactions with missing enzymes that include generic reactions 

where macromolecules are involved, translation of mRNA and secondary metabolism. In central 

metabolism, dead-end metabolites are involved in different pathways such as nucleotide 

biosynthesis, tetrahydrofolate biosynthesis, folate transformation, chlorophyll a biosynthesis, 

coenzyme A biosynthesis, phosphopantothenate biosynthesis, chorismate biosynthesis, 

icosapentaenoate biosynthesis, alanine biosynthesis II, gluconeogenesis, nucleotide sugar 

synthesis and sulfate reduction.  
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The distribution of pathway in the database to different subsystems is given in Table 1. Pathways 

in the database are given in Table 23 (Appendix) with their pathway prediction score. The 

pathway database can be explored using user-friendly Pathway Tools graphical interface and the 

genes can be visualized in the genome browser available in Pathway Tools. 

 

4.5 Conclusions 

MgdCyc provides a curated biochemical pathway database for M. gaditana CCMP526 that 

features 141 metabolic pathways with associated genes, enzymes and metabolites. This pathway 

database provides a user-friendly Pathway Tools graphical interface that supports visualization 

of functional genomics datasets. MgdCyc facilitates further analysis of metabolism in M. 

gaditana CCMP526 and comparative studies of metabolism across different species. The 

database can be updated as the genome sequencing and genome annotation under genome 

sequencing project of M. gaditana CCMP526 progresses. It also provides guidance in predicting 

and annotating the unknown genes in the alga.  Sixty one enzymes that are missing in the 

available genome annotation were identified in the genome sequence of M. gaditana CCMP526. 

The MgdCyc database can be downloaded as flat file from Biocyc distribution of 

pathway/genome database or can be accessed with Pathway Tools web.   
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Development and analysis of metabolic model for 

Microchloropsis gaditana CCMP526 

5.1 Introduction 

Understanding the metabolic flux control is a key objective of metabolic engineering 

(Stephanopoulos et al., 1999). Metabolic flux balance analysis of the metabolic model of an 

organism facilitates the simulation of metabolism in the organism under different environmental 

conditions and genetic perturbations. This provides information on metabolic fluxes through 

different pathways and insights regarding metabolic flux control and thus helps metabolic 

engineering for the enhancement of desired traits of the organism. 

 

5.2 Formulation of Biomass objective function 

The formulation of biomass objective function for flux balance analysis is based on biomass 

composition of the alga that involves biomass precursors of ribonucleic acids (RNA), TCA 

(DNA), fatty acids, sugar and protein. The coefficients of biomass precursors that form the 

biomass formation equation were derived from biomass composition of the alga that is given in 

(Volkman, Brown, Dunstan, & Jeffrey, 1993) 

Table 7. The biomass composition, including amino acids, fatty acids and sugars, was taken from 

that reported for Microchloropsis salina (previously known as Nannochloropsis salina) by 

Volkman et.al (1993). A particular fatty acid composition is shown by most of the species of the 

class, Eustigmatophyceae (Mourente, Lubian, & Odriozola, 1989). The composition of 

nucleotides was taken from that reported for Nannochloropsis sp.(Rebolloso-Fuentes, Navarro-

Pérez, García-Camacho, Ramos-Miras, & Guil-Guerrero, 2001). Chlorophyll a is present in the 

alga, but the alga lacks chlorophyll b and c, therefore composition of only chlorophyll a was 

included in the biomass equation (Owens, Gallagher, & Alberte, 1987).  The reported biomass 

composition and derivation of coefficients to form biomass formation equation for amino acids, 

fatty acids, sugar, chlorophyll, DNA and RNA are given in Table 24, Table 25, Table 26, Table 
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27 and Table 28 (Appendix) respectively.  An ATP requirement of 36.5 mmol ATP /g biomass 

was found as growth associated maintenance energy, i.e., the energy required for transport of 

biomolecules, polymerization of macromolecules and biosynthetic processes in the alga. The 

non-growth associated maintenance energy that is required for DNA repair, cell wall 

maintenance and pH control in the alga was assumed to be 1.50 mmol ATP/g biomass, as 

reported for C.reinhardtii by Boyle and Morgan (Boyle & Morgan, 2009). The proportion of the 

biomass precursors was included in the stoichiometric metabolic model as biomass formation 

equation. (Volkman, Brown, Dunstan, & Jeffrey, 1993) 

Table 7: Coefficients in biomass formation equation 

Biomass Components Precursors 
Coefficient  

(mmol/g dry weight) 

Amino acids 

Glycine 0.178 

L-alanine 0.192 

L-arginine 0.102 

L-aspartate 0.146 

L- cysteine 0.017 

L-lysine 0.091 

L-leucine 0.125 

L-isoleucine 0.086 

L-glutamate 0.165 

L-histidine 0.032 

L-methionine 0.031 

L-phenylalanine 0.088 

L-proline 0.150 

L-serine 0.120 

L-tyrosine 0.059 

L-tryptophan 0.016 

L-valine 0.120 

L-threonine 0.124 
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Hydroxy-L- proline 0.004 

L-ornithine 0.003 

 Aminobutyric acid 0.012 

Fatty Acids 

Myristoyl-CoA 0.025 

Palmitoyl- CoA 0.122 

Palmitoleoyl-CoA 0.141 

(7Z)-hexadecenoyl- CoA 0.0004 

(9Z,12Z)-hexadeca-9,12-dienoyl- CoA 0.0004 

Stearoyl- CoA 0.004 

Oleoyl- CoA 0.033 

Linoleoyl- CoA 0.006 

Gamma-linolenoyl- CoA 0.002 

Di-homo-gamma-linolenoyl CoA 0.003 

Arachidonoyl- CoA 0.015 

Icosapentaenoyl- CoA 0.06 

Sugar 

UDP-β - L-arabinopyranose 0.011 

GDP-beta-L-fucose 0.073 

UDP-alpha-D-galactose 0.065 

Chrysolaminarin 0.064 

GDP-alpha-D-mannose 0.015 

UDP-beta-L-rhamnose 0.091 

D-ribopyranose 0.035 

UDP-alpha-D-xylose 0.030 

Nucleotides 

dTTP 0.002 

dATP 0.002 

dGTP 0.003 

dCTP 0.003 

UTP 0.014 
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ATP 0.014 

GTP 0.016 

CTP 0.016 

Pigment Chlorophyll a 0.019 

Growth maintenance ATP 36.5 

Non growth 

maintenance 
ATP  1.50 

 

5.3 Curation of metabolic model based on FBA 

A flux inconsistent metabolic model for M. gaditana CCMP526 was generated from MgdCyc, 

the pathway database of M. gaditana CCMP526, using Cobra Toolbox in Matlab environment. 

Photosynthesis light reactions were replaced by two reactions of cyclic and linear electron flow 

as shown below.  𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑓𝑙𝑜𝑤: 8 𝐿𝑖𝑔ℎ𝑡 +  2 𝑁𝐴𝐷𝑃 + 3 𝐴𝐷𝑃 +  3 𝑃𝑖 + 2 𝐻2𝑂 →  2 𝑁𝐴𝐷𝑃𝐻 + 3 𝐴𝑇𝑃 +   𝑂2  +  2 𝐻+ 𝐶𝑦𝑐𝑙𝑖𝑐 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑓𝑙𝑜𝑤: 2 𝐿𝑖𝑔ℎ𝑡 + 2 𝐴𝐷𝑃 + 2 𝑃𝑖 −>  2 𝐴𝑇𝑃  
Exchange reactions were added to the metabolic model to facilitate the uptake and/or 

secretion of 17 extracellular metabolites due to mass-balancing requirement. The electron 

transfer reactions involved in aerobic phosphorylation and ATP synthesis were assigned 

compartments of cytosol (denoted by ‘[c]’), mitochondrial inner membrane (denoted by 

‘CCO__45__MIT__45__OMEM’) and mitochondrial inter membrane space (denoted by ‘[m]). 

A reaction to produce chrysolaminarin, the storage sugar that was reported to be present in M. 

gaditana(Wang et al., 2014), was manually added to the metabolic model.  

The ability of the metabolic model to produce individual biomass component was tested using 

Cobra Toolbox in Matlab environment. The metabolic model was unable to produce 13 biomass 

precursors (out of 49 biomass precursors) under phototrophic condition using flux balance 

analysis (FBA). Referring to ChlamyCyc (version 5.0), curated pathway database of 
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Chlamydomonas reinhardtii (Schläpfer et al., 2017) and AraCyc (version 12.0), curated pathway 

database of Arabidopsis thaliana(Mueller et al., 2003), 79 reactions involved in different 

pathways such as nucleotide biosynthesis, tetrahydrofolate biosynthesis, folate transformation, 

chlorophyll a biosynthesis, coenzyme A biosynthesis, phosphopantothenate biosynthesis, 

chorismate biosynthesis, icosapentaenoate biosynthesis, alanine biosynthesis II, gluconeogenesis, 

nucleotide sugar synthesis and sulfate reduction were added to the metabolic network to fill gaps 

in the metabolic model for modelling purpose. Since the lack of NADPH-glutamate 

dehydrogenase enzyme activity and presence of glutamine sythetase activity in Nannochloropsis 

oculata were experimentally reported, pathways involving glutamine synthetase and glutamate 

synthetase were added for nitrate and ammonium assimilation to the metabolic model (Everest, 

Hipkin, & Syrett, 1986). The metabolic network was thus curated to generate a flux consistent 

model that produces all the biomass precursors under flux balance analysis, i.e., a metabolic 

network involving 1211 reactions and 1025 metabolites was made flux consistent.  

The metabolic model was further analysed to curate dead-end metabolites and physiologically 

irrelevant reactions using Cobra toolbox in Matlab. Using this tool, 164 root no production gaps 

(metabolites that are associated with consuming reactions but no producing reactions) and 205 

root no consumption gaps (metabolites that are associated with producing reactions but no 

consuming reactions) were found in the metabolic model. Most of those metabolites were 

involved in generic reactions where macromolecules are involved, translation of mRNA and 

secondary metabolism. Therefore, the reactions that involve those gaps were manually analysed 

and removed from the metabolic model that represents primary metabolism of M. gaditana 

CCMP526.  However, the remaining gaps were filled based on gene annotation and databases of 

Metacyc and KEGG.  

Quality of the metabolic model was ensured by carrying out standard protocols (Thiele & 

Palsson, 2010). Stoichiometrically balanced cycles or Type III extreme pathways that can carry 

flux despite closed exchange reactions (Thiele & Palsson, 2010) were not found in the metabolic 

model. The metabolic model was also checked for ATP production without energy inputs. It was 

ensured that no ATP was produced under simulation of metabolic under phototrophic condition 

with unlimited bicarbonate available as input, but no photon uptake. 
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The metabolic model thus curated features 720 reactions with compartments of cytoplasm, 

mitochondrial inter membrane space, mitochondrial inner membrane and extra cellular space.  

 

5.4 Metabolic flux topologies under different conditions 

The topological properties of the metabolic network were predicted by simulation of metabolic 

model with flux constraints on few parameters that corresponded to the physiochemical 

behaviour of the alga. The metabolic model was simulated under different trophic conditions 

such as photoautotrophic, heterotrophic and mixotrophic conditions since Microchloropsis sp. 

were reported to grow under these conditions (Das, Lei, Aziz, & Obbard, 2011; Fang, Wei, 

Zhao-Ling, & Fan, 2004). Under photoautotrophic condition, the alga fixes net carbon 

dioxide/bicarbonate in the presence of light where carbon dioxide/bicarbonate and light act as 

carbon source and energy source respectively.  On the other hand, under heterotrophic condition, 

an organic substrate such as glucose or ethanol acts as carbon and energy source for growth of 

the alga. Under mixotrophic condition, the alga utilizes both the organic and inorganic carbon 

source simultaneously with light for its growth. However, in nature, algae grow under 

phototrophic condition during the day as it takes sunlight and carbon dioxide for growth, 

whereas it grows under heterotrophic condition during the night as it degrades the stored energy 

source into simple carbon molecules and uses them for growth.  

 

5.4.1 Phototrophic simulation 

Phototrophic conditions were simulated for the algal metabolic model by a two-step optimization 

method. In case of M. gaditana, the alga seems to have a higher affinity for bicarbonate than for 

carbon dioxide, therefore inorganic carbon in the form of  bicarbonate was used as carbon source 

and photon (light) as the energy source for flux balance analysis of the metabolic model 

(Huertas, Espie, Colman, & Lubian, 2000; Huertas & Lubian, 1998; Munoz & Merrett, 1989; 

Sukenik et al., 1997). The first step was to simulate steady state growth of the alga by 

maximizing the growth rate under unlimited light and carbon source, while fixing the net 

photosynthetic rate at 1.55 mmol O2/g dry weight/h that was reported for Nannochloropsis 

sp.(CCAP 211/78)(Raso, van Genugten, Vermuë, & Wijffels, 2012). The predicted maximum 
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growth rate was 0.031 h-1 and that value is found to be close to the growth rate observed in the 

experiment given in Section 0. The second step was to fix the growth rate at the predicted value 

and minimize the photon uptake rate to make the system energy efficient.   The minimum light 

uptake rate required for the steady state growth of the alga was found to be 13.4 mmol/g dry 

weight/h. The predicted carbon uptake rate was found to be 1.0 mmol/g dry weight/h. The major 

predicted fluxes of intracellular metabolites in the metabolic model are represented in Figure 3.  

Under photoautotrophic condition, the major metabolic flux was predicted to flow through 

Calvin cycle and gluconeogenesis. 

 

Figure 3: Autotrophic metabolic flux map. 

The values of metabolic flux through individual metabolic reactions are mentioned near the 

arrows and the range of flux values are represented by the thickness of arrows. The reactions in 
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green, blue and red colour represents reductive pentose phosphate pathway, gluconeogenesis and 

TCA cycle respectively.  

 

5.4.2 Heterotrophic simulation 

Heterotrophic conditions were simulated by maximizing growth rate of the alga in the absence of 

light while fixing the respiratory rate at a reported experimental value of 0.055 mmol O2/g dry 

weight/h for Nannochloropsis sp.(Fang et al., 2004). The growth rate was predicted to be 0.005 

h-1 for the alga under heterotrophic condition which is a much lower value when compared to 

that under phototrophic conditions. A similar behaviour was observed in experiments reported 

for Nannochloropsis sp. in the literature (Fang et al., 2004; Marudhupandi, Sathishkumar, & 

Kumar, 2016). This could be due to the simultaneous utilization of the carbon source for 

biosynthetic process of biomass precursors and energy production. Unlike photoautotrophic 

conditions, the major metabolic flux flows through pathways of glycolysis and TCA cycle. A 

significant portion of carbon seems to be lost in the form of carbon dioxide in the TCA cycle that 

might also contribute to the low growth rate of the alga. The glucose uptake rate of the alga 

under the simulation of heterotrophic condition was found to be 0.06 mmol/g dry weight/h. The 

major predicted flux through the algal metabolic network under heterotrophic condition is 

represented in Figure 4.  

 

5.4.3 Mixotrophic simulation 

The mixotrophic conditions were simulated by maximizing growth rate while fixing the 

maximum uptake rate (i.e. lower bound of exchange reaction) of carbon sources at the values 

predicted under phototrophic and heterotrophic condition in previous sections, and the oxygen 

evolution rate at 1.719 mmol O2/g dry weight/h in the presence of unlimited light. The predicted 

growth rate of the alga was found to be 0.042 h-1 that was higher than that under phototrophic 

condition. A higher growth rate of Nannochloropsis sp. under mixotrophic condition was 

reported in literature (Cheirsilp & Torpee, 2012; Das et al., 2011; Fang et al., 2004; Xu, Cai, 

Cong, & Ouyang, 2004).   The second step was to minimize the photon uptake rate while fixing 

the biomass production rate at the predicted value and the oxygen evolution rate at 1.719 
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mmolO2/g dry weight/h. The minimized photon uptake rate was predicted to be 15.14 mmol/g 

dry weight/h.  

The cyclic electron flow increases under mixotrophic condition to balance the ATP/ NADPH 

ratio inside the cell. The value of CEF/ (CEF + LEF) increases to 0.065 under mixotrophic 

condition. The major predicted flux flows through the metabolic network under mixotrophic 

condition are shown in Figure 5. A small flux was observed through TCA cycle that suggests the 

ability of alga to undertake an energy efficient pathway for growth during mixotrophic growth. 
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Figure 4 : Heterotrophic metabolic flux map 

 

The flux values are shown near the arrows and also represented by the thickness of arrows. The 

reactions in green, blue and red colour represents oxidative pentose phosphate pathway, 

gluconeogenesis and TCA cycle respectively.  
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Figure 5 : Mixotrophic metabolic flux map 

The flux values are shown near the arrows and also represented by the thickness of arrows. The 

reactions in green, blue and red colour represents reductive pentose phosphate pathway, 

gluconeogenesis and TCA cycle respectively.  

 

5.5 Validation of the model 

The metabolic model was validated by comparing the in silico predictions of flux through 

metabolic network and their ratios with experimental results reported in literature. Under 
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phototrophic condition, the growth rate predicted by flux balance analysis of the metabolic 

model seemed to be very close to the growth rate observed in experiment (given in section 6.2). 

The predicted photosynthetic quotient (moles of oxygen released per mole of carbon dioxide 

fixed) was found to be 1.12 and falls within the typical range found in algae, i.e., 1.0 to 1.8 

(Burris, 1981). In addition, the value of CEF/(CEF+LEF) where CEF and LEF are the fluxes 

through cyclic electron flow and linear electron flow respectively, was found to be 0.042 by 

simulation of the metabolic model under phototrophic condition and the predicted value is in 

agreement with the  experimentally reported value for Nannochloropsis gaditana by Simionato 

et al.(Simionato et al., 2013). In other words, the predicted value of ratio of  PSII/PSI (i.e. the 

ratio of metabolic flux through photosystem II to that through photosystem I) was 0.95 which 

seemed to be close to the value experimentally reported for N. gaditana (Simionato et al., 2013). 

The lower growth rate under heterotrophic condition and higher growth rate under mixotrophic 

condition are in agreement with that reported for Nannochloropsis sp. in literature (Cheirsilp & 

Torpee, 2012; Das et al., 2011; Fang et al., 2004; Marudhupandi et al., 2016). 

 

5.6 Conclusions 

A genome-scale metabolic model for M. gaditana CCMP526 was developed and simulated 

under different trophic conditions using flux balance analysis to predict the metabolic fluxes of 

intracellular metabolites. The predicted values of growth rate of the alga and other parameters 

seemed to be in agreement with experimental values reported in literature and thus, the metabolic 

model for the alga is validated.  
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Physiological Studies of M. gaditana CCMP526 

 

6.1 Introduction 

The flux balance analysis (FBA) of the genome-scale metabolic model for M. gaditana 

CCMP526 requires different physiological parameters to formulate biomass equation and to 

validate the metabolic model. The determination of metabolic flux in the metabolic 

reconstruction using FBA depends on the biomass formation equation which is derived from the 

biomass composition of the alga.  FBA predicts the metabolic fluxes at steady state, i.e. total 

amount of metabolite being produced is equal to the total metabolite being consumed (Orth, 

Thiele, & Palsson, 2010). Therefore, we assume the algal system is at steady state while applying 

FBA, so we need to ensure that the alga is in exponential phase and under no stress while 

collecting sample for measurement. Hence studies were conducted to find the effect of different 

nitrate concentration and buffer (pH 8) on growth of the alga.  

 

6.2 Growth study 

M. gaditana CCMP526 was cultivated in f/2 medium with an initial cell concentration of 2*106 

cells mL-1. The growth curve observed for the alga is shown in Figure 6. The growth kinetics 

parameters were calculated from the observed growth curve (calculations are shown below). The 

obtained experimental values of specific growth rate and corresponding doubling time are in 

agreement with the previous reports (Boussiba et al., 1985, 1987).  
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Figure 6: Growth of M. gaditana CCMP526 in f/2 medium.  

Data are means of 3 independent biological replicates ± standard error.   

 

Growth kinetics: 

Specific growth rate, µ = 0.814 ± 0.02 day-1 = 0.033 ± 0.001 h-1 

Doubling time, td= ln2/µ= 0.85 ± 0.03 days 

Division per day= 1/td= 1.17 ± 0.04 

 

6.2.1 Selection of media for cultivation  

Growth curves and parameters of M. gaditana cultivated in different media are given in Figure 7 

and Table 8 respectively. Concentration of nitrate in f/2 medium was 0.88 mM. A higher 

concentration of nitrate, i.e. 17 mM nitrate, increased the cell density significantly during the 

exponential phase of cultivation. In addition, buffering the medium with Tris-Cl and thus 

maintaining a pH of 8 throughout the cultivation of culture prevented the culture turning pale 

throughout the exponential phase. A high cell density of 16.7*106 cells/mL was reached earlier, 

i.e. on the 3rd day of cultivation, in 17 mM nitrate containing Tris-Cl buffer f/2 medium, as 

compared to that in all other media. So f/2 medium with 40 mM Tris-Cl buffer and 17mM 

sodium nitrate was selected for further experiments.  
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Figure 7: Growth curve of M. gaditana in media with buffer.  

Data are means of 3 independent biological replicates ± standard error   

. 

Table 8 : Growth parameters of M. gaditana cultivated in different media.  

Data are means of 3 independent biological replicates ± standard error   

Media of sample 
Specific growth 

rate (day-1) 

Doubling time 

(hr) 

Maximal biomass 

(106 cells/mL) 

Tris Cl f/2 + 17 mM nitrate 0.83 ± 0.06 20.2 ± 1.68 16.75 ± 1.02 

f/2 + 17 mM nitrate 0.92 ± 0.03 18.1 ± 0.54 14.77 ± 0.22 

Tris Cl f/2 0.71 ± 0.04 23.5 ± 1.15 16.55 ± 0.30 

f/2  0.83 ± 0.03 20.0 ± 0.72 14.86 ± 0.11 

 

6.2.2 Effect of different nitrate concentrations on growth 

Growth parameters of M. gaditana cultivated in buffered f/2 media with different nitrate 

concentration are given in Table 9. Specific growth rates of more or less same value were 

observed in f/2 buffered medium containing nitrate concentration less than 0.3mM. However, 

specific growth rate of the alga increase with the increase in nitrate concentration to 0.9mM, i.e. 

the concentration of nitrate in f/2 medium. However, the alga cultivated in media with 0.9 and 
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0.3 mM nitrate turned pale during the exponential phase and that in media with 0.1 mM and 0.05 

mM nitrate turned pale in the beginning of exponential phase of its cycle. The alga that was 

cultivated in medium with 17mm nitrate seemed healthy without turning pale throughout the 

exponential phase. Therefore, f/2 medium with 17 mM nitrate was used for further experiments. 

Table 9: Growth parameters of M. gaditana cultivated in media with different nitrate 

concentration.  

Data are means of 3 independent biological replicates ± standard error 

Nitrate 

conc. of 

sample 

Specific growth 

rate (day-1) 

Doubling 

time (hr) 

Divisions 

per day 

0.05 mM 0.45 ± 0.02 37.3 ± 1.3 0.64 ± 0.02 

0.1 mM 0.50 ± 0.05 33.9 ± 4.0 0.72 ± 0.08 

0.3 mM 0.50 ± 0.01 33.7 ± 0.7 0.71 ± 0.01 

0.9 mM 0.71 ± 0.04 23.5 ± 1.15 1.03 ± 0.05 

17 mM 0.83 ± 0.06 20.2 ± 1.7 1.20 ± 0.09 

 

6.3  Sugar and protein estimation 

The sugar content of M. gaditana during the exponential phase of growth was estimated using 

the phenol sulphuric acid method and the standard curve is given in Figure 12 (Appendix). The 

protein content of culture was also measured using the Bradford’s reagent kit after cell lysis 

using sodium hydroxide treatment and the standard curve is given in Figure 13 (Appendix). The 

sugar and protein content of M. gaditana in its steady state are tabulated below. The obtained 

experimental values of sugar content and protein content are in their range reported for 

Nannochloropsis sp.(Sukenik, Carmeli, & Berner, 1989). 

Table 10: Sugar and protein estimation of M. gaditana.  

Data are means of 3 independent biological replicates ± standard error 

Sugar content Protein content 

1.27 ± 0.02 pg/cell 2.23 ± 0.18 pg/cell 
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6.3.1 Sugar content profile 

The sugar content of M. gaditana CCMP526 was estimated using phenol sulphuric acid method 

and the average of the results of three experiments is shown in Figure 8. The sugar content seems 

to be in range when compared with that reported by Radakovits et al. (2012). It was observed 

that the sugar content of the culture increased during the log phase of the growth cycle and 

decreased towards the stationary phase. The highest sugar content was attained during the log 

phase.  

 

Figure 8 : Time profile of sugar content of M. gaditana CCMP526.  

Data are means of 3 independent biological replicates ± standard error   

 

6.4 Estimation of fatty acid profile   

The fatty acid composition was qualitatively estimated for M. gaditana CCMP526. The 37 

component Fatty Acid Methyl Esters (FAME) Mix was used as a standard for fatty acid 

measurement. The chromatogram obtained for 37 component FAME mix is given in Figure 14 

and Table 29 (Appendix). The peaks were identified and quantified in the chromatogram 

obtained for M. gaditana using GC-MS method that is given in Figure 9. The main fatty acids 

present in the biomass of M. gaditana were C14:0, C16:0, C16:1, C18:0, C18:1n9c, C18:1n9t, 

C20:3n3, C24:1n9.  The components were identified based on the spectrum of component 

obtained in MS and the retention time of the component. The approximate retention time taken 
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for most of the components was analysed using the standard. The fatty acid profile is required for 

calculating the biomass formation equation involved in the metabolic model. The qualitative 

analysis of fatty acids in Microchloropsis gaditana sp. seems to be in agreement with the 

reported fatty acid composition for Nannochloropsis sp. (Mourente et al., 1989). 

 

 

Figure 9 : Chromatogram of fatty acid profile of M. gaditana 

Components labelled as follows 1(C14:0), 2(C16:0), 3(C16:1), 4(C18:0), 5 (C18:1n9c), 6 

(C18:1n9t), 7(C20:3n3), 8(C24:1n9). Other peaks are not fatty acids. 

 

6.5 Preliminary study for genetic transformation of M. gaditana CCMP526 

6.5.1 Growth studies of M. gaditana in f/2 medium and TAP medium 

The growth of the culture was monitored for M. gaditana in f/2 medium and TAP medium with 

different inoculum sizes of 1%, 5% and 10% of volume of medium, i.e., cell concentration of 

9.98*105 cells mL-1, 2.082 * 106 cells mL-1 and 3.034 * 106 cells mL-1 respectively. The culture 

did not grow in TAP medium whereas it grew well in f/2 medium. The growth curves of 

gaditana with inocula of different size are given in Figure 7.  
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Figure 10 : Growth curve of M. gaditana in f/2 medium with different initial cell density.  

Data are means of 3 independent biological replicates ± standard error   

The preferred inoculum size for the genetic transformation is the one for which an early log 

phase is observed. However, the log phase seems to begin at the same time for all the cultures 

inoculated with different inoculum sizes.  A cell number of around 107 cells mL-1 in the 

exponential phase is preferred for genetic transformation. The cell concentration reached the cell 

concentration of 107 cells mL-1 earlier during the growth of culture inoculated with an inoculum 

size of 10% of volume of medium, whereas the other cultures did not reach the cell concentration 

of 107 cells mL-1 during their exponential phase. However, there was no significant difference in 

the growth rate was observed for the cultures inoculated with different inoculums size. The 

statistics of growth kinetics are presented in Table 11. The cell concentrations (cell mL-1) were 

calculated from optical density of culture inoculated with different inoculum sizes at a 

wavelength of 750nm (Lopes & Vasconcelos, 2011).The values of cell concentration of culture 

inoculated with different inoculums sizes are given in Table 3. So the inoculum size of 10% can 

be used for growing culture in f/2 medium to be used for genetic transformation. 
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Table 11: Growth kinetics of M. gaditana with different inoculum sizes.  

Data are means of 3 independent biological replicates ± standard error 

Growth kinetics 1% inoculum 5% inoculum 10% inoculum 

Specific growth rate, µ 

(day-1) 
0.31 ± 0.03 0.37 ± 0.04 0.36 ± 0.03 

Doubling time, td (days) 2.32 ± 0.29 1.92 ± 0.18 1.99 ± 0.21 

Divisions per day 0.44 ± 0.05 0.53 ± 0.05 0.51 ± 0.06 

Maximum biomass in log 

phase (106 cells mL-1) 
5.99 ± 1.15 6.65 ± 1.15 9.25 ± 1.15 

 

6.5.2 Antibiotic sensitivity study 

The antibiotic sensitivity studies of M. gaditana exposed to chloramphenicol, kanamycin and 

hygromycin were carried out at different concentrations (30µg/mL, 100µg/mL and 300µg/mL). 

Kanamycin is an antibiotic that binds to the 30S ribosomal unit whereas chloramphenicol affects 

50S ribosomal subunit to restrict protein synthesis in the cell and thus they inhibit cell growth. 

Hygromycin restricts protein synthesis by disrupting translocation at the 70S ribosome. The 

results are shown in Figure 11. It was observed that the culture was resistant to the antibiotic 

kanamycin at all the concentrations whereas it was sensitive to chloramphenicol at all 

concentrations. The resistance of two microalgae that belong to Nannochloropsis sp. against 

kanamycin has been reported (Galloway, 1990) and we found it holds true for Microchloropsis 

gaditana CCMP526. The culture seems to be sensitive towards hygromycin at 300 µg/mL, 

though cells seemed to grow in media containing hygromycin at concentrations of 10 and 100 

µg/mL from the 11th day onwards. Use of selectable marker conferring resistance to hygromycin 

in genetic transformation method for Nannochloropsis sp. (strain W2J3B) was reported (Kilian 

et al., 2011). Thus, the chloramphenicol resistance gene can also be used in the vector to be used 

for genetic transformation of M. gaditana CCMP526 as the genetically transformed strains can 

be selected based on the expression of the resistance gene while growing in a chloramphenicol 



57 

 

containing medium. It was reported that marine algae of Nannochloropsis sp. are sensitive to 

antibiotics such as streptomycin and erythromycin (Galloway, 1990). 
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Figure 11 : Antibiotic sensitivity study on M. gaditana 

Data are means of 3 independent biological replicates ± standard error 

 

6.6 Conclusions 

The growth rate of M. gaditana CCMP526 was determined and contributed towards the 

validation of the metabolic model developed. The sugar content and the protein content of the 

alga under phototrophic condition during exponential phase was determined and used to 

formulate the biomass formation equation. The qualitative analysis of fatty acid profile of the 

alga ensures that there was no significant variation in biomass composition of the strain from that 

of Microchloropsis salina, which was used in the derivation of coefficients in biomass formation 

equation in metabolic model. Some preliminary studies on inoculum concentration and antibiotic 

sensitivity, which are required for genetic transformation of M. gaditana, were also carried out.  
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Conclusions 

A curated pathway database of M. gaditana CCMP526, MgdCyc, was developed using its 

genome sequence, genome annotation and experimental information related to the genus of 

Microchloropsis and Nannochloropsis. Since the genome annotation is very limited to an extent 

that even the reactions involved in the central carbon metabolism were not GPR (gene-protein- 

reaction) associated, development of flux consistent model has undergone an extensive curation. 

The developed biochemical pathway database features 141 metabolic pathways with associated 

genes, enzymes and metabolites with a user-friendly Pathway Tools graphical interface. The 

MgdCyc database can be downloaded as flat file from Biocyc distribution of pathway/genome 

database or can be accessed with Pathway Tools web. As a part of curation of the pathway 

database, genes of sixty one missing enzymes were identified in the genome sequence of the 

alga.  

A genome-scale metabolic model was developed for M. gaditana CCMP526 was 

developed by curating the metabolic network generated from the pathway database. Analysis of 

the metabolic model was carried out to validate the model and to understand the metabolic 

behaviour of the alga. Different trophic conditions such as photoautotrophic, heterotrophic and 

mixotrophic conditions were simulated to predict the fluxes of intracellular metabolites. The 

model was validated by comparing the predicted values of parameters such as photosynthetic 

coefficient, specific growth rate, ratio of cyclic and non-cyclic electron flow with that of 

experimental values. Some physiological studies of the alga were carried out to support the 

development of metabolic model and its validation.  

 

7.1 Future Work 

• The genome of M. gaditana can further undergo structural and functional annotation. The 

metabolic model developed guides to investigate more genes. 
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• Subcellular localization of enzymes in the pathway database can be undertaken as the 

genome sequencing project progresses  

• 13C-Metabolic flux analysis can be carried out to fill the gaps in the metabolic network 

and to validate the model (Zamboni, 2011). 

• The metabolic model can be further analysed that bring insights into lipid accumulating 

ability of the microalga. Metabolic interventions can be predicted for optimal lipid 

synthesis using k-OptForce (Chowdhury, Zomorrodi, & Maranas, 2014).   
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APPENDICES 

 

Table 12 : Details of genome annotation genome assembly v.1.2 of M. gaditana CCMP526 

(Radakovits et al., 2012) 

BioProject PRJNA73791 

Assembly GCA_000240725.1 

Level of genome assembly Scaffold 

Estimated genome size 33.987 Mb 

Total number of genes 3557 

Number of predicted proteins 3554 

Number of hypothetical proteins 1582 

Number of enzyme coding genes  391 

 

Table 13 : Assigned reactions after curating probable enzyme matches 

Probable enzyme match Assigned reaction 

2-succinyl-6-hydroxy- cyclohexadiene-1-

carboxylic acid synthase 2-oxoglutarate 

decarboxylase 

4.2.99.20 

4.1.1.71; 

3-hydroxyacyl-coa dehydrogenase 1.1.1.35 (21); 1.1.1.M19 (6); 4.2.1.74; 

1.1.1.211(4) 

3-ketoacyl- thiolase peroxisomal 2.3.1.16(5); 2.3.1.223;  

Aaa family atpase 3.6.3.14 

Aarf domain containing kinase 2 3.4.24.81; 2.7.1.154 

Adenylyltransferase and sulfurtransferase 2.7.7.42 

Aldehyde oxidase 1.2.3.1; 1.2.99.7;  

Aldehyde reductase i 1.1.1.1(15); 1.1.1.2; 1.1.1.19;  1.1.1.21(5);  

Alkyl sulfatase or beta-lactamase 1.14.11.M6; 3.1.6; 3.5.2.6 

Amine oxidase 1.4.3.21; 1.4.3.22 
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Aminophospholipid-transporting p-type atpase 3.6.3.1 

Beta- -endoglucanase 3.2.1.176; 3.2.1.4 

Beta- -mannosyl-glycoprotein beta- -n-

acetylglucosaminyltransferase 

2.4.1.144 

Cap-specific mrna (nucleoside-2 -o-)-

methyltransferase 1 

2.1.1.57 

Choline dehydrogenase 1.1.99.1 

Ctf2a like oxidoreductase 1.17.4.1 (4); 

Ctf2a like oxidoreductase 1.17.4.1 (4); 

Cyclin-dependent kinase 10 2.7.11.27; 2.7.11.20; 2.7.11.7;2.7.11.18; 

2.7.11.1/2.7.11..12/2.7.11.22; 2.7.11.22 

Dihydrolipoyllysine-residue acetyltransferase 

component 1 of pyruvate dehydrogenase 

complex 

2.3.1.12 

Diphthamide biosynthesis 6.3.1.14 

Dolichol-phosphate mannosyltransferase subunit 

3-like protein 

2.4.1.109 

E3 ubiquitin-protein ligase ubr4 2.3.2.23; 2.3.2.27 

E3 ubiquitin-protein ligase ubr4 2.3.2.23; 2.3.2.28 

E3 ubiquitin-protein ligase upl6 2.3.2.23; 2.3.2.29 

E3 ubiquitin-protein ligase-like protein 2.3.2.23; 2.3.2.30 

Erythromycin esterase 2.1.1.254 

Ethanolamine kinase 1 isoform 1  2.7.1.82 

Fatty acid desaturase 1.14.19.22; 1.14.19.1 

Fatty acid elongase 6.2.1.3; 6.2.1.2;  

Fe-Fe hydrogenase 1.12.7.2; 1.12.1.4;  

Glutamine amidohydrolase-like protein 3.5.1.44 

Glutamine amidotransferase 6.3.5.2 

Glutathione peroxidase 1.11.1.9; 1.11.1.12 

Glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12; 1.2.1.59; 1.2.1.9; 1.2.1.13 

Heavy metal p-type atpase 3.6.3.- 

Hexose-6-phosphate dehydrogenase (glucose 1-

dehydrogenase) 

1.1.1.49; 1.1.1.388; 1.1.1.363;  

Hnrnp arginine n-methyltransferase 2.1.1.319 

Hydroxyacid oxidase 1.1.3.15 
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Hypoxanthine-guanine 

phosphoribosyltransferase-like protein 

2.4.2.8 

Indigoidine synthase a family protein 4.2.1.70 

Inositol polyphosphate 5-phosphatase ocrl 3.1.3.56 

Ketose-bisphosphate aldolase class-ii family 

protein 

4.1.2.13 

Lysine decarboxylase-like protein 4.1.1.18 

Lysine ornithine decarboxylase 4.1.1.18; 4.1.1.17 

Lysophosphatidylglycerol acyltransferase 2.3.1.- 

Lysophospholipase-like 1 3.1.4.39, 3.1.1.5 

Mg(2+) transport atpase protein c 3.6.3.2 

N-terminal asparagine amidohydrolase 3.5.1.26; 3.5.1.38 

Nad h dehydrogenase 1.6.5.3; 1.6.99.3; 1.6.5.9 

Omega-6 fatty acid desaturase delta-12 1.14.19.6 

P-type h+-atpase 3.6.3.6 

Peptide methionine sulfoxide reductase 1.8.4.11; 1.8.4.12 

Peptidyl-prolyl cis-trans isomerase d-like protein 5.2.1.8 

Peptidyl-prolyl cis-trans isomerase fkbp2-like 

protein 

5.2.1.8 

Peptidyl-prolyl cis-trans isomerase-like protein 5.2.1.8 

Phosphatidylinositol- -trisphosphate 5-

phosphatase 1 

3.1.3.86;  

Phosphoglycerate bisphosphoglycerate mutase 

family protein 

5.4.2.11 

Phosphoglycerate mutase 5.4.2.12; 5.4.2.11 

Poly rna polymerase 2.7.7.6; 2.7.7.48 

Protein arginine n-methyltransferase 2.1.1.318;2.1.1.319; 2.1.1.320 

Protein-s-isoprenylcysteine o-methyltransferase-

like protein 

2.1.1.100 

Purple acid phosphatase isoform b2 3.1.3.2 

Putative palmitoyltransferase zdhhc11-like 

protein 

2.3.1.225 

Putative serca-type calcium atpase 3.6.3.8 

Putative tyrosinase-like protein in chromosome 1.2.4.1; 1.2.5.1 

Receptor-interacting serine-threonine kinase 4 2.7.11.30 
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Ribulose- -bisphosphate carboxylase oxygenase 

small subunit n-methyltransferase i 

2.1.1.127 

rRNA (guanine-n -)-methyltransferase 2.1.1.171 

Sphingolipid delta-4 desaturase 1.14.19.17 

Sphingosine-1-phosphate lyase 4.1.2.27 

Threonine aldolase 4.1.2.48 

Trehalose synthase 2.4.1.245; 5.4.99.16;  

tRNA pseudouridine synthase 5.4.99.25; 5.4.99.28; 5.4.99.12; 5.4.99.27; 

5.4.99.26;  

Ubiquitin carboxyl-terminal hydrolase 10 3.4.19.12 

Ubiquitin carboxyl-terminal hydrolase 24 3.4.19.12 

Ubiquitin ligase e3 6.2.1.45; 2.3.2.26 

 

Table 14 : Pathways that are reported to be present in Microchloropsis sp. 

Pathways  Reference 

Acetyl-CoA biosynthesis II (Li et al., 2014) 

Biosynthesis of amino acids (Radakovits et al., 2012) 

Calvin cycle (Li et al., 2014; Radakovits et al., 2012) 

Carotenoid  Biosynthesis (Radakovits et al., 2012) 

Fatty acid biosynthesis (Radakovits et al., 2012) 

Glycolysis (Li et al., 2014) 

Glyoxylate cycle (Vieler et al., 2012) 

Lipid biosynthetic process (Radakovits et al., 2012) 

Nitrogen compound metabolic process (Radakovits et al., 2012) 

Pentose phosphate pathway (Alboresi et al., 2016) 

Photosynthesis (Radakovits et al., 2012) 

Sterol Synthesis (Radakovits et al., 2012) 

TCA cycle (Li et al., 2014) 
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Tetrapyrrole Synthesis (Radakovits et al., 2012) 

β-oxidation (Li et al., 2014) 

 

Table 15: Filled pathway holes in M. gaditana CCMP526 

The pathway holes were filled using Pathway Hole Filler where the database, YeastCyc was used 

to train the Bayes classifier. 

Hole-filler Hole EC# 
P(has-

function) 

All functions of hole-

filler 

Pathway(s) requiring 

this reaction 

ARGC 2.7.2.8 0.977 

N-acetyl-gamma-

glutamyl-phosphate/N-

acetyl- gamma-

aminoadipyl-phosphate 

reductase 

L-arginine biosynthesis 

III (via N-acetyl-L-

citrulline), L-arginine 

biosynthesis II (acetyl 

cycle), L-ornithine 

biosynthesis I 

ARGC 1.2.1.- 0.977 

N-acetyl-gamma-

glutamyl-phosphate/N-

acetyl- gamma-

aminoadipyl-phosphate 

reductase 

L-lysine biosynthesis V 

UBE2N none 0.989 
ubiquitin-conjugating 

enzyme E2 N 
protein ubiquitylation 

UBE2N none 0.978 
ubiquitin-conjugating 

enzyme E2 N 
protein ubiquitylation 

MTNA 4.2.1.109 0.992 
methylthioribose-1-

phosphate isomerase 

S-methyl-5-thio-alpha-D-

ribose 1-phosphate 

degradation 

MTNA 2.7.1.100 0.974 
methylthioribose-1-

phosphate isomerase 

S-methyl-5'-

thioadenosine 

degradation I 

NGA_011

4901 
1.1.1.178 0.933 

short chain 

dehydrogenase 

L-isoleucine degradation 

I 

NGA_012

6900 
3.1.1.23 0.933 esterase lipase 

thioesterase family 

triacylglycerol 

degradation 
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protein 

DES 1.14.18.4 0.979 
omega-6 fatty acid 

desaturase delta-12 
ricinoleate biosynthesis 

DES 1.14.18.4 0.986 
omega-6 fatty acid 

desaturase delta-12 

ricinoleate 

biosynthesis, hydroxylate

d fatty acid biosynthesis 

(plants) 

DES 1.14.18.4 0.979 
omega-6 fatty acid 

desaturase delta-12 

hydroxylated fatty acid 

biosynthesis (plants) 

DES 1.14.19.25 0.925 
omega-6 fatty acid 

desaturase delta-12 

hydroxylated fatty acid 

biosynthesis (plants) 

DES 1.14.19.34 0.979 
omega-6 fatty acid 

desaturase delta-12 

dimorphecolate 

biosynthesis 

DES 1.14.19.35 0.963 
omega-6 fatty acid 

desaturase delta-12 

(7Z,10Z,13Z)-

hexadecatrienoate 

biosynthesis 

DES 1.14.19.25 0.925 
omega-6 fatty acid 

desaturase delta-12 

alpha-linolenate 

biosynthesis I (plants and 

red algae) 

DES 1.14.19.35 0.963 
omega-6 fatty acid 

desaturase delta-12 

alpha-linolenate 

biosynthesis I (plants and 

red algae) 

MET3 2.7.1.25 0.998 
sulfate 

adenylyltransferase 

sulfate activation for 

sulfonation 

PDC 2.2.1.6 0.935 pyruvate decarboxylase 

L-isoleucine biosynthesis 

IV, L-isoleucine 

biosynthesis III, L-

isoleucine biosynthesis 

II, L-isoleucine 

biosynthesis I (from 

threonine) 

NGA_020

9900 
1.14.19.4 0.997 

delta 5 fatty acid 

desaturase 

arachidonate biosynthesis 

IV (8-detaturase, lower 

eukaryotes) 
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NGA_020

9900 
1.14.19.47 0.998 

delta 5 fatty acid 

desaturase 

arachidonate biosynthesis 

I (6-desaturase, lower 

eukaryotes), dicranin 

biosynthesis 

NGA_020

9900 
1.14.19.3 0.912 

delta 5 fatty acid 

desaturase 

(4Z,7Z,10Z,13Z,16Z)-

docosa-4,7,10,13,16-

pentaenoate biosynthesis 

(6-desaturase) 

NGA_020

9900 
1.14.19.3 0.912 

delta 5 fatty acid 

desaturase 

gamma-linolenate 

biosynthesis II (animals) 

GSR 1.2.1.- 0.977 
glutathione reductase 

(NADPH) 

L-isoleucine biosynthesis 

V, L-isoleucine 

degradation I 

NGA_037

3902 
4.1.3.1 0.903 malate synthase 

TCA cycle V (2-

oxoglutarate:ferredoxin 

oxidoreductase), TCA 

cycle IV (2-oxoglutarate 

decarboxylase), glyoxylat

e cycle 

NGA_043

4501 
none 0.948 amine oxidase 

10,13-epoxy-11-methyl-

octadecadienoate 

biosynthesis 

LDHA 1.1.1.29 0.91 D-lactate dehydrogenase photorespiration 

CCBL 2.6.1.79 0.956 

kynurenine-oxoglutarate 

transaminase / cysteine-

S-conjugate beta-lyase 

L-tyrosine biosynthesis 

III, L-tyrosine 

biosynthesis II, L-

phenylalanine 

biosynthesis II 

CCBL 2.6.1.17 0.925 

kynurenine-oxoglutarate 

transaminase / cysteine-

S-conjugate beta-lyase 

L-lysine biosynthesis I 

CCBL 2.6.1.- 0.979 

kynurenine-oxoglutarate 

transaminase / cysteine-

S-conjugate beta-lyase 

S-methyl-5-thio-alpha-D-

ribose 1-phosphate 

degradation 
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Table 16: Filled pathway holes in M. gaditana CCMP526 

The pathway holes were filled using Pathway Hole Filler where the database, EcoCyc was used 

to train the Bayes classifier. 

Hole-filler Hole EC# 
P(has-

function) 

All functions of hole-

filler 

Pathway(s) requiring 

this reaction 

UBE2N 2.3.2.24 0.922 
ubiquitin-conjugating 

enzyme E2 N 
protein ubiquitylation 

PTER 1.3.1.9 0.982 
peroxisomal trans-2-

enoyl-CoA reductase 

palmitoleate biosynthesis 

I (from (5Z)-dodec-5-

enoate) 

PTER 1.3.1.9 0.982 
peroxisomal trans-2-

enoyl-CoA reductase 

superpathway of 

mycolate 

biosynthesis, mycolate 

biosynthesis 

PTER 1.3.1.34 0.955 
peroxisomal trans-2-

enoyl-CoA reductase 

fatty acid beta-oxidation 

V (unsaturated, odd 

number, di-isomerase-

dependent) 

PTER 1.3.1.9 0.982 
peroxisomal trans-2-

enoyl-CoA reductase 

cis-vaccenate 

biosynthesis 

PTER 1.3.1.9 0.982 
peroxisomal trans-2-

enoyl-CoA reductase 

(5Z)-dodec-5-enoate 

biosynthesis 

NGA_064

0610 
2.3.1.199 0.998 fatty-acyl 

very long chain fatty acid 

biosynthesis I 

NGA_064

0610 
2.3.1.199 0.998 fatty-acyl 

stearate biosynthesis I 

(animals and fungi) 

NGA_064

0610 
2.3.1.199 0.998 fatty-acyl juniperonate biosynthesis 

NGA_064

0610 
2.3.1.199 0.998 fatty-acyl 

hydroxylated fatty acid 

biosynthesis (plants) 

NGA_064

0610 
2.3.1.199 0.998 fatty-acyl 

hydroxylated fatty acid 

biosynthesis (plants) 

DES 1.14.19.23 1 
omega-6 fatty acid 

desaturase delta-12 

(7Z,10Z,13Z)-

hexadecatrienoate 

biosynthesis 

PDC 2.2.1.6 0.979 pyruvate decarboxylase L-valine biosynthesis 
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RFBB 5.1.3.2 0.996 
dTDP-glucose 4,6-

dehydratase 

D-galactose degradation 

V (Leloir pathway) 

NGA_020

9900 
1.14.19.44 0.955 

delta 5 fatty acid 

desaturase 

arachidonate biosynthesis 

V (8-detaturase, 

mammals), arachidonate 

biosynthesis III (6-

desaturase, mammals) 

NGA_042

0002 
none 0.955 

glycine cleavage system 

h protein 
photorespiration 

GSR none 0.932 
glutathione reductase 

(NADPH) 

TCA cycle VII (acetate-

producers), TCA cycle II 

(plants and fungi), TCA 

cycle I (prokaryotic) 

GSR 1.8.1.4 0.932 
glutathione reductase 

(NADPH) 

pyruvate decarboxylation 

to acetyl CoA 

NGA_043

4501 
2.1.1.- 1 amine oxidase 

10,13-epoxy-11-methyl-

octadecadienoate 

biosynthesis 

 

Table 17 : Pathways added to the database, MgdCyc 

Pathway ID in MgdCyc  Pathway name 

HOMOCYSDEGR-PWY L-cysteine biosynthesis III (from L-homocysteine) 

PWY-922 mevalonate pathway I 

PWY-7117 C4 photosynthetic carbon assimilation cycle, PEPCK type 

PWY-7115 C4 photosynthetic carbon assimilation cycle, NAD-ME type 

P21-PWY pentose phosphate pathway (partial) 

HISTSYN-PWY L-histidine biosynthesis 

ALANINE-VALINESYN-PWY L-alanine biosynthesis I 

PWY-4981 L-proline biosynthesis II (from arginine) 

PWY-7560 methylerythritol phosphate pathway II 

NONMEVIPP-PWY methylerythritol phosphate pathway I 

PWY-401 galactolipid biosynthesis I 
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PWY-4381 fatty acid biosynthesis initiation I 

P105-PWY TCA cycle IV (2-oxoglutarate decarboxylase) 

GLUTORN-PWY L-ornithine biosynthesis I 

TRPSYN-PWY L-tryptophan biosynthesis 

PWY-5097 L-lysine biosynthesis VI 

OXIDATIVEPENT-PWY pentose phosphate pathway (oxidative branch) 

NONOXIPENT-PWY pentose phosphate pathway (non-oxidative branch) 

ILEUSYN-PWY L-isoleucine biosynthesis I (from threonine) 

PWY-101 photosynthesis light reactions 

SAM-PWY S-adenosyl-L-methionine biosynthesis 

PHESYN L-phenylalanine biosynthesis I 

PWY-7400 L-arginine biosynthesis IV (archaebacteria) 

HOMOSER-METSYN-PWY L-methionine biosynthesis I 

PWY-5971 palmitate biosynthesis II (bacteria and plants) 

VALSYN-PWY L-valine biosynthesis 

LEUSYN-PWY L-leucine biosynthesis 

PWY-7388 octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, 

yeast) 

GLYCOLYSIS glycolysis I (from glucose 6-phosphate) 

PWY-6837 fatty acid beta-oxidation V (unsaturated, odd number, di-

isomerase-dependent) 

FASYN-ELONG-PWY fatty acid elongation -- saturated 

PWY66-391 fatty acid &beta;-oxidation VI (peroxisome) 

PWY-5989 stearate biosynthesis II (bacteria and plants) 

PWY-4361 S-methyl-5-thio-&alpha;-D-ribose 1-phosphate degradation 

PWY-5484 glycolysis II (from fructose 6-phosphate) 

PWY-5136 fatty acid &beta;-oxidation II (peroxisome) 
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PWY-6134 L-tyrosine biosynthesis IV 

PWY-6368 3-phosphoinositide degradation 

PWY-381 nitrate reduction II (assimilatory) 

PWY-6429 ricinoleate biosynthesis 

PWY-7663 gondoate biosynthesis (anaerobic) 

PWY0-862 (5Z)-dodec-5-enoate biosynthesis 

PWY-7589 palmitoleate biosynthesis III (cyanobacteria) 

HOMOSER-THRESYN-PWY L-threonine biosynthesis 

PWY-5344 L-homocysteine biosynthesis 

PWY-6352 3-phosphoinositide biosynthesis 

PWY-1042 glycolysis IV (plant cytosol) 

PWY-5973 cis-vaccenate biosynthesis 

PWY-5675 nitrate reduction V (assimilatory) 

PWY-6599 guanine and guanosine salvage II 

PWY490-4 L-asparagine biosynthesis III (tRNA-dependent) 

CALVIN-PWY Calvin-Benson-Bassham cycle 

PWY-7725 arachidonate biosynthesis V (8-detaturase, mammals) 

PWY-7344 UDP-D-galactose biosynthesis 

PWY-181 photorespiration 

PWY-7094 fatty acid salvage 

PWY-7590 (7Z,10Z,13Z)-hexadecatrienoate biosynthesis 

PWY-7587 oleate biosynthesis III (cyanobacteria) 

PWY-7036 very long chain fatty acid biosynthesis II 

GLYOXYLATE-BYPASS glyoxylate cycle 

PWY-6282 palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 
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PWY3DJ-12 ceramide de novo biosynthesis 

PWY-6754 S-methyl-5'-thioadenosine degradation I 

PWY66-21 ethanol degradation II 

PWY-7726 (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate 

biosynthesis (6-desaturase) 

PWY-6970 acetyl-CoA biosynthesis II (NADP-dependent pyruvate 

dehydrogenase) 

PWY-7691 10,13-epoxy-11-methyl-octadecadienoate biosynthesis 

PWY-6000 &gamma;-linolenate biosynthesis II (animals) 

PWY-5997 &alpha;-linolenate biosynthesis I (plants and red algae) 

PWY-6001 linoleate biosynthesis II (animals) 

PWY-46 putrescine biosynthesis III 

PWY-6019 pseudouridine degradation 

PWY-5080 very long chain fatty acid biosynthesis I 

PWY-5340 sulfate activation for sulfonation 

PWY-4081 glutathione-peroxide redox reactions 

PYRUVDEHYD-PWY pyruvate decarboxylation to acetyl CoA 

 

Table 18 : Filled pathway holes in MgdCyc 

The pathway holes were filled using Pathway Hole Filler where the databases, YeastCyc and  

EcoCyc were used to train the Bayes classifier. 

Hole-filler Hole EC# 
P(has-

function) 
All functions of hole-filler 

Pathway(s) requiring this 

reaction 

RFBB 4.2.1.76 0.98 
dTDP-glucose 4,6-

dehydratase 

UDP-L-rhamnose 

biosynthesis 

NGA_0209900 1.14.19.44 0.96 
delta 5 fatty acid 

desaturase 

icosapentaenoate 

biosynthesis III (8-

desaturase, 

mammals), icosapentaenoate 
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biosynthesis II (6-

desaturase, mammals) 

NGA_0209900 1.14.19.4 1.00 
delta 5 fatty acid 

desaturase 

icosapentaenoate 

biosynthesis V (8-

desaturase, lower 

eukaryotes) 

NGA_0209900 1.14.19.3 0.91 
delta 5 fatty acid 

desaturase 

icosapentaenoate 

biosynthesis II (6-

desaturase, mammals) 

NGA_0209900 1.14.19.47 0.99 
delta 5 fatty acid 

desaturase 

icosapentaenoate 

biosynthesis I (lower 

eukaryotes) 

NGA_0429100 1.1.1.59 0.93 choline dehydrogenase beta-alanine biosynthesis II 

PGM 5.4.2.8 0.91 phosphoglucomutase GDP-mannose biosynthesis 

GLYA none 0.99 
glycine 

hydroxymethyltransferase 
folate transformations II 

PTER 1.1.1.10 0.933 
peroxisomal trans-2-enoyl-

CoA reductase 
 -  

LDHA 1.1.1.81 0.955 D-lactate dehydrogenase  -  

 

Table 19: BLAST results for enzymes involved in Glycolysis 

Enzyme   Best hit 
% 

identity 
s. start s. end E value 

Glucose-6-phosphate 

isomerase 
NW_005803947.1 100.0 74858 72766 0 

Enolase NW_005803939.1 99.9 40911 43959 0 

 NW_005803793.1 99.2 33529 31945 0 
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Table 20 : BLAST results for enzymes involved in TCA cycle  

Enzyme name  Best hit 
% 

identity 
s. start s. end E value 

Citrate synthase NW_005803933.1 99.7 28739 26120 0 

NW_005803853.1 99.9 44371 42449 0 

Isocitrate dehydrogenase  NW_005803939.1 100.0 79174 82265 0 

2-oxoglutarate dehydrogenase 

E1 component 

NW_005803894.1 99.8 5121 4042 0 

NW_005803767.1 99.9 20771 17077 0 

Succinate dehydrogenase iron 

sulfur protein 

NW_005803731.1 99.7 21098 19216 0 

Succinate dehydrogenase 

flavoprotein subunit 

NW_005803892.1 99.9 44959 41582 0 

Succinate dehydrogenase 

subunit 4 

NW_005803712.1 100.0 4366 3811 0 

Succinate dehydrogenase 

cytochrome b subunit 

NW_005803425.1 99.0 13685 12166 0 

Fumarate hydratase NW_005803860.1 100.0 64654 63189 0 

NW_005803848.1 99.5 23950 25777 0 

 

 

Table 21 : BLAST results for enzymes involved in calvin cycle 

Enzyme   Best hit 
% 

identity 
s. start s. end E value 

Fructose- -

bisphosphatase 
NW_005803949.1 99.9 20017 21779 0 

 NW_005802355.1 100.0 783 309 0 
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 NW_005803948.1 99.7 144885 143256 0 

 NW_005802797.1 99.7 33 1039 0 

Phosphoribulokinase NW_005803849.1 98.9 53616 55206 0 

 NW_005803390.1 99.1 5212 2576 0 

 

Table 22: BLAST results for enzymes involved in Pentose phosphate pathway 

Enzyme   Best hit  % identity  s. start  s. end  E value 

6-phosphogluconolactonase NW_005803829.1 100.0 15361 14271 0 

Transketolase NW_005803884.1 99.8 61958 58637 0 

 NW_005803832.1 99.5 4314 7215 0 

 NW_005803832.1 100.0 1 56 5.21E-21 

 NW_005803471.1 99.7 1 1542 0 

 NW_005803739.1 99.4 6541 4370 0 

 NW_005803735.1 99.4 6250 4079 0 

Transaldolase NW_005803726.1 93.8 6835 7825 0 

 NW_005803726.1 99.2 7085 7836 0 

 NW_005803726.1 100.0 13566 13085 0 

 NW_005803726.1 99.1 6892 7002 2.80E-50 
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 NW_005803726.1 99.1 13359 13249 2.80E-50 

 NW_005803726.1 93.7 13163 13085 8.06E-26 

 NW_005803726.1 84.5 13500 13398 8.12E-21 

 NW_005803517.1 98.9 5187 3365 0 

 NW_005803920.1 100.0 24474 25701 0 

 

Table 23 : Pathways in the database, MgdCyc with their pathway prediction score 

Pathway prediction score is a number that indicates the strength of the evidence supporting the 

inference of the pathway and ranges from 0-1.0 where 1.0 means very strong evidence.  

COMMON-NAME FRAME SCORE 

(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate 

biosynthesis (6-desaturase) 

PWY-7726 0.381 

(5Z)-dodec-5-enoate biosynthesis PWY0-862 0.200 

(7Z,10Z,13Z)-hexadecatrienoate biosynthesis PWY-7590 0.267 

cis vaccenate biosynthesis PWY-5973 0.210 

myo-inositol biosynthesis PWY-2301 0.715 

S-methyl-5-thio-&alpha;-D-ribose 1-phosphate 

degradation 

PWY-4361 0.165 

S-methyl-5'-thioadenosine degradation I PWY-6754 0.325 

10,13-epoxy-11-methyl-octadecadienoate biosynthesis PWY-7691 0.400 

2-oxoisovalerate decarboxylation to isobutanoyl-CoA PWY-5046 0.560 

3-phosphoinositide biosynthesis PWY-6352 0.203 

3-phosphoinositide degradation PWY-6368 0.196 

4-hydroxyphenylpyruvate biosynthesis PWY-5886 0.236 
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acetyl-CoA biosynthesis II (NADP-dependent pyruvate 

dehydrogenase) 

PWY-6970 0.400 

acyl carrier protein activation PWY-6012-1 0.423 

adenine and adenosine salvage VI PWY-6619 0.880 

adenosine deoxyribonucleotides  de novo biosynthesis PWY-7227 0.373 

adenosine nucleotides degradation II SALVADEHYPOX-PWY 0.343 

adenosine ribonucleotides de novo biosynthesis PWY-7219 0.440 

allantoin degradation to ureidoglycolate I (urea 

producing) 

PWY-5697 0.440 

alpha;-linolenate biosynthesis I (plants and red algae) PWY-5997 0.400 

arachidonate biosynthesis V (8-detaturase, mammals) PWY-7725 0.238 

C4 photosynthetic carbon assimilation cycle, NAD-ME 

type 

PWY-7115 0.033 

C4 photosynthetic carbon assimilation cycle, PEPCK 

type 

PWY-7117 0.030 

Calvin-Benson-Bassham cycle CALVIN-PWY 0.317 

CDP-diacylglycerol biosynthesis I PWY-5667 0.212 

ceramide de novo biosynthesis PWY3DJ-12 0.300 

chorismate biosynthesis from 3-dehydroquinate PWY-6163 0.067 

CMP phosphorylation PWY-7205 0.440 

D-myo-inositol (1,4,5)-trisphosphate degradation PWY-6363 0.587 

D-galactose degradation V (Leloir pathway) PWY66-422 0.290 

diacylglycerol and triacylglycerol biosynthesis TRIGLSYN-PWY 0.247 

docosahexaenoate biosynthesis III (6-desaturase, 

mammals) 

PWY-7606 0.251 

ethanol degradation II PWY66-21 0.345 

fatty acid &beta;-oxidation II (peroxisome) PWY-5136 0.186 

fatty acid &beta;-oxidation VI (peroxisome) PWY66-391 0.160 

fatty acid beta-oxidation V (unsaturated, odd number, 

di-isomerase-dependent) 

PWY-6837 0.160 
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fatty acid biosynthesis initiation I PWY-4381 0.081 

fatty acid elongation -- saturated FASYN-ELONG-PWY 0.160 

fatty acid salvage PWY-7094 0.267 

fructose 2,6-bisphosphate biosynthesis PWY66-423 0.880 

galactolipid biosynthesis I PWY-401 0.080 

gamma;-linolenate biosynthesis II (animals) PWY-6000 0.400 

GDP-L-fucose biosynthesis II (from L-fucose) PWY-6 0.440 

glutaminyl-tRNAgln biosynthesis via transamidation PWY-5921 0.440 

glutathione biosynthesis GLUTATHIONESYN-

PWY 

0.440 

glutathione-glutaredoxin redox reactions GLUT-REDOX-PWY 0.423 

glutathione-peroxide redox reactions PWY-4081 0.728 

glycerol-3-phosphate shuttle PWY-6118 0.440 

glycine biosynthesis I GLYSYN-PWY 0.233 

glycolysis I (from glucose 6-phosphate) GLYCOLYSIS 0.219 

glycolysis II (from fructose 6-phosphate) PWY-5484 0.218 

glycolysis III (from glucose) ANAGLYCOLYSIS-PWY 0.236 

glycolysis IV (plant cytosol) PWY-1042 0.216 

glyoxylate cycle GLYOXYLATE-BYPASS 0.315 

gondoate biosynthesis (anaerobic) PWY-7663 0.200 

guanine and guanosine salvage II PWY-6599 0.212 

guanosine deoxyribonucleotides de novo biosynthesis I PWY-7226 0.373 

heme biosynthesis I (aerobic) HEME-BIOSYNTHESIS-II 0.267 

heme degradation PWY-5874 0.440 

L-alanine biosynthesis I ALANINE-VALINESYN-

PWY 

0.043 

L-arginine biosynthesis IV (archaebacteria) PWY-7400 0.129 
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L-arginine degradation X (arginine monooxygenase 

pathway) 

ARGDEG-V-PWY 0.293 

L-ascorbate degradation V PWY-6959 0.000 

L-asparagine biosynthesis III (tRNA-dependent) PWY490-4 0.217 

L-aspartate biosynthesis ASPARTATESYN-PWY 0.239 

L-aspartate degradation I ASPARTATE-DEG1-PWY 0.239 

L-citrulline degradation CITRULLINE-DEG-PWY 0.401 

L-cysteine biosynthesis III (from L-homocysteine) HOMOCYSDEGR-PWY 0.000 

L-glutamate degradation I GLUTAMATE-DEG1-

PWY 

0.263 

L-glutamate degradation IX (via 4-aminobutanoate) PWY0-1305 
 

L-glutamine degradation I GLUTAMINDEG-PWY 0.251 

L-histidine biosynthesis HISTSYN-PWY 0.040 

L-homocysteine biosynthesis PWY-5344 0.200 

linoleate biosynthesis II (animals) PWY-6001 0.421 

lipoate biosynthesis and incorporation I PWY0-501 0.440 

L-isoleucine biosynthesis I (from threonine) ILEUSYN-PWY 0.105 

L-isoleucine degradation I ILEUDEG-PWY 0.323 

L-leucine biosynthesis LEUSYN-PWY 0.144 

L-lysine biosynthesis VI PWY-5097 0.093 

L-methionine biosynthesis I HOMOSER-METSYN-

PWY 

0.130 

long-chain fatty acid activation PWY-5143 0.283 

L-ornithine biosynthesis I GLUTORN-PWY 0.088 

L-phenylalanine biosynthesis I PHESYN 0.126 

L-proline biosynthesis II (from arginine) PWY-4981 0.050 

L-serine biosynthesis SERSYN-PWY 0.293 

L-threonine biosynthesis HOMOSER-THRESYN-

PWY 

0.200 
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L-tryptophan biosynthesis TRPSYN-PWY 0.088 

L-tyrosine biosynthesis IV PWY-6134 0.192 

L-valine biosynthesis VALSYN-PWY 0.141 

L-valine degradation I VALDEG-PWY 0.475 

melibiose degradation PWY0-1301 0.880 

methylerythritol phosphate pathway I NONMEVIPP-PWY 0.056 

methylerythritol phosphate pathway II PWY-7560 0.056 

mevalonate pathway I PWY-922 0.015 

N6-L-threonylcarbamoyladenosine 37-modified tRNA 

biosynthesis 

PWY0-1587 0.440 

nitrate reduction II (assimilatory) PWY-381 0.197 

nitrate reduction V (assimilatory) PWY-5675 0.211 

octanoyl-[acyl-carrier protein] biosynthesis 

(mitochondria, yeast) 

PWY-7388 0.146 

oleate biosynthesis III (cyanobacteria) PWY-7587 0.267 

oxygenic photosynthesis PHOTOALL-PWY 
 

palmitate biosynthesis II (bacteria and plants) PWY-5971 0.132 

palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) PWY-6282 0.278 

palmitoleate biosynthesis III (cyanobacteria) PWY-7589 0.200 

pentose phosphate pathway PENTOSE-P-PWY 
 

pentose phosphate pathway (non-oxidative branch) NONOXIPENT-PWY 0.250 

pentose phosphate pathway (oxidative branch) OXIDATIVEPENT-PWY 0.094 

pentose phosphate pathway (partial) P21-PWY 0.111 

phosphate acquisition PWY-6348 0.880 

phosphatidylglycerol biosynthesis II (non-plastidic) PWY4FS-8 
 

phosphatidylinositol biosynthesis II (eukaryotes) PWY-7625 0.322 

phospholipid remodeling (phosphatidate, yeast) PWY-7417 0.440 
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phospholipid remodeling (phosphatidylethanolamine, 

yeast) 

PWY-7409 0.220 

photorespiration PWY-181 0.253 

photosynthesis light reactions PWY-101 0.106 

protein ubiquitylation PWY-7511 0.485 

PRPP biosynthesis I PWY0-662 0.880 

pseudouridine degradation PWY-6019 0.440 

putrescine biosynthesis III PWY-46 0.423 

pyrimidine deoxyribonucleotides de novo biosynthesis I PWY-7184 0.302 

pyruvate decarboxylation to acetyl CoA PYRUVDEHYD-PWY 0.606 

reactive oxygen species degradation DETOX1-PWY-1 
 

ricinoleate biosynthesis PWY-6429 0.200 

S-adenosyl-L-methionine biosynthesis SAM-PWY 0.119 

spermidine biosynthesis I BSUBPOLYAMSYN-

PWY 

0.601 

stearate biosynthesis II (bacteria and plants) PWY-5989 0.165 

sulfate activation for sulfonation PWY-5340 0.566 

superoxide radicals degradation DETOX1-PWY 0.212 

superpathway of adenosine nucleotides de novo 

biosynthesis I 

PWY-7229 
 

superpathway of L-serine and glycine biosynthesis I SER-GLYSYN-PWY 

superpathway of phosphatidate biosynthesis (yeast) PWY-7411 
 

superpathway of pyrimidine deoxyribonucleotides de 

novo biosynthesis 

PWY-7211 
 

superpathway of pyrimidine ribonucleotides de novo 

biosynthesis 

PWY0-162 
 

TCA cycle II (plants and fungi) PWY-5690 0.051 

TCA cycle IV (2-oxoglutarate decarboxylase) P105-PWY 0.111 

thioredoxin pathway THIOREDOX-PWY 0.440 

triacylglycerol degradation LIPAS-PWY 1.000 
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tRNA charging TRNA-CHARGING-PWY 0.335 

UDP-N-acetyl-D-glucosamine biosynthesis II UDPNACETYLGALSYN-

PWY 

0.161 

UDP-D-galactose biosynthesis PWY-7344 0.251 

UMP biosynthesis PWY-5686 0.340 

urea cycle PWY-4984 0.297 

UTP and CTP de novo biosynthesis PWY-7176 0.293 

UTP and CTP dephosphorylation I PWY-7185 0.352 

very long chain fatty acid biosynthesis I PWY-5080 0.440 

very long chain fatty acid biosynthesis II PWY-7036 0.275 

 

Table 24 : Amino acid composition of Microchloropsis sp.  

The weight of total amino acids is taken from (Volkman et al., 1993). The concentration of 

protein was calculated to be 0.23 g protein/g dry weight biomass. The coefficients of amino acids 

in the biomass formation equation are represented in terms of mmol/g dry weight. 

Metabolite 

% weight of 

total amino 

acids 

g/g dry 

weight 

Molar mass 

(g/mol) 
Coefficient 

Glycine 5.7 0.013 75.1 0.178 

L-alanine 7.3 0.017 89.1 0.192 

L-arginine 7.6 0.018 174.2 0.102 

L-aspartate 8.3 0.019 133.1 0.146 

L-cysteine 0.9 0.002 121.2 0.017 

L-lysine 5.7 0.013 146.2 0.091 

L-leucine 7.0 0.016 131.2 0.125 

L-isoleucine 4.8 0.011 131.2 0.086 

L-glutamate 10.4 0.024 147.1 0.165 

L-histidine 2.1 0.005 155.2 0.032 

L-methionine 2.0 0.005 149.2 0.031 
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L-phenylalanine 6.2 0.015 165.2 0.088 

L-proline 7.4 0.017 115.1 0.150 

L-serine 5.4 0.013 105.1 0.120 

L-tyrosine 4.6 0.011 181.2 0.059 

L-tryptophan 1.4 0.003 204.2 0.016 

L-valine 6.0 0.014 117.2 0.120 

L-threonine 6.3 0.015 119.1 0.124 

Hydroxy-L-proline 0.2 0.000 131.1 0.004 

L-ornithine 0.2 0.000 132.2 0.003 

Aminobutyric acid 0.5 0.001 103.1 0.012 

 

Table 25: Fatty acid composition of Microchloropsis sp. 

The weight of total fatty acids is taken from (Volkman et al., 1993). The concentration of fatty 

acids was calculated to be 0.112 g fatty acid/g dry weight biomass. The coefficients of fatty acids 

in the biomass formation equation are represented in terms of mmol/g dry weight. 

Metabolite 

% weight 

of total 

FA 

g /g dry 

weight 

Molar mass 

(g/mol) 
Coefficient 

Tetradecanoyl-CoA 5 0.0056 227.37 0.025 

Pentadecanoyl-CoA 0.5 0.00056 241.39 0.002 

Palmitoyl-CoA 27.8 0.031136 255.42 0.122 

Palmitoleoyl-CoA 31.8 0.035616 253.4 0.141 

Cis-hexadec-7-enoyl-CoA 0.1 0.000112 253.4 0.0004 

(9Z,12Z)-hexadeca-9,12-dienoyl-CoA 0.1 0.000112 251.39 0.0004 

Stearoyl-CoA 1 0.00112 283.47 0.004 

Oleoyl-CoA 8.3 0.009296 281.46 0.033 

Linoleoyl-CoA 1.5 0.00168 279.44 0.006 

Alpha-linolenoyl-CoA 0.2 0.000224 277.43 0.001 

Gamma-linolenoyl-CoA 0.4 0.000448 277.43 0.002 

Di-homo-gamma-linolenate 0.9 0.001008 305.48 0.003 

Arachidonoyl-CoA 4 0.00448 303.46 0.015 
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Eicosapentaenoyl-CoA 16.1 0.018032 301.45 0.060 

 

Table 26 : Sugar composition of Microchloropsis sp. 

The weight of total sugar is taken from (Volkman et al., 1993). The concentration of sugar was 

calculated to be 0.13 g sugar/g dry weight biomass. The coefficients of sugar in the biomass 

formation equation are represented in terms of mmol/g dry weight. 

Metabolite 
% weight of total 

sugar 
g /gDW 

Molar mass 

(g/mol) 
Coefficient 

Arabinose 1.2 0.002 150.1 0.011 

Fucose 8.9 0.012 164.2 0.073 

Galactose 8.8 0.012 180.2 0.065 

Glucose 60.5 0.081 180.2 0.450 

Mannose 2.0 0.003 180.2 0.015 

Rhamnose 11.2 0.015 164.2 0.091 

Ribose 3.9 0.005 150.1 0.035 

Xylose 3.4 0.005 150.1 0.030 

 

Table 27: Chlorophyll composition of Microchloropsis sp. 

The concentration of chlorophyll is taken from (Volkman et al., 1993). The coefficient of 

chlorophyll in the biomass formation equation is represented in terms of mmol/g dry weight. 

Metabolite g /gDW Molar mass (g/mol) Coefficient 

Chlorophyll a 0.017 892.5 0.019 

 

Table 28 : DNA and RNA composition of Microchloropsis sp. 

The concentration of chlorophyll is taken from (Rebolloso-Fuentes et al., 2001). The 

coefficient of precursors in the biomass formation equation is represented in terms of 

mmol/g dry weight. 

Metabolite 
Molar ratio 

(% mol) 

Molar 

mass 

(g/mol) 

Fraction 

(g) 
% weight 

mg/g 

dry 

weight 

Coefficient 

DNA dTMP 22.8 320.19 7300.4 22.36 0.78 0.002 
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dAMP 22.8 331.22 7551.9 23.13 0.81 0.002 

dGMP 27.2 347.22 9444.4 28.92 1.01 0.003 

dCMP 27.2 307.20 8355.8 25.59 0.90 0.003 

Total     32652.4       

RNA 

UMP 22.8 324.18 7391.3 21.75 4.39 0.014 

AMP 22.8 347.22 7916.6 23.30 4.71 0.014 

GMP 27.2 363.22 9879.6 29.08 5.87 0.016 

CMP 27.2 323.20 8790.9 25.87 5.23 0.016 

Total     33978.5       

        

 

 

 

 

Figure 12: Standard curve for sugar estimation 
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Figure 13 : Standard curve for protein estimation 

 



87 

 

 

Figure 14 : Chromatogram of FAME mix (the standard). Refer Table 29 for peak Ids. 
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Table 29 : FAME mix composition and the corresponding peak IDs 

Peak ID FAME components  Peak 

ID 
FAME components 

1 C4:0  20 C18:2n6t 

2 C6:0  21 C18:3n6 

3 C8:0  22 C18:3n3 

4 C10:0  23 C20:0 

5 C11:0  24 C20:1n9 

6 C12:0  25 C20:2 

7 C13:0  26 C20:3n6 

8 C14:0  27 C20:3n3 

9 C14:1  28 C20:4n6 

10 C15:0  29 C20:5n3 

11 C15:1  30 C21:0 

12 C16:0  31 C22:0 

13 C16:1  32 C22:1n9 

14 C17:0  33 C22:2 

15 C17:1  34 C22:6n3 

16 C18:0  35 C23:0 

17 C18:1n9c  36 C24:0 

18 C18:1n9t  37 C24:1n9 

19 C18:2n6c  
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