
Computing Influence

in Location-based Data Sets

Arif Hidayat

A thesis submitted for the degree of Doctor of Philosophy at

Monash Univesity in 2018

Clayton School of Information Technology

Copyright Notice

c©arif hidayat (2018)

I certify that I have made all reasonable efforts to secure copyright permissions for

third-party content included in this thesis and have not knowingly added copyright

content to my work without the owner’s permission.

i

Declaration

This thesis contains no material which has been accepted for the award of any other

degree or diploma at any university or equivalent institution and that, to the best

of my knowledge and belief, this thesis contains no material previously published

or written by another person, except where due reference is made in the text of the

thesis.

Signature:

Print Name: Arif Hidayat

Date: 02 March 2018

ii

Publications during Enrolment

1. Arif Hidayat, Muhammad Aamir Cheema, David Taniar. Relaxed Reverse

Nearest Neighbors Query. In International Symposium on Spatial and

Temporal Databases (SSTD) 2015, Hong Kong, August 26-28, 2015

2. Arif Hidayat, Shiyu Yang, Muhammad Aamir Cheema, David Taniar. Re-

verse Approximate Nearest Neighbor Queries. in IEEE Transactions

on Knowledge and Data Engineering (TKDE), 2017

3. Arif Hidayat, Muhammad Aamir Cheema. QUIET ZONE: Reducing The

Communication Cost of Continuous Spatial Queries. in ACM SIGSPA-

TIAL Workshop on Smart Cities and Urban Analytics, 2017

iii

Thesis including published works declaration

I hereby declare that this thesis contains no material which has been accepted for

the award of any other degree or diploma at any university or equivalent institution

and that, to the best of my knowledge and belief, this thesis contains no material

previously published or written by another person, except where due reference is

made in the text of the thesis.

This thesis includes 3 original papers published in peer reviewed journals or confer-

ences and 1 to be submitted publications. The core theme of the thesis is influence

computation in spatial databases. The ideas, development and writing up of all

the papers in the thesis were the principal responsibility of myself, the student,

working within the Faculty of Information Technology, Monash University, under

the supervision of Dr. Muhammad Aamir Cheema, Dr. Campbell Wilson and Prof.

Balasubramaniam Srinivasan.

The inclusion of co-authors reflects the fact that the work came from active collabo-

ration between researchers and acknowledges input into team-based research.

In the case of Chapter 3,4,5 and 6 my contribution to the work involved the following:

iv

I have renumbered sections of submitted or published papers in order to generate a

consistent presentation within the thesis.

Student signature: Date: 02 March 2018

The undersigned hereby certify that the above declaration correctly reflects the

nature and extent of the student’s and co-authors’ contributions to this work. In

instances where I am not the responsible author I have consulted with the responsible

author to agree on the respective contributions of the authors.

Main Supervisor signature: Date: 02 March 2018

v

Acknowledgements

First of all, I would like to thank God for keep loving me, fulfilling all my needs and

guiding my life. Without His blessing, I will not be able to finish this thesis.

I am thankful to my sincere father, Muhammad Nur Ghozali, for leading me towards

Him and for teaching me the meaning of life.

I am also very thankful to my supervisor Dr. Muhammad Aamir Cheema for his

patience and trust in me. His encouragements have truly raised my self confidence.

He has been an outstanding supervisor for me. He consistently gives a solution for

every problem during my study. He always supports me whenever I need to be away

from the research because of family matters.

I am thankful to Endeavour Postgraduate Scholarship, Australian Government and

all staff in Scope Global Pty Ltd for the financial support and arrangement during

my PhD study.

I am grateful to my supervisors Dr. Campbell Wilson and Prof. Balasubramaniam

Srinivasan as well as all members in spatial database research group, Dr. David Taniar,

Dr. Kiki Maulana Adhinugraha, Yathindu Rangana Hettiarachchige, Tenindra

Abeywickrama, Utari Wijayanti, Anasthasia Agnes Haryanto, Zhou Shou, Ammar

Sohail and Chaluka Salgado for being friendly and helpful.

The most importantly, I am thankful to my lovely wife, Yuni Idiyawati, for her

support, prayer and love. I am also thankful to my parents, grand parents and all

my family and friends for the help and support.

vi

Abstract

Spatial databases have become a critical part of modern applications. Some important

applications of a spatial database include Geographic Information System (GIS),

Computer Aided Design(CAD), image processing and robotics. Spatial queries

retrieve the required geographic data from spatial databases. In this thesis, we

classify spatial queries into two categories based on their objective with regards to

the notion of influence. The first category consists of the queries that aim to find the

important/influential facilities. Some queries that fall into this category include range

queries, k nearest neighbor queries, top-k queries and skyline queries. The second

category is to find the influenced users. Queries in this category include reverse k

nearest neighbor (RkNN) queries, reverse top-k queries and reverse skyline queries.

In this thesis, we present efficient algorithms to solve queries in both categories.

Below, we briefly describe our contributions.

We propose reverse approximate nearest neighbors (RANN) query to comple-

ment the RkNN query. This query considers relative distance between users and

facilities. We propose tight and non-trivial pruning techniques to replace the existing

pruning techniques which are not applicable for the RANN problem. Our extensive

experimental study demonstrates that our algorithm is several orders of magnitude

better than a näıve algorithm as well as a significantly improved version of the näıve

algorithm.

We extend our RANN algorithm for continuous monitoring of RANN queries for

the case when users are continuously moving. We propose a Voronoi based algorithm

that verifies RANNs of a query using only one facility. The experiments show that

our Voronoi-based algorithm is two to three orders of magnitude better than the

extended state-of-the-art RkNN monitoring algorithm.

We present a safe zone based approach to efficiently monitor the result of moving

top-k queries. We introduce non-trivial pruning techniques that are applicable for

any monotonic scoring function. We use the techniques in our algorithm to efficiently

compute the safe zone of queries. The experimental results on real data sets show

that the performance of our algorithm is up to two orders of magnitude better than

a näıve algorithm.

We are the first to present a generic algorithm that focuses on reducing the

communication cost of a variety of continuous spatial queries. We propose a quiet

zone for each object such that the moving object does not need to communicate with

the server as long as it is inside its quiet zone. We show that the cost at objects is

vii

reasonably low and our approach is feasible for devices with limited resources. The

experiments show that our quiet zone approach reduces the communication cost by

up to two orders of magnitude.

viii

Contents

1 Introduction 1

1.1 Finding Important/Influential Facilities 2

1.2 Finding Influenced Users . 3

1.3 Continuous Monitoring . 3

1.4 Research Questions . 4

1.5 Contributions . 5

1.5.1 Snapshot Reverse Approximate Nearest Neighbors (RANN)

Queries . 5

1.5.2 Continuous Monitoring of RANN Queries 5

1.5.3 Continuous Monitoring of Top-k Queries 5

1.5.4 Generic Framework for Continuous Monitoring of Spatial Queries 6

1.6 Thesis Organization . 6

2 Literature Review 7

2.1 Finding Influential Facilities . 7

2.1.1 Range Query . 7

2.1.2 kNN Query . 8

2.1.3 Top-k Query . 9

2.1.4 Skyline Query . 10

2.2 Finding Influenced Users . 10

2.2.1 Reverse Nearest Neighbors (RNN) Query 10

2.2.2 Reverse Top-k Query . 18

2.2.3 Reverse Skyline Query . 19

2.3 Continuous Monitoring of Spatial Queries 20

2.3.1 Continuous Range Query . 20

2.3.2 Continuous NN Query . 20

2.3.3 Continuous Top-k Query . 21

2.3.4 Continuous RkNN Query . 21

2.3.5 Reducing Communication Cost 23

ix

3 Reverse Approximate Nearest Neighbor Queries (RANN) 25

3.1 Introduction . 25

3.1.1 Motivation . 26

3.1.2 Contributions . 27

3.2 Problem Definition . 28

3.3 Pruning Techniques . 29

3.3.1 Challenges . 29

3.3.2 Pruning using a facility point 30

3.3.3 Pruning using the nodes of facility R*-tree 32

3.3.4 Implementation of the pruning techniques 33

3.4 Algorithm . 36

3.5 Experiments . 38

3.5.1 Experimental Setting . 38

3.5.2 Experiment Result . 39

3.6 Conclusions . 43

4 Continuous Monitoring of RANN 44

4.1 Overview . 44

4.2 Proposed Framework . 45

4.3 Efficiently Identifying Significant Facilities 47

4.4 Algorithms . 49

4.4.1 Adding a query . 49

4.4.2 Adding a user . 50

4.4.3 Deleting a query or a user . 52

4.4.4 Handling the movement of users 52

4.5 Experiment . 53

4.5.1 Competitor . 53

4.5.2 Optimization . 54

4.5.3 Experimental Setting . 56

4.5.4 Experiment Result . 56

4.6 Conclusion . 59

5 Efficient Algorithm for Moving Top-k Queries 60

5.1 Motivation . 60

5.2 Problem Definition . 61

5.3 Proposed Solution . 63

5.3.1 Challenges . 64

5.3.2 Safe zone overview . 65

5.3.3 Computing minimum distance between query and preferred

region . 66

x

5.3.4 Computing safe zone . 70

5.4 Experiment . 73

5.4.1 Experimental Setting . 73

5.4.2 Experiment Result . 73

5.5 Conclusions . 75

6 Reducing The Communication Cost of Continuous Spatial Queries 76

6.1 Overview . 76

6.2 Proposed framework . 78

6.3 Computing Quiet Zone . 81

6.4 Extension for Other Spatial Queries 82

6.5 Algorithm . 83

6.6 Experimental Study . 85

6.6.1 Experimental Setting . 85

6.6.2 Experiment Result . 86

6.7 Conclusion . 89

7 Concluding Remarks 90

7.1 Conclusion . 90

7.2 Future Work . 91

7.2.1 Reverse Approximate Top-k (RATk) Query 91

7.2.2 RANN and RATk Queries in Road Network 91

7.2.3 Improving the Effectiveness of Quiet Zone 91

xi

List of Figures

1.1 kNN and RkNN queries . 2

2.1 Range query with R-tree [1] . 8

2.2 Top-k and skyline queries . 9

2.3 First RNN Computation Method . 11

2.4 Property of SAA [2] . 12

2.5 Six-region Method [3] . 13

2.6 TPL Pruning [4] . 13

2.7 TPL Algorithm [4] . 14

2.8 Unpruned area and influence zone (k = 2) [5] 15

2.9 Comparison of SLICE and six-region [5] 16

2.10 TPL++ optimized filtering [6] . 17

2.11 Illustration of Reverse Top-k . 18

2.12 Illustration of Reverse Top-k . 19

2.13 Continuous monitoring of RNN . 22

2.14 RkNN monitoring [5] . 22

3.1 Illustration of RNN query and its variants 26

3.2 Six-regions pruning . 29

3.3 RANN pruning challenges . 29

3.4 Lemma 3.1 . 31

3.5 Lemma 3.3 . 31

3.6 Pruning using MBR . 32

3.7 Trimming an MBR . 34

3.8 Pruning an entry . 34

3.9 Observations 1&2 . 36

3.10 Effect of buffers . 39

3.11 Effect of the x factor (LA data set) 40

3.12 Performance comparison on different real data sets 41

3.13 Effect of varying the number of facilities (100K users) 41

xii

3.14 Effect of varying the number of users (100K facilities) 42

3.15 Comparison with state-of-the-art RNN algorithms 43

4.1 RANN verification . 46

4.2 Significant facility . 46

4.3 Lemma 4.3 . 48

4.4 Safe zone . 48

4.5 Extended rectangle . 54

4.6 Effect of the x factor . 57

4.7 Effect of number of facilities . 57

4.8 Effect of # of users . 58

4.9 Effect of mobility . 58

4.10 Effect of the user’s speed . 59

5.1 Preferred regions . 63

5.2 Safe zone . 65

5.3 Observation . 66

5.4 minimum & maximum score . 67

5.5 Lemma 5.2 . 69

5.6 mindist(q, PRo2:o1) . 71

5.7 Pruning . 71

5.8 Effect of number of objects . 74

5.9 Effect of # static dimension . 74

5.10 Effect of k . 75

6.1 Range query . 79

6.2 Basic quiet zone . 80

6.3 Improved quiet zone . 80

6.4 Computing quiet zone . 81

6.5 Extension for RkNN query . 82

6.6 Initial zone . 84

6.7 Processing q1 . 84

6.8 Processing q2 . 85

6.9 Final quiet zone . 85

6.10 Effect of # queries . 86

6.11 Effectiveness of quiet zone . 87

6.12 Effect of data size . 87

6.13 Effect of query range . 88

6.14 Effect of speed . 88

xiii

List of Tables

2.1 Comparison of RkNN Algorithm Complexity [6] 18

4.1 Experiment Parameters . 56

5.1 Experiment Parameters . 73

6.1 Experiment Parameters . 86

xiv

Chapter 1

Introduction

A spatial database can be defined as an optimized database to store data that defines

the geographic space, such as points, lines and regions. It supports spatial data types

and provides at least spatial indexing and efficient spatial join operations [7]. Some

applications of spatial databases include Geographic Information Systems (GIS),

image processing, Computer Aided Design (CAD), Very Large Scale Integration

(VLSI) and robotics.

Spatial databases have become a critical part of modern applications. This is

due to the rapid development of new technology to collect and store geographic

data as well as the increased demand for analysis and utilization of this data. Many

spatial queries have been introduced to retrieve the geographic objects from spatial

databases. Spatial queries differ from other database queries in two aspects. First,

they support geometric data types, such as points, lines and polygons. Second, these

queries consider spatial relationship between the geographic objects, such as a point

inside a polygon or a line that intersects another line [8]. Some spatial queries

retrieve geographic objects that meet a specific requirement, such as finding closest

objects to a given point or finding all objects within a given region.

In this thesis, we classify spatial queries into two categories. In the first category,

the objective is to find the points in the database that are important for a given

query point. We call these points as the influential points for the query. The notion

of importance can be defined in several different ways depending on the applications.

Assume that a point p is considered to be important for a point q if p is the closest

point to q. In this context, a nearest neighbor query aims to retrieve an important

or an influential data point, i.e., the closest data point to the query point.

In the second category, the objective of the query is to find every point p for

which the query point q is an important point. Since q is an influential/important

point for p, we say that p is influenced by q. In other words, the queries in this

category aim to find the points that are influenced by a given query point. Queries

1

in this category are called reverse queries. For example, a reverse nearest neighbor

query finds every data point p for which q is its nearest neighbor (i.e., closest point).

Reverse queries have attracted significant research attention in the recent years due

to its significance in many fields such as cluster and outlier analysis, decision support

systems and location-based services [9, 10].

Although reverse queries have a broad range of applications for different types of

data sets, for the ease of presentation, in this thesis we discuss these queries in the

context of the data sets that consist of two types of points: facilities and users. A

facility refers to a point of interest (POI) that provides some service to the users,

e.g., a fuel station, a restaurant or a market. A user refers to a data point that uses

the service, e.g., a driver, a diner or a shopper. Next, we present these two types of

queries in detail.

1.1 Finding Important/Influential Facilities

From a user’s perspective, finding the most important facilities (e.g., closest fuel

stations, 3 cheapest nearby restaurants) is essential to help her selecting a facility

that best matches her requirement. Consider an example of a taxi driver that is

looking for nearby fuel stations. A spatial database that manages information about

fuel stations can help the taxi driver to get the most important (i.e., the closest) fuel

station. Some example of queries in this category include k nearest neighbors (kNN)

query, range query, top-k query and skyline query. Next, we describe kNN query and

details of other queries are presented in Chapter 2.

Figure 1.1: kNN and RkNN queries

Given a query point q and an integer k, a kNN query returns k facilities closest

to q. In other words, a kNN query returns a set S that contains k facilities such

that for each facility f ∈ S and for any other facility f ′ /∈ S, dist(q, f) ≤ dist(q, f ′),
where dist(x, y) denotes the distance between the locations of x and y. Consider the

example of Fig. 1.1 that shows some facilities (fuel stations) and some users. The

2

2NNs of u3 in this example are Shell and 7/11.

1.2 Finding Influenced Users

Identifying potential users is important for businesses. Consider the example of a

restaurant. Potential users of the restaurant can be used for market analysis or

targeted marketing, e.g., promotion flyers may be distributed to these users because

they are more likely to be influenced by deals or promotions in the flyers. Similarly,

SMS or email advertisements may be sent to these user.

Influenced users can be found using reverse queries. One of the most popular

reverse queries is Reverse k Nearest Neighbors (RkNN) query. The RkNN query has

attracted significant research attention in the past few years. Given a query facility

f and a set of users U , an RkNN query returns every user u ∈ U which considers f

as one of its k closest facilities. Consider Figure 1.1 that illustrates users looking

for fuel stations. Assume that a user considers a fuel station to be important if it is

one of the two closest fuel stations for her, (i.e., k = 2). As discussed earlier, the 2

nearest fuel stations (2NNs) of u3 are Shell and 7/11. Similarly for u1 and u2, they

consider Shell and 7/11 as their 2 closest fuel stations. R2NN of Shell are u1, u2

and u3 because these users consider Shell as one of their 2 closest fuel stations. u4 is

not R2NN of Shell because Shell is not one of its two closest facilities.

In the recent years, various types of reverse queries have been studied such as

reverse top-k queries and reverse skyline queries. More details of these queries are

provided in Section 2.

1.3 Continuous Monitoring

A snapshot query is a query that requires the result to be computed only once

considering the current snapshot of the data. For example, a user may issue a

snapshot 2NN query to find its two closest fuel stations considering her current

location. She may then decide to visit or not visit a particular fuel station. In

contrast to a snapshot query, a continuous query assumes that the underlying data

is continuously changing and requires the results to be continuously updated with

the changes in the underlying data. For example, in many real world applications,

facilities and/or users may be continuously moving. A driver may issue a continuous

2NN query to continuously monitor her 2 closest facilities as she travels across her

route.

Most of the studies for continuous monitoring of spatial queries use a client-server

model. In this model, the moving clients send their locations to the server after every

time unit and the server computes the query result accordingly and sends them back

3

to the querying user. Two major challenges for continuous monitoring are as follows.

• Reducing computation cost. The query results may need to be recomputed

whenever a user or a facility changes its location. This may result in a huge

computation cost.

• Reducing the communication cost. To maintain the correctness of the query

results, a user or a facility is required to report its location to the server every

time it changes its location. Since there may be a lot of users or facilities in

the system, the communication cost that is triggered by these location updates

may increase significantly.

1.4 Research Questions

Below, we describe research questions (RQ) that are investigated in this thesis.

• RQ1 - How to better capture and efficiently compute the influence of facilities

by considering the relative distance between users and facilities ?

This work was motivated by our observation that the RkNN query may fail

to retrieve the potential users of a facility. An RkNN query considers relative

ordering of the facilities based on their distances to the users and ignores

their actual distances from the users. We show that the RkNN query may be

unable to retrieve the users that are actually influenced by the query point. To

better capture the notion of influence, we propose reverse approximate nearest

neighbor (RANN) query. More details are presented in Chapter 3.

• RQ2 - How to efficiently monitor continuous RANN queries?

In this work, we aim at continuously monitoring RANN queries in the case

where users (e.g., taxi drivers) are continuously moving and facilities (e.g., fuel

stations) do not change their locations.

• RQ3 - How to continuously monitor k most influential facilities for a user?

Given a moving user, in this work, we continuously monitor k most impor-

tant/influential facilities for the user where the importance of each facility is

computed using a monotonic scoring function defined by the user.

• RQ4 - How to reduce the communication cost for continuous monitoring of

concurrent various types of spatial queries?

Most of the existing algorithms for continuous spatial queries focus on reducing

the computation cost. Since the communication cost may also be very high, it is

important to propose an algorithm that focuses on reducing the communication

cost for continuous monitoring of spatial queries.

4

1.5 Contributions

In this section, we summarize our contributions in this thesis. For each of the

above-mentioned research questions, we describe our contributions below.

1.5.1 Snapshot Reverse Approximate Nearest Neighbors (RANN)

Queries

We propose a new definition of influence and introduce RANN queries that better

capture the notion of influence. We show that the existing pruning techniques cannot

be applied or extended for RANN queries. Based on several non-trivial observations,

we propose a tight pruning technique and utilize it in our efficient algorithm to solve

the snapshot RANN queries. We design a non-trivial technique as our competitor.

Our extensive experiments show that our algorithm is several orders of magnitude

better than the competitor.

This research [11] was published in International Symposium on Spatial and

Temporal Databases (SSTD) 2015.

1.5.2 Continuous Monitoring of RANN Queries

In this study, we extend our work on snapshot RANN queries for the continuous

RANN queries. We propose a Voronoi-based algorithm to efficiently monitor concur-

rent RANN queries. An alternative algorithm for snapshot RANN queries was also

presented as a by-product of our Voronoi-based technique. We extended the state-of-

the-art algorithm for continuous RkNN queries to handle continuous RANN queries

and compare it with our algorithm. We conduct extensive experiments to demon-

strate that our Voronoi-based algorithm significantly outperforms the state-of-the-art

algorithm.

This research [12] was published in IEEE Transactions on Knowledge and Data

Engineering (TKDE) 2017.

1.5.3 Continuous Monitoring of Top-k Queries

We propose a safe zone based approach to efficiently monitor the result of moving

top-k queries. Safe zone is an area such that the results remain unchanged (and

thus are not required to be recomputed) as long as the query remains inside it. We

develop pruning techniques to efficiently construct the safe zone of the queries. We

conduct extensive experiments on real data set to evaluate the effectiveness of our

approach. The experiment result shows that our algorithm is up to two orders of

magnitude better than a näıve approach. This research will be soon submitted to

The International Journal on Very Large Databases (VLDBJ).

5

1.5.4 Generic Framework for Continuous Monitoring of Spatial

Queries

We present a generic framework to efficiently monitor the results of spatial queries.

To the best of our knowledge, we are the first to present a generic framework that

focuses on reducing the communication cost for many different types of spatial

queries, including range queries, window queries, reverse nearest neighbor queries

and reverse approximate nearest neighbor queries. Our extensive experiments on

real data set shows that our algorithm is one order of magnitude better in terms of

communication cost than the traditional client-server approach.

This research [13] was published in International Workshop on Smart Cities and

Urban Analytics (urbanGIS) at ACM SIGSPATIAL 2017.

1.6 Thesis Organization

Below, we present the structure of the rest of this thesis.

• Chapter 2 presents a review on the related work.

• Chapter 3 describes our work on snapshot reverse approximate nearest neighbor

queries.

• Chapter 4 covers our Voronoi-based technique and algorithm for continuous

monitoring of reverse approximate nearest neighbor queries.

• Chapter 5 presents our research on continuous monitoring of top-k queries.

• Chapter 6 describes our technique, named Quiet Zone, to reduce the communi-

cation cost of continuous spatial queries.

• Chapter 7 concludes our research and describes several possible directions for

future work.

6

Chapter 2

Literature Review

This chapter provides background on spatial queries that are related to our study. In

Section 2.1, we describe the related work on queries to find the influential facilities.

Section 2.2 presents the works to find the influenced users. Section 2.3 provides an

overview of studies on continuous spatial queries.

2.1 Finding Influential Facilities

2.1.1 Range Query

Given a query point q and a positive value r, a range query retrieves all objects

that lie within distance r from q. Formally, a range query returns every object

o for which dist(q, o) ≤ r, where dist(q, o) represents the distance between q and

o. Range queries have been studied in various environments, such as in Euclidean

space, where Eucliden distance is used to represent the distances between users and

facilities [1, 14, 15, 16, 17, 18] and road networks, where distances are computed

from the shortest path between users and facilities [19, 1, 20, 21, 22, 23]. It also

has been studied in different types of queries, such as snapshot queries, where

the results are computed only once considering the snapshot location of the users

and facilities [1, 15, 17] and continuous queries, where the results are continuously

updated due to the changes in underlying data sets [24, 25, 26, 27]. Most of the

works on snapshot range query in Euclidean space use R-tree [28] to index the spatial

objects. R-tree groups the spatial objects based on their closeness and binds them in

a minimum rectangle. The grouping continues until the top level which consists of a

single root.

Fig. 2.1 illustrates the use of R-tree to answer a range query q. Firstly, the

root is retrieved and the entries that overlap the range (e.g., E1, E2) are recursively

expanded since they may contain the query results. Entries that do not overlap the

7

Figure 2.1: Range query with R-tree [1]

range (e.g., E4, E5) are skipped. If the overlapped entry is a point (e.g., h), it is

returned as the query result. The search terminates after all entries are processed [1].

2.1.2 kNN Query

As mentioned in Section 1.1, a kNN query is to find the k closest objects to the

query point. kNN queries have been studied in Euclidean space, where the distance

is measured as the straight line distance between two objects [29, 30, 31], in road

networks, where distance is the length of the shortest path between two objects’

locations [32, 33, 34, 35, 36, 37, 38], in indoor space, where distance measurement

considers indoor entities, such as rooms and doors, which enable and constrain indoor

movement [39, 40, 41, 42] and in obstructed space, where distance is measured as the

shortest path connecting two objects without crossing any obstacle [43, 44, 45, 46]. It

also has been studied in various settings, such as queries with uncertain data, where

due to various factors, such as delay, loss, or limitation of equipment, the exact data

about objects are not always available [47, 48, 49, 50], in terrains environment, where

the elevation information is taken into consideration [51, 52, 53, 54], in snapshot

queries, where the results are computed based on the snapshot locations of the

objects [55, 29, 56, 57, 58, 31, 59, 60] and in continuous queries, where the query

result are continuously monitored [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71].

Most of the algorithms in snapshot kNN queries use branch and bound paradigm

on R-tree. These works follow either depth-first (DF) [29] or best-first (BF) [30]

traversal to retrieve the kNN from R-tree. To solve a NN query, DF starts with the

root and recursively visits the entries based on the minimum distance to the query

until a point which is a potential NN is found. Then, DF performs backtracking to

the upper level where it only visits entries whose distance to the query is smaller than

the distance between query and the current NN candidate. In BF, the algorithm

maintains a priority queue PQ which stores R-tree entries sorted based on the

8

minimum distance to the query. BF recursively visit entries e in PQ, if e is an

intermediate node, its child entries are inserted into PQ. If e is a point, it is reported

as an actual NN of the query. Both algorithms can be easily extended for k > 1.

2.1.3 Top-k Query

Unlike range and kNN queries that only consider distances between users and facilities,

a top-k query considers multiple attributes of the facility, where one of the attributes

is the distance to the query point. Formally, a top-k query retrieves k facilities that

have the best scores. The score of each facility is computed using a user’s defined

scoring function w. Preference function of a user usually is a linear function with a

weight assigned to each attribute that shows the importance of the corresponding

attribute for the user.

Consider a user (u) that is looking for the most important fuel stations in Fig. 2.2.

The user’s scoring function is w = (0.6 ∗ price) + (0.4 ∗ distance) as shown in the

figure and assume that the lower score is more preferred. Based on w, the score of f1

(resp. f2, f3, f4) is 3, 4 (resp. 2.6, 4.6, 3.8). The top-2 fuel stations for u are f2 and

f1.

Figure 2.2: Top-k and skyline queries

Top-k queries have been extensively studied under various query models [72,

73, 74, 75, 76, 77], such as top-k selection query that report k best tuples, top-k

join query that combines a set of relations based on a join condition and top-k

aggregate that reports k best group of tuples. It has been studied with uncertain

data, where exact data are not always available [78, 79, 80, 81]. It also has been

studied in different scoring functions [82, 83], such as monotonic or generic scoring

functions. Top-k spatial queries, where one of the considered attributes is the distance

between users and facilities, also have attracted significant research attentions in

9

recent years [84, 85, 86, 87, 88, 89, 90, 91, 92] . Most recent works also consider

textual relevance of the objects (top-k spatial keyword queries), where integrating

inverted index on top of R*-tree is shown as the best indexing scheme [88].

2.1.4 Skyline Query

Similar to top-k query, in a skyline query, multiple attributes of the facilities are

considered by the user to select a service provider. Differently, a skyline query does

not require the user to specify her preference function. Consider the example of a

user u looking for a fuel station in Fig. 2.2. The user may be unable to define a

suitable scoring function due to various reasons such as lack of domain knowledge

and incompatible attributes (e.g., km vs dollars). A skyline query tries to address

this issue.

In formal definition, a skyline query retrieves all facilities that are not dominated

by any other facility. Given a user u, a facility f dominates another facility f ′ if f is

preferable for u than f ′ in at least one attribute and is not worse than f ′ on other

attributes. In the example of Fig. 2.2, assume that u considers price and distance to

choose the fuel station, we say that f2 dominates f3 because f2 is better in price and

distance to u than f3. In this case, u will not likely to choose f3 as the preferred

fuel station. In Fig. 2.2, f1 is not dominated by f2 because even though f1 is more

expensive than f2, it is closer to u. Skyline consists of every facility that is not

dominated by any other facility [93] of u. In this example, the skyline of u contains

f1 and f2.

Skyline query was firstly introduced in [93]. It has been studied in various

environments, such as in Euclidean that uses the Euclidean distance [94, 95, 96, 97]

and in road networks that use network distance [98, 99, 100, 101]. It also have

been studied in various types of query, such as in snapshot queries, where the result

are computed and reported once [93, 95, 102, 94] and in continuous queries, where

the results are continuously updated according to updates in the underlying data

sets [103, 104, 105, 106]. It also has been studied in uncertain data [107, 108, 109, 110],

where due to some factors, the exact data of the objects are not available.

2.2 Finding Influenced Users

2.2.1 Reverse Nearest Neighbors (RNN) Query

Reverse Nearest Neighbors (RNN) query is a variant of nearest neighbors query.

Given a D-dimensional data set S and a query point q, Reverse k Nearest Neighbors

(RkNN) returns every user u in S which considers q as one of its k closest objects.

It has attracted considerable attention ever since it was introduced in [10], where

10

it was proposed to be useful in various purposes, such as decision support system,

profile-based marketing, referral system and document repositories maintenance.

In [10], RNN query is answered by pre-computing a circle for each data object

p with p as the centre and the distance of p to its nearest neighbor be the radius

of the circle. With this computation, the nearest object of p is included inside the

circle. Then, for any query q, all circles containing q are recalled and their centres

are returned as the query answer. Fig. 2.3 shows the steps when nearest neighbor

for each object is pre-computed and then used to get centre of circles a and b as

the RNN of query object q. Improvement was proposed in [111] but it still relies on

pre-computation which cannot handle updates in dynamic environment efficiently.

(a) Step 1: Pre-compute Nearest Neighbor (b) Step 2: Find RNN

Figure 2.3: First RNN Computation Method

Several most significant algorithms have been introduced without using pre-

computation to solve RkNN query, such as Six-Region [112], TPL [113], FINCH [114],

InfZone [5] and SLICE [6]. Many variations to static RNN also have been studied,

such as continuous RkNN query, where the results are continuously monitored [115,

116, 117, 118], probabilistic RkNN query, that handles unavailability of exact values of

the objects [119, 120, 121, 122], RkNN query in road networks, where the distance is

mesured as the distance of the shortest path that connects two objects [123, 124, 125]

and reverse approximate NN query, that considers the relative distance betwenn

objects [126, 12]. Since our works are on snapshot and continuous RkNN queries in

Euclidean space, we will be focusing to provide previous significant works related to

those area.

Six-region introduced by Stanoi et, al [112] is the first method which not relies

on pre-computation. SAA algorithm in Six-region method relies on interesting

properties, (i) for 2-Dimensional data set, RNN of query point q is never be more

than six and (ii) for a q and a region Si, NN(q)=RNN(q) or there is no RNN(q) in

11

Si. Consider object O1 in region S0 in Fig. 2.4. It is the nearest neighbor of q but

not the RNN of q, since there exists object O0 which is closer to O1. Then there is

no RNN of q in region S0.

Figure 2.4: Property of SAA [2]

Based on those properties, SAA applies two steps, filtering and verification to

answer RNN query. In filtering, SAA utilizes the k-nearest facility of q in each

region to define the pruning area. Any user u lies inside this area has distance to

q more than its distance to the k-nearest facility of q and therefore cannot be the

answer of RkNN query. Consider Fig. 2.5(a) and assume k = 2, d is the second

closest facility object to q, therefore an arc centered at q with radius dist(d, q) defines

the pruning area in region P2. Any user object u lies in shaded pruning area has

dist(u, q) > dist(d, q), hence cannot be R2NN answer of q.

Defined pruning areas are then used to filter users and those which are not filtered

become candidates of the query answer. In the following verification phase, these

candidates are retrieved and verified using boolean range query. The query uses a

circle centered at the candidate point u with radius = dist(u, q) and immediately

return true if k facility objects are found inside this circle. Consider a candidate

point u in Fig. 2.5(b), the boolean range query issued from u will traverse facility

R-tree to check whether k facilities objects are lie inside its circle. u is the query

answer of R2NN(q) since there is only one facility object (b) found in it.

TPL [4] was the first to use half-space pruning to solve RkNN query. The

half-space is created using perpendicular bisector between q and a facility point. Let

AB be the line connecting two points A and B, and M be the middle point of AB,

the perpendicular bisector ⊥ (A,B) is perpendicular to line AB and passes through

M . The use of half-space pruning which significantly reduces the search space makes

TPL to be very popular and is adopted in many subsequent works such as in [122],

12

(a) Step 1: Filtering (b) Step 2: Verification

Figure 2.5: Six-region Method [3]

[5] and [114].

The perpendicular bisector of q and any object p divides the space into two half-

planes, PL(p) which contains p and PL(q) which contains q. Consider an example

in Fig. 2.6(a), any point in PL(p) cannot be RNN of q as its distance to p is smaller

than to q. Similarly for MBR N1, it can be pruned if it is completely inside PL(p) as

it cannot contain RNN of q. Different case is shown in Fig. 2.6(b), in this example,

even though MBR N1 is not entirely fall inside one half-plane, PL(p1) or PL(p2), it

is still can be pruned as it lies inside the union of PL(p1) and PL(p2).

(a) Pruning with 1 point (b) Pruning with 2 points

Figure 2.6: TPL Pruning [4]

In searching RNNs of q, TPL uses two steps called filtering and refinement. It

indexes objects with R-tree and traverses it in Best-First Manner while maintaining

13

a min-heap containing entries of the R-tree. Initially, TPL algorithm visits the

root of R-tree, open and insert its children to the heap. Entries in the heap which

are pruned according to the half-space pruning rule are inserted into a refinement

set Srfn and those which cannot be pruned are inserted into a candidate set Scnd.

Consider example in Fig. 2.7, after the root and MBR N10 are opened, entries in

the heap are N3, N11, N2, N1, N12. p1 is then accessed and inserted into Scnd as

dist(p1, q) < dist(N11, q) whereas p3 is inserted into Srfn since it lies in half-plane

PL(p1) and will be used to verify entries in candidate set in the refinement phase.

Figure 2.7: TPL Algorithm [4]

TPL algorithm keeps points and nodes encountered in filtering phase in sets of

Prfn and Nrfn to verify entries in candidate set. In this way, the algorithm only

traverses the R-tree once and does not issue boolean range query in verifying the

candidates. Verification is carried out in rounds, where in each round, a candidate

point is verified with entries in Prfn or Nrfn. A candidate p is discarded if there is

a point p′ ∈ Prfn such that dist(p, p′) < dist(p, q) or there is a MBR N such that

minmaxdist(p,N) < dist(p, q).

FINCH [114] use half-space pruning as in TPL to define pruning region. However,

instead of using subsets of facility objects to filter the entries, it uses a convex polygon

covering the unfiltered region. Any object inside this polygon can be filtered. FINCH

algorithm approximates a convex polygon to avoid such expensive subset filtering

as used in TPL. All objects inside this polygon are candidate of R2NN of q. These

objects are then verified using boolean range query in the subsequent phase.

INFZONE (influence zone) [5] was introduced to improve the verification in

RkNN query. Influence zone is an area for which every object inside is guaranteed to

be RkNN of q. Using this zone, RkNN of a query point is obtained by calculating

the zone and locating users inside it.

Even though it is also computed using half-space approach, Influence zone is

different from unpruned area defined in previous algorithms utilizing half-space

14

method. Consider an example in Fig. 2.8 where five facility points are shown

(a, b, c, d, q) and half-space pruning is applied with k = 2. In Fig. 2.8(a), perpendicular

bisector between q and two points a and b are drawn (Ba:q and Bb:q). Points c and d

are pruned as they are in two half-planes. The unpruned area is shown shaded. In

this area, a point can not be guaranteed to be RkNN of q as we still have to consider

all other bisectors. As an example is point p, even though it lies in unpruned area,

it is not R2NN of q since there are two facility points a and c which are closer to

p. On the other hand, the shaded area in Fig. 2.8(b) which is constructed using

perpendicular bisectors of all facilities is influence zone. After bisectors (Bc:q and

Bc:q) are also considered, every point lies in unpruned area is guaranteed to be R2NN

of q.

(a) Unpruned area (not influence zone) (b) Influence zone (influence zone)

Figure 2.8: Unpruned area and influence zone (k = 2) [5]

Influence zone such above example is computed based on näıve approach of using

half-space of all facilities. However, the author proposed set of rules to significantly

reduce the number of facilities which should be considered in computing the zone.

Initially the influence zone is set to be the whole data space, each time a facility

point is encountered, its half-plane is used to update the zone by removing space

which are pruned by k facilities. An entry e is not considered in computing influence

zone if for every vertex v of the most current influence zone, its minimum distance

to v is greater than distance of v to q, or mindist(e, v) > dist(v, q).

SLICE [6] applies filtering strategy used in six-region approach and bring back

region based pruning to be an eminent approach for solving RkNN query. Unlike

six-region which always has 6 partitions, SLICE divides data space in arbitrary

number of partitions. Pruning strategy in SLICE is more powerful than that in

six-region. This is because in SLICE a facility f which lies in a partition P prunes

15

at least as much area as pruned in six-region in P . Moreover, f can also prune space

outside P as long as maxAngle(f, P) < 90◦. Consider an example in Fig. 2.9(a),

area pruned by f with SLICE is shaded while area in P2 pruned with six-region is

bounded by dotted arc. SLICE prunes larger space with higher number of partitions

such as shown in Fig. 2.9(b), however increasing number of partitions will increase

computational overhead. Therefore, choosing an appropriate number of partitions

is important, which based on experiment the best performance is obtained with 12

partitions.

(a) SLICE prunes more area (b) Prunes larger space with more partitions

Figure 2.9: Comparison of SLICE and six-region [5]

In filtering, SLICE maintains k-smallest upper arc for each partition P which

is called bounding arc (rBP). Any point in partition P and lies outside rBP fulfils

dist(p, q) > rBP which means that it is pruned by k facilities and therefore can be

filtered from candidates of query answer. In verification of candidates, SLICE does

not use boolean range query, instead it uses significant facility to verify whether a

candidate point as RkNN of q. A facility point f is significant facility of partition

P if its lower arc is smaller than bounding arc of P . In this situation, f can prune

candidates in P . SLICE maintains an ascending ordered list of significant facility for

each P called sigList. To verify a candidate user u, entries in the list is iteratively

accessed. If a facility prunes u, a counter is incremented and if it equals to k, u is

filtered and cannot be the query answer. The algorithm stops whenever it found that

for a facility f currently accessed in sigList, rLf :P > dist(u, q).

TPL++ [6] is the most current proposed method to solve RkNN query. It

utilizes and improves TPL strategy with two optimization approaches. First, it

improves filtering in TPL from O(km) to O(m) by proposing the use of disjoint and

different size of subsets of facility to filter users. Consider an example in Fig. 2.10,

16

the entry e is filtered as it is pruned by two subsets {a, b} and {c}.

Figure 2.10: TPL++ optimized filtering [6]

The facilities in Sfil is iteratively accessed to prune an entry e. If e is pruned by

accessed facilities, a counter is incremented. However, not all facilities can completely

prune e, in this situation etmp is used to store part of e which cannot be pruned by a

subset of facilities and will be initialized as e for next accessed subset. It continues

until etmp becomes empty and the counter is incremented accordingly. If the counter

equals to k than e can be filtered safely.

The second optimization is by including more facility points in Sfil. Consider

Fig. 2.10, in TPL facility point d is not inserted in Sfil as it is pruned by other

facilities, but TPL++ inserts it and does not perform check in point level. TPL++

only checks intermediate or leaf node whether it can be pruned or not. It increases

filtering power and reduces IO and CPU cost by not checking facility point. This

benefit outweigh the increasing filtering cost incurred by increasing size of Sfil.

A comprehensive experimental study of most notable RkNN was carried out

in [6]. The comparison of computation complexity of each algorithm is shown in

Table 2.2.1.

17

Table 2.1: Comparison of RkNN Algorithm Complexity [6]

Filtering

Phase

Six-reg TPL TPL++ FINCH InfZone SLICE

Filter a f node O(1) O(km) O(m) O(m) O(m) O(t)

Filter a f point O(1) O(km) O(m) O(logm) O(m) O(t)

Add a f in Sfil O(logk) O(logm) O(logm) O(m2) O(m2) O(tlogm)

Verification

Phase

Filter a u node O(1) O(km) O(m) O(m) O(m) O(t)

Filter a u point O(1) O(km) O(m) O(logm) O(logm) O(1)

Expected candi-

dates

6k|U |
|F |

k|U |
|F | to
6k|U |
|F |

k|U |
|F | to
3.1k|U |

|F |

k|U |
|F | to
6k|U |
|F |

k|U |
|F | < 3.1k|U |

|F |

f : facility, u: user, m: number of facilities in Sfil, t: number of partitions for SLICE, |F |: total number of

facilities in the data set, |U |: total number of users in the data set

2.2.2 Reverse Top-k Query

Top-k query is a rank aware query which retrieves k objects considered by users as

the best match of their preferences. While top-k query provides information for users

that seek best products, reverse top-k query focuses on facilities’ perspective who are

interested to know the influenced users. Given a facility and a set of users with their

scoring functions, a reverse top-k query returns users which consider the facility as

one of their top k facilities [127].

Figure 2.11 illustrates users that are looking for the most important fuel stations

based on their scoring functions. The scoring function covers two attributes, distance

and price where lower value in these attributes is preferable. Top-2 fuel stations

for all users are shown in the figure. The reverse top-2 of Shell are u1, u2 and u3

because they consider Shell as one of their top-2 fuel stations.

Figure 2.11: Illustration of Reverse Top-k

Reverse top-k Threshold Algorithm (RTA) [127] was the first algorithm to solve

18

reverse top-k query. Its main idea is to use threshold to avoid top-k query evaluation

of all objects such happens in naive solution approach. It ignores preference weighting

vectors which cannot contribute to the result. Reverse top-k computation was also

used to identify the most m influential products on market [9]. Identifying the

most influential objects is formulated as a query that retrieves m products with

highest influence score. Reverse top-k computation was also utilized to monitor the

popularity of location from the perspective of mobile users [128]. A study to solve

multiple top-k queries [129] was also applicable for reverse top-k query. Branch and

Bound (BBR) algorithm [130, 131] use score bounds on data object and MBR to

provide high level pruning of weighting vectors.

Spatial reverse top-k queries consider the spatial distance between users and

facilities. Spatial reverse top-k queries have been studied in Euclidean space, where

distance is measured from the straight line that connecting two objects [132] and in

road networks, where distance is computed as the total length of segments connecting

two objects [133].

2.2.3 Reverse Skyline Query

A novel variant of skyline operator is Reverse Skyline Query (RSQ). An RSQ retrieves

all users in a data set that have query point as a member of their skyline. RSQ

was firstly introduced in [134] to observe the influence of a facility with respect to

dominated facilities. The influence, in this case, intuitively can be defined as users

for which the query facility is one of their skyline. In the example of Fig. 2.12, the

reverse skyline of 7/11 are u1, u2 and u3 because they all have 7/11 as a member of

their skyline.

Figure 2.12: Illustration of Reverse Top-k

Many algorithms have been proposed to solve RSQ, including Branch and Bound

Reverse Skyline, Reverse Skyline using Skyline Approximations [134], Full-Reuse-

19

Based Reverse Skyline and Global-Skyline-Based Reverse Skyline [135]. Some other

algorithms were also proposed for solving RSQ for particular situations which are

not relevant with our work. These algorithms including reverse skyline query for

uncertain data [136], reverse skyline query with arbitrary non-metric similarity

measures [137] and reverse skyline queries in wireless sensor networks [138]. Studies

in Non traditional RSQ which are relevant with our topics include bichromatic reverse

skyline [139] and that of answering why-not-questions in reverse skyline query [140]

which defines safe region for moving reverse skyline query.

2.3 Continuous Monitoring of Spatial Queries

2.3.1 Continuous Range Query

Given a query q and a value of range r, a continuous range query is to continuously

find all objects within distance r from q. Many algorithms have been proposed for

continuously monitoring range queries. MobiEyes [24] delegates some computation

load to the client side to reduce the server load during the monitoring of the queries.

In [141], an adaptive indexing scheme is used to model the moving objects and

queries. Kalashnikov et al. [142] uses grid structure to efficiently monitor continuous

range queries.

Hu et al. [143] propose a safe zone for each object such that the results of the

queries do not change if the object remains inside its safe zone. This algorithm is not

applicable in the scenario when the queries are moving. A query indexing method

called containment-encoded squares(CES)-based indexing is introduced in [144] to

easily identify the moving objects that do not need to be evaluated. In [18], a safe

zone is computed for each moving query to efficiently monitor the query results.

2.3.2 Continuous NN Query

Different from snapshot kNN, continuous kNN query continuously reports the real

time k closest objects to the query when either query or objects continuously change

their locations. Continuous kNN query has attracted significant research attentions in

the past few years. Tao et al. [65] introduce time-parameterized queries (TP queries)

with an assumption that motion pattern of the query is known. A TP query reports

the NN of the query as well as its validity period. Zhang et al. [145] use TP queries

to identify the safe zone of moving kNN queries. Some other works [146, 64, 147]

employ grid structure to continuously monitor the kNN of queries.

20

2.3.3 Continuous Top-k Query

In Chapter 5, we study the continuous monitoring of moving top-k query. It

continuously monitor the k most interesting facilities for a moving user with a

particular scoring function.

The first work on moving top-k query was presented in [148]. The authors use

the weighted distance as the ranking function and utilize multiplicatively weighted

Voronoi cells to construct the safe zone for each query. They proposed Incremental

Border Distance algorithm that prunes objects which cannot contribute to the safe

zone. Huang et al. also proposed a safe zone based approach to monitor the result

of moving top-k queries [149]. They use a more general ranking function compared

to the ad-hoc one in [148]. These works were designed for the moving topk spatial

textual queries. They also consider the text relevancy of the objects, which is slightly

above the scope of our study.

2.3.4 Continuous RkNN Query

The first algorithm for continuous monitoring of RNN queries was presented in . In

this work, objects’ velocities are assumed to be known. Xia et al. [116] proposed

the first algorithm that does not assume any knowledge about the objects’ motion

pattern. This algorithm works based on six region approach and monitors the RNN

queries by monitoring the unpruned area and the circles around the candidate objects.

Consider the example of Fig. 2.13(a). The RNN of the query may change if one of

the following cases occurs:

1. The query or one of the RNN candidates changes its location. In Fig. 2.13(a),

this happens if either q, a, b, c, d, e or f moves to another location

2. The nearest neighbor of a candidate object is changed. In Fig. 2.13(a), it

happens if a moving object enters or leaves the circles

3. A moving object enters the unpruned region (The region shown in white in

Fig. 2.13(a)

Kang et al. [117] proposed RNN monitoring algorithm based on half-space (TPL)

pruning approach that also monitors the unpruned area and the circles around the

candidate objects. They use three observations above and apply grid structure to

mark the monitored area. Consider the example of Fig. 2.13(b). The cells that overlap

with the unpruned region and the monitored circles are marked. The movement of

an object in a marked cell triggers the update of RNN.

The first RkNN monitoring algorithm was proposed by Wu et al. in [114]. In

this algorithm, kNN queries are issued in each region and the users that are closer

21

(a) Six regions based monitoring [116] (b) Half-space based monitoring [117]

Figure 2.13: Continuous monitoring of RNN

than the k-th NN become the candidates and are verified if the query point is one of

their k closest facilities. The RkNN of queries are monitored using the circle that

contains k nearest facilities for each candidate object. Cheema et al. [118] proposed

an algorithm, called Lazy Updates, that reduces the number of times pruning phase

is executed. In this algorithm, they assign a safe region for each moving object such

that if the object stays in the region, the pruning phase is not needed to be called.

Cheema et al. [5, 150] present the state-of-the-art algorithm for continuous RkNN

queries. They introduce the notion of influence zone of a query q which is an area

such that a user u is a RkNN of q if and only if u is inside this area. Thus, once

the influence zone of a query is constructed, the system can efficiently monitor the

RkNNs of a query by monitoring the users that enter or leave the query’s influence

zone.

q A

B

C
DE

F

G

H

I

c
1

c
2

Figure 2.14: RkNN monitoring [5]

22

To efficiently monitor the users that enter or leave the influence zone, the space is

partitioned using a grid containing N ×N cells. A cell is called an interior cell if it

is fully contained by the influence zone. A cell is called a border cell if it is partially

contained by the influence zone. Consider polygon ABCDEFGHI in Fig. 2.14 which

is the influence zone of q. The dark shaded cells are the interior cells and the light

shaded ones are the border cells. For each cell, the algorithm maintains two lists

called interior list and border list. The interior (resp. border) list of a cell c consists

of every query q for which the cell c is an interior cell (resp. a border cell). Whenever

a user u enters a cell c, it becomes the RkNNs of every query in the interior list of c.

The algorithm also checks every query in the border list of c and checks whether u is

inside its influence zone or not and updates the results accordingly.

2.3.5 Reducing Communication Cost

Continuous monitoring of spatial queries have been studied in various types of query,

such as in nearest neighbour (NN) query [113, 145, 70, 151, 152, 146, 147, 153],

range query [154, 25, 24, 26, 27, 18] and reverse nearest neighbour (RNN) query [66,

68, 116, 117, 114, 5, 155]. Papadias et al. [146] presented conceptual partitioning

(CPM) to continuously monitor the nearest neighbour of queries. It uses a circle C

to maintain the query result. The result is re-computed from the scratch if the NNs

that move outside C are more than the outer objects that move into C. Otherwise,

the k objects inside C that are closest to the query are set as the result.

Most of the existing works for continuous monitoring of spatial queries focus

on reducing computation cost, and reducing communication cost does not receive

considerable attentions. Some of the works that focus on reducing communication

cost include [24], [143], [156], [118] and [157]. Gedik et al. [24] proposed

MobiEyes to reduce the computation and communication cost of range queries

monitoring. MobiEyes delegates some computation load to the client objects. Wang

et al. [26] introduced the concept of query view such that the query results are

affected only if there is object that changes its current query view. A distributed

server infrastructure was presented in [27] to partition the service region into several

zones that can cooperatively monitor the results of reverse nearest neighbour queries.

Hu et al. [143] proposed a generic framework to continuously monitor the result of

range and kNN queries over moving object. For each object, they define a safe zone

such that the result of all queries remain unchanged as long as the object lies inside

the safe zone. The framework was designed to handle range and nearest neighbour

queries.

In [156], a threshold-based algorithm was presented to handle the continuous

monitoring of nearest neighbour of queries with minimum communication overhead.

Cheema et al. [118] and Emrich et al. [157] introduced a rectangular shaped of safe

23

zone for each moving object to minimize the communication cost between clients

and server in the continuous reverse nearest neighbour queries. Note that these

studies were designed to handle specific type of spatial queries. In Chapter 6, we

propose a generic framework that can be easily applied to handle many types of

spatial queries.

24

Chapter 3

Reverse Approximate Nearest

Neighbor Queries (RANN)

In this chapter, we introduce an alternative definition of influence by considering

relative distance between users and facilities. It complements the influence definition

in reverse k nearest neighbor queries (RkNN) that uses relative ordering of facilities

based on their distances from the users.

3.1 Introduction

People usually prefer the facilities in their vicinity, i.e., they are influenced by nearby

facilities. A reverse nearest neighbors (RNN) query [10, 112, 119, 158] aims at finding

every user that is influenced by a query facility q. Formally, given a set of users U , a

set of facilities F and a query facility q, an RNN query returns every user u ∈ U for

which the query facility q is its closest facility. The set containing RNNs, denoted as

RNN(q), is also called the influence set of q.

Consider the example of Fig. 3.1 that shows four Starbucks cafes (f1 to f4) and

three users (u1 to u3). In the context of RNN queries, the users u2 and u3 are

both influenced by f1 because f1 is their closest Starbucks. Therefore, u2 and u3

are the RNNs of f1, i.e., RNN(f1) = {u2, u3}. Similarly, it can be confirmed that

RNN(f2) = ∅, RNN(f3) = ∅, RNN(f4) = {u1}.
A reverse k nearest neighbors (RkNN) query [4, 3, 159, 5, 155, 6] is a natural

extension of the RNN query. Specifically, in the context of an RkNN query, a user

u is considered to be influenced by its k closest facilities. Hence, an RkNN query

q returns every user u ∈ U for which q is among its k closest facilities. In the

example of Fig. 3.1, assuming k = 2, R2NN(f2) = {u1, u2, u3} because f2 is one of

the two closest facilities for all of the three users. Similarly, R2NN(f1) = {u2, u3},
R2NN(f3) = ∅ and R2NN(f4) = {u1}.

25

RkNN queries have numerous applications [10] in location based services, resource

allocation, profile-based management, decision support etc. Consider the example

of a supermarket. The people for which this supermarket is one of the k closest

supermarkets are its potential customers and may be influenced by targeted marketing

or special deals. Due to its significance, RNN queries and its variants have received

significant research attention in the past decade (see [3] for a survey).

In this chapter, we propose an alternative definition of influence and propose a

variant of RNN queries called reverse approximate nearest neighbors (RANN) query.

This definition is motivated by our observation that an RkNN query may not properly

capture the notion of influence.

Figure 3.1: Illustration of RNN query and its variants

3.1.1 Motivation

Consider the example of a person living in a suburban area (e.g., u2 in Fig. 3.1) who

does not have any Starbucks nearby. Her nearest Starbucks is f1 which is say 30

Km from her location. In the context of R2NN query, u2 is influenced by f1 and f2 –

her two nearest facilities. However, we argue that it is also influenced by f3 because

a user who needs to travel a minimum of 30 Km to visit a Starbucks may also be

willing to travel to a Starbucks cafe 31 Km far from her.

Similarly, consider the example of another person living in a suburb (e.g., u1 in

Fig. 3.1) who has only one Starbucks nearby (f4) assuming that all other Starbucks

(e.g., f1 to f3) are in downtown area and are quite far. In the context of R2NN

queries, the user u1 is considered to be influenced by both f4 and f2 because these

are her two closest facilities. However, we argue that the user u1 is only influenced

by f4 because the other facilities are significantly farther than dist(u1, f4), e.g., a

user who has a Starbucks within 1 Km is not very likely to visit a Starbucks that is

say 30 Km from her location.

As shown above, the definition of influence used in RkNN queries considers only

the relative ordering of the facilities based on their distances from u and ignores

the actual distances of the facilities from u. Motivated by this, in this chapter, we

propose a reverse approximate nearest neighbors (RANN) query that relaxes the

definition of influence using a parameter x (called the x factor) and considers the

relative distances between users and facilities. Specifically, an RANN query returns

26

every user u for which the query facility is its approximate nearest neighbor.

Definition 3.1 Approximate nearest neighbor. Let NNdist(u) denote the dis-

tance between u and its nearest facility. Given a value of x > 1, a facility f is called

an approximate nearest neighbor of u if dist(u, f) ≤ x×NNdist(u).

Reverse Approximate Nearest Neighbors (RANN) query. Given a value of

x > 1, an RANN query q returns every user u for which dist(u, q) ≤ x×NNdist(u),

i.e., return every user u for which q is its approximate nearest neighbor. The set of

RANNs of a query q is denoted as RANNx(q). Note that an RANN query is the

same as an RNN query if x = 1.

In the example of Fig. 3.1, assuming x = 1.2, RANN of f2 are the users u2 and u3,

i.e., RANN1.2(f2) = {u2, u3}. Similarly, RANN1.2(f1) = {u2, u3}, RANN1.2(f3) =

{u2} and RANN1.2(f4) = {u1}.

Remark. RkNN queries and RANN queries assume that the distance is the main

factor influencing a user. This assumption holds in many real world scenarios. For

instance, the users looking for nearby fuel stations are usually not concerned about

price (or even rating) because all fuel stations have similar price (or even the same

price because, in some countries, the fuel prices are regulated by the government).

Similarly, users interested in McDonald’s restaurants or Starbucks cafe are mainly

influenced by the distance because other attributes such as price, menu, and ratings

are the same for all stores. Nevertheless, in the case where the users are influenced

by other attributes, reverse top-k queries [127, 160, 132] can be used to compute

the influence using a scoring function involving multiple attributes such as distance,

price, and rating. This is a different line of research and is not within the scope of

this chapter.

3.1.2 Contributions

We make the following contributions in this chapter.

1. We complement the RkNN queries by proposing a new definition of influence that

considers every user u to be influenced by a query q for which q is an approximate

nearest neighbor.

2. As we show in Section 3.3, the pruning techniques used to solve RkNN queries

cannot be applied or extended for RANN queries. This is mainly because, in our

problem settings, a facility f may not be able to prune the users that are quite far

from f (see Section 3.3 for details). Based on several non-trivial observations, we

propose efficient pruning techniques that are proven to be tight, i.e., given a facility

f used for pruning, the pruning techniques guarantee to prune every point that can

be pruned by f . We then propose an efficient algorithm that utilizes these pruning

techniques to efficiently answer the snapshot RANN queries.

27

3. We conduct an extensive experimental study on three real data sets and several

synthetic data sets to show the effectiveness of our proposed techniques. Since

existing techniques cannot be extended to answer RANN queries, we compare our

algorithm with a näıve algorithm (called RQ) as well as a significantly improved

version of RQ (called IRQ). The experimental results show that our algorithm is

several orders of magnitude better than both of the competitors. Furthermore, we

note that the results of an RANN query are the same as the RkNN (k = 1) query

when x is quite close to 1. Therefore, we also compare our algorithm (by setting

x = 1 + 10−0.6) with the most notable RNN algorithms. Although our algorithm

solves a more challenging version of the problem, our experiments show that it

performs reasonably well compared to RNN algorithms.

3.2 Problem Definition

Similar to RkNN queries, RANN queries can also be classified into bichromatic

RANN queries and monochromatic RANN queries.

Bichromatic RANN query. Given a set of users U , a set of facilities F , a

query facility q (which may or may not be in F), and a value of x > 1, a bichromatic

RANN query returns every user u ∈ U for which dist(u, q) ≤ x×NNdist(u) where

NNDist(u) denotes the distance between u and its nearest facility in F .

Monochromatic RANN query. Given a set of facilities F , a query facility q

(which may or may not be in F), and a value of x > 1, a monochromatic RANN query

returns every facility f ∈ F for which dist(f, q) ≤ x×NNdist(f) where NNDist(f)

denotes the distance between f and its nearest facility in {F − f}.
In Fig. 3.1, the monochromatic RANNs of f2 (assuming x = 1.5) are f1 and

f3. Monochromatic queries aim at finding the facilities that are influenced by the

query facility. Consider a set of police stations. For a given police station q, a

monochromatic query returns the police stations for which q is a nearby police

station. Such police stations may seek assistance (e.g., extra policemen) from q in

case of an emergency event.

Although our techniques can be easily applied to monochromatic RANN queries,

in this chapter, we focus on bichromatic RANN queries because the bichromatic

version has more applications in real world scenarios. Similar to the existing work

on RNN queries, we assume that both the facility and user data sets are indexed by

R*-tree [161]. The R*-tree that indexes the set of facilities (resp. users) is called

facility (resp. user) R*-tree. Since most of the applications of the RNN query and

its variants are in location-based services, similar to the existing RNN algorithms [3],

the focus of this chapter is on two dimensional location data.

28

3.3 Pruning Techniques

Given a facility f , a user u cannot be the RANN of q if dist(u, q) > x× dist(u, f).

In such case, we say that the facility f prunes the user u. In this section, we will

present the pruning techniques that use a facility f or an MBR of the facility R*-tree

to prune the users. First, we highlight the challenges.

3.3.1 Challenges

Existing pruning techniques cannot be applied or extended for the RANN queries

due to the unique challenges involved. For instance, the algorithms to solve RkNN

queries can prune most of the search space by considering only the nearby facilities

surrounding q. Consider the example of Fig. 3.3 where the six-regions approach finds

the nearest facility to the query q in each of the six partitions and the shaded area

can be pruned.

Figure 3.2: Six-regions pruning Figure 3.3: RANN pruning challenges

However, in the case of RANN queries, the nearby facilities surrounding the query

q are not sufficient to prune a large part of the search space. Assuming x = 2, in

partition P3 (see Fig. 3.3), while the user u1 can be pruned by f the user u2 cannot

be pruned by f . In other words, the users that are further from a facility f are less

likely to be pruned by it.

In Fig. 3.3, assuming x = 2, the six shaded circles show the maximum possible

area that can be pruned by the six facilities a to f (the details on how to compute

the circles will be presented later). Note that the facilities that are close to q prune

a smaller area as compared to the farther facilities. Hence, the algorithm needs to

access not only nearby facilities but also farther facilities to prune a large part of

the search space. Also, note that RANN queries are more challenging because the

29

maximum area that can be pruned is significantly smaller.

In Section 3.3.2, we present the pruning techniques that prune the space using a

data point, i.e., a facility f . In Section 3.3.3, we present the techniques to prune the

space using an MBR of the facility R*-tree. Efficient implementation of the pruning

techniques is discussed in Section 3.3.4.

3.3.2 Pruning using a facility point

Before we present our non-trivial pruning technique, we present the definition of a

pruning circle.

Definition 3.2 (Pruning circle) Given a query q, a multiplication factor x > 1

and a point p, the pruning circle of p (denoted as Cp) is a circle centered at c with

radius r where r = x·dist(q,p)
x2−1 and c is on the line passing through q and p such that

dist(q, c) > dist(p, c) and dist(q, c) = x2·dist(q,p)
x2−1 .

Consider the example of Fig. 3.4 that shows the pruning circle Cf of a facility

f assuming x = 2. The centre of c is located on the line passing through q and f

such that dist(q, c) = 4·dist(q,f)
3 , dist(q, c) > dist(f, c) and radius r = 2·dist(q,f)

3 . The

condition dist(q, c) > dist(f, c) ensures that c lies towards f on the line passing

through q and f , i.e., f lies between the points c and q as shown in Fig. 3.4. Next,

we introduce our first pruning rule in Lemma 3.1.

Lemma 3.1 Every user u that lies in the pruning circle Cf of a facility f cannot

be the RANN of q, i.e., dist(u, q) > x× dist(u, f).

Proof Given two points v and w, we use vw to denote dist(v, w). Consider the

example of Fig. 3.4. Since u is inside the circle Cf , uc < r. Assume that uc = n · r
where 0 ≤ n < 1. Since r = x·qf

x2−1 , we have uc = n · r = n · x·qf
x2−1 .

Considering the triangle 4quc, qu =
√

(qc)2 + (uc)2 − 2 · uc · qc · cos θ. Since

uc = n · x·qf
x2−1 and qc = x2.qf

x2−1 , we have

qu =

√
(
x2 · qf
x2 − 1

)2 + n2(
x · qf
x2 − 1

)2 − 2n(
x · qf
x2 − 1

)(
x2 · qf
x2 − 1

) · cos θ

=

√
(
x · qf
x2 − 1

)2(x2 + n2 − 2 · x · n · cos θ)

= (
x · qf
x2 − 1

)
√
x2 + n2 − 2xn cos θ

(3.1)

Similarly considering 4fcu, fu =
√

(fc)2 + (uc)2 − 2 · uc · fc · cos θ. Since fc =

qc−qf and qc = x2.qf
x2−1 , we get fc = qf

x2−1 . We can obtain the value of fu by replacing

the values of fc and uc.

30

Figure 3.4: Lemma 3.1 Figure 3.5: Lemma 3.3

fu =

√
(

qf

x2 − 1
)2 + n2(

x · qf
x2 − 1

)2 − 2 · n(
x · qf
x2 − 1

) · (qf

x2 − 1
) · cos θ

= (
qf

x2 − 1
)
√

1 + n2x2 − 2nx cos θ

(3.2)

Note that the user u can be pruned if dist(u, q) > x× dist(u, f). Therefore, we

need to show qu− x · fu > 0. The left side of this inequality can be obtained using

the values of qu and fu from Eq. (3.1) and Eq. (3.2), respectively.

qu− x · fu =
x.qf

x2 − 1
(
√
x2 + n2 − 2xn cos θ −

√
1 + x2n2 − 2xn cos θ) (3.3)

Since x > 1, (x.qf
x2−1) is always positive. Hence, we just need to prove that

(
√
x2 + n2 − 2xn cos θ −

√
1 + x2n2 − 2xn cos θ > 0. In other words, we need to

show (
√
x2 + n2 − 2xn cos θ >

√
1 + x2n2 − 2xn cos θ. Note that both sides of this

inequality are positive (otherwise qu and fu in Eq. (3.1) and Eq. (3.2) would be

negative which is not possible). Hence, we can take the square of both sides resulting

in x2 + n2 − 2xn cos θ > 1 + x2n2 − 2xn cos θ which implies that we need to prove

(x2 + n2 − x2n2 − 1) > 0. This inequality can be simplified as (x2 − 1)(1− n2) > 0.

Since x > 1 and n < 1, it is easy to see that (x2 − 1)(1− n2) > 0 which completes

the proof.

Note that although the pruning technique itself is non-trivial, applying this

pruning rule is not expensive, i.e., to check whether a user u can be pruned or not,

we only need to compute its distance from the centre c and compare it with the

31

radius r. Next, we show that this pruning rule is tight in the sense that any user u′

that lies outside Cf is guaranteed not to be pruned by the facility f .

Lemma 3.2 Given a facility f and a user u′ that lies on or outside its pruning

circle Cf , then dist(u′, q) ≤ x× dist(u′, f), i.e., u′ cannot be pruned by f .

Proof Consider the user u′ in Fig. 3.4. Since u′ is on or outside the pruning circle, it

satisfies u′c = n·r, where n ≥ 1. The proof is similar to the proof of Lemma 3.1 except

that we need to show that u′q− x.fu′ ≤ 0, i.e., we need to show (x2− 1)(1−n2) ≤ 0

which is obvious given that x > 1 and n ≥ 1.

Note that the pruning circle Cf is larger if dist(q, f) is larger which implies that

the facilities that are farther from the query prune larger area. For instance, in

Fig. 3.5, the pruning circle Cb is bigger than the pruning circle Ca.

Figure 3.6: Pruning using MBR

3.3.3 Pruning using the nodes of facility R*-tree

In this section, we present our techniques to prune the search space using the

intermediate or leaf nodes of the facility R*-tree. These pruning techniques reduce

the I/O cost of the algorithm because the algorithm may prune the search space

using a node of the R*-tree instead of accessing the facilities in its sub-tree.

A node of the facility R*-tree is represented by a minimum bounding rectangle

(MBR) that encloses all the facilities in its sub-tree. Without accessing the contents

of the node, we cannot know the locations of the facilities inside it except that each

side of the MBR contains at least one facility. We utilize this information to devise

our pruning techniques. Specifically, we use all four sides of the MBR and use each

side (i.e., line segment) to prune the search space. Lemma 3.3 presents the pruning

rule and Fig. 3.5 provides an illustration.

32

Lemma 3.3 Given a query q, a multiplication factor x > 1, and a line ab represent-

ing a side of an MBR, a user u cannot be the RANN of q if it lies inside both of the

pruning circles Ca and Cb, i.e., u can be pruned if u lies in Ca ∩ Cb.

Proof Let maxdist(p, ab) denote the maximum distance between a point p and a

line ab. Note that maxdist(u, ab) = max(dist(u, a), dist(u, b)). Since u lies in both

Ca and Cb, dist(u, q) > x × dist(u, a) and dist(u, q) > x × dist(u, b) (according to

Lemma 3.1). In other words, dist(u, q) > x × maxdist(u, ab). Since there is at

least one facility f on the line ab, dist(u, f) ≤ maxdist(u, ab). Hence, dist(u, q) >

x× dist(u, f) which implies that the user u can be pruned.

In Fig. 3.5, the shaded area can be pruned by using the line ab. The next lemma

shows that this pruning rule is also tight.

Lemma 3.4 Given a line ab such that the only information we have is that there is

at least one facility f on ab, a user u cannot be pruned if it lies outside either Ca or

Cb.

Proof Without the loss of generality, assume that u lies outside Ca. Now assume

that there is exactly one facility f on the line ab and it lies at the end point a. Since

f lies on a, Ca = Cf which implies that u is outside Cf . Hence, u cannot be pruned

by f (Lemma 3.2).

To prune the search space using an MBR, we apply Lemma 3.3 on each of side si

of the MBR. Specifically, a user u can be pruned if, for any side si of the MBR, u

lies in both of the pruning circles of the end points of si. Consider the example of

Fig. 3.6 where an MBR abcd is shown along with the pruning circles of the corners

of the MBR (see Ca to Cd). Let Ai denote the area pruned by a side si of the

MBR. In Fig. 3.6, the shaded area can be pruned which corresponds to ∪4i=1Ai where

A1 = Ca ∩ Cb, A2 = Cb ∩ Cc, A3 = Cc ∩ Cd, and A4 = Cd ∩ Ca.

3.3.4 Implementation of the pruning techniques

In the previous sections, we discussed how to prune the search space using a facility

point or an MBR of the facility R*-tree. In this section, we discuss how to efficiently

and effectively implement the pruning techniques.

Assume that we have a set of facilities and MBRs to be used for pruning the

search space. Let Ai denote the area pruned by a facility point or a side of an MBR.

Let A = {Ai, · · · , An} be the total area that can be pruned by using the set of

facilities and MBRs. In this section, we present Algorithm 1 that efficiently checks

whether an entry e of user R*-tree (i.e., a point or an MBR) can be pruned by A or

33

not, i.e., whether e lies inside A or not. Before we discuss the details of Algorithm 1,

we describe how to prune a user MBR e using a single pruning area Ai ∈ A. Since e

is an MBR, it is possible that e only partially lies in Ai. Ideally, we should be able

to prune the part of the MBR that lies inside Ai. In our algorithm, we process the

MBR e such that the area that lies inside Ai is trimmed. Below are the details on

how to do this.

Case 1: Ai corresponds to the area pruned by a facility. Consider the example of Fig. 3.7

where Ai corresponds to the circle Ca. Note that only a part of the rectangle R

lies in the circle. In such case, we conservatively approximate the area that can

be pruned. Specifically, we use a function TrimEntry(Ca, R) that trims the MBR

R using a circle Ca and returns Ra that corresponds to the minimum bounding

rectangle of the part of R that lies outside Ca, i.e., Ra cannot be pruned by Ca. In

Fig. 3.7, Ra is the shaded area. In Fig. 3.8, Rb (the light shaded area) is returned by

TrimEntry(Cb, R). The function TrimEntry(Ca, R) can be implemented as follows.

Let I be the set of intersection points between a circle Ca and a rectangle R. Let

C be the corners of R that lie outside Ca. The trimmed entry Ra is the minimum

bounding rectangle enclosing the points in I ∪ C.

Figure 3.7: Trimming an MBR Figure 3.8: Pruning an entry

Case 2: Ai corresponds to the area pruned by a side of an MBR. Consider the ex-

ample of Fig. 3.8 where Ai corresponds to the area pruned by a line ab, i.e.,

Ai = Ca ∩ Cb. In this case, we find the part of the MBR R that cannot be

pruned by Ai as follows. Let Ra =TrimEntry(Ca, R) (see the dark shaded area) and

Rb=TrimEntry(Cb, R) (see the light dotted area) in Fig. 3.8. The unpruned part of

R is the minimum bounding rectangle enclosing both Ra and Rb, e.g., Rt shown in

thick broken lines in Fig. 3.8 cannot be pruned by Ca ∩ Cb.

Algorithm 1 shows the details of how to prune an entry e using a set of pruned

areas A. The output of the algorithm is the part of e that cannot be pruned by A.

34

Algorithm 1 PruneEntry(e,A)

Input: e: the entry to be pruned, A: the set of pruned areas
Output: Return the part of e that cannot be pruned byA

1: for each Ai ∈ A do
2: if Ai is related to a facility f then
3: R← TrimEntry(Cf ,e)
4: else if Ai is related to a line ab then
5: Ra ← TrimEntry(Ca,e)
6: Rb ← TrimEntry(Cb,e)
7: R← minimum bounding rectangle enclosing both Ra and Rb

8: e← R
9: if e is empty then

10: return φ
11: return e

Each entry Ai is iteratively accessed from A and the entry e is trimmed using the

details described earlier (lines 2 to line 7). The trimmed part R is assigned to e

which is to be further trimmed in the next iteration (line 8). At any stage, if e is

empty, the algorithm terminates by returning φ (line 10) which indicates that the

whole entry e can be pruned by A. When all entries Ai in A have been accessed, the

algorithm returns e.

We remark that although the trimming significantly improves the I/O cost (2 to

3 times) of the algorithm, the overall CPU time is also increased due to the overhead

of trimming. This must be taken into consideration when making the decision on

whether to use trimming or not, e.g., the trimming should not be used if the main

focus is to optimize CPU cost.

Improving Algorithm 1. Note that Algorithm 1 accesses every entry Ai ∈ A
regardless of whether Ai can prune a part of e or not. Now, we discuss how to

improve the efficiency of Algorithm 1 by ignoring the entries Ai that cannot prune

e. Similar to six-regions approach [112] and Slice [6], we divide the whole space

around q in t equally sized partitions, e.g., see the partitions P1 to P6 in Fig. 3.9.

Our technique is based on the following two simple observations.

Observation 1. Let P be the set of partitions overlapped by a pruned area Ai. An

entry e can be pruned by Ai only if e overlaps with at least one partition in P.

Consider the example of Fig. 3.9 where the area Ai is shown shaded and overlaps

with partitions P3 and P4. Since the entry e1 does not overlap with P3 or P4, it

cannot be pruned by Ai.

Observation 2. Let Ai.max and Ai.min denote the maximum and minimum distances

between q and the pruned area Ai, respectively. Fig. 3.9 shows Ai.max = dist(q, a)

and Ai.min = dist(q, b). We remark that Ai.max and Ai.min can be computed

following the ideas presented in [162, 18]. Note that an entry e cannot be pruned by

35

Figure 3.9: Observations 1&2

Ai if mindist(q, e) > Ai.max or maxdist(q, e) < Ai.min. For instance, the entry e2

cannot be pruned by Ai because mindist(q, e2) > Ai.max. Similarly, the entry e3

cannot be pruned because maxdist(q, e3) < Ai.min.

Let Ai.interval denote an interval from Ai.min to Ai.max and e.interval denote

an interval from mindist(q, e) to maxdist(q, e). Observation 2 shows that an entry

e can be pruned by Ai only if e.interval overlaps with Ai.interval. We use an

interval tree [163] to efficiently retrieve every Ai for which Ai.interval overlaps with

e.interval. Specifically, for each partition Pi, we maintain an interval tree Ti that

contains Aj .interval for every Aj ∈ A that overlaps with Pi. To check whether an

entry e (that overlaps with a partition Pi) can be pruned by A, we issue an interval

query on Ti with input interval e.interval. Let Ae denote the set containing every

area Aj returned by the interval query e.interval. In Algorithm 1, we use Ae instead

of A. Note that the cost of interval query is O(m+ log n) where n is the number of

intervals stored in the interval tree and m is the number of intervals that overlap

with the input interval.

3.4 Algorithm

Our algorithm consists of three phases namely pruning, filtering and verification.

In the pruning phase, we use the facility R*-tree to prune the search space, i.e.,

compute A. In the filtering phase, the users that lie in the pruned space are pruned

and the remaining users are inserted in a candidate list called Lcnd. Finally, in the

verification phase, each candidate user u ∈ Lcnd is verified to check whether it is a

RANN of q or not.

Pruning Phase Algorithm 2 presents the details of the pruning phase. The al-

gorithm initializes a heap h with the root of the facility R*-tree. The entries are

36

iteratively de-heaped from the heap and are processed as follows. If a de-heaped

entry e is pruned (i.e., the entry e′ returned by Algorithm 1 is empty), we ignore it

(lines 5 and 6). Otherwise, we process it as follows.

Algorithm 2 Pruning

Input: facility R*-tree, and a query q
Output: The set of pruned areas A

1: A ← φ
2: insert root of facility R-tree in a h
3: while h is not empty do
4: de-heap an entry e
5: e′ ← PruneEntry(e,A) . Algorithm 1
6: if e′ 6= φ then . e is not pruned
7: if e is an intermediate or leaf node then
8: for each side ab of e do
9: create Ai = Ca ∩ Cb and insert in A

10: for each child c of e do
11: if c overlaps with e′ then insert c in the heap
12: else . e is a facility point
13: create Ai = Ce and insert in A

If e is an intermediate or leaf node of the R*-tree, for each side of e, we create a

pruning area Ai and insert it in A (line 9). We also insert its children in the heap h.

Note that a child c of e that does not overlap with e′ can be pruned because it lies

in the pruned area. Hence, only the children that overlap with e′ are inserted in the

heap (line 11). If e is a facility point, we create the pruning circle Ce and add it to

A (line 13). The algorithm terminates when the heap becomes empty.

Filtering Phase Algorithm 3 describes the filtering phase. A stack S is initialized

with the root entry of the user R*-tree. Each entry e is iteratively retrieved from

S and processed as follows. If e can be pruned by A, it is ignored (lines 5 and 6).

Otherwise, if it is an intermediate or leaf node, its children that overlap with e′ are

inserted in the stack (line 9). If e is a user, it is inserted in Lcnd (line 11). The

algorithm stops when the stack S becomes empty.

Verification Phase In the verification phase, each candidate user u ∈ Lcnd is

verified as follows. Note that a user u is a RANN if and only if there is no facility f

for which dist(u, f) < dist(u,q)
x . A circular boolean range query is issued with centre

at u and radius r = dist(u,q)
x that returns true if and only if there exists a facility

in the circle. The boolean range query is conducted on the facility R*-tree as in

previous works [159] and u is reported as an answer if it returns false.

37

Algorithm 3 Filtering

Input: user R*-tree, query q, and A
Output: a list of candidates Lcnd

1: Lcnd ← φ
2: insert root of user R*-tree in a stack S
3: while S is not empty do
4: retrieve top entry e from S
5: e′ ← PruneEntry(e,A) . Algorithm 1
6: if e′ 6= φ then . e is not pruned
7: if e is an intermediate or leaf node then
8: for each child c of e do
9: if c overlaps with e′ then insert c in stack S

10: else . e is a user
11: insert e in Lcnd

3.5 Experiments

3.5.1 Experimental Setting

To the best of our knowledge, there is no prior algorithm to solve RANN queries. We

consider a näıve algorithm (RQ) and make reasonable efforts to devise a significantly

improved version of RQ, as explained below.

Range Query (RQ). For each user u, a boolean range query with range dist(u, q)/x

is issued on the facility R*-tree (as described in the verification phase above).

Improved Range Query (IRQ). Note that an intermediate or leaf node entry eu

of the user R*-tree cannot contain any RANN if there exists at least one facility f

such that mindist(eu, q) > x×maxdist(eu, f), i.e., eu can be pruned. Based on this,

to check whether eu can be pruned or not, we use a function isPruned(eu) that

is implemented as follows. The facility R*-tree is traversed in ascending order of

maxdist(eu, ef) where ef denotes an entry in the facility R*-tree. The entry eu is

pruned as soon as we find an entry ef for which mindist(eu, q) > x×maxdist(eu, ef).

To further improve the I/O and CPU cost of isPruned(eu), we do not access the

sub-tree of a facility entry ef if mindist(eu, q) < x×mindist(eu, ef) because no child

of ef can prune eu.

The IRQ algorithm is the same as Algorithm 3 except that 1) “if isPruned(e)

then” replaces lines 5 and 6 of Algorithm 3; and 2) at line 11, the user is reported

as an answer instead of inserting it in Lcnd. Note that IRQ does not have a pruning

and verification phase because it merges all these phases in one algorithm. In our

experiments, we observed that the performance of IRQ can be further improved if

isPruned(eu) is only applied to leaf entries of the user R*-tree. This is because the

intermediate nodes are highly unlikely to be pruned and result in un-necessary I/O.

38

We included this optimization in IRQ.

All algorithms were implemented in C++ and experiments were run on Intel Core

I 5 2.3GHz PC with 8GB memory running on Debian Linux. Experimental settings

are quite similar to the existing work [3]. Specifically, we use the same real data sets

containing 175, 812 points from North America (called NA data set hereafter), 2.6

million points from Los Angeles (LA) and 25.8 million points from California (CA).

We also generate several synthetic data sets containing 1, 000 to 20 million points

following normal distributions. The default real data set is LA containing 2.6 million

points. Unless mentioned otherwise, each data set is randomly divided into two sets

of almost equal size, one corresponding to the facilities and the other to the users.

The page size of each R*-Tree [161] is set to 4, 096 Bytes. We randomly select 100

points from the facility data set and treat them as query points. The cost reported

in the experiments correspond to the average cost of a single RANN query. We vary

the value of x from 1.1 to 4 and the default value is 1.5.

3.5.2 Experiment Result

3.5.2.1 Effect of buffers

All three algorithms need to traverse facility R*-tree every time a boolean range

query is issued to verify a candidate user. Hence, the buffers may reduce the I/O cost.

We study the effect of the number of buffers on each algorithm. Each buffer page can

hold one node of the R*-tree and we use random eviction strategy. In Fig. 3.10, we

report the I/O cost of each algorithm on LA data set for different number of buffers.

As expected, the I/O cost of each algorithm decreases with the increase in number

of buffers. Note that IRQ is up to two orders of magnitude better than RQ and our

algorithm is up to three orders of magnitude better than IRQ. Similar to [3], we use

100 buffer pages for each algorithm in the rest of the experiments.

102

104

106

108

1 10 100 1000

#I
O

Number of buffers

RQ

11
56

78
62

.2

41
36

22
4.

2

21
96

04
.3

15
65

82
.1

IRQ

11
75

08
.7

6

63
07

2.
08

46
32

0.
19

41
57

4.
23

OUR

15
7.

39

14
6.

59

13
2.

79

13
2.

22

Figure 3.10: Effect of buffers

39

3.5.2.2 Effect of the x factor

In Fig. 3.11, we study the effect of the x factor on the three algorithms. Specifically,

Fig. 3.11(a) shows the CPU cost and Fig. 3.11(b) shows the I/O cost of the three

algorithms for varying values of x. In terms of both CPU and I/O cost, our algorithm

is up to three orders of magnitude better than IRQ and up to four orders of magnitude

better than RQ. The cost of our algorithm and IRQ is higher for larger x factor

because the pruning area shrinks as the x factor increases which results in a larger

number of candidates and RANNs. Note that the cost of RQ is not significantly

affected by the x factor mainly because it needs to verify every user regardless of the

value of x.

0

50k

100k

150k

1.1 1.3 1.5 2 4

C
P

U
 c

o
st

 (
m

s)

x

RQ

96
41

8.
26

95
51

6.
73

96
33

1.
83

95
69

1.
36

95
52

3.
00

IRQ

21
97

.2
2

24
70

.0
2

26
97

.4
3

31
21

.3
7

34
91

.5
6

OUR

2.
94

5.
75

9.
32

23
.5

9

19
1.

44

(a) CPU cost

0

100k

200k

300k

1.1 1.3 1.5 2 4

#I
O

x

RQ

21
98

24
.6

21
96

76
.5

21
96

04
.3

21
97

43

21
96

70
.2

IRQ

37
28

9.
04

42
41

2.
99

46
32

0.
19

53
94

2.
12

58
25

8.
08

OUR

58
.9

5

95
.7

3

13
2.

79

24
2

81
9.

2

(b) I/O cost

Figure 3.11: Effect of the x factor (LA data set)

3.5.2.3 Effect of the data set size

In Fig. 3.12(a) and 3.12(b), we study the effect of data set size on the performance

of the three algorithms. Specifically, we conduct experiments on three real data

sets: NA (175, 000 points), LA (2.6 million points) and CA (25.8 million points).

Our algorithm outperforms the other two algorithms and the gap between the three

algorithms increases as the data set size increases (please note that log-scale is used

in both figures). For example, Fig. 3.12(a) shows that our algorithm is around 25

times faster than IRQ on NA data set and 330 times faster on CA data set. Similarly,

Fig. 3.12(b) shows that the I/O cost of our algorithm is around 12 times lower

than IRQ for NA data set and almost 430 times lower for CA data set. Also, as

expected the cost of each algorithm increases as the data set size increases. This is

mainly because the size of each R*-tree increases and more entries are required to be

processed.

Since our algorithm is up to several orders of magnitude better than the other

algorithms, in the rest of the experiments, we focus on analysing the behavior of our

40

102

104

106

108

NA(175K) LA(2.6M) CA(25.8M)

C
P

U
 c

o
st

 (
m

s)

data set

RQ

27
58

.1
3 96

33
1.

83 19
28

39
5.

24

IRQ

98
.0

5

26
97

.4
3

95
78

.0
1

OUR

3.
89 9.

32 28
.4

7

(a) CPU cost

102

104

106

108

NA(175K) LA(2.6M) CA(25.8M)

#I
O

data set

RQ

10
32

6.
6 21

97
12

.2 51
89

77
4.

5

IRQ

75
2.

87

46
32

0.
19

13
06

11
.3

OUR

60
.9

9

13
2.

79

29
8.

99

(b) I/O cost

Figure 3.12: Performance comparison on different real data sets

algorithm and omit the cost of the other algorithms for better illustration.

3.5.2.4 Effect of relative data size

In the previous experiments, each data set contained almost the same number of

users and facilities. Next, we analyse the performance of our algorithm where the

number of users and the number of facilities are different. Specifically, in Fig. 3.13 we

vary the number of facilities from 1000 to 1 million and the number of users is fixed

to 100K. The sets of facilities and users are generated using normal distribution.

Fig. 3.13(a) and Fig. 3.13(b) show the CPU and I/O cost of our algorithm, respectively.

Fig. 3.13(c) shows the number of candidates, number of RANNs and the number of

entries (facility points and MBRs) used for pruning.

 0

 5

 10

 15

 20

1K 10K 100K 1M

C
P

U
 c

o
st

 (
m

s)

Number of facilities

Pruning
Filtering

Verification

11
.4

7

3.
83 4.
15

10
.8

2

(a) CPU cost

 0

 50

 100

 150

1K 10K 100K 1M

#I
O

Number of facilities

Pruning
Filtering

Verification

75
.5

1

66
.8

8 84
.0

9

12
7.

69

(b) I/O cost

 0

 100

 200

 300

 400

 500

1K 10K 100K 1M
Number of facilities

Results

22
3.

45

23
.7

3

2.
13

0.
2

Candidates

37
2.

87

33
.9

5

3.
01

0.
41

Points for pruning

31
.7

1

51
.5

2

78
.0

6 12
3.

45

MBRs for pruning

(c) Stats

Figure 3.13: Effect of varying the number of facilities (100K users)

Fig. 3.13(a) shows that the CPU cost of our algorithm is larger if the number of

facilities is too small or too large as compared to the number of users. The reason is

as follows. When the number of facilities is too small (e.g., 1, 000), the total area

that can be pruned is smaller due to the lower density of the facilities. This results

in a larger number of candidates and RANNs (as shown in Fig. 3.13(c)). Hence, the

verification cost of the algorithm is larger as shown in Fig. 3.13(a). On the other

hand, when the number of facilities is too large (e.g., 1 million), the pruning phase is

41

the dominant cost of the algorithm. This is because the algorithm needs to access a

larger number of entries to prune the search space (see Fig. 3.13(c)).

Fig. 3.13(b) shows the I/O cost of our algorithm. When the number of facilities

is too small, the I/O cost of the filtering phase is larger because the area that can

be pruned is smaller due to the lower density of facilities data set. The I/O cost of

pruning phase increases as the number of facilities increases. This is because the size

of facility R*-tree increases and more entries are required to be accessed to prune

the search space.

 0

 2

 4

 6

 8

 10

1K 10K 100K 1M

C
P

U
 c

o
st

 (
m

s)

Number of users

Pruning
Filtering

Verification

2.
86 3.
08

4.
15

7.
62

(a) CPU cost

 0

 50

 100

 150

1K 10K 100K 1M

#I
O

Number of users

Pruning
Filtering

Verification

56
.4

1

62
.5

84
.0

9

11
8.

8

(b) I/O cost

 0

 25

 50

 75

 100

 125

1K 10K 100K 1M
Number of users

Results

0.
04

0.
23 2.
13

21
.8

3

Candidates

0.
05

0.
39 3.
01

31
.5

6

Points for pruning

78
.0

6

78
.0

6

78
.0

6

78
.0

6

MBRs for pruning

(c) Entries

Figure 3.14: Effect of varying the number of users (100K facilities)

In Fig. 3.14, we vary the number of users from 1, 000 to 1 million and fix the

number of facilities to 100K. Fig. 3.14(a) shows that the CPU cost of the algorithm

increases as the number of users increases. This is because the filtering and verification

cost of the algorithm increases for larger set of users, e.g., the number of candidate

users and RANNs increases (as shown in Fig. 3.14(c)). Similarly, Fig. 3.14(b) shows

that the I/O cost of the algorithm also increases for larger number of users. This

is because the filtering requires traversing a larger user R*-tree which results in

requiring to access more nodes of the users.

Fig. 3.14(c) also shows the effectiveness of the proposed pruning techniques. Note

that the number of candidates is much smaller as compared to the total number

of users. Furthermore, almost 65% of the candidates are the reverse approximate

nearest neighbors. We remark that the verification I/O cost of our algorithm is

negligible mainly because most of the nodes accessed during verification are already

present in the buffer (from pruning phase or the previously issued boolean range

queries).

3.5.2.5 Efficiency compared with RNN algorithms

As stated earlier, there is no previous algorithm to solve RANN queries and the

existing algorithms to solve RNN queries cannot be trivially extended. Although we

made significant efforts to devise the second competitor IRQ, our algorithm is up to

three orders of magnitude better than it. In the absence of a well-known competitor,

42

readers may find it harder to evaluate the efficiency of an algorithm. Therefore, we

compare our algorithm with the most well-known RNN algorithms, namely Slice [6],

InfZone [5], TPL [4], FINCH [114] and six-regions [112]. For our algorithm, we set

x = 1 + 10−6 because we note that the results of an RANN query is the same as

those of an RNN query if x is very close to 1.

 1

 2

 3

NA (175K) LA (2.6M) CA (25.8M)

C
P

U
 c

o
st

 (
m

s)

data set

Six-Regions
TPL

FINCH
InfZone
SLICE

OUR

(a) CPU cost

 40

 80

 120

 160

NA (175K) LA (2.6M) CA (25.8M)
#I

O

data set

Six-Regions
TPL

FINCH
InfZone
SLICE

OUR

(b) IO cost

Figure 3.15: Comparison with state-of-the-art RNN algorithms

Fig. 3.15 shows that the performance of our algorithm is comparable to the most

popular RNN algorithms which shows the effectiveness of the techniques proposed in

this chapter. We remark that this experiment is conducted only to demonstrate that

our algorithm is efficient and it should not be used to draw any conclusion regarding

the superiority of our algorithm over any other algorithm and vice versa. This is

because our algorithm solves an inherently different and arguably more challenging

problem.

3.6 Conclusions

In this chapter, we propose a variant of RNN queries called reverse approximate

nearest neighbors (RANN) queries. An RANN query relaxes the definition of influence

using the relative distances between the users and the facilities. RANN queries are

motivated by our observation that RkNN queries may be unable to properly capture

the notion of influence. We propose an efficient algorithm based on several efficient

and effective pruning techniques and non-trivial observations. The pruning techniques

are proved to be tight. The extensive experimental study demonstrates that our

algorithm is several orders of magnitude better than the competitors.

43

Chapter 4

Continuous Monitoring of

RANN

This chapter presents an efficient algorithm to continuously monitor the RANN

queries. We study the scenario when the facility queries are static and the users are

continuously moving.

4.1 Overview

In a continuous RANN query, the facilities (e.g., fuel stations) do not change their

locations but the users (e.g., drivers) are continuously moving. In such scenario,

the results are to be continuously monitored and reported to the query facility. For

instance, a fuel station owner may want to continuously monitor the cars influenced

by it and may send them promotions. Given a set of facilities F , a set of users U ,

a set of queries Q and a value of x > 1, the problem of continuous monitoring of

RANN queries is to continuously monitor the RANNs of every q ∈ Q when one or

more users change their locations.

We assume a client-server paradigm. The server maintains the locations of

facilities and the moving users. When a client issues a query, the server computes

and sends its initial results to the client. The server also assigns each moving user a

safe zone which is an area such that the user’s movement within this area does not

affect the results of any query in the system. The user reports its location to the

server only when it leaves its respective safe zone. In this case, the server updates

the results of affected queries and sends the relevant clients the updated results.

Then, the server computes the new safe zone and sends it to the user. The system

also maintains up-to-date results when queries and/or users are added to or deleted

from the system. Like most of the existing work on continuous queries [118], we

assume a timestamp model in which the server receives the location updates at each

44

timestamp (e.g., after every t time units) and updates the results accordingly.

We summarize our contributions as follows.

• We propose a novel Voronoi-based algorithm to efficiently monitor concurrent

continuous RANN queries for moving objects. A by-product of our techniques

for continuous RANN queries is an alternative Voronoi-based algorithm to

solve snapshot RANN queries. This Voronoi-based algorithm outperforms

our previous algorithm [11] by up to 20 times. To be fair with our previous

algorithm, the new Voronoi-based algorithm requires a pre-computed Voronoi

diagram and some changes to the standard indexes (e.g., R*-tree, Quadtree).

In contrast, our previous algorithm (Section 3.3) can be applied on any branch-

and-bound index without requiring any modification. Therefore, the previous

algorithm may be preferred by a system administrator who does not want to

modify the existing indexes.

• we present a non-trivial extension of the state-of-the-art RkNN monitoring

algorithm [5] to handle RANN queries and use it as a competitor for our

Voronoi-based algorithm.

• We conduct an extensive experimental study on both real and synthetic data

sets to show the effectiveness of our proposed techniques. Our experiments

show that our proposed algorithm significantly outperforms the state-of-the-art

algorithm in terms of both initial computation cost and continuous monitoring

cost

4.2 Proposed Framework

Recall that a user u is an RANN of a query q if and only if it lies outside the

pruning circle of every facility (Lemma 3.1 and Lemma 3.2). Thus, a straightforward

approach to verify whether a user u is an RANN of a query q is to check pruning

circles of all facilities with respect to q and determine if u is outside all these circles

or not. Consider a query facility q and two other facilities f1 and f2 in Fig. 4.1. Cf1

(resp. Cf2) is the pruning circle of facility f1 (resp. f2) with respect to the query q.

In this example, u2 is an RANN of q as it is outside all pruning circles. On the other

hand, u1 is not an RANN of q since there is at least one pruning circle (Cf2) that

contains it. This simple approach requires O(|F |) to check whether a given user u is

an RANN of a query q where |F | is the total number of facilities.

Next, we present an observation that allows checking whether a user is an RANN

of a query or not by considering only one pruning circle.

45

Lemma 4.1 Let f be the nearest facility of a user u. u is an RANN of a query q if

and only if u is outside the pruning circle Cf of f .

Proof If u is inside the pruning circle Cf , it cannot be an RANN of q (Lemma 3.1),

e.g u1 in Fig. 4.1. Next, we show that if u is outside of Cf , it is guaranteed

to be outside of the pruning circle of every other facility f ′ and, therefore, is an

RANN of q. Since f is the nearest facility to u, dist(u, f) ≤ dist(u, f ′) for every

other facility f ′. Since u lies outside Cf (i.e., dist(u, q) < x × dist(u, f)), we have

dist(u, q) < x× dist(u, f ′). Thus, u lies outside the pruning circle of f ′. Hence if u is

not pruned by its nearest facility f then it cannot be pruned by any other facility f ′.

Figure 4.1: RANN verification Figure 4.2: Significant facility

Now, consider a case where the system has |Q| queries. A simple approach is to

verify the user u using the above lemma for each of the |Q| queries. Assuming that

the nearest facility f is known, it requires O(|Q|) to check which queries have u as

their RANNs. Next, we present an observation to reduce the number of queries that

need to be considered to check which queries have u as their RANNs.

First, we extend the notation to identify the pruning circle of a facility w.r.t. a

query. Given a query q and a facility f , we use Cf :q to denote the pruning circle of

f with respect to query q. If the query is clear by context, we simply use Cf (as we

did earlier).

Assume that the Voronoi diagram of all facility points has been computed. Let

Vf denote the Voronoi cell of a facility f (e.g., the shaded Voronoi cell in Fig. 4.2).

A facility f is called an insignificant facility for a query q if Cf :q completely contains

its Voronoi cell Vf . On the other hand, a facility f is called a significant facility for

q if Cf :q does not completely contain Vf . In the example of Fig. 4.2, the facility f

is an insignificant facility for q1 because the pruning circle Cf :q1 (the solid circle)

46

completely contains Vf . On the other hand, f is a significant facility for q2 because

Cf :q2 (the dotted circle) does not completely contain Vf . The next lemma shows

that a user u in a Voronoi cell Vf can only be an RANN of a query for which f is a

significant facility.

Lemma 4.2 Let u be a user that lies in the Voronoi cell Vf of a facility f . u cannot

be an RANN of any query q for which f is an insignificant facility.

Proof Since u lies in the Voronoi cell Vf , f is the nearest facility to u. Furthermore,

since f is an insignificant facility for q (i.e., Cf :q completely contains Vf), u is inside

Cf :q. Therefore, u cannot be an RANN of q because it is contained in the pruning

circle of its nearest facility (see Lemma 4.1).

We use Lemma 4.1 and Lemma 4.2 to efficiently update RANNs of the queries.

Specifically, for each Voronoi cell Vf , we create a list called sigList that contains

every query q for which f is a significant facility. A user u that moves in a cell Vf

can be an RANN of only the queries in the sigList of Vf . Hence, we only need O|K|
instead of O|Q| to determine what queries have u as its RANN where |K| is the

number of queries in sigList of Vf . Our experiments show that |K| is significantly

smaller than |Q| (around 1% of |Q|). In the example of Fig. 4.2, sigList of Vf

contains only q2 and a user lying in Vf can be an RANN of only q2.

To efficiently implement the above observations, we need techniques to efficiently

determine the significant facilities for a given query q. Specifically, when a new query

q is registered at the system, the algorithm must be able to efficiently determine each

of its significant facilities and add q to its sigList. The next section provides the

details on how to do this efficiently.

4.3 Efficiently Identifying Significant Facilities

A näıve approach is to access each facility f ∈ F , construct its pruning circle Cf :q

and check whether it contains the Voronoi cell Vf or not. However, this approach

is not only computationally expensive but also incurs high I/O cost because the

whole facility R*-tree (F-tree) needs to be accessed for each query. We observe that

some nodes in the F-tree may not contain any significant facility and can be pruned.

Therefore, an efficient approach is to iteratively access F-tree starting from the root

node and accessing only the nodes that may contain some significant facilities. Before

we present techniques to determine whether a node of F-tree may contain a significant

facility or not, we first need to formalize how to check if a facility is significant for q

or not.

Consider the example of Fig. 4.3 where Vf is represented as a set of vertices v1 to

v5. The maximum distance between f and Vf is dist(f, v5) and the minimum distance

47

between f and its pruning circle Cf is dist(f, Z). Since dist(f, Z) > dist(f, v5), we

can confirm thatCf fully contains Vf . Therefore, to check if f is a significant facility

for q or not (i.e., Cf contains Vf or not), we need to compute the maximum distance

between f and Vf (denoted as maxdist(f, Vf)) and the minimum distance between f

and Cf (denoted as mindist(f, Cf)). maxdist(f, Vf) can be easily computed using

dist(f, vi) for each vertex vi of the Voronoi cell Vf . Formally, maxdist(f, Vf) =

max
vi∈Vf

dist(f, vi). The next lemma shows that mindist(f, Cf) = dist(q,f)
x+1 .

Figure 4.3: Lemma 4.3 Figure 4.4: Safe zone

Lemma 4.3 Given a query q, a multiplication factor x > 1, and a facility point f ,

mindist(f, Cf) = dist(q,f)
x+1 .

Proof Consider the example of Fig. 4.3. Note that mindist(f, Cf) = dist(f, Z) =

dist(c, Z)− dist(c, f). Note that dist(c, f) = dist(q, c)− dist(q, f). By definition of

the pruning circle Cf (see Definition 3.2), dist(q, c) = x2·dist(q,f)
x2−1 . Thus, dist(c, f) =

x2·dist(q,f)
x2−1 −dist(q, f) = dist(q,f)

x2−1 . Since dist(c, Z) is the radius of the pruning circle Cf ,

by definition of pruning circle, dist(c, Z) = x·dist(q,f)
x2−1 . Therefore, mindist(f, Cf) =

x·dist(q,f)
x2−1 − dist(q,f)

x2−1 = dist(q,f)
x+1 .

The next lemma summarizes the above observation. The proof is obvious and is

omitted.

Lemma 4.4 Given a query q and a facility point f , f is an insignificant facility of

q if dist(q,f)
x+1 > maxdist(f, Vf).

Now, we are ready to extend the above lemma for a node of the facility R*-tree.

Given a leaf or intermediate node e of the facility R*-tree, we define MaxMaxDist(e)

as the maximum of maxdist(f, Vf) for every facility f ∈ e, i.e., MaxMaxDist(e) =

48

max
f∈e

maxdist(f, Vf). Consider the node e in Figure 4.3 (the shaded rectangle)

which contains 3 facility points A, B and T . Assuming that maxdist(A, VA),

maxdist(B, VB) andmaxdist(T, VT) are 2, 5 and 3, respectively, thenMaxMaxDist(e) =

5.

The next lemma extends Lemma 4.4 for a node e of the facility R*-tree.

Lemma 4.5 A node e of the facility R*-tree cannot contain any significant facility

for a query q if mindist(q,e)
x+1 > MaxMaxDist(e).

Proof We prove that every f ∈ e is an insignificant facility for q. Since dist(q, f) ≥
mindist(q, e) andmaxdist(f, Vf) ≤MaxMaxDist(e), we have dist(f,q)

x+1 > maxdist(f, Vf).

Therefore, f is an insignificant facility (see Lemma 4.4).

Note that the Voronoi diagram and MaxMaxDist(e) are query independent and

can be computed during pre-processing. Specifically, in the pre-processing phase, we

first compute a Voronoi diagram of the facilities and calculate maxdist(f, Vf) for

each facility f . Finally, MaxMaxDist(e) for each node e in the facility R*-tree is

computed in a bottom-up fashion and stored along with e.

4.4 Algorithms

In this section, we present our algorithms to continuously monitor the RANNs

of queries. First, we show how to handle the case when a new query is issued

(Section 4.4.1). Then, we present the algorithm to handle the case when a new user

arrives (Section 4.4.2). In Section 4.4.3, we show how to handle the case when a

query or a user is deleted. Finally, we explain how to update the result when one or

more users change their locations (Section 4.4.4).

Note that the initial results can be computed by first adding all the queries one

by one (Section 4.4.1) and then adding each of the users (Section 4.4.2).

4.4.1 Adding a query

When a new query q is issued, we need to compute its initial results and to insert q

into the sigList of each significant facility of q. Algorithm 4 provides the details.

The algorithm initializes a list L with the root of the facility R∗-tree (F-tree) (line 1).

The entries in the list L are iteratively accessed and are processed as follows. If

the accessed entry e is an intermediate or leaf node and cannot be pruned using

Lemma 4.5 (line 5), its children are inserted in the list L (line 7).

If e is a facility point, we check whether it is a significant facility or not by

checking if Ve is contained by Ce or not (line 8). If e is a significant facility of q, q is

inserted in the sigList of the Vornoi cell of e (line 9). Then, for each user u in the

49

Algorithm 4 addQuery(q)

1: insert root of F-tree in a list L
2: while L is not empty do
3: remove an entry e
4: if e is an intermediate or leaf node then
5: if e is not pruned then . apply Lemma 4.5
6: insert all children of e in the list L
7: else . e is a facility
8: if Ce:q does not contain Ve then
9: insert q in sigList of e

10: for each user u in Voronoi cell of e do
11: if u is outside Ce:q then
12: insert u as RANN of q . Lemma 4.1
13: insert q in qList of u

Voronoi cell of e, the algorithm checks if u is inside the pruning circle Ce:q or not

(line 10-12). If u is outside Ce:q, it will be inserted as an RANN of q and q will be

inserted in qList of u (line 13). qList of a user u stores all queries for which u is an

RANN. We need the qList to enable us to efficiently find the queries for which u is

a result (see Section 4.4.3). The algorithm stops when the list L becomes empty.

Note that at line 10 we need to obtain all users lying in a particular Voronoi

cell. To do this, the server maintains the location of each user and the Voronoi cell

in which it resides. For each Voronoi cell, the server also maintains a list of users

residing in this cell. This list can be used to efficiently find all users in a particular

Voronoi cell.

4.4.2 Adding a user

When a new user u arrives, we need to compute the safe zone of u and update the

result set of queries for which u is an RANN. Algorithm 5 provides the details. The

safe zone of u is a region such that if u is inside this region, the RANN of all queries

in the system remain unchanged. Before we present the details of Algorithm 5, we

provide an observation to construct the safe zone.

Recall that a user u can be an RANN of only the queries in the sigList of f where

f is the nearest facility of u (Lemma 4.2). Furthermore, u is a result of only a query

qi ∈ sigList of f for which u is outside Cf :qi (Lemma 4.1). In other words, the user

u does not affect the results of any query qi ∈ sigList as long as it does not leave or

enter the circle Cf :qi . Therefore, we consider Cf :qi for every qi in sigList of f and

obtain the smallest circle such that as long as u is inside it, it does not leave or enter

any of Cf :qi . Below, we formally describe this idea.

We usemindist(u,Cf :qi) to denote the minimum distance between u and a pruning

circle Cf :qi where f is the nearest facility to u. We compute mindist(u,Cf :qi) for every

50

query qi in the sigList of f . The minimum value of mindist(u,Cf :qi) is maintained

and is stored as rC , i.e., rC = min
qi∈sigListf

mindist(u,Cf :qi). We create a critical circle of

u (denoted as CRu) centered at u with radius rC . Consider the example of user u1 in

Fig. 4.4 that lies in Vf . The sigList contains q1 and q2 and the pruning circles Cf :q1

and Cf :q2 are also shown. Since min
qi∈sigListf

mindist(u,Cf :qi) = mindist(u1, Cf :q2),

rC = mindist(u1, Cf :q2). The shaded circle CRu1 is the critical circle for u1. Note

that as long as u1 is in this circle, it does not enter or leave any pruning circle and,

therefore, does not affect the result of q1 or q2. Fig. 4.4 also shows the CRu2 for the

user u2.

Note that the construction of CRu only considers the queries in the sigList of

facility f where f is the nearest facility to u. Consequently, CRu is valid as long

as u is inside the Voronoi cell Vf of f . If u leaves the Voronoi cell of f , the query

results may change. Consider an example of u2 in Fig. 4.4. If u2 leaves the Voronoi

cell, even though it may still be inside its critical circle CRu2 , the query results may

change. Hence, we construct the safe zone of u (denoted as safeu) as the intersection

region of CRu and the Voronoi cell Vf of f , i.e., safeu = CRu ∩ Vf . In Fig 4.4, the

safe zones of u1 and u2 are the shaded regions.

Now, we are ready to present our algorithm to handle a new user u that arrives.

First, Algorithm 5 issues a nearest neighbour query on facility R*-tree to find its

nearest facility f (line 1). Then, the Voronoi cell Vf of f is obtained from the

pre-computed Voronoi diagram. Subsequently, it accesses the queries in sigList of

Vf iteratively (line 3). For each query qi in the sigList of f , the algorithm checks

whether u is inside Cf :qi or not. If u is outside Cf :qi , it is inserted as RANN of qi and

qi is inserted in qList of u (line 4-6). During the iteration, the algorithm maintains

rC (line 7-8) which implies that rC corresponds to the radius of the critical circle

when every qi has been accessed. The safe zone of u (safeu) is the intersection of

CRu and the Voronoi cell of f (line 10).

Algorithm 5 addUser(u)

1: get the nearest facility f of user u
2: rC ←∞
3: for each qi ∈ sigList of Vf do
4: if u is outside Cf :qi then
5: insert u as RANN of qi
6: insert qi in qList of u
7: if rC < mindist(u, Cf :qi) then
8: rC ← mindist(u, Cf :qi)
9: create critical circle CRu centered at u with radius rC

10: safeu ← CRu ∩ Vf

51

4.4.3 Deleting a query or a user

Recall that qList of a user u contains every query q for which u is an RANN. When

a user u is deleted, we delete u from the result set of every query in its qList and

the affected queries are notified of the updated results.

When a query q is deleted, we retrieve every facility f for which q is in its sigList

and delete q from the sigList. Note that for each query, we can easily maintain a

list of its significant facilities, e.g., when a significant facility is identified at line 9

of Algorithm 4. Then, we remove q from the qList of every user u that has q in its

qList (i.e., u is an RANN of q). Note that when a query is removed, the safe zone of

some users may become larger. However, we decide not to update the safe zone of

such users because it may incur unnecessary computation and communication cost

becasue the new safe zones need to be computed and sent to the users. The safe

zone of those users will be updated when they leave their safe zones. This does not

affect the correctness of the algorithm.

4.4.4 Handling the movement of users

Recall that a user’s movement does not affect the results of any query as long as

the user remains in its respective safe zone. Therefore, the user sends its location to

the server only when it leaves its safe zone. In this case, the results can be easily

maintained by first deleting the user from the system and then adding the user (as

described in the previous sections). However, some simple yet effective optimizations

are possible as described below.

Note that Algorithm 5 (where we add a user u) requires the nearest facility to

u (line 1). To find it, a simple approach is to issue a nearest neighbour query on

the facility R*-tree for every location update by the user. However, it may incur

unnecessary I/O cost. To improve this, we first check if u is still inside the same

Voronoi cell. If it is, we do not need to compute its nearest facility because the

nearest facility and the Voronoi cell that contains u remain unchanged. Otherwise,

we handle the update as follows.

Let fold (resp. Vfold) be the previous nearest facility (resp. Voronoi cell) of

u and fnew (resp. Vfnew) is the current nearest facility (resp. Voronoi cell) of

u. If u is outside Vfold , we need to find the current nearest facility to u (fnew).

Note that dist(u, fnew) < dist(u, fold). Thus, a nearest neighbour query is issued

with a simple modification that every entry e in the facility R*-tree is ignored if

mindist(u, e) > dist(u, fold).

52

4.5 Experiment

4.5.1 Competitor

To the best of our knowledge, there is no existing algorithm for continuously monitor-

ing RANN queries. Influence zone [5] is the state-of-the-art algorithm for continuous

monitoring of RkNN queries. We extend the techniques proposed in [5] to continu-

ously monitor RANN queries by extending the notion of influence zone for RANN

queries, i.e., an area such that a user is an RANN of a query if and only if the user

is inside this area.

Recall that a user u is an RANN of a query q if and only if it lies outside the

pruning circle of every facility (Lemma 3.1 and Lemma 3.2). Thus, the influence zone

can be defined as the area outside the pruning circles of all facilities. For example, in

Fig 3.3, influence zone is the white area and a user u can be an RANN of q if and only

if u lies in the white area. Thus, a straightforward approach to compute influence

zone of a query q is to consider the pruning circles for every facility. Influence zone

of each query q ∈ Q can be then computed and indexed using a grid (similar to [5])

and the RANNs of all queries can be monitored using the ideas presented in [5] (see

Section 2.3).

However, note that the above approach requires computing |Q| × |F | pruning

circles where |Q| and |F | denote the total number of queries and facilities, respectively.

This is not only computationally expensive but also requires huge memory to index

all circles in the grid. As explained in Section 5.3.1, it is not trivial to reduce the

number of pruning circles because unlike RkNN queries, the users that are very far

may still be the RANNs. Nevertheless, to optimize the performance, we carefully

design a pruning technique that significantly reduces the number of pruning circles.

Our experiments show that this reduces the total number of pruning circles by 30%

to 65%. Details of the technique is presented in Section 4.5.2 below.

We partition the data space into an N × N grid structure (N is set to 64 in

the experiments as this gives the best overall performance). For each grid cell, we

maintain two lists: q-list and c-list. The q-list of a cell c contains queries whose

pruning circles do not overlap c. When a user moves into c, it will be immediately

inserted as an RANN of each query in the q-list of c. c-list of a cell c stores each

query q for which there exist at least one facility whose pruning circle with respect

to q overlaps c. For each q in c-list of c, a list lq:c containing facilities whose pruning

circle overlaps c is maintained. When a user u moves into c, it is checked against

each query q in c-list of c. If u is outside the pruning circles of each facility in lq:c, it

is inserted as an RANN of q.

We also assign a safe zone for each user. Similar to the Voronoi-based algorithm,

53

for each user o in cell c, we iterate over all pruning circles in c-list of c to get the

minimum distance between o and circles in c-list of c. We set this distance as the

radius of safe circle. The safe zone of o is the intersection of the safe circle and the

cell c.

4.5.2 Optimization

We improve the extended influence zone algorithm for continuous RANN queries

by reducing the number of pruning circles required to construct the influence zone.

Suppose that the algorithm has already accessed a set of facilities Faccessed and used

their pruning circles to prune the search space. Let the pruned area be denoted as A.

A facility f /∈ Faccessed is called a useless facility if it does not prune any additional

area, i.e., the pruning circle of f is fully contained in A. We propose techniques to

identify an entry e of the facility R*-tree (called useless entry) that contains only

useless facilities. The algorithm can then create the influence zone by traversing the

facility R*-tree (pruning useless entries) and creating the pruning circles for only the

facilities that are not useless. First, we present the concept of an extended rectangle.

Definition 4.1 (Extended rectangle) Let Cp denote the pruning circle of a point

p with respect to a query q. Let a, b, c and d denote the four corners of an MBR of

a facility R*-tree entry e. Its extended rectangle ABCD is the minimum bounding

rectangle of the circles Ca, Cb, Cc, and Cd.

Consider the MBR abcd in Fig 4.1. Its extended rectangle ABCD is the minimum

bounding rectangle of the pruning circles Ca, Cb, Cc and Cd as shown in Fig. 4.1.

Figure 4.5: Extended rectangle

54

Lemma 4.6 Let A denote the area pruned by Faccessed. Let abcd be the MBR of an

unaccessed facility entry e. The entry e is a useless entry if its extended rectangle

ABCD is contained by A.

Proof Consider MBR abcd and its extended rectangle ABCD in Figure 4.5. We

show that the pruning circle Cp of every point p inside the MBR is contained by A.

For a point p, we denote its pruning circle as Cp, the center of the circle as p′ and

the radius as rp.

Without loss of generality, let p be a facility point on line cd and Cp be its pruning

circle (see the dotted red circle). Since c, d and p are on the same horizontal line,

it can be proved that the centers of their pruning circles c′, d′ and p′ are also on a

horizontal line. Since dist(q, p) < dist(q, d),according to the definition of pruning

circle (Definition 2), rp < rd. Since ABCD contains Cc and Cd and rp < rd, rp

can only be outside of ABCD if rp intersects with the line AD, i.e., rp can be

outside of ABCD only if rp > c′p′ + rc. Next, we prove that this is not possible and

rp ≤ rc + c′p′ or rc + c′p′ − rp ≥ 0.

From triangle 4qc′p′, we have

c′p′2 = qc′2 + qp′2 − 2.qc′.qp′ cos θ (4.1)

where θ = 6 c′qp′. Since qc′ = x2.qc
x2−1 and qp′ = x2.qp

x2−1 (Definition 2), we have

c′p′2 = (
x2 · qc
x2 − 1

)2 + (
x2 · qp
x2 − 1

)2 − 2 · (x
2 · qc
x2 − 1

)·

(
x2.qp

x2 − 1
) · cos(θ)

=
x4

(x2 − 1)2
(qc2 + qp2 − 2 · qc · qp · cos(θ))

Since qc2 + qp2 − 2 · qc · qp · cos(θ) = cp, we have

c′p′ =

√
(
x4 · cp2

(x2 − 1)2
) =

x2 · cp
x2 − 1

(4.2)

Since rc = x·qc
x2−1 , rp = x·qp

x2−1 (Definition 2) and c′p′ = x2.cp
(x2−1) (Eq. (4.2)),

rc + c′p′ − rp =
x · qc
x2 − 1

+
x2 · cp

(x2 − 1)
− x · qp
x2 − 1

=
x

x2 − 1
(qc+ x.cp− qp)

55

From triangle inequality, qc+ cp > qp. Since x > 1, x
x2−1(qc+ x · cp− qp) > 0 which

completes the proof.

4.5.3 Experimental Setting

We compare our algorithm Voronoi with the extended influence zone algorithm

(denoted as InfZone). We use a real world data set containing point of interests from

Los Angeles (LA). The moving objects (i.e., users) are generated by simulating moving

cars on the road network of LA using the well-known Brinkhoff data generator [164].

The parameters used in the experiments are shown in Table 6.1 and the default

values are shown in bold.

Table 4.1: Experiment Parameters
Parameters Range

x 1.1, 1.5, 2, 3, 4

Number of facilities (X 1000) 10, 50,100, 150

Number of users (X 1000) 10, 50,100, 150

Users’ speed (Km/hr) 40, 60, 80, 100, 120

Users’ Mobility (%) 20, 40, 60, 80, 100

Due to its high memory usage, InfZone cannot handle more than 1000 continuous

RANN queries for all data settings. Therefore we use 1000 continuous queries as

default. Each query is a randomly selected point from the facility data set and we

monitor all 1000 queries for 100 timestamps. We report the total initial cost and

the total monitoring cost. The total initial cost is the cost to compute the initial

results of all queries. The total monitoring cost is the cost to continuously update

the results of the affected queries for 100 timestamps.

4.5.4 Experiment Result

4.5.4.1 Effect of the x factor

Fig. 4.6 studies the effect of the x factor on both algorithms. As expected, the cost of

each algorithm increases with the increase of x factor because a smaller area is pruned

when x is larger. Fig. 4.6(a) shows that the initial computation cost of Voronoi is

two to three orders of magnitude lower than that of InfZone and Voronoi scales

much better (note that log scale is used on y-axis). Fig. 4.6(b) shows that Voronoi

outperforms InfZone by up to two orders of magnitude and scales much better as the

value of x increases. The initial computation cost of Voronoi is quite low as shown

in the previous section for the snapshot RANN queries. The continuous monitoring

cost is also very small due to the effective use of the Voronoi cells and significant

56

facilities. In contrast, InfZone is significantly more expensive mainly because it

requires computing and indexing a large number of pruning circles for each query.

1

8
15.7

1800

60000

1.1 1.5 2 3 4

C
P

U
 c

o
st

 (
se

c)

x

InfZone
Voronoi

(a) Initial cost

 0

 2000

 4000

 6000

1.1 1.5 2 3 4

C
P

U
 c

o
st

 (
se

c)

x

InfZone
Voronoi

(b) Monitoring cost

Figure 4.6: Effect of the x factor

4.5.4.2 Effect of number of facilities

In Fig. 4.7, we study the effect of the number of facilities on both algorithms. InfZone

failed to run for 150, 000 facilities because it ran out of memory. The cost of both

algorithms increases with the increase in number of facilities mainly because the

number of significant facilities and the number of pruning circles increase as the

number of facilities increases.

1

5
12

1200

7000

10K 50K 100K 150K

C
P

U
 c

o
st

 (
se

c)

facilities

InfZone
Voronoi

(a) Initial cost

 0

 500

 1000

 1500

10K 50K 100K 150K

C
P

U
 c

o
st

 (
se

c)

facilities

InfZone
Voronoi

(b) Monitoring cost

Figure 4.7: Effect of number of facilities

Fig. 4.7 shows that Voronoi significantly outperforms InfZone in terms of both

the initial computation cost and the continuous monitoring cost and scales better.

In the rest of the experiments, we only compare the monitoring cost of the two

algorithms because the initial cost of InfZone is two to three orders of magnitude

higher than Voronoi for all data settings.

57

4.5.4.3 Effect of number of users

Fig. 4.8 shows the effect of number of users on the monitoring cost of both algorithms.

As expected, the monitoring cost of both algorithms increases with the increase in

number of users. Voronoi significantly outperforms InfZone and scales much better.

 0

 500

 1000

 1500

 2000

 2500

10K 50K 100K 150K

C
P

U
 c

o
st

 (
se

c)

users

InfZone
Voronoi

Figure 4.8: Effect of # of users

4.5.4.4 Effect of mobility

Fig. 4.9 studies the effect of mobility which correspond to percentage of the users

that move between two timestamps, e.g., 80% mobility corresponds to the data set

where 80% of the total users change their locations between two timestamps and the

rest of the users are static (e.g., car waiting on traffic light).

 0

 400

 800

 1200

 1600

20 40 60 80 100

C
P

U
 c

o
st

 (
se

c)

mobility (%)

InfZone
Voronoi

Figure 4.9: Effect of mobility

As expected, the monitoring cost of both algorithms increases with the increase

in mobility. Voronoi significantly outperforms InfZone and scales much better which

is mainly because the safe zones created by Voronoi are larger and it takes longer

for a user to leave its safe zone which results in requiring fewer updates.

58

4.5.4.5 Effect of speed

Fig. 4.10 studies the effect of users’ speed on the monitoring cost of both algorithms.

Fig. 4.10(a) shows that Voronoi significantly outperforms InfZone. Fig. 4.10(b)

shows the total number of updates in 100 timestamps where an update corresponds

to the instance when a user leaves its safe zones. The monitoring cost of Voronoi

increases with the increase in speed because the number of users that leave their

respective safe zones increases with the increase in the speed. Although the number

of updates for InfZone also increases with the increase in speed, its monitoring cost

is relatively stable. This is because the initial positions of the users generated by

Brinkhoff data generator are randomly chosen. Therefore, the initial positions of the

users are different in each data set and the trend is difficult to predict because a

data sets where more users are located in dense areas will have higher costs.

 0

 300

 600

 900

 1200

 1500

 1800

40 60 80 100 120

C
P

U
 c

o
st

 (
se

c)

speed(km/hr)

InfZone
Voronoi

(a) Monitoring cost

 0

 2

 4

 6

 8

40 60 80 100 120

u

p
d

at
es

(i
n

 m
ill

io
n

s)

speed(km/hr)

InfZone
Voronoi

(b) Number of updates

Figure 4.10: Effect of the user’s speed

4.6 Conclusion

In this chapter, we propose an efficient algorithm to continuously monitor the RANN

of queries. We show that using a Voronoi diagram, we only need to check one pruning

circle to verify whether a moving user is an RANN of a query. Our algorithm efficiently

handles the cases of query and moving user insertion or deletion and the movement

of the users. The extensive experimental study on real data sets demonstrate that

our algorithms significantly outperform the extended state-of-the-art algorithm for

RkNN queries.

59

Chapter 5

Efficient Algorithm for Moving

Top-k Queries

In this chapter, we propose an efficient algorithm for continuous monitoring of top-k

queries. Unlike range query, nearest neighbor query, reverse nearest neighbor query

and reverse approximate nearest neighbor query that only consider the distance

between objects and the queries, top-k query considers multiple attributes of the

objects. In this chapter, distance to the query point is one of the considered attributes.

5.1 Motivation

Due to the increased use of smart mobile devices, the availability of inexpensive

wireless position locators and the more affordable network bandwidth, location based

services have gained popularity in the past few years. As a consequence, research on

continuous spatial queries to support the location-based services has also attracted

significant interest in the past decades. Many algorithms for continuous monitoring

of moving queries have been proposed, such as for range query, nearest neighbor

query, reverse nearest neighbor query etc.

Each of the above mentioned queries assumes that users, to choose their most

important facilities, only consider their distances from the facilities. In many real

world applications, distance is not the only criterion considered by the users. In

this chapter, we focus on studying the continuous monitoring of spatial queries

that involve multiple criterions. Specifically, we study the problem of continuously

monitoring the top-k preferred objects for a moving query, where distance between

the facilities and the query user is one of the considered criterions.

Consider the example of a driver who is looking for restaurants. He wants

restaurants that are close to him, have good reputations and are inexpensive. In

this case, the driver considers multiple criteria, i.e., distance, rank and price, to

60

select his preferred restaurant. The driver may issue a top-k query that considers

the restaurants’ distances to him, their ranks and food prices to get the k most

important restaurants according to his preference. Since the distances between the

car and the restaurants change as the car moves, the top-k objects are needed to be

updated continuously.

Existing works on continuous top-k queries are designed for a specific scoring

function. For example, Wu. et.al., [148] propose an algorithm that uses weighted

distance which is spatial distance divided by textual relevance. Another example

is in [149], which uses weighted sum that adds up spatial and non spatial scores.

These works are limited in applicability since they only work for a particular scoring

function.

There is no single scoring function that is superior for all kinds of problems [165].

To choose an appropriate function, a decision maker should consider characteristics of

different scoring functions on different aspects, such as types of data (i.e., qualitative

or quantitative), transparency levels, computation complexity and cost [166]. For

example, weighted product is appropriate for a multi-dimensional problem, because

it eliminates all units of measure [167].

To the best of our knowledge, we are the first to present a solution for continuous

top-k queries that works for all monotonic scoring functions, including weighted sum,

weighted product, weighted distance etc. Our solution does not utilize properties of

a particular scoring function. Instead, it compares the scores to efficiently prune the

search space. Hence, it can be applied to any monotonic scoring function.

Below, we summarize our contributions in this chapter.

• To the best of our knowledge, we are the first to propose an algorithm for

monitoring of moving top-k queries that can handle any monotonic scoring

function, such as weighted sum, weighted product and weighted distance. All

existing algorithms [148, 149] are designed for a particular scoring function.

• We develop generic non-trivial pruning techniques that significantly reduce the

cost of safe zone computation. Safe zone is a region such that the top-k objects

of a query remain unchanged as long as the query lies inside it.

• We conduct extensive experiments on real data set and demonstrate that our

algorithm is significantly better than a näıve approach.

5.2 Problem Definition

Let O be a set of objects. In addition to location coordinates, each object has

d attributes (dimensions). The i-th attribute value of an object o is denoted as

o[i]. The distance between a query q and an object o is denoted as dist(q, o) and is

61

considered as the (d+1)-th dimension of the object, i.e., o[d+ 1] = dist(q, o). Hence,

each object is considered to have (d+1) dimensions. Since dist(q, o) changes with the

change in query location, the distance is called the dynamic dimension of o. Other

attributes of the objects are not affected by the query movement and are called static

dimensions of the objects.

The static score of an object o (denoted as so) is the score computed using the

static dimensions according to a given scoring function. Note that the static score of

an object does not depend on the distance between o and q. It is called static score

because its value remains the same even though the query changes its location. The

static score of an object can be computed using any monotonic scoring function.

Consider any monotonic scoring function W , the score of an object is computed

using W and the top-k objects with smallest scores are to be returned. Our techniques

can be immediately applied to any monotonic scoring function. Some notable

examples of monotonic scoring functions used for top-k queries in the past include

weighted sum, weighted product and weighted distance. Below, we briefly give

examples of some popular monotonic scoring functions.

Weighted Sum [149, 85]. In weighted sum scoring function, a weight w is assigned

for each attribute. The weight of i-th attribute is denoted as w[i] where w[i] ≥ 0 and∑d+1
i=1 w[i] = 1. Here, w[d+ 1] is the weight of the dynamic attribute (i.e., dist(q, o))

and w[i] (for 1 ≤ i ≤ d) is the weight of each static attribute o[i]. The score of an

object o with regards to the query q is denoted as score(q, o) and is computed using

the following function.

score(q, o) = w[d+ 1] · dist(q, o) +
d∑

i=1

w[i] · o[i] (5.1)

Weighted Product [168]. Weighted product is very similar to weighted sum. The

difference is that instead of addition, it uses multiplication of attributes to compute

the score of an object. The scoring function in weighted product is presented below.

score(q, o) = dist(q, o)w[d+1] ·
d∏

i=1

o[i]w[i] (5.2)

Weighted Distance [148, 169]. In weighted distance, the score of dynamic

attribute is divided by the score of static attributes (so). Weighted distance has been

used in many works on geotextual queries, where the static score corresponds to the

textual relevance.

score(q, o) =
dist(q, o)

so
(5.3)

A top-k query returns the k objects with lowest scores according to a given

62

monotonic scoring function W . The dynamic attribute of the object, i.e., distance

between object and the query point, changes as the query q changes its location. Since

q is continuously moving, the top-k objects of q need to be continuously updated. In

this chapter, we study the problem of continuously monitoring the top-k objects of a

moving query.

5.3 Proposed Solution

We propose a safe zone based approach to efficiently monitor the top-k objects of a

query. The safe zone (Z) of a query q is a region containing q such that as long as q

remains inside Z, its top-k objects as well as their relative order remain unchanged.

Consider an example of a query q and three restaurants (o1 to o3) in Fig. 5.1. The

scoring function and objects’ static attributes (i.e. price) are shown in in the figure.

Assume a weighted sum method is used, where the weight of price is 0.6 and the

weight of distance is 0.4, and the distance between q and o1, o2 and o3 are 0.2,

0.5 and 0.9 respectively. The score of o1 (score(q, o1)) with respect to the scoring

function W is score(q, o1) = 0.4 ∗ 0.2 + 0.6 ∗ 0.4 = 0.32. Similarly, score(q, o2) and

score(q, o3) are 0.5 and 0.54 respectively. In the case of k = 2, the top-k results of q

are o1 and o2. In our solution, we construct a safe zone for q such that as long as q

is inside it, o1 and o2 are the top-2 objects for q respectively.

(a) Weighted sum (b) Weighted product

Figure 5.1: Preferred regions

We say that o1 is more preferred than o2 as long the score of o1 with respect to

W is better than the score of o2. Since the static score does not change, the score of

an object may change if the dynamic attribute of the object (i.e., distance to the

query) changes. In other words, the top-k objects of a query as well as their order,

63

may change when the query changes its location. Now, we present the definition of

preferred region.

Definition 5.1 Preferred Region. Given two objects o1, o2 and a query q with

any monotonic scoring function W , the preferred region of o1 (denoted as PRo1:o2)

is a region such that as long as q is inside PRo1:o2 , o1 is more preferred than o2 with

respect to W , i.e., score(q, o1) < score(q, o2). Similarly, o2 is more preferred than o1

if q is inside PRo2:o1.

Fig. 5.1 shows the example of preferred regions in different scoring functions.

In Fig 5.1(a), a weighted sum scoring function is used. PRo1:o2 is the shaded area

(which is defined by a hyperbola) and PRo2:o1 is the white area. As long as q is

inside the shaded area, o1 is more preferred than o2. Similarly, if q is inside the white

area, o2 is more preferred to q than o1. In Fig. 5.1(b), a weighted product scoring

function is used. PRo1:o2 is the shaded area and PRo2:o1 is the white area which is

defined by an apollonius circle.

Note that if o1 is a query result, the query point q is outside PRo2:o1 . Similarly,

given a set of objects O, q is outside PRoi:o1 for every object oi ∈ O. If q enters

a PRoi:o1 , the query results may change. Hence, the safe zone of q can be defined

using the minimum distance between q and PRoi:o1 for every oi ∈ O.

5.3.1 Challenges

Given a query q with any monotonic scoring function W , the safe zone of a query q

is a region containing q that is defined by all preferred regions. Specifically, it is the

intersection of preferred regions defined by all objects in the data space.

Consider the example of a query q in Fig. 5.2. Assume that a weighted sum

scoring function is used and o1 is the query result. The safe zone (Z) of q is the

shaded region which is the intersection of the preferred regions defined by o1 and all

objects in the data space. i.e,. Z = PRo1:o2 ∩ PRo1:o3 . As long as q is inside Z, the

query results remain unchanged. Once q leaves Z, the query results or the order of

objects in the result set may have changed.

Computing the safe zone for a query may be inefficient and even impossible for

some complex monotonic scoring functions, since we do not know the shape of the

preferred region. The shape of a preferred region is defined by the scoring function.

It can be any geographic shape, such as a hyperbola, a circle, or even a complex

shape like disjoint circles. Since a top-k query may use different scoring functions,

we need a generic technique that is applicable to any geographic shape. We present

our safe zone based technique to answer such requirement in the next section.

64

Figure 5.2: Safe zone

5.3.2 Safe zone overview

Given a top-1 query q with a monotonic scoring function W , and assume that o1 is

the query result, q is outside pruning region PRoi:o1 for every other object oi ∈ O.

As long as q is outside these preferred regions, the query results do not change. When

the query enters a preferred region PRoi:o1 , the query results may have changed.

Hence, the safe zone of q can be defined using the closest preferred region from q.

We propose a circle shaped safe zone with radius of the minimum distance between

the query and preferred regions. A circle is easy to compute, and also it does not

require high cost to check if an object is inside a circle. In the example in Fig. 5.2, the

safe zone of q (Z) is the dashed circle centered at q with the radius rZ , which is the

minimum of the minimum distance between q and PRo2:o1 and the minimum distance

between q and PRo3:o1 , i.e., rZ = min{mindist(q, PRo2:o1),mindist(q, PRo3:o1)}.
A näıve approach to compute the radius of the safe zone is to consider all objects

in the data space. Assume that for k = 1, the query result of a top-k query is object

o1. For every other object oi ∈ O, we may compute the minimum distance between

q and the preferred region of o1 and oi (PRoi:o1). However, computing the minimum

distance between q and preferred region PRoi:o1 is not trivial since the shape of the

preferred region may be quite complex depending on the scoring function used. Next,

we present our technique to compute the distance between a point and an arbitrary

shape of preferred region.

65

5.3.3 Computing minimum distance between query and preferred

region

Intuitively, if we know a very small rectangle that overlaps an unknown shape, the

minimum distance between this rectangle and q serves as a lower bound on the

minimum distance between q to the part of the shape that is overlapped by the

rectangle. If we take the minimum among all these rectangles, we will get the lower

bound on the minimum distance between query and the unknown shape. Consider a

query q and a pruning region PRo2:o1 in Fig. 5.3. Rectangles c1 to c6 overlap PRo2:o1 .

Rectangle that gives the lower bound distance is c4 (shown in solid line) and hence

mindist(q, PRo2:o1) ≤ mindist(q, c4). Since it is a lower bound, the lower bound

on the minimum distance (LB mindist) between q and PRo2:o1 is the minimum

distance between q and c4, i.e., LB mindist(q, PRo2:o1) = mindist(q, c4).

Figure 5.3: Observation

We use this observation to compute the lower bound on the minimum distance

between a query point q and a preferred region PR. We iteratively divide the space

into smaller rectangles and we ignore the rectangles that do not overlap the shape.

We maintain the remaining rectangles based on the minimum distance to q . The

process is terminated when the rectangle area is smaller than a parameter ε. If we

compute the minimum distance between q and R, we get the lower bound of the

minimum distance between q and PR.

Now we present the definition of minimum score and maximum score, as well as

Lemma 5.1 to prune non overlapping rectangles.

Definition 5.2 Minimum (resp. maximum) score. Given a query q with a

scoring function W , an object o and a rectangle R, the minimum (resp. maximum)

66

score of o with respect to W and R, denoted as minScore(q,o,R) (resp. maxS-

core(q,o,R)), is the lowest (resp. highest) possible score of o considering the location

of q in R. Since distance(q, o) is the only dynamic attribute, minScore(q,o,R) (resp.

maxScore(q,o,R)) is obtained at mindist(o,R) (resp. maxDist(o,R)).

Example Consider two objects o1 and o2 and a rectangle R in Fig 5.4. As-

sume that the scoring function is weighted sum and hence PRo1:o2 is a hyperbola.

minScore(q, o1, R) is obtained in q, since mindist(o1, R) = dist(q, o1), whereas

maxScore(q, o1, R) is obtained when the query point is in q′′, since maxdist(o1, R) =

dist(q′′, o1). Similarly, minScore(q, o2, R) and maxScore(q, o2, R) are obtained at q′

and q′′.

Figure 5.4: minimum & maximum score

Next, we present Lemma 5.1 to efficiently check that a rectangle does not overlap

a preferred region.

Lemma 5.1 Given a rectangle R, two objects o1 and o2 and a monotonic scoring

function W , R completely lies in PRo1:o2 if minScore(q, o2, R) > maxScore(q, o1, R).

Proof AssumeminScore(q, o2, R) is obtained at q′ andmaxScore(q, o1, R) is achieved

at q′′, then mindist(o2, R) = dist(q′, o2) and maxdist(o1, R) = dist(q′′, o1). Since

distance is the only dynamic attribute and W is a monotonic function, score(q, o2)

increases as the increase of dist(q, o2). Similarly, score(q, o1) decreases as the de-

crease of dist(q, o1). Since minScore(q, o2, R) > maxScore(q, o1, R), then for any

point q in R, score(q, o2) > score(q, o1), i.e., score(q, o1) will always be smaller than

score(q, o2) where ever the location of q in R is. In other words, R is fully inside

PRo1:o2 .

67

Lemma 5.1 prunes the rectangle that is guaranteed not to overlap the preferred

region. On the other side, when that condition is not met (e.g., minScore(q, o2, R) ≤
maxScore(q, o1, R)), we use Lemma 5.2 to further check if R can actually be

pruned. Consider rectangle R′ in Fig. 5.4 and assume that minScore(q, o2, R
′) <

maxScore(q, o2, R
′), R′ can not be pruned using Lemma 5.1 even though it actually

does not overlap preferred region PRo2:o1 .

Before we present Lemma 5.2, we present the definition of shared score, shared

distance and shared area.

Definition 5.3 Shared score. Given a query q, two objects o1 and o2, and

a rectangle R, the shared score of o1 and o2 with respect to q and R, denoted

as sharedScore(o1, o2, R), is a range of score that is shared by score(q, o1) and

score(q, o2) considering the location of q in R. The minimum (resp. maximum) shared

score of o1 and o2, denoted as minSharedScore(o1, o2, R) (resp. maxSharedScore

(o1, o2, R)) is the minimum (resp. maximum) value of shared score, such that

minScore(q, o1, R) ≤ minSharedScore(o1, o2, R) ≤ maxSharedScore(o1, o2, R) ≤
maxScore(q, o2, R) or minScore(q, o2, R) ≤ minSharedScore(o1, o2, R) ≤ max
SharedScore(o1, o2, R) ≤ maxScore(q, o1, R).

Definition 5.4 Minimum & maximum shared distance. Given a query q, two

objects o1 and o2, and a rectangle R, the minimum shared distance of o1, denoted

as minSharedDistance(o1, o2, R) is the distance between o1 and a point q inside R

such that score(q, o1) = minSharedScore(o1, o2, R). minSharedDistance(o1, o2, R)

is computed as:

minSharedDistance(o1, o2, R) =
minSharedScore(o1, o2, R)− so1

w[d+ 1]

where so1 is the static score of o1 and w[d+1] is the weight of dynamic attribute. The

maximum shared distance (maxSharedDistance(o1, o2, R)) is computed in similar

way using maxSharedScore(o1, o2, R).

If a rectangle R cannot be pruned by Lemma 5.1, there must be a range

of score between minSharedScore(o1, o2, R) and maxSharedScore(o1, o2, R) that

is shared by score(q, o1) and score(q, o2). Based on this shared score, the val-

ues of minimum and maximum shared distance of o1 and o2 can be obtained.

In Fig 5.5, minSharedDistance(o1, o2, R) and maxSharedDistance(o1, o2, R) are

shown as the radius of circles centered at o1. Similarly, minSharedDistance(o2, o1, R)

and maxSharedDistance(o2, o1, R) are illustrated as the radius of circles centered

at o2.

68

Figure 5.5: Lemma 5.2

Definition 5.5 Shared area. Given a query q, two objects o1 and o2, a rectangle

R, and the minimum and maximum shared distance of o1 and o2, the shared area

of o1, denoted as Ao1 is the area between two circles, cmin
o1 and cmax

o1 where cmin
o1

(resp. cmax
o1) is a circle centered at o1 with radius minSharedDistance(o1, o2, R)

(resp. maxSharedDistance(o1, o2, R)). Specifically Ao1 = cmax
o1 − cmin

o1 .

Now we present Lemma 5.2 to further check if a rectangle can be pruned.

Lemma 5.2 Given a query q, two objects o1 and o2 and a rectangle R, R completely

lies in PRo1:o2 if there is no intersection area between Ao1, Ao2 and R, i.e,. Ao1 ∩
Ao2 ∩R = ∅.

Proof If Ao1∩Ao2∩R = ∅, it shows that there is no shared score between score(q, o1)

and score(q, o2) wherever the location of the query q in R is, i.e,. for any query q in

R, score(q, o1) < score(q, o2).

In the implementation, we use intersection points of circles cmax
o or cmin

o and the

rectangle R to check if there exists such intersection area. Consider two objects o1

and o2 and a rectangle R in Fig. 5.5. a1 and b1 are the intersection points of R and

cmin
o1 . Similarly, a2 and b2 are the intersection points of R and cmax

o2 . If a1, b1, a2 and

b2 are outside R, then R lies completely inside PR(o1, o2).

We use Lemma 5.1 and 5.2 in Algorithm 6 to efficiently obtain a lower bound

on the minimum distance between the query point (q) and a preferred region PR.

First, the rectangle R is set to cover the whole space (line 2) and is inserted into

a heap sorted based on the minimum distance between q and R. R is divided into

smaller rectangles and those that overlap PR are inserted into the heap (line 10).

69

The process continues until the size of the de-heaped entry e is smaller than ε (line 6).

The minimum distance between q and e is then returned (line 7).

Algorithm 6 mindist(q, PRo2:o1)

1: mindist(q, PRo2:o1)←∞
2: R← whole space

3: insert R in a min-heap heap

4: while heap is not empty do

5: de-heap an entry e

6: if area(e) < ε then

7: return mindist(q, PRo2:o1) = mindist(q, e)

8: for each child c of e do

9: if R overlaps PRo2:o1 then . lemma 5.1 & 5.2

10: insert c in heap according to mindist(q, c)

Fig. 5.6 illustrates steps to compute the minimum distance between q and a

preferred region in the case where a top-1 query returns o1 assuming a weighted sum

scoring function is used. First, the whole data space is divided into four smaller

rectangles c1:1 to c1:4 (we use c1:4 to denote rectangle 4 in iteration 1). In Fig. 5.6, c1:3

and c1:4 are inserted in the heap since they overlap PRo2:o1 . c1:1 and c1:2 are discarded.

At this stage, the heap is updated to heap = {c1:4, c1:3}. c1:4 is then de-heaped and is

divided into smaller rectangles c2:1 − c2:4. heap is updated to heap = {c2:2, c2:1, c1:3}.
In the third iteration, heap is updated as follows, heap = {c3:1, c3:2, c2:1, c1:3}. The

iteration stops when the area of the de-heaped entry e is smaller than ε such that

the minimum distance between q and e reflects the minimum distance between q and

PRo2:o1 .

5.3.4 Computing safe zone

As mentioned in the previous section, a straight forward approach to compute the

valid radius of the safe zone is to consider the preferred region of all objects in the

data space. However, this approach is expensive since for each object o, we compute

the minimum distance between the query and the preferred region of o. We propose

a technique to reduce the cost of safe zone computation.

We compute the minimum possible score of an object considering the location

of the query in the current safe zone and compare it with the maximum possible

score of the query result to quickly check if the object can be ignored. Consider an

object o2 and a top-1 query that returns o1 in Fig. 5.7. The current safe zone (Z)

is the circle centered at q with radius rZ . The minimum possible score of o2 with

regards to q and Z (denoted as minScore(q, o2, Z)) is obtained when the distance

70

Figure 5.6: mindist(q, PRo2:o1)

between o2 and q is minimum. Similarly, the maximum possible score of the query

result o1 (denoted as maxScore(q, o1, Z)) is obtained when the distance between q

and o1 is maximum. In Fig. 5.7, minScore(q, o2, Z) is obtained when the query is in

q′ whereas maxScore(q, o1, Z) is obtained when the query is in q′′.

Figure 5.7: Pruning

Now we introduce Lemma 5.3 to check if an object can be quickly pruned.

Lemma 5.3 Given a query q, its safe zone Z with radius rZ , and its top-k objects

(top-k), any object o′ can be pruned, if for every object o in top-k, maxScore(q, o, Z) <

minScore(q, o′, Z).

Proof If maxScore(q, o, Z) < minScore(q, o′, Z), Z does not overlap PRo′:o and

71

mindist(q, PRo′:o) > rZ . Processing o′ will not affect Z, hence o′ can be safely

pruned.

We extend Lemma 5.3 and use the minimum possible score of a node to check if

the node can be safely pruned. Consider an object node e and a top-1 query that

returns o1 in Fig. 5.7. minScore(q, o′, Z) is the lowest possible score of an object

in e, considering the location of q in Z. If minScore(q, o′, Z) > maxScore(q, o1, R),

there is no object o′ in e such that PRo′:o1 overlaps Z and hence e can be safely

pruned.

Next, we present our algorithm to continuously monitor the result of top-k queries.

For each query q, we assign a safe zone Z such that as long as q is inside Z, the

top-k objects of q as well as their relative order remain unchanged. When q leaves

Z, both top-k objects and the safe zone of q are recomputed.

Algorithm 7 shows the details of the safe zone computation. Initially, the radius

of the safe zone rZ is set to be infinity and the root of object R-tree is inserted into

min-heap (line 1-2). When an intermediate node e is encountered, the algorithm

checks if e can be pruned (line 5), otherwise, its children are inserted into min-heap

(line 13). When an object e is de-heaped, for each object o in top-k, the minimum

distance between the query q and the preferred region PRo:e is computed and rZ is

updated if necessary (line 6-8). The algorithms stops when the heap becomes empty.

Algorithm 7 compute safe zone
1: rZ ←∞
2: insert root of R-tree in a heap H sorted according to minimum score

3: while H is not empty do

4: de-heap an entry e

5: if e is not pruned then . lemma 5.3

6: if e is not an intermediate or leaf node then

7: for each object o in top-k do

8: rZ = min(rZ ,mindist(q, PRo:e))

9: if top-k < k then

10: insert e into top-k

11: else

12: for each child c of e do

13: insert c in H

14: return top-k and Z

72

5.4 Experiment

5.4.1 Experimental Setting

We use weighted sum scoring function in our experiment. We devise a competitor

algorithm with an assumption that there exists an oracle that computes our proposed

safe zone without incurring any cost. We call such algorithm as pseudo-supreme (PS)

since we remark that our safe zone is not optimal. In pseudo-supreme algorithm,

the objects are indexed with R-tree. The algorithm maintains a min-heap sorted

based on the minimum score of the R-tree entries. The algorithm immediately stops

when k objects have been retrieved. The oracle calls Algorithm 7 to compute the

safe zone in the initial time and every time when the query leaves its safe zone. To

better illustrate the performance of our algorithm, we also compare it with a näıve

algorithm (Heap) that does not apply a safe zone.

We use real data set that contains 175,813 POIs in North America. To investigate

the effect of the object cardinality, we select the required number of POI’s from

the real data set. The objects are indexed in a disk-resident R-tree with the node

size is set to 4096 bytes. One hundred queries are generated using Brinkhoff data

generator [164] which simulates the moving cars in road network in North America.

We compare our algorithm (Our) with PS and Heap in different parameters as shown

in Table 6.1 (default values are shown bold). All results reported in Section 5.4.2 are

the cost for continuously monitoring all query results for one hour (3600 timestamps).

Table 5.1: Experiment Parameters
Parameters Range

Number of objects (×1000) 1, 10, 100, 150

k (for moving top-k) 1, 3, 5, 7

Dimensionality of R-tree 3, 4, 5, 6

5.4.2 Experiment Result

5.4.2.1 Effect of data cardinality

Fig. 5.8 shows the effect of data cardinality to the performance of the studied

algorithms. In Fig. 5.8(a), our algorithm is significantly better than Heap. The CPU

cost of our algorithm is higher than PS algorithm mainly because our algorithm

computes the safe zone and the result of the queries, whereas PS only computes the

query result.

In Fig. 5.8(b), our algorithm incurs slightly more IO than PS because our algo-

rithm continues to open the R-tree nodes until all objects are evaluated. In contrast,

PS stops accessing the R-tree once all query results are retrieved. Nevertheless, both

73

CPU and IO costs of our algorithm are reasonably close to the CPU and IO costs of

PS.

 0

 10

 20

 30

1K 10K 100K 150K

T
im

e
(s

ec
)

objects

Heap

7
.4

8
5
9
0

1
4

.5
5
0
0
1 1

9
.9

5
4
3
8

1
9
.6

4
8
5
0Our

0
.3

8
3
2
7

1
.0

7
2
8
8

0
.8

2
3
5
9

0
.8

3
2
6
7

PS
0
.0

4
3
9
0

0
.0

7
1
1

2

0
.1

7
1

2
4

0
.1

6
7

5
1

(a) CPU cost

 50

 2000

 4000

 5000

1K 10K 100K 150K

IO

 (
in

 t
h

o
u

sa
n

d
)

objects

Heap

2
0
5
1
.7

0
9

4
0
1
6

.1
0
3

5
1
2
2
.2

4
4

5
5
0
2
.4

5
7Our

5
.1

6
7

1
2
.3

3
2

3
7
.1

6
4

3
6
.4

4
6

PS

1
1
.5

6
8

3
6
.1

6
8

3
5
.5

1
9

(b) IO cost

Figure 5.8: Effect of number of objects

5.4.2.2 Effect of dimensionality

Fig. 5.9(a) shows the CPU cost when the number of static dimensions is changed

from 1 to 4. Note that the number of dynamic dimensions, which correspond to the

objects’ location coordinates are 2. Our algorithm is up to 50 times better than PS.

Our algorithm also scales better with the increase of the number of static dimensions.

The CPU cost of our algorithm is relatively stable for different number of dimensions,

because the static score is computed in a single operation regardless of the number

of dimensions.

In Fig. 5.9(b), the IO cost of our algorithm is slightly higher than PS because

it verifies all R-tree nodes to ensure the correctness of the safe zone. However, the

IO cost of our algorithm is reasonably close to PS, which shows that the safe zone

computation does not add large IO overhead.

 0

 50

 100

 150

1 2 3 4

T
im

e
(s

ec
)

static dimension

Heap

1
3
.0

9
1
0
4

1
9
.8

2
9
7
4 4

8
.5

8
6
5
3

1
1
1
.1

6
2
2
6

Our

0
.8

9
6
8
0

0
.7

9
1
5
4

1
.3

2
0
6
0

1
.8

4
5
7
5

PS

0
.1

3
9
2
3

0
.1

7
1
7
6

0
.2

4
1
5
5

0
.3

7
3
6
9

(a) CPU cost

 100

 10000

 20000

 30000

1 2 3 4

IO

 (
in

 t
h

o
u

sa
n

d
)

static dimension

Heap

2
6
6
1
.7

1
4

5
1
2
2
.2

4
4 1
3
4
4
3
.1

6
5

3
0
8
8
9
.5

9
0

Our

2
2
.6

9
8

3
7
.1

6
4

6
1
.8

1
7

1
1
2
.1

0
9

PS

2
2
.0

1
0

3
6
.1

6
8

5
9
.6

4
4

1
0
9
.0

3
0

(b) IO cost

Figure 5.9: Effect of # static dimension

74

5.4.2.3 Effect of k

Fig. 5.10 shows the effect of the value of k to the performance of the studied algorithms.

As shown in Fig. 5.10(a), the CPU cost of all algorithms increases as the increase

of the value of k. This is because all algorithms open more R-tree nodes when k is

getting bigger. In addition, our algorithm requires higher CPU cost because for each

entry in the result set, it computes the minimum distance between the query and

the corresponding preferred regions. The higher value of k, the higher number of

entries to be considered.

In Fig. 5.10(b), when k increases, the IO cost of all algorithms increases because

they open more R-tree nodes to retrieve the required result size. The IO cost of our

algorithm is reasonably close to the IO cost of PS regardless of the value of k. It

shows that the increase of the IO cost is mainly due to the top-k objects computation.

 0

 10

 20

 30

 40

1 3 5 7

T
im

e
(s

ec
)

k

Heap

1
4
.1

3
0
9
4

1
9
.7

0
6
4
0

2
3
.5

4
8
0
1

2
6
.3

3
9
5
5Our

0
.3

4
1
6
8

0
.7

9
1
9
7

1
.9

4
1
7
3

3
.2

3
2
8
8

PS

0
.0

7
6
3
9

0
.1

7
3
0
6

0
.3

7
8
8
9

0
.4

0
5
6
8

(a) CPU cost

 100
 1000

 4000

 6000

1 3 5 7

IO

 (
in

 t
h

o
u

sa
n

d
)

k

Heap

3
7
9
0
.6

1
2

5
1
2
2
.2

4
4

5
9
3
7
.7

0
9

6
4
2
6
.7

8
7

Our

1
3
.4

3
7

3
7
.1

6
4

8
5
.8

8
0

8
9
.9

9
9

PS

1
2
.3

8
4

3
6
.1

6
8

8
4
.9

2
9

8
9
.1

3
7

(b) IO cost

Figure 5.10: Effect of k

5.5 Conclusions

We propose an efficient distance measurement technique that can be applied for

complex shapes. We use the technique in our algorithm to construct the safe zone

of moving top-k queries. Our algorithm is applicable for any monotonic scoring

function. Our extensive experiments on real data set demonstrate that the cost of

our proposed algorithm is up to 50 times better than the näıve algorithm.

75

Chapter 6

Reducing The Communication

Cost of Continuous Spatial

Queries

This chapter presented algorithms to reduce the communication cost on continuous

monitoring of spatial queries. We introduce a Quiet Zone for every moving object

(client) such that if the object inside the zone, it does not initiate communication

with the server, i.e., it remains quiet.

6.1 Overview

With advances in wireless network and the availability of inexpensive mobile devices

equipped with position sensing technology, location based services have gained

significant interest in the past decades. The rapid development of Internet of Things

(IoT) technology allows the expansion of the services due to the growing number of

GPS-enabled devices connected to the network. Some applications of location based

services include location based advertisement, emergency services, traffic monitoring,

army strategic planning, location based games, geo-social networking etc.

In real world scenario, many objects are continuously moving. Therefore, contin-

uous monitoring of spatial queries has received significant research attention recently.

Algorithms for continuous monitoring of spatial queries have been proposed in the

past few years, such as in range query, nearest neighbour query, reverse nearest

neighbour query etc. Most of these studies have focused on reducing the CPU cost

of updating the query result in response to the location updates sent by the moving

objects.

In this chapter, we study the continuous monitoring of spatial queries over moving

76

objects, i.e., a scenario where the queries are static whereas the data objects are

continuously moving. The moving object could be a user carrying mobile device or,

in the context of IoT, a smart machine that is connected to the internet, such as a

smart car. Consider the example of a store in an urban city. Suppose the store wants

to advertise its special deal, the store may want to continuously monitor customers

within 1 Km of its location to inform them about the deal.

Most studies in continuous monitoring of spatial queries use a client-server model,

where the client sends a query to the server and the server responds to it and sends

the query results back to the client. In the traditional client server model, each

object updates its location to the server after every t time units (time stamp). For

example, a restaurant (client) in the urban city may issue a query to the service

provider (server) to constantly report all objects within 1 Km range. An object

could be a person with mobile device walking down the street or driving around the

city. Traditional client server model requires every object to send its location at

every time stamp, so that the server has the up to date location of the object and

is able to update the query result accordingly. This traditional client-server model

creates significant amount of data transmission because every object needs to send

its location to the server at every time stamp.

In our solution, we assume a client-server model. However, we do not require the

object to update its location at every time stamp. We require an object to send its

location only if it affects the query results. In other words, a location update of an

object is required if and only if the movement of this object affects the result of at

least one query. Otherwise, it will stay quiet and does not initiate a communication

with the server.

For each object, we introduce a zone such that as long as the object is inside this

zone, it does not affect the result of any query in the system. We call such zone as

quiet zone because the object remains quiet as long as it is inside the zone. Note

that computing quiet zone is not trivial because of the following challenges. The first

challenge is how to efficiently determine the area where the object does not affect

the result of any query, considering that there might be many queries in the system.

Secondly, note that the object needs to check if it is inside its quiet zone. Because the

object usually has limited resources, for example mobile phones or sensors, therefore

the shape of the quiet zone should be simple such that the object can easily check

whether it is inside the quiet zone or not. With quiet zone, we significantly reduce

the communication cost by at least one order of magnitude.

Most of the previous works on continuous spatial queries have been focused

on minimizing the CPU cost. However, note that in highly connected urban city,

communication cost is also very high because each object sends its location at

every time stamp. We are the first to present a generic framework that focuses on

77

reducing the communication cost for many different type of spatial queries. Below,

we summarize our contributions.

• To the best of our knowledge, we are the first to present a generic framework

for continuous spatial queries on client server model that significantly reduces

the communication cost.

• We conduct extensive experiment on real data set that shows that our algorithm

is one order of magnitude better in terms of communication cost than the

traditional approach.

6.2 Proposed framework

To reduce the communication cost, we construct a quiet zone such that if the object

inside its quiet zone, it does not affect the query result. At every time stamp, the

object checks whether it is inside its quiet zone or not. As long as the object lies

inside the quiet zone, it is not required for the object to send its location to the

server. The quiet zone should be a simple shape such that the object is able to easily

check whether it is inside the zone or not. If the quiet zone is a complex shape, the

computation cost at objects may be very high and moving objects such as mobile

phones or sensors usually do not have a lot of resources and computation power.

Our framework can be used in many different type of spatial queries. For the ease of

presentation, we first present our approach for range queries. Subsequently, we show

that it can be easily applied for other spatial queries as we briefly describe later.

Given a set of objects O and a query point q with range r, a range query retrieves

all objects within r distance from q, i.e., objects inside a circle centered at q with

radius r. This circle is called query circle and is denoted as cq (query circle of the

query q). The continuous range query reports all objects inside cq to q at each time

stamp.

Consider two moving objects o1 and o2 and six range queries q1, q2, q3, q4, q5 and

q6 in Fig. 6.1. The query circles cq1 to cq6 are shown shaded. Object o1 is the query

result of q2 since o1 is inside cq2 . For the same reason, o1 is not the query result of

q1, q3, q4, q5 and q6. Note that o1 is the query result of q2 as long as it is inside

cq2 . Similarly, o1 will not be the query result of q1, q3, q4, q5 and q6 as long as o1

is outside cq1 , cq3 , cq4 , cq5 and cq6 respectively. This circumstances applies for o2 as

well. Therefore, the query result of all queries remain unchanged as long as o1 and

o2 do not enter or leave a query circle. In general, when the movement of an object

o does not change the result of all queries, o does not need to update its location to

the server. Therefore, the quiet zone of o is bounded by query circles around o.

In Fig. 6.1, the optimal quiet zone of o1 is the striped area. However, when the

78

Figure 6.1: Range query

number of pruning circles that contain o1 is high, the optimal quiet zone becomes

complicated since it involves many circles. This, in turn, may cause the computation

cost to check if o1 is inside the quiet zone becomes very high. Similarly, the optimal

quiet zone for o2 is the white area. To check if o2 is inside its quiet zone, we have to

verify o2 against all query circles in the data space (cq1 , cq3 , cq4 , cq5 and cq6). This is

costly, especially when the number of queries in the system are high. Therefore, we

need to approximate the quiet zone such that the computation cost is feasible for

the objects.

A simple approach to approximate the quiet zone of o (denoted as Zo) is to get

the closest pruning circle to o and compute a regular shape such as circle, square or

rectangle. However, this simple approach results in a small quiet zone for o. Consider

object o1 in Fig. 6.2. The closest pruning circle to o1 is cq2 . If circle is selected,

the quiet zone of o1 (Zo1) is the small circle (shown dark shaded) centered at o1

with radius of the minimum distance between o1 and cq2 . Similarly for object o2, if

rectangle is selected, the quiet zone of o2 (Zo2) is the rectangle (shown dark shaded

or dashed line) containing o2 that is bounded by surrounding query circles.

To improve the size of the quiet zone, we construct a polygon bounded by all

query circles around the object. Consider the example in Fig. 6.3(a). The dark

shaded area Zo1 is the improved quiet zone of o1. Similarly, The dark shaded area

Zo2 in Fig 6.3(b) is the improved quiet zone of o2. Steps to compute the improved

quiet zone are presented as follows.

For each query circle cq that does not contain o, a tangent line is computed. Given

an object o and a query point q with corresponding query circle cq, the tangent line

on cq with respect to o (denoted as lo:q) is the tangent line of cq that is perpendicular

to the line connecting o and q. Consider object o1 and cq3 in Fig. 6.3(a). The line

79

Figure 6.2: Basic quiet zone

lo1:q3 shown in broken is the tangent line of cq3 with respect to o1. Similarly in

Fig. 6.3(b), lo2:q1 , lo2:q3 and lo2:q4 are the tangent lines of cq2 , cq3 and cq4 with respect

to o2. The tangent lines lo2:q4 and lo2:q6 are not shown because they are coincide

with lo2:q3 and lo2:q5 respectively.

On the other side, if a query circle contains o, we store it in a set called circle

set of o. The quiet zone of o is the intersection area of the followings: (i) a polygon

that does not overlap all query circles which do not contain o, and (ii) a set of query

circles that contain o.

(a) Quiet zone of o1 (b) Quiet zone of o2

Figure 6.3: Improved quiet zone

80

6.3 Computing Quiet Zone

One straight forward approach to compute the quiet zone is to consider each query in

the system. To get the quiet zone of an object o, we draw a tangent line on all query

circles with respect to o. The quiet zone of o is a polygon containing o constructed

by all tangent lines as shown in Fig 6.4.

However, this straight forward approach is too expensive. It requires computing

the tangent line of all query circles in the system. Note that there are queries that

do not contribute to the quiet zone. In Fig 6.4, the tangent line lo:q2 does not overlap

the quiet zone of o (shown as shaded). After q1, q4, q5 and q8 are processed, lo:q2 will

not affect the current quiet zone. In other words, if q2 is ignored, the quiet zone of o

can still be computed correctly.

Figure 6.4: Computing quiet zone

Next, we present an observation to help us constructing the quiet zone efficiently.

Without loss of generality, we assume that the data space is bounded by a square.

Query circles are indexed in R-tree (denoted as Q-tree). Q-tree is stored in the

memory and is updated when a query is issued or is deleted from the server.

Observation 1. Given an object o, the quiet zone of o (Zo), a query point q with

corresponding query circle cq, q can be ignored if cq does not overlap Zo. Similarly,

an entry e in Q-tree can be ignored if e does not overlap Zo

The proof is obvious and is omitted from this chapter. Consider q2 in Fig 6.4.

Since cq2 does not overlap the quiet zone of o (shown shaded), q2 is ignored. Hence,

lo:q2 is not necessarily computed and the quiet zone of o remains unchanged. Similarly

for an entry e (red rectangle) of the Q-tree. Since e does not overlap the quiet zone,

it is ignored and its children are not evaluated.

81

6.4 Extension for Other Spatial Queries

A similar study to efficiently monitor the nearest neighbour of queries has been

presented by Mouratidis et al. [156]. Their solution can be easily integrated with

our proposed solution. In this section, we show that our approach can be easily

extended for other location-based queries. Specifically, we present the extension of

our approach to continuously monitor the result of reverse k nearest neighbour query

(RkNN), window query and reverse approximate nearest neighbour query [12].

To illustrate how to extend our proposed algorithm for RkNN query, we use

influence zone (infZone), the state of the art algorithm for continuous monitoring of

RkNN. First, we compute a smallest circle that contains all vertices of the influence

zone. This circle is called smallest enclosing circle (sec) [170]. Consider q1 and q2 in

Fig. 6.5. infZoneq1 and infZoneq2 are the influence zone of q1 and q2 respectively

(shown shaded). Circles secq1 and secq2 are the smallest enclosing circle of infZoneq1

and infZoneq2 . Once all smallest enclosing circles are computed, our proposed

algorithm can be used to construct the quiet zone of objects. Similarly for window

query, the smallest enclosing circle that contains the query rectangle is computed

and used to construct the quiet zone. In addition, our proposed algorithm can be

directly applied for reverse approximate nearest neighbour (RANN) query. This is

because RANN query computes circle-shaped pruning regions that can be directly

used to construct the quiet zone of objects.

Figure 6.5: Extension for RkNN query

82

6.5 Algorithm

In this section, we present our algorithm to efficiently compute the quiet zone of an

object. Algorithm 8 provides the details. Initially, the quiet zone of an object o (Zo)

is set to cover the whole data space.

The root of Q-tree is inserted to a heap sorted according to the minimum distance

from o (line 2). The entries in Q-tree are iteratively accessed from the heap. If

the de-heaped entry e is an intermediate node or a leaf node and it completely lies

outside Vo, it is ignored. Otherwise, its children are inserted to the heap (line 7). If

the entry is a query circle and it overlaps Vo, it is used to update Zo (line 10). The

algorithm stops when the heap becomes empty.

Algorithm 8 Compute quiet zone

1: Zo = Vo = {Vertices of the data space}
2: insert root of Q-tree in a min-heap h
3: while h is not empty do
4: de-heap an entry e
5: if e is an intermediate or leaf node then
6: if e overlaps Vo then
7: insert all children of e in h
8: else . e is a query circle
9: if ce overlaps Vo then

10: update Zo
11: return Zo

Now, we present Algorithm 9 to describe how to update the quiet zone of o

when a query q is considered, i.e., cq overlaps Zo. First, we explain the case when

cq contains the object. If o is inside cq, the query is recorded in the query set of

object (line 2). For each object o, we maintain a set So to store the queries whose

query circle contains o, i.e., o is one of the query results. In this case, the polygon

Vo remains unchanged.

Next, we describe the case when cq does not contain o. Initially, the tangent line

of cq with respect to o (lo:q) is computed (line 4). For each edge e, we compute a line

(l) using two end points of e. Then, the intersection point (p) between l and (lo:q is

computed. If p lies on e, it is inserted into Vo (line 7). Then, for each vertex in Vo,

if the vertex lies outside updated Vo, it is removed from Vo (line 10). Algorithm 9

returns the updated quiet zone of o. The final quiet zone of o is the intersection

region between Vo and So.

Example 1. Figures 6.6-6.9 show the construction of the quiet zone of object o.

In Fig. 6.6, the quiet zone is initially set to be the whole data space bounded by four

vertices v1 to v4 (Zo = Vo = {v1 · · · v4}) . When the nearest query is encountered

(q1), the algorithm checks if cq overlaps Zo. Since cq1 overlaps Zo and o is outside cq1 ,

83

Algorithm 9 Update quiet zone

1: if cq contains o then
2: insert o in So
3: else
4: compute the tangent line lo:q
5: for each edge e do
6: p← intersection point of e and lo:q
7: insert p to Vo
8: for each vi ∈ Vo do
9: if vi is outside Vo then

10: remove vi from Vo
11: return Zo = Vo ∩ So

a tangent line of cq1 with respect to o (lo:q1) is computed. In Fig. 6.7, lo:q1 updates

the polygon Vo and the new quiet zone contains vertices v1, v2, v3, v5 and v6. At this

stage, the quiet zone is Zo = Vo = {v1, v2, v3, v5, v6} as shown shaded in Fig. 6.7.

The algorithm continues with q2. Since cq2 overlaps Zo and o is inside cq2 , q2 is

inserted in the query set of o (So). Zo is then updated to be the intersection of Vo

and cq2 (shown dark shaded in Fig. 6.8). Next, the algorithm checks q3. Similar to

q1, lo:q3 is computed and is used to update Vo. The polygon Vo now contains vertices

{v1, v7, v8, v6}. The algorithm continues to check q4. Since cq4 does not overlap Zo,

it is ignored. Since all queries have been considered, the algorithm terminates. The

final quite zone is Zo = Vo ∩ So (shown dark shaded in Fig. 6.9).

Figure 6.6: Initial zone Figure 6.7: Processing q1

84

Figure 6.8: Processing q2 Figure 6.9: Final quiet zone

6.6 Experimental Study

6.6.1 Experimental Setting

The main concern of our algorithm (QZone) is to reduce the total communication

between moving objects and the server. We compare QZone with the traditional

time stamp approach (Traditional). In Traditional, each object reports its position

to the server at every time stamp.

All algorithms are implemented in C++. The experiments are run on a 64-bit

machine with Intel Core I5 2.3GHz and 8GB memory running on Debian Linux. We

use a real data set containing 100,000 points of interest (facility) from Los Angeles

(LA) [171]. The moving objects are generated by simulating moving cars in the road

network of LA using Brinkhoff data generator [164]. We randomly select 500 facilities

and treat them as the query points.

We report the communication cost incurred in both algorithms during 500 time

stamp observation. We assume that the length of time stamp is one second. In

QZone, when an object updates its location, i.e., sends its new location to the

server, the server computes the new quiet zone and sends it to the object. Hence, the

communication cost in QZone is multiplied by two. We also report the average CPU

cost required by an object to check if it is inside its quiet zone. From our experiment,

we show that the checking cost is very small and is feasible for the mobile devices

that limited in resources.

We study the performance of both algorithm in different experiment settings.

The parameters used in the experiments are shown in Table 6.1 and the default

values are shown in bold.

85

Table 6.1: Experiment Parameters
Parameters Range

Range (Km) 0.1, 0.5,1, 5, 10

Number of facilities (X 1000) 1,10, 50, 100

Number of users (X 1000) 1, 10,50, 100

Users’ speed (Km/hr) 40, 60,80, 100, 120

Number of Queries 100,500, 1000, 2000

6.6.2 Experiment Result

6.6.2.1 Effect of query size

In Fig. 6.10, we show the performance of our algorithm in different query sizes. QZone

significantly reduces the communication cost up to 200 times. The communication

cost slightly increases as the increase of number of queries. The reason is that the

increase of query size makes the size of quiet zone becomes smaller. In Traditional,

the communication cost remains the same because each object updates its location

to the server at every time stamp.

0

10 M

20 M

30 M

40 M

50 M

100 500 1K 2K

C
o

m
m

u
n

ic
at

io
n

 c
o

st

queries

Traditional

25
00

00
00

25
00

00
00

25
00

00
00

25
00

00
00

QZone

12
26

68

48
11

08

90
28

50

15
97

76
0

Figure 6.10: Effect of # queries

Fig. 6.11 shows the effectiveness of quiet zone. In Fig. 6.11(a), we show that

the CPU cost that is required to check if an object is inside the quiet zone is very

small, around 0.05 ms. It indicates that our algorithm is feasible for mobile devices

which generally have limited resources. In Fig. 6.11(b), we show that the average

size of circle set is quiet small (around 5 for 2000 queries). As expected, the number

of query circles that contain the object increases as the increase of the number of

queries. The increase of the circle set size also contributes to the decrease of the size

of quiet zone.

86

 0

 0.025

 0.05

 0.075

 0.1

100 500 1K 2K

C
P

U
 c

o
st

 (
m

s)

queries

0.
03

97
55

0.
04

37
75

0.
04

73
96

0.
05

28
36

(a) Checking cost

 0

 2

 4

 6

 8

100 500 1K 2K

ci

rc
le

s

queries

0.
32

57
2 1.
44

65

3.
00

77

5.
88

77

(b) Average # circles

Figure 6.11: Effectiveness of quiet zone

6.6.2.2 Effect of data size

In Fig. 6.12(a), we compare the communication cost of QZone with the cost of

Traditional for different number of facilities. Our algorithm is up to 50 times better

than Traditional. The cost generally increases when the number of facility increases.

This is because the increase of number of facilities makes the density of the query

increases.

0

10 M

20 M

30 M

40 M

50 M

1K 10K 50K 100K

C
o

m
m

u
n

ic
at

io
n

 c
o

st

facilities

Traditional

25
00

00
00

25
00

00
00

25
00

00
00

25
00

00
00

QZone

44
48

10

48
11

08

47
73

34

50
35

68

(a) # facilities

100

105

1010

1015

1K 10K 50K 100K

C
o

m
m

u
n

ic
at

io
n

 c
o

st

objects

Traditional

50
00

00

50
00

00
0

25
00

00
00

50
00

00
00

QZone

27
29

0

14
78

46

48
11

08

87
27

64

(b) # moving objects

Figure 6.12: Effect of data size

Fig. 6.12(b) shows the communication cost on both algorithms for different

number of moving objects. Note that the figure is shown in log scale. QZone

is at least one order of magnitude better than Traditional. The cost difference

between two algorithms increases as the increase of number of objects. QZone scales

significantly better than Traditional.

6.6.2.3 Effect of range

Fig. 6.13(a) shows the communication cost of QZone and Traditional for different

query ranges. QZone is up to 200 times better than Traditional. In QZone, the

87

cost increases as the increase of the range. One reason is that the increase of query

range makes the size of query circles increases. This in turn causes the size of quiet

zone decreases as shown in Fig. 6.13(b). Fig. 6.13(b) also shows that when the query

range is set to be significantly large (10 Km), the size of the quiet zone becomes

larger because the average size of query circles that contain the object becomes

significantly larger.

0

10 M

20 M

30 M

40 M

50 M

0.1 0.5 1 5 10

C
o

m
m

u
n

ic
at

io
n

 c
o

st

Range (Km)

Traditional

25
00

00
00

25
00

00
00

25
00

00
00

25
00

00
00

25
00

00
00

QZone

12
21

80

27
90

44

48
11

06

14
88

94
0

19
66

22
2

(a) Communication cost

 0

 25

 50

 75

 100

0.1 0.5 1 5 10

S
iz

e
(K

m
2)

Range (Km)

67
.6

79

58
.2

24

51
.4

03

47
.9

65

53
.3

56

(b) QZone size

Figure 6.13: Effect of query range

6.6.2.4 Effect of speed

Fig. 6.14 shows the communication cost of both algorithms for different object’s

speed. QZone is up to 90 times better than Traditional. The communication cost

increases as the increase of object’s speed. This is because faster object requires less

time to leave its quiet zone than the slower object. It makes the object with faster

speed sends location updates to the server more frequent than the slower one.

0

10 M

20 M

30 M

40 M

50 M

40 60 80 100 120

C
o

m
m

u
n

ic
at

io
n

 c
o

st

speed(km/hr)

Traditional

25
00

00
00

25
00

00
00

25
00

00
00

25
00

00
00

25
00

00
00

QZone

25
80

18

37
23

02

48
11

08

58
77

64

69
10

52

Figure 6.14: Effect of speed

88

6.7 Conclusion

In this chapter, we propose a generic framework to reduce the communication cost

of many types of spatial queries. We propose technique and algorithm to efficiently

compute the quiet zone of the moving object. We demonstrate that the cost to check

if object is inside the quiet zone is reasonably low. The experimental results showed

that our algorithm is significantly better in terms of communication cost than the

traditional approach.

89

Chapter 7

Concluding Remarks

7.1 Conclusion

In this thesis, we study two types of query: queries to find the most influential

facilities for a user, and queries to find the influenced users given a query facility.

We also study the continuous monitoring of spatial queries that focus on reducing

the computation and communication costs. We give the details of our contributions

below.

In Chapter 3, we propose a new definition of influence where a user u is said to be

influenced by not only its closest facility but also every other facility that is almost

as close to u as its closest facility is. We introduce reverse approximate nearest

neighbor (RANN) query to compute the influence set of a facility by considering

relative distance between users and facilities. We show that the existing pruning

techniques cannot be applied for RANN problem. We therefore propose efficient and

tight pruning techniques and use them in our RANN algorithm. Our experimental

study on real and synthetic data sets shows that our algorithm is several orders

of magnitude better than the näıve algorithm as well as the significantly improved

version of näıve algorithm.

In Chapter 4, we extend our work on snapshot RANN queries for continuous

RANN queries. We propose an efficient monitoring technique that utilizes the Voronoi

diagram of facilities. Our technique checks only one facility to verify if a user is an

RANN of a query. We extend the RkNN’s state-of-the-art algorithm for continuous

RANN queries and compare its performance with our algorithm. Our extensive

experiment result shows that our Voronoi-based algorithm significantly outperforms

the competitor.

In Chapter 5, we present a safe zone based approach to efficiently monitor

the k most influential facilities for a user when distance and some other factors

are taken into consideration. We propose a technique to compute the minimum

90

distance between a point and an arbitrary shape. We use the technique to design

a generic algorithm that works for any monotonic scoring function. The result of

our experiment demonstrates that the cost of our algorithm is up to 50 times better

than the näıve algorithm.

In Chapter 6, we present a generic framework to reduce the communication cost

of many different variety of continuous spatial queries, such as range query, window

query, nearest neighbor query and reverse approximate nearest neighbor query. We

show that checking cost at object is reasonably low so that our framework is feasible

for moving devices which commonly have limited resources. Our experimental study

shows that our algorithm significantly reduces the communication cost.

7.2 Future Work

Below, we propose several possible directions for future work.

7.2.1 Reverse Approximate Top-k (RATk) Query

In Chapter 3, we present RANN queries to compute the influence set of a facility

when distance is the only considered factors. In many real world scenario, users may

consider other factors in choosing a facility, such as price, rating etc. Hence, it will

be interesting to study the reverse approximate top-k queries where the objective is

to find every user for which the query facility is an approximate top-k facility. In

other words, the RATk queries return every user for which the score of the query

facility is almost as good as her most preferred facility.

7.2.2 RANN and RATk Queries in Road Network

In Chapter 3, we propose a new definition of influence using relative distance between

the users and the facilities. We introduce RANN query as another perspective

to capture the notion of influence. We propose our technique and algorithm to

solve RANN query in Euclidean distance. A possible future work is to study the

RANN queries in road network. The problem definition mentioned in Section 3.2 is

relevant in road network setting. However, our proposed techniques and algorithms

in Chapter 3 are not applicable for road network distance. Similarly, RATk in road

networks is also an interesting topic for further study.

7.2.3 Improving the Effectiveness of Quiet Zone

In Chapter 6, we propose a quiet zone which is an area such that an object does

not need to send its location to the server as long as it is inside its quiet zone. As

mentioned in Section 6.5, to get the quiet zone, we compute a tangent line using

91

the closest point on the query circles from the object. The size of the quiet zone

can be further improved by computing more tangent points using some points on

the query circles. Given an object o and a query circle c, we need to compute

the appropriate number and position of tangent lines such that the quiet zone is

maximized. Computing more tangent points will increase the cost, however it may

significantly increase the size of the quiet zone. Therefore, it will be interesting to

analyze the trade-off between computation cost and communication cost.

92

Bibliography

[1] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query pro-

cessing in spatial network databases. In VLDB 2003, Proceedings of 29th

International Conference on Very Large Data Bases, September 9-12, 2003,

Berlin, Germany, pages 802–813, 2003.

[2] Muhammad Aamir Cheema. Circulartrip and arctrip: Effective grid access

methods for continuous spatial queries. Master’s thesis, School of Computer

Science and Engineering, The University of New South Wales, Sydney Australia,

3 2007.

[3] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, and Wei Wang. Reverse

k nearest neighbors query processing: Experiments and analysis. PVLDB,

2015.

[4] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse knn search in arbitrary

dimensionality. PVLDB, pages 744–755, 2004.

[5] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying Zhang.

Influence zone: Efficiently processing reverse k nearest neighbors queries. In

ICDE, pages 577–588, 2011.

[6] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, and Ying Zhang. SLICE:

Reviving regions-based pruning for reverse k nearest neighbors queries. In

ICDE, pages 760–771, 2014.

[7] Ralf Hartmut Güting. An introduction to spatial database systems. VLDB J.,

3(4):357–399, 1994.

[8] Rone Iĺıdio da Silva, Daniel Fernandes Macedo, and José Marcos S. Nogueira.

Spatial query processing in wireless sensor networks - A survey. Information

Fusion, 15:32–43, 2014.

[9] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørv̊ag, and Yannis Kotidis.

Identifying the most influential data objects with reverse top-k queries. PVLDB,

3(1):364–372, 2010.

93

[10] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest

neighbor queries. In SIGMOD, pages 201–212, 2000.

[11] Arif Hidayat, Muhammad Aamir Cheema, and David Taniar. Relaxed reverse

nearest neighbors queries. In SSTD, 2015.

[12] Arif Hidayat, Shiyu Yang, Muhammad Aamir Cheema, and David Taniar. Re-

verse approximate nearest neighbor queries. IEEE Transactions on Knowledge

and Data Engineering, PP(99):1–1, 2017.

[13] Arif Hidayat and Muhammad Aamir Cheema. Quiet zone: Reducing the

communication cost of continuous spatial queries. In Proceedings of the 3rd

ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, Ur-

banGIS@SIGSPATIAL 2017, Redondo Beach, CA, USA, November 7, 2017,

2017.

[14] Dongsheng Li, Jiannong Cao, Xicheng Lu, and Kaixian Chen. Efficient range

query processing in peer-to-peer systems. IEEE Trans. Knowl. Data Eng.,

21(1):78–91, 2009.

[15] Apostolos Papadopoulos and Yannis Manolopoulos. Multiple range query

optimization in spatial databases. In Advances in Databases and Informa-

tion Systems, Second East European Symposium, ADBIS’98, Poznan, Poland,

Spetember 7-10, 1998, Proceedings, pages 71–82, 1998.

[16] Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range closest-pair

query. In Advances in Spatial and Temporal Databases, 8th International Sym-

posium, SSTD 2003, Santorini Island, Greece, July 24-27, 2003, Proceedings,

pages 252–269, 2003.

[17] Hoong Kee Ng and Hon Wai Leong. Path-based range query processing using

sorted path and rectangle intersection approach. In Database Systems for

Advances Applications, 9th International Conference, DASFAA 2004, Jeju

Island, Korea, March 17-19, 2004, Proceedings, pages 184–189, 2004.

[18] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang,

and Wei Wang. Continuous monitoring of distance-based range queries. IEEE

Trans. Knowl. Data Eng., 23(8):1182–1199, 2011.

[19] Dragan Stojanovic, Apostolos N. Papadopoulos, Bratislav Predic, Slobodanka

Djordjevic-Kajan, and Alexandros Nanopoulos. Continuous range monitoring

of mobile objects in road networks. Data Knowl. Eng., 64(1):77–100, 2008.

94

[20] Fuyu Liu, Tai T. Do, and Kien A. Hua. Dynamic range query in spatial network

environments. In DEXA, pages 254–265, 2006.

[21] Haojun Wang and Roger Zimmermann. Snapshot location-based query pro-

cessing on moving objects in road networks. In GIS, page 50, 2008.

[22] Hans-Peter Kriegel, Peer Kröger, and Matthias Renz. Continuous proximity

monitoring in road networks. In GIS, page 12, 2008.

[23] Axel Küpper and Georg Treu. Efficient proximity and separation detection

among mobile targets for supporting location-based community services. Mobile

Computing and Communications Review, 10(3):1–12, 2006.

[24] Bugra Gedik and Ling Liu. Mobieyes: Distributed processing of continuously

moving queries on moving objects in a mobile system. In EDBT, pages 67–87,

2004.

[25] Ying Cai, Kien A. Hua, and Guohong Cao. Processing range-monitoring queries

on heterogeneous mobile objects. In Mobile Data Management, 2004.

[26] Xiaoyuan Wang and Wei Wang. Continuous expansion: Efficient processing

of continuous range monitoring in mobile environments. In DASFAA, pages

890–899, 2006.

[27] Haojun Wang, Roger Zimmermann, and Wei-Shinn Ku. Distributed continuous

range query processing on moving objects. In DEXA, pages 655–665, 2006.

[28] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.

In SIGMOD Conference, 1984.

[29] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neighbor

queries. In Proceedings of the 1995 ACM SIGMOD International Conference

on Management of Data, San Jose, California, May 22-25, 1995., pages 71–79,

1995.

[30] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases.

ACM Trans. Database Syst., 24(2):265–318, 1999.

[31] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor

search. In SIGMOD 1998, Proceedings ACM SIGMOD International Conference

on Management of Data, June 2-4, 1998, Seattle, Washington, USA., pages

154–165, 1998.

[32] Christian S. Jensen, Jan Kolárvr, Torben Bach Pedersen, and Igor Timko.

Nearest neighbor queries in road networks. In GIS, pages 1–8, 2003.

95

[33] M. Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor search

for spatial network databases. In VLDB, pages 840–851, 2004.

[34] Mohammad R. Kolahdouzan and Cyrus Shahabi. Continuous k-nearest neighbor

queries in spatial network databases. In Spatio-Temporal Database Management,

2nd International Workshop STDBM’04, Toronto, Canada, August 30, 2004,

pages 33–40, 2004.

[35] Cyrus Shahabi, Mohammad R. Kolahdouzan, and Mehdi Sharifzadeh. A road

network embedding technique for k-nearest neighbor search in moving object

databases. In ACM-GIS, pages 94–10, 2002.

[36] Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable approach to

cnn queries in a road network. In VLDB, pages 865–876, 2005.

[37] Haibo Hu, Dik Lun Lee, and Jianliang Xu. Fast nearest neighbor search

on road networks. In Advances in Database Technology - EDBT 2006, 10th

International Conference on Extending Database Technology, Munich, Germany,

March 26-31, 2006, Proceedings, pages 186–203, 2006.

[38] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis.

Continuous nearest neighbor monitoring in road networks. In VLDB, pages

43–54, 2006.

[39] Hua Lu, Xin Cao, and Christian S. Jensen. A foundation for efficient indoor

distance-aware query processing. In IEEE 28th International Conference on

Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia),

1-5 April, 2012, pages 438–449, 2012.

[40] Xike Xie, Hua Lu, and Torben Bach Pedersen. Efficient distance-aware query

evaluation on indoor moving objects. In 29th IEEE International Conference

on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages

434–445, 2013.

[41] Jiao Yu, Wei-Shinn Ku, Min-Te Sun, and Hua Lu. An RFID and particle

filter-based indoor spatial query evaluation system. In Joint 2013 EDBT/ICDT

Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages

263–274, 2013.

[42] Joon-Seok Kim and Ki-Joune Li. Location k-anonymity in indoor spaces.

GeoInformatica, 20(3):415–451, 2016.

[43] Jun Zhang, Dimitris Papadias, Kyriakos Mouratidis, and Manli Zhu. Query

processing in spatial databases containing obstacles. International Journal of

Geographical Information Science, 19(10):1091–1111, 2005.

96

[44] Chenyi Xia, David Hsu, and Anthony K. H. Tung. A fast filter for obstructed

nearest neighbor queries. In Key Technologies for Data Management, 21st

British National Conference on Databases, BNCOD 21, Edinburgh, UK, July

7-9, 2004, Proceedings, pages 203–215, 2004.

[45] Sarana Nutanong, Egemen Tanin, and Rui Zhang. Visible nearest neighbor

queries. In Advances in Databases: Concepts, Systems and Applications, 12th

International Conference on Database Systems for Advanced Applications,

DASFAA 2007, Bangkok, Thailand, April 9-12, 2007, Proceedings, pages 876–

883, 2007.

[46] Yunjun Gao, Baihua Zheng, Wang-Chien Lee, and Gencai Chen. Continuous

visible nearest neighbor queries. In EDBT 2009, 12th International Conference

on Extending Database Technology, Saint Petersburg, Russia, March 24-26,

2009, Proceedings, pages 144–155, 2009.

[47] Hans-Peter Kriegel, Peter Kunath, and Matthias Renz. Probabilistic nearest-

neighbor query on uncertain objects. In DASFAA, pages 337–348, 2007.

[48] Yuan-Ko Huang, Shi-Jei Liao, and Chiang Lee. Efficient continuous k-nearest

neighbor query processing over moving objects with uncertain speed and

direction. In SSDBM, pages 549–557, 2008.

[49] Yuan-Ko Huang, Shi-Jei Liao, and Chiang Lee. Evaluating continuous k-nearest

neighbor query on moving objects with uncertainty. Inf. Syst., 34(4-5):415–437,

2009.

[50] Goce Trajcevski, Roberto Tamassia, Hui Ding, Peter Scheuermann, and Is-

abel F. Cruz. Continuous probabilistic nearest-neighbor queries for uncertain

trajectories. In EDBT 2009, 12th International Conference on Extending

Database Technology, Saint Petersburg, Russia, March 24-26, 2009, Proceed-

ings, pages 874–885, 2009.

[51] Cyrus Shahabi, Lu An Tang, and Songhua Xing. Indexing land surface for

efficient knn query. PVLDB, 1(1):1020–1031, 2008.

[52] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Kai Xu, and Xuemin Lin. Surface

k-nn query processing. In Proceedings of the 22nd International Conference on

Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 78,

2006.

[53] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Qing Liu, Kai Xu, and Xuemin Lin.

A multi-resolution surface distance model for k -nn query processing. VLDB J.,

17(5):1101–1119, 2008.

97

[54] Songhua Xing, Cyrus Shahabi, and Bei Pan. Continuous monitoring of nearest

neighbors on land surface. PVLDB, 2(1):1114–1125, 2009.

[55] Andreas Henrich. A distance scan algorithm for spatial access structures. In

ACM-GIS, pages 136–143, 1994.

[56] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot L. Siegel, and

Zenon Protopapas. Fast nearest neighbor search in medical image databases.

In VLDB’96, Proceedings of 22th International Conference on Very Large Data

Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 215–226, 1996.

[57] Apostolos Papadopoulos and Yannis Manolopoulos. Performance of nearest

neighbor queries in r-trees. In Database Theory - ICDT ’97, 6th International

Conference, Delphi, Greece, January 8-10, 1997, Proceedings, pages 394–408,

1997.

[58] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure for

high-dimensional nearest neighbor queries. In SIGMOD 1997, Proceedings

ACM SIGMOD International Conference on Management of Data, May 13-15,

1997, Tucson, Arizona, USA., pages 369–380, 1997.

[59] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scalable network

distance browsing in spatial databases. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2008, Vancouver,

BC, Canada, June 10-12, 2008, pages 43–54, 2008.

[60] Surajit Chaudhuri and Luis Gravano. Evaluating top-k selection queries. In

Proceedings of the 25th International Conference on Very Large Data Bases,

VLDB ’99, pages 397–410, San Francisco, CA, USA, 1999. Morgan Kaufmann

Publishers Inc.

[61] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Modeling

and querying moving objects. In Proceedings of the Thirteenth International

Conference on Data Engineering, April 7-11, 1997 Birmingham U.K., pages

422–432, 1997.

[62] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. Nearest neighbor

queries in a mobile environment. In Spatio-Temporal Database Management,

International Workshop STDBM’99, Edinburgh, Scotland, September 10-11,

1999, Proceedings, pages 119–134, 1999.

[63] Zhexuan Song and Nick Roussopoulos. K-nearest neighbor search for moving

query point. In SSTD, pages 79–96, 2001.

98

[64] Xiaopeng Xiong, Mohamed F. Mokbel, Walid G. Aref, Susanne E. Hambrusch,

and Sunil Prabhakar. Scalable spatio-temporal continuous query processing for

location-aware services. In Proceedings of the 16th International Conference on

Scientific and Statistical Database Management (SSDBM 2004), 21-23 June

2004, Santorini Island, Greece, pages 317–326, 2004.

[65] Yufei Tao and Dimitris Papadias. Time-parameterized queries in spatio-

temporal databases. In SIGMOD Conference, pages 334–345, 2002.

[66] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A.

López. Indexing the positions of continuously moving objects. In Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data,

May 16-18, 2000, Dallas, Texas, USA., pages 331–342, 2000.

[67] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The tpr*-tree: An optimized

spatio-temporal access method for predictive queries. In VLDB 2003, Proceed-

ings of 29th International Conference on Very Large Data Bases, September

9-12, 2003, Berlin, Germany, pages 790–801, 2003.

[68] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas Saltenis.

Nearest and reverse nearest neighbor queries for moving objects. VLDB J.,

15(3):229–249, 2006.

[69] Katerina Raptopoulou, Apostolos Papadopoulos, and Yannis Manolopoulos.

Fast nearest-neighbor query processing in moving-object databases. GeoInfor-

matica, 7(2):113–137, 2003.

[70] Glenn Simmons Iwerks, Hanan Samet, and Kenneth P. Smith. Continuous

k-nearest neighbor queries for continuously moving points with updates. In

VLDB 2003, Proceedings of 29th International Conference on Very Large Data

Bases, September 9-12, 2003, Berlin, Germany, pages 512–523, 2003.

[71] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin Liu. Prediction and

indexing of moving objects with unknown motion patterns. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, Paris,

France, June 13-18, 2004, pages 611–622, 2004.

[72] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms

for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[73] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Joining ranked

inputs in practice. In VLDB 2002, Proceedings of 28th International Conference

on Very Large Data Bases, August 20-23, 2002, Hong Kong, China, pages

950–961, 2002.

99

[74] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and

Jeffrey Scott Vitter. Supporting incremental join queries on ranked inputs. In

VLDB 2001, Proceedings of 27th International Conference on Very Large Data

Bases, September 11-14, 2001, Roma, Italy, pages 281–290, 2001.

[75] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k

join queries in relational databases. VLDB J., 13(3):207–221, 2004.

[76] Vagelis Hristidis and Yannis Papakonstantinou. Algorithms and applications

for answering ranked queries using ranked views. VLDB J., 13(1):49–70, 2004.

[77] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F. Ilyas. Supporting ad-

hoc ranking aggregates. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006,

pages 61–72, 2006.

[78] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query evaluation

with probabilistic guarantees. In (e)Proceedings of the Thirtieth International

Conference on Very Large Data Bases, Toronto, Canada, August 31 - September

3 2004, pages 648–659, 2004.

[79] Giuseppe Amato, Fausto Rabitti, Pasquale Savino, and Pavel Zezula. Region

proximity in metric spaces and its use for approximate similarity search. ACM

Trans. Inf. Syst., 21(2):192–227, 2003.

[80] Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evaluation

on probabilistic data. In Proceedings of the 23rd International Conference on

Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April

15-20, 2007, pages 886–895, 2007.

[81] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. Top-k

query processing in uncertain databases. In Proceedings of the 23rd International

Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul,

Turkey, April 15-20, 2007, pages 896–905, 2007.

[82] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms

for middleware. In PODS, 2001.

[83] Zhen Zhang, Seung-won Hwang, Kevin Chen-Chuan Chang, Min Wang, Chris-

tian A. Lang, and Yuan-Chi Chang. Boolean + ranking: querying a database by

k-constrained optimization. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006,

pages 359–370, 2006.

100

[84] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on

spatial databases. In Proceedings of the 24th International Conference on Data

Engineering, ICDE 2008, April 7-12, 2008, Cancún, México, pages 656–665,

2008.

[85] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the

top-k most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[86] Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S. Jensen. Joint

top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng.,

24(10):1889–1903, 2012.

[87] Dingming Wu, Gao Cong, and Christian S. Jensen. A framework for efficient

spatial web object retrieval. VLDB J., 21(6):797–822, 2012.

[88] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying Ma.

Hybrid index structures for location-based web search. In Proceedings of the

2005 ACM CIKM International Conference on Information and Knowledge

Management, Bremen, Germany, October 31 - November 5, 2005, pages 155–

162, 2005.

[89] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Inverted linear

quadtree: Efficient top k spatial keyword search. In 29th IEEE International

Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12,

2013, pages 901–912, 2013.

[90] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Inverted

linear quadtree: Efficient top K spatial keyword search. IEEE Trans. Knowl.

Data Eng., 28(7):1706–1721, 2016.

[91] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørv̊ag.

Efficient processing of top-k spatial keyword queries. In Advances in Spatial and

Temporal Databases - 12th International Symposium, SSTD 2011, Minneapolis,

MN, USA, August 24-26, 2011, Proceedings, pages 205–222, 2011.

[92] Dongxiang Zhang, Kian-Lee Tan, and Anthony K. H. Tung. Scalable top-k

spatial keyword search. In Joint 2013 EDBT/ICDT Conferences, EDBT ’13

Proceedings, Genoa, Italy, March 18-22, 2013, pages 359–370, 2013.

[93] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline oper-

ator. In Proceedings of the 17th International Conference on Data Engineering,

April 2-6, 2001, Heidelberg, Germany, pages 421–430, 2001.

101

[94] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive skyline

computation. In VLDB 2001, Proceedings of 27th International Conference on

Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 301–310,

2001.

[95] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the

sky: An online algorithm for skyline queries. In VLDB 2002, Proceedings of

28th International Conference on Very Large Data Bases, August 20-23, 2002,

Hong Kong, China, pages 275–286, 2002.

[96] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive

skyline computation in database systems. ACM Trans. Database Syst., 30(1):41–

82, 2005.

[97] Ken C. K. Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. Approaching

the skyline in Z order. In Proceedings of the 33rd International Conference on

Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007,

pages 279–290, 2007.

[98] Ke Deng, Xiaofang Zhou, and Heng Tao Shen. Multi-source skyline query

processing in road networks. In Proceedings of the 23rd International Conference

on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April

15-20, 2007, pages 796–805, 2007.

[99] Lei Zou, Lei Chen, M. Tamer Özsu, and Dongyan Zhao. Dynamic skyline

queries in large graphs. In Database Systems for Advanced Applications, 15th

International Conference, DASFAA 2010, Tsukuba, Japan, April 1-4, 2010,

Proceedings, Part II, pages 62–78, 2010.

[100] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline

queries: A multi-preference path planning approach. In Proceedings of the 26th

International Conference on Data Engineering, ICDE 2010, March 1-6, 2010,

Long Beach, California, USA, pages 261–272, 2010.

[101] Xuegang Huang and Christian S. Jensen. In-route skyline querying for location-

based services. In Web and Wireless Geographical Information Systems, 4th

InternationalWorkshop, W2GIS 2004, Goyang, Korea, November 2004, Revised

Selected Papers, pages 120–135, 2004.

[102] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal

and progressive algorithm for skyline queries. In SIGMOD Conference, pages

467–478, 2003.

102

[103] Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K. H. Tung. Continuous

skyline queries for moving objects. IEEE Trans. Knowl. Data Eng., 18(12):1645–

1658, 2006.

[104] Yu-Ling Hsueh, Roger Zimmermann, and Wei-Shinn Ku. Efficient updates for

continuous skyline computations. In Database and Expert Systems Applications,

19th International Conference, DEXA 2008, Turin, Italy, September 1-5, 2008.

Proceedings, pages 419–433, 2008.

[105] Mu-Woong Lee and Seung-won Hwang. Continuous skylining on volatile moving

data. In Proceedings of the 25th International Conference on Data Engineering,

ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, pages 1568–1575,

2009.

[106] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying Zhang. A

safe zone based approach for monitoring moving skyline queries. In Joint 2013

EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22,

2013, pages 275–286, 2013.

[107] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. Probabilistic skylines on

uncertain data. In VLDB, pages 15–26, 2007.

[108] Mikhail J. Atallah and Yinian Qi. Computing all skyline probabilities for

uncertain data. In PODS, pages 279–287, 2009.

[109] Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang, and Jeffrey Xu Yu.

Probabilistic skyline operator over sliding windows. In Proceedings of the 25th

International Conference on Data Engineering, ICDE 2009, March 29 2009 -

April 2 2009, Shanghai, China, pages 1060–1071, 2009.

[110] Wenjie Zhang, Aiping Li, Muhammad Aamir Cheema, Ying Zhang, and Lijun

Chang. Probabilistic n-of-n skyline computation over uncertain data streams.

In Web Information Systems Engineering - WISE 2013 - 14th International

Conference, Nanjing, China, October 13-15, 2013, Proceedings, Part II, pages

439–457, 2013.

[111] Congjun Yang and King-Ip Lin. An index structure for efficient reverse nearest

neighbor queries. In ICDE, pages 485–492, 2001.

[112] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse nearest neighbor

queries for dynamic databases. In ACM SIGMOD Workshop, 2000.

[113] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest neighbor

search. In VLDB, pages 287–298, 2002.

103

[114] Wei Wu, Fei Yang, Chee Yong Chan, and Kian-Lee Tan. Continuous reverse

k-nearest-neighbor monitoring. In MDM, pages 132–139, 2008.

[115] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas Saltenis.

Nearest neighbor and reverse nearest neighbor queries for moving objects. In

IDEAS, pages 44–53, 2002.

[116] Tian Xia and Donghui Zhang. Continuous reverse nearest neighbor monitoring.

In ICDE, pages 77–86, 2006.

[117] James M. Kang, Mohamed F. Mokbel, Shashi Shekhar, Tian Xia, and Donghui

Zhang. Continuous evaluation of monochromatic and bichromatic reverse

nearest neighbors. In ICDE, pages 806–815, 2007.

[118] Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang, and Wenjie

Zhang. Lazy updates: An efficient technique to continuously monitoring reverse

knn. PVLDB, pages 1138–1149, 2009.

[119] Muhammad Aamir Cheema, Xuemin Lin, Wei Wang, Wenjie Zhang, and Jian

Pei. Probabilistic reverse nearest neighbor queries on uncertain data. IEEE

Trans. Knowl. Data Eng., 2010.

[120] Xiang Lian and Lei Chen. Efficient processing of probabilistic reverse nearest

neighbor queries over uncertain data. VLDB J., 18(3):787–808, 2009.

[121] Thomas Bernecker, Tobias Emrich, Hans-Peter Kriegel, Nikos Mamoulis,

Matthias Renz, and Andreas Züfle. A novel probabilistic pruning approach to

speed up similarity queries in uncertain databases. In ICDE, pages 339–350,

2011.

[122] Thomas Bernecker, Tobias Emrich, Hans-Peter Kriegel, Matthias Renz, , and

Stefan Zankl Andreas Züfle. Efficient probabilistic reverse nearest neighbor

query processing on uncertain data. PVLDB, pages 669–680, 2011.

[123] Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis, and Yufei Tao. Reverse

nearest neighbors in large graphs. IEEE Trans. Knowl. Data Eng., pages

540–553, 2006.

[124] Huan-Liang Sun, Chao Jiang, Jun-Ling Liu, and Limei Sun. Continuous reverse

nearest neighbor queries on moving objects in road networks. In WAIM, pages

238–245, 2008.

[125] Guohui Li, Yanhong Li, Jianjun Li, LihChyun Shu, and Fumin Yang. Continu-

ous reverse k nearest neighbor monitoring on moving objects in road networks.

Inf. Syst., 35(8):860–883, 2010.

104

[126] Arif Hidayat, Muhammad Aamir Cheema, and David Taniar. Relaxed reverse

nearest neighbors queries. In Advances in Spatial and Temporal Databases -

14th International Symposium, SSTD 2015, Hong Kong, China, August 26-28,

2015. Proceedings, pages 61–79, 2015.

[127] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørv̊ag.

Reverse top-k queries. In ICDE, pages 365–376, 2010.

[128] Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag. Monitoring reverse

top-k queries over mobile devices. In Proceedings of the Tenth ACM Interna-

tional Workshop on Data Engineering for Wireless and Mobile Access, MobiDE

2011, Athens, Greece, June 12, 2011, pages 17–24, 2011.

[129] Shen Ge, Leong Hou U, Nikos Mamoulis, and David W. Cheung. Efficient all

top-k computation - a unified solution for all top-k, reverse top-k and top-m

influential queries. IEEE Trans. Knowl. Data Eng., 25(5):1015–1027, 2013.

[130] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørv̊ag, and Yannis Kotidis.

Branch-and-bound algorithm for reverse top-k queries. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, SIGMOD

2013, New York, NY, USA, June 22-27, 2013, pages 481–492, 2013.

[131] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, and Wenjie

Zhang. Reverse k nearest neighbors queries and spatial reverse top-k queries.

VLDB J., 26(2):151–176, 2017.

[132] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, and Wenjie

Zhang. Reverse k nearest neighbors queries and spatial reverse top-k queries.

In VLDB Journal, 2016.

[133] Yunjun Gao, Xu Qin, Baihua Zheng, and Gang Chen. Efficient reverse top-k

boolean spatial keyword queries on road networks. IEEE Trans. Knowl. Data

Eng., 27(5):1205–1218, 2015.

[134] Evangelos Dellis and Bernhard Seeger. Efficient computation of reverse skyline

queries. PVLDB, pages 291–302, 2007.

[135] Yunjun Gao, Qing Liu, Baihua Zheng, Li Mou, Gang Chen, and Qing Li. On

processing reverse k-skyband and ranked reverse skyline queries. Inf. Sci.,

293:11–34, 2015.

[136] Xiang Lian and Lei Chen. Reverse skyline search in uncertain databases. ACM

Trans. Database Syst., 35(1), 2010.

105

[137] Prasad M. Deshpande and Deepak Padmanabhan. Efficient reverse skyline

retrieval with arbitrary non-metric similarity measures. In EDBT 2011, 14th

International Conference on Extending Database Technology, Uppsala, Sweden,

March 21-24, 2011, Proceedings, pages 319–330, 2011.

[138] Junchang Xin, Guoren Wang, Lei Chen, and Yunhao Liu. Energy-efficient re-

verse skyline query processing over wireless sensor networks. IEEE Transactions

on Knowledge and Data Engineering, 24(7):1259–1275, 2012.

[139] Xiaobing Wu, Yufei Tao, Raymond Chi-Wing Wong, Ling Ding, and Jeffrey Xu

Yu. Finding the influence set through skylines. In EDBT 2009, 12th Interna-

tional Conference on Extending Database Technology, Saint Petersburg, Russia,

March 24-26, 2009, Proceedings, pages 1030–1041, 2009.

[140] Md. Saiful Islam, Rui Zhou, and Chengfei Liu. On answering why-not questions

in reverse skyline queries. In 29th IEEE International Conference on Data

Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 973–984,

2013.

[141] Bugra Gedik, Kun-Lung Wu, Philip S. Yu, and Ling Liu. Motion adaptive

indexing for moving continual queries over moving objects. In CIKM, 2004.

[142] Dmitri V. Kalashnikov, Sunil Prabhakar, and Susanne E. Hambrusch. Main

memory evaluation of monitoring queries over moving objects. Distributed and

Parallel Databases, 15(2):117–135, 2004.

[143] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A generic framework for monitoring

continuous spatial queries over moving objects. In SIGMOD Conference, pages

479–490, 2005.

[144] Kun-Lung Wu, Shyh-Kwei Chen, and Philip S. Yu. Incremental processing of

continual range queries over moving objects. IEEE Trans. Knowl. Data Eng.,

18(11):1560–1575, 2006.

[145] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee.

Location-based spatial queries. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, San Diego, California, USA,

June 9-12, 2003, pages 443–454, 2003.

[146] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias. Con-

ceptual partitioning: An efficient method for continuous nearest neighbor

monitoring. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages

634–645, 2005.

106

[147] Xiaohui Yu, Ken Q. Pu, and Nick Koudas. Monitoring k-nearest neighbor

queries over moving objects. In Proceedings of the 21st International Conference

on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages 631–642,

2005.

[148] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously moving

top-k spatial keyword query processing. In 2011 IEEE 27th International

Conference on Data Engineering, pages 541–552, April 2011.

[149] Weihuang Huang, Guoliang Li, Kian-Lee Tan, and Jianhua Feng. Efficient safe-

region construction for moving top-k spatial keyword queries. In Proceedings

of the 21st ACM International Conference on Information and Knowledge

Management, CIKM ’12, pages 932–941, New York, NY, USA, 2012. ACM.

[150] Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, and Ying Zhang.

Efficiently processing snapshot and continuous reverse k nearest neighbors

queries. VLDB Journal, 2012.

[151] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. Sina: Scalable

incremental processing of continuous queries in spatio-temporal databases. In

SIGMOD Conference, pages 623–634, 2004.

[152] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. Sea-cnn: Scal-

able processing of continuous k-nearest neighbor queries in spatio-temporal

databases. In ICDE, pages 643–654, 2005.

[153] Muhammad Aamir Cheema, Yidong Yuan, and Xuemin Lin. Circulartrip: An

effective algorithm for continuous nn queries. In DASFAA, pages 863–869,

2007.

[154] Iosif Lazaridis, Kriengkrai Porkaew, and Sharad Mehrotra. Dynamic queries

over mobile objects. In EDBT, pages 269–286, 2002.

[155] Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang, and

Xuefei Li. Continuous reverse k nearest neighbors queries in euclidean space

and in spatial networks. VLDB J., pages 69–95, 2012.

[156] Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras, and Yufei Tao. A

threshold-based algorithm for continuous monitoring of k nearest neighbors.

TKDE, pages 1451–1464, 2005.

[157] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, Naixin Xu,

and Andreas Züfle. Reverse k-nearest neighbor monitoring on mobile objects.

In GIS, pages 494–497, 2010.

107

[158] Ioana Stanoi, Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi.

Discovery of influence sets in frequently updated databases. PVLDB, 2001.

[159] Wei Wu, Fei Yang, Chee Yong Chan, and Kian-Lee Tan. FINCH: Evaluating

reverse k-nearest-neighbor queries on location data. PVLDB, 2008.

[160] Muhammad Aamir Cheema, Zhitao Shen, Xuemin Lin, and Wenjie Zhang. A

unified framework for efficiently processing ranking related queries. In EDBT,

2014.

[161] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

The R*-tree: An efficient and robust access method for points and rectangles.

In SIGMOD, 1990.

[162] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang,

and Wei Wang. Multi-guarded safe zone: An effective technique to monitor

moving circular range queries. In ICDE, pages 189–200, 2010.

[163] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al.

Introduction to algorithms, volume 2. MIT press Cambridge, 2001.

[164] Thomas Brinkhoff. A framework for generating network-based moving objects.

GeoInformatica, 2002.

[165] Ahmad Abrishamchi, Ali Ebrahimian, Massoud Tajrishi, and Miguel A. Mariño.

Case study: Application of multicriteria decision making to urban water supply.

Journal of Water Resources Planning and Management, 131(4):326–335, 2005.

[166] RPA, Risk and Policy Analysts Ltd. Evaluating a multi-criteria analysis

(MCA) methodology for application to flood management and coastal defence

appraisals case studies report. Joint Defra/EA Flood and Coastal Erosion Risk

Management R&D Programme, 2004.

[167] S. Patnaik, X.S. Yang, and K. Nakamatsu. Nature-Inspired Computing and

Optimization: Theory and Applications. Modeling and Optimization in Science

and Technologies. Springer International Publishing, 2017.

[168] Mingxi Wang, Shulin Liu, Shouyang Wang, and Kin Keung Lai. A weighted

product method for bidding strategies in multi-attribute auctions. J. Systems

Science & Complexity, 23(1):194–208, 2010.

[169] Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for

constructing the weighted voronoi diagram in the plane. Pattern Recognition,

17(2):251–257, 1984.

108

[170] Nimrod Megiddo. Linear-time algorithms for linear programming in r3 and

related problems. SIAM J. Comput., 12(4):759–776, 1983.

[171] OpenStreetMap contributors. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org, 2017.

109

