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Abstract 

!
The metabotropic glutamate receptor subtype 5 (mGlu5) is a Class C G protein-

coupled receptor (GPCR) widely expressed throughout the central nervous system 

(CNS), and subsequently implicated in various CNS disorders. Newer paradigms in 

drug design have targeted allosteric binding sites within GPCRs, sites topographically 

distinct from orthosteric sites. This allows for greater selectivity between receptor 

subtypes and temporal fine-tuning of receptor activity. The tractability of mGlu5 as a 

CNS drug target has seen a rise in mGlu5 allosteric ligands – broadly classified as 

positive, negative and neutral allosteric modulators or ligands. However, with 

increased understanding of both drug and receptor pharmacology, these classifications 

remain insufficient to capture the full scope of ligand activity. Herein underlies the 

notion of signalling bias, whereby binding of a ligand may emphasise or diminish 

distinct receptor signalling pathways at the exclusion of others. Therefore, each ligand 

has a characteristic signalling fingerprint, in which a unique receptor conformation is 

achieved upon ligand binding. Further, probe dependence, where the cooperativity of 

the allosteric ligand may be influenced by the choice of orthosteric ligand studied in 

conjunction, provides another layer of complexity in understanding full drug 

pharmacology. 

 

Current classifications of mGlu5 allosteric ligands are based largely on their 

modulatory actions on the canonical signalling pathway of intracellular calcium 

mobilisation. However, increasing evidence suggests pleotropic coupling of the 

mGlu5 receptor, suggesting the potential of unappreciated signalling bias of allosteric 

ligands. The first two studies (Chapter 2 and 3) aim to determine the signalling 

fingerprint of various chemically and pharmacologically diverse mGlu5 allosteric 
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modulators, to test the hypothesis that these compounds display biased agonism 

and/or modulation. mGlu5 allosteric ligands broadly categorised as PAMs or NAMs 

were assessed at calcium mobilisation, inositol phosphate-1 (IP1) accumulation and 

extracellular-signal regulated kinases (ERK) 1/2 phosphorylation in both recombinant 

systems and cortical cultures. Biased agonism and modulation was determined via 

robust pharmacological quantification using the method proposed by Kenakin et al. 

2012, and the operational model of allosteric modulation, and shown to be operative 

with mGlu5 allosteric ligands in both recombinant and neuronal cell systems.  

 

Following on from the first study in Chapter 2, the structural basis of mGlu5 ligand 

bias was investigated through point mutations within the PAM allosteric binding 

pocket. In Chapter 4, seven distinct mutations, chosen based on alterations to affinity 

and efficacy of select PAMs in calcium signalling (Gregory et. al., 2013), were 

assessed. Four mGlu5 allosteric ligands, displaying distinct signalling fingerprints, 

were evaluated at calcium mobilisation, IP1 accumulation and ERK1/2 

phosphorylation against the orthosteric ligand DHPG. Signalling fingerprints were 

quantified at each mutation and provided insight into key residues involved in ligand-

receptor interactions. 

 

The final study of this thesis (Chapter 5) focused on mGlu5 modulation of the co-

localised transient receptor potential cation channel subfamily V member 1 (TRPV1) 

calcium responses in rat dorsal root ganglion (DRG) neurons. Within the peripheral 

system, mGlu5 localisation in DRG is implicated in both inflammatory and 

neuropathic pain, with injury within nerves, spinal cord or peripheral tissues resulting 

in the release of glutamate from sensory neurons. Modulation of endovanilloid-
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mediated TRPV1 responses were assessed following pre-incubation with mGlu5 

ligand, via calcium imaging. Four hour pre-incubation with glutamate, DHPG, and 

several allosteric ligands did not show significant effects on calcium responses 

generated by the prototypical TRPV1 agonist capsaicin, as well as the endovanilloids, 

anandamide, oleoylethanolamide and N-arachidonoyl dopamine. Despite these 

findings, the interaction between mGlu5 and TRPV1 warrants further study to greater 

understand the relationship between the two receptors. 

 

The work presented within this thesis has increased the understanding of mGlu5 

allosteric ligand activity, highlighting the need to assess multiple signalling endpoints, 

rather than simply the canonical pathway, to encapsulate full ligand activity. With 

increased understanding of receptor structure, and the associated conformations 

linked to various signalling endpoints, there remains the exciting possibility of 

designing therapies with increased receptor subtype selectivity, but also selectivity for 

desired signalling endpoints at the target receptor.   

! !
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1.1. Glutamate and the metabotropic glutamate receptor subtype 5 
!

1.1.1.! Characterisation of glutamate receptors  

Glutamate is the main excitatory neurotransmitter in the brain, providing the balance 

to the major inhibitory neurotransmitter GABA in neuronal synaptic interplay. Until 

the mid-1980s, glutamate was thought to act solely via a family of ligand-gated ion 

channels, the ionotropic glutamate receptors comprised of three subtypes: N-methyl-

D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid 

(AMPA) and kainate. It was not until this neurotransmitter was shown to stimulate 

inositol phosphate, that the first G protein-coupled metabotropic glutamate (mGlu) 

receptor was cloned (Houamed et al., 1991; Masu et al., 1991). Eight mGlu subtypes, 

belonging to the Class C family of G protein-coupled receptors (GPCRs) have since 

been characterised and are subdivided based on signal transduction mechanisms, 

pharmacology and sequence homology (Niswender and Conn, 2010). Group I consists 

of mGlu1 and mGlu5 that preferentially activate phospholipase C (PLC) via Gq/11 

coupling. Group II, mGlu2 and mGlu3, and Group III, mGlu4, mGlu6, mGlu7 and 

mGlu8 couple to Gi/o and adenylate cyclase inhibition (Niswender and Conn, 2010). 

 

1.1.2. mGlu5 in physiology  

Widely expressed within postsynaptic densities (PSDs) throughout the cortex, 

striatum, hippocampus, caudate nucleus and nucleus accumbens, and in astrocytes, 

glia and peripheral sensory neurons (Crawford et al., 2000; Shigemoto et al., 1993; 

Walker et al., 2001), mGlu5 is crucial for synaptic plasticity and neuronal 

development (Ballester-Rosado et al., 2010; Black et al., 2010; Bortolotto et al., 2005; 
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Chen et al., 2012; Fendt and Schmid, 2002; Galik et al., 2008; Hamilton et al., 2014; 

Jia et al., 1998; She et al., 2009; Wijetunge et al., 2008; Xiao et al., 2013; Xu et al., 

2009). Through the study of mGlu5 knockout animal models, this receptor has been 

implicated in the pathology or as a therapeutic target for numerous CNS disorders, 

including: psychosis and schizophrenia (Brody et al., 2004; Chen et al., 2010; Kinney 

et al., 2003), motor control (Ribeiro et al., 2014), anxiety and depression (Inta et al., 

2013; Li et al., 2006), reward and addiction (Bird et al., 2010; Chesworth et al., 2013; 

Eiler et al., 2011; Olsen et al., 2010; Stoker et al., 2012), appetite and energy 

homeostasis (Bradbury et al., 2005) and pain (Galik et al., 2008; Kolber et al., 2010). 

The immense therapeutic potential in targeting the mGlu5 receptor has been 

extensively summarised (Gregory et al., 2013c; Lindsley and Stauffer, 2013; Noetzel 

et al., 2012; Palucha-Poniewiera et al., 2013; Pilc et al., 2013), with candidates 

entering clinical trials for anxiety, depression and Fragile X syndrome with varying 

successes and failures (Emmitte, 2013; Jaeschke et al., 2015; Levenga et al., 2011; 

Lindemann et al., 2015; Pecknold et al., 1982; Porter et al., 2005b; Wieronska and 

Pilc, 2013). As discussed in detail below, mGlu5 promiscuously couples to various G 

proteins and interacts with complex and dynamic protein scaffolding complexes, such 

that our understanding of signal transduction mechanisms remains convoluted.   

 

1.1.3. Signal transduction of mGlu5  

Preferentially coupled to Gαq/11, mGlu5 activation leads to activation of phospholipase 

C (PLC) and production of inositol-1,4,5-triphosphate (IP3) and diacylglycerol 

(DAG), and subsequently mobilisation of intracellular calcium (Abe et al., 1992). 

Calcium, in combination with DAG, leads to the activation of protein kinase C 

(PKC), phospholipase A2 (PLA2), mitogen-activated protein kinases (MAPK) and the 
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modulation of ion channels (Conn and Pin, 1997; Hermans and Challiss, 2001; 

Ribeiro et al., 2010a) (Figure 1.1). Activation of this canonical signalling pathway is 

linked to various cell processes including synaptic plasticity (Borgdorff and Choquet, 

2002; Gerrow and Triller, 2010; Kato et al., 2012). In addition to Gq coupling, mGlu5 

has also been demonstrated to couple to Gs in HEK293 cells (Francesconi and 

Duvoisin, 1998) and is linked to cyclic adenosine monophosphate (cAMP) formation 

in LLC-PK1 cells and oocytes (Joly et al., 1995). However, when expressed in CHO 

cells or astrocytes, no agonist-stimulated increases in cAMP accumulation were 

observed (Abe et al., 1992; Balazs et al., 1997; Ribeiro et al., 2010a), suggesting that 

mGlu5 promiscuous G protein coupling is cell-type dependent. 

Downstream of G protein coupling, agonist stimulation of mGlu5 leads to 

phosphorylation of extracellular-signal regulated kinases 1 and 2 (ERK1/2) (Hu et al., 

2007; Thandi et al., 2002) and p38 MAPK (Peavy and Conn, 1998; Rush et al., 2002). 

Interestingly, mGlu5-mediated phosphorylation of ERK1/2 has been reported to be 

independent of PKC, phosphoinositide 3-kinase (PI3K) and calcium (Peavy and 

Conn, 1998; Thandi et al., 2002). Additional evidence has implicated Homer 1b/c 

scaffolding protein (Mao et al., 2005), epidermal growth factor receptor tyrosine 

kinase, proline-rich tyrosine kinase 2 (Pyk2) and Src activation in coupling mGlu5 to 

ERK1/2 phosphorylation (Nicodemo et al., 2010; Peavy et al., 2001; Thandi et al., 

2002; Wang et al., 2007). mGlu5-mediated ERK1/2 phosphorylation leads to 

activation of downstream transcription factors including Elk-1, cAMP response 

element binding-protein (CREB) and c-Jun, which regulate gene expression involved 

in long term depression (LTD) (Gallagher et al., 2004; Rush et al., 2002; Wang et al., 

2007). Group I mGlu receptor activation of PI3K, Akt and mammalian target of 

rapamycin (mTOR) (Chan et al., 1999; Hou and Klann, 2004) has also been 
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implicated in LTD. It is the interplay between ERK-MAPK and PI3K-mTOR 

pathways through which group I mGlu receptors mediate synaptic plasticity, resulting 

in de novo protein synthesis and late-phase LTD (Waung and Huber, 2009). In 

addition to complex acute signalling outcomes, regulatory processes triggered by 

mGlu5 activation show a similar level of intricacy. 

 

Fig 1.1. Activation of mGlu5 receptors triggers diverse distinct and converging signalling 

pathways. The group I mGlu receptor family preferentially couples to Gq, leading to activation of 

the canonical PLC–IP3–DAG–Ca2+ pathway (bold). As reviewed in the text, mGlu5 receptors 

promiscuously couple to other G proteins as well as alternate second messengers and kinases via 

mechanisms that can be independent of Ca2+mobilisation. Protein–protein interactions with 

scaffolding and regulatory proteins (blue ovals) add further diversity: integrating different 

signalling pathways, directly mediating interactions between mGlu5 receptors and ion channels 

such as the NMDA receptor and regulating the activity of the mGlu5 receptor itself. As an 

additional level of complexity, the signalling pathways and effectors stimulated by mGlu5 receptor 

activation also show considerable cell type dependence. From: Sengmany, K., Gregory, K. J., 

2016. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation 

and stimulus bias. Br J Pharmacol 173, 3001-3017. 
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1.1.4.! Regulation of mGlu5 signalling  

Signal transduction arising from mGlu5 is tightly controlled by the phosphorylation 

status of the receptor. The frequency of glutamate-induced intracellular calcium 

oscillations is governed by a ‘dynamic uncoupling’ mechanism where the receptor 

undergoes rapid cycles of phosphorylation and dephosphorylation (Bradley and 

Challiss, 2011; Kawabata et al., 1996; Nash et al., 2002). The major mediator of 

mGlu5 phosphorylation and subsequent desensitisation of mGlu5 signalling is PKC, 

although other kinases also play a role such as G protein-coupled receptor kinases 

(GRK), tyrosine kinases and Ca2+/calmodulin-dependent protein kinase II (reviewed 

in detail: (Mao et al., 2008)). The phosphorylation status of mGlu5 regulates 

interactions with other proteins. Trafficking and signalling of mGlu5 is regulated by 

calmodulin that is mediated via interactions with the C terminus (Choi et al., 2011). 

PKC phosphorylation of mGlu5 inhibits calmodulin binding (Lee et al., 2008), and 

facilitates Seven in Absentia Homolog 1A (Siah-1A) binding, promoting endocytosis 

and receptor down-regulation via ubiquitination-dependent mechanisms 

(Kammermeier and Ikeda, 2001; Ko et al., 2012; Moriyoshi et al., 2004). Calmodulin 

binding sites also partially overlap with that of Norbin, a neuronal protein that binds 

mGlu5 to promote cell surface expression and signalling (Wang et al., 2009). Another 

key adaptor protein that regulates mGlu5 function and expression is the Homer family 

(Ango et al., 2002; Brakeman et al., 1997; Kammermeier and Worley, 2007; Lv et al., 

2014; Tu et al., 1999; Xiao et al., 1998). Of note, Homer interactions with mGlu5 are 

enhanced by receptor phosphorylation mediated by cyclin-dependent kinase 5 

(Orlando et al., 2009), and disruption of Homer scaffolding has been implicated in 

various disease states (Matosin and Newell, 2013; Ronesi et al., 2012). Recently, 

mGlu5 was also shown to be a target of PKA phosphorylation, with mGlu5 
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phosphorylation levels being linked to elevated intracellular cAMP levels (Uematsu et 

al., 2015). Collectively, these data highlight the critical role mGlu5 phosphorylation 

plays in regulating receptor function; however, not all mechanisms rely on 

phosphorylation.  

 

For example G protein-coupled receptor kinase 2 (GRK2) mediates mGlu5 

desensitisation and internalisation (Sorensen and Conn, 2003) via a mechanism that 

can be phosphorylation independent (Ribeiro et al., 2009). Functioning as a clarthrin 

adaptor, GRK2 is able to facilitate internalisation in a β-arrestin independent manner 

(Shiina et al., 2001). Indeed, GRK2 overexpression was also shown to increase 

clathrin recruitment to mGlu5, leading to increased agonist-stimulated desensitisation 

and internalisation (Ribeiro et al., 2009). Thus, there is much diversity in both the 

cellular responses and regulatory mechanisms triggered by mGlu5 activation and this 

diversity extends further to modulation of the response to other glutamate receptors. 

 

1.1.5.! mGlu5 interactions with other receptors  

1.1.5.1. Modulation of other glutamatergic receptors  

Activation of group I mGlu receptors modulates the activity of various ion channels, 

in particular the NMDA and AMPA ionotropic glutamate receptors (Homayoun et al., 

2004; Kato et al., 2012; Nakamoto et al., 2007). Mechanisms of modulation include 

activation of downstream second messengers, kinases and direct protein-protein 

interactions (Benquet et al., 2002; Collett and Collingridge, 2004; Gao et al., 2013; 

Homayoun et al., 2004; Moutin et al., 2012; Ribeiro et al., 2010a). The overall 

response of an individual cell to glutamate is highly integrated. For example, NMDA 

receptor activation is involved in early phase synaptic plasticity, with rapid calcium 
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influx leading to modulation of AMPA receptor trafficking (Borgdorff and Choquet, 

2002). The modulation of ionotropic receptors by mGlu5 and vice versa is complex. 

For example, mGlu5 activation positively modulates the NMDA receptor through 

increasing open channel probability, with PKC-dependent Src signalling, and 

stabilisation of a Homer-Shank protein anchor implicated (Benquet et al., 2002; 

Kotecha et al., 2003; Lu et al., 1999; Tu et al., 1999). In contrast, mGlu5 activation 

inhibits NMDA receptor-mediated activation of adenylate cyclase, resulting in 

reduced cAMP and neuronal nitric oxide synthase (nNOS) activity, signal 

transduction mechanisms that are involved in NMDA receptor-mediated 

excitotoxicity (Llansola and Felipo, 2010). The relationship between ionotropic 

receptors and mGlu5 has resulted in extensive efforts to design therapies targeting 

mGlu5 in particular for the treatment of CNS disorders related to NMDA receptor 

dysfunction (Conn et al., 2008; Matosin and Newell, 2013; Veerman et al., 2014). 

Indeed, targeting mGlu5 represents a promising approach to overcome NMDA 

receptor dysfunction while avoiding excitotoxicity associated with direct stimulation 

of NMDA receptors. 

 

In addition to modulating ionotropic glutamate receptors, mGlu5 is known to partner 

with the mGlu1 receptor. In the hippocampus, chemically-induced long term 

depression (LTD) is partially blocked by antagonists of either receptor, a combination 

of both mGlu1 and mGlu5 antagonists is required to completely block the response 

(Volk et al., 2006). This is in spite of the fact that genetic deletion of mGlu5 alone is 

sufficient to prevent (S)-3,5-dihydroxyphenylglycine (DHPG) induced LTD (Huber et 

al., 2001), supporting the hypothesis that heterodimerisation plays a role. The 

mechanisms underlying this remain to be fully elucidated, with both mGlu1/mGlu5 
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heterodimerisation and synergistic signalling (independent of heterodimerisation) 

proposed (Doumazane et al., 2011; Goudet et al., 2005; Romano et al., 1996; 

Sevastyanova and Kammermeier, 2014b). Collectively, it is clear that, where 

expressed, mGlu5 is integral in the interplay of receptors involved in the overall 

cellular response to glutamate. 

 

1.1.5.2. mGlu5 modulation of ion channels and other GPCRs  

In addition to modulating glutamatergic receptors, mGlu5 activation influences the 

function of other ion channels and GPCRs. In HEK293 cells and isolated cortical 

neurons, mGlu5 activation inhibits N-type and P/Q-type calcium channels in a 

voltage-dependent manner, with both βγ subunits of Gi/o and Homer scaffolding 

proteins involved (Kammermeier et al., 2000; McCool et al., 1998). In hippocampal 

neurons, mGlu5 activation facilitates L-type voltage-dependent calcium channel 

dependent depolarisation via the opening of calcium-induced calcium release-coupled 

cation channels (Kato et al., 2012). Within the periphery, mGlu5, located in the dorsal 

root ganglia, is implicated in both inflammatory and neuropathic pain, with injury to 

nerves, spinal cord or peripheral tissues resulting in the release of glutamate from 

primary afferent neurons (Valerio et al., 1997; Walker et al., 2001). In these tissues, 

mGlu5 is co-localised with the non-selective cation channel transient receptor 

potential vanilloid subtype 1 (TRPV1) enhancing the activity of TRPV1 channels via 

DAG formation (Kim et al., 2009; Varney and Gereau, 2002). Recent work suggests 

that mGlu5 mediated potentiation of TRPV1 is biphasic, transiently potentiating 

TRPV1-mediated inward currents but inhibiting voltage-gated calcium channels 

(Masuoka et al., 2015). The mechanism mediating these two different responses 

remains to be elucidated. 
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Co-localisation of mGlu5 with multiple GPCRs has functional consequences on the 

signalling and/or pharmacology of the individual GPCR (Brown et al., 2012a; 

Schroder et al., 2009). For example, co-stimulation or blockade of mGlu5 and 

adenosine A2A receptors results in synergistic effects, however, the mechanisms 

mediating the cross-talk between these receptors appear to be dependent on the brain 

region studied (Domenici et al., 2004; Ferre et al., 2002; Nishi et al., 2003; Tebano et 

al., 2006; Tebano et al., 2005). Intriguingly, this synergy between mGlu5 and 

adenosine A2A has been proposed to involve the formation of heteromers (Ferre et al., 

2002; Rodrigues et al., 2005). In fact, in addition to heteromers with mGlu1 

mentioned above, mGlu5 heterodimerises with numerous GPCRs, including the 

calcium-sensing receptor (Gama et al., 2001) and µ-opioid receptor (Schroder et al., 

2009). Furthermore, mGlu5, adenosine A2A and D2 dopamine receptors are thought to 

form higher order oligomers (Cabello et al., 2009), capable of changing the 

pharmacological properties of a heteromer ‘subunit’ (Ferre et al., 1999; Popoli et al., 

2001). It is clear that the signalling pathways triggered and interacting proteins 

modulated by mGlu5 activation are complex and highly dependent on the cellular and 

tissue context. Therefore it is perhaps not surprising that ligand pharmacology can 

differ depending on the system under exploration. 

 
1.2.!Pharmacological agents targeting mGlu5 receptors 

1.2.1. Orthosteric ligands  

As highlighted earlier, mGlu5
 receptors are implicated in various neuronal processes 

and selective mGlu5 drugs are attractive putative therapies for numerous CNS 

disorders. Traditional drug discovery strategies have targeted the endogenous ligand 

binding (orthosteric) site to activate or block receptor activity. Several group I mGlu 
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selective ligands have been discovered  (Table 1.1) with DHPG prevailing as the most 

commonly utilised group I mGlu selective pharmacological tool (reviewed in: 

(Brauner-Osborne et al., 2007). However, high affinity/potency and mGlu5 selective 

orthosteric ligands have remained elusive, likely due to the fact that the orthosteric 

site is highly conserved across the mGlu family. The complete activation or inhibition 

of receptor responses achieved by orthosteric ligands also presents an additional 

liability, as such compounds lack the delicate balance on neurotransmission, which 

may lead to undesirable or adverse effects. Thus, many research groups have turned 

their focus to targeting allosteric binding sites that are topographically distinct from 

the orthosteric site (Christopoulos and Kenakin, 2002; Leach et al., 2007).  

 

1.2.2. Allosteric ligands  

Traditional drug development has largely focused on understanding the endogenous 

(orthosteric) ligand binding pocket and designing small molecules to bind 

competitively to either activate or block the desired receptor. However, a greater 

understanding of G protein-coupled receptor (GPCR) structure and conformational 

dynamism has allowed a paradigm shift toward designing drugs that bind to alternate 

pockets distinct from the orthosteric binding site (Lagerstrom and Schioth, 2008). 

These topographically distinct pockets are referred to as allosteric sites. Simultaneous 

receptor occupation with an allosteric ligand can modulate the binding of, or response 

to, an endogenous ligand, a property referred to as cooperativity (Christopoulos and 

Kenakin, 2002). Positive allosteric modulators (PAMs) enhance, while negative 

allosteric modulators (NAMs) diminish orthosteric agonist binding/efficacy (Figure 

1.2). Neutral allosteric ligands (NALs) bind to allosteric sites without altering 

orthosteric agonist activity/binding. In addition, allosteric modulators may also 
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possess intrinsic efficacy (either inverse or positive) in their own right, such 

compounds are classified first on the basis of the allosteric effect followed by intrinsic 

efficacy, for e.g. PAM-agonists, NAM-inverse agonists (Christopoulos et al., 2014). 

Discovery efforts for mGlu receptor allosteric modulators have been particularly 

fruitful over the past two decades. A wealth of different chemotypes comprising the 

full spectrum of allosteric ligand pharmacology is now available (Table 1.1, Figure 

1.3).  

 

Advantages of allosteric ligands are three-fold; first, allosteric sites generally show 

lower sequence conservation than orthosteric pockets, allowing for greater selectivity 

between receptor subtypes. Second, as pure allosteric modulators require orthosteric 

agonist to have an effect there is an inherent potential to fine-tune receptor activity in 

a temporal and spatially refined manner, that simply cannot be achieved by a 

synthetic orthosteric ligand (Keov et al., 2011). However, pure allosteric modulators 

that have no intrinsic activity and require endogenous neurotransmitter may also 

present as a disadvantage. For example, in disease states that have a diminished 

endogenous neurotransmitter levels, such as dopamine loss in Parkinson’s disease 

(Kalia and Lang, 2015), pure allosteric modulators may not have efficacy. Third, the 

cooperativity between allosteric modulators and orthosteric ligands is saturable, and 

thus there is reduced risk in the case of overdose.  Overall, targeting allosteric binding 

pockets offers a promising and viable option to develop CNS therapeutics with 

desirable outcomes and minimal adverse effects.  
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Fig 1.2. Two example simulations of allosteric interactions detected using a 

functional response to orthosteric agonist. It should be noted, however, that there 

are numerous manifestations of allosteric interactions via alterations in affinity and/or 

efficacy. A) In the presence of a positive allosteric modulator (PAM) orthosteric 

agonist potency is increased, shifting to the left (αβ>1). B) The presence of a negative 

allosteric modulator (NAM) decreases the potency of orthosteric agonist (0<αβ<1), 

and may also diminish the agonist maximal response. From: Sengmany K., Gregory 

K.J. (2018) Drugs to Tune Up Glutamatergic Systems: Modulators of Glutamate 

Metabotropic Receptors. In: Parrot S., Denoroy L. (eds) Biochemical Approaches for 

Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New 

York, NY. 
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Table 1.1. Molecular pharmacology and therapeutic potential of select mGlu ligands. 
 
Nonselective mGlu ligands 
 
Compound Chemical Name Target Activity  Therapeutic/biological 

significance 
Reference 

L-glutamate (S)-1-aminopropane-1,3-dicarboxylic acid mGlu1-3,5 > 
mGlu4,6-8 

Orthosteric agonist Pharmacological tool  
 

(Conn and Pin, 1997; Niswender 
and Conn, 2010) 

(1S,3R)-
ACPD 

(1S,3R)-1-Aminocyclopentane-1,3-dicarboxylic acid mGlu1-3,5 > 
mGlu4,6-8 

Orthosteric agonist Pharmacological tool  (Conn and Pin, 1997; Niswender 
and Conn, 2010) 

Group I mGlu ligands 
 
(S)-3,5-
DHPG 

(S)-3,5-Dihydroxyphenylglycine mGlu1/5 Orthosteric agonist Pharmacological tool  (Conn and Pin, 1997; Niswender 
and Conn, 2010; Wisniewski and 
Car, 2002) 

L-quisqualate (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-
yl)propanoic acid 

mGlu1/5 # Orthosteric agonist Pharmacological tool  (Conn and Pin, 1997; Niswender 
and Conn, 2010) 

FITM 4-fluoro-N-(4-(6-(isopropylamino)pyrimidin-4-
yl)thiazol-2-yl)-N-methylbenzamide 

mGlu1 NAM Pharmacological tool (Wu et al., 2014) 

HTL14242 
 

(3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-
yl]benzonitrile) 

mGlu5 NAM Lead compound (Christopher et al., 2015) 

CPPHA N-[4-Chloro-2-[(1,3-dihydro-1,3-dioxo-2H-isoindol-
2-yl)methyl]phenyl]-2-hydroxybenzamide 

mGlu5 > 
mGlu1> 
mGlu4/8 

PAM: IP1, iCa2+ 

Agonist: pERK1/2 
Pharmacological tool, 
second site PAM 

(Chen et al., 2008) 

CPCCOEt 7-(Hydroxyimino)cyclopropa[b]chromen-1a-
carboxylate ethyl ester 

mGlu1 NAM Pain (Brauner-Osborne et al., 1999; 
Gasparini et al., 2001) 

MPEP 2-Methyl-6-(phenylethynyl)pyridine hydrochloride mGlu5 > 
mGlu4 

NAM: iCa2+, pERK1/2 
Inverse agonist: IP1 

Anxiety, depression, pain, 
addiction, PD  

(Bradley et al., 2011; Chen et al., 
2007; Gasparini et al., 1999a; 
Gregory et al., 2012; Rovira et 
al., 2015) 

JNJ16259685 3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl)(cis-4-
methoxycyclohexyl) methanone 

mGlu1 NAM Pain (Mabire et al., 2005) 

CDPPB 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-
yl)benzamide 

mGlu5 Agonism: 
IP1>pERK1/2>>iCa2+ a 

Psychosis (Lindsley et al., 2004; Sengmany 
et al., 2017) 

VU0360172 N-cyclobutyl-6-((3-
fluorophenyl)ethynyl)nicotinamide 

mGlu5 Agonism: 
IP1>pERK1/2a 

PAM: iCa2+ 

 

Psychosis (Rodriguez et al., 2010a; 
Sengmany et al., 2017) 
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DPFE 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-
fluorobenzyl)oxy)ethanone 

mGlu5 Agonism: IP1>>iCa2+; 
biphasic pERK1/2a 

Psychosis, cognition (Gregory et al., 2013a; 
Sengmany et al., 2017) 

VU0424465 5-[2-(3-fluorophenyl)ethynyl]-N-[(2R)-3-hydroxy-3-
methylbutan-2-yl]pyridine-2-carboxamide 
 

mGlu5 Agonism: 
IP1>pERK1/2>>iCa2+ a 

Seizures (Rook et al., 2013; Sengmany et 
al., 2017) 

VU0403602 N-cyclobutyl-5-((3-
fluorophenyl)ethynyl)picolinamide 

mGlu5 Agonism: 
IP1>pERK1/2>>iCa2+ a 

Metabolite causes 
seizures 

(Bridges et al., 2013; Sengmany 
et al., 2017) 

fenobam N-(3-Chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-
oxo-1H-imidazol-2-yl)urea 
 

mGlu5 # NAM Anxiety, depression, 
addiction, pain 

(Berry-Kravis et al., 2009; Jacob 
et al., 2009; Montana et al., 
2011; Pecknold et al., 1982; 
Porter et al., 2005a; Watterson et 
al., 2013; Wieronska and Pilc, 
2013) 

basimglurant (2-chloro-4-[1-(4-fluoro-phenyl)-2,5-dimethyl-1H-
imidazol-4-ylethynyl]-pyridine) 

mGlu5 NAM Major depressive disorder  (Quiroz et al., 2016) 

mavoglurant Methyl (3aR,4S,7aR)-4-hydroxy-4-[2-(3-
methylphenyl)ethynyl]-3,3a,5,6,7,7a-hexahydro-2H-
indole-1-carboxylate 

mGlu5 NAM FXS, PD, Huntington’s 
disease  

(Bailey et al., 2016; Berry-
Kravis et al., 2016; Dore et al., 
2014; Trenkwalder et al., 2016) 

CTEP 2-chloro-4-((2,5-dimethyl-1-(4-
(trifluoromethoxy)phenyl)-1H-imidazol-4-
yl)ethynyl)pyridine 

mGlu5 NAM FXS  (Dolen et al., 2007; Michalon et 
al., 2012; Yan et al., 2005) 

VU0477573 N,N-diethyl-5-((3-
fluorophenyl)ethynyl)picolinamide 

mGlu5 limited NAM Anxiety  (Nickols et al., 2016) 

Group II mGlu ligands 
 
LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-

dicarboxylate monohydrate 
mGlu2/3 Orthosteric agonist Psychosis, anxiety, 

addiction  
(Cartmell et al., 1999; Conn and 
Jones, 2009; Schoepp et al., 
2003) 

LY379268 (1R,4R,5S,6R)-4-Amino-2-oxabicyclo[3.1.0]hexane-
4,6-dicarboxylic acid 

mGlu2/3 Orthosteric agonist Psychosis  (Cartmell et al., 1999) 

LY341495 (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-
3-(xanth-9-yl) propanoic acid 

mGlu2/3 Orthosteric antagonist Psychosis (Cartmell et al., 1999) 

BINA 3'-[[(2-Cyclopentyl-2,3-dihydro-6,7-dimethyl-1-oxo-
1H-inden-5-yl)oxy]methyl]-[1,1'-biphenyl]-4-
carboxylic acid 

mGlu2 PAM Psychosis, anxiety  (Jin et al., 2010; Muguruza et al., 
2016) 

LY487379 N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-
trifluoroethylsulfonyl)-pyrid-3-ylmethylamine 
 

mGlu2 PAM Psychosis  (Muguruza et al., 2016) 
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Group III mGlu ligands 
 
ACPT-I (1S,3R,4S)-1-Aminocyclopentane-1,3,4-tricarboxylic 

acid 
Group III Orthosteric agonist Pain  (Jalan-Sakrikar et al., 2014) 

LSP4–2022 (2S)-2-amino-4-(([4-(carboxymethoxy)phenyl] 
(hydroxy)methyl)-(hydroxy)phosphoryl)butanoic 
acid 

mGlu4 Orthosteric agonist Pain  (Goudet et al., 2008; Jalan-
Sakrikar et al., 2014; Vilar et al., 
2013) 

PHCCC N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-
1a-carboxamide 

mGlu4 
>mGlu1 

PAM: iCa2+>GIRKb Pain, Parkinson’s disease  (Battaglia et al., 2006; Goudet et 
al., 2008; Maj et al., 2003; 
Marino et al., 2003; Vilar et al., 
2013) 

VU0155041 cis-2-[[(3,5-
Dichlorophenyl)amino]carbonyl]cyclohexane 
carboxylic acid 

mGlu4 PAM Parkinson’s disease (Bennouar et al., 2013; Jones et 
al., 2011; Le Poul et al., 2012) 

ADX88178 4-methyl-N-[5-methyl-4-(1H-pyrazol-4-yl)-1,3-
thiazol-2-yl]pyrimidin-2-amine 

mGlu4 PAM Parkinson’s disease (Bennouar et al., 2013; Jones et 
al., 2011; Le Poul et al., 2012) 

AF21934 (1S,2R)-2-[(aminooxy)methyl]-N-(3,4-
dichlorophenyl)cyclohexane-1-carboxamide 

mGlu4 PAM Anxiety, Parkinson’s 
disease 

(Bennouar et al., 2013; Jones et 
al., 2011; Le Poul et al., 2012) 

a bias relative to DHPG 
b bias relative to glutamate 
# has activity at non-mGlu receptors (ionotropic glutamate receptors for L-quisqualate, A3 adenosine receptors for fenobam). 
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Fig. 1.3. Structures of select mGlu allosteric modulators. Figure from: Sengmany 

K., Gregory K.J. (2018) Drugs to Tune Up Glutamatergic Systems: Modulators of 

Glutamate Metabotropic Receptors. In: Parrot S., Denoroy L. (eds) Biochemical 

Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana 

Press, New York, NY.
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1.3.!Allosteric modulation of mGlu receptors  

1.3.1. Quantifying allosteric interactions  

As alluded to earlier, allosteric modulators can influence both orthosteric ligand 

affinity and efficacy, which has the capacity to result in complex pharmacological 

profiles. Multiple models have emerged to facilitate quantification of GPCR allosteric 

interactions. The simplest model to describe the influence of an allosteric modulator 

on the binding on an orthosteric ligand to its receptor is the allosteric ternary complex 

model (ATCM) (Hall, 2000; Kenakin, 2004, 2009). The simultaneous occupation of a 

receptor by two ligands influences affinity, denoted by the cooperativity factor α, and 

is governed by ligand concentrations, equilibrium dissociation constants KA and KB of 

orthosteric (A) and allosteric (B) ligands respectively (Ehlert, 1988; Leach et al., 

2007) (Figure 1.4). Affinity modulation is reciprocal, the binding of an allosteric 

ligand stabilises receptor conformations that increase or decrease orthosteric ligand 

affinity and vice versa. Increasingly, it has become apparent that allosteric 

interactions may also influence GPCR activation states, in addition to, or exclusive of, 

effects on affinity. In order to accommodate allosteric modulation of efficacy the 

simple ATCM was extended to an allosteric two-state model, and the now widely 

applied operational model of allosterism (Hall, 2000; Leach et al., 2007). The 

operational model of allosterism amalgamates the ATCM and Black and Leff’s 

operational model of agonism (Black and Leff, 1983). Within this framework the 

effect of an allosteric ligand on both orthosteric agonist affinity (α) and efficacy (β) is 

accommodated (Leach et al., 2007) (Figure 1.4). PAMs are defined as having a 

cooperativity (αβ) value greater than 1, NAMs, a cooperativity value between 0 and 

1, and NALs are defined as having neutral cooperativity (αβ = 1). It is important to 

note that an allosteric modulator may influence affinity and efficacy to different 
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degrees and in different directions (Price et al., 2005). Furthermore, there is the 

potential that cooperativity drives subtype selectivity rather than affinity. For 

example, MPEP is an mGlu5 NAM of glutamate efficacy for iCa2+ mobilisation and 

ERK1/2 phosphorylation, and DHPG/quisqualate mediated IP1 accumulation (Bradley 

et al., 2011; Chen et al., 2007; Gasparini et al., 1999b; Gregory et al., 2012). On the 

other hand, MPEP is an mGlu4 PAM-agonist of L-AP4 mediated iCa2+ mobilisation 

(Rovira et al., 2015). The operational model of allosterism allows for delineation of 

effects on affinity versus efficacy. Further, intrinsic allosteric agonist efficacy is also 

accommodated as denoted by τB (Christopoulos et al., 2014; Keov et al., 2011). For 

the mGlu receptors this is an important consideration since for multiple chemotypes 

and at multiple subtypes, allosteric agonist activity is evident (Bradley et al., 2011; 

Domin et al., 2015; Gregory et al., 2013c; Gregory et al., 2012; Jalan-Sakrikar et al., 

2014; Mitsukawa et al., 2005; Rook et al., 2015). Thus rigorous quantification of 

allosteric ligands remains pertinent to accurately define pharmacology of mGlu 

allosteric ligands and facilitate comparisons between chemotypes and targets 

(Christopoulos et al., 2014).  
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Fig 1.4. Ternary complex and operational models for G protein-coupled receptor 

allostery. A) The simplest framework to describe allosteric interactions is the ATCM, where 

an orthosteric ligand (A) and allosteric modulator (B) can simultaneously bind to a receptor 

(R) influencing the respective equilibrium dissociation constants (KA and KB), as described by 

the cooperativity factor α. B) To describe effects on efficacy, the ATCM was incorporated in 

to Black and Leff's operational model of agonism. The change in stimulus response coupling 

(SA) in the presence of allosteric modulator is described by the scaling factor β. Intrinsic 

allosteric agonist efficacy is also accommodated. From: Sengmany K., Gregory K.J. (2018) 

Drugs to Tune Up Glutamatergic Systems: Modulators of Glutamate Metabotropic Receptors. 

In: Parrot S., Denoroy L. (eds) Biochemical Approaches for Glutamatergic 

Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. 
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1.3.2 Validation and detection of allosteric modulators  

In addition to application of analytical models to quantify allosteric interactions, 

robust experimental approaches are required to define and validate allosteric 

interactions. Radioligand binding assays are commonly used to verify allosteric 

agonist binding of a studied ligand. This is readily done for mGlu1, mGlu2 and mGlu5, 

where allosteric radioligands have been developed (Cosford et al., 2003a; Gasparini et 

al., 2002; Kohara et al., 2005; Lavreysen et al., 2003), such that novel allosteric 

ligands can be validated via inhibition binding assays. Allosteric ligand affinity can be 

directly determined from inhibition binding assays via application of the standard 

Cheng-Prusoff equation (Cheng and Prusoff, 1973). For many GPCRs the gold-

standard approach to definitively demonstrate an allosteric mechanism is through 

demonstration of affinity modulation between an unlabeled allosteric ligand and 

radiolabelled orthosteric ligand using dissociation kinetic binding assays (Gregory et 

al., 2010). A change in ligand dissociation rate from the receptor when simultaneously 

occupied is unambiguously demonstrative of an allosteric interaction. For mGlu 

receptors the prevailing approach has been to determine changes in orthosteric 

radioligand affinity (e.g. [3H]quisqualate for Group I mGlu receptors, and 

[3H]LY354740 for Group II mGlu receptors) rather than kinetics (Lavreysen et al., 

2003; Lundstrom et al., 2011; Schaffhauser et al., 2003). The mGlu5 PAMs, [(3-

fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde (DFB) and 3-cyano-N-(1,3-

diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), however, enhance mGlu5 orthosteric 

agonist affinity (quisqualate) in rat cortical astrocytes (Bradley et al., 2011), while 

mGlu2 PAMs also enhance affinity of several orthosteric ligands including glutamate 

and LY354740 (Johnson et al., 2005). Affinity modulation has also been shown with 

[3H]quisqualate and [3H]DCG-IV by mGlu1 and mGlu2 PAMs respectively (Knoflach 
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et al., 2001; Schaffhauser et al., 2003). Furthermore, several mGlu allosteric ligands 

are thought to be efficacy-only modulators, including the mGlu5 PAM CDPPB (with 

glutamate), the mGlu5 NAM MPEP and mGlu1 NAM CPCCOEt (Hemstapat et al., 

2006; Kinney et al., 2005; Litschig et al., 1999; Pagano et al., 2000). Functional 

assays are required to detect and validate allosteric modulation of efficacy.  

 

Allosteric efficacy modulation can be determined via cell-based functional assays 

(Melancon et al., 2012). Rapid screening of small allosteric molecules commonly 

involves administration of allosteric ligand at varying concentrations, with either an 

EC20 orthosteric agonist concentration for PAMs, or an EC80 (submaximal) orthosteric 

agonist concentration for NAMs (Melancon et al., 2012). Orthosteric agonist 

concentrations are chosen to allow for clear determination of modulatory activity, as 

enhancement of a small response, or reduction of a large response allows for ease of 

classification as either a PAM or NAM respectively. A “triple add” paradigm has 

more recently surpassed the “single add” protocol, as it allows for simultaneous 

screening for agonist, PAM and NAM activity for receptor measures that are detected 

in real-time (Melancon et al., 2012). In this protocol, compounds are first added, 

followed by a second addition of orthosteric agonist EC20, and a third addition of 

orthosteric agonist EC80. Agonist activity is determined through the first addition, and 

PAM or NAM activity is determined through the second and third addition of 

orthosteric ligand respectively (Melancon et al., 2012). These experimental paradigms 

provide a quick snapshot of prospective modulators via a potency determination. It is 

important to consider that modulator potency is a composite measure of allosteric 

modulator affinity, affinity and efficacy cooperativity, and intrinsic agonist activity. 

Furthermore, modulator potency is also dependent upon the orthosteric agonist 



Chapter 1 – General Introduction 
 

! 41!

concentration (Gregory et al., 2012; Lindsley et al., 2016). PAM activity may 

manifest as an increase in agonist potency that approaches a limit as defined by 

cooperativity and/or an increase in the maximal agonist response (Kenakin, 2004; 

Niswender and Conn, 2010). Conversely, NAM activity will manifest as a progressive 

right shift in agonist potency that reaches a limit and/or a depression in the agonist 

maximal response (Kenakin, 2004; Niswender and Conn, 2010). It should be noted, 

however, that under hemi-equilibrium conditions, competitive antagonists display a 

NAM modality – thus appropriate assay conditions are necessary to clearly delineate 

ligand activity. The magnitude and direction of the shifts in agonist potency 

correspond to cooperativity whereas the concentrations over which these effects 

happen are related to modulator affinity. In addition to the saturable nature of 

allosteric ligand interactions, determination of allosteric binding sites provides a 

second level of validation for an allosteric mechanism of action. 

 

1.3.3.! Structural basis of mGlu allosteric modulation  

In addition to sharing the common 7TM typical of all GPCRs, Class C receptors have 

a large extracellular N-terminal domain, widely known as the Venus flytrap (VFT) 

domain. Early homology modeling against bacterial periplasmic amino acid binding 

proteins, such as the leucine/isoleucine/valine binding protein (LIVBP), suggested the 

N-terminal domain comprised two distinct lobes that closed around glutamate upon 

ligand binding (Costantino and Pellicciari, 1996; O'Hara et al., 1993). Subsequently, 

several mGlu VFT domain crystal structures have definitively localised the glutamate 

orthosteric binding site within this domain (Kunishima et al., 2000; Muto et al., 2007). 

Of note, receptors with only the soluble N-terminal region retain their ability to bind 

mGlu agonists (Goudet et al., 2004; Okamoto et al., 1998; Rondard et al., 2006; 
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Suzuki et al., 2007), highlighting the presence of the orthosteric binding pocket within 

the VFT. Consistent with these findings, modeling suggests glutamate binding to only 

one VFT is required for conformational changes to induce a receptor activation (Pin 

and Duvoisin, 1995). Linking the N-terminal region to the 7TM is the cysteine rich 

domain (CRD) with four disulfide bridges (Muto et al., 2007; Romano et al., 2001; 

Romano et al., 1996). The CRD is crucial in signal transduction from the VFT to the 

7TM upon orthosteric ligand binding (Muto et al., 2007; Rondard et al., 2006). In 

addition to glutamate, select divalent cations, such as calcium and magnesium, have 

been shown to bind within the VFT and consequently modulate receptor responses 

(Francesconi and Duvoisin, 2004; Kubo et al., 1998). To date, however, the majority 

of mGlu allosteric ligands bind to the 7TM domain (discussed below). 

 

1.3.3.1. Common allosteric site within 7TM domain  

Early mGlu receptor chimeras where the VFT of different subtypes were 

interchanged, provided invaluable information on localisation of allosteric ligand 

binding sites. CPCCOEt was validated as an allosteric modulator via mGlu1 and 

calcium sensing receptor chimera (Brauner-Osborne et al., 1999), as well as chimeras 

with other mGlu subtypes (Gasparini et al., 2001). Numerous mGlu chimeras were 

consequently used to characterise the binding of a diverse range of mGlu allosteric 

ligands to the 7TM domain (Knoflach et al., 2001; Maj et al., 2003; Pagano et al., 

2000; Suzuki et al., 2007). In addition, truncated receptor constructs also offered 

insight into allosteric binding locations, with the use of “headless” mGlu receptors – 

that is, mGlu receptors lacking the extracellular N-terminus that retaining a functional 

7TM and C-terminus capable of coupling to intracellular effectors (Goudet et al., 

2004). In these modified mGlu1/5 receptors, PAMs were agonists, and NAMs were 
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inverse agonists (Goudet et al., 2004; Suzuki et al., 2007), highlighting the fact that 

these ligands bind within the 7TM, rather than VFT. Subsequently, multiple site-

directed mutagenesis based studies primarily focused on group I receptors 

demonstrated that residues within the top third of TM3, TM5, TM6 and TM7 were 

critical for mGlu allosteric ligand interactions within a proposed common allosteric 

site across the entire Class C GPCR family (Leach and Gregory, 2017; Malherbe et 

al., 2006; Malherbe et al., 2003; Sheffler et al., 2011).  

 

Recently, x-ray crystal structures of 7TM domains of human mGlu1 and mGlu5 

receptor, in complex with the mGlu1 NAM FITM (Wu et al., 2014) and mGlu5 NAMs 

mavoglurant (Dore et al., 2014) and HTL14242  (Christopher et al., 2015) confirmed 

the location of the proposed mGlu common allosteric binding pocket, otherwise 

known as the MPEP binding pocket (Figure 1.5A-B). The mGlu5 

mavoglurant/HTL14242 allosteric binding pocket resides between TM2, TM3, TM5, 

TM6 and TM7, and has a restricted ~ 7Å entrance into the helical bundle due to 

anchoring of extracellular loop 2 across the top of the 7TMs (Dore et al., 2014) 

(Figure 1.4C). The FITM binding pocket in mGlu1 overlaps with that observed in 

mGlu5, but is located higher within the 7TMs (Figure 1.5A), these differences likely 

allow subtype selective targeting between group I mGlu receptors (Wu et al., 2014). 

Further, these studies revealed new structural insights into the overall architecture of 

Class C GPCR 7TM region and activation mechanisms. For example, water was 

crystallised in the bottom of the mGlu5/mavoglurant and mGlu5/HTL14242 structures 

coordinated with residues previously shown to engender switches in allosteric 

modulator pharmacology (Christopher et al., 2015; Dore et al., 2014; Gregory et al., 
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2013b). These NAM co-crystal structures have opened up the possibility of rational 

discovery approaches informed by structural information. 

 

The mGlu5 allosteric pocket, in particular, is found between TM2, TM3, TM5, TM6 

and TM7 and comprises two chambers linked by a narrow channel (Christopher et al., 

2015; Dore et al., 2014). The alkyne linker, a common chemical motif amongst 

several mGlu5 allosteric ligands, extends through the narrow channel between Tyr659, 

Ser809, Val806 and Pro655 – with Ser809 and Ser805 providing hydrogen bonding 

with available hydroxyl substituents adjacent the alkyne substituent (Christopher et 

al., 2015; Dore et al., 2014). Toward the top chamber of the binding pocket, a large 

hydrophobic region is able to accommodate the saturated bicyclic structure of 

mavoglurant (Dore et al., 2014). Mutation of Trp784 within this hydrophobic pocket 

was shown to abolish MPEP binding (Malherbe et al., 2003), while alanine 

substitution led to increased DFB-mediated potentiation (Muhlemann et al., 2006). 

This Trp784 residue corresponds to the highly conserved “toggle switch” 

FxxCWxP6.50A motif in other class A receptors, highlighting it’s potential importance 

in stabilisation of active and inactive receptor states (Nygaard et al., 2009).  

 

A key allosteric interaction with mGlu5 and 3-methyl substituent of mavoglurant 

occurs within the deeper section of the allosteric binding pocket. Ligand binding 

interactions in this region involve the formation of a hydrogen bond network with a 

water molecule and residues Tyr659, Thr781 and Ser809 (Dore et al., 2014). Thr781 

has direct hydrogen bond interactions with the water molecule, while the Ser809 

interactions with mavoglurant and Ser805 mentioned above provides a kink in TM7 

such that carbonyl of Ser809 is oriented to hydrogen bond with the water molecule. 
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This region has been implicated in the modality of cooperativity, with Ala 

substitutions of Thr781 (Thr780 rat) and Ser809 (Ser808 rat) switching PAM 

pharmacology to NAM or NAL (Gregory et al., 2013b).  

 

Adjacent to this water network, the 3-methylphenyl ring of mavoglurant lies between 

Ala810 and Pro655 within the deepest section of the allosteric binding pocket. 

Mutations of either of these residues have resulted in loss of appreciable [3H]MPEP 

radioligand binding (Malherbe et al., 2003; Pagano et al., 2000), as well as significant 

loss of affinity and/or efficacy for several acetylene scaffold PAMs (Gregory et al., 

2013b; Gregory et al., 2012). Further, substitutions in the 3-fluorophenyl position of 

the mGlu5 PAM 3,3’-difluorobenzaldeazine (DFB) with methoxy and chloro groups 

resulted in switches in pharmacology to a NAM and NAL respectively (O'Brien et al., 

2003), while mutations of either of these residues resulted in abolishment of DFB 

PAM activity (Muhlemann et al., 2006). Interestingly, while Ser809 and Thr781 

involved in the water network are conserved between mGlu subtypes, Ala810 and 

Pro655 are non-conserved. This suggests the first two residues may be involved in 

global allosteric ligand activity, while allosteric chemical scaffolds may be 

manipulated to target the latter two residues to increase subtype selectivity.  The 

effect of select mutations within the mGlu5 allosteric binding pocket is summarised in 

table 1.2.  

 

Comparing the mGlu5 crystal structure to that of mGlu1, the allosteric pockets are 

shown to overlap, although the mGlu1 NAM 4-fluoro-N-(4-(4-

(isopropylamino)pyrimidin-4-yl)thiazol-2-yl)-N-methylbenzamide (FITM) binds 

higher within the allosteric site – comparable to the orthosteric site of class A GPCRs 
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(Latek et al., 2012). Phenylalkylamine allosteric modulators of the class C calcium 

sensing receptor (CaSR) have also been suggested to bind to a corresponding FITM 

site, with hydrogen bonding with the key reside Glu837 in TM7 occurring within both 

receptors (Leach and Gregory, 2017). The structurally distinct CaSR PAM 

AC265347, however, binds deeper within 7TM, analogous to mavoglurant binding 

with mGlu5 (Leach et al., 2016) – thus the group I mGlu crystal structures allows for 

potential translation into understanding ligand-binding mechanisms of structurally 

related Class C GPCRs.  

 

Despite the recent crystallisation success within the mGlu receptor family, there 

remains the caveat of these structures being static crystals in an inactive (NAM-

bound) state. Thus, while providing invaluable insight into allosteric ligand binding, 

there are limitations in predictions involving receptor activation and cooperativity. 

Nonetheless, the crystal structures of mGlu receptors offer vital information on key 

residues and interactions involved not only in ligand binding, but also allosteric 

binding sites within related GPCRs.  
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Fig. 1.5. Recent crystal structures provide new insights into allosteric modulator binding 

within mGlu receptors. A) Alignment of mGlu1 (PDB ID: 4OR2) and mGlu5 7TM crystal 

structures (PDB ID's: 4OO9, 5CGC, 5CGD) reveals the overlapping binding cavity. For 

clarity the backbone of 4OO9 only is shown in cartoon, ligands are depicted in sticks: green is 

FITM; cyan is mavoglurant; yellow (5CGC) and magenta (5CGD) are HTL14242. B) Top-

down view of the binding pocket (panel A rotated 90°).  C) Slice through of the protein 

surface reveals the narrow entrance. (Figure made by K. J. Gregory for Sengmany K., 

Gregory K.J. (2018) Drugs to Tune Up Glutamatergic Systems: Modulators of Glutamate 

Metabotropic Receptors. In: Parrot S., Denoroy L. (eds) Biochemical Approaches for 

Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY.) 
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1.3.3.2. Secondary allosteric sites 

At least one other secondary allosteric binding pocket within mGlu5, distinct from the 

well-characterised MPEP site, was proposed with the discovery of the mGlu5 PAM 

CPPHA, and its derivative NCFP, that have no effect or an allosteric interaction with 

the common site mGlu5 allosteric radioligand [3H]methoxyPEPy (Noetzel et al., 2013; 

O'Brien et al., 2004). Mutagenesis studies supported a lack of interaction with the 

common MPEP site, and identified a single residue in TM1 that influenced CPPHA 

potentiation (Chen et al., 2008) as well as the related compound NCFP (Noetzel et al., 

2013). Further, high throughput screening resulted in the discovery of another class of 

mGlu5 with a benzamine scaffold with subsequent optimisation leading to the mGlu5 

PAM VU0357121 and the first non-MPEP site NAL VU0365396 (Hammond et al., 

2010). Radioligand binding studies also suggest a binding site distinct from that of 

MPEP, whereas mutagenesis studies were inconsistent with CPPHA site, but 

suggested overlap with the common allosteric site (Hammond et al., 2010). A third 

mGlu5 PAM, VU0400100, is also proposed to bind to a site distinct from the 

common/MPEP site (Rodriguez et al., 2010b). Recently, a fourth ligand, XAP044, an 

mGlu7 selective NAM, was discovered that binds allosterically within the VFT (Gee et 

al., 2014). The presence of different 'druggable' allosteric pockets opens up the 

possibility of engendering unique pharmacological profiles through stabilisation of 

different receptor conformations. 
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Table 1.2. Summary of select mutagenesis-based studies of mGlu5 allosteric site 
 
Mutant Location Effect Reference 
I580V (r) 
A582P (r) 

TM1 
TM1 

•! No effect on CPPHA potentiation in iCa2+ mobilisation  (Chen et al., 2008) 

F585I (r) TM1 •! Reduced CPPHA affinity and potentiation, no effect on VU29 or MPEP affinity and 
cooperativity in iCa2+ mobilisation 

(Chen et al., 2008; Gregory et 
al., 2013b; Gregory et al., 
2012) 

C630M (r) TM2 •! No effect on CPPHA potentiation in iCa2+ mobilisation (Chen et al., 2008) 
T632A (h) TM2 •! No effect on 2-BisPEB, 3-BisPEB, 4-BisPEB and MPEP potency in iCa2+ mobilisation (Mølck et al., 2012) 
T632P (h) TM2 •! Increased 2-BisPEB and MPEP potency, no effect on 3-BisPEB and 4-BisPEB potency in 

iCa2+ mobilisation  
(Mølck et al., 2012) 

L634F (r) TM2 •! No effect on CPPHA potentiation in iCa2+ mobilisation  (Chen et al., 2008) 

R647A (r) TM3 •! Decreased [3H]fenobam and [3H]MPEP affinity 
•! No effect on MPEP or acetylene PAM affinity, no effect on DFB potentiation in iCa2+ 

mobilisation 
•! No effect on fenobam and MTEP potency in iCa2+ mobilisation 

(Gregory et al., 2014; 
Gregory et al., 2013b; 
Malherbe et al., 2006; 
Muhlemann et al., 2006) 

R648E (h) TM3 •! Decreased 2-BisPEB, 3-BisPEB and MPEP potency, no effect on 4-BisPEB potency in iCa2+ 
mobilisation  

(Mølck et al., 2012) 

I650A (r) TM3 •! No change in MPEP, acetylene PAM functional affinity or cooperativity in iCa2+ 
mobilisation  

(Gregory et al., 2013b) 

I651V (h) TM3 •! No effect on [3H]MPEP binding (Pagano et al., 2000) 
I651F (h) TM3 •! Decrease in 2-BisPEB, 3-BisPEB, 4-BisPEB and MPEP potency in iCa2+ (Mølck et al., 2012) 
P654S (r) TM3 •! Decreased fenobam, MTEP, MPEP potency, no effect on DFB potentiation in iCa2+ 

mobilisation  
•! Decreased VU0405398, VU0414051, MPEP affinity in iCa2+ mobilisation  
•! Abolished [3H]fenobam binding, decreased [3H]MPEP binding 

(Gregory et al., 2013b; 
Malherbe et al., 2006; 
Malherbe et al., 2003; 
Muhlemann et al., 2006) 
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P654F (r) TM3 •! Reduced affinity of MPEP, VU0403602, VU0415051, VU0405386 and VU0405398 in iCa2+ 
mobilisation  

•! Abolished VU0360173 potentiation in iCa2+ mobilisation  

(Gregory et al., 2013) 

Y658V (r) TM3 •! Abolished [3H]MPEP and [3H]fenobam binding 
•! Increased fenobam potency, reduced MPEP affinity, no effect on DFB and VU0465731 

potentiation in iCa2+ mobilisation  
•! Reduced affinity of VU0424465, VU0405398 and VU0430644 in iCa2+ mobilisation  
•! Abolished VU0360172, VU0403602, VU0360173, VU0415051 and VU0405386 

potentiation in iCa2+ mobilisation  
•! VU0405398 and VU0430644 switch from PAM to NAM in iCa2+ mobilisation  

(Gregory et al., 2013b; 
Gregory et al., 2012; 
Malherbe et al., 2006; 
Malherbe et al., 2003; 
Muhlemann et al., 2006; 
Turlington et al., 2013) 

Y658F (r) TM3 •! Reduced [3H]fenobam affinity and potency, no effect on DFB iCa2+ potentiation or 
[3H]MPEP binding 

(Malherbe et al., 2006; 
Malherbe et al., 2003; 
Muhlemann et al., 2006) 

Y659F (h) TM3 •! No effect on 2-BisPEB, 3-BisPEB or MPEP potency in iCa2+, increased 4-BisPEB potency (Mølck et al., 2012) 
Y659A (h) TM3 •! Decreased 2-BisPEB and MPEP potency, abolished NAM activity of 3-BisPEB and and 4-

BisPEB in iCa2+ mobilisation  
(Mølck et al., 2012) 

V739M (r) TM5 •! No effect on CPPHA and MPEP affinity or cooperativity in iCa2+ mobilisation  (Chen et al., 2008; Gregory et 
al., 2013b) 

P742S (r) TM5 •! Reduced MPEP, VU0360172, VU0403602, VU0405386 affinity, increased cooperativity of 
acetylene PAMs in iCa2+ mobilisation 

(Gregory et al., 2013b) 

L743V (r) TM5 •! No effect on [3H]fenobam affinity or potency 
•! Reduced [3H]MPEP affinity and potency 

(Malherbe et al., 2006; 
Malherbe et al., 2003) 

N746A (r) TM5 •! Reduced VU0403602 and VU0415051 affinity 
•! No change in MPEP, VU0360172, VU0405398 and VU0405386 affinity 

(Gregory et al., 2013b) 

T780A (r) TM6 •! Reduced affinity of MPEP, VU0424465, VU0403602, VU0415051, VU0465731, 
VU0430644, VU0405386 

•! Abolished [3H]fenobam binding, reduced fenobam potency 
•! Reduced [3H]MPEP affinity and potency 

(Gregory et al., 2013b; 
Malherbe et al., 2006; 
Malherbe et al., 2003; 
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•! Abolished DFB, VU0360173 and VU0360172 potentiation 
•! VU0415051 switch from PAM to NAM 

Muhlemann et al., 2006; 
Turlington et al., 2013) 

W784A (r) TM6 •! Increased DFB and nicotinamide cooperativity 
•! Decreased VU0403602 affinity, but no effect on affinity of other acetylene PAMs 
•! Abolished [3H]fenobam binding, and reduced fenobam potency 

(Gregory et al., 2013b; 
Malherbe et al., 2006; 
Muhlemann et al., 2006; 
Turlington et al., 2014) 

F787A (r) TM6 •! Abolished [3H]fenobam and [3H]MPEP binding  
•! Reduced fenobam and MPEP potency 
•! DFB switch PAM to NAM 

(Malherbe et al., 2006; 
Malherbe et al., 2003; 
Muhlemann et al., 2006) 

V788A (r) TM6 •! Reduced MPEP affinity in iCa2+ mobilisation  
•! Increased affinity of VU0360173!VU0405398, VU0415051 and VU0405386 in iCa2+ 

mobilisation 

(Gregory et al., 2013b) 

Y791A (r) TM6 •! Reduced DFB potentiation, and fenobam and MPEP potency at iCa2+ mobilisation 
•! Reduced [3H]fenobam and [3H]MPEP affinity  

(Malherbe et al., 2006; 
Malherbe et al., 2003; 
Muhlemann et al., 2006) 

M801T (r) TM7 •! Abolished DFB potentiation  
•! No change in fenobam, VU29, CDPPB activity in iCa2+ mobilisation 

(Chen et al., 2007; Malherbe 
et al., 2006; Malherbe et al., 
2003; Muhlemann et al., 
2006) 

S808A (r) TM7 •! Reduced affinity of MPEP, VU0424465, VU0403602, and VU0465731 
•! No change in affinity of VU0360172, VU0415051, VU0405398, VU0430644 or VU0405386 
•! VU0405398 and VU0430644 switch from PAM to NAM 
•! VU0405386 switch from PAM to NAL 

(Gregory et al., 2013b; 
Turlington et al., 2013) 

S808T (r) TM7 •! Reduced MPEP, VU0415051 and VU0403602 affinity in iCa2+ 
•! No effect on VU0360172, VU0360173, VU0405398 and VU0405386 affinity 

 

(Gregory et al., 2013b) 

A809G (r) TM7 •! Decreased affinity of MPEP, VU0403602, VU0415051, VU0405398 and VU0405386 (Gregory et al., 2013b) 
A809V (r) TM7 •! Abolished [3H]MPEP, [3H]methoxyPEPy and [3H]fenobam radioligand binding (Chen et al., 2008; Gregory et 
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•! Reduced affinity of MPEP, VU29, VU0403602, VU0360172, VU0405386 and VU0415051 
•! Reduced potency of MPEP and fenobam 
•! Reduced DFB potentiation and abolished VU0360173 and VU0405398 potentiation 
•! No effect on CPPHA potentiation  

al., 2013b; Gregory et al., 
2012; Malherbe et al., 2006; 
Muhlemann et al., 2006) 

A810G (h) TM7 •! Loss of [3H]M-MPEP binding (Pagano et al., 2000) 
A810V (h) TM7 •! Abolished [3H]M-MPEP binding 

•! Reduced MPEP, 2-BisPEB and 4-BisPEB potency 
•! Abolished 3-BisPEB inhibition in iCa2+ mobilisation  

(Mølck et al., 2012; Pagano 
et al., 2000) 
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1.3.4. Complexities of allosteric modulation 

While allosteric modulation provides a valuable avenue in targeting and 

pharmacologically manipulating select GPCRs, complexities arise from translating 

findings from a controlled in vitro environment to physiologically relevant systems, 

preclinical models and to patients. First, mGlu receptors are obligate homodimers, 

however, may also exist as heteromers, or higher order oligomers, within native 

systems (Conn and Pin, 1997). Heteromers and oligomers often have vastly different 

receptor pharmacology to the individual monomers (Prinster et al., 2005). Functional 

heteromers have been shown with a combination of group II and III mGlu receptors 

(Doumazane et al., 2011; Kammermeier, 2012; Sevastyanova and Kammermeier, 

2014a; Yin et al., 2014), between group I mGlu receptors, mGlu5/calcium-sensing 

receptor (Gama et al., 2001), mGlu5/µ-opioid receptor (Schroder et al., 2009) and 

mGlu5/adenosine A2A receptor (Ferre et al., 2002; Rodrigues et al., 2005). The 

presence of functional heteromers can perturb allosteric modulator pharmacology.  

For example, PHCCC, a prototypical mGlu4 PAM, potentiates glutamate activity at 

mGlu4/mGlu4 homomers but not mGlu2/4 heteromers, whereas the structurally distinct 

mGlu4 PAM, VU0155041, modulates both mGlu4 homomers and mGlu2/4 heteromers 

(Yin et al., 2014). As a result, PHCCC does not modulate mGlu4 activity at cortico-

striatal synapses due to the presence of mGlu2/mGlu4 heteromers (Yin et al., 2014). 

Small molecule drug discovery programs often screen initial drug hits at a single 

target, therefore the presence of heteromers in native systems may result in 

unanticipated effects. If the relationship between mGlu and other receptors can be 

understood, the intricacies between individual receptor “subunits” may offer a unique 

avenue of drug development. Indeed, this concept has been manipulated with the 

mGlu5 and µ-opioid receptor, where application of the mGlu5 NAM, MPEP, reduced 
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µ-opioid receptor internalisation, phosphorylation and desensitisation in response to 

agonist (Schroder et al., 2009). Targeting mGlu5 and µ-opioid receptors in tandem 

may provide a means to maximise efficacy of current opioid therapies with reduced 

tolerance, an adverse effect commonly seen with morphine and its derivatives 

(Williams et al., 2013). However, receptor heteromerisation, and indeed receptor 

cross-talk, remains a variable in drug design that must be accounted for, as drugs are 

taken from in vitro studies to the complex physiological environment.  

 

Localisation of ligand binding, whether on intracellular or on plasma membrane-

bound receptors provides another potential therapeutic target in drug development. 

Increasing evidence has shown the presence of mGlu5 on intracellular membranes 

(Jong et al., 2009; Kumar et al., 2008; Purgert et al., 2014), thus leading to the notion 

of location bias, where differential activation of a signaling cascades may be observed 

in discrete regions of the cell. mGlu5 receptors are in fact, mostly found 

intracellularly, within inner and outer nuclear membranes, as well as within the 

endoplasmic reticulum (Hubert et al., 2001; Kumar et al., 2008). Intracellular mGlu5 

receptors are oriented (N-terminus is within the lumen of the organelle, and C-

terminus located within the cytoplasm) such that identical second messenger proteins 

are available to these receptors (Jong et al., 2014). The difference, however, lies in 

receptor activation. Only agonists that are able to diffuse, or be actively transported 

across the plasma membrane are able to activate intracellular receptors (Jong et al., 

2005). Moreover, diverse physiological outcomes may be location dependent, for 

example, intracellular and cell surface mGlu5 receptors mediate JNK, Ca2+/CaMK and 

CREB phosphorylation, whereas activation of only intracellular receptors leads to 

pERK1/2 and pElk-1 (Jong et al., 2009). In the striatum, intracellular but not plasma 
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membrane mGlu5 mediates activation of ERK1/2, and the transcription factors Elk-1 

and Arc, that are critical for synaptic plasticity (Jong et al., 2009; Kumar et al., 2012). 

Hippocampal mGlu5-dependent synaptic plasticity can be influenced by receptor 

compartmentalisation, where intracellular mGlu5 mediates LTD and plasma 

membrane mGlu5 mediates both LTD and LTP (Jong et al., 2005; Purgert et al., 

2014). Thus, in targeting intracellular receptors, drug design may also need to 

consider formulations that allow delivery to intracellular compartments.  

 

At the level of the ligand, complexities arise from the steep structure activity 

relationships (SAR) commonly observed with mGlu allosteric ligands (Wood et al., 

2011). “Molecular switches” have been observed where small changes in chemical 

structure result in dramatic changes in cooperativity, e.g. a PAM arising from a NAM 

scaffold or vice versa (Wood et al., 2011). In phenylethynyl pyrimidine chemotypes, 

different methyl substitutions converted an mGlu5 partial antagonist to either a NAM 

or PAM respectively (Sharma et al., 2009) or a NAM to NAL (Rodriguez et al., 

2005a), while modifications of mGlu5 PAM ADX-472373 resulted in NAMs, PAMs 

and partial agonists (Lamb et al., 2011). Moreover, small changes in chemical 

structure can result in changes in mGlu subtype selectivity (Sheffler et al., 2012; 

Wood et al., 2011). Thus, the complexities of mGlu allosteric modulator SAR remain 

a challenge in medicinal chemistry efforts to optimise lead compounds and highlight 

the need to delineate affinity and cooperativity rather than potency to best understand 

allosteric modulator SAR.     

 

Ultimately, the key difference between currently marketed central nervous system 

(CNS) drugs, which act largely via orthosteric agonism or antagonism, and allosteric 
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modulators, is the potential to maintain receptor physiology, rather than be completely 

silenced or switched on (Christopoulos and Kenakin, 2002; Leach et al., 2007; 

Melancon et al., 2012). Therefore allosteric modulators may maintain favorable 

neurotransmitter tone within the CNS environment. A further level of specificity as 

well as complexity is presented with the emerging drug action paradigm of biased 

agonism, where agonist and/or allosteric modulators dictate different functional 

outcomes through interactions at the same receptor. 

 
 
1.4.!Biased agonism and modulation 
 
Biased agonism describes the phenomenon where the binding of either orthosteric or 

allosteric ligands results in different effector coupling and signaling profiles in a 

ligand dependent fashion (Galandrin et al., 2016; Luttrell, 2014) (Figure 1.6). Bias 

can be manifested as ligand-dependent alterations in archetypal G protein coupling 

and second-messenger activation, to internalisation, desensitisation, 

compartmentalisation and even receptor oligomerisation (Galandrin et al., 2016; 

Luttrell, 2014). The underlying molecular basis for biased agonism is thought to be 

ligand-induced stabilisation of distinct subsets of receptor conformations resulting in 

different signaling fingerprints (Kenakin and Christopoulos, 2013; Kenakin et al., 

2012). As mentioned earlier, pleiotropic coupling in mGlu receptors is gaining greater 

appreciation. It is clear that assessment of ligand activity in a single functional assay 

is insufficient to understand the full scope of drug pharmacology. Indeed, biased 

agonism is operative for orthosteric ligands of mGlu1 mGlu4, mGlu7 and mGlu8 

receptors (Emery et al., 2012; Hathaway et al., 2015; Jalan-Sakrikar et al., 2014). 

Interestingly, comparison of different endogenous orthosteric mGlu1 agonists revealed 

glutaric acid and succinic acid were biased toward sustained ERK1/2 phosphorylation 
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and cytoprotection versus phosphoinositide (PI) hydrolysis relative to glutamate, 

which coupled more strongly to PI hydrolysis over pERK1/2 and cytoprotection 

(Emery et al., 2012). The concept of biased endogenous ligands may explain apparent 

biological redundancies in activating mGlu receptors. Indeed, this notion has been 

explored with the existence of multiple somatostatin and opioid endogenous ligands 

(Thompson et al., 2014), with each endogenous ligand potentially stabilising distinct 

receptor conformations to engender different physiological effects.  

 

 

Fig 1.6. Biased agonism and modulation of receptor responses. Receptor activation by 

different agonists (A & B) can result in different pharmacological profiles. C) Binding of an 

allosteric modulator may modulate coupling to all pathways to a similar extent. D) Binding of 

a biased modulator will differentially modulate different signaling pathways. From: 

Sengmany, K., Gregory, K. J., 2016. Metabotropic glutamate receptor subtype 5: molecular 

pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 173, 3001-3017. 

 

Biased agonism, however, is not limited to orthosteric ligands. Comparison of relative 

efficacies of mGlu5 PAM-agonists with that of glutamate revealed that select 

allosteric agonists also display bias - for instance, toward ERK1/2 phosphorylation 

over intracellular Ca2+ mobilisation, the opposite profile to glutamate (Gregory et al., 

2012). Extending on from individual signalling pathways, VU0409551, a PAM of 

glutamate-mediated calcium mobilisation, was shown to lack efficacy in modulating 

NMDA receptor currents or NMDA receptor-dependent synaptic plasticity in in vitro 

electrophysiological preparations (Rook et al., 2015), while VU0424465, an mGlu5 

effect 1 effect 2 

A B C 

effect 1 effect 2 effect 1 effect 2 effect 1 effect 2 

D 



Chapter 1 – General Introduction 
 

! 58!

PAM-agonist has seizure liability mediated via mGlu5 (Rook et al., 2013). The ability 

of VU0409551 to engender a different biased agonism fingerprint relative to 

VU0424465 may underlie in vivo efficacy in antipsychotic and cognition models 

coupled with improved safety profiles (Gregory et al., 2013a; Rook et al., 2015). It 

remains to be determined whether biased allosteric agonists will translate to novel 

therapeutics with improved therapeutic efficacy and safety profiles. 

 

Direct activation of receptors may not be desirable within the CNS environment. 

Related to biased agonism, there is the potential for allosteric ligands to differentially 

modulate different signaling pathways stimulated by an orthosteric agonist, a 

phenomenon referred to as biased modulation. Biased modulation may manifest as 

different degrees of cooperativity with the same orthosteric agonist, or a different 

apparent affinity of an allosteric modulator for a receptor, depending on response 

measured (Cook et al., 2015). For mGlu5, biased modulation is evident between iCa2+ 

and ERK1/2 phosphorylation in recombinant cells and cortical astrocyte and neuron 

cultures (Gregory et al., 2012; Zhang et al., 2005). Biased modulation has the 

potential to result in distinct physiological effects. For example, the second-site mGlu5 

PAM NCFP did not potentiate hippocampal synaptic plasticity, but did potentiate 

DHPG-induced depolarisation in subthalamic nucleus neurons (Noetzel et al., 2013). 

Beyond mGlu5, a pan-group III mGlu potentiator (VU0422288) was recently 

disclosed that has different degrees of cooperativity with glutamate at mGlu7 in an 

assay dependent manner (Jalan-Sakrikar et al., 2014). The prevalence and therapeutic 

potential of biased agonism and/or modulation is only beginning to be realised. If 

signaling fingerprints can be linked to a desired therapeutic outcome, in the future it 

may be possible to rationally design mGlu allosteric ligands that tailor receptor 
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activity toward therapeutic effects and avoid adverse effects. However, the possibility 

of biased agonism and/or modulation also raises additional complexity when 

investigating mGlu allosteric modulators. 

 

Allosteric interactions by their nature are sensitive to the two ligands that 

simultaneously occupy the receptor, a phenomenon referred to as probe dependence. 

Probe dependence describes observations that the magnitude and direction of 

cooperativity can change depending upon which orthosteric ligand is used to detect an 

allosteric interaction (Suratman et al., 2011; Valant et al., 2012). Probe dependence is 

a key consideration when moving from a recombinant system, where glutamate may 

be readily used as an orthosteric ligand due to the controlled nature of receptor 

expression, toward a native system, where the presence of various glutamatergic 

receptors and transporters may confound results if glutamate is used. Probe 

dependence is operative in Group III mGlu, with two pan-group III mGlu PAMs 

showing differing degrees of affinity and efficacy cooperativity depending on the 

orthosteric agonist utilised (Jalan-Sakrikar et al., 2014). Despite the complexity and 

potential pitfalls, biased agonism and/or modulation offer the potential to fine-tune 

glutamatergic signaling to the level of intracellular effectors that may be altered in 

disease.  
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1.5.!CNS disorders linked to an altered glutamatergic system  

As glutamate is the main excitatory neurotransmitter in the brain, it is unsurprising 

that changes in either CNS glutamate levels (Auer et al., 2000; Hashimoto et al., 

2007; Kaiser et al., 2005; Sanacora et al., 2012), or the function of glutamate 

receptors (Amalric, 2015; Bruno et al., 2001; Conn, 2003; Nicoletti et al., 2011a; 

Nicoletti et al., 2015; Spooren et al., 2003; Spooren et al., 2001) are associated with 

several CNS disorders. A plethora of mGlu allosteric modulators show promise as 

novel therapeutics for a variety of CNS disorders (table 1.1). With greater 

understanding of the full scope of drug action, allosteric drug development has the 

potential to move toward greater specificity and selectivity for desired therapeutic 

receptor endpoints, minimising both off- and on-target adverse effects. 

 

1.5.1. Schizophrenia 

Schizophrenia is a debilitating disease comprising of three symptom classes: positive 

(hallucinations, delusions, paranoia), negative (depression, anhedonia) and cognitive 

(working memory deficits, inability to plan or anticipate outcomes). Current 

therapeutic options are generally dopamine receptor antagonists, however, these drugs 

offer minimal relief of negative and cognitive symptoms, and can be associated with 

severe extrapyramidal side effects (Noetzel et al., 2012). The glutamatergic system is 

implicated in the undertreated pathophysiology of schizophrenia. For example, all 

three symptom clusters are evident in rodent models treated with the non-specific 

NMDA receptor antagonist phencyclidine (PCP) (Morris et al., 2005) – it should be 

noted however, that rodent models of schizophrenia may be limited to only certain 

aspects of the disease, and may not fully encompass all positive and negative 

symptoms. Nonetheless, further evidence of the influence of the glutamatergic system 
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in schizophrenia, ketamine, an NMDA receptor antagonist, produced psychosis in 

healthy human volunteers, closely resembling the thought disorders observed in 

symptomatic schizophrenia (Adler et al., 1999). Glutamatergic dysfunction in 

schizophrenia is postulated to arise from NMDA receptor hypofunction on 

GABAergic interneurons within the cortical and subcortical circuits within the brain 

(Marek et al., 2010) and as such, enhancing glutamatergic tone is a potential 

therapeutic option (Wieronska et al., 2016). While the aforementioned evidence 

suggests NMDA receptor function enhancement is a viable objective in schizophrenia 

treatment, this receptor’s fast-acting ionotropic properties may reduce its potential as 

a therapeutic target due to the risk of excitotoxicity (Serafini et al., 2013). 

Metabotropic glutamate receptors are slower acting and modulate activity of 

ionotropic glutamate receptors (Matosin and Newell, 2013), therefore offering an 

attractive therapeutic strategy.  

 

1.5.1.1.  mGlu5 PAMs in the treatment of schizophrenia 

mGlu5 activation positively modulates the NMDA receptor through increasing open 

channel probability, via PKC-dependent Src signaling, and stabilisation of the Homer-

Shank protein anchor (Lu et al., 1999; Tu et al., 1999). Interestingly, NMDA receptor 

activation is suggested to be involved in early phase synaptic plasticity, with rapid 

calcium influx leading to modulation of AMsPA receptor trafficking (Borgdorff and 

Choquet, 2002). This relationship between ionotropic and metabotropic glutamate 

receptors has resulted in extensive efforts in designing therapies targeting mGlu5 to 

treat CNS disorders related to NMDA receptor dysfunction. Knockout rodent models 

have highlighted the close correlation between mGlu5 and schizophrenia-like 

symptoms or psychosis, with mGlu5 knock out mice (Gould et al., 2016) showing 
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consistent deficits in prepulse inhibition relative to wild-type controls (reviewed in 

(Wieronska et al., 2016)  

 

Promisingly, selective mGlu5 PAMs have efficacy in preclinical models of 

antipsychotic-like effects. CDPPB was the first selective mGlu5 modulator to reverse 

the multidimensional aspects associated with psychosis: amphetamine induced 

hyperlocomotion, prepulse inhibition and cognitive deficits (Horio et al., 2013; 

Kinney et al., 2005). Several other selective mGlu5 PAMs have since been shown to 

be efficacious in rodent models of psychosis (Gregory et al., 2013a; Rodriguez et al., 

2010a; Rook et al., 2015). In addition to promising preclinical efficacy, select mGlu5 

PAMs and PAM-agonists have been associated with adverse effect liability. 

VU0424465, a robust PAM-agonist, did not produce any antipsychotic effects, but 

rather resulted in dose-dependent seizures (Rook et al., 2013), while 4-

fluorophenyl((2R,5S)-5-[5-(5-fluoropyridin-2-yl)-1,2,4-oxadiazol-3-yl]-2-

methylpiperidin-1-yl)methanone (5PAM523), an mGlu5 PAM with little/no agonism, 

had anti-psychotic-like effects, however, 5PAM523 also caused neurotoxicity in rats 

(Parmentier-Batteur et al., 2014). Interestingly, another mGlu5 PAM-agonist, 

VU0403602, dose-dependently reversed amphetamine-induced hyperlocomotion, 

however, produced time-dependent seizures and forelimb asymmetry (Bridges et al., 

2013). VU0403602 adverse effects were attributed to an active metabolite, thereby 

highlighting the importance of understanding not only drug pharmacodynamics, but 

also pharmacokinetic profiles within the living system (Bridges et al., 2013). 

Recently, the mGlu5 PAM VU0409551 was shown to be a biased ligand, differentially 

activating/modulating different signaling pathways and lacked the ability to potentiate 

mGlu5 modulation of NMDA receptor currents (Rook et al., 2015). Despite the 
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absence of NMDA receptor modulation, VU0409551 had anti-psychotic-like and 

cognition-enhancing effects in preclinical rodent models, potentially negating the role 

of NMDA receptors in mGlu5 PAM efficacy (Rook et al., 2015). Nonetheless, 

targeting mGlu5 receptors may prove fruitful in designing therapies for this 

schizophrenia that treat both psychosis and cognition impairments.  

 

1.5.1.2. Other mGlu ligands in the treatment of schizophrenia 

Group II mGlu receptors are implicated as potential therapeutic targets due to 

autoreceptor properties and localisation within the limbic and forebrain regions 

associated with schizophrenia (Wright et al., 2013). Preclinical studies showed 

normalisation of a PCP-induced rat model of hyperlocomotion, working memory, and 

stereotypy by the mGlu2/3 agonist LY354740, with a favorable adverse effect profile 

and minimal effects on spontaneous activity or dopamine neurotransmission 

(Moghaddam and Adams, 1998). The related mGlu2/3 agonist LY379268 also 

ameliorated amphetamine-induced hyperlocomotion evoked by PCP, with minimal 

adverse effects, which was reversed by the selective mGlu2/3 antagonist LY341495 

(Cartmell et al., 1999). While agonism may provide therapeutic effect, group II mGlu 

receptor PAMs may provide a greater safety profile due to fine-tuning, rather than 

direct receptor activation. Indeed, the mGlu2 selective PAMs, LY487379 and BINA, 

have behavioral effects similar to mGlu2/3 agonists in PCP- and amphetamine-induced 

mouse models of hyperlocomotion and prepulse inhibition (Muguruza et al., 2016) 

Thus, the preclinical studies of Group II mGlu agonists and PAMs show great 

promise in the treatment of this multifaceted disease.   
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1.5.2. Anxiety and depression 

Generalised anxiety and major depressive disorder remain a large burden, not only on 

the individual, but on society and the economy as a whole (Kessler et al., 2009). 

Current therapies include benzodiazepines, tricyclic antidepressants and serotonergic 

agents; however, these therapies are associated with adverse effects such as dry 

mouth, constipation, diarrhea and dizziness (Tham et al., 2016). These adverse effects 

may be attributed to the general “dirty” nature of current drugs (Galling et al., 2015; 

Woods et al., 1992), with many of the adverse effects linked to unwanted anti-

cholinergic effects (Tham et al., 2016). Thus, there remains a clear need for more 

efficacious therapeutics, with greater selectivity and minimal off-target effects. 

Altered glutamate levels within the brains of patients with anxiety and depression 

(Auer et al., 2000; Hashimoto et al., 2007) have implicated mGlu receptors as 

potential targets in the treatment of these disorders (Chaki et al., 2013; Chojnacka-

Wojcik et al., 2001). 

 

1.5.2.1. mGlu5 NAMs in the treatment of anxiety and depression 

As NMDA receptor overactivity is implicated in anxiety and depression (Valenti et 

al., 2002), mGlu5 presents as an attractive drug target due to its ability to modulate 

NMDA receptor activity. In support of this hypothesis, mGlu5 knockout mice have 

reduced depressive symptoms relative to their wild-type counterparts, despite a 

paradoxical increase in anxiety  (Inta et al., 2013; Li et al., 2006). Inta and colleagues 

suggest this may be the result of general ablation of mGlu5, resulting in altered 

neurogenesis (Inta et al., 2013). Nevertheless, the prototypical mGlu5 NAM MPEP is 

both anxiolytic and antidepressive in preclinical studies (Belozertseva et al., 2007; Li 

et al., 2006; Schulz et al., 2001; Spooren et al., 2000). Furthermore, MPEP improved 
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the antidepressive effects of imipramine, a currently marketed tricyclic antidepressant, 

suggesting synergistic efficacy in targeting multiple CNS neurotransmitters (Li et al., 

2006). mGlu5 NAMs from multiple chemical scaffolds also show efficacy in 

decreasing mouse marble burying, a behavioral model of anxiolytic drug activity 

(Felts et al., 2013; Mueller et al., 2012; Rodriguez et al., 2010a).  Fenobam is an 

mGlu5 NAM, which was originally discovered as a non-benzodiazepine anxiolytic, 

with clinical efficacy in a small double-blind, placebo-controlled study with fewer 

adverse effects reported relative to diazepam control (Pecknold et al., 1982; Porter et 

al., 2005a; Wieronska and Pilc, 2013). Safety and efficacy of basimglurant, an mGlu5 

NAM, as an adjunct treatment of major depressive disorder was recently assessed in a 

phase IIb trial. Basimglurant had anti-depressive effects in all secondary outcomes, 

with good tolerability, however, the primary outcome measure of clinician-reported 

changes in depression, were not met (Quiroz et al., 2016). While promising, it should 

be noted that select mGlu5 NAMs, such as fenobam and MPEP, are associated with 

cognitive impairments and psychotomimetic-like effects (Gregory et al., 2013c). It 

has been postulated that one means to overcome mGlu5 NAM adverse effect liability 

is via the development of "partial" NAMs, which have limited cooperativity, such that 

even at full receptor occupancy by the NAM, a degree of glutamate agonist activity is 

retained (Gould et al., 2016; Nickols et al., 2016). A number of partial mGlu5 NAMs 

have now been discovered that have anxiolytic and anti-addiction efficacy (Gould et 

al., 2016; Nickols et al., 2016), and promisingly are devoid of psychotomimetic-like 

effects or cognitive deficits (Gould et al., 2016). Therefore, development of “partial” 

or NAMs with limited cooperativity may provide greater control in modulating 

glutamatergic neurotransmission to yield a broader therapeutic index. 
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1.5.2.2.  Other mGlu ligands in the treatment of anxiety 

Group II mGlu agonists display anxiolytic effects in preclinical rodent models 

(Swanson et al., 2005), with LY354740 increasing open-arm time in a mouse 

behavioral model of anxiety without the adverse effect of sedation associated with 

benzodiazepines (Schoepp et al., 2003). LY354740 also showed clinical efficacy in 

the treatment of panic attacks and generalised anxiety disorder with a favorable 

adverse effect profile (Schoepp et al., 2003). Despite its promise in the preclinical 

setting, LY354740 activates both mGlu2 and mGlu3 receptors, and hence does not 

allow differentiation of subtype activity (Conn and Jones, 2009). The design of 

subtype selective PAMs has paved the way for greater selectivity of pharmacological 

interventions (Conn and Jones, 2009). Positive allosteric modulators derived from 

BINA and LY487379 (Galici et al., 2005; Galici et al., 2006; Johnson et al., 2005), 

with increased selectivity toward mGlu2, exhibit anxiolytic effects (Galici et al., 

2006). Therefore, mGlu2 selective PAMs are a novel treatment strategy for the 

treatment of anxiety.  

!

1.5.3. Addiction 

While dopamine, within the reward neurocircuitry of the brain, is implicated in 

addiction, glutamate may play a pivotal role in both development and maintenance of 

addiction (Tzschentke and Schmidt, 2003). The glutamatergic system is highly 

integrated and thus able to modulate the dopaminergic reward system, with 

glutamatergic projections observed in key dopaminergic brain areas such as the 

ventral tegmental area and nucleus accumbens (Christie et al., 1987; Gorelova and 

Yang, 1997). Knockout of mGlu5 ameliorates preclinical models of addiction, such as 

operant sensation seeking, extinction and reinstatement (Bird et al., 2010; Chesworth 
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et al., 2013; Chiamulera et al., 2001; Eiler et al., 2011; Olsen et al., 2010; Stoker et 

al., 2012). In preclinical models, fenobam attenuated drug-seeking behavior in rats 

and reduced cocaine-induced behavioral sensitisation (Huang et al., 2015; Watterson 

et al., 2013). mGlu5 NAMs show preclinical efficacy in relapse and reinstatement of 

amphetamine, cocaine, nicotine and alcohol addictions (Olive, 2009), and thus 

provide attractive pharmacological options in targeting the multiple facets of 

addiction. In addition, Group II mGlu receptors are expressed within brain regions 

associated with reward and addiction (Liechti et al., 2007).  Nicotine self-

administration down-regulates Group II mGlu receptor expression, thus, up-regulation 

of these receptors may offer relief from addiction (Liechti et al., 2007). Indeed, 

mGlu2/3 agonists LY354740 and LY379268 decreased nicotine self-administration and 

cue-reinstatement, although tolerance to LY379268 quickly developed, highlighting 

the malleable and highly adaptable CNS environment (Helton et al., 1997; Liechti et 

al., 2007). Administration of the mGlu2 PAM AZD8529 in rodent models of 

abstinence reduced relapse of methamphetamine administration and cue-seeking 

behavior (Caprioli et al., 2015), while similar effects were observed with the mGlu2 

PAM BINA and cocaine addiction (Jin et al., 2010). Thus, there is much promise in 

fine-tuning glutamatergic neurotransmission for the treatment of addictive disorders.  

 

1.5.4. Pain and inflammation 

Chronic or neuropathic pain has been associated with dysfunction of several mGlu 

receptors (Woolf and Salter, 2000). Group I mGlu receptors are located within dorsal 

root ganglia, the spinal cord, and brain regions associated with pain sensation and 

transmission (Crawford et al., 2000; Martin et al., 1992; Walker et al., 2001), with 

group I knockout mice displaying decreased pain responses (Galik et al., 2008; Kolber 
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et al., 2010). The mGlu1 selective NAM JNJ16259685 produced analgesia in a rodent 

model of formalin-induced hyperalgesia (Mabire et al., 2005), while an mGlu1 

antagonist produced analgesia in a spinal nerve ligation assay (Bennett et al., 2012). 

Fenobam also produced similar effects, with favorable activity in mouse models of 

pain and importantly, did not induce tolerance after chronic administration (Jacob et 

al., 2009; Montana et al., 2011). Interestingly, while the analgesia is thought to arise 

from central pathways, peripherally injected MPEP, into an inflamed rat hind paw, 

was more effective than intracerebroventricular or intrathecal administration to 

attenuate hyperalgesia (Walker et al., 2001). Thus, targeting peripheral mGlu 

receptors represent yet another avenue in which to design drugs that act directly to the 

site of injury or inflammation.  

 

In addition to group I receptors, mGlu4 is an attractive target for pain and 

inflammation. mGlu4 is located within spinal neuronal terminals and unmyelinated C-

fibers, and mGlu4 deletion produced hypersensitivity to noxious stimuli (Vilar et al., 

2013). Group III agonists including the mGlu4 selective agonist LSP4-2022, as well as 

the mGlu4 PAM PHCCC reduced hyperalgesia without affecting healthy controls 

(Goudet et al., 2008; Vilar et al., 2013). Current analgesics are suboptimal and 

associated with tolerance (Jamison and Mao, 2015), there remains a need for better 

pain therapeutics, which may be addressed through targeting mGlu receptors.  

 

1.5.5. Autism Spectrum Disorders 

Fragile X Syndrome (FXS) is a genetic disorder where mutations silence the Fmr1 

gene, which encodes fragile X mental retardation protein (FMRP), and is one of the 

most common inherited causes of autism spectrum disorders (ASD) and mental 
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retardation (Garber et al., 2008). FMRP is an RNA binding protein involved mRNA 

translation, its absence leads to impaired synaptic plasticity (Garber et al., 2008). 

Phenotypically, patients present with autistic-like behaviors and cognitive deficits 

ranging from poor working memory to impaired executive function and social skills 

(Garber et al., 2008). The glutamatergic system has been heavily implicated in this 

disorder, with rodent models of FXS showing an imbalance in long-term depression 

and long-term activation, resulting in disturbed glutamatergic synaptic plasticity and 

abnormal neuronal growth (Bear et al., 2004; Huber et al., 2002; Irwin et al., 2002; 

Nimchinsky et al., 2001). mGlu5 hyperactivity is suggested to play a significant role 

in FXS pathophysiology, and hence mGlu5 negative modulation may be a therapeutic 

option (Bear et al., 2004). Indeed, mGlu5 NAMs MPEP and CTEP rescue multiple 

aspects of the FXS phenotype in numerous rodent models (Dolen et al., 2007; 

Michalon et al., 2012; Yan et al., 2005). These promising preclinical studies led to 

recent clinical trials. Fenobam was tested in an open-label pilot study for the treatment 

of FXS, where no clinically significant adverse effects were observed (Berry-Kravis 

et al., 2009). Another mGlu5 NAM, mavoglurant, improved behavioral symptoms in 

FXS in two phase IIb trials, however, primary outcome measures were not met 

(Berry-Kravis et al., 2016). Of note, primary outcomes were parental observations of 

patients, and hence were potentially subjective (Bailey et al., 2016). Despite this, 

mavoglurant has a predictable and tolerable adverse effect profile (Bailey et al., 2016; 

Berry-Kravis et al., 2016), and may instruct further development of mGlu5 NAMs to 

remedy glutamatergic hyperactivity in FXS.  

 

Tuberous sclerosis complex (TSC) is a genetic disorder affecting multiple organ 

systems, with up to 95% of patients experiencing CNS involvement including 
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epilepsy, intellectual disability and autism spectrum disorders (Sahin, 2012). 

Malfunction of the TSC1 and TSC2 genes results in the loss of the hamartin-tuberin 

complex, and subsequent aberration in mTOR signaling, protein synthesis and 

neuronal development (Kwiatkowski and Manning, 2005; Wullschleger et al., 2006). 

Unlike FXS, TSC rodent models display deficiencies in mGlu mediated long-term 

depression (LTD) (Auerbach et al., 2011; Chevere-Torres et al., 2012), thus leading to 

enhancement of mGlu receptors being a tractable therapy in this disease. Pretreatment 

of hippocampal slices with the mGlu5 PAM CDPPB in TSC mouse models restored 

LTD to wild type levels, and normalised protein synthesis (Auerbach et al., 2011). 

CDPPB also reversed the cognitive and behavioral deficits in the TSC mouse models 

(Auerbach et al., 2011). Thus, targeting mGlu5 receptors, through inhibition or 

enhancement informed by the underlying pathophysiology, provides potential 

therapies in the treatment of both FXS and TSC respectively.  

 

1.5.6. Parkinson’s disease 

Parkinson’s disease (PD) is characterised by bradykinesia, rigidity and tremors arising 

from the aggregation of Lewy bodies and loss of dopaminergic innervation within the 

substantia nigra (Kalia and Lang, 2015). Current treatment for PD involves 

replacement of dopaminergic input through administration of the dopamine precursor 

L-3,4-dihydroxyphenylalanine (L-DOPA), however, with long term therapy up to 

80% of patients experience L-DOPA induced dyskinesias (LID) (Bastide et al., 2015). 

Evidence suggests LID may arise from deranged synaptic plasticity, or ‘pathological’ 

long-term potentiation, between dopaminergic and glutamatergic inputs within the 

nigrostriatal pathway (Calabresi et al., 2000; Picconi et al., 2012), and as such, current 

treatments for LID involve NMDA antagonism by amantadine (Fox et al., 2011). 
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There remains a need for more efficacious treatments for both PD and LID, without 

the adverse motor and cognitive effects seen with L-DOPA and amantadine.  

 

1.5.6.1. mGlu5 NAMs in the treatment of PD and LID 

Elevated mGlu5 receptor expression has been reported in the striatum of patients of 

PD and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned non-human 

primates with dyskinesias (Ouattara et al., 2011). Treatment with MPEP in 

conjunction with L-DOPA produced an L-DOPA sparing effect, reducing the overall 

incidence of LID (Morin et al., 2013a; Morin et al., 2013b). Further, fenobam 

treatment in rodent and non-human primate models of PD reduced peak-dose 

dyskinesias (Rylander et al., 2010). The immense potential of mGlu5 targeted PD and 

LID therapies have been summarised in (Litim et al., 2017). Mavoglurant was 

assessed in the treatment of LID in two phase II trials, however, failed to meet the 

primary outcome of antidyskinetic activity, with a greater adverse effect profile 

relative to placebo (Trenkwalder et al., 2016). Despite lack of clinical trial success to 

date, mGlu5 allosteric ligands remain viable options in the treatment of PD and LID, 

and may find a role in synergistic therapies to reduce L-DOPA doses.  

 

1.5.6.2. mGlu4 PAMs in the treatment of PD and LID 

mGlu4 receptors are widely expressed throughout brain regions involved in the 

pathophysiology of PD, including the basal ganglia, hippocampus and cerebellum 

(Duty, 2010; Nicoletti et al., 2011b). Administration of the group III selective mGlu 

agonists into the substantia nigra reversed akinesia in rodent models of PD, while also 

providing neuroprotection against 6-hydroxydopamine lesions (Austin et al., 2010; 

Lopez et al., 2012).  The selective mGlu4 PAM PHCCC also reversed reserpine-
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induced akinesia and was protective against neuronal degeneration in rodents 

(Battaglia et al., 2006; Marino et al., 2003). Haloperidol-induced catalepsy was also 

reversible by the mGlu4 PAMs VU0155041, ADX88178, AF21934 with the absence 

of LID adverse effects (Bennouar et al., 2013; Jones et al., 2011; Le Poul et al., 2012). 

Interestingly, both mGlu4 PAMs ADX88178 and AF21934 showed synergistic effects 

with administration of L-DOPA, such that the therapeutic dose of L-DOPA may be 

reduced, thereby reducing the risk of LID (Bennouar et al., 2013; Le Poul et al., 

2012).  Thus, mGlu4 PAMs in conjunction with current therapies may provide a novel 

therapeutic strategy to reduce adverse effects while maximising therapeutic effects.
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1.6. Scope of thesis 
 
In various preclinical models of CNS disorders, mGlu allosteric ligands have 

demonstrated promising efficacy profiles. Unfortunately, the limited examples of 

mGlu allosteric ligands that have progressed into phase II clinical trials have yet to 

demonstrate efficacy. To address this disconnect between animal models and human 

trials, there remains a need to evaluate the full scope of mGlu allosteric modulator 

activity in a pharmacological robust and thorough manner. Indeed progression into 

preclinical and clinical models based solely on pharmacological assessment at one or 

two receptor endpoints precludes the prediction of adverse outcomes along diverse 

receptor endpoints. Conversely, abandonment of potential lead compounds due to lack 

of efficacy at the single studied receptor pathway results in immense loss of 

prospective therapeutics.  

 

Thus, this thesis aims to provide a deeper understanding of mGlu5 allosteric ligands 

through rigorous characterisation of agonism and allosterism, with the aim of 

assessing the presence of mGlu5 allosteric ligand bias. We hypothesise that the studied 

ligands display unappreciated bias at multiple mGlu5 receptor endpoints. Sixteen 

mGlu5 allosteric ligands were assessed at mGlu5 mediated iCa2+ mobilisation, IP1 

accumulation and ERK1/2 phosphorylation in both recombinant and mouse 

embryonic cortical neurons. Nuances in kinetics and systems context were also 

probed, in order to provide a greater picture of ligand pharmacology.  

 

The study was extended to assess the structural basis of mGlu5 allosteric agonism, 

whereby ligands were assessed in mGlu5 receptors containing single point mutations 

within the allosteric binding pocket. The effect of these mutations on select mGlu5 
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orthosteric and allosteric agonists was compared relative to wild-type receptors to 

determine the importance of selected residues in activation of iCa2+, IP1 or pERK1/2 

receptor endpoints.  

 

As mentioned above, in physiologically relevant systems, mGlu5 is known to interact 

with numerous other receptors, including the nonselective cation channel TRPV1. 

However, the effect of allosteric modulation of mGlu5 on TRPV1 is unknown. For the 

final study in this thesis, we assessed effects of mGlu5 ligand incubation on TRPV1 

mediated calcium responses in rat dorsal root ganglia neurons of several endogenous 

TRPV1 agonists. Modulation of TRPV1 responses provides a potential therapeutic 

avenue in the treatment of both acute and chronic pain.   

 

Ultimately, by understanding how different mGlu-stimulated signaling pathways are 

linked to pathology and therapeutic efficacy, it may be possible to develop biased 

mGlu modulators that normalise defective signaling cascades and avoid target-

mediated adverse effects. It is clear that modulators of glutamatergic 

neurotransmission show immense potential in a wide range of CNS disorders, not 

only as prospective therapies, but also pharmacological tools in understanding the 

complexities of metabotropic glutamate receptor activity in health and disease. 



 

! 75!

 
 
 
 
 

Chapter 2 
Biased allosteric agonism and modulation of 

metabotropic glutamate receptor 5: implications for 

optimizing preclinical neuroscience drug discovery 

 

 
Kathy Sengmany, Junaid Singh, Gregory D Stewart, P Jeffrey Conn, Arthur Christopoulos, 

Karen J Gregory 
 

Neuropharmacology 115: 60-72, March 2017 

 

!
!
!
!
!
!
!
!
!
!
!
!
!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 76!

!

!
!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 77!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 78!

!
!
!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 79!

!

!
!
!
!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 80!

!

!
!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 81!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 82!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 83!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 84!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 85!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 86!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 87!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 88!

!
!

!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 89!

!
!



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 90!

Supplementary Information 
 
Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: 
implications for optimizing preclinical neuroscience drug discovery  

 
Kathy Sengmanya, Junaid Singha, Gregory D. Stewarta, P. Jeffrey Connb, Arthur 
Christopoulosa*, and Karen J. Gregorya*  
aDrug Discovery Biology, Monash Institute of Pharmaceutical Sciences and 
Department of Pharmacology, Monash University, Parkville, VIC, Australia.  
b Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical 
Center, Nashville, TN, USA. 
* To whom correspondence should be addressed: 
Prof. Arthur Christopoulos and Dr. Karen J Gregory  

381 Royal Parade 
Parkville, VIC, Australia 

3052 
 

 

  



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 91!

!

 

 
 
Supplementary Figure 1: Allosteric modulation of glutamate-stimulated iCa2+ 
mobilization in HEK293A-mGlu5-low cells. Glutamate concentration-response 
curves for iCa2+ mobilization in the absence and presence of indicated concentrations 
of allosteric ligands. Interaction studies for DPFE, VU0424465, VU0403602, 
VU0409551 and CDPPB were performed using simultaneous addition of both 
ligands, to eliminate allosteric ligand-induced acute desensitization due to intrinsic 
agonist activity. VU29, VU0405398 and VU0360172 were added 1 min prior to 
addition of glutamate. Data sets were globally fitted to an operational model of 
allosterism to estimate affinity and cooperativity. Curves represent the best fit of the 
data. Data are mean + SEM of n=3-10 experiments performed in duplicate. Error bars 
not shown lie within the dimensions of the symbol. 
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Supplementary Figure 2: Establishing the temporal profile of ERK1/2 
phosphorylation and the effect of glutamic pyruvic transaminase on ERK1/2 
phosphorylation and IP1 accumulation in HEK293A-mGlu5-low cells. A) 
Incubation with 10U/mL glutamic pyruvic transaminase (GPT) reduces the basal 
levels of IP1 and phosphorylated ERK1/2. Data are normalised to the basal level in the 
absence of GPT. Mean + 95% confidence intervals for GPT treatments are shown 
from n=3-6 independent experiments, demonstrating a marked decrease in basal 
levels in the presence of GPT. B) In IP1 assays, 10U/mL GPT completely degrades up 
to 1µM exogenously applied glutamate. Data are mean ±SEM from n=7-10. C) In 
ERK1/2 phosphorylation assays, inclusion of GPT increases the signal window. Data 
are mean ±SEM from n=4-5. D&E) ERK1/2 phosphorylation levels peak at 5-7min in 
response to stimulation by allosteric agonists (10µM). Data are mean + SEM from 
n=3-5. 
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Supplementary Figure 3: In cortical neurons GPT has no effect on basal IP1 
levels or agonism by VU29. A) Basal levels of IP1 accumulation were similar in the 
absence and presence of GPT. Data for GPT treatment group are mean + 95% 
confidence interval from n=4. B) Incubation with GPT had no effect on DHPG or 
VU29 agonism in the IP1 accumulation assay. Data are mean + SEM from n=3-4 
performed in duplicate. Error bars not shown lie within the dimensions of the 
symbols. 
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Supplementary Figure 4: The time course for ERK1/2 phosphorylation in 
cultured cortical neurons is characterised by a sustained response over 30 
minutes. A-C) Exposure to 10µM of indicated ligands (30 µM for DPFE in panel A; 
1 µM for VU0424465 in panel B) caused a sustained change in the levels of 
phosphorylated ERK1/2. Data are mean + SEM from n=3-9 performed in duplicate. 
Error bars not shown lie within the dimensions of the symbol. 
 
 
 
 
 
 
 
 
 

VU0403602
VU0424465

VU0405398
VU0360172

VU0409551
DPFE

VU29
CDPPB

DPFE 1μM
VU0405398 1μM

A B C

DHPG

0 10 20 30

0.8

1.0

1.2

1.4

1.6

time (min)

0 10 20 30

0.8

1.0

1.2

1.4

1.6

time (min)

0 10 20 30

0.8

1.0

1.2

1.4

1.6

time (min)

pE
R

K
1/

2
(f

ol
d 

ov
er

 b
as

al
)



Chapter 2 – Biased agonism and modulation of mGlu5 PAMs 
 

! 95!

 
 
Supplementary Figure 5: Agonist activity of allosteric ligands is mGlu5 
dependent in cortical neurons. Cortical neurons were pre-incubated with 10µM 
5MPEP, an mGlu5 neutral allosteric ligand as well as the mGlu1 negative allosteric 
modulator CPCCOEt (30 µM) for 30min. A) The peak iCa2+ mobilization in response 
to either an EC50 or Emax concentration (all 10 µM) of indicated allosteric ligand was 
inhibited by 5MPEP. Agonist concentrations for ~EC50 were: 1µM for DPFE, VU29, 
CDPPB; 30nM for VU0403602 & VU0424465; 300nM for VU0360172. The 
response to maximal DHPG (10µM) is shown in both panels for reference. B) With 
the exception of DPFE, agonist activity of allosteric ligands for IP1 accumulation (B) 
and ERK1/2 phosphorylation (C) was inhibited by 10µM 5MPEP. The DHPG 
response was unaffected by 5MPEP. Data represent the mean + s.e.m of n=4-8 
experiments performed in duplicate. 
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Supplementary Figure 6: Allosteric modulation of DHPG-stimulated iCa2+ 
mobilization, IP1 accumulation and ERK1/2 phosphorylation. CDPPB, VU29 and 
VU0409551 enhanced the potency of DHPG for both iCa2+ and IP1 in a 
concentration-dependent manner. The leftward shifts in the DHPG concentration-
response curves approached a limit as expected for an allosteric interaction. 
Interaction experiments were not undertaken for pERK1/2 due to the confound of 
allosteric agonism. VU0405398 potentiated DHPG mediated iCa2+ mobilization and 
IP1 accumulation, and had a mixed modulatory effect on DHPG-mediated ERK1/2 
phosphorylation. Data are mean ± SEM from n=3-5 performed in duplicate.
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Supplementary Table 1. Potency (pEC50) and efficacy (Emax) estimates of mGlu5 ligands for iCa2+ mobilization (in the absence and presence of 
1.2 mM extracellular Ca2+), IP1 accumulation and ERK phosphorylation in HEK293A-mGlu5-low cells. Data are mean ± SEM of 3-26 
independent experiments performed in duplicate.!
!
 iCa2+ eCa2+ freea-iCa2+ IP1 pERK1/2 

HEK293A pEC50 
Emax 

(% glu) pEC50 
Emax 

(% glu) pEC50 
Emax 

(fold over 
basal) 

pEC50 
Emax 

(fold over 
basal) 

Glutamate 6.87±0.06 100.3±0.2 6.89±0.09 50.5±4.1d n.d. n.d. n.d. n.d. 
DHPG 6.31±0.10 92.9±2.6 6.06±0.07 46.41±19.8d 5.68±0.17 1.9±0.2 6.19±0.27 2.1±0.6 
VU0424465 7.12±0.14 74.8±8.4 7.61±0.19 66.7±14.4 8.70±0.13b 1.9±0.2 8.24±0.14c 4.7±1.0 
VU0403602 8.01±0.06 56.2±3.1 8.19±0.12 44.0±6.9 8.76±0.21c 2.1±0.3 8.10±0.28 5.2±0.9 
VU0360172 6.55±0.16 29.1±9.0 n/a n/a 6.64±0.37 2.3±0.2 7.04±0.12 3.3±0.7 
VU29 n.r. n.r. n/a n/a 7.37±0.15 2.1±0.4 7.06±0.12 2.9±0.6 
CDPPB 7.35±0.21 18.9±4.9 7.13±0.19 36.1±4.7d 7.60±0.18 2.3±0.1 7.65±0.26 4.6±0.9 
DPFE 5.72±0.17 49.7±8.7 6.29±0.35 67.1±9.0 5.95±0.12 2.7±0.2 6.25±0.53 4.0±1.1 
VU0405398 n.r. n.r. n/a n/a 6.64±0.34 1.9±0.2 7.18e 3.4e 
VU0409551 6.23±0.15 55.3±5.8 6.33±0.17 32.0±1.3d 6.16±0.13 1.7±0.2 6.05±0.39 1.5±0.2 
n.r. denotes allosteric ligands did not display intrinsic efficacy  
n/a due to little or no intrinsic agonist activity under standard conditions these ligands were not assessed in the absence of 1.2mM CaCl2 
n.d. denotes not determined, in these assays  glutamic pyruvic transaminase was included to breakdown ambient glutamate 
a denotes assay in the absence of extracellular Ca2+ and presence of 1mM EDTA. 
b significantly different to pEC50 estimate in standard iCa2+ and eCa2+-free assays (p<0.05, one-way ANOVA, Tukey's post-test). 
c significantly different to pEC50 estimate in standard iCa2+ assay (p<0.05, one-way ANOVA, Tukey's post-test). 
d significantly different to the maximal response in the presence of 1.2mM extracellular Ca2+ (p<0.05, student's t-test). 
e in one of the three data sets a concentration-response curve could not be fit, the mean value from n=2 non-linear fits is shown.  
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Supplementary Table 2. Potency (pEC50) and efficacy (Emax) estimates of mGlu5 ligands for iCa2+ mobilization (in the absence and presence of 
1.2 mM extracellular Ca2+), IP1 accumulation and ERK1/2 phosphorylation in cortical neurons. Data are mean ± SEM of 3-20 independent 
experiments performed in duplicate.!
!
 iCa2+ eCa2+ freea-iCa2+ IP1 pERK1/2 

Cortical 
neurons pEC50 

Emax 
(% DHPG) pEC50 

Emax 
(% DHPG) pEC50 

Emax 
(fold over 

basal) 
pEC50 

Emax 
(fold over 

basal) 
DHPG 6.44±0.06 100.6±0.5! 6.17±0.15 60.2±11.5*! 5.48±0.12b,d 1.9±0.1 6.78±0.15c,d 1.4±0.0 
VU0424465 7.14±0.34 81.1±7.0 7.88±0.07 66.2±10.3 7.60±0.09b! 1.9±0.2 9.39±0.20b,c,d 1.5±0.1!
VU0403602 7.75±0.17 57.3±8.3 8.21±0.35 37.9±19.6 7.43±0.18b! 1.9±0.2! 8.62±0.20c! 1.3±0.1!
VU0360172 6.63±0.44 43.5±10.0 6.69±0.48 43.2±11.0 6.65±0.18 1.3±0.1 7.68±0.36 1.3±0.0 
VU29 6.43±0.36 37.0±12.1 n.r. n.r. 6.28±0.13 1.5±0.1 7.06±0.19c 1.4±0.1 
CDPPB 6.94±0.35 33.5±4.8 6.82±0.13 52.6±9.5 6.55±0.16 1.4±0.2 7.47±0.19c 1.4±0.1 
DPFE 5.66±0.23 43.6±5.8 n.r. n.r. 5.46±0.24 1.3±0.1 n.d. n.d. 
VU0405398 6.35±0.48 43.7±16.4 n.r. n.r. 6.66±0.39 1.3±0.1 n.d. n.d. 
VU0409551 n.r. n.r. n.r n.r 6.00±0.46 1.5±0.2 5.90±0.56 1.2±0.1 

n.r. denotes allosteric ligands did not display intrinsic efficacy  
n.d. due to an apparent biphasic concentration-response relationship potency and Emax values were not determined. 
* denotes significantly different (p<0.05) to Emax value derived under standard assay conditions (iCa2+, 1.2mM CaCl2), student's t-test. 
a denotes assay in the absence of extracellular Ca2+ and presence of 1mM EDTA. 
b significantly different to pEC50 estimate in iCa2+ assays (p<0.05, one-way ANOVA, Tukey's post-test). 
c significantly different to pEC50 estimate in IP1 assays (p<0.05, one-way ANOVA, Tukey's post-test). 
d significantly different to pEC50 estimate in eCa2+-free-iCa2+ assays (p<0.05, one-way ANOVA, Tukey's post-test). 
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Supplementary Table 3: Operational parameter estimates for allosteric modulation of orthosteric agonist-mediated iCa2+ mobilization and IP1 
accumulation in HEK293A-mGlu5-low and cortical neurons. Data are mean ± SEM of 3-9 independent experiments performed in duplicate. 
 
HEK293A iCa2+ mobilization: Glutamate iCa2+ mobilization: DHPG 
 Em LogτB n Basal LogτA Em LogτB n Basal LogτA 

VU0424465 119.2±14.1 0.11±0.04 1.5±0.1 -0.2±2.3 0.49±0.17 104.1±4.1 -0.12±0.08 1.2±0.0 -0.9±1.0 0.91±0.03 
VU0403602 120.4±7.7 -0.13±0.14 1.7±0.6 -2.5±1.4 0.58±0.06 108.7±4.6 -0.53±0.19 1.2±0.0 -0.7±0.7 0.99±0.07 
VU0360172 104.4±5.7 -0.29±0.12 2.2±0.3 -0.9±1.2 0.72±0.06 102.0±1.3 -0.80±0.07 1.4±0.2 0.1±1.0 0.93±0.23 
VU29 103.2±2.3 n.r. 1.8±0.1 1.5±1.6 0.69±0.02 108.8±1.5 n.r. 1.3±0.3 -1.5±0.1 0.88±0.11 
CDPPB 129.5±8.6 -0.71±0.10 1.7±0.3 -6.7±1.6 0.48±0.04 106.9±4.1 -0.78±0.32 1.2±0.2 -2.9±2.0 0.97±0.09 
DPFE 106.9±2.3 -0.16±0.12 2.6±0.7 -2.1±2.1 0.55±0.05 110.6±3.4 -0.62±0.10 1.3±0.2 -2.7±0.3 0.97±0.07 
VU0405398 109.0±6.4 n.r. 2.2±0.5 -0.4±0.6 0.56±0.12 107.4±4.9 n.r. 1.4±0.2 1.2±0.4 0.83±0.26 
VU0409551 102.5±3.4 -0.25±0.03 1.0±0.0 -2.7±0.6 1.37±0.09 101.7±5.5 -0.26±0.06 1.2±0.1 -1.0±0.7 0.92±0.12 
Cortical iCa2+ mobilization: DHPG IP1 accumulation: DHPG 
VU0360172 103.9±2.1 -0.74±0.29 1.4±0.1 1.0±2.1 0.84±0.07 129.9±15.6 -0.10±0.06 1.9±0.1 0.3±0.2 0.22±0.10 
VU29 107.5±3.8 -0.15±0.28 1.1±0.0 3.4±2.2 0.78±0.07 128.1±1.2 -0.07±0.04 2.2±0.4 0.8±4.4 0.29±0.04 
CDPPB 103.0±1.8 -0.64±0.27 1.1±0.1 -2.1±3.2 0.88±0.05 124.3±14.0 0.06±0.12 3.3±0.6 3.0±2.9 0.24±0.15 
DPFE 107.3±4.2 -0.56±0.27 1.4±0.1 2.4±1.9 0.77±0.09 115.4±8.6 -0.05±0.10 3.2±0.7 2.1±4.1 0.26±0.08 
VU0405398 109.5±7.1 0.03±0.12 1.3±0.1 2.3±3.0 1.05±0.11 135.3±10.9 -0.22±0.17 3.0±0.6 0.3±0.4 0.28±0.10 
VU0409551 100.8±1.6 -0.94±0.43 1.7±0.2 -0.1±1.7 0.99±0.04 119.0±11.0 -0.17±0.05 2.4±0.1 3.9±2.2 0.19±0.07 
n.r. indicates value not determined due to little/no appreciable agonism. 
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Supplementary Table 4: Log R values for mGlu5 ligands for iCa2+ mobilization (in the absence and presence of 1.2 mM extracellular Ca2+), IP1 
accumulation and ERK phosphorylation (pERK1/2) in HEK293A-mGlu5-low cells and cortical neurons. Data are mean ± SEM of 3-26 
independent experiments performed in duplicate. 
 HEK293A-mGlu5-low Cortical neurons 
 iCa2+ IP1 pERK1/2 eCa2+-free 

iCa2+ 
iCa2+ IP1 pERK1/2 eCa2+-free 

iCa2+ 
glutamate 6.91±0.07 n.m. n.m 6.89±0.09 n.m. n.m n.m n.m 
DHPG 6.32±0.08 5.80±0.14a,b 6.37±0.22 6.04±0.07 6.43±0.05 5.34±0.05a,b,c 6.69±0.19 6.34±0.13 

VU0424465 7.18±0.16 8.70±0.12a,c 8.32±0.10a,c 7.64±0.22 7.31±0.24 7.67±0.08 8.81±0.43 a,d 7.89±0.19 
VU0403602 7.93±0.16 8.57±0.12 8.09±0.32 8.07±0.18 7.57±0.15 7.39±0.24 8.42±0.24a,d 7.97±0.29 
VU0360172 6.52±0.25 6.44±0.39 7.02±0.18 n/a 6.56±0.22 6.47±0.19 7.45±0.35d 6.42±0.61 
VU29 n.r. 7.41±0.11 7.17±0.05 n/a 6.24±0.21 6.13±0.14 6.96±0.21a,d n.r. 
CDPPB 7.09±0.11 7.58±0.17 7.60±0.16 7.20±0.24 6.26±0.20 6.57±0.10 7.41±0.18a,c,d 6.52±0.14 

DPFE 5.79±0.25 5.86±0.19 5.83±0.08 5.95±0.38 5.43±0.21 5.76±0.21 n.d. n.r. 
VU0405398 n.r. 6.47±0.35 7.54±0.21 n/a 5.80±0.37 5.81±0.23 n.d. n.r. 
VU0409551 6.23±0.24 6.06±0.18 6.30±0.36 6.45±0.15 n.r. 5.55±0.26 5.38±0.31 n.r. 
n.r. denotes allosteric ligands did not display intrinsic efficacy  
n.d. due to an apparent biphasic concentration-response relationship logR values were not determined. 
n.m. not measured due to either the presence of GPT, or cortical neuronal background. 
n/a due to little or low agonist activity in the standard paradigm, these ligands were not assessed in the absence of extracellular Ca2+. 
a significantly different to logR estimate in iCa2+ assay (p<0.05, one-way ANOVA, Tukey's post-test). 
b significantly different to logR estimate in pERK1/2 assay (p<0.05, one-way ANOVA, Tukey's post-test). 
c significantly different to logR estimate in eCa2+-free assay (p<0.05, one-way ANOVA, Tukey's post-test). 
d significantly different to logR estimate in IP1

 assay (p<0.05, one-way ANOVA, Tukey's post-test). 
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Abstract 

Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) are 

potential therapies for a range of CNS disorders ranging from anxiety and depression 

to autism and pain. These ligands bind to sites distinct from the orthosteric (or 

endogenous) ligand, often with improved subtype selectivity, and spatial and temporal 

control over receptor responses. We recently revealed that mGlu5 allosteric agonists 

and positive allosteric modulators exhibit biased agonism and/or modulation, 

enhancing some receptor signaling pathways to the relative exclusion of others. To 

establish whether negative allosteric modulators (NAMs) engender similar bias, we 

herein rigorously characterize the pharmacology of eight diverse mGlu5 NAMs. 

Radioligand inhibition binding studies revealed novel modes of interaction with 

mGlu5 for select NAMs, with biphasic or incomplete inhibition of [3H]methoxy-

PEPy.  We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and 

inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels 

of mGlu5 (HEK293A-mGlu5-low) and mouse embryonic cortical neurons. The 

apparent affinity of select acetylenic NAMs (MPEP, MTEP and dipraglurant) was 

dependent on the signaling pathway measured, agonist used and cell type (HEK293A-

mGlu5-low versus cortical neurons). In contrast, the partial acetylenic NAM, M-

5MPEP, and structurally distinct NAMs had similar affinity estimates irrespective of 

the assay or cellular background. Biased cooperativity was evident for VU0366248 in 

cortical neurons where it was a NAM for DHPG-iCa2+ mobilization, but neutral with 

DHPG in IP1 accumulation assays. Co-application of CPCCOEt to block mGlu1 

activity in cortical neurons differentially influenced cooperativity with DHPG of 

certain NAMs. Overall, this study extends our understanding and appreciation of 
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biased modulation as a critical factor in drug design for neuropsychiatric and 

neurological disorders.    

Keywords: biased modulation, kinetics, negative allosteric modulator, metabotropic 

glutamate receptor 5 

 
 
Chemical compounds studied in this article:  

Glutamate (L-glutamic acid; PubChem CID: 33032); DHPG (PubChem CID: 

108001); MPEP (PubChem CID: 3025961), fenobam (PubChem CID: 162834), 

MTEP (PubChem CID: 9794218), M-5MPEP (PubChem CID: 16036762), 

dipraglurant (PubChem CID: 44557636), VU0366058 (PubChem CID: 57328392). 

 

Abbreviations 

cAMP, cyclic adenosine monophosphate; CNS, central nervous system; CPCCOEt, 7-

(hydroxyimino)cyclopropa[b] chromen-1a-carboxylate ethyl ester; DHPG, (S)-3,5-

dihydroxyphenylglycine; dipraglurant, 6-fluoro-2-[4-(2-pyridinyl)-3-butyn-1-yl]-

Imidazo[1,2-a]pyridine; DMEM, Dulbecco’s modified Eagle’s medium; ERK1/2, 

extracellular signal-regulated kinases 1 and 2; FBS, fetal bovine serum; fenobam, 1-

(3-chlorophenyl)-3-[(2e)-1-methyl-4-oxoimidazolidin-2-ylidene]urea; GPCR, G 

protein-coupled receptor; GPT, glutamic pyruvic transaminase; HBSS, Hank’s 

Balanced Salt Solution; HEK293A, human embryonic kidney 293; iCa2+, intracellular 

calcium, IP1, inositol 1-phosphate; M-5MPEP, 2-[2-(3-methoxyphenyl)ethynyl]-5-

methylpyridine; mGlu1, metabotropic glutamate receptor subtype 1; mGlu5, 

metabotropic glutamate receptor subtype 5; MPEP, 2-Methyl-6-

(phenylethynyl)pyridine, MTEP, 2-methyl-4-(pyridin-3-ylethynyl)thiazole; 3-((2-

Methyl-1,3-thiazol-4-yl)ethynyl)pyridine; NAL, neutral allosteric ligand; NAM, 
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negative allosteric modulator; Opti-MEM, Opti- modified Eagle’s medium; PAM, 

positive allosteric modulator; VU0366058, 2-(1,3-benzoxazol-2-ylamino)-4-(4-

fluorophenyl)pyrimidine-5-carbonitrile; VU0366248, N-(3-Chloro-2-fluorophenyl)-3-

cyano-5-fluoro-benzamide; VU0409106, 3-Fluoro-N-(4-methyl-2-thiazolyl)-5-(5-

pyrimidinyloxy)benzamide.  
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3.1. Introduction 

The metabotropic glutamate receptor subtype 5 (mGlu5) is a G protein-coupled 

receptor (GPCR) widely expressed throughout the brain, and implicated in various 

central nervous system (CNS) disorders, ranging from anxiety and depression to 

Parkinson’s disease and autism (Gregory et al., 2013c). mGlu5 is a well-established 

Gq-coupled receptor, with activation leading to production of inositol-1,2,3-

trisphosphate (IP3), and mobilization of intracellular calcium (iCa2+) (Niswender and 

Conn, 2010). mGlu5 is one of eight mGlu subtypes, subdivided into group I (mGlu1/5), 

group II (mGlu2/3) and group III (mGlu4,6-8), which share a highly conserved 

glutamate binding site that is difficult to selectively target. Recent approaches in 

targeting mGlu5 have therefore focused on ligands that bind to less conserved 

topographically distinct, or allosteric, binding sites (Sengmany and Gregory, 2016). 

Allosteric ligands may modulate activity of orthosteric ligands, by influencing the 

affinity and/or efficacy (a property termed cooperativity), to either enhance (positive 

allosteric modulator; PAM), or diminish (negative allosteric modulator; NAM) 

endogenous receptor responses (Changeux and Christopoulos, 2016). Some PAMs 

also activate the receptor in the absence of orthosteric ligand and are categorized as 

PAM-agonists, while neutral allosteric ligands (NALs) bind to allosteric sites without 

influencing orthosteric ligand activity or affinity (Changeux and Christopoulos, 

2016). In the absence of endogenous agonist, pure PAMs and NAMs offer the 

advantage of spatial and temporal fine-tuning of receptor responses – a desirable 

clinical outcome within the delicate CNS network.  

 

Fine-tuning neurotransmitter receptor activity can also be achieved through biased 

agonism and modulation (Kenakin and Christopoulos, 2013), whereby individual 
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ligands may differentially activate/modulate different receptor responses to the 

relative exclusion of others and as such have a unique “signaling fingerprint”. Biased 

agonism and modulation is operative across a wide range of GPCRs, from opioid and 

endocannabinoid systems to adrenergic and adenosine receptors, to name a few 

(Baltos et al., 2017; da Silva Junior et al., 2017; Khajehali et al., 2015; Priestley et al., 

2017; Violin et al., 2014). Thus, determining ligand signaling fingerprints for 

different effectors offers the invaluable opportunity to design ligands that bias 

receptor signaling towards desired pathways and subsequent clinical outcomes, while 

avoiding receptor responses that result in unwanted, or adverse, effects.  

 

While the notion of bias is gaining traction, the continued use of high-throughput 

single-assay drug screening approaches is not capturing the full scope of ligand 

activity. Importantly, it is increasingly evident that mGlu5 is pleiotropically coupled to 

multiple G proteins and signaling partners (Francesconi and Duvoisin, 1998; Joly et 

al., 1995; Mao et al., 2005; Peavy et al., 2001; Rush et al., 2002; Thandi et al., 2002). 

For allosteric modulators, bias may be evident in three distinct parameters that dictate 

allosteric modulator activity; namely affinity, cooperativity and intrinsic efficacy. 

Indeed, we have clearly shown biased agonism and modulation to be operative 

amongst several chemotypes of mGlu5 ligands broadly classified as PAMs or PAM-

agonists (Sengmany et al., 2017). Importantly, we revealed how previous 

classification of mGlu5 allosteric ligands based solely on their activity in iCa2+ 

mobilization assays failed to recognize the robust agonism characteristic of most 

mGlu5 allosteric ligands in IP1 accumulation and ERK1/2 phosphorylation assays 

(Sengmany et al., 2017). Thus, simply categorizing an mGlu5 allosteric ligand as a 

PAM or NAM based on a single functional assay precludes recognition of the rich 
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complexity each ligand may offer. Consequently, potential therapeutic compounds 

may be discarded, while unexplained adverse effects from clinical candidates may 

arise.  

 

While mGlu5 NAMs have been broadly classified as such based on their activity in 

iCa2+ mobilization assays, recent clinical failures are suggestive of an insufficient 

understanding of mGlu5 modulator pharmacology. For instance, fenobam showed 

promise some 30 years ago in the treatment of generalized anxiety disorder (Pecknold 

et al., 1982), but also impairs learning at therapeutic doses in preclinical models 

(Jacob et al., 2009). Cognition impairment, as well as abuse and psychoactive 

potential remain common adverse effects amongst several mGlu5 NAMs including 

prototypical compounds such as MPEP and MTEP (Abou Farha et al., 2014; Dekundy 

et al., 2011; Hughes et al., 2013; Swedberg et al., 2014; Swedberg and Raboisson, 

2014). It has been proposed that “partial NAMs”, i.e. NAMs with limited 

cooperativity, may offer the advantage of reduced adverse effect liability due to 

incomplete blockade of mGlu5 responses (Nickols et al., 2016). However, there 

remains a need to better quantify and assess the interaction between chemically and 

pharmacologically diverse NAMs to truly appreciate the underlying mechanisms of 

action that contribute to therapeutically beneficial versus adverse effects. 

 

Here we aimed to determine the signaling profiles of select mGlu5 NAMs, through 

rigorous assessment of interactions between mGlu5 orthosteric and negative allosteric 

ligands in iCa2+ mobilization and IP1 accumulation assays in both recombinant and 

neuronal systems. We show that some mGlu5 NAMs exhibit differential apparent 

affinities depending on cell background, pre-equilibration time, orthosteric agonist 
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used and in cortical neurons co-application of CPCCOEt. Cooperativity of select 

NAMs was also influenced by co-application of CPCCOEt, and biased cooperativity 

was evident for VU0366248. In all, this study highlights the importance of robust 

evaluation of allosteric modulatory activity to appreciate the inherent complexity 

when applying standard high-throughput assays, and potential pitfalls. Moreover, the 

distinct pharmacological fingerprints identified may be linked to differential 

therapeutic efficacy and adverse effect liability of select NAMs, and may provide a 

framework to develop biased mGlu5 NAMs in the future.  
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3.2. Methods 
 
3.2.1. Materials  

Dulbecco’s modified Eagle’s medium (DMEM), Neurobasal medium, Fluo-4-AM 

and antibiotics were purchased from Invitrogen (Carlsbad, CA). Fetal bovine serum 

(FBS) was sourced from Thermo Electron Corporation (Melbourne, Australia). IP-

ONE HTRF® assay kit was purchased from Cisbio, Genesearch (Arundel, Australia) 

and AlphaScreen detection beads from PerkinElmer Life and Analytical Sciences 

(Melbourne, Australia). Select mGlu5 ligands: 2-(1,3-benzoxazol-2-ylamino)-4-(4-

fluorophenyl)pyrimidine-5-carbonitrile (VU0366058), 2-[2-(3-

methoxyphenyl)ethynyl]-5-methylpyridine (M-5MPEP), 3-Fluoro-N-(4-methyl-2-

thiazolyl)-5-(5-pyrimidinyloxy)benzamide (VU0409106),  and N-(3-chloro-2-

fluorophenyl)-3-cyano-5-fluorobenzamide (VU0366248) were synthesized as 

previously described (Felts et al., 2013; Mueller et al., 2012; Rodriguez et al., 2005b; 

Sharma et al., 2008). (S)-3,5-dihydroxyphenylglycine (DHPG), 3-((2-methyl-1,3-

thiazol-4-yl)ethynyl)pyridine hydrochloride (MTEP), and 7-

(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) were 

purchased from Tocris Bioscience (Melbourne, Australia) and dipraglurant (ADX 

48621) from ApexBio (Houston, TX). [3H]methoxy-PEPy was custom synthesized by 

Quotient Bioresearch (Rushden, Northamptonshire, UK) using the previously 

reported synthetic route (Cosford et al., 2003).  Unless otherwise stated, all other 

reagents were purchased from Sigma-Aldrich (St. Louis, MO) and were of analytical 

grade.  
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3.2.2. Cell culture 

HEK293A cells stably transfected with wild-type rat mGlu5 (HEK293A-mGlu5-low) 

at low levels comparable to those observed in primary cortical astrocytes (Noetzel et 

al., 2013) were maintained at 37°C and 5% CO2 in DMEM supplemented with 5% 

FBS, 16 mM HEPES and 500 µg/mL G418. One day prior to experimentation, cells 

were plated onto poly-D-lysine coated, clear-bottom 96 well plates in glutamine-free 

DMEM supplemented with 5% dialyzed FBS, 16 mM HEPES and 500 µg/mL G418 

at 40,000 cells/well.  

 

3.2.3. Primary cell culture 

All animal experiments were approved by the Monash Institute of Pharmaceutical 

Sciences Animal Ethics Committee (Protocol no. MIPS.2014.37). 8-week old female 

Asmu:Swiss wild-type mice were provided by the Monash Animal Research Platform 

(Clayton, VIC, Australia). Pregnant female mice were humanely sacrificed and E16 

embryos collected for primary cell culture. Cortices were dissected from E16 

Asmu:Swiss wild type mice and mechanically dissociated in Hank’s Balanced Salt 

Solution (HBSS: KCl 5.3 mM, KH2PO4 0.44 mM, NaHCO3 4.17 mM, NaCl 137.93 

mM, Na2HPO4 0.34 mM, D-glucose 5.56 mM). Neurons were plated on poly-D-

lysine, FBS-coated clear-bottom 96 well plates in Neurobasal media supplemented 

with 2 mM L-glutamine, 1 x B-27®, 50 U/mL penicillin, 50 U/mL streptomycin, 1.25 

µg/mL Fungizone® antimycotic, at a density of 100,000 cells/well. Neurons were 

maintained at 37°C and 5% CO2
 for 5-7 days prior to experimentation.  
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3.2.4. Intracellular calcium mobilization 

Intracellular calcium (iCa2+) mobilization was measured as previously described 

(Gregory et al., 2012). Briefly, changes in fluorescence of the Ca2+ indicator dye 

Fluo-4-AM were measured using the Flexstation I or III, with mGlu5 allosteric ligands 

added either 1 min or 30 min prior to orthosteric agonist. Experiments were 

conducted at room temperature (RT) for HEK293A-mGlu5-low cells, and at 37°C for 

cortical neurons. A 5-point smoothing function was applied to raw fluorescence 

traces, with peak iCa2+ responses normalized to the maximal responses of either 

glutamate (HEK293A-mGlu5-low) or DHPG (cortical neurons). 

 

3.2.5. Inositol monophosphate (IP1) accumulation assay 

Recombinant cells or primary cortical neurons were washed with phosphate buffered 

saline (PBS; 1.1 mM KH2PO4, 155 mM NaCl, 3 mM Na2HPO4, pH 7.4) and 

incubated with stimulation buffer (HBSS, with 20 mM HEPES, 30 mM LiCl2, 1.2 

mM CaCl2, pH 7.4) supplemented with 1-10U/mL glutamic pyruvic transaminase and 

6 mM sodium pyruvate for 1 h at 37°C and 5% CO2, followed by compound addition. 

After 1 h ligand incubation, cells were aspirated and lysed with Lysis buffer (HTRF® 

IP-one assay kit) and IP1 levels detected as per kit instructions. Fluorescence was 

measured using the Envision plate reader (PerkinElmer), and expressed as fold over 

basal.  

 

3.2.6. Whole cell radioligand binding  

[3H]methoxy-PEPy whole-cell inhibition binding assays on mouse embryonic cortical 

neurons were performed at RT for 1 h in 24-well plates in HEPES-based binding 

buffer (145 mM NaCl, 10 mM D-glucose, 5 mM KCl, 1 mM MgSO4, 10 mM HEPES, 
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1.3 mM CaCl2, 15 mM NaHCO3, pH 7.45). For binding studies in HEK293A-mGlu5-

low, cells were plated onto white-walled, clear bottom poly-D-lysine coated 96-well 

isoplates at a density of 40,000 cells/well. Inhibition of ~2 nM [3H]methoxy-PEPy 

binding by increasing concentrations of the various allosteric ligands was assessed. 

The concentration of DMSO (0.3%) was kept constant throughout. Non-specific 

binding was determined using 10 µM MPEP. Assays were terminated by washing 

three times with ice-cold 0.9% NaCl. For cortical neurons, cells were lysed with 

250 µl/well of 0.2 M NaOH, lysates transferred to scintillation vials, 4 mL 

UltimaGold scintillation cocktail added and incubated for >2 h. For HEK293A-

mGlu5-low cells, Microscint20 (40 µl/well) was added directly to isoplates, plate 

sealed and incubated for >2 h. Bound radioactivity was measured using either a 

MicroBeta2 plate counter or Tri-Carb 2900TR liquid scintillation counter 

(PerkinElmer, Waltham, MA). 

 

3.2.7. Data analysis 

Inhibition of [3H]methoxy-PEPy binding were fitted to either a one-site or two-site 

inhibition binding model as previously described (Gregory et al., 2012; Lazareno and 

Birdsall, 1995) and estimates of dissociation constants (Ki) were derived using the 

Cheng-Prusoff equation (Cheng and Prusoff, 1973). 

For ligands that did not fully displace radioligand, inhibition binding curves were 

fitted with a modified allosteric ternary complex model (Lazareno and Birdsall, 

1993): 

!
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          (1) 

where Y/Ymax is the fraction specific binding, the molar concentration of radioligand 
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is [D] and KD is the radioligand equilibrium dissociation constant, [B] is the molar 

concentration of unlabeled allosteric modulator, KB is the equilibrium dissociation 

constant of the unlabeled allosteric ligand, and α is the affinity cooperativity factor 

are as defined above. 

Allosteric modulation of glutamate or DHPG-mediated responses were fitted to the 

operational model of allosterism (Leach et al., 2007):  

344567 = 8" 9:[;] <0)=>[?] )90[?]<: @

[;]<0)<:<0)<:[?])*=[;][?] @)(9:[;] <0)=>[?] )90[?]<:)@
    (2) 

where [A] is the molar concentrations of orthosteric agonist (glutamate or DHPG). β 

is a scaling factor that denotes the magnitude of effect an allosteric modulator has on 

orthosteric agonist efficacy. [B], KB, and α are as defined above for equation 1. 

Affinity cooperativity (α) was assumed to be neutral as validated previously (Gregory 

et al., 2012) and thus constrained to a value of 1. KA is the equilibrium dissociation 

constants of the orthosteric agonist. KA values for orthosteric agonists were 

constrained to reported affinity estimates determined from inhibition binding assay as 

validated previously (Gregory et al., 2012; Mutel et al., 2000; Schoepp et al., 1994). 

τA and τB are the respective ligand’s intrinsic efficacy, while Em and n represent the 

maximal system response and the transducer slope respectively.  

Affinity and cooperativity estimates were also derived by globally fitting an 

orthosteric agonist concentration response curve (equation 3) and an allosteric 

modulator titration curve in the presence of a single concentration of agonist 

(equation 4): 

A = BCDCE + 8"GHIJIK

L)*+:/[:]M:/[:]

        (3) 

A = BCDCE + 8"GHIJIK [9: ; <0)=> ? ]@

[9:[;](<0)=> ? )@)( ; <0)<:<0)*<: ? )*= ; ? )@
    (4) 
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Where KA, τA, Em and basal values were shared across analyses. For equation 4, [A] 

was held constant to the molar agonist concentration added, that is, ~EC80 response in 

the particular assay. 

All operational parameters are presented as logarithms and expressed as mean ± SEM. 

Statistical analyses of binding data were performed as indicated using an extra sum-

of-squares F test to determine the preferred model (one-site versus two-site binding) 

for each data set. Statistical analyses of functional assays were performed as indicated 

by using unpaired Student’s t-test or one-way analysis of variance (ANOVA) with 

Tukey’s or Sidak’s post hoc test, to compare affinity and cooperativity estimates 

between signaling assays and cell backgrounds.  

  



Chapter 3 – Biased modulation of mGlu5 NAMs 
   

!

!

118!

3.3. Results 

Eight mGlu5 allosteric ligands previously reported as NAMs of glutamate-mediated 

iCa2+ mobilization were chosen for this study. All of these ligands have been 

proposed to interact with a “common allosteric mGlu5 site” located in the 7 

transmembrane (7TM) spanning domain (Gregory et al., 2012; Porter et al., 2005a). 

MPEP, a disubstituted alkyne, is a prototypical mGlu5 NAM (Gasparini et al., 1999a) 

from which MTEP, reported to have greater mGlu5 selectivity and potency, was 

derived (Cosford et al., 2003b; Iso et al., 2006). M-5MPEP, also derived from MPEP, 

has limited negative cooperativity (also referred to as partial NAM activity) with 

glutamate (Nickols and Conn, 2014; Rodriguez et al., 2005b). VU0409106, 

VU0366058 and VU0366248 represent chemotypes distinct from MPEP – namely the 

aryl ether series (Felts et al., 2013), 5-cyanopyrimides (Mueller et al., 2012) and 3-

cyano-5-fluoro-N-arylbenzamides (Felts et al., 2010) respectively. Previous reports 

indicate VU0409106 and VU0366058 are full NAMs of glutamate-mediated iCa2+ 

mobilization, while VU0366248 is a partial NAM (Felts et al., 2013; Gregory et al., 

2012). Fenobam and dipraglurant were included to represent mGlu5 NAMs that have 

progressed to clinical trials (Pecknold et al., 1982; Tison et al., 2016).  

 

Radioligand binding studies were conducted on intact adherent HEK293A-mGlu5-low 

cells and primary cortical neurons (Fig. 3.1). Interestingly, MPEP and MTEP 

inhibition binding curves were best fitted to a two-site model in both recombinant and 

native cells. Fenobam inhibition curves were also consistent with two-site binding in 

recombinant cells, but best fitted to a one-site non-competitive model in neurons. M-

5MPEP, VU0366248, VU0409106 and dipraglurant inhibition curves were consistent 

with one-site binding in both cell types. VU0366058, VU0366248, VU0409106 and 
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dipraglurant did not completely displace [3H]methoxy-PEPy binding in either cell 

type. Affinity (pKi) estimates for recombinant and native cells are summarized in 

Table 3.1. With the exception of MTEP, allosteric ligands had similar pKi estimates 

between HEK293A-mGlu5-low and cortical neurons (Table 3.1).  

 

 

Figure 3.1. Inhibition of [3H]methoxy-PEPy binding to HEK293A-mGlu5-low 

cells and cortical neurons. Using intact adherent cells, inhibition of [3H]methoxy-

PEPy binding was determined in HEK293A-mGlu5-low cells (A & B) and cortical 

neurons (C & D). Data were fitted to either a one-site or two-site inhibition-binding 

model as determined by an F-test on each individual experiments. Data are mean + 

S.E.M. from 3-5 independent experiments performed in duplicate. 
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Table 3.1. Binding affinities of mGlu5 allosteric ligands derived from inhibition of [3H]methoxy-PEPy binding in intact and adherent 
HEK293A-mGlu5-low cells and cortical neurons. Data represent mean ± SEM of 3-6 independent experiments performed in duplicate. 
 
 

  HEK293A-mGlu5-low pKi  Cortical neurons pKi  
 High Low Fraction High Logα High Low Fraction High Logα 
MPEP 8.26 ±0.23 6.25 ±0.11 0.62 ±0.11 n.a. 8.38 ±0.30 5.92 ±0.20 0.73 ±0.11 n.a. 
fenobam 7.15 ±0.28 4.66 ±0.22 0.71 ±0.09 n.a. 7.65 ±0.44a n.a. 1a -0.71 ±0.11 
VU0409106 7.47 ±0.07 n.a. 1 -1.12 ±0.12 7.48 ±0.15 n.a. 1 -0.78 ±0.13 
VU0366248 6.94 ±0.13 n.a.  1 -0.77 ±0.06 6.72 ±0.06 n.a. 1 -0.54 ±0.06 
VU0366058 7.26 ±0.10 n.a. 1b -0.82 ±0.07 6.76 ±0.23 n.a. 1b -0.71 ±0.07 
M-5MPEP 7.13 ±0.07 n.a. 1 n.a. 6.43 ±0.25 n.a. 1 n.a. 
dipraglurant 7.31 ±0.11 n.a. 1 -1.24 ±0.17 6.98 ±0.14 n.a. 1 -0.89 ±0.08 
MTEP 7.20 ±0.28 5.45 ±0.30 0.83 ±0.04 n.a. 8.16 ±0.14* 6.09 ±0.45 0.74 ±0.04 n.a. 
 
a One individual experiment (from n=5) was best fitted to a two-site binding curve (F test p>0.05). 
b Two individual experiments (from n=5-6) were best fitted to a two-site binding curve. 
n.a. not applicable due to one-site or competitive binding curve fit 
* Denotes p<0.05, One-way ANOVA, Sidak’s multiple comparisons test, compared to HEK293A-mGlu5-low 
!
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3.3.1. mGlu5 allosteric ligands are NAMs of glutamate-mediated iCa2+ mobilization 

in HEK293A-mGlu5-low cells. 

In agreement with previous studies, all eight allosteric ligands were NAMs of 

glutamate-mediated iCa2+ mobilization in HEK293A-mGlu5-low cells after 1 min pre-

incubation (Fig. 3.2) (Felts et al., 2010; Felts et al., 2013; Gregory et al., 2012; 

Mueller et al., 2012; Porter et al., 2005a). In particular, MPEP, MTEP, fenobam, 

dipraglurant and VU0409106 were full NAMs, while M-5MPEP and VU0366248 

displayed limited negative cooperativity. VU0366058 is fluorescent, which limited 

the testing of concentrations above 1 µM, however, inhibition of glutamate-mediated 

iCa2+ mobilization was consistent with high negative cooperativity. In order to 

quantify functional affinity and cooperativity estimates, NAM interactions with 

glutamate were fitted to the operational model of allosterism (Leach et al., 2007). 

With the exception of dipraglurant, functional affinity estimates (pKB values) were in 

good agreement with pKi estimates (for the high affinity site where applicable) 

determined from inhibition binding assays in HEK293A-mGlu5-low cells (Tables 3.1 

& 3.2). The affinity of dipraglurant was significantly higher in iCa2+ mobilization 

assays (6 fold) relative to the inhibition binding estimate. All NAMs had similar 

magnitudes of negative cooperativity with glutamate as previously reported (Table 

3.2, Gregory et al., 2010). 
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Figure 3.2. Negative allosteric modulation of glutamate-mediated iCa2+ 

mobilization in HEK293A-mGlu5-low cells. Concentration response curves for 

glutamate mediated iCa2+ mobilization in the absence or presence of indicated 

allosteric ligands following 1 min pre-incubation. Data are expressed as mean + SEM 

of 3-5 experiments performed in duplicate. Error bars not shown lie within the 

dimensions of the symbols. 
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Table 3.2. Comparison of affinity and cooperativity estimates for allosteric modulation of glutamate-mediated iCa2+ mobilization 
following 1 min vs 30 min pre-incubation of mGlu5 allosteric ligands in HEK293A-mGlu5-low cells. Data represent mean ± SEM of 3-7 
independent experiments performed in duplicate. 
 
 
 1 min 30 min 
 pKB

a log αβb pKB log αβ 

MPEP 8.39±0.13 Full NAMc 7.90±0.08 Full NAM 

fenobam 6.98±0.09 Full NAM 7.27±0.11 Full NAM 

VU0409106 7.27±0.12 Full NAM 7.38±0.12 Full NAM 

VU0366248 7.22±0.09 -0.90±0.12 6.57±0.18e -0.58±0.08 

VU0366058 6.98±0.11 Full NAM 7.11±0.28 Full NAM 

M-5MPEP 7.00±0.07 -0.59±0.03 6.72±0.26 -0.52±0.06 

dipraglurant 8.16±0.06d Full NAM 7.47±0.07e Full NAM 

MTEP 7.83±0.09 Full NAM 6.97±0.15e Full NAM 
a pKB, negative logarithm of the equilibrium dissociation constant determined using an operational model of allosterism 
b log αβ, logarithm of the cooperativity factor determined using an operational model of allosterism where α was assumed to be equal to 1 
c “full NAM” denotes complete inhibition of DHPG response, such that β approaches zero. 
d Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared to binding pKi estimates  
e Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared to pKB estimate derived from iCa2+ mobilization assays (1 
min versus 30 min paradigm) 
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3.3.2. Ligand-receptor equilibrium influences mGlu5 NAM apparent affinity with 

glutamate for iCa2+ mobilization in HEK293A-mGlu5-low 

Differing ligand incubation times between different assays may result in potential bias 

within a kinetic context (Klein Herenbrink et al., 2016; Lane et al., 2017), especially 

for non-equilibrium assays. Non-equilibrium conditions may also contribute to 

differences in affinity estimates. Therefore, we extended the NAM pre-incubation 

period to 30min prior to conducting glutamate-mediated iCa2+ mobilization assays in 

HEK293A-mGlu5-low cells (Fig. 3.3). With an increased pre-incubation time for 

dipraglurant prior to iCa2+ mobilization assays, the pKB value was in much closer 

agreement with the pKi estimate (Table 3.2). Extended pre-incubation with MTEP 

resulted in a lower pKB estimate (7-fold) when compared with the 1 min paradigm. 

VU0366248 also had lower negative cooperativity although this did not reach 

significance (Table 3.2).  
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Figure 3.3. Negative allosteric modulation of glutamate-mediated iCa2+ 

mobilization in HEK293A-mGlu5-low cells with extended pre-incubation. 

Concentration response curves for glutamate mediated iCa2+ mobilization in the 

absence or presence of indicated allosteric ligands following 30 min pre-incubation. 

Data are expressed as mean + SEM of 3-5 experiments performed in duplicate. Error 

bars not shown lie within the dimensions of the symbols. 
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3.3.3 mGlu5 NAMs are inverse agonists for IP1 accumulation in HEK293A-mGlu5-low 

cells 

IP1 accumulation was assessed as an alternative signaling endpoint, given previous 

observations of biased agonism/modulation for mGlu5 PAMs between iCa2+ 

mobilization and IP1 accumulation (Sengmany et al., 2017). Measurement of IP1 

accumulation provides insight into receptor activity at ligand equilibrium relative to 

transient, non-equilibrium, iCa2+ mobilization responses. In the presence of GPT, 

which eliminates ambient glutamate, all eight mGlu5 NAMs decreased baseline IP1 

accumulation in a concentration dependent manner in the absence of agonist (Fig. 

3.4). These data are consistent with constitutive mGlu5 activity and inverse agonism. 

The potencies of MTEP and dipraglurant as inverse agonists were similar to binding 

affinity estimates, whereas for the remaining six NAMs, potencies were 2-4 fold 

lower than pKi values (Table 3.3). Due to appreciable constitutive activity/inverse 

agonism for all eight NAMs for IP1 accumulation in HEK293A-mGlu5-low cells, it 

was not feasible to assess interactions between NAMs and glutamate using the 

operational model of allosterism.  
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Figure 3.4. Inverse agonism of constitutive IP1 accumulation in HEK293A-

mGlu5-low cells. Concentration response curves for inhibition of constitutive mGlu5-

mediated IP1 accumulation by indicated allosteric ligands. Data are expressed as mean 

+ SEM of 3-9 experiments performed in duplicate. Error bars not shown lie within the 

dimensions of the symbols. 

 

 

Table 3.3. Potency and efficacy of mGlu5 NAMs as inverse agonists of IP1 
accumulation in HEK293A-mGlu5-low cells. Data represent mean ± SEM of 5-9 
independent experiments performed in duplicate. 
 
 
 pIC50

a Imax
b 

MPEP 7.86 ±0.27 0.74 ±0.03 
fenobam 6.83 ±0.26 0.76 ±0.03 
VU0409106 6.89 ±0.26 0.74 ±0.05 
VU0366248 6.48 ±0.16 0.81 ±0.05 
VU0366058 6.98 ±0.17 0.73 ±0.03 
M-5MPEP 6.53 ±0.17 0.81 ±0.05 
dipraglurant 7.36 ±0.15 0.73 ±0.04 
MTEP 7.36 ±0.16 0.70 ±0.05 
 
a negative logarithm of the molar concentration required to give a half maximal 
inhibitory response 
b maximal inhibitory response, expressed as fold over basal IP1 accumulation levels. 
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3.3.4. mGlu5 allosteric ligands are NAMs of DHPG-mediated iCa2+ mobilization in 

cultured cortical neurons.  

We next sought to confirm the pharmacology of all eight ligands in primary mouse 

embryonic cortical neuron cultures. The complex cell background in neuronal cells 

limits the use of glutamate as an orthosteric agonist due to the presence of other 

glutamate receptors and transporters. Thus, we adopted a commonly used approach to 

measure mGlu signaling in response to the mGlu1/5 orthosteric agonist, DHPG, co-

added with the mGlu1 NAM, CPCCOEt (to minimize mGlu1 signaling) (Jong et al., 

2009; Kettunen et al., 2002; Luccini et al., 2007; Sengmany et al., 2017; Viwatpinyo 

and Chongthammakun, 2009). Inclusion of 30 uM CPCCOEt had no effect on DHPG 

potency or Emax for iCa2+ mobilization or IP1 accumulation at cortical neurons 

(Supplementary Figure 3.1). We first assessed affinity and cooperativity profiles of 

the NAMs with DHPG in HEK293A-mGlu5-low cells. To do so, we analysed NAM 

inhibition of an EC80 DHPG iCa2+ mobilization response, in parallel with a control 

DHPG concentration-response curve, using both 1 min and 30 min pre-incubation 

paradigms (Supplementary Figure 3.2 and Supplementary Tables 3.1 & 3.2). NAM 

affinity and cooperativity estimates derived from DHPG Ca2+ mobilization inhibition 

curves were generally similar to those derived from glutamate inhibition curves, 

although there were a few exceptions (Table 3.2 and Supplementary Table 3.1 & 3.2).  

For instance, MPEP and MTEP had higher affinity estimates when DHPG was used 

as the agonist compared to glutamate, with significant differences observed for MTEP 

using the 1 min paradigm (3-fold) and for MPEP using the 30 min paradigm (10 fold). 

Differential apparent affinities for these two NAMs under the same assay conditions 

but derived from interaction studies with different agonists is suggestive of probe 

dependence. 
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Consistent with HEK293A-mGlu5-low cells, in the absence of agonist none of the 

eight NAMs influenced basal iCa2+ mobilization in cortical neurons (data not shown). 

All compounds inhibited the response to an EC80 DHPG concentration in a 

concentration dependent manner following 1 min pre-incubation (Fig. 3.5A-B). 

Maximal concentrations of MPEP, fenobam, VU0409106, dipraglurant and MTEP 

resulted in complete inhibition of the DHPG EC80 for iCa2+ mobilization. VU0366248 

and M-5MPEP showed limited negative cooperativity, as evidenced by incomplete 

inhibition of DHPG-mediated iCa2+ mobilization (Fig. 3.5A-B). VU0366058 also 

showed incomplete inhibition of DHPG but could not be definitively characterised as 

a limited or full NAM due to the restricted concentration range. Similar to 

observations in recombinant cells, quantification of these data with the operational 

model of allosterism revealed there were anomalies with respect to pKi versus pKB 

estimates for some ligands. For dipraglurant the pKB estimate derived from iCa2+ 

mobilization assays was significantly greater than pKi values (12-fold, Table 3.4). 

Extending the pre-incubation time in cortical neurons had no significant effect on 

NAM KB estimates, although there was a trend for reduced affinity for MTEP and 

dipraglurant (Fig. 3.5C, D, Table 3.4). Increasing the pre-incubation time had no 

effect on negative cooperativity with DHPG for any of the NAMs (Table 3.5). 
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Figure 3.5. Negative allosteric modulator activity at iCa2+ mobilization in 

embryonic mouse cortical neurons. Concentration response curves for modulation 

of DHPG EC80 (1 µM)-mediated iCa2+ mobilization with 1min (A & B) or 30 min (C 

& D) pre-incubation with mGlu5 NAMs were performed in parallel with DHPG 

concentration-response curves. Modulation of DHPG-stimulated iCa2+ mobilization in 

the absence of CPCCOEt (E & F). Data are expressed as mean + SEM of 3-5 

experiments performed in duplicate. Error bars not shown lie within the dimensions of 

the symbols. 
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Table 3.4. Comparison of mGlu5 NAM functional affinity estimates across different measures of receptor activity in primary cortical 
neurons in the presence and absence of 30 µM CPCCOEt. Data represent mean ± SEM of 4-8 independent experiments performed in 
duplicate. 
 
 iCa2+ mobilization IP1 accumulation no CPCCOEt 
 pKB

 a (1min) pKB
  (30min) pKB

  pKB
  (iCa2+) pKB

  (IP1) 
MPEP 7.90 ±0.32b 7.61 ±0.09 7.17 ±0.24 7.42±0.15 6.94±0.31c 
fenobam 6.68 ±0.25 7.37 ±0.15 6.72 ±0.36 6.78±0.13 6.61±0.29 
VU0409106 6.62 ±0.15 7.40 ±0.17d 6.44 ±0.22 6.97±0.24 6.66±0.22 
VU0366248 6.03 ±0.39b 6.30 ±0.24 n.r. 5.77±0.45 n.r. 
VU0366058 7.02 ±0.26 6.99 ±0.29 7.16 ±0.33 6.84 ±0.37 6.24±0.10 
M-5MPEP 6.86 ±0.13 5.98±0.22 6.66 ±0.36 6.87 ±0.34 6.50±0.36 
dipraglurant 8.06 ±0.22c 7.46 ±0.22 6.91 ±0.11d 7.16±0.22e 6.94±0.10 

MTEP 7.97 ±0.32 7.09 ±0.18f 6.81 ±0.21c,d 6.51±0.41c,e 6.67±0.14c 
a pKB, negative logarithm of the equilibrium dissociation constant determined using an operational model of allosterism 
b Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared to pKB estimate derived from iCa2+ mobilization assays in 
HEK293A-mGlu5-low cells 
c Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared to binding estimate 
d Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared with pKB estimate derived from iCa2+ mobilization assays 
using a 1min paradigm 
e Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, when compared with pKB

 estimate derived in the presence of 30 µM 
CPCCOEt in the equivalent experiment 
f Denotes p<0.05, One-way ANOVA, Sidak’s multiple comparisons test, when compared pKB estimate derived from iCa2+ mobilization assays 
in HEK293A-mGlu5-low cells using a 30min paradigm 
n.r. no modulatory response was evident.  
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Table 3.5. Comparison of mGlu5 NAM cooperativity values with DHPG across different measures of receptor activity in primary 
cortical neurons in the presence and absence of 30 µM CPCCOEt. Data represent mean ± SEM of 3-8 independent experiments performed in 
duplicate. 
 
 iCa2+ mobilization IP1 accumulation no CPCCOEt 
 log αβa (1min) log αβ (30min) log αβ log αβ (iCa2+) log αβ (IP1) 
MPEP full NAMb full NAM full NAM full NAM full NAM 
fenobam full NAM full NAM full NAM full NAM full NAM 
VU0409106 full NAM full NAM full NAM full NAM -0.54±0.14 
VU0366248 -0.90 ±0.21 -1.00 ±0.29 n.r. -0.38±0.10 n.r. 
VU0366058 -0.60 ±0.15c full NAM -0.28 ±0.01 -0.62 ±0.11c full NAM 
M-5MPEP -0.46 ±0.10 -1.06 ±0.29 -0.42 ±0.20 -0.48 ±0.06 -0.33±0.06 
dipraglurant full NAM full NAM full NAM full NAM full NAM 
MTEP full NAM full NAM full NAM -0.85±0.17 -0.34±0.10 
a log αβ, logarithm of the cooperativity factor determined using an operational model of allosterism where α was assumed to be equal to 1 
b “full NAM” denotes complete inhibition of DHPG response, such that β values approach zero. 
c limited concentration range was tested due to compound fluorescence therefore cannot definitively state that cooperativity is limited.  
n.r. no modulatory response was evident.



Chapter 3 – Biased modulation of mGlu5 NAMs 
   

!

!

133!

3.3.5. Inhibition of mGlu1 affects mGlu5 NAM affinity and cooperativity with DHPG 

in cortical neuron iCa2+ mobilization assays  

Given the observed differences between NAM pKi estimates determined in neuronal 

radioligand binding assays versus functional assay pKB estimates derived in the 

presence of CPCCOEt, we sought to ensure that CPCCOEt did not influence mGlu5 

NAM affinity and/or cooperativity. This was of particular concern for two reasons: (i) 

we recently showed that CPCCOEt binds to mGlu5 (with comparable affinity for 

mGlu1) albeit it exhibits neutral cooperativity with mGlu5 agonists (Hellyer et al., 

2018), (ii) mGlu1 and mGlu5 can heterodimerize to form higher order oligomers 

(Correa et al., 2017), thus CPCCOEt could influence mGlu5 across an mGlu1/mGlu5 

dimer.  Thus, we re-evaluated the pharmacology of the eight studied mGlu5 allosteric 

ligands in the absence of CPCCOEt in cortical neurons (Fig. 3.5, Table 3.4-3.5). In 

iCa2+ mobilization assays with 1 min pre-incubation and in the absence of CPCCOEt, 

dipraglurant and MTEP had significantly lower pKB estimates versus in the presence 

of CPCCOEt (8 and 29-fold respectively), while MTEP transformed from a full to 

partial NAM.  Thus, inclusion of CPCCOEt in the cortical neuron functional assays 

influenced mGlu5 NAM pharmacology in a ligand-dependent manner. It is presently 

not clear whether this is due to unappreciated CPCCOEt activity at mGlu5 alone, or 

mediated across an mGlu1/mGlu5 heteromer. 
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3.3.6. mGlu5 allosteric ligands have differing degrees of cooperativity with DHPG 

when assessed in IP1 accumulation in cultured cortical neurons.  

In contrast to recombinant cells, there was no evidence for inverse agonist activity for 

all eight mGlu5 NAMs for IP1 accumulation in cortical neurons (Supplementary 

Figure 3.3). In the presence of CPCCOEt, with the exception of VU0366248, all of 

the allosteric modulators were NAMs of DHPG-mediated IP1 accumulation in cortical 

neurons (Fig. 3.6A-B). VU0366248 showed negligible modulatory activity of DHPG-

mediated IP1 accumulation (Fig. 3.6B). Increasing concentrations of MPEP, fenobam, 

VU0409106, VU0366058, dipraglurant and MTEP resulted in complete inhibition of 

DHPG mediated IP1 accumulation responses, while maximal M-5MPEP 

concentrations produced partial inhibition. Analysis of interactions with DHPG 

revealed that MTEP had a ~20-fold lower affinity estimate in IP1 accumulation 

relative to inhibition binding, while all other ligand affinities were similar between 

assays (Table 3.4). Additionally, dipraglurant and MTEP had significantly lower 

(~10-fold) affinity estimates in IP1 accumulation relative to 1 min pre-incubation 

iCa2+ mobilization assays. All NAMs showed similar degrees of negative 

cooperativity with DHPG between IP1 accumulation and iCa2+ mobilization in the 

presence of CPCCOEt (Table 3.5). In the absence of CPCCOEt, there were no 

significant differences in DHPG potency or Emax in IP1 accumulation (Supplementary 

Figure 3.1). Furthermore, there were no significant differences in functional affinity 

estimates for any of the eight NAMs between the presence and absence of CPCCOEt, 

based on modulation of DHPG-stimulated IP1 accumulation (Fig. 3.6C-D; Table 3.4). 

In terms of cooperativity, however, MTEP and VU0409106 became partial NAMs in 

the absence of CPCCOEt (Table 3.5).  
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Figure 3.6. Inhibition of DHPG EC80-mediated IP1 accumulation by mGlu5 

NAMs in cortical neurons in the presence or absence of CPCCOEt 30 µM. 

Concentration response curves for modulation of DHPG EC80(1 µM)-mediated IP1 

accumulation in the presence (A & B) or absence (C & D) of CPCCOEt. Data are 

expressed as mean + SEM of 3-8 experiments performed in duplicate. Error bars not 

shown lie within the dimensions of the symbols. 
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3.3.7. Comparison of signaling fingerprints between recombinant and native cells 

reveals differential apparent affinities.  

To better visualize the differences and similarities in mGlu5 NAM pharmacology in 

recombinant and native systems, we plotted the functional affinity estimates relative 

to binding estimates side by side (Fig. 3.7). Of note, when comparing affinity 

estimates between the different cell types in equivalent iCa2+ mobilization assays with 

the same orthosteric agonist, MPEP, MTEP, dipraglurant and VU0366248 had lower 

apparent affinities in cortical neurons compared to recombinant cells. Acetylenic full 

NAMs (MPEP, MTEP and dipraglurant) have similar profiles with respect to pKB 

fingerprints, in which affinity estimates differ between binding and different measures 

of receptor activation. The switch of VU0366248 to neutral cooperativity in cortical 

neuron IP1 accumulation assays precluded estimation of affinity. In contrast, the 

acetylenic partial NAM M-5MPEP and the structurally distinct NAMs, VU0366058, 

fenobam and VU0409106, have consistently similar pKB values across all measures in 

both cell systems. Importantly, these data suggest that the differences in functional 

affinity estimates observed between IP1 accumulation and iCa2+ mobilization assays 

are ligand dependent and not simply attributable to differences in assay conditions. 

For the most part, magnitudes of negative cooperativity between NAMs and DHPG 

were similar in neurons to HEK293A-mGlu5-low cells (Table 3.5).  
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Figure 3.7. Comparison of affinity estimates in HEK293A-mGlu5-low cells and 
cortical neurons. Affinity estimates from inhibition binding (pKI) and functional 
assays (pKB) in HEK293A-mGlu5 low cells or cortical neurons. Comparisons within 
each cell type were performed using one-way ANOVA with Tukey’s post test, from 
3-10 experiments performed in duplicate, where significance (*) was considered 
p<0.05. Not determined (n.a.) due to lack of appreciable modulation. Comparisons 
between HEK293A-mGlu5-low cells and cortical neurons were performed using 
Sidak’s post-test, where # indicates significantly different (p<0.05) from equivalent 
estimate in HEK293A-mGlu5-low cells. 
 

 

*

*
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3.4. Discussion 
 
Inhibition of mGlu5 offers therapeutic potential for CNS disorders, ranging from 

anxiety and depression to autism and addiction (Sengmany and Gregory, 2016). 

However, adverse effect liability in the form of cognitive impairments (Simonyi et al., 

2010), abuse and psychotomimetic potential (Abou Farha et al., 2014; Swedberg et 

al., 2014; Swedberg and Raboisson, 2014), highlights the need to better understand 

the underlying pharmacology of mGlu5 inhibitors. Our quantitative pharmacological 

profiling of eight ligands, previously classified as mGlu5 NAMs of glutamate in iCa2+ 

mobilization assays, revealed differences in apparent affinities between binding and 

functional assays (iCa2+ mobilization and IP1 accumulation) for acetylenic full NAMs 

(MPEP, MTEP and dipraglurant) in recombinant and/or neuronal systems, whereas, 

non-acetylenic NAMs or the prototypical acetylenic “partial NAM” M-5MPEP were 

similar across all measures. Biased NAM pharmacology was evident at the level of 

cooperativity with DHPG; most strikingly in cortical neurons where VU0366248 

behaved as a neutral allosteric ligand in IP1 accumulation assays but was a NAM of 

DHPG-mediated iCa2+ mobilization. In contrast, all other compounds were NAMs in 

both paradigms. Importantly, M-5MPEP had similar levels of cooperativity with 

DHPG and glutamate, independent of cell type or assay paradigm, demonstrating an 

absence of bias at the level of cooperativity as well as affinity. Collectively, our study 

highlights the importance of rigorous assessment of allosteric ligands to quantify 

affinity and cooperativity, thereby enriching our appreciation of how mGlu5 NAM 

pharmacology contributes to efficacy. 

 

Several orthosteric agonists of mGlu receptors are well-established biased agonists 

(Emery et al., 2012; Hathaway et al., 2015), while positive allosteric modulators 
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within Class C GPCRs also engender bias (Cook et al., 2015; Sengmany et al., 2017; 

Zhang et al., 2005). However, there has been less focus on biased modulation, and in 

particular bias engendered by negative allosteric modulators. In the family C calcium 

sensing receptor, the NAM NPS2143 demonstrated biased modulation toward iCa2+ 

mobilization relative to pERK1/2 (Davey et al., 2012; Leach et al., 2016; Leach et al., 

2013). However, for many of the mGlu5 NAMs studied herein, a single in vitro 

functional assay (iCa2+ mobilization) has been used to classify allosteric 

pharmacology. There are some exceptions, namely MPEP, M-5MPEP, VU0366248 

and VU0366058, for which two different functional assays (iCa2+ mobilization and 

ERK1/2 phosphorylation) using glutamate as the orthosteric agonist in recombinant 

cell lines have been assessed (Gregory et al., 2012). No significant bias in functional 

affinity or cooperativity estimates between iCa2+ mobilization and ERK1/2 

phosphorylation were observed (Gregory et al., 2012). In contrast, herein multiple 

NAMs showed differential magnitudes of cooperativity with DHPG in native cells 

depending on the measure (iCa2+ mobilization versus IP1 accumulation) or the 

presence of CPCCOEt in IP1 accumulation assays. Importantly, these differences 

were not observed for all NAMs, with M-5MPEP retaining similar cooperativity with 

DHPG across all measures and cell types. Thus, our results highlight the need to 

assess multiple receptor endpoints to probe the full scope of allosteric ligand 

pharmacology. 

 

Another feature of our study that is distinct from previous work was the presence of 

two-site inhibition binding. MPEP, MTEP and fenobam displayed two-site inhibition 

binding, contrary to the one-site binding previously reported (Gregory et al., 2012; 

Lea and Faden, 2006; Porter et al., 2005a). Furthermore, dipraglurant, VU0366058, 
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VU0409106 and VU0366248 did not fully displace [3H]methoxy-PEPy binding. 

There are multiple possible underlying explanations for these observations. An 

important difference in the current study was the use of intact and adherent cells as 

opposed to membrane preparations, which have typically been employed (Cosford et 

al., 2003a; Gregory et al., 2012; Lindemann et al., 2011; Porter et al., 2005a; 

Raboisson et al., 2012; Rodriguez et al., 2010a; Rodriguez et al., 2005b). Incomplete 

radioligand displacement is generally considered evidence for non-competitive 

binding interactions (Flanagan, 2016; Pagano et al., 2000). However, in light of the 

two-site binding observed for select ligands, incomplete displacement may be due to 

very low (pKi <4.5) dipraglurant, VU0366058, VU0409106 and VU0366248 affinity 

for this apparent second site. The complex binding isotherms could also be 

attributable to allosteric ligands stabilizing distinct receptor conformations that are 

only evident within an intact cell preparation; high and low affinity states possibly 

aligning with discrete signaling profiles. Within intact cells, dynamic cellular 

processes such as G protein coupling, interactions with other effectors or scaffolding 

partners, receptor dimerization and subcellular localization could contribute to an 

apparent "second site". Indeed, each of the eight NAMs tested were also inverse 

agonists for IP1 accumulation in recombinant cells and could conceivably be 

influenced by receptor-G protein coupling. Moreover, mGlu5 is well-known to be 

expressed at the plasma membrane as well as on intracellular membranes (Jong et al., 

2014). Differential membrane permeability or access to subcellular compartments 

may contribute to the complex binding isotherms observed in intact cells. In keeping 

with this idea, all ligands that fully displaced [3H]methoxy-PEPy belong to a similar 

chemotype and have low molecular weights <250, thus have the potential to bind 

intracellular mGlu5 receptors.  Irrespective of mechanism, it is clear that mGlu5 
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NAMs, both within and across chemotypes, can stabilize different receptor 

conformational states. 

 

Assessment of ligand pharmacology within physiologically relevant systems aims to 

most closely predict a drug response within the body. However, complex native cell 

backgrounds and the need to use surrogate ligands raises additional issues: 1) the 

notion of probe dependence whereby ligand activity may be dependent on the chosen 

orthosteric ligand; and 2) the phenomenon of system bias, where different cell 

backgrounds result in different ligand pharmacology. While probe dependence 

between glutamate and DHPG was evident in cooperativity of select mGlu5 PAMs 

(Sengmany et al., 2017), there was minimal evidence for this phenomenon with 

mGlu5 NAMs. Although under certain conditions both MPEP and MTEP showed 

higher apparent affinity when DHPG was used as the agonist over glutamate. DHPG 

is a membrane impermeable agonist, and unlike glutamate is not actively transported 

into cells (Jong et al., 2005); therefore mGlu5 modulator probe dependence may arise 

from differential access of ligands to subcellular compartments, which may also be 

linked to two-site binding curves observed herein. Further, differences in accessory 

proteins available in mouse embryonic cortical neurons and HEK293 cells may have 

also influenced the coupling mechanisms and hence system bias observed. The 

expression pattern of mGlu5 may be another underlying factor in potential observed 

system bias. mGlu5 expression is higher within the developing rodent brain relative to 

adult, while the mGlu5a splice variant is most abundant in young rodent brains, with 

mGlu5b predominating in adult brains (Romano et al., 1996). Interestingly, in young 

rodents, mGlu1 expression levels remain relatively low compared to mGlu5 (Casabona 
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et al., 1997) – yet another complicating facet in the use of embryonic cortical neurons 

to study drugs targeting an adult brain.  

 

This context-dependent pharmacology, or system bias, has also previously been 

described for mGlu7 receptors, where NAMs differentially inhibit coupling in 

differing cell backgrounds (Niswender et al., 2010). In our study, the influence of the 

system was evident for select mGlu5 NAMs, with differential functional affinities in 

comparable conditions observed between HEK293A cells and neurons. However, 

despite these caveats, distinct NAM fingerprints were evident which may be linked to 

the known adverse effect and/or preclinical efficacy of these agents. Acetylenic full 

NAMs exhibit differential affinities in both cell types, whereas different NAM 

chemotypes and the partial acetylenic NAM do not. MPEP and MTEP have 

undergone extensive preclinical testing, and have anxiolytic and antidepressant 

efficacy along with adverse effect liability (cognitive and psychotomimetic) 

(Balschun and Wetzel, 2002; Belozertseva et al., 2007; Campbell et al., 2004; 

Chojnacka-Wojcik et al., 2001; Kumar et al., 2013; Lea and Faden, 2006; Li et al., 

2006; Palucha-Poniewiera et al., 2014; Schulz et al., 2001; Spooren et al., 2000; 

Swedberg et al., 2014; Tatarczynska et al., 2001). In comparison the unbiased partial 

NAM, M-5MPEP, is both efficacious and devoid of adverse psychotomimetic effects 

(Gould et al., 2016). For the structurally diverse NAMs (VU0409106, VU0366058, 

VU0366248) fewer preclinical studies have been performed, therefore it remains to be 

established if the NAM pKB fingerprints established here can be used to inform future 

discovery efforts for mGlu5, which may seek to identify biased NAMs that more 

selectively target therapeutic signaling over adverse effects. 
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Another contributing factor to system bias in the more complex neuronal system is the 

co-expression of mGlu1, which is known to influence mGlu5 activity via 

heteromerization and/or signaling cross-talk (Bonsi et al., 2005; Lujan et al., 1996; 

Neyman and Manahan-Vaughan, 2008). In order to minimize the mGlu1 contribution 

we initially included CPCCOEt in all experiments as described previously (Jong et 

al., 2009; Sengmany et al., 2017). However, we recently showed that CPCCOEt has 

similar affinity for mGlu1 and mGlu5, and displays a non-competitive negative 

interaction with MPEP (Hellyer et al., 2018). Interestingly, in the absence of 

CPCCOEt, dipraglurant had decreased functional affinity in cortical neurons when 

measured in iCa2+ mobilization but not IP1 accumulation, whereas VU0409106 and 

MTEP had reduced cooperativity with DHPG in one or both assays. Therefore, these 

ligands appear to prefer interacting with mGlu5 when mGlu1 is also inhibited, which 

may be mediated by co-localization or heteromerization of the two receptors (Pandya 

et al., 2016; Sevastyanova and Kammermeier, 2014b). These effects may also be 

mediated via positive allosteric interactions at two different allosteric sites within a 

single receptor. Indeed, Class C GPCRs are known to have multiple allosteric sites 

(Jensen and Brauner-Osborne, 2007; Noetzel et al., 2013; Pin and Prézeau, 2007; 

Rodriguez et al., 2010b). Collectively, the differences observed between recombinant 

and native cells, demonstrate that while assessment in recombinant cells may be 

convenient and have greater reproducibility, it is important to recognise the potential 

for disconnect between differing cell backgrounds. 

 

Another key consideration is the influence of the kinetic context on biased 

pharmacology (Klein Herenbrink et al., 2016; Lane et al., 2017), where ligand-

receptor and receptor-effector interactions require time to achieve equilibrium. 
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Previously, we showed that the majority of mGlu5 PAMs had strong biased agonism 

toward IP1 accumulation over iCa2+ mobilization, which may have been associated 

with differences in ligand-receptor equilibrium between the two measures 

(Sengmany, et al., 2017). Intriguingly, we found experiments performed at 

equilibrium (radioligand binding and IP1 accumulation) for multiple, but not all, 

mGlu5 NAMs yielded lower affinity estimates relative to the transient non-

equilibrium iCa2+ mobilization assay. Additionally, this phenomenon was not evident 

with prolonged ligand pre-incubation prior to iCa2+ mobilization assays. Higher 

affinity in shorter timed assay was unexpected and somewhat counterintuitive. 

However, if we appreciate that the impact of kinetics involves multiple arms – ligand 

binding, effector coupling and downstream cell signaling processes (Lane et al., 

2017), the paradoxical results observed for mGlu5 NAM affinity may well be 

explained. While iCa2+ mobilization and IP1 accumulation are endpoints traditionally 

linked through the Gq activation pathway, it is well established that mGlu5 couples to 

ion channels (Kammermeier et al., 2000; Latif-Hernandez et al., 2016; Lu et al., 1999; 

McCool et al., 1998; Tu et al., 1999), resulting in a rapid influx of extracellular Ca2+. 

Therefore, the iCa2+ mobilization measured is a composite of both intracellular and 

extracellular calcium influx (Sengmany et al., 2017). Due to the rapid opening of ion 

channels relative to GPCR signaling cascades, it is possible that initial responses may 

be via extracellular calcium influx through ion channels. Therefore, select mGlu5 

NAMs (MTEP, dipraglurant, MPEP) may have higher affinity for mGlu5 states that 

couple to plasma membrane channels, as opposed to the canonical Gq/11-PLC-IP3-

pathway. Thus, this study highlights the importance of recognizing different 

influencers of allosteric pharmacology (orthosteric agonist, receptor, system) and how 
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these can be dissected to reveal new insights into negative allosteric modulator 

activity.   

 

Overall, this study provides a rigorous characterization of mGlu5 NAMs, highlighting 

the stabilization of unique receptor conformations in both recombinant and native 

cells. In particular, ligand-dependent disparities in cooperativity, between iCa2+ 

mobilization and IP1 accumulation, highlight differential modulation of DHPG 

responses by select mGlu5 NAMs. Differing kinetic and cellular contexts also 

underscore the pharmacological fingerprints observed, underlining the necessity to 

assess multiple signaling pathways, within multiple cellular backgrounds. Acetylenic 

full mGlu5 NAMs showed the most divergent pharmacological fingerprints, which 

may be linked to the capacity of these ligands to engender adverse effects in the form 

of psychotomimetic and cognitive impairments, whereas a partial and unbiased NAM 

from the same scaffold does not. Discovery efforts targeting GPCRs for CNS 

disorders continue to suffer high attrition rates, attributable to the difficulties in 

translating agents with promising in vitro pharmacology to efficacy in preclinical 

models and extending this to the clinic. Our findings highlight the inherent 

complexity in allosteric modulator pharmacology and the potential contribution of 

unappreciated bias at the level of affinity and/or cooperativity to translational failures. 
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Supplementary Figure 3.1. DHPG concentration-response curves for iCa2+ 
mobilization or IP1 accumulation in the absence or presence of CPCCOet (30 
µM) in primary cortical neurons. Data are mean + s.e.m from 3-7 independent 
experiments performed in parallel. Error bars not shown lie within the dimensions of 
the symbols. 
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Supplementary Figure 3.2. Negative allosteric modulation of DHPG-mediated 
iCa2+ mobilization in HEK293A-mGlu5-low cells. Concentration response curves 
for inhibition of DHPG EC80-mediated iCa2+ mobilization by indicated allosteric 
ligands were performed in parallel with a concentration-response curve to DHPG (A - 
D). Mobilization of iCa2+ assays were performed with 1 min (A & B) or 30 min (C & 
D) pre-incubation of allosteric ligand followed by addition DHPG EC80 (600nM). 
Data are expressed as mean + SEM of 3-8 experiments performed in duplicate. Error 
bars not shown lie within the dimensions of the symbols.  
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Supplementary Figure 3.3: No evidence for inverse agonism of mGlu5 NAMs for 
IP1 accumulation in primary cortical neurons. No change in IP1 accumulation 
basal levels were observed following 60 min exposure to NAMs. Glutamic pyruvic 
transaminase (1U/mL) was included to eliminate ambient glutamate. DHPG control 
curve from parallel experiments is shown for reference (closed black squares). Data 
are mean + s.e.m from 3-4 independent experiments performed in parallel. Error bars 
not shown lie within the dimensions of the symbols.  
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Supplementary Table 3.1: Comparison of affinity estimates for modulation of 
DHPG-mediated iCa2+ mobilization following 1 min vs 30 min pre-incubation of 
mGlu5 allosteric ligands in HEK293A-mGlu5-low cells.  
 Data represent mean ± SEM of 3-8 independent experiments performed in duplicate. 
 
 iCa2+ mobilization 
 pKB

 a (1min) pKB
 a (30min) 

MPEP 8.94 ±0.16b,c 8.24 ±0.11d 
fenobam 6.99 ±0.21 7.11 ±0.44 
VU0409106 7.15 ±0.28 7.82 ±0.14 
VU0366248 7.33 ±0.18 6.82 ±0.09 
VU0366058 6.71 ±0.18 7.36 ±0.38 
M-5MPEP 7.01 ±0.35 6.98 ±0.03 
dipraglurant 8.06 ±0.23b 7.43 ±0.14d 

MTEP 8.31 ±0.09b 7.91 ±0.13c 
a pKB, negative logarithm of the equilibrium dissociation constant determined using an 
operational model of allosterism 
b Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared 
to binding estimate 
c Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared 
to pKB estimate derived from glutamate iCa2+ mobilization assays (equivalent 
incubation paradigm) 
d Denotes p<0.05, One-way ANOVA, Tukey’s multiple comparisons test, compared 
to pKB estimate derived from DHPG iCa2+ mobilization assays (1min paradigm)  
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Supplementary Table 3.2: Comparison of cooperativity estimates for modulation 
of DHPG-mediated iCa2+ mobilization following 1 min vs 30 min pre-incubation 
of mGlu5 allosteric ligands in HEK293A-mGlu5-low cells.  
Data represent mean ± SEM of 3-8 independent experiments performed in duplicate. 
 
 iCa2+ mobilization 
 log αβa (1min) log αβa (30min) 
MPEP full NAMb full NAM 
fenobam full NAM full NAM 
VU0409106 full NAM full NAM 
VU0366248 -0.96 ±0.10 -0.46 ±0.15 
VU0366058 full NAM full NAM 
M-5MPEP -0.98 ±0.36 -0.56 ±0.19 
dipraglurant full NAM full NAM 
MTEP full NAM full NAM 
a log αβ, logarithm of the efficacy scaling factor determined using an operational 
model of allosterism 
b “full NAM” denotes complete inhibition of DHPG response, such that αβ 
approaches zero. 
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Abstract 

The metabotropic glutamate receptor subtype 5 (mGlu5) has been implicated in a wide 

range of neuronal disorders, and thus provides an attractive target for potential CNS 

therapeutics. We recently showed that select mGlu5 PAMs displayed distinct bias 

relative to DHPG at IP1 accumulation and pERK1/2 receptor endpoints in addition to 

iCa2+ mobilisation (Sengmany et al., 2017). Following this, we aimed to assess key 

residues influencing the biased profiles. Four mGlu5 PAMs/PAM-agonists, 

VU0424465, DPFE, VU29 and VU0409551, were evaluated – with biased agonism, 

functional affinity and cooperativity with DHPG-mediated iCa2+ mobilisation 

determined. Seven mutations lining the mGlu5 allosteric binding site were studied, 

based on previous significant changes in allosteric ligand affinity and/or cooperativity 

(Gregory et al., 2013b). None of the mutations affected DHPG-mediated iCa2+ 

mobilisation, IP1 accumulation and pERK1/2 agonism, with the exception of Y658V. 

DPFE-mediated iCa2+ mobilisation was abolished in all studied mutants, while 

VU0424465 agonism was largely reduced across all studied pathways. VU29 agonism 

was mostly unaffected in IP1 accumulation and pERK1/2 relative to wild type (WT), 

while VU0409551 agonism in pERK1/2 and iCa2+ mobilisation was abolished at four 

of the seven studied mutants. VU0424465 functional affinity was reduced, while 

DPFE was increased at three of the seven mutants, and VU29 had reduced 

cooperativity at the majority of mutants. Biased signalling profiles were lost at the 

majority of mutants, with the exception of A809V and A809G for VU0424465. Gain 

of iCa2+-IP1 bias was observed for DPFE at S808A, while T780A led to gain of VU29 

agonism of iCa2+ mobilisation. Overall, our study highlights key residues involved in 

iCa2+ mobilisation, IP1 accumulation and pERK1/2 mGlu5 allosteric agonism and 

provides a more complete scope of mGlu5 structure-function relationships. 
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4.1. Introduction 

Mutagenesis, molecular modelling and structure-activity studies have offered insight 

into the interactions of mGlu5 allosteric ligands within the “common”, or MPEP, 

allosteric binding pocket (Bennett et al., 2015). Recent crystallisation of the NAM-

bound mGlu5 transmembrane region has also provided greater understanding of 

residues that influence allosteric ligand binding (Christopher et al., 2015; Dore et al., 

2014). Distinct from the Venus Fly-Trap orthosteric site, the mGlu5 common 

allosteric binding site lies between TMs 2, 3, 5, 6 and 7, and extends deeper into the 

TM domain relative to its related group I mGlu1 receptor (Christopher et al., 2015; 

Dore et al., 2014). This mGlu5 allosteric pocket comprises two large and separate 

cavities connected by a narrow channel, through which the common mGlu5 allosteric 

ligand chemotype, the alkyne triple-bond, transverses (Christopher et al., 2015; Dore 

et al., 2014). Despite recent knowledge of the structure of mGlu5, in conjunction with 

numerous mutagenesis studies, there remains a lack of understanding of residues 

involved in biased agonism, functional affinity and cooperativity – in particular at 

signalling pathways other than iCa2+ mobilisation.   

 

Thus, following on from Chapter 2, that showed biased agonism in the actions of 

chemically and pharmacologically diverse mGlu5 PAMs, we aimed to probe the 

structural determinants of mGlu5 allosteric ligand bias. We conducted a robust 

evaluation of mGlu5 biased ligands at the three previously studied receptor endpoints: 

iCa2+ mobilisation, IP1
 accumulation and ERK1/2 phosphorylation (pERK1/2) at 

mGlu5 receptors containing single-point mutations within the allosteric binding 

pocket. As an extension of Gregory et al., 2013, mutations were selected that resulted 

in significant changes in either affinity and/or cooperativity of certain PAMs – 
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namely T780A, S808A, Y658V, W784A, P654F, A809V and A809G – to assess the 

ligands that showed distinct bias profiles in our previous study (Chapter 2) 

(Sengmany et al., 2017). Of note, pharmacological “switches” – i.e. PAM to NAM or 

vice versa, or PAM/NAM to NAL activity – were observed with alanine substitutions 

of S808 (TM7) and T780 (TM6), two key residues involved in hydrogen bonding 

with a water molecule within the base of the allosteric binding pocket (Gregory et al., 

2013b). Valine substitution of Y658 (TM3) also resulted in the PAM, VU0405398, 

displaying negative cooperativity of glutamate-stimulated iCa2+ mobilisation, while 

the mutations P654F (TM3), W784A (TM6), A809V (TM7) and A809G (TM7) 

resulted in significant changes in affinity and/or cooperativity of select mGlu5 PAMs 

(Gregory et al., 2013b). While these studies have probed the impact of these 

mutations on allosteric ligand affinity and cooperativity in modulation of glutamate-

stimulated calcium responses, little has been done in assessing other receptor 

signalling endpoints, and evaluating the influence of these mutations on the biased 

signalling profiles of mGlu5 allosteric ligands.  

 

Accordingly, we hypothesise that these mutations will not only affect agonism for 

iCa2+ mobilisation, but also IP1 accumulation and pERK1/2, thus affecting the 

ligand’s biased signalling profile. We further hypothesise alterations of functional 

affinity and cooperativity for DHPG-mediated iCa2+ mobilisation at mutant receptors 

relative to WT responses. Ultimately, these mutations offer potential insight into 

activation of diverse receptor endpoints, rather than simply the canonical calcium 

mobilisation, and will add to the plethora of data available on the structure-function 

relationship of mGlu5 allosteric ligands and its binding site.  
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4.2. Methods 
 
4. 2.1. Materials  

Dulbecco’s modified Eagle’s medium (DMEM), Neurobasal medium, Fluo-4-AM 

and antibiotics were purchased from Invitrogen (Carlsbad, CA). Foetal bovine serum 

(FBS) was purchased from Thermo Electron Corporation (Melbourne, Australia). IP-

ONE HTRF® assay kit was purchased from Cisbio, Genesearch (Arundel, Australia) 

and AlphaScreen detection beads were purchased from PerkinElmer Life and 

Analytical Sciences. Select mGlu5 ligands (R)-5-((3-fluorophenyl)ethynyl)-N-(3-

hydroxy-3-methylbutan-2-yl)picolinamide (VU0424465), 1-(4-(2,4-

difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE), (4-

fluorophenyl)(2-(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridin-5(4H)-

yl)methanone (VU0409551) were synthesised at Vanderbilt Centre for Neuroscience 

Drug Discovery as described previously (Gregory et al., 2013a; Gregory et al., 2012; 

Rodriguez et al., 2010b; Rook et al., 2013). N-(1,3-Diphenyl-1H-pyrazolo-5-yl)-4-

nitrobenzamide (VU29) was purchased from Tocris Bioscience (Melbourne, 

Australia). HEK293A cells stably transfected with mutant rat mGlu5 constructs 

(A809V, A809G, F787A, P654F, S808A, T780A, W784A, Y658V) were kindly 

gifted by Vanderbilt Centre for Neuroscience Drug Discovery. Unless otherwise 

stated, all other reagents were purchased from Sigma-Aldrich (St. Louis, MO) and 

were of analytical grade.  

 
4.2.2. Cell culture 

HEK293A cells stably transfected with low levels of wild-type rat mGlu5 (HEK293A-

mGlu5-low) or mutants thereof were maintained at 37°C and 5% CO2 in DMEM 

supplemented with 5% FBS, 16 mM HEPES and 500 µg/mL G418. One day prior to 

experimentation, cells were plated onto poly-D-lysine coated, clear-bottom 96 well 
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plates in glutamine-free DMEM supplemented with 5% dialysed FBS, 16 mM 

HEPES and 500 µg/mL G418 at 40,000 cells/well.  

 

4.2.3. Intracellular calcium mobilisation 

On the day of experimentation, cells were loaded with calcium-sensitive Fluo-4-AM 

dye (1µM, Invitrogen) to assay receptor-mediated iCa2+ mobilisation using 

Flexstation I or III (Molecular Devices, Sunnyvale, CA). Ligands or vehicle (0.3% 

DMSO) were diluted in calcium assay buffer comprising Hank’s Balanced Salt 

Solution (HBSS; 1.2 mM CaCl2, KCl 5.33 mM, KH2PO4 0.44 mM, NaHCO3 4.17 

mM, NaCl 137.93 mM, Na2HPO4 0.34 mM, D-glucose 5.56 mM) with 2.5 mM 

probenecid and 16 mM HEPES, pH 7.4, and either co-added (VU0424465) or added 1 

min prior (DPFE, VU29, VU0409551) to DHPG. A 5-point smoothing function was 

applied to the raw fluorescence traces and peak fluorescence values were expressed as 

either fold over basal (DHPG) or normalised to the maximal DHPG response.    

 

4.2.4. Inositol monophosphate (IP1) accumulation assay 

HEK293A-mGlu5 WT and mutant cells were washed and incubated for 1 h with 

stimulation buffer (HBSS as above, with 16 mM HEPES, 30 mM LiCl2, 1.2 mM 

CaCl2, pH 7.4) before ligand addition. Cells were incubated for a further 1 h at 37°C 

and 5% CO2 before addition of Lysis Buffer (HTRF® IP-one assay kit). IP1 levels 

were determined using the HTRF® IP-one assay kit as per manufacturer's instructions 

and fluorescence measured using the Envision. Data were expressed as fold over basal 

response.  
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4.2.5. ERK1/2 phosphorylation 

Receptor-mediated ERK1/2 phosphorylation was determined using an AlphaScreen-

based ERK SureFire kit. Cells were serum-starved, with glutamine-free DMEM 

supplemented with 16mM HEPES, 4 – 6 h prior to experimentation. Time course 

experiments were performed to determine the peak response by each ligand (10 µM). 

10% FBS was added at 7 min as a positive control. Compounds resulted in peak 

pERK1/2 responses between 5-7 min across all mutants, largely in line with WT 

responses (Sengmany et al., 2017) (Fig 4.1). Agonist concentration response curves 

were obtained by adding increasing concentrations of ligand and terminating the assay 

at the time in which maximal pERK1/2 was determined via the time course assays. 

Following addition of lysis buffer and 5 min shaking, 4 µL of lysate was transferred 

to a white 384 well ProxiPlate (PerkinElmer). Under low-light conditions, 7 µL 

AlphaScreen detection mixture (1:7 (v/v) activation buffer: reaction buffer; with 

1:240 (v/v) acceptor and donor beads) was added to each well and incubated 1 h at 

37°C. AlphaScreen signal was measured using an Envision with standard 

AlphaScreen settings. Data were expressed as fold over basal level of pERK1/2. 



Chapter 4 – Structural basis of mGlu5 biased agonism and modulation 
 

!
!

!

160!

 

Fig 4.1. ERK1/2 phosphorylation time courses of DHPG, VU0424465, DPFE 
VU29 and VU0409551 in HEK293A-mGlu5 WT or mutant receptors. 10 µM of 
allosteric ligand was applied to cells at various time points over a 30 min period, in 
the presence of 1 U/mL GPT. Data are expressed as fold over basal, normalised to 
vehicle (0.3% DMSO) responses. Time at which peak responses were achieved was 
then chosen as stimulation time for consequent concentration response curves. Data 
are expressed as mean of 2-4 experiments performed in duplicate. 
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4.2.6. Data analysis 

Agonist-concentration response curves were fitted to a variable four-parameter 

logistic equation: 

! = #$%%$&'(%$)*#$%%$&)
(,',- ./0123456/0[8] :

         (1);

where bottom and top are lower and upper plateau levels of the concentration 

response curve respectively, n is the Hill coefficient, [A] is the molar concentration of 

agonist, and EC50 is the agonist concentration required to produce a half maximal 

response between top and bottom values (potency).  

Biased agonism was quantified using an operational model of agonism (Kenakin et 

al., 2012): 

< = ;=>?>@; +;
(B&;*;#CDCE) F

G8

:
H :

H :( F
G8

):' ,' 8
G8

:         (2) 

where Em is the maximal response of the system, n is the transducer slope, KA is the 

equilibrium dissociation constant of the agonist and τ is the coupling efficiency of the 

agonist as defined by RT/KE, where RT is the receptor number and KE if the coupling 

efficiency of the system.  From this equation the transduction coefficient log(τ/KA) a 

composite of both affinity and efficacy can be derived, which describes agonism for a 

given pathway. 

The transduction coefficient was then normalised to the reference ligand DHPG to 

give Δlog(τ/KA). Comparisons between studied pathways (e.g. j1 vs j2) was 

completed through subtraction of Δlog(τ/KA) values between pathways to derive 

ΔΔlog(τ/KA), or LogBias: 

IJKLM>? = ∆log;(R SH)T, −;∆log;(R SH)TV      (3) 
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Allosteric modulation of DHPG-mediated responses were fitted to the operational 

model of allosterism (Leach et al., 2007):  

WXXYZ[ = B\ ]8[H] ^_'`a[b] ']_[b]^8 :

[H]^_'^8^_'^8[b]';`[H][b] :'(]8[H] ^_'`a[b] ']_[b]^8):
    (4) 

 

where [A] and [B] are the molar concentrations of orthosteric agonist DHPG and 

allosteric modulator respectively. α represents affinity cooperativity and β is a scaling 

factor that denotes the magnitude of effect an allosteric modulator has on orthosteric 

agonist efficacy. Affinity cooperativity (α) was constrained to 1 as previously 

described (Gregory et al., 2012). KA and KB are the equilibrium dissociation constants 

of the orthosteric agonist and allosteric modulator respectively. KA for DHPG was 

constrained to -5.409 as per previous binding studies (Gregory et al., 2012; 

Wisniewski and Car, 2002). τA and τB are the respective ligand’s intrinsic efficacy. Em 

and n represent the maximal system response and the transducer slope respectively.  

 

Transduction coefficients, potency, efficacy, affinity and cooperativity parameters 

were derived and represented as logarithmic mean ± SEM. Analysis of bias 

parameters was performed using one-way analysis of variance (ANOVA) with 

Dunnett’s post-test to compare receptor responses in mutants to wild-type mGlu5, and 

one-way ANOVA with Tukey’s post-test to compare Δlog(τ/KA) between pathways.
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4.3. Results 
 
Seven single amino acid mutations within the mGlu5 allosteric binding site were 

selected based on significant changes to affinity and cooperativity of select mGlu5 

allosteric ligands (Gregory et al., 2013b) (Fig 4.2). Y658V, S808A and T780A 

resulted in cooperativity switches, while select mutations also significantly affected 

ligand affinities in glutamate-stimulated iCa2+ mobilisation. The mutants Y658V, 

T780A, S808A, W784A, P654F, A809G and A809V either abolished or significantly 

reduced functional affinity estimates of several nicotinamide and picolinamide mGlu5 

PAM chemotypes (Gregory et al., 2013b). Wild type (WT) responses of the studied 

ligands were derived from experiments performed as part of Sengmany et al. (2017), 

in Chapter 2. 

 

 

Fig 4.2. Location of mutations studied within rat mGlu5.  Mutations within this 

study line the allosteric binding pocket across TMs 3, 6 and 7 (magenta). In particular, 

P654 and Y658 lie within TM3, T780, W784, F787 within TM6 and S808 and A809 

within TM7.  



Chapter 4 – Structural basis of mGlu5 biased agonism and modulation 
 

!
!

!

164!

4.3.1. Effects of mutations of DHPG potency (pEC50) and efficacy (Emax) in iCa2+ 

mobilisation, IP1 accumulation and ERK1/2 phosphorylation 

First, we wanted to determine whether these mutations affected global activation of 

the receptor. To do this, we assessed DHPG agonism in iCa2+ mobilisation in wild-

type and mutant mGlu5 receptors. As DHPG binds to the orthosteric binding site 

within the Venus Fly Trap domain, we hypothesised that there would be limited 

impact of mutations (situated within the 7TM) on DHPG affinity, and any observed 

changes in ligand activity would likely be attributed to the mutations affecting 

receptor conformations that are sampled by the assay. We also extended our study to 

include IP1 accumulation and ERK1/2 phosphorylation, to provide a broader insight 

into the effect of the studied mutations on receptor activity. 

 

In iCa2+ mobilisation assays, all mutations resulted in reduced DHPG potency, 

however, only A809V resulted in a significant 3-fold change relative to WT (Fig 

4.3A-B). Comparisons of maximal DHPG responses (Emax), however, showed 

significant reductions with all mutations. In particular, the mutations A809V and 

T780A resulted in approximately a 50% decrease in DHPG maximal response relative 

to WT, while A809G produced the least change, with DHPG reaching 80% Emax 

compared to WT (table 4.1).   

 

For IP1 accumulation, there were no significant differences when comparing DHPG 

potencies, however, Y658V significantly decreased DHPG maximal response relative 

to WT, with Emax at approximately 70% of WT responses (table 4.1, Fig 4.3C-D). 

DHPG-mediated pERK1/2 was observed with all mutants, although with reduced 
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maximal responses relative to WT; except Y658V, which abolished DHPG agonism 

(Figure 4.3E-F). 

 

However, while there were differences in absolute pEC50 and Emax values of DHPG at 

select mutations, these parameters offer a “qualitative” measure of ligand agonism, 

highly dependent on the biological system used, receptor density, and stimulus-

response coupling for the studied assay (Kenakin, 2004; Kenakin et al., 2012; 

Stephenson, 1956).  A more robust analytical method involves integration of ligand 

affinity and intrinsic efficacy, while normalising for receptor density and “intensity” 

of the coupling reaction (Kenakin, 2004; Kenakin et al., 2012). This is achieved 

through application of Black-Leff operational model of agonism (Black and Leff, 

1983), in which the equilibrium dissociation constant (KA) and intrinsic efficacy at a 

specific pathway (τ) is derived. The ratio of these two parameters is known as the 

transduction coefficient (log (τ/KA)), and describes the ligand’s overall activity at the 

studied pathway (Kenakin et al., 2012). Thus, we applied this model to assess DHPG 

agonism at the three studied receptor endpoints for mGlu5 mutant receptors.  
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Fig 4.3. Concentration-response curves for DHPG for iCa2+ mobilisation (A-B), 

IP1 accumulation (C-D), and ERK1/2 phosphorylation (E-F) in WT or mutant 

mGlu5
 HEK293A cells. Responses are represented as fold over basal response. IP1 

accumulation and ERK1/2 phosphorylation experiments were performed in the 

presence of 1 U/mL GPT to minimise contribution of ambient glutamate. Data are 

expressed as mean ± SEM of 3-9 experiments performed in duplicate, error bars not 

shown lie within the dimensions of the symbols. 
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4.3.2. Mutations within the allosteric binding site did not affect DHPG transduction 

coefficients in iCa2+
 mobilisation, IP1 accumulation and ERK1/2 phosphorylation. 

 

While differences were observed with DHPG potency and Emax values in select mGlu5 

mutations, there were no significant differences in transduction ratios across the 

studied mutants at iCa2+ mobilisation, IP1 accumulation and pERK1/2 receptor 

endpoints relative to WT responses (table 4.1, Fig 4.4). Y658V was the exception – 

with abolishment of DHPG-mediated pERK1/2 agonism. However, because 

transduction ratios are a composite of KA and τ values, we next aimed to derive these 

parameters individually.  

 

 

 
 
 
Fig 4.4. The effect of various mutations in the allosteric binding pocket of the 

mGlu5 receptor on the transduction ratio (log(τ/KA)) of DHPG obtained in iCa2+ 

mobilisation, IP1 accumulation and pERK1/2 assays. The data are normalised to 

the wild-type receptor and values below zero indicate a decrease in transduction ratio 

at the mutant receptor, whereas a value above zero indicates an increase. Note, there 

were no significant differences between transduction ratios relative to WT (one-way 

ANOVA, Dunnett’s post-test). N.t. not tested, # no observed agonism.  
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Table 4.1. Potency (pEC50), maximal response (Emax) and transduction coefficient (log(τ/KA)) estimates of DHPG for iCa2+ mobilisation, IP1 
accumulation and pERK1/2 in HEK293A-mGlu5-low and mutant cells. Data are mean ± SEM of 3-9 independent experiments performed in 
duplicate. 
 
 iCa2+ mobilisation IP1

 accumulation pERK1/2 
 pEC50 Emax (fold 

over basal) 
log(τ/KA) pEC50 Emax (fold 

over basal) 
log(τ/KA) pEC50 Emax (fold 

over basal) 
log(τ/KA) 

WT 6.34±0.12 2.6±0.1 6.31±0.11 5.73±0.13 1.9±0.2 5.80±0.14 6.19±0.27 1.9±0.2 6.37±0.22 
P654F 5.98±0.14 1.9±0.1 a 6.02±0.23 5.26±0.39 1.4±0.1 5.46±0.28 6.06±0.45b 1.4±0.1 b 6.57±0.66 
Y658V 6.08±0.18 1.9±0.02 a 6.14±0.15 5.38±0.20 1.3±0.03 a 5.65±0.21 n.r. n.r. n.r. 
T780A 5.97±0.18 1.4±0.1 a 6.38±0.10 5.69±0.64 1.8±0.6 5.20±0.53 5.94±0.67 1.4±0.1 a 5.93±0.51 
W784A 6.03±0.12 2.0±0.1 a 6.15±0.06 5.38±0.35 1.7±0.2 5.72±0.28 5.52±0.82b 1.2±0.1 a,b 5.07±0.28 
F787A 5.88±0.09 1.6±0.03 a 5.74±0.05 5.70±0.21 1.2±0.03 5.70±0.72 n.t. n.t. n.t. 
S808A 6.05±0.16 1.9±0.1 a 6.45±0.06 5.36±0.24 1.4±0.04 5.31±0.38 5.88±0.72b 1.2±0.1 a,b 6.86±0.44 
A809G 6.02±0.08 2.0±0.1 a 5.91±0.17 5.11±0.09 2.0±0.2 5.22±0.08 6.37±0.66b 1.3±0.1 a,b 6.37±0.86 
A809V 5.80±0.12 a 1.3±0.1 a 5.86±0.13 5.08±0.25 1.8±0.1 5.01±0.25 6.89±0.64 1.2±0.1 a 8.13±0.78 

n.r. no response 
a significantly different from mGlu5 WT response (p<0.05, one-way ANOVA, Dunnett’s post-test) 
b concentration response curve and/or operational model was globally fitted to 3 or more independent experiments  
n.t. not tested due to time constraints 
Note, wild type (WT) parameters were derived from experiments performed in Chapter 2 (Sengmany et al. (2017)) 
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4.3.3. DHPG affinity and efficacy are unaltered following depletion of mutant mGlu5 

receptors.   

 

The potency (EC50) of a compound comprises both affinity and efficacy parameters. 

To delineate affinity and efficacy, a dose-response curve of a full agonist and a 

second-dose response curve, determined after depletion of receptor numbers, are 

globally fitted to an operational model of receptor depletion (GraphPad Prism 7.0). 

This operational model assumes the affinity of the compound for the receptor is 

unchanged by the alteration in receptor numbers. Thus, affinity can be estimated from 

functional concentration-response curves for a full agonist. 

Using the clickable mGlu5 photoprobe RVDU-3-185 to irreversibly bind mGlu5 

receptors and hence deplete the number of functional mGlu5 receptors, DHPG affinity 

and efficacy were able to be determined at the studied mutants (Fig 4.5). RVDU-3-

185 (1 µM) was used in WT receptors, as this concentration allowed sufficient 

depletion of receptor levels, while RVDU-3-185 (10 µM) was chosen for the mutant 

receptors to allow sufficient depletion. P654F, S808A and A809V, however, showed 

minimal inhibition by the irreversible NAM, thus limiting assessment of DHPG 

affinity/efficacy in a reduced receptor expression state. This is perhaps not surprising, 

as this clickable ligand binds within the common allosteric site in which these 

mutations lie, thus the mutations may have impacted ligand binding (Gregory et al., 

2016). Nonetheless, no significant change in DHPG affinity (pKA) and efficacy (Δlog 

τ) was observed in Y658V, W784A, F787A and A809G relative to WT, and thus 

DHPG was used as a reference ligand for bias calculations, with the supposition that 

DHPG activity was unchanged in the studied mutations (table 4.2).  
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Figure 4.5. Effect of irreversible binding of the mGlu5 NAM photoprobe RVDU-

3-185 on DHPG-mediated iCa2+ mobilisation in HEK293A-mGlu5-low (WT) or 

mutant mGlu5 receptors. Cells were pre-treated with indicated mGlu5 NAM (1 or 10 

µM) then washed (five 45 min washes) before determining DHPG-mediated iCa2+ 

mobilisation. Data represent mean ± SEM of 3-4 experiments performed in duplicate 

unless otherwise specified.  Vehicle responses were recorded twice in duplicates.  
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Table 4.2. Impact of irreversible binding of RVDU-3-185 1 µM (wild type) or 10 µM 
(mutant) on DHPG mediated iCa2+ mobilisation in wild type and mutant HEK293A-
mGlu5 cells. Data represent mean ± SEM from 3-4 independent experiments unless 
otherwise stated 
 

 pEC50 
(untreated)a 

pEC50 
(treated) 

ΔEmax
b Δlog τc pKA

d 

Wild type 6.57±0.11 5.93±0.17 -42.59±7.10 -0.38±0.22 6.36±0.33 
P654F 6.56±0.09 6.57±0.13 -10.66±6.63 -0.09±0.06 6.14±0.07 
Y658V 6.13±0.13 6.13±0.45 -27.92±16.33 -0.17±0.51 6.14±0.69 

T780A# n=2 6.43 6.28 -12.08 -0.21 6.03 
W784A 6.07±0.15 6.14±0.34 -30.51±12.45 -0.24±1.19 5.84±0.48 
F787A 6.11±0.18 4.84±1.34 -89.06±17.25 -0.16±0.25 5.60±0.17 
S808A 6.49±0.18 6.64±0.22 0.02±11.05 0.05±0.10 6.13±0.13 

A809G# n=2 5.94 5.51 -55.79 -0.78 5.38 
A809V# n=1 5.82 6.09 -7.46 n.d. n.d. 
a The negative logarithm of the molar concentration of agonist required to yield a half 
maximal response 
b The change in maximal response (Emax) expressed as a percentage of the maximum 
response to DHPG 
c The change in the coupling efficiency of DHPG, determined by globally fitting 
treated and untreated datasets to an operational model of agonism 
d The negative logarithm of the equilibrium dissociation constant of DHPG 
n.d. not determined. 
# n=1 or 2 independent experiments – not completed due to time constraints 
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4.3.4. Effect of mutations on mGlu5 allosteric ligand VU0424465 agonism for iCa2+ 

mobilisation, IP1 accumulation and pERK1/2. 

 

As the studied mutations had no discernable effects on DHPG agonism, we next 

assessed the impact of these mutations on four mGlu5 allosteric ligands. These 

ligands, from differing chemotype scaffolds, display agonism at iCa2+ mobilisation, 

IP1 accumulation and ERK1/2 phosphorylation, however to differing degrees and are 

thus biased ligands (Sengmany et al., 2017). VU0424465 was the first allosteric 

ligand selected due to its robust PAM-agonism at the three aforementioned pathways 

in WT mGlu5
 (Fig 4.6), with Emax at IP1 comparable to that of DHPG, and surpassing 

DHPG in ERK1/2 phosphorylation. All mutants, with the exception of S808A, 

T780A, Y658V produced VU0424465-mediated iCa2+ mobilisation maximal 

responses greater than that seen in mGlu5 WT (Fig 4.6A-B). Three of the studied 

mutants also significantly altered VU0424465 potency at iCa2+ mobilisation, with 

P654F, and A809V decreasing and F787A increasing VU0424465 potency (table 4.3).  

 

For IP1 accumulation, all mutations significantly decreased VU0424465 potency 

relative to WT, with the exception of F787A, which had greater potency (Fig 4.6C-

D). All mutants also decreased efficacy, except A809V, which produced an Emax 

comparable to WT. All mutations also significantly reduced VU0424465 pERK1/2 

agonism, with maximal responses reaching approximately 1.5 fold over basal levels, 
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compared to 5-fold values seen in WT receptors (Fig 4.6E-G). T780A produced 

variable responses resulting in the inability to fit a concentration-response curve.   

 
Fig 4.6. Concentration-response curves for VU0424465 for iCa2+ mobilisation (A 

& B), IP1 accumulation (C & D), and ERK1/2 phosphorylation (E-G) in WT or 

mutant mGlu5
 HEK293A cells. Responses were represented as % DHPG maximal 

response (iCa2+ mobilisation) or fold over basal responses (IP1 accumulation and 

pERK1/2). IP1 accumulation and pERK1/2 phosphorylation experiments were 

performed in the presence of 1 U/mL GPT to minimise contribution of ambient 
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glutamate. Data are expressed as mean ± SEM of 3-9 experiments performed in 

duplicate, error bars not shown lie within the dimensions of the symbols.! 
 

4.3.5. Effect of mutations on mGlu5 allosteric ligand DPFE agonism for iCa2+ 

mobilisation, IP1 accumulation and pERK1/2. 

 

DPFE was next selected for this study, as it represented a different chemotype from 

the common acetylene scaffold, and has previously been studied in vivo (Gregory et 

al., 2013a; Peters et al., 2016), thereby being a potential lead compound in mGlu5 

therapeutics. In WT, DPFE is an agonist of iCa2+ mobilisation, IP1 accumulation and 

pERK1/2, however, showed no significant bias toward any of the three studied 

signalling endpoints (Fig 4.7).  

 

All mutations abolished DPFE agonism in iCa2+ mobilisation, with the exception of 

S808A – although the response was minimal at 17% DHPG response (Fig 4.7A-B, 

table 4.3). All mutants also significantly reduced maximal responses of DPFE-

mediated IP1 accumulation relative to WT, however, only W784A significantly 

changed DPFE potency (Fig 4.7C-D, table 4.3). Again, all mutants decreased DPFE-

stimulated pERK1/2 maximal response, with valine substitution at Y658 resulting in 

abolishment of agonism, similar to that seen with DHPG. Again, T780A resulted in 

variable pERK1/2 agonism, and may benefit from assessment of lower concentrations 

- thus a curve was not fitted to this dataset.  
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Fig 4.7. Concentration-response curves for DPFE for iCa2+ mobilisation (A & B), 
IP1 accumulation (C & D), and ERK1/2 phosphorylation (E-G) in WT or mutant 
mGlu5

 HEK293A cells. Responses were represented as % DHPG maximal response 
(iCa2+ mobilisation) or fold over basal responses (IP1 accumulation and pERK1/2). 
IP1 accumulation and ERK1/2 phosphorylation experiments were performed in the 
presence of 1 U/mL GPT to minimise contribution of ambient glutamate. Data are 
expressed as mean ± SEM of 3-9 experiments performed in duplicate, error bars not 
shown lie within the dimensions of the symbols. 
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4.3.6. Effect of mutations on mGlu5 allosteric ligand VU29 agonism for iCa2+ 

mobilisation, IP1 accumulation and pERK1/2. 

 
VU29 represented yet another structurally distinct mGlu5 PAM chemotype, and had 

previously been described as a “pure” PAM, with no intrinsic agonist activity at iCa2+ 

mobilisation (Chen et al., 2007; Lindsley et al., 2004). However, we have recently 

shown robust agonism of this compound at IP1 and ERK1/2 receptor endpoints in 

both mGlu5 recombinant and cortical neuronal systems (Sengmany et al., 2017), thus 

behaving as a biased allosteric agonist. The selected mutations did not affect VU29 

activity at iCa2+ mobilisation - that is, VU29 displayed no agonism at all mutants, 

with the exception of T780A, where minimal agonism was detected (12% DHPG 

response, Fig 4.8A-B, table 4.3). As with the previous two allosteric ligands, all the 

mutations decreased IP1 accumulation and pERK1/2 agonism by VU29, with 

significant reductions in Emax within the majority of mutant cell lines (table 4.3, Fig 

4.8C-G). Only P654F and A809V resulted in significant decreases in VU29 potency 

at IP1 accumulation, with 30- and 60-fold reductions respectively.  
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Fig 4.8. Concentration-response curves for VU29 for iCa2+ mobilisation (A & B), 

IP1 accumulation (C & D), and ERK1/2 phosphorylation (E-G) in WT or mutant 

mGlu5
 HEK293A cells. Responses were represented as % DHPG maximal response 

(iCa2+ mobilisation) or fold over basal responses (IP1 accumulation and pERK1/2). IP1 

accumulation and ERK1/2 phosphorylation experiments were performed in the 

presence of 1 U/mL GPT to minimise contribution of ambient glutamate. Data are 

expressed as mean ± SEM of 3-9 experiments performed in duplicate, error bars not 

shown lie within the dimensions of the symbols. 
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4.3.7. Effect of mutations on mGlu5 allosteric ligand VU0409551 agonism for iCa2+ 

mobilisation, IP1 accumulation and pERK1/2. 

 

VU0409551 was the final allosteric agonist chosen for this study, as it has efficacy in 

preclinical models of psychosis (Balu et al., 2016; Rook et al., 2015), while also 

displaying biased agonism and modulation in recombinant and neuronal cells (Rook 

et al., 2015; Sengmany et al., 2017). In WT recombinant cells however, VU0409551 

showed no distinct bias between the three studied pathways – although biased 

agonism toward IP1 relative to pERK1/2 was observed in cortical neurons (Sengmany 

et al., 2017).  

 

Here, only the mutants W784A, S808A and A809G retained VU0409551-mediated 

iCa2+ mobilisation, although to a minimal extent (Fig 4.9A-B). As for IP1 

accumulation, all mutants retained agonism, although again with reduced potencies 

and/or efficacies (table 4.3), while for pERK1/2, P654F, W784A and T780A lost 

agonism, while A809V and S808A had reduced potencies, hence a full concentration 

response curve could not be defined (Fig 4.9E-F). Only Y658V and A809G produced 

discernable VU0409551 pERK1/2 agonism, with potencies and Emax values 

comparable to that of WT responses (table 4.3).  
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Fig 4.9. Concentration-response curves for VU0409551 for iCa2+ mobilisation (A 

& B), IP1 accumulation (C & D), and ERK1/2 phosphorylation (E & F) in WT or 

mutant mGlu5
 HEK293A cells. Responses were represented as % DHPG maximal 

response (iCa2+ mobilisation) or fold over basal responses (IP1 accumulation and 

pERK1/2). IP1 accumulation and ERK1/2 phosphorylation experiments were 

performed in the presence of 1 U/mL GPT to minimise contribution of ambient 

glutamate. Data are expressed as mean ± SEM of 3-9 experiments performed in 

duplicate, error bars not shown lie within the dimensions of the symbols. 
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Table 4.3. Potency (pEC50), maximal response (Emax) and transduction coefficient (log(τ/KA)) estimates of VU0424465, DPFE, VU29 and 
VU0409551 for iCa2+ mobilisation, IP1 accumulation and pERK1/2 in HEK293A-mGlu5-low and mutant cells. Data are mean ± SEM of 3-9 
independent experiments performed in duplicate, unless otherwise specified. 
 iCa2+ mobilisation IP1

 accumulation pERK1/2 
 pEC50 Emax 

(%DHPG) 
log(τ/KA) pEC50 Emax (fold 

over basal) 
log(τ/KA) pEC50 Emax (fold 

over basal) 
log(τ/KA) 

VU0424465 
WT 7.13±0.14 77.7±5.8 7.18±0.16 8.78±0.29 1.9±0.2 8.70±0.12 8.24±0.14 5.0±0.2 8.32±0.10 
P654F 6.12±0.30 a 109.6±10.2a 6.25±0.19 a 6.55±0.05 a 1.5±0.2 6.66±0.06 a 7.00±0.37 c 1.3±0.2 a 7.30±0.67 
Y658V 6.69±0.28 37.1±14.2 6.26±0.48 a 6.51±0.20 a 1.2±0.1 6.51±0.43 a 8.02±0.54 1.4±0.3 a 7.95±0.64 
T780A 6.74±0.36 44.1±6.9 a 5.88±0.32 a 7.27±0.33 a 1.7±0.6 6.30±0.82 a n.r. n.r. n.r. 
W784A 7.42±0.16 132.3±17.9 7.33±0.17 7.30±0.65  1.5±0.2 7.25±0.91 8.26±0.84 c 1.2±0.1 a,c 7.87±0.51 
F787A 8.13±0.02 a 106.2±4.7 8.27±0.05a 10.28±0.52 1.3±0.1 10.32±0.65 n.t. n.t. n.t. 
S808A 6.80±0.32 72.8±4.2 6.70±0.26 6.82±0.21 a 1.2±0.1 6.35±0.39 a 7.56±0.46 1.4±0.3 a 8.08±0.45 
A809G 6.66±0.07 128.2±10.1 6.70±0.06 7.04±0.17 a 2.0±0.3 7.14±0.18 7.73±0.43 1.4±0.4 a 7.12±0.23 
A809V 6.19±0.13 a 149.1±23.5 6.30±0.09a 6.49±0.16 a 1.5±0.1 6.40±0.30 a 7.32±0.23 1.5±0.3 a 7.56±0.19 
DPFE 
WT 5.65±0.28 48.8±7.5 5.79±0.25 5.95±0.12 2.7±0.2 5.86±0.19 6.25±0.53 4.1±0.3 5.83±0.08 
P654F n.r. n.r. n.r. 5.81±0.83 1.4±0.1 a 5.94±0.67 7.79±0.56 c 1.8±0.2 a 8.44 b 

Y658V n.r. n.r. n.r. 6.07±0.46 1.2±0.03 a 6.77±0.92 n.r. n.r. n.r. 
T780A n.r. n.r. n.r. 6.08±0.62 1.3±0.2 a 5.96±0.71 n.d. n.d. n.d. 
W784A n.r. n.r. n.r. 6.49±0.05  1.6±0.2 5.89±0.71 8.22±1.55 c 1.2±0.1 a 5.36 b 
S808A 6.84 b 16.7 b 4.81±0.52 c 6.42±0.47 1.2±0.1 a 6.60±0.92 7.63±0.39 1.4±0.1 a 7.25 b 
A809G n.r. n.r. n.r. 5.81±0.21 1.8±0.2 a 5.83±0.23 6.77±0.18 1.5±0.1 a 6.38±0.18 
A809V n.r. n.r. n.r. 4.64±0.31 2.2±0.5 4.80±0.31 7.61±0.74 c 1.3±0.1 a 6.96±0.42 
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 iCa2+ mobilisation IP1 accumulation pERK1/2 
 pEC50 Emax 

(%DHPG) 
log(τ/KA) pEC50 Emax (fold 

over basal) 
log(τ/KA) pEC50 Emax (fold 

over basal) 
log(τ/KA) 

VU29 
WT n.r. n.r. n.r. 7.47±0.14 2.3±0.1 7.41±0.11 7.06±0.12 3.7±0.2 7.17±0.04 
P654F n.r. n.r. n.r. 5.99±0.68 a 1.4±0.2 a 7.21±0.88 7.78 b 1.51 b 8.34±0.87 
Y658V n.r. n.r. n.r. 6.65±0.13 1.3±0.04 a 6.82±0.13 6.64 b 1.22 b 6.49 b 
T780A 6.69±0.33 12.82±2.01 7.07±0.28 6.62±0.33 1.4±0.2 a 6.28±0.63 7.53±0.36 c 1.6±0.1 a 6.17±0.32 
W784A n.r. n.r. n.r. 7.32±0.42 1.7±0.2 8.78±0.46 8.00±0.16 1.5±0.1 a 8.05±0.29 
S808A n.r. n.r. n.r. 6.26±0.14 1.3±0.1 a 5.97±0.27 6.08±0.44 1.3±0.4 a 6.51±0.95 
A809G n.r. n.r. n.r. 6.62±0.09 1.8±0.2 6.65±0.09 6.52±0.30 1.6±0.1 a 6.91±0.32 
A809V n.r. n.r. n.r. 5.67±0.35 a 1.4±0.2 a 5.11±0.45 a 7.20±0.98 c 1.2±0.1 a 7.79±1.18 

VU0409551 
WT 6.38±0.17 44.6±3.9 6.23±0.24 6.16±0.13 1.7±0.2 6.06±0.18 6.05±0.39 1.6±0.5 6.30±0.36 
P654F n.r. n.r. n.r. 6.12±0.14 1.2±0.03 a 5.73±0.36 n.r. n.r. n.r. 
Y658V n.r. n.r. n.r. 6.22b 1.27 b 6.48b 6.32 b 1.75 b 6.67±0.75 
T780A n.r. n.r. n.r. 5.66±0.45 1.2±0.1 a 5.15±0.40 n.r. n.r. n.r. 
W784A 5.12±1.63 16.3±26.8 7.23 b 5.62±0.28 1.6±0.2 5.94±0.08 n.r. n.r. n.r. 
S808A 5.94±0.52 9.2±2.9 6.52±0.60 6.08b 1.3b  5.61b n.r. n.r. n.r. 
A809G 4.98±0.71 38.1±35.6 6.11±0.20 5.96±0.23 1.6±0.1 6.06±0.11 6.74±0.30 1.8±0.8 6.04±0.26 
A809V n.r. n.r. n.r. 5.27±0.42 1.7±0.3 4.94±0.13 n.r. n.r. n.r. 
n.r. no response; n.d. not determined due to poor concentration-response curve fit; n.t. not tested due to time constraints 
a significantly different from mGlu5 WT response (p<0.05, one-way ANOVA, Dunnett’s post-test) 
b concentration response curve and/or operational model could only be fit to n=2 (from 3 or more) independent experiments 
c concentration response curve and/or operational model was globally fitted to 3 or more independent experiments  
Note, wild type (WT) parameters were derived from experiments performed in Chapter 2 (Sengmany et al. (2017)) 
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4.3.8. Comparisons of transduction coefficients derived from iCa2+mobilisation, IP1, 

accumulation and pERK1/2 agonism by mGlu5 allosteric ligands at WT and mutant 

receptors 

As mentioned above, potency and Emax values represent qualitative measures of 

agonism, thus the operational model of agonism was fitted to the studied ligands at 

each receptor endpoint to derive transduction coefficients (log(τ/KA)). The 

transduction coefficient at different mutant receptors was then normalised to WT 

responses and compared using one-way ANOVA with Dunnett’s post-hoc test (Fig 

4.10). 

For VU0424465, all mutants decreased the transduction coefficient in iCa2+ 

mobilisation, with the exception of F787A, which was significantly increased by 12-

fold relative to WT (table 4.3, Fig 4.10A). All mutants also decreased transduction 

ratios in agonism for IP1 accumulation, with significance reached in the mutations 

T780A, Y658V, S808A, P654F and A809V. For ERK1/2 phosphorylation, 

VU0424465 had reduced transduction coefficients at all studied mutations, although 

this did not reach significant differences relative to WT responses, likely due to the 

greater variability observed between experiments (table 4.3, Fig 4.10A). 

For mutants that retained DPFE agonism in iCa2+ mobilisation, IP1 

accumulation and ERK1/2 phosphorylation did not significantly influence 

transduction ratios relative to WT responses. The only exception was P654F, which 

increased transduction coefficient relative to WT by 400-fold. For VU29, no 

differences in transduction ratios were observed in all receptor endpoints, except 

A809V and IP1
 (Fig 4.10C), while mutations had no significant effects VU0409551, 

barring those that abolished agonism completely (Fig 4.10D).  
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Fig 4.10. The effect of various mutations on the transduction ratio (log(τ/KA)) of 
mGlu5 allosteric ligands obtained in iCa2+ mobilisation, IP1 accumulation and 
pERK1/2 assays. The data are normalised to the wild-type receptor and values below 
zero indicate a decrease in transduction ratio at the mutant receptor, whereas a value 
above zero indicates an increase. *p<0.05, significantly different from the wild-type 
receptor determined by a one-way ANOVA, Dunnett’s post-hoc test. N.t. not tested, # 
no observed agonism.  
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4.3.9. Effect of mutations on biased agonism 

While comparing agonism in mutants to WT responses at each individual receptor 

endpoint allows assessment of mutant effects at each pathway, we next aimed to 

assess whether these mutations affected the biased signalling profile of each ligand. 

To do this, we normalised transduction coefficients, derived from each assay at each 

mutant, to the reference ligand DHPG to give Δlog(τ/KA) (Fig 4.11A, C, E, G). 

Comparisons between receptor pathways were quantified by subtracting Δlog(τ/KA) 

between two receptor pathways to derive ΔΔlog(τ/KA) or LogBias (Fig 4.11B, D, F, 

G). 

 

For VU0424465, only the WT receptor showed significant differences in Δlog(τ/KA) 

between pathways (Fig 4.11A), with distinct bias toward IP1
 accumulation and 

pERK1/2 relative to iCa2+ mobilisation (Fig 4.11B). All mutants retained a trend 

toward greater IP1 agonism relative to iCa2+ mobilisation, except W784A, which had 

comparable agonism between the two pathways (Fig 4.11B, blue circle). In WT, 

VU0424465 had significant biased agonism toward pERK1/2 relative to iCa2+ 

mobilisation, and this was retained (despite loss of significance) at P654F, W784A, 

and S808A, and reversed at Y658V and T780A. The bias toward IP1 accumulation 

relative to pERK1/2 was also largely retained in A809G and A809V however was 

reversed with W784A and lost with S808A and P654F. 

 

With DPFE, calculations were limited due to the lack of iCa2+ agonism in the majority 

of mutants, however, comparisons of IP1 accumulation and pERK1/2 saw biased 

agonism toward IP1 accumulation in S808A, A809V, and A809G, and bias toward 

pERK1/2 in P654F (Fig 4.11D). For VU29, the significant bias between IP1 
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accumulation and pERK1/2 is lost with all mutations (Fig 4.11E). However, the lack 

of VU29-mediated iCa2+ mobilisation is largely retained (Fig 4.11E-F), thus, this 

ligand retains bias towards IP1 accumulation and pERK1/2 relative to iCa2+ 

mobilisation, with the exception of T780A, which produced VU29 mediated iCa2+ 

mobilisation. Finally, for VU0409551, P654F, Y658V, T780A and A809V abolished 

both iCa2+ mobilisation and ERK1/2 phosphorylation relative to DHPG (Fig 4.11G), 

with A809G being the only ligand to retain the biased profile observed with mGlu5 

WT receptors (Fig 4.11H). W784A also resulted in a reversal of VU0409551 bias 

trend toward IP1 accumulation compared to WT responses, with a trend toward 

agonism of iCa2+ mobilisation relative to IP1 accumulation (Fig 4.11H).  
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Fig 4.11. Quantification of biased agonism of mGlu5 allosteric ligands at WT or mutant 
mGlu5 receptors using the operational model of agonism. Log(τ/KA) values for each 
allosteric agonist (A,C,E,G) were normalised to DHPG (Δlog(τ/KA)) within each mutant. The 
degree of bias between different pathways (ΔΔlog(τ/KA)),  represents the bias factors for each 
agonist (B,D,F,H). Data for Δlog(τ/KA) represent the mean ± SEM, whereas ΔΔlog(τ/KA) 
values are mean only. * denotes significantly different comparisons, p<0.05, one-way 
ANOVA with Tukey’s post-test. Cpd, compound, n.d. not determined, # no observed 
agonism, ^ unable to fit curve. 
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4.3.10. Determination of affinity, efficacy and cooperativity parameters through 

allosteric modulation of DHPG-mediated iCa2+ mobilisation 

In order to determine whether changes in ligand activity were affinity or efficacy 

driven, we next conducted interaction studies with DHPG at iCa2+ mobilisation, to 

allow the derivation of affinity, cooperativity and intrinsic efficacy parameters from 

the operational model of allosterism (Leach et al., 2007). Previous mutagenesis 

studies were performed with glutamate as the orthosteric ligand, however, here we 

used our reference ligand DHPG to determine modulatory activity of the studied 

compounds. VU0424465 is shown as an example of the full interaction studies 

performed on each mutant receptor (Fig 4.12; see Appendix 1). Interaction studies 

with ligands with intrinsic agonist activity were performed as a simultaneous addition 

with DHPG to minimise acute desensitisation. All other interaction studies were 

performed with 1 min pre-incubation of allosteric ligand followed by DHPG addition. 

For ligands that showed robust agonism (e.g. VU0424465 and A809G, A809V (Fig 

4.12F-G)), the operational model could not be accurately fit, thus curves only 

represent an empirical fit to Equation 1. Operational parameters of affinity (pKB), 

cooperativity (logβ) and efficacy (log τB) were derived and are summarised in table 

4.4.  
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Fig 4.12. Allosteric modulation of DHPG-mediated iCa2+ mobilisation by 
VU0424465 at mutant mGlu5 receptors (A-G). The operational model of 
allosterism could not be fit to data in A809G and A809V (F-G) due to the large 
agonist response masking any modulatory behaviour. Data are expressed as mean ± 
SEM of n=3-5 independent experiments performed in duplicate.  
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The mutants Y658V, T780A and S808A significantly reduced functional affinity of 

VU0424465 by 32-, 13- and 12-fold respectively (table 4.4), while the functional 

affinity of DPFE was increased in the following mutants: P654F and W784A (both 

51-fold), and S808A (20-fold). No significant changes in affinity estimates were 

observed with VU0409551. VU29 however lost all ligand activity at P654F and 

S808A, with maximal concentrations unable to shift the DHPG concentration 

response curve. VU29 was also the only ligand to result in significant changes in 

cooperativity in the mutant Y658V (4-fold decrease). No significant changes in 

cooperativity were observed with the three other ligands at the seven mutant 

receptors. In alignment with the aforementioned agonism data (table 4.3, Fig 4.7A-B 

for DPFE, Fig 4.9A-B for VU0409551), DPFE agonism was abolished at all mutants, 

while VU0409551 agonism was abolished in P654F, Y658V, T780A, W784A and 

A809V. However, despite lack of agonism, both ligands retained positive 

cooperativity, as denoted by logβ>0 (table 4.4).  
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Table 4.4. Affinity and cooperativity estimates for allosteric modulation of DHPG-mediated iCa2+ mobilisation in mutant mGlu5 cells. 
Data are mean ±SEM of 3-5 independent experiments performed in duplicate unless otherwise stated. 
 pKB logβ logτB pKB logβ logτB 

VU0424465 DPFE 
WT 7.00±0.11 0.84±0.13 -0.12±0.08 5.35±0.25 1.07±0.11 -0.62±0.10 

P654F 5.85 c 0.48 c 0.48 c 7.06±0.30 a,b 0.33±0.07 b no agonism 
Y658V 5.49 c 1.29 c -0.04 c 5.15±0.13 0.99±0.07 no agonism 
T780A 5.89±0.21 a 0.49±0.18 -0.20±0.15 5.28±0.49 b 0.47±0.14 b no agonism 
W784A 6.21±0.61 b 1.92±0.70 b 1.14±0.55 b 7.06 c 0.65  no agonism 
S808A 5.92±0.30 a 1.01±0.34 0.45±0.22 6.64±0.18 a 0.60±0.14 no agonism 
A809G n.d. n.d. n.d. 5.39±0.37 1.03±0.16 no agonism 
A809V n.d. n.d. n.d. 6.03±0.31 0.85±0.19 no agonism 

VU29 VU0409551 
WT 6.67±0.28 0.81±0.08 no agonism 5.88±0.20 1.06±0.09 -0.26±0.06 

P654F no modulation no modulation no agonism 7.36±0.68 0.49±0.15 no agonism 
Y658V 6.63±0.46 0.21±0.07 a no agonism 6.74±0.44 0.55±0.09 no agonism 
T780A 6.45±0.25 0.32±0.15 -1.05±0.10 5.93±0.38 0.76±0.12 no agonism 

W784A 7.54±0.27 1.00±0.23 no agonism 6.14±0.22 0.92±0.06 no agonism 
S808A no modulation no modulation no agonism 6.37±0.42 0.60±0.13 -0.67±0.19 b 

A809G 6.74±0.25 0.44±0.15 no agonism 5.65±0.12 1.01±0.18 -0.48±0.06 
A809V 6.92±0.39 0.33±0.02 no agonism 5.94±0.35 0.86±0.22 no agonism 

a p<0.05, significantly different from WT, One-way ANOVA, Dunnett’s post test 
b operational model of allosterism was globally fitted to 3 or more independent experiments 
c operational model could only be fit to n=2 (from 3 or more) independent experiments 
n.d. not determined, unable to fit data due to agonism; no agonism: log(τB) no different from -100 (F test)
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Table 4.5. Summary of key findings relative to mGlu5 WT receptors 
 

Ligand Agonism (Δlog(τ/KA)) 
relative to WT 

Modulation (iCa2+ mobilisation) 
relative to WT 

Biased agonism (ΔΔlog(τ/KA)) 
relative to DHPG 

VU0424465 •! ↓ iCa2+: P654F, Y658V, T780A, 
A809V 

•! ↓ IP1: all mutants except W784A 
•! No effect on pERK1/2 

•! ↓pKB: Y658V, T780A, S808A 
•! No effect on cooperativity  

•! WT: significant bias between three 
studied pathways 

•! Loss of all bias: P654F, Y658V, 
T780A, W784A, S808A 

•! A809G, A809V retained bias 
between iCa2+-IP1, lost pERK1/2 
bias 

DPFE •! iCa2+: all mutants – loss of agonism 
•! No change in IP1 or pERK1/2 

•! ↑pKB: P654F, W784A, S808A 
•! No effect on cooperativity 

•! WT: no significant bias between 
three studied pathways 

•! S808A: Gain of bias between iCa2+ 
and IP1  

VU29 •! ↓ IP1: A809V 
•! Gain in iCa2+ agonism: T780A 
•! No change in pERK1/2 

•! ↓logβ: Y658V 
•! P654F, S808A abolished 

cooperativity 

•! WT: no iCa2+ agonism, significant 
IP1-pERK1/2 bias 

•! Loss of IP1-pERK1/2 bias with all 
mutants 

•! Gain in iCa2+ agonism in T780A 
VU0409551 •! iCa2+: P654F, Y658V, T780A, 

A809V abolished agonism 
•! pERK1/2: P654F, T780A, W784A, 

S808A, A809V abolished agonism 

•! No changes in affinity or 
cooperativity 

 

•!WT: no significant bias between 
three studied pathways 

•!No gain in bias between three 
studied pathways 
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4.4. Discussion 

We recently showed biased agonism to be operative for select mGlu5 PAMs 

(Sengmany et al., 2017), and here, extended this study to probe the residues involved 

in allosteric activation of discrete signalling endpoints. Seven point mutations were 

studied using four mGlu5 allosteric ligands with distinct signalling profiles, and 

activity was quantified using the operational model of agonism (Black and Leff, 

1983). Transduction coefficients were compared using the analytical methods 

previously described (Kenakin et al., 2012) to derive a biased signalling profile for 

each ligand at each mutant receptor. Estimates of functional affinity (pKB), 

cooperativity (logβ) were also derived to delineate residues driving either ligand 

affinity or cooperativity. The mutations Y658V, T780A and S808A significantly 

affected agonism, affinity and/or cooperativity with DHPG in iCa2+ mobilisation for 

all four studied ligands, and resulted in loss of VU0424465 bias between the three 

studied pathways, and a loss of VU29 bias toward IP1 accumulation relative to 

pERK1/2. S808A, however, produced a gain in DPFE bias between iCa2+ mobilisation 

and IP1 accumulation, while T780A resulted in a gain of VU29 iCa2+ mobilisation. 

VU0409551 iCa2+ mobilisation and pERK1/2 agonism was particularly sensitive to 

the selected receptor mutations, with abolishment of activity at most mutants, with 

only A809G retaining VU0409551 agonism at the three studied pathways. Changes in 

ligand agonism and bias between receptor signalling endpoints highlight the distinct 

changes in signalling profiles with each mutation – thereby providing further insight 

into the structural basis of mGlu5 biased agonism. 

 

First, we determined whether the introduced mutations affected the global receptor 

activation network, rather than influencing individual allosteric ligand efficacy. None 
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of the studied mutations affected DHPG agonism at the three studied endpoints, with 

the exception of Y658V and pERK1/2 agonism – thus confirming the mutations had 

limited effect on global receptor activation (pending repeated pERK1/2 experiments 

with Y658V). The majority of mutations, however, significantly affected VU0424465 

agonism of iCa2+ mobilisation and IP1 accumulation, with little changes in pERK1/2 

relative to WT. Interestingly, all mutants abolished DPFE agonism of iCa2+ 

mobilisation, while the majority of mutations abolished VU0409551 both iCa2+ 

mobilisation and pERK1/2 agonism. This abolishment of agonism points to two 

possible scenarios – either the individual mutation negatively impacted ligand 

affinity, such that the ligand no longer binds to induce a receptor response, or rather, 

the ligand was able to bind but not “activate” the receptor. Since DHPG retained 

activity at all mutations except Y658V, this suggests allosteric ligands may activate 

either the calcium or pERK1/2 signalling pathways via receptor conformations 

distinct from that imposed by DHPG. This is further supported by the iCa2+ 

mobilisation seen with VU0424465 – the majority of mutants produced iCa2+ 

mobilisation responses greatly exceeding DHPG responses (i.e. >100% DHPG 

maximal calcium response), suggesting stabilisation of different active receptor 

conformations relative to orthosteric ligands. 

 

Three mutations – Y658V (TM3), S808A (TM7) and T780A (TM6) – resulted in 

significant changes in agonism across the four studied ligands, with greatest 

reductions in iCa2+ mobilisation and pERK1/2 agonism but not IP1 accumulation. 

Mutations of these three conserved residues also resulted in a significant reduction of 

VU0424465 functional affinity for DHPG-iCa2+ mobilisation, while Y658V and 

S808A significantly reduced, if not abolished VU29 positive cooperativity. Further, 
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VU29, a “pure” PAM of iCa2+ mobilisation, with no apparent agonism in WT, gained 

agonism of iCa2+ mobilisation in the mutant T780A. These results largely parallel 

previous studies, with reductions in affinity and/or cooperativity, as well as 

pharmacological switches, observed in various mGlu5 chemotypes with alterations in 

any of these three residues (Gregory et al., 2014; Gregory et al., 2013b; Mølck et al., 

2012; Turlington et al., 2013). These three residues, Y658, S808 and T780, reside 

toward the base of the mGlu5 allosteric binding pocket and form critical hydrogen-

bond links with a residing water molecule – suggested to be a receptor “activation 

switch” (Christopher et al., 2015; Dore et al., 2014). Perturbations in this hydrogen 

bond network, through incorporation of large phenyl substitutions in allosteric ligand 

chemotypes, has been noted to switch ligand pharmacology (O'Brien et al., 2003; 

Wood et al., 2011). Conversely, perturbations, or rather mutations, of the residues 

within this hydrogen-water network also affected allosteric ligand affinity and 

cooperativity (Gregory et al., 2014; Gregory et al., 2013b; Mølck et al., 2012; 

Turlington et al., 2013). Y658 and S808 also potentially form critical ligand-receptor 

binding interactions with each of the studied ligands – forming π-stacking interactions 

between the tyrosine and phenyl rings and hydrogen bonds between the serine 

hydroxyl group and nitrogen/amide constituent within each ligand (Christopher et al., 

2015; Dore et al., 2014). Thus, alterations in either of these residues would result in 

altered ligand positioning – explaining the altered affinity and/or cooperativity 

observed with our data.   

 

The residue W784, analogous to the Trp found in the Class A “rotamer toggle switch” 

CWxP (Holst et al., 2010; Shi et al., 2002), represents another potential key activator 

of receptor responses. Increases in affinity of certain mGlu5 PAMs were observed 
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following mutation of this residue (Chen et al., 2007; Gregory et al., 2014; Gregory et 

al., 2013b; Muhlemann et al., 2006; Turlington et al., 2013), while the prototypical 

mGlu5 NAM MPEP had reduced affinity and potency in this mutant (Gregory et al., 

2013b; Malherbe et al., 2006; Malherbe et al., 2003; Mølck et al., 2012; Pagano et al., 

2000). Congruent with the previous PAM studies (Chen et al., 2007; Gregory et al., 

2014; Gregory et al., 2013b; Muhlemann et al., 2006; Turlington et al., 2013), DPFE 

affinity for iCa2+ mobilisation in W784A was increased in our study, however, DPFE 

agonism was abolished. The increase in affinity may potentially be explained through 

reduced steric hindrance following a smaller alanine substitution relative to the bulky 

tryptophan group, thereby allowing a larger receptor pocket for DPFE binding. 

However, as this residue is a key mediator of receptor activation, substitutions may 

sway the receptor toward distinct conformations, and potentially negatively impact 

activation of iCa2+ mobilisation – thus resulting in increases in DPFE affinity but 

abolishment of agonism.   

 

The mGlu5 allosteric binding site comprises two large hydrophobic regions, 

connected by a narrow channel (Christopher et al., 2015; Dore et al., 2014). As such, 

several mGlu5 allosteric ligand chemotypes contain a “narrow” acetylene/alkyne 

moiety, or small flexible linker substituent, within the centre of the compound, 

connecting two larger hydrophobic ring structures (e.g. phenyl rings, pyrmidines and 

pyrazoles), one of which transverses the channel toward the base of the allosteric 

pocket (Christopher et al., 2015; Dore et al., 2014). Two residues chosen for this 

study, A809 and P654, form part of the narrow bridge between the two hydrophobic 

pockets, and thus were hypothesised to influence ligand positioning within the mGlu5 

binding site. Indeed, A809V significantly reduced transduction ratios of VU0424465 
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iCa2+ mobilisation and IP1
 accumulation, and VU29-mediated IP1 accumulation – 

while glycine substitution at the same residue diminished VU0424465 IP1
 

accumulation and abolished DPFE iCa2+ mobilisation. Biased signalling profiles, 

however, were largely retained between iCa2+ mobilisation and IP1 accumulation by 

VU0424465 at both A809 mutants, however, bias toward pERK1/2 relative to iCa2+ 

mobilisation was lost. While the size of the aliphatic glycine and valine relative to 

alanine are perhaps comparable, movement or extension of the residue would 

potentially increase steric hindrance within the narrow channel, hindering the binding 

of allosteric ligands. Further, as A809 neighbours S808, the residue that forms part of 

the critical hydrogen-water network, any substitution would increase bulk within the 

region, consequently stressing helix stability, and potentially affecting the critical 

S808 position within the protein backbone (Lopez-Llano et al., 2006; Serrano et al., 

1992). Thus, this residue remains a constraint in drug design, with the requirement of 

a narrow linker moiety within the compound to accommodate the narrow bridge 

within the allosteric site.  

 

Modification of the second studied residue lining the narrow binding channel, P654, 

also significantly affected ligand activity. Phenylalanine substitution resulted in a 

reduction in VU0424465 agonism across the three studied pathways, however, 

increased DPFE-mediated pERK1/2 agonism. In contrast with previous studies that 

show unchanged DPFE functional affinity at glutamate-mediated iCa2+ mobilisation 

(Gregory et al., 2014), P654F also resulted in a significant increase in DPFE affinity 

for iCa2+ mobilisation – although it should be noted that DHPG in lieu of glutamate 

was used as the orthosteric agonist in our study, and probe dependence, whereby the 

nature of allosteric modulation may alter depending on the orthosteric ligand used, 
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may be operative (Sengmany et al., 2017). This mutation also abolished VU29 

positive cooperativity in DHPG-mediated iCa2+ mobilisation. As this mutation did not 

significantly affect the cooperativity of VU0424465, DPFE and VU0409551, it 

suggests the loss of VU29 activity for iCa2+ mobilisation is largely affinity driven. 

Indeed, a bulky phenylalanine substitution would unsurprisingly hinder the ability of 

VU29, as well as other mGlu5 allosteric ligands, to reach into the base of the allosteric 

binding pocket. This is further emphasised in the reduction of agonism of VU0424465 

across the three pathways, as well as the loss of iCa2+ mobilisation with DPFE and 

VU0409551. Thus, these two residues, P654 and A809, linking the two hydrophobic 

binding pockets within the mGlu5 allosteric site, are a critical factor in the design of 

allosteric ligands, with chemotypes required to successfully transverse the narrow 

channel for optimal ligand activity.  

 

While our study provides unique insight into individual residues involved in iCa2+ 

mobilisation, IP1 accumulation and ERK1/2 phosphorylation, several key experiments 

will allow a fuller understanding of the structural basis of signalling bias. First, 

receptor expression numbers in each mutant cell line should be determined, as 

receptor overexpression may alter coupling to discrete signalling pathways (Rohrer 

and Kobilka, 1998; Sarramegna et al., 2003; Wise et al., 2002).  Due to time 

constraints, this was not completed. However, an enzyme-linked immunosorbent 

assay (ELISA) to quantify receptor protein would allow comparisons of receptor 

numbers and normalisation against WT expression levels. Second, assessment of 

allosteric interactions with DHPG at IP1 accumulation and ERK1/2 phosphorylation is 

also required to allow comparisons of biased modulation between mutants. Again this 

was not completed due to time constraints, however, these experiments would provide 
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insight into residues driving functional affinity and/or cooperativity at alternate 

signalling pathways. Third, molecular dynamic stimulations via ligand docking to 

crystal structures would increase understanding of key residues implicated in ligand-

receptor binding and activation. Current literature shows the residues chosen for this 

study cluster toward the base of the allosteric binding pocket – distinct from the 

overlapping mGlu1 binding site – and form discrete hydrogen-water networks 

associated with receptor stability and activation (Christopher et al., 2015; Dore et al., 

2014; Wu et al., 2014). These mGlu5 crystal structures, however, represent an inactive 

and essentially static receptor, without N- and C-termini – thus limitations arise when 

assessing the movement of TM domains following receptor activation, as well as the 

interaction with G protein – itself an allosteric modulator (Christopher et al., 2015; 

Dore et al., 2014; Gregory et al., 2014). Nonetheless, solved receptor crystal 

structures provide an invaluable platform in understanding ligand-receptor 

pharmacology and would be an intuitive next step to understand ligand binding and 

receptor activation. 

 

Overall, our study highlights key residues involved in mGlu5 allosteric ligand binding, 

agonism and modulation, extending the literature to include the evaluation of IP1 

accumulation and pERK1/2 agonism. As biased agonism is operative in WT 

receptors, it is logical for mutagenesis studies to also assess ligand activity across 

multiple receptor endpoints, rather than simply the canonical signalling pathway. In 

doing so, we have delineated the residues involved in mGlu5 iCa2+ mobilisation, IP1 

accumulation and pERK1/2 agonism, as well as residues influencing affinity, 

cooperativity and bias. Three key regions implicated in ligand agonism, affinity and 

cooperativity arose from our study – the hydrogen-water network, the analogous 
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“rotamer toggle switch”, as well as the narrow bridge connecting the two hydrophobic 

binding pockets. Modifications of either of these regions resulted in significant 

changes in ligand activity – namely via changes in agonism and subsequent loss or 

gain of bias. Thus, our findings provide the foundations for optimised structure-

activity relationships in the design of allosteric ligands with desirable 

pharmacological outcomes.  
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5.1. Introduction 

Tissue inflammation and injury cause glutamate release from sensory neurons, 

leading to an influx of inflammatory mediators and resultant increased sensitivity to 

noxious stimuli (deGroot et al., 2000; Jin et al., 2006; Lawand et al., 2000). Within 

the glutamatergic system, the group I metabotropic glutamate receptors (mGlu) are 

implicated in hyperalgesic effects (Karim et al., 2001; Walker et al., 2001). mGlu1 and 

mGlu5 are expressed on dorsal root ganglion (DRG) and trigeminal ganglion  neurons, 

as well as unmyelinated nerve fibres (Bhave et al., 2001; Lee and Ro, 2007). Systemic 

injection of group I mGlu agonists results in increased thermal hyperalgesia, 

antagonists attenuate inflammatory pain (Bhave et al., 2001; Chung et al., 2015; 

Honda et al., 2017; Ren et al., 2012; Soliman et al., 2005), while peripheral injection 

of mGlu5 antagonists ameliorates post-operative pain responses in rodents (Zhu et al., 

2005). This thermal and mechanical hypersensitivity is linked to mGlu5-mediated 

protein kinase C (PKC) protein phosphorylation (Chung et al., 2015; Honda et al., 

2017; Lee and Ro, 2007). Thus, group I mGlus within primary afferent neurons 

provide an attractive drug target in the modulation of pain responses.  

 

Co-expressed within DRG neurons and highly enriched in unmyelinated C-fibres, the 

transient receptor potential (TRP) vanilloid 1 (TRPV1) channel is a non-selective 

cation channel sensitive to temperatures greater than 43°C, low pH < 6.5 and irritants 

such as capsaicin and various lipids (Kobayashi et al., 2005; Nozadze et al., 2016; 

Schepers and Ringkamp, 2009). A global integrator of pain sensation within primary 

afferents (Caterina and Park, 2006), activation of TRPV1 channels initiates the influx 

of Ca2+ and Na+, resulting in the release of tachykinin neuropeptides, including 

substance P and calcitonin-gene-related-peptide (CGRP) (Rosenbaum and Simon, 
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2007). These neuropeptides subsequently interact with resident immune and 

peripheral target cells, such as macrophages and endothelia, to induce the 

characteristic inflammatory response (Richardson and Vasko, 2002). TRPV1 

phosphorylation via PKC, PKA and CaMKII sensitises the receptor to activation by 

capsaicin (Bhave et al., 2003; Jung et al., 2004; Rathee et al., 2002; Wang et al., 

2015), while dephosphorylation of TRPV1 by calcineurin leads to a desensitised 

receptor state (Jung et al., 2004).  

 

Previous studies have proposed direct activation of TRPV1 by mGlu5 in presynaptic 

terminals within the rodent dorsal horn, with diacylglycerol produced from mGlu5 

stimulation mediating the coupling of mGlu5 and TRPV1 receptors (Kim et al., 2009). 

Masuoka and colleagues further showed a biphasic modulatory effect of mGlu5 

activation on TRPV1-mediated calcium response, leading to transient thermal 

hyperalgesia followed by hypoalgesia in mice (Masuoka et al., 2015). Further, 

prolonged stimulation of DRG neurons with group I mGlu agonists increased the 

number of capsaicin-sensitive DRG neurons, thereby increasing sensitivity to noxious 

stimuli (Masuoka et al., 2016).  

 

While studies involving mGlu5 and TRPV1 have largely focused on prototypical 

orthosteric agonists and antagonists – namely the group I mGlu agonists glutamate, 

DHPG and quisqualate, the prototypical mGlu5 negative allosteric modulator (NAM) 

MPEP, and the TRPV1 agonist capsaicin – little has been done involving other 

mGlu1/5 allosteric modulators. As there is a clear relationship between group I mGlu 

and TRPV1 receptors, we aimed to probe the effects of various mGlu5 allosteric 

ligands on TRPV1-mediated calcium responses. Furthermore, we extended the 
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TRPV1 agonist repertoire in this study to include endogenously expressing agonists 

(endovanilloids), as modulation of these ligands provides another layer of complexity, 

albeit opportunity, in targeting the multifaceted pain cascade. Overall, our study 

highlights the amenable nature of TRPV1 responses following incubation with mGlu5 

allosteric ligands within rat DRG neurons, with mGlu5 activation offering a potential 

avenue in targeting TRPV1-mediated pain responses within the peripheral nervous 

system.  

 
 
5.2. Materials and Methods 

 (S)-3,5-Dihydroxyphenylglycine (DHPG), 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-

yl)benzamide (CDPPB) and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate 

ethyl ester (CPCCOEt) were purchased from Tocris Bioscience (Melbourne, 

Australia). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO) 

and were of analytical grade, unless otherwise stated. 

 

5.2.1. Animals 

Adult male Wistar rats (approximately 200g, Charles River, UK) were group housed 

and maintained on a 12 hour light/dark cycle, with access to food and water ad 

libitum. All experiments were carried out in accordance with UK Home Office 

regulations (Scientific Procedures Act, 1986). 

 

5.2.2. DRG preparation 

5.2.2.1. Preparation of glass coverslips 

Glass coverslips (19 mm diameter) were washed in 10% Decon (Decon Sciences) for 

a minimum of 2 h, before being rinsed twice in distilled water. Coverslips were then 
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soaked in 4 M HCl for 30 min and rinsed twice in distilled water, before air-drying 

overnight. 

 

On the day of experimentation, coverslips were incubated with 100 µL sterile 0.1 

mg/mL poly-D-lysine for 90 min at room temperature. Coverslips were washed once 

in distilled water and allowed to air dry. Laminin (1 mg/mL, 10 µL) was added to the 

centre of the coverslip and allowed to dry for 60 min, before being washed in distilled 

water and vacuum-dried before use. 

 

5.2.2.2. Dorsal root ganglion (DRG) neuron preparation and culture 

Adult male Wistar rats (weighing approximately 200 g) were sacrificed using cervical 

dislocation and decapitation. The dorsal surface of the rat was swabbed with industrial 

methylated spirits (IMS), and the fur and skin dissected to expose the underlying 

vertebral column. Cuts on either side of the vertebral column allowed removal of the 

spinal column onto a Petri dish containing Dulbecco’s Ca2+ and Mg2+-free phosphate 

buffered saline (PBS) (Sigma) at 37°C. Excess tissue and muscle was trimmed before 

an incision down the midline of the ventral plate revealed the spinal cord. The excised 

spinal cord allowed access to the DRGs, which were removed by incising peripheral 

and central trunks. Approximately 35 – 40 DRGs were collected per rat. Isolated 

DRGs were trimmed of excess spinal tissue and placed in a 15 mL falcon tubed filled 

with PBS. The DRGs were washed once under gravity and incubated in 5 mL 

Neurobasal media (Gibco) containing collagenase (2.5 mg/mL) supplemented with 

horse serum (10%), for 90 min at 37°C and 5% CO2.  
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DRGs were then washed for a minimum of three times in PBS to allow the removal of 

the dorsal capsule and unwanted tissue debris. DRGs were then incubated in 2 mL 

trypsin (0.5x) at 37°C, 5% CO2. After 30 min incubation, without disturbing the 

DRGs that settled to the base of the falcon tube, 1 mL trypsin solution was carefully 

removed, and 1 mL bovine serum albumin (BSA) solution (16% BSA in Hanks 

Balanced Saline Solution (HBSS) at pH 7.4) added to the DRG and trypsin mixture. 

This mixture was then triturated approximately 20 times, using a 1000 µL pipette, to 

form a cell suspension. The cell suspension was then carefully layered on top of 4 mL 

bovine serum albumin solution (16% BSA in HBSS, pH 7.4) and centrifuged (500 g, 

room temperature) for 6 min. The supernatant layer was aspirated and the remaining 

cell pellet was resuspended in 170 µL neurobasal media containing 50 mg/mL glial 

cell line-derived neurotropic factor (GDNF), 2 mM L-glutamine, 1 mg/mL nerve 

growth factor (NGF), 200 units/mL penicillin and 200 ng/mL streptomycin (complete 

media). 20 µL of the cell suspension was pipetted onto the centre of sterilised glass 

coverslips and incubated at 37°C, 5% CO2 for a minimum 30 min to allow DRGs to 

adhere to the laminin and poly-D-lysine coating. Placing the DRGs on the centre of 

the coverslip ensured a dense population of cells within a small region, and increased 

the number of cells available for imaging within the chosen region of interest. 130 µL 

of complete media was then carefully pipetted around the DRG population and 

coverslips incubated overnight at 37°C, 5% CO2 before experimentation the following 

day.  

 

5.2.3. mGlu1/5 ligand incubation 

Drugs were dissolved in Ca2+ assay buffer (Hank’s Balanced Salt Solution (HBSS; 

KCl 5.33 mM, KH2PO4 0.44 mM, NaHCO3 4.17 mM, NaCl 137.93 mM, Na2HPO4 
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0.34 mM, D-glucose 5.56 mM) with 16 mM HEPES, pH 7.4) in 0.3% DMSO. 

Capsaicin and NADA stocks were dissolved in 100% ethanol. Coverslips were 

washed in Ca2+ buffer and incubated with 2 mL of mGlu5 drug solution at 37°C, 5% 

CO2 for 30 min prior to washing, dye loading and calcium imaging (see below). 

MPEP, CDPPB and CPCCOEt (10 µM), DHPG (30 µM) and glutamate (30 µM) were 

studied. These concentrations were selected based on previous literature (Masuoka et 

al., 2016), as well as allowing for >90% receptor occupancy (approximately 10 x KB 

estimates) (Sengmany et al., 2017). Capsaicin (100 nM), anandamide (AEA, 10 µM), 

oleoylethanolamide (OEA, 10 µM), and N-arachidonoyl-dopamine (NADA, 1 µM) 

were chosen as the endovanilloids studied, due to their commercial availability – 

allowing for robust replication of the experiments. The concentrations of 

endovanilloid studied were chosen based on an literature values of approximate EC50 

response, allowing potentiation or inhibition of TRPV1 responses by mGlu5 to be 

clearly observed (Ahern, 2003; Huang et al., 2002; Ross, 2003).  

 

5.2.4. Fura-2AM cell loading 

Intracellular calcium was visualised using the calcium sensitive dye Fura-2AM (L-[2-

(carboxyoxazol-2-yl)-6-amino-benxofuran-5-oxy]-2-(2’-amino-5’-

methylphenoxy)ethane-N,N,N,N-tetraacetic acid pentaacetoxymethylester). Cells 

were washed with Ca2+ assay buffer (HBSS as above, with 2.5 mM probenecid, pH 

7.4) before incubation with 5 µL Fura-2-AM (1mg/mL) at 37°C for 30 min in reduced 

light conditions. Cells were then washed with Ca2+ assay buffer to remove 

extracellular dye, and coverslips kept in Ca2+ assay buffer for 15 min prior to 

experimentation to allow for cleavage by cellular esterases resulting in the active 

Fura-2 form.  
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5.2.5. Calcium imaging studies of DRG neurons 

Intracellular calcium concentrations of individual DRG neurons were estimated as 

ratios of peak fluorescence emission intensities (measured at 500 nm) at excitation 

wavelengths of 340 and 380 nm using an Improvision imaging system. In the 

unbound form, Fura-2 has high excitation efficiency at 380 nm and low excitation 

efficiency at 340 nm. Upon calcium binding, Fura-2 fluoresces with high excitation 

efficiency at 340 nm and low excitation efficiency at 380 nm. The ratio between the 

two fluorescence intensities measured at both excitation wavelengths is quantified to 

give a ratiometric readout of calcium mobilisation. This ratiometric approach has the 

advantage of removing fluorophore uptake variability between cells, as well as 

intrinsic variability in primary cell culturing, such as uneven cell thickness. Diameters 

of DRG neurons chosen for the study were less than 35 µm, as estimated by Andor iQ 

Live Cell Imaging Software (Oxford Instruments), as these represented the smaller C-

fibre neurons enriched with TRPV1 receptors.  

 

Coverslips were fixed to a Perspex chamber using vacuum grease and DRGs were 

suprafused with Ca2+ buffer at 2 mL/min with TRPV1 receptor agonists capsaicin 

(100 nM), AEA (10 µM), OEA (10 µM) and NADA (1 µM) for 1 min followed by 45 

min washout with Ca2+ buffer to allow DRG calcium responses to return to baseline. 

Following return to baseline levels, DRGs were suprafused with KCl 60 mM, to allow 

for maximal calcium influx as a positive control. Ratiometric responses were 

measured at 5 sec per frame. 
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Fig 5.1. Summary of sample protocol used. DHPG is preincubated for 4 h on 

coverslips, followed by addition of Fura-2 dye then stimulation with capsaicin (Cap). 

 

5.2.6. Data analysis 

Calcium responses were measured as peak stimulated ratio (taken from 2 min post 

ligand addition) minus mean basal ratio (taken from 1 min prior to ligand addition). 

DRGs which showed less than 0.1 unit increase in ratio response following KCl 

addition were deemed unresponsive and hence excluded from analysis.  

Changes in intracellular calcium mobilisation within each DRG neuron were 

expressed as a percentage of KCl response, and the number of responding cells were 

represented as a percentage of cells responding to KCl. Data are expressed as mean ± 

SEM. Statistical analysis was completed using one-way analysis of variance 

(ANOVA) with Dunnett’s post-test to compare effects of mGlu5 ligand incubation vs 

vehicle control on capsaicin or endovanilloid-mediated TRPV1 response in DRGs and 

number of DRG neurons responsive to capsaicin or endovanilloid stimulation.  

For comparisons of peak calcium responses, each cell was defined as an individual ‘n 

number’, with experiments replicated with multiple rodents to give an overall 

experimental ‘n number’ (n=3 or more independent experiments). Statistical analyses 

were conducted comparing responses of individual cells collated across three or more 

independent experiments (i.e. 3 or more rats).  

 
 

Recording;+perfusion+ 2mL/min

DHPG+30+µM+4+h Fura@2
30min

Cap
60+s

45+min+
wash

KCl
60+s
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5.3. Results 
 
While numerous studies have investigated DRG responses to capsaicin, little is 

known of endovanilloid modulation. Thus, for this study, we included several 

endogenously expressing TRPV1 agonists – anandamide (AEA), oleoylethanolamide 

(OEA) and N-arachidonoyl-dopamine (NADA) (Fig 5.2). Because these ligands are 

endogenously available within a (patho)physiological context, modulation of these 

compounds provides a favourable opportunity in targeting pain responses. 

 

Fig 5.2. Structures of TRPV1 agonists used in this study. Capsaicin is the 

prototypical TRPV1 agonist. Anandamide, oleoylethanolamide and N-arachidonoyl-

dopamine are endogenous agonists of TRPV1 (endovanilloids).  

 

The endogenous mGlu receptor agonist glutamate, and the mGlu1/5 orthosteric agonist 

DHPG were selected to evaluate effects of prolonged mGlu1/5 activation on TRPV1 

iCa2+ responses. An mGlu1 NAM, CPCCOEt, mGlu5 NAM, MPEP and mGlu5 PAM-

agonist, CDPPB were also assessed to provide a greater picture of mGlu modulatory 

activity of TRPV1 responses. The protocol of prolonged incubation, i.e. incubation of 

mGlu ligands for 4 h prior to stimulation with TRPV1 agonist, was chosen as 
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glutamate levels are known to remain elevated for over 3 h during inflammation 

(Omote et al., 1998). 

 

5.3.1. Effects of capsaicin, AEA, OEA and NADA on intracellular calcium responses 

in adult rat dorsal root ganglion neurons. 

Representative calcium traces of four individual DRG neurons on the same coverslip 

are shown in figure 5.3, whereby ligands were perfused for 1 min, followed by a 

minimum 45 min washout to allow calcium responses to return to basal levels. It 

should be noted that individual DRG neurons showed large variability in peak iCa2+ 

responses following ligand addition - for instance, the cell represented by the red trace 

was the only one that responded to the first OEA addition; three other cells showed 

minimal responses, while addition of AEA resulted in iCa2+ mobilisation in only two 

of the four cells shown – despite the four DRG neurons being derived from the same 

animal. This observation highlights the often variable nature of using primary cells.
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Fig 5.3. Representative traces showing changes in 340:380 ratios of four 

individual DRG neurons in response to addition of OEA (10 µM), AEA (10 µM), 

capsaicin (100 nM) and KCl (60 mM), within the same individual coverslip. 

Ligands were perfused for 1 min, followed by a washout with calcium assay buffer 

for a minimum of 45 min to allow iCa2+ responses to return to basal levels.  

 

 

In untreated DRG neurons, the 340/380 nm ratio (reflecting basal intracellular 

calcium concentration [iCa2+]) was 2% KCl (60 mM) response (n=308 cells from 6 

independent experiments). Capsaicin was used as a positive control for TRPV1 

expressing DRG neurons, with a concentration of 100 nM producing 108% KCl 

response (Fig 5.4A, table 1).  

 

Of the studied endovanilloids, an approximately EC50 concentration was chosen from 

literature values to allow for either positive or negative modulation by the studied 

mGlu ligands (Ahern, 2003; Huang et al., 2002; Ross, 2003). AEA and OEA at 10 

µM produced 66% and 56% KCl response respectively, while 1 µM NADA reached a 

maximum of 89% KCl response (Figure 5.4B-D, table 5.1).  
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5.3.2. Long-term activation of mGlu1/5 by the orthosteric agonists glutamate and 

DHPG increased OEA-mediated iCa2+ responses but not those to capsaicin or AEA. 

 

The effect of extended stimulation of mGlu1/5 ligands on TRPV1 evoked iCa2+ 

responses was evaluated in DRG neurons following 4 h incubation in calcium assay 

buffer containing glutamate or DHPG (30 µM) (Masuoka et al., 2016). Glutamate pre-

incubation resulted in a significant increase in OEA-mediated iCa2+ responses, to 

reach responses similar to KCl (Fig 5.4C, table 5.1), while having no significant effect 

on capsaicin or AEA responses (Fig 5.4A-B).  

 

The mGlu1/5 orthosteric agonist DHPG also had no significant effects on responses to 

capsaicin, AEA and OEA following 4 h pre-incubation, although calcium responses 

were perhaps saturated with capsaicin 100 nM (~100% KCl response), and thus 

resulting in minimal observable increases following mGlu1/5 agonism.   
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Fig 5.4. Effect of 4 h pre-incubation of mGlu1/5 ligands on capsaicin and 

endovanilloid-mediated iCa2+ mobilisation in rat DRG neurons, normalised to 

KCl response. DRG neurons were pre-incubated with glutamate 30 µM, DHPG 30 

µM, CDPPB 10 µM, MPEP 10 µM or CPCCOEt 10 µM before stimulation with 100 

nM capsaicin (A), 10 µM AEA (B), 10 µM OEA (C) or 10 µM NADA (D). Peak 

iCa2+ responses were measured as fluorescent ratio of 340:380, normalised to KCl 60 

mM responses. Data shown represent mean ± SEM of 30-200 cells from 3-10 

independent experiments unless stated otherwise. Comparisons to responses evoked 

by endovanilloid alone were analysed using one-way ANOVA, Dunnett’s post-test; 

**** p<0.0001, ** p<0.005 (see 5.2.6. for details of analysis). 
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Fig 5.5. Effect of 4 h pre-incubation of mGlu1/5 ligands on capsaicin and 

endovanilloid-mediated iCa2+ mobilisation in rat DRG neurons, expressed as 

340:380 fluorescence ratio. DRG neurons were pre-incubated with glutamate 30 µM, 

DHPG 30 µM, CDPPB 10 µM, MPEP 10 µM or CPCCOEt 10 µM before stimulation 

with 100 nM capsaicin (A), 10 µM AEA (B), 10 µM OEA (C) or 10 µM NADA (D). 

Peak iCa2+ responses were measured as fluorescent ratio of 340:380. Data shown 

represent mean ± SEM (represented in blue) of 30-200 cells (represented by each 

point) from 3-10 independent experiments unless stated otherwise.  
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5.3.3. Prolonged incubation with the prototypical mGlu5 NAM, MPEP, decreased 

capsaicin and AEA-mediated iCa2+ responses but had no effect on OEA. 

MPEP was chosen for this study as it is the prototypical mGlu5 NAM, and has 

previously been shown to ameliorate rodent pain responses mediated by capsaicin, as 

well as to reduce capsaicin-induced iCa2+ mobilisation in DRG neurons (Kim et al., 

2009; Masuoka et al., 2016; Picker et al., 2011; Soliman et al., 2005). This effect was 

confirmed in our study, with a significant reduction in peak capsaicin-induced iCa2+ 

influx relative to vehicle control (108% to 70% KCl response; Fig 5.4A, table 5.1).  

 

Prolonged MPEP stimulation also resulted in a decrease in AEA (10 µM) responses, 

from 66% to 34% KCl response (Fig 5.4B, table 5.1). A similar trend was observed 

with NADA (1 µM), with MPEP pre-incubation leading to an approximate 30% 

decrease in peak iCa2+ mobilisation, although statistical analyses were not performed 

due to insufficient independent experiments. There was no significant change in 

OEA-mediated iCa2+ response in the absence and presence of MPEP stimulation, with 

comparable peak iCa2+ responses at 56% and 64% KCl response, respectively (table 

5.1). It should be noted however, that comparison of baseline corrected 340:380 

ratios, not normalised to KCl responses, did not produce any significant changes in 

calcium responses mediated by endovanilloids, following mGlu ligand incubation (Fig 

5.5).  
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5.3.4. Prolonged stimulation with the mGlu5 PAM-agonist CDPPB reduced capsaicin 

responses, while the mGlu1 NAM CPCCOEt increased OEA-mediated iCa2+ 

mobilisation. 

 

Pre-incubation with the mGlu5 PAM-agonist CDPPB produced a 40% decrease in 

capsaicin-evoked iCa2+ responses (Fig 5.4A, table 5.1), while having no significant 

effect on OEA-mediated responses. There was however a 13% increase in peak iCa2+ 

following AEA stimulation relative to vehicle control, although this failed to reach 

statistical significance.  

 

The mGlu1 NAM CPCCOEt, while having no effect on capsaicin and AEA-mediated 

iCa2+ activity, resulted in a significant increase in OEA evoked responses following 

4h pre-incubation. Peak OEA iCa2+ responses increased from 56% to 85% KCl 

response following prolonged stimulation with 10 µM CPCCOEt (Fig 5.4C, table 

5.1). 



Chapter 5 – mGlu5 modulation of TRPV1 in rat DRGs 
 

!

!

218!

Table 5.1. Summary of peak iCa2+ responses (Ratio 340:380 normalised to  % KCl peak response) following endovanilloid stimulation with 4 h 
preincubation of mGlu ligands or vehicle control. Data are expressed as mean ± SEM of 5 – 406 cells from 3 -11 independent experiments, 
unless otherwise specified. 
 
 Vehicle + Glu 30 µM  + DHPG 30 µM + CDPPB 10 µM + MPEP 10 µM + CPCCOEt 10µM 
 Peak 

iCa2+ 
(%KCl) 

n 
(exps)# 

Peak 
iCa2+ 
(%KCl) 

n 
(exps)# 

Peak 
iCa2+ 
(%KCl) 

n 
(exps)# 

Peak 
iCa2+ 
(%KCl) 

n 
(exps)# 

Peak 
iCa2+ 
(%KCl) 

n 
(exps)# 

Peak iCa2+ 
(%KCl) 

n 
(exps)# 

Capsaicin  
100 nM 

108.1±3.3 406 
(11) 

115.9±3.8 264 
(8) 

106.8±4.6 186 
(7) 

67.5±4.5 a 70 (3) 70.3±4.5 
a 

88 (3) 102.0±5.7 67 (3) 

AEA 
10 µM 

65.9±4.6 195 
(9) 

49.5±2.4 
 

37 (3) 57.8±10.8 34 (3) 79.7±11.2 71 (3) 34.2±5.3 
a 

63 (4) 53.5±5.6 85 (4) 

OEA  
10 µM 

56.4±4.3 
 

93 (6) 106.6±9.0 

a 
42 (5) 56.5±7.5 38 (3) 46.5±5.7 

 
31 (3) 64.7±10.3 

 
24 (4) 85.1±7.8 a 

 
73 (5) 

NADA  
1 µM 

87.7±7.6 
 

62 (4) 76.2±4.5 
 

5 (2) 61.2±5.7 34 (2) n.d. n.d. 58.1±7.4 
 

19 (2) n.d. n.d. 

n.d. not determined due to time constraints 
a p<0.05 comparing iCa2+ responses to vehicle control (one-way ANOVA, Dunnett’s post-test) 
# n is the total number of responding cells, ‘exps’ is the number of independent experiments from individual donor animals 
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Fig 5.6. Number of cells responding to capsaicin or endovanilloid stimulation 

following pre-incubation with mGlu1/5 ligands. Each symbol represents the results 

from a single donor animal, with the y-axis depicting the number of cells per 

coverslip responding to ligand stimulation, expressed as a percentage of the number 

of cells responding to the positive control 60 mM KCl. Data are expressed as mean ± 

SEM of 3-11 independent experiments unless otherwise specified. Comparisons to 

number of cells responding to endovanilloid alone were analysed using one-way 

ANOVA, Dunnett’s post-test; * p<0.05 (see 5.2.6. for details of analysis).
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Table 5.2. Number of responding cells (% cells responding to KCl) following endovanilloid stimulation with 4 h preincubation of mGlu 
ligands or vehicle control. Data are expressed as mean ± SEM of 5 – 406 cells from 3 -11 independent experiments, unless otherwise 
specified. 
 
 Vehicle + Glu 30 µM  + DHPG 30 µM + CDPPB 10 µM + MPEP 10 µM + CPCCOEt 10µM 
Capsaicin  
100 nM 

66.1±4.5 
 

62.8±6.2 
 

65.7±3.3 
 

50.5±7.4 
 

59.2±9.4 57.9±5.5 
 

AEA  
10 µM 

49.5±9.4 
 

2.2±2.2 
 

21.5±5.7 
 

55.7±9.4 
 

39.6±13.0 
 

48.8±13.6 
 

OEA  
10 µM 

26.4±9.3 
 

41.9±21.2 
 

23.2±9.9 40.1±9.0 
 

15.6±6.4 
 

34.8±21.1 
 

NADA  
1 µM 

23.4±7.6 3.3±1.9^ 25.4±8.0# n.d. 16.2±9.7$ n.d. 

^ n=5 individual cells from two independent experiments from two individual donor animals 
# n=34 individual cells from two independent experiments from two individual donor animals 
$ n=19 individual cells from two independent experiments from two individual donor animal
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5.3.5. Prolonged incubation with glutamate significantly decreased the population of 

AEA-sensitive DRG neurons, while all mGlu1/5 ligands studied had no effect on other 

TRPV1 agonists. 

 

Previous studies highlighted that prolonged mGlu5 stimulation with 30 µM glutamate 

significantly increased the proportion of capsaicin-sensitive DRG neurons (Masuoka 

et al., 2016). We were unable to replicate these findings, and found no significant 

changes in the number of capsaicin-sensitive DRG neurons following pre-incubation 

with the mGlu5 agonists DHPG and CDPPB, as well as the mGlu1/5 NAMs MPEP and 

CPCCOEt (Fig 5.6A, table 5.2).  

 

Moreover, we observed no significant differences in the number of cells responding to 

OEA and NADA following mGlu1/5 ligand incubation (Fig 5.6C-D). Prolonged 

glutamate incubation, however, resulted in a significant reduction in the number of 

cells responding to AEA, with only 4 out of 95 cells responding across 3 independent 

experiments. No significant changes in the number of cells responding to AEA were 

observed with pre-incubation of the other studied ligands (Fig 5.6B, table 5.2).  
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5.4. Discussion 

In this study, we evaluated the effects of prolonged mGlu1/5 stimulation by various 

orthosteric and allosteric mGlu1/5 ligands on capsaicin or endovanilloid-mediated 

intracellular calcium mobilisation in rat DRG neurons. We found that 4 h incubation 

with the mGlu5 NAM MPEP significantly decreased capsaicin and AEA evoked iCa2+ 

fluorescence, while having no discernable effects on OEA. Prolonged stimulation 

with the mGlu1 PAM agonist CDPPB also decreased capsaicin responses, while 

glutamate and the mGlu1 NAM CPCCOEt increased OEA-mediated iCa2+ responses. 

Furthermore, the population of AEA-sensitive DRG neurons following prolonged 

glutamate stimulation significantly decreased. No other changes were observed with 

other endovanilloids or capsaicin in combination with other mGlu ligands. Thus, we 

show here that endogenous TRPV1 agonists, not only capsaicin, are responsive to 

modulation by mGlu ligands – thereby offering a potential therapeutic opportunity for 

modulation of TRPV1-mediated pain responses.  

 

While TRPV1 studies have largely focused on capsaicin-induced responses, we 

expanded our study to include modulation of putative endogenous TRPV1 agonists – 

the fatty acid derivatives anandamide (AEA) and N-arachidonyl dopamine (NADA) 

(Devane et al., 1992; Di Marzo and De Petrocellis, 2010; Marinelli et al., 2007), and 

the satiety factor oleoylethanolamide (OEA) (Ahern, 2003). While anandamide has 

many reported antinociceptive effects mediated through the central cannabinoid 

system (Clapper et al., 2010), within DRG neurons, TRPV1 and not CB1 receptors 

have been suggested to be involved in anandamide-induced calcium responses 

(Jerman et al., 2002).  NADA, an endogenous capsaicin-like compound also 

possessing cannabinoid activity, was shown to act via TRPV1 receptors within DRG 
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neurons, with antagonism of TRPV1 responses abolishing NADA-evoked 

depolarization and calcium responses (Sagar et al., 2004). Thus, since cannabinoid 

receptors are expressed on DRG neurons (Ahluwalia et al., 2000), these two 

endovanilloids are able to act on both cannabinoid CB1 and TRPV1 to provide a 

balance in pain pathology (Hong et al., 2009; Malek et al., 2015; Starowicz et al., 

2012). OEA, on the other hand, is reported to be an agonist of the peroxisome 

proliferator-activated receptor-alpha (PPAR-α); its synthesis within the 

gastrointestinal tract associated with feeding behaviours provides evidence for a 

biological role in satiety to balance the orexigenic effects of AEA (Petersen et al., 

2006; Thabuis et al., 2008). In terms of pain pathology, however, the effects of OEA 

remain ambiguous. In sensory neurons, OEA was shown to activate TRPV1 in a 

PKC-dependent manner, as well as cause visceral pain upon administration in mice 

(Ahern, 2003; Wang et al., 2005). However, other studies have reported analgesic 

effects in visceral and inflammatory pain models (Almási et al., 2008; Suardíaz et al., 

2007). Interestingly, Almasi and colleagues reported OEA to be an antagonist of 

TRPV1, with concentration-dependent inhibition of capsaicin-evoked calcium influx 

in HT5-1 cells expressing TRPV1 (Almási et al., 2008). In our study, however, 10 

µM OEA resulted in robust iCa2+ mobilisation. Thus, overall, the inclusion of these 

endovanilloids in this study also provides insight into the complex relationship 

between TRPV1, cannabinoid and mGlu receptors. Due to the amalgamation of 

several receptors indirectly modulating TRPV1, it is often referred to as an integrator 

molecule of polymodal nociceptors (Caterina and Park, 2006). 

 

As mentioned above, glutamate is known to sensitise TRPV1 channels, thereby 

causing hyperalgesia (deGroot et al., 2000; Jin et al., 2006; Lawand et al., 2000). In 
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contrast to these studies, we found no significant differences in capsaicin-evoked 

calcium mobilisation following glutamate stimulation. This, however, is likely due to 

the studied concentration of capsaicin having a maximal system response (Millns et 

al., 2001), resulting in the inability to potentiate TRPV1 calcium mobilisation further. 

Glutamate pre-incubation, however, significantly increased the OEA-mediated 

calcium response, while having no significant effect on anandamide responses. This 

negative result may not tell the whole story, as when comparing the number of 

neurons sensitive to anandamide post-glutamate stimulation, there was a significant 

decrease of AEA-sensitive neurons – suggestive of potential desensitisation 

mechanisms, rather than diminishing functional calcium responses. Waning calcium 

responses over time e.g. comparing the first capsaicin-evoked maximal calcium 

response with the final KCl response, may further be indicative of receptor 

desensitisation. Indeed, the initial addition of 100 nM capsaicin produced a 

supramaximal calcium response – however this may simply be due to normalisation 

against the desensitised and hence lower KCl response. Without normalising to KCl, 

however, no significant changes in endovanilloid response were observed. The small 

proportion of neurons that retained AEA sensitivity following glutamate stimulation, 

however, still had calcium activity levels similar to that of AEA in the absence of 

glutamate incubation. Hence, downregulation or desensitisation of receptor numbers, 

rather than individual receptor responses, may provide an interesting therapeutic 

avenue in the treatment of pain – in particular following prolonged administration of 

therapeutics. Future studies may also include excitotoxicity experiments to assess the 

effect of prolonged glutamate stimulation on AEA-sensitive DRG neurons.  

 



Chapter 5 – mGlu5 modulation of TRPV1 in rat DRGs 
 

!

!

225!

Unexpectedly, CDPPB, an mGlu5 allosteric agonist of iCa2+
 mobilisation, IP1 and 

pERK1/2 (Lindsley et al., 2004; Sengmany et al., 2017), produced diminished 

capsaicin-evoked iCa2+ influx – a result contradictory to the TRPV1 sensitisation seen 

with the agonist glutamate. A potential explanation of this response may be the 

biphasic modulation of TRPV1 calcium responses by mGlu5 – with activation 

resulting in transient hyperalgesia followed by hypoalgesia (Masuoka et al., 2015). 

This is in line with the desensitisation mechanism of TRPV1 following prolonged 

activation – a mechanism manipulated in commercial topical capsaicin pain therapies 

(Vyklicky et al., 2008).   

 

mGlu5 inhibition, on the other hand, ameliorates capsaicin-mediated responses both in 

vivo and in native cells (Bhave et al., 2001; Masuoka et al., 2015; Osikowicz et al., 

2008; Walker et al., 2001; Zhu et al., 2005). Our results confirm the anti-nociceptive 

effects of the mGlu5 NAM MPEP, as seen through diminished capsaicin and 

anandamide-evoked calcium responses in DRG. However, MPEP had no significant 

impact on OEA-mediated responses. Rather, the mGlu1 NAM CPCCOEt was seen to 

increase OEA-mediated responses. While mGlu1 receptors are expressed within 

DRGs, albeit at low levels (Carlton and Hargett, 2007), mGlu1 inhibition would 

presumably inhibit its canonical Gq pathway – and consequently diminish PKC and 

desensitise TRPV1. Our contrasting result of enhancement of OEA-evoked calcium 

response following mGlu1 inhibition highlights the ambiguous pharmacology of this 

endovanilloid, and ultimately the complex nature of the pain cascade.  

 

For future studies, to better define the effects of TRPV1 alone, CB1 antagonists may 

be applied to minimise not only effects of AEA on CB1, but also the effects of CB1 on 
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TRPV1 responses. Furthermore, adjunct addition of PKC inhibitors with 

endovanilloids will allow mechanistic evaluation of mGlu5 effects on TRPV1 

responses. Indeed, PKC appears an important mediator in sensitising TRPV1 

responses, not only to capsaicin, but also to OEA and AEA (Ahern, 2003; Bhave et 

al., 2003; Jung et al., 2004; Rathee et al., 2002; Ross, 2003; Wang et al., 2015).  

 

Further, while our approach of long term pre-incubation with mGlu ligands is due to 

the notion of elevated glutamate levels within the site of injury (Omote et al., 1998), 

co-incubation assays e.g. applying mGlu ligand and endovanilloid concurrently, 

would also be invaluable in assessing acute effects of mGlu activation on TRPV1 

calcium response. The biphasic hyper- and hypoalgesic responses induced by TRPV1 

(Masuoka et al., 2015), as well as altered neuronal sensitivity to capsaicin following 

glutamatergic stimulation (Masuoka et al., 2016) suggests pharmacological changes 

over time – thus comparisons of acute and chronic assays may provide insight into the 

discrete pain physiology, as well as potential therapeutics. 

 

Overall, this study reiterates the potential role of mGlu receptors in pain therapies, via 

modulation of TRPV1-mediated calcium influx. Moreover, this study also highlights 

the complex nature of pain pathology. Current equivocal evidence of the role of 

endovanilloids in regulating pain responses must first be delineated before we are able 

to design drugs to modulate either cannabinoid or vanilloid receptor systems (or 

both). Nonetheless, preclinical studies demonstrating analgesia with mGlu5 inhibition 

illustrates the promise of mGlu5 pain therapies, and prompts further study of the role 

of mGlu5 in pain pathology.  
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6. General discussion 
 
G protein-coupled receptors (GPCRs), the largest family of cell surface proteins, 

remain one of the most tractable target classes in drug design and discovery. Classical 

pharmacological strategies in targeting orthosteric binding sites have produced 

agonists, competitive antagonists and inverse agonists, several of which have 

successfully progressed into clinic (Bridges and Lindsley, 2008; Lagerstrom and 

Schioth, 2008; Overington et al., 2006). However, as understanding of GPCR 

pharmacology expands, newer paradigms in drug discovery have emerged and 

subsequently influenced the direction of drug development (Christopoulos, 2014; 

Jacobson, 2015; Wootten et al., 2013). This thesis focuses on two main paradigms in 

GPCR pharmacology – allosterism and biased signalling – at the metabotropic 

glutamate receptor subtype 5 (mGlu5).  These two paradigms arise from the increased 

appreciation of the structure and fluidity of GPCRs, and the perhaps almost infinite 

potential receptor conformations – such that binding of an allosteric compound may 

modulate endogenous ligand-receptor responses (Changeux and Christopoulos, 2016; 

Christopoulos and Kenakin, 2002; Gregory et al., 2010). Further, as pleotropic G 

protein-coupling becomes widely observed, biased signalling, whereby ligands are 

able to stabilise distinct receptor conformations to provide a discrete subset of cellular 

responses (Kenakin and Christopoulos, 2013), will become either a challenge, or 

rather, a valuable opportunity to design therapeutics that target not only the desired 

receptor subtype, but also the desired signalling pathway at the target receptor.  

 

The design of drugs that target allosteric sites overcomes several disadvantages of 

orthosteric ligands. First, due to the less conserved nature of allosteric sites, off-target 

adverse effects are limited – although perhaps not eliminated, due to interactions with 
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other proteins within the complex physiological system. Second, allosteric ligands are 

able to modulate endogenous ligand responses, such that receptor outcomes may be 

“fine-tuned” to desired levels – again minimising adverse effects, in particular within 

the delicate CNS environment. Third, allosteric ligands offer a better safety profile 

over orthosteric ligands due to a saturable “ceiling effect”, as well as the requirement 

of an orthosteric ligand for activity in the case of “pure” modulators (Keov et al., 

2011; Langmead and Christopoulos, 2014). Indeed, the concept of allosterism in 

GPCR drug design has been validated through two currently marketed allosteric drugs 

that target GPCRs – cinacalcet and maraviroc – a calcium sensing receptor PAM and 

a C-C chemokine receptor 5 NAM respectively (Dorr et al., 2005; Harrington and 

Fotsch, 2007).  

 

Biased signalling adds further texture to drug development, through targeting desired 

receptor pathways, hence minimising ‘on-target’ adverse effects. Biased ligands may 

be agonists/partial agonists/inverse agonists, which activate a distinct subset of 

signalling pathways, or modulators, which influence the degree of orthosteric ligand 

activity to different extents at different pathways (Kenakin and Christopoulos, 2013; 

Langmead and Christopoulos, 2014; Lindsley et al., 2016). As further proof of 

feasibility in drug design, two currently marketed drugs, the antipsychotic, 

aripriprazole and the β-blocker carvedilol are proposed to be biased ligands (Klein 

Herenbrink et al., 2016; Urban et al., 2007; Wisler et al., 2007). However, while 

biased signalling provides exciting opportunities to create exquisitely targeted drugs, 

numerous challenges arise – from early stage drug discovery campaigns, to later 

translational in vivo stages.  
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A key element in early stage drug development is high throughput screening of 

potential “hit” compounds often determined from large chemical libraries. Here, 

hundreds of thousands of compounds are commonly screened at one canonical 

receptor signalling pathway, and based on derived potencies, are either discarded, or 

moved further along the drug discovery cascade. Additionally, compounds may be 

assessed in either PAM or NAM mode, that is, with an EC20 or EC80 concentration of 

orthosteric ligand, with potencies derived, and compounds retained or discarded 

(Lindsley et al., 2016).  Several caveats arise from this protocol. First, while 

logistically, this method provides a quick snapshot into ligand activity, the assessment 

of only one signalling pathway results in immense loss of pharmacological 

information at other receptor signalling endpoints. Indeed, this was particularly 

highlighted in Chapter 2, whereby mGlu5 allosteric ligands, largely classified as PAM 

or PAM-agonists of glutamate-mediated iCa2+ mobilisation, were shown to have 

exceptionally variable agonism at other signalling pathways. VU29 and VU0360172, 

for example, described as “pure” PAMs of glutamate/DHPG-mediated iCa2+ 

mobilisation, displayed robust IP1 accumulation and pERK1/2 agonism, while the 

partial agonist VU0424465 of iCa2+ mobilisation, was a full agonist of both IP1 

accumulation and pERK1/2 phosphorylation. Thus, the absence of assessment along 

other signalling pathways excludes precious insight into true ligand pharmacology, 

and subsequent potential therapeutic avenues.  

 

Second, allosteric modulator potencies derived from titration of a single orthosteric 

ligand concentration (EC20 or EC80) are heavily dependent on the chosen orthosteric 

agonist concentration, as well as coupling efficiency between agonist and system; 

also, potency values represent a composite of affinity, efficacy, as well as 
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cooperativity (Kenakin, 2004; Kenakin and Christopoulos, 2011). Consequently, 

variation may be observed between potencies and ligand binding and intrinsic 

efficiency. Indeed, this was particularly highlighted with mGlu5 PAMs, with up to 

86% of studied PAMs showing potency estimates over three times binding affinity 

estimates (Lindsley et al., 2016). To overcome this issue, robust analysis of 

pharmacological responses must be determined. Rigorous quantitative assessment of 

agonism was performed throughout this thesis using the method proposed by Kenakin 

et al. (2012), to derive a composite value of ligand intrinsic efficacy and affinity – the 

transduction coefficient. Bias was determined through normalisation to a reference 

ligand – DHPG – and comparisons between different receptor signalling pathways. 

Allosteric modulation parameters were quantitatively determined using the 

operational model of allosterism (Leach et al., 2007), to derive functional affinity and 

cooperativity. Indeed, differences between potencies and transduction coefficients 

were particularly emphasised in Chapter 4, whereby mutations of residues resulted in 

reduced maximal responses, and altered potencies of DHPG relative to WT responses, 

however transduction coefficients remained unchanged. The same effect was 

observed with allosteric ligands, with smaller response windows (reduced Emax) 

relative to WT, despite no distinct changes in overall ligand agonism. Robust 

assessment of allosteric modulation has also allowed identification of biased allosteric 

modulation, whereby changes in affinity and/or cooperativity were observed with 

allosteric ligands across distinct receptor endpoints. This method was applied in both 

Chapter 2 and 3, through assessment of modulation bias between iCa2+ mobilisation, 

IP1 accumulation and ERK1/2 phosphorylation of a suite of mGlu5 chemotypes. 

Indeed, biased agonism as well as biased modulation was shown to be operative at the 
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mGlu5 receptor, with numerous mGlu5 PAMs, PAM-agonists and NAMs across both 

recombinant and neuronal cell backgrounds. 

 

While assessment across the broadest range of receptor signalling outcomes is 

desirable to determine full ligand pharmacology – a balance is required between time, 

cost and pharmacological information derived. In this thesis, iCa2+ mobilisation, IP1 

accumulation and ERK1/2 phosphorylation were selected as mGlu5 receptor 

outcomes, due to ease of reproducibility, as well as the importance of these endpoints 

in neuronal signalling, development and disease pathophysiology, ranging from 

cognitive deficits to addiction, autism and neuropathic pain (Berridge, 1998; Brini et 

al., 2014; Osterweil et al., 2010; Potter et al., 2013; Ribeiro et al., 2010b; Schroeder et 

al., 2008; Seese et al., 2014; Vincent et al., 2016). While there are undoubtedly 

numerous other receptor endpoints, such as Gq-mediated activation of PKA, or 

potential β-arrestin recruitment, it would be unfeasible to assess ligand pharmacology 

across all pathways. Thus, the relationship between receptor outcome and 

(patho)physiology must be determined for fruitful bias drug discovery campaigns. 

Indeed, at adenosine A1 (Baltos et al., 2016) and µ-opioid receptors (Thompson et al., 

2015), where receptor signalling endpoints have been closely aligned with 

pathophysiological and/or therapeutic outcome, clustering of ligands based on 

signalling fingerprints could fill the gap between ligand structure and receptor 

function – thereby aiding the design of biased ligands. However, in the absence of 

direct correlation between receptor signalling and in vivo efficacy, there is the risk of 

excluding potentially important receptor outcomes in the selection of chosen assays. 

One means of addressing this pitfall has been to assess global receptor activation 

following ligand stimulation. This approach was demonstrated with the β2-adrenergic 
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receptor (Stallaert et al., 2012) as well as the dopamine D2 receptor (Klein Herenbrink 

et al., 2016), using a label-free cellular impedance assay to provide an integrated 

readout of multiple signalling events. Clustering of signalling profiles obtained from 

these global readouts may consequently inform key signalling outcomes via 

comparisons with in vivo efficacy.  

 

Nonetheless, several key themes arose from the assessment of ligand pharmacology 

through the three chosen signalling endpoints within this thesis. First, the notion of 

temporal bias was evident through differing assay kinetics influencing apparent 

signalling bias. Second, calcium signalling is a complex event comprising several 

components – leading to third, the influence of interacting receptors on mGlu5 

calcium responses. In Chapter 2, all studied ligands displayed clear biased agonism 

toward IP1 accumulation relative to iCa2+ mobilisation. The stark differences were 

perhaps unexpected as, traditionally, at Gq-coupled receptors, calcium mobilisation is 

downstream from IP1 accumulation. Two scenarios were assessed to elucidate the 

differences between calcium mobilisation and IP1 accumulation assays observed: (1) 

the kinetic component following differing assay times and (2) the components of 

calcium mobilisation observed following receptor activation.  

 

A possible explanation for the larger IP1 accumulation response observed with the 

ligands studied in Chapter 2 was the prolonged ligand residence time in the IP1 

accumulation assay (1 h) relative to iCa2+ mobilisation (1 min). Thus, with a longer 

residence time during IP1 accumulation, the ligands are able to reach equilibrium, and 

thus activate the receptor to the ligand’s fullest extent. In Chapter 3, the concept of 

assay kinetics was further probed through comparisons of calcium mobilisation 
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following 1 min versus 30 min allosteric ligand incubation. Interestingly, unlike 

mGlu5 PAMs, select mGlu5 NAMs showed diminished affinity and/or cooperativity 

following longer residency time. A possible explanation again relies on kinetics, 

however, kinetics of cellular responses. mGlu5 is known to couple to various ion 

channels (Kammermeier et al., 2000; Latif-Hernandez et al., 2016; Lu et al., 1999; 

McCool et al., 1998; Tu et al., 1999). Thus, calcium mobilisation, as determined 

through the Flexstation assays, represents a composite of intracellular and 

extracellular calcium. Indeed, in Chapter 2, extracellular calcium stores influenced 

orthosteric ligand (glutamate/DHPG)-mediated iCa2+ mobilisation, but had no effect 

on calcium responses following allosteric ligand (PAM-agonists) stimulation. Thus, 

the calcium mobilisation observed following PAM-agonist application was largely 

derived from intracellular calcium stores rather than coupling to calcium ion channels. 

With the studied mGlu5 NAMs in Chapter 3, however, the prolonged incubation time 

resulted in reduced cooperativity and functional affinity, suggesting a kinetic bias 

towards coupling with fast-acting calcium ion channels, relative to the slower 

mobilisation of calcium from intracellular stores downstream of IP1 accumulation. 

Indeed, there is growing appreciation of the importance of kinetics, not only in 

quantitatively determining signalling bias, but also fundamentally in physiological 

and therapeutic outcomes (Klein Herenbrink et al., 2016; Lane et al., 2017). For 

instance, extrapyramidal adverse effects of antipsychotics were linked to association 

kinetics, while elevated prolactin release was correlated to dissociation rates at 

dopamine D2 receptors (Sykes et al., 2017). Thus, temporal bias remains a confounder 

of true ligand bias, however also an opportunity in optimising ligand binding kinetics, 

with further considerations of ligand residency time required in assay development, 

optimisation and validation.  
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Currently, there also remains a gap between receptor signalling outcome and 

physiological response following mGlu5 stimulation. Indeed, the jump from the 

recombinant cell environment to prediction of in vivo response is large and often 

capricious. One method to increase the success of translation of ligand activity has 

been to bridge the gap between recombinant and in vivo with native tissue culture. 

Throughout this thesis, context-dependent receptor signalling of mGlu5 allosteric 

ligands was determined through assessment in embryonic mouse cortical neurons. 

Indeed, context-dependent pharmacology has been demonstrated at mGlu7 receptors 

between different recombinant and native cell lines (Niswender et al., 2010). mGlu5 

dysfunction is widely linked to various CNS disorders, many of which originate 

within the cortex (Niswender and Conn, 2010). Thus, assessment of mGlu5 allosteric 

ligand activity within cortical neurons provides a logical and perhaps necessary step 

in determining the viability of potential therapeutic drugs. Again, with every stage of 

drug development, several caveats arise when moving into a more physiologically 

relevant cell background. First, the study of cortical neurons precludes the use of 

glutamate as an orthosteric agonist in assessing isolated mGlu5 responses, due to the 

presence of numerous other glutamate ionic and metabotropic receptors, as well as 

glutamatergic transporters. Thus, DHPG, the group I mGlu agonist, was used as the 

surrogate orthosteric ligand throughout this thesis – which leads to the notion of probe 

dependence. Probe dependence is the paradigm in which allosteric ligand responses 

are dependent on the orthosteric ligand studied in conjunction (Valant et al., 2012). 

Probe dependence was indeed reported in Chapter 2 and 3, with differences in 

allosteric ligand responses observed between glutamate- and DHPG-mediated iCa2+ 

mobilisation. Thus, this remains an important consideration in assessment of ligand 
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pharmacology, as compounds move further through the drug design cascade toward in 

vivo settings.   

 

Native tissues also contain a plethora of physiologically complex proteins, receptors, 

signalling partners, scaffolds etc., absent within a recombinant cell system. Within the 

CNS, mGlu5 receptors interact with various proteins, receptors and ion channels 

(Borroto-Escuela et al., 2017; Lindsley et al., 2016; Niswender and Conn, 2010). 

Thus, while assessment of ligand pharmacology is necessary within a physiologically 

relevant context, the true targeted ligand response may be difficult to isolate. For 

instance, in our cortical neuronal studies in Chapters 2 and 3, DHPG was used as the 

orthosteric ligand, and the mGlu1 antagonist, CPCCOEt was applied in conjunction to 

eliminate mGlu1 agonism and isolate the mGlu5 response, as previously described 

(Jong et al., 2009). However, within a therapeutic setting, glutamate would 

presumably act as the orthosteric ligand, and thus mGlu1 and mGlu5, as well as other 

glutamatergic responses, must be determined in combination with the allosteric 

ligand. We attempted to bridge this gap through application of DHPG, in the absence 

of CPCCOEt, to determine whether the additional mGlu1 response affected allosteric 

ligand activity. Changes in affinity and/or cooperativity of select ligands, in particular 

dipraglurant, MTEP and VU0366248, in the absence of CPCCOEt, show potential 

loss of translation between isolated mGlu5 responses and “global” (mGlu1 and mGlu5) 

response, despite both assessments within cortical neurons. Thus, while assessment of 

pharmacology in native cell tissues is necessary, restraints within the native context 

may influence ligand pharmacology, such that it remains divergent from the true 

physiological response.  
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Further, while increased complexity of cell background provides numerous challenges 

in optimising assay development, the mGlu5 relationship with other receptors may be 

manipulated to form alternate avenues of therapeutics. For example, targeting mGlu5 

modulation of NMDA receptor (Balu et al., 2016; Benquet et al., 2002; Borroto-

Escuela et al., 2017; Campbell et al., 2004; Collett and Collingridge, 2004; Tebano et 

al., 2005), adenosine (Borroto-Escuela et al., 2017; Cabello et al., 2009; Coccurello et 

al., 2004; Domenici et al., 2004; Nishi et al., 2003; Rodrigues et al., 2005), dopamine 

(Cabello et al., 2009; Ferre et al., 1999; Popoli et al., 2001), and opioid receptors 

(Brown et al., 2012b; Jin et al., 2006; Schroder et al., 2009; Zhou et al., 2013), to 

name a few, would expand the therapeutic indications of mGlu5 ligands to target 

diseases ranging from the CNS to the periphery. This concept was probed in Chapter 

5, through assessment of the relationship between mGlu5 and TRPV1 receptors within 

rat dorsal root ganglion neurons. Previous studies have suggested a parallel 

relationship between inhibition of mGlu5 responses and inhibition of TRPV1-

mediated calcium influx (Chung et al., 2015; Honda et al., 2017; Masuoka et al., 

2016; Masuoka et al., 2015), thereby providing potential analgesic therapy. 

Interestingly, our study highlighted the disconnect between recombinant and neuronal 

systems – that is, the presence of system bias. In particular, CDPPB, an mGlu5 PAM 

agonist of iCa2+ mobilisation, IP1 accumulation and pERK1/2 phosphorylation within 

HEK293A cells (in Chapter 2), produced an inverse response with TRPV1, with 

reduced capsaicin-mediated calcium influx within DRGs – thereby behaving as a 

NAM. Also, MPEP, the mGlu5 NAM, significantly reduced capsaicin and 

anandamide responses, but not oleoylethanolamide and N-arachidonoyl-dopamine 

calcium influx – indicating the presence of “probe dependence” with the redundancy 

of endogenous TRPV1 agonists – albeit across the mGlu5-TRPV1 system. Overall, 
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these results point to the complexity of the physiological context, with mGlu5 and 

TRPV1 perhaps not having a directly correlated relationship. Thus, while targeting 

the mGlu5 relationship between different receptors may be a viable therapeutic option, 

a greater understanding of the intricate interactions between the two receptors is 

required to allow design of targeted and predictable therapies.  

 

Following on from assessment of biased agonism and modulation in recombinant and 

neuronal cells, this thesis aimed to determine the structural basis of bias. Recently 

solved receptor crystal structures have provided essential information into the 

allosteric binding pocket (Christopher et al., 2015; Dore et al., 2014; Wu et al., 2014), 

however a gap remains between ligand structure and subsequently receptor function. 

While numerous mutagenesis studies have provided insight into allosteric ligand 

induced iCa2+ mobilisation (Chen et al., 2007; Gregory et al., 2014; Gregory et al., 

2013b; Gregory et al., 2012; Mølck et al., 2012; Muhlemann et al., 2006; Pagano et 

al., 2000), there are a lack of studies assessing other signalling endpoints. Indeed, as 

bias is operative in WT receptors, assessment of bias should extend to mutagenesis 

studies. Thus, in Chapter 4, a structure-function analysis was implemented with seven 

point mutations using four mGlu5 allosteric ligands – assessing iCa2+ mobilisation, IP1 

accumulation and ERK1/2 phophorylation. As discussed in Chapter 4, three key areas 

were implicated in allosteric ligand affinity, cooperativity and intrinsic efficacy – the 

hydrogen-water network between Y658, T780 and S808A (Christopher et al., 2015; 

Dore et al., 2014), the W784 “rotamer toggle switch” analogous to the Class A CWxP 

motif (Holst et al., 2010; Shi et al., 2002) and the narrow channel, lined by P654 and 

A809, within the allosteric binding site, extending the pocket deep within the TM 

domain (Christopher et al., 2015; Dore et al., 2014). Another interesting finding was 
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that several allosteric ligands produced responses greater than the orthosteric ligand at 

various mutants. Thus, these mutants were determined to not affect global receptor 

activation, but perhaps affect distinct conformations required for activation of certain 

signalling pathways. That is, allosteric ligands are able to stabilise receptor 

conformations, distinct from that imposed by DHPG, to activate the same receptor 

signalling pathways. As receptors are able to exist in equilibrium between active and 

inactive states, binding of a foreign compound has the potential to stabilise a different 

distribution of active receptor states, to give a unique signalling fingerprint. 

Clustering of ligands with similar fingerprints will allow determination of structure-

activity relationships, thereby refining drug design efforts to target desired receptor 

signalling outcomes.  

 

From the findings within this thesis, key implications for future mGlu5 drug discovery 

campaigns would include the need to assess biased signalling – both agonism and 

modulation – via adopting rigorous quantitative analysis using operational models of 

agonism and modulation (Kenakin and Christopoulos, 2013; Kenakin et al., 2012; 

Leach et al., 2007). Initial pharmacological experiments to assess global receptor 

activity via measurement of cell impedance and dynamic mass redistribution (e.g. 

xCELLigence, EPIC Systems (Halai et al., 2012; Limame et al., 2012; Owens et al., 

2009)) would allow clustering of ligands based on similar global receptor effects, 

while parallel native studies provides insight into promising compounds to progress 

into in vivo studies. Linking of in vivo physiological outcomes to biased signalling 

profiles would further inform key receptor endpoints involved in therapeutic and 

adverse effects. Clustering of biased compounds with similar signalling profiles and 

physiological outcomes would allow determination of a potential structure-activity 
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relationship, thereby refining drug development to target receptor endpoints 

associated with disease pathophysiology and consequent therapeutic outcomes.   

 

In conclusion, the studies presented within this thesis offer insight into the importance 

of assessment of biased agonism and modulation, as well as the caveats involved. 

From this, considerations of probe dependence, temporal/kinetic bias, systems or 

context-dependent bias, residues implicated in ligand affinity, cooperativity and 

efficacy and structure-activity relationships must also be addressed, and remain 

challenges for further drug design efforts. Nonetheless, increased appreciation for the 

presence of biased signalling, together with greater understanding of mGlu5 disease 

physiology, ultimately lay the foundation for the next generation of mGlu5 

therapeutics with exceptionally targeted effects for a multitude of clinical disorders.!!
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Appendix 1 
 

Allosteric modulation of DHPG-mediated iCa2+ 

mobilisation by DPFE, VU29 and VU0409551 at 

mutant mGlu5 receptors (Chapter 4) 
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Appendix Fig 1. Allosteric modulation of DHPG-mediated iCa2+ mobilisation by DPFE 

at mutant mGlu5 receptors. Data are expressed as mean ± SEM of n=3-5 independent 

experiments performed in duplicate.  
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Appendix Fig 2. Allosteric modulation of DHPG-mediated iCa2+ mobilisation by VU29 

at mutant mGlu5 receptors. Data are expressed as mean ± SEM of n=3-5 independent 

experiments performed in duplicate. 
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Appendix Fig 3. Allosteric modulation of DHPG-mediated iCa2+ mobilisation by 

VU0409551 at mutant mGlu5 receptors. Data are expressed as mean ± SEM of n=3-5 

independent experiments performed in duplicate. 
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