
Monash University

Doctoral Thesis

Markov chain Monte Carlo
methods for Bayesian network
inference, with applications in

systems biology

Author:

Salem A. Alyami

Supervisor:

Jonathan M. Keith

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Statistics Group

School of Mathematical Sciences

2017

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Copyright Notice

The author (2017). Except as provided in the Copyright Act 1968, this thesis may

not be reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for

third-party content included in this thesis and have not knowingly copyright content

to my work without the owner’s permission.

iii

Abstract

Learning the structure of Bayesian networks (BNs) from data has become an indis-

pensable tool in a variety of applications to model uncertain knowledge and causality

among variables. For example, a common problem in systems biology is to infer the

biological molecules (represented by nodes) and causal interactions (represented by

directed edges) relevant to a particular biochemical pathway or network. Getting

stuck in local maxima is a challenging problem that arises while learning Bayesian

network structures. Special attention was recently paid to resolving this problem.

Markov chain Monte Carlo (MCMC) sampling has a wider applicability to infer

hard BNs than exact algorithms, despite the fact that MCMC sampling may exhibit

slow convergence. This thesis proposes MCMC samplers that have been known to

substantially avoid getting stuck in local maxima but have not been modified to fit

simulating Bayesian network structures from discrete search spaces. The proposed

MCMC samplers are new instances of the Neighbourhood Sampler (NS), Hit-and-

Run (HAR) sampler, and Metropolis-Hastings (MH) sampler.

The MH sampler is a baseline and popular MCMC method. One of its limitations

is that it can potentially get stuck at a local maximum graph in the search space.

A revised version of the MH sampler has been introduced in this thesis.

The NS possesses a reduction step in which rejected elements are excluded from

being chosen a second time. Also, each new element is chosen in two steps: starting

from an initial element X, a neighbour Y is first selected, then a neighbour Z of Y

is proposed. These two steps help to ameliorate the problem of local modes.

The HAR sampler is a unique MCMC method that proposes movements across

continuous search spaces in a large step so that it can move from a current point to

another distant point in the space. The features of the HAR sampler are modified

in this thesis to learn BNs from discrete spaces.

iv

The performance of the three MCMC samplers have been evaluated by explor-

ing feasible spaces of BNs uniformly, and learning the structures of BNs when the

problem of local maxima is present.

Each of the three MCMC samplers have been implemented using two adaptive

techniques proposed in this thesis to reduce the time-complexity required to enu-

merate adjacent graphs of particular BNs, and to calculate the posterior probability

distribution of sampled BNs.

As a part of this project, I developed a new graphical user interface (GUI) de-

signed for practitioners from different disciplines to facilitate sampling and inferring

BNs using the three MCMC samplers proposed in this thesis.

The simulations conducted in this thesis have indicated efficient uniform sam-

pling of Bayesian network structures, and more rapid rates of convergence to the

posterior probability distribution using the NS and HAR compared to the MH. The

first adaptive algorithm used to enumerate adjacent graphs has achieved a useful

speed-up in practice compared to the standard brute-force approach. The second

adaptive technique has been shown to be O(N) times faster than the standard

brute-force method in calculating the scoring function of a sampled network.

v

Declaration of Authorship

This thesis contains no material which has been accepted for the award of any

other degree or diploma at any university or equivalent institution and to the best

of my knowledge and belief, this thesis contains no material previously published or

written by another person, except where due reference is made in the text of the

thesis.

Signature:

Print Name:

Salem Ali ALYAMI

Date:

June 15, 2017

vi

Publications during enrolment

Papers:

1) Alyami, S. A., Azad, A. K. and Keith, J. M. (2016). Uniform sampling of di-

rected and undirected graphs conditional to vertex connectivity. Electronic Notes

in Discrete Mathematics 53, 43-55, 2016.

2) Alyami, S. A., Azad, A. K. and Keith, J. M. (2016). The Neighbourhood MCMC

sampler for learning Bayesian networks. In Proceedings of the First International

Workshop on Pattern Recognition (eds Jiang X, Chen G, Capi G, Ishii C) Proceed-

ings of SPIE 10011,100111K.

Poster:

3) Alyami, S., Cheung, W., Jin, Y., and Keith, J. (2014). Sampling graph space

with the Neighbourhood sampler. Australian Bioinformatics Conference (ABC).

Royal Children’s Hospital, Melbourne, AUSTRALIA, Poster (61).

Abstracts and Oral Presentations:

4) Alyami, S. A. and Keith, J. M. (2014). Bayesian Inference using Neighbour-

hood Sampler for learning Bayesian networks. Sixth Annual Conference of the Aus-

tralasian Bayesian Network Modelling Society (ABNMS). Rotorua, New Zealand,

OP(8) page 19.

5) Alyami, S. A., Azad, A. K. and Keith, J. M. (2015). Uniform sampling of directed

and undirected graphs conditional to vertix connectivity. International Conference

on Graph Theory and its Applications (ICGTA). Amrita University, Coimbatore,

India, page 36–37.

6) Alyami, S. A., Azad, A. K. and Keith, J. M. (2015). A new version of the Hit-

and-Run algorithm to sample graph spaces. The 39th Australasian Conference on

Combinatorial Mathematics and Combinatorial Computing (39ACCMCC). Queens-

land University of Technology, Brisbane, Australia, page 7.

vii

Acknowledgements

I would like to express my sincere gratitude to:

• my supervisor Assoc. Prof. Jonathan M. Keith for the continuous support of

my PhD study, for his motivation, patience, and immense knowledge. His high

availability and guidance had a significant impact in all the time of research and

on the completion of this thesis. With Jon I could develop my programming

skills to handle highly complicated data structures, and thus a new graphical

user interface has been produced, in collaboration with Jon and fellow PhD

student Azad, as a part of this thesis.

• my PhD advisory committee: Assoc. Prof. Tim Garoni (Associate Super-

visor) and Assoc. Prof. Catherine Forbes (External Supervisor), for their

academic support, suggestions and reflections. Tim and Catherine were very

approachable and I am really grateful for their advice to overcome challenges,

• my milestone review panel members for their insightful comments and en-

couragement, and for the hard questions which boosted me to strengthen my

research from various perspectives,

• my sponsor, Al-Imam Muhammed Ibn Saud Islamic University, for their gen-

erous sponsorship, funding and unlimited support for me and my family,

• Azad A. K., a member in my research-group, for the useful conversations and

programming guidance I have had through the project, resulting in jointly

authored papers,

• the administration staff in the faculty of science for all their efforts and dili-

gence over the course, in particular Ms Linda, the administrative officer of

viii

the school of mathematical sciences, for her coordinating role during my mile-

stones,

• Monash university, for all services, study facilities and for their financial

funding to participate in three international conferences in India, Japan and

Queensland,

• my wife who made my life so meaningful by her moral support and care of me

and our kids to overcome all difficulties during my PhD study.

I dedicate this thesis to:

• the soul of my father who passed away when I was ten years old, my mother,

my family members, and friends.

ix

Contents

1 Thesis Objectives 1

1.1 Introduction . 1

1.2 Motivations . 2

1.3 General objectives and original contributions 3

1.4 Chapters abstracts and objectives . 4

2 Markov Chain Monte Carlo Sampling 8

2.1 Introduction . 8

2.2 Markov chains . 9

2.2.1 Irreducible, aperiodic and recurrent Markov chain 10

2.2.2 Limiting distribution . 12

2.2.3 Detailed balance property . 13

2.3 Monte Carlo simulation . 14

2.4 Markov chain Monte Carlo methods 18

2.4.1 Metropolis-Hastings method 18

2.4.2 Neighbourhood Sampler . 20

2.4.3 Hit-and-Run algorithm . 22

2.5 MCMC sampling issues and convergence diagnostic tests 25

2.5.1 MCMC sampling issues . 25

2.5.2 Convergence diagnostics . 28

3 A Review of Bayesian Networks 32

3.1 Introduction . 32

x

3.2 Notations and definitions . 33

3.2.1 Directed acyclic graphs . 33

3.2.2 Markov property . 34

3.2.3 Markov blanket . 35

3.2.4 Conditional probabilities table 35

3.2.5 Joint probability function . 38

3.2.6 Equivalent graphs . 38

3.3 Graph space . 39

3.4 Graph constraints . 40

3.4.1 Connectivity . 41

3.4.2 Acyclicity . 42

3.4.3 Node degree . 42

3.5 Bayesian inference . 43

3.5.1 Posterior distribution . 43

3.5.2 Prior distribution . 44

3.5.3 Bayesian estimation . 45

3.6 Learning Bayesian networks . 45

3.6.1 Learning Bayesian network parameters 46

3.6.2 Learning Bayesian network structures 49

3.6.3 MCMC methods for learning Bayesian networks 49

3.6.4 Non-MCMC methods for learning Bayesian networks 51

4 Using the MH, NS and HAR to Sample Bayesian Networks 54

4.1 Introduction . 54

4.2 Enumerating a set of adjacent graphs 55

4.3 Standard brute-force approach . 56

4.4 Assigning candidate graphs iteratively using the MH, NS and HAR . 57

4.5 Metroplis-Hastings sampler . 58

xi

4.6 Neighbourhood Sampler . 61

4.7 Hit-and-Run sampler . 62

4.7.1 Constructing a path in a space of graph 63

4.7.2 The diameter of a space of graphs 64

4.7.3 Algorithm . 68

4.7.4 Acceptance-rejection ratio in the HAR 70

4.8 Generating an initial network at random 72

4.9 Conclusion . 74

5 Sampling Bayesian Networks Uniformly 75

5.1 Introduction . 75

5.2 Methods and model . 76

5.3 Experimental results . 77

5.3.1 Transition options . 77

5.3.2 Sampling with |X | iterations 80

5.3.3 Sampling BNs uniformly . 82

5.3.4 Sum of squared differences . 88

5.4 Conclusion . 91

6 Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring 92

6.1 Introduction . 92

6.2 Adaptive technique for faster enumeration of adjacent graphs 93

6.2.1 Notations, definitions and propositions 94

6.2.2 Algorithm and illustrative example 96

6.2.3 Standard brute-force vs adaptive algorithm 102

6.2.3.1 Brute-force algorithm: complexity analysis 103

6.2.3.2 Adaptive algorithm: worst-case complexity 104

xii

6.2.3.3 Simulation study: speed-up achieved in practice . . . 105

6.3 Adaptive function scoring to compute Bayesian network parameters . 106

6.3.1 Conditional probabilities in a graph 108

6.3.2 Exploring dataset . 109

6.3.3 Big-O expression . 110

6.3.4 Adaptive scoring function . 111

6.3.5 Algorithm and illustrative example 113

7 Applications of Bayesian networks in Systems Biology Using the

MH, NS and HAR 118

7.1 Inferring structures from Microarray data 119

7.1.1 Background . 119

7.1.2 Experimental results . 120

7.1.3 Conclusion . 123

7.2 Inferring the Mendel Peas network 123

7.2.1 Background . 123

7.2.2 Experimental results . 123

7.2.3 Conclusion . 128

7.3 Inferring the Diagnostic Chest Clinic network 128

7.3.1 Background . 128

7.3.2 Experimental results . 128

7.3.3 Conclusion . 133

7.4 Inferring the Raf-Signaling Pathway network 134

7.4.1 Background . 134

7.4.2 Experimental results . 135

7.4.3 Conclusion . 146

7.5 Inferring the KEGG Pathways network 146

7.5.1 Background . 146

xiii

7.5.2 Learning initial networks . 147

7.5.3 Experimental results . 149

7.5.3.1 Comparing the performance of MH, NS and HAR

based on the same number of iterations 149

7.5.3.2 Comparing the MH, NS and HAR based on time

elapsed . 158

7.5.4 Conclusion . 160

8 BNMCMC : A New Graphical User Interface 162

8.1 Introduction . 162

8.2 Main functions of BNMCMC . 164

8.2.1 Variables in BNMCMC . 164

8.2.2 Sampling Bayesian networks uniformly 165

8.3 Sampling methods in BNMCMC . 165

8.4 Parameters model in BNMCMC . 165

8.5 Limitations of BNMCMC . 166

8.6 User guidelines . 166

8.6.1 Data-file format . 166

8.6.2 Steps to run BNMCMC . 167

8.6.3 Modular design . 169

8.7 Illustrative practical example . 170

8.8 Conclusion . 175

9 Conclusion 176

9.1 Scope of the thesis . 176

9.2 Findings summary . 177

9.3 Future work . 178

9.3.1 Possible update to BNMCMC 178

xiv

9.3.2 Mathematical work . 180

A Using MCMC Samplers to Sample Bayesian Networks 182

A.1 Flowchart describing the NS process 182

A.2 All possible paths within three transitions of a graph of three nodes . 183

B Sampling Bayesian Networks Uniformly 184

B.1 Checking normality . 184

C Applications 188

C.1 Inferring structures from Microarray network 188

C.1.1 The true structure of Microarray network 188

C.1.2 The CPTs of Microarray network 188

C.2 Inferring the Mendel Peas network 189

C.2.1 The CPTs of Mendel network 189

C.2.2 Summary statistics . 190

C.2.3 Mendel Peas network based on adding and deleting edges . . . 190

C.3 Inferring the Diagnostic Chest network 191

C.4 Inferring the Raf-Signaling Pathway network 192

C.4.1 Twelve random initial networks 192

C.4.2 Log posterior for 36 chains and 10,000 iterations each 194

C.4.3 All edge posteriors for Raf-Signaling network 196

C.4.3.1 Metropolis-Hastings sampler 196

C.4.3.2 Hit-and-Run sampler 197

C.4.3.3 Neighbourhood Sampler 198

C.5 Inferring the KEGG Pathways network 199

C.5.1 More simulation run using the MH sampler 199

C.5.2 Figures of best scoring networks 200

xv

D Conclusion 208

D.1 Sampling CUDGs uniformly . 208

Bibliography 210

xvi

List of Figures

2.1 Space dimensions . 23

3.1 Bayesian Network structure . 34

3.2 DAG representing an extension of the Markov property 34

3.3 Markov blanket . 35

3.4 An example of inferred Bayesian network. 36

3.5 Equivalent networks . 39

3.6 Graph space of three nodes . 40

4.1 All possible adajacent graphs . 56

4.2 Calculate q(G|H) with the MH . 60

4.3 Calculate q(H|G) with the MH . 60

4.4 Graphical example to define µ . 61

4.5 Transition by adding and deleting only 65

4.6 Minimum transitions between a pair of graphs 66

4.7 Probability of transition with the HAR 72

5.1 AD vs ADR with 100,000 iterations 79

5.2 AD vs ADR with 500,000 iterations 80

5.3 Sampling the graph space of four nodes 81

5.4 Sampling the graph space of five nodes 82

5.5 MH with four nodes . 83

5.6 HAR with four nodes . 84

5.7 NS with four nodes . 84

xvii

5.8 MH with five nodes . 86

5.9 HAR with five nodes . 86

5.10 NS with five nodes . 87

5.11 SSD values vs iterations with a space of four nodes. 89

5.12 SSD values vs iterations with a space of five nodes. 89

5.13 SSD values vs MCMC sampler with a space of four nodes. 90

5.14 SSD values vs MCMC sampler with a space of five nodes. 90

6.1 An initialised Bayesian network . 100

6.2 Operations to assign adjacent graphs 102

6.3 Compare CPTs . 107

6.4 An initialized Bayesian network . 114

6.5 Moving to an adjacent graph after adding an edge 115

6.6 Moving to an adjacent graph after deleting an edge 116

6.7 Moving to an adjacent graph after reversing an edge 116

7.1 Log likelihood functions with four nodes 120

7.2 Sampled graphs and their frequencies with the NS 121

7.3 Sampled graphs and their frequencies with the HAR 121

7.4 Sampled graphs and their frequencies with the MH 122

7.5 Sampled edges with highest proportions 122

7.6 Log posterior with six nodes . 124

7.7 Geweke diagnostic for Mendel network using the MH 125

7.8 Geweke diagnostic for Mendel network using the NS 125

7.9 Geweke diagnostic for Mendel network using the HAR 126

7.10 The posterior mean probabilities of edges with six nodes 127

7.11 Gelman & Rubin diagnostic with eight nodes using the MH 129

7.12 Gelman & Rubin diagnostic with eight nodes using the NS 130

xviii

7.13 Gelman & Rubin diagnostic with eight nodes using the HAR 130

7.14 Chest Clinic network learned by non-MCMC samplers 131

7.15 Chest Clinic network learned by MCMC samplers 132

7.16 Raf-Signaling Pathway . 135

7.17 Posterior of Raf-Signaling Pathway with the MH 136

7.18 Posterior of Raf-Signaling Pathway with the HAR 137

7.19 Posterior of Raf-Signaling Pathway with the NS 137

7.20 Posterior mean for the 1st chain of Raf-Signaling Pathway 139

7.21 Posterior mean for the 2nd chain of Raf-Signaling Pathway 139

7.22 Posterior mean for the 3rd chain of Raf-Signaling Pathway 140

7.23 Posterior mean for the 4th chain of Raf-Signaling Pathway 140

7.24 Posterior mean for the 5th chain of Raf-Signaling Pathway 141

7.25 Posterior mean for the 6th chain of Raf-Signaling Pathway 141

7.26 Posterior mean for the 7th chain of Raf-Signaling Pathway 142

7.27 Posterior mean for the 8th chain of Raf-Signaling Pathway 142

7.28 Posterior mean for the 9th chain of Raf-Signaling Pathway 143

7.29 Posterior mean for the 10th chain of Raf-Signaling Pathway 143

7.30 Posterior mean for the 11th chain of Raf-Signaling Pathway 144

7.31 Posterior mean for the 12th chain of Raf-Signaling Pathway 144

7.32 A Bayesian network inferred by GES and HCS 148

7.33 Inferring KEGG Pathways network with MCMC samplers 150

7.34 Posterior of KEGG Pathway network with the MH 151

7.35 KEGG Pathways network inferred by the HAR (GES) 153

7.36 KEGG Pathways network inferred by the HAR (HCS) 154

7.37 KEGG Pathways network inferred by the NS (GES) 155

7.38 KEGG Pathways network inferred by the NS (HCS) 156

7.39 All common edges among the best scoring networks 158

xix

7.40 MH, NS and HAR performance after a certain amount of time 160

8.1 BNMCMC window. 163

8.2 Data file format used in BNMCMC 167

8.3 Data file can be converted by BNMCMC 167

8.4 Initial network format . 168

8.5 Modular design for the BNMCMC 170

8.6 Input settings in BNMCMC . 171

8.7 Log posterior vs iterations in BNMCMC 171

8.8 SSD vs Lag in BNMCMC . 172

8.9 TD vs ED in BNMCMC . 173

8.10 List of edges with posterior probabilities in BNMCMC 174

8.11 Edges of the highest frequency in BNMCMC 175

A.1 All possible paths . 183

B.1 MH with four nodes. 185

B.2 HAR with four nodes. 185

B.3 NS with four nodes. 186

B.4 MH with five nodes. 186

B.5 HAR with five nodes. 187

B.6 NS with five nodes . 187

C.1 The true structure of Microarray network 188

C.2 The CPTs of Microarray network . 189

C.3 Conditional probabilities used to simulate datapoints 189

C.4 Three initial graphs for learning Mendel network 191

C.5 Posterior edge probabilities for Mendel network 191

C.6 Twelve initial networks for Raf-Signaling network 193

C.7 Posterior of Raf-Signaling Pathway with the MH 194

xx

C.8 Posterior of Raf-Signaling Pathway with the HAR 195

C.9 Posterior of Raf-Signaling Pathway with the NS 195

C.10 Posterior edges probabilities with the MH 196

C.11 Posterior edges probabilities with the HAR 197

C.12 Posterior edges probabilities with the NS 198

C.13 Posterior of KEGG Pathway network with the MH 199

C.14 Best scoring KEGG network learned by HAR (GES) 200

C.15 Best scoring KEGG network learned by HAR (HCS) 201

C.16 Best scoring KEGG network learned by NS (HCS) 202

C.17 Best scoring KEGG network learned by NS (GES) 203

C.18 NS when the network learned by the GES is the initial network . . . 204

C.19 NS when the network learned by the HCS is the initial network . . . 205

C.20 HAR when the network learned by the GES is the initial network . . 206

C.21 HAR when the network learned by the HCS is the initial network . . 207

D.1 All possible adjacent graphs in a CUDG 208

D.2 Neighbourhood Sampler vs uniform distribution for CUDGs 209

xxi

List of Tables

1.1 Chapters that include original contributions. 3

3.1 CPTs of three nodes . 36

3.2 Data-points observed for three variables. 37

3.3 Graph space sizes of BNs and connected BNs 39

3.4 Some common conjugate prior distributions 44

5.1 Summary statistics of the MH, HAR and NS frequencies 88

6.1 Effects a single transition on lists . 98

6.2 Populate adjacent graphs . 100

6.3 Update lists after adding an edge . 101

6.4 Update lists after deleting an edge . 101

6.5 Update lists after reversing an edge 102

6.6 Comparing speed: non-adaptive approach vs adaptive approach . . . 106

6.7 Effects on Pa(vi) and Pa(vj) . 114

6.8 Speed comparison using MD . 117

7.1 Quantitative outputs for the inferred Raf-Signaling Pathway 145

7.2 The highest log scoring function produced by MCMC samplers 150

7.3 Quantitative outputs for the inferred KEGG Pathways network . . . 157

7.4 Quantitative outputs after a certain amount of time 159

9.1 Ranking MCMC samplers at different performance criteri 177

xxii

C.1 Numerical outputs with six nodes . 190

C.2 CPTs of Chest Clinic network . 192

xxiii

List of Abbreviations

MCMC Markov Chain Monte Carlo

BN Bayesian Netowrk

BNs Bayesian Netowrks

RGs Random Graphs

NS Neighborhood Sampler

HAR Hit and Run sampler

MH Metropolis Hastings sampler

SSD Sum of Squared Differences

MLE Maximum Likelihood Estimation

DM Dirichlet Multinomial

DAG Directed Acyclic Graph

DAGs Directed Acyclic Graphs

CDAG Connected Directed Acyclic Graph

CUDG Connected Un-Directed Graph

GUI Graphical User Interface

BFS Breadth First Search

DFS Depth First Search

GES Greedy Equivalence Search

HCS Hill Climbing Search

TS Tabu Search

GS Grow Shrink algorithm

TD True Distribution

xxiv

ED Empirical Distribution

CPTs Conditional Probability Tables

RS Rejection Sampler

iid independent and identical distributed

BNMCMC Bayesian Network Markov Chain Monte Carlo package

w.r.t With Rregard To

xxv

List of Symbols

t discrete time (sampling time or iteration time)

N set of discrete-times (sampling times or iteration times)

X a sequence of random variables

X random variable

Xt the state of a process at time t

X0 initial state

X the state space (search space or graph space)

pt
ij probability to move from state i to state j in t steps

f target probability distribution (posterior distribution)

q proposal probability distribution

α parameter of Dirichlet distribution - vector or scalar

G a graph

G0 initial graph

H candidate graph

G′ adjacent graph

E set of directed edges

e a single directed edge in E

V set of variables (nodes)

v a single node in V

n number of nodes in a BN

r number of state values

p path in a space of graphs

xxvi

λ maximum number of graphs permitted on a path

ℓ an integer sampled uniformly between 1 and λ

pℓ a path in graph space containing ℓ graphs

P set of paths

Aa list of addable edges

Da list of deletable edges

Ra list of reversible edges

An list of non-addable edges

Dn list of non-deletable edges

Rn list of non-reversible edges

Ga set of adjacent graphs constructed based on Aa

Gd set of adjacent graphs constructed based on Dd

Gr set of adjacent graphs constructed based on Rr

N set of adjacent graphs, N = (Ga ∪ Gd ∪ Gr)

µ total number of adjacent graphs in N

U uniform value sampled between 0 and 1

Pa(v) a set of parents of node v

∆ the collection of all sets of parents

D(v) a set of descendants of node v

D a set of data points

O big O notation

(i, j) a pair of nodes

Ω the set of all possible edges

J number of parent configurations in a CPT

k an indicator of a single state value

lag a vector of lags at which to calculate the SSD

Ta[i, j] transition between two adjacent graphs by adding an edge

xxvii

Td[i, j] transition between two adjacent graphs by deleting an edge

Tr[i, j] transition between two adjacent graphs by reversing an edge

E(G) set of all addable, deletable and reversible edges, E(G) = (Aa ∪Dd ∪Rr)

ξ(v) total number of conditional probabilities in a CPT for a particular node v

ξ(G) total number of conditional probabilities in a graph G

m number of observations for a particular node

ω number of parents for a particular node

TN number of cell explorations in the data matrix for a single cell in a CPT

Tv number of cell explorations in the data matrix for the entire CPT of a node

TG number of cell explorations in the data matrix for the entire CPTs of a graph

1

Chapter 1

Thesis Objectives

1.1 Introduction

The title of this thesis combines three subject areas: Markov chain Monte Carlo

(MCMC) approach, Bayesian networks (BNs), and their applications in systems

biology. Here, the MCMC approach is used to sample Bayesian network structures

from a defined graph space to infer causality directly from observational biological

dataset. A commonly challenging problem that arises while inferring BNs is the

high possibility for a sampling approach to get stuck in a local maxima solution.

Finding an efficient sampling algorithm to substantially resolving this shortcoming

remains a significant open problem.

This thesis proposes MCMC samplers that have the potential to effectively in-

ferring BNs when the problem of local maxima is present. The proposed MCMC

samplers, in this thesis, are new instances of the Neighbourhood Sampler (NS),

Hit-and-Run (HAR) sampler, and Metropolis-Hastings (MH) sampler.

Section 1.2, Section 1.3 and Section 1.4 in this chapter overview the motivation

of thesis, original contributions, and chapters abstracts, respectively.

The structure of the thesis is as follows. Chapter 2 presents a literature review of

MCMC sampling including the process of Markov chain and the principle of Monte

Carlo simulation. Chapter 3 reviews the main concepts, definitions, features, and

2 Chapter 1. Thesis Objectives

search space of BNs, as well as outlines certain MCMC and non-MCMC approaches

that have been widely cited in the literature. Chapter 4 explains in detail how one

can implement the NS, HAR and MH methods to infer BNs from their discrete

spaces. Chapter 5 proposes the NS and HAR methods as new MCMC approaches

to simulate BNs uniformly, and compares their performances with the MH sam-

pler. Chapter 6 proposes two adaptive techniques proposed in this thesis to reduce

the time complexity required by MCMC samplers to enumerate adjacent graphs

and calculate the scoring function for a Bayesian network. Chapter 7 provides five

applications involving 4, 6, 8, 11, and 51 nodes to evaluate samplers. Chapter 8 in-

troduces a Graphical User Interface developed in this thesis to enable practitioners

and academic researchers from different disciplines to implement the MCMC sam-

plers proposed in this thesis. Chapter 9 ends with conclusions and possible future

work.

1.2 Motivations

A new version of the NS was recently proposed in [1]. The sampler was introduced

with a number of features that distinguish it from other samplers that also simulate

over neighboring graphs, e.g. the MH sampler. The features of the NS are discussed

in Chapter 4. This thesis provides a new instance of the NS to infer BNs from

discrete graph spaces.

The HAR sampler is one of the fastest and most efficient MCMC algorithms for

continuous spaces. The core idea of the HAR sampler is to "hit" a particular point

in a continuous search space and then "run" in a random direction to another point

determined by a distribution. This thesis attempts to follow the same process by

hitting a particular graph in a discrete space and then running along a random path

defined as a sequence of adjacent graphs.

1.3. General objectives and original contributions 3

The MH sampler is a popular MCMC method. To make the MH sampler compa-

rable with the NS and HAR, we implement the samplers using the discrete uniform

distribution as their proposal distribution, and a Dirichlet-multinomial distribution

as their target function.

To reduce the time complexity while using the samplers to learn BNs, two adap-

tive techniques were developed. The potential of the three MCMC samplers and

the two adaptive techniques was mainly examined to simulate BNs uniformly and

to infer BN structures from discrete dataset and search spaces.

1.3 General objectives and original contributions

The chapters that include original contributions are Chapter 4, Chapter 5, Chapter

6, Chapter 7, and Chapter 8. Table 1.1 describes the contributions of these chapters.

Chapter Contributions

4
explains theoretically how to modify the NS, HAR and MH

algorithms to infer BNs.

5
implements the NS, HAR and MH to infer BNs and compares

samplers’ performances.

6

proposes two adaptive techniques to quickly enumerate adjacent

graphs and to calculate the scoring function of posterior

probability distribution.

7

applies the NS, HAR and MH to a variety of applications in

systems biology, and compares samplers’ performances. It also

proposes a new approach to effectively define initial BNs.

8
deploys a new graphical user interface developed using C# to

infer Bayesian network structures.

Table 1.1: Chapters that include original contributions.

4 Chapter 1. Thesis Objectives

1.4 Chapters abstracts and objectives

The subsequent sections outline the main specific objective for each chapter, and its

contribution to the thesis.

CHAPTER 2: Markov Chain Monte Carlo Sampling

This chapter attempts to provide a self-contained overview of Markov chain Monte

Carlo (MCMC) sampling. This includes highlighting the main properties of Markov

chains and the principles of Monte Carlo simulation. It also considers some MCMC

samplers of interest, and discusses their relative features and limitations. The chap-

ter covers the main issues that may arise when using MCMC methods, as well as

some reliable diagnostic tests that are widely used to evaluate MCMC outputs.

CHAPTER 3: A Review of Bayesian Networks

This chapter not only reviews the main notations and definitions related to BNs, but

also reviews the approach of Bayesian inference to compute posterior distributions

over graph spaces. Further, it explains how to fully learn a Bayesian network given

some data-points using the Bayesian inference and MCMC method. The chapter

explicitly outlines two essential types of learning to infer BNs: structure learning and

parameter learning. A review of current MCMC and non-MCMC methods proposed

to infer BNs is also provided.

CHAPTER 4: New Versions of the HAR, MH and NS to

Simulate Bayesian Networks

Sampling over a space of BNs is a useful stochastic technique to infer causality

for a set of variables given their dataset. This chapter explains how to infer BNs

from discrete spaces using the NS, HAR and MH algorithms, including proposal

1.4. Chapters abstracts and objectives 5

distribution, posterior distribution, constructing a set of adjacent graphs, generating

a candidate graph, initialising starting graphs, and how to use a standard brute-force

approach to check acyclicity and connectivity for a sampled connected BN.

CHAPTER 5: Uniform Sampling of Bayesian Networks Con-

ditional on Vertex Connectivity

This chapter validates the proposed MCMC samplers by simulating uniformly from

small spaces of BNs. It then compares the computational efficiency of the NS and

HAR sampler with the MH sampler, by mainly testing whether a MCMC sampler

is able to explore the entire space and whether the sampled graphs match the target

uniform distribution. Experimentally, the convergence behaviour for each MCMC

sampler has been investigated by performing simulations with the number of itera-

tions ranging from 1000 up to 50 000 000. The experimental results in this chapter

have demonstrated the ability of the proposed samplers to generate BNs uniformly.

That is, a random sequence of BNs with a large number of iterations would ul-

timately follow a uniform pattern, in which the probability of sampling a specific

Bayesian network is the proportion of those BNs in the target space.

CHAPTER 6: Adaptive Techniques for Faster Adjacent BNs

Assignment and Function Scoring

This chapter proposes two adaptive techniques to accelerate inference while simu-

lating BNs:

• An adaptive method for faster adjacent graphs enumeration: this section pro-

poses a new adaptive technique to quickly define the next set of all possible

adjacent graphs N (G′) of graph G′ given the current N (G) of graph G, where

6 Chapter 1. Thesis Objectives

G′ ∈ N (G). Unlike the conventional brute-force approach, the new adap-

tive technique does not need to check every single pair of nodes for a given

graph. Although, the new adaptive algorithm may have a worst-case execution

O(V 4) as the standard brute-force approach, it still achieves a better speed up

in practice.

• Dynamic scoring function for learning Bayesian network parameters: param-

eter learning in a discrete Bayesian network is another time-consuming prob-

lem. This section aims to adaptively populate the conditional probability

tables (CPTs) for a given Bayesian network. It updates the CPTs only for the

nodes whose parent nodes have been changed after a single transition from G

to G′ ∈ N (G) i.e. it updates only the probabilities of affected variables in the

new structure. The chapter also discusses the main factors that make a CPT

computationally expensive, and describes the Big-O complexity of the adap-

tive technique compared to the conventional method. The section is supported

by a range of illustrative examples, propositions and lemmas.

CHAPTER 7: Applications of Bayesian Networks in Systems

Biology Using NS, HAR and MH Algorithms

MCMC methods for BNs inference are ideally suited to predict a Bayesian network

structure of cell signaling pathways. This chapter assesses the NS, HAR and MH

methods through simulation studies. It applies the proposed MCMC samplers to

analyse some biological BNs, and to infer cause-effect relationships among a set of

interacting variables using five BNs of size 4 up to 51 nodes. The datasets used

to infer BNs are either real-life observations or simulated using known conditional

probability tables of true structures.

1.4. Chapters abstracts and objectives 7

CHAPTER 8: BNMCMC : A New Graphical User Interface

to Infer Bayesian Networks Using MCMC Samplers

This software chapter presents a graphical user interface developed in this thesis to

infer BNs using the proposed MCMC samplers. It is a user-friendly environment

designed to facilitate analysis by practitioners from different disciplines. Currently,

this software is only a desktop version, but in future, I would like to distribute it as

a web-based application for better reachability among the scientific community.

CHAPTER 9: Conclusion

This chapter describes some possible future work to be done to the current version

of BNMCMC package, and future theoretical work following on from the thesis.

8

Chapter 2

Markov Chain Monte Carlo

Sampling

2.1 Introduction

Sampling from a complex model is not just used as an optimization tool when

deterministic methods are unavailable (e.g. junction tree [2], cutset conditioning [3],

variable elimination [4], and systematic maximum a posteriori assignment (MAP)

search [5]). It is also used to estimate marginal distributions, quantify uncertainty

in a posterior distribution and estimate integrals.

The Markov chain Monte Carlo (MCMC) approach [6–14] is a form of stochastic

sampling. In 1953, [15] developed the first MCMC approach called the Metropo-

lis algorithm in the field of statistical physics. The MCMC algorithm provides a

framework for sampling from complicated probability distributions. MCMC sam-

pling generates a Markov chain which is constructed specifically to converge to the

target probability distribution f . The idea is to iteratively generate random points

from a proposal distribution q, and accept or reject the proposed point, thus forming

a random walk. Formally, f is the steady-state distribution of a Markov chain. The

empirical distribution of the observed states converges weakly to f .

This chapter is constructed as follows. Section 2.2 highlights the main notations

2.2. Markov chains 9

and properties of Markov chains. Section 2.3 outlines the principles of Monte Carlo

simulation and briefly reviews some of its main methods. Section 2.4 considers some

MCMC samplers of interest and their special cases. Section 2.5.1 frames the main

issues that may arise when using MCMC methods. Section 2.5.2 introduces some

reliable diagnostic tests that are widely used to evaluate MCMC outputs.

2.2 Markov chains

I follow standard approaches to define a Markov chain [8, 16–22], as a basis for

exploiting the Markov property in constructing dependent Monte Carlo simulations

(Section 2.3). A stochastic process [18, 23, 24] in discrete time t ∈ N = {0, 1, 2, . . . }

is a sequence of random variables X0, X1, X2, . . . denoted by X = {Xt : t ≥ 0},

where the value Xt refers to the state of the process at time t, and X0 denotes the

initial state. The state space X is defined as the collection of all possible values that

the Xt can take.

A stochastic process in a countable state space is called a Markov chain if Equa-

tion 2.1 is satisfied for all times t ≥ 0 and all states i0, . . . , it, j ∈ X .

P (Xt+1 = j|Xt = it, Xt−1 = it−1, . . . , X0 = i0) = P (Xt+1 = j|Xt = it). (2.1)

Definition 1 (Markov property). The Markov property asserts that future states,

given the present state, only depend on that present state Xt and are conditionally

independent of past states.

I write p
(t)
ij to describe the probability of transition from state i into state j in t

steps, such that p
(t)
ij = P (Xt = j|X0 = i). The matrix P = (pij) is called a transition

kernel (or Markov kernel). Note that pij is a function that takes values between 0

and 1 to denote the probability that the chain, whenever in state i, moves next (one

unit of time later) into state j, and is referred to as a one-step transition probabilitiy.

10 Chapter 2. Markov Chain Monte Carlo Sampling

Definition 2. A Markov chain Xt is said to be time-homogeneous if Equation 2.2

holds, so that transition probabilities are independent of t.

P (Xt+1|Xt) = P (X1|X0), ∀ t. (2.2)

2.2.1 Irreducible, aperiodic and recurrent Markov chain

This section reviews three important properties of Markov chains: irreducibility,

aperiodicity, and positive recurrence. If a Markov chain satisfies these properties, it

is then called ergodic (Theorem 2.2.1), which is a sufficient condition to converge to

a stationary distribution (Definition 12). Definitions 3 and 4 describe when a single

state and Markov chain are irreducible, respectively. Definitions 5 and 6 describe

when a single state and Markov chain are aperiodic, respectively. Definitions 9 and

10 describe when a single state and Markov chain are positive recurrent, respectively.

Definition 3. A state j is said to be accessible from state i if there is an integer

t > 0 such that

P (Xt = j|X0 = i) = p
(t)
ij > 0. (2.3)

When p
(t)
ij = 0 for all t, then state j is not accessible from state i.

Definition 4. A Markov chain is said to be irreducible if it is possible to transit

from any particular state i to any other state j, in a finite number of steps, with

positive probability.

Definition 5. A state i is periodic if returning to state i can only occur at regular

times. The period of a state is formally defined as

si = gcd{t : P (Xt = i|X0 = i) > 0}, (2.4)

2.2. Markov chains 11

where "gcd" is the greatest common divisor. Conversely, a state i is said to be

aperiodic if si = 1.

Example 1. Suppose it is possible to return to a particular state in {6, 9, 12, 15, . . . }

time steps; here s = 3.

Definition 6. A Markov chain is aperiodic if every state is aperiodic.

Proposition 1. An irreducible Markov chain only requires one aperiodic state to

imply all states are aperiodic [25].

Definition 7. A state i is said to be transient if, with positive probability, one can

start from i and never return to it. Otherwise, the state i is said to be recurrent.

Definition 8. An irreducible Markov chain is said to be recurrent if and only if all

states are recurrent, transient otherwise.

Proposition 2. The expected number of visits to the state i is finite if state i is

transient [26] i.e.
∞∑

t=0
p

(t)
ii <∞ (2.5)

and infinite if state i is recurrent i.e.

∞∑
t=0

p
(t)
ii =∞ (2.6)

Proposition 3. Let Ti be the first return time to state i [18]:

Ti = min{t ≥ 1 : Xt = i|X0 = i}, (2.7)

the mean recurrence time at state i is defined as the expected return time µi:

µi = E[Ti]. (2.8)

12 Chapter 2. Markov Chain Monte Carlo Sampling

Given the value of µi in Proposition 3, a recurrent state is either null recurrent

or positive recurrent.

Definition 9. A state i is said to be positive recurrent if µi is finite, that is, µi <∞.

Otherwise, the state i is null recurrent i.e. µi =∞.

Definition 10. A Markov chain is said to be positive recurrent if all states in an

irreducible Markov chain are positive recurrent.

Theorem 2.2.1. A state i is said to be ergodic if it is aperiodic and positive

recurrent. If all states in an irreducible Markov chain are ergodic, then the chain is

said to be ergodic.

2.2.2 Limiting distribution

Definition 11. The probability distribution f = [f0, f1, f2, . . .] is called the limiting

distribution of the Markov chain Xt if

fj = lim
t→∞

P (Xt = j|X0 = i), ∀ i, j ∈ X , (2.9)

provided that this limit exists and ∑j∈X fj = 1.

Proposition 4. If the limiting distribution in 2.9 exists, it then does not depend

on the initial state (X0 = i) [27] i.e

fj = lim
t→∞

P (Xt = j), ∀ j ∈ X . (2.10)

Definition 12. A discrete-time stochastic process {Xt : t ≥ 0} is stationary if for

any time points i1, . . . , it and any m ≥ 0, the joint distribution of (Xi1 , . . . , Xit) is

the same as the the joint distribution of (Xi1+m, . . . , Xit+m).

The term stationary in Definition 12 refers to stationary in time. Note that the

distribution of Xt is the same for all t.

2.2. Markov chains 13

A special case of a positive recurrent state is an absorbing state. An absorbing

state is such that when a stochastic process enters that state, it becomes impossible

to leave it again, so pii = 1. Note that an irreducible Markov chain is positive

recurrent if and only if there exists a stationary distribution. Further, a Markov

chain is an absorbing chain if and only if the chain contains at least one absorbing

state, and it is possible to go from a non-absorbing state to an absorbing state,

though not necessarily in one step.

Proposition 5. If a Markov chain is irreducible and aperiodic, then Expression

2.11 has a unique solution [20, 21]:

f = f.P, (2.11)

here, the unique solution is the limiting distribution of the Markov chain as in

Equation 2.10, and moreover this distribution is stationary [28].

2.2.3 Detailed balance property

A sufficient condition for a probability density function (pdf) f to be stationary

for a Markov process is the detailed balance property. The detailed balance can be

expressed as

fi.pij = fj.pji, (2.12)

where fi and fj are the equilibrium probabilities of being in states i and j, respec-

tively. A Markov chain is said to be reversible if there is a pdf f over its states that

satisfies the condition in 2.12 for all times t and all states i and j. Reversibility can

also be defined based on the Kolmogorov criterion which states that for any closed

loop of states, the product of transition rates must be the same. This satisfies [29]

p12.p23.p(j−1)j.pj1 = p1j.pj(j−1).p32.p21, (2.13)

14 Chapter 2. Markov Chain Monte Carlo Sampling

for all finite sequences of states 1, 2, . . . , j ∈ X .

2.3 Monte Carlo simulation

The transition rule for a Markov chain is often given and the task is to deter-

mine the stationary distribution. In contrast, Markov chain Monte Carlo simulation

prescribes a target stationary distribution and the task is to develop a suitable tran-

sition rule often involving a proposal distribution. The Markov chain Monte Carlo

approach was first developed by physicists. Monte Carlo methods typically produce

identical independent distributed (iid) samples and are free from the problem of

auto-correlated samples inherent in MCMC methods. A direct application of Monte

Carlo simulation is to estimate integrals given a randomly distributed variable x.

Suppose we have a complex single-dimensional integral:

G =
∫ b

a
f(x)dx. (2.14)

Now attempt to decompose f(x) into the product of two functions as follows

G =
∫ b

a
f(x)dx =

∫ b

a
p(x)h(x)dx, (2.15)

where p(x) is an arbitrary function and h(x) is a probability density defined over

the interval (a, b). The resulting integral in expression 2.15 can be expressed as the

expectation of p(x) over the density function h(x)

Eh(x)[p(x)] ≈ Gt = 1
t

t∑
i=1

p(xi), (2.16)

where the xi are drawn from the density function h(x), so that as t→∞, Gt → G

by the ergodic property in Theorem 2.2.1. One main drawback with Monte Carlo

integration is that it is difficult to obtain samples from complicated distributions.

2.3. Monte Carlo simulation 15

In some cases, a cumulative distribution function (cdf) F (x) may be easier to

work with than the associated density function f(x), and in fact the latter might

not even exist. The inverse transform sampler (ITS) provides a way to generate a

one-dimensional random variable when the cdf is available. Let X be a continuous

random variable with cdf F (x). Suppose one wants to sample values X that are

distributed according to F (x). One can sample from f(x) if the inverse cumulative

distribution function can be formulated as:

x = F −1(u). (2.17)

Simply generate a uniform random number u from U(0, 1) and compute Equation

2.17. One of the limitations of ITS is that it requires a closed form expression of

F (x), which is not always available for some desirable distributions (e.g the Gaussian

distribution). The rejection Monte Carlo sampler was proposed to overcome this

limitation [30].

The rejection sampler (RS) [13, 30, 31] is a pseudo-random number sampling

technique. The sampler forms the basis for many Monte Carlo algorithms. The RS

can be applied in problems where the goal is to approximate integrals with respect

to (w.r.t.) the pdf of interest [32]. One may use a proposal (for instance a proxy)

distribution q(x) in order to sample from a target probability distribution f(x). The

proposal distribution q(x) must envelop (cover) the target probability distribution

f(x). That is, f(x) < Mq(x), where M > 1 is an appropriate upper bound on
f(x)
q(x) . To carry out the RS, sample x from q(x), and u uniformly from (0, 1). If the

inequality in Equation 2.18 holds, accept x. Otherwise, reject the value of x and

repeat until acceptance occurs [13].

f(x)
Mq(x)

> u. (2.18)

16 Chapter 2. Markov Chain Monte Carlo Sampling

The RS does not require evaluating the normalising constant of either f(x) or q(x).

However, in high dimensional spaces it is hard to efficiently design a rejection sam-

pling method for a particular distribution. Further, there may be a difficulty in

determining a suitable analytic form for the envelope distribution since it requires

identifying a suitable value for M .

Adaptive rejection sampling (ARS) refines RS to provide a method that can

overcome these problems. ARS [32, 33] starts with a trial proposal distribution q0(x).

The idea is to continue improving the proposal distribution as long as we do Monte

Carlo sampling; so when we iterate the procedure, we get a sequence of proposal

functions that converge to the target pdf [32] while the proportion of accepted

samples grows. The simplest form of ARS is restricted to log-concave densities [32].

Typically, two common approaches can be adopted to apply ARS: derivative-free

ARS [33] and derivative-based ARS [32]. Essentially, for both approaches, the log-

concavity condition should be checked for f(x), i.e. V (x) in Equation 2.19 is strictly

concave ∀x ∈ D, where D ⊆ R is the domain.

V (x) = log(f(x)). (2.19)

Since ARS is restricted to log-concave densities, it is unsuitable for many practical

applications [34, 35]. The main advantage of using ARS is to obtain a higher mean

acceptance rate by reducing the chance of rejection for the ensuing iterations.

RS can be regarded as a special case of importance sampling (IS) [36], and

the relationship between RS and IS [37] was studied in [38], with emphasis on

their relative efficiencies. IS is not a method to draw samples from a probability

distribution f(x), it is rather a discrete method for approximating expectations

2.3. Monte Carlo simulation 17

directly Ef [h(x)].

I[h] ≡ Ef [h(x)] =
∫

h(x)f(x)dx

=
∫

h(x)f(x)
q(x)

q(x)dx

≈ 1
t

t∑
i=1

h(xi)
f(xi)
q(xi)

. (2.20)

where the xi are drawn from a distribution with density q(x). Then, one can write

Î[h] = 1
t

t∑
i=1

h(xi)w(xi); w(xi) = f(xi)
q(xi)

, (2.21)

where w(xi) called the importance weight.

An important feature of IS is the potential to reduce variance of Î[h], by selecting

an appropriate q(x). It also provides an unbiased approximation, since E{Î[h]} =

I[h]. The importance weights play an important role in the method. However, these

weights should be calculated accurately, otherwise, poor estimates will be obtained.

Simulated annealing (SA) [39] is a Monte Carlo method for optimisation. Note

that the SA is actually a modified MCMC method, but with a variable target prob-

ability distribution. In particular, the varying target probability distribution con-

vergences to a point mass located at the optimal solution, and is actually one of the

few optimisers with provable convergence to the global maximum, however slow.

This method is inspired by the annealing method used in heat treatment of metals,

where slow cooling cycles are maintained alternately with processes of re-heating,

thus providing access to a configuration with minimal energy.

SA was independently described by [39] to search for feasible solutions and ulti-

mately converge to an optimal solution. For an easy description of SA, the reader

is referred to the textbook by [40]. For further information see [41, 42] who have

written monographs on the subject of SA. Also, a brief introduction to the actual

18 Chapter 2. Markov Chain Monte Carlo Sampling

mechanics of simulated annealing can be found in [43].

2.4 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are used to sample from arbitrary

probability distributions f(x) [44]. By construction, MCMC sampling exploits de-

pendent samples which enable it to simulate from difficult distributions, but this

comes at a cost. It is useful in Bayesian inference, for example, where we need to

integrate over possibly high-dimensional probability distributions to make inference

about a model or to make predictions. MCMC methods play an indispensable role

in pattern recognition. Theoretical and applied treatments of MCMC methods can

be found in [6, 8, 11–13, 45–48].

The MCMC approach has clearly the disadvantage that it generates correlated

samples due to Markov chain process. Further, the initial samples are more highly

influenced by the arbitrary starting points than other non-MCMC methods, so they

may follow a different distribution. These limitations are addressed in Section 2.5.1

and convenient diagnostic tests for analysing MCMC outputs are provided in Section

2.5.2.

The transition kernel must ensure rapid convergence to f(x) and good mixing i.e.

moves throughly between high and low densities, for the efficiency of the method.

However, in multimodal target probability distributions, some simple kernels of

MCMC methods may fail to produce fast convergence to the target probability

distribution [12].

2.4.1 Metropolis-Hastings method

The Metropolis algorithm was first introduced in [44]. It aims to generate a se-

quence of draws from some desired probability distribution (target distribution)

2.4. Markov chain Monte Carlo methods 19

f(X) = p(X)
z

, where p(x) is proportional to f(x) and z is the normalisation fac-

tor. This method was first developed by [15] inspired by a computer simulation

model of physical simulated annealing. Their method incorporates a temperature

of the system, and calculates the Boltzmann average of a property of the system

(see Boltzmann distribution law in [15]). The Metropolis algorithm only considers

symmetric proposals i.e. q(Y |X)=q(X|Y), where q is referred to as the proposal

density, candidate-generating density or jumping distribution. One possible pro-

posal density is the Gaussian distribution proposed in [49]. A nice introduction and

background to the Metropolis algorithm can be found in [50].

One main feature of using the Metropolis algorithm is that since the computation

depends only on the ratio f(Y)
f(X) , the normalisation factor z cancels. Thus, there is

no need to calculate z, which is often difficult to compute in practice [17]. Instead,

one needs only to calculate ratios of the form p(Y)
p(X) .

The Metropolis-Hastings (MH) sampler is a widely used MCMC simulation tech-

nique. The MH sampler was first presented in [17]. The MH sampler uses a

Markov process which asymptotically reaches a unique stationary distribution f(X)

[13]. Particularizations of the MH sampler include the Metropolis algorithm [15],

Metropolised Independence sampler [17] and Gibbs Sampling [51] as pointed out by

[52]. The MH algorithm can also be used within other samplers such as Metropolis-

within-Gibbs (MWG) [19] and Adaptive Rejection Hastings-Metropolis (ARHM)

[34]. Thus the MH algorithm is an important MCMC sampler to be compared with

any suggested MCMC sampler. A nice tutorial to the concept of Metropolis-Hastings

sampler and its associated methods can be found in [53].

Unlike the Metropolis algorithm, MH sampler can use asymmetric proposal

distributions [54]. The MH sampler can also be used for sampling from multi-

dimensional distributions, even when the number of dimensions is high. It is also

a convenient way to do MCMC sampling when the normalisation factor is hard to

20 Chapter 2. Markov Chain Monte Carlo Sampling

compute. The MH sampler is described in Algorithm 1 [53]. If the Metropolis al-

gorithm is implemented, the fraction q(Xt|Y)
q(Y |Xt) in Equation 2.22 should be set to one.

That is, the proposed state Y is accepted with probability α expressed in Algorithm

1, where f(Y)
f(Xt) is the likelihood ratio, and q(Xt|Y)

q(Y |Xt) is the ratio of the proposal density.

Algorithm 1 Metropolis-Hastings method

Given a starting element Xt = X0 ∈ X and set t = 0.

1. Generate a candidate element Y from some proposal distribution q(Y |Xt).

2. Take:

Xt+1 =

Y with probability α(Xt, Y),

Xt with probability 1− α(Xt, Y),

where

α(Xt, Y) = min
(

f(Y)q(Xt|Y)
f(Xt)q(Y |Xt)

, 1
)

. (2.22)

3. Set t = t + 1. Go to 1.

As with the Metropolis algorithm, the proposal distribution has to be tuned to

achieve an efficient sampling algorithm. Although, the limiting distribution of MH

sampler is f(X), convergence can be slow [8, 55], especially when the number of

dimensions is high.

2.4.2 Neighbourhood Sampler

The Neighbourhood Sampler (NS) is a powerful MCMC method introduced in [1] to

sample from continuous probability distributions. Each iteration involves sampling

from a local neighbourhood NX uniquely associated with a particular element X.

The sampler requires that X ∈ NX for all X ∈ X . These neighbourhoods are

2.4. Markov chain Monte Carlo methods 21

selected in such a way that a reflexive property holds, so that X ∈ NY if and only if

Y ∈ NX , and thus it is appropriate to refer to such an X and Y as neighbours. One

useful feature is that each iteration of the NS involves sampling uniformly from such

neighbourhoods, no matter how complicated the target probability distribution. The

NS assumes a target probability distribution function f(X) is defined over a finite

space X , with a counting measure µ also defined on X . Formally, let S be defined

on a measurable space X . Let sigma-algebra Σ be a measurable subsets consisting

all the subsets of S. Then, the counting measure µ on this measurable space (S, Σ)

is the positive measure defined by [56]

µ(A) =

|A| if A is finite

+∞ if A is infinite

for all A ∈ Σ, where |A| denotes the cardinality of the set A [56].

One advantage that the NS has relative to the closely related random walk

sampler is that it is less likely to become trapped in a local mode. The reason for

this is that at each iteration the NS transits through two elements consecutively.

From element X it transits to an element Y , which is sampled uniformly from

the set NX . It then transits to element Z which is sampled uniformly from NY .

Then, a rejection step is applied to reduce NY until a particular Z in the reduced

neighbourhood is accepted. That is, each rejected element Z is excluded from being

sampled again from the same set NY . This increases the chance of moving to a new

element Z ̸= X compared to the random walk sampler, although it is still possible to

have Z = X, since X ∈ NY [1]. Algorithm 2 describes the general NS for sampling

from an arbitrary distribution f w.r.t. µ [1].

22 Chapter 2. Markov Chain Monte Carlo Sampling

Algorithm 2 Neighbourhood Sampler

Given the current state Xt = X0 ∈ X and set t = 0:

1. Generate Y ∼ U(NXt) where U(NXt) is the uniform distribution (w.r.t. µ) on

NXt . Set H = NY .

2. Generate U ∼ U(0, f(Xt)/µ[NXt]).

3. Generate Z1 ∼ U(H).

4. Set k = 1 and iterate the following steps until f(Zk)/µ[N (Zk)] > U :

(a) Reduce H by excluding Zk.

(b) Generate Zk+1 ∼ U(H) and set k := k + 1.

5. Set Xt+1 = Zk.

6. Set t = t + 1. Go to 1.

It is still possible for the NS to become stuck in a local mode for a long time.

However, one possible technique to improve mixing is to expand each neighbourhood

NX to include sequences that can be obtained from X by two successive transitions

[1].

2.4.3 Hit-and-Run algorithm

The basic version of the Hit-and-Run (HAR) approach was first introduced by [57].

It involves a multivariate proposal and a Metropolis step for rejection. It was in-

troduced to independently sample uniform points over a continuous convex space

X . The HAR sampler with a Metropolis rejection step was popularised by [58] and

involves symmetric trial transitions such that its stationary distribution is uniform

2.4. Markov chain Monte Carlo methods 23

on a bounded open space domain X . The term “Hit-and-Run” was also proposed

by [58], due to its ability to run across the search space, and hit distant elements.

This feature provides good mixing and rapid convergence to the target probability

distribution. The HAR sampler is included in the “LaplacesDemon” package [59]

which is a freely contributed R package for Bayesian inference. The sampler was

shown to be one of the fastest known methods to sample random points in a high

dimensional convex set [60, 61]. It often achieves a more rapid rate of convergence

than the Gibbs sampler [9], in particular when the parameters are correlated [62].

The core idea of sampling by the HAR algorithm is summarised in the following

linear equation:

Xt+1 = λt.dt + Xt, (2.23)

where dt is a random direction in the space at iteration t, and is often sampled

uniformly, and λt is a real number used to scale the length of the direction dt.

Figure 2.1 illustrates the idea: first a direction dt is selected as a point on a unit

k-dimensional sphere in a convex space X , then a new element is selected at a scale

size λ units in the same direction. Equation 2.23 produces a Markov chain in which

the probability distribution of the next point Xt+1 conditionally depends only on the

current point Xt and not on the sequence of other historical events that preceeded

Xt.

-���������*

�
�
�
�
�
�
�
�
�
���

XXXXXXXXXy

C
C
C
C
C
CO

�
��	

�
�
�
�
�
�
�
�

λt.dt + Xt

Xt L

X

Figure 2.1: Some possible directions on the unit k-dimensional sphere.

24 Chapter 2. Markov Chain Monte Carlo Sampling

Algorithm 3 [58, 63–65] iteratively specifies the main steps to perform the general

HAR sampler with a target probability distribution f(x). The HAR algorithm can

be described as a line sampler to sample from f(X) on a convex space X .

Algorithm 3 Hit-and-Run algorithm

Choose a starting point Xt = X0 ∈ X and set t = 0:

1. Define a real length λt > 0 at random.

2. Generate a uniformly distributed unit direction dt := (d1
t , . . . , dk

t) ⊆ Rn.

3. Find the intersection line L = {X ∩Y |Y = Xt +λtdt ∈ X}, where λ is a signed

distance.

4. Select the candidate point Y according to a full defined distribution along L.

5. Apply the MH acceptance ratio by taking:

Xt+1 =

Y with probability α(Xt, Y),

Xt with probability 1− α(Xt, Y),

where α(Xt, Y) is as in Equation 2.22.

6. Set t = t + 1. Go to 1.

At each iteration t in Algorithm 3, the HAR sampler first randomly generates

a direction dt in a convex X ⊆ Rk as a unit vector of dimension k. The generated

direction is then scaled by a pre-determined length λ. A line segment L is therefore

defined by the intersection of the corresponding straight line passing through Xt

in direction dt of length λ and the gray oval convex space X [66] (see Figure 2.1).

Next, the candidate point Xt+1 is selected according to the full defined distribution

2.5. MCMC sampling issues and convergence diagnostic tests 25

along the intersection between the line L and space X . Then accept the candidate

point if it satisfies the acceptance ratio defined in step 13 in Algorithm 3.

2.5 MCMC sampling issues and convergence di-

agnostic tests

Section 2.5.1 and Section 2.5.2 discuss two main aspects which are of interest when

using MCMC sampling: MCMC convergence issues and MCMC convergence diag-

nostics, respectively.

2.5.1 MCMC sampling issues

Unlike some methods of Monte Carlo simulation, MCMC sampling produces depen-

dent samples as a result of running a Markov chain process defined in Section 2.2.

The dependency among samples leads to the problem of high autocorrelation which

is an undesirable property, because it may slow convergence to the target probability

distribution or cause poor mixing (i.e. the chain moves slowly in the state space).

Other issues include how to effectively assign the following: a proposal distribution,

number of chains, starting values, thinning, burn-in, stopping time, proper scale,

and auxiliary variables. A brief summary and suggested solutions to these issues is

outlined in the next few paragraphs.

A proposal distribution should ultimately generate samples from the target prob-

ability distribution [8]. Convergence to the target probability distribution may not

be rapid, and can depend on the choice of proposal distribution. Finding a proposal

distribution that produces efficient sampling can be difficult when we have multi-

dimensional spaces, or many local minima or maxima. It is important to carefully

choose the proposal distribution in order to facilitate sampling and evaluation [67].

26 Chapter 2. Markov Chain Monte Carlo Sampling

It is possible to run a single chain only. However, various recommendations

have been made in the literature, such as running many short chains [68], multiple

long chains [69], or one very long chain [70]. It might be desirable to run many

short chains to obtain independent samples from the target probability distribution.

However, it should not be done unless there is a clear need for independent samples

[8, 71]. Convergence diagnostics are still an area of active research [8]. However,

running a single chain for one very long run can be more precise in finding new

modes [8]. Running multiple short chains may result in none of them converging

and thus is undesirable for inference. Reducing dependency on the initial values

can be achieved by using a parallel chains technique. However, comparison between

chains can never prove convergence [72].

Burn-in is, loosely speaking, the number of iterations that the chain takes to

converge to the stationary distribution. Burn-in can be influenced by the proposal

distribution. One can approximate the length of burn-in based on convergence

diagnostics [73]. A convergence diagnostic is a tool to determine the length of burn-

in. It uses theoretical and approximation methods to analyse Monte Carlo output

[8]. One popular technique is the so-called trace plot or time-series plot. Using

MCMC output, we plot the iterates of particular parameters and monitor trends [74].

Convergence can be assessed by looking for trends in these plots that suggest non-

stationary behaviour. One can also monitor the autocorrelations between successive

iterates, since highly correlated samples can lead to slow convergence. Further,

model re-parametrisation techniques can play a significant role in speeding up the

mixing.

For a Markov chain that is irreducible and aperiodic, the stationary distribution

will not be affected by choosing any arbitrary starting value, since the stationary

distribution is independent of starting values. A technique called "over-dispersed"

2.5. MCMC sampling issues and convergence diagnostic tests 27

starting values was suggested by [69] to be used in multiple chains to assist in assess-

ing convergence [72]. If running an MCMC from many widely dispersed initial states

yield comparable sample densities, which is easily checked, one tend to conclude that

the sampler works.

One can alternatively use other techniques to select initial values, such as sim-

ulated annealing [75], ad hoc methods [76], or maximum likelihood estimates once

informative priors are available. However, starting values should be chosen more

carefully for slow-mixing chains to avoid a lengthy burn-in. Section 7.5.2 proposes

a new approach - based on heuristic search algorithms reviewed in Section 3.6.4 - to

effectively define an initial network, in particular, when inferring medium or large

BNs.

It is common practice to thin the MCMC output by discarding all samples except

every kth sampled value. The goal is to overcome the problem of high correlation

between consecutive iterations. In the ecological literature, thinning MCMC output

has been regarded as inefficient and unnecessary since the early 1990’s [77]. However,

thinning has been found to be a practical necessary. For example, suppose one can

store no more than 10,000 samples. Then, it would be better to run the MCMC

twice as long, keeping every second sample.

Practically, the number of samples used determines the precision of the estimator.

One possible method to determine when to stop sampling is to run several chains in

parallel with different starting values, and compare the estimates. Other proposed

methods that aim to estimate the variance of estimators can be seen in [78] and [73].

For MH sampler with a proposal centred on the current sample, finding an appro-

priate scale for the proposal so that the variance is neither too small nor too large,

often enables more efficient sampling. If the variance is too small, then all proposed

values are likely to be accepted, but each step is small [79]. It was conjectured by

[17] that an effective acceptance rate of about 1/2 is optimal. Consequently, the

28 Chapter 2. Markov Chain Monte Carlo Sampling

algorithm may traverse the state space very slowly. On the other hand, if the vari-

ance is too large, then all proposed values are likely to be rejected and the algorithm

stays trapped at the same place. A detailed description of the relationship between

correlation and convergence can be found in [55].

Another implementational issue is use of an auxiliary variable to improve conver-

gence and MCMC performance in the case of highly multi-modal target probability

distributions. The idea of auxiliary variables was first introduced in the context of

the Ising model by [80]. Basically, the auxiliary variables technique aims to add

one or more variables u ∈ U to the state variable x of the Markov chain [10]. An

augmented distribution of x and u can be defined by taking p(x) to be the marginal

for x. The conditional p(u|x) can be specified arbitrarily. Then, a Markov chain on

X ×U can be constructed, which alternates between two types of transition at each

iteration [81].

It is usually necessary to analyse the outputs by summarising them after obtain-

ing samples from simulation. For example, the posterior distribution in Bayesian

analysis can be summarised using one or more estimators such as means, variances,

correlations, and marginal distributions. These estimators can be easily calculated

based on the samples. Typically, we can estimate marginal distributions by kernel

density estimation; for further details see [68].

2.5.2 Convergence diagnostics

In this thesis I adopted several MCMC diagnostics recommended in the literature

[74, 82–84]. Some of these diagnostics are available in the package coda [85] and boa

[86] for R.

I have used the Gelman and Rubin diagnostic [84] as a convergence test. This

2.5. MCMC sampling issues and convergence diagnostic tests 29

test measures the difference between the within-chain variance and the between-

chain variance using a value called the “scale reduction factor”. It requires simu-

lating multiple chains (m > 2) each of length 2n, where n is the number of draws

(samples), with overdisperse starting values. The first n samples in each chain are

then discarded, and the within-chain and between-chain variances are evaluated.

The Gelman and Rubin diagnostic is implemented as follows. Let xij be draw

number i in chain j. Find the within-chain variance W and between-chain variance

B. Equation 2.24 and Equation 2.25 calculate W and B, respectively.

W = 1
m

m∑
j=1

s2
j (2.24)

where

s2
j = 1

n− 1

n∑
i=1

(xij − x̄j)2 and x̄j = 1
n

n∑
i=1

x̄i

B = n

m− 1

m∑
j=1

(x̄j − ¯̄x)2 (2.25)

where

¯̄x = 1
m

m∑
j=1

x̄j

Next, find the weighted sum V̂ ar(x) of W and B using Equation 2.26.

V̂ ar(x) = (1− 1
n

)W + 1
n

B (2.26)

Then, use Equation 2.27 to calculate the potential scale reduction factor R̂.

R̂ = V̂ ar(x)
W

(2.27)

The output of the Gelman and Rubin test consists of the 50% and 97.5% quantiles

of the distributions of scale reduction factors. If these quantiles are both close to 1,

30 Chapter 2. Markov Chain Monte Carlo Sampling

the chains may be considered to be sampling from the same distribution. If both

quantiles are high (commonly greater than 1.1 or 1.2), the number of iteration t

needs to be increased.

Another MCMC test is the Geweke diagnostic [82], which takes two non-overlapping

parts of the Markov chain (usually the first 10% and last 50%, as suggested by

Geweke [82]). If the two means in the two time intervals are not significantly dif-

ferent, one may assume that the two samples come from the same distribution and

that the chain has converged to the target distribution somewhere inside the first

10%. The test statistic of the Geweke diagnostic is converted into a Z-score with

the standard errors adjusted for autocorrelation. For every sampler output, set two

random variables X1 and X2 to refer to the first 10% and last 50% of the sampled

draws, respectively. Then, similar to the two samples T test of means x̄1 and x̄2

when the two sample variances s2
1 and s2

2 are not equal, calculate:

T = x̄1 − x̄2√
s2

1
n

+ s2
2

m

(2.28)

When n, m → ∞, Equation 2.28 can be approximated using the standard normal

Z, and the sample variances s2
1 and s2

2 need to be adjusted for autocorrelation. Note

that Geweke diagnostic test uses spectral densities to estimate the s2
1 and s2

2 [82].

Values outside 2 standard deviations are taken to indicate that a longer chain is

needed.

Another diagnostic test is the Heidelberger-Welch test [87]. It is used to de-

termine the number of iterations to keep and the number to discard. The null

hypothesis is that the samples are drawn from the same distribution. The diagnos-

tic is applied to the whole chain. If the null hypothesis is rejected, then the first

10% are discarded and the test is applied again. If the null hypothesis is rejected

for the second time, the first 20% of the chain is discarded and the test is repeated.

This process is repeated using intervals of 10% of the chain until either the null

2.5. MCMC sampling issues and convergence diagnostic tests 31

hypothesis is accepted, or 50% of the chain is discarded. The latter is taken to

indicate failure to converge and that a longer MCMC run is required.

Another useful indicator of MCMC performance for a finite state space is the

sum of squared differences (SSDs) between the target probabilities fi for each state

i and the observed proportions f̂i of the n samples that are in each state i. Formally,

it is defined as follows:

SSDs =
∑

i

(f̂i − fi)2. (2.29)

One would expect the SSDs to decrease as the number of iterations increases

until the chain reaches convergence.

One more graphical diagnostic I consider is the time-series plot of the log-

likelihood at each iteration [84–86], which can be used to judge the point at which

burn-in has occurred.

The autocorrelations between successive iterations given MCMC outputs are

another widely used diagnostic test. The autocorrelation function ρk expressed in

Equation 2.30 is the correlation between n draws xi and their kth lag:

ρk =
∑n−k

i=1 (xi − x)(xi+k − x)∑n
i=1(xi − x)2 , (2.30)

where x indicates the average of x1, . . . , xn. The autocorrelation ρk is expected to

decrease as k increases. If autocorrelation is still relatively high for large values of

k, this indicates slow convergence.

32

Chapter 3

A Review of Bayesian Networks

3.1 Introduction

Bayesian networks (BNs) (also called Bayesian Graphs or Bayes Nets) are a broad

class of graphs providing a compact representation of joint probability distributions

and allowing efficient belief updating based on probabilistic reasoning. Some of the

references considered in this chapter include [88–93].

One goal of using BNs is to uncover statistical relationships among variables

from an observed dataset. The more data-points collected, the more precisely their

relationships can be inferred. BNs have been widely applied in different domains. In

systems biology, variables may represent gene expression levels, signaling molecules,

lipids, or any biologically relevant molecule [94, 95]. In medicine, the ALARM net-

work is a medical diagnostic system to monitor patients in intensive care situations

[96]. In weather forecasting, the HailFinder network [97] attempts to model severe

weather conditions. For understanding the mathematical description behind BNs,

the reader is referred to [3, 98].

This chapter provides a brief overview on Bayesian network models. Section

3.2 describes the main notations and definitions related to BNs. Section 3.3 dis-

cusses the size of graph space of BNs. Section 3.4 outlines some possible constraints

to reduce the search space of BNs. Section 3.5 reviews the approach of Bayesian

3.2. Notations and definitions 33

inference to compute posterior distributions over graph spaces. Section 3.6, in gen-

eral, explains how to fully learn a Bayesian network given some data-points using a

Bayesian inference and MCMC sampling. A range of the widely used MCMC and

non-MCMC approaches to infer BNs are also reviewed in Section 3.6.3 and Section

3.6.4, respectively.

3.2 Notations and definitions

This section is intended to serve as a basis for understanding Bayesian network

models, including their definition, applications, conditional probability tables, and

other main properties.

3.2.1 Directed acyclic graphs

BNs are a multivariate distribution satisfying certain constraints implied by directed

acyclic graphs (DAGs). They are specifically used as a probabilistic method to

visually represent directed causal relationships between variables, learned from a

dataset.

I use G to refer to a graph or Bayesian network. A Bayesian network G can

be expressed as a pair (V, E), where V is a set of nodes (vertices) representing

random variables X1, X2, . . . , Xn and E is a set of directed edges (arcs) representing

relationships between pairs of random variables. A directed edge between any pair

of variables Xi → Xj indicates that Xj depends on Xi, and the variable Xi is said

to be a parent of variable Xj, or Xj is the child node of Xi. The set of parent

variables to Xj is denoted Pa(Xj). Typically, such dependencies are intended to

model cause-effect relationships e.g. given a particular edge Xi → Xj, we can say

that Xi causes Xj or Xj is on the effect of Xi. That is, the set of parents for a

particular node Xi are considered to be causes of Xi or Xi is on the effect of the

34 Chapter 3. A Review of Bayesian Networks

set of its parents. Variables that may be reached via a directed path from Xi are

called descendants of Xi. I denote the set of descendants of variable Xi by D(Xi).

By definition, an acyclic graph contains no cycles or self-loops. Figure 3.2 shows

valid and invalid Bayesian network structures.

A

C

B

D E

A

C

B

D E

A

C

B

D E

A

C

B

D E

Figure 3.1: From left to right, top to bottom: disconnected Bayesian
Network, connected Bayesian Network, invalid Bayesian Network because

of cyclicity, invalid Bayesian Network because of undirected edges.

3.2.2 Markov property

Using Definition 1 of Markov property in Chapter 2, a Markov chain is graphically

represented as

X1 X2 X3 Xn−1 Xn

Figure 3.2: A directed acyclic graph represents an extension of the Markov
property.

Thus an important property in BNs is the Markov assumption, which requires

that each random variable Xi is conditionally independent of the values of its non-

descendants, given the values of its parents in G.

3.2. Notations and definitions 35

3.2.3 Markov blanket

The Markov blanket B(v) of a node v ∈ V is the set of nodes consisting of its

parents, its children, and any other parents of its immediate children. Conditional

on the values of the other nodes in its Markov blanket, each node is independent

of the rest of the network. That is, for any node u ∈ V − B(v) − {v}, v ⊥ u|B(v).

In other words, the joint distribution of the nodes in the Markov blanket B(v) of a

node v is sufficient knowledge for calculating the distribution of the node v [99]. An

example of Markov blanket is illustrated in Figure 3.3.

A

C

B

D E

F G

HR S

K L

M N

O P

Figure 3.3: Example of a Markov blanket of node C. The members of the
blanket are coloured in gray.

Figure 3.3 shows that node C is conditionally independent of the entire network,

given its Markov blanket (the set of nodes colored in gray). That is, every set of

nodes in Figure 3.3 is conditionally independent of node C when conditioned on the

set of B(C), and the probability is then calculated using the Markov property.

3.2.4 Conditional probabilities table

The distribution of each child node Xi in a BN is dependent on its parents P (Xi|Pa(Xi))

and encoded in a table in the form of local conditional probabilities. Given the

Bayesian network shown in Figure 3.4, I use observational data formatted as in Ta-

ble 3.2 to learn the conditional probabilities tables (CPTs) for the nodes W, S and

R as illustrated in Table 3.1.

36 Chapter 3. A Review of Bayesian Networks

S
True False

P(S=True) P(S=False)

W
True False

P(W=True) P(W=False)

R
True False

P(R=True) P(R=False)

Figure 3.4: An example of inferred Bayesian network.

Index

J=4

Combinations of parents
Node W

i=3

Node R Node S
r=2

k=1

True

k=2

False

j=1 True True N311 N312

j=2 True False N321 N322

j=3 False True N331 N332

j=4 False False N341 N342

Index Combination of parents
Node S

i=2

J=2 Node R
r=2

k=1

True

k=2

False

j=1 True N211 N212

j=2 False N221 N222

Index Combination of parents
Node R

i=1

J=1 NA
r=2

k=1

True

k=2

False

j=1 NA N111 N112

Table 3.1: From top to bottom: the conditional probability tables for the
nodes W, S and R shown in Figure 3.4.

3.2. Notations and definitions 37

Here Nijk is the number of observations in a single state value cell k of node

i corresponding to a parent configuration j, r is the total number of state values

(bins) that a particular node can take, and J is the total number of combinations of

parent state values. Formally, X is said to be conditionally independent of Y given

Z if

P (X|Y, Z) = P (X|Z)

and I denote this statement by (X ⊥ Y |Z), which means that the two nodes X and

Y are conditionally independent given the third node Z if and only if they are inde-

pendent in their conditional probability distribution given Z. That is, X and Y are

conditionally independent given Z if and only if, given any value of Z, the probabil-

ity distribution of X is the same for all values of Y and the probability distribution

of Y is the same for all values of X. A key advantage of the Bayesian network is

its compact representation of the joint probability distribution. By employing the

conditional independence, the joint probability distribution over the variables S, R

and W becomes:

P (S, R, W) = P (R)P (S|R)P (W |S, R).

Table 3.2 contains three random variables S, R and W. Each row in the Table

represents a single observation of the values of all variables at particular times

{1, . . . , m}, and m is the total number of observed data-points.

Observation S R W

1 a1 b1 c1

2 a2 b2 c2

...

m am bm cm

Table 3.2: Data-points observed for three variables.

38 Chapter 3. A Review of Bayesian Networks

3.2.5 Joint probability function

The conditional dependencies encoded in a Bayesian network decompose a com-

plicated multi-dimensional distribution into a product of lower dimensional distri-

butions, as follows. Suppose that the random variables X1, X2, . . . , Xn have been

sorted so that Xj is not a parent of Xi for any j > i. (Note this is always possible

for a directed graph that does not contain cycles) Then one may write:

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi|X1, X2, . . . , Xi−1)

= P (X1)P (X2|X1)P (X3|X1, X2) . . . P (Xn|X1, X2, . . . , Xn−1).

(3.1)

Note that Pa(X1) in Equation 3.1 is equal to ϕ. Equation 3.1 can then be

simplified using the Markov property as in Equation 3.2.

P (X1, X2, . . . , Xn) = P (X1|Pa(X1))P (X2|Pa(X2)) . . . P (Xn|Pa(Xn))

=
n∏

i=1
P (Xi|Pa(Xi)). (3.2)

3.2.6 Equivalent graphs

A central concept in the analysis of DAGs is the class of equivalent graphs. Two

DAGs with the same number of nodes are equivalent if they have the same underlying

undirected graph structure, and the same v-structures [100]. Figure 3.5 illustrates

how two DAGs are equivalent by satisfying these criteria. A v-structure is defined

as a subgraph consisting of 3 nodes, X, Y and Z, of the form X → Y ← Z with no

edges connecting X and Z.

3.3. Graph space 39

A

B C

D E

F

A

B C

D E

F

A

B C

D E

F

Figure 3.5: The leftmost DAG and the middle DAG are equivalent because
they satisfy both criteria, but the middle DAG and the rightmost DAG are

not because they have different v-structures.

A set of equivalent graphs describe the same dependencies among variables.

Therefore, they should be sampled with equal probability.

3.3 Graph space

Sampling algorithms in spaces of DAGs are computationally intensive because the

number of DAGs increases super-exponentially with the number of nodes of the

graph. The size of the space of DAGs is 2O(n2) [101]. Table 3.3 shows the total

number of all possible DAGs and connected DAGs (CDAGs) for certain numbers

of nodes, and emphasises the need for MCMC samplers that can efficiently traverse

such graph spaces. The reader is referred to Section 3.4.1 for a discussion of the

connectivity of a graph.

Nodes N. DAGs CDAGs

3 25 18

4 543 446

5 29 281 26 431
...

10 1 4 175 098 976 430 598 100 NA

Table 3.3: Number of all possible DAGs and connected DAGs increases
exponentially as the number of nodes increases.

40 Chapter 3. A Review of Bayesian Networks

Below is a mathematical expression used to calculate the total number of DAGs

given a certain number of nodes [102]:

f(n) =
n∑

i=1
(−1)i+1

(
n

i

)
2i(n−i)f(n− i) (3.3)

Note that, a thorough search of the relevant literature e.g. [3, 88–93, 98, 99,

101–109] found no expression for the number of CDAGs. The space sizes of CDAGs

listed in Table 3.3 were tractable enough to be calculated using the brute-force

approach presented in Section 4.3 by first checking the constraints of acyclicity and

connectivity for graphs consisting of 3, 4, and 5 nodes, and then enumerating all

valid structures. The space of CDAGs with only 3 nodes is small enough that the

entire probability distribution can be evaluated and used to assess the performance

of a sampler (see Figure 3.6).

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

Figure 3.6: All possible (18) CDAGs. These comprise all possible con-
nected BN structures containing 3 nodes.

3.4 Graph constraints

Adding justifiable additional restrictions on a very large directed acyclic graph

(DAG) space is a sound technique that I use here to reduce its cardinality [106,

110, 111]. Reducing the number of acceptable graphs in the space can facilitate

rapid convergence of an MCMC algorithm. However, accurate prior knowledge of

3.4. Graph constraints 41

plausible restrictions on the graph is required to do this appropriately, since mak-

ing improper restrictions may remove the true graph from the space. Sections 3.4.1,

3.4.2 and 3.4.3 describe three restrictions that are appropriate in many applications:

connectivity, acyclicity, and limiting in-degree and out-degree.

Note that Chapter 6 involves a new adaptive technique which was proposed in

this thesis to quickly enumerate a set of adjacent graphs. However, I initially used

the two techniques explained in Section 3.4.1 and Section 3.4.2.

3.4.1 Connectivity

The connectivity restriction requires all the nodes to be connected to at least one

other node in the network i.e. an undirected path exists between any two nodes

in the graph. Note that I consider a directed graph to be connected if there is an

undirected path between any two nodes in the graph, that is, if the undirected graph

obtained by replacing all directed edges with undirected edges (and removing any

duplicated edges) is connected. This restriction ensures a network with n nodes

must have at least n − 1 edges. The edge that, if removed, would disconnect the

graph into two sub-graphs is called a bridge. The maximum number of bridges in a

connected directed acyclic graph is |V | − 1 [112]. For clarification, if an edge that is

not a bridge is deleted, the graph remains connected and any edge that was a bridge

is still a bridge. Thus the number of bridges stays the same or increases. Keep

deleting non-bridges until only bridges are left. This graph has |V | − 1 bridges,

which must be more than the original graph. Note that before any edge (Xi, Xj)

may be deleted, I observe the connectivity of the resulting graph. I delete that edge

and apply the Breadth-First-Search (BFS) algorithm [103] to detect if the graph

becomes disconnected.

Early in this project, I initially adopted a simple method to check connectivity.

After removing a particular edge (Xi, Xj), I checked whether there exists any simple

42 Chapter 3. A Review of Bayesian Networks

path from any other node in the graph to the node Xi or node Xj. Here, the BFS

algorithm was used to find such simple path(s). BFS is a very well-known graph

traversal algorithm which starts at any arbitrary node and explores all immediately

adjacent nodes before observing others. If there exist any such simple path(s), the

resulting graph would be connected even if I remove the edge (Xi, Xj). Therefore,

the edge (Xi, Xj) will be considered as a deletable edge. If I decide to reject the

deletion, I restore back the edge (Xi, Xj) that I deleted previously. Note, for the

purpose of DAG connectivity, I do not consider the directions of edges.

3.4.2 Acyclicity

Acyclicity is a required restriction for a Bayesian network. I initially used the well-

known Depth-First-Search (DFS) algorithm [113] to detect cycles. Before adding

any edge (Xi → Xj) into a particular graph, I observe whether I can find any cycle

in the resulting graph. That means, I first add that edge (Xi → Xj) and run DFS

algorithm to determine whether any cycle evolves in the resulting graph. If not, I

considered that edge to be an addable edge in the graph, otherwise not. DFS is an

algorithm for traversing tree or graph data structures. One starts at an arbitrary

root and explores as far as possible along each branch before backtracking. If I

decide to reject the insertion, I remove the edge (Xi → Xj) that I added before.

3.4.3 Node degree

The centrality degree of a particular node in a graph is concerned with the number

of edges associated with that node [114]. A node with high degree of centrality is in

some sense of high significance to the structure of the graph. I use two measures to

assign the degree of centrality: in-degree and out-degree.

In-degree and out-degree are integer numbers that respectively represent the

numbers of parents and children that a particular node possesses, or equivalently

3.5. Bayesian inference 43

the respective number of head and tail endpoints incident on a node. Setting a

maximum number of parents or children for each node can dramatically reduce the

size of graph space where there is reliable prior knowledge about these parameters.

3.5 Bayesian inference

In many applications there may be additional information about the parameter θ

of a particular probability distribution fθ(x). Bayesian inference deals with the

parameter θ as a random variable, and thus a prior distribution P (θ) is defined.

The distribution P (θ) is used to describe the prior knowledge about θ. Bayesian

inference ultimately aims to determine how prior beliefs change after collecting data.

3.5.1 Posterior distribution

Let D = {d1, d2, . . . , dm} represent a set of data-points drawn independently from a

probability distribution P (D|θ). The posterior distribution P (θ|D) is a conditional

probability distribution of the parameter θ given a dataset D. It describes the degree

of belief about different values of θ after observing D. The joint probability of θ and

D is P (D, θ) and can be calculated as [89, 93]

P (D, θ) = P (θ)P (D|θ) = P (D)P (θ|D) (3.4)

Based on expression 3.4, and using Bayes Rule, one can write:

P (θ|D) = P (θ)P (D, θ)
P (D)

(3.5)

44 Chapter 3. A Review of Bayesian Networks

where P (D) is the marginal function of D which can be given by integrating a

density function

P (D) =
∫

P (D, θ)dθ =
∫

P (θ)P (D|θ)dθ

or by summing a probability mass function

P (D) =
∑

θ

P (D, θ) =
∑

θ

P (θ)P (D|θ)

3.5.2 Prior distribution

There are two common types of prior distribution: conjugate prior distributions

and non-informative priors. These are not mutually exclusive: a conjugate prior

can also be non-informative. Typically, a non-informative prior reflects a balance

among samples when no information about a particular variable is available. A

common non-informative prior is the uniform distribution. In a conjugate prior,

the calculated posterior distribution is in the same parametric family as the prior

distribution. Examples of likelihood distributions and their conjugate distributions

are listed in Table 3.4. Using a conjugate prior distribution, it is possible to compute

the closed-form expression of a posterior distribution, hence numerical integration

may not be necessary.

Distribution Parameter Conjugate prior distribution
Binomial success probability Beta
Poisson mean Gamma
Exponentail imverse mean Gamma
Normal mean (known variance) Normal
Normal variance (known mean) Gamma inverse
Multinomial (α1, . . . , αk) vector of parameters Dirichlet

Table 3.4: Some common conjugate prior distributions

3.6. Learning Bayesian networks 45

3.5.3 Bayesian estimation

The posterior distribution can be summarised as a point estimation using one of the

central tendency measures such as the mean, median, or mode. In practice, it is

common to calculate the expected value E(θ)

θ∗ = E(θ) =

∫

θP (θ|D)dθ

∑
θP (θ|D)

(3.6)

It is possible also to specify an interval estimation I(θ|D) for the parameter

θ using the prior distribution before even obtaining the sample observations. For

example, if θ has a prior distribution P (θ) and
∫ b

a P (θ)dθ = 1 − α, one can say

that the interval (a, b) contains θ with probability (1 − α). After obtaining the

observations and building the posterior distribution P (θ|D), one can choose two

values (t1, t2), such that

∫ t2

t1
P (θ|D)dθ = 1− α⇔ P (t1 < θ < t2) = 1− α (3.7)

Practically, (1−α) is fixed and one searches for the appropriate values (t1, t2), where

ti is a function in the sample observations D.

3.6 Learning Bayesian networks

Inferring a Bayesian network typically involves two conceptually different elements:

structure learning and parameter learning. Structure learning involves inferring

the variables that interact and the causal directions of those interactions; in other

words it is inferring the set of edges connecting a set of candidate nodes. For a

fixed structure, parameter learning involves quantitatively estimating probabilistic

dependencies between variables. In practice, structure and parameter learning may

46 Chapter 3. A Review of Bayesian Networks

be performed simultaneously. In this thesis, both types of learning are explicitly

considered while sampling BNs. More precisely, I use Bayesian inference to learn

the conditional probabilities among variables and MCMC samplers to learn the

structures of BNs.

3.6.1 Learning Bayesian network parameters

Learning the parameters of a BN corresponds to learning the local conditional prob-

abilities among the variables encoded. Given data D and fixed graph G, I first

define the probability distribution P (Xi|Pa(Xi)) for each variable Xi given its par-

ents Pa(Xi). I write P (Xi = k|Pa(Xi) = j) = θijk, where θijk is the probability

of each state value (bin) k within each variable Xi, given that its parents are in

configuration j.

A conventional approach to estimate the parameters of a Bayesian network is to

use the maximum likelihood estimate (MLE). The MLE maximises the likelihood

function L(θ : D), on the data where θ = (θijk), and then attempts to find the

parameter value that maximises the value of the likelihood function [88, 92]:

θ̂ = arg max
θ

L(θ : D) (3.8)

The posterior distribution used in Bayesian inference is different from maximum

likelihood estimation in several ways [93]. First, it is not a point estimate that

assigns a particular value to θ̂, but instead is a distribution that assigns a probability

density to each possible value of θ. Second, it always takes the prior distribution

into account.

Using Bayesian inference, the Multinomial distribution is a common model used

when the nodes are discrete valued to relate the values in a CPT to the observed data

[104]. To complete the Bayesian inference, one also need to assign prior probabilities

3.6. Learning Bayesian networks 47

to parameter values. Here, I use the conjugate prior of the Multinomial model,

which is the Dirichlet distribution. The Dirichlet distribution over these parameters

is expressed as:

P (θij1, θij2, . . . , θijri
|G) = Dir(θij1, θij2, . . . , θijri

|αij1, αij2, . . . , αijri
)

= Γ(αij)
ri∏

k=1

θ
αijk−1
ijk

Γ(αijk)
, (3.9)

where ri is the number of possible state values (bins) for Xi, αijk are the hyperpa-

rameters and αij = ∑ri
k=1 αijk. Assuming local and global parameter independence,

the distribution over the set of parameters for the entire Bayesian network is:

P (θ|G) =
n∏

i=i

Ji∏
j=1

Γ(αij)
ri∏

k=1

θ
αijk−1
ijk

Γ(αijk)
(3.10)

where Ji is the number of possible state values for the parents of Xi. Hence, the

posterior distribution of the parameters conditional on the data set is also a member

of the Dirichlet family:

P (θij1, . . . , θijri
|D, G) = Dir(θij1, . . . , θijri

|αij1 + Nij1, . . . , αijri
+ Nijri

)

=
n∏

i=i

Ji∏
j=1

Γ(αij + Nij)
ri∏

k=1

θ
Nijk+αijk−1
ijk

Γ(Nijk + αijk)
(3.11)

where Nij = ∑ri
k=1 Nijk. From Equation 3.11 it follows that [104]:

P (D|G) =
n∏

i=1

Ji∏
j=1

Γ(αij)
Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)
Γ(αijk)

(3.12)

This result is obtained by integrating over θ: P (D|G) =
∫

P (D, θ|G)dθ. Ex-

pression 3.12 is useful in that it gives the likelihood of a set of data in terms of the

structure only, without reference to the parameters associated with each node.

48 Chapter 3. A Review of Bayesian Networks

In this thesis, the Dirichlet priors have been chosen to produce a non-informative

prior:

αijk = α

Jiri

(3.13)

where α is the total imaginary counts for the Dirichlet prior, which has been set

in this thesis to one. Note that when α = 1, the Dirichlet distribution will be

equivalent to a uniform distribution [115]. The posterior probability distribution of

the graph G given data D can now be constructed as:

P (G|D) = P (D|G)P (G)
P (D)

(3.14)

To sample from 3.14 using MCMC, one needs only consider the numerator, since

the denominator does not depend on G and will cancel out. For simplicity, one can

write:

P (G|D) ∝ P (D|G)P (G) (3.15)

In this thesis, I assume a uniform prior P (G) on the graph. Note also that equivalent

graphs have the same prior probabilities, likelihoods and posterior probabilities.

Consequently, equivalence classes of graphs have prior and posterior probabilities

proportional to the number of equivalent graphs in that class. This is possibly

undesirable, as there is no obvious reason why larger equivalence classes should be

preferred a priori. In principle, this effect could be counteracted by assigning a prior

probability to each graph G inversely proportional to the size of its equivalence class.

However, for simplicity I have retained the uniform prior in what follows.

A practical issue that arises when working with Equation 3.12 is the very high

values that result from multiplying several gamma functions together. The solution

is to work with the log of these values wherever possible.

3.6. Learning Bayesian networks 49

3.6.2 Learning Bayesian network structures

One technique used to learn a BN structure is to sample from a posterior distribution

over the space of that Bayesian network, using MCMC samplers [105, 108, 116]. This

presupposes that a prior distribution and likelihood model have been defined over

graph space, and that Bayes Rule has been applied to obtain a posterior distribution.

Remark 1. Practitioners can use a MCMC sampler to infer the structure that best

represents the relationships among variables, but it may instead be advantageous to

infer the probability that certain nodes or edges are present in the true graph, and

thus avoid selecting any one structure as optimal.

A properly designed MCMC sampler must, in theory, converge to the required

limiting distribution. However, in practice, such methods can become effectively

“trapped” in local modes of the posterior distribution, only infrequently moving

between modes. Among the main goals of this thesis is to present new and efficient

samplers that are capable of traversing graph spaces with reduced frequency of

getting trapped in local modes. Chapter 4 describes new instances of certain MCMC

samplers chosen as promising techniques for learning BN structures.

3.6.3 MCMC methods for learning Bayesian networks

MCMC sampling has a wider applicability to infer hard BNs than exact algorithms

[117–120]. MCMC methods also provide a more powerful framework to sample from

distributions with local modes than Monte Carlo methods [13, 20, 66], despite the

fact that MCMC may exhibit slow convergence.

This section attempts to outline significant MCMC approaches proposed in the

literature to improve inferring BNs. The original version of MCMC approach to

infer BNs was proposed in [121], where every single transition in a Markov chain is

performed by modifying, at most, a single edge in the current graph. When the size

50 Chapter 3. A Review of Bayesian Networks

of the search space of Bayesian network structures grows, the sampler may exhibit

slow mixing and less efficiency in visiting low probability regions in the true posterior

distribution.

This issue was slightly resolved in [122] by providing several graphical monitors

proposed to assess approximations to the posterior probability distributions. The

original MCMC approach was variated in [123] to reduce sampling from the entire

search space of Bayesian network structures to sampling over the search space of

topological node orders. This allows for better mixing and converging to the same

posterior probability estimates. This approach was extended in [124] to combine

the order-space MCMC with other several non-MCMC approaches e.g. importance

weighting in order to create a fast structural learning algorithm. The MCMC ap-

proach based on node order was also adopted in [123] to infer Bayesian network

structures when the amount of observational data is limited. More recently, a new

MCMC algorithm based on partial node orders was also proposed in [125]. How-

ever, a disadvantage of performing proposal transitions based on node order rather

than entire structure space is that it is not always applicable due to the difficulty

to explicitly specify priors over BNs [126]. As a consequence, several variants of the

order MCMC algorithm have been developed in the literature to address this prior

bias [124, 127].

A recently proposed MCMC approach in [128] aims to approximate a Bayesian

solution to the problem of learning Bayesian network by constraining the search

space of Bayesian network structures to a given relaxed structure with undirected

edges. This method tends to fit with larger BNs but not for small sample sizes,

and also requires prior determination of a specific structure that involves undirected

edges which is not always available.

Another improvement made to MCMC approach was in the applications where

the problem of incomplete data is present [129, 130]. A new transition technique

3.6. Learning Bayesian networks 51

was proposed in [126] based on edge reversal considering the entire search space of

structures, which significantly improved learning true structure. It aims to apply a

substantial modification for every sampled network to facilitate traversing the search

space effectively. For every MCMC iteration, it selects an edge from the generated

Bayesian network, and then reverses its direction. Next, it resamples a new set of

parents for each of the two nodes that are linked by the directed edge.

Special attention was recently paid to resolve the problem of local maxima so-

lution arising while learning BNs structures. Since the MCMC sampling produces

highly correlated samples, one challenge is how to introduce transitions that can

take larger steps in the search space of a Bayesian network [131]. Based on similar

idea, this thesis seeks to propose MCMC samplers that have been known to sub-

stantially avoid getting stuck in local maxima but have been exploited to explore

discrete spaces of Bayesian network. An instance of such MCMC methods is the

Hit-and-Run sampler and the Neighbourhood sampler reviewed in Sections 2.4.2

and 2.4.3, and modified in Sections 4.6 and 4.7, respectively.

3.6.4 Non-MCMC methods for learning Bayesian networks

For the purpose of comparison with the MCMC samplers proposed in this thesis, I

highlight some of the most widely used non-MCMC methods to learn BNs, to be

used as a baseline along with the Metropolis-Hastings MCMC sampler to assess the

performances of the new methods.

Readers may find this reference book [132] useful to understand the theoretical

and pseudocode basis of most of stochastic simulation algorithms drawn from differ-

ent sub-fields of artificial intelligence. Another reference focused on the algorithms

and issues of BNs is [133].

A commonly used category of algorithms to learn BNs is score-based algorithms

[134]. This category of algorithms aims to maximise the pre-assigned score of each

52 Chapter 3. A Review of Bayesian Networks

Bayesian network using a heuristic search. One of the most widely studied heuristic

search methods is Greedy Algorithms (GAs) [134–136]. GAs typically update a

given Bayesian network by either adding, deleting or reversing a particular directed

edge at each step. Among the most widely used GAs are Hill-Climbing Search (HCS)

and Tabu Search (TS) [134, 136–139].

The HCS algorithm starts with an arbitrary Bayesian network, and then iter-

atively applies a local search to its neighbors in the hope of finding a neighboring

network with a better score. It repeats this process until no further improvements

can be obtained. The TS algorithm also runs a local search similar to the HCS;

however, it intentionally enhances the performance of local search by relaxing its

acceptance function, i.e. when the search gets stuck at a local mimimum and no

improving move is available, worsening moves can then be accepted. The TS algo-

rithm also uses a memory structure that describes all visited solutions. If a particular

Bayesian network has been previously visited but did not improve the score, it is

then marked as "tabu" and not considered again.

Heuristic search methods can get stuck in a local mode when the immediate

neighbours of a network do not provide any better solution. For more details and

illustrative visualisation of using the HCS and TS, the reader is referred to [140].

Another major category of algorithms for learning BNs is constraint-based al-

gorithms. These aim to analyse the probabilistic relations entailed by the Markov

property of BNs with conditional independence tests and then construct a Bayesian

network that satisfies the corresponding d-separation statements (Note, a path be-

tween two nodes u and v is said to be d-separated by a set of nodes Z if and only

if the path contains (at least): 1) a chain, u ← m ← v, such that m ∈ Z, 2), a

common cause, u← m→ v, such that m ∈ Z, or 3) a common effect, u→ m← v,

such that m /∈ Z).

One common algorithm in this category is the Grow-Shrink (GS) algorithm [141].

3.6. Learning Bayesian networks 53

The GS approach constructs BNs by identifying the Markov blanket for each node.

There are two phases involved in the GS algorithm: growing phase and shrinking

phase. To find a Markov blanket of a particular node v ∈ V in G(V, E) using the GS

algorithm: First, process the growing phase as follows: 1) define an empty set S, 2)

test the independence for each node u ∈ V − {v} with node v, 3) if u is dependent

on v given the current S, then add it to S, 4) stop if there are no more such nodes

u ∈ V − {v}. Note that the examining order of nodes u ∈ V − {v} is arbitrary.

Second, apply the shrinking phase as follows:

• Test the dependence for each node u ∈ S with node v.

• If u is independent of v given S, then remove u from S.

• Stop when all nodes in S are checked.

Note that this algorithm is done in such a manner as to avoid producing dense nets

or incorrect causal relationships. An illustrative example of the operation of GS

algorithm can be found in [140].

54

Chapter 4

Using the MH, NS and HAR to

Sample Bayesian Networks

4.1 Introduction

This chapter considers sampling graphs from discrete spaces using MCMC sam-

pling. I first assume that a target distribution f(x) has been defined on a discrete

space X that contains graphs, and |X | is the (finite) total number of graphs in

that target space. The chapter specifically discusses the implementations of three

MCMC samplers: Metropolis-Hastings (MH) sampler, Hit-and-Run (HAR) sampler

and Neighbourhood Sampler (NS) to sample Bayesian networks. Each of the three

MCMC samplers typically requires defining the following: proposal distribution,

target distribution, rejection-acceptance step, and transition step to generate a can-

didate graph from the same target space using a Markov chain process. These four

components are discussed for each MCMC sampler in the following subsections.

Section 4.2 describes how to define a set of local adjacent graphs given a con-

nected Bayesian network. Section 4.3 defines a possible standard brute-force ap-

proach to check acyclicity and connectivity for a generated random graph. Section

4.4 discusses various techniques to generate candidate graphs using different MCMC

samplers. Section 4.5, Section 4.6 and Section 4.7 explain how to use the MH, NS

4.2. Enumerating a set of adjacent graphs 55

and HAR, respectively, to sample connected Bayesian network structures from their

discrete graph spaces.

4.2 Enumerating a set of adjacent graphs

Two graphs are considered adjacent in their space if they differ in their structures

by only one edge. In order to find one possible adjacent graph G′ of a current graph

G, one can modify G by using one of the following operations: add an edge to G,

delete an edge from G, or reverse an existing edge in G, provided that the graph

G′ remains a connected Bayesian network. The option of reversing an edge is only

available if the edges in G are directed (as in Bayesian networks).

To construct the set of adjacent graphs NG for a particular Bayesian network G,

one must consider all possible edges that can be added, deleted and reversed while

the Bayesian network remains connected and acyclic. All such adjacent graphs plus

the original graph itself are defined as the set of adjacent graphs NG of graph G.

Figure 4.1 shows how all possible addable, deletable and reversible edges are

identified to obtain the corresponding adjacent graphs of a particular initial Bayesian

network. The total number of the graphs in NG is denoted µG which may be any

positive integer greater than or equal one. For example, in Figure 4.1, µG = 10 since

we have three addable edges, three deletable edges, three reversible edges, and the

graph G itself.

One possible standard brute-force approach to detect addable, deletable and

reversible edges is provided in the following section. A modified version of brute-

force approach to efficiently detect deletable edges is also described in Remark 2.

56 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

A

BC

D

A

BC

D

addable

A

BC

D

addable

A

BC

D ad
dab

le

A

BC

D

deletable

A

BC

D

dele
ta

ble A

BC

D

deletable

A

BC

D

re
ve

rsi
blle A

BC

D

reversiblle

A

BC

D

reversiblle

Figure 4.1: From top to bottom: Initial connected Bayesian network,
all possible addable edges, all possible deletable edges, and all possible re-

versible edges, provided that all graphs remain connected and acyclic.

4.3 Standard brute-force approach

A brute-force approach [142, 143] is a search technique that aims to systematically

enumerate all possible solutions for basic algorithms or data structures. Although,

it can be intuitively implemented and has the potential to find a solution, it becomes

computationally costly when the number of candidate solutions increases. Note that

a brute-force approach does not consider efficiency in finding solutions. To enumer-

ate all possible adjacent graphs for a particular graph G, a brute-force approach

typically checks every single pair of nodes that belongs to G to determine whether

an edge can be added, deleted, or reversed provided that the graph structure remains

a connected Bayesian network.

4.4. Assigning candidate graphs iteratively using the MH, NS and HAR 57

For each pair of nodes (i, j) in graph G(V, E), if there is an edge in the graph

G, then I checked whether a candidate adjacent graph can be produced by either

adding an edge, deleting an edge or reversing an edge between i and j. For this

purpose, I created a temporary graph G′ by either adding an edge, deleting an edge

or reversing an edge between i and j, respectively, and checked the constraints e.g.

cyclicity after adding or reversing an edge or connectivity after deleting an edge.

For cyclicity or connectivity checking, BFS algorithm can be used. If G′ maintains

all constraints, I consider that (i, j) as a valid addable, deletable or reversible edge.

Remark 2. The deletable edges can be found more efficiently by detecting bridges

first, then all non-bridges are identified as deletable edges. To do so, a modified-DFS

algorithm [144] can be used which requires two additional arrays: low and pre. For

each vertex i, pre[i] saves the order in which DFS traverses i based on the pre-order

traversal, and low[i] saves the lowest pre order number of any vertex connected to

i.

4.4 Assigning candidate graphs iteratively using

the MH, NS and HAR

The MCMC samplers proposed in this thesis use different processing mechanisms to

transit from a current graph to another candidate graph in the same discrete space.

Below, I briefly clarify the main idea of how to transit among graphs in the same

space using the MH, NS and HAR.

The MH Sampler generates a candidate graph G′ from the set of all immediate

adjacent graphs using the uniform distribution. An immediately adjacent graph G′

differs from G by only one edge.

The NS considers a candidate graph after applying two such steps. The sampler

first generates G′ ∼ U(NG), where U denotes the uniform distribution. It then

58 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

generates G′′ ∼ U(NG′). Taking two steps in this manner helps reduce the problem

posed by local modes. Note that the two-steps transition guarantees that for each

graph G′′ ∈ N (G′), it also satisfies that G′′ ∈ N (G).

The HAR sampler enables transitions from current graphs to distant graphs. The

sampler generates a sequence of graphs, in which each graph is immediately adjacent

to the graph that precedes it. The maximum number of graphs in the sequence is

chosen by the user. The sampler aims to substantially resolve the problem of getting

stuck in a local mode.

Regardless of the processes used to generate candidate graphs, all of the MCMC

samplers considered in this thesis require iteratively defining sets of adjacent graphs.

In Chapter 6, I develop new adaptive techniques to quickly enumerate these adjacent

graphs.

4.5 Metroplis-Hastings sampler

The MH algorithm was first used in [121] to sample Bayesian graphical structures

according to their posterior distributions. The Metroplis-Hastings sampler allows

asymmetric transition probabilities to generate a candidate graph.

To sample graphs with the MH, one must first define a proposal distribution.

To keep the sampler comparable with the other two MCMC samplers (NS and

HAR), it is possible to set the proposal to the uniform distribution over the same

adjacent graphs. Given an initial graph G = Gt, where f(G) > 0, draw a connected

graph, H ∈ NG in accordance with the uniform proposal q(H|G) with its implied

probability 1/µG. Conversely, it is also required to find q(G|H) with its implied

probability 1/µH . Then, draw a uniform (0,1) random value U , and then take

Gt+1 = G if f(H)
f(G) . q(G|H)

q(H|G) > U , or Gt+1 = H otherwise. The following pseudocode in

Algorithm 4 describes sampling graph spaces using the MH sampler.

4.5. Metroplis-Hastings sampler 59

Algorithm 4 Sampling graph space with the MH sampler

1: Initialise graph G0, and set t := 0.

2: for all t = 0, 1, . . . , n do

3: Given the current graph Gt = G, find NG and µG.

4: Generate U ∼ U(0, 1).

5: Sample graph H ∼ U(NG), and find NH and µH .

6: if f(H)
f(G) . q(G|H)

q(H|G) > U then

7: set Gt+1 = H

8: goto 2

9: else

10: set Gt+1 = G

11: goto 2

12: end if

13: end for

Figure 4.2 and Figure 4.3 show how to find the probabilities of transitions be-

tween two adjacent graphs G and H using uniform proposals. Calculating the prob-

abilities depends on the (finite) total number of adjacent graphs µG and µH . That

is, each adjacent graph of G or H is sampled with a probability of 1
µG

or 1
µH

, respec-

tively. Given the graph G in Figure 4.2, there are four adjacent graphs {G, C, H, D}

that were assigned after considering all addable, deletable and reversible edges of G

plus the given graph itself. The probability of the transition from graph G to one

of its adjacent graphs (e.g. H) is thus 1
4 .

60 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

G
A

BC

G C H D

N (G)
A

BC

A

BC

A

BC

A

BC

P (G|G) P (C|G) P (H|G) P (D|G)
Probability

1
4

1
4

1
4

1
4

Figure 4.2: The probability to transit from graph G to one of its adjacent
graphs is 25%.

Given the graph H in Figure 4.3, there are five adjacent graphs {H, G, E, F, B}.

If one wants to move from graph H back to graph G, the probability is 1
5 , because

µH = 5.

H

A

BC

H G E F B

N (H)
A

BC

A

BC

A

BC

A

BC

A

BC

P (H|H) P (G|H) P (E|H) P (F |H) P (B|H)
Probability

1
5

1
5

1
5

1
5

1
5

Figure 4.3: The probability to go back from graph H to one of its adjacent
graphs is 20%.

4.6. Neighbourhood Sampler 61

4.6 Neighbourhood Sampler

The process of sampling Bayesian networks using the NS begins by selecting an

arbitrary initial graph G0, at t = 0. The set of local adjacent graphs NG0 must then

be identified for G = G0, and the cardinality of that adjacent graph µG determined.

The proposal distribution of the NS is always the uniform distribution. The sampler

then generates a uniform value U from the interval U(0, f(G)
µG

). Next, it samples

another graph H1 uniformly from NG, that is, H1 ∼ U(NG). Given NH1 , sample

a second graph H2 uniformly, that is, H2 ∼ U(NH1). Having calculated µH2 , then

apply the following acceptance ratio. If f(H2)
µH2

> U , accept the graph H2 and set

Gt+1 = H2. Otherwise, exclude the graph H2 from NH1 and select another H2 until

the acceptance ratio is satisfied. Once Gt+1 has been selected, the entire process

is iterated. I particularise the NS for sampling Bayesian networks, as summarised

in Algorithm 5. In Appendix A Section A.1, I provide a flowchart to represent

Algorithm 5.

Figure 4.4 illustrates how the mediator graph H1 in the NS enables a larger

number of graphs to be reached within one iteration, providing a better chance to

move to a new graph. Thus an advantageous property of the NS is that it is less

likely than MH to get stuck in a local maximum for some number of iterations.

A

B C

G

A

B C

G1

A

B C

H1
A

B C

H2
A

B C

H3

A

B C

G2

A

B C

H1
A

B C

H2
A

B C

H3
A

B C

H4

A

B C

G3

A

B C

H1
A

B C

H2
A

B C

H3
A

B C

H4

Figure 4.4: Note that the thin lines are showing how Bayesian Networks
are related. Finding neighborhoods of a Bayesian Network with three nodes:
there are 3 possible Bayesian Networks if we apply the MH sampler and 7
possible distinct Bayesian Networks (after excluding similar Bayesian Net-

works) if we apply the NS.

62 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

Algorithm 5 Sampling graph space with the NS

1: Initialise a Bayesian network G0, and set t := 0.

2: for all t = 0, 1, . . . , n do

3: Given the current graph Gt = G, find NG and µG.

4: Generate U ∼ U(0, f(G)
µG

).

5: Sample graph H1 ∼ U(NG) and find its NH1 .

6: for all k = 1, 2, . . . , |NH1 | do

7: Sample graph H2k
= H2 ∼ U(NH1), and find NH2 and µH2 .

8: if f(H2)
µH2

> U then

9: set Gt+1 = H2k

10: goto 2

11: else

12: Exclude H2k
from NH1 .

13: goto 6

14: end if

15: end for

16: end for

4.7 Hit-and-Run sampler

This section proposes a new version of the HAR sampler that was reviewed in Section

2.4.3. Unlike the original HAR sampler, the new sampler is used to generate samples

from discrete graph spaces. At iteration t, the sampler assumes that the next iterated

graph Gt+1 is defined by the current graph Gt, ℓ and p, where p is a random path

that represents a sequence of graphs and ℓ is the length of p, where ℓ ≥ 1. The new

sampler preserves many of the attributes of the original HAR sampler reviewed in

Chapter 2.

4.7. Hit-and-Run sampler 63

The following subsections are constructed as follows. Section 4.7.1 provides some

notation and explains how to define a single path of length ℓ in a graph space of

connected Bayesian networks. Section 4.7.2 discusses the diameter of a graph space

of BNs and proposes some upper bounds for the length of a single path p in X .

Section 4.7.3 explains the algorithm for the new sampler, including the rejection

step and the proposal distribution.

4.7.1 Constructing a path in a space of graph

A path p in a space of graphs X is defined as a sequence of graphs in which each

graph is adjacent to the graph that precedes it. Let λ be the maximum number of

graphs permitted on a single path p in X . The value of λ is a positive integer and is

fixed for all iterations. Let ℓ be a positive integer number which is strictly less than

or equal to λ. Let pℓ be a particular path of length ℓ. Algorithm 6 is a pseudocode

describing the path construction.

Algorithm 6 Constructing a path in a space of graphs X

1: Initialise a graph H1.

2: Define an integer length ℓ ≥ 2.

3: Define the path pℓ, and consider H1 ∈ pℓ.

4: for all k = 2, . . . , ℓ do

5: Sample Hk ∈ N (Hk−1)

6: Store Hk ∈ pℓ.

7: end for

8: Return pℓ.

That is, to construct a path pℓ of length ℓ in a space of graphs X , first set H1 to

be the first graph on the path pℓ and set k = {2, . . . , ℓ}. Second, move from H1 to

the second graph H2 ∈ pℓ which is one of its adjacent graphs, so that H2 ∈ N (H1).

64 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

Third, keep generating graphs for each k until reaching Hℓ ∈ N (Hℓ−1). Each graph

on the path pℓ is sampled uniformly from a collection of graphs that are adjacent to

the preceding graph on the path pℓ.

Remark 3. Note that every iteration in the MH sampler contains a short path of

length two graphs: G and G′ ∈ N (G). In the NS, every single iteration contains a

path of length three graphs: G, G′ ∈ N (G) and G′′ ∈ N (G′).

In the HAR sampler, the length ℓ of a path is randomly generated at every itera-

tion. Therefore, ℓ is treated as a random variable, and accordingly it is necessary to

define a discrete distribution f(ℓ). One possible distribution is the discrete uniform

distribution, with appropriately selected lower and upper bounds. To ensure the

sampler has the potential to move, the lower bound is set to one. That is, there is at

least a length ℓ = 2 for a particular path p. Note it is still possible for the sampler

to retain the current graph if the proposed graph is not accepted by the rejection

step.

The upper bound λ is optionally determined by the user. Note that setting λ

to a high number may result in significant processing delays. In this thesis, I set a

maximum path length of five as default. This allows for greater difference between

consecutively sampled graphs than the NS or MH.

4.7.2 The diameter of a space of graphs

The diameter of the space in a connected BN is influenced by two main factors. First,

graphs are constrained to satisfy certain structural constraints such as connectivity

and acyclicity. Second, neighbour relations in graph space are determined by the

allowed adjustments to edges such as insertion, deletion or reversal. The adjustment

using reversal has the potential to improve efficiency by using shorter path lengths

than is possible by only considering adding and deleting.

4.7. Hit-and-Run sampler 65

Example 2. Consider the left-most directed graph in Figure 4.5. The graph is

sparse and is connected by the minimum number of edges. Consider how many

steps are required to reach the right-most graph in Figure 4.5. Let’s first consider

only the operations of adding and deleting adjustments: one might directly delete

A → B in the left-most graph and then add B → A to get the right-most graph.

This, however, is not permitted because deleting A → B would disconnect the

graph. Alternatively, one might add A→ D, for example, in order to make A→ B

deletable as shown in Figure 4.5. Next, add the edge B → A before deleting A→ D

again, so that the length of this path is now four. However, if we consider the

reversal adjustment, the movement from the left graph to the right graph can be

directly carried out by reversing the edge A→ B. The length of the path has been

reduced to one.

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

Figure 4.5: Moving from the left-most graph to the right-most graph in
four steps considering only adding and deleting edges.

�

Theorem 4.7.1. A lower bound to the diameter of a graph space of connected BNs

is n(n−1)
2 + 1, for n ≥ 4.

Proof:

The idea is to start with a graph consisting of a path connecting all nodes, and

finish with a graph that contains all the edges pointing back from later to earlier

nodes in this path (see Figure 4.6 for the case n = 4). The latter graph is connected

for n ≥ 4 (but not for n = 3). The latter graph is also acyclic because any directed

path in this graph can only have a decreasing sequence of labels, if the nodes are

labelled with their order in the first graph. One needs to delete (n − 1) edges and

66 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

add
[

n(n−1)
2 − (n− 1)

]
edges, so at least n(n−1)

2 additions and deletions are required.

But the first move cannot be a deletion because that disconnects the graph, and

cannot be an addition in the correct direction, since that would create a cycle, so

one needs at least one reversal. �

Example 3. Consider the pair of graphs G1 and G2 in Figure 4.6. To transit from

G1 to G2 or from G2 to G1, requires at least three additions and three deletions.

However, the first transition cannot delete any edges without disconnecting the

graph, and cannot add any of the new edges that are needed without creating a

cycle. Thus, at least one reverse and at least 7 transitions in total are required.

In fact only 7 transitions are required: if one starts by reversing A → B, each

subsequent move can be either an addition or a deletion.

A

B

C

D

A

B

C

D

G1 G2

Figure 4.6: A pair of graphs that requires at least n(n−1)
2 + 1 transitions.

�

Theorem 4.7.2 proves the upper bound to the diameter of a graph space of

connected BNs.

Theorem 4.7.2. An upper bound to the diameter of a graph space of connected

BNs is n(n− 1).

Proof:

Consider any two connected, directed, acyclic graphs on the same nodes, G1 =

(V, E1) and G2 = (V, E2). Consider three sets of edges. R is the set of edges that

are in E1 and the reverse edge is in E2 — these are the edges that need to be

4.7. Hit-and-Run sampler 67

reversed. D is the set of edges in E1 that are not in E2 and not in R — these are

the edges that need to be deleted. Finally, A is the set of edges in E2 that are not

in E1 and their reverse is not in R — these are the edges that need to be added.

Note R, D and A do not intersect.

First consider the edges in D. Order them and work through the list deleting

them until you find an edge e1 that can’t be deleted without disconnecting the graph.

This edge must be a bridge between two otherwise disconnected components H1 and

H2 of the current graph. Since e1 is not in E2, but G2 is connected, there must be an

edge e2 in A connecting H1 and H2. If e2 connects H1 and H2 in the same direction

as e1, then e2 can be added without creating any cycles and now e1 can be deleted

without disconnecting the graph. On the other hand, if e1 and e2 connect H1 and

H2 in opposite directions, first reverse e1, then add e2, then delete e1. Either way,

e1 is deleted and e2 is added to the graph and removed from A. Continue in this

manner until there are no edges left in D.

Next consider the edges in R. Order them and work through the list reversing

them until you find an edge e that can’t be reversed without creating a cycle. There

must therefore be an alternative a path connecting the endpoints of e in the same

direction as e. Thus e can be deleted without disconnecting the graph. Do this, and

add the reverse of e to the set A (to be added later, since adding it now would create

a cycle). Continue in this manner until there are no edges left in R. The resulting

graph must be a sub-graph of G2, since edges only need to be added to create G2.

These edges can now all be added without creating cycles.

Note each edge e in the original set D has been involved in at most two transi-

tions: a reversal and a deletion. Also note that the reverse of e is not in E1 (since

that would create a cycle in G1) or in E2 (since then e would be in R, not D). Hence

the reverse of e does not need to be added, reversed or deleted. Thus the edge e

and its reverse together contribute at most two transitions.

68 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

Similarly, each edge e in the original set R has been involved in at most two

transitions: a deletion and an addition. Also note that no additional operations

have to be performed involving either e or its reverse. Thus the edge e and its

reverse together contribute at most two transitions.

Since there are at most n(n− 1) possible directed edges, and these can be split

into n(n−1)
2 pairs of an edge and its reverse, at most 2n(n−1)

2 transitions are required.

�

Figure A.1 in Section A.2 is an illustrative example showing all possible paths

of length three for a connected graph consisting of three nodes.

From a practical point of view, it is computationally infeasible to enumerate all

paths from a given graph. This would dramatically increase simulation times. For

all the applications in this thesis, we set the maximum length to 5 as default. This

number facilitates traversing into graph space farther than the MH and NS, and

thus generates samples which are less dependent. Again, this technique in principle

would facilitate exploring graph spaces better than the MH.

4.7.3 Algorithm

In order to sample graphs from a discrete space X using the HAR sampler, consider

the following six parameters: λ, ℓ, Gt, µGt , Hℓ, and µHℓ
. First randomly initialise

a graph G0 at t = 0. Then define an integer upper bound λ which will be fixed

for all iterations. Given the current graph Gt, find NGt and µGt . Generate a value

U uniformly from (0, 1). Sample an integer length ℓ uniformly between [1, λ]. Set

H0 = Gt, and then sample a sequence of graphs in which Hk ∼ U(NHk−1) starting

from H0 until the proposed graph Hℓ is sampled. Find NHℓ
and µHℓ

. Then, accept

the graph Hℓ or reject it based on the acceptance ratio illustrated in Step 13 in

Algorithm 7. The latter algorithm describes how to sample discrete graph spaces

using the HAR sampler.

4.7. Hit-and-Run sampler 69

Algorithm 7 Sampling graph space with the HAR

1: Initialise a Bayesian network G0, and set t := 0.

2: Define an integer length λ

3: for all t = 0, 1, . . . , n do

4: Given the current graph Gt, find NGt and µGt

5: Generate U ∼ U(0, 1).

6: Sample an integer ℓ ∼ U(1, λ)

7: Set H0 = Gt

8: for all k = 1, . . . , ℓ do

9: Sample graph Hk ∼ U(NHk−1)

10: Find NHk

11: end for

12: Find µHℓ

13: if f(Hℓ)
f(Gt) .

µGt

µHℓ

> U then

14: set Gt+1 = Hℓ, goto 3

15: else

16: set Gt+1 = Gt, goto 3

17: end if

18: end for

Theorem 4.7.3. The Markov chain generated by Algorithm 7 is irreducible.

Proof:

A Markov chain is irreducible if any two graphs of this chain communicate. That

is, for any two connected BNs, there is a positive probability of selecting a sequence

of transitions connecting those BNs. Using Theorem 4.7.2, it is always possible to

transform one connected BN into another by a sequence of additions, deletions and

reversals. The opposite transformation is also true. Moreover, each transition occurs

70 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

with positive probability. This implies that the Markov chain is irreducible. �

Theorem 4.7.4. The Markov chain generated by Algorithm 7 is aperiodic.

Proof:

For each of the samplers described here, there is a positive probability that the

proposed new graph will be the current graph Gt. Thus there is a positive probability

of immediately repeating the same state, implying aperiodicity. �

4.7.4 Acceptance-rejection ratio in the HAR

The original HAR sampler uses the MH acceptance-rejection ratio step which com-

prises two probability distributions. First, the target distribution f , which is often a

posterior distribution formed from prior knowledge combined with an observational

dataset. Second, the transition proposal q defined for two neighbouring graphs. The

MH acceptance-rejection ratio is compared with a sampled uniform probability value

between 0 and 1 as shown in Step 13 in Algorithm 7, and the proposal is accepted

if:

f(Hℓ)
f(Gt)

.
q(Hℓ−1, Hℓ−2, . . . , H2, H1, Gt|Hℓ)
q(H1, H2, . . . , Hℓ−2, Hℓ−1, Hℓ|Gt)

> U ∼ U(0, 1) (4.1)

Note that Equation 4.1 computes the proposal probability for a single path in-

stead of summing over all paths, and the two values q(Hℓ−1, Hℓ−2, . . . , H2, H1, Gt|Hℓ)

and q(H1, H2, . . . , Hℓ−2, Hℓ−1, Hℓ|Gt) are the transition probabilities from graph Hℓ

to graph Gt and from graph Gt to graph Hℓ, respectively.

Proposition 6. Given two graphs Gt and Hℓ, the ratio of their proposals is:

q(Hℓ−1, Hℓ−2, . . . , H2, H1, Gt|Hℓ)
q(H1, H2, . . . , Hℓ−2, Hℓ−1, Hℓ|Gt)

= µGt

µHℓ

. (4.2)

4.7. Hit-and-Run sampler 71

Proof

q(Hℓ−1, Hℓ−2, . . . , H2, H1, Gt|Hℓ) = 1
µHℓ

× 1
µHℓ−1

× 1
µHℓ−2

× · · · × 1
µH2

× 1
µH1

(4.3)

q(H1, H2, . . . , Hℓ−2, Hℓ−1, Hℓ|Gt) = 1
µGt

× 1
µH1

× 1
µH2

× · · · × 1
µHℓ−2

× 1
µHℓ−1

(4.4)

We divide Equation 4.3 by Equation 4.4 in Equation 4.5:

∴ q(Hℓ−1, Hℓ−2, . . . , H2, H1, Gt|Hℓ)
q(H1, H2, . . . , Hℓ−2, Hℓ−1, Hℓ|Gt)

=
1

µHℓ

1
µGt

= µGt

µHℓ

.� (4.5)

Example 4. Figure 4.7 displays four descendant graphs {G1, G2, G3, G4} sampled

from uniform distributions in two opposite directions. For instance, Figure 4.7

shows that G3 ∼ U(NG4) so q(G3|G4) = 1
5 , because µG4 = 5, and G4 ∼ U(NG3) so

q(G4|G3) = 1
4 , because µG3 = 4. Figure 4.7 specifically shows how to transit from

graph G1 (red color) to graph G4 (blue color) and vice versa with a path length

ℓ = 3.

Equation 4.6 computes the ratio probability between the two proposals from

graph G1 to graph G4 and from graph G4 to graph G1. The result in Equation 4.6

verifies Proposition 6. Note that the fractions placed above graphs in Figure 4.7

represent the transition probabilities to those graphs from the graphs that precede

them. Note also that these fractions consider the probabilities that the proposed

new graphs can be the same as the current graphs at each stage.

q(G1, G2, G3|G4)
q(G4, G3, G2|G1)

=
1
6 ×

1
6 ×

1
4

1
6 ×

1
4 ×

1
5

= 5
6

. (4.6)

72 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

A

BC G1

1
6

A

BC

1
6

A

BC

1
6

A

BC G2

1
6

A

BC

1
6

A

BC

1
6

A

BC G3

1
4

A

BC

1
4

A

BC G4

1
4

A

BC

1
6

A

BC

1
6

A

BC

1
6

A

BC

1
6

A

BC

A

BC G4

1
5

A

BC

1
5

A

BC

1
5

A

BC G3

1
4

A

BC G2

1
6

A

BC

1
6

A

BC

1
6

A

BC G1

1
6

A

BC

1
6

A

BC

1
4

A

BC

1
4

A

BC

1
5

A

BC

Figure 4.7: Calculating probabilities uniformly between two distant
graphs using the Hit-and-Run sampler. Beside the number of descendant
graphs at each stage, a value of 1 was added to each denominator to allow

for choosing the same graph.

-�

4.8 Generating an initial network at random

For all MCMC samplers in this thesis, I used the following simple approach to

generate a random initial network.

1. Declare an empty network, G(V, E), where V is the set of nodes, N = |V |,

and E is an empty edge set.

2. Choose a pair (i, j) uniformly i.e. all such edges have equal probabilities, where

i is not equal to j (to avoid diagonal entries).

3. If (i, j) does not belong to E already, then randomly decide whether to add

an edge or not, with equal probability. Otherwise, do nothing.

4.8. Generating an initial network at random 73

4. If the decision is to add an edge, and adding the edge (i, j) would not violate

constraints e.g. cyclicity, include that edge in the graph and go to Step 6.

Otherwise, go to Step 5.

5. If the edge (i, j) is rejected at Step 4, repeat Step 4 for (j, i) with the same

constraint checking.

6. Repeat steps from 2 to 5 for N2 times.

7. After repeating Steps 2-5 N2 times, check whether the resultant graph is a

connected one or not. For that purpose we applied BFS (Breadth First Search)

algorithm to test network connectivity. If the graph is connected, then we have

DAG, and go to Step 9. Otherwise, go to Step 8.

8. Repeat the whole process Steps 1-7 until finding a connected, directed, acyclic

graph satisfying parents and children constraints.

9. End.

In Step 2, each pair (i, j) has equal probabilities to be considered for the Step

3 i.e. forming an edge between them or not forming an edge between them. Note

that in Step 3, a pair (i, j) for which an edge does not belong to E, random deciding

(with equal probabilities) whether to add an edge between them or not, would likely

facilitate better randomness in terms of the graph structure compared to the choice

of merely adding an edge which may always yield denser graph structure. Also note

that we repeat Steps 2-5 for N2 times because there are N2 node pairs in total for

N nodes, and essentially each node pair (i, j) has equal chance to be considered for

further action (Step 2).

74 Chapter 4. Using the MH, NS and HAR to Sample Bayesian Networks

4.9 Conclusion

This chapter has explained the theoretical framework of the MH, NS and HAR

when they are used to sample and infer Bayesian network structures given a discrete

dataset. It has attempted to facilitate better understanding by providing a range of

illustrative examples, useful remarks, theorems, pseudocode algorithms and figures.

So that the proposed MCMC methods are applicable in practice and possibly can

be extended in future work to achieve better inferring of BNs.

75

Chapter 5

Uniform Sampling of Bayesian

Networks Conditional on Vertex

Connectivity 1

5.1 Introduction

Random graphs (RGs) are the subject of a broad area of research originating in

the early works of [145] and [146], drawing insights from both graph theory and

probability. One particular area of interest is the generation of random graphs.

Many applications in graph analysis require a space of graphs or networks to be

sampled uniformly at random [147–150]. Sampling random graphs in an unbiased

manner over a space of graphs is still a challenge, and has opened a new area of

research. The main problem is that many random processes used to generate random

graphs do not effectively allow graphs to have the same chance of being drawn [151,

152]. Two commonly used approaches to generate random graphs are by using a

probability distribution, or by using a random process [153]. An example of using

probability distributions is the Erdös-Reńyi model [154], which generates random
1This chapter is modified from a published paper entitled "Uniform sampling of directed and

undirected graphs conditional to vertex connectivity" by Salem A. Alyami, AKM Azad, and
Jonathan M. Keith, Electronic Notes in Discrete Mathematics 53, 43-55, 2016.

76 Chapter 5. Sampling Bayesian Networks Uniformly

graphs with a uniform probability distribution over the space of all graphs with a

given number of nodes and edges. The Erdös-Reńyi model can be implemented by

starting with a given number of nodes with no edges and then iteratively adding

one new edge at a time, sampled uniformly over the set of missing edges, until the

required number of edges is obtained [153]. An example of using random processes

is the simple algorithm used by [152] to simulate BNs (directed acyclic graphs) in

which the number of nodes and their average degree are taken as an input. The

algorithm then computes a threshold value t, and for each pair of nodes, a random

number r ∈ [0, 1] is generated. If r 6 t, then the pair is linked by an edge.

There are two main goals of this chapter. First, the uniform distribution is

used to compare samplers’ performance and their computational efficiency to sample

BNs. Second, it aims to provide a novel implementation of MCMC samplers that

are efficiently capable of sampling graphs that are uniformly distributed over certain

spaces. Specifically, I consider spaces consisting of directed acyclic graphs in which

all vertices are connected. Such graphs arise in a variety of applications, in particular

in the study of BNs.

Section 5.2 specifies the MCMC methods and their sampling model used to

generate BNs at random. Experimental results are provided in 5.3.

5.2 Methods and model

In this chapter, I use three MCMC samplers to sample BNs uniformly at random:

the MH, NS and HAR conducted using Algorithm 4, Algorithm 5 and Algorithm

7, presented in Chapter 4, respectively. Sampling graphs from a finite search space

X using a discrete uniform distribution assumes that all graphs in X are equally

probable. I assume that the uniform distribution in Equation 5.1 has been defined

5.3. Experimental results 77

over a space of BNs.

f(N, E) = 1
|X |

. (5.1)

In fact, one can use an unnormalised target function f(X) = 1, since the nor-

malisation constant can be canceled in all of the required comparisons. I validated

the MCMC samplers and software by testing whether a MCMC sampler is able to

explore the entire space and whether the sampled graphs match the target uniform

distribution. I also investigated convergence behaviour by performing simulations

with the number of iterations ranging from 1000 up to 50 000 000.

5.3 Experimental results

The structure of this section is as follows. Section 5.3.1 discusses the effects on the

frequency distribution, if one considers some or all of the transition options available

for a MCMC sampler to move from a current to next graph. Section 5.3.2 investigates

how many distinct graphs can be sampled by each MCMC sampler in |X | iterations.

Section 5.3.3 uses the MCMC samplers to explore the entire spaces of feasible BNs,

and checks that the sampled graphs match the target uniform distribution. Section

5.3.4 reports the SSDs for the sampled frequencies at different settings.

5.3.1 Transition options

Moving from a particular graph to one of its adjacent graphs is typically an essential

step when a heuristic sampler is implemented to sample graphs or networks. A

commonly used technique is to add a non-existing edge to the current graph or to

delete an existing edge from it. I use AD to refer to the set of all possible addable

and deletable edges (recall that after adding or deleting an edge, the graph remains a

connected DAG). The AD set is applicable for both directed and undirected graphs.

Note that in directed graphs, (i, j) and (j, i) can both be distinct members of AD.

78 Chapter 5. Sampling Bayesian Networks Uniformly

Reversing an existing edge is another possible option for modifying the current graph

to transit to one of its neighbors. This option is only applicable for directed graphs

(Bayesian networks). I use ADR to refer to the set of all possible addable, deletable

and reversible edges. Note |ADR| ≥ |AD|. The effect of using the AD set versus

the ADR set while using MCMC methods is investigated below.

To assess the sampling methods, I consider a Bayesian network with four nodes.

The graph space contains 446 connected BNs. I evaluate the ability of our MCMC

samplers to explore the entire 446 graphs, and evaluate how effectively their frequen-

cies match the uniform distribution. I ran 100,000 iterations twice for each MCMC

sampler. The first 100,000 was run with the AD set for all samplers, and the second

100,000 with the ADR set for all samplers.

Each row in Figure 5.1 compares the performance of each MCMC sampler when

it considers AD versus ADR. Figure 5.1 shows that the MH method produces graphs

with greater variation in sampling frequency using the AD set than using the NS

and HAR methods. With the ADR set, all three methods appear to produce an

approximately uniform distribution.

That is, the NS is less affected by using the AD set compared to the MH. One

possible reason is that the NS produces samples that are less correlated compared

to those with the MH. The NS has the chance to, in a single iteration, jump to a

graph that differs from the current graph by two edges. The sampler with the ADR

set has produced a slightly more uniform distribution compared to its performance

with the AD set.

Unlike the NS and MH, the HAR is not significantly affected by using the AD set.

It is not possible to visually differentiate between the two frequency distributions

produced by the HAR with AD and ADR sets, as shown in Figure 5.1. This is

possibly due to its ability to move to a distant graph via a sequence of adjacent

graphs within a single iteration, and thus less correlated samples are produced.

5.3. Experimental results 79

Figure 5.1: MH, NS and HAR performance comparisons with AD set
versus ADR set with four nodes using 100 000 iterations. The scales of
both vertical axis and horizontal axis have been set to the same lower and

upper bounds with the same increments for all plots.

Figure 5.2 investigates the performance of the MH sampler. It performs another

comparison using the AD set versus the ADR set when the number of iterations has

80 Chapter 5. Sampling Bayesian Networks Uniformly

increased to 500,000.

Figure 5.2: The MH performance comparison with AD set versus ADR
set with four nodes using 500 000 iterations.

Figure 5.2 confirms that the MH sampler using the ADR set produces less vari-

ation in sampling proportions for different graphs than using the AD set. There

are two possible reasons for this disparity. First, sampling from the AD set instead

of the ADR generates more highly correlated graphs. Second, the total number of

immediately adjacent graphs is reduced for the AD set, so the sampler is more likely

to get stuck in a local mode.

5.3.2 Sampling with |X | iterations

I aim to estimate the total number of graphs (TNGs) generated by each MCMC

sampler after running |X | iterations. Roughly speaking, the greater the number of

5.3. Experimental results 81

distinct graphs generated by a sampler in |X | iterations, the closer the empirical

distribution is to uniformity.

The space sizes of four-node and five-node graphs are 446 and 26430, respectively.

They are thus small enough to evaluate sampling frequencies for all graphs. The

number of iterations in two experiments has been set to these sizes accordingly i.e.

446 and 26430. For each MCMC sampler, I ran 10 chains with 446 iterations in the

four-node case and another 10 chains with 26430 iterations in the five-node case. I

also fixed random initial networks for all the 20 chains. After running each chain,

I recorded the TNGs generated by each sampler separately. Figure 5.3 and Figure

5.4 summarise the obtained TNGs.

Figure 5.3: Sampling the graph space of four nodes with |X | = 446 iter-
ation.

82 Chapter 5. Sampling Bayesian Networks Uniformly

Figure 5.4: Sampling the graph space of five nodes with |X | = 26430
iteration.

The TNGs produced by the NS and HAR are higher than those produced by the

MH in both target search spaces. This demonstrates that the NS and HAR have the

potential to visit more distinct graphs in the same number of iterations compared

to the MH. With the space of four-node graphs, the TNGs produced by the NS and

HAR are roughly equal. However, it was rare for the NS to produce TNGs higher

than the HAR. With the space of five-node graphs, the HAR is superior in TNGs

compared to the NS.

5.3.3 Sampling BNs uniformly

In this section, I investigate how well the sampled frequencies fit uniform distribu-

tions as the number of iterations increase. The first group of simulations involves

BNs with four nodes. There are 446 connected BNs in this space, and I explore

5.3. Experimental results 83

it by using the MH, HAR, and NS algorithms. The three algorithms are run for

1000, 5000, 10 000, 20 000, 50 000, 75 000, 100 000, 250 000, and 500 000 iterations.

The expected frequency of each graph given these numbers of iterations should be

2.24, 11.21, 22.42, 44.84, 112.10, 168.16, 224.21, 569.53, and 1121.07, respectively.

The expected frequencies for each graph are calculated by dividing every number of

iterations by 446.

Figure 5.5, Figure 5.6 and Figure 5.7 show the empirical frequencies with which

each graph was sampled by the MH, HAR and NS algorithms, respectively. With

all MCMC samplers, the graph space of four nodes has been entirely explored using

5000 iterations as illustrated in the top middle panel of Figure 5.5, Figure 5.6 and

Figure 5.7.

Figure 5.5: MH with four nodes for iterations increasing from 1,000 to
500,000.

84 Chapter 5. Sampling Bayesian Networks Uniformly

Figure 5.6: HAR with four nodes for iterations increasing from 1,000 to
500,000.

Figure 5.7: NS with four nodes for iterations increasing from 1,000 to
500,000.

5.3. Experimental results 85

Remark 4. It is possible with the NS and HAR algorithms to explore the whole

graph space using less than 5000 iterations (e.g. 2500 iterations) but this will not

always sample every graph. The fact that, for all MCMC samplers, the limiting

distribution is uniform becomes increasingly apparent as the number of iterations

increases from 1000 to 500 000.

The performances of the MH, HAR and NS have been compared also using the

Chi-square test to check the goodness of fit for the three MCMC samplers. The Chi

square test was applied to the frequencies produced by the 500,000 iterations for the

samplers in Figure 5.5, Figure 5.6 and Figure 5.7. The p-values of the MH, HAR

and NS are 0.03, 0.01 and 0.007, respectively. The three samplers may therefore

be considered to have returned frequencies consistent with the uniform distribution.

Consequently, the three samplers may be considered to have converged.

The second group of simulations involves connected BNs with five nodes. There

are 26430 CDAGs in this space, and I explore it by using the NS, HAR, and MH

algorithms. The MCMC samplers are run for 50 000, 100 000, 250 000, 500 000, 1

000 000, 5 000 000, 10 000 000, 25 000 000, and 50 000 000 iterations. The expected

frequency of each graph given these numbers of iterations should be 1.89, 3.78,

9.45, 18.91, 37.83, 189.17, 378.35, 945.89, and 1891.78, respectively. The expected

frequencies for each graph are calculated by dividing every number of iterations by

26430.

Figure 5.8, Figure 5.9 and Figure 5.10 show the empirical frequencies with which

each graph was sampled by the MH, HAR and NS algorithms, respectively. With

all MCMC samplers, the graph space of five nodes has been entirely explored using

250 000 iterations as illustrated in the top right panel of Figure 5.8, Figure 5.9 and

Figure 5.10. The simulation results suggest that the MCMC samplers can rapidly

explore the entire graph space of 26540 graphs and that these graphs are uniformly

distributed, as intended.

86 Chapter 5. Sampling Bayesian Networks Uniformly

Figure 5.8: MH with five nodes for iterations increasing from 50,000, to
50,000,000.

Figure 5.9: HAR with five nodes for iterations increasing from 50,000, to
50,000,000.

5.3. Experimental results 87

Figure 5.10: NS with five nodes for iterations increasing from 50,000, to
50,000,000.

Remark 5. Appendix B plots the frequency histograms for the samples obtained

by the MH, HAR and NS in Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure

5.9 and Figure 5.10. It is noted that the bars in the histograms are symmetrically

distributed around the mean value in Equation 5.2 when the number of iterations

is large.

mean = #iterations
|X |

. (5.2)

Some descriptive statistics (mean and standard deviation - SD) were used to

summarise the frequencies obtained by the MH, HAR and NS in Figure 5.8, Figure

5.9 and Figure 5.10. The mean and SD were specifically applied to the frequencies

produced by the 50,000,000 iterations shown in Figure 5.8, Figure 5.9 and Figure

5.10.

Table 5.1 provides these summary statistics for each MCMC sampler. The means

of the MH, HAR and NS are similar and resemble the true value. However, the SDs

88 Chapter 5. Sampling Bayesian Networks Uniformly

of the HAR and NS distributions demonstrate less dispersion compared to the SD

of the MH sampler.

Sampler Mean SD

MH 1891.79 51.95

HAR 1891.79 46.40

NS 1891.79 47.26

Table 5.1: Summary statistics of frequencies after 50,000,000 iterations.

5.3.4 Sum of squared differences

I calculate the SSDs between the uniform target distribution and the sampled graph

frequencies obtained in Section 5.3.3, at the pre-designated number of iterations.

One would expect that the SSD values should ultimately decrease as the number of

iterations increases if the chain converges to the desired target distribution.

The SSDs are first calculated for a connected Bayesian network with four nodes

at 5000, 10 000, 20 000, 50 000, 75 000, 100 000, 250 000 and 500 000 iterations,

and for a connected Bayesian network with five nodes at 50 000, 100 000, 250 000,

500 000, 1 000 000, 5 000 000, 10 000 000, 25 000 000, and 50 000 000 iterations.

Figure 5.11 and Figure 5.12 separately plot each SSD value at each number of

iterations. Figure 5.11 and Figure 5.12 show that the NS, HAR and MH rapidly

diminish the values of SSDs as the number of iterations increases.

It is also noted that the lowest and second lowest SSDs values always result from

the frequencies sampled by the HAR and NS, respectively, as shown in Figure 5.13

and Figure 5.14.

5.3. Experimental results 89

Figure 5.11: SSD values vs iterations with a space of four nodes.

Figure 5.12: SSD values vs iterations with a space of five nodes.

90 Chapter 5. Sampling Bayesian Networks Uniformly

Figure 5.13: SSD values vs MCMC sampler with a space of four nodes.

Figure 5.14: SSD values vs MCMC sampler with a space of five nodes.

5.4. Conclusion 91

5.4 Conclusion

The experimental results in this chapter have demonstrated the ability of the MH,

NS and HAR to generate BNs uniformly at random. That is, a random sequence of

BNs with a large number of iterations would ultimately follow a uniform pattern, in

which the probability of sampling a specific Bayesian network is the proportion of

those BNs in the target search space. Note that sampling randomly using the MH,

HAR and NS over graph spaces does not aim to entirely explore these spaces, but

rather to guarantee a uniform distribution.

92

Chapter 6

Adaptive Algorithms for Faster

Adjacent Graphs Enumeration

and Function Scoring

6.1 Introduction

This chapter proposes two adaptive techniques to solve two time-consuming prob-

lems that arise while learning the structure of a Bayesian network. The first adap-

tive technique aims to quickly enumerate the set of adjacent graphs for a particular

graph. Unlike the commonly used brute-force approach reviewed in Section 4.3,

the new adaptive technique does not need to check every single pair of nodes in

the graph G. It rather determines the set of adjacent graphs of the next generated

graph G′ by updating the set of adjacent graphs of the current graph G. That is, it

finds N (G′) by updating N (G), where G′ ∼ N (G). This adaptive technique is ex-

plained in Section 6.2. The second adaptive technique aims to quickly populate the

CPTs for a given DAG. It is O(N) times faster than the other widely used approach

investigated in Section 6.3.3. It updates the CPTs only for the nodes whose parent

nodes have been changed after a single transition from a current graph G to one of

its adjacent graphs is applied. This adaptive technique is explained in Section 6.3.

6.2. Adaptive technique for faster enumeration of adjacent graphs 93

6.2 Adaptive technique for faster enumeration of

adjacent graphs

Enumerating a set of adjacent graphs becomes a time-consuming problem when the

number of nodes increases. If the number of nodes is high, the size of N (G) tends

to be high regardless of whether a given graph is dense or sparse. For instance, if

the graph is dense, the number of deletable edges is likely to be much larger than

the number of addable edges, and vice versa if the graph is sparse.

Sampling over sets of the form N (G) is a technique used by many structural

learning samplers such as Hill-Climbing Search [134, 139], Tabu Search [136–138],

and Metropolis-Hastings sampler [121] to incrementally traverse search spaces of

graphs. Suppose a graph G(V, E) has n vertices. I use an asymmetric n×n adjacency

matrix to represent G, as shown in Equation 6.1, with entries that are Boolean values

defined in Equation 6.2.

Gij =

p11 p12 p13 . . . p1n

p21 p22 p23 . . . p2n

...

pn1 pn2 pn3 . . . pnn

(6.1)

dij =

1 if there is a directed edge from i to j,

0 Otherwise.

(6.2)

In order to sample a candidate DAG G′ ∼ N (G), one first needs to identify all

the adjacent graphs to G. To do so, one can check for each pair (i, j) ∈ G whether it

is addable, deletable, or reversible. Identifying N (G) is a time-consuming problem

for three reasons. First, as the number of nodes increases, the number of pairs of

nodes that need to be checked also increases. Second, the computational cost is

94
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

multiplied when a sampler updates N multiple times in each sampling iteration.

The NS, for example, considers sampling a mediator graph G′ ∼ N (G) between the

current graph G and candidate graph G′′ ∼ N (G′). This requires checking all pairs

of nodes in N (G), N (G′) and N (G′′) in every single sampling iteration. Third, some

algorithms perform a local search within each sampling iteration. For example, the

reduction step involved in the NS applies a local search to satisfy the acceptance

ratio.

To define N (G) in a single iteration, a graph algorithm (e.g. Depth First Search)

is used to check the potential for every single pair of nodes in the graph to provide

an addable, deletable, or reversible edge such that the graph remains connected and

acyclic. There are n × (n − 1) pairs in each graph to be checked. Then, one can

sample G′ ∼ N (G), and again check all pairs in G′ to define the new N (G′).

I propose a new adaptive technique to quickly define the nextN (G′). It identifies

the set N (G′) using computations already performed for N (G), with no need to

check all n × (n − 1) pairs of nodes in G′. This technique primarily focuses on

skipping some redundant or unnecessary checking of pairs during the execution of

addable, deletable, and reversible graph searching algorithms.

6.2.1 Notations, definitions and propositions

Note that all notations in this Section are new to the thesis and not easily found

in the literature. I use (i, j, a), (i, j, d) and (i, j, r) to indicate an addable edge,

deletable edge, and reversible edge, respectively, where i and j are nodes. I also

define (i, j, x), where x is either a, d or r. Let Aa, Dd and Rr be the sets of all

addable edges, deletable edges and reversible edges, respectively. Let E(G) be the

set of all addable, deletable, and reversible edges in graph G. That is, E(G) contains

all (i, j, x), where (i, j, a) is included iff (i, j) ∈ Aa, (i, j, d) is included iff (i, j) ∈ Dd,

and (i, j, r) is included iff (i, j) ∈ Rr.

6.2. Adaptive technique for faster enumeration of adjacent graphs 95

Let Ga, Gd and Gr be the sets of all adjacent graphs that are constructed based

on Aa, Dd and Rr, respectively. I also define N (G) = Ga ∪ Gd ∪ Gr ∪ {G} to refer

to the set of all possible adjacent graphs that differ from G by only one edge plus

the graph G itself, while the members of N (G) remain connected and acyclic. Let

also An, Dn and Rn be the sets of all non-addable, non-deletable and non-reversible

edges, respectively, that is edges for which performing the specified action would

violate the conditions of connectivity or acyclicity. Let E(G) be the set of all edges

in G.

Typically, to find N (G) based on E(G), all pairs of nodes in G must be checked.

For each (i, j) /∈ E(G), if a pair of nodes (i, j) is addable, then add it to Aa, if not

add it to An. Again, deletable and reversible edges are identified by checking every

(i, j) ∈ E(G). If an edge is deletable or reversible, add it to Dd or Rr, respectively,

if not add it to Dn or Rn, respectively. I also define A = Aa∪An, D = Dd∪Dn and

R = Rr ∪ Rn. The set A contains the ordered pairs of nodes that do not belong to

E(G). The sets D and R are both equal to E(G). For a sparse DAG, the size of A

will be large, but the sizes of D and R will be small. Similarly, for a dense DAG,

|A| will be small, but |D| and |R| will be large. The comprehensive set of all pairs

of nodes in a DAG G is defined as Ω(G) = A∪D∪R. The goal now is to adaptively

identify N (G′) given N (G).

The adaptive technique uses the standard checking only once to populate the

initial lists (A, D, R). When a neighboring graph is selected from N (G), determine

from which list the updated edge was selected: Aa, Dd or Rr. Then, update Aa, Dd

and Rr given the last change made on G. That is, when any list is updated (e.g. Dd),

check whether any edge which was previously deletable has become non-deletable,

in which case that edge will be removed from Dd, and added to Dn. This process

is performed for each list. I use Ta[i, j], Td[i, j] and Tr[i, j] to refer to permitted

transformations between two adjacent graphs, either via adding an edge, deleting

96
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

an edge or reversing an edge, respectively. For example, Ta[i, j] : G 7−→ G′ represents

the graph transformation from G to G′ where G′ ∼ N (G) using an addable edge

(i, j).

Proposition 7. G′ ∼ N (G) and Ta[i, j] : G 7−→ G′ ⇐⇒ G ∼ N (G′) and Td[i, j] :

G′ 7−→ G

Proof:

Since both G and G′ are connected and acyclic, (i, j) can be added to G or deleted

from G′ without creating cycles or disconnecting the graph. �

Proposition 8. If G′ ∼ N (G) and Ta[i, j] : G 7−→ G′, then, (i, j) /∈ A(G′).

Proof:

Since (i, j) ∈ E(G′) =⇒ (i, j) /∈ Aa(G′) and (i, j) /∈ An(G′) �

Proposition 9. If G′ ∼ N (G) and Td[i, j] : G 7−→ G′, then, (i, j) /∈ D(G′).

Proof:

Since (i, j) /∈ E(G′) =⇒ (i, j) /∈ Dd(G′) and (i, j) /∈ Dn(G′). �

Proposition 10. If G′ ∼ N (G) and Tr[i, j] : G 7−→ G′. Then:

i) (i, j) /∈ Rr(G′) ii) (j, i) ∈ Rr(G′)

iii) (i, j) /∈ D(G′) iv) (j, i) ∈ D(G′)

Proof:

Since Tr[i, j] : G 7−→ G′,

we have (i, j) ∈ E(G) =⇒ (j, i) ∈ E(G′) =⇒ (i, j) /∈ E(G′)

∴ (i, j) /∈ Rr(G′) ∧D(G′) and Tr[j, i] : G′ 7−→ G. �

6.2.2 Algorithm and illustrative example

The new adaptive approach starts with Algorithm 8. It initialises six lists: Aa, Dd,

Rr, An, Dn, and Rn. In this initial step, I use the standard algorithms in Section

4.3 to check connectivity and cyclicity for every single pair of nodes in the graph.

6.2. Adaptive technique for faster enumeration of adjacent graphs 97

Algorithm 8 Populate all lists in Ω(G)

Input: G(V, E)

Output: A, D and R lists

Phase 1: Populate A list.

1: for all (i,j) /∈ E do

2: if (i,j) is Addable then

3: Aa.add((i,j), “addable”)

4: else

5: An.add((i,j), “non-addable”)

6: end if

7: end for

Phase 2: Populate D list.

8: for all (i,j) ∈ E do

9: if (i,j) is Deletable then

10: Dd.add((i,j), “deletable”)

11: else

12: Dn.add((i,j), “non-deletable”)

13: end if

14: end for

Phase 3: Populate R list.

15: for all (i,j) ∈ E do

16: if (i,j) is reversible then

17: Rr.add((i,j), “reversible”)

18: else

19: Rn.add((i,j), “non-reversible”)

20: end if

21: end for

98
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

Note, each of the Aa, Dd, Rr, An, Dn, and Rn were managed with dictionary

data structures, where each item is a (key, value) pair, for example, key: the pair

(i, j) and value: addable or non-addable. The following lines explain the core idea of

the proposed adaptive technique for adjacent graphs enumeration. At the very first

iteration of the whole sampling algorithm, I apply Algorithm 8 in order to populate

all the lists A, D and R. Now, for every DAG sampled during one iteration, I

update all the lists according to Algorithm 9. These upgrades of A, D and R

lists in Ω(G) only observe the element pairs in the previous versions of these lists,

instead of checking all n(n− 1) pairs. Thus, this adaptive technique provides faster

neighbourhood construction. Table 6.1 briefly describes the effect on A, D and R

lists after a single transition between two adjacent graphs is conducted.

Operation Effect on A list Effect on D list Effect on R list

Add an edge
addable may

become non-addable

non-deletable may

become deletable

reversible may

become

non-reversible

Delete an

edge

non-addable may

become addable

deletable may

become

non-deletable

non-reversible may

become reversible

Reverse an

edge

addable may

become non-addable

and vice versa

No effect

reversible may

become

non-reversible and

vice versa

Table 6.1: Effects of adding, deleting and reversing an edge on A, D and
R lists

Given Algorithm 8 and Table 6.1, Algorithm 9 is used to adaptively update N .

6.2. Adaptive technique for faster enumeration of adjacent graphs 99

Algorithm 9 Adaptive process for updating Ω(G) during N construction

1: Initialise E(G).

2: Randomly sample (i, j, x) ∈ E(G).

3: if x = a then

4: Update A list: (i) Remove (i,j) from Aa (ii) Remove (j,i) from A (iii) Check edges

in Aa to see if they become non-addable.

5: Update D list: (i) Add (i,j) to Dd (ii) Check edges in Dn to see if they become

deletable.

6: Update R list: (i) If (i, j) and (j, i) are both addable then the added edge is in Rr,

otherwise it’s in Rn (ii) Check edges in Rr to see if they become non-reversible.

7: else if x = d then

8: Update A list: (i) Add (i,j) to Aa (ii) If (i, j) was reversible, then both (i, j) and

(j, i) become addable. But if (i, j) was not reversible, (j, i) must be placed in Rn

(iii) Check edges in An to see if they become addable.

9: Update D list: (i) Remove (i,j) from Dd (ii) Check edges in Dd to see if they become

non-deletable.

10: Update R list: (i) Remove (i,j) from R (ii) Check edges in Rn to see if they become

reversible.

11: else if x = r then

12: Update A list: (i) Check all edges in A = Aa ∪An to see whether they are addable

or not.

13: Update D list: (i) Remove (i,j) from D (ii) Add (j,i) to Dd if (i, j) was in Dd; else

add it to Dn.

14: Update R list: (i) Remove (i,j) from Rr (ii) Add (j,i) to Rr (iii) Check all edges in

R = Rr ∪Rn to see whether they are reversible or not.

15: end if

16: Update E(G).

17: Find N (G) = (Ga,Gd,Gr).

18: goto 2

100
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

Example 5. A Bayesian network with four nodes provides a simple test case to

illustrate Algorithm 8 and Algorithm 9. Consider the initial DAG G in Figure 6.1.

The graph is connected and acyclic. I first apply Algorithm 8 in order to populate A,

D and R. The result is shown in Table 6.2. Cells in black colour or gray colour refer

to addable, deletable and reversible pairs, or non-addable, non-deletable and non-

reversible pairs, respectively. To find A = Aa ∪An, I only check every pair of nodes

(i, j) ∈ E(G) = {(A, B), (B, A), (B, C), (C, B)}, where E(G) is the complementary

list of E(G). Note that the edges {(C, A), (D, A), (B, D), (C, D)} are not considered

because they cannot be added, deleted, or reversed. In contrast, to find D or R, I

only check every edge (i, j) ∈ E(G) = {(A, C), (A, D), (D, B), (D, C)}.

A

B C

D G
Figure 6.1: Initial graph

List Elements

A (A, B) (B, A) (B, C) (C, B)

D (A, C) (A, D) (D, C) (D, B)

R (A, C) (A, D) (D, C) (D, B)

Table 6.2: Populate A, D and R lists. Cells in black colour or gray
colour refer to addable, deletable and reversible pairs, or non-addable, non-

deletable and non-reversible pairs, respectively

In order to transit from G in Figure 6.1 to one of its adjacent DAGs, one needs

first to find E(G) and then N (G). Table 6.2 shows permissible transitions and

populates A, D and R lists. Note that some edges may appear in more than

one list e.g. DC is in D list and R list. Therefore, I use (D, C, d) and (D, C, r)

6.2. Adaptive technique for faster enumeration of adjacent graphs 101

to indicate that (D, C) ∈ Dd and (D, C) ∈ Rr, respectively. Hence E(G) =

{(A, B, a), (B, C, a), (C, B, a), (A, C, d), (A, D, d), (D, C, d), (A, D, r), (D, C, r), (D, B, r)}.

Suppose one randomly sampled an element from E(G) e.g. (A, B, a). One would

then conduct the steps from 3 to 6 in Algorithm 9, since (A, B) ∈ Aa. Table 6.2 is

now updated to Table 6.3. Note that the list A was updated by removing (A, B)

from the addable list Aa, removing (B, A) from the A list, and then only the edges

in Aa are checked to determine whether they become non-addable, as cyclicity may

occur after adding (A, B). I update D by adding (A, B) to the Dd list and again

checking all non-deletable edges in Dn. Lastly, the list R was updated by adding

(A, B) to Rr and then checking all edges in Rr.

List Elements

A (B, C) (C, B)

D (A, C) (A, D) (D, C) (D, B) (A, B)

R (A, C) (A, D) (D, C) (D, B)

Table 6.3: Update A, D and R lists after adding (A, B, a) ∈ E(G).

I also illustrate steps 7 to 10 in Algorithm 9 by sampling a deletable edge from

the list E(G) e.g. (A, C, d). Table 6.2 is now updated to Table 6.4.

List Elements

A (A, B) (B, A) (B, C) (C, B) (A, C) (C, A)

D (A, D) (D, C) (D, B)

R (A, D) (D, C) (D, B)

Table 6.4: Update A, D and R lists after deleting (A, C, d) ∈ E(G).

Finally, I illustrate steps 11 to 14 in Algorithm 9 by sampling a reversible pair

from the list EG e.g. (A, D, r). Table 6.2 is now updated to Table 6.5.

102
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

List Elements

A (A, B) (B, A) (B, C) (C, B)

D (A, C) (D, C) (D, B) (D, A)

R (A, C) (D, C) (D, B) (D, A)

Table 6.5: Update A, D and R lists after reversing (A, D, r) ∈ E(G).

The difference in time complexity between the new adaptive technique and stan-

dard brute-force to enumerate adjacent graphs is compared in the following section.

6.2.3 Standard brute-force vs adaptive algorithm

In order to enumerate graphs in the neighbourhood of the current graph, there are

three main sequential operations required to construct the lists of all addable edges

A, deletable edges D and reversible edges R. Figure 6.2 shows these three sequential

operations used both in the standard brute-force and adaptive algorithms. The

"Find" functions in the standard algorithm are used to calculate by brute force the

lists of all addable, deletable and reversible edges, whereas the "Update" functions in

the adaptive algorithm are used to dynamically modify all the lists that are already

defined in the previous iteration.

Standard algorithm Adaptive algorithm

Find Neighbors (X) Find Neighbors (X)

{ {

Sample Y ∈ N (X); Sample Y ∈ N (X);

Find A list (Y); Update A list (Y);

Find D list (Y); Update D list (Y);

Find R list (Y); Update R list (Y);

} }

Figure 6.2: The three sequential operations used in the two algorithms.

6.2. Adaptive technique for faster enumeration of adjacent graphs 103

6.2.3.1 Brute-force algorithm: complexity analysis

Theorem 6.2.1 proves the running-time complexity for the brute-force algorithm.

Theorem 6.2.1. The running-time complexity for the standard brute-force algo-

rithm is O(V 4).

Proof:

In the brute-force algorithm to evaluate the A list, one checks the cyclicity of the

graph for each of the (i, j) pairs of nodes using the BFS algorithm which has worst-

case complexity O(V 2) ([155]). Since there are Θ(V 2) pairs in the graph (V = the

number of nodes in the graph) and for each of them cyclicity needs to be checked

for the graph created by their possible inclusion, there are O(V 4) operations. Also

it is necessary to check the number of parents and number of children for each node.

These two checks require a linear running-time complexity O(V) each. Thus the

time complexity for the A list is O(V 4).

Evaluating the R list also consumes the same running-time (O(V 4)) as the A

list, because it checks for cycles for each pair of nodes (i, j), and the numbers of

parents and children for each node.

To evaluate the D list, a modified version of DFS algorithm (Section 4.3) can be

used as a bridge detection algorithm which has worst case time-complexity O(V 2).

Therefore, the set of bridges B can be found in O(V 2). Next, the set of deletable

edges (non-bridges) can be found by evaluating the set-difference between E and B,

which can be computed in O(|E|+ |B|) ≈ O(V 2).

For the standard brute-force algorithm, the running-time complexity is therefore

O(V 4). �

Note that, all node pairs (i, j) have to be checked in the brute-force approach.

However, in the adaptive approach, it is not necessary to check all node pairs. Each

of the neighbours of the current graph are generated by changing a single (i, j) pair,

104
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

either by adding, deleting, or reversing, leaving the remaining (i, j) pairs the same

as the original (current) graph.

6.2.3.2 Adaptive algorithm: worst-case complexity

The asymptotic behaviour of the three update functions in Figure 6.2 depends on

the sizes of the A, D and R lists, respectively. Note that the number of edges in A

list to be checked by a sampler using the adaptive method is at most n(n−1)
2 −(n−1).

The maximum numbers of edges in the D and R lists to be checked by a sampler

using the adaptive method are at most n(n−1)
2 . These maximum numbers are less

than n(n− 1) which is the maximum number of edges in A list, D list, and R list to

be checked by a sampler using the brute-force method. However, Corollary 1 shows

that the number of edges that are either addable or deletable scales quadratically.

This indicates that the worst-case complexity of the adaptive approach may have

similar asymptotic behavior: O(V 4), as the standard brute-force approach.

Theorem 6.2.2 and Corollary 1 prove some thresholds on the number of edges

for a DAG.

Theorem 6.2.2. For any DAG G, there are at most n(n−1)
2 non-addable edges.

Proof:

If one adds an edge to G, the number of non-addable edges does not decrease,

because any edge that would have created a cycle still would. Keep adding edges

until obtaining a graph H with no addable edges. Then H will have exactly n(n−1)
2

edges. To see this, suppose there is some pair of nodes i and j such that adding (i, j)

would create a cycle, and adding (j, i) would also create a cycle. Then there must

be an alternative path from i to j, and also an alternative path from j to i. But

concatenating these two paths would create a cycle in H, a contradiction. Hence,

for every pair of nodes i and j, H must contain either (i, j) or (j, i) but not both, as

that would create a cycle. There are exactly n(n−1)
2 node pairs, hence n(n−1)

2 edges

6.2. Adaptive technique for faster enumeration of adjacent graphs 105

in H, and n(n−1)
2 non-addable edges for H, which is an upper bound for the number

of non-addable edges for G. �

Corollary 1. Any DAG G has at least n(n−1)
2 −(n−1) edges that are either addable

or deletable.

Proof:

Of the n(n−1) possible directed edges, at most n(n−1)
2 are non-addable, and at most

n− 1 are non-deletable. The rest are either addable or deletable. �

Remark 6. The average-case performance of adaptive approach still achieves a

useful speed up in practice compared to the BFS and modified DFS discussed in

Section 4.3.

6.2.3.3 Simulation study: speed-up achieved in practice

I considered the BFS algorithm and modified DFS algorithm presented in Section 4.3

as a non-adaptive approach to enumerate adjacent graphs. Table 6.6 compares the

non-adaptive approach versus the new adaptive approach in terms of time required to

enumerate adjacent graphs. The simulation compared the two methods for different

numbers of nodes n including 4, 11, 37, 51, and 100 nodes. The total number of

iterations t for each n is shown in the first column in Table 6.6. Note that the

number of iterations was decreased as the number of nodes increased to avoid high

time consumption. The two methods started with the same initial network.

For each simulation setting of n and t, each method was run for ten trials. At

the end of each trial, the time of simulation was recorded in seconds. Then, the

average and standard deviation of the observed times were calculated in last column

in Table 6.6.

106
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

Simulation

HHHHHHHHHHH
Method

Trial
1 2 3 4 5 6 7 8 9 10 Mean± SD

n = 4 Brute-force 77 79 78 78 77 78 85 77 77 84 79± 2.828

t = 500, 000 Adaptive 48 48 47 48 48 48 49 48 47 48 47.9± 0.538

n = 11 Brute-force 232 226 227 228 229 230 230 227 229 227 228.5± 1.746

t = 50, 000 Adaptive 197 199 199 197 196 197 197 198 197 198 197.5± 0.921

n = 37 Brute-force 902 914 903 903 909 907 913 908 910 908 907.7± 3.9

t = 10, 000 Adaptive 278 266 273 272 271 277 275 273 279 275 273.9± 3.618

n = 51 Brute-force 1490 1519 1503 1487 1483 1498 1512 1523 1490 1495 1500± 13.152

t = 5, 000 Adaptive 508 515 507 518 523 509 507 502 509 518 511.6± 6.2

n = 100 Brute-force 1389 1386 1408 1427 1405 1416 1403 1419 1392 1407 1405.2± 12.663

t = 1, 000 Adaptive 899 897 899 898 909 907 906 899 904 896 901.4± 4.409

Table 6.6: Comparing speed in seconds: non-adaptive approach vs adap-
tive approach to enumerate adjacent graphs for iterated connected BNs.

The empirical results is Table 6.6 demonstrate the performance capabilities of

the adaptive approach to enumerate adjacent graphs faster than the non-adaptive

approach.

6.3 Adaptive function scoring to compute Bayesian

network parameters

Parameter learning in a discrete Bayesian network is another time-consuming prob-

lem. There are three main factors which determine the number of conditional prob-

ability distributions required to populate CPTs. First, the CPT of a particular node

grows in proportion to the number of state values associated with each parent of

node. Second, the more variables and directed edges a Bayesian network includes,

the more conditional probabilities there are to calculate. Third, every parameter

in a CPT becomes computationally expensive to estimate when the number of ob-

servations in a dataset is large. The following example illustrates how the time

6.3. Adaptive function scoring to compute Bayesian network parameters 107

complexity depends on these three factors. Figure 6.3 illustrates how the size of a

CPT for a particular node grows as the number of parents and state values increase.

Node
Parent 1 T F

T P(TT) P(TF)

F P(FT) P(FF)

Node
Parent 1 Parent 2 T F

T T P(TTT) P(TTF)

T F P(TFT) P(TFF)

F T P(FTT) P(FTF)

F F P(FFT) P(FFF)

Node
Parent 1 Parent 2 H M L

H H P(HHH) P(HHM) P(HHL)

H M P(HMH) P(HMM) P(HML)

H L P(HLH) P(HLM) P(HLL)

M H P(MHH) P(MHM) P(MHL)

M M P(MMH) P(MMM) P(MML)

M L P(MLH) P(MLM) P(MLL)

L H P(LHH) P(LHM) P(LHL)

L M P(LMH) P(LMM) P(LML)

L L P(LLH) P(LLM) P(LLL)

Node
Parent 1 Parent 2 Parent 3 H M L

H H H P(HHHH) P(HHHM) P(HHHL)

H H M P(HHMH) P(HHMM) P(HHHML)

H H L P(HHLH) P(HHLM) P(HHLL)

H M H P(HMHH) P(HMHM) P(HMHL)

H M M P(HMMH) P(HMMM) P(HMML)

H M L P(HMLH) P(HMLM) P(HMLL)

H L H P(HLHH) P(HLHM) P(HLHL)

H L M P(HLMH) P(HLMM) P(HLML)

H L L P(HLLH) P(HLLM) P(HLLL)

M H H P(MHHH) P(MHHM) P(MHHL)

M H M P(MHMH) P(MHMM) P(MHML)

M H L P(MHLH) P(MHLM) P(MHLL)

M M H P(MMHH) P(MMHM) P(MMHL)

M M M P(MMMH) P(MMMM) P(MMML)

M M L P(MMLH) P(MMLM) P(MMLL)

M L H P(MLHH) P(MLHL) P(MLML)

M L M P(MLMH) P(MLMM) P(MLML)

M L L P(MLLH) P(MLLM) P(MLLL)

L H H P(LHHH) P(LHHM) P(LHHL)

L H M P(LHMH) P(LHMM) P(LHML)

L H L P(LHLH) P(LHLM) P(LHLL)

L M H P(LMHH) P(LMHM) P(LMHL)

L M M P(LMMH) P(LMMM) P(LMML)

L M L P(LMLH) P(LMLM) P(LMLL)

L L H P(LLHH) P(LLHM) P(LLHL)

L L M P(LLMH) P(LLMM) P(LLML)

L L L P(LLLH) P(LLLM) P(LLLL)

Figure 6.3: From left to right, top to bottom: a node with one parent and
two state values each, a node with two parents and two state values each, a
node with two parents and three state values each, and a node with three

parents and three state values each.

108
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

6.3.1 Conditional probabilities in a graph

Let ξ(v) ≡ |CPT(v)| be the number of conditional probabilities in a CPT of a

particular node v ∈ V (G) in a Bayesian network G. Let ξ(G) ≡ |CPT(G)| be the

total number of conditional probabilities in G, so that:

ξ(G) =
n∑

i=1
ξ(vi). (6.3)

Lemma 6.3.1. Let r(v) be the number of possible state values of node v ∈ V (G).

Let δj(v) be the number of possible state values of the jth parent of node v. The

number of conditional probabilities ξ(v) for a single node v that has ω parents is

expressed in Equation 6.4.

ξ(v) = r(v)
ω∏

j=1
δj(v). (6.4)

�

Example 6. Suppose v ∈ G is a node with two state values (r = 2). Suppose also

the node v has two parents (ω = 2). The first and second parents of node v have

three and four state values, respectively (δ1(v) = 3 and δ2(v) = 4). Using Lemma

6.3.1, ξ(v) = 2× 3× 4 = 24. �

Lemma 6.3.2. Consider {v1, v2, . . . , vn} = V (G). Using Lemma 6.3.1, the number

of conditional probabilities ξ(G) for an entire graph G is expressed in Equation 6.5.

ξ(G) =
n∑

i=1

[
r(vi)

ω∏
j=1

δj(vi)
]
. (6.5)

�

Note that Lemma 6.3.1 and Lemma 6.3.2 are used in Section 6.3.3 to provide a

Big O expression for the new adaptive function scoring algorithm.

6.3. Adaptive function scoring to compute Bayesian network parameters 109

6.3.2 Exploring dataset

This section calculates the total number of cell explorations in the data matrix for

the CPT of a single node and single graph per iteration. Consider a data matrix

n×m, where n represents the number of nodes (rows) and m represents the number

of observations (columns). Recall that Nijk is the number of observations in state

value (bin) k of node number i corresponding to a parent configuration j. Let TN(v)

be the total number of cell explorations in the data matrix for a single cell of a CPT

of node v. Equation 6.6 calculates TN(v) by only exploring the observations at nodes

that are involved in estimating a CPT.

TN(v) =
(
ω(v) + 1

)
m, (6.6)

where ω(v) is the number of parents of node v in a CPT.

Example 7. Suppose a graph G(V, E) consisting of five nodes {v1, v2, v3, v4, v5} ∈ V .

Suppose for each of the five nodes there are 1000 observations taking two binary

state values: True and False. To calculate a conditional probability e.g. P (v1 =

True|v3 = True, v5 = True), the sampler will only visit the rows that belong to the

node v1 and its two parents v3 and v5 in the data matrix. Using Equation 6.6, the

TN(v1) of P (v1 = True|v3 = True, v5 = True) is equal to 3000 operations. �

To calculate the number of data matrix explorations Tv for the entire CPT of a

single node v, the sampler needs to process all cells in a CPT. Equation 6.7 considers

m,
(
ω(v) + 1

)
and ξ(v) to calculate Tv:

Tv = ξ(v)TN(v), (6.7)

where TN(v) has the same value for all cells in the CPT of node v. In worst-case,

for n nodes in a graph, the sampler needs to evaluate all CPTs in each iteration.

110
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

Consider the number of explorations TG for an entire G. Equation 6.8 considers m,(
ω(v) + 1

)
, ξ(v), and n to calculate TG.

TG =
n∑

i=1
Tvi

(6.8)

Example 8. Suppose G(V, E) is a Bayesian network consisting of eleven nodes

(n = 11). Suppose also that an MCMC sampler is intended to learn from m = 1000

observations. Note that an acyclic graph must contain at least one node with no

parents. I therefore assume that a DAG containing 11 nodes, three of which have no

parents, with the other 8 nodes having 3 parents each. Using Lemma 6.3.1, the size

of the CPT for each of the 8 nodes is then 81, and the CPT for each of the 3 nodes is

3 . Next, the sampler is required to access the observations of ω(v) + 1 = 4 nodes to

estimate the CPT for each of the 8 nodes. That is, 81×4×1000 = 324000 operations

to calculate the CPT for each of the 8 nodes, and 3× 1× 1000 = 3000 operations to

calculate the CPT for each of the 3 nodes. For the entire G, the observation matrix

must be accessed TG =
[
8× 81× 4× 1000

]
+
[
3× 3× 1× 1000

]
= 2601000 times to

calculate the CPTs for all 11 nodes in that single network G. �

6.3.3 Big-O expression

In the adaptive function scoring method, for the MH, HAR and NS, there are re-

spectively a maximum of two, 2ℓ and four nodes that may change in number of

parents per iteration. Therefore, the corresponding CPTs need to be updated only

for these two, 2ℓ and four nodes. For the rest of the nodes in the graph, their CPTs

will be unchanged. Note that with the HAR sampler, in order to take advantage of

the new adaptive function scoring method, the value of 2ℓ must be less than n.

The maximum numbers of cells to access in the data matrix for a single CPT

in graph G per iteration using the MH, HAR and NS with the adaptive function

6.3. Adaptive function scoring to compute Bayesian network parameters 111

scoring method are ∑2
i=1 Tvi

, ∑2ℓ
i=1 Tvi

and ∑4
i=1 Tvi

, respectively.

Remark 7. The indices i in ∑2
i=1 Tvi

, ∑2ℓ
i=1 Tvi

or ∑4
i=1 Tvi

cannot always be (i =

1, 2), (i = 1, . . . , 2ℓ), or (i = 1, 2, 3, 4) when using the MH, HAR or NS, respectively.

Here, I just assume the worst-case scenario.

The ratios of times per iteration between the brute-force function scoring method

and adaptive function scoring method are
∑n

i=1 Tvi∑2
i=1 Tvi

,
∑n

i=1 Tvi∑2ℓ

i=1 Tvi

and
∑n

i=1 Tvi∑4
i=1 Tvi

. Therefore,

the adaptive function scoring method will be approximately n
2 , n

2ℓ
and n

4 times faster

than the standard brute-force function scoring method. In other words, it is O(N)

times faster with Big-O(N). Note that this is the improvement ratio for computing

CPTs only.

The following three Lemmas follow from Remark 7.

Lemma 6.3.3. Using the MH sampler and adaptive function scoring method, there

are at least ∑n−2
i=1 Tvi

conditional probabilities not calculated, where n > 2.

Lemma 6.3.4. Using the HAR sampler and adaptive function scoring method,

there are at least ∑n−2ℓ
i=1 Tvi

conditional probabilities not calculated, where n > 2ℓ.

Lemma 6.3.5. Using the NS and adaptive function scoring method, there are at

least ∑n−4
i=1 Tvi

conditional probabilities not calculated, where n > 4.

6.3.4 Adaptive scoring function

Let ∆(G) = {Pa(v1), Pa(v2), . . . , Pa(vn)} be the collection of all sets of parents for

all nodes in a particular V (G). Let F(G) = {P (v1|Pa(v1)), P (v2|Pa(v2)), . . . ,

P (vn|Pa(vn))} be the set of all conditional probabilities for all nodes in V (G). Recall

that the probability of a given set of state variables for the nodes of G can be

calculated using Equation 6.9:

P (v1, v2, . . . , vn) =
n∏

i=1
P (vi|Pa(vi)). (6.9)

112
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

I compare the conditional probabilities in F(G) and F(G′) after applying a single

transition from G to G′ where G′ ∼ N (G). Theorems 6.3.6, 6.3.7 and 6.3.8 describe

respectively the effect of adding, deleting, and reversing an edge on the conditional

probabilities in F(G) and F(G′).

Theorem 6.3.6. Suppose G and G′ are two DAGs sampled from the same search

space X . If G′ ∼ N (G) and Ta[i, j] : G 7−→ G′, then, P (vj|Pa(vj)) ∈ F(G) is

the only conditional probability required to be updated, and there are n− 1 sets of

parents in ∆(G) and ∆(G′) that are still identical.

Proof:

Adding a single pair vi → vj to G can only change the set of parents of vj and the set

of children of vi. The parents and children of other nodes in G remain unchanged.

That is, PaG(vi) = PaG′(vi) and PaG(vj) ̸= PaG′(vj). �

Theorem 6.3.7. Suppose G and G′ are two DAGs sampled from the same search

space X . If G′ ∼ N (G) and Td[i, j] : G 7−→ G′, then, P (vj|Pa(vj)) ∈ F(G) is the

only conditional probability required to be updated, and n − 1 sets of parents in

∆(G) and ∆(G′) are identical.

Proof:

Deleting a single pair vi → vj ∈ G can only change the set of parents of vj and the

set of children of vi. The parents and children of other nodes in G remain unchanged.

That is, PaG(vi) = PaG′(vi) and PaG(vj) ̸= PaG′(vj). �

Theorem 6.3.8. Suppose G and G′ are two DAGs sampled from the same search

space X . If G′ ∼ N (G) and Tr[i, j] : G 7−→ G′, then, there are n− 2 sets of parents

in ∆(G) and ∆(G′) are identical.

Proof :

Reversing a single pair vi → vj ∈ G can only change the sets of parents and children

of vj and vi. The parents and children of other nodes in G remain unchanged. That

is, PaG(vi) ̸= PaG′(vi) and PaG(vj) ̸= PaG′(vj). Thus, P (vi|Pa(vi)) ∈ F(G) and

6.3. Adaptive function scoring to compute Bayesian network parameters 113

P (vj|Pa(vj)) ∈ F(G) are the only conditional probabilities that are required to be

updated. �

6.3.5 Algorithm and illustrative example

Algorithm 10 illustrates the adaptive scoring technique after sampling a pair of

nodes, and shows how to adaptively update the conditional probabilities in F(G).

Algorithm 10 Adaptive scoring function

input: G(V, E)

1: Find F(G).

2: Randomly sample (i, j, x) ∈ E(G).

3: if x = a ∨ x = d then

4: Update P (vj|Pa(vj)) ∈ F(G).

5: else if x = r then

6: Update P (vi|Pa(vi)) ∈ F(G) and P (vj|Pa(vj)) ∈ F(G).

7: end if

8: Update E(G)

9: goto 2

Table 6.7 summarises the effect of a single transition between two adjacent graphs

on the sets of parents for the relative nodes. If one moves from G to G′ ∼ N (G)

by deleting an edge vi → vj, the CPT of node vj must be updated, because node

Pa(vj) has lost one of its parents. If one moves to G′ ∼ N (G) by adding an edge

vi → vj, the CPT of node vj must be updated, because Pa(vj) has added one new

parent to its set. If one moves to G′ ∼ N (G) by reversing an edge vi → vj, the

CPTs of node vj and vi must be updated, because Pa(vj) has lost one of its parents

and Pa(vi) has added one new parent to its set.

114
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

Operation Effect on Pa(vi) Effect on Pa(vj) CPT update
Add an edge

vi → vj
No effect one new parent has

been added P (vj|Pa(vj))

Delete an
edge vi → vj

No effect one parent has been
removed P (vj|Pa(vj))

Reverse an
edge vi → vj

one new parent has
been added

one parent has been
removed

P (vi|Pa(vi)) &
P (vj|Pa(vj))

Table 6.7: Effects of adding, deleting and reversing an edge on Pa(vi) and
Pa(vj).

Example 9. This example implements Algorithm 10 for the initial Bayesian network

G shown in Figure 6.4. The network G consists of 10 nodes and 13 directed edges.

I aim to study the effect on the CPTs after running a single transition from G to

one of its adjacent graphs.

v7

v4

v1

v10

v8

v3

v9

v6

v5

v2

Figure 6.4: Initial connected DAG.

The score probability of graph G in Figure 6.4 is expressed in Equation 6.10.

P (v1, v2, . . . , v10) =
10∏

i=1
P (vi|Pa(vi))

= P (v1|v3).P (v2).P (v3).P (v4|v1, v2).P (v5|v2, v7, v8).

P (v6|v3, v4, v7).P (v7|v4, v10).P (v8|v10).P (v9|v7).P (v10)

(6.10)

Effect on CPTs after adding an edge: Let’s first modify G in Figure 6.4

by randomly adding an edge. Suppose I add the directed edge v6 → v9 to the graph

G. The new graph is shown in Figure 6.5. It is noted that Pa(v9) has added one

6.3. Adaptive function scoring to compute Bayesian network parameters 115

new parent to its set. The new added parent would affect the CPT value of v9 and

thus P (v9|Pa(v9)) is updated and replaced by P (v9|v6, v7). The set Pa(v6) has not

changed, and thus its CPT is not affected by the new added edge.

v7

v4

v1

v10

v8

v3

v9

v6

v5

v2

Figure 6.5: Moving from G to an adjacent graph after adding v6 → v9.

Equation 6.10 is now updated to Equation 6.11. The updated conditional proba-

bility is underlined in Equation 6.11, where other conditional probabilities remain

unchanged.

P (v1, v2, . . . , v10) =
10∏

i=1
P (vi|Pa(vi))

= P (v1|v3).P (v2).P (v3).P (v4|v1, v2).P (v5|v2, v7, v8).

P (v6|v3, v4, v7).P (v7|v4, v10).P (v8|v10).P (v9|v6, v7).P (v10)

(6.11)

Effect on CPTs after deleting an edge: I again modify G in Figure 6.4 by

deleting an existing edge. Suppose I delete the edge v8 → v5 from G in Figure 6.4.

The new graph is shown in Figure 6.6. It is noted that only Pa(v5) has lost one of

its parents. The deleted parent would affect the CPT of v5 and thus P (v5|Pa(v5))

is updated and replaced by P (v5|v2, v7). The node v8 will not be affected by the

deleted edge because its set of parents Pa(v8) will not change.

116
Chapter 6. Adaptive Algorithms for Faster Adjacent Graphs Enumeration and

Function Scoring

v7

v4

v1

v10

v8

v3

v9

v6

v5

v2

Figure 6.6: Moving from G to an adjacent graph after deleting v8 → v5.

Equation 6.10 is now updated to Equation 6.12, and the updated conditional prob-

ability is also underlined.

P (v1, v2, . . . , v10) =
10∏

i=1
P (vi|Pa(vi))

= P (v1|v3).P (v2).P (v3).P (v4|v1, v2).P (v5|v2, v7).

P (v6|v3, v4, v7).P (v7|v4, v10).P (v8|v10).P (v9|v7).P (v10)

(6.12)

Effect on CPTs after reversing an edge: I lastly modify G in Figure 6.4 by

reversing an existing edge. Suppose I reverse the edge v5 → v7 from G in Figure 6.4.

The new graph is shown in Figure 6.7. It is noted that both Pa(v5) and Pa(v7) have

been affected by the reversed edge, and thus their CPTs are updated to P (v5|v2, v8)

and P (v7|v4, v5, v10).

v7

v4

v1

v10

v8

v3

v9

v6

v5

v2

Figure 6.7: Moving from G to an adjacent graph after reversing v5 → v7.

6.3. Adaptive function scoring to compute Bayesian network parameters 117

Equation 6.13 formulates the scoring probability of the Bayesian network in Figure

6.7, and underlines the two updated conditional probabilities.

P (v1, v2, . . . , v10) =
10∏

i=1
P (vi|Pa(vi))

= P (v1|v3).P (v2).P (v3).P (v4|v1, v2).P (v5|v2, v8).

P (v6|v3, v4, v7).P (v7|v4, v5, v10).P (v8|v10).P (v9|v7).P (v10)

(6.13)

�

Example 10. Table 6.8 compares experimental run times for the standard method

against experimental run times for the adaptive method, to calculate the scoring

function using the Dirichlet-Multinomial distribution. The run times of the two

methods were evaluated at different numbers of iterations, including 100, 1,000 and

10,000. The number of nodes is 51, and the maximum number of parents and chil-

dren for each node are two and five, respectively. The number of observations for

each node is 163, and each node takes three discrete state values. Note that this

application is presented in detail in Chapter 7 Section 7.5.

PPPPPPPPPPPPPPPP
Iteration

Method
Brute-force Adaptive

100 30 - 40 minutes 1 - 2 minutes

1,000 5 - 7 hours 15- 20 minutes

10,000 2 - 3 days 2- 3 hours

Table 6.8: Function scoring algorithm: Brute-force method vs Adaptive
method, with 51 nodes using Dirichlet-Multinomial distribution.

118

Chapter 7

Applications of Bayesian networks

in Systems Biology Using the MH,

NS and HAR

In this chapter, I use the NS, HAR and MH to infer various biological BNs. I will

use the Dirichlet-multinomial (DM) model to compute the conditional probabilities

among variables within the sampled networks. The chapter includes five applica-

tions. It starts with a Bayesian network of four nodes learned from microarray data.

The total number of graphs sampled from a graph space of four nodes is small enough

to plot and identify all sampled graphs. The second application applies the Geweke

diagnostic test to a biological Bayesian network with six nodes to assess convergence

behavior. The third application applies the Gelman and Robin diagnostic test to

a medical Bayesian network of eight nodes. The test essentially requires running

multiple chains with disparate initial networks. The fourth application attempts to

infer a biological network using MCMC samplers. Note that there is no gold stan-

dard network in this application, and thus the inferred structures are compared with

the currently accepted structure. The fifth application discusses a recently inferred

signaling pathway structure consisting of 51 nodes, and examines the possibility of

enhancing its scoring function using MCMC sampling.

7.1. Inferring structures from Microarray data 119

Remark 8. Using a graphical user interface developed for this project, it is possible

in the simulation settings to define a maximum number of node-parents, maximum

number of node-children, number of iterations, burn-in interval, thinning interval,

and initial networks. The datasets of applications may be either simulated so that

the conditional probabilities are known, or observed datasets collected from real

experiments as in applications four and five.

Remark 9. All simulated data in this chapter were generated using the Netica

software which has an intuitive user interface. Netica works with BNs and influ-

ence diagrams, and has many convenient features for drawing BNs, and defining

relationships among variables either by using individual probabilities, equations or

learning from a data file. For more detail of the features and specifications of Netica

software, the reader is referred to (https://www.norsys.com/).

7.1 Inferring structures from Microarray data

7.1.1 Background

I consider a small Bayesian network to explore and plot all sampled graphs, and

then calculate their posterior means. The network is learned from Microarray data

in [156]. This network models the causal relationships between the expression levels

of four genes: Gene A, Gene B, Gene C, and Gene D. The genes are represented

by nodes and their causal influences are represented by directed edges. Section C.1

provides the conditional probabilities of the Microarray network. There are three

directed edges connecting the four genes. Each gene is represented by a binary

random variable that takes two state values: ‘off’ or ‘on’. These states are denoted

‘0’ and ‘1’ respectively in the conditional probability tables.

120
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

7.1.2 Experimental results

One useful way to summarise an MCMC sample is to report the estimated marginal

posterior probability for each individual edge by determining the proportion of sam-

pled graphs in which that edge is present. I simulated 5000 data points for each

variable. The true network and CPTs used to simulate the data are shown in Section

C.2. I then attempted to infer the network using the NS, HAR and MH algorithms.

At each iteration, a graph is sampled and its probability function is estimated using

the DM model given the dataset. Also note that there are no other networks that

are equivalent to the true network. Recall that the definition of graph equivalence

requires that two graphs have the same v-structures. The true Bayesian network

learned in [156] takes the form of single v-structures, hence the absence of equivalent

graphs. The log likelihood function was plotted for 1000 iterations for the NS, MH

and HAR as shown in Figure 7.1. The samplers converge rapidly to the stationary

distribution. I therefore apply a short burn-in period of about 25 iterations for all

samplers by discarding the first 25 iterations.

Figure 7.1: Log likelihood functions for 1000 iterations.

7.1. Inferring structures from Microarray data 121

The total number of graphs sampled by the MH sampler, HAR sampler and NS

after burning-in 25 iterations were 12, 10 and 7 respectively. The sampled graphs

and their frequencies are shown in Figure 7.2, Figure 7.3 and Figure 7.4.

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

804 154 5 1

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

4 2 5

Figure 7.2: Seven sampled graphs and their frequencies in 975 iterations
of the NS, after a burn-in period of 25 iterations.

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

3 23 30 6

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

30 22 39 1

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

16 805

Figure 7.3: Ten sampled graphs and their frequencies in 975 iterations of
the HAR, after a burn-in period of 25 iterations.

122
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

17 9 5 650

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

5 10 12 19

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

Gene A

Gene C

Gene B

Gene D

58 4 116 70

Figure 7.4: Twelve sampled graphs and their frequencies in 975 iterations
of the MH, after a burn-in period of 25 iterations.

If it is necessary to specify a single network as the best reconstruction, one

approach is to include only those edges whose posterior probabilities exceed a given

threshold. A threshold value of 0.5 has an intuitive appeal, as it identifies edges

that are more likely to be present than absent. Edges exceeding the threshold are

shown in Figure 7.5. These posterior networks correspond to the true network.

(a) MH

Gene A

Gene C

Gene B

Gene D

71.8% 72.6
%

80%

(b) HAR

Gene A

Gene C

Gene B

Gene D

88% 88.5
%

93.3%

(c) NS

Gene A

Gene C

Gene B

Gene D

99.3% 98.9
%

99.9%

Figure 7.5: The sampled edges whose posterior probabilities > 50%.

7.2. Inferring the Mendel Peas network 123

7.1.3 Conclusion

The number of graphs explored by the three samplers was much less than the number

of graphs in the space. This suggests that the posterior probabilities of the remaining

graphs are very low. Although the chains produced by the MH, HAR and NS appear

to have converged to the same distribution, the posterior means of the inferred

edges after applying a burn-in interval are slightly different. This may suggest true

convergence has not yet occurred.

7.2 Inferring the Mendel Peas network

7.2.1 Background

In 1866, Gregor Mendel proposed some foundational principles to understand how

inherited traits are passed between generations. Mendel’s principles are applicable to

trait inheritance in both plants and animals. The network considered in this section

is a representation of the genetics underlying Mendel’s famous peas experiment. This

network was designed by Norsys Software Corp in 1998 and includes six variables.

The two variables P1 and P2 are associated to produce another variable C. Each of

these variables represents a plant genotype and has three possible state values RR, Rr

and rr, where R is the allele for red and r is the allele for white. These three variables

probabilistically determine an additional three variables: the observed colours of P1,

P2 and C. Each of these colour variables has two possible state values: red and white.

7.2.2 Experimental results

I used the conditional probabilities presented in Section C.2.1 to simulate 5000 data-

points for each variable in the Mendel network. I first investigated the convergence

behavior of the six genes in Mendel network by reporting the log posterior of graphs.

Figure 7.6 plots the log posterior of graphs against 5000 iterations. Figure 7.6

124
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

suggests a burn-in interval of approximately 250 iterations for all samplers. Thus,

I discard the first 500 iterations and assessed the convergence behavior using the

remainder.

Figure 7.6: Log posterior values for 5000 iterations.

I applied the Geweke diagnostic test to assess convergence for the three samplers.

I assumed that the second half of the Markov chain has converged to the target

distribution, and then tested whether an early portion of the Markov chain passes

the Geweke diagnostic test. Figure 7.7, Figure 7.8 and Figure 7.9 show that the

number of values occurring outside two standard deviations is small, and therefore

it is not necessary to run a longer chain, especially for the NS and HAR in Figure

7.8 and Figure 7.9, respectively. The MH sampler has returned two Z score values

occurring outside two standard deviations and one of them is less than −3 as shown

in Figure 7.7.

7.2. Inferring the Mendel Peas network 125

Figure 7.7: Geweke diagnostic test with the MH using 5000 iterations.

Figure 7.8: Geweke diagnostic test with the NS using 5000 iterations.

126
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Figure 7.9: Geweke diagnostic test with the HAR using 5000 iterations.

The outputs of the three chains produced by the MH, HAR and NS using 5000

iterations are summarised in Table C.1 in Section C.2.2. Note that the summary

statistics reported in Table C.1 considered all graphs sampled from the 5000 itera-

tions before applying a burning-in interval.

The posterior mean probabilities of edges for the three chains plotted in Figure

7.6 were also calculated after applying a burn-in interval of 500 iterations each.

Figure 7.10 shows the structures learned by the MH, HAR and NS at a threshold

≥ 50%. The three samplers have precisely inferred the true Mendel network.

Remark 10. Section C.5 investigates the potential of the MH, HAR and NS to

infer the Mendel network when the transition between adjacent graphs by reversing

an edge is not allowed. The performances of the three samplers are evaluated by

running three chains of 1000 iterations by each sampler. The posterior means of

edges for the nine chains are plotted in Section C.5 at a threshold ≥ 50%. One

7.2. Inferring the Mendel Peas network 127

result is that, unlike the HAR and NS, not one of the three chains run by the MH

sampler could infer the true structure of the Mendel network.

MH

HAR

NS

Figure 7.10: The posterior means of edges at a threshold ≥ 50% using
the MH, HAR and NS with 5000 iteration and burning-in of 500 iterations.

128
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

7.2.3 Conclusion

The experimental results in this example have shown the following:

1. Sampling from the target distribution using the MH, HAR and NS can be

achieved with at most 5000 iterations.

2. The log posterior values produced by the three samplers suggest all samplers

are exploring a common mode after a few hundred iterations.

3. It is possible for Markov chains in a space of BNs with six nodes produced by

the MH, HAR and NS to pass the Geweke diagnostic test with 5000 iterations,

indicating rapid convergence to the target distribution.

7.3 Inferring the Diagnostic Chest Clinic network

7.3.1 Background

The Diagnostic Chest Clinic (DCC) network shown in Figure 7.14a is a popular

medical Bayes net example, also known as the “Asia" dataset, from [2]. The DCC

network aims to represent the risks of a patient having tuberculosis, lung cancer or

bronchitis based on several factors, including whether or not a patient is a smoker or

has traveled to Asia recently. The network assumes causal relationships among eight

variables. Each variable takes a binary value, either 0 or 1 respectively indicating

the absence or presence of a particular risk.

7.3.2 Experimental results

The maximum numbers of parents and children of each node in the true network are

two each. I therefore assumed that the network is connected and that the number of

parents and children of each node can never be greater than four. These restrictions

reduce the number of graphs in the graph space and the computational time required

7.3. Inferring the Diagnostic Chest Clinic network 129

to sample from the posterior distribution. I also used the conditional probabilities

defined in Section C.3 to simulate 5000 data-points for each variable.

I have used the Gelman & Rubin diagnostic as a convergence test. The Gelman

& Rubin test is applicable when the number of chains is greater than or equal to

two. Also, the test requires running 2n iterations, and then applying it to the

last n iterations. I therefore ran three chains of 2n = 10000 iterations for each

MCMC sampler. I also fixed three random initial graphs that are disparate in their

structures for each Markov sampler. The Gelman & Rubin test applied to the last

n = 5000 iterations of chains suggests that convergence has occurred after 5000

iterations. Figure 7.11, Figure 7.12 and Figure 7.13 show that the scale reduction

factors of 50% and 97.5% quantiles calculated for the MH, NS, and HAR are 1.01

and 1.03, 1.01 and 1.03, and 1.03 and 1.08, respectively. All these numbers are less

than 1.2 and close to 1, which indicates that the number of iterations does not need

to be increased, and graphs have been effectively sampled from the DM distribution.

Figure 7.11: Gelman & Rubin diagnostic test with the MH.

130
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Figure 7.12: Gelman & Rubin diagnostic test with the NS.

Figure 7.13: Gelman & Rubin diagnostic test with the HAR.

7.3. Inferring the Diagnostic Chest Clinic network 131

The 5000 samples produced by the last 5000 iterations of the chains are used

to calculate the posterior means using the MH, HAR and NS. The three MCMC

samplers are compared with three non-MCMC samplers which have been widely used

in practice to learn Bayesian network structures: Grow-Shrink (GS) algorithm, Hill-

Climbing Search (HCS) and Tabu Search (TS). The GS, HCS and TS have been

briefly reviewed in Chapter 3.

The GS, HCS and TS were also applied to the same 5000 simulated data-points.

The bnlearn R package [157] was used to apply the GS, HCS and TS. The three non-

MCMC algorithms were initially run at the default settings in the bnlearn package.

The structures learned by the GS, HCS and TS are shown in Figure 7.14b, Figure

7.14c and Figure 7.14d, respectively.

(a) DCC

TC

LC

SM

TU

TR

BR

XR
DY

(b) GS

TC

LC

SM

TU

TR

BR

XR
DY

(c) HCS

TC

LC

SM

TU

TR

BR

XR
DY

(d) TS

TC

LC

SM

TU

TR

BR

XR
DY

Figure 7.14: (A) The true DCC network. (B), (C), and (D) The DCC
network learned by the GS, HCS and TS, respectively, using 5000 simulated
data-points. Each inferred edge is colored either by black, blue or red to
indicate the inference of a correct edge, reversed edge or incorrect edges,

respectively.

132
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

The structures learned by MCMC samplers are shown in Figure 7.15.

(a) MH-chain1 (b) MH-chain2 (c) MH-chain3

(d) HAR-chain1 (e) HAR-chain2 (f) HAR-chain3

(g) NS-chain1 (h) NS-chain2 (i) NS-chain3

Figure 7.15: The DCC network learned by MCMC samplers using 5000
simulated data-points.

7.3. Inferring the Diagnostic Chest Clinic network 133

The inferred edges are colored using three different colors: black, blue and red to

indicate the following: correct edges, reversed edges and incorrect edges, respectively.

The dashed directed edges refer to the missing edges that are in the true network

but not in the learned network. Even though I increased the number of iterations

for the HCS and TS algorithms up to 100,000 using different values of tabu at 10,

50 and 100, no solutions better than those shown in Figures 7.14c and 7.14d were

obtained.

The MH, HAR and NS in Figure 7.15 have approximated the true structure

effectively with fewer improper directed edges compared to the non-MCMC sam-

plers. It is noted that the direction between the pair of nodes “T” and “R” was the

only edge that was not sampled in the correct direction with the MCMC samplers.

There are two possible reasons for this slight prediction error that might explain

this incorrect direction. First, the expected number of individuals who have both

traveled and have Tuberculosis is only 5 out of 10,000, and thus the actual number

of such individuals simulated has high proportional variation. Second, this sampled

network is equivalent to the true network, and should in principle have the same

posterior probability.

7.3.3 Conclusion

This example has demonstrated the following:

1. The HAR and NS can infer the true network of eight nodes after estimating

the posterior means of edges at a threshold ≥ 50% with less improper directed

edges compared to the MH and non-MCMC samplers e.g. GS.

2. Sampling from the target probability distribution of a Bayesian network of

eight nodes is often achieved with the NS and HAR after 5000 iterations, and

this is likely to be true for small networks.

134
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

3. If one considers the underlying structure (where all the edges are undirected) of

the true network with eight nodes, the MH, HAR and NS have the potential

to infer the same underlying structure of the true network (experimentally,

10 networks out of the 12 networks in Figure 7.15 have the same underlying

structure of the true network).

4. 10,000 iterations appears experimentally to be sufficient number to learn a

Bayesian network structure consisting of eight nodes and to sample graphs

from the target distribution, however, this number might need to be increased

if the number of state values for each node is large.

7.4 Inferring the Raf-Signaling Pathway network

7.4.1 Background

One medium-scale dataset in biological systems is the Raf-Signaling Pathway. The

dataset was collected from real experiments and first studied in [158]. I aim to model

the causal interactions - as a causal Bayesian network - of Raf-Signaling proteins.

The network in Figure 7.16a connects a number of key phosphorylated proteins

in human T cell signaling. The network was mapped using classical genetic and

biochemistry analysis over the past two decades. Also, the network was constructed

with no a priori knowledge of pathway connectivity. There are 11 nodes in the

network, where the nodes represent proteins (phosphoproteins and phospholipids):

RAF (praf), MEK (pmek), PCLg (plc-gamma), PIP2, PIP3, ERK (p44.42), AKT

(pakts473), PKA, PKC, P38, and JNK (pjnk). Edges among proteins represent

interactions, and arrows indicate the direction of the transmission of protein signals.

7.4. Inferring the Raf-Signaling Pathway network 135

(a) (b)

Figure 7.16: Raf Signaling Pathway. (A) Original network derived in [158]
using classical genetic and biochemistry analysis over the past two decades.
In comparison to the network in B, the dashed edges are missed and the
one gray edge is reversed. (B) The currently recognised signaling network

learned experimentally in the literature.

7.4.2 Experimental results

For each node-protein, there are 5400 continuous samples of signaling pathways

collected with no missing data-points. The sample values were discretized into

three categories: "High", "Medium" and "Low" as presented in [158]. I use MCMC

samplers to map the Raf-Signaling Pathways given the discretized dataset. I use the

DM distribution to compute the conditional probabilities among proteins. The space

of BNs with 11 nodes contains strictly greater than 4.2 × 1018 structures. I reduce

this size by setting the maximum numbers of parents and children for each node-

protein to three and six, respectively. The latter two numbers were determined

according to the maximum numbers of parents and children inferred in [158]. It

is also practically desirable to define random and disparate initial graphs. Note

136
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

that there is no gold standard structure for the Raf-Signaling network, and thus I

compare our inferred structures with the Raf-Signaling Pathway learned in [158],

which is plotted in Figure 7.16a. In this application, I used the predefined twelve

initial graphs shown in Section C.4.1. The twelve initial graphs were determined

randomly using the technique explained in Section 4.8 in Chapter 4.

I used the MH, HAR and NS approaches to run twelve Markov chains with 10,000

iterations each, given the predesignated twelve initial networks. Then, I determined

the point at which burn-in has occurred considering the time-series plot of the log

posterior at each iteration. Figure 7.17, Figure 7.18 and Figure 7.19 show the log

posterior distributions for the twelve Markov chains and 10,000 iterations, produced

by the MH, HAR and NS, respectively. The 36 chains are also plotted separately in

Section C.4.2.

Figure 7.17: MH: Log posterior for 12 chains and 10,000 iterations each.

7.4. Inferring the Raf-Signaling Pathway network 137

Figure 7.18: HAR: Log posterior for 12 chains and 10,000 iterations each.

Figure 7.19: NS: Log posterior for 12 chains and 10,000 iterations each.

138
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Figure 7.17, Figure 7.18 and Figure 7.19 are used to evaluate and compare the

performances of the MH, HAR and NS. Notably, chains in Figure 7.17 are stuck

in different local modes, so they clearly have not converged. It is also the fact

that increasing the number of iterations for the chains in Figure 7.17 did not help.

This highlights a problem with the MH sampler. Strictly speaking, burn-in is not

complete, but nevertheless I have identified a "local burn-in" time at which behaviour

appears to stabilise in the local mode.

The chains generated by the HAR sampler in Figure 7.18 have ultimately con-

verged to a common local mode even though some chains took a long time to con-

verge. The log likelihoods in Figure 7.18 are higher than the corresponding log

likelihoods of the local modes in Figure 7.17.

The log likelihoods generated by the NS in Figure 7.19 have stabilised early to

the same common mode reached by the HAR sampler. This suggests shorter burn-in

intervals for the chains produced by the NS.

After discarding the burn-in intervals, I report the posterior edge probabilities

for the rest of each chain. Figures 7.20 - 7.31 plot the directed edges that have

posterior probabilities > 50% sampled by the MH, HAR and NS for all the generated

chains from 1 to 12, respectively. Figures 7.20 - 7.31 also facilitate comparing the

structures learned by the MH, HAR and NS for all chains separately. Again, I

compare every inferred structure with the original network in Figure 7.16a. For

simplicity, I highlight the true inferred directed edges in black color, the reversed

true directed edges in blue color and the new inferred directed edges are dashed, as

shown in all Figures 7.20 - 7.31. The probability strength of each inferred directed

edge is outlined near the edge on all plots.

7.4. Inferring the Raf-Signaling Pathway network 139

(a)

MH
(b) HAR (c) NS

Figure 7.20: Posterior means > 50% of the 1st chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

(a) MH (b) HAR

(c) NS

Figure 7.21: Posterior means > 50% of the 2nd chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

140
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

(a) MH (b) HAR

(c) NS

Figure 7.22: Posterior means > 50% of the 3rd chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

(a) MH
(b) HAR (c) NS

Figure 7.23: Posterior means > 50% of the 4th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

7.4. Inferring the Raf-Signaling Pathway network 141

(a) MH

(b)

HAR
(c) NS

Figure 7.24: Posterior means > 50% of the 5th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

(a) MH
(b) HAR

(c) NS

Figure 7.25: Posterior means > 50% of the 6th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

142
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

(a) MH (b) HAR

(c) NS

Figure 7.26: Posterior means > 50% of the 7th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

(a) MH

(b)

HAR
(c) NS

Figure 7.27: Posterior means > 50% of the 8th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

7.4. Inferring the Raf-Signaling Pathway network 143

(a)

MH

(b) HAR

(c) NS

Figure 7.28: Posterior means > 50% of the 9th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

(a) MH

(b) HAR

(c) NS

Figure 7.29: Posterior means > 50% of the 10th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

144
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

(a) MH
(b) HAR

(c) NS

Figure 7.30: Posterior means > 50% of the 11th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

(a) MH

(b) HAR

(c) NS

Figure 7.31: Posterior means > 50% of the 12th chain. Black, blue and
dashed edges highlight the true, reversed and new edges, respectively.

Note that each chain in Figures 7.20 - 7.31 apparently has a slightly different

distribution. This is more likely due to: 1) the true convergence has not occurred, or

7.4. Inferring the Raf-Signaling Pathway network 145

2) more samples should be generated, or 3) the data are not sufficiently informative.

Table 7.1 counts, for each inferred structure in Figures 7.20 - 7.31, the number of true

inferred edges, reversed true edges, true underlying edges where the directions are

ignored i.e. the sum of true edges and reversed true edges, and new inferred edges at

a threshold of > 50%. I note that, out of the 17 true directed edges in Figure 7.16b,

the NS and HAR have properly, on average, predicted 10 directed edges and shown

better exploration of true directed edges compared to the MH that, on average, has

returned 6 true directed edges. In regards to the number of reversed true edges, the

three MCMC samplers have returned roughly the same number which is, on average,

equal to 5. I also investigate the number of true predicted edges in the underlying

structures by summing the number of true directed edges and the number of reversed

true edges. The NS and HAR, on average, predicted 15 out of 17 true underlying

edges and have precisely inferred the true underlying structure in two chains. The

MH, on average, returned 11 out of 17 true underlying edges, and always has the

lowest number of true edges compared to the NS and HAR.

True directed edges Reversed true edges Underlying true edges New directed edges Total sampled edges

MH NS HAR MH NS HAR MH NS HAR MH NS HAR MH NS HAR

chain 1 7 13 12 5 3 2 12 16 14 13 9 7 25 25 21

chain 2 8 13 10 5 2 4 13 15 14 13 9 9 26 24 23

chain 3 3 6 9 7 6 7 10 12 16 13 12 7 23 24 23

chain 4 6 6 9 6 6 7 12 12 16 12 12 9 24 24 25

chain 5 4 7 7 6 8 9 10 15 16 14 10 9 24 25 25

chain 6 8 7 11 3 8 4 11 15 15 14 10 9 25 25 24

chain 7 10 13 9 2 3 6 12 16 15 12 8 9 24 24 24

chain 8 7 14 13 2 1 4 9 15 17 15 10 8 24 25 25

chain 9 6 7 12 4 8 1 10 15 13 14 10 12 24 25 25

chain 10 5 8 9 8 8 6 13 16 15 11 9 10 24 25 25

chain 11 9 13 8 4 4 9 13 17 17 12 7 8 25 24 25

chain 12 6 14 8 6 3 6 12 17 14 11 8 11 23 25 25

Average 6.6 10.1 9.8 4.8 5 5.4 11.4 15.1 15.2 12.8 9.5 9 24.25 24.58 24.16

Table 7.1: Quantitative summary of Raf-Signaling Pathway structures
inferred by MCMC samplers.

146
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

7.4.3 Conclusion

The experimental simulations in this application have demonstrated the following:

1. The chains obtained by the MH sampler are often stuck at local modes.

2. Increasing the number of iterations with the MH sampler does not help avoid

the problem of local modes in this example.

3. All chains obtained by the NS have early converged to a single common mode

which has returned a greater posterior probability value than by the MH.

4. All chains obtained by the HAR sampler have returned the same common

mode as the NS, however, the convergence to the common mode has occurred

a bit late with some chains.

5. The NS and HAR have learned the structure of the Raf-Signaling Pathway

better than the MH by inferring more proper directed and undirected edges

that link pairs of nodes properly regardless of the direction of edges.

6. For all samplers, increasing the number of iterations does not typically guaran-

tee inferring more directed true edges, it may rather infer the true underlying

structure (where some nodes are linked properly but in the opposite direction),

and that is due to the fact that the number of equivalent graphs in the space

of 11 nodes is very large.

7.5 Inferring the KEGG Pathways network

7.5.1 Background

A recently inferred Bayesian network based on Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways was studied in [159], which used the Greedy Equiva-

lence Search (GES) algorithm [160] to learn interactions in cellular pathways. The

7.5. Inferring the KEGG Pathways network 147

GES identifies a network with a higher scoring function compared to several other

algorithms. The details of the computational steps of GES can be found in [161].

The KEGG Pathways network inferred in [159] used the True Link Strength Per-

centage (TLSP) [107] to measure the connection strengths of links in the Bayesian

network. The TLSP divides the reduction in entropy of the child node given the

parent node by the original entropy of the child node [107].

A total of 163 DNA microarray data sets were obtained from different sources

outlined in [159]. The one-sample Kolmogorov-Smirnov test (KS-test) was used to

determine whether the observed values are significantly different from a distribution

with a zero mean. If the mean value was > 0 or < 0, representing an up or down

regulation, the gene is then assigned +1 or −1, respectively. Otherwise, the gene is

set to 0 to indicate that it does not respond to signalling effects - a means of gene

regulation (or it is not differentially expressed).

The numbers of differentially expressed genes in individual pathways was con-

sidered to select 51 pathways for further study. The 51 KEGG pathways selected in

[159] show significant up or down regulation across different experimental conditions.

7.5.2 Learning initial networks

To efficiently learn a Bayesian network for a large number of nodes, it is highly rec-

ommended to start with a good initial network rather than starting from a random

initial network that might be extremely distant from the optimal network. Practi-

cally, it is possible to learn the initial network by applying a heuristic algorithm that

quickly returns a Bayesian network with a high scoring function. I implemented the

Hill-Climbing search (HCS) - a well-known heuristic search - to learn the Bayesian

network of KEGG pathways. Also, I use the Bayesian network inferred by the GES

in [159] as an initial network. The two BNs learned by the GES and HCS are plotted

in Figure 7.32a and Figure 7.32b, respectively.

148
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

(a)

(b)

Figure 7.32: (A) BN inferred by the GES. (B) BN inferred by the HCS.
Red edges highlight the common edges between the two inferred networks.

7.5. Inferring the KEGG Pathways network 149

The common edges between the two inferred networks are colored in red. The

log scoring functions for the two networks predicted by the GES and HCS are -2517

and -2481, respectively. I examine whether MCMC samplers are able to improve

their scoring functions.

7.5.3 Experimental results

I examine the potential of the MH, HAR and NS to find a better scoring network over

the GES and HCS. The performance of samplers in this application was investigated

experimentally based on: 1) the same number of iterations in Section 7.5.3.1, and 2)

the same amount of computation time in Section 7.5.3.2. The maximum number of

in-degree and out-degree for each node in the networks learned by the GES and HCS

are two and five nodes, respectively. The latter two numbers are used accordingly

in this application to restrict the maximum number of in-degree and out-degree for

each node. I ran the MH, HAR and NS using the same dataset published in [159]

for the 51 pathways of genes.

7.5.3.1 Comparing the performance of MH, NS and HAR based on the

same number of iterations

This section runs two Markov chains of 20,000 iterations for each of the three sam-

plers. The initial networks of these two chains were fixed to the networks inferred by

the GES and HCS shown in Figure 7.32a and Figure 7.32b. Figure 7.33 plots all the

log posterior values produced by the MH, HAR and NS. Figure 7.33 demonstrates

that the three MCMC samplers have the potential to improve the scoring functions

of the networks learned by the GES and HCS. However, the NS, in particular, has

demonstrated an earlier convergence behavior, compared to the MH sampler and

HAR sampler. The latter has performed better than the MH sampler, but it is still

not converged. Table 7.2 compares the highest log scoring functions produced by

the MCMC samplers.

150
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

MH HAR NS

GES (-2517) -1913 -1517 -1287

HCS (-2481) -1936 -1532 -1256

Table 7.2: The highest log scoring function produced by MCMC samplers
when the networks of KEGG learned by the GES and HCS are used as

initial networks.

Figure 7.33: MCMC samplers’ performances to learn KEGG Pathways
network: The log posterior values versus 20,000 iterations produced by the
MH sampler, HAR sampler, and NS, when the initial networks are produced

by the GES and HCS.

7.5. Inferring the KEGG Pathways network 151

To attempt to achieve convergence of the MH sampler and HAR sampler, I ran

the two samplers for additional iterations. I therefore ran two Markov chains with

500,000 iterations each using the HAR and MH samplers. Figure 7.34 shows the log

posterior values produced with the MH and HAR samplers. It is noted that the log

likelihoods for the two chains produced by the HAR sampler have been improved

to become roughly similar to that of the NS in Figure 7.33. The two Markov chains

produced by the MH sampler did not achieve log likelihoods similar to the NS or

HAR, and thus running an even longer chain is still required.

Figure 7.34: The log posterior values versus 500,000 iterations produced
by the MH and HAR samplers, when the initial networks are produced by

the GES and HCS.

152
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Remark 11. If one run the three MCMC samplers for a very long time, they are

more likely to meet at a common distribution, and the posterior edge probabilities

could then be calculated. However, here I aim only to prove the ability of MCMC

samplers to enhance the scoring function of the networks learned by heuristic sam-

plers such as the GES and HCS.

In Section C.5.1, I ran another two Markov chains using the MH sampler with

one million iterations each. I set the initial networks of the first and second chains

to the networks learned by the GES and HCS, respectively. Figure C.13 in Section

C.5.1 plots the log posterior values produced with the MH sampler against one

million iteration. This result suggests that one million iteration is still not enough

for the MH sampler to efficiently reach high probability region, as the NS and HAR.

7.5.3.1.1 Posterior edge probabilities To estimate the posterior edge proba-

bilities, I consider only the NS and HAR sampler, since MH is far from convergence.

I applied burn-in intervals of 2500 iterations and 100,000 iteration based on log

posterior chains produced by the NS and HAR, respectively. Then, I estimate the

posterior edge probabilities for each Markov chain separately. I only considered the

sampled edges with posterior probabilities greater than or equal to 50%. Figure 7.35

and Figure 7.36 plot the structures inferred by the HAR. Figure 7.37 and Figure

7.38 plot the structures inferred by the NS. I used three different coloured edges:

black, red and blue to identify the new inferred edges, unchanged edges, and reversed

edges, respectively, in comparison to their initial networks. The probability of each

directed edge is indicated near each corresponding directed edge in all Figures.

7.5. Inferring the KEGG Pathways network 153

Figure 7.35: Bayesian network inferred by the HAR sampler when the
initial network is learned by the GES. The inferred network represents the
posterior edge probabilities ≥ 50% after running 500,000 iterations and
applying a burn-in interval of 100,000 iterations. The black, red and blue
edges are used to identify the new inferred edges, unchanged edges, and

reversed edges, respectively, in comparison to their initial networks.

154
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Figure 7.36: Bayesian network inferred by the HAR sampler when the
initial network is inferred by the HCS. The inferred network represents the
posterior edge probabilities ≥ 50% after running 500,000 iterations and
applying a burn-in interval of 100,000 iterations. The black, red and blue
edges are used to identify the new inferred edges, unchanged edges, and

reversed edges, respectively, in comparison to their initial networks.

7.5. Inferring the KEGG Pathways network 155

Figure 7.37: Bayesian network inferred by the NS when the initial network
is inferred by the GES. The inferred network represents the posterior edge
probabilities ≥ 50% after running 20,000 iterations and applying a burn-in
interval of 2500 iterations. The black, red and blue edges are used to identify
the new inferred edges, unchanged edges, and reversed edges, respectively,

in comparison to their initial networks.

156
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Figure 7.38: Bayesian network inferred by the NS when the initial network
is inferred by the HCS. The inferred network represents the posterior edge
probabilities ≥ 50% after running 20,000 iterations and applying a burn-in
interval of 2500 iterations. The black, red and blue edges are used to identify
the new inferred edges, unchanged edges, and reversed edges, respectively,

in comparison to their initial networks.

All posterior edge probabilities of Figure 7.35, Figure 7.36, Figure 7.37, and

Figure 7.38, including probabilities less than 50%, are provided in Section C.5.2.

Table 7.3 describes the changes that occurred to the structures of the initial net-

works learned by the GES and HCS after applying the NS and HAR using 20,000

iterations and 500,000 iterations, respectively. Note that the structures of the two

initial networks have been significantly changed by the NS and HAR. This is con-

sistent with the fact that the log scoring functions of the two initial networks have

7.5. Inferring the KEGG Pathways network 157

been dramatically improved by the NS and HAR.

HAR NS

SE UE RE NE SE UE SE NE

GES 91 7 4 80 89 5 6 78

HCS 88 6 3 79 84 4 6 74

Table 7.3: For each of the NS and HAR sampler, the SE, UE, RE, and NE
stand for: the number of sampled edges that show posterior probabilities
≥ 50%, the number of unchanged edges, the number of reversed edges, and

the number of new inferred edges, compared to the initial networks.

This application of 51 nodes demonstrates that the NS and HAR can substantial

improve upon the scoring function produced by other heuristic algorithms e.g. the

GES and HCS.

7.5.3.1.2 Best scoring network Note that the NS and HAR have produced

very different networks for different starting points. One main key difference among

networks is that most of their inferred edges do not link the same nodes, even if

their convergence appear to have occurred. The goal here is to improve on other

algorithms, which has been achieved. As a consequence, the best scoring network

found may be more useful than the posterior edge probabilities for this example.

Figure C.14, Figure C.15, Figure C.17, and Figure C.16 in Section C.5.2 plot the

networks with best scoring values produced by the HAR (GES), HAR (HCS), NS

(GES), and NS (HCS), respectively. To summarise the common edges among the

best networks, I consider every edge that appears in at least two networks. If an

edge appears in the four networks, I give it a strength of 4, if it appears in three

networks, I give it a strength of 3, if it appears in two networks, I give it a strength

of 2, and if it appears in one network, I ignore it. I end up with 86 edges. Three

edges out of the 86 edges have a strength of 4. Further, 23 edges out of the 86 edges

158
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

have a strength of 3. And, 60 edges out of the 86 edges have a strength of 2. Figure

7.39 plots all the 86 edges, and the strength of each edge is determined near the

corresponding edge.

Figure 7.39: All edges that appear at least twice among the four best
scoring networks. There are three styles of directed edges: double bold,
bold, and normal to indicate the edges with strength of four, three, and

two, respectively.

7.5.3.2 Comparing the MH, NS and HAR based on time elapsed

This section compares the performance of the MH, NS and HAR to infer the KEGG

Pathways network based on the same amount of computation time, rather than the

number of MCMC iterations that equally fixed. Two Markov chains have been run

for each of the three MCMC samplers. The two initial networks for the first and

second Markov chains have been set to the two networks learned by the GES and

HCS, respectively. The amount of computation time for each of the six chains was

set to one hour.

Table 7.4 reports the number of iterations and the highest log posterior value

achieved by each chain during one hour of simulation. The highest log posterior

7.5. Inferring the KEGG Pathways network 159

values achieved by the MH, NS and HAR given the initial networks learned by the

GES and HCS are −1895.90 and −1918.16, −1382.29 and −1372.40, −1534.43 and

−1452.95, respectively. The number of iteration run by the MH, NS and HAR given

the initial networks learned by the GES and HCS are 36452 and 39075, 998 and

1002, and 19455 and 21005, respectively. These experimental results have shown

that when the MH, NS and HAR are run at the same amount of computation time,

the NS and HAR would have the potential to sample BNs with higher posterior

values than the MH.

MH NS HAR

N. iteration Log posterior N. iteration Log posterior N. iteration Log posterior

chain (GES) 36452 -1895.90 998 -1382.29 19455 -1534.43

chain (HCS) 39075 -1918.16 1002 -1372.40 21005 -1452.95

Table 7.4: For each of the MH, NS and HAR, the total number of itera-
tions achieved and the highest posterior score recorded, after a one hour of

simulation is completed.

Figure 7.40 plots the log posterior values of sampled BNs against the number of

iterations obtained after one hour of simulation using the MH, NS and HAR. Note

that simulations in this experiment do not intend to achieve convergence, they rather

monitor the improvement in the scoring function values achieved during certain time

of simulation by each sampler.

The NS has significantly achieved more rapid convergence rate, higher log pos-

terior values and lower number of iterations than the HAR and MH. The latter has

shown to quickly get stuck in a local mode solution, where the HAR sampler could

smoothly improve its log posterior values consistently with the NS even though it

runs a larger number of iterations.

160
Chapter 7. Applications of Bayesian networks in Systems Biology Using the MH,

NS and HAR

Figure 7.40: MCMC samplers’ performances to learn KEGG Pathways
network for a time elapsed of one hour: The log posterior values versus
different number of iterations produced by the MH sampler, HAR sampler,

and NS, when the initial networks are produced by the GES and HCS.

7.5.4 Conclusion

This example of KEGG pathways inference has demonstrated the following:

1. The HCS and GES are inadequate sampling techniques to provide a robust

inference of large BNs.

2. The HCS and GES can provide a solution to generate effective initial networks

for medium BNs which would practically accelerate structure inference .

3. The MH, NS and HAR are ideal MCMC techniques to enhance upon the

scoring function produced by the GES and HCS.

7.5. Inferring the KEGG Pathways network 161

4. A Bayesian network with highest posterior value has been found to be a useful

solution to the problem of structure learning given a certain number of nodes

and observational dataset.

5. It is practically sensible to plot the common edges among several best networks

produced by different MCMC samplers in a single network, given that every

single common edge is weighted by the number of times it appears among all

best networks.

6. Whether the simulations of MH, NS and HAR are run at the same amount of

computation time or at the same number of iterations, the NS was the best

in learning the KEGG Pathways network, then the HAR, and lastly the MH

sampler.

7. The inference outputs produced by the MH, NS and HAR never sure that

convergence has occurred, but one can see that some obtained models have

apparently converged to better solutions, according to the posterior deviance.

162

Chapter 8

BNMCMC : A New Graphical

User Interface

8.1 Introduction

Despite the importance of MCMC methods to infer BNs in various applications

from social networks to systems biology, a wide range of relative graphical user

interfaces (GUI) do not include MCMC methods. For example, BNFinder [162]

uses Exact-algorithm, bnlearn [157] uses constraint-based (GS, IAMB, Inter-IAMB,

Fast-IAMB, MMPC, Hiton-PC), pairwise (ARACNE and Chow-Liu), score-based

(Hill-Climbing and Tabu Search) and hybrid (MMHC and RSMAX2), Bayes Server

[163] uses PC-algorithm, and GeNie [164] uses Bayesian Search, PC, Essential Graph

Search, Greedy Thick Thinning, Tree Augmented Naive Bayes, Augmented Naive

Bayes, Naive Bayes. Also, the MCMC methods that are available in other exist

packages of BNs e.g. Hydra [165], Blaise [166] are mostly limited to a standard

MCMC method. Moreover, these packages are used via object-oriented program-

ming language libraries e.g. Java and C++ which require basic programming skills

[167].

BNMCMC is the acronym for Bayesian network Markov Chain Monte Carlo. It

is a new GUI developed in this thesis to facilitate inferring BNs using three MCMC

8.1. Introduction 163

sampling methods: Neighbourhood Sampler, Hit-and-Run sampler, and Metropolis-

Hastings sampler. This interface provides a user-friendly environment with intuitive

software design. For each of the samplers, numerical outputs are saved in local files,

and graphical outputs are depicted in the result panel. All the input parameters

including method and output settings are entered into a separate panel.

Figure 8.1 shows the main desktop window of the BNMCMC software.

Figure 8.1: BNMCMC window.

Two practical issues to implement large case studies e.g. Raf signaling include

enumerating all possible candidate adjacent graphs and computing the likelihood of

a candidate structure during sampling. To address these two challenges, I incorpo-

rated two adaptive techniques (adaptive adjacent graphs enumeration and adaptive

function scoring) which have been proposed in Chapter 6.

164 Chapter 8. BNMCMC: A New Graphical User Interface

The computing language used to implement the BNMCMC package was the

C#.NET using Microsoft Visual Studio. As a widely used object-oriented program-

ming language, C#.NET offers an array of advanced data structures and sophisti-

cated coding schemes which are suitable for large-scale software implementations.

The GUI was constructed as a desktop-based Windows application. Although

it is primarily targeted for Windows machines, using some wrapper package e.g.

Wineskin Winery, it can be run in Mac (Unix-based) machines as well. Note that I

did not use any third party library for this software.

This chapter is constructed as follows. Section 8.2 reports the main functions

of BNMCMC package. Section 8.3 outlines the MCMC samplers available in the

BNMCMC package. Section 8.4 specifies the Bayesian model used in the BNMCMC

package to compute the CPTs of variables. Section 8.5 discusses some limitations of

the BNMCMC package. Section 8.6 contains the user-guidelines to run BNMCMC.

Section 8.7 is an example guide to show users how to practically use the BNMCMC.

8.2 Main functions of BNMCMC

The BNMCMC package undertakes two main functions: it learns BNs structures,

and generates BNs uniformly at random. The two functions are discussed below.

8.2.1 Variables in BNMCMC

The current version of BNMCMC package is designed to learn BNs structures from

observed data. The observed data must satisfy the following criteria:

• All variables must have the same number of observations.

• The variables must have no missing values.

• All observations should be discrete values. Note, continuous values are also

applicable once they are discretized.

8.3. Sampling methods in BNMCMC 165

• Variables in a predefined initial network must be connected by directed edges.

The data-file format required by the BNMCMC package is explained in Section

8.6.1.

8.2.2 Sampling Bayesian networks uniformly

Sampling BNs uniformly at random does not require observed data. Instead, a

Uniform distribution is the target posterior distribution, that is, all graphs in the

space are equally likely. Using the BNMCMC package, users only need to define

the number of nodes and the number of iterations to randomly generate BNs.

8.3 Sampling methods in BNMCMC

The current version of BNMCMC package offers three MCMC samplers: MH, NS

and HAR, explained in Chapter 4. The latter sampler requires defining the running-

length λ which is initially set by the user. The default setting of λ in the BNMCMC

package is five.

Each of the three MCMC samplers used in the BNMCMC package is run us-

ing two adaptive techniques designed in Chapter 6 to reduce the time complexity

required to enumerate adjacent graphs, and to compute scoring functions, respec-

tively.

8.4 Parameters model in BNMCMC

The current version of the BNMCMC uses the Dirichlet-Multinomial distribution to

learn conditional probabilities among variables within generated BNs. The Dirichlet-

Multinomial distribution is a Bayesian model that involves two distributions: the

Dirichlet distribution to describe a priori knowledge and the Multinomial distribu-

tion to describe the observed data likelihood.

166 Chapter 8. BNMCMC: A New Graphical User Interface

8.5 Limitations of BNMCMC

The BNMCMC package may produce slow performance in the following scenar-

ios: large-scale networks, large number of parents for each node, large numbers of

observations, or large number of state-values for each node. However, it is highly

recommended, where possible, to take advantage of the available restriction settings

provided in the BNMCMC package. With large networks, it is recommended to

start simulation from a high scoring network, perhaps based on prior experience or

using heuristics search algorithms as discussed in Chapter 7, Section 7.5.2, rather

than an arbitrary random network.

8.6 User guidelines

This section explains how to formulate the data files required by BNMCMC in

Section 8.6.1, and the necessary steps required to run simulations with BNMCMC

in Section 8.6.2. A modular design for the BNMCMC is also diagrammed in Section

8.6.3.

8.6.1 Data-file format

The data file is only required if the target distribution is set to the Dirichlet-

Multinomial distribution. The BNMCMC package reads data from (.txt) format

files. The data file must contain the variable names, number of state values for each

variable, and observations for each variable. A variable name may contain a com-

bination of letters, numbers, underscores, and dots. Each number of state values

in the data file is placed between two underscore lines as follows: "_2_". Nominal

observations can be coded using integers. For example, we code False and True as

"0" and "1" values, respectively. Figure 8.2 shows an example of the accepted file

8.6. User guidelines 167

format. The BNMCMC package also provides code to convert the format in Figure

8.3 to the forme 8.2.

Figure 8.2: Data file format used in BNMCMC : From left to right the
figure shows: ten variable names, numbers of state values placed between

two underscores, and 18 columns of discrete observations.

Figure 8.3: Data file can be converted by BNMCMC to the format in
Figure 8.2: From top to bottom: ten variable names, numbers of state values

placed between two underscores, and 18 rows of discrete observations.

8.6.2 Steps to run BNMCMC

Step 1 Load the data file using a (.txt) format by simply pressing the "Load Input

File" button shown in Figure 8.1, and then select the file from its directory.

168 Chapter 8. BNMCMC: A New Graphical User Interface

Step 2 Press the "Browse Output Directory" to choose a directory folder where the

output files are saved after they are produced.

Step 3 Set the simulation inputs and restrictions including the number of nodes,

number of iterations, the maximum number of node parents (Max In-Degree),

the maximum number of node children (Max Out-Degree), length of burn-in

interval, and the lag for sum of squared differences (SSD Lag).

Step 4 Set the initial network either at random or fixed. Note, when the "Fixed"

option is selected, a new window will pop up to enable loading the initial

network file. Figure 8.4 illustrates an example of an initial network format

consisting of 11 nodes. It is an asymmetric matrix of dimensions 11 × 11,

where ones indicate directed edges. The initial network must be a connected

directed acyclic graph. The software checks this condition and produces an

error message if not satisfied.

Figure 8.4: Initial network format describes connectivity among 11 nodes.

Step 5 Select only one MCMC method. Note, the default "Run-Scaled value" of

the HAR sampler is five.

Step 6 Tick the desired numerical outputs, which may include the log posterior

distribution for all sampled graphs, the empirical frequency for each sampled

graph, the sum of squared differences versus the lag, and the posterior edge

8.6. User guidelines 169

probabilities of sampled graphs at a particular threshold determined by the

user. Note, all numerical outputs are produced in (.csv) format files, and

separately saved in the folder selected by the user.

Step 7 Tick the desired graphical outputs, which may include the log-posterior

for each sampled graph against the number of iterations, the sum of squared

differences against the lag, the estimated distribution versus the target prob-

abilities for only the sampled graphs, the network structure of the inferred

network, and the highest frequency network. Note, the graphical outputs will

be shown in the "Result Panel".

Step 8 Press the green triangle button to run the simulation, then the user will see

a short message at the bottom to confirm the simulation has started. When

the simulation is completed, another short message will appear to confirm the

completion of simulation, and report the total execution time in seconds.

8.6.3 Modular design

The diagram in Figure 8.5 illustrates the modular design for the BNMCMC software.

It shows two groups of components of the software: user interface and BNMCMC

algorithm. The first group of components is controlled by the user as described by

Steps 1-8 in Section 8.6.2, and summarided by the left diagram in Figure 8.5. When

all input settings are setup and submitted, then the software performs the process

of structural learning by going through the second group of components illustrated

by the right diagram in Figure 8.5.

170 Chapter 8. BNMCMC: A New Graphical User Interface

Figure 8.5: Diagram illustrates the modular design for the BNMCMC.

8.7 Illustrative practical example

To learn the structure of Mendel network of six nodes discussed in Chapter 7, first

load the data file and select a directory in which to save the output files. All

input settings are shown in Figure 8.6. Then, press the green-play button to run

the simulation. Note, a short message has appeared at the bottom of Figure 8.6

verifying that the simulation has started. It can be seen in Figure 8.7 that the

simulation has now completed and the execution time is 65 seconds. The figure

also shows the output plot of log-posterior against number of iterations. It is noted

that the log-posterior values demonstrate convergence behavior as the number of

iterations increases.

8.7. Illustrative practical example 171

Figure 8.6: Input settings for learning Mendel network.

Figure 8.7: Log posterior vs iterations for learning Mendel network.

172 Chapter 8. BNMCMC: A New Graphical User Interface

Figure 8.8 shows the second graphical result: the sum of squared differences

against the lag. As desired, the SSD values decrease as the lag increases.

Figure 8.8: SSD vs Lag for learning Mendel network.

Figure 8.9 shows the third graphical result: the true target probabilities against

the estimated distribution for only the sampled graphs. The difference between

the true and estimated proportions can be diminished further if one increases the

number of iterations.

8.7. Illustrative practical example 173

Figure 8.9: True target probabilities (TD) against the estimated distri-
bution (ED) for learning Mendel network.

Figure 8.10 shows the fourth graphical result: the network comprised of edges

with posterior edge probabilities greater than or equal 0.50. The network includes

five directed edges with posterior probabilities ≥ 50%. The node names in the source

column refer to the node parents, and those in the target column refer to the node

children. Note that the five predicted directed edges are exactly the same directed

edges that appear in the true network.

174 Chapter 8. BNMCMC: A New Graphical User Interface

Figure 8.10: List of edges with posterior probabilities greater than the
specified threshold.

Figure 8.11 shows the fifth graphical result: the network sampled with the highest

frequency. Four directed edges out of the five true edges are inferred, and one

directed edge was predicted in the opposite direction.

Remark 12. It is recommended to consider the network inferred using posterior

edge probabilities as the best representative network rather than the highest fre-

quency network.

8.8. Conclusion 175

Figure 8.11: Edges of the highest frequency network in MCMC output.

8.8 Conclusion

Currently, this software is only a desktop version, but in future, I would like to

distribute it as a web-based application for better reachability among the scientific

community.

This software currently does not provide the option of simulating from or running

an MCMC sampler based on a given model structure, nor for informative versions

of the prior distribution. In future, I would like to incorporate this feature into this

software.

176

Chapter 9

Conclusion

This chapter discusses the following. Section 9.1 briefly outlines the scope of the

thesis. Section 9.2 summarises the main findings including the relative features

and limitations of MCMC samplers when they are used to infer BNs. Section 9.3

proposes some possible extensions and future work related to the thesis.

9.1 Scope of the thesis

This thesis has proposed two MCMC samplers to generate BNs from discrete spaces.

The two samplers are new instances of the NS and HAR. The performances of these

two samplers have been evaluated in comparison with the MH sampler, which is a

general framework for a number of MCMC samplers.

The thesis has also proposed two adaptive techniques to first reduce the time

complexity of enumerating a set of adjacent graphs, and second to avoid recalculating

conditional probabilities of all nodes within a sampled network.

All the MCMC samplers used in this thesis have been used to first generate

BNs uniformly, and second to learn causal relationship structures among variables

from observed datasets. The conditional probabilities among variables have been

calculated using the Dirichlet-Multinomial distribution, which is a statistical model

combining two distributions: the Multinomial distribution to describe the observed

dataset and the Dirichlet distribution to describe prior beliefs.

9.2. Findings summary 177

9.2 Findings summary

The features and shortcomings of the MH, HAR and NS when used to infer BNs

are summarised and ranked in Table 9.1. I used the numbers 1, 2, and 3 as a

grading scale to respectively identify best, middle and worst performance of the

three samplers, as shown in Table 9.1.

Feature MH HAR NS

Speed per iteration 1 2 3

Generating BNs uniformly 3 1 2

Inferring BN structures 3 2 1

Ease of implementation 1 2 2

Exploring posterior distribution 3 2 1

Less influenced by local maxima 3 1 2

Less correlated samples 3 1 2

Table 9.1: Ranking MCMC samplers at different performance criteria,
where 1 = best, 2 = middle and 3 = worst.

In terms of the speed per iteration, the MH sampler is the fastest, and exper-

imentally is roughly 50% faster than the HAR sampler when the paths-length is

set to five (the default), and 5% faster than the NS. The random BNs generated

by the HAR sampler are slightly more uniformly distributed than those by the NS

and considerably than those by the MH. The NS rapidly converges to the target

distribution in fewer iterations than the HAR and MH. The HAR sampler in turn

converges to the same target distribution faster than the MH sampler. Implemen-

tation of the MH sampler is generally easier than the NS and HAR because the MH

sampler does not involve a redaction step as in the NS or sampling over paths as

in the HAR sampler. The problem of local modes in graph spaces is ameliorated

by the NS and to a lesser extent by the HAR sampler, whereas the MH sampler is

178 Chapter 9. Conclusion

vulnerable to this problem. The HAR sampler has been shown to produce samples

that are less dependent compared to the NS and MH, due to its potential to reach

distant graphs in a single transition.

9.3 Future work

Below, I describe some more possible work to be done in future to the BNMCMC,

MCMC samplers and adaptive algorithms.

9.3.1 Possible update to BNMCMC

The next version of BNMCMC is intended to include more options and new learning

techniques. Below are some additional features that are under development:

• Define f(X): the current version uses the Dirichlet-Multinomial (DM) distri-

bution as a Bayesian inference model to learn the conditional probabilities of

BNs from a discrete dataset. The option "Define f(x)" would enable users

to define models other than the DM distribution to learn from discrete and

continuous data.

• No. of random BNs: in the current version, I use the uniform distribution to

generate random BNs given a number of iterations t, which typically does not

produce t random networks. I add the option "No. of random BNs" to exactly

produce a specific number of random networks from the same space.

• Highest S. BN: this option is used with the posterior distribution when a

MCMC sampler is run to learn Bayesian network structures. The "Highest

S. BN" aims to produce the network that is learned with the highest score

function over the simulation. The result of "Highest S. BN" will be added as

a graphical output in the "Result Panel" in BNMCMC.

9.3. Future work 179

• Metropolis MCMC sampler: this sampler is a special case of the MH sampler,

but uses a symmetric proposal distribution. I am currently investigating how

to use the uniform distribution to propose graphs symmetrically.

• A list of diagnostic tests: this option would perform some of the diagnostic

tests (e.g. Gelman and Rubin test, Geweke test, trace-plot, autocorrelation

plot) available in some R packages (e.g. coda with outputs produced in .csv

files.

• No. of CUAGs: this option would produce connected un-directed graphs

(CUDGs). This type of structure is not a Bayesian network; however, I have

built new code to effectively generate such structures at random, with many

potential applications. For example, some real-world networks are quite large

e.g. the movie actor network (nodes are used to represent movies and undi-

rected edges are used when two actors have played in the same movie. Such a

large example is virtually impossible to describe in detail or model effectively.

This problem has been circumvented by considering random undirected con-

nected graphs as network models. Appendix D.1 explains how to construct a

set of adjacent graphs for a particular CUDG, and provide some experimental

results obtained after generating CUDGs from a space of four and five nodes

consisting of 38 and 728 CUDGs, respectively, using the NS.

• Simulation progress: it aims to show a live window to constantly monitor

simulation progress. The window may display the progress in the number of

iterations, execution time, the number of adjacent graphs instantly for each

iteration, the number of rejected networks in the reduction step with the NS,

and the number of nodes that have updated their CPTs in a single iteration.

• Multi-mode running: this feature allows users to optionally run the samplers

individually or altogether in the same time under the same settings.

180 Chapter 9. Conclusion

9.3.2 Mathematical work

• Accelerating convergence with the HAR sampler: one possible technique to

enhance the convergence behaviour of the HAR sampler is to add a reduction

step to the acceptance ratio step. To do so, one primary procedure is to

generate a candidate graph G′ from a sampled path, then a reduction step can

do a local search over the adjacent graphs of G′ until the acceptance ratio is

satisfied. If the acceptance ratio is not satisfied by any of the adjacent graphs

of G′, I then break the iteration and stay in the current graph. However, this

work is still incomplete and requires more theoretical investigation.

• Approximate acceptance ratio: this technique aims to reduce the time com-

plexity required by the reduction step involved in the NS. It intends to estimate

the number of adjacent graphs |N | instead of searching the adjacent graphs

and then counting them. One reason to estimate |N | is that the difference in

the number of adjacent graphs between two graphs G and G′ ∈ N (G) is very

small. This tiny error may not significantly affect the convergence. However,

this idea has not been proved theoretically and requires more investigations.

• Improve the time complexity of the adaptive adjacent graphs enumeration:

as a continuation of my previous work in this thesis to enhance the time

complexity required to enumerate adjacent graphs, I am currently investigating

the possibility to reduce the time complexity to be strictly less than O(V 4).

• Order-space sampling (OSS): one possible technique to reduce the amount of

computation required to infer a BN is to use the OSS technique [124]. The OSS

assumes knowledge of ordering of the nodes. Suppose the nodes are indexed

according to some known ordering, given that the parents of node vj can only

come from the nodes v1, . . . , vj−1. That is, parents of vj are only generated

from nodes that precede it in the ordering. Note that this would eliminate the

9.3. Future work 181

need for cycle checking. In this work, I aim to apply the MH, HAR and NS

to real-life applications when the order of nodes is known, and compare the

results in the absence of ordering.

• Full analysis of time complexity of adaptive algorithms and theoretical results

concerning convergence and mixing times.

182

Appendix A

Using MCMC Samplers to Sample

Bayesian Networks

A.1 Flowchart describing the NS process

Initialize graph Gt, at iteration t = 0

Find

µGt and f(Gt)

Dataset to

compute f(Gt)

Generate U ∈

Uniform
(

0, f(Gt)
µGt

)

Sample H1 ∈

Uniform(N (Gt))

Sample H2 ∈

Uniform(N (H1))

Find

µH2 and f(H2)

Dataset to

compute f(H2)

Is f(H2)
µH2

> U?
Exclude H2

from N (H1)

Set t = t + 1,

then Gt = H2
Break

no

yes

A.2. All possible paths within three transitions of a graph of three nodes 183

A.2 All possible paths within three transitions of

a graph of three nodes

Example 11. Consider connected BNs with three vertices. Recall that the graph

space of all such BNs contains 18 graphs. The Figure A.1 shows all possible paths

of length three, starting from the graph in the centre. Note that all the 18 graphs

are within three transitions from the graph given in the centre.

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

Figure A.1: All possible paths within 3 transitions of a graph of 3 nodes.

184

Appendix B

Sampling Bayesian Networks

Uniformly

B.1 Checking normality

Figure B.1, Figure B.2, Figure B.3, Figure B.4, Figure B.5, and Figure B.6 plot the

frequency histograms for the samples obtained by the MH, HAR and NS in Figure

5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10, respectively.

The bars in the histograms are symmetrically distributed around the value ob-

tained by dividing the number of iterations by the number of graphs in the target

space, when the number of iterations is large. With all MCMC samplers, the bars

in the histograms of four nodes have been normally distributed using only 10,000

iterations as illustrated in the top right panel of Figure B.1, Figure B.2, and Figure

B.3. With all MCMC samplers, the bars in the histograms of five nodes have been

normally distributed using only 500,000 iterations as illustrated in the middle left

panel of Figure B.4, Figure B.5, and Figure B.6.

B.1. Checking normality 185

Figure B.1: MH with four nodes.

Figure B.2: HAR with four nodes.

186 Appendix B. Sampling Bayesian Networks Uniformly

Figure B.3: NS with four nodes.

Figure B.4: MH with five nodes.

B.1. Checking normality 187

Figure B.5: HAR with five nodes.

Figure B.6: NS with five nodes.

188

Appendix C

Applications

C.1 Inferring structures from Microarray network

C.1.1 The true structure of Microarray network

Figure C.1 illustrates the true structure of Microarray network. There are three

directed edges connecting the four genes. Each gene is represented by a binary

random variable that takes two state values: ‘off’ or ‘on’. In the dataset file, these

states are denoted ‘0’ and ‘1’ respectively.

Gene A

Gene C

Gene B

Gene D

Figure C.1: The true structure of Microarray network.

C.1.2 The CPTs of Microarray network

Figure C.2 illustrates the conditional probability tables of Microarray network.

These CPTs were used to simulate 5000 observations for each node in Figure C.1.

C.2. Inferring the Mendel Peas network 189

Gene A

P (A = 0) P (A = 1)

0.50 0.50

Gene B

P (B = 0) P (B = 1)

0.50 0.50

Gene C

A B P (C = 0) P (C = 1)

0 0 1 0

0 1 0.80 0.20

1 0 0.90 0.10

1 1 0.05 0.95

Gene D

C P (D = 0) P (D = 1)

0 0.10 0.90

1 0.95 0.05

Figure C.2: The CPTs of Microarray network.

C.2 Inferring the Mendel Peas network

C.2.1 The CPTs of Mendel network

Figure C.3 illustrates the conditional probability tables of Mendel network. These

CPTs were used to simulate 5000 observations for each of the six nodes.

P1

P (P1 = RR) P (P1 = Rr) P (P1 = rr)

0.25 0.50 0.25

P2

P (P2 = RR) P (P2 = Rr) P (P2 = rr)

0.25 0.50 0.25

Color P1

P1 P (Color P1 = red) P (Color P1 = white)

RR 1 0

Rr 1 0

rr 0 1

C

P1 P2 P (C = RR) P (C = Rr) P (C = rr)

RR RR 1 0 0

RR Rr 0.50 0.50 0

RR rr 0 1 0

Rr RR 0.50 0.50 0

Rr Rr 0.25 0.50 0.25

Rr rr 0 0.50 0.50

rr RR 0 1 0

rr Rr 0 0.50 0.50

rr rr 0 0 1

Color P2

P1 P (Color P1 = red) P (Color P1 = white)

RR 1 0

Rr 1 0

rr 0 1

Color C

C P (Color C = red) P (Color C = white)

RR 1 0

Rr 1 0

rr 0 1

Figure C.3: The CPTs used to simulate 5000 datapoints.

190 Appendix C. Applications

C.2.2 Summary statistics

Table C.1 summarises the outputs obtained from the three chains sampled after

running 5000 iterations using the MH, HAR and NS in Section 7.2. The summary

statistics consider all sampled graphs before applying a burn-in interval, so that the

performances of the samplers are expected to vary. It has been noted that the NS

and HAR have the potential to explore the target space by returning more graphs

than the MH sampler as shown in the last column in Table C.1. In terms of the

frequency of the true graph and its ranking, the NS and HAR again have returned

higher frequencies with better rankings compared to the MH sampler.

MCMC

Sampler

True Graph

Frequency

True Graph

Ranking

Total Sampled

Graphs

MH 53 19 267

HAR 66 15 368

NS 78 6 570

Table C.1: Summary outputs obtained from running three chains of 5000
iteration using the MH, HAR and NS.

C.2.3 Mendel Peas network based on adding and deleting

edges

In this section, I briefly investigate the potential of the MH, HAR and NS to infer

the Mendel Peas network structure when one considers adding and deleting edges

only, that is, no transition between two adjacent graphs by reversing.

I ran four chains of 1000 iterations with each sampler. Each chain was run from

a different initial network structure. The four initial networks are shown in Figure

C.4. The maximum number of parents and children in the true network are two

C.3. Inferring the Diagnostic Chest network 191

each. Therefore, the graph space was reduced by imposing a maximum of three

parents and three children for each node.

(a) Initial network for chain 1

P1

C

P2

Colour P1 Colour P2

Colour C

(b) Initial network for chain 2

P1

C

P2

Colour P1 Colour P2

Colour C

(c) Initial network for chain 3

P1

C

P2

Colour P1 Colour P2

Colour C

Figure C.4: Three initial graphs for running three Markov chains with
lengths of 1000 iterations each using the MH, HAR and NS.

Figure C.5 shows the mean posterior edges probabilities of all 12 chains. The

NS and HAR have shown better performance than the MH sampler. The latter is

likely to sample the true graph only if it gets stuck in a local mode containing the

true graph.

(a) MH chain 1

P1

C

P2

Colour P1 Colour P2

Colour C

100%
100%

100%

100
% 99%

100%

100
%

97%

100%

(b) NS chain 1

P1

C

P2

Colour P1 Colour P2

Colour C

100% 97%67%
74%

100%

(c) HAR chain 1

P1

C

P2

Colour P1 Colour P2

Colour C

96% 98%84%
76%

97%

(d) MH chain 2

P1

C

P2

Colour P1 Colour P2

Colour C

100
% 99%100% 100

%

97%

100%

100%

100%
96%

(e) NS chain 2

P1

C

P2

Colour P1 Colour P2

Colour C

76%
100% 100

%
71%

100%

(f) HAR chain 2

P1

C

P2

Colour P1 Colour P2

Colour C

71%
91%

83%

61%
99%

80%

56%

(g) MH chain 3

P1

C

P2

Colour P1 Colour P2

Colour C

100%

100%

100%

10
0%

98%

98%

87%

(h) NS chain 3

P1

C

P2

Colour P1 Colour P2

Colour C

100% 98%79%
87%

99%

(i) HAR chain 3

P1

C

P2

Colour P1 Colour P2

Colour C

100% 98%81%
62%

98%

Figure C.5: Posterior edge probabilities at threshold ≥ 50%.

C.3 Inferring the Diagnostic Chest network

Table C.2 illustrates the conditional probability tables of the true structure of Di-

agnostic Chest network used to simulate 5000 data-points for each of the eight

192 Appendix C. Applications

variables.

Smoking

P (Smoking = T) P (Smoking = F)

0.50 0.50

Travel

P (Travel = yes) P (Travel = no)

0.01 0.99

Lung Cancer

Smoking P (Lung Cancer = present) P (Lung Cancer = absent)

smoker 0.10 0.90

non smoker 0.01 0.99

Tuberculosis

Travel P (Tuberculosis = present) P (Tuberculosis = absent)

yes 0.05 0.95

no 0.01 0.99

Bronchitis

Smoking P (Bronchitis = present) P (Bronchitis = absent)

smoker 0.60 0.40

non smoker 0.30 0.70

Tuberculosis or Cancer

Tuberculosis Lung Cancer P (TbOrCa = true) P (TbOrCa = false)

present present 1 0

present absent 1 0

absent present 1 0

absent absent 0 1

Dyspnea

TbOrCa Bronchitis P (Dyspnea = present) P (Dyspnea = absent)

true present 0.90 0.10

true absent 0.70 0.30

false present 0.80 0.2

false absent 0.10 0.90

XRay Results

Tuberculosis or Cancer P (XRay = abnormal) P (XRay = normal)

true 0.98 0.02

alse 0.05 0.95

Table C.2: The CPTs of the Chest Clinic network used to simulate 10,000
datapoints.

C.4 Inferring the Raf-Signaling Pathway network

C.4.1 Twelve random initial networks

Figure C.6 illustrates the twelve initial networks generated randomly using the tech-

nique proposed in Section 4.8 to learn the structure of Raf-Signaling Pathway using

the MH, HAR and NS. Each initial network was used to run three chains of 10,000

iterations each using the three MCMC samplers. The posterior edge probabilities

for all the resultant 36 chains are separately shown in Figures 7.20 - 7.31 in Chapter

7.

C.4. Inferring the Raf-Signaling Pathway network 193

Figure C.6: Twelve random initial networks.

194 Appendix C. Applications

C.4.2 Log posterior for 36 chains and 10,000 iterations each

This section uses the MH, HAR and NS approaches to run twelve Markov chains with

10,000 iterations each, given the twelve initial networks plotted in Section C.4.1. It

then determines the point at which burn-in has occurred given the time-series plot

of the log posterior at each iteration shown in Section 7.4.2.

Figure C.7, Figure C.8 and Figure C.9 plot separately the log posterior distri-

butions for the twelve Markov chains and 10,000 iterations, produced by the MH,

HAR and NS, respectively.

Figures in this section demonstrate that: with the MH, the chains are often

stuck at local modes, with the HAR, the chains have ultimately returned the same

common mode even though convergence has occurred a bit late with some chains,

and with the NS, all chains have early converged to a single common mode.

Figure C.7: MH: Log posterior for 12 chains and 10,000 iterations each.

C.4. Inferring the Raf-Signaling Pathway network 195

Figure C.8: HAR: Log posterior for 12 chains and 10,000 iterations each.

Figure C.9: NS: Log posterior for 12 chains and 10,000 iterations each.

196 Appendix C. Applications

C.4.3 All edge posteriors for Raf-Signaling network

Figure C.10, Figure C.11 and Figure C.12 provide all the posterior edge probabilities

of Figures 7.20 - 7.31 including probabilities less than 50%.

C.4.3.1 Metropolis-Hastings sampler

Figure C.10: From left to right top to bottom: Posterior edges probabil-
ities calculated for chains from one to twelve produced by the MH sampler

to learn Raf-Signaling network.

C.4. Inferring the Raf-Signaling Pathway network 197

C.4.3.2 Hit-and-Run sampler

Figure C.11: From left to right top to bottom: Posterior edges probabili-
ties calculated for chains from one to twelve produced by the HAR sampler

to learn Raf-Signaling network.

198 Appendix C. Applications

C.4.3.3 Neighbourhood Sampler

Figure C.12: From left to right top to bottom: Posterior edges probabil-
ities calculated for chains from one to twelve produced by the NS sampler

to learn Raf-Signaling network.

C.5. Inferring the KEGG Pathways network 199

C.5 Inferring the KEGG Pathways network

C.5.1 More simulation run using the MH sampler

This section investigates the performance of the MH sampler to learn the KEGG

Pathways network when the number of iteration increased to one million. The

networks learned by the GES and HCS are set as initial networks to run two Markov

chains using one million iteration each. Figure C.13 plots the log posterior values

produced by each chain against one million iteration. The highest log posterior

values achieved by the first chain and second chain are −1653.58 and −1695.43,

respectively, which are less far from the highest values achieved by the NS and

HAR.

Figure C.13: MH: Log posterior for two chains of one million iterations
each.

200 Appendix C. Applications

C.5.2 Figures of best scoring networks

Figure C.14, Figure C.15, Figure C.16, and Figure C.17 plot the BNs with best

scoring values learned by the HAR (GES), HAR (HCS), NS (HCS), and NS (GES),

respectively. The common edges among the best networks are summarised in Figure

7.39 in Chapter 7.

Figure C.14: Best scoring network learned by the HAR when the network
learned by the GES is initialised.

C.5. Inferring the KEGG Pathways network 201

Figure C.15: Best scoring network learned by the HAR when the network
learned by the HCS is initialised.

202 Appendix C. Applications

Figure C.16: Best scoring network learned by the NS when the network
learned by the HCS is initialised.

C.5. Inferring the KEGG Pathways network 203

Figure C.17: Best scoring network learned by the NS when the network
learned by the GES is initialised.

Figure C.18, Figure C.19, Figure C.20 and Figure C.21 provide all the posterior

edge probabilities of Figure 7.35, Figure 7.36, Figure 7.37 and Figure 7.38 including

probabilities less than 50%.

204 Appendix C. Applications

A
B
C

A
A
M

A
TB

A
P
M

C
5B

C
A
F

C
B
S

C
IC

C
Y
M

D
G
M

FA
B

FA
M

G
LM

G
H
M

G
O
M

G
SM

G
LG

G
D
M

H
IM

LY
B

LY
D

M
EM

N
N
M

N
IM

N
SM

O
C
P

O
X
P

P
C
B

P
P
P

P
EB

P
H
M

P
TT

P
H
O

P
A
P

P
C
M

P
U
M

P
M
M

P
V
M

R
C
C

R
IM

R
IB

R
N
A

SA
M

SU
M

TH
M

TR
M

TY
M

U
B
B

U
C
M

V
LB

V
LD

A
B
C

0
0

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0

A
A
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
2

0
0

0
0

0
0

0
0

0
0

0
0

0

A
TB

0
0.
97

0
0

0
0

0
0

0.
04

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0.
3

0
0

0
0
.0
4

0
0

0
0.
0
4

0
0

0
0.
19

0
0

A
P
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
1
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
03

0.
39

0
0

0
0

0
0

0
0

0
0

0.
41

0
0

0
0

0
0

0
0

C
5B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
A
F

0
0

0
0

0
0

0
0

0.
03

0.
15

0
0.
16

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
6

0.
01

0
0.
02

1
0

C
B
S

0
0

0
0

0
0

0
0

0.
11

0
0

0
0

0
0

0
0

0
0.
04

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
IC

0
0.
02

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
71

0
0

0.
8
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
5

0
0
.0
2

0
0

0
0

0
0

0
0

0
0.
6
1

C
Y
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
6

0
0

0
0

0
0

0.
0
3

0
0

0

D
G
M

0
0

0
0

0
0.
35

1
0

0.
13

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
1

0
0

0
0

0
.0
1

0
0

0
0

0

FA
B

0.
7

0.
01

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0
.0
8

0
1

0
0

0
0.
9
8

0
0

0
0

0
0

0
0

0
0

0.
87

0
0

0
0

0
0

0
0
.0
2

0
0

0
0

0
0

0
0

0
0

FA
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0

0
.1
2

0
0

0
0

0
0.
5
9

0
.8
3

0
0

0
0

0

G
LM

0
0

0
0

0.
22

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0.
02

0
0

0
0

0
0

0
0

0
.0
4

0
0

0
0

0
0

0
0

0
0

G
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
23

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G
O
M

0
0

0
0

0
0

0
0.
1
4

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
SM

0.
02

0.
75

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1
4

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0.
13

0
0

0
0

0
.6
3

0
0

0
0

0
0

0.
1
1

0
0

0
0

0
0

G
LG

0
0

0
0

0
1

0
0.
0
1

0
0

1
0

0
0

0
0
.9
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0.
0
2

0
0

0
0

0
0

G
D
M

0.
28

0
0

0.
26

0
0

0
0

0
0

0
0

0.
0
2

0
0

0
0

0
0.
04

0.
02

0
0

1
0

0
1

0
0

0
0

0.
02

0.
02

1
0

0
0.
03

1
0

0
0.
07

0
0

0.
03

0
0

0
0

0
0

0
0

H
IM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

LY
B

0
0

0
0

0
0.
02

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
21

0
0

0
0

0
0

0
0

LY
D

0
0

0
0

0
0.
59

0
0

0
0

0
0

0
0

0
0
.7
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0

0
0

0
0.
2
8

0
0

0
0.
01

0
0

M
EM

0
0.
02

0
0

0
0

0
0

0.
38

0.
01

0
0

0.
9
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2
3

0
0

0
.0
2

0
0

0
0

0
0

0
0

0
0.
8
4

N
N
M

0
0

0
0.
74

0
0.
02

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
02

0
0

0
0

0
0

0
0

0
0.
03

0
0

0
0
.6
8

0
0
.6
7

0
0

0
0

0
0

0
0

0
0

N
IM

0
0

0
0

0.
01

0
0

0
0

0.
96

0
0.
13

0
0

0
0
.0
4

0
0

0
0

0
0.
0
3

0
0

0
0

0.
5

0.
01

1
0

0
0

0
0

0.
02

0
0

0
0

0
0
.0
3

0
0

0
0

0
1

0
0.
48

0
0.
1
5

N
SM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
1
1

O
C
P

0
0

0
0

0.
43

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1
5

0
0

0
0

0
0

0
0

0
0

O
X
P

0
0.
09

0
0

0
0

0
0.
3
5

0.
03

0
0

0.
19

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0.
05

0
0

0
0.
62

0
0

0
0

0
0

0
0

0
0

0
0

0.
8
7

0
.2
1

0.
01

0
0.
41

0
0

P
C
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
.0
1

0
0

0
0

0
0

0
0

0
0

P
P
P

0
0

0
0

0.
09

0
0

0.
0
1

0.
13

0.
03

0
0

0
0

0
0
.1
1

0
0

0
0

0
0.
1
1

0
0

0
0

0
0

0
0

0
0.
38

0
0

0.
1

0
0

0
0.
1

0.
93

0
.1
5

0
0

0.
9
3

0
0
.1
8

0
0

0.
43

0
0

P
EB

0
0

0
0

0
0

0
0.
2
3

0
0

0
0.
03

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
2

0
0.
29

0
0

0
0

0
0

0
0

P
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
TT

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
H
O

1
0.
14

0
0

0
0

1
0

0.
27

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
.4
3

0
0

0
0

0
0.
3

0
0

0
0

0.
83

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0

0
0

0

P
A
P

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1

0
0

0

P
C
M

0
0

0
0

0.
02

0
0

0
0.
57

0
0

0.
05

0
1

0
0

0
0

0.
01

0.
98

0
0

0
0
.3
3

0
0

0.
49

0
0

0.
7

0
0

0
0

0
0

0
0

0
0

0
.5
2

0
0

0
0

0
0

0
0.
18

0
0

P
U
M

0
0

0
0

0.
04

0
0

0
0.
01

0
0

0.
33

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0.
01

0
0

0
0

0.
02

0
1

0.
08

0
0

0
.0
1

0
0

0
.0
4

0
0

0
0

0
0.
98

0.
9
7

0
0

0

P
M
M

0
0

0.
67

0
0

0
0

0.
4

0
0

0
0.
29

0
0

0
0

0
0

0.
12

0
0

0
1

0
0

0
0

0
0

0
0

0.
04

0
0

0.
92

0.
97

0
0
.1
1

0
0

0
0

0
0

0
0

0
0

0
0

0

P
V
M

0
0

0
0

0.
18

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
09

0
0

0
0

0
0

0
0

0
0

0
.0
3

0
0
.1
9

0
0

0.
0
7

0
0

0
0

0
0

0

R
C
C

0
0

0
0

0
0

0
0

0
0

0
0.
18

0
0

1
0

0
0

0.
05

0
0

0.
0
1

0
0
.2
4

0
0

0
0

0
0

0.
91

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
2
8

R
IM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
05

0
0

0
0

0
0

0
0

R
IB

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0

R
N
A

0
0

0.
33

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
15

0
0

0
0

0
1

0
0

1
0

0
0.
42

0
0

0
0

0.
7

0
0

0
0

0
0

0
0.
0
9

0
0

0
0.
29

0
0

SA
M

0
0

0
0

0
0.
01

0
0

0
.2

0.
01

0
0

0
0

0
0

0
0

0.
03

0
0

0.
0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

SU
M

0
0

0
0

0
0

0
0

0
0.
79

0
0

0
0

0
0
.0
3

0
0

0
0.
85

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TH
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
07

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TR
M

0
0

0
0

0
0

0
0

0
0

0
0.
03

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TY
M

0
0

0
0

0
0

0
0.
8
3

0.
05

0
0

0.
53

0
0.
8
6

0
0

0
0

0.
01

0
0

0
0

0
0.
73

0
0

0.
77

0
0

0.
03

0.
07

0
0

0.
01

0
0

0
0
.0
2

0
0

0
0

0
0

0
0

0
0

0
0

U
B
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0

0
0

0
0

0
0

0
0

U
C
M

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

V
LB

0
0

0
0

0
0

0
0

0.
02

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

V
LD

0
0

0
0

0
0

0
0.
0
2

0
0

0
0.
07

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1
6

0
0

0
0

0

F
ig

ur
e

C
.1

8:
Po

st
er

io
r

ed
ge

pr
ob

ab
ili

tie
s

us
in

g
th

e
N

S
w

ith
51

no
de

s
an

d
20

00
0

ite
ra

tio
ns

w
he

n
th

e
ne

tw
or

k
le

ar
ne

d
by

th
e

G
ES

is
th

e
in

iti
al

ne
tw

or
k

C.5. Inferring the KEGG Pathways network 205

A
B
C

A
A
M

A
TB

A
P
M

C
5B

C
A
F

C
B
S

C
IC

C
Y
M

D
G
M

FA
B

FA
M

G
LM

G
H
M

G
O
M

G
SM

G
LG

G
D
M

H
IM

LY
B

LY
D

M
EM

N
N
M

N
IM

N
SM

O
C
P

O
X
P

P
C
B

P
P
P

P
EB

P
H
M

P
TT

P
H
O

P
A
P

P
C
M

P
U
M

P
M
M

P
V
M

R
C
C

R
IM

R
IB

R
N
A

SA
M

SU
M

TH
M

TR
M

TY
M

U
B
B

U
C
M

V
LB

V
LD

A
B
C

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0.
08

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
.9
1

0
0

0
0

0
0

0
0

1
0

A
A
M

0
.0
4

0
0.
35

0
0

0
0

0
0

0
0

0
0

0
0

0.
0
4

0
0

0
0

0
0

0
0.
08

0
0.
01

0
0

0
0

0
0

0
0

0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
TB

0
.1
8

0
.6
5

0
0

0
0

0
0.
29

0
0.
03

0
0

0
0

0
0.
3
8

0.
12

0
0

0
0

0.
02

0
0.
04

0
0

0.
61

0
0.
0
3

0.
0
2

0
0

0
0.
4

0.
02

0
1

0
0

0
0

0
0

0
0

0
0

0
0.
28

0
0

A
P
M

0
0

0
0

0
0

0
0

0
0.
02

0
0

0
.0
4

0
0

0.
0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
6

0
0

0.
3
6

0
0

0
0

0
0

0
0

C
5B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
05

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
A
F

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
3

0
0

0
0

0
0

0
0

0
0

0
0

0.
2
3

0
0

0
.7
4

0.
09

0
0

0
0

0
0

0.
0
6

0
0

0
0
.8
5

0
0.
4
6

0
0.
96

0
0
.9
6

0

C
B
S

0
0

0
0

0
0

0
0

0.
04

0
.5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
IC

0
.0
3

0
0

0
0

0
0

0
0

0
0

0.
21

0
0

0
0.
2
9

0
0

0
0

0
0.
03

0
0.
33

0
0

0
0.
01

0
0.
0
3

0
0

0
0

0
0

0
0

0
.0
2

0.
0
1

0
0.
14

0
0

0
0

0
0

0
0

0
.5
7

C
Y
M

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0.
01

0.
03

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
G
M

0
0

0
0

0
0.
35

0
0

0.
09

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
02

0.
27

0.
02

0.
01

0
0

0
0

0
.0
5

0
0.
03

0
0

0
0

0
0.
0
1

0
0

0.
4
3

0
.1
5

0
0

0
0

0
0

0

FA
B

0
0

0
0

0
0

0
0.
02

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
3

0
0

0
0

0
0

0
0

FA
M

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
01

0
0

0.
94

0
0

0
0

0
0

0.
04

0
0

0
0
.0
9

0
0

0
0

0
0

0.
6
4

0
0

0
0

0

G
LM

0
0

0
0

0.
22

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
01

0.
01

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
1

0
0

0
0

0

G
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
O
M

0
0

0
0

0
0

0
0.
19

0
0

0
0

0
0

0
0.
0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
SM

0
0
.3
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
33

0
0

0
0

0
0

0.
34

0.
01

0.
01

0
0.
07

0.
2
9

0
0

0
0.
08

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G
LG

0
0

0.
5

0
0.
03

1
0

0.
01

0
0

0
0

0
0

0
0.
0
3

0
0

0
0

0
0.
97

0
0

0
0

0.
07

0.
94

0.
0
1

0
0

0
0.
83

0
0

0
0

0
0

0
0

0.
29

0.
1
2

0
0

0
0

0
0

0
0

G
D
M

0
.1
5

0
.0
2

0
0.
55

0.
01

0
0

0
0

0
0.
27

0
0
.4
3

0
0

0
0

0
0

0.
99

0
0

1
0

0
0.
86

0.
03

0
0

0.
0
2

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0.
0
1

0
0

0
0

0

H
IM

0
.0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

LY
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
19

0
0

0
0.
0
5

0
0

0
0

0
0

0
0

0
0.
0
2

0
0

0
0

0
0

0
0

0.
02

0
0

LY
D

0
0

0
0

0
0.
64

0
0

0
0

0
0

0
0

0
0.
0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
3

0.
1
5

0
0

0
0
.3
8

0
.9
6

0.
0
3

0
0

0.
05

0
0

M
EM

0
0
.3
4

0.
02

0
0

0
0

0.
02

0.
35

0
1

0
0

0
0

0.
0
4

0.
03

0
0

0
0

0
0

0.
1

0
0.
33

0
0

0
0

0
0

0
0.
08

0
0

0
0

0
0

0
0.
07

0.
0
3

0
0

0
0

0
0

0
.0
4

0
.8
4

N
N
M

0.
2

0
0

0.
45

0
0

0
0

0
0

0
0

0
.5
2

0
0

0
0

0
0

0
0

0
0

0
0.
49

0
0

0
0.
0
3

0
0

0
0

0
0.
03

0
0

0
0
.5
7

0
0

0
0

0
0

0
0

0
0

0
0

N
IM

0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
05

0
0

0
0

0
0

0
0

0
0
.3

0
0

0
.6
7

0
0.
03

0.
56

1
0

1
0

0
0
.0
9

0.
01

0
0
.3
3

0
0

0
0

0
.6

0
0
.1
6

N
SM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
9

O
C
P

0
0

0
0

0.
36

0
0

0
0

0
0

0
0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
02

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

O
X
P

0
0
.0
6

0
0

0
0

0
0.
43

0.
02

0
0

0
0
.0
4

0
0

0
0

0
0

0
1

0
0

0.
35

0
0.
03

0
0

0.
1
1

0.
3
4

0
0
.0
3

0
0.
08

0
0

0
.5
7

0
0

0.
0
7

1
0

0
0

0
0.
0
3

0
0

0.
54

0
0

P
C
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
9

0
0

0
0

0
0

0
0

0
0.
14

0
0

0.
0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
1
4

0
0

0
0

0
0

0
0

P
P
P

0
.0
6

0
0

0
0.
08

0
0

0.
01

0.
05

0
0.
09

0
0

0
0

0.
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1
4

0
0.
61

0
.1

0
0
.0
4

0
0
.2
3

0
0

0
0

0
0
.0
4

0.
1
7

0
0

0.
51

0
0

P
EB

0
0
.0
1

0
0

0
0

1
0.
11

0
0.
06

0.
02

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

P
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
03

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
TT

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
H
O

0
0.
5

0
0

0
0

1
0

0.
36

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
14

0
0

0
0

0
0
.1
1

0
0

0
0

0
0

0
0

0
0

0.
8
8

0
0

0
1

0
0

0
0

P
A
P

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0.
6
6

1
0

0
0

0
0

0
0

0
0.
7
1

0
0

0
0
.2
9

0
0.
3
4

0
0

0
0

0

P
C
M

0
.0
2

0
0

0
0.
07

0
0

0
0.
82

0
0

0
0

0
0

0
0

0
0.
95

0.
01

0
0

0
0

0
0

0
0.
01

0.
4
8

0.
0
8

0
0
.2
2

0
0

0
0

0
0

0
.0
2

0.
2
7

0
0.
78

0
0

0
0

0
1

0
0

0

P
U
M

0
.0
3

0
0

0
0

0
0

0
0.
02

0
0
.6

0
0

0
0

0
0

0.
88

1
0

0
0

0
0

0
0

0.
24

0
0.
1
9

0.
0
3

0
0

0
0.
6

0.
86

0
0

0
0

0.
0
2

0
0.
01

0
0

0
0

0
0

0
0

0

P
M
M

0.
1

0
.0
1

0
0

0
0

0
0.
36

0
0

0
0

0
0

0
0

0
0.
11

0
0

0
0

1
0.
09

0
0

0
0

0.
0
2

0
0

0
0

0
0.
11

1
0

0
0

0.
4
2

0
0.
64

0
0

0
0

1
0

0
0

0

P
V
M

0
0

0
0

0.
24

0
0

0
0

0
0

0
0

0
0

0.
0
1

0.
04

0
0

0
0

0
0

0
0

0
0.
04

0.
03

0.
0
1

0
0

0
0

0
0

0
0

0
0
.0
4

0
0

0
0.
0
1

0
0

0
0

0
0

0
0

R
C
C

0
0

0
0

0
0

0
0

0
0

0.
02

0.
02

0
0

1
0

0
0

0
0

0
0

0
0

0.
17

0
0

0
0

0.
3
1

1
0

0
0

0
0

0
0

0
0.
0
1

0
0

0
0

0
0.
0
2

0
0

0
0

0
.3
5

R
IM

0
.0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
IB

0
0

0
0

1
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0

R
N
A

0
0

0
1

0
0

0
0

0
0

0
0

0
.9
6

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0.
04

0
0

0

SA
M

0
0

0
0

0
0.
01

0
0

0.
25

0.
06

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
02

0
0

0
0.
4
2

0
0

0
0.
08

0
0

0
0

0
0.
1
4

0
0

0
0

0
0

0
0

0
0

0

SU
M

0
0

0
0

0
0

0
0

0
0.
01

0
0

0
0

0
0.
4
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TH
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
1
4

0
0

0
0

0

TR
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TY
M

0
0

0
0

0
0

0
0.
47

0
0.
31

0
0

0
0

0
0

0
0

0
0

0
0.
6

0
0.
64

0
0

0
0

0
0.
0
1

0
0

0
0

0.
08

0
0

0
0
.0
1

0
0

0.
06

0
0

0
0.
0
1

0
0

0
0

0

U
B
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

U
C
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0.
04

0
0

0
0.
2
1

0.
0
2

0
0
.0
4

0
0

0.
06

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

V
LB

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
21

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

V
LD

0
0

0
0

0
0

0
0.
04

0
0

0
0.
77

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0.
0
5

0
0

0
0

0
0.
1
4

0
0

0
0

0

F
ig

ur
e

C
.1

9:
Po

st
er

io
r

ed
ge

pr
ob

ab
ili

tie
s

us
in

g
th

e
N

S
w

ith
51

no
de

s
an

d
20

00
0

ite
ra

tio
ns

w
he

n
th

e
ne

tw
or

k
le

ar
ne

d
by

th
e

H
C

S
is

th
e

in
iti

al
ne

tw
or

k.

206 Appendix C. Applications

A
B
C
A
A
M

A
TB

A
P
M

C
5
B

C
A
F

C
B
S

C
IC

C
Y
M

D
G
M

FA
B

FA
M

G
LM

G
H
M

G
O
M

G
SM

G
LG

G
D
M

H
IM

LY
B

LY
D

M
EM

N
N
M

N
IM

N
SM

O
C
P

O
X
P

P
C
B

P
P
P

P
EB

P
H
M

P
TT

P
H
O

P
A
P

P
C
M

P
U
M

P
M
M

P
V
M

R
C
C

R
IM

R
IB

R
N
A

SA
M

SU
M

TH
M

TR
M

TY
M

U
B
B
U
C
M

V
LB

V
LD

A
B
C

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0

A
A
M

0
0

0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
TB

0
0

0
0

0
0

0
0

0
.1

0
.1

0
0

0
0

0
.5

0
0

0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

A
P
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
5
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
A
F

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
.1

1
0

0
0

0
0

0
0

0
0

0
0
.7

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0
.1

0

C
B
S

0
0

0
0

0
0

0
0

0
0
.5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
IC

0
0

0
0

0
0

0
0

0
0

0
.2

0
0

0
0
.1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.4

0
0
.7

C
Y
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
G
M

0
0

0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.5

0
0

0
0

0
0

0

FA
B

0
1

0
0

0
0
.3

0
0

0
0

0
0

0
0

0
0
.1

0
0
.3

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0

FA
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

1
0

0
0

0
0

G
LM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

0

G
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
O
M

0
0

0
0

0
0

0
0

0
0

0
0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
SM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.3

0
0

0
.2

0
0

0
0

0
0
.1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.3

0
0

0
0

0
0

0

G
LG

0
.7

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
.2

0

G
D
M

0
.3

0
0

0
.1

0
0

0
0

0
0

0
0

0
.1

0
0

0
0

0
0
.1

0
.7

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
.1

0
0

0
0
.6

0
0

0
0
.7

0
0

0
0

0
0

0
0

H
IM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

LY
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

LY
D

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.6

0
0

0
0

0
0

M
EM

0
0

0
0

0
0

0
0

0
.9

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
.6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

1

N
N
M

0
0

0
0

0
0

0
0

0
0

0
0

0
.9

0
0

0
0

0
.6

0
0

0
0

0
0

0
.2

0
0

0
0

0
0

0
0

0
.6

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

N
IM

0
0

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
.3

0
0

0
.9

0

N
SM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

0
0
.3

O
C
P

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

O
X
P

0
0

0
0

0
0
.5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0
.4

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0
.9

0
0

0
0
.1

0

P
C
B

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

P
P
P

0
0

0
0

0
0

0
0

0
.7

0
0
.1

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.4

0
.4

0
0

0
0

0
0

0
0

0
0
.2

0
.1

0
0

0
0

0

P
EB

0
0

0
0

0
0

1
0
.2

0
0
.1

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

0
0

P
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
TT

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.4

0

P
H
O

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0

P
A
P

0
1

0
1

0
0

0
.3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.7

0
0

0
0

P
C
M

0
0

0
0

1
0

0
.7

0
0
.3

0
0

0
.3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
.3

0
0

0
0

1
0

0
0

P
U
M

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0

P
M
M

0
0

0
0

1
0

0
0
.9

0
0

0
1

0
0

0
0

0
0
.1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0

P
V
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
.1

0

R
C
C

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
.7

1
0

0
0

0
0

0
0

0
0

0
.4

0
0

0
0
.1

0
0

0
0

0
0

R
IM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
IB

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0

R
N
A

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0

SA
M

0
0

0
0
.9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0

SU
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TH
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TR
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TY
M

0
0

0
0

0
0

0
1

0
0
.4

0
.3

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.3

0
0

0
0

0
0

0
0

0
.5

0
0

0
0

0
0

0
0

0
0

0
0

U
B
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

U
C
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0
.1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

V
LB

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

V
LD

0
0

0
0

0
0

0
0

0
0

0
0
.3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

F
ig

ur
e

C
.2

0:
Po

st
er

io
r

ed
ge

pr
ob

ab
ili

tie
s

us
in

g
th

e
H

A
R

w
ith

51
no

de
s

an
d

20
00

0
ite

ra
tio

ns
w

he
n

th
e

ne
tw

or
k

le
ar

ne
d

by
th

e
G

ES
is

th
e

in
iti

al
ne

tw
or

k.

C.5. Inferring the KEGG Pathways network 207

A
B
C
A
A
M

A
TB

A
P
M

C
5
B

C
A
F

C
B
S

C
IC

C
Y
M

D
G
M

FA
B

FA
M

G
LM

G
H
M

G
O
M

G
SM

G
LG

G
D
M

H
IM

LY
B

LY
D

M
EM

N
N
M

N
IM

N
SM

O
C
P

O
X
P

P
C
B

P
P
P

P
EB

P
H
M

P
TT

P
H
O

P
A
P

P
C
M

P
U
M

P
M
M

P
V
M

R
C
C

R
IM

R
IB

R
N
A

SA
M

SU
M

TH
M

TR
M

TY
M

U
B
B
U
C
M

V
LB

V
LD

A
B
C

0
0

0
1

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0
.1

0
0

0
.7

0
0

0
0
.1

0
0

0
1

0
0

0
0

0
0

0
0

1
0

A
A
M

0
0

0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
TB

0
0
.5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

0
0

A
P
M

0
0

0
0

0
0

0
0

0
0

0
0

0
.9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
5
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

C
A
F

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
.3

0
0

0
0

0
.6

0
0

0
0

0
0

0
1

0
0

0
1

0

C
B
S

0
0

0
0

0
0
.1

0
0

0
.3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
IC

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

C
Y
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

D
G
M

0
0
.5

0
.5

0
0

0
.6

0
0

0
.4

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

0
0

0
0

0
0

0
0

FA
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
0

1
0

0
0

0
0

0
0
.2

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
.2

0
0

0
0

0
0

0
0

FA
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0

G
LM

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
O
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
SM

0
0
.3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

G
LG

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
1

0
1

0
0

0
0
.1

0
0

0
0

0
0

0
1

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

G
D
M

0
.8

0
0

0
0

0
0

0
0

0
0
.6

0
0

0
0

0
0

0
0
.2

0
0

0
1

0
.1

0
0

0
.8

0
0

0
.2

0
0

0
0

0
0

0
.9

0
0

0
0

0
.2

0
0

0
0

0
0

0
0

0

H
IM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

LY
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

LY
D

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.7

0
.3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
1

0
0

0
0

0
0

M
EM

0
0

0
0
.4

0
0
.2

0
0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
.1

0
0

0
0
.9

0
0

0
1

N
N
M

0
.9

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0
.6

0
0
.4

0
0

0
0

0
.4

0
0

0
0

0
.2

0
0

0
0

0
0

0
0
.8

0
0

0
0

0
0

0
0

0

N
IM

0
0

0
0

0
0
.3

0
0

0
0

0
0
.4

0
.1

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.4

0
0

0
.7

0
0

0
1

0
0
.5

0
0

0
0

0
0

0
0

0
0

0
.3

0
0

N
SM

0
0

0
0

0
0

0
0

0
1

0
0

0
.1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

O
C
P

0
0

0
0

0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.7

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

O
X
P

0
0
.1

0
0

0
0

0
.5

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
.2

0
0

0
0

0
.7

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0
.1

0
0

0
0

P
C
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
P
P

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
.3

0
0

0
0

0
0
.4

0
0

0
0

0
0

0
0

0
0

0
.3

0
.6

0
0

0
0
.4

0
0

0
0

0
1

0
0

0
0

0
.9

0
0

P
EB

0
.2

0
0

0
0

0
0
.5

0
.3

0
0

0
.4

0
.1

0
0

0
0

0
0
.8

0
0

0
0
.1

1
0

0
0

0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

P
H
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.7

0
0

0
0

0
0

0
0

0
0

0
0

P
TT

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
H
O

0
0

0
0

0
0

0
0
.2

1
0

0
0

0
.8

0
1

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

P
A
P

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
1

0
0

0
0

0
0

0
1

0
0

0

P
C
M

0
0

0
0

0
.3

0
0
.7

0
0
.4

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
.3

0
0

0
0

0
0

0
0

0
0

0
.5

0
0

0
1

0
0
.2

0
0

P
U
M

0
0
.6

1
0

0
0
.7

0
0

0
0

0
0
.5

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.7

0
0

0
0
.1

0
0

0
0

0
0

0
0

1
0

0
0

P
M
M

0
0

0
0

0
0

0
0
.4

0
0

0
0
.4

0
0

0
0

0
0

0
.6

0
0

0
0

0
.2

0
0

0
0

0
0

0
0

0
0

0
.3

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

P
V
M

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
C
C

0
0

0
0

0
0

0
.3

0
0

0
0

0
0

0
1

0
0

0
0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
IM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
IB

0
0

0
0

1
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0

R
N
A

0
0

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0
.8

0
0

0
0

0
.2

0
0

0
0
.3

1
0

0
1

0
0

0
0

0
0
.9

0
0

0
0

0
0
.4

0
0

SA
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

SU
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TH
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

TR
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

TY
M

0
0

0
0

0
0

0
0
.8

0
0

0
0
.4

0
0
.8

0
0

0
0

0
.1

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.1

0
0

0
0

0
0

0
0

0
0

0
0

U
B
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

U
C
M

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

V
LB

0
0

0
0
.6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
0

0
.5

0
0

0
0

0
0

0
0

0
0

0
0

0

V
LD

0
0

0
0

0
0

0
0

0
0

0
0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

F
ig

ur
e

C
.2

1:
Po

st
er

io
r

ed
ge

pr
ob

ab
ili

tie
s

us
in

g
th

e
H

A
R

w
ith

51
no

de
s

an
d

20
00

0
ite

ra
tio

ns
w

he
n

th
e

ne
tw

or
k

le
ar

ne
d

by
th

e
H

C
S

is
th

e
in

iti
al

ne
tw

or
k.

208

Appendix D

Conclusion

D.1 Sampling CUDGs uniformly

To construct the adjacent graphs NG for a particular CUDG, a sampler considers

all possible edges that can be added or deleted while preserving the condition of

connectivity. (Naturally any missing edge can be added, since adding an edge will

never destroy connectivity) All of these valid adjacent graphs with the original graph

itself are defined as neighbourhoods NG of G. Figure D.1 shows how all possible

addable and deletable edges are identified to obtain the corresponding adjacent

graphs of a particular initial CUDG.

A B

CD

Initial CUDG

A B

CD

ad
da

bl
e

A B

CD ad
dab

le

A B

CD

deletable
A B

CD

deletable

A B

CD

deletable

Figure D.1: All possible addable edges, and all possible deletable edges
given an initial graph.

D.1. Sampling CUDGs uniformly 209

For CUDGs, I considered the space of all such graphs with four nodes; this

graph space consists of only 38 CUDGs. I applies the NS to sample from this graph

space. Consistently, this entire graph space can be visited at least once in only 250

iterations. I next considered the larger but still feasible space of CUDGs with five

nodes; there are 728 such CUDGs. This entire graph space is typically explored

using only 5000 iterations and an execution time of less than a second. The plots

shown in Figure D.2 compare the sampled frequencies to the uniform distribution

as the number of iterations grows. The SSDs at 20 000, 200 000, and 2 000 000

iterations are 0.00006828, 0.00000726 and 0.00000068. It is clear that the SSDs are

converging to 0 as the number of iterations increases, validating both the algorithm

and the software.

Figure D.2: Neighbourhood Sampler (Red) vs Uniform Distribution
(Blue) for CUDGs. From top to bottom: with six nodes using 500 000,

5 000 000 and 50 000 000 iterations, respectively.

210

Bibliography

1. Keith, J. M., Sofronov, G. Y. & Kroese, D. P. The generalised Gibbs sam-

pler and the neighborhood sampler. In Monte Carlo and Quasi-Monte Carlo

Methods 2006. Springer Berlin Heidelberg 31, 537–547 (2008).

2. Lauritzen, S. L. & Spiegelhalter, D. J. Local computations with probabilities

on graphical structures and their application to expert systems. Journal of

the Royal Statistical Society, Series B (Methodological) 50, 15–224 (1988).

3. Pearl, J. Probabilistic reasoning in intelligent systems: networks of plausible

inference 1st (Morgan Kaufmann Publishers Inc., 1988).

4. Zhang, N. L. & Poole, D. A simple approach to Bayesian network computa-

tions. In Proceedings of the Tenth Canadian Conference on Artificial Intelli-

gence, 171–178 (1994).

5. Park, J. D. & Darwiche, A. Solving mAP exactly using systematic search. In

Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence

(UAI03), 403–410 (2003).

6. Tanner, M. A. Tools for statistical inference: Methods for the exploration of

posterior distributions and likelihood functions (New York: Springer-Verlag,

1993).

7. Smith, A. F. M. & Roberts, G. O. Bayesian computation via the Gibbs sam-

pler and related Markov chain Monte Carlo methods. Journal of the Royal

Statistical Society. Series B 55, 3–23 (1993).

BIBLIOGRAPHY 211

8. Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. Markov chain Monte Carlo

in practice (Boca Raton, FL: Chapman and Hall, 1996).

9. Gilks, W. & Roberts, G. "Strategies for improving MCMC." In W Gilks, S

Richardson, D Spiegelhalter (eds). Markov Chain Monte Carlo in Practice,

Chapman and Hall, Boca Raton, FL. 89–114 (1996).

10. Brooks, S. P. Markov chain Monte Carlo method and its application. Journal

of the Royal Statistical Society 47, 69–100 (1998).

11. Chen, M. H., Shao, Q. M. & Ibrahim, J. G. Monte Carlo methods in Bayesian

computation (New York: Springer-Verlag, 2000).

12. Liu, J. S. Monte Carlo strategies in scientific computing 1st (Springer, 2001).

13. Robert, C. P. & Casella, G. Monte Carlo statistical methods (Springer, 2004).

14. Robert, C & Casella, G. A short history of Markov chain Monte Carlo: Sub-

jective recollections from incomplete data. Statistical Science 26, 102–115

(2011).

15. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller,

E. Equations of state calculations by fast computing machines. Journal of

Chemical Physics 21, 1087–1092 (1953).

16. Markov, A. A. Extension of the law of large numbers to dependent events.

svestia Soc. Phys. Math. Kazan 15, 135–156 (1906).

17. Hastings, W. K. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 57, 97–109. issn: 1464-3510 (1970).

18. Ross, S. M. Stochastic processes 2nd (John Wiley and Sons, 1980).

19. Tierney, L. Markov chains for exploring posterior distributions. Annals of

Statistics 22, 1701–1762 (1994).

212 BIBLIOGRAPHY

20. Bremaud, P. Markov chains: Gibbs fields, Monte Carlo simulation, and queues

(Springer, 2008).

21. Meyn, S. & Tweedie, R. L. Markov chains and stochastic stability 2nd (Cam-

bridge University Press, 2009).

22. Wilmer, E. L., Levin, D. A. & Peres, Y. Markov chains and mixing times

isbn: 978-0-8218-4739-8 (American Mathematical Society, 2009).

23. Gardiner, C. Handbook of stochastic methods: for physics, chemistry and the

natural sciences 3th. isbn: 3540208828 (Springer, 2004).

24. Allen, L. J. S. An introduction to stochastic processes with applications to

biology 2th. isbn: 1-4398-1882-7 (Chapman and Hall, 2010).

25. Krishnamurthy, V. Partially observed Markov decision processes (Cornell Uni-

versity, 2016).

26. Breuer, L. & Baum, D. An introduction to queueing theory and matrix-analytic

methods (Springer Netherlands, 2005).

27. Kulkarni, V. G. Modeling and analysis of stochastic systems 3rd (Chapman

and Hall/CRC, 2016).

28. Häggström, O. Finite Markov chains and algorithmic applications 1st (London

Mathematical Society Student Texts, 2002).

29. Kelly, F. P. Reversibility and stochastic networks. 2B, 21–25 (1979).

30. Neumann, J. V. Various techniques in connection with random digits. National

Bureau of Standard Applied Mathematics Series 12, 36–38 (1951).

31. Devroye, L. Non-uniform random variate generation. Springer (1986).

32. Gilks, W. R. & Wild, P. Adaptive rejection sampling for Gibbs sampling. J.

R. Stat. Soc., Ser. C Appl. Stat. 41, 337–348 (1992).

BIBLIOGRAPHY 213

33. Gilks, W. R. Derivative-free adaptive rejection sampling for Gibbs sampling.

Bayesian Stat. 4, 641–649 (1992).

34. Gilks, W. R., Best, N. G. & Tan, K. K. C. Adaptive rejection Metropolis

sampling within Gibbs sampling. Applied Statistics 44, 455–472 (1995b).

35. Martino, L. & Míguez, J. A generalization of the adaptive rejection sampling

algorithm. Statistics and Computing 21, 633–647 (2011).

36. Chen, Y. Another look at rejection sampling through importance sampling.

Statistics and Probability Letters 72, 277–283 (2005).

37. Marshall, A. W. "The use of multi-stage sampling schemes in Monte Carlo

computations" In Meyer, M.A. (Ed.), Symposium on Monte Carlo Methods.

Wiley, 123140 (1956.).

38. Liu, J. S. Metropolized independent sampling with comparisons to rejec-

tion sampling and importance sampling. Statistics and Computing 6, 113–

119 (1996a).

39. Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by Simulated

Annealing. Science 220, 671–680 (1983).

40. Dowsland, K. A. "Simulated annealing. In modern heuristic techniques for

combinatorial problems Reeves (McGraw-Hill, 1995).

41. Van Laarhoven, P. J. M. & Aarts, E. H. L. Simulated annealing: theory and

applications (Springer, 1988).

42. Aarts, E. H. L. & Korst, J. H. M. Simulated annealing and Boltzmann ma-

chines (John Wiley and Sons, Ltd, 1989).

43. Rutenbar, R. A. Simulated annealing algorithms : an overview. IEEE Circuits

and Devices Magazine 5, 19–26 (1989).

214 BIBLIOGRAPHY

44. Metropolis, N. & Ulam, S. The Monte Carlo method. J. Amer. Statist. Assoc.

44, 335–341 (1949).

45. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis

2nd (Chapman and Hall/CRC, 2003).

46. Congdon, P. Bayesian statistical modeling (John Wiley and Sons, 2001).

47. Congdon, P. Applied Bayesian modeling (John Wiley and Sons, 2003).

48. Congdon, P. A Bayesian models for categorical data (John Wiley and Sons,

2005).

49. Haario, H., Saksman, E. & Tamminen, J. An adaptive Metropolis algorithm.

Bernoulli 7, 223–242 (2001).

50. Diaconisa, P. & Saloff-Coste, L. What do we know about the Metropolis

algorithm? Journal of Computer and System Sciences 57, 20–36 (1998).

51. Casella, G. & George, E. Explaining the Gibbs sampler. The American Statis-

tician 46, 167–174 (1992).

52. Gelman, A. Iterative and non-iterative simulation algorithms Technical Re-

port 347 (University of California, Dept. of Statistics, 1992).

53. Chib, S. & Greenberg, E. Understanding the Metropolis-Hastings algorithm.

The American Statistician 49, 327–335 (1995).

54. Liu, J. S. Monte Carlo strategies in scientific computing (2004).

55. Roberts, G. O., Gelman, A. & Gilks, W. R. Weak convergence and optimal

scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110–120

(1997).

56. Schilling, R. L. Measures, integral and matingales (Cambridge University

Press, 2005).

BIBLIOGRAPHY 215

57. Turchin, V. F. On the computation of multidimensional integrals by the Monte

Carlo method. Theory of Probability and its Applications 16, 720–724 (1971).

58. Smith, R. L. Efficient Monte-Carlo procedures for generating points uniformly

distributed over bounded regions. Operations Research 32, 1296–1308 (1984).

59. Hall, B. LaplacesDemon: Software for Bayesian inference. R package ver-

sion 12.05.07, URL http://cran.r-project.org/web/packages/LaplacesDemon/

index.html. 2012.

60. Lovasz, L. Hit-and-Run mixes fast. Mathematical Programming 86, 443–461

(1999).

61. Lovasz, L. & Vempala, S. Hit-and-Run is fast and fun Technical Report (Mi-

crosoft Research, MSR-TR-2003-05, 2003).

62. Chen, M. & Schmeiser, B. Performance of the Gibbs, Hit-and-Run and Metropo-

lis samplers. Journal of Computational and Graphical Statistics 2, 251–272

(1992).

63. Boneh, A. & Golan, A. Constraints redundancy and feasible region bounded-

ness by random feasible point generator (RFPG) in (Amsterdam, 1979).

64. Romeijn, H. E. & Smith, R. L. Sampling through random walks Technical

Report (The University of Michigan, Department of Industrial and Operations

Engineering, 1990).

65. Schmeiser, B. & Chen, M. On Hit-and-run Monte Carlo sampling for evalu-

ating multidimensional integrals <https://books.google.com.au/books?

id=u9TntgAACAAJ> (Purdue University, Department of Statistics, 1991).

66. Kroese, D. P., Taimre, T. & Botev, Z. I. Handbook of Monte Carlo methods

isbn: 0-470-17793-4 (New York: John Wiley and Sons, 2011).

67. Webb, A. R. & Copsey, K. D. Statistical pattern recognition 3nd (WILEY,

2011).

http://cran.r-project.org/web/packages/LaplacesDemon/index. html
http://cran.r-project.org/web/packages/LaplacesDemon/index. html
https://books.google.com.au/books?id=u9TntgAACAAJ
https://books.google.com.au/books?id=u9TntgAACAAJ

216 BIBLIOGRAPHY

68. Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association 85, 398–

409 (1990).

69. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple

sequences. Statistical Science 7, 457–472 (1992).

70. Geyer, C. J. Evaluating the accuracy of sampling-based approaches to the cal-

culation of posterior moments. In Bayesian Statistics 4 (eds J. M. Bernardo,

J. Berger, A. P. Dawid and A. F. M. Smith), 169–193 (1992).

71. Klein, B. M. State space models for exponential family data PhD thesis (De-

partment of Statistics, University of Southern Denmark, 2003).

72. Gilks, W. R. & Roberts, G. O. Stratigies for improvig MCMC. In Markov

chain Monte Carlo in practice (eds W. R. Gilks, S. Richardson and D. J.

Spiegelhalter), 89–114 (1995).

73. Roberts, G. O. Markov chain concepts related to sampling algorithms. In

Markov chain Monte Carlo in practice (eds W. R. Gilks, S. Richardson and

D. J. Spiegelhalter), 45–57 (1995).

74. Fox, J. Bayesian item response modeling: theory and applications (New York:

Springer, 2010).

75. Brooks, S. P. & Morgan, B. J. T. Automatic starting point selection for func-

tion optimisation. Statist. Comput. 4, 173–177 (1994).

76. Bryan, F. J. M. Randomization and Monte Carlo methods in biology 233–258.

isbn: 978-1-4899-2995-2. doi:10.1007/978-1-4899-2995-2_11 (Springer,

1991).

77. Link, W. A. & Eaton, M. J. On thinning of chains in MCMC. Methods in

Ecology and Evolution 3, 112–115 (2012).

http://dx.doi.org/10.1007/978-1-4899-2995-2_11

BIBLIOGRAPHY 217

78. Raftery, A. E. & Lewis, S. M. Implementing MCMC. In Markov chain Monte

Carlo in practice (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter),

115–130 (1995).

79. Atchade, Y., Fort, G., Moulines, E. & Priouret, P. Adaptive Markov chain

Monte Carlo: theory and methods, chapter 2. In Bayesian Time Series Models,

32–51 (2011).

80. Swendsen, R. H. & Wang, J. S. Non-universal critical dynamics in Monte

Carlo simulation. Physical Review Letters 58, 86–88. (1987).

81. Merrilee, H. Difficulties in the use of auxiliary variables in Markov chain Monte

Carlo methods. Statistics and Computing 7, 35–44 (1997).

82. Geweke, J. Evaluating the accuracy of sampling based approaches to the cal-

culation of posterior moments. Bayesian Statistics 4, 169–193 (1992).

83. Cowles, M. K. & Carlin, B. P. Markov chain Monte Carlo convergence diag-

nostics: a comparative review. J. Amer. Statist. Assoc. 91, 883–904 (1996).

84. Brooks, S. P. & Gelman, A. General methods for monitoring convergence of

iterative simulations. Journal of Computational and Graphical Statistics 7,

434–455 (1997).

85. Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diag-

nostic and output analysis for MCMC. R News 6, 7–11 (2006).

86. Smith, B. J. boa: An R package for MCMC output convergence assessment

and posterior inference. Journal of Statistical Software 21, 1–37 (2007).

87. Heidelberger, P. & Welch, P. Simulation run length control in the presence of

an initial transient. Operations Research 31, 11091144 (1983).

88. Neapolitan, R. E. Learning Bayesian networks (Prentice-Hall, Inc., 2003).

89. Bishop, C. M. Pattern recognition and machine learning 1st (Springer, 2006).

218 BIBLIOGRAPHY

90. Mittal, A. Bayesian network technologies: applications and graphical models

2nd (IGI Global, 2007).

91. Barber, D. Bayesian reasoning and machine learning 1st (Cambridge Univer-

sity Press, 2012).

92. Kjaerulff, U. B. & Madsen, A. L. Bayesian networks and influence diagrams:

a guide to construction and analysis 2nd (Springer, 2013).

93. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis

3rd (Chapman and Hall/CRC, 2013).

94. Friedman, N., Linial, M., Nachman, I. & Peer, D. Using Bayesian networks to

analyze expression data. Journal of Computational Biology 7, 601–620 (2000).

95. Friedman, N. Inferring cellular networks using probabilistic graphical models.

Science 303, 799–805 (2004).

96. Beinlich, I., Suermondt, H., Chavez, R. & Cooper, G. The ALARM Monitor-

ing System: A case study with two probabilistic inference techniques for belief

networks. In Proceedings of the Second European Conference on Artificial In-

telligence in Medicine (AIME 89). Lecture Notes in Medical Informatics 38,

247–256 (1989).

97. Abramson, B., Brown, J., Edwards, W., Murphy, A. & Winkler, R. L. Hail-

finder: A Bayesian system for forecasting severe weather. International Jour-

nal of Forecasting 12, 57–71 (1996).

98. Pearl, J. Causality 2nd (Cambridge University Press, 2009).

99. Russell, S. J. & Norvig, P. Artificial intelligence: a modern approach 3rd

(Prentice Hall, 2009).

100. Pe’er, D. Bayesian network analysis of signalling networks: A primer. Science

Signaling 281, 14 (2005).

BIBLIOGRAPHY 219

101. Chickering, D. M., Heckerman, D. & Meek, C. Large-sample learning of Bayesian

networks is NP-hard. Journal of Machine Learning Research 5, 287–1330

(2004).

102. Robinson, R. Counting labeled acyclic digraphs. In New Directions in the

Theory of Graphs, 239–273 (1973).

103. Lee, C. Y. An algorithm for path connections and its applications. Electronic

Computers, IRE Transactions. EC 10, 346–465 (1961).

104. Heckerman, D., Geiger, D. & Chickering, D. M. Learning Bayesian networks:

the combination of knowledge and statistical data. Machine Learning 20,

197–243 (1995).

105. Riggelsen, C. MCMC learning of Bayesian network models by Markov blan-

ket decomposition in Proceedings of the 16th European Conference on Ma-

chine Learning (Springer-Verlag, Porto, Portugal, 2005), 329–340. isbn: 3-

540-29243-8, 978-3-540-29243-2. doi:10.1007/11564096_33. <http://dx.

doi.org/10.1007/11564096_33>.

106. De Campos, L. M. & Castellano, J. G. Bayesian network learning algorithms

using structural restrictions. International Journal of Approximate Reasoning

45, 233–254 (2007).

107. Ebert-Uphoff, I. Measuring connection strength and link strengths in discrete

Bayesian networks Technical Report (Georgia Institute of Technology, 2007).

108. Ram, R. & Chetty, M. MCMC based Bayesian inference for modeling gene

networks in Proceedings of the 4th IAPR International Conference on Pattern

Recognition in Bioinformatics (Springer-Verlag, Sheffield, UK, 2009), 293–

306. isbn: 978-3-642-04030-6. doi:10.1007/978-3-642-04031-3_26. <http:

//dx.doi.org/10.1007/978-3-642-04031-3_26>.

http://dx.doi.org/10.1007/11564096_33
http://dx.doi.org/10.1007/11564096_33
http://dx.doi.org/10.1007/11564096_33
http://dx.doi.org/10.1007/978-3-642-04031-3_26
http://dx.doi.org/10.1007/978-3-642-04031-3_26
http://dx.doi.org/10.1007/978-3-642-04031-3_26

220 BIBLIOGRAPHY

109. Schmidt, J. M. A simple test on 2-vertex and 2-edge-connectivity. Information

Processing Letters 113, 241–244 (2013).

110. Friedman, N., Nachman, I. & Pe’er, D. Learning Bayesian network struc-

ture from massive datasets: the sparse candidate algorithm in Proceedings of

the Fifteenth Conference on Uncertainty in Artificial Intelligence (Stockholm,

Sweden, 1999), 206–215.

111. De Campos, L. M. & Castellano, J. G. On the use of restrictions for learning

Bayesian networks in Godo L. (eds) Symbolic and Quantitative Approaches to

Reasoning Uncertainty. Lecture Notes in Computer Science 3571 (Springer,

Berlin, Heidelberg, 2005), 174–185.

112. Bollobas, B. Modern graph theory (New York,Springer-Verlag, 1998).

113. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to

algorithms 2nd (MIT Press and McGraw-Hill, 2001).

114. Opsah, T., Agneessens, F. & Skvoretz, J. Node centrality in weighted net-

works: Generalizing degree and shortest paths. Methodology And Computing

In Applied Probability 32, 245 (2010).

115. Frigyik, B. A., A., K. & Gupta, M. R. Introduction to the Dirichlet distribution

and related processes Technical Report (University of Washington, 2010).

116. Hrycej, T. Gibbs sampling in Bayesian networks. Artificial Intelligence 46,

351–364 (1990).

117. Cousins, S. B., Chena, W. & Frisse, M. E. A tutorial introduction to stochastic

simulation algorithms for belief networks. Artificial Intelligence in Medicine

5, 315–340 (1993).

118. Dagum, P. & Horvitz, E. A Bayesian analysis of simulation algorithms for

inference in belief networks. Networks 23, 499–516 (1993).

BIBLIOGRAPHY 221

119. Dagum, P. & Luby, M. An optimal approximation algorithm for Bayesian

inference. Artificial Intelligence 93, 1–27 (1997).

120. Liang, F. & Zhang, J. Learning Bayesian networks for discrete data. Compu-

tational Statistics and Data Analysis 53, 865–876 (2009).

121. Madigan, D. & York, J. Bayesian graphical models for discrete data. Interna-

tional Statistical Review 63, 215–232 (1995).

122. Giudici, P. & Castelo, R. Improving Markov chain Monte Carlo model search

for data mining. Machine Learning 50, 127–158 (2003).

123. Friedman, N. & Koller, D. Being Bayesian about network structure. A Bayesian

approach to structure discovery in Bayesian networks. Machine Learning 50,

95–125 (2003).

124. Ellis, B. & Wong, W. H. Learning causal Bayesian network structures from

experimental data. Journal of the American Statistical Association 103, 778–

789 (2008).

125. Niinimki, T., Parviainen, P. & Koivisto, M. Partial order MCMC for structure

discovery in Bayesian networks in Proceeding of the Twenty-Seventh Interna-

tional Joint Conference on Uncertainty in Artificial Intelligence (2012).

126. Grzegorczyk, M. & Husmereier, D. Improving the structure MCMC sampler

for a Bayesian networks by introducing a new edge reversal move. Machine

Learning 71, 265–305 (2008).

127. Koivisto, M. & Sood, K. Exact Bayesian structure discovery in Bayesian net-

works. Journal of Machine Learning Research 5, 549–573 (2004).

128. Masegosa, R. & Moral, S. New skeleton-based approaches for Bayesian struc-

ture learning of Bayesian networks. Applied Soft Computing 13, 1110–1120

(2013).

222 BIBLIOGRAPHY

129. Ramoni, M. & Sebastiani, P. Learning conditional probabilities from incom-

plete datasets: an experimental comparison in Proceeding of the Seventh In-

ternational Workshop on Artificial Intelligence and Statistics (Heckerman, D.

and Whittaker, J. (eds). Morgan Kaufmann, 1999).

130. Wong, M. L. & Guo, Y. Y. Learning Bayesian networks from incomplete

datasets using a novel evolutionary algorithm. Decision Support Systems 45,

368–383 (2008).

131. Koller, D. & Friedman, N. Probabilistic graphical models: principles and tech-

niques (MIT Press, 2009).

132. Brownlee, J. Clever algorithms: nature-inspired programming recipes 1st. isbn:

978-1446785065 (LULU, 2012).

133. Daly, R., Shen, Q. & Aitken, S. Learning Bayesian networks: approaches and

issues. The Knowledge Engineering Review 26, 99–157 (2011).

134. Castillo, L. P. & Wrobel, S. A comparative study on methods for reducing

myopia of hill-climbing search in multirelational learning in Proceedings of

the Twenty-first International Conference on Machine Learning 3571 (ACM,

Banff, Alberta, Canada, 2004).

135. Chickering, D. M., Geiger, D. & Heckerman, D. Learning Bayesian networks:

search methods and experimental results. In Learning from Data: Artificial

Intelligence and Statistics V (eds Fisher, D. and Lenz, H.-J.) Lecture Notes

in Statistics 112, 112–128 (1996).

136. Montermanni, R., Moon, J. N. J. & Smith, D. H. An improved tabu search

algorithm for the fixed-spectrum frequency-assignment problem. IEEE Trans-

actions on Vehicular Technology 52, 891–901 (2003).

137. Glover, F. Tabu Search - Part 1. ORSA Journal on Computing 1, 190206

(1989).

BIBLIOGRAPHY 223

138. Glover, F. Tabu Search - Part 2. ORSA Journal on Computing 2, 432 (1990).

139. He, Z., Wang, N. & Liu, R. in. Chap. The multi-mode capital-constrained net

present value problem (Springer, 2015). isbn: 978-3-310-05442-1.

140. Margaritis, D. Learning Bayesian network model structure from data PhD

thesis (Carnegie Mellon University, 2003).

141. Margaritis, D. & Thrun, S. Bayesian network induction via local neighborhoods

Technical Report (DTIC Document, 2000).

142. Burnett, M. Blocking brute force attacks. UVA Computer Science (2007).

143. Paar, C., Pelzl, J. & Preneel, B. Understanding Cryptography: a textbook for

students and practitioners (Springer, 2010).

144. Sedgewick, R. & Wayne, K. Bridge.java from 4.1 undirected graphs 2016.

<algs4.cs.princeton.edu/41graph/Bridge.java.html>.

145. Gilbert, E. N. Random graphs. Annals of Mathematical Statistics 30, 1141–

1144 (1959).

146. Erdős, P. & Renyi, A. On random graphs. Publicationes Mathematicae 6,

290–297 (1959).

147. Jordan, J. The degree sequences and spectra of scale-free random graphs.

Random Structures Algorithms 29, 226–242 (2006).

148. Britton, T., Deijfen, M. & Martin-Lof, A. Generating simple random graphs

with prescribed degree distribution. J. Stat. Phys. 124, 1377–1397 (2006).

149. Newman, M. E. J. Random graphs with clustering. Phys. Rev. Lett. 103,

058701 (2009).

150. Chen, N. & Olvera-Cravioto, M. Directed random graphs with given degree

distributions. Stoch. Syst. 3, 147–186 (2013).

algs4.cs.princeton.edu/41graph/Bridge.java.html

224 BIBLIOGRAPHY

151. Xiang & Miller, T. A well-behaved algorithm for simulating dependence struc-

ture of Bayesian networks. International Journal of Applied Mathematics 1,

923–932 (1999).

152. Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search

2nd. The MIT Press. (Adaptive Computation and Machine Learning, 2000).

153. Bollobas, B. Random graphs 2nd (Cambridge University Press, 2001).

154. Pinto, P. C., Nagele, A., Dejori, M., Runkler, T. A. & ao M.C. Sousa, J. Using

a local discovery ant algorithm for bayesian network structure learning. IEEE

Transactions on Evolutionary Computation 13, 767–779 (2009).

155. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to

algorithms 3rd (The MIT Press, 2009).

156. Le Phillip, P., Bahl, A. & Unga, L. H. Using prior knowledge to improve

genetic network reconstruction from microarray data. Silico Biology 4, 335–

353 (2004).

157. Scutari, M. Learning Bayesian networks with the bnlearn R package. Journal

of Statistical Software. <arXiv:0908.3817v2> (2010).

158. Sachs, K., Perez, O., Pe’er, D., A., L. D. & Nolan, G. P. Causal protein-

signaling networks derived from multiparameter single-cell data. Science 308,

523–529 (2005).

159. Singh, A. K. et al. Integrative analysis of large scale expression profiles re-

veals core transcriptional response and coordination between multiple cellular

processes in a cyanobacterium. BMC Systems Biology 4 (2010).

160. Chickering, D. M. Optimal structure identification with greedy search. Journal

of Machine Learning Research 3, 507–554 (2002).

arXiv:0908.3817v2

BIBLIOGRAPHY 225

161. Elvitigala, T., Singh, A. K., B., P. H. & Ghosh, B. Bayesian network approach

to understand regulation of biological processes in cyanobacteria in IEEE Con-

ference on Decision and Control (Shanghai, China, 2009).

162. Wilczynski, B. & Dojer, N. BNFinder: exact and efficient method for learning

Bayesian networks. Bioinformatics 25, 286–287 (2009).

163. Bayes Server Ltd Company: Bayes Server package 2011. <www.bayesserver.

com>.

164. BayesFusion, LLC: GeNie & SMILE library <www.bayesfusion.com>.

165. Warnes, G. R. HYDRA: a Java library for Markov chain Monte Carlo. Journal

of Statistical Software (2002).

166. Bonawitz, K., Mansinghka, V. & Cronin, B. Blaise: a toolkit for high-performance

probabilistic inference. CSAIL Digital Library (2007).

167. Murphy, K. Software packages for graphical models - Bayesian networks. Bull.

Int. Soc. Bayesian Anal 14 (2007).

www.bayesserver.com
www.bayesserver.com
www.bayesfusion.com

	Thesis Objectives
	Introduction
	Motivations
	General objectives and original contributions
	Chapters abstracts and objectives

	Markov Chain Monte Carlo Sampling
	Introduction
	Markov chains
	Irreducible, aperiodic and recurrent Markov chain
	Limiting distribution
	Detailed balance property

	Monte Carlo simulation
	Markov chain Monte Carlo methods
	Metropolis-Hastings method
	Neighbourhood Sampler
	Hit-and-Run algorithm

	MCMC sampling issues and convergence diagnostic tests
	MCMC sampling issues
	Convergence diagnostics

	A Review of Bayesian Networks
	Introduction
	Notations and definitions
	Directed acyclic graphs
	Markov property
	Markov blanket
	Conditional probabilities table
	Joint probability function
	Equivalent graphs

	Graph space
	Graph constraints
	Connectivity
	Acyclicity
	Node degree

	Bayesian inference
	Posterior distribution
	Prior distribution
	Bayesian estimation

	Learning Bayesian networks
	Learning Bayesian network parameters
	Learning Bayesian network structures
	MCMC methods for learning Bayesian networks
	Non-MCMC methods for learning Bayesian networks

	Using the MH, NS and HAR to Sample Bayesian Networks
	Introduction
	Enumerating a set of adjacent graphs
	Standard brute-force approach
	Assigning candidate graphs iteratively using the MH, NS and HAR
	Metroplis-Hastings sampler
	Neighbourhood Sampler
	Hit-and-Run sampler
	Constructing a path in a space of graph
	The diameter of a space of graphs
	Algorithm
	Acceptance-rejection ratio in the HAR

	Generating an initial network at random
	Conclusion

	Sampling Bayesian Networks Uniformly
	Introduction
	Methods and model
	Experimental results
	Transition options
	Sampling with |X| iterations
	Sampling BNs uniformly
	Sum of squared differences

	Conclusion

	Adaptive Algorithms for Faster Adjacent Graphs Enumeration and Function Scoring
	Introduction
	Adaptive technique for faster enumeration of adjacent graphs
	Notations, definitions and propositions
	Algorithm and illustrative example
	Standard brute-force vs adaptive algorithm
	Brute-force algorithm: complexity analysis
	Adaptive algorithm: worst-case complexity
	Simulation study: speed-up achieved in practice

	Adaptive function scoring to compute Bayesian network parameters
	Conditional probabilities in a graph
	Exploring dataset
	Big-O expression
	Adaptive scoring function
	Algorithm and illustrative example

	Applications of Bayesian networks in Systems Biology Using the MH, NS and HAR
	Inferring structures from Microarray data
	Background
	Experimental results
	Conclusion

	Inferring the Mendel Peas network
	Background
	Experimental results
	Conclusion

	Inferring the Diagnostic Chest Clinic network
	Background
	Experimental results
	Conclusion

	Inferring the Raf-Signaling Pathway network
	Background
	Experimental results
	Conclusion

	Inferring the KEGG Pathways network
	Background
	Learning initial networks
	Experimental results
	Comparing the performance of MH, NS and HAR based on the same number of iterations
	Comparing the MH, NS and HAR based on time elapsed

	Conclusion

	BNMCMC: A New Graphical User Interface
	Introduction
	Main functions of BNMCMC
	Variables in BNMCMC
	Sampling Bayesian networks uniformly

	Sampling methods in BNMCMC
	Parameters model in BNMCMC
	Limitations of BNMCMC
	User guidelines
	Data-file format
	Steps to run BNMCMC
	Modular design

	Illustrative practical example
	Conclusion

	Conclusion
	Scope of the thesis
	Findings summary
	Future work
	Possible update to BNMCMC
	Mathematical work

	Using MCMC Samplers to Sample Bayesian Networks
	Flowchart describing the NS process
	All possible paths within three transitions of a graph of three nodes

	Sampling Bayesian Networks Uniformly
	Checking normality

	Applications
	Inferring structures from Microarray network
	The true structure of Microarray network
	The CPTs of Microarray network

	Inferring the Mendel Peas network
	The CPTs of Mendel network
	Summary statistics
	Mendel Peas network based on adding and deleting edges

	Inferring the Diagnostic Chest network
	Inferring the Raf-Signaling Pathway network
	Twelve random initial networks
	Log posterior for 36 chains and 10,000 iterations each
	All edge posteriors for Raf-Signaling network
	Metropolis-Hastings sampler
	Hit-and-Run sampler
	Neighbourhood Sampler

	Inferring the KEGG Pathways network
	More simulation run using the MH sampler
	Figures of best scoring networks

	Conclusion
	Sampling CUDGs uniformly

	Bibliography

