
DAG: A General Model for Privacy-Preserving Data Mining

by

Sin Gee Teo, M.Eng.(Software)

Thesis

Submitted by Sin Gee Teo

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: Dr. Vincent Cheng-Siong Lee

Associate Supervisor: Dr. Jianneng Cao

Clayton School of Information Technology

Monash University

May, 2016

Notice 1

Copyright c© Sin Gee Teo (2016). Except as provided in the Copyright Act 1968, this

thesis may not be reproduced in any form without the written permission of the author.

Notice 2

Copyright c© Sin Gee Teo (2016). Except as provided in the Copyright Act 1968, this

thesis may not be reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for third-

party content included in this thesis and have not knowingly added copyright content to

my work without the owner’s permission.

For God, the almighty and my family members.

iii

Contents

List of Tables . viii

List of Figures . ix

Acknowledgments . xiii

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Objectives and Contributions . 3

1.3 List of Publications and Technical Reports 6

1.4 Thesis Organization . 7

2 Background . 8

2.1 Semi-Homomorphic Encryption (SHE) . 9

2.1.1 Paillier Encryption Scheme . 9

2.1.2 Goldwasser-Micali Encryption Scheme 12

2.1.3 ElGamal Encryption Scheme . 14

2.1.4 Boneh-Goh-Nissim Encryption Scheme 16

2.2 Fully-Homomorphic Encryption (FHE) . 19

2.3 Oblivious Transfer . 21

2.4 Secure Multi-party Computation (SMC) . 23

2.5 Secure Multi-party Computation Models . 24

2.5.1 Yao’s Circuit Model . 24

2.5.2 Arithmetic Circuit Model . 25

2.5.3 Homomorphic Cryptography Model 27

2.6 Two Adversary Models of SMC . 27

2.6.1 Privacy w.r.t Semi-Honest Behavior 29

2.6.2 Privacy w.r.t Malicious Behavior . 30

iv

2.7 Discussion . 32

3 A Survey of Privacy-Preserving Data Mining 34

3.1 Secure Building Blocks . 39

3.1.1 Secure Sum . 39

3.1.2 Secure Scalar Product . 42

3.1.3 Secure Matrix Multiplication . 45

3.1.4 Secure Set Computation . 46

3.1.5 Secure Permutation . 47

3.1.6 Oblivious Polynomial Evaluation (OPE) 48

3.1.7 Secure Logarithm . 49

3.1.8 Secure Division . 51

3.1.9 Least Significant Bits Gate (LSBs) 53

3.1.10 Fast Garbled Circuit . 54

3.2 Privacy-Preserving Data Mining Algorithms 55

3.2.1 Privacy-Preserving Näıve Bayes Classifier 56

3.2.2 Privacy-Preserving Support Vector Machine 58

3.2.3 Privacy-Preserving Decision Tree . 60

3.2.4 Privacy-Preserving Association Rule Mining 63

3.2.5 Privacy-Preserving Clustering . 64

3.2.6 Other Privacy-Preserving Data Mining Algorithms 66

3.2.7 Discussion . 66

3.3 Other Privacy Preservation Techniques . 68

4 DAG: A General Model for Privacy-Preserving Data Mining 70

4.1 Directed Acyclic Model (DAG) . 72

4.1.1 Secure Addition . 73

4.1.1.1 The Protocol Analysis . 73

4.1.2 Secure Minus . 73

4.1.2.1 The Protocol Analysis . 74

4.1.3 Secure Multiplication . 75

4.1.3.1 The Protocol Analysis . 77

4.1.4 Secure Bit-Length . 79

v

4.1.4.1 The Protocol Analysis . 82

4.1.5 Secure Division . 83

4.1.5.1 The Protocol Analysis . 86

4.1.6 Secure Log . 89

4.1.6.1 The Protocol Analysis . 92

4.1.7 Secure Power . 94

4.1.7.1 The Protocol Analysis . 98

4.1.8 Secure Max . 101

4.1.8.1 The Protocol Analysis . 103

4.1.9 Secure Max Location . 105

4.1.9.1 The Protocol Analysis . 107

4.1.9.2 The Protocol Extension . 108

4.2 The DAG Model Analysis . 109

4.3 Experiment and Discussion . 114

4.4 Chapter Summary . 116

5 Privacy-Preserving Classification Algorithms by DAG 117

5.1 Support Vector Machine (SVM) . 118

5.1.1 Algorithm . 119

5.1.2 Privacy-Preserving Support Vector Machine (PPSVM) 121

5.1.3 Security Analysis and Complexity Analysis 123

5.1.4 Experiment and Discussion . 124

5.2 Kernel Regression . 126

5.2.1 Algorithm . 127

5.2.2 Privacy-Preserving Kernel Regression (PPKR) 129

5.2.3 Security Analysis and Complexity Analysis 130

5.2.4 Experiment and Discussion . 132

5.3 Näıve Bayes . 135

5.3.1 Algorithm . 135

5.3.2 Privacy-Preserving Näıve Bayes (PPNB) 136

5.3.3 Security Analysis and Complexity Analysis 143

5.3.4 Experiment and Discussion . 145

vi

5.4 Chapter Summary . 148

6 Privacy-Preserving Traveling Salesman Problem by DAG 149

6.1 Traveling Salesman Problem . 149

6.1.1 Algorithm . 150

6.1.2 Privacy-Preserving Traveling Salesman Problem (PPTSP) 151

6.1.3 Security Analysis and Complexity Analysis 156

6.1.4 Experiment and Discussion . 157

6.2 Chapter Summary . 159

7 Conclusions . 160

7.1 Summary of Research Contributions . 161

7.2 Future Work . 163

vii

List of Tables

4.1 Experiment Parameters to Evaluate Secure Operators 114

5.1 Experiment Parameters for PPKR . 132

5.2 Secure operators in model construction per dataset 143

5.3 Secure operators in model testing per tuple 143

5.4 Time complexities of secure operators . 144

5.5 Communication complexities of secure operators 144

5.6 Experiment Parameters for PPNB . 145

6.1 Experiment Parameters for PPTSP . 157

6.2 Value Initialization in PPTSP . 157

6.3 Performance metrics of PPTSP and NPTSP of 10 walking ants (N=10) . . 158

6.4 Performance metrics of PPTSP with the number of ants 159

viii

List of Figures

3.1 Different data partitions on privacy-preserving data mining 35

3.2 Secure computation of the sum of four parties 40

3.3 Set intersection between Alice and Bob. 46

3.4 Comparison in the Fast Garbled Circuit . 56

3.5 Linear separating hyperplanes by SVM. The support vectors are circled. . . 58

3.6 Datasets of Alice and Bob. The class attribute is “PlayBall”. 60

4.1 Secure multiplication protocol . 74

4.2 Secure bit-length protocol . 79

4.3 Secure division protocol . 85

4.4 Secure log protocol . 91

4.5 Secure power m
n protocol . 95

4.6 Secure max protocol . 102

4.7 Secure max location protocol . 106

4.8 Secure computations on a× log(a+ b). 109

4.9 Secure computations on a1+b1
a2+b2

× (a1 + b1). 110

4.10 Performance of the Secure Operators . 115

5.1 Data in the 4× 4 square matrix. 119

5.2 Performance of the PPSVM . 125

5.3 Kernel Regression with/without Privacy Preservation 134

5.4 Näıve Bayes with/without privacy preservation 147

6.1 Blue filled circles represent cities of Alice and empty circles represent cities

of Bob in Figure 6.1 (a). Examples of walking paths by ants formulated as

an ACO problem in Figure 6.1 (b) and 6.1 (c) 151

6.2 The SMC protocol for Traveling Salesman Problem (PPTSP) 153

ix

Abstract

“Research consists in seeing what everyone else has seen, but thinking what

no one else has thought.” —Albert Szent-Gyorgyi

Rapid advances in automated data collection tools and data storage technology has

led to the wide availability of huge amount of distributed data owned by different parties.

Data mining can use the distributed data to discover rules, patterns or knowledge that

are normally not discovered data owned by a single party. Thus, data mining on the

distributed data can lead to new insights and economic advantages. However, in recent

years, privacy laws have been enacted to protect any individual sensitive information from

privacy violation and misuse. To address the issue, many have proposed privacy-preserving

data mining (PPDM) based on secure multi-party computation (SMC) that can mine the

distributed data with privacy preservation (i.e., privacy protection). However, most SMC-

based solutions are ad-hoc. They are proposed for specific applications, and thus cannot

be applied to other applications directly. Another limitation of current PPDM is with only

a limited set of operators such as +,−,× and log (logarithm). In data mining primitives,

some functions can involve operators such as / and
√

. The above issues have motivated

us to investigate a general SMC-based solution to solve the current limitations of PPDM.

In this thesis, we propose a general model for privacy-preserving data mining, namely

as DAG. We apply a hybrid model that combines the homomorphic encryption protocol

and the circuit approach in DAG model. The hybrid model has been proven efficient in

computation and effective in protecting data privacy via the theoretical and experimental

proofs. Specifically, our proposed research objectives are as follows:

(i) We want to propose a general model of privacy-preserving data mining (i.e., DAG)

that consists of a set of secure operators. The secure operators can support many

mining primitives. The two-party model which is the efficient and effective model

is applied to develop secure protocols in DAG. Our secure operators can provide a

x

complete privacy under the semi-honest model. Moreover, the secure operators are

efficient in computation.

(ii) We will integrate DAG model into various classification problems by proposing new

privacy-preserving classification algorithms.

(iii) To make our DAG model that can support wider applications, we will integrate DAG

into other application domains. We will integrate DAG into ant colony optimization

(ACO) to solve the traveling salesman problem (TSP) by proposing a new privacy-

preserving traveling salesman problem (PPTSP).

In this thesis, we present most results of the objectives mentioned above. The DAG

model is general – its operators, if pipelined together, can implement various functions.

It is also extendable – new secure operators can be defined to expand the functions the

model supports. All secure operators of DAG are strictly proven secure via simulation

paradigm (Goldreich, 2004). In addition, the error bounds and the complexities of the

secure operators are derived so as to investigate accuracy and computation performance

of our DAG model. We apply our DAG model into various application domains. We first

apply DAG into data mining classification algorithms such as support vector machine,

kernel regression, and Näıve Bayes. Experiment results show that DAG generates outputs

that are almost the same as those by non-private setting, where multiple parties simply

disclose their data. DAG is also efficient in computation of data mining tasks. For example,

in kernel regression, when training data size is 683,093, one prediction in non-private

setting takes 5.93 sec, and that by our DAG model takes 12.38 sec. In the experiment of

PPTSP, a salesman can find the approximate optimal traveled distance without disclosing

any city locations in TSP. Various domain applications studies show that our DAG is the

general model yet efficient for secure multi-party computation.

xi

DAG: A General Model for Privacy-Preserving Data Mining

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

Sin Gee Teo
May 27, 2016

xii

Acknowledgments

Pursuing a PhD degree has been given me an incredible journey to discover and find the

solutions for problems. Many research skills have been developed during my PhD years. I

would like to thank many people and organizations who helped me to finish my research

degree possible.

Monash University, Australia and Institute for Infocomm Research, Singa-

pore offered me a scholarship to pursue my higher degree. I had spent two years to do

my research in Monash University, Australia. Another two years, I attached to Institute

for Infocomm Research, Singapore

I would like to express my deep gratitude and appreciation to my supervisors, As-

sociate Professor Vincent Cheng-Siong Lee and Dr. Jianneng Cao. They were

great mentors to me. They also always guided me to improve my research skills especially

in the areas of the paper writing and communication skills which I could convey my ideas

clearly and precisely to my readers. Dr. Cao always patiently reviewed and commented

my conference papers and verified the ideas and the proofs I developed. I was inspired of

our valuable weekly discussions that could lead to discover good solutions of my research

problems. Besides the research, I appreciated that my supervisors gave me good advices

on my future career path. All valuable lessons that I learned from my supervisors will

grow me as a good research scientist in the future.

I would also like to express my special thanks to Dr. Shuguo Han who was a research

scientist in Institute for Infocomm Research, Singapore. Dr. Han is an expert in the field

of secure multi-party computation. He always shared the ideas in solving the difficult

problems of secure multi-party computation. Our discussions had helped me to resolve

many of my research problems in the later stage of my PhD years.

Dr. Shukai Li and Dr. Xiaoli Li are research scientists in Institute for Infocomm

Research, Singapore. They are experts in the field of data mining. They always gave good

advices in solving some of my research problems. Besides, Dr. Xiaoli Li also helped to

review my papers before submitting to the conferences. I would like to express a special

appreciation to Dr. Brian Jenney. He is willing to spend his valuable time to do a

significant amount of work in proof-reading on my thesis.

Last but not least, I would like to express thanks to Kaiyun Teh, Mathew & Gini

Thomas, Chuenyong Liong, Dr. Tony Luo, Mark Yu, Camilla Chen, Wei Qiu,

Joyce Qiu, Igor & Lydia Wilski, my grandma, my parent and many more who

always supported and encouraged me during my PhD years. I thanked also to my God

(Yahweh) who always gave wisdom, good health and tenacity to me that I could complete

my PhD degree according to the plan.

Thank you all.

xiii

Chapter 1

Introduction

Section 1.1 presents the motivation of a general model for privacy-preserving data mining.

We discuss the research objectives and contributions of this thesis in Section 1.2. The list

of our publications and technical reports is detailed in Section 1.3. In the last section we

present our thesis organization.

1.1 Motivation

In many real-world applications, data are distributed across multiple parties. These parties

have a strong willingness of sharing their data, so as to have a global view of the data and

discover knowledge that cannot be mined from the data of any single party. Distributed

data mining on multi-party datasets can lead to new insights and economic advantages. For

instance, the homeland security (Seifert, 2007) can possibly discover potential terrorists via

the distributed data mining. Another example is that banks can detect money laundering

activities (Vaidya and Clifton, 2004) by which illegal transaction patterns are discovered

by the distributed data mining. The distributed data mining is widely applied in various

domains such as in bioinformatics (Hsu, 2006), risk management (Rud, 2001), business

intelligence (Shmueli et al., 2006), discovery-based science and many more.

However, many parties are not willing to share data that may contain sensitive infor-

mation; e.g., sharing patient medical records may affect a patient insurance coverage or

employment, and sharing financial transactions of a person may cause him to become a

victim to fraud or identify theft. Thus, directly sharing them may violate personal privacy

(Aggarwal and Yu, 2008; Clifton et al., 2002). Government agencies have enacted laws to

protect personal privacy. Well known representatives are HIPAA (Congress, 1996) of the

Unites States and ECHR (ECHR, 2014) of the Europen Union. Therefore, data sharing

for analytics needs to be carried out in a privacy-preserving way. However, there is no

1

CHAPTER 1. INTRODUCTION

100% guarantee that all semi-honest parties will comply to the privacy laws at all times.

We still need techniques to enforce the laws.

Randomization (Agrawal and Srikant, 2000) and secure multi-party computation (SMC)

(Goldreich, 2004) are two common techniques that can enforce the privacy laws. In the

randomization, noises are added to distort the original data in achieving security but lose

accuracy. This technique obviously can reduce the data utility rate especially in affect-

ing data mining result accuracy. SMC is a fundamental field in cryptography. It allows

multiple parties to jointly compute a function over their inputs, while keeping respective

inputs of the parties private. Such a property is very effective in protecting personal pri-

vacy. Thus, SMC can yield higher accuracy at the expense of more communication and

computation costs. SMC has been extensively applied in many data mining algorithms to

protect data privacy, such as decision tree (Vaidya, Clifton, Kantarcioglu and Patterson,

2008), Näıve Bayes (Vaidya, Kantarcioglu and Clifton, 2008), support vector machine (Teo

et al., 2013), and association rule mining (Kantarcioglu and Kardes, 2006).

However, many proposed SMC solutions are ad-hoc and specific to tasks. They cannot

be directly applied to other tasks; e.g., the SMC protocol in privacy-preserving decision

tree (Vaidya, Clifton, Kantarcioglu and Patterson, 2008) is not applicable in a privacy-

preserving support vector machine (Teo et al., 2013). Developing a new SMC protocol

together with the protocol analysis is a time-consuming task. Thus, any reusable SMC pro-

tocol is important that can directly reduce time spent on the protocol. Another limitation

of the current SMC protocols of the privacy-preserving data mining (PPDM) algorithms

is provided only by a limited set of operators such as +,×, and log (logarithm) (Section

3.1). These existing operators are difficult to pipeline together to perform more complex

functions, e.g., functions involving × and log. These operators are also unable to sup-

port some functions in some data mining tasks, e.g., functions involve
√

and /. Hence,

the limitations restrict their scalability. In this thesis, we focus to investigate new secure

operators of SMC that can compute more functions in data mining primitives.

The two-party protocol is an efficient and practical model (Pinkas et al., 2009) for se-

cure multi-party computation (SMC). The circuit approach and the homomorphic encryp-

tion protocol are two common methods used in SMC (Section 2.5). The circuit approach

(Sections 2.5.1 and 2.5.2) can support only limited functions in data mining primitives.

Thus, in this thesis, we use a hybrid model to combine semi-homomorphic encryption

2

CHAPTER 1. INTRODUCTION

(Section 2.1) and the circuit approach to propose efficient and effective secure protocols

of SMC. We use the two-party protocol (e.g., Alice and Bob) to propose a general model

that consists of a set of secure operators for privacy-preserving data mining, namely as

DAG (Chapter 4). The protocol analysis of each secure operator is also discussed in detail

that includes its error analysis and complexity analysis. We apply DAG into various appli-

cation domains. We propose privacy-preserving classification algorithms to solve different

classification problems with privacy preservation by applying DAG (Chapter 5). Lastly, we

also propose to visit the privacy-preserving traveling salesman problem (PPTSP) by DAG

to securely find an optimal approximate traveled distance by a salesman in the traveling

salesman problem (TSP) without disclosing any city locations (Chapter 6).

1.2 Research Objectives and Contributions

The goal of this thesis is to propose a DAG which is a general model for privacy-preserving

data ming over distributed data. A set of secure operators of DAG based on secure multi-

party computation (SMC) will be defined and added to DAG based on the security require-

ment of a secure operator (Definition 4.1). Our secure operators can be pipelined together

to perform more complex functions in data mining primitives. In addition, a new operator

derived based on Definition 4.1 can be added into the DAG model to support more func-

tions in the future. We need to prove secure operators that are efficient in computation and

effective in protecting data privacy. We will strictly prove the security of secure operators

of the DAG model based on the semi-honest model via simulation paradigm (Goldreich,

2004). Furthermore, the error bounds and the complexities of the secure operators will

be derived to investigate accuracy and computation performance of our DAG model. The

effective and efficient DAG can determine whether it is applicable to many time-sensitive

applications. Various domain applications integrated with DAG will be examined carefully.

We will first integrate DAG with different classification algorithms. Subsequently, we will

integrate DAG in other application domain. Our DAG model is general and extendable yet

efficient, and potentially can be applied in wider applications. Specifically, in this thesis:

(i) In Chapter 4, we propose a DAG which a general model for privacy-preserving data

mining. Our DAG consists of 3 types of nodes: source, sink, and operator. Source

nodes are private inputs of the parties involved in the tasks. Sink nodes are the

3

CHAPTER 1. INTRODUCTION

outputs of the model. Operators are to provide functions. The nodes in the model

are connected by edges, such that outputs of the upper stream nodes are the inputs

of the downstream nodes. To keep the respective input of each party confidential,

security requirements are enforced on the operators. Specifically, an operator is

formulated as an SMC protocol (Yao, 1986), such that given the private inputs of

multiple parties, the operator allows the involved parties to learn the operator output

while keeping their respective inputs confidential.

(ii) We propose a set of operators of the DAG model based on the two-party protocol of

SMC: secure addition, secure minus, secure multiplication, secure division, secure log

(logarithm), secure power, secure bit-length, secure max and secure max location.

We use a hybrid model that combines semi-homomorphic encryption and the circuit

approach to develop efficient and effective secure operators of DAG. We use the

efficient semi-homomorphic encryption scheme which is proven secure for our secure

operators. The secure bit-length protocol, the secure max protocol and the secure

max location protocol all require value comparison. Therefore, we apply the efficient

integer comparison circuit (CMP) to securely compare values for the protocols. The

secure bit-length is a sub-protocol for the secure division protocol, the secure log

protocol, and also the secure power protocol.

(iii) In the DAG model, each secure operator can perform the function as specific. The

secure operators can be pipelined together to perform more complex functions. Our

secure operators can support integer values and non-integer values. Many homomor-

phic encryption schemes support only integer values. Therefore, we need to convert

a floating value (non-integer value) into an integer value. To preserve the precision

of operator output, we set necessary parameters and apply various techniques, like

Taylor’s series, on input of floating values. The error bound of every single opera-

tor, and also the error bound of the concatenation of the operators are discussed in

detail. It turns out when two operators are concatenated, their accumulated error is

bounded by the linear combination of their respective errors.

(iv) Our secure operators of DAG are strictly proven secure via simulation paradigm. We

also use other security measurements such as computational indistinguishability and

statistical indistinguishability; e.g., the outputs of secure operators are proven secure

4

CHAPTER 1. INTRODUCTION

using the statistical distance. Thus, our secure operators can provide a complete

privacy under the semi-honest model. Moreover, secure operators of DAG are also

evaluated in the experiment. Theoretical and experimental proofs show that our

DAG is efficient in computation and effective in protecting data privacy.

(v) In Chapter 5, we integrate our DAG model into various data mining classification

algorithms: support vector machine (SVM), kernel regression and Näıve Bayes. In

SVM, we assume that data are partitioned arbitrary between two parties (i.e., Alice

and Bob). To construct the global SVM model without disclosing any data of Alice

and that of Bob, we apply secure multiplication of DAG to compute the Gram ma-

trix. We apply secure division of DAG to securely compute the estimated function in

the kernel regression. All training data are split horizontally between Alice and Bob

in the kernel regression. We also apply secure operators of DAG model to build a

classifier model and then use the model to test instances in Näıve Bayes. Again, all

training data are split horizontally between Alice and Bob in Näıve Bayes. The se-

cure operators applying in Näıve Bayes include secure multiplication, secure division,

secure power, and other operators. The security analysis and complexity analysis of

each classification algorithm integrated with DAG are discussed in detail. We evalu-

ate privacy-preserving classification algorithms with different datasets. Experiments

show that privacy-preserving classification algorithms by DAG can obtain almost the

similar mining results by classification algorithms without privacy preservation. In

addition, the DAG model is efficient in computation and effective to protect data pri-

vacy in the data mining tasks. Thus, our DAG model is a general model yet efficient

for privacy-preserving data mining.

(vi) In Chapter 6, we also apply the DAG model into other application area. We integrate

DAG into ant colony optimization (ACO) that uses a probabilistic method (evolution

computation) to solve traveling salesman problem (TSP). To the best of our knowl-

edge, we are first to apply privacy preservation into evolution computation. In TSP,

a salesman requires to find the optimal distance to travel all in a given set of cities.

We assume that cities contain locations which are sensitive. The cities are split

between Alice and Bob. ACO is integrated with DAG that can allow the salesman

to find the approximate optimal distance in visiting all cities without disclosing the

5

CHAPTER 1. INTRODUCTION

locations of Alice and that of Bob. The secure operators applying in ACO include

secure multiplication, secure division, secure power, and other operators. The secu-

rity analysis and complexity analysis of ACO integrated with DAG are discussed in

detail. Lastly, we evaluate privacy-preserving traveling salesman problem (PPTSP)

with different datasets. Experiments show that PPTSP by DAG can obtain almost

the similar optimal traveled distances by ACO without privacy preservation. Thus,

our DAG model can achieve high accuracy and be effective to protect data privacy

in various application domains.

1.3 List of Publications and Technical Reports

In this thesis, our work is contributed to 1 journal (under review), 3 conference papers

and 4 technical reports as follows.

1. Sin G. Teo, Jianneng Cao, Vincent C.S. Lee, “DAG: A General Model for Privacy-

Preserving Data Mining”, submitted to the Journal of IEEE Transactions on

Knowledge and Data Engineering (TKDE) (under review).

2. Sin G. Teo, Jianneng Cao, Vincent C.S. Lee, “DAG: AModel for Privacy Preserving

Computation”, In Proceedings of the 22nd IEEE International Conference on Web

Services (ICWS’15), 289-296, New York, USA, June 27-July 2, 2015.

3. Sin G. Teo, Shuguo Han, Vincent C.S. Lee, “Privacy Preserving Support Vec-

tor Machine Using Non-linear Kernels on Hadoop Mahout”, In Proceedings of the

16th IEEE International Conference on Computational Science and Engineering

(CSE’13), 941-948, Sydney, Australia, 3-5 December, 2013.

4. Sin G. Teo, Vincent C.S. Lee, Shuguo Han, “A Study of Efficiency and Accuracy of

Secure Multiparty Protocol in Privacy-Preserving Data Mining”, In Proceedings of

the 26th IEEE International Conference on Advanced Information Networking and

Applications Workshops (WAINA’12), 85-90, Fukuoka, Japan, 26-29 March, 2012.

5. Sin G. Teo Jianneng Cao, Vincent C.S. Lee, “Secure Log Operator”, Joint Technical

Report between Monash University, Australia and Institute for Infocomm Research,

Singapore.

6

CHAPTER 1. INTRODUCTION

6. Sin G. Teo Jianneng Cao, Vincent C.S. Lee, “Privacy-Preserving Ant Colony in

Distributed Setting”, Joint Technical Report between Monash University, Australia

and Institute for Infocomm Research, Singapore.

7. Sin G. Teo Jianneng Cao, Vincent C.S. Lee, “Privacy-Preserving Multi-party

AntMiner”, Joint Technical Report between Monash University, Australia and In-

stitute for Infocomm Research, Singapore.

8. Sin G. Teo Jianneng Cao, Vincent C.S. Lee, “Improving Data Applicability with

Privacy Preserving SVM using Parallelism and Concurrency”, Joint Technical Re-

port between Monash University, Australia and Institute for Infocomm Research,

Singapore.

1.4 Thesis Organization

This thesis is organized as follows: In Chapter 2, the background knowledge of homomor-

phic cryptosystems, secure multi-party computation (SMC), adversary models of SMC

and related work are presented. Chapter 3 presents a general survey of privacy-preserving

data mining with secure building blocks. We propose a DAG which is a general model that

consists of a set of operators for privacy-preserving data mining in Chapter 4. In Chapter

5, we propose privacy-preserving classification algorithms by DAG to solve different clas-

sification problems with privacy preservation. Ant Colony Optimization integrated with

DAG to solve the traveling salesman problem (TSP) with privacy preservation is presented

in Chapter 6. Lastly, Chapter 7 concludes the thesis and proposes some future work of

our DAG model.

7

Chapter 2

Background

Homomorphic encryption allows specific types of operation to perform on ciphertexts (i.e.,

encrypted messages). The encrypted result of the operations, when decrypted, is equiv-

alent to the result of operations performed on the messages (i.e., plaintexts). Given an

encryption scheme (M,C,K,E,D) where M is the plaintext space, C is the ciphertext

space, K is the key space, and E and D are encryption and decryption algorithms respec-

tively, the plaintext M and the ciphertext C form groups (M, ◦) and (C, ⋄) respectively.

The encryption algorithm E then can apply to M by mapping the group (M, ◦) to the

group (C, ⋄), such that Ek : M 7→ C where k ∈ K can be either a public key (e.g., in a

public-key cryptosystem) or a secret key (e.g., in a secret-key cryptosystem). Thus, the

encryption scheme is homomorphic by

Ek(m1) ◦ Ek(m2) = Ek(m1 ⋄m2), (2.1)

where m1 and m2 are plaintexts in M and k ∈ K. Currently two types of the homo-

morphic encryption have been proposed, semi-homomorphic encryption (SHE) and fully-

homomorphic encryption (FHE).

In this chapter, we first survey semi-homomorphic encryption (SHE) and fully-homomorphic

encryption (FHE) in Sections 2.1 and 2.2, respectively. We discuss oblivious transfer in

Section 2.3. Secure multi-party computation (SMC) is discussed in Section 2.4. We discuss

three SMC models and two adversary models of SMC in Sections 2.5 and 2.6, respectively.

Lastly, we conclude this chapter with discussion in Section 2.7.

8

CHAPTER 2. BACKGROUND

2.1 Semi-Homomorphic Encryption (SHE)

In semi-homomorphic encryption, it basically consists of three functions; key generation,

encryption and decryption. This section discusses four common schemes in the semi-

homomorphic encryption: Paillier Encryption Scheme (Section 2.1.1), Goldwasser-Micali

encryption scheme (Section 2.1.2), ElGamal encryption scheme (Section 2.1.3), and Boneh-

Goh-Nissim Encryption Scheme (Section 2.1.4).

2.1.1 Paillier Encryption Scheme

The Paillier encryption scheme (Paillier, 1999) is a probabilistic public-key encryption

based on the decisional composite residuosity assumption. The assumption states that

finding n-th residue classes is computationally intractable.

Key Generation. In the scheme, key generation can divide into a few steps. Initially

two large prime numbers p and q are randomly and independently selected, such that,

gcd(p · q, (p − 1) · (q − 1)) = 1, (2.2)

where both p and q are equal length and p 6= q. Next step, we compute

n = p · q, λ = lcm(p − 1, q − 1), (2.3)

where lcm is the least common multiple. To allow n that can divide the order of g ∈ Z
∗
n2 ,

the modular multiplicative inverse can be used to check,

υ = (L(gλ(mod n2)))−1(mod n), (2.4)

where L is the function (i.e., L(u) = u−1
n). The output of L is the quotient of u−1

n . The

public and private keys are (n, g) and (λ, υ), respectively; e.g., g = n + 1, λ = ϕ(n) =

(p− 1) · (q − q), and υ = ϕ(n)−1 mod n.

Encryption. Given the public key (g, n), the plaintext message m can be encrypted to

c = gm · rn(mod n2), (2.5)

9

CHAPTER 2. BACKGROUND

where m ∈ Zm and r ∈ Z
∗
n is a random number.

Decryption. The ciphertext c can be decrypted to the message m as follows,

m = L(cλ(mod n2)) · υ(mod n), (2.6)

where the ciphertext c ∈ Z
∗
n2 . In binomial theorem, we can get y = (1 + n)x = 1 +

nx (mod n2) and then x is computed as

x =
y − 1

n
(mod n), (2.7)

where x ∈ Zn. Thus, the function L((1 + n)x(mod n2)) = x (mod n). The ciphertext c

can be decrypted to the plaintext message m,

L(cλ(mod n2)) · υ = L((gmrn)λ(mod n2)) · λ−1

= L((gmλ)(mod n2)) · λ−1

= λ ·m · λ−1 = m (mod n), (2.8)

where g = n+ 1.

Homomorphic Property. Let m1 and m2 be two messages and (pk, sk) (i.e., (public

key, secret key)) be a pair of keys generated by two large prime numbers p and q in Paillier

encryption scheme. We use E[.] and D[.] to denote encryption and decryption functions

respectively, and set n = pq. The messages m1 and m2 can encrypt to E[m1, pk] =

gm1rn1 (mod n) and E[m2, pk] = gm2rn2 (mod n), respectively, where rn1 and rn2 are randomly

selected from Z
∗
n.

� Homomorphic Addition: The product of two ciphertexts of m1 and m2 decrypts

to the sum of m1 and m2 (i.e. m1 +m2), such that

D[sk,E[m1, pk] ·E[m2, pk] (mod n2)] = m1 +m2 (mod n), (2.9)

10

CHAPTER 2. BACKGROUND

where

E[m1, pk] · E[m2, pk] = (gm1rn1)(g
m2rn2)(mod n2)

= (gm1+m2(r1r2)
n)(mod n2)

= E[m1 +m2, pk]. (2.10)

� Homomorphic Multiplication: The ciphertext of m1 raised to the power of m2

decrypts to the product of m1 and m2 (i.e. m1 ·m2), such that

D[sk,E[m1, pk]
m2 (mod n2)] = m1 ·m2 (mod n), (2.11)

where

E[m1, pk]
m2 = (gm1rn1)

m2(mod n2)

= (gm1·m2(rm2
1)n)(mod n2)

= E[m1 ·m2, pk]. (2.12)

Security. The Paillier encryption scheme is semantically secure based on hardness com-

putation of the decisional composite residuosity (DCR) assumption. Let N and z be a

composite and an integer. It is hard to check z is a N -residuo modulo N2 as follows,

z = yn (mod n2), (2.13)

where y is kept secret. Thus, DCR problem is intractable. The scheme also achieves

security against chosen-plaintext attacks (IND-CPA); encrypted messages are indistin-

guishable. However, the scheme has malleability which it can not protect against adaptive

chosen-ciphertext attacks (IND-CCA2). In certain secure applications such as secure vot-

ing and threshold cryptosystems, malleability is a desired property. An improved Paillier

cyrptosystem (Paillier and Pointcheval, 1999) has been proposed to address the above

limitation.

11

CHAPTER 2. BACKGROUND

Threshold Homomorphic Encryption. (Cramer et al., 2001) propose a homomorphic

threshold cryptosystem that creates a Boolean circuit to compute secure functions. The

properties of the homomorphic threshold cryptosystem are in the following,

� Addition of plaintexts: The cryptosystem can easily compute ā+ b̄, where ā and

ā are the encryptions of the plaintexts a and b, respectively.

� Multiplication by a constant: The cryptosystem can easily compute ā ·α, where

ā is the encryption of the plaintext a and α ∈ Zn is a constant integer.

� Proving knowledge of plaintext: Zero-knowledge proof can be used to prove any

encryption of the plaintext.

� Proving knowledge of multiplication: Zero-knowledge proof can be used to

prove the encryption of ā ·α, where ā is the encryption of the plaintext a and α ∈ Zn

is a constant integer.

� Threshold decryption: Given a plaintext a that is encrypted to ā by a correspond-

ing public key, each party can use its own private key to decrypt ā. The sharing of

partial decryptions allows that each party can securely compute a.

(Damg̊ard and Jurik, 2001) first proposed a generalization of the Paillier encryption

scheme to allow the ciphertext in the range of Zns+1 , where s ≥ 1. They then extend the

Paillier cryptosystem based on (Cramer et al., 2001) to a (t, c)-threshold cryptosystem,

where c is the total number of parties in the cryptosystem, and t (1 ≤ t ≤ c) is a threshold.

Let (pk, sk) be a public and private key pair of the Paillier cryptosystem. (Damg̊ard and

Jurik, 2001) applies the efficient secret sharing (Frankel et al., 1998) to decompose sk into

c shares, and distributes each share to one and only one party. The secret sharing ensures

that only t or more parties working together can recover sk (or decrypt a ciphertext

generated by pk). Once the shares are generated, it is safe to delete sk. Some other

variants of the Paillier (t, c)-threshold cryptosystem include (Baudron et al., 2001; Fouque

et al., 2000; Hirt and Sako, 2000).

2.1.2 Goldwasser-Micali Encryption Scheme

The Goldwasser-Micali (GM) encryption scheme (Goldwasser and Micali, 1982) is a public-

key encryption (i.e., a public key and a private key). The scheme can determine whether

12

CHAPTER 2. BACKGROUND

a value x is a square mod N using the factorization (p, q) of N as follows,

xp = x(mod p) 7→ x
p−1
2

p = 1(mod p) (2.14)

xq = x(mod q) 7→ x
q−1
2

q = 1(mod q), (2.15)

where x that meets above two conditions is a quadratic residue mod N . In the following,

we use two parties (i.e., Alice and Bob) to discuss the scheme.

Key Generation. The GM scheme generates keys in a similar way as in the RSA

cryptosystem (Rivest et al., 1978). Alice first generates two large prime numbers p and q

which both are independent of each other. She then computes N = p · q and finds some

non-residue a,

a
p−1
2

p = −1(mod p), a
q−1
2

q = −1(mod q), (2.16)

where the secret key is generated from the factorization (p, q) and the public key is formed

of (a,N).

Encryption. Bob has a message m and he sends m to Alice. m can be represented in

a string of bits (m1, · · · ,ml). Bob first generates a random value bi for each bit mi, such

that

ci = b2i · ami(mod N), (2.17)

where bi is generated from modulo N or gcd(bi, N) = 1. Bob sends the encrypted message

(c1, c2, · · · , cl) to Alice.

Decryption. Alice receives the encrypted message (c1, c2, · · · , cl) from Bob. Alice uses

the factorization (p, q) to determine each of (c1, c2, · · · , cl) that is a quadratic residue;

∀ni mi =

0, if ci is a quadratic residue,

1, otherwise.
(2.18)

The outputs of Alice are the plaintext (m1, · · · ,ml).

13

CHAPTER 2. BACKGROUND

Homomorphic Property. Let c0 and c1 be encrypted bits of m1 and m2 respectively.

We compute c0 and c1,

c0 = b20 · am0(mod N), c1 = b21 · am1(mod N). (2.19)

Then c0 · c1 is

c0 · c1 = (b20 · am0) · (b21 · am1)(mod N)

= (b0b1)
2 · am0+m1(mod N), (2.20)

where m0 + m1 = m0 ⊕ m1 (i.e., exclusive-OR ⊕ for addition modulo 2). It is easily

verified that c0 · c1(mod N) is an encryption of 0 if m0 = 1 and m1 = 1 (i.e., m0 ⊕m1).

Thus, c0 · c1 is the encryption of m0 ⊕m1.

Security. The GM scheme is semantically secure based on hardness to determine the

quadratic residuosity problem modulo N = p · q (composite) where both p and q are

large prime numbers. As given the factorization of N , we can solve the quadratic residue

problem. The disadvantage of the GM scheme is that it is required to encrypt every single

bit of a message which each bit is approximately equivalent to the size of |N |. As a result,

the size of ciphertext is much larger (e.g., several hundred times) than the initial message.

Moreover, in the GM scheme, N needs to be set at least several hundred bits to prevent

factorization attacks. The GM scheme is not a practical and efficient cryptosystem.

2.1.3 ElGamal Encryption Scheme

The ElGamal encryption scheme (Gamal, 1985) is a probabilistic public key encryption.

Any cylic group G can define an encryption scheme based on the Diffie-Hellman key

exhange. Basically the security of the scheme is based on hardness to compute the discrete

logarithms of a certain problem in G. In the following, we use two parties (i.e., Alice and

Bob) to discuss the scheme.

Key Generation. Alice uses a generator g to generate an information, with order q, of

a cyclic group G. She computes

y = gx, (2.21)

14

CHAPTER 2. BACKGROUND

where x ∈ {1, · · · , q−1} is a random number. Alice keeps x as the secret key and discloses

the public key which contains y, q, g, and the information of G.

Encryption. Bob has a message m with the public key (G, q, g, y) of Alice. He first

computes c1 and s as follows,

c1 = gr, s = yr (2.22)

where r ∈ {1, · · · , q−1} is a random number and s is the shared secret. Bob then encrypts

the message m by converting m to m′ which is an element in G (i.e., m′ ∈ G),

c2 = m′ · s. (2.23)

The ciphertext (c1, c2) (i.e., (g
r,m′ ·yr)) is sent to Alice. In a case, one knows m′ that can

be used to find yr. To improve security of the scheme, r should be generated for every

new message.

Decryption. Alice receives the ciphertext (c1, c2). To recover the message m, Alice first

computes the shared secret,

µ = cx1 . (2.24)

and then apply µ to c2 to recover m,

c2 · µ−1 = (m′ · s) · cx1

= m′ · yr · g−xr = m′ · gxr · g−xr = m′ (2.25)

where µ−1 is the inverse of µ in the group G. Note that µ−1 is the modular multiplicative

inverse of µ in the group G/H which H is the multiplicative group of integer modulo n.

Alice can convert m′ into the message m.

In a general, the ELGamal encryption scheme generates an expansion ratio 2:1 from

plaintext message to ciphertext; the scheme can encrypt a single plaintext to many different

ciphertexts. The scheme needs two exponentiations in encryption and one exponentiation

in decryption.

15

CHAPTER 2. BACKGROUND

Homomorphic Property. Let (c11, c12) and (c21, c22) be two encrypted messages of m1

and m2 respectively, under the ELGamal encryption scheme, such that

(c11, c12) = (gr1 ,m1 · yr1), (c21, c22) = (gr2 ,m2 · yr2), (2.26)

where both r1 and r2 are random numbers (i.e, r1, r2 ∈ {1, 2, · · · , q− 1}) and m1,m2 ∈ G.

We can compute

(c11, c12) · (c21, c22) = (c11 · c21, c12 · c22)

= (gr1 · gr2 , (m1 · yr1) · (m2 · yr2))

= (gr1+r2 , (m1 ·m2) · yr1+r2). (2.27)

Above Equation 2.27 has showed that (c11, c12) · (c21, c22) is the encryption of m1 ·m2.

Security. The decisional Diffe-Hellman (DDH) assumption (Boneh, 1998) is a computa-

tional hardness assumption on computing a certain problem that involves discrete loga-

rithms in cyclic group G. Let g be a generator in the multiplicative cyclic group G of order

q. In the assumption, as given ga and gb (a, b ∈ Zq) that are uniformly and independently

selected, it states that gab is like a random value in G. Intuitively the hardness assumption

is based on below two probability distributions that are computationally indistinguishable.

P1 = (ga, gb, gab),P2 = (ga, gb, gc), (2.28)

where a, b, and c are randomly and independently selected from Zq. The ElGamal encryp-

tion scheme based on the DDH assumption is semantically secure. However, the encryption

scheme is unconditionally malleable that an adversary can possibly transform a cipher-

text of the plaintext into another ciphertext of the similar plaintext (chosen-ciphertext

attack). Two improved variants of ElGamal encryption scheme, Cramer-Shoup cryptosys-

tem (Cramer and Shoup, 1998) and DHAES (Abdalla et al., 1999), can provide semantic

security against the chosen-ciphertext attack.

2.1.4 Boneh-Goh-Nissim Encryption Scheme

Boneh-Goh-Nissim (BNG) encryption scheme (Boneh et al., 2005) allows both addition

and multiplication operations with a fixed size of ciphertext. In the scheme, it makes

16

CHAPTER 2. BACKGROUND

multiplication possible where pairings can be specified for elliptic curve. A pairing is a

map, such that

e : G1 ×G2 7→ Gτ , (2.29)

where both G1 and G2 are additive groups, and Gτ is a multiplicative group. For a

generator g ∈ G, P ∈ G1, and Q ∈ G2, e(P,Q) is equivalent to e(Q,P),

e(P,Q) = e(gp, gq) = e(g, g)pq = e(gq, gp) = e(Q,P), (2.30)

where p and q are some integers, P = gp and Q = gq.

Key Generation. BNG generates a quintuple (q1, q2, G,G1, e) with a security parameter

λ ∈ Z
+, where q1 and q2 are two different large prime numbers, G is a cyclic group of

order q1 · q2, and e is a paring map from G × G to G1 (i.e., e : G × G 7→ G1). The

scheme then selects two random generators g and u from G and sets N = q1 · q2 and

h = uq2 . Note that random generator h is the subgroup of G of order q1. The public key

is PK = (N,G,G1, e, g, h) and the secret key is SK = q1 of BNG encryption scheme.

Encryption. A message m consists of integers {0, 1, · · · , T}, where T < q2. For a

simplicity, we set T to 1 here. Using the public key PK, m is encrypted to

C = gmhr ∈ G, (2.31)

where random number r ∈ {1, 2, · · · , N} is selected.

Decryption. The plaintext message m is recovered using the private key SK = q1 of the

scheme. The ciphertext C is decrypted by

Cq1 = (gmhr)q1 = (gq1)m. (2.32)

Discrete logarithm of Cq1 to the base gq1 can be computed. The computation time is

O(
√
T) (0 ≤ m ≤ T) using Pollard’s lambda method (Menezes et al., 1996).

17

CHAPTER 2. BACKGROUND

Homomorphic Property. Let m1 and m2 be two messages and a public key PK be

(N,G,G1, e, g, h). The messages m1 and m2 are encrypted to C1 = gm1hr1 and C2 =

gm2hr2 respectively, where C1, C2 ∈ G and m1,m2 ∈ {0, 1, · · · , T}.

The product of C1 and C2 is the encryption of m1 +m2,

C = C1C2h
r

= (gm1hr1)(gm2hr2)hr = gm1+m2hr1+r2+r, (2.33)

where r1, r2, r ∈ {1, 2, ·, N−1} are random numbers. To get an encryption ofm1m2(modN),

the scheme first defines two bilinear maps, g1 = e(g, g) and h1 = (g, h) where g1 is of order

N and h1 is of order q1. Let α ∈ Z be some unknown and r ∈ ZN be a random number.

Next compute

C = e(C1, C2)h
r
1 ∈ G1

= e(gm1hr1 , gm2hr2)hr1 = e(gm1+αq2r1 , gm2+αq2r2)hr1

= e(g, g)(m1+αq2r1)(m2+αq2r2)hr1 = e(g, g)m1m2+αq2(m1m2+m2r1+αq2r1r2)hr1

= e(g, g)m1m2hr+m1m2+m2r1+αq2r1r2
1 , (2.34)

where r +m1m2 +m2r1 + αq2r1r2 is uniformly distributed in ZN . The encryption C of

m1m2(mod N) is also uniformly distributed where C is in G1 (i.e. C ∈ G1). Thus, the

BGN scheme is additively homomoprhic in G1 for the encryption of the product m1 and

m2 (i.e., m1m2(mod N)).

Security. The BGN scheme is semantically secure based on hardness computation of the

subgroup decision (SD) problem (Boneh et al., 2005). Let p and q be two distinct prime

numbers, and gp ∈ Gp and g ∈ G be two generators where the group G is of composite

order n = pq. The SD problem states that it is hard to distinguish whether a random

element x is from either the subgroup Gp or the full group G. An extensive study on the

SD problem can be found in (Freeman, 2010; Gjøsteen, 2005)

18

CHAPTER 2. BACKGROUND

2.2 Fully-Homomorphic Encryption (FHE)

In fully-homomorphic encryption, it allows to perform more than one operation (addition

or multiplication) of semi-homomorphic encryption. Let P and C be the plaintext space

and ciphtertext space, K be the key spaces, and E[.] and D[.] be encryption function

and decryption function. The encryption scheme is (P,C,K,E,D). Two rings are formed

from the plaintexts and the ciphertexts respectively; a plaintext ring (P,⊕p,⊗p) and a

ciphertext ring (C,⊕c,⊗c). The encryption function E[.] maps the ring P to the ring C

(i.e., Ek : P 7→ C where k ∈ K is either a public key or a secret key), such that

Ek[a]⊕c Ek[b] = Ek[a⊕p b], (2.35)

Ek[a]⊗c Ek[b] = Ek[a⊗p b], (2.36)

where a and b are plaintexts (i.e., a, b ∈ P).

The first breakthrough solution (Gentry, 2009) of fully-homomorphic encryption was

proposed in 2009. In the solution, noise added to encrypted data grows as the number

of addition and multiplication operations increases. As a result, the encrypted data is

indecipherable. Gentry resolves the noise issue by modifying the existing scheme to boot-

strappable. He converts the bootstrappable somewhat encryption scheme into a fully-

homomorphic encryption via a recursive self-embedding. The security of Gentry’s scheme

is based on hardness of two following problems: certain worse-case problems over ideal

lattices and the sparse subset sum problem.

However, in Gentry’ scheme, the computation time and ciphertext size increase sig-

nificantly as the security level increases. Therefore the scheme is impractical to apply

in many applications. Since then, many improved Gentry’s schemes have been proposed

(Brakerski et al., 2012; Coron et al., 2013, 2012; van Dijk et al., 2010; Gentry and Halevi,

2011; Smart and Vercauteren, 2010; Stehlé and Steinfeld, 2010). In this section, we discuss

one of the improved schemes, secret key somewhat homomorphic encryption over integers.

(van Dijk et al., 2010).

Secret Key Somewhat Homomorphic Encryption over Integers. The scheme

consists of three main functions: key generation, encryption and decryption.

19

CHAPTER 2. BACKGROUND

Key Generation. Let secret key ks be an odd integer. ks is selected from some interval

p ∈ [2η−1, 2η] where η is a positive integer.

Encryption. Given a bit m ∈ {0, 1}, m is encrypted to

c = ksq + 2r +m, (2.37)

where the integers q and r are randomly selected from some other defined intervals, and

|2r| < |ks2 |. Note that the ciphertext c (residue modulo ks) and its plaintext have the same

parity.

Decryption. The ciphertext c is decrypted to

(c(mod ks))(mod 2) = (ksq + 2r +m(mod ks))(mod 2)

= 2r +m(mod 2) = m, (2.38)

where the ciphertext c = ksq + 2r +m and ks is the secret key.

Homomorphic property. Let c1 = ksq1 + 2r1 +m1 and c2 = ksq2 + 2r2 +m2 be two

ciphertexts where ks is the secret key, q{1,2}, r{1,2} are randomly selected from some other

defined intervals, and m1 and m2 are plaintexts (i.e., bits). The addition of ciphertexts

c1 + c2 is decrypted to m1 +m2,

c1 + c2 = (q1 + q2)ks + 2(r1 + r2) + (m1 +m2), (2.39)

where r1 + r2 <
ks
2 . Thus, c1 + c2 is equal to

((q1 + q2)ks + 2(r1 + r2) + (m1 +m2)(mod ks))(mod 2) = m1 +m2. (2.40)

The product of ciphertexts c1 · c2 is decrypted to m1m2,

c1 · c2 =(ksq1q2 + 2q1r2 + 2q2r1 +m1q2 +m2q1)ks

+ 2(2r1r2 +m1r2 +m2r1) + (m1m2), (2.41)

20

CHAPTER 2. BACKGROUND

where 2r1r2 +m1r2 +m2r1 <
ks
2 . Thus, c1 · c2 is equal to

(((ksq1q2 + 2q1r2 + 2q2r1 +m1q2 +m2q1)ks

+ 2(2r1r2 +m1r2 +m2r1) + (m1m2))(mod ks))(mod 2) = m1m2. (2.42)

As fully homomorphic properties described above, we can apply them to evaluate a Boolean

function f(x1, x2, · · · , xn) where ∀ni=1xi ∈ {0, 1} is a bit that is encrypted to ci. Let the ad-

dition operator be applied to the Boolean function. As the number of additions increases,

noise error is increasing that can lead to r1 + r2 > ks
2 , likewise for the multiplication

operator. As the number of multiplications increases, noise error is also increasing that

can lead to 2r1r2 +m1r2 +m2r1 > ks
2 . In both cases above, when the noise error that is

greater than ks
2 , their ciphertext is indecipherable (i.e., the decryption of f(c1, c2, · · · , cn)

is highly probable different from f(x1, x2, · · · , xn)). Therefore, the scheme can support

only low-degree Boolean functions on encrypted data. This limitation is a reason that the

scheme is called, somewhat homomoprhic encryption scheme.

Security. The security of somewhat homomoprhic encryption scheme over integers can

be reduced to the hardness of the great common divisor (GCD) problem in approximating

integer. (Howgrave-Graham, 2001). Let a and b be two input integers. Computation of

gcd(a, b) = d, is in polynomial time. If d is sufficiently large then it may possibly give some

additive errors on either of a and b, or both. CGD can still recover the result regardless

of the error. This example is known as the approximate integer common divisor problem.

Let ∀ni=1ui be near multiples where ui = pqi+ri. To find p, or at least p ·gcd(q1, q2, · · · , qn)

in the near multiples u1, u2, · · · , un, it is computational hardness in the encryption scheme

when p is relatively small as compared to the size of the near multiples.

In conclusion, many fully-homomorphic encryption schemes (Yi et al., 2014) are still

underperformed than the semi-homomorphic encryption schemes. Therefore, we mainly

focus to investigate semi-homomorphic encryption in our thesis.

2.3 Oblivious Transfer

Oblivous Transfer (OT) is a basic primitive in secure computation. The basic idea of OT is

that a sender uses OT protocol to send information to the receiver, but remains oblivious to

21

CHAPTER 2. BACKGROUND

Protocol 1: One-Out-Of-Two Oblivious Transfer Protocol
Input: Alice has an input bit σ and Bob has two inputs, B0 and B1 .
Output: Alice learns Bσ

1 Bob generates a random number C ∈ 1, · · · , p − 1 which is sent to Alice along with
p and a generator g.

2 Alice selects a random number k ∈ 1, · · · , p − 1, and then sets Pσ = gk and

P1−σ = C
Pσ

. Alice sends P0 to Bob.

3 Bob evaluates C
P0

to get P1 and then creates E0 = (gr0 ,H((P0)
r0))⊕B0 and

E1 = (gr1 ,H((P1)
r1))⊕B1, where r0, r1 are randomly selected from 1, · · · , p− 1.

He sends E0, E1 to Alice.
4 Alice computes H((P)rσ) = H((grσ)k) to get Bσ.

what information is received. For simplicity, we use the one-out-of-two oblivious protocol

(O1
2) to describe the details of OT. The one-out-of-two oblivious protocol (O1

2) is the two-

party protocol (e.g., Alice and Bob). Alice has an input bit σ and Bob has inputs B0 and

B1. The protocol allows Alice learns only Bσ and Bob learns nothing about σ. (Even

et al., 1985) propose the one-out-of-two oblivious protocol (O1
2) by generalizing Rabins

“oblivious transfer” (Rabin, 1981).

(Naor and Pinkas, 1999) propose the one-out-of-two oblivious protocol (O1
2) that is

described in the following. They first use a hash function H to disclose nothing even one

of the parties tries to deviate the protocol. All operations except the function H and ⊕

(exclusive or) are computed in modulo p.

In the Protocol 1, the choice of Alice (σ) is not revealed to Bob. Bob receives a value

in either gk or C/gk, where k is selected randomly from the uniform distribution. As both

gk and C/gk are uniformly distributed from 0, · · · , p − 1, the received value is a random

number to Bob. Thus, Bob learns nothing other than a random number. Alice learns

nothing from a random number C, or from inferring encrypted data E0 or E1. However,

Alice can decrypt Eσ to get the result where she knows the decryption key. Based on

the hardness of the Diffie-Hellman assumption (Boneh, 1998), Alice can not decrypt the

cipher text without the decryption key. At the end of the oblivious transfer computation,

Alice learns Bσ from the inputs of Bob, and Bob learns nothing about the choice of Alice.

The oblivious transfer has been extended to support one-out-of-N (O1
N) and k-out-of-N

(Ok
N) cases (Ishai and Kushilevitz, 1997; Brassard et al., 1986).

22

CHAPTER 2. BACKGROUND

2.4 Secure Multi-party Computation (SMC)

Secure multi-party computation (SMC) (Goldreich, 2004) is a fundamental field in cryp-

tography. It allows multi-parties to jointly compute a function over their respective inputs,

while keeping every input confidential. Let x1, x2, · · · , xm be the inputs of m parties re-

spectively, and f : ({0, 1}∗)m → ({0, 1}∗)m be an m-ary function. SMC hides all xi’s, but

computes f(x1, x2, · · · , xm) = {fi(x1, x2, · · · , xm)}i∈{1,2,··· ,m}, where fi(x1, x2, · · · , xm) is

the output to the i-th party.

Therefore, SMC is very effective in protecting personal privacy. It has been applied in

privacy-preserving computation in different areas such as in auction, benchmarking and

data mining. To make the auction in a fair way, the bid of every bidder should be kept

confidential. If the auctioneer can learn the bid of a bidder b1, he/she can always work

with other bidder bo to force the price that is always below maximum of the bidder b1.

To win the bid, the bidder b1 is forced to pay more. Many privacy-preserving auction

protocols of SMC (Brandt and Sandholm, 2008; McSherry and Talwar, 2007; Malkhi

et al., 2004; Pinkas, 2002; Naor et al., 1999) have been proposed to address the issue. In

the benchmarking, two companies in the same business line are interested to learn how

well each other is doing. Both companies have some parameters to use for benchmarking,

such as their employee salaries, the productivity, the profit relative to size and many more.

However, many of the such sensitive data are private and confidential which data can not be

leaked especially to their competitors. (Kerschbaum, 2008; Kiltz et al., 2005; Atallah et al.,

2004; Du and Atallah, 2001b) have proposed privacy-preserving benchmarking protocols

to securely compute the statistics of the performance measures of the companies without

revealing their private data.

SMC have been extensively applied in privacy-preserving data mining (PPDM) (Lin-

dell and Pinkas, 2008; Verykios, Bertino, Fovino, Provenza, Saygin and Theodoridis, 2004)

in the context of multiple parties. These parties are not willing to share their data di-

rectly, but would like to work together to learn the output of any agreed mining task.

Various SMC solutions have been proposed to serve different mining tasks, such as de-

cision tree (Vaidya, Clifton, Kantarcioglu and Patterson, 2008), Näıve Bayes (Vaidya,

Kantarcioglu and Clifton, 2008), support vector machine (Teo et al., 2013; Yu, Jiang and

Vaidya, 2006) and singular value decomposition (Han et al., 2009).

23

CHAPTER 2. BACKGROUND

2.5 Secure Multi-party Computation Models

In this section, we discuss three models of secure multi-party computation (SMC). The first

is Yao’s circuit model (Section 2.5.1) and the second is arithmetic circuit model (Section

2.5.2) . These two models use oblivious transfer (Section 2.3) as a basic primitive of their

secure computations. The last model of SMC we discuss is the homomorphic cryptography

model (Section 2.5.3).

2.5.1 Yao’s Circuit Model

(Yao, 1986) proposes a circuit evaluation protocol to be secure against semi-honest adver-

saries. This protocol is rigorously proven by (Lindell and Pinkas, 2009). Let CRT be a

Boolean circuit that accepts two inputs a, b ∈ {0, 1}∗ and outputs OCRT (a, b) ∈ {0, 1}∗.

In the evaluation, OCRT can always be found such that OCRT (a, b) = f(a, b) for any

deterministic functionality f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗.

We first show to use a single gate that has 2-input wires (i.e., input a of Alice and

b of Bob) on Yao’s protocol. As the Boolean circuit, the gate can represent a function

g : {0, 1} × {0, 1} 7→ {0, 1} with two input wires ω1 and ω2, and one output wire ω3. One

party uses a key generation algorithm K(1N) to generate six random and independent

keys k01 , k
1
1 , k

0
2 , k

1
2 , k

0
3 , k

1
3 of length N , where kyx is a garble value of ωx’s value y. The party

then can generate four values as follows,

crt0,0 = Ek01
(Ek02

(k
g(0,0)
1))

crt0,1 = Ek01
(Ek12

(k
g(0,1)
1))

crt1,0 = Ek11
(Ek02

(k
g(1,0)
1))

crt1,1 = Ek11
(Ek12

(k
g(1,1)
1)),

where E stands for private key encryption. The encryption scheme ensures that all cipher-

texts are semantic security (i.e., computational indistinguishability). Another property

of the encryption scheme is allowed to verify that a ciphertext is in the range of that a

given key. A random permutation of the above four values is formed a garbled table of

the gate g. Alice first sends kα1 and the garbled table to Bob where α is a private input

of Alice. Then Alice securely transfers the key kβ2 to Bob by 1 out of 2 oblivious transfer

24

CHAPTER 2. BACKGROUND

OT 2
1 protocol (Even et al., 1985). In the end of protocol execution, Alice learns nothing

from which key ky2 is selected and Bob learns only key k1−y
2 . Bob can decrypt the garbled

table values with the keys kα1 and kβ2 . The private encryption scheme can decrypt one of

four values in the range with a negligible probability. Thus Bob learns the output key

kα,β3 .

In a case such that no input wire for the gate g, Bob can still decrypt the four values

by two input keys to get the output key of g after receiving the garbled table from Alice.

To get a result of CRT (a, b) from the gates, by assuming that output wire u carries the

value of CRT (a, b), Alice first sends the decryption table that contains (0, k0u) and (0, k1u)

to Bob. Bob knows the output key that can be the result 0 or 1 from the output wire u.

Therefore, Bob can securely compute CRT (a, b).

In Yao’s protocol, the construction of the garbled table (Lindell and Pinkas, 2000)

involves one 1-out-of-2 oblivious transfer OT 2
1

1 (Naor and Pinkas, 2001) per each input bit.

Each gate needs four times of pseudo-random function evaluations. Given the functionality

f on L gates with N -bits length of inputs, the most communication cost is the pseudo-

random function that generates 4L times of length of the random keys from one party to

the other. In term of computation complexity, it needs N times to invoke OT 2
1 protocol

between two parties and 4L times to run the pseudo-random function. This makes Yao’s

protocol infeasible for some complex functions that require many either gates or data

inputs.

Recently, (Lindell and Pinkas, 2007) combine the cut-choose approach and some other

new techniques to efficiently prove consistency of inputs on Yao’s circuit evaluation proto-

col targeted on two malicious parties. FairPlay (Ben-David et al., 2008) uses Yao’s circuit

evaluation protocol (Yao, 1986) to compile a generic function into a Boolean circuit.

2.5.2 Arithmetic Circuit Model

Arithmetic circuit (Goldreich, 2004) that contains addition and multiplication gates over

Galois Field of size two (i.e. GF (2)) can securely compute any deterministic function.

The basic idea of the arithmetic circuit is to propagate and split shares of the input wires

of the circuit into shares of all wires of the circuit via secure computation. In the end of

1
OT

2
1 is considered a special case of 1-out-of-n oblivious transfer OT

n
1 protocol (Naor and Pinkas, 1999,

2001) by which a sender has n messages and receiver selects a message out of n that is unknown to the
sender.

25

CHAPTER 2. BACKGROUND

execution, the output wires of the circuit are split into shares held by each participating

party.

In the arithmetic circuit, multiplication gates incur the expensive cost in which each

multiplication gate needs to invoke OT 4
1 protocol. The overall performance of the mul-

tiplication gate is improved (Naor and Pinkas, 1999) by running OT n
1 in logN parallel

invocations of OT 2
1 protocol. However, the computation overhead in oblivious transfer is

obviously more costly than the communication overhead. To address this issue, (Naor and

Pinkas, 2001) propose an oblivious protocol based on the decisional Diffie-Hellman that

assumes a receiver only performs two exponentiations and a sender only performs O(n)

exponentiations. The communication overhead of the (Naor and Pinkas, 2001) protocol

is O(n). (Ben-Or et al., 1988) apply some non-cryptographic techniques to represent f as

an arithmetic circuit in the party setting of an honest majority. In the non-cryptographic

approach, the arithmetic model can be evaluated using the weaker computational models

of formulas (Bar-Ilan and Beaver, 1989) over large fields.

All data or variables are Boolean values in the arithmetic circuit. Let a1 and a2 be

inputs of Alice, and b1 and b2 be inputs of Bob. A circuit gate has two inputs of a wire such

that the first input is a1 and b1 and the second is a2 and b2. In the addition computation,

Alice sets the output wire of the gate to a1 + a2 and Bobs sets the output wire to b1 + b2.

In the multiplication computation, Alice and Bob invoke the oracle using Equation 2.43.

In the end of execution, Alice and Bob get a3 and b3 respectively where a3 + b3 is the

output of the multiplication gate.

(a1 + b1)× (a2 + b2) = a3 + b3. (2.43)

Secure Computation: a3 + b3 = (a1 + b1) × (a2 + b2) can be transformed to b3 =

(a1 + b1) × (a2 + b2) + a3 for Boolean values. Alice first selects a3 ∈ {0, 1} to compute

the following four terms from (a1 + b1) × (a2 + b2) + a3 which corresponds to (b1, b2) ∈

((0, 0), (0, 1), (1, 0), (1, 1)), such that (1) a1×a2+a3, (2) a1×(a2+1)+a3, (3) (a1+1)×a2+

a3, and (4) (a1+1)×(a2+1)+a3. As Bob knows b1 and b2, he can use 1-out-of-4 oblivious

transfer OT 4
1 protocol to get 2b1 + b2 + 1 ∈ {1, 2, 3, 4}-th element of previously generated

terms of Alice and learns nothing else. Bob can get b3 (i.e., (a1 + b1) × (a2 + b2) + a3).

Alice and Bob each hold their private outputs a3 and b3 respectively.

26

CHAPTER 2. BACKGROUND

2.5.3 Homomorphic Cryptography Model

Homomorphic cryptography model uses the homomorphic encryption protocol that is very

effective in protecting privacy in secure multi-party computation. Homomorphic encryp-

tion allows specific types of operations to perform on ciphertexts (i.e., encrypted messages).

The encrypted result of the operations, when decrypted, is equivalent to the result of op-

erations performed on the messages (i.e., plaintexts). For example, Paillier Cryptosystem,

(Section 2.1) is a public key cryptosystem with the additive homomorphic property. Let

(pk, sk) be a public/private key pair generated by two prime numbers p and q, and m1 and

m2 be plaintexts. Let E[.] and D[.] be the encryption and decryption functions respec-

tively, and n = pq. Then, the product of ciphertexts of m1 andm2 decrypts tom1+m2, i.e.

D[sk, (E[pk,m1] ·E[pk,m2] mod n2)] = (m1 +m2) mod n. The ciphertext of m1 raised to

the power of m2 decrypts to m1 ·m2, i.e., D[sk, (E[pk,m1]
m2 mod n2)] = (m1 ·m2) mod n.

Such the above property allows the homomorphic encryption protocol that can compute

more complex functions than in Yao’s circuit model (Section 2.5.1) and in the arithmetic

circuit model (Section 2.5.2). The details of homomorphic encryption can be found in

Sections 2.1 and 2.2.

2.6 Two Adversary Models of SMC

An SMC protocol that can withstand attacks from adversaries is secure. We use the

definitions of two adversarial behavior models of secure multi-party computation (SMC):

semi-honest adversaries (Lindell and Pinkas, 2008) and malicious adversaries (Lindell and

Pinkas, 2008). Thus, the SMC protocol can be proven secure (i.e. privacy protection)

under the adversarial model (by knowing adversary power).

� Semi-honest adversaries: In the case of the two-party model, Alice and Bob

strictly follow the protocol, but attempt to infer the information received by them

during the protocol execution. This model may be considered a realistic model

(Aggarwal and Yu, 2008) of adversarial behavior in many real world applications.

� Malicious adversaries: In the case of the two-party model, Alice and Bob can

deviate arbitrarily from the protocol such as aborting the protocol prematurely and

27

CHAPTER 2. BACKGROUND

learning information received from each other by substituting their inputs. Zero-

knowledge proof (Goldwasser et al., 1989) that can prove assertions made by one

party without revealing additional information is a technique to keep the malicious

party from the protocol deviation.

In the security proof of an SMC protocol, indistinguishability assumes that an ad-

versary can not distinguish ciphtexts based on the messages he/she encrypts or the dis-

tributions of two random variables. We discuss two kinds of the indistinguishability:

computational indistinguishability and statistical indistinguishability.

Computational Indistinguishability. The hardness of solving some problems (e.g.,

NP-hard problems) can also be used to determine if the distributions of two random

variables are indistinguishable.

Definition 2.1 (Agrawal et al., 2003) Let X and Y be two random variables over a finite

set Ωz = {0, 1}z . Let Az be a probabilistic algorithm, which outputs either 0 or 1 given a

value in Ωz. We say that the distribution of X is computationally indistinguishable from

that of Y , if for any probabilistic polynomial-time algorithm Az, any positive polynomial

p(z), and all sufficiently large z’s

|Pr[Az(X) = 1]− Pr[Az(Y) = 1]| < 1

p(z)
.

Statistical Indistinguishability. The statistical distance can be used to determine if

the distributions of two random variables are indistinguishable.

Definition 2.2 (Goldreich, 2001) Let X and Y be two random variables over a finite set

Ωz = {0, 1}z . Then X and Y is indistinguishable if their statistical distance is negligible

if for every positive polynomial p(z) and all sufficiently large z’s, their statistical distance

is negligible. That is,

1

2

∑

a∈Ωz

|Pr[X = a]− Pr[Y = a]| < 1

p(z)
. (2.44)

By the Definition 2.2 above, X and Y are then computational indistinguishable if their

distributions are statistically indistinguishable.

28

CHAPTER 2. BACKGROUND

In the following, we will discuss each adversarial model in detail: privacy w.r.t semi-

honest behavior in Section 2.6.1 and privacy w.r.t malicious behavior in Section 2.6.2.

2.6.1 Privacy w.r.t Semi-Honest Behavior

(Goldreich, 2004) gives the definition of the semi-honest behavior below.

Definition 2.3 (privacy w.r.t semi-honest behavior): Let f : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗×

{0, 1}∗ be a functionality, where f1(a, b) (resp., f2(a, b)) denotes the first (resp., second)

element of f(a, b). Let Π be a two-party protocol for computing f . The view of the first

(resp., second) party during an execution of Π on (a, b), denoted VIEWΠ
1 (a, b) (resp.,

VIEWΠ
2 (a, b)), is (a, r,m1, . . . ,mt) (resp., (b, r,m1, . . . ,mt)), where r represents the out-

come of the first (resp., second) party’s internal coin tosses, and mi represents the ith

message it has received. The output of the first (resp., second) party after the execution of

Π on (a, b), denoted OUTPUTΠ
1 (a, b) (resp., OUTPUTΠ

2 (a, b)), is implicit in the party’s

own view of the execution, and OUTPUTΠ(a, b) = (OUTPUTΠ
1 (a, b),OUTPUTΠ

2 (a, b)).

� Deterministic case: For a deterministic functionality f , Π can privately compute

f if there exists probabilistic polynomial-time algorithms of S1 and S2, such that

{S1(a, f1(a, b))}a,b∈{0,1}∗
c≡ {VIEWΠ

1 (a, b)}a,b∈{0,1}∗

{S2(b, f2(a, b))}a,b∈{0,1}∗
c≡ {VIEWΠ

2 (a, b)}a,b∈{0,1}∗ ,

where |a| = |b| and c≡ indicates computational indistinguishability by (non-uniform)

families of polynomial-size circuits.

� General case: Π can privately compute f if there exists probabilistic polynomial-

time algorithms of S1 and S2, such that

{((S1(a, f1(a, b)), f(a, b))}a,b
c≡ {(VIEWΠ

1 (a, b),OUTPUTΠ(a, b))}a,b

{((S2(b, f2(a, b)), f(a, b))}a,b
c≡ {(VIEWΠ

2 (a, b),OUTPUTΠ(a, b))}a,b.

The above definition states that a computation is secure if the views of parties are sim-

ulatable on their respective inputs and the protocol outputs to the parties. This model

29

CHAPTER 2. BACKGROUND

helps to prevent parties who strictly follow the protocol to learn additional information

except their inputs and outputs.

2.6.2 Privacy w.r.t Malicious Behavior

(Kantarcioglu and Kardes, 2006) gives the definition of malicious behavior model based

on the existing work of (Cramer et al., 2001). The suggested model is based on the two-

party model targeting on the malicious adversary. The complexity of the malicious model

is usually greater than the semi-honest model which the malicious model needs to verify

each step of execution with the previous computations. To prove security in the malicious

model, we can simulate an adversary in the ideal model (i.e., exists a trusted party) that it

generates outputs are computational indistinguishable from any adversary in the real-life

model.

In this model, private information of an honest party after executing secure building

blocks (e.g., secure comparison, secure intersection, and secure scalar product protocol)

is guaranteed that it is not learned by the malicious party. The following definitions are

from (Kantarcioglu and Kardes, 2006). In the definitions, Π is a two-party protocol. We

first discuss the executions of Π in the real life model and the ideal model. To prove the

security of Π protocol in the real-life model, we simulate Π in the ideal model with the

existing of one trusted party.

Definition 2.4 (malicious adversaries in the real-life model): Let each party Ti

has a secret input usi and a public input upi where i ∈ 1, · · · , n and n is the number of

participating parties. After the execution of the protocol Π, each party Ti gets a public

output vpi and a secret output vsi . An adversary A collects the public inputs and public out-

puts from other participating parties. After the execution of the protocol Π, the outputs of

the adversary and the party Ti are ADVRΠ,A(k,
→
u,C, z,

→
r) and EXECΠ,A(k,

→
u,C, z,

→
r)

respectively, where

� k is the security parameter,

�
→
u = (up1, u

s
1, u

p
2, u

s
2) is the inputs of the participating parties,

� C ∈ {T1, T2} is the corrupted Party,

30

CHAPTER 2. BACKGROUND

� z ∈ {0, 1}∗ is the auxiliary input2, and

�
→
r = (r1, r2, rA) is the random inputs of the participating parties and the adversary.

Let

EXECΠ,A(k,
→
u,C, z,

→
r) =(ADVRΠ,A(k,

→
u,C, z,

→
r)),

EXECΠ,A(k,
→
u,C, z,

→
r)1,EXECΠ,A(k,

→
u,C, z,

→
r)2),

where the random variable is EXECΠ,A(k,
→
u,C, z) to describe EXECΠ,A(k,

→
u,C, z,

→
r)

(i.e.,
→
r is uniformly chosen). Finally, a distribution ensemble EXECΠ,A with the security

parameter k and the index (
→
u,C, z) is

EXECΠ,A = {EXECΠ,A(k,
→
u,C, z)}

k∈N,
→
u∈({0,1}∗)4,C∈(T1,T2),z∈{0,1}∗

.

Definition 2.5 (malicious adversaries in the ideal model): Let f : N× ({0, 1}∗)4×

{0, 1}∗ 7→ ({0, 1}∗)4 be a probabilistic two-party function that is computable in probabilistic

polynomial time. The output of f is given as f(k, up1, u
s
1, u

p
2, u

s
2, r) = (vp1 , v

s
1, v

p
2 , v

s
2) where

k and r are the security parameter and the random input respectively. In the ideal model,

a trusted party first gathers all the inputs of the parties, computes f , and then returns the

party Ti with the output values (vpi , v
s
i). An adversary S may replace its private input and

public input with other different values. The ideal model is, likewise the real-life model,

IDEALf,S(k,
→
u,C, z,

→
r) =(ADVRf,S(k,

→
u,C, z,

→
r)),

IDEALf,S(k,
→
u,C, z,

→
r)1, IDEALf,S(k,

→
u,C, z,

→
r)2),

where IDEALf,S(k,
→
u,C, z,

→
r) is the collection of the outputs. The distribution of

IDEALf,S(k,
→
u,C, z,

→
r) is IDEALf,S(k,

→
u,C, z) where

→
r is uniformly distributed. Then,

we define a distribution ensemble IDEALf,S as follows,

IDEALf,S = {IDEALf,S(k,
→
u,C, z)}

k∈N,
→
u∈({0,1}∗)4,C∈(T1,T2)z∈{0,1}∗

.

2 The auxiliary input is a standard method (tool) to prove the composition theorem. Intuitively, an
adversary gathers information from the auxiliary input of other interactions occurring before the current
interaction.

31

CHAPTER 2. BACKGROUND

In a simulation of the ideal model, the adversary S first sees the up1 and the up2 and the

secret value usc of the corrupted party. Subsequently, the adversary S replaces upc and usc

with ūpc and ūsc respectively of its choices. The trusted party uses the modified inputs to

evaluate f . In the end of evaluation, the output values (vpi , v
s
i) are sent to the party Pi.

Again, the adversary can disclose the values vp1 , v
s
2 to the corrupted party.

Definition 2.6 (security in the static malicious adversary setting): Let f be a

two-party function. In the static setting of the two-party protocol Π can securely evaluate f

if for any probabilistic polynomial time adversary A, there exists an ideal-model adversary

S to run in a polynomial time of A, and such that

IDEALf,S
c≡ EXECΠ,A,

where
c≡ indicates that two ensembles are computational indistinguisable.

In the malicious model, security is proven via a simulation which an adversary in the

ideal model that gives the outputs are computational indistinguishable by allowing any

adversary in the real-life model. In other words, an ideal model adversary S allows to run

on any giving real-life adversary A as a subroutine. This subroutine works in a black-box

fashion to show the views (i.e., the views of the ideal model and that of the real-life model)

that are computationally indistinguishable.

2.7 Discussion

In secure multi-party computation, a semi-honest adversary strictly follows the protocol

and will not collude with others but is interested in inferring additional knowledge using

polynomial-time computations. In contrast, a malicious adversary can arbitrarily deviate

from the protocol such as altering its input. SMC protocols based on the malicious model

require to use expensive methods such as zero-knowledge proof (Goldwasser et al., 1989).

The zero-knowledge proof is a method that a prover can prove the giving statement to a

verifier.

Even the semi-honest model is much weaker than the malicious model. (Aggarwal and

Yu, 2008; Lindell and Pinkas, 2002) suggest that the semi-honest model is more realistic

to many real world applications. One of the possible reasons is that deviating from the

protocol is a non-trivial task in today complex applications. Another reason is that the

32

CHAPTER 2. BACKGROUND

malicious model incurs expensive computation cost as compared to the semi-honest model.

Therefore, many SMC protocols based on the semi-honest model have been proposed to

allow privacy protection, especially applying in many data mining tasks (Teo et al., 2013;

Han et al., 2009; Vaidya, Kantarcioglu and Clifton, 2008; Vaidya, Clifton, Kantarcioglu

and Patterson, 2008; Yu, Jiang and Vaidya, 2006). (Han and Ng, 2008) state that it is

not possible to have an SMC protocol that can withstand all forms of attacks from the

malicious adversary which can arbitrarily deviate the protocol. However, they propose a

few methods (Han and Ng, 2008) to withstand some specific attacks from the malicious

adversary. In this thesis, we mainly focus on SMC protocols based on the semi-honest

model.

33

Chapter 3

A Survey of Privacy-Preserving Data Mining

In this chapter, we survey the overview of the distributed privacy-preserving data mining.

In this thesis, the distributed privacy-preserving data mining is also known as privacy-

preserving data mining (PPDM) unless stated otherwise. In recent years, rapid advances

in automated data collection tools and data storage technology have led the widespread

proliferation of huge amount of distributed data owned by different parties. The dis-

tributed data may contain some sensitive information. This raises concerns about privacy

protection on the underlying data in data mining. Generally speaking that data mining

can be viewed as a threat to privacy violation. Many techniques have been proposed to

allow privacy computation in data mining. Thus, distributed privacy preservation is one

of active research areas in data mining.

A survey of state-of-the-art privacy-preserving data mining algorithms can be found

in (Verykios, Bertino, Fovino, Provenza, Saygin and Theodoridis, 2004). The objective of

many privacy-preserving techniques is to design such methods that can allow continuation

to be effective in data mining tasks without violating privacy. Many privacy-preserving

techniques use some form of transformation on the data to protect data privacy. These

techniques minimize privacy leak by reducing the granularity of data representation. How-

ever less granular data can incur in some loss of effectiveness (i.e., reduce data utility) in

many data mining algorithms. Therefore, it is always a trade-off consideration between

information loss and privacy in the design of privacy-preserving techniques.

In many cases, any individual party may wish to collect aggregate results from dis-

tributed data which is partitioned across different parties. Data normally can be parti-

tioned into either a horizontal partition (i.e., objects with the same set of attributes are

distributed across different parties) or a vertical partition (i.e., different attributes of the

same set of objects are distributed across different parties), and both of them. Figure

3.1 shows different types of data partitions for the two-party model (e.g., Alice and Bob)

34

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Figure 3.1: Different data partitions on privacy-preserving data mining

in PPDM. In the horizontally partitioned data, Alice and Bob can hold different rows of

the same set of attributes in the table. Alice and Bob each hold different columns (i.e.,

attributes) of the same set of objects in the table for the vertically partitioned data. In

the arbitrarily partitioned data, Alice and Bob each can hold any data value in the table.

When participating parties may not want to share their entire data, they may agree

to restrict their data sharing with the use of various proposed protocols. In PPDM,

many proposed methods maintain data privacy of each participating party, while collecting

aggregate results over the distributed data. We next discuss two privacy preservation

techniques in PPDM, randomization (Agrawal and Srikant, 2000; Agrawal and Aggarwal,

2001) and secure multi-party computation (SMC) (Lindell and Pinkas, 2000).

Randomization in PPDM. The randomization method is a technique to mask the at-

tribute values of records by adding noise to the data (Agrawal and Srikant, 2000; Agrawal

and Aggarwal, 2001). Any individual record normally can not be recovered if noise added

to data is sufficiently large. Therefore, many proposed privacy-preserving data mining

based on the randomization method are to derive aggregation distributions from the dis-

torted (perturbed) records. Let X = x1, x2, · · · , xn be a set of data records. In each record

xi ∈ X, a noise component getting from the probability distribution fY (y) is added to the

35

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

record. Let y1, y2, · · · , yn be noise components which are randomly and independently from

the distribution fY (y). Thus, a new set of perturbed records is x1+y1, x2+y2, · · · , xn+yn.

Since the added noise to the original records is sufficiently large, the original records can-

not be easily inferred from the perturbed records (i.e., the original records cannot be

recovered). However, the distribution of the original records can be correctly recovered.

The constructions of decision trees (Agrawal and Aggarwal, 2001; Du and Zhan, 2003),

association rule (Evfimievski et al., 2002; Rizvi and Haritsa, 2002; Zhang et al., 2004), and

classification (Zhang et al., 2005) are based on the altered data. However, the arbitrary

randomization approach (Kargupta et al., 2003) is not fully secure to honest parties. Two

data reconstruction methods (Huang et al., 2005), principal component analysis technique

and Bayes estimate technique based on data correlations, can be used to solve the security

issue. The distribution of the original data is normally reconstructed more accurately

when correlation is higher in the randomization (Agrawal and Srikant, 2000; Agrawal and

Aggarwal, 2001).

Secure Multi-party Computation (SMC) in PPDM. The second privacy-preserving

technique in PPDM is based on SMC. In PPDM, we can apply SMC models such as Yao’s

circuit model (Section 2.5.1) and the homomorphic cryptography model (Section 2.5.3).

Thus, current data mining algorithms need to be modified to allow privacy computation

using SMC.

Comparison between the Randomization and SMC. In the PPDM algorithms,

the randomization can achieve high efficiency in term of computation at the expense of

information loss (i.e., obtaining less accurate results). In contrast, SMC can achieve the

approximate complete accuracy, at the expense of expensive computation. Moreover, SMC

can provide a complete privacy. In this thesis, our focus is to investigate SMC protocols

that can achieve the approximate complete accuracy and provide a complete privacy yet

efficient in term of computation. Thus, we will mainly investigate SMC in our thesis.

Privacy-preserving data mining uses SMC to compute functions over inputs provided

by multiple parties without disclosing their inputs to each other. For simplicity, we con-

sider PPDM in the two-party model (i.e., Alice and Bob). Let x and y be inputs of Alice

and Bob respectively. Alice and Bob jointly compute the function f(x, y) in which Alice

learns nothing about y and Bob learns nothing about x. The two-party model can be

36

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

extended easily to support k parties, such that k parties can jointly to compute k argu-

ments function h(x1, · · · , xk). In context of computation, many data mining algorithms

are repetitive computations of many primitive functions (e.g., scalar dot product and di-

vision operation). To securely compute the functions f(x, y) and h(x1, · · · , xk), any SMC

protocol of PPDM must allow to transfer information in such a way that the functions

are computed without violating privacy. In addition, the protocols are based on different

adversarial models (Section 2.6): the semi-honest model and the malicious model. Many

existing SMC protocols of PPDM use the semi-honest model. We will discuss more details

in the following.

The security of the SMC protocols can be proven secure via simulation (Goldreich,

2004). Simulation is a standard methodology of proving the security of the SMC proto-

cols in PPDM. We can simulate an SMC protocol of PPDM based on the semi-honest

model (Section 2.6.1) as follows. Again, we use the case of two parties: Alice and

Bob. Let π be a protocol of privately computing function f on (m1,m2), where m1

and m2 are the private inputs of Alice and Bob, respectively. Suppose that f(m1,m2) =

{f1(m1,m2), f2(m1,m2)}, where f1(m1,m2) is the protocol output to Alice and f2(m1,m2)

is that to Bob. Let V IEW1 = (m1, V
1
1 , V

2
1 , . . . , V

t1
1) be the view 1 of Alice, where V i

1 is

the i-th message she receives from Bob. Let V IEW2 = (m2, V
1
2 , V

2
2 , . . . , V

t2
2) be the view

of Bob, where V i
2 is the i-th message he receives from Alice.

The protocol π is simulatable, if 1) Alice can find a polynomial-time algorithm S1

(i.e., a simulator), such that the distribution of S1(m1, f1(m1,m2)) is indistinguishable

from that of V IEW1, and 2) Bob can find a polynomial-time algorithm S2, such that the

distribution of S2(m2, f2(m1,m2)) is indistinguishable from that of V IEW2. Intuitively,

the privacy-preserving data mining protocol is simulatable, if neither Alice nor Bob learns

additional information other than their respective inputs and the protocol outputs to them.

Many existing works of PPDM algorithms have been proposed to compute distributed

data based on different data partitions (Figure 3.1). The distributed data can be par-

titioned in a horizontal partition or a vertical partition. In some cases (Jagannathan

et al., 2006), the data can be split into an arbitrarily partition which may contain both

of the horizontally and vertically partitioned data (i.e., each party holds different disjoint

portions). (Jagannathan et al., 2006) argue that the arbitrarily partitioned data is not

1We assume honest-but-curious setting. Thus, the internal randomness of Alice (Bob) (Goldreich, 2004)
in the view is uniform and can be ignored.

37

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

common in practice. They suggest that it is still good to use as a more general model

of both horizontally and vertically partitioned data in practical settings. Therefore, in

any of data partitions above, no any individual party holds the entire data for mining

computation.

In PPDM, secure multi-party computation (SMC) can use the circuit approach and

the homomorphic encryption protocol for secure computations in data mining tasks. In

the circuit approach (Yao’s circuit model in Section 2.5.1 and arithmetic circuit model in

Section 2.5.2), SMC can apply the 1-out-of-2 oblivious transfer (OT) as a basic primitive

of secure computation. Most solutions of the circuit approach in PPDM are based on the

semi-honest model. Extending the 1-out-of-2 OT protocol to the-1-out-N OT protocol (or

the k-out-of-N OT protocol) can be found in (Naor and Pinkas, 2001; Chaum et al., 1988;

Yao, 1986). PPDM can also apply the circuit approach of SMC to compute some data

mining primitives related to vector distances in the multi-dimensional space.

(Ioannidis et al., 2002; Du and Atallah, 2001a) propose a number of privacy-preserving

data mining primitives, such as the scalar dot-product in a distributed environment, to

address computational and communication overheads in the circuit approach of SMC. (Du

and Atallah, 2001a) propose a framework to transform traditional data mining problems,

such as classification, association rule mining, clustering, and generalization, into SMC

problems. Many of these proposed techniques (Ioannidis et al., 2002; Du and Atallah,

2001a) send changed and encrypted inputs to participating parties so as to compute the

function. The final output of the function is retrieved by an oblivious transfer (OT)

protocol.

(Clifton et al., 2002) propose another set of methods based on the randomization and

SMC for privacy-preserving data mining primitives. The methods of (Clifton et al., 2002)

include secure set union (SMC), secure sum (the randomization), secure scalar product

(the randomization) and secure size of set intersection (SMC). Those methods can securely

compute data mining primitives on data which is partitioned vertically or horizontally.

In SMC, Shamir’s secret sharing (Shamir, 1979) and the semi-homomorphic encryption

protocol (Section 2.1) also can be applied in computing functions in many data mining

primitives. The homomorphic property of the semi-homomorphic encryptions (Section

2.1) allows to compute more complex functions in many data mining primitives. How-

ever, the fully-homomorphic encryptions (Section 2.2) can also provide the additive and

38

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

multiplicative homomorphic properties, but they are still impractical to apply into many

data mining tasks. One of the several reasons (Yi et al., 2014) is that the computation

performance of the fully-homomorphic encryption scheme is more underperformed than

the semi-homomorphic encryption scheme.

In next section, we discuss secure building blocks in computing data mining primitives

in PPDM. In Section 3.2, we discuss the state-of-the-art PPDM algorithms using the secure

building blocks. The last section we discuss some other privacy preservation techniques.

3.1 Secure Building Blocks

In this section, we discuss secure building blocks of PPDM in detail. The secure building

blocks can apply the randomization and SMC. The techniques of SMC in PPDM can in-

clude 1-out-of-2 oblivious transfer (OT), oblivious polynomial evaluation (OPE), the secret

sharing, homomorphic encryption, and other cryptographic methods. All secure blocks of

PPDM we discussed are based on the semi-honest model unless stated otherwise. We dis-

cuss 10 secure building blocks as follows: secure sum (Section 3.1.1), secure scalar product

(Section 3.1.2), secure matrix multiplication (Section 3.1.3), secure set computation (Sec-

tion 3.1.4), secure permutation (Section 3.1.5), oblivious polynomial evaluation (Section

3.1.6), secure logarithm (Section 3.1.7), secure division (Section 3.1.8), least significant

bits gate (Section 3.1.9) and fast garbled circuit (Section 3.1.10).

3.1.1 Secure Sum

(Yao, 1986) introduces the general concept of secure multi-party computation (SMC).

The basic idea of SMC is to allow multiple parties to securely compute a function over

their inputs, while keeping respective inputs of the parties private. In other words, all

the parties learn nothing except their own inputs and the computation result. Secure

multi-party sum (SMS) performs the secure computation of the sum on the inputs of the

multiple parties. Secure multi-party sum uses the randomization to compute the sum of

data inputs.

The Randomization. Let 8, 12, -2, and 14 be private values held by parties P1, P2,

P3, and P4 respectively, as depicted in the Figure 3.2. They jointly compute the sum of

39

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Figure 3.2: Secure computation of the sum of four parties

the input values without disclosing their own inputs by applying secure multi-party sum

protocol. The steps for computing the sum of four parties (Figure 3.2) are in the following,

� P1 first generates a random number, r ∈ [−∞,+∞], and then adds r to its own

private value. For simplicity, in Figure 3.2, r and the private input of P1 are set to

50 and 8 respectively. The sum of r and the private input of P1 is 58 which is sent

to P2. P2 learns nothing about the private input of P1 if r is sufficiently large.

� P2 receives the value from P1 and adds it to the private value of P2. The sum is 70

which is sent to P3. P3 and P4 repeat a similar step of P2 to get 68 (i.e., 70 + (−2))

and 82 (i.e., 68 + 14), respectively.

� In the last step, P1 receives the value 82 from P4. P1 subtracts the received value

from the random value r, to get 32 (i.e., 82 − 50) which is the result of the sum of

the values of the parties. P1 broadcasts the result 32 to other parties (i.e, P2, P3,

and P4). In the end of secure sum computation, all the parties learn only the sum

of the values with their own inputs.

One of the obvious problems in secure sum is the private value of one party can be

known if two neighboring parties collude with each other. In Figure 3.2, P2 colludes with

P4 to reveal the private value of P3. P2 sends the sum of 70 to both P3 and P4. After

40

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

receiving the value 70, P3 adds 70 to its own input -2 to get 68 (e.g., 70 + (−2) = 68)

which is sent to P4. The private value of P3 can be easily inferred by P4 which subtracts

the sum of P2 from the sum of P3 (P3 − P2 = 68− 70 = −2).

Formal method (Kantarcioglu and Clifton, 2004) of secure sum computes a sum over

private inputs of the different parties is discussed as follows. Let S1, S2, · · · , Sk be parties

that involve the secure sum protocol. Each party Si is given a private value vi where

i ∈ 1, · · · , k. To compute v =
∑k

i=1 vi where v ∈ 0, · · · , n − 1 and n ∈ Z, the parties

apply secure sum. Party S1 acts as the master site to initialize the secure sum protocol.

S1 first generates a random number r that is uniformly selected from [0, · · · , n− 1]. Then

r is added to the value v1 to get r + v1 mod n which is sent to the next party S2. Since

r + v1 mod n is uniformly distributed from [0, · · · , n− 1], S2 learns no information about

v1. The remaining of the parties, ∀k−1
i=2 Si, perform secure sum computation as follows, (i)

Si receives the value r +
∑i−1

j=1 vj mod n from Si−1. Si learns no information about the

received value which is uniformly distributed from [0, · · · , n−1]. (ii) Si adds its own input

vi to the received value so as to get the sum of r +
∑i

j=1 vj mod n. (iii) Si sends the sum

to the next party Si+1.

Next, party Sk performs a similar sum computation as above to get r+
∑k

i=1 vi mod n =

r+v1+
∑k

i=2 vi mod n which is sent to party S1. After receiving the value, S1 computes the

sum of all values of the parties by subtracting r from the received value. S1 can determine

∑k
i=2 vi by subtracting r + v1. In the end of computation, S1 learns nothing except the

sum of all values of the parties. In a case, some parties can collude with each other to

reveal values of an other party. For example, Si can collude with Si+2 to reveal the private

value of Si+1. Si+2 receives the sum from Si that can be combined with the sum from

Si+1 to compute the value vi+1 of Si+1. Secure sum is extended to work for an honest

majority. Each party Si splits vi into a few shares. The sum is computed individually

for each share. The path to compute each share is permuted to provide that each party

has the same neighbor at most 1. Thus, to infer an other party value, e.g., vi of Si, the

neighbors of Si from each iteration requires to collude with each other. The number of

splitting shares and that of dishonest parties can determine whether privacy is violated in

the above protocol. The protocol is detailed in (Chor and Kushilevitz, 1993).

SMC. The secret scheme of Shamir (Shamir, 1979) is based on polynomial interpolation:

having k points in the 2-dimensional plane (x1, y1), (x2, y2), · · · , (xk, yk) with distinct x’s,

41

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

the scheme provides only one polynomial q(x) of degree k − 1 where ∀ki q(xi) = yi. In

other words, the set of integers modulo p (i.e., a prime number) can form a field in

which interpolation is possible in the scheme. For a simplicity, let D be a number. To

divide it into a few pieces Di, the scheme selects a random k − 1 degree polynomial as

q(x) = a0 + a1x+ · · ·+ ak−1x
k−1 where a0 = D, to evaluate

D1 = q(1), · · · ,Di = q(i), · · ·Dn = q(n).

The scheme selects a prime number p that is bigger than both D and n. All integer

coefficients a1, a2, · · · , ak−1 are selected randomly from the uniform distribution in [0, p).

All values D1, · · · ,Dn are computed in modulo p.

(Emekçi et al., 2007) apply the secret scheme of Shamir to perform secure sum of

private inputs of the parties without revealing the inputs to each other . For example,

there are four parties (P1 −P4) jointly compute the summation of 4 party inputs without

revealing their inputs respectively to each other. Let v1, v2, v3 and v4 be inputs of P1, P2,

P3 and P4 respectively. They jointly compute v1+v2+v3+v4 and decide on a polynomial

degree k = 3 and m = 4 values X = 3, 5, 7, 8. Each Pi then selects a random polynomial

qi(x) of degree k = 3 which the constant term of qi(x) is the secret value vi. The shares

computed by each Pi(X) are sent to other parties. Subsequently, each party combines

all shares to get an immediate result which is sent to other party. In the last step, each

party has 4 equations with 4 unknown coefficients (including the sum of the inputs of the

parties). Thus, each party can solve the set of equations to determine the sum of the

private inputs. The steps to perform secure sum using the secret scheme of Shamir is

depicted in Protocol 2.

3.1.2 Secure Scalar Product

(Du and Zhan, 2002) propose a secure scalar product (SSP) protocol (the randomization)

to compute the best split of records that contain a set of attribute values to construct a

decision tree. The records are from vertically partitioned data. To evaluate each best split,

they apply SSP to securely compute information gain and entropy. In the associate rule

mining, (Zhan et al., 2007; Vaidya and Clifton, 2002) (the randomization) and (Zhong,

2007) (SMC) propose various secure scalar product protocols to compute confidence and

42

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Protocol 2: Secure Sum using the Secret Scheme of Shamir

Input: Parties P1, P2, · · · , Pn have private values v1, v2, · · · , vn, respectively. Let
x1, x2, · · · , xn be a set of n known random values where ∀ni=1xi 6= 0. Each
random polynomial of degree k (i.e. n− 1).

Output: P1, P2, · · · , Pn learns the sum of all values (i.e., v1 + v2 + · · ·+ vn).
1 Selects a random polynomial qi(x) of degree k, such that

qi(x) = ak−1x
k−1 + · · ·+ a1x

1 + vi.
2 Each party Pj computes the share, sh(vi, Pj) = qi(xj).
3 for j ← 1 to n do
4 Send sh(vi, Pj) to peer Pj .
5 end
6 Each party Pi receives the shares sh(vj , Pi) from every party Pj .

7 Each party Pi computes an intermediate result, INTERRESi =
n∑

j=1
sh(vj, Pi).

8 for j ← 1 to n do
9 Send INTERRESi to peer Pj .

10 end
11 Each party Pi receives the intermediate results INTERRESj from every party Pj .
12 Each party Pi solves the set of equations to get the sum of v1 + v2 + · · · + vn (i.e.,

n∑
j=1

vj).

support of an association rule. Both confidence and support can determine whether the

rule is frequent.

In K-means clustering, (Jagannathan and Wright, 2005) apply SSP (SMC) to compute

the closest cluster targeted on arbitrary partitioned data. (Vaidya and Clifton, 2004) also

apply SSP (the randomization and SMC) to compute the estimated probability of each

class label in Näıve Bayes classifier which data is split vertically. (Wright and Yang, 2004)

also apply SSP (SMC) to learn the Bayesian network structure (using K2 algorithm) for

vertically partitioned data. (Yu, Jiang and Vaidya, 2006) use SSP (SMC) to compute

the Gram matrix for horizontally partitioned data. In the neural network, (Barni et al.,

2006) apply SSP (SMC) to compute the weighted sum of input data by scalar product

of the input and weight of the neurons. In summary, secure scalar product (SSP) is a

fundamental block that is widely applying in many data mining algorithms in conjunction

with the semi-honest model.

(Du and Atallah, 2001b) propose a secure scalar product product protocol based on the

randomization and SMC. However, (Goethals et al., 2004) also propose a scalar product

protocol (SMC) that is more efficient in computation and is proven secure as follows. Let

43

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Protocol 3: Secure Scalar Product Protocol

Input: Alice has a vector X = [x1, x2, · · · , xn]T and Bob has a vector
Y = [y1, y2, · · · , yn]T .

Output: Alice gets rA and Bob gets rB where rA + rB = X · Y .
1 Alice generates a pair of keys (sk, pk) (i.e., (secret key, public key)).
2 Alice sends pk to Bob.
3 for i = 1 to n do
4 Alice encrypts ci = Epk[xi] which is sent to Bob.
5 end
6 Bob computes ω =

∏π
i=1 c

yi
i .

7 Bob generates a random number rB to compute ω′ = ω · Epk[−rB] which is sent to
Alice.

8 Alice computes rA = Dsk[ω
′] = X · Y − r.

input x of Alice and input y of Bob be n-dimensional vectors. At the end of the SSP

execution, Alice gets rA = x · y − rB and Bob gets rB where rB is a random number.

The main idea behind the SSP protocol (Goethals et al., 2004) is applying the semi-

homomorphic encryption scheme to perform scalar dot product. Thus, many semi-homomorphic

encryptions can be applied into the above SSP protocol such as Benaloch encryption (Be-

naloh, 1987), blum-Goldwasser encryption (Blum and Goldwasser, 1984), Naccahe-Stern

encryption (Naccache and Stern, 1998), Okamoto-Uchiyama encryption (Okamoto and

Uchiyama, 1998) and Paillier encryption (Paillier, 1999). The semi-homomorphic encryp-

tion schemes are proven semantically secure. Some semi-homomorphic encryption schemes

are discussed in Section 2.1.

We describe the steps of the SSP protocol (Goethals et al., 2004). In the two-party

setting, Alice and Bob can jointly compute scalar dot product as follows. The key idea

is to compute
∑n

i=1 xi · yi =
∑n

i=1(xi + xi + · · · + xi)(yi times of xi). Alice first encrypts

the vector (x1, x2, · · · , xn) and sends it to Bob. After receiving the encrypted vector,

Bob computes scalar dot product of the vector (y1, y2, · · · , yn) with the encrypted vector

of Alice using the semi-homomorphic encryption scheme. SSP (Goethals et al., 2004) is

detailed in Protocol 3.

Malicious Model. (Kantarcioglu and Kardes, 2007) propose a secure scalar product

protocol (SMC) which is against the malicious party using zero-knowledge proof. (Jiang

and Clifton, 2007) propose the Accountable Computing (AC) framework to detect mali-

cious behaviors by a third independent entity. The computation of AC approach is more

efficient as it only initializes the identification and exposure of a malicious party (when an

44

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

honest party violates the protocol). They enhance the SSP protocol (SMC) by integrating

it into the AC framework to withstand attacks from the malicious party.

3.1.3 Secure Matrix Multiplication

We can securely compute matrix multiplication using either the randomization or secure

multi-party computation..

The Randomization. (Cramer and Damg̊ard, 2001; Bar-Ilan and Beaver, 1989) show

that matrix multiplication can be securely computed via a constant number of rounds of

interaction among parties. One of the rounds is that each party sends one message to other

participating parties. This technique has been proven secure in the information-theoretic

sense. (Du et al., 2004) use the linear algebraic methods (Cramer and Damg̊ard, 2001;

Bar-Ilan and Beaver, 1989) to perform matrix multiplication. They use a random and

invertible matrix M to hide the original matrix from privacy violation. Let M be N ×N

matrix such that

M =

(
Mleft Mright

)
,M−1 =

M−1

top

M−1
bottom

 , (3.1)

where M ·M−1 = 1. We next discuss the method of (Du et al., 2004) for secure matrix

multiplication. Let A and B be matrices of Alice and Bob respectively. Alice and Bob

jointly compute A.B = RA+RB where RA and RB are held by Alice and Bob, respectively.

The steps to compute A.B are in the following.

i Alice and Bob jointly generate a random invertible matrix M (N ×N).

ii Alice computes A1 = A ·Mleft and A2 = A ·Mright. She sends A1 to Bob.

iii Bob computes B1 = M−1
top ·B and B2 = M−1

bottom ·B. He sends B2 to Alice.

iv Alice computes RA = A2 ·B2, and Bob computes RB = A1 · B1.

Clearly, above the step (iv), RA +RB is equal to

RA +RB =

(
A1 A2

)

B1

B2

 = AM ·M−1B = A.B.

45

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Figure 3.3: Set intersection between Alice and Bob.

In the above protocol, matrix A of Alice can be attacked by Bob or matrix B of Bob

can be attacked by Alice. To avoid the attack, both Alice and Bob can generate a “k-

secure” matrix M with the following conditions, such that (i) MA (resp. MB) includes

at least k + 1 unknown elements of A (resp. B), and (ii) at least 2k unknown elements

of A (resp. B) are in any k combined equations. Many unknown elements on insufficient

equations can allow infinitely possible solutions. Therefore, it is hard to know any element

of matrix A (resp. B).

SMC. The secure matrix multiplication protocol (Du et al., 2004) can still be attacked if

it runs many times with the same matrix A (resp. B); more equations (M ’s) are generated

at the fixed unknown elements of matrix A (resp. B). Another issue is a complex process

to construct the matrix M in the protocol. To address above limitations, (Han et al.,

2010) propose a secure matrix multiplication by applying the SSP protocol of (Goethals

et al., 2004).

3.1.4 Secure Set Computation

SMC. (Clifton et al., 2002) propose an SMC protocol to securely compute a set union

based on commutative encryption for multiple parties. (Vaidya and Clifton, 2005) also

propose an SMC protocol to securely compute a set intersection cardinality of multiple

parties based on commutative one-way hash function (e.g., Pohlig-Hellman). (Agrawal

et al., 2003) propose various secure set computation protocols such as equijoin, set in-

tersection, intersection size, and equijoin size for the two-party model. (Agrawal et al.,

2003) also formulate the notion of minimal information sharing across different private

databases.

46

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Protocol 4: Secure Set Intersection Protocol
Input: Alice has a dataset X and Bob has a dataset Y .
Output: Alice and Bob get X ∩ Y .

1 Alice generates a secret key ska and Bob generates a secret key skb.
2 Alice encrypts her data with ska to get Va = Eska[X], and Bob encrypts his data
with skb to get Vb = Eskb [Y].

3 Alice sends Va to Bob, and Bob sends Vb to Alice.
4 Alice encrypts Vb with ska to get Wa = Eska [Vb], and Bob encrypts Va with skb to
get Wb = Eskb [Va].

5 Alice and Bob jointly find the intersection of Wa and Wb, and then decrypt the
matching records.

Protocol 5: Secure Permutation Protocol

Input: Alice has an input vector X = [x1, x2, · · · , xn]T and Bob has an input
random vector R = [r1, r2, · · · , rn]T with a permutation τ

Output: Alice gets τ(X +R)
1 Alice generates a pair of keys (sk, pk). Alice keeps the secret key sk and sends the
public key pk to Bob. Let E[.] and D[.] be encryption and decryption respectively.

2 Alice encrypts X to get E[X] = ([E[x1], E[x2], · · · , E[xn]]
T) which is sent to Bob.

3 Bob computes E[X] ·E[R] = E[X +R], and then uses the random function τ to
permutate E[X +R] (i.e., τ(E[X +R])) which is sent to Alice.

4 Alice decrypts τ(E[X +R]) to get D[τ(E[X +R])] = τ(D[E[X +R]]) = τ(X +R).

Secure set intersection (Agrawal et al., 2003) is to find the intersection of two different

datasets that are given in the following. Let X and Y be datasets, held by Alice and

Bob respectively. Alice and Bob can jointly find the intersection X ∩ Y of their datasets

as depicted in Figure 3.3 Let Ex[.] be an encryption function of Alice and Ey[.] be an

encryption function of Bob. Based on the property of the commutative encryption, the

main idea of the protocol is that two data records are same if the encryptions of two

data records are same (Ey[Ex[X]] = Ex[Ey[Y]]). Alice and Bob encrypt their datasets

with Ex[.] and Ey[.], and then compare the encrypted data records. Finally, they jointly

decrypt the matching records to get the result. Secure set intersection is depicted in

Protocol 4. More analysis details can be found in (Agrawal et al., 2003).

3.1.5 Secure Permutation

SMC. (Du and Atallah, 2001b) propose a technique to compute τ(X+R) based on semi-

homomorphic encryption (refer to Section 2.1 for more details). The semi-homomorphic

encryption scheme has an additive property, such that E[x] ∗ E[y] = E[x + y] where E[.]

stands for encryption. Giving a vector z = (z1, z2, · · · , zn), the encryption of z is E[z] =

47

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

(E[z1], E[z2], · · · , E[zn]), and the decryption of z is D[z] = (D[z1],D[z2], · · · ,D[zn]) where

D[.] stands for decryption. Let X be a vector of Alice, and τ and R be a random function

and a random vector respectively, that of Bob. The method of (Du and Atallah, 2001b)

computes τ(X +R) that is detailed in Protocol 5.

Theorem 3.1 The permutation algorithm of the Protocol 5 can privately compute a per-

muted vector sum of two party vectors, where Alice learns the permuted sum τ(X+R) and

Bob learns the permutation τ .

(Du and Atallah, 2001b) prove the above protocol via a simulation. In the simulation,

view of Bob is created as follows. Bob receives a encrypted vector E[X] of length n

from Alice. Bob selects a random vector R′ to encrypt with the public key pk of Alice.

Since the encryption scheme is semantically secure, E[X] and E[R′] are computationally

indistinguishable.

Next, the view of Alice is created as follows. Alice receives a vector τ(E[X +R]) with

a size of n from Bob. Alice generates a vector of random numbers with a size of n and

then encrypts the random vector. Since the encryption scheme is semantically secure, the

received vector and the random vector are computationally indistinguishable. Alice and

Bob each learn no information other than respective inputs and the protocol outputs to

them (if any). Thus, the secure permutation protocol is secure.

3.1.6 Oblivious Polynomial Evaluation (OPE)

SMC. (Naor and Pinkas, 1999) propose an oblivious polynomial evaluation (OPE) using

the oblivious transfer protocol (refer to Section 2.3 for more details). The oblivious poly-

nomial evaluation involves a sender and a receiver. Let sender be Alice and receiver be

Bob. The input of Alice (i.e., the sender) is a polynomial Q of degree dp which is defined

over some finite field F . The parameter dp is public. The input of Bob (i.e., the receiver)

is an element z ∈ F . At the end of the execution of the OPE protocol, Bob learns Q(z)

without learning anything about the polynomial Q, and Alice learns nothing. Thus, the

functionality of the oblivious polynomial evaluation can be defined as: (Q, z) 7→ (λ,Q(z)).

The steps to perform oblivious polynomial evaluation are detailed in Protocol 6. The

OPE protocol uses d+ dp+1 coefficients to define the polynomial Q. The overhead of the

protocol is from the line 3 in Protocol 6 that involves interaction between Alice and Bob.

48

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Protocol 6: Oblivious Polynomial Evaluation

Input: Alice (sender) defines a polynomial P (y) =
∑dp

i=0 biy
i of degree dp in the

field F . For a simplicity, let y be an input to P . Bob (receiver) has a value
α ∈ F .

Output: Bob learns P (α).
1 Alice uses a bivariate polynomial to hide P : She generates a random masking

polynomial Px(x) of degree d, such that Px(0) = 0 where Px(x) =
d∑

i=1
aix

i. The

parameter d equals to the security parameter k multiplied by the degree of P (i.e.,
d = k · dp), where k is a security parameter. The bivariate polynomial is defined as
follows,

Q(x, y) = Px(x) + P (y) =

d∑

i=1

aix
i +

dp∑

i=0

biy
i,

where ∀yQ(0, y) = P (y).
2 Bob uses a univariate polynomial to hide α: He selects a random polynomial S of
degree k where S(0) = α. She uses the univariate polynomial R(x) = Q(x, S(x)) to
learn P (α) from Alice.

3 Bob learns the points of R: He learns dR + 1 values in the form of 〈xi, R(xi)〉.
4 Bob computes Pα: He uses the values of R to interpolate R(0) = P (α). Since the
following condition R(0) = Q(0, S(0)) = P (S(0)) = P (α) holds, Bob can interpolate
R to learn R(0) = P (α) (where the degree of R is dR = d = k · dp).

(Naor and Pinkas, 2001) improve the computation performance of the OPE protocol

using one-out-of-N oblivious transfer. More details of the OPE protocol can be found in

(Naor and Pinkas, 2001, 1999). Alternatively, any homomorphic encryption scheme (refer

to Section 2.1 for more details) also can be used to implement an OPE protocol.

3.1.7 Secure Logarithm

SMC. (Lindell and Pinkas, 2002, 2000) propose an SMC protocol to compute lnx based

on Yao’s protocol (Section 2.5), the oblivious transfer protocol (Section 2.3), and the

oblivious polynomial evaluation (OPE) protocol (Section 3.1.6). In the natural logarithm,

ln(x+ ǫ) can be expanded by Taylor series as follows,

ln(1 + ǫ) =
∞∑

i=1

−1i−1ǫi

i
= ǫ− ǫ2

2
+

ǫ3

3
− ǫ4

4
+ · · · , (3.2)

where −1 < ǫ < 1. In above series, it is easy to get the error for a partial evaluation in

the following. ∣∣∣∣∣ ln(1 + ǫ)−
k∑

i=1

(−1)i−1ǫi

i

∣∣∣∣∣ <
|ǫ|k+1

k + 1
· 1

1− |ǫ| . (3.3)

49

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Protocol 7: Secure Logarithm

Input: Alice has an input vA and Bob has an input vB where
vA + vB = x = 2n(1 + ǫ), 2n is nearest to x, and −1 < ǫ < 1.

Output: Alice gets uA and Bob gets uB where
uA + uB = lcm(2, · · · , k) · 2N ln(vA + vB).

1 Alice and Bob jointly run Yao’s protocol on inputs vA and vB to compute (i) ǫ2N

mod |F| to get αA and αB , held by Alice and Bob respectively, and (ii) 2N · n ln(2)
mod |F| to get βA and βB , held by Alice and Bob respectively.

2 Alice selects z1 ∈R F to define the polynomial,

Q(z) = lcm(2, · · · , k) ·
k∑

i=1

(−1)i−1

2N(i−1)

(αA+z)i

i − z1.

3 Alice and Bob jointly execute a (private) polynomial evaluation with Alice
inputting Q(.) and Bob inputting αB . Bob gets z2 = Q(αB).

4 Alice sets uA = lcm(2, · · · , k)βA + z1 and Bob sets uB = lcm(2, · · · , k)βB + z2.

Obviously, the error in Equation 3.3 shrinks exponentially as k grows. Thus, ln(x) can be

expressed into

ln(x) ≈ ln(2n(1 + ǫ)) = n ln(2) + ǫ− ǫ2

2
+

ǫ3

3
− ǫ4

4
· · · , (3.4)

where 2n is nearest to x. Subsequently, Equation 3.4 can be transformed into

lcm(2, · · · , k) · 2N
(
n ln(2) + ǫ− ǫ2

2
+

ǫ3

3
− · · · ǫ

k

k

)
≈ lcm(2, · · · , k) · 2N · ln(x), (3.5)

where lcm is the least common multiple of (2, · · · , k).

(Lindell and Pinkas, 2002, 2000) use Yao’s protocol to compute the first element 2N ·

n ln 2 in the series of ln(x) (Equation 3.5) and the remainder of the series ǫ · 2N (Equation

3.5) where N is a public upper-bound of the value n (N > n). The next step is to

define and evaluate a polynomial. We use the two-party model (e.g., Alice and Bob) in

the protocol. Alice first defines a polynomial Q(z). Alice and Bob then compute Q(z)

using oblivious polynomial evaluation to get z1 and z2, held by Alice and Bob respectively,

where z1+z2 = lcm(2, · · · , k) ·2N · ln(x) (Equation 3.5). The steps are detailed in Protocol

7. More details of the secure logarithm protocol can be found in (Lindell and Pinkas, 2002,

2000).

(Ryger et al., 2008) propose a few approaches to optimize secure logarithm of (Lindell

and Pinkas, 2002, 2000). To make integer (ǫ · 2N)i is divisible by the integer 2N(i−1), they

use 2Nk to replace 2N in Equation 3.5. They also suggest to use 2Nk+2k+logN that can

50

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

support larger protocol in computing x ln(x). To support non-integer in secure logarithm,

the solutions of (Ryger et al., 2008; Lindell and Pinkas, 2002, 2000) are not discussed

in detail. The precision of secure logarithm is bounded by the number of iterations k

in the polynomial Q (line 2 in Algorithm 7). Since the oblivious polynomial evaluation

(OPE) protocol is expensive in computation, the time complexity increases significantly

as k increases in the polynomial Q. The reasons above have motivated us to investigate

a new secure logarithm that can address above issues. Our new secure logarithm will be

efficient in computation and effective in protecting data privacy.

3.1.8 Secure Division

SMC. (Bunn and Ostrovsky, 2007) propose a secure division that involves two parties

(e.g., Alice and Bob). Let P and D be integers (i.e. P,Q ∈ ZN). Alice and Bob select a

random value R ∈ ZN (uniformly distributed), and Q ∈ ZN remains secret to both Alice

and Bob. Let PA and PB be inputs of Alice and Bob respectively, and DA and DB be

inputs of Alice and Bob respectively, where PA + PB = P and DA + DB = D. They

apply secure division to compute the quotient Q of P
D where Q < N , 0 ≤ R < D, and

P = QD +R. At the end of the computation, the outputs are QA and QB, held by Alice

and Bob respectively, where QA+QB = Q. Note that Q (an actual quotient inR) has been

rounded down to the closest integer. The secure division protocol of (Bunn and Ostrovsky,

2007) involves sub-protocols such as the γ protocol (Bunn and Ostrovsky, 2007) and the

find minimum of 2 numbers protocol (Bunn and Ostrovsky, 2007). The two sub-protocol

involves the secure scalar product protocol (refer to Section 3.1.2 for more detail). More

details of this protocol can be found in (Bunn and Ostrovsky, 2007). The secure division

protocol of (Bunn and Ostrovsky, 2007) can provide a complete privacy under the semi-

honest model. However, the protocol has not yet been proven to be efficient, and its

approximation error is not clear either.

(Dahl et al., 2012) use two steps to compute secure division, n
d . Let n and d be ℓ-bit

integers, and k be a large integer. The steps are as follows: (i)Alice and Bob jointly

compute an encrypted approximation of [ã] of a = ⌊2kd ⌋, (ii) Alice and Bob compute [⌊nd ⌋]

which is equal to ⌊ ([ã]·[n])
2k
⌋.

51

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

In the first step, (Dahl et al., 2012) use a Taylor series to compute a “k-shifted”

approximation of 1
d where d is an integer as follows,

1

α
=

∞∑

i=0

(1− α)i =

ω∑

i=0

(1− α)i + ǫω, (3.6)

where ǫω =
∑∞

i=ω+1(1−α)i. The approximation approach is similar in (Hesse et al., 2002)

that uses the constant depth division circuit and in (Kiltz et al., 2005). The error ǫω of

Equation 3.6 is bounded by

ǫω =

∞∑

i=ω+1

(1− α)i ≤ 2−ω−1 · 1
α
≤ 2−w, (3.7)

where 0 < 1 − α ≤ 1
2 . The error is relatively small by setting ω sufficiently large. Thus,

ǫω can be truncated in above computation.

In Equation 3.6, 1
α is multiplied by a power of two “shifts” to ensure that each of ω+1

terms is an integer. Let ℓd = ⌊log(d) + 1⌋ be a bit length of d (i.e., 2ℓd−1 ≤ d < 2ℓ). For

giving α = d
2ℓd

and k = ℓ2 + ℓ, 2k

d shifted up by k bits is computed as

2k

d
= 2k−ℓd · 1

d/2ℓd

= 2k−ℓd ·
(

ω∑

i=0

(
1− d

2ℓd

)i

+ ǫw

)

= 2k−ℓd(ω+1) ·
ω∑

i=0

(
1− d

2ℓd

)i

· 2ℓdω + 2k−ℓdǫw

= 2k−ℓd(ω+1) ·
ω∑

i=0

(
2ℓd − d

)i
· 2ℓd(ω−i) + 2k−ℓdǫw. (3.8)

Therefore, the approximation of ã is 2k−ℓd(ω+1) ·
ω∑

i=0

(
2ℓd − d

)i · 2ℓd(ω−i).

The second step of (Dahl et al., 2012) is multiplied [ã] by [n]
2k

which is the approximation

of ⌊nd ⌋. (Dahl et al., 2012) use many sub-protocols such as the greater-than protocol

(Damg̊ard et al., 2006), the inverse of the element protocol (Bar-Ilan and Beaver, 1989),

bit-decomposition (Damg̊ard et al., 2006), and the prefix-or of a sequence of bits protocol

(Damg̊ard et al., 2006), to perform secure division. More details of this protocol can be

found in (Dahl et al., 2012). However, the secure division protocol of (Dahl et al., 2012)

applies the expensive bit-decomposition to compute the bit length ℓ of d in the secure

division. A total complexity of the bit-decomposition (Damg̊ard et al., 2006) requires 114

52

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

rounds and 110ℓ log ℓ + 118ℓ invocations of secure multiplication (e.g., in the two-party

model, each secure multiplication requires 9 modulus exponentiations (Cramer et al., 2001)

to compute E[a] × E[b], held by Alice and Bob respectively, where d = a+ b. Moreover,

the solution has not been given any empirical results (Dahl et al., 2012).

In other secure division protocols, (Veugen, 2014) consider to use a public divisor or

a private divisor (known by one of two parties) to perform secure division. (Su et al.,

2007; Jha et al., 2005; Vaidya and Clifton, 2003) propose some methods that allow both

parties to compute division on their locally data. (Jagannathan and Wright, 2005) perform

secure division by mutliplication by inverse(Jagannathan and Wright, 2005) that is not

the correct division operation(Bunn and Ostrovsky, 2007). All of the secure divisions

(Veugen, 2014; Su et al., 2007; Jha et al., 2005; Jagannathan and Wright, 2005; Vaidya

and Clifton, 2003) can not provide complete privacy under the semi-honest model (Bunn

and Ostrovsky, 2007).

All secure division protocols we discussed are either not efficient in computation or not

effective in protecting data privacy, and both of them in privacy-preserving data mining

(PPDM). As the secure division protocol is important in many data mining tasks, this

motivates us to investigate a new secure division that can address above issues. We will

propose the secure division protocol that will be efficient in computation and also effective

in protecting data privacy in PPDM.

3.1.9 Least Significant Bits Gate (LSBs)

SMC. The LSBs Gate (Schoenmakers and Tuyls, 2006) extracts the ℓ least significant

encrypted bits of the plaintext m that is encrypted based on the threshold Paillier en-

cryption (Cramer et al., 2001). Let use a (2, 2)-threshold Paillier encryption (i.e. gen-

erate two privates key, skalice and skbob and hence need both skalice and skbob to de-

crypt the ciphertext). The basis idea of LSBs Gate is both Alice and Bob jointly gen-

erate a random value r and compute M = E[pk,m] · E[pk, ralice] · E[pk, rbob]. Then

they decrypt y = D[skalice,M] + D[skbob,M] (i.e. y = m + r). The encrypted bits of

E[m0,m1], · · · , E[mℓ−1] of the plaintext m can be recovered from y0, y1, · · · , yℓ−1 and the

encrypted bits of E[r0], [r1], · · · , E[rℓ−1]. For security, r =
∑ℓ−1

j=0 rj2
j +2r∗ is a sufficiently

large number where r0, · · · , rℓ−1 are bits and 2∗ is a large integer. Therefore, LSBs Gate

is a semantic secure in which y = x− r is statistically indistinguishable from a random.

53

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Protocol 8: Least Significant Bits Gate

Input: An encrypted message, E[x], where 0 ≤ x < 2m and m+ k + log n < logN
(Note that m = ℓ is in this protocol).

Output: An enrypted bits, E[m]
1 Alice and Bob jointly generate random bits E[r0], · · · , E[rm−1] using m random-bit
gate (Schoenmakers and Tuyls, 2006). In parallel, Alice and Bob select r,1 and r∗,2,
respectively, where ∀2i=1r,i ∈R {0, · · · , 2m+k−1 − 1} . The encryption of E[r] that is

equal to r =
2∑

i=1
r,i is publicly computed.

2 Alice and Bob compute E[x− r] and then jointly decrypt E[x− r] to get the signed

value y = x− r ∈ (−n
2 ,

n
2), where r =

m−1∑
j=0

rj2
j + r2m. The signed value y is

computed in modulo n (i.e., y ≡ x− r mod n).
3 Let y0, y1, · · · , ym−1 be a binary representation of y mod 2m. To get an output of m
encrypted bits, the addition circuit (Schoenmakers and Tuyls, 2006) uses the inputs
of y0, y1, · · · , ym−1 (public) and E[r0], E[r1], · · · , E[rm−1].

The least significant bits (LSBs) gate involves a few sub-protocols such as the random

gate (Schoenmakers and Tuyls, 2006) and the addition circuit (Schoenmakers and Tuyls,

2006) to extract ℓ bits of the encrypted message. The steps to perform the least significant

bits (LSBs) gate are depicted in Protocol 8. LSBs gate can involve with more than two

parties. In a case of ℓ < m, (Schoenmakers and Tuyls, 2006) propose a technique to com-

bine with the Protocol 8. More details of LSB’s gate can be found in (Schoenmakers and

Tuyls, 2006) (Note that the authors also provide a solution to extract the least significant

bit instead of ℓ bits).

3.1.10 Fast Garbled Circuit

SMC. (Huang, Evans, Katz and Malka, 2011) propose the fast garbled circuit that consists

of simple circuits such as the AND-gate , the OR-gate and the XOR-gate. By a combina-

tion of different gates, some secure computations (Huang, Evans, Katz and Malka, 2011;

Huang, Malka, Evans and Katz, 2011) such as integer comparison, Hamming distance,

and many more can be performed. The fast garbled circuit use the circuit approach (Sec-

tions 2.5.1 and 2.5.2) and oblivious transfer (Section 2.3) to perform secure computation.

Numeric comparison is one of most frequent computations in many privacy-preserving

data mining algorithms. In this thesis, integer comparison circuit which is part of the fast

garbled circuit is given a name, CMP.

54

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

The CMP integrates the comparison circuit of (Kolesnikov et al., 2009) and combines

the efficient oblivious transfer protocols of (Ishai et al., 2003) and (Naor and Pinkas, 2001)

applying an aggressive pre-computation technique to perform secure integer comparison.

Let x and y be the inputs of Alice and Bob respectively. The CMP compares two ℓ-bit

integers xℓ (Figure 3.4(i)) and yℓ to get

z =

1 if xℓ > yℓ,

0 otherwise.
(3.9)

The CMP forms Boolean circuits (i.e., “>”) to evaluate xℓ > yℓ using one 2-input AND

gate with 4 table entries and three free XOR gates, as depicted in Figure 3.4(ii). Other

comparisons like xℓ < yℓ, xℓ ≥ yℓ, or xℓ ≤ yℓ are possible in the CMP that can switch xℓ

with yℓ and/or setting the initial carry bit c1 = 1 in the circuit (Figure 3.4(ii)).

In the CMP, the oblivious transfer protocols involve two phases: (i) in preparation

phase, two parties jointly pre-compute oblivious transfer, and then create and transfer the

garble circuit via oblivious transfer. The preparation phase is a one-off initialization. (ii) in

online phase, the circuit is evaluated so that it involves symmetric encryption (e.g., SHA-

1) without any modular exponentiation. The online phase requires 2(k1 +m) encryptions

and k1 +m decryptions where k1 is a security parameter (e.g., 80) with m pairs of ℓ-bit

strings. Since the expensive modulus exponentiation is shifted to the preparation phase,

CMP is the efficient protocol to securely compare integers between two parties.

3.2 Privacy-Preserving Data Mining Algorithms

In this section, we discuss some state-of-the-art privacy-preserving data mining (PPDM)

algorithms that use some of secure building blocks as we discussed in Section 3.1. The

PPDM algorithms have been proposed to mine the distributed data and to protect data

privacy which data can be split vertically or horizontally, and both of them among partic-

ipating parties. We first discuss privacy-preserving Näıve Bayes classifier in Section 3.2.1.

Privacy-preserving support vector machine and privacy-preserving decision tree are dis-

cussed in Sections 3.2.2 and 3.2.3, respectively. We also discuss privacy-preserving associ-

ation rule mining (Section 3.2.4), privacy-preserving clustering (Section 3.2.5) and other

privacy-preserving data mining algorithms (Section 3.2.6). In Section 3.2.7, we discuss

55

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

(i) Comparison Circuit (CMP)

(ii) Comparator (“>”)

Figure 3.4: Comparison in the Fast Garbled Circuit

the limitations of the current PPDM algorithms and propose a general privacy model to

address the limitations in PPDM.

3.2.1 Privacy-Preserving Näıve Bayes Classifier

A Bayesian classifier is a statistical classifier based on Bayes theorem. It can predict

probabilities of class members; e.g., given a sample, the Bayesian classifier can calculate

the probability of the sample that belongs to a particular class. To reduce complexity

for learning the Bayesian classifier, the Näıve Bayes classifier assumes all attributes (i.e.,

features) are conditionally independent. (Domingos and Pazzani, 1996) show that the

Näıve Bayesian learning is sufficiently effective in comparable to performance with other

classifiers such as neural network and decision tree.

Let A1, A2, · · · , An be attributes that are conditionally independent with each other,

given C. Thus, based on Bayes theorem, we can write it as

P (A|C) =P (A1, A2, · · · , An|C)

=P (A1|C)P (A2|C) · · ·P (An|C) =

n∏

i=1

P (Ai|C). (3.10)

56

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Next, we assume that (in general) C is a discrete variable and A1, A2, · · · , An are discrete

or real attributes. Let m1,m2, · · · ,mk be values of C. Given a new instance A, the Näıve

Bayes classifier can compute the probability C taking mi ∈ 1, · · · , k as follows,

P (C = mi|A1, A2, · · · , An) =
P (C = mi)P (A1, A2, · · · , An|C = mi)∑k
j=1 P (C = mj)P (A1, A2, · · · , An|C = mj)

, (3.11)

where the sum is added by each probability of all possible values of C. If A1, A2, · · · , An

are conditional independent given C, we can substitute Equation 3.10 into 3.11 as

P (C = mi|A1, A2, · · · , An) =

P (C = mi)
n∏

i=1
P (Ai|C = mi)

∑k
j=1 P (C = mj)

n∏
i=1

P (Ai|C = mj)

. (3.12)

Thus, the probability C that takes any value can be computed as the observed attribute

values of a new instance and the distributions P (C) and P (Ai|C) estimated from training

data are given. Most probable value of C can find by

C ← argmax
mi

P (C = mi)
n∏

i=1
P (Ai|C = mi)

∑k
j=1 P (C = mj)

n∏
i=1

P (Ai|C = mj)

, (3.13)

which can simplify to

C ← argmax
mi

P (C = mi)

n∏

i=1

P (Ai|C = mi). (3.14)

More details of Näıve Bayes can be found in (Mitchell, 1997).

In the horizontally partitioned data, (Kantarcioglu and Clifton, 2003) propose privacy-

preserving Näıve Bayes classifier based on the secure sum protocol (Section 3.1.1). (Vaidya,

Kantarcioglu and Clifton, 2008; Vaidya and Clifton, 2004) use the secure scalar product

protocol (Section 3.1.2) in privacy-preserving Näıve Bayes classifier targeted on vertically

partitioned data. The secure scalar product protocol can compute the approximate prob-

ability without revealing input data to each other. (Wright and Yang, 2004) propose a

privacy-preserving Näıve Bayesian network computation that involves with two parties

57

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Figure 3.5: Linear separating hyperplanes by SVM. The support vectors are circled.

targeted on vertically partitioned data. The method of (Wright and Yang, 2004) is to en-

hance theK2 algorithm with privacy-preserving enabled that it can securely and efficiently

construct the structure of a Bayesian network from input data of the two parties.

3.2.2 Privacy-Preserving Support Vector Machine

Support vector machine (SVM) is one of the popular data mining algorithms to perform

tasks such as classification and regression. The objectives of SVM are to (i) maximize the

geometrical margin of hyperplane separation and (ii) minimize the experimental classifi-

cation error. In SVM, a maximal separating hyperplane is constructed by mapping input

vectors into a higher dimensional space. Another two hyperplanes that are parallel to the

separating hyperplane are constructed to separate data. Therefore, the separating hyper-

plane can either maximize or minimize the distance between the two parallel hyperplanes.

Figure 3.5 shows a linear SVM that separates data between the hyperplanes. More details

of SVM can be found in (Burges, 1998).

In the linear SVM (Figure 3.5), training data are linearly separated by optimal hy-

perplanes. Let xi and yi be data and the label of data respectively, where xi ∈ R
d,

i ∈ 1, · · · , ℓ, and yi ∈ {−1,+1}. Assuming that is a separating hyperplane can separate

the negative (y = −1) from the positive (y = +1) label of data. Each data xi which lies on

the separating hyperplane satisfies w ·x+ b = 0, where w is normal to the hyperplane, |b|
||w||

is the perpendicular distance from the origin to the hyperplane, and ||w|| is the Euclidean

form of w. The margin of the hyperplane is d (d+) which is the shortest distance from

58

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

the hyperplane to the nearest negative (positive) label of data. To find the separating

hyperplane with largest margin, all the training data need to satisfy the constraints as

follows,

xi · w + b ≤ −1 for yi = −1, (3.15)

xi · w + b ≥ +1 for yi = +1. (3.16)

Equations 3.15 and 3.16 can be combined together to

∀i yi(xi · w + b)− 1 ≥ 0. (3.17)

Next consider two cases based on Equations 3.15 and 3.16. Assuming that xi lies on the

hyperplane P1 : xi · 2 + b = −1 with normal w that is a perpendicular distance from the

origin |−1−b|
||w|| (Equation 3.15). Similarly, xi lies on the hyperplane P2 : xi · 2 + b = 1 with

normal w that is a perpendicular distance from the origin |1−b|
||w|| (Equation 3.16). Thus,

d = d+ = 1
||2|| is the margin to 2

||w|| (Note that no training data fall between parallel

hyperplanes P1 and P2). To find a pair of hyperplanes that gives the maximum margin,

||w|| can be minimized using the Equation 3.17.

The constraint equations that are multiplied by Lagrange multiplier and subtracted

from the objective function can be transformed into the Lagrangian form as

LP ≡
1

2
||w||2 −

l∑

i=1

αiyi(xi · w + b) +
l∑

i=1

αi, (3.18)

where each of the inequality constraints in Equation 3.17 is multiplied by positive Lagrange

multipliers αi, i ∈ 1, · · · , l. To solve the dual problem in Equation 3.18, the gradient of

LP (i.e., the primal problem) with respect to w and b gives

w =
∑

i=1

αiyixi,
∑

i

αiyi = 0.

Substituting above two conditions into Equation 3.18 can get LD (i.e., the dual problem)

as

LD =
∑

i

αi −
1

2

∑

i,j

αiαjyiyjxi · xj. (3.19)

59

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Day Outlook Humidity Wind PlayBall

01 Sunny High Weak No

02 Sunny High Strong No

03 Rain High Weak Yes

04 Rain Normal Weak Yes

05 Rain Normal Strong No

(a) Original dataset, S

Day Outlook Humidity Wind PlayBall

01 Sunny - Weak No

02 - High - No

03 Rain - - Yes

04 Rain - - Yes

05 - Normal Strong No

(b) Alice’s dataset

Day Outlook Humidity Wind PlayBall

01 - High - No

02 Sunny - Strong No

03 - High Weak Yes

04 - Normal Weak Yes

05 Rain - - No

(c) Bob’s dataset

Figure 3.6: Datasets of Alice and Bob. The class attribute is “PlayBall”.

Above discussion is the linear SVM to find the optimal hyperplane. (Boser et al., 1992)

propose a non-linear SVM using kernel functions to contruct classifiers. The non-linear

SVM works in a simlar way as in the linear SVM with one exception. The exception is

that every dot product of the linear SVM is changed to a kernel function that fits the

maximum-margin hyperplane in the feature space.

(Yu, Jiang and Vaidya, 2006) use the secure intersection cardinality protocol (Vaidya

and Clifton, 2005) (Section 3.1.4) to construct the global SVM classification model by

kernel function targeted on horizontally partitioned data. (Yu, Vaidya and Jiang, 2006)

propose privacy-preserving SVM based on secure sum of integers (Section 3.1.1) and secure

sum of matrices targeted on vertically partitioned data. To achieve complete security, (Yu,

Vaidya and Jiang, 2006) suggest to apply the circuit evaluation technique. Subsequently,

they extend the existing SVM (Yu, Vaidya and Jiang, 2006) to support arbitrarily parti-

tioned data (Vaidya, Yu and Jiang, 2008). (Laur et al., 2006) use some cryptographic tools

(e.g., homomorphic encryption, the secret sharing and the circuit protocol) to implement

the kernel adaption and the kernel perception learning algorithms without revealing the

Gram (kernel) matrix of the data.

3.2.3 Privacy-Preserving Decision Tree

Decision tree learning is one of many popular methods for inductive inference. The resul-

tant tree can be turned into a set of if-then rules for decision making. The main idea of

the decision tree is to split a set of choices about each feature of data in turn, starting

first at the root of the tree and then moving down to the leaves. The decision tree uses

60

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

a greedy heuristic approach that performs search and evaluates all the possible options

at the current stage of learning to find the optimal split point. A few metrics such as

information gain and entropy (Quinlan, 1986), gini (Breiman et al., 1984), and gain ratio

(Quinlan, 1993) can be used to decide the optimal split point. Decision tree algorithms

that include ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993) , CART (Breiman et al., 1984)

and many more can be used to construct and evaluate a tree. More details of decision tree

induction can be found in (Mitchell, 1997; Quinlan, 1993; Safavian and Landgrebe, 1991).

In the two-party model, Alice and Bob each hold their own data respectively. Alice

intends to construct (induce) a decision tree based on both of her own data and the data

from Bob without violating data privacy of Bob (and likewise for Bob).

Binary column vectors can represent nominal (categorical) attribute values in deci-

sion tree construction. The construction process incurs nodes splitting by evaluating the

“goodness” (information gain) of the attributes. The information gain is the entropy of

the attribute set minus the entropy when a particular attribute is selected, as follows.

Gain(S,F) = Entropy(S)−
∑

α∈F

(|σF=α(S)|
|S| Entropy(σF=α(S))

)
, (3.20)

where

Entropy(S) = −
N∑

i=1

(|σC=i(S)|
|S| log

|σC=i(S)|
|S|

)
, (3.21)

where S is the data set having N classes, α is the value of the attribute F , σ is the

selection operator, and C is the class label. For example, in Figure 3.6(a), the class

information of the original data is known by Alice and Bob. They individually can compute

Entropy(S) = −2
5 log(

2
5) − 3

5 log(
3
5) = 0.971 where the total number of “Yes” and “No”

of the class “PlayBall” are 2 and 3, respectively. Let “Outlook” be an attribute that has

two values, “Rain” and “Sunny”, for information gain calculation. Alice (3.6(b)), and

Bob (3.6(c)), jointly compute the entropy of the attribute “Outlook” without revealing

their inputs to each other. They apply secure scalar product protocol (Section 3.1.2) to

compute the number of tuples in the data set S which the attribute “Outlook” has value

“Rain” in the following.

|σ[Outlook=“Rain”](S)| = Alice[Outlook=“Rain”] · Bob[Outlook=“Rain”]

= [0, 1, 1, 1, 1]T · [1, 0, 1, 1, 1]T = 3. (3.22)

61

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

Similarly, |σ[Outlook=“Rain”,P layBall=“Y es”]| and |σ[Outlook=“Rain”,P layBall=“No”]| are 2 and 1

respectively. The entropy of (σ[Outlook=“Rain”](S)), based on Equation 3.21, is

Entropy(σ[Outlook=“Rain”](S)) = −
1

3
log(

1

3
)− 2

3
log(

2

3
) = 0.917.

Similarly, the entropy of (σ[Outlook=“Sunny”](S)) is 0. Thus, the information gain of the

attribute “Outlook”, based on Equation 3.20, is

Gain(S,Outlook) = 0.971 − 2

5
× 0− 3

5
× 0.917 = 0.42. (3.23)

The information gain of the attribute “Humidity” (i.e., Gain(S,Humidity)) and of the

attribute “Wind” (i.e., Gain(S,Wind)) can be computed in such a similar way of the

information gain of the attribute “Outlook”. The best splitting attribute is “Outlook”

that has higher information gain than the other two attributes. The attribute “Outlook”

next splits the data set S into partitions, σOutlook=“Sunny” and σOutlook=“Rain”.

Above the partition (σOutlook=“Rain”) can be further split, the information gain of

(σOutlook=“Rain”(S),W ind) and of (σOutlook=“Rain”(S),Humidity) can be computed in

such a similar way as above to select a higher information gain between them. The

process continues until the complete tree is built. More details of the tree construction

process can be found in (Vaidya, Clifton, Kantarcioglu and Patterson, 2008; Du and Zhan,

2002).

(Lindell and Pinkas, 2000) propose a privacy-preserving ID3 algorithm that can se-

curely construct a tree from horizontally partitioned data that involves two parties. They

propose a secure logarithm (Section 3.1.7) to compute information gain along with some

existing cryptographic tools such as the secure scalar product protocol (Section 3.1.2), the

oblivious transfer protocol and the garbled circuit approach. (Du and Zhan, 2002) use the

secure scalar product protocol (Section 3.1.2) to securely construct a tree using a semi-

trusted commodity server. The commodity server helps to compute the scalar product of

vertically partitioned data of two parties without learning their inputs. The approach of

(Du and Zhan, 2002) is considered secure by assumption that no collusion occurs between

the commodity server and either of the two parties. (Vaidya, Clifton, Kantarcioglu and

Patterson, 2008) propose a privacy-preserving ID3 that can securely construct a tree from

62

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

vertically partitioned data of multiple parties (i.e., ≥ 2) using the secure set intersection

cardinality protocol (Section 3.1.4).

3.2.4 Privacy-Preserving Association Rule Mining

We use the formal definition of (Agrawal et al., 1993) to state the association rule mining

problem in the following. Each associate rule is implicitly expressed in the form of X −→

Y , where X and Y are disjoint itemsets (i.e., X ∩ Y). To mine association rules, two

common metrics, the support and the confidence can determine whether the rule X −→ Y

is frequent. The support and the confidence are defined as follows:

support(X −→ Y) =
|X ∪ Y |

N
, (3.24)

confidence(X −→ Y) =
|X ∪ Y |
|X| , (3.25)

where |X| (resp. |Y |) is the total number of items X (resp. Y) appearing in the transac-

tions, and N is the number of transactions.

Any generated association rule needs to satisfy both a user-defined minimum support

(minsupport) and a user-defined minimum confidence (minconf). Association rule gen-

eration comes with two separate steps as follows: (i) finding all the frequent itemsets that

have the support above minsupport, (ii) generating a rule X −→ Y from the pair < X >

and < X,Y > of the frequent itemsets in the previous step that the confidence of the rule

is above minconf . Many of the association rule mining algorithms have been proposed

such as the Apriori pruning algorithm (Agrawal and Srikant, 1994), the AIS algorithm

(Agrawal et al., 1993) the FP-tree algorithm (Han et al., 2000), and the SOTrielT al-

gorithm (Das et al., 2001). The details of the theoretical discussions and the empirical

comparisons of above algorithms can be found in (Hipp et al., 2000)

A transactional database can be presented in a Boolean m × n matrix, where m and

n are the number of transactions and the number of items, respectively. Value 1 indicates

an item that is in the database and 0 otherwise. Let
−→
X and

−→
Y be columns of the matrix

that present items X and Y , held by Alice and Bob respectively. The frequency of items

X ∪ Y that appears in the transactions can be computed by scalar dot product,

|X ∪ Y | = −→X · −→Y . (3.26)

63

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

(Kantarcioglu and Kardes, 2006) propose a method that can mine association rules

from horizontally partitioned data that involves more than two parties. They integrate

SMC to minimize the information leak. In the vertically partitioned data with the two-

party model, (Vaidya and Clifton, 2002) use the secure scalar product protocol (Section

3.1.2) to mine association rules. In the protocol, they apply some linear algebra techniques

to mask the private vectors with some perturbed numbers. In terms of time complexity,

the method of (Vaidya and Clifton, 2002) outperforms other privacy-preserving associ-

ation rule mining algorithms based on SMC. To support the vertically partitioned data

with more than two parties, (Vaidya and Clifton, 2005) apply the secure set intersection

cardinality protocol (Section 3.1.4) to mine association rules.

3.2.5 Privacy-Preserving Clustering

Clustering (Han et al., 2006) is the process of grouping data instances into a small number

of clusters. The cluster is a collection of data instances that are similar to one another

and dissimilar to other data instances in other clusters. In machine learning (Han et al.,

2006), clustering is an unsupervised learning that does not depend on training exam-

ples. The similarity of data instances can be computed using the distance-based cluster

analysis. Other measurements, such as k-means (MacQueen, 1967) and k-medoids, can

also measure the similarity of data instances. Several clustering approaches that include

the partitioning approach, the hierarchical approach, the density-based approach and the

grid-based approach, can be used to cluster data instances.

In the partitioning approach, the partitioning algorithms can construct the predefined

partitions of the data. All data instances are likely similar that they are grouped in the

same cluster. Well-known partitioning algorithms include k-mean (MacQueen, 1967), k-

medoids, expectation maximization (Mitchell, 1997), and some of their variations. The

hierarchical approach decomposes data instances by grouping them into a tree of clusters.

The hierarchical tree is constructed based on the agglomerative (i.e., bottom-up) or divisive

(i.e., top-down) hierarchical clustering. Algorithms of the hierarchical approach include

BRICH (Zhang et al., 1996), CURE (Guha et al., 1998) and Chameleon (Karypis et al.,

1999). Many partitioning clustering algorithms can use the density-based approach based

on the distance between data instances. Algorithms of the density-based approach include

DBSCAN (Ester et al., 1996), DENCLUE (Hinneburg and Keim, 1998) and OPTICS

64

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

(Agrawal et al., 2003). The grid-based approach quantizes data space into a number of

cells that can construct a grid structure. Algorithms of the grid-based approach include

STING (Wang et al., 1997), WaveCluster (Sheikholeslami et al., 1998), CLIQUE (Agrawal

et al., 1998) and MAFIA (Goil et al., 1999). (Berkhin, 2002) provides a survey paper about

clustering. Data mining clustering techniques are discussed in detail in (Tan et al., 2006).

(Vaidya and Clifton, 2003) propose a privacy-preserving k-means clustering to mine

association rules from vertically partitioned data that involves more than two parties.

Given a sample held by different parties, the method of (Vaidya and Clifton, 2003) can

allow multiple parties to jointly and securely compute the sample of which cluster is closest

to it. The method uses the secure permutation protocol (Du and Atallah, 2001b) (Section

3.1.5) and the secure comparison protocol that involves the circuit approach (Yao, 1986).

(Jagannathan and Wright, 2005) first introduce the concept of arbitrarily partitioned

data in clustering. Both horizontally and vertically partitioned data are considered special

cases of the arbitrarily partitioned data. They propose a privacy-preserving k-means

clustering targeted on arbitrarily partitioned data. To securely compute the closest cluster

for a given instance, privacy-preserving k-means clustering (Jagannathan and Wright,

2005) uses the scalar product protocol (Section 3.1.2). (Jagannathan et al., 2006) also

propose a privacy-preserving k-clustering using a simple I/O-efficient algorithm. The

algorithm is claimed to be more accurate than others using the iterative k-means algorithm

to produce cluster centers. Thus, (Jagannathan et al., 2006) apply the secure scalar

product protocol (Section 3.1.2) and the circuit approach (Yao, 1986) to mine association

rules.

(Lin et al., 2005) apply EM (expectation maximization) mixture modeling to securely

compute clustering over horizontally partitioned data. Each party computes partitions

locally on its input data. All parties then apply the secure sum protocol (Section 3.1.1)

to compute the global sum of their partitions without revealing any individual input to

each other. (Prasad and Rangan, 2006) propose a privacy-preserving BRICH algorithm

to perform clustering targeted on vertically partitioned data. They use various secure

building blocks such as the secure scalar product protocol (Section 3.1.2) and the random

permutation protocol, to mine association rules.

65

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

3.2.6 Other Privacy-Preserving Data Mining Algorithms

(Du et al., 2004) propose the privacy-preserving approach of multivariate classification

and that of multivariate linear regression over vertically partitioned data that involves

two parties. They apply a practical security model that consists of a number of secure

building blocks, such as the secure matrix inverse protocol and the secure matrix product

protocol. Privacy-preserving neural network (Barni et al., 2006) allows two parties under

the provided scheme that one of two parties holds its own private data and another has

a private neural network that can process the private data. (Naor and Pinkas, 1999)

apply some cryptographic tools such as the secure scalar product protocol and the private

polynomial evaluation (Section 3.1.6), to the privacy-preserving neural network.

(Brickell et al., 2007) propose a privacy-preserving evaluation protocol for diagnostic

programs that can present in binary trees or branching programs. The protocol uses classi-

fication labels in the branching diagnostic program. At the end of the protocol execution,

the participating parties learn the label without knowing the diagnostic program. The

owner of the diagnostic program learns nothing. (Sakuma et al., 2008) enhance a rein-

forcement learning technique with privacy-preserving enabled. The learning protocol can

discover a control policy via interactions between distributed agents without revealing any

agent information to each other. The protocol uses secure building blocks that include the

secure comparison protocol and the secure division protocol based on the homomorphic

encryption scheme. (Agrawal et al., 2003) propose sharing information across autonomous

entities that can provide an answer to a query. They propose a few secure building blocks

that include the commutative encryption and the hash functions. To reveal the answer

of the query only, (Agrawal et al., 2003) use the secure building blocks to propose a few

secure protocols in computing intersection and equijoin.

3.2.7 Discussion

In privacy-preserving data mining (PPDM), the randomization and SMC can perform

secure computation in many data mining tasks. (Teng and Du, 2007) propose a hybrid

approach to combine above two approaches to build a decision tree. They first apply

the randomization to select higher information gains of some attributes. Next, the best

information gain is discovered using the cryptographic approach (SMC). (Teng and Du,

66

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

2007) uses the randomization that can help to reduce expensive cost in the cryptographic

approach. However, the method does not provided a complete privacy because the method

allows some information leaks.

Many existing PPDM algorithms assume that all participating parties are semi-honest:

they strictly follow the protocol and will not collude with each other, but are curious in

inferring additional knowledge using polynomial-time computations. However, (Kantar-

cioglu and Kardes, 2006) use the zero-knowledge proof to detect malicious behaviors in the

secure scalar product protocol. (Jiang and Clifton, 2007) also propose the Accountable

Computing (AC) framework that relies on an independent entity (i.e., without contribut-

ing any data) to detect malicious behaviors in the secure scalar product protocol. To

withstand probing attacks from a malicious party, (Vaidya and Clifton, 2005) propose a

method in the privacy-preserving association rule mining. All above discussed methods

can withstand specific attacks from the malicious party in the secure scalar product pro-

tocol. The PPDM algorithms based on the malicious model incur expensive cost in the

modulus exponentiations and the communication cost. In many situations, PPDM based

on the semi-honest model is sufficient for many data mining tasks (Aggarwal and Yu,

2008). Therefore, we will investigate PPDM based on SMC under the semi-honest model

in our thesis. We aim to propose SMC protocols that can provide complete privacy and

also be efficient in computation and effective in protecting data privacy in PPDM.

In secure multi-party computation, many PPDM algorithms apply secure building

blocks (Section 3.1) to perform secure computations, such as Bayesian network struc-

ture (Wright and Yang, 2004), Näıve Bayes (Vaidya and Clifton, 2004) association rule

mining (Vaidya and Clifton, 2002), decision tree (Lindell and Pinkas, 2000), k-means (Ja-

gannathan and Wright, 2005; Vaidya and Clifton, 2003), support vector machine (Laur

et al., 2006), singular value decomposition (Han et al., 2009) and many more. However,

many privacy-preserving data mining algorithms based on SMC are ad-hoc - they are

proposed for specific data mining tasks, and thus cannot be applied to other tasks di-

rectly. To address the current limitation, we will investigate a general SMC model for

privacy-preserving data mining algorithms.

Secure log (Section 3.1.7) and secure division (Section 3.1.8) are important operators

in many data mining tasks. As discussed in Sections 3.1.7 and 3.1.8, many of them are not

efficient in computation or not effective in protecting data privacy, and both of them. We

67

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

will propose a secure log operator and a secure division operator. They are SMC protocols

that can be efficient in computation and effective to protect data privacy. In PPDM, many

secure building blocks (Section 3.1) based on the circuit approach (Sections 2.5.1 and 2.5.2)

can not compute many functions in data mining primitives. The circuit approach also has

prohibitive computation in many data mining tasks. In this thesis, we focus to use a hybrid

model that combines the homomorphic encryption protocol and the circuit approach.

In this thesis, we will propose a general model for privacy-preserving data mining.

In our model, we propose a set of secure operators to compute many functions in data

mining primitives. All secure operators can also be pipelined together to perform various

tasks in data mining. To achieve complete privacy and be efficient in computation, we use

the hybrid model that combines the circuit approach and the homomorphic encryption

protocol in PPDM. As case studies in data mining, we will apply our general model into

some data mining tasks. Our general model for privacy-preserving data mining can even

support wider applications. Thus, as a case study in other application domain, we will

also apply the proposed model into the optimization problem and the traveling salesman

problem (TSP).

3.3 Other Privacy Preservation Techniques

We have discussed the privacy preservation techniques in privacy-preserving data mining

(PPDM). In this section, we discuss some other privacy preservation techniques.

� The k-anonymity model and ℓ-diversity. An adversary can use indirect identi-

fications from public databases to identify individual records; e.g., combining record

attributes of public databases can possibly identify individual records. The k-

anonymity model (Samarati, 2001) can address the issue by applying some tech-

niques, such as generalization and suppression, so as to reduce the granularity of

data representation. To reduce the data granularity, any record must be mapped

onto at least k other records. The generalization can make the attribute values into

a range value, e.g., converting date of birth into year of birth. In the suppression

method, it removes the attribute values completely. Therefore, the k-anonymity

method can protect identities to the level of k-individuals. The method can leak the

corresponding sensitive values when the homogeneity of the values exists within a

68

CHAPTER 3. A SURVEY OF PRIVACY-PRESERVING DATA MINING

group. (Machanavajjhala et al., 2007) propose ℓ-diversity to address some limitations

in the k-anonymity method. In the ℓ-diversity, the intra-group diversity of sensitive

values is bounded within the anonymization scheme. Thus, the ℓ-diversity can main-

tain a minimum group size of k in the k-anonymity method with the diversity of the

sensitive attributes.

� Downgrading application effectiveness. In some situations, the outputs of data

mining applications such as classification, associate rule mining and query processing

can result in privacy violation regardless of data availability. These lead to research

in downgrading application effectiveness. Two common methods, data modifica-

tion and application modification, are proposed to downgrade the effectiveness in

applications, such as classifier downgrading (Moskowitz and Chang, 2000), rule hid-

ing (Verykios, Elmagarmid, Bertino, Saygin and Dasseni, 2004) and query auditing

(Adam and Wortmann, 1989).

69

Chapter 4

DAG: A General Model for Privacy-Preserving Data
Mining

In many real-world applications, data are distributed across multiple parties. These parties

have a strong willingness of sharing their data, so as to have a global view of the data

that cannot be mined from the data of any single party. However, data may contain

sensitive information; directly sharing it could violate personal privacy (Aggarwal and

Yu, 2008; Clifton et al., 2002). Consider two hospitals, which are interested in building

a diagnosis model over their integrated patient records to predict the probability of a

person getting diabetes. Such a model usually has better predictive performance than

a model built on the dataset of single hospital, since the integrated data contains more

information. However, patient records are highly sensitive – they could put the privacy of

patients at risk when inappropriately disclosed. Government agencies have enacted laws

to protect personal privacy. Well known representatives are HIPAA (Congress, 1996) of

the Unites States and ECHR (ECHR, 2014) of the European Union. Therefore, for the

sake of personal privacy and also to follow the laws, data sharing for analytics needs to be

carried out in a privacy-preserving way.

Secure multi-party computation (SMC) is a fundamental field in cryptography. It

allows multiple parties to jointly compute a function over their inputs, while keeping re-

spective inputs of all the parties private. Such a property is very effective in protecting

personal privacy. Thus, SMC has been extensively applied in privacy-preserving data min-

ing (PPDM), such as in decision tree (Vaidya, Clifton, Kantarcioglu and Patterson, 2008),

Näıve Bayes (Vaidya, Kantarcioglu and Clifton, 2008) and support vector machine (Teo

et al., 2013; Yu, Jiang and Vaidya, 2006). However, these proposed solutions are ad-hoc

and specific to tasks. They cannot be directly applied to other tasks. Many SMC solutions

also provide a limited set of secure operators.

70

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

To address the above issues, we propose an SMC-based model DAG (Directed Acyclic

Graph). It can be generally applied in privacy-preserving functions involving multiple

parties. Our model is based on an observation. That is, many functions, even those

complicated ones in data mining like support vector machine, ID3 and Näıve Bayes, can

be decomposed into a set of basic operations, such as +, −, ×, and /. When these basic

operations are pipelined accordingly, a workflow system is formed, and various functions

can be implemented. The pipeline of operators forms a directed acyclic graph. Therefore,

we name our model as DAG.

Our DAG model consists of 3 types of nodes: source, sink, and operator. Source nodes

are private inputs of the parties involved in the tasks. Sink nodes are the outputs of the

model. Operators are basic operations, e.g., ×, /, and log (logarithm). The nodes in the

model are connected by directed edges, which represent data flow, i.e., the outputs of the

upper stream nodes are the inputs of the downstream nodes. To keep the respective input

of each party confidential, security requirements are enforced on the operators. Specifically,

we formulate each operator as an SMC protocol (Yao, 1986), such that given the private

inputs of multiple parties, the operator allows the parties to learn the operator output

while keeping the inputs confidential.

Thus far, our DAG model consists of 9 operators such as secure addition (Section

4.1.1), secure minus (Section 4.1.2), secure multiplication (Section 4.1.3), secure division

(Section 4.1.5), secure log (Section 4.1.6), secure power (Section 4.1.7), secure bit-length

(Section 4.1.4), secure max (Section 4.1.8), and secure max location (Section 4.1.9). The

functions it can support are these 9 operators, and their compositions. Still, our model is

extendable. Other basic operators, such as secure sine and secure cosine, can be defined

and added to our model, such that more functions can be supported. Section 4.1 provides

the details of the model.

We theoretically analyze our DAG model. The security of every single operator can be

proven by simulation paradigm (Goldreich, 2004), a standard methodology of proving the

security of SMC protocols. We also prove the security of the model when operators are

pipelined to serve the desired functions. Cryptography supports big integers, while inputs

in real applications can be floating values. As such, we set necessary parameters and apply

various techniques, like Taylor series, to preserve the precision of operator output. We

provide the error bound of every single operator, and also the error bound of the connection

71

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

of operators. It turns out when two operators are connected, their accumulated error is

bounded by the summation of their respective errors. Furthermore, every operator as

an SMC protocol has its complexity. We thus also analyze for every operator the time

complexity and communication complexity.

In the following, we first propose our DAG model in Section 4.1. The model analysis is

discussed in Section 4.2. We evaluate the performance of the model in Section 4.3. Lastly,

we summarize this chapter in Section 4.4

4.1 Directed Acyclic Model (DAG)

In this section we present our DAG model. We consider two parties: Alice and Bob.

We assume a semi-honest setting. That is, Alice and Bob are honest-but-curious – they

strictly follow the protocol and will not collude with each other but are interested in

inferring additional knowledge using polynomial-time computations.

The DAG model consists of 3 types of nodes: source, sink, and secure operator. The

source nodes are the sensitive data of Alice and Bob, and are the inputs of the DAG model.

The sink nodes are the private outputs of the model, and are distributed to Alice and Bob.

A secure operator is a private function, which allows Alice and Bob to compute a function

of their respective inputs, while keeping all the inputs confidential.

Definition 4.1 (Secure Operator) Let A = (a1, a2, . . . , al) and B = (b1, b2, . . . , bm) be

the private inputs of Alice and Bob, respectively, where ai and bj are integers for i =

1, 2, . . . l and j = 1, 2, . . . ,m. Secure operator keeps A and B confidential, and computes

a function f : (A,B)→ c1 + c2, where c1 is known only by Alice and c2 is known only by

Bob.

In the above definition, c1 and c2 are distributed to Alice and Bob, respectively. If the

two parties need to know the function output, they release c1 and c2.

Secure operators are connected by edges in the DAG model. The outputs of the up-

stream secure operators are the inputs of the downstream ones. We assume that there

is no cycle in our model. In this section, we propose 9 basic operators: secure addition

(Section 4.1.1), secure minus (Section 4.1.2), secure multiplication (Section 4.1.3), secure

division (Section 4.1.5), secure log (Section 4.1.6), secure power (Section 4.1.7), secure

bit-length (Section 4.1.4), secure max (Section 4.1.8), and secure max location (Section

72

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

4.1.9) according to Definition 4.1. The secure operators are essentially secure multi-party

computation (SMC) protocols between Alice and Bob. Our DAG model is extendable –

other secure operators satisfying Definition 4.1 can be easily integrated.

4.1.1 Secure Addition

Let A = (a1, a2, . . . , al) and B = (b1, b2, . . . , bm) be the private inputs of Alice and Bob,

respectively. The secure addition of A and B equal to
∑l

i=1 ai +
∑m

j=1 bj is straight-

forward. Alice independently computes c1 =
∑l

i=1 ai and Bob independently computes

c2 =
∑m

j=1 bj. At the end of the execution, Alice and Bob hold c1 and c2 respectively,

where c1 + c2 =
∑l

i=1 ai +
∑n

j=m bj .

4.1.1.1 The Protocol Analysis

We now analyze secure addition for its complexity and security.

Time Complexity. We measure the time complexity of secure addition by modular ex-

ponentiations, since they consume most of the time. Alice and Bob can compute their

respective inputs locally to generate c1 and c2, held by Alice and Bob respectively. There-

fore they use no modular exponentiation.

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. Again, Alice and Bob can compute

their respective inputs locally to generate c1 and c2, held by Alice and Bob respectively.

Therefore no interaction (i.e., no communication cost) is required between Alice and Bob.

Security. Since Alice and Bob transfer nothing to each other, secure addition protocol is

secure.

4.1.2 Secure Minus

Let A = (a1, a2, . . . , al) and B = (b1, b2, . . . , bm) be the private inputs of Alice and Bob,

respectively. The secure minus of B from A equal to
∑l

i=1 ai −
∑m

j=1 bj is as follows.

Specifically, Alice computes c1 =
∑l

i=1 ai, and Bob computes c2 = −
∑m

j=1 bj . At the end

of the execution, Alice and Bob hold c1 and c2 respectively, where c1 + c2 =
∑l

i=1 ai −
∑m

j=1 bj .

73

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

2© Compute E[Va · Vb] = (V ′
b
)Vb =

m∏
i=1

E[bi]
ai .

Alice Bob

1© Encrypt the list of Vb to
V ′
b
= (E[b1], · · · , E[bm]), which is sent to Alice.

3© Alice generates a random number r to

compute E[Va · Vb − r] =
(V ′

b
)Va

E[r]
, which is sent

to Bob.

Input: Va = (a1, · · · , am) of Alice,
and Vb = (b1, · · · , bm) of Bob.

Output: c1 of Alice and c2 of Bob,
such that c1 + c2 = Va · Vb.

4© Bob learns c2 = Va · Vb − r = D

[
(V ′

b
)Va

E[r]

]
.

c1 = r c2 = Va · Vb − r

Figure 4.1: Secure multiplication protocol

Time Complexity. We measure the time complexity of secure minus by modular ex-

ponentiations, since they consume most of the time. Alice and Bob can compute their

respective inputs locally to generate c1 and c2, held by Alice and Bob respectively. There-

fore they use no modular exponentiation.

4.1.2.1 The Protocol Analysis

We now analyze secure minus for its complexity and security.

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. Again, Alice and Bob can compute

their respective inputs locally to generate c1 and c2, held by Alice and Bob respectively.

Therefore no interaction (i.e., no communication cost) is required between Alice and Bob.

Security. Since Alice and Bob transfer nothing to each other, secure minus protocol is

secure.

74

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

4.1.3 Secure Multiplication

Let Va = (a1, a2, . . . , am) and Vb = (b1, b2, . . . , bm) be the private inputs of Alice and Bob,

respectively. Secure Multiplication keeps Vb confidential to Alice and Va confidential to

Bob, and applies the Secure Scalar Product (SSP) protocol (Goethals et al., 2004) to

compute c1 and c2, such that c1 + c2 =
∑m

i=1 ai × bi. At the end of the protocol, Alice

learns c1 but not c2, and Bob learns c2 but not c1.

The Protocol of Secure Multiplication. We present the secure multi-party (SMC)

protocol of secure multiplication in Figure 4.1. Bob configures Paillier cryptosystem to

generate a pair of keys (pk, sk), which sk is the secret key and pk is the public key. Let

E[.] and D[.] be the encryption and decryption functions corresponding to pk and sk,

respectively. The public key pk is sent to Alice. Alice and Bob carry out the protocol step

by step as follows.

Step 1. Let Va = (a1, a2, . . . , am) and Vb = (b1, b2, . . . , bm) be the private inputs of Alice

and Bob, respectively. Bob encrypts the list of Vb to V ′
b = (E[b1], · · · , E[bm]), which is

sent to Alice.

Step 2. Alice computes the encrypted list with her private input Va as follows,

(V ′
b)

Va =
m∏

i=1

E[bi]
ai . (4.1)

Step 3. Alice generates a random number r ∈ [Lℓ, Lu +B − 1], where Lℓ and Lu are the

lower and upper bounds of Va · Vb, B = 2λ+⌈log(Lu−Lℓ)⌉+1, and λ is a threshold. She then

computes

E[Va · Vb − r] =
(V ′

b)
Va

E[r]
, (4.2)

which is sent to Bob.

Step 4. Bob uses his secret key sk to decrypt

c2 = D

[
(V ′

b)
Va

E[r]

]
= Va · Vb − r, (4.3)

where c2 ∈ [Lℓ − Lu − B + 1, Lu − Lℓ]. Alice sets c1 = r and Bob sets c2 = Va · Vb − r

where c1 + c2 = Va · Vb.

75

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Note. The value of c2 can be negative. However, after the modulo n (i.e., mod n)

operation by the Paillier decryption (where n is a parameter equal to the product of two

big prime numbers), it is always positive. To recover the value of c2 correctly, we require

that every positive integer in our model is less than n/2. Thus, if an output (let say c2) of

Paillier decryption is bigger than n/2, it must be negative with the value actually equal

to c2 − n.

As defined above, the c1 value is a random number. Thus, it is statistically indistin-

guishable from any random number in [Lℓ, Lu+B−1]. Next, we prove that the distribution

of c2 is also statistically indistinguishable from that of a random number.

Lemma 4.1 Let r be a random value in [Lℓ −Lu −B +1, Lu −Lℓ]. Then, the statistical

distance between c2 and r is smaller than 1
2λ
.

Proof 4.1 Denote k = Va ·Vb. Then, c2 = k− c1. The statistical distance between c2 and

r by Definition 2.2 is

∆(r, c2) =
1

2

Lu−Lℓ∑

v=Lℓ−Lu−B+1

|Pr[r = v]− Pr[k − c1 = v]| . (4.4)

We know that k must fall in Ω = [Lℓ, Lu]. For any v we have

Pr[k − c1 = v] =
∑

m∈Ω

Pr[k = m] Pr[c1 = m− v]

≤ 1

(Lu − Lℓ +B)

∑

m∈Ω

Pr[k = m] =
1

Lu − Lℓ +B
.

If −B+1 ≤ v ≤ 0, then Pr[x−c1 = v] = 1
Lu−Lℓ+B . We also know Pr[r = v] = 1

2(Lu−Lℓ)+B

for Lℓ − Lu −B + 1 ≤ v ≤ Lu − Lℓ, and Pr[r = v] = 0 otherwise. Therefore,

∆(r, c2) ≤
1

2

−B∑

v=Lℓ−Lu−B+1

∣∣∣∣
1

2(Lu − Lℓ) +B
− 0

∣∣∣∣

+

0∑

v=−B+1

∣∣∣∣
1

2(Lu − Lℓ) +B
− 1

Lu +B − Lℓ

∣∣∣∣ +
Lu−Lℓ∑

v=1

∣∣∣∣
1

2(Lu − Lℓ) +B
− 0

∣∣∣∣

)

<
2(Lu − Lℓ)

B
=

1

2λ
,

where the last equation holds since B = 2λ+⌈log(Lu−Lℓ)⌉+1.

76

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

We set λ to be a value, such that 1
2λ

is negligible. The above lemma proves that c2

and r are actually statistically indistinguishable. The randomness of c1 and c2 ensures

that each value does not disclose any information. Such a property is important, when

the output of secure multiplication is input to other operators. Then, the output of secure

multiplication is intermediate, and should disclose no information.

In Definition 4.1 we specify that the output of every secure operator is split into two

portions c1 and c2. Their range settings and value computations are similar to those of

secure multiplication above. Therefore, in the discussion of the following secure operators

we will omit the details as well as the security proof.

4.1.3.1 The Protocol Analysis

We now analyze secure multiplication on the approximation error, complexity, and security.

Floating Value to Integer Conversion. In secure multiplication protocol, the values need

to be of integers. This is the standard configuration in an SMC protocol. However, the

values of Alice ai ∈ A and Bob bi ∈ B can be floating values. They thus need to be

rounded to integers. To preserve the precision, ai and bi are multiplied by a big integer

τ and then rounded, i.e., a = ⌊ai × τ⌋ and b = ⌊bi × τ⌋. Then, a and b are taken as

the inputs of the secure multiplication. Let c1 and c2 be the respective outputs of Alice

and Bob from the secure multiplication. Both c1 and c2 are divided by τ to get the final

results. In the following of the thesis if any secure operator’s input is floating value, we

adopt similar operation as the above. The following lemma gives the error bound of secure

multiplication due to value rounding.

Lemma 4.2 Let ai and bi be two values larger than or equal to 2−γ , and τ = 2γ+β+1,

where γ and β are positive integers. Let a = ⌊ai × τ⌋ and b = ⌊bi × τ⌋. Then, the relative

error by value rounding in secure multiplication is at most 2−β.

Proof 4.2 Based on the rounding, it follows that a ≥ ai× τ − 1 and b ≥ bi× τ − 1. Thus,

the relative error is

ai × bi − a×b
τ2

ai × bi
=

(ai × τ) · (bi × τ)− a× b

(ai × τ) · (bi × τ)
<

(ai × τ) + (bi × τ)

(ai × τ) · (bi × τ)
=

1

ai × τ
+

1

bi × τ
.

77

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

According to the preconditions in the lemma, both ai × τ and bi × τ are at least 2β+1.

Therefore,

1

ai × τ
+

1

bi × τ
≤ 2−β,

which concludes the proof.

Time Complexity. We measure the time complexity of secure multiplication by modular

exponentiations, since they consume most of the time. Secure multiplication in Step 1

and 2 requires 3m modular exponentiations. The other 2 steps together take 3 modular

exponentiations. Therefore, the number of modular exponentiations needed by secure

multiplication is 3(m+ 1) bounded by O(m).

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. The communication cost of Step 1 and

2 is 2t2m bits where t2 is the message length in Paillier cryptosystem (e.g., t2 = 1024).

The other 2 steps is 2t2 bits. Therefore, the communication complexity is 2t2(m + 1)

bounded by O(m).

Secure multiplication is proven secure via simulation paradigm (Section 2.6.1) in the

following.

Theorem 4.1 The secure multiplication protocol is simulatable.

Proof 4.3 We simulate the view of Alice and that of Bob. We first simulate the view of

Alice. Let Va be the input of Alice, and c1 be the protocol output to her. According to

the secure multiplication protocol in Figure 4.1, the view of Alice is V IEWmul
1 = (Va,V1),

where V1 is the set of encrypted messages she receives to compute (V ′
b)

Va (in Step 2).

The simulator Smul
1 (Va, c1) to simulate V IEWmul

1 is created as follows. Each message

E[m] ∈ V1 is a ciphertext of Paillier encryption. To simulate it, Smul
1 selects a random

value r and computes E[r]. Because Paillier encryption is semantically secure, E[m] and

E[r] are computationally indistinguishable.

The view of Bob is simulated in the following. Let Vb be the input of Bob, and c2 be

the protocol output to him. According to the secure multiplication protocol in Figure 4.1,

the view of Bob is V IEWmul
2 = (Vb,V2), where V2 is the set of messages he receives from

Alice for Paillier decryption in Step 3. The simulator Smul
2 (Vb, c2) to simulate V IEWmul

2

78

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

is created as follows. The simulation of V2 is already given in (Goethals et al., 2004).

Thus, Smul
2 can call the simulator in (Goethals et al., 2004) to simulate V2.

4.1.4 Secure Bit-Length

2© Bob re-encrypts E[2−i] and E[i] and randomizes
E[2i−1] and E[2i] to computes the list,
∀z
i=1(Mi1,Mi2,Mi3,Mi4), where

Mi1 = E[i+ 0],
Mi2 = E[2−i + 0],
Mi3 = E[2i−1 − (a+ b) + ri1],
and Mi4 = E[2i − (a+ b) + ri2].
Bob then reshuffles the list and sends it to Alice.

3© Apply CMP and record Mj1 and Mj2,
such that 2j−1 ≤ (a+ b) < 2j.

Alice Bob

1© Alice generates a list of encrypted quadruples,
∀z
i=1(E[i], E[2−i], E[2i−1], E[2i]), shuffles the list,

and sends it to Bob together with E[a].

4© Alice selects random numbers c1 and c′1
to compute E[c2] =

Mj2

E[c1]
= E[2−j − c1] and

E[c′2] =
Mj1

E[c′
1
]
= E[j − c′1] and then sends

them to Bob who learns c2 and c′2.

Input: a of Alice and b of Bob.
Output: (c1, c

′
1) to Alice and (c2, c

′
2) to Bob,

such that c1 + c2 = 2−(⌊log(a+b)⌋+1)

and c′1 + c′2 = ⌊log(a+ b)⌋+ 1.

c1
c′1

c2 = 2−(⌊log(a+b)⌋+1) − c1
c′2 = ⌊log(a+ b)⌋+ 1− c′1

Figure 4.2: Secure bit-length protocol

Figure 4.2 gives the SMC protocol of secure bit-length. Let a and b be the respetive

private inputs of Alice and Bob and a+ b > 0. The protocol outputs c1, c
′
1, c2 and c′2, such

that c1 + c2 = 2−(⌊log(a+b)⌋+1) and c′1 + c′2 = ⌊log(a+ b)⌋+ 1. At the end of the protocol,

Alice only learns c1 and c′1 but not b, c2 or c′2 , and Bob only learns c2 and c′2 but not a, c1

or c′1. Most importantly, the protocol is to find an integer j satisfying 2j−1 ≤ (a+ b) < 2j .

For such a j, clearly, j = ⌊log(a+ b)⌋+ 1 and 2−j = 2−(⌊log(a+b)⌋+1).

Alice and Bob first configure a (2,2)-threshold Paillier cryptosystem. Let (pk, sk) be

the public and private key pair of the cryptosystem. Suppose that skA and skB are the

79

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

secret shares of Alice and Bob respectively, such that the shares combined together can

recover sk. Let E[.] and D[.] be the encryption and decryption functions corresponding

to pk, and (skA, skB), respectively. Alice and Bob carry out the protocol step by step as

follows.

Step 1. Let max(a+ b) be the maximum value of a+ b, and z = ⌊log(max(a+ b))⌋ + 1.

Alice first generates a list of encrypted quadruples, ∀zi=1(E[i], E[2−i], E[2i−1], E[2i]). She

shuffles the position of the quadruples in the list. She then computes E[a], and sends the

shuffled list together with E[a] to Bob.

Step 2. For each quadruple E[i], E[2−i], E[2i−1], E[2i]) in the list, Bob re-encrypts E[2−i]

and E[i], and randomizes E[2i−1] and E[2i] by

Mi1 = E[i+ 0] = E[i]× E[0],

Mi2 = E[2−i + 0] = E[2−i]× E[0],

Mi3 = E[2i−1 + ri1 − (a+ b)] = E[2i−1]×E[ri1]
E[a]×E[b] ,

Mi4 = E[2i + ri2 − (a+ b)] = E[2i]×E[ri1]
E[a]×E[b] ,

(4.5)

where random numbers ri1 and ri2 are from {2z , 2z + 1, . . . , 2η − 1}, η = χ+ z + 1, and χ

is a threshold. He shuffles the positions of quadruples ∀zi=1(Mi1,Mi2,Mi3,Mi4), and sends

it back to Alice.

The re-encryption and shuffling ensure that neither Alice nor Bob is able to link

(Mi1,Mi2,Mi3,Mi4) with i with a confidence significantly higher than 1/z. This is guar-

anteed by the semantic security of Paillier cryptosystem.

Step 3. Alice and Bob jointly decrypt Mi3 and Mi4, and only Alice learns the decrypted

results, 2i−1 + ri1 − (a+ b) and 2i + ri2 − (a+ b) for i = 1, 2, . . . , z. Then, Alice and Bob

apply CMP (i.e., the secure integer comparison circuit in Section 3.1.10) to compare the

decrypted results with (ri1, ri2). Alice records Mj1 and Mj2, where

2j−1 + rj1 − (a+ b) ≤ rj1

2j + rj1 − (a+ b) > rj2.

(4.6)

Obviously, 2j−1 ≤ (a+ b) < 2j and j = ⌊log(a+ b)⌋+ 1.

80

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Step 4. Alice randomly selects c1 and c′1 and computes E[c2] = E[2−j − c1] =
Mj2

E[c1]
and

E[c′2] = E[j − c′1] =
Mj1

E[c′1]
, which are sent to Bob. The two parties jointly decrypt E[c2]

and E[c′2], and only Bob learns (c2, c
′
2). The statistically indistinguishability of c1, that of

c′1, that of c2, and that of c′2 can be proven by using a similar proof as in Lemma 4.1.

The correctness of the protocol can be easily verified, since j = ⌊log(a + b)⌋ + 1 by

Inequalities 4.6. Next, we prove that the randomization in Step 2 is done appropriately.

It makes sure that 2i−1 − (a + b) + ri1 and 2i − (a + b) + ri2 are indistinguishable from

random values.

Lemma 4.3 Let ei = 2i+ri2−(a+b) be the decryption of Mi3 in secure bit-length protocol,

where z = ⌊log(max(a+ b))⌋+1, ri2 ∈ {2z , 2z +1, . . . , 2z +2η−1}, and i = 1, 2, . . . , z. Let

r be a random value in {2z , 2z +1, . . . , 2z +2η − 1}. Then, the statistical distance between

ei and r is smaller than 1
2λ
.

Proof 4.4 Denote ki = 2i−(a+b). The statistical distance between ei and r by Definition

2.2 is

∆(r, ei) =
1

2

2z+1+2η−2∑

v=2

|Pr[r = v]− Pr[ki + ri2 = v]| . (4.7)

We know that ki must fall in Ω = {2 − 2z , 3− 2z, . . . , 2z − 1}. For any v we have

Pr[ki + ri2 = v] =
∑

m∈Ω

Pr[ki = m] Pr[ri2 = v −m] ≤ 1

2η

∑

m∈Ω

Pr[ki = m] =
1

2η
.

If 2z+1 − 1 ≤ v ≤ 2η + 1, then Pr[ki + ri2 = v] = 1
2η . In addition, we know Pr[r = v] = 1

2η

for 2z ≤ v ≤ 2z + 2η − 1, and Pr[r = v] = 0 for any other v value. Therefore,

∆(r, ei) ≤
1

2

2z−1∑

v=2

∣∣∣∣0−
1

2η

∣∣∣∣+
2z+1−2∑

v=2z

∣∣∣∣
1

2η
− 0

∣∣∣∣+
2η+1∑

v=2z+1−1

∣∣∣∣
1

2η
− 1

2η

∣∣∣∣

+

2z+2η−1∑

v=2η+2

∣∣∣∣
1

2η
− 0

∣∣∣∣+
2z+1+2η−2∑

v=2z+2η

∣∣∣∣0−
1

2η

∣∣∣∣

 <

2z+1

2λ+z+1
=

1

2λ
,

where the last equation holds since η = λ+ z + 1.

We set λ to be a value, such that 1
2λ

is negligible. Therefore, the above lemma tells

that ei and r are actually statistically indistinguishable. In a similar way we can prove

that the statistical distance between 2i−1 − (a + b) + ri1 and r ∈ {2z , 2z + 1, . . . , 2λ+z}

81

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

is upper bounded by 1
2λ
. Since the proof is essentially the same as the above lemma, we

omit it here.

4.1.4.1 The Protocol Analysis

Time Complexity. We measure the time complexity by modular exponentiations, since

they consume most of the time. Steps 1 and 2 need a total of 16z + 2 modular exponen-

tiations. Step 3 requires 20z modular exponentiations. The initialization of CMP (Ishai

et al., 2003; Naor and Pinkas, 2001) also takes some modular exponentiations. However,

the initialization can be done before the protocol, and its cost can be amortized over all

the runnings of secure bit-length. Thus, we do not count its cost in Step 3. Step 4 needs

24 modular exponentiations. The number of modular exponentiations in secure bit-length

is thus 36z + 26 bounded by O(z).

Steps 1, 2, 3 can be run in parallel – we can process each quadruple by a thread. In

such a way, the running time of the protocol can be reduced by a factor of z. We have

implemented the parallel processing in the experiments.

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. Steps 1 and 2 transfer 16t2z+2t2 bits,

where t2 is the message length in Pailliar cryptosystem. Step 3 needs 6(λ+z+2)t1z+8t2z

bits, where t1 is a security parameter and suggested to be 80 in practice (Kolesnikov et al.,

2009). The CMP initialization also has some communication cost. We do not involve it,

since it can be done before running the protocol in Step 3. The last step requires 12t2

bits. The communication cost of secure bit-length is thus 24t2z + 14t2 + 6(λ + z + 2)t1z

bits bounded by O(z(t2 + t1λ)).

Again, we prove the security of the bit-length protocol by simulation (Section 2.6.1).

Theorem 4.2 In the secure bit-length protocol, Alice (Bob) only learns the protocol output

to her (him).

Proof 4.5 We first simulate the view of Alice. Let a be the input of Alice, and (c1, c
′
1)

be the protocol output to her. Her view is V IEWBL
1 = (a, V 1

1 , V
2
1 , V

3
1 , V

4
1), where V 1

1

is ∀zi=1(Mi1,Mi2,Mi3,Mi4) generated in step 2, V 2
1 is ∀zi=1(D[Mi3],D[Mi4]) that are the

decryptions of Mi3 and Mi4 in Step 3, V 3
1 is the set of messages she receives from Bob

in Step 3 for the CMP comparison, and V 4
1 is the set of messages she receives for the

82

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

(2,2)-threshold Paillier decryption in Step 4. The simulator SBL
1 (a, (c1, c

′
1)) to simulate

V IEWBL
1 is created as follows. For each quadruple in V 1

1 , it computes (E[r1], E[r2], E[r3],

E[r4]), where ri’s for 1 ≤ i ≤ 4 are random values. By the property of semantic security of

Paillier cryptosystem, (E[r1], E[r2], E[r3], E[r4]) is indistinguishable from the quadruple in

V 1
1 . To simulate D[Mi3] (and D[Mi4]) in V 2

1 , a random value r ∈ {2z , 2z+1, . . . , 2z+2η−1}

is selected. According to Lemma 4.3, D[Mi3] (and D[Mi4]) is statistically indistinguishable

from r. The simulation of V 3
1 and V 4

1 are already given in (Kolesnikov and Schneider,

2008) and (Cramer et al., 2001), respectively. SBL
1 can call them for the simulation.

Next, we simulate the view of Bob. Let b be the input of Bob, and (c2, c
′
2) be the

protocol output to him. His view is (b, V 1
2 , V

2
2 , V

3
2), where V 1

2 is quadruples generated in

step 1 by Alice, V 2
2 is the set of messages he receives from Alice in Step 3 for the CMP

comparison, and V 3
2 is the set of messages she receives for the (2,2)-threshold Paillier

decryption in Step 4. The simulator SBL
2 (b, (c2, c

′
2)) to simulate V IEWBL

2 is created as

follows. To simulate a quadruple in V 1
2 , it randomly selects ri’s for 1 ≤ i ≤ 4 and

computes (E[r1], E[r2], E[r3], E[r4]), which is indistinguishable from the quadruple in V 1
2

by the property of Paillier cryptosystem. The simulation of V 2
2 and V 3

2 are already given

in (Kolesnikov and Schneider, 2008) and (Cramer et al., 2001), respectively. SBL
2 can call

them for the simulation.

4.1.5 Secure Division

Let A = (a1, a2) and B = (b1, b2) be the respective inputs of Alice and Bob, where a2+b2 >

0. The secure division operation of a1+b1
a2+b2

is an SMC (secure multi-party computation)

protocol between Alice and Bob. Alice and Bob first compute an encryption of I, where

I ≈ 2κ

a2+b2
, and κ is a public parameter. Then, they compute c1 and c2, such that c1+c2 =

I(a1 + b1), where Alice learns only c1 and Bob learns only c2. Finally, Alice and Bob

divide c1 and c2 by 2κ, and c1
2κ + c2

2κ is the approximation of a1+b1
a2+b2

.

The approximation of 2κ

a2+b2
. Let α = a2+b2

2ℓ
, where ℓ = ⌊log(a2 + b2)⌋ + 1. We

approximate 2k

a2+b2
by Taylor series.

1

α
=

∞∑

i=0

(1− α)i =
ω∑

i=0

(1− α)i +∆ω, (4.8)

83

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

where

∆ω =

∞∑

i=ω+1

(1− α)i ≤ (1− α)ω+1

α
. (4.9)

It can be easily verified that

1

2
≤
(
α =

a2 + b2
2ℓ

)
< 1. (4.10)

Therefore, ∆ω ≤ 2−ω. By picking a sufficiently large ω, the additive error ∆ω is appropri-

ately small, so that it can be truncated in approximating 1
α .

We now plug the Taylor series of Equation 4.8 into 2κ

a2+b2
. Thus,

2κ

a2 + b2
=

2κ−ℓ

α
=2κ−ℓ

(
ω∑

i=0

(1− α)i
)

+ 2κ−ℓ∆ω (4.11)

=2κ−ℓ(ω+1)

(
ω∑

i=0

(
1− a2 + b2

2ℓ

)i

2ℓω

)
+ 2κ−ℓ∆ω,

=2κ−ℓ(ω+1)

(
ω∑

i=0

(
1− a2 + b2

2ℓ

)i

(2ℓ)i 2ℓ(ω−i)

)
+ 2κ−ℓ∆ω,

=2κ−ℓ(ω+1)

(
ω∑

i=0

(
2ℓ − (a2 + b2)

)i
2ℓ(ω−i)

)
+ 2κ−ℓ∆ω,

where κ− ℓ(ω + 1) > 0. We then approximate 2κ

a2+b2
by

2κ

a2 + b2
≈ 2κ−ℓ

ω∑

i=0

(1− α)i . (4.12)

The Protocol of Secure Division. On the basis of the approximation of 2κ

a2+b2
, we

present the SMC protocol of secure division in Figure 4.3. Alice and Bob first configure

a (2,2)-threshold Paillier cryptosystem. Let (pk, sk) be the public and private key pair

of the cryptosystem. Suppose that skA and skB are the secret shares of Alice and Bob

respectively, such that the shares combined together can recover sk. Let E[.] and D[.] be

the encryption and decryption functions corresponding to pk, and (skA, skB), respectively.

They carry out the protocol step by step as follows.

84

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

2© Compute E[P], where P = (1− α).

4© Compute E[I] = (poly)2
κ−ℓ

, where

I = 2κ−ℓ ·
ω∑

i=0
(1− α)i is an approximation of 2κ

a2+b2
.

Alice Bob

1© Compute x, y ← secure bit-length(a2, b2)
where x+ y = 2−ℓ and ℓ = ⌊log(a2 + b2)⌋+ 1.

3© Compute poly ← E

[
ω∑

i=0
P i

]
.

5© Compute E[I · (a1 + b1)].

Input: (a1, a2) of Alice and (b1, b2) of Bob.
Output: c1 to Alice and c2 to Bob, such that

c1 + c2 ≈ a1+b1
a2+b2

.

6© Alice selects a random number c1 and computes
E[I · (a1 + b1)− c1]. Bob learns I · (a1 + b1)− c1.

c1 =
c1
2κ

c2 =
I·(a1+b1)−c1

2κ

Figure 4.3: Secure division protocol

Step 1. Alice and Bob call secure bit-length operator (Section 4.1.4) to compute x and

y, such that x + y = 2−ℓ = 2−(log⌊a2+b2⌋+1) =. Secure bit-length is a sub-protocol of the

secure division. At the end of the sub-protocol, Alice learns only x, and Bob learns only

y.

Step 2. Alice and Bob then jointly compute the encryption of 1−α. Denote 1−α by P .

E[P] = E[1 − α] = E[1 − a2 + b2
2ℓ

] = E[1− (a2(x+ y) + b2(x+ y))]

=
E[1]

(E[x] × E[y])a2 × (E[x]× E[y])b2
. (4.13)

To compute E[P], Alice and Bob jointly compute E[x] × E[y] = E[x + y]. Alice then

computes (E[x]×E[y])a2 = E[a2(x+y)]. Bob also computes (E[x]×E[y])b2 = E[b2(x+y)].

Step 3. We use “square and multiply” approach to compute

poly = E

[ω∑

i=0

P i

]
= E[P 0]× E[P 1]× · · · × E[Pω], (4.14)

85

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

where P 0 = 1 and E[P 1] has been computed in Equation 4.13. E[P i] for i ≥ 2 is computed

by

E[P i] = (E[P i−1])P =
E[P i−1]

(E[P i−1]a2 × E[P i−1]b2)2−ℓ
. (4.15)

The computation of E[P i] is similar to that of E[P] in Equation 4.13.

Step 4. Let I = 2κ−ℓ ·
ω∑

i=0
(1−α)i. Then, I is the approximation of 2κ

a2+b2
(Equation 4.12).

Alice and Bob jointly compute

E[I] = (poly)2
κ−ℓ

= (poly)2
κ(x+y) , (4.16)

which again can be computed similarly as E[P] in Equation 4.13.

Step 5. Clearly, I(a1 + b1) is an approximation of 2κ(a1+b1)
a2+b2

. Alice computes E[I]a1 and

Bob computes E[I]b1 . It then follows that

E[I(a1 + b1)] = E[I]a1 × E[I]b1 . (4.17)

Step 6. Alice selects a random integer c1 to compute

E[I(a1 + b1)− c1] =
E[I(a1 + b1)]

E[c1]
, (4.18)

which is sent to Bob. Alice and Bob then jointly decrypt E[I(a1 + b1) − c1], and Bob

learns c2 = I(a1 + b1)− c1. The statistical indistinguishability of c1 and that of c2 can be

proven by using a similar proof as in Lemma 4.1.

At the end of the protocol, Alice and Bob divide c1 and c2 by 2κ, respectively. It can

be easily verified that

c1
2κ

+
c2
2κ
≈ a1 + b1

a2 + b2
. (4.19)

4.1.5.1 The Protocol Analysis

We now analyze the protocol for its approximation error, complexity, and security. The

lemma below gives the error bound when the inputs of secure division are integer.

Lemma 4.4 Let a1, a2, b1, b2 be integers and a2+b2 > 0. Then, the relative error of a1+b1
a2+b2

by the approximate Equation 4.19 is less than (2)−ω.

86

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Proof 4.6 The relative error of a1+b1
a2+b2

in the secure division is

2κ(a1+b1)
a2+b2

− (a1 + b1)(2
κ−ℓ ·∑ω

i=0 (1− α)i)

2κ(a1+b1)
a2+b2

. (4.20)

By the Taylor series in Equation 4.11 and the approximation in Equation 4.12, it follows

that

2κ(a1 + b1)

a2 + b2
− (a1 + b1)

(
2κ−ℓ ·

ω∑

i=0

(1− α)i

)
< 2κ−ℓ(a1 + b1)∆ω. (4.21)

Therefore, the relative error in Equation 4.20 is lower than

a2 + b2
2ℓ

∆ω = α∆ω ≤ α(2)−ω < (2)−ω (4.22)

where the first inequality holds since ∆ω ≤ (1−α)ω+1

α ≤ (2)−ω (Inequality 4.9) and the

second inequality holds since 1
2 ≤ α < 1 (Inequality 4.10).

In the above lemma we consider that the inputs of the division operator are integers.

Now we discuss the case that the inputs are floating values. We adopt the same strategy

as that for secure multiplication to tranform floating values to integers.

Lemma 4.5 Let a1, a2, b1, b2 be values larger than or equal to 2−γ . Suppose that each

value is multiplied by τ = 2γ+β+1 and rounded to the integral part, before input to secure

division operator. Then, the relative error of a1+b1
a2+b2

is less than 1
2β

+ 2β−ω

2β−1
.

Proof 4.7 Let V = 2κ(a1+b1)
(a2+b2)

and VA = 2κ(⌊a1×τ⌋+⌊b1×τ⌋)
⌊a2×τ⌋+⌊b2×τ⌋ . Then, the approximation of VA

by secure division is

VB = 2κ−ℓ′(⌊a1 × τ⌋+ ⌊b1 × τ⌋)
(

ω∑

i=0

(1− α′)i

)
,

where α′ = ⌊a2×τ⌋+⌊b2×τ⌋

2ℓ′
and ℓ′ = ⌊log(⌊a2 × τ⌋+ ⌊b2 × τ⌋)⌋+ 1. Then, the relative error

is

V − VB

V
= 1− VA

V
+

VA

V

(
VA − VB

VA

)
. (4.23)

We can easily verify that

1− 1

2β
≤ VA

V
≤ 2β

2β − 1
. (4.24)

87

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Based on Lemma 4.4, the relative error of VA−VB

VA
is less than 2−ω. Therefore, the relative

error is

V − VB

V
<

1

2β
+

2β−ω

2β − 1
, (4.25)

which concludes the proof.

Time Complexity. We measure the time complexity by modular exponentiations, since

they consume most of the time. Secure bit-length in Step 1 requires 36z+26 modular expo-

nentiations (refer to Section 4.1.4 for details). Step 3 iteratively computes the encryption

of
∑ω

i=1 P
i; it takes 4(ω − 1) modular exponentiations. The other 4 steps together take

24 modular exponentiations. Therefore, the number of modular exponentiations needed

by secure division is 4ω + 46 + 36z bounded by O(ω + z).

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. The communication cost of Step 1 is

24t2z+14t2+6(λ+z+2)t1z bits (Section 4.1.4), where t1 is a security parameter and t2 is

the message length in the Paillier cryptosystem (Note: t1 is suggested to be 80 in practice

(Kolesnikov et al., 2009)). The number of message bits passing between Alice and Bob

in Step 3 is 8t2(ω − 1), and in the other 4 steps is 18t2. Therefore, the communication

complexity is t2(24z + 24 + 8w) + 6(λ+ z + 2)t1z bits bounded by O(z(t2 + t1λ) + t2ω).

Secure division is an SMC protocol. We prove its security by simulation methodology

(Section 2.6.1 for more details).

Theorem 4.3 The secure division protocol is simulatable.

Proof 4.8 We simulate the view of Alice and that of Bob. We first simulate the view

of Alice. Let (a1, a2) be the inputs of Alice, and c1 be the protocol output to her. Ac-

cording to the secure division protocol in Figure 4.3, the view of Alice is V IEW div
1 =

((a1, a2),V11 ,V21 ,V31), where V11 is the set of messages she receives from Bob for the secure

bit-length sub-protocol in Step 1, V21 is the set of encrypted messages she receives to com-

pute E[I · (a1+ b1)] (in Steps 2, 3, 4, and 5), and V31 is the set of messages she receives for

(2,2)-threshold Paillier decryption in Step 6. The simulator Sdiv
1 ((a1, a2), c1) to simulate

V IEW div
1 is created as follows. Sdiv

1 first calls Sbit-length
1 (see proof in Theorem 4.2) to

simulate V11 . Each message E[m] ∈ V21 is a (2,2)-threshold Paillier encryption. To simu-

late it, Sdiv
1 selects a random value r and computes E[r]. Because (2,2)-threshold Paillier

88

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

encryption is semantically secure, E[m] and E[r] are computationally indistinguishable.

The simulation of V31 is already given in (Cramer et al., 2001). Thus, Sdiv
1 can call the

simulator in (Cramer et al., 2001) to simulate V31 .

The view of Bob is simulated in the following. Let (b1, b2) be the inputs of Bob, and

c2 be the protocol output to him. According to the secure division protocol in Figure 4.3,

the view of Bob is V IEW div
2 = ((b1, b2),V12 ,V22 ,V32), where V12 is the set of messages he

receives from Alice for the secure bit-length sub-protocol in Step 1, V22 is the set of encrypted

messages he receives to compute E[I · (a1+ b1)] (in Steps 2, 3, 4, and 5), and V32 is the set

of messages he receives for (2,2)-threshold Paillier decryption in Step 6. The simulator

Sdiv
2 ((b1, b2), c2) to simulate V IEW div

2 is created as follows. Sdiv
2 first calls Sbit-length

2 (see

proof in Theorem 4.2) to simulate V12 . Each message E[mb] ∈ V22 is a (2,2)-threshold

Paillier encryption. To simulate it, Sdiv
2 selects a random value rb and computes E[rb].

Because (2,2)-threshold Paillier encryption is semantically secure, E[mb] and E[rb] are

computationally indistinguishable. The simulation of V32 is already given in (Cramer

et al., 2001). Thus, Sdiv
2 can call the simulator in (Cramer et al., 2001) to simulate V32 .

4.1.6 Secure Log

The secure log operation is an SMC protocol to split ln(a + b) into two values that are

distributed to Alice and Bob. Here a and b are the respective inputs of Alice and Bob and

a+b > 1. On a high level, Alice and Bob first compute an encryption of I ≈ 2κFl ln(a+b),

where κ and Fl = LCM(1, 2, . . . , ω) (i.e., the least common multiple) are public parameters.

Then, they compute c1 and c2, such that c1 + c2 = I and Alice (Bob) learns only c1 (c2).

Finally, Alice and Bob divide c1 and c2 by 2κFl, and
c1

2κFl
+ c2

2κFl
is an approximation of

ln(a + b). In the protocol we consider natural logarithm. Conversion to log with other

base is trivial, e.g., on base 2, log(a+ b) = ln(a+ b) log(e).

The approximation of 2κFlln(a+ b). Again we use Taylor series to achieve the ap-

proximation. Let α = a+b
2ℓ

, where ℓ = ⌊log(a + b)⌋ + 1. The Taylor series of ln(α) is as

follows.

ln(α) = −
∞∑

i=1

1

i
(1− α)i = −

ω∑

i=1

1

i
(1− α)i −∆ω, (4.26)

89

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

where

∆ω =

∞∑

i=ω+1

1

i
(1− α)i < − ln(α)(1 − α)ω. (4.27)

Since 1
2 ≤ α < 1, it follows that ∆ω < 2−ω ln(2). Therefore, by picking a sufficiently

large ω, the additive error ∆ω is appropriately small and can be truncated in approximating

ln(α).

We now plug the Taylor series of Equation 4.26 into 2k · Fl · ln(a+ b). Thus,

2κFl ln(a+ b) = 2κFl ln(α) + 2κFl ln(2
ℓ)

= 2κFl

(
−

ω∑

i=1

(1− α)i

i

)
+ 2κFlℓ ln(2)− 2κFl∆ω (4.28)

= 2κ−ℓω

(
−

ω∑

i=1

Fl
(1− α)i

i

)
2ℓω + 2κFlℓ ln(2) − 2κFl∆ω

= 2κ−ℓω

(
−

ω∑

i=1

i−1Fl

(
1− a+ b

2ℓ

))i

(2ℓ)i 2ℓ(ω−i) + 2κFlℓ ln(2)− 2κFl∆ω

= 2κ−ℓω

(
−

ω∑

i=1

i−1Fl

(
2ℓ − (a+ b)

)i
2ℓ(ω−i)

)
+ 2κFlℓ ln(2)− 2κFl∆ω,

where κ− ℓω > 0. We thus obtain the approximation:

2k · Fl · ln(a+ b) ≈ 2κFl

(
−

ω∑

i=1

(1− α)i

i

)
+ 2κFlℓ ln(2). (4.29)

The Protocol of Secure Log. On the basis of the approximation of 2k · Fl · ln(a+ b),

we present the SMC protocol of secure log in Figure 4.4. Alice and Bob first configure a

(2,2)-threshold Paillier cryptosystem (i.e. any cipher text can be decrypted only by Alice

and Bob). Let (pk, sk) be the public and private key pair of the cryptosystem. Suppose

that skA and skB are the secret shares of Alice and Bob respectively, such that the shares

combined together can recover sk. Let E[.] and D[.] be the encryption and decryption

functions corresponding to pk, and (skA, skB), respectively. Alice and Bob carry out the

protocol step by step as follows.

Step 1. Alice and Bob call secure bit-length operator (Section 4.1.4) to compute x and x′

(unknown only by Bob), and y and y′ (unknown only by Alice), such that x+ y is equal

to 2−(⌊log(a+b)⌋+1) and x′ + y′ = ⌊log(a+ b)⌋+ 1.

90

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

2© Compute E[P], where P = (1− α).

4© Compute E[Q] = −(poly)2κ ,
where Q = 2κ ·

(
−

ω∑
i=1

i−1 · Fl · (1− α)i
)
.

Alice Bob

3© Compute poly ← E

[
ω∑

i=1
i−1 · Fl · P i

]
.

Input: a of Alice and b of Bob.
Output: c1 to Alice and c2 to Bob, such that

c1 + c2 ≈ ln(a+ b).

5© Alice selects a random number r and
computes E[Q− r], which is sent to Bob.
Bob learns Q− r.

1© Compute x, y, x′, y′ ← secure bit-length(a, b)
where 2−ℓ = x+ y , ℓ = x′ + y′ and
ℓ = ⌊log(a+ b)⌋+ 1.

c1 =
r

2κ·Fl
+ x′ ln(2) c2 =

Q−r
2κ·Fl

+ y′ ln(2)

Figure 4.4: Secure log protocol

Step 2. Alice and Bob then jointly compute the encryption of 1−α. Denote 1−α by P .

E[P] = E[1− α] = E[1 − a+ b

2ℓ
] = E[1− (a(x+ y) + b(x+ y))]

=
E[1]

(E[x]× E[y])a × (E[x] ×E[y])b
. (4.30)

To compute E[P], Alice and Bob jointly compute E[x] × E[y] = E[x + y]. Alice then

computes (E[x] ×E[y])a = E[a(x + y)]. Bob also computes (E[x]× E[y])b = E[b(x+ y)].

Step 3. Alice and Bob use “square and multiply” approach to jointly compute

poly = E

[ω∑

i=1

i−1Fl · P i

]
= E[P 1]Fl × · · · × E[Pω]ω

−1Fl . (4.31)

Computing E[P i] from E[P i−1] for i = 2, . . . , ω is the same as that in Equation 4.15.

Step 4. Alice or Bob computes E[Q] = −(poly)2κ , where

Q = 2κFl

(
−

ω∑

i=1

i−1 · (1− α)i

)
. (4.32)

91

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Step 5. Alice selects a random integer r and computes E[Q− r] = E[Q]
E[r] , which is sent to

Bob. The two parties then jointly decrypt E[Q − r] and only Bob learns the decryption.

Alice sets c1 = r
2κFl

+ x′ · ln(2) and Bob sets c2 = Q−r
2κFl

+ y′ · ln(2), where ℓ = x′ + y′. By

approximate Equation 4.29 and Equation 4.32, it is easy to verify that

c1 + c2 = −
ω∑

i=1

(1− α)i

i
+ ℓ ln(2), (4.33)

which is an approximation of ln(a+ b). The statistical indistinguishability of c1 and that

of c2 can be proven by using a similar proof as in Lemma 4.1.

4.1.6.1 The Protocol Analysis

We now analyze the protocol for its approximation error, complexity, and security. The

lemma below gives the error bound when the inputs of secure log are integer.

Lemma 4.6 The relative error of ln(a + b) by the secure log operator is less than 2−ω,

when a and b are integers and a+ b > 1.

Proof 4.9 According to the Taylor series in Equation 4.28 and the approximation in

Equation 4.29, the relative error is ∆ω

ln(a+b) , which combined with Inequality 4.27 gives

∆ω

ln(a+ b)
<
− ln(α)(1 − α)ω

ln(α) + ℓ ln(2)
≤ 2−ω, (4.34)

where the second inequality holds since 1/2 ≤ α < 1 and ℓ ≥ 2 for a+ b > 1.

Next we examine the error when a and b are floating values.

Lemma 4.7 Let a and b be two values not less than 2−γ, and τ = 2γ+β+1. Both values are

multiplied by τ and rounded to their integer parts, before input to the secure log operator.

Then, the relative error of ln(a+ b) is less than 1− ln(2β+1−2)
ln(2β+1)

+ 2−ω.

Proof 4.10 Let V = 2κFl ln(a× τ + b× τ) and VA = 2κFl ln(⌊a× τ⌋+ ⌊b× τ⌋). According

to approximate Equation 4.29, VA can be approximated by VB:

VB = 2κFl

(
−

ω∑

i=1

(1− α′)i

i

)
+ 2κFlℓ

′ ln(2), (4.35)

92

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

where α′ = ⌊a×τ⌋+⌊b×τ⌋

2ℓ′
and ℓ′ = ⌊log(⌊a× τ⌋+ ⌊b× τ⌋)⌋ + 1. Then, the relative error is

V − VB

V
= 1− VA

V
+

VA

V

(
VA − VB

VA

)
. (4.36)

Since ⌊a× τ⌋ > 2β and ⌊b× τ⌋ > 2β, it follows that

ln(2β+1 − 2)

ln(2β+1)
<

VA

V
≤ 1. (4.37)

Based on Lemma 4.6, we have

VA − VB

VA
< 2−ω (4.38)

Therefore, the relative error is

V − VB

V
< 1− ln(2β+1 − 2)

ln(2β+1)
+ 2−ω. (4.39)

Time Complexity. We measure the time complexity by modular exponentiations, since

they consume most of the time. Secure bit-length in Step 1 requires 36z + 26 modular

exponentiations. Step 3 iteratively computes the encryption of
∑ω

i=1 i
−1 · F · P i; it takes

5(ω − 1) + 1 modular exponentiations. The other 3 steps together take 21 modular ex-

ponentiations. Therefore, the number of modular exponentiations needed by secure log is

5ω + 43 + 36z bounded by O(ω + z).

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. The communication cost of Step 1

is 24t2z + 14t2 + 6(λ + z + 2)t1z bits (Section 4.1.4), where t1 is a security parameter

and t2 is the message length in the Paillier cryptosystem (Note: t1 is suggested to be

80 in practice (Kolesnikov et al., 2009)). The number of message bits passing between

Alice and Bob in Step 3 is 8t2(ω − 1), and in other 3 steps it is 12t2, where t2 is the

message length in Paillier cryptosystem. Therefore, the communication complexity is

t2(24z + 18 + 8w) + 6(λ+ z + 2)t1z bits bounded by O(z(t2 + t1λ) + t2ω).

Secure log is proven secure via simulation paradigm (refer to Section 2.6.1 for more

details) in the following.

Theorem 4.4 The secure log protocol is simulatable.

93

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Proof 4.11 We simulate the view of Alice and that of Bob. Let a be the input of Alice,

and c1 be the protocol output to her. According to the secure log protocol in Figure 4.4,

the view of Alice is V IEW log
1 = (a,V11 ,V21 ,V31), where V11 is the set of messages she

receives from Bob for the secure bit-length sub-protocol in Step 1, V21 is the set of encrypted

messages she receives to compute E[2κ · (−∑ω
i=1 i

−1 · F · (1−α)i)] (in Steps 2, 3, and 4),

and V31 is the set of messages she receives for (2,2)-threshold Paillier decryption in Step

5. The simulator Slog
1 (a, c1) to simulate V IEW log

1 is created as follows. Slog
1 first calls

Sbit-length
1 (see proof in Theorem 4.2) to simulate V11 . Each message E[m] ∈ V21 is a (2,2)-

threshold Paillier encryption. To simulate it, Slog
1 selects a random value r and computes

E[r]. Because (2,2)-threshold Paillier encryption is semantically secure, E[m] and E[r]

are computationally indistinguishable. The simulation of V31 is already given in (Cramer

et al., 2001). Thus, Slog
1 can call the simulator in (Cramer et al., 2001) to simulate V31 .

The view of Bob is in the following. Let b be the input of Bob, and c2 be the proto-

col output to him. According to the secure log protocol in Figure 4.4, the view of Bob is

V IEW log
2 = (b,V12 ,V22 ,V32), where V12 is the set of messages he receives from Alice for the

secure bit-length sub-protocol in Step 1, V22 is the set of encrypted messages he receives

to compute E[2κ · (−
∑ω

i=1 i
−1 · F · (1 − α)i)] (in Steps 2, 3, and 4), and V32 is the set

of messages she receives for (2,2)-threshold Paillier decryption in Step 5. The simulator

Slog
2 (b, c2) to simulate V IEW log

2 is created as follows. Slog
2 first calls Sbit-length

2 (see proof

in Theorem 4.2) to simulate V12 . Each message E[mb] ∈ V22 is a (2,2)-threshold Paillier

encryption. To simulate it, Slog
2 selects a random value rb and computes E[rb]. Because

(2,2)-threshold Paillier encryption is semantically secure, E[mb] and E[rb] are computa-

tionally indistinguishable. The simulation of V32 is already given in (Cramer et al., 2001).

Thus, Slog
2 can call the simulator in (Cramer et al., 2001) to simulate V32 .

4.1.7 Secure Power

The secure power operator is an SMC protocol decomposing (a+ b)
m
d into c1 (known only

to Alice) and c2 (known only to Bob), where a and b are the respective inputs of Alice

and Bob, and m and d are positive integers with m < d. In the protocol, the two parties

first compute an encryption of I, where I ≈ 2κFp(a+ b)
m
d is obtained by Taylor series, κ

is a public parameter, and Fp = LCM(1, 2, . . . , ω) · dω (LCM is the least common multiple

and ω is a threshold). They then compute c1 and c2 satisfying c1 + c2 = I. Finally, they

94

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

2© Compute E[P], where P = (−1 + α).

4© Compute E[I] = (poly)2
κ·RA·RB ·τ−2

, where

RA = ⌊2m·x′
d · τ⌋, RB = ⌊2m·y′

d · τ⌋, and
I = 2κRARB

τ2
·

ω∑
i=0

(
m
d
i

)
· Fp · (−1 + α)i

is an approximation of 2κ · Fp · (a+ b)
m
d .

Alice Bob

3© Compute poly ← E

[
ω∑

i=0

(
m
d
i

)
· Fp · P i

]
.

Input: a of Alice and b of Bob.
m and d are integers with m < d.

Output: c1 to Alice and c2 to Bob, such that
c1 + c2 ≈ (a+ b)

m
d .

5© Alice selects a random number r and computes
E[I − r], which is sent to Bob. Bob learns I − r.

1© Compute x, y, x′, y′ ← secure bit-length(a, b)
where 2−ℓ = x+ y, ℓ = x′ + y′and
ℓ = ⌊log(a+ b)⌋+ 1.

c1 =
r

2κ·Fp
c2 =

I−r
2κ·Fp

Figure 4.5: Secure power m
n protocol

divide c1 and c2 by 2κFp, and
c1

2κFp
+ c2

2κFp
is an approximation of (a + b)

m
d . We derive

(x)
m
d in Taylor Series in the following.

Derivation of (x)
m
d in Taylor Series. Let function f(x) be centered at the point v,

where derivatives f0(v), f1(v), f2(v), · · · , fω(v) all exist. We derive the Taylor Polynomial

of f(x) in the following.

Pω(x) =
ω∑

i=0

f (i)(v)(x − v)i

i!
= f0(v) + f1(v)(x − v) +

f2(v)(x − v)2

2!
+

f3(v)(x − v)3

3!

+ · · ·+ fω(v)(x − v)ω

ω!
(4.40)

95

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

We next find f0(x), f1(x), f2(x), · · · , fω(x) for f(x) = (x)
m
d centered at 1 (i.e., x = 1),

f0(x) = (x)
m
d ⇒ f(1) = 1

f1(x) =
(m
d

)
(x)

m
d
−1 ⇒ f1(1) =

m

d

f2(x) =
(m
d

)(m
d
− 1
)
(x)

m
d
−2 ⇒ f2(1) =

(m
d

)(m
d
− 1
)

...

fω(x) =
(m
d

)(m
d
− 1
)
· · ·
(m
d

+ 1− ω
)
(x)

m
d
−ω

⇒ fω(1) =
(m
d

)(m
d
− 1
)
· · ·
(m
d

+ 1− ω
)

The function (x)
m
d can be presented in Taylor series by applying f0(x), f1(x), f2(x), · · · , fω(x)

above into Equation 4.40 as follows.

(x)
m
d = f0(1) + f1(1)(x − 1) +

f2(1)(x − 1)2

2!
+

f3(1)(x− 1)3

3!
+ · · ·+ fω(1)(x − 1)ω

ω!

= 1 +
(m
d

)
(x− 1) +

(
m
d

) (
m
d − 1

)
(x− 1)2

2!
+ · · ·+

(
m
d

) (
m
d − 1

)
· · ·
(
m
d + 1− ω

)
(x− 1)ω

ω!

=
ω∑

i=0

(m
d

i

)
(−1 + x)i, (4.41)

where m and d are integers, and m < d. Thus, (x)
m
d is approximately equivalent to

ω∑
i=0

(m
d
i

)
(−1 + x)i as depicted in Equation 4.41.

The approximation of 2κFp(a + b)
m
d . Let α = a+b

2ℓ
, where ℓ = ⌊log(a + b)⌋ + 1. The

approximation of (α)
m
d by Taylor series is:

(α)
m
d =

ω∑

i=0

(m
d

i

)
(−1 + α)i +∆ω, (4.42)

where

∆ω =
∞∑

i=ω+1

(m
d

i

)
(−1 + α)i <

∣∣∣∣(−1 + α)ω+1(α)
m
d

∣∣∣∣. (4.43)

The setting of ℓ gives that 0 < 1− α ≤ 1/2. Plugging it into Inequality 4.43, it gives that

∆ω <

(
1

2

)(ω+m
d
+1)

(4.44)

96

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Therefore, setting ω to a sufficiently large value, ∆ω is negligible and it can be truncated

in approximating (α)
m
d .

We now plug the Taylor series of Equation 4.42 into 2κ · Fp · (a+ b)
m
d . Thus,

2κFp(a+ b)
m
d = 2κ+

ℓm
d Fp(α)

m
d

=2κ+
mℓ
d Fp

(
ω∑

i=0

(m
d

i

)
(−1 + α)i

)
+ 2κ+

mℓ
d Fp∆ω (4.45)

=2κ+
mℓ
d
−ℓω

(
ω∑

i=0

(m
d

i

)
Fp (−1 + α)i 2ℓω

)
+ 2κ+

mℓ
d Fp∆ω

=2κ+
mℓ
d
−ℓω

(
ω∑

i=0

(m
d

i

)
Fp (−1 + α)i (2ℓ)i 2ℓ(ω−i)

)
+ 2κ+

mℓ
d Fp∆ω

=2κ+ℓ(m
d
−ω)

(
ω∑

i=0

(m
d

i

)
Fp

(
−2ℓ + (a+ b)

)i
2ℓ(ω−i)

)
+ 2κ+

mℓ
d Fp∆ω,

where κ+ ℓ(md − ω) > 0. Consequently, we have

2κ · Fp · (a+ b)
m
d ≈ 2κ+

mℓ
d Fp

(
ω∑

i=0

(m
d

i

)
(−1 + α)i

)
. (4.46)

Note that in the above approximation, 2
mℓ
d may not be an integer. From ℓ = x′ + y′,

where both x′ and y′ are integers, we set RA = ⌊2m·x′

d · τ⌋ and RB = ⌊2m·y′

d · τ⌋. As such,

we further approximate

2κ · Fp · (a+ b)
m
d ≈ I, (4.47)

where

I =
2κRARB

τ2
Fp

(
ω∑

i=0

(m
d

i

)
(−1 + α)i

)
. (4.48)

The Protocol of Secure Power. On the basis of the approximation of 2κ ·Fp · (a+ b)
m
d ,

we present the SMC protocol of secure power m
d in Figure 4.5. Alice and Bob first configure

a (2,2)-threshold Paillier cryptosystem (i.e. any cipher text can be decrypted only by Alice

and Bob). Let (pk, sk) be the public and private key pair of the cryptosystem. Suppose

that skA and skB are the secret shares of Alice and Bob respectively, such that the shares

combined together can recover sk. Let E[.] and D[.] be the encryption and decryption

functions corresponding to pk and (skA, skB), respectively. Alice and Bob carry out the

protocol step by step as follows.

97

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Step 1. Alice and Bob call secure bit-length operator (Section 4.1.4) to securely learn x

and x′ (known only to Alice), and y and y′ (known only to Bob), such that x+ y = 2−ℓ,

x′ + y′ = ℓ, and ℓ = ⌊log(a+ b)⌋+ 1.

Step 2. Alice and Bob then jointly compute the encryption of P = −1 + α. Denote

−1 + α by P .

E[P] = E[−1 + α] = E[−1 + a+ b

2ℓ
] = E[−1 + (a(x+ y) + b(x+ y))]

=
(E[x]× E[y])a × (E[x]× E[y])b

E[1]
. (4.49)

To compute E[P], Alice and Bob jointly compute E[x] × E[y] = E[x + y]. Alice then

computes (E[x] ×E[y])a = E[a(x + y)]. Bob also computes (E[x]× E[y])b = E[b(x+ y)].

Step 3. Alice and Bob apply “square and multiply” approach to jointly compute

poly = E

[ω∑

i=0

(m
d

i

)
Fp · P i

]

= E[P 0]Fp × E[P 1]
m
d
Fp × · · · × E[Pω](

m
d
ω)Fp ,

where the computation of E[P i] from E[P i−1] is similar to Equation 4.15 for i = 2, 3, . . . , ω.

Step 4. Alice and Bob compute

E[I] =

((
(poly)2

κτ−2
)RA

)RB

, (4.50)

where RA = ⌊2m·x′

d · τ⌋ and RB = ⌊2m·y′

d · τ⌋.

Step 5. Alice selects a random integer r to compute E[I − r] = E[I]
E[r] , which is sent to

Bob. They jointly decrypt the ciphertext, and only Bob learns I− r. Alice sets c1 =
r

2κFp
,

and Bob sets c2 =
I−r
2κFp

. Clearly, c1 + c2 is an approximation of (a+ b)
m
d (by approximate

Equation 4.47 and Equation 4.48). The statistical indistinguishability of c1 and that of c2

can be proven by using a similar proof as in Lemma 4.1.

4.1.7.1 The Protocol Analysis

We now analyze the protocol on the approximation error, complexity, and security. We

first study the error, when a and b are integers and a+ b > 0.

98

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Lemma 4.8 Let a and b be integers and a+ b > 0. Then, the relative error of (a+ b)
m
d

by secure power is less than 2−β + (1 + 2−β)2−(ω+1).

Proof 4.12 Let V = 2κFp(a + b)
m
d . Then its approximation by secure power is I (ap-

proximate Equation 4.47). The relative error is

|V − I|
V

≤ |V − VA|
V

+
VA

V

(
VA − I

VA

)
, (4.51)

where VA is another approximation of V by Equation 4.46.

VA = 2κ+
mℓ
d Fp

ω∑

i=0

(m
d

i

)
(−1 + α)i. (4.52)

By Equations 4.43, 4.45 and 4.46, it follows that

|V − VA|
V

≤ 2−(ω+1) and
VA

V
≤ 1 + 2−(ω+1) (4.53)

Based on Lemma 4.2, we have

VA − I

VA
< 2−β. (4.54)

Therefore, the relative error is less than 2−β + (1 + 2−β)2−(ω+1).

Like the error analysis for secure division and secure log, we have also the error analysis

for secure power, when a and b are floating values.

Lemma 4.9 Let a and b be two values not less than 2−γ , and τ = 2γ+β+1. Both values

are multiplied by τ and rounded to their integer parts, before input to secure power. Then,

the relative error of (a+ b)
m
d is less than 1−

(
1− 1

2β

)m
d + 2−(ω+1) + 2−β .

Proof 4.13 Let V = 2κFp(a×τ+b×τ)
m
d , and VA = 2κFp(⌊a×τ⌋+⌊b×τ⌋)m

d . According

to approximate Equation 4.47 and Equation 4.48, we can V by I ′:

I ′ =
2κR′

AR
′
B

τ2
· Fp

ω∑

i=0

(m
d

i

)
(−1 + α′)i, (4.55)

where α′ = ⌊a×τ⌋+⌊b×τ⌋

2ℓ′
, ℓ′ = ⌊log(⌊a×τ⌋+⌊b×τ⌋)⌋+1, R′

A = ⌊2m·x′′

d ·τ⌋, R′
B = ⌊2m·y′′

d ·τ⌋,

and x′′ + y′′ = ℓ′. Then, the relative error is

V − I ′

V
= 1− VA

V
+

VA

V

(VA − I ′)

VA
. (4.56)

99

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Since ⌊a× τ⌋ > 2β and ⌊b× τ⌋ > 2β, it follows that

(
1− 1

2β

)m
d

≤ VA

V
≤ 1. (4.57)

Based on Lemma 4.8,

VA − I ′

VA
< 2−β + (1 + 2−β)2−(ω+1). (4.58)

Therefore, the relative error is bounded by

V − I ′

V
< 1−

(
1− 1

2β

)m
d

2−β + (1 + 2−β)2−(ω+1).

Time Complexity. We measure the time complexity by modular exponentiations, since

they consume most of time. Secure bit-length in Step 1 requires 36z+26 modular exponen-

tiations. Step 3 iteratively computes the encryption of
∑w

i=0

(m
d
i

)
P i; it takes 5(ω − 1) + 2

modular exponentiations. The other 3 steps together take 22 modular exponentiations.

Therefore, the number of modular exponentiations needed by secure power (a + b)
m
d is

5ω + 45 + 36z bounded by O(ω + z).

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. The communication cost of Step 1 is

24t2z+14t2+6(λ+z+2)t1z bits (Section 4.1.4), where t1 is a security parameter and t2 is

the message length in the Paillier cryptosystem (Note: t1 is suggested to be 80 in practice

(Kolesnikov et al., 2009)). The number of message bits passing between Alice and Bob in

Step 3 is 8t2(ω−1), and in the other 3 steps it is 14t2. Therefore, the communication cost

is t2(24z + 20 + 8w) + 6(λ+ z + 2)t1z bits bounded by O(z(t2 + t1λ) + t2ω).

Next, we prove the secure power protocol via simulation paradigm (refer to Section

2.6.1 for more details) in the following.

Theorem 4.5 The secure power protocol is simulatable.

Proof 4.14 We simulate the view of Alice and that of Bob. Let a be the input of Alice,

and c1 be the protocol output to her. According to the secure power protocol in Figure

4.5, the view of Alice is V IEW
m
n
1 = (a,V11 ,V21 ,V31), where V11 is the set of messages she

receives from Bob for the secure bit-length sub-protocol in Step 1, V21 is the set of encrypted

messages she receives to compute E[2
κRARB

τ2
· (∑ω

i=0

(m
n
i

)
· Fp · (−1 + α)i)] (in Steps 2, 3,

100

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

and 4), and V31 is the set of messages she receives for (2,2)-threshold Paillier decryption in

Step 5. The simulator S
m
n
1 (a, c1) to simulate V IEW

m
n
1 is created as follows. S

m
n
1 first calls

Sbit-length
1 (see proof in Theorem 4.2) to simulate V11 . Each message E[m] ∈ V21 is a (2,2)-

threshold Paillier encryption. To simulate it, S
m
n
1 selects a random value r and computes

E[r]. Because (2,2)-threshold Paillier encryption is semantically secure, E[m] and E[r]

are computationally indistinguishable. The simulation of V31 is already given in (Cramer

et al., 2001). Thus, S
m
n
1 can call the simulator in (Cramer et al., 2001) to simulate V31 .

The view of Bob is simulated in the following.Let b be the input of Bob, and c2 be the

protocol output to him. According to the secure power protocol in Figure 4.5, the view of

Bob is V IEW
m
n
2 = (b,V12 ,V22 ,V32), where V12 is the set of messages he receives from Alice

for the secure bit-length sub-protocol in Step 1, V22 is the set of encrypted messages he

receives to compute E[2
κRARB

τ2
· (∑ω

i=0

(m
n
i

)
· Fp · (−1 + α)i)] (in Steps 2, 3, and 4), and

V32 is the set of messages he receives for (2,2)-threshold Paillier decryption in Step 5. The

simulator S
m
n
2 (b, c2) to simulate V IEW

m
n
2 is created as follows. S

m
n
2 first calls Sbit-length

2

(see proof in Theorem 4.2) to simulate V12 . Each message E[mb] ∈ V22 is a (2,2)-threshold

Paillier encryption. To simulate it, S
m
n
2 selects a random value rb and computes E[rb].

Because (2,2)-threshold Paillier encryption is semantically secure, E[mb] and E[rb] are

computationally indistinguishable. The simulation of V32 is already given in (Cramer

et al., 2001). Thus, S
m
n
2 can call the simulator in (Cramer et al., 2001) to simulate V32 .

4.1.8 Secure Max

Figure 4.6 gives the SMC protocol of secure max. Let a and b be the private inputs of Alice

and Bob, respectively. Alice and Bob compute E[a] and E[b], respectively, and input them

to the secure max operator. The protocol outputs c1 and c2, such that c1+c2 = max{a, b}.

In the protocol, a is kept confidential to Bob, and b is confidential to Alice. At the end of

the protocol, Alice learns only c1, and Bob learns only c2.

Alice and Bob first configure a (2,2)-threshold Paillier cryptosystem. Let (pk, sk) be

the public and private key pair of the cryptosystem. Suppose that skA and skB are the

secret shares of Alice and Bob respectively, such that the shares combined together can

recover sk. Let E[.] and D[.] be the encryption and decryption functions corresponding

to pk, and (skA, skB), respectively. Alice and Bob carry out the protocol step by step as

follows.

101

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

2© Compute M = E[r]×Z1

Z2

.

3© Use CMP to compare M ′ = D[M] and r

IF M ′ > r, Z = Z1

otherwise, Z = Z2

Alice Bob

1© Shuffling: generate Z1 and Z2, which are
re-encryptions of E[a] and E[b] respectively.

4© Alice selects a random number c1 to
compute Z

E[c1]
, which is sent to Bob.

Bob learns c2 = D[Z

E[c1]
].

Input: a of Alice and b of Bob.
Output: c1 of Alice and c2 of Bob,

such that c1 + c2 = max{a, b}.

c1 c2 = max{a, b} − c1

Figure 4.6: Secure max protocol

Step 1. Alice and Bob shuffle E[a] and E[b] as follow. Alice first sends E[a] to Bob.

Then, Bob re-encrypts a by U1 = E[a + 0] = E[a] × E[0], and computes U2 = E[b]. He

sends (U1, U2) to Alice. Because of the semantic security of Paillier encryption, Alice

cannot distinguish U1 from U2. She further re-encrypts a and b by

Z1 = U1 × E[0],

Z2 = U2 × E[0].

Based on the semantic security of Paillier encryption, neither Alice nor Bob can tell Z1

(or Z2) is the encryption of a or b.

Step 2. Alice computes Z1
Z2

which is sent to Bob. Bob then generates a random number

r to compute M,

M =
E[r]× Z1

Z2
, (4.59)

which is sent to Alice.

102

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Step 3. Alice receives M from Bob. They jointly decrypt D[M] = M ′ which M ′ is known

by Alice only. Alice and Bob then apply CMP (i.e., the secure integer comparison circuit

in Section 3.1.10) to compare between M ′ and r which r is known by Bob only. Obviously,

if M ′ > r, then Z1 is selected, and Z2 otherwise. Alice and Bob thus set

Z =

Z1 if M ′ > r,

Z2 otherwise.
(4.60)

Then, Z = E [max {a, b}].

Step 4. Alice selects a random number c1 to compute

Z ′ = E [max {a, b} − c1] =
Z

E[c1]
.

Bob receives Z ′ from Alice. They jointly decrypt Z ′. Bob then learns c2 = max {a, b}−c1.

The statistical indistinguishability of c1 and that of c2 can be proven by using a similar

proof as in Lemma 4.1.

4.1.8.1 The Protocol Analysis

We now analyze the protocol for its complexity and security.

Time Complexity. We measure the time complexity by modular exponentiations, since

they consume most of the time. Steps 1 and 2 require 12 modular exponentiations. The

initialization of CMP (Ishai et al., 2003; Naor and Pinkas, 2001) also needs some modular

exponentiations. However, the initialization can be done before the protocol, and its cost

can be amortized over all the runnings of secure bit-length. Thus, we do not count its cost

in Step 3. Alice and Bob jointly decrypt M ′ that involves 10 modular exponentiations in

the Step 3. Step 4 takes 12 modular exponentiations. Therefore, the time complexity of

secure max is 34 bounded by O(1).

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. Steps 1 and 2 need to transfer 10t2

bits where t2 is the message length in Paillier cryptosystem. Step 3 needs 4t2 + 3ℓt1 bits

where ℓ is the bit-length of the max(M ′, r) and t1 is a security parameter in Paillier cryp-

tosystem (Note: t1 is suggested to be 80 in practice (Kolesnikov et al., 2009)). The CMP

103

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

initialization also has some communication cost. We do not involve it, since it can be

done before running the protocol in Step 3. The last step needs to transfer 6t2 bits. The

communication cost of secure max is 20t2 + 3ℓt1 bits bounded by O(t2 + ℓt1).

Secure max is proven secure via simulation paradigm (Section 2.6.1) in the following.

Theorem 4.6 The secure max protocol is simulatable.

Proof 4.15 We simulate the view of Alice and that of Bob. We first simulate the view

of Alice. Let a be the input of Alice, and c1 be the protocol output to her. According to

the secure max protocol in Figure 4.6, the view of Alice is V IEWmax
1 = (a,V11 ,V21 ,V31 ,V41),

where V11 is the set of messages Alice receives from Bob for the CMP comparison in Step

3, V21 is D[M], that is decryption of M in Step 3, V31 is the set of messages she receives for

(2,2)-threshold Paillier decryption in Step 4, and V41 is the set of all the other messages

she receives. The simulator Smax
1 (a, c1) to simulate V IEWmax

1 is created as follows. The

simulation of V11 and that of V31 are already given in (Kolesnikov and Schneider, 2008)

and (Cramer et al., 2001), respectively. Thus, Smax
1 can call simulators in (Kolesnikov

and Schneider, 2008) and (Cramer et al., 2001) to simulate V11 and V31 , respectively.

To simulate D[M] in V21 , the simulator can use a similar proof as in Lemma 4.3. Each

message E[m] ∈ V31 is a (2,2)-threshold Paillier encryption. To simulate it, Smax
1 computes

an encryption E[r], where r is a random value. Since (2,2)-threshold Paillier encryption

is semantically secure, E[m] and E[r] are computationally indistinguishable.

The view of Bob is simulated in the following. Let b be the input of Bob, and c2 be the

protocol output to him. According to the secure max protocol in Figure 4.6, the view of Bob

is V IEWmax
2 = (b,V12 ,V22 ,V32), where V12 is the set of messages Bob receives from Alice for

the CMP comparison in Step 3, V22 is the set of messages he receives for (2,2)-threshold

Paillier decryption in Step 4, and V32 is the set of all the other messages he receives. The

simulator Smax
2 (b, c2) to simulate V IEWmax

2 is created as follows. The simulation of V12
and that of V22 are already given in (Kolesnikov and Schneider, 2008) and (Cramer et al.,

2001), respectively. Thus, Smax
2 can call simulators in (Kolesnikov and Schneider, 2008)

and (Cramer et al., 2001) to simulate V12 and V22 , respectively. Each message E[mb] ∈ V32
is a (2,2)-threshold Paillier encryption. To simulate it, Smax

2 computes an encryption

E[rb], where rb is a random value. Since (2,2)-threshold Paillier encryption is semantically

secure, E[mb] and E[rb] are computationally indistinguishable.

104

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

4.1.9 Secure Max Location

The secure max location operator is an SMC protocol. Let M1,M2, · · · ,Ml be a list of

values, where Mi = MA
i +MB

i (for i = 1, 2, . . . , l), and MA
i and MB

i are held by Alice and

Bob respectively. The secure max location protocol is to find an index θ, such that Mθ

(correspondingly MA
θ + MB

θ) is the maximum value in the list, while not disclosing any

additional information. For example, in Näıve Bayes, the secure max location protocol

can find the location θ of the maximum a posteriori probability (MAP) estimation which

it can then be mapped to a class label (i.e., response value) by either Alice or Bob. The

secure max location protocol is depicted in Figure 4.7.

Alice and Bob first configure a (2,2)-threshold Paillier cryptosystem. Let (pk, sk) be

the public and private key pair of the cryptosystem. Suppose that skA and skB are the

secret shares of Alice and Bob respectively, such that the shares combined together can

recover sk. Let E[.] and D[.] be the encryption and decryption functions corresponding

to pk, and (skA, skB), respectively. Alice and Bob carry out the protocol step by step as

follows.

Step 1. Alice first generates a list of encrypted pairs, ∀li=1(E[i], E[MA
i]). She sends the

list to Bob.

Step 2. For each pair (E[i], E[MA
i]), Bob re-encrypts E[i], and computes an encryption

of MA
i +MB

i by

Ii = E[i+ 0] = E[i]× E[0]

Vi = E[MA
i +MB

i] = E[MA
i]× E[MB

i].

(4.61)

Bob shuffles the list and sends it back to Alice.

Step 3. Alice re-encrypts each pair (Ii, Vi) by Ii = Ii×E[0] and Vi = Vi×E[0]. She then

also shuffles the list.

The shuffling and re-encryption above ensure that neither Alice nor Bob is able to

correlate (Ii, Vi) with i correctly with a confidence significantly larger than 1/l for 1 ≤ i ≤ l.

This is guaranteed by the security feature of Paillier encryption. Still, without loss of

generality and also for the simplicity of notations, we assume that the shuffled list is in

order, that is, (I1, V1), (I2, V2), · · · , (Il, Vl).

105

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

2© Bob re-encrypts E[i] and computes the list, ∀li=1(Ii, Vi)
where Ii = E[i+ 0] and Vi = E[MA

i +MB
i].

Bob reshuffles the list and sends it Alice.

Alice Bob

1© Alice generates a list of encrypted pairs,
∀li=1(E[i], E[MA

i]), which is sent to Bob.

Input: MA
1 , · · · ,MA

l from Alice.
MB

1 , · · · ,MB
l from Bob.

Output: The index θ, such tht
MA

θ +MB
θ = max(MA

1 +MB
2 , · · · ,MA

l +MB
l)

5© Alice and Bob learn θ.

3© Alice re-encrypts the list,
Ii = Ii × E[0], Vi = Vi × E[0], and then reshuffles the list.

4© Set Bigger = V1 and θ = 1.
For j ← 2 to l

Compute E[Z] = Bigger
Vj

× E[r],

where Z = (MA
θ +MB

θ)− (MA
j +MB

j) + r is known
by Alice and r is a random value known by Bob.

If CMP shows that Z < r

Bigger = Vj, θ = j

θ θ

Figure 4.7: Secure max location protocol

Step 4. Alice and Bob locate the maximal value iteratively. They first compare MA
1 +MB

1

with MA
2 + MB

2 . They take out the larger of the two, and compare it with MA
3 + MB

3 .

The larger is then compared with MA
4 +MB

4 . This continues, until the comparison with

MA
l + MB

l is done. The details of this step are as follows. Initialize “Bigger” and θ to

be V1 and 1, respectively. For j = 2, 3, . . . , l, Alice and Bob jointly compute E[Z] =

Bigger
Vj
× E[rj−1], where Z = (MA

θ + MB
θ) − (MA

j + MB
j) + rj−1 is known by Alice only

and rj−1 is a random value known only by Bob. Alice and Bob then apply CMP (i.e., the

secure integer comparison circuit in Section 3.1.10) to compare Z and rj−1. If Z < rj−1,

then (MA
θ +MB

θ) < (MA
j +MB

j), and the two parties set Bigger = Vj and θ = j.

106

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Step 5. We assume that (I1, V1), (I2, V2), · · · , (Il, Vl) are in order. Thus, the output θ

from Step 4 gives the index of the biggest value. If the list is not in order, Alice and Bob

can decrypt Iθ, and recover the index of the biggest value.

4.1.9.1 The Protocol Analysis

We now analyze the protocol for its complexity and security.

Time Complexity. We measure the time complexity by modular exponentiations, since

they consume most of the time. Steps 1-3 requires 12l modular exponentiations. Step 4

needs 12(l − 1) modular exponentiations. The initialization of CMP (Ishai et al., 2003;

Naor and Pinkas, 2001) needs some modular exponentiations. However, the initialization

can be run before the protocol, and its cost can be amortized over all the runnings of

secure max. Thus, we do not count its cost in Step 4. The last step needs 10 modular

exponentiation. Therefore, the number of modular exponentiations needed by secure max

location is 24l − 2 bounded by O(l).

Communication Complexity. The communication cost of Steps 1-3 is 8t2l bits, where

t2 is the message length in Paillier cryptosystem. Step 4 needs 3(φ)t1(l − 1) + 8t2(l − 1)

bits where φ is the number of bits of max(MA
1 +MB

2 , · · · ,MA
l +MB

l) and t1 is a security

parameter in Paillier cryptosystem (Note: t1 is suggested to be 80 in practice (Kolesnikov

et al., 2009)). The CMP initialization also has some communication cost. We do not

involve it, since it can be done before running the protocol in Step 4. Step 5 transfers 4t2

bits. Therefore, the communication complexity is 16t2l− 4t2 +3(φ)t1(l− 1) bits bounded

by O(l(t2 + t1)).

The secure max location protocol is proven secure via simulation paradigm (Section

2.6.1) in the following.

Theorem 4.7 The secure max location protocol is simulatable.

Proof 4.16 We simulate the view of Alice and that of Bob. We first simulate the view of

Alice. Let MA
1 , · · · ,MA

l be the inputs of Alice, and θ be the protocol output to her. Accord-

ing to the secure max location protocol in Figure 4.7, the view of Alice is V IEWmaxloc
1 =

((MA
1 , · · · ,MA

l),V11 ,V21 ,V31 ,V41), where V11 is the set of messages Alice receives from Bob

for the CMP comparison in Step 4, V21 is the set of the decrypted messages ∀lj=2D[E[Z]]

107

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

where Alice receives from Bob in Step 4, , V31 is the set of messages she receives for (2,2)-

threshold Paillier, decryption in Step 5, and V41 is the set of all the other messages she

receives. The simulator Smaxloc
1 ((MA

1 , · · · ,MA
l), θ) to simulate V IEWmaxloc

1 is created as

follows. The simulation of V11 and that of V31 are already given in (Kolesnikov and Schnei-

der, 2008) and (Cramer et al., 2001), respectively. Thus, Smaxloc
1 can call simulators in

(Kolesnikov and Schneider, 2008) and (Cramer et al., 2001) to simulate V11 and V31 , re-

spectively. To simulate V21 , Smaxloc
1 can use a similar proof as in Lemma 4.3. Each message

E[m] ∈ V41 is a (2,2)-threshold Paillier encryption. To simulate it, Smaxloc
1 computes an

encryption E[r], where r is a random value. Since (2,2)-threshold Paillier encryption is

semantically secure, E[m] and E[r] are computationally indistinguishable.

Now we simulate the view of Bob. Let MB
1 , · · · ,MB

l be the inputs of Bob, and θ be

the protocol output to him. The view of Bob is V IEWmaxloc
2 = (b,V12 ,V22 ,V32), where V12

is the set of (2,2)-threshold Paillier encrypted messages Bob receives from Alice in Step

2, V22 is the set of messages Bob receives from Alice for the CMP (Fast Garbled Circuit)

in Step 4, and V32 is the set of messages Bob receives for (2,2)-threshold Paillier decryp-

tion in Step 4 and 5. The simulator Smaxloc
2 ((MB

1 , · · · ,MB
l), θ) to simulate V IEWmaxloc

2

is created as follows. Each message E[mb] ∈ V12 is a (2,2)-threshold Paillier encryption.

To simulate it, Smaxloc
2 computes an encryption E[rb], where rb is a random value. Since

(2,2)-threshold Paillier encryption is semantically secure, E[mb] and E[rb] are computa-

tionally indistinguishable. The simulations of V22 and V32 are already given in (Kolesnikov

and Schneider, 2008) and (Cramer et al., 2001), respectively. Thus, Smaxloc
2 can call the

simulators in (Kolesnikov and Schneider, 2008) and (Cramer et al., 2001) to simulate V22
and V32 , respectively.

4.1.9.2 The Protocol Extension

The protocol can be extended to find the maximum value of the list by only modifying

the Step 5 in Figure 4.7. Alice selects a random number c1 to compute

V = E[MA
θ +MB

θ − c1] =
Bigger

E[c1]
, (4.62)

which is sent to Bob. Alice and Bob then jointly decrypt D[V] where V = MA
θ +MB

θ − c1.

At the end of the protocol, Alice learns only c1 and Bob learns only c2 = MA
θ +MB

θ − c1

108

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

where c1 + c2 = MA
θ + MB

θ is the maximum value of the list. The time complexity and

the communication complexity of the protocol extension are 24l (bounded by O(l)) and

16t2l−2t2+3(φ)t1(l−1) (bounded by O(l(t2+ t1))), respectively. Since the security proof

of the protocol extension is similar in secure max location (Section 4.1.9), we omit the

details here.

4.2 The DAG Model Analysis

In section, we first discuss the connection of secure operators of the DAG model. Finally,

we analyze the security of our DAG model. Secure operators can be connected to serve

for different functions. The connection of our secure operators of DAG can work in such a

similar way of the connection of the arithmetic operators. The outputs of secure operators

are different from the arithmetic operation; e.g. the connection of secure operations of

DAG produces two outputs at the end of the execution. We use two examples to illustrate

the workings of the connection of secure operators of DAG.

(a) Secure log (b) Secure multiplication

Figure 4.8: Secure computations on a× log(a+ b).

Multiplication with log. Let a and b be inputs of Alice and Bob respectively. Alice

and Bob jointly compute a× log(a+ b) as follows. They first apply secure log to compute

log(a+ b) to get c1log and c2log, held by Alice and Bob respectively, as depicted in Figure

4.8(a). Alice and Bob then apply secure multiplication to compute a× c2log. The outputs

of the secure multiplication are c1mul and c2mul, held by Alice and Bob respectively, as

109

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

depicted in Figure 4.8(b). Thus,

a× log(a+ b) = a× (c1log + c2log) = ac1log + (a× c2log)

= (ac1log + ac1mul) + ac2mul = c1 + c2, (4.63)

where c1 = ac1log + ac1mul and c2 = ac2mul, held by Alice and Bob respectively, are the

outputs of the computation a× log(a+ b). Since Alice holds a and c1log, she can multiply

a by c1log without involving any secure operator.

Multiplication with division. Let (a1, a2) and (b1, b2) be inputs of Alice and Bob

respectively. Alice and Bob jointly compute a1+b1
a2+b2

× (a1 + b1) as follows. They first apply

secure division to compute a1+b1
a2+b2

to get c1div and c2div , held by Alice and Bob respectively,

as depicted in Figure 4.9(a). Alice and Bob then apply secure multiplication to compute

two vectors, [c1div a1]
T and [b1 c2div]

T . The outputs of the secure multiplication are c1mul′

and c2mul′ , held by Alice and Bob respectively, as depicted in Figure 4.9(b). Thus,

a1 + b1
a2 + b2

× (a1 + b1) = (c1div + c2div)× (a1 + b1) = a1c1div +

c1div

a1

×

b1

c2div

+ b1c2div

= (a1c1div + c1mul′) + (c2mul′ + b1c2div) = c′1 + c′2, (4.64)

where c′1 = a1c1div + c1mul′ and c′2 = c2mul′ + b1c2div , held by Alice and Bob respectively,

are the outputs of the computation a1+b1
a2+b2

× (a1 + b1). Since Alice holds a1 and c1div, she

can multiply a1 by c1div without involving any secure operator. Likewise Bob can multiply

b1 by c2div which both of them are known by him.

(a) Secure division (b) Secure multiplication

Figure 4.9: Secure computations on a1+b1
a2+b2

× (a1 + b1).

110

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

Therefore, secure operators of DAG model can be connected to serve various functions.

Their connection is similar to the connection of arithmetic operators.

Analysis of the Connection of Secure Operators. We now analyze the error when

operators are connected. Without loss of generality, we consider the connection of two

operators. We first consider that an operator is connected to secure division, that is, its

output is input to secure division. Without loss of generality, suppose that the operator

is multiplication. Let (a1, a2) be the input of Alice and (b1, b2) be that of Bob. Suppose

that the connection of multiplication and division is a1×b1
a2+b2

= (a1× b1)
1

a2+b2
. Then, a1× b1

is approximated to (a1× b1)(1− et), and
1

a2+b2
is approximated to (a2+ b2)(1− ed), where

et is the error for secure multiplication (Lemma 4.2) and ed is the error of secure division

(Lemmas 4.4 and 4.5). Thus, the relative error of a1×b1
a2+b2

is

1− (1− et)(1− ed) ≈ et + ed, (4.65)

where et · ed is truncated since it is much smaller than et and ed.

The error analysis of the connection of multiplication and division can be easily ex-

tended to that of log/power and division. Let el be the error of secure log, and ep be the

error of secure power. If log (or power) is connected to division, then the error of the two

operators can be approximated to | − el + ed| (or | ± ep + ed|).

Next, we study the error of an operator connected to log. Again, we again assume that

the operator is multiplication. Let a and b be the inputs of Alice and Bob respectively,

and the connection of the two operators is log(a × b). Then, a × b is approximated to

(a × b)(1 − et), where et is the error for secure multiplication (Lemma 4.2). Let el be

the approximation error of secure log (Lemmas 4.6 and 4.7). Then, the relative error of

log(a× b) is

∣∣∣∣1−
log ((a× b)(1 − et))

log(a× b)
(1 + el)

∣∣∣∣

=

∣∣∣∣1−
log(a× b) + log(1− et)

log(a× b)
(1 + el)

∣∣∣∣

≈
∣∣∣∣1−

log(a× b)− et
log(a× b)

(1 + el)

∣∣∣∣

≈
∣∣∣∣−el +

et
log(a× b)

∣∣∣∣ . (4.66)

111

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

In the above, the first approximation is obtained since log(1− et) ≈ −et for small et, and

the second approximation is obtained since et · el is much smaller than et and el. Similar

to the extension of connecting other operators with division, we can connect another

operator other than multiplication with log. The error can be approximated to the linear

combination of the errors of the two connected operators as approximate Equation 4.66.

Finally, we investigate the connection between an operator and power. Once again, we

take multiplication as the operator. The connection by another operator can be studied

similarly. Let a and b be the inputs of Alice and Bob, respectively, and (a × b)
m
d be the

connection of the two operators. a× b is approximated to (a× b)(1 − et), where et is the

error for secure multiplication (Lemma 4.2). Let ep be the error of secure power (Lemmas

4.8 and 4.9). The relative error of (a× b)
m
d is

∣∣∣∣∣1−
((a× b)(1 − et))

m
d

(a× b)
m
d

(1± ep)

∣∣∣∣∣

≈
∣∣∣∣∣1−

(a× b)
m
d (1− m

d et)

(a× b)
m
d

(1± ep)

∣∣∣∣∣

≈
∣∣∣±ep +

m

d
et

∣∣∣ , (4.67)

where the first approximation holds as (1 − et)
m
d ≈ 1 − m

d et for small et, and the second

approximation holds as et · ep is much smaller than et and ep.

The error analysis above shows that the connection of two secure operators leads to a

relative error, which is approximately bounded by the linear combination of the relative

errors of the two operators. Easily, we can extend the discussion to the connection of more

operators, and the relative error can again be bounded by the linear combination of the

errors of the operators.

The Security of Connected Operators. We analyze the security of our DAG model.

We propose 9 secure operators: secure multiplication, secure bit-length, secure division,

secure log, secure power, secure max, and secure max location are simulatable in Theorem

4.1, Theorem 4.2 Theorem 4.3, Theorem 4.4, Theorem 4.5, Theorem 4.6 and Theorem

4.7, respectively. Another two operators, secure addition and secure minus are trivial,

which Alice and Bob do not even pass messages to each other (i.e., require no interaction).

Thus, secure addition and secure minus can be seen as special SMC protocols, and they

are simulatable. Thus, 9 secure operators of DAG model are strictly proven secure.

112

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

In DAG, we can pipeline multiple operators to perform more complex functions. Since

each secure operator is simulatable as discussed previously, the connection of secure op-

erators is also simulatable. In the connection of the multiple operators, the invocation of

secure operators is sequential. The inputs of the operator but the first operator are the

outputs of the previous operators. The connection of the multiple operators is simulatable

via composition theorem (Lindell and Pinkas, 2008). The theorem below proves that the

connection of the multiple operators will allow Alice and Bob to learn only the protocol

output with their respective inputs.

Theorem 4.8 In the DAG model, Alice (Bob) only learns the protocol output to her (him).

Proof 4.17 Let op1, op2, · · · , opk be the nodes (secure operators) in a directed acyclic

graph. Operator opi (for i = 1, 2, . . . , k) outputs ci1 and ci2, held by Alice and Bob, respec-

tively. The outputs of all the operators except for the last one are intermediate results,

and the output of the last one (say opk) is the model output.

We first simulate the view of Alice. Let A be the input of Alice and ck1 (i.e., one output

of opk) be the protocol output to her. The view of Alice is V IEWDAG
1 = (A,V11 ,V21 , · · ·

,Vk1), where V i1 is the set of messages she receives from Bob when running operator opi

for 1 ≤ i ≤ k. If opi is addition or minus, then V i1 is empty and ci1 (generated by Alice

alone) is not included in the view. The simulator SDAG
1 (A, ck1) to simulate V IEWDAG

1 is

created as follows. The simulation of V i1 is done when discussing each secure operator.

Thus, SDAG
1 can call a corresponding simulator to simulate it.

Next, we simulate the view of Bob. Let B be the input of Bob and ck2 (i.e., an-

other output of opk) be the protocol output to him. The view of Bob is V IEWDAG
2 =

(B,V12 , c12,V22 , c22, · · · ,Vk2), where V i2 is the set of messages he receives from Alice when

running operator opi for 1 ≤ i ≤ k. If opi is addition or minus, then V i2 is empty and

ci2 (generated by Bob alone) is not included in the view. The simulator SDAG
2 (B, ck2) to

simulate V IEWDAG
2 is created as follows. It first call the simulators of single operators to

simulate V i2. To simulate immediate result ci2 (for i = 1, 2, . . . , k − 1), SDAG
2 can select a

random number r as in Lemma 4.1, and then r is statistically indistinguishable from ci2.

113

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

4.3 Experiment and Discussion

In this section, we evaluate the performance of our DAG model. We evaluate the secure

operators, which consist of the model, with respect to their efficient and approximation

errors.

Table 4.1: Experiment Parameters to Evaluate Secure Operators

Operator κ γ β τ w z λ

× -
15

284 300 - - -
/, log 950

12 28 20 - 40
power 910

bit-length - - - - - 45 -

Implementation. We implemented the solutions by Java. All experiments were run

on a machine of IntelR© Xeon R© 2.3GHz CPU (16 cores) with 128.0GB RAM running

on Windows Server 2012. We downloaded the threshold Paillier Cryptosystem 1, and

configured it to 1024-bit. The CMP which is part of the fast garbled circuit (Huang,

Evans, Katz and Malka, 2011) is one of the most efficient secure comparisons. The security

parameters like κ are restricted by different conditions in different secure operators. We set

them based on these conditions, and thus their values vary from one operator to another.

Table 4.1 gives the configuration details.

Evaluation. We first evaluate secure bit-length that is the sub-protocol of secure division,

secure log and secure power. The operator can run in parallel. We thus implement it in

two versions – the first runs the whole protocol (in Figure 4.2) sequentially, and the second

executes the protocol in parallel using 20 threads (Step 3 in Figure 4.2). Figure 4.10(a)

reports the results when varying the number of times of running the secure bit-length

operator. Clearly, the parallel version with 20 threads is more efficient. On average the

elapsed time per operation is 38.5820 sec by the sequential version, while that by the

parallel version is only 4.2385 sec.

On the basis of the bit-length protocol, we then study the elapsed time of secure

division, secure log, and secure power. Figure 4.10(b) is the results when the operators

apply sequential version of the underlying bit-length protocol, and Figure 4.10(c) is the

results of parallel version of the bit-length protocol. As expected, the efficiency of parallel

1http://www.utdallas.edu/∼mxk093120/paillier/

114

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

0 500 1000 1500 2000
10

2

10
3

10
4

10
5

Secure Bit-Length over Threads
R

u
n

 T
im

e,
 l

o
g
 (

se
c)

Number of Executions

1-Thread

20-Thread

(a)

0 500 1000 1500 2000

10
2

10
4

10
6

10
8

10
10

Secure Operation over 1-thread

R
u

n
 T

im
e,

 l
o
g
 (

se
c)

Number of Executions

Secure Multiplication

Secure Division

Secure Log

Secure Power

(b)

0 500 1000 1500 2000

10
2

10
4

10
6

10
8

10
10

Secure Operation over 20-thread

R
u

n
 T

im
e,

 l
o
g
 (

se
c)

Number of Executions

Secure Multiplication

Secure Division

Secure Log

Secure Power

(c)

0 500 1000 1500 2000
0

2

4

6

8x 10
-11 Secure Operation over MSE

A
v
er

a
g
e

R
el

a
ti

v
e

E
rr

o
r

Number of Executions

Secure Multiplication

Secure Division

Secure Log

Secure Power

(d)

Figure 4.10: Performance of the Secure Operators

running is much better. For example, one execution of secure division based on sequential

secure bit-length protocol takes 42.4461 sec, and that on parallel version takes only 7.9312

sec. In the above two figures, we have also included the experimental results of secure

multiplication. The protocol is simpler, and takes around 1.218 sec. Since it does not

depend on bit-length sub-protocol, its running time does not change obviously whether

the bit-length sub-protocol is running either in sequential or in parallel.

The errors are small, regardless of the number of execution threads – on average the

error of secure multiplication is 7.3266 × 10−92, that of secure division is 4.4981 × 10−11,

that of secure log is 6.2039 × 10−11, and that of secure power is 7.7770 × 10−11. This is

consistent with the setting of security parameters (i.e., β and w) and the developed error

bounds (i.e., secure multiplication in Lemma 4.2, secure division in Lemmas 4.4 and 4.5,

secure log in Lemmas 4.6 and 4.7, and secure power in Lemmas 4.8 and 4.9).

115

CHAPTER 4. DAG: A GENERAL MODEL FOR PRIVACY-PRESERVING DATA MINING

4.4 Chapter Summary

In this chapter, we propose DAG – a general model for privacy preserving data mining.

Currently our DAG model consists of 9 secure operators: secure addition, secure minus,

secure multiplication, secure division, secure log, secure power, secure bit-length, secure

max and secure max location. The secure operators of DAG model can be pipelined to-

gether to compute a complex function. The protocol analysis of each operator is discussed

in detail such as its approximation errors if applicable, complexity and security. The error

bound of the concatenation of operators is derived based on the error bound of every sin-

gle operator. Secure operators of DAG are strictly proven secure via simulation paradigm

(Goldreich, 2004). Thus, our DAG can provide a complete privacy under the semi-honest

model. The performance of secure operators are evaluated in the experiment. The theo-

retical and experimental proofs show that our DAG model is efficient in computation and

effective in protecting data privacy.

116

Chapter 5

Privacy-Preserving Classification Algorithms by DAG

Data mining consists of three key tasks: regression, information retrieval, and clustering on

data to yield a data driven model. Specifically, the tasks help to discover patterns in data

by analyzing large quantities of data. In data mining, clustering or classification predicts a

certain outcome based on a given input. Classification algorithms process training datasets

that contain a set of attributes (predictors) with their class attribute (response variable)

to predict the outcome. The algorithms then process testing datasets that contain the

same set of predictors to predict response value.

Data are distributed across multiple parties in many data mining applications. How-

ever, data may contain sensitive information; directly sharing it could violate personal

privacy (Aggarwal and Yu, 2008; Clifton et al., 2002) and privacy laws (Congress, 1996;

ECHR, 2014). Therefore, data sharing for data mining tasks needs to be carried out in

a privacy-preserving way. Secure multi-party computation (SMC) protocols have been

extensively applied in privacy-preserving data mining (Lindell and Pinkas, 2008; Verykios,

Bertino, Fovino, Provenza, Saygin and Theodoridis, 2004) in the context of multiple par-

ties. It is assumed that these parties are not willing to share their data directly, but

would like to work together to learn the output of any agreed mining task. Various

SMC techniques have been proposed to serve different mining tasks, such as decision

tree (Vaidya, Clifton, Kantarcioglu and Patterson, 2008), Näıve Bayes (Vaidya, Kantar-

cioglu and Clifton, 2008), support vector machine (Teo et al., 2013) and singular value

decomposition (Han et al., 2009). However, most of these techniques (Bertino et al., 2005;

Aggarwal and Yu, 2008) only consider secure addition and secure multiplication opera-

tions; they cannot be applied to the cases that include more complicated operations such

as secure division. In addition, these techniques are ad-hoc, and thus difficult to be directly

applied to mining tasks other than those they target.

117

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Thus, we propose the DAG model (Chapter 4) that can be applied in various data min-

ing tasks. In this chapter, we apply the DAG model into three different classification algo-

rithms: support vector machine (Burges, 1998) kernel regression (Friedman et al., 2001)

and Näıve Bayes (Mitchell, 1997). We assume two parties, Alice and Bob that are semi-

honest, in each classification task. Specifically, in kernel regression and Näıve Bayes, each

party has a private subset of data (i.e., training data) with the format (x1, x2, . . . , xd, y),

where xi’s are predictor variables and y is the response variable. We also assume that

Alice and Bob have another set of data (i.e., testing data) with only the xi’s values, and

they would like to predict the y values by either kernel regression or Näıve Bayes. To

protect the data privacy of the two parties, we build the data mining tasks based on the

model. Extensive experimental results show that the response values predicted by DAG are

very close to those predicted in non-private setting, where Alice and Bob simply disclose

their data. In the kernel regression, the difference by MSE on predicted values between

DAG and non-private setting is less than 0.0002. For Näıve Bayes, the outputs from the

two cases are identical. The experimental results also show that the running time of our

DAG model is efficient. For example, in kernel regression, when training data size of Alice

(Bob) is 683,093, one prediction in non-private setting takes 5.93 sec, and that by our

DAG model takes 12.38 sec.

In the following, we first discuss support vector machine integrated with DAG in Section

5.1. Kernel regression and Näıve Bayes integrated with DAG are discussed in Sections 5.2

and 5.3, respectively. Lastly, we summarize this chapter in Section 5.4.

5.1 Support Vector Machine (SVM)

A basic classification of linear support vector machine (SVM) can find a linear boundary

by taking a set of input data and predict two possible responses (classes) from the inputs.

y = w.x+ b. (5.1)

The linear SVM can find a separating hyperplane that maximizes a margin by a straight

line as in Equation 5.1. The margin is the distance between the hyperplane and the

closest data points (i.e., support vectors). In the non-linear (kernel) classification, SVM

uses some kernel functions to separate the input data into two possible responses by

118

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

P =

d1 d2 d3 d4
d5 d6 d7 d8
d9 d10 d11 d12
d13 d14 d15 d16

 (5.2)

Figure 5.1: Data in the 4× 4 square matrix.

mapping input data into high dimensional feature spaces. Some popular kernel functions

such as the polynomial kernel function, K(x, y) = (1 + x.y)s and the RBF kernel function,

K(x, y) = exp(−1(x−y)2

2σ2).

Therefore, kernel matrix is the main structure that contains all required kernel infor-

mation for a learning algorithm in the non-linear SVM. In other words, the kernel matrix

can play an intermediate role to generate a global SVM model without disclosing any local

data. We assume that data are partitioned arbitrary between Alice and Bob: data can

be randomly split on either horizontally or vertically, and even both of them. To securely

construct the global SVM model without disclosing any data of Alice and that of Bob, we

apply our DAG model to securely compute the Gram (i.e., kernel) matrix which is the dot

product of the data vectors of Alice and that of Bob. The algorithm of SVM to compute

the Gram matrix is briefly discussed in Section 5.1.1. We propose privacy-preserving SVM

(PPSVM) by our DAG model and discuss the security analysis and the complexity analysis

of PPSVM in Sections 5.1.2 and 5.1.3, respectively. Lastly, we evaluate the performance

of PPSVM in Section 5.1.4.

5.1.1 Algorithm

In SVM, we can present data in a square matrix form. For example, in Figure 5.1, matrix P

contains four tuples and four attributes, indicated by row and by column respectively. Each

tuple of P has four data points. The kernel (Gram) matrix computes the dot products

of every data pair in P : e.g., [d1 d2 d3 d4] · [d1 d2 d3 d4], [d1 d2 d3 d4] · [d5 d6 d7 d8],

[d1 d2 d3 d4] · [d9 d10 d11 d12], and [d1 d2 d3 d4] · [d13 d14 d15 d16]. Thus, the gram matrix

of P is equivalent to P · P T . Any non-squared data matrix are converted into a square

matrix by inserting zero into the matrix; e.g, in the 3× 4 data matrix, we insert a row of

[0 0 0 0] to make it the 4× 4 data square matrix.

We discuss a few methods that can calculate the gram matrix in the following. We

first propose a method, the upper/lower matrix multiplication based on the observation of

119

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

the Gram matrix multiplication. Some improved matrix multiplication methods such as

Strassen multiplication (Strassen, 1969), Strassen-Coppersmith-Winogard multiplication

(Coppersmith and Winograd, 1987), and Strassen-Bodrato multiplication (Bodrato, 2010)

can also compute the Gram matrix.

� the upper/lower matrix multiplication: Given a matrix A, the Gram matrix

G is the dot product of A with its transpose AT as follows,

Gij = (AAT)ij =
n∑

k=1

aik(a
T)kj, (5.3)

where i and j are the position of row (i.e., tuple) and that of column (i.e., attribute)

, respectively, and n is the number of tuples. From Equation 5.3, we observe that

(AAT)ij shows the symmetric property which (AAT)ij is equivalent to (AAT)ji.

Thus, the upper/lower matrix multiplication can reduce at least 1/3 operations of

n3 multiplications and that of n2(n+ 1) linear operations (additions/subtractions).

� Strassen multiplication: Strassen’s method (Strassen, 1969) can compute dot

product of square matrices. The method increases addition operations as compared

to the normal dot product computation. However, the method can reduce the num-

ber of expensive multiplication operations. For example, in the 2 × 2 data square

matrix P , the normal dot product of P and P T requires 4 additions and 8 multi-

plications. In contrast, Strassen’s method needs 18 additions and 7 multiplications.

The complexity of Strassen’s method is O(n2.807) (Strassen, 1969).

� Strassen-Coppersmith-Winogard multiplication: (Coppersmith and Wino-

grad, 1987) improve the Strassen multiplication by reducing the number of addi-

tion operations. Again, in the 2 × 2 data square matrix P , the dot product of P

and P T requires 15 additions in (Coppersmith and Winograd, 1987) as compared

to 18 additions in the Strassen’s method. Both of the two methods have the same

number of multiplications (i.e., 7 multiplications). Thus, the complexity of Strassen-

Coppersmith-Winogard multiplication is O(22.374).

� Strassen-Bodrato multiplication: (Bodrato, 2010) proposes a Strassen-like method

that can compute dot product of matrices. To reduce computation complexity in

the multiplication, (Bodrato, 2010) introduces a new sequence technique that uses

120

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Algorithm 1: Privacy-Preserving Support Vector Machine (PPSVM) on arbitrarily
partitioned data

Input: Matrix H =

d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
...

...
dn1 dn2 · · · dnn

 has n · n data points that are split

arbitrarily between Alice and Bob. Let Ha be some data points of H for
Alice and Hb be some data points of H for Bob where Ha +Hb = H.

Output: Alice gets c1 and Bob gets c2 where c1 + c2 = H ·HT = G (Gram matrix).
1 Alice generates a pair of keys (sk, pk) (i.e., (secret key, public key)).
2 Alice sends pk to Bob.
3 Alice and Bob generate zero matrices (n × n), Oa and Ob, held by Alice and Bob
respectively.

4 Alice adds Oa into Ha to get H ′
a = Ha +Oa.

5 for i = 1 to n do
6 for j = 1 to n do
7 Alice encrypts E[daij] of H

′
a which is sent to Bob.

8 end

9 end
10 Bob adds Ob into Hb to get H ′

b = Hb +Ob, and generates a random matrix R.
11 for i = 1 to n do
12 for j = 1 to n do
13 Bob encrypts Qij = E[daij]× E[dbij + rij] which is sent to Bob.

14 end

15 end

16 Bob also generates the second random matrix R′ to compute Hr =
E[R2]

(QT)R×QR×E[R′]
,

which is sent to Alice. Bob sets c2 = R′.
17 Alice decrypts D[Q] and D[Hr] to compute c1 = D[Q] · (D[Q])T +D[Hr] where

c1 + c2 = H ·HT = G.

the squaring and complex dot product. The method has the same computation com-

plexity of the Strassen-Coppersmith-Winogard multiplication. Thus, the complexity

of Strassen-Bodrato multiplication is O(22.374).

5.1.2 Privacy-Preserving Support Vector Machine (PPSVM)

We propose privacy-preserving Support Vector Machine (PPSVM) that can securely com-

pute the Gram matrix G that involves dot product of square matrices. PPSVM can apply

secure multiplication operator of DAG to compute G as depicted in Algorithm 1. We as-

sume two parties, Alice and Bob, in our PPSVM, that are semi-honest but curious - they

strictly follow the protocol and will not collude with each other.

121

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Let H be a n× n data square matrix as follows,

H =

d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
...

...

dn1 dn2 · · · dnn

, (5.4)

where ∀ni=1,j=1dij are data points in the dataset, j represents the attribute of the dataset,

and i represents the location of the tuple (i.e., the tuple consists of n data points). Thus,

H consists of n tuples with n attributes. In most cases, the total number of attributes

m is less than the total number of tuples n. To make a data square matrix, we set

∀ni=1,j=m+1dij = 0 in H. Let data points of H be split arbitrary between Alice and Bob.

Alice configures Paillier cryptosystem to generate a pair of keys (pk, sk), which sk is the

secret key and pk is the public key. Let E[.] and D[.] be the encryption and decryption

functions corresponding to pk and sk, respectively. The public key pk is sent to Bob.

They apply PPSVM to compute G of H step by step as follows.

Step 1. Let Ha be some data points of H for Alice and Hb be some data points of H for

Bob. Alice and Bob generate zero matrices (n × n), Oa and Ob, held by Alice and Bob

respectively. Alice adds Oa into Ha to get H ′
a. Alice encrypts E[H ′

a] which is sent to Bob.

E[H ′
a] =

E[da11] E[da12] · · · E[da1n]

E[da21] E[da22] · · · E[da2n]

...
...

...
...

E[dan1] E[dan2] · · · E[dann]

. (5.5)

Step 2. Bob generates a random matrix R and adds Ob into Hb to get H ′
b. Bob then

computes

Q = E[H ′
a +H ′

b +R] = E[H ′
a]×E[H ′

b +R] = ∀ni=1,j=1E[daij]× E[dbij + rij], (5.6)

where rij ∈ R. Bob sends Q to Alice. The dot product of Q
E[R] and (Q

E[R])
T is

Q

E[R]
·
(

Q

E[R]

)T

= E[Q]Q
T × E[R2]

(QT)R ×QR
, (5.7)

122

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

whereQ = E[H ′
a+H ′

b+R]. Bob selects a randommatrix R′ to computeHr =
E[R2]

(QT)R×QR×E[R′]

which R and R′ are known only by Bob. Bob can apply secure multiplication operator of

DAG to compute Hr which is sent to Alice. Bob sets c2 = R′.

Step 3. Alice decrypts D[Q] and D[Hr] to compute

c1 = D[Q] · (D[Q])T +D[Hr], (5.8)

where D[Q] = H ′
a + H ′

b + R and D[Hr] = R2 − QTR − QRT − R′. At the end of the

protocol, Alice learns only c1 and Bob learns only c2 where c1 + c2 = H ·HT is G (Gram

matrix).

The number of cryptographic operations can be reduced based on the observation.

For example, a tuple with m attributes in H where m < n, Alice and Bob only apply

the cryptographic computation on m attributes instead of n in H. We next analyze the

performance and the security of the PPSVM.

5.1.3 Security Analysis and Complexity Analysis

We use time complexity and communication complexity to measure the performance of

the privacy-preserving Support Vector Machine (PPSVM).

Time Complexity. We measure the time complexity of PPSVM by modular exponenti-

ations, since they consume most of the time. We assume n tuples with m attributes in H

that is equal to n ·m data points. In Step 1, Alice needs 2nm modular exponentiations to

encrypt E[H ′
a]. Bob needs 2nm modular exponentiations to compute Q and 8mn modular

exponentiations to compute Hr. Thus, Step 2 needs 10mn modular exponentiations. Step

3 needs 2 modular exponentiations to decrypt D[Q] and D[Hr]. Therefore, the number of

modular exponentiations needed by PPSVM is 12nm+ 2 bounded by O(nm).

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. We assume n tuples with m attributes

in H that is equal to n ·m data points. In Step 1, Alice transfers 2nmt2 bits to Bob where

t2 is a security parameter value in Paillier encryption (e.g., t2 =1024). Step 2 needs a

total of 4nmt2 bits. Therefore, the communication complexity is 6nmt2 bits bounded by

O(nmt2).

123

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Our proposed PPSVM is proven secure via simulation paradigm (refer to Section 2.6.1

for more details) in the following.

Theorem 5.1 The PPSVM protocol is simulatable.

Proof 5.1 We simulate the view of Alice and that of Bob. We first simulate the view of

Alice. Let Ha be the input of Alice, and c1 be the protocol output to her. The view of Alice

is V IEW ppsvm
1 = (Ha,V11 ,V21) where V11 is the set of messages she receives to compute Hr

in Step 2 and V21 is the set of messages she receives for Paillier decryption in Step 3. The

simulator Sppsvm
1 (Ha, c1) to simulate V IEW ppsvm

1 is created as follows. The simulations

of V11 and V21 are already given in Theorem 4.1 and (Cramer et al., 2001), respectively.

Thus, Sppsvm
1 can call the simulators in Theorem 4.1 and (Cramer et al., 2001) to simulate

V11 and V21 respectively.

The view of Bob is simulated in the following. Let Hb be the input of Bob, and c2 be the

protocol output to him. The view of Bob is V IEW ppsvm
2 = (Hb,V12 ,V22), where V12 is the

set of encrypted messages he receives from Alice in Step 2 and V22 is the set of encrypted

messages he receives to compute Hr in Step 2. The simulator Sppsvm
2 (Hb, c2) to simulate

V IEW ppsvm
2 is created as follows. Each message E[mb] ∈ V12 is a Paillier encryption. To

simulate it, Sppsvm
2 selects a random value rb and computes E[rb]. Because the Paillier

encryption is semantically secure, E[mb] and E[rb] are computationally indistinguishable.

The simulation of V22 is already given in Theorem 4.1. Thus, Sppsvm
2 can call the simulator

in Theorem 4.1 to simulate V22 .

We can extend the PPSVM to support more than two parties in computing the Gram

matrix G as depicted in Algorithm 2. We assume k parties that are semi-honest but

curious - they strictly follow the protocol and will not collude with each other. At the

end of the protocol, each party Pi gets the partial result ci of the G where i ∈ {1, · · · , k}

and
k∑

i=1
ci = H ·HT = G. The extended PPSVM works in a similar way as in the PPSVM

(Algorithm 1). Thus, we omit the details here.

5.1.4 Experiment and Discussion

In this section, we evaluate the performance of our proposed privacy-preserving Support

Vector Machine (PPSVM).

124

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Dataset. We use two datasets for PPSVM. The first dataset is Tic-Tac-Toe 1 that contains

958 tuples with 27 predictor variables. Thus, the dataset contains 25866 (i.e., 968 × 27)

data points. In this experiment, we evaluate Tic-Tac-Toe varying data points between 540

and 13500. The second is Car 2 that contains 3456 tuples with 6 predictor variables which

is equivalent to 20736 data points. As our PPSVM can support only numerical predictors,

we need to transform data of the categorical predictors of the Car into numerical values.

Taking one categorical predictor (i.e., lug boot) of the Car with values, “small”, “med”,

and “big”, we can convert the values into numerical values as follows: “small” → “01”,

“med” → “10”, and “big” → “11”.

We assume that Alice and Bob are semi-honest but curious in this experiment. All

data points of the two datasets are split arbitrarily between Alice and Bob. Alice and

Bob apply PPSVM to compute the Gram matrix G of the Support Vector Machine. At

the end of PPSVM, Alice learns the partial result c1 of G and nothing from Bob, and Bob

learns the partial result c2 of G and nothing from Alice, where c1 + c2 = G.

Implementation. We implemented the solution by Java. All experiments were run on

a machine Intel CPU 2.7GHz Core 7 processor with 4G memory running on Windows

7. We downloaded SMO package1, and configured it to 1024-bit of Paillier homomorphic

cryptosystem (Paillier, 1999). We set λ = 40 for secure multiplication of DAG model in

PPSVM.

0 5000 10000 15000

10
2

10
4

10
6

10
8

10
10

PPSVM over Tic-Tac-Toe

R
u

n
 T

im
e,

 l
o
g
 (

s)

Number of Data Points

Upper/lower Multiplication
Strassen Method
Strassen-Coppersmith-Winogard
Strassen-Bodrato

(a)

1 1.5 2 2.5
x 10

4

10
2

10
4

10
6

10
8

10
10

10
12

PPSVM over Car

R
u

n
 T

im
e,

 l
o
g
 (

s)

Number of Data Points

Upper/lower Multiplication
Strassen Method
Strassen-Coppersmith-Winogard
Strassen-Bodrato

(b)

Figure 5.2: Performance of the PPSVM

1http://www.datalab.uci.edu/people/xge/svm/
2http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

125

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

The Evaluation. In Figures 5.2(a) and 5.2(b), running time increases as the number

of data points increases in both Tic-Tac-Toe and Car datasets. The upper-lower matrix

multiplication method runs faster than other three methods in both datasets. In 13500

data points of Tic-Tac-Toe , average run time per data point of the upper-lower matrix

multiplication method is 0.7366 sec. In 20736 data points of Car , average run time per

data point of the upper-lower matrix multiplication method is 9.5317 sec. The running

times of the other three methods in both datasets are very close to each other. Our

proposed PPSVM gets the gram matrix of each dataset that is identical to G (Gram

matrix) computed by support vector machine without protecting data of Alice and that

of Bob. The experiment results show that PPSVM integrated with DAG model is efficient

and effective to securely compute G of which data is split arbitrarily between Alice and

Bob.

5.2 Kernel Regression

A class of regression techniques (Friedman et al., 2001) can estimate the regression function

f(x) over the domain R
P by applying a simple model separately at each query point x0.

The model is fitted by observations close to the target point x0. As a result, the estimated

function f̂(x) is smooth in R
P . To achieve the localization, a weighting function or kernel

Kh(x0, xi) assigning a weight to xi based on the distance between x0 and xi can be

applied. The width of the kernel, h, is the width of the neighborhood. Thus, kernel

regression (i.e., kernel smoother) can apply kernel-based techniques for density estimation

and classification.

We discuss the kernel regression algorithm in Section 5.2.1. In Section 5.2.2, we propose

privacy-preserving kernel regression (PPKR) by DAG to securely compute the estimated

function f̂(x). We discuss the security analysis and the complexity analysis of PPKR in

Section 5.2.3. Lastly, we evaluate the performance of PPKR in Section 5.2.4.

126

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Algorithm 2: Privacy-Preserving Multi-party Support Vector Machine (PPSVM)
on arbitrarily partitioned data

Input: Matrix H =

d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
...

...
dn1 dn2 · · · dnn

 has n · n data points that are split

arbitrarily among k parties. Let Hi be some data points of H for Party Pi

where i ∈ {1, · · · , k} and
k∑

i=1
Hi = H.

Output: Party Pi gets ci where i ∈ {1, · · · , k} and
k∑

i=1
ci = H ·HT = G (Gram

matrix).
1 Party P1 generates a pair of keys (sk, pk) (i.e., (secret key, public key)).
2 P1 sends pk to other parties Pj where j ∈ {2, · · · , k}.
3 Pi generates zero matrices (n× n), Oi, where i ∈ {1, · · · , k}
4 P1 adds O1 into H1 to get H ′

1 = H1 +O1.
5 for i = 1 to n do
6 for j = 1 to n do

7 P1 encrypts E[dP1
ij] of H

′
1 which is sent to P2.

8 end

9 end
10 Let U be an encrypted zero matrix.
11 for m = 2 to k-1 do
12 Pm adds Om into Hm to get H ′

m = Hm +Om, and generates a random matrix
Rm.

13 for i = 1 to n do
14 for j = 1 to n do

15 Pm encrypts Qij = E[d
Pm−1

ij]× E[dPm

ij] and U = U
E[Rm] , which are sent to

Pm+1.
16 end

17 end
18 Pm sets cm = Rm.

19 end
20 Pk adds Ok into Hk to get H ′

k = Hk +Ok, and generates a random matrix Rk.
21 for i = 1 to n do
22 for j = 1 to n do

23 Pk encrypts Qij = E[d
Pk−1

ij]× E[dPk

ij + rkij] which is sent to P1.

24 end

25 end
26 Pk also generates the second random matrix R′

k to compute

Hk =
E[R2

k]×U

(QT)Rk×QRk×E[R′

k]
, which is sent to P1. Pk sets ck = R′

k.

27 P1 decrypts D[Q] and D[Hk] to compute c1 = D[Q] · (D[Q])T +D[Hk] where
k∑

i=1
ci = H ·HT = G.

5.2.1 Algorithm

Given a set of weights ∀ni=1Wi(x) for each x as follows,

127

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

f̂(x) =

n∑

i=1

Wi(x)yi. (5.9)

The weight function Wi(x) is a density function that has a scale parameter to adjust the

form and the size of the weights near to x. Given a scale parameter h, the weight sequence

is

Whi(x) =
Kh (x, xi)
n∑

i=1
Kh (x, xi)

, (5.10)

where

Kh (x, xi) = D

(|x− x0|
h

)
, (5.11)

and
n∑

i=1
Whi(xi) = 1. For a simplicity, we write Kh as K in the following. For any x, the

kernel regression can be plugging Equation 5.10 into Equation 5.9,

f̂(x) =
n∑

i=1

Whi(x)Yi =

n∑
i=1

K(x, xi)yi

n∑
i=1

K(x, xi)

. (5.12)

In kernel regression, various Nadaraya-Watson kernel functions such as Gaussian kernel

and Epanechnikov kernel, can be used as the kernel function K. The Gaussian kernel is

defined as follows:

K (xi, x) = e−D(xi,x)/2h
2
, (5.13)

where D (.) is the squared Euclidean distance, and h > 0 is the bandwidth controlling the

smoothing. The Epanechnikov kernel is defined as follows:

K(xi, x) =

3
4(1−

D(xi,x)
2h2), if D(xi,x)

2h2 < 1

0, otherwise.
(5.14)

The scale (smoothing) parameter h is the width of the local neighborhood. In practice,

larger h can lead to lower variance but higher bias. In the Gaussian kernel, h is the

128

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Algorithm 3: Privacy-Preserving Kernel Regression (PPSVM) on horizontally par-
titioned data
Input: The training dataset has p tuples that each tuple has m predictors (i.e.,

x′1, · · · , x′m) and 1 response value, y′. The p tuples are split horizontally
between Alice and Bob. As a result, Alice has n tuples and Bob has l
tuples, where n+ l = p. Another dataset has q tuples (for testing known by
Alice and Bob) that each tuple has m predictors (i.e., x1, · · · , xm) without
a response value.

Output: Alice gets ci1 and Bob gets ci2 where i ∈ {1, · · · , q}, ∀qi=1c
i
1 + ci2 ≈ ŷi, and

ŷi = f̂(x) (Equation 5.12).
1 for t = 1 to q do
2 Alice sets a1 = 0 and a2 = 0, and Bob sets b1 = 0 and b2 = 0.
3 for j = 1 to n do

4 Alice computes Sa =
m∑
i=1

K((xi)t, (x
′
i)j), and then a2 = a2 + Sa and

a1 = a1 + Sa · (y′)j .
5 end
6 for g = 1 to l do

7 Bob computes Sb =
m∑
i=1

K((xi)t, (x
′
i)g), and then b2 = b2 + Sb and

b1 = b1 + Sb · (y′)g.
8 end

9 Alice and Bob jointly compute a1+b1
a2+b2

≈ ct1 + ct2, held by Alice and Bob

respectively, where ct1 + ct2 ≈ ŷt.
10 end

standard deviation. In contrast, h is measured by the radius of the support region in the

Epanechnikov kernel. Moreover, the Epanechnikov kernel can provide a compact support

in the nearest-neighbor window size.

5.2.2 Privacy-Preserving Kernel Regression (PPKR)

We propose privacy-preserving Kernel Regression (PPKR) that can securely compute the

estimated function f̂(x) (Equation 5.9). PPKR can apply secure division operator of DAG

to compute f̂(x) as depicted in Algorithm 3. We assume two parties, Alice and Bob, in

our PPKR, that are semi-honest but curious - they strictly follow the protocol and will

not collude with each other.

Let p be tuples in the training dataset. The p tuples are split horizontally between

Alice and Bob. Alice and Bob have n and l tuples respectively, that each tuple has m

predictors (x′1, · · · , x′m) with a response value y′ where n + l = p. Another dataset (i.e.,

testing data) comes with q tuples that each tuple has m predictors (x1, · · · , xm) without

a response value. The q tuples are known by both Alice and Bob.

129

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Alice and Bob would like to predict ∀qi=1ŷi values of the testing dataset using the

estimated function f̂(x). Let K(.) be the kernel function. Alice and Bob first configure a

(2, 2)-threshold Paillier cryptosytem with the public and private key pair (pk, sk). Suppose

that skA and skB are the secret values (of Alice and Bob), which combined can recover

sk. Let E[.] and D[.] be the encryption and decryption functions corresponding to pk and

(skA, skB), respectively. Alice and Bob apply PPKR to securely compute f̂(x) step by

step as follows.

Step 1. Alice locally computes a1 and a2 using her n training tuples. In each testing

tuple of the (xi, · · · , xm) predictors, a1 and a2 are computed as

a1 =

n∑

j=1

m∑

i=1

(y′)j ·K((xi)t, (x
′
i)j), a2 =

n∑

j=1

m∑

i=1

K((xi)t, (x
′
i)j),

where (y′)j is the response value of the j-th tuple, (x′i)j is the i-th predictor in j-th tuple,

and (xi)t is the i-th predictor in t-th tuple of the q tuples. of the n tuples. Bob can locally

compute b1 and b2 using his l training dataset. He computes b1 (and b2) in such a similar

way of a1 (and of that a2) of Alice as follows.

b1 =
l∑

g=1

m∑

i=1

(y′)g ·K((xi)t, (x
′
i)g), b2 =

l∑

g=1

m∑

i=1

K((xi)t, (x
′
i)g),

where (y′)g is the response value of the g-th tuple (x′i)g is the i-th predictor in g-th tuple

of the l tuples, and (xi)t is the i-th predictor in t-th tuple of the q tuples.

Step 2. Alice and Bob jointly to compute f̂(x) which is equal to a1+b1
a2+b2

. They apply

secure division of DAG model to compute a1+b1
a2+b2

.

Step 3. Alice gets ct1 and Bob gets ct2 where ct1 + ct2 ≈ a1+b1
a2+b2

= ŷt (Equation 5.12) is the

predicted value of t-th tuple in the testing dataset and t ∈ {1, · · · , q}.

Alice and Bob can repeat above steps to compute a predicted value of each testing

tuple. We discuss the security analysis and the complexity analysis of PPKR in the next

section.

5.2.3 Security Analysis and Complexity Analysis

We use time complexity and communication complexity to measure the performance of

privacy-preserving kernel regression (PPKR).

130

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Time Complexity. We measure the time complexity of PPKR by modular exponentia-

tions, since they consume most of the time. In Step 1, Alice and Bob locally compute a1, a2

and b1, b2 respectively, without involving any modular exponentiation. In Step 2, Alice

and Bob need to call q times of secure divisions as the testing dataset contains q tuples.

Thus, Step 2 takes q(4ω + 19 + 19z) modular exponentiations (refer to the time complex-

ity of secure division in Section 4.1.5). Therefore, the number of modular exponentiations

needed by PPKR is q(4ω + 19 + 19z) bounded by O(q(ω + z)).

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. In Step 1, Alice and Bob locally

compute a1, a2 and b1, b2 respectively. In Step 2, Alice and Bob need to call q times of

secure divisions as the testing dataset contains q tuples. Thus, Step 2 needs q(t2(24z+26+

8w)+6(χ+z+1)t1z) bits (refer to the communication complexity of secure division in Sec-

tion 4.1.5). Therefore, the communication complexity is q(t2(24z+26+8w)+6(χ+z+1)t1z)

bits bounded by O(zq(t2 + t1χ) + t2qω).

Our proposed PPKR is proven secure via simulation paradigm (refer to Section 2.6.1

for more details) in the following.

Theorem 5.2 The PPKR protocol is simulatable.

Proof 5.2 We simulate the view of Alice and that of Bob. We first simulate the view of

Alice. Let (a1, a2) be the inputs of Alice, and c1 be the protocol output to her. The view of

Alice is V IEW ppkr
1 = ((a1, a2),V1) where V1 is the set of messages she receives to compute

f̂(x) = a1+b1
a2+b2

in Step 2. The simulator Sppkr
1 ((a1, a2), c1) to simulate V IEW ppkr

1 is created

as follows. The simulation of V1 is already given in Theorem 4.3. Thus, Sppkr
1 can call

the simulator in Theorem 4.3 to simulate V1.

The view of Bob is simulated in the following. Let (b1, b2) be the inputs of Bob, and

c2 be the protocol output to him. The view of Bob is V IEW ppkr
2 = ((b1, b2),V2), where

V2 is the set of messages he receives from Alice in Step 2 to compute f̂(x) = a1+b1
a2+b2

. The

simulator Sppkr
2 ((b1, b2), c2) to simulate V IEW ppkr

2 is created as follows. The simulation

of V2 is already given in Theorem 4.3. Thus, Sppkr
2 can call the simulator in Theorem 4.3

to simulate V2.

131

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

5.2.4 Experiment and Discussion

In this section, we evaluate the performance of our proposed privacy-preserving kernel

regression (PPKR).

Dataset. We use two datasets for PPKR. The first is (Red) Wine 3 to predict the quality

of red wine. It contains 1,598 tuples. The second is (Consumption) Power 4 to predict

household power consumption. After removing tuples with missing values, it contains

2,049,280 tuples. For each dataset, we randomly select 1/3 tuples as the training data for

Alice, a second 1/3 tuples as the training data for Bob, and randomly select 500 tuples

from the remaining 1/3 tuples as testing data. We scale the values of each dimension to

[0.0, 1.0].

Table 5.1: Experiment Parameters for PPKR

Operator κ γ β τ w z λ

/ 950 15 12 28 20 -
40

bit-length - - - - - 45

Implementation. We implemented the solutions by Java. All experiments were run

on a machine of IntelR© Xeon R© 2.3GHz CPU (16 cores) with 128.0GB RAM running

on Windows Server 2012. We downloaded the threshold Paillier Cryptosystem 5, and

configured it to 1024-bit. We use CMP of the fast garbled circuit 6 that is one of the most

efficient implementations for secure comparison. Table 5.1 gives the values of the security

parameters we use.

In PPKR, we assume that Alice and Bob would like to predict the ∀qt=1ŷt values for

the testing data, but are not willing to disclose their training data for privacy protection.

The secure division of DAG model (Section 4.1.5) can be used to predict 7 the f̂(x) = ŷt

value in Equation 5.12. PPKR is detailed in Section 5.2.2. In the experiments, we use two

Nadaraya-Watson kernel functions. The first is Gaussian kernel in Equation 5.13. The

second is Epanechnikov kernel in Equation 5.14.

3http://archive.ics.uci.edu/ml/datasets/Wine+Quality
4http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
5http://www.utdallas.edu/∼mxk093120/paillier/
6https://github.com/yhuang912/FastGC
7Alice and Bob release the protocol output c1 and c2.

132

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

We use Mean Squared Error (MSE) to measure the difference between the real y and

the predicted value ŷ,

MSE(ŷ) =
1

q

q∑

i=1

(ŷi − yi)
2, (5.15)

where q is the number of testing tuples.

Our secure operators proposed in Section 4.1 have security parameters. We assume

that values (i.e., a1, a2, b1, b2) are in the range of [2−15, 215] (i.e., γ = 15 in Lemma 4.2).

If they are beyond the range, we truncate them to their nearest bounds. Table 5.1 gives

the parameters and their values used in PPKR.

The Evaluation. We first study the kernel regression by Gaussian kernel (Equation 5.13)

on the Wine and Power datasets, which are configured at the beginning of Section 5.2.4.

We fix the number of predictor variables to 6, and vary the bandwidth h. Figure 5.3(a)

reports the MSE. Wine-P and Power-P are the results of private setting, where our DAG

model is applied on datasets Wine and Power, respectively. Wine-NP and Power-NP are

the results of non-private setting, where Alice and Bob disclose their data directly. The

results of private and non-private setting are very close. Even in the worst case of Wine-P

and Wine-NP at h = 0.1, the difference is small – the MSE of Wine-NP is 0.0247 and

that of Wine-P 0.0249. Figure 5.3(b) shows the running time. As the h value increases,

the running time does not change obviously. On the smaller Wine dataset, the running

time for one prediction of non-private setting is 0.008 sec, and that of private setting is

8.7647 sec. On the much bigger Power dataset, the running time for one prediction of

non-private setting is 5.9347 sec, and that of private setting is 12.3480 sec. The prediction

time is higher for bigger dataset. This is as expected, since kernel regression requires to

compute the kernel function on each tuple in the training dataset.

We then fix the bandwidth to 0.1 and study the effect of number of predictor variables.

Figure 5.3(c) is the results of MSE as the number of predictor variables increases from 1

to 6. Clearly, the third predictor variable is very useful for the prediction of the Power

dataset; the MSE decreases significantly when the number of predictor variables increases

from 2 to 3. Again, the MSE of private setting and that of non-private setting are very

close. Figure 5.3(d) gives the running time. As the number of predictor variables increases,

the kernel evaluation takes more time. Thus, running time for all the cases increases.

133

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

10-4

10-3

10-2

10-1

100

0.1 0.5 5.0

M
SE

 (l
og

)

Gaussian Kernel Bandwidth

Wine-NP
Wine-P
Power-NP
Power-P

(a)

100
101
102
103
104
105
106
107

0.1 0.5 5.0

R
un

 T
im

e,
 lo

g
(s

ec
)

Gaussian Kernel Bandwidth

Wine-NP
Wine-P
Power-NP
Power-P

(b)

0 2 4 6
10

-4

10
-3

10
-2

10
-1

M
S

E
 (

lo
g
)

No. of Features on Gaussian Kernel

Wine-NP

Wine-P

Power-NP

Power-P

(c)

0 2 4 6
10

0

10
1

10
2

10
3

10
4

R
u

n
 T

im
e,

 l
o
g
 (

se
c)

No. of Features on Gaussian Kernel

Wine-NP

Wine-P

Power-NP

Power-P

(d)

10-4

10-3

10-2

10-1

100

0.1 0.5 5.0

M
SE

 (l
og

)

Epanechnikov Kernel Bandwidth

Wine-NP
Wine-P
Power-NP
Power-P

(e)

0 2 4 6
10

-4

10
-3

10
-2

10
-1

M
S

E
 (

lo
g
)

No. of Features on Epanechnikov Kernel

Wine-NP

Wine-P

Power-NP

Power-P

(f)

Figure 5.3: Kernel Regression with/without Privacy Preservation

We now evaluate the kernel regression using Epanechikov kernel (Equation 5.14). Fig-

ure 5.3(e) gives the experimental results of varying bandwidth. Comparing Figure 5.3(e)

with Figure 5.3(a), we can see that the effect of bandwidth on different kernels is different

134

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

– on Gaussian kernel h = 0.1 gives the best results, while on Epanechikov kernel h = 0.5

is preferred. Figure 5.3(f) varies the number of predictor variables. The running time of

Epanechikov kernel is similar to that of Gaussian kernel. We omit its report here.

5.3 Näıve Bayes

A Bayesian classifier (Mitchell, 1997) is a statistical classifier based on Bayes theorem. It

can predict probabilities of class members; e.g., given a sample of a dataset, the Bayesian

classifier can calculate the probability of the sample that belongs to a particular class. To

reduce the learning complexity in Bayesian classifier, Näıve Bayes assumes all predictors

(i.e., features) are conditionally independent. (Domingos and Pazzani, 1996) show that

the Näıve Bayesian learning is effective in comparable to performance with other classifiers

such as neural network and decision tree.

In the following, the Näıve Bayes algorithm is discussed in Section 5.3.1. In Section

5.3.2, we propose privacy-preserving Näıve Bayes (PPNB) by DAG to securely build a

model and then evaluate the model. We discuss the security analysis and the complexity

analysis of PPNB in Section 5.3.3. Lastly, we evaluate the performance of PPNB in Section

5.3.4.

5.3.1 Algorithm

In this section, we briefly discuss the Näıve Bayes classifier (Mitchell, 1997). LetA1, A2, · · · , An

be predictors that are conditionally independent with each other, given C. Thus, based

on Bayes theorem, we can write it as

P (A|C) =P (A1, A2, · · · , An|C)

=P (A1|C)P (A2|C) · · ·P (An|C) =

n∏

i=1

P (Ai|C). (5.16)

Next, we assume that (in general) C is a discrete variable and A1, A2, · · · , An are nominal

or continuous predictor variables. Let m1,m2, · · · ,mk be values of C. Given a new

instance A, the Näıve Bayes classifier can compute the probability C taking mi ∈ 1, · · · , k

135

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

as follows,

P (C = mi|A1, A2, · · · , An) =
P (C = mi)P (A1, A2, · · · , An|C = mi)∑k
j=1 P (C = mj)P (A1, A2, · · · , An|C = mj)

, (5.17)

where the sum is added by each probability of all possible values of C. If A1, A2, · · · , An

are conditional independent given C, we can substitute Equation 5.16 into 5.17 as

P (C = mi|A1, A2, · · · , An) =

P (C = mi)
n∏

i=1
P (Ai|C = mi)

∑k
j=1 P (C = mj)

n∏
i=1

P (Ai|C = mj)

. (5.18)

Thus, the probability C that takes any value can be computed as the observed predictor

values of a new instance and the distributions P (C) and P (Ai|C) estimated from training

data are given. Most probable value of C can find by

C ← argmax
mi

P (C = mi)
n∏

i=1
P (Ai|C = mi)

∑k
j=1 P (C = mj)

n∏
i=1

P (Ai|C = mj)

, (5.19)

which can simplify to

C ← argmax
mi

P (C = mi)

n∏

i=1

P (Ai|C = mi). (5.20)

More details of Näıve Bayes can be found in (Mitchell, 1997).

5.3.2 Privacy-Preserving Näıve Bayes (PPNB)

We propose privacy-preserving Näıve Bayes (PPNB) that can securely build a classifier

model and then use it to test instances (i.e., tuples). PPNB can apply secure operators of

DAG to perform tasks above. We assume two parties, Alice and Bob, in our PPNB, that

are semi-honest but curious - they strictly follow the protocol and will not collude with

each other.

In the PPNB, a training dataset is used to build the model. The model can be used

to evaluate tuples of a testing dataset (i.e., testing data). Both the training dataset and

the testing dataset contain the same number of predictors. In the two-party setting,

the training dataset is split horizontally between Alice and Bob. Thus, PPNB needs to

136

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

use tuples of Alice and that of Bob in constructing the model without revealing their

tuples to each other. Alice (or Bob) can then use the model to evaluate the tuples of the

testing dataset. We next discuss two tasks of the PPNB: building the classifier model and

evaluating the tuples of the testing dataset.

Building the Classifier Model. The classifier model is built from nominal and con-

tinuous predictors of the training dataset split between Alice and Bob. In the end of

the construction, the model is split into the two portions: the portion of Alice and the

portion of Bob. In Näıve Bayes, the attributes are conditionally independent with each

other given the response value (i.e., target value). Let (x1, x2, · · · , xm, y) be data format

of the training dataset where xi’s for i = 1, 2, · · · ,m are predictor variables and y is the

response variable. There are two types of the predictor in PPNB: the nominal predictor

and the continuous predictor.

Nominal Predictor. We first discuss to compute the probability of a value vji of the

nominal predictor xj with a response value yk step by step as follows. Alice and Bob

first configure a (2, 2)-threshold Paillier cryptosytem with the public and private key pair

(pk, sk). Suppose that skA and skB are the secret values (of Alice and Bob), which

combined can recover sk. Let E[.] and D[.] be the encryption and decryption functions

corresponding to pk and (skA, skB), respectively. Let r and l be the number of response

values and the number of nominal predictors, respectively. The training dataset contains

p tuples split between Alice and Bob, such that Alice has g tuples and Bob has h tuples

where g + h = p.

Step 1. Alice locally computes NA
yk which is the number of records that have response

value yk in g tuples of Alice. Bob locally computes NB
yk

which is the number of records

that have response value yk in h tuples of Alice.

Step 2. Alice locally computes NA
xj=vji,yk

which is the number of records of the nominal

predictor xj that has the value vji with the response value yk of the g tuples. Bob also

locally computes NB
xj=vji,yk

which is the number of records of the nominal predictor xj

that has the value vji with the response value yk of the h tuples. To avoid 0 (in both

cases, NA
xj=vji,yk

and NB
xj=vji,yk

) in probability, Alice and Bob can apply the Laplace

smoothing (Mitchell, 1997) to the value vji of the predictor xj.

137

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Algorithm 4: Nominal Predictors in PPNB

Input: Let r and l be the number of response values and the number of nonimal
predictors respectively, in the training dataset. For simplicity, we assume
that each nominal predictor has q values. The training dataset contains p
tuples split horizontally between Alice and Bob, such that Alice has g
tuples and Bob has h tuples where g + h = p.

Output: Alice gets c
xj=vji,yk
1 and Bob gets c

xj=vji,yk
2 where

∀rk=1∀lj=1∀
q
i=1

(
c
xj=vji,yk
1 + c

xj=vji,yk
2

)
= Pr (xj = vji|yk).

1 for k = 1 to r do
2 Alice computes NA

yk
which is the number of records that have response value yk

in g tuples of Alice.
3 Bob computes NB

yk
which is the number of records that have response value yk

in h tuples of Bob.
4 for j = 1 to l do
5 for i = 1 to q do
6 Alice computes NA

xj=vji,yk
which is the number of records of the nominal

predictor xj that has the value vji with the response value yk in g tuples
of Alice.

7 Bob computes NB
xj=vji,yk

which is the number of records of the nominal
predictor xj that has the value vji with the response value yk in h tuples
of Bob.

8 Alice and Bob jointly compute
NA

xj=vji,yk
+NB

xj=vji,yk

NA
yk

+NB
yk

using secure division

of DAG model. The outputs are c
xj=vji,yk
1 and c

xj=vji,yk
2 , held by Alice

and Bob respectively, where c
xj=vji,yk
1 + c

xj=vji,yk
2 = Pr (xj = vji|yk).

9 end

10 end

11 end

Step 3. Alice and Bob jointly compute
NA

xj=vji,yk
+NB

xj=vji,yk

NA
yk

+NB
yk

using secure division of DAG

model. The outputs are c
xj=vji,yk
1 and c

xj=vji,yk
2 , held by Alice and Bob respectively, where

c
xj=vji,yk
1 + c

xj=vji,yk
2 = Pr (xj = vji|yk).

Alice and Bob can repeat above steps (1-3) to securely compute the probabilities of

the nominal predictors. The probability calculation of nominal predictors is detailed in

Algorithm 4.

Continuous Predictor. In the model construction, Alice and Bob need to compute only

the mean u and the standard deviation σ of the continuous predictor xj with the response

value yk. Again, we can apply the same setting of the (2,2)-threshold Paillier cryptosystem

of the probability calculation of the nominal predictors. Let r and ℓ be the number of

response values and the number of continuous predictors, respectively.The training dataset

contains p tuples split between Alice and Bob, such that Alice has g tuples and Bob has

138

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

h tuples where g + h = p. Alice and Bob can compute u and σ of the predictor xj with

the response value yk step by step as follows,

Step 1. Alice locally computes NA
yk which is the number of records that have response

value yk in g tuples of Alice. Bob locally computes NB
yk

which is the number of records

that have response value yk in h tuples of Bob.

Step 2. Alice locally computes SA
xj ,yk

which is the summation of the values of the contin-

uous predictor xj with the response value yk of g tuples. Bob also computes SB
xj ,yk

which

is the summation of the values of the continuous predictor xj with the response value yk

of h tuples.

Step 3. Alice and Bob jointly compute
SA
xj,yk

+SB
xj,yk

NA
yk

+NB
yk

, using secure division of DAG model.

The outputs are µ
xj ,yk
1 +µ

xj,yk
2 , held by Alice and Bob, respectively, where µ

xj ,yk
1 +µ

xj ,yk
2 =

µxj ,yk is the mean of the predictor xj with the response value yk.

Step 4. Alice and Bob can apply secure multiplication to jointly compute

(µ
xj ,yk
1 + µ

xj ,yk
2)2 = (µ

xj ,yk
1)2 + 2(µ

xj ,yk
1)(µ

xj ,yk
2) + (µ

xj ,yk
2)2

= µ
xj ,y

′

k
1 + µ

xj ,y
′

k
2 , (5.21)

where µ
xj ,y′k
1 and µ

xj ,y′k
2 are held by Alice and Bob respectively. Alice then uses secure

multiplication to compute
∑

v∈V A
yk

(v · xj − µxj ,yk)2 with the outputs of of Equation 5.21.

where v is a record in the subset and v · xj is the value v of predictor xj in g tuples.

Likewise Bob uses secure multiplication to computes
∑

v∈V B
yk

(v · xj − µxj ,yk)2 where v is

a record in the subset and v · xj is the value v of predictor xj in h tuples. Alice and Bob

next apply secure division to jointly compute

(σxj ,yk)2 =

(∑
v∈V A

yk

(v · xj − µxj ,yk)2 +
∑

v∈V B
yk

(v · xj − µxj ,yk)2

NA
yk

+NB
yk
− 1

)

= (σ
xj ,yk
1)s + (σ

xj ,yk
2)s, (5.22)

where (σ
xj ,yk
1)s and (σ

xj ,yk
2)s, held by Alice and Bob respectively, are the square deviation

(σxj ,yk)2 of the predictor xj with the response value yk. To get the standard deviation σ,

139

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Algorithm 5: Continuous Predictors in PPNB

Input: Let r and ℓ be the number of response values and the number of continuous
predictors respectively, in the training dataset. The training dataset
contains p tuples split horizontally between Alice and Bob, such that Alice
has g tuples and Bob has h tuples where g + h = p.

Output: Alice gets µ
xj ,yk
1 , σ

xj ,yk
1 and Bob gets µ

xj ,yk
2 , σ

xj ,yk
2 where

∀rk=1∀lj=1

(
µ
xj ,yk
1 + µ

xj ,yk
2

)
= µxj ,yk and

∀rk=1∀lj=1

(
σ
xj ,yk
1 + σ

xj ,yk
2

)
= σxj ,yk .

1 for k = 1 to r do
2 Alice computes NA

yk
which is the number of records that have response value yk

in g tuples of Alice.
3 Bob computes NB

yk
which is the number of records that have response value yk

in h tuples of Bob.
4 for j = 1 to ℓ do
5 Alice computes SA

xj ,yk
which is the summation of the values of the

continuous predictor xj with the response value yk in g tuples of Alice.
6 Bob computes SB

xj ,yk
which is the summation of the values of the continuous

predictor xj with the response value yk in h tuples of Bob.

7 Alice and Bob jointly compute
SA
xj,yk

+SB
xj,yk

NA
yk

+NB
yk

using secure division of DAG

model. The outputs are µ
xj ,yk
1 + µ

xj ,yk
2 , held by Alice and Bob respectively,

where µ
xj ,yk
1 + µ

xj ,yk
2 = µxj ,yk is the mean of the continuous predictor xj

with the response value yk.

8 Alice and Bob jointly compute

(∑
v∈VA

yk

(v·xj−µxj,yk)2+
∑

v∈V B
yk

(v·xj−µxj ,yk)2

NA
yk

+NB
yk

−1

) 1
2

using secure multiplication, secure division and also secure power of DAG
model, where v is a record in the subset and v · xj is the value v of the
predictor xj. The outputs are σ

xj ,yk
1 + σ

xj ,yk
2 , held by Alice and Bob

respectively, where σ
xj ,yk
1 + σ

xj ,yk
2 = σxj ,yk is the standard deviation of the

continuous predictor xj with the response value yk.

9 end

10 end

Alice and Bob can apply secure power of DAG model,

(σxj ,yk) = ((σxj ,yk)2)
1
2 = ((σ

xj ,yk
1)s + (σ

xj ,yk
2)s)

1
2

= σ
xj ,yk
1 + σ

xj ,yk
2 , (5.23)

where σ
xj ,yk
1 and σ

xj ,yk
2 , held by Alice and Bob respectively, are the standard deviation

σxj ,yk of the predictor xj with the response value yk. The mean of the attribute xj with

the response value yk is µ
xj ,yk
1 and µ

xj ,yk
2 , held by Alice and Bob respectively.

Alice and Bob can repeat above steps (1-4) to compute the means and the standard

deviations of the continuous predictors. The mean and the standard deviation calculations

of continuous predictors are detailed in Algorithm 5.

140

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Algorithm 6: Testing Tuples in PPNB

Input: Let r and m be the number of response values and the number of
predictors , respectively. The testing dataset contains d tuples.

Output: Alice gets ∀dj=1MAPA
j1 and Bob gets ∀dj=1MAPB

j2 where

MAPA
j1 +MAPB

j2 = MAPj is the maximum probability of the j-th tuple
in the testing dataset.

1 for j = 1 to d do
2 for k = 1 to r do
3 Alice and Bob jointly compute probabilities of the continuous predictors

using Equation 5.26.

4 Alice and Bob jointly compute ŷk = Pr (yk)
m∏
p=1

Pr (xp|yk) = ŷAk1 + ŷBk2, held

by Alice and Bob respectively, using secure multiplication of DAG model.
5 end
6 Alice and Bob apply secure max location of DAG model to get

max(ŷA11 + ŷB12, · · · , ŷAr1 + ŷBr2) = ŷAi1 + ŷBi2, held by Alice and Bob respectively,
where i ∈ {1, · · · , r}. Alice sets MAPA

j1 = ŷAi1 and Bob sets MAPB
j2 = ŷBi2.

7 end

The model also contains probabilities of the response values of the training dataset.

Alice and Bob jointly compute the probability of the response value yk in the following.

Let g be tuples of Alice and h be tuples of Bob, where g + h is the total tuples in the

training dataset. Alice first locally computes NA
yk

which is the number of the response

value yk in g tuples of Alice. Bob also locally computes NB
yk

which is the number of the

response value yk in h tuples of Bob. Alice and Bob then apply secure division to compute

Pr (yk) =
NA

yk
+NB

yk

g + h
= Pr (yk)

A + Pr (yk)
B , (5.24)

where Pr (yk)
A and Pr (yk)

B, held by Alice and Bob respectively, are the probability of the

response value yk. Alice and Bob can repeat above steps to compute the probabilities of

other response values. At the end of model construction, Alice and Bob each also contain

the partial results of the probabilities of the nominal predictors and that of the means and

the standard deviations of the continuous predictors.

Evaluating the Testing Tuples. Alice (Bob) can predict response values for tuples in

the testing dataset. Again, let (x1, x2, · · · , xm) be data format of the testing dataset and

ŷ be the response value, where xi’s for i = 1, 2, · · · ,m are predictor variables. We can

141

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

rewrite Equation 5.20 to predict ŷ of the testing tuple as

ŷ = argmax
yk∈Ω

Pr (yk)

m∏

j=1

Pr (xj|yk)

 , (5.25)

where Ω is the domain of response variable. Alice and Bob can retrieve the probability

Pr (yk) of the response value yk and the probability Pr (xj |yk) of the nominal predictor

xj with the response value yk that all probabilities have been calculated in the model

construction. However, Alice and Bob still need to compute the conditional probabilities

of the continuous predictors. We can adopt the typical assumption (Han et al., 2006) that

the probability density function (pdf) of a continuous predictor is a Gaussian distribution.

Pr (xj = vji|yk) =
1√

2πσxj ,yk
exp

(
−(vij − µxj ,yk)2

2(σxj ,yk)2

)
, (5.26)

where µxj ,yk and σxj ,yk are the mean and the standard deviation of the value vji of the

continuous predictor xj with the response value yk. Clearly, µxj ,yk and σxj ,yk that have

been calculated in the task of building the classifier model can be retrieved by Alice and

Bob without any secure computation. They can apply secure multiplication and secure

division of DAG model to compute the probability Pr (xj = vji|yk) of the value vji of the

continuous predictor xj with the response value yk in Equation 5.26. As the probability

computation is straightforward, we omit the details here.

Next, Alice (Bob) predicts the response value of the testing tuple. For a simplicity,

we assume that the testing dataset contains r response values. Let ŷAi and ŷBi , held

by Alice and Bob respectively, be probability of a response value where ŷAi + ŷBi = ŷi

and i ∈ {1, · · · , r}. In each testing tuple, Alice and Bob apply secure multiplication on

Equation 5.25 to compute the list of the probabilities of the response values, (ŷA11+ŷB12, ŷ
A
21+

ŷB22, · · · , ŷAr1+ ŷBr2). In the next step, Alice (Bob) can find the maximum probability of the

list as follows.

MAPj = max(ŷ1, ŷ2, · · · , ŷk) = max(ŷA11 + ŷB12, ŷ
A
21 + ŷB22, · · · , ŷAr1 + ŷBr2), (5.27)

where j ∈ {1, · · · , r}. To find the maximum response value in Equation 5.27, Alice and

Bob can apply secure max location of our DAG model (Section 4.1.9). The secure max

protocol only discloses the maximum probability of the list, MAPj in Equation 5.27,

142

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Table 5.2: Secure operators in model construction per dataset

× / power

np nominal predictors
np∑
i=1
|Xi| · |Ω|

cp continuous predictors 2 · |Ω| · cp 2 · |Ω| · cp |Ω| · cp
|Xi| is the domain size of i-th nominal predictor xi.
|Ω| is the domain size of response variable y.

while the comparison result between ŷ1 and ŷ2 for ŷ1 6= ŷ2 should be kept confidential.

Thus, Alice (Bob) can predict the response values ŷs of the testing tuples, as detailed in

Algorithm 6. In the case that the testing tuple is given only two response values (i.e., two

probabilities), Alice and Bob can apply CMP (Section 3.1.10) directly to know whether

ŷA11 + ŷB11 ≥ ŷA21 + ŷB21 by checking if ŷA11 − ŷA21 ≥ ŷB21 − ŷB11 holds.

In PPNB, Alice and Bob can apply secure operators of DAG to perform the two tasks

above, building the classifier model and evaluating the testing tuples, with privacy preser-

vation of Alice’s data and that of Bob’s data. We will discuss the security and the com-

plexity analysis in the next section.

5.3.3 Security Analysis and Complexity Analysis

We use time complexity and communication complexity to measure the performance of

privacy-preserving Näıve Bayes (PPNB). Alice and Bob combine secure operators of DAG

model to securely perform the two tasks in PPNB, building the classifier model and eval-

uating the testing tuples. Table 5.2 reports the number of secure operators to build a

classifier model for each dataset. The operators needed are dependent on the number of

nominal predictor variables (assumed to be np), the number of continuous predictor vari-

ables (assumed to be cp), and the domain sizes of nominal and response variables. The

operators needed to predict the class label for testing data are also up to predictor and

response variables. Table 5.3 summarizes the results.

Table 5.3: Secure operators in model testing per tuple

× /

np nominal predictors |Ω| · np
cp continuous predictors 4 · |Ω| · cp 2 · |Ω| · cp
|Ω| is the domain size of response variable y.

143

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

Time Complexity. We measure the time complexity of PPNB by modular exponentia-

tions, since they consume most of the time.

Table 5.4: Time complexities of secure operators

Secure operator Time complexity Asymptotic time

× (Section 4.1.3) 6 O(1)
/ (Section 4.1.5) 4ω + 46 + 36z O(ω + z)
power (Section 4.1.7) 5ω + 45 + 36z O(ω + z)
max location (Section 4.1.9) 24l − 2 O(l)

ω is the number of iterations in Taylor series.
z is the maximum bit-length of input data.
l is the number of probabilities in the list.

Based on Tables 5.2 and 5.3, the time complexity of PPNB can be easily computed

using Table 5.4. Thus, we omit the details here.

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. Based on Tables 5.2 and 5.3, the

communication complexity of PPNB can be easily computed using Table 5.5. Thus, we

omit the details here.

Table 5.5: Communication complexities of secure operators

Secure operator Communication complexity Asymptotic communication

× 2t2 O(1)
/ t2(24z + 24 + 8w) + 6(λ+ z + 2)t1z O(z(t2 + t1λ) + t2ω)

max location 16t2l − 4t2 + 3(φ)t1(l − 1) O(l(t2 + t1))

t1 is a security parameter and t2 is the message length in Paillier cryptosystem.
ω is the number of iterations in Taylor series. λ is the threshold (e.g., λ = 40)
z is the maximum bit-length of input data. l is the number of probabilities in the list.

Our proposed PPNB is proven secure via simulation paradigm (refer to Section 2.6.1

for more details) in the following.

Theorem 5.3 The PPNB protocol is simulatable.

Proof 5.3 In PPNB, Alice and Bob use combined operators of DAG model to perform the

two tasks, building the classifier model and evaluating the testing tuples. Thus, the view

of Alice and that of Bob can be simulated using a similar proof in Theorem 4.8. We omit

the details here.

144

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

5.3.4 Experiment and Discussion

In this section, we evaluate the performance of our proposed privacy-preserving Näıve

Bayes (PPNB).

Dataset. We use two datasets for PPNB. The first is Adult 8 to predict whether a person’s

salary is above 50,000 or not (i.e., 2 response values). It has 14 nominal predictors . We

remove 2 of them: capital gain and capital loss, and keep the remaining 12. The second

is Mushroom 9 to predict edible mushrooms (i.e., 2 response values) using 22 nominal

predictors. Both datasets consist of training and testing subsets. For each dataset, we

evenly split the full training subset (30,162 tuples of Adult and 3,763 tuples of Mushroom)

into two portions, and distribute them to Alice and Bob, respectively. For each dataset,

we randomly select 500 tuples from the testing subset to test the classifier models.

Table 5.6: Experiment Parameters for PPNB

Operator κ γ β τ w z λ

×
15

284

40
/ 950

12 28 20
-

power 910
bit-length - - - - - 45

Implementation. We implemented the solutions by Java. All experiments were run

on a machine of IntelR© Xeon R© 2.3GHz CPU (16 cores) with 128.0GB RAM running

on Windows Server 2012. We downloaded the threshold Paillier Cryptosystem 10, and

configured it to 1024-bit. We use CMP of the fast garbled circuit 11 that is one of the

most efficient implementations for secure comparison. Table 5.6 gives the values of the

security parameters we use.

In PPNB, we consider two parties Alice and Bob. We assume that each party has

a subset of training data with the format (x1, x2, . . . , xm, y), where xi’s are predictor

variables and y is the response variable. There is a testing dataset with the same format

but y value missing. We assume that Alice and Bob would like to predict these y values

via PPNB. Given a testing tuple with known values of predictor variables, PPNB predicts

its y values using Equation 5.25. PPNB is detailed in Section 5.3.2.

8http://archive.ics.uci.edu/ml/datasets/Adult
9http://archive.ics.uci.edu/ml/datasets/Mushroom

10http://www.utdallas.edu/∼mxk093120/paillier/
11https://github.com/yhuang912/FastGC

145

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

We evaluate the effectiveness of PPNB based on our DAG model by two metrics. The

first is accuracy. Given a testing dataset T , the accuracy is defined by

ACC(T) =
1

|T |

|T |∑

i=1

1, if ri.ŷ = ri.y

0, otherwise,
(5.28)

where ri is the i-th record in T , and ri.y and ri.ŷ are the real and predicted response values

of ri, respectively. The second is similarity, which measures the difference of prediction

between the private setting and the non-private setting. Given a testing dataset T , the

similarity is defined by

SIM(T) =
1

|T |

|T |∑

i=1

1, if ri.ŷP = ri.ŷNP

0, otherwise,
(5.29)

where ri.ŷP is the prediction for i-th tuple by PPNB based on DAG, and ri.ŷNP is that

by Näıve Bayes in non-private setting.

Our secure operators proposed in Section 4.1 have security parameters. We assume

that values (i.e., a1, a2, b1, b2) are in the range of [2−15, 215] (i.e., γ = 15 in Lemma 4.2).

If they are beyond the range, we truncate them to their nearest bounds. The security

parameters like κ are restricted by different conditions in different secure operators. We

set them based on these conditions, and thus their values vary from one operator to

another. Table 5.6 gives the parameters and their values used in PPNB.

The Evaluation.

We evaluate our PPNB on the Adult and Mushroom datasets, which are described at

the beginning of this section. Again, we include a benchmark, the non-private Naive Bayes

that accesses the datasets of Alice and Bob directly. Its experimental outputs on Adult

and Mushroom are Adult-NP and Mushroom-NP, respectively. The outputs by our private

solution are Adult-P and Mushroom-P.

We first study the efficiency by varying the number of predictors(i.e., 30%/60%/100%

predictor variables). Figure 5.4(a) reports the results for model construction. When the

number of predictors increases, the elapsed time grows as expected. For the Mushroom

dataset with all the predictors, the time by the non-private solution is 0.0160 sec, while

that by our private solution is 39.1308 min. For the Adult dataset with all the predictors,

146

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

100

102

104

106

108

0.3 0.6 1.0

R
un

 T
im

e,
 lo

g
(m

s)

Percentage of Predictor Variables

Training

Mushroom-NP
Mushroom-P
Adult-NP
Adult-P

(a)

100
102
104
106
108

0.3 0.6 1.0

R
un

 T
im

e,
 lo

g
(m

s)

Percentage of Predictor Variables

Testing

Mushroom-NP
Mushroom-P
Adult-NP
Adult-P

(b)

0.7

0.8

0.9

1.0

0.3 0.6 1.0

SI
M

(T
)

Percentage of Predictor Variables

Mushroom
Adult

(c)

0.7

0.8

0.9

1.0

0.3 0.6 1.0

A
C

C
(T

)

Percentage of Predictor Variables

Mushroom-NP
Mushroom-P
Adult-NP
Adult-P

(d)

Figure 5.4: Näıve Bayes with/without privacy preservation

the time by the non-private solution is 0.0150 sec, while that by our private solution is

34.9021 min. Figure 5.4(b) is the experimental results of model evaluation. In the non-

private setting, the prediction for one tuple on average takes 0.0008 sec for both datasets.

In the private setting, the average time per tuple on Adult and Mushroom is 12.5039 sec

and 9.1936 sec, respectively. The experimental results above show that our PPNB on the

model construction and evaluation can be finished with reasonable time.

Next, we measure the similarity of the output between private solution and non-private

solution. Figure 5.4(c) shows the results. When varying the number of predictors, the

output of the two solutions is always the same. Therefore, the similarity is always 1. This

verifies that the approximation errors of secure operators of our DAG model are low and

negligible. Since the two solutions have the same output, their accuracy is also the same as

in Figure 5.4(d). When the number of predictors increases, the accuracy on Adult dataset

147

CHAPTER 5. PRIVACY-PRESERVING CLASSIFICATION ALGORITHMS BY DAG

increases accordingly, as expected. However, the accuracy on Mushroom dataset drops by

5.40% when the number of predictors increases from 60% to 100%. One possible reason

is that some predictors are irrelevant (i.e., noise) to response values.

5.4 Chapter Summary

We propose three privacy-preserving classification algorithms to solve different classifica-

tion problems with privacy preservation by applying our DAG model: privacy-preserving

support vector machine (PPSVM), privacy-preserving kernel regression (PPKR), and

privacy-preserving Näıve Bayes (PPNB). PPSVM uses arbitrarily partitioned data split

between two parties to securely compute the Gram matrix. For the horizontal partitioned

data split between two parties, PPKR can securely predict the response value and PPNB

can securely build and evaluate the model. All proposed privacy-preserving classification

algorithms are proven secure via simulation paradigm (Goldreich, 2004). Experiment re-

sults show that the privacy-preserving classification algorithms integrated with our DAG

model are efficient in computation and also effective to protect data privacy. Moreover, the

proposed privacy-preserving classification algorithms by DAG output the data mining re-

sults that are almost the same by non-privacy classification algorithms, without protecting

data privacy.

148

Chapter 6

Privacy-Preserving Traveling Salesman Problem by
DAG

We propose the DAG model which is the general model for privacy-preserving data mining

in Chapter 4. The experiment results in Chapter 5 show that the privacy-preserving clas-

sification algorithms that can securely compute their tasks by applying secure operators

of our DAG model. In this chapter, we show that our DAG model can also be the general

model for privacy computation in wider applications. Evolutionary computation (EC) as

a relatively new subfield of artificial intelligence is successfully applied to data analytics

because of the robustness, fault tolerance, and scalability in computation (Martens et al.,

2011; Freitas and Timmis, 2007; Freitas, 2002). Ant colony optimization (ACO) (Dorigo

et al., 2006) is one of EC algorithms that can solve the traveling salesman problem (TSP).

We apply our DAG model to solve the traveling salesman problem using ACO with pri-

vacy preservation. To the best of our knowledge, this is the first work to extend privacy

protection to the EC algorithm.

In the following, we discuss how to integrate our DAG model into ACO with privacy

preservation in Section 6.1. We summarize this chapter in Section 6.2.

6.1 Traveling Salesman Problem

The traveling salesman problem (TSP) requires that a salesman can find the shortest

path, by which he visits each city only once and returns to the starting city. TSP is

an NP-hard optimization problem. In the following, the ACO algorithm is discussed in

Section 6.1.1. We propose privacy-preserving Traveling Salesman Problem (PPTSP) in

applying ACO by DAG to find approximation solutions in Section 6.1.2. The security

analysis and complexity analysis of PPTSP is given in Section 6.1.3. Lastly, we evaluate

the performance of PPSTP in Section 6.1.4.

149

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

6.1.1 Algorithm

Ants randomly walk to locate food and to bring it back to their colony. The returning

ant will drop pheromone on the walking trail that allows other ants to locate the food

source and the colony location. Ant Colony Optimization (ACO) (Dorigo et al., 2006) is

inspired by the behavior of biological ants – it creates artificial ants, which incrementally

solve optimization problems in a way similar to biological ants finding the shortest path

to the food source. Artificial ants choose solution trails also based on pheromone. The

higher the pheromone of a decision point (i.e., a node visited previously by ants), the

higher the probability of the point is likely chosen to visit. Once an artificial ant reaches

the destination, the solution corresponding to the path visited by the ant is evaluated, and

pheromones of the points along the path are increased. Pheromones of points, which are

not visited, are evaporated. The ACO algorithm incrementally improves the solution. As

the algorithm converges, the points of the optimal solution have the maximum pheromone,

and all the other points have the minimum pheromone. ACO has been extensively ap-

plied to optimization problems, such as Traveling Salesman Problem (TSP) (Li, 2010),

scheduling problem (Zhou et al., 2009), and vehicle routing problem (Mei et al., 2009).

ACO determines the next visiting point for an ant in a probabilistic way. Let x be the

current position of an ant, and y be one of the next visiting point. Then, the probability

of the ant visiting y is determined by two parameters: heuristic value (ηxy) where ηxy is

a constant and pheromone value (τxy) is periodically updated using Eq. 6.2. Then, the

probability is computed as follows.

pxy =
(ταc

xy)(η
βc
xy)∑

y∈allowedy
(ταc

xy)(η
βc
xy)

, (6.1)

where αc and βc are control parameters to adjust the probability value and allowedy is the

set of next visiting points. As ants reach the destinations, the pheromone is updated as

follows:

τxy = (1− ρ)τxy +
∑

k

∆k, (6.2)

where ρ is a user-defined coefficient to control the pheromone evaporation rate,

150

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

∆k =

Q/Lk if k-th ant visits trail xy in its tour

0 otherwise,
(6.3)

Q is a constant value, and Lk is the total traversed distance of the k-th ant. Intuitively,

in Equation 6.2, (1− ρ)τxy evaporates the pheromone over time, and
∑

k ∆k reinforce it if

ants travel on the trail from point x to point y.

6.1.2 Privacy-Preserving Traveling Salesman Problem (PPTSP)

In privacy-preserving Traveling Salesman Problem (PPTSP), city locations that are pri-

vate are distributed across Alice and Bob, and that Alice and Bob will not disclose the

locations of the cities to each other. To keep the city locations private, we will formalize the

ACO algorithm by our DAG model consisting of secure operators introduced in Chapter 4.

Figure 6.1 (a) gives an example, in which filled blue circles represent cities of Alice and

empty circles represent cities of Bob. ACO can be applied to find approximation solutions

for TSP. Specifically, artificial ants can be created to visit the cities (e.g., Figure 6.1 (b)

and Figure 6.1 (c)), and the shortest path for all the ants is taken as the solution output.

Figure 6.2 gives the protocol for PPTSP. In PPTSP, we assume that all computations are

done in the semi-honest model (Goldreich, 2004) which Alice and Bob strictly follow the

protocol but they are curious about the private data of other party. We can use our DAG

model to represent the protocol as follows.

(a) (b) (c)

Figure 6.1: Blue filled circles represent cities of Alice and empty circles represent cities of
Bob in Figure 6.1 (a). Examples of walking paths by ants formulated as an ACO problem
in Figure 6.1 (b) and 6.1 (c)

Initialization. Alice and Bob configure the parameters of the protocol. They set αc,

βc, ρ, and Q, which are needed to calculate the probability of traveling from one city to

another (Equation 6.1). The pheromone τxy along the trail between city x and city y is

initialized uniformly (e.g., equal to 1) and split into τAxy and τBxy, such that τxy = τAxy + τBxy,

151

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

where τAxy is distributed to Alice and τBxy is distributed to Bob. The heuristic value ηxy is a

constant. It is also split into ηAxy and ηBxy, and distributed to Alice and Bob, respectively.

Ant Walking. At each city, an ant needs to decide which is the next city to visit. The

selection of the next city is a stochastic procedure. The probability of the next city is

determined by Equation 6.1. Suppose that the ant is now at city x. The next city y to

be visited is decided as follows. First, a value p ∈ (0.0, 1.0) is selected based on Gaussian

distribution. Without loss of generality, we assume that Alice selects p. Secondly, the

probability pxy of traveling from x to y is computed according to Equation 6.1. Clearly,

the probability can be computed by a connection of operators of secure multiplication,

secure addition, and secure division, of DAG model. Since every secure operator has two

and only two output values, we assume that pxy = c1 + c2, where c1 and c2 are the private

outputs held by Alice and Bob, respectively. Then, Alice and Bob can privately determine

whether c1 + c2 ≥ p. That is, whether

c1 − p ≥ c2. (6.4)

For the privacy of c1 and c2, Alice and Bob apply CMP protocol (Section 3.1.10). If

Inequality 6.4 holds, it shows that there is enough pheromone along the trail from x to y

and the ant selects y as the next city to visit. Otherwise, another city is tested. Given a

p value, if none of all the possible next cities can satisfy Inequality 6.4, Alice will select

another p value.

Euclidean Distance. Alice and Bob can apply secure operators of DAG to securely com-

pute Euclidean distance between two cities as follows. Given that an Euclidean function,
√

(a1 − b1)2 + (a2 − b2)2, where Alice is in the city location (a1, a2) and Bob is in the

city location (b1, b2). Alice and Bob first apply secure addition, secure minus, and secure

multiplication operator to create two private distance portions t1 and t2 held by Alice and

152

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

Initialise Q, ρ, α, β

Initiase pheromone, τAxy

and heuristic, ηAxy

Alice Bob

1©Initialisation

2©Ant Walking

3© Path Length

4©Pheromone Update

Initialise Q, ρ, α, β

Initiase pheromone, τBxy

and heuristic, ηBxy

1©Initialisation

2©Ant Walking

4©Pheromone Update

Select the next visiting city

Select the best distance among

ants

Comparison

3© Path Length

Comparison

Update pheromone based on

best distance

Figure 6.2: The SMC protocol for Traveling Salesman Problem (PPTSP)

Bob respectively, such that

(a1 − b1)
2 + (a2 − b2)

2 = a21 + a22 − 2(a1 · b1 + a2 · b2) + b21 + b22

= a21 + a22 − 2(d1 + d2 + s1 + s2) + b21 + b22

= (a21 + a22 − 2(d1 + s1)) + (b21 + b22 − 2(d2 + s2))

= t1 + t2,

where (d1, d2) are the outputs of secure multiplication on a1 · b1, (s1, s2) are the outputs

of secure multiplication on a2 · b2, and (d1, s1) and (d2, s2) are held by Alice and Bob,

respectively, They then apply secure power to get the distance as follows,

√
t1 + t2 = (t1 + t2)

1
2 = c1 + c2,

where c1 + c2 is the distance between the two cities. Alice holds the distance c1 and Bob

holds the distance c2.

Path Length Comparison. In PPTSP, each ant walks to find a solution. The best

solution among all the ants will be selected. As discussed the Euclidean distance above,

153

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

Alice and Bob can use secure operators of DAG model to privately compute the distance

of any two cities. Thus, we can compute the length of any path traveled by an ant by

summing (i.e., by secure addition) the distances between each pair of neighboring cities

along the path. Let P1 be one path. Since the secure addition has two output values, we

assume that the length of P1 is equal to c11+c12. Let P2 be another path, suppose that its

length is equal to c21 + c22. We can apply the CMP Protocol (Section 3.1.10) to privately

compare whether P1 is shorter than P2 by checking

c11 − c21 ≤ c22 − c12. (6.5)

If the above inequality holds, then P1 is shorter, otherwise, longer. Based on the length

comparison, we can then privately learn the shortest path.

Pheromone Update. The pheromone is updated between Alice and Bob based on

Equation 6.2. The two parties first compute
∑

k ∆k (i.e., by secure addition and secure

division) as shown in Equations 6.2 and 6.3. Since every secure operator always has two

output values, we assume that
∑

k ∆k = ∆A +∆B, where ∆A and ∆B are privately held

by Alice and Bob, respectively. Then, pheromone update is as follows:

τAxy = (1− ρ)τAxy +∆A,

τBxy = (1− ρ)τBxy +∆B .
(6.6)

The correctness of the update can be easily verified, since

τxy = (1− ρ)τxy +
∑

k

∆k = (1− ρ)(τAxy + τBxy) +
∑

k

∆k

= τAxy + τBxy.

In the above, the first equation holds, since it is the defined pheromone update procedure

(Equation 6.2), the second equation holds, because at the initial stage τxy = τAxy + τBxy,

and the last equation holds because the pheromone update of Alice and Bob is specified

in Equation 6.6.

The Convergence. Ants optimize the traveling distance for TSP incrementally. After

the update of pheromone, all the ants will walk the cities again and find a new solution.

Given the new solution and the previous solution, if the path length of the new solution

154

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

is higher than the previous one, then the ants stop and the previous solution is the final

output.

Thus, given a set of cities that contain city locations split between Alice and Bob,

privacy-preserving Traveling Salesman Problem (PPTSP) allows artificial ants to securely

find the best traversed distance in which each city is visited. At the end of PPTSP, Alice

learns nothing about city locations of Bob. Bob also learns nothing about city locations

of Alice. PPTSP is detailed in Algorithm 7.

Algorithm 7: Privacy-Preserving Traveling Salesman Problem (PPTSP)

Input: Let G be the number of cities. The cities are split between Alice and Bob.
Each city location are sensitive. Let (ant1, ant2, · · · , antm) be the list of m
ants in ACO.

Output: The best traversed distance in G is Dopt = c1 + c2 where Alice holds the
distance c1 and Bob holds the distance c2.

1 Alice and Bob each initialize αc, βc, ρ, and Q.
2 Initialize the number of iterations, w.
3 Set j = 1;
4 Set the best traversed distance, Dbest = 0;
5 repeat
6 Set the current best traversed distance, Dcurr = 0;
7 for i = 1 to m do
8 anti walks randomly among G cities split between Alice and Bob. anti

always selects the next visited city with higher probability (Equation 6.1).
The distance between two cities is calculated based on the Euclidean
distance (refer to the distance calculation in a secure manner). anti can
apply secure multiplication, secure addition, and secure division, of our DAG
model to compute the probability.

9 anti can use CMP (Section 3.1.10) for probability comparison.
10 The total traversed distance by anti is d

A
i + dBi , held by Alice and Bob

respectively.
11 {Note: Again, anti can use CMP (Section 3.1.10) for the distance

comparison.}
12 if dAi + dBi > Dcurr then
13 Update the current best traversed distance, Dcurr = dAi + dBi , by anti.
14 Set antbest = anti;

15 end

16 end
17 if Dbest = 0 or Dbest > Dcurr then
18 Dbest = Dcurr;
19 end
20 Update the pheromone on the traversed trail using Dbest by antbest

(Equation 6.2). antbest can apply secure addition and division to update the
pheromone as shown in Equations 6.2 and 6.3.

21 j = j + 1;

22 until j > w or Dopt < Dcurr;
23 Dbest = dAbest + dBbest = c1 + c2, held by Alice and Bob respectively, where dAbest is the

best traversed distance of Alice and dBbest is the best traversed distance of Bob.

155

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

6.1.3 Security Analysis and Complexity Analysis

We use time complexity and communication complexity to measure the performance of

privacy-preserving Traveling Salesman Problem (PPTSP). PPTSP is a stochastic algo-

rithm. For a simplicity, we measure time complexity and communication complexity for

m ants in visiting G cities in one iteration.

Time Complexity. We measure the time complexity of PPTSP by modular exponentia-

tions, since they consume most of the time. Alice and Bob require Gm(G+1)
2 times of secure

power and that of secure multiplication on distance computation. They apply Gm(G+1)
2

times of secure division for probability calculation and that of CMP (Section 3.1.10) for

probability comparison. Lastly, they require m times of CMP to get best traversed dis-

tance. The initialization of CMP (Ishai et al., 2003; Naor and Pinkas, 2001) takes some

modular exponentiations. However, the initialization can be done before the protocol, and

its cost can be amortized over all the runnings of PPTSP. Thus, we do not count its cost

in PPTSP. Therefore, the number of modular exponentiations needed by PPTSP with m

ants in visiting G cities in one iteration is Gm(G+1)
2 ·(9ω+99+72z), where ω is the number

of iterations in secure division and secure power, and z is the maximum bit-length of input

data.

Communication Complexity. We measure the communication complexity by the num-

ber of message bits passing between Alice and Bob. To compute the Euclidean distance,

Alice and Bob need to transfer Gm(G+1)
2 ·(t2(24z+28+8w)+6(λ+z+2)t1z) bits where t1 is

a security parameter (Note: t1 is suggested to be 80 in practice (Kolesnikov et al., 2009)),

t2 is the message length in Paillier cryptosystem, ω is the number of iterations in secure di-

vision and secure power, z is the maximum bit-length of input data, and λ is the threshold

(e.g., λ = 40). Alice and Bob transfer Gm(G+1)
2 · (t2(24z +24+ 8w) + 9(λ+ z+2)t1z) bits

in probability calculation and comparison. Lastly, they transfer Gm(G+1)
2 · (3(λ+z+2)t1z)

bits for the distance comparison. The CMP initialization also has some communication

cost. We do not involve it, since it can be done before running PPTSP. Therefore, the

communication complexity of PPTSP with m ants in visiting G cities in one iteration is

Gm(G+1)
2 · (t2(48z + 48 + 16w) + 18(λ+ z + 2)t1z) bits.

Our proposed PPTSP is proven secure via simulation paradigm (refer to Section 2.6.1

for more details) in the following.

156

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

Theorem 6.1 The PPTSP protocol is simulatable.

Proof 6.1 In PPTSP, given a set of cities, Alice and Bob use combined operators of

DAG model to allow ants to securely find the best traversed distance in which each city is

visited. Thus, the view of Alice and that of Bob can be simulated using a similar proof in

Theorem 4.8. We omit the details here.

6.1.4 Experiment and Discussion

In this section, we evaluate the performance of our proposed privacy-preserving Traveling

Salesman Problem (PPTSP).

Dataset. We use three datasets 1 for PPTSP. The first is Berlin52 that contains 52 cities.

The second is Eil that contains 101 cities. The last is A280 that contains 280 cities. Each

dataset is split into two portions, and distribute them to Alice and Bob, respectively.

Table 6.1: Experiment Parameters for PPTSP

Operator κ γ w z λ

× -
44

- -

40
/ 950

20
-

power 910
bit-length - - - 45

Implementation. We implemented the solutions by Java. All experiments were run on

a machine of IntelR© i7 2.7GHz CPU (2 cores) with 4.0GB RAM running on Windows XP.

We downloaded the threshold Paillier Cryptosystem 2, and configured it to 1024-bit. We

use CMP of the fast garbled circuit 3 that is one of the most efficient implementations for

secure comparison. Table 6.1 gives the values of the security parameters we use. In the

experiment, value initialization in PPTSP is in Table 6.2.

Table 6.2: Value Initialization in PPTSP

Parameter Initialization value

pheromone, τxy 0.8

αc -0.2

βc 9.6

Persistent value, ρ 0.3

Q 0.00001

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/
2http://www.utdallas.edu/∼mxk093120/paillier/
3https://github.com/yhuang912/FastGC

157

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

We consider cities split between Alice and Bob. We assume that each party contains

the locations of the cities which are confidential to each other. In PPTSP, ants allow to

walk among the cities by finding the best traversed distance by which each city is visited.

We include a benchmark, NPTSP, which is also an ACO-based solution for Traveling

Salesman Problem without privacy protection. The parameters of NPTSP are given the

same setting as PPTSP in Table 6.2. We compare PPTSP and NPTSP with respect to

both effectiveness (i.e., the length of the path traveled by the salesman) and efficiency (i.e.,

the elapsed time for computing the traversed path). We use the following two metrics to

evaluate the effectiveness of PPTSP and NPTSP.

Deviation : σaco =

√√√√ 1

N

N∑

i=1

(Dopt − Di)2, (6.7)

Accuracy : γaco = 1− σaco
Dopt

, (6.8)

where Dopt is the length of the suggested optimal path 4, N is the number of ants allowed

in the experiments, and Di is the length of the path computed by the i-th ant, for i =

1, 2, . . . ,N.

Table 6.3: Performance metrics of PPTSP and NPTSP of 10 walking ants (N=10)

Dataset Dopt Algorithm Avg Di Avg time (ms) σaco / Dopt (%) γaco (%)

Berlin52 7542
PPTSP 8240.50 3,486,443 9.26 90.74
NPTSP 8235.00 1249 9.19 90.81

Eil101 629
PPTSP 795.50 14,152,211 26.39 73.61
NPTSP 795.00 3505 26.39 73.61

A280 2579
PPTSP 3178.12 128,652,372 23.23 76.77
NPTSP 3170.00 26347 22.92 77.08

Berlin52 - 52 cities, Eil101 - 101 cities, and A280 - 280 cities
Dopt is the length of the suggested optimal path 4.

Evaluation. To handle the randomness by probabilistically selecting the next visiting

city by an ant, we run each experiment 10 times and report the average. We first fix the

number of ants to 10, and compare PPTSP and NPTSP on the three datasets. Table 6.3

shows the results. Clearly, PPTSP and NPTSP are equally effective in terms of Deviation

and Accuracy as defined in Equations 6.7 and 6.8, respectively. As for the efficiency,

NPTSP is 3 orders of magnitude faster than PPTSP. This is reasonable, since PPTSP

4http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html

158

CHAPTER 6. PRIVACY-PRESERVING TRAVELING SALESMAN PROBLEM BY DAG

Table 6.4: Performance metrics of PPTSP with the number of ants

Dataset Dopt N (Ant No.) Avg Di Avg time (ms) σaco / Dopt (%) γaco (%)

Berlin52 7542

1 9337.66 510,727 23.80 76.20
2 8474.60 690,900 12.37 87.63
5 8258.14 1,906,668 9.50 90.50
10 8240.50 3,486,443 9.26 90.74

Eil101 629

1 831.77 1,905,322 32.24 67.76
2 796.28 2,533,562 26.60 73.40
5 803.99 7,015,963 27.80 72.20
10 795.50 14,152,211 26.39 73.61

A280 2579

1 3489.76 28,408,946 35.31 64.69
2 3292.39 26,094,679 27.66 72.34
5 3178.14 79,345,737 23.23 76.77
10 3178.12 128,652,372 23.23 76.77

Berlin52 - 52 cities, Eil101 - 101 cities, and A280 - 280 cities
Dopt is the length of the suggested optimal path 4.

needs expensive cryptographic modular exponentiations, which are necessary to ensure

the data privacy of Alice and Bob.

Next, we vary the number of ants from 1 to 10. Table 6.4 reports the results. As the

number of ants increases, the elapsed time of PPTSP grows. This is as expected, since

each ant needs time to find its solution. When the number of ants increases, the number

of traveled paths also increases. Therefore, the quality (by deviation and accuracy) of the

best path output by PPTSP also improves.

6.2 Chapter Summary

We propose privacy-preserving traveling salesman problem (PPTSP) using ant colony

optimization (ACO) by DAG to solve the traveling salesman problem with privacy preser-

vation. In the problem, the cities contain locations which are private (i.e., sensitive). The

city locations are split between Alice and Bob. At the end of the execution of PPTSP,

the city locations of Alice are confidential to Bob. Bob also learns nothing about the city

locations of Alice. The PPTSP protocol is proven secure via simulation paradigm (Goldre-

ich, 2004). The experiment results show that the PPTSP solution outputs the traveling

path with a length very close to the optimal solution and the DAG model is effective in

protecting data privacy.

159

Chapter 7

Conclusions

In a modern information-driven society, data from individuals and companies may contain

various kinds of private information. Rapid advances in automated data collection tools

and data storage technology has led to the wide availability of a huge amount of the

distributed data owned by different parties. Data mining algorithms can be used to mine

the distributed data that can lead to new insights and economic advantages that usually

cannot be mined from the data of any single party; e.g., two hospitals can jointly discover

more useful and meaningful knowledge, rules or patterns from their joint data of the patient

records, which they would not get otherwise. However, data sharing poses privacy concerns

such as privacy violation and data protection laws on private and sensitive data. Therefore

many parties have strong willingness to share their data to data mining algorithms that

can protect data privacy to get a global view of data for knowledge discovery. This

motivates many to propose privacy-preserving data mining (PPDM) algorithms to address

the issue (Lindell and Pinkas, 2000; Agrawal and Srikant, 2000). Many PPDM algorithms

apply the randomization or secure multi-party computation (SMC) to protect data privacy

of the participating parties during the mining process.

In recent years, PPDM has become more important by which the increase of sophis-

ticated data mining algorithms can leverage bigger data that contain more private infor-

mation. Many conventional data mining algorithms have been enhanced so as to provide

privacy preservation. These algorithms include such as support vector machine (SVM),

Näıve Bayes, k-means clustering, association rule mining, decision trees and many more.

These algorithms can mine the distributed data split in a specific partition, either in ver-

tical or horizontal partition, and both of them. Each partition is held by a participating

party. Many secure building blocks of SMC based on the semi-honest model have been

proposed in the algorithms.

160

CHAPTER 7. CONCLUSIONS

However, many SMC solutions are ad-hoc and specific to tasks. They cannot be

directly applied to other tasks. Another limitation of the SMC solutions is provided by

the limited set of secure operators to support more functions in data mining primitives.

In our work, we propose DAG which is the general model for privacy-preserving data

mining to address the limitations in Chapter 4. Our DAG model consists of a set of secure

operators. We use the hybrid model that combines the semi-homomorphic encryption

protocol and the circuit approach to propose the secure operators. The secure operators

can be pipelined together to compute many functions in data mining primitives. The

theoretical and empirical proofs of the secure operators are discussed in detail.

As case studies in data mining, we first apply our DAG model into three different

classification algorithms, support vector machine (SVM), kernel regression, and Näıve

Bayes, to solve different classification problems with privacy preservation in Chapter 5.

Therefore, our DAG is a general model yet efficient for privacy-preserving data mining. For

a case study in an other application domain, we also apply the DAG model into ant colony

optimization (ACO) to solve the traveling salesman problem (TSP) without disclosing any

city location in Chapter 6. This shows that our DAG model can support wider applications

in protecting data privacy.

7.1 Summary of Research Contributions

We summarize our contributions in detail as follows:

(i) We have proposed DAG – the general model for privacy-preserving data mining.

Our DAG model consists of a set of secure operators in Chapter 5. Currently DAG

supports 9 operators that include secure addition, secure minus, secure multiplica-

tion, secure division, secure log, secure power, secure bit-length, secure max, and

secure max location. Each operator protocol is strictly proven secure via simulation

paradigm (Goldreich, 2004). We also use the other two security measurements, statis-

tical indistinguishability(Agrawal et al., 2003) and computational indistinguishability

(Goldreich, 2004), to measure security of our secure operators. Secure operators of

DAG can provide a complete privacy under the semi-honest model.

(ii) Our secure operators can support non-integer and integer values. To support non-

integer values, we have provided various techniques to convert non-integer values

161

CHAPTER 7. CONCLUSIONS

into integer values with the conversion errors bounded to an acceptable threshold.

Each secure operator can perform a function as specified. The error analysis and

complexity analysis (e.g., the error bounds and the time complexity) of each secure

operators of DAG have been discussed in detail. Moreover, secure operators can also

be pipelined together to perform various functions in data mining tasks. We have

analyzed the error bounds of the connection operators. The connection of the secure

operators has also been proven secure via simulation paradigm.

(iii) In the DAG model, we have applied the hybrid SMC model that combines the semi-

homomorphic encryption protocol and the circuit approach for our secure operators.

For the circuit approach, the secure operators only use CMP (integer comparison

circuit) to compare values. Lastly, we have evaluated the performance of secure

operators of DAG. The experiment results have showed that our secure operators are

efficient in computation and effective in protecting data privacy. Thus, our secure

operators have been proven secure and efficient via the theoretical and experimental

proofs. Our DAG model can also support any new operator that is derived based on

the definition of secure operator (Definition 4.1).

(iv) We have proposed privacy-preserving classification algorithms by DAG in Chapter 5.

The first is privacy-preserving support vector machine (PPSVM). PPSVM has se-

curely computed the gram matrix from arbitrarily partitioned data split between

two parties. We have further extended PPSVM to support on multiple parties. The

second is privacy-preserving kernel regression (PPKR) that has securely predicted

response values based on horizontally partitioned data split between two parties.

When training data size is 689,093, one predictor in non-private setting of kernel

regression takes 5.93 sec, and that by PPKR takes 12.38 sec. The last algorithm,

privacy-preserving Näıve Bayes (PPNB) has built a secure model from horizontal

partitioned data split between two parties. PPNB has also securely predicted re-

sponse values based on the secure model. The time complexity and communication

complexity of each privacy-preserving classification algorithm have been discussed

in detail. All privacy-preserving algorithms have been proven secure via simulation

paradigm. The experiment results have showed that our DAG model can be the

general model yet efficient for privacy-preserving data mining.

162

CHAPTER 7. CONCLUSIONS

(v) We have proposed privacy-preserving traveling salesman problem (PPTSP) by DAG

in Chapter 6. In the traveling salesman problem (TSP), PPTSP has found the ap-

proximate optimal traveled distance in visiting all a given set of cities by applying

ant colony optimization (ACO). In the end of the execution of PPTSP, Alice learns

nothing about the city locations of Bob. The city locations of Bob are also confiden-

tial from Alice. PPTSP has been proven secure via simulation paradigm. The time

complexity and communication complexity of PPTSP have been discussed in detail.

The experiment results have showed that PPTSP has the similar approximate opti-

mal distance traversed by a salesman in ACO, without privacy preservation. Thus,

our DAG model apart from the data mining tasks can also support other application

areas. The experiments in various application domains have showed that our DAG

model can serve as the general model for privacy computation in wider applications.

7.2 Future Work

In this thesis, we have discussed a variety of privacy issues and open problems remaining in

privacy-preserving data mining (PPDM). We will continue to investigate our DAG model

to address many issues raised in PPDM and to support other application domains. We

briefly discuss our future work as follows,

(i) We will continue to investigate new useful operators that can be added to the DAG

model to support wider applications. We will also continue to integrate DAG into

different data mining algorithms and other domain applications.

(ii) Our secure operators of DAG use the hybrid SMC model that combines the homomor-

phic encryption protocol and the circuit approach. In SMC, modulus exponentiations

consume most of the computation time. To reduce the computation cost, we will

investigate to enhance the cryptographic primitives of the homomorphic encryption

scheme that can run more efficiently in computation. Currently our DAG model sup-

ports threshold Paillier cryptosystem. To make the model more robust, we will plan

to integrate DAG with different semi-homomorphic encryption schemes. We will also

interested in applying fully-homomorphic schemes into our DAG model.

(iii) Many secure building blocks of the privacy-preserving data mining algorithms ran-

domize or encrypt whole data during the mining process. Our DAG model is also

163

CHAPTER 7. CONCLUSIONS

working in such a similar way as other secure building blocks. In some situations,

data may contain some private and non-private information. This raises interest-

ing questions to be answered: Is any possibility that a secure building block only

randomize or encrypt the private data in PPDM? Can computation cost and com-

munication cost be reduced as the secure building block only protects the private

data? We will investigate to enhance our DAG model to support both private and

non-private data during the mining process.

(iv) Our DAG model has showed that it can support wider applications. Thus, we need to

consider the malicious model that DAG can withstand the malicious attacks in some

application domains. We will propose a DAG model under the malicious model. An-

other improvement is that we will extend the two-party protocol of secure operators

of DAG to the multi-party protocol. Moreover, we will also investigate to parallelize

the multi-party protocol of secure operators.

(v) Graph is a general data structure that exists in various domains, e.g., pattern recog-

nition, computational biology, computer vision, web analysis and text retrieval. One

of the graph examples is protein-protein interaction (PPI) network. Two medical

research institutions each have a PIP network that contains the private deoxyri-

bonucleic acid (DNA) information. They would be interested to discover a new drug

of the genetic disease via interaction of their PIP networks with privacy preserva-

tion on DNA. Therefore, we are interested to apply our DAG model into graph for

secure computation. In addition, we will investigate the possibility to combine the

DAGmodel and the privacy-preserving data publishing (PPDP) techniques to protect

data privacy in graph. In PPDP, an individual can apply some privacy preservation

techniques to modify his/her own private data before publishing them to data min-

ers. The published data requires to remain useful for data mining. We will apply our

DAG model and PPDP to address privacy issues in social network (e.g., Facebook

and Twitter). We are also interested to integrate the DAG model into deep learning

algorithms that can train social network data with privacy preservation.

(vi) We are interested to integrate our DAG model in other application domains that

involve technologies such as peer-to-peer (P2P), mobile computing, cloud computing,

and many more. For example, big data analytics with privacy concerns in cloud

164

CHAPTER 7. CONCLUSIONS

computing is still a challenging and ongoing research topic. We will continue to

enhance our DAG model for big data analytics. Besides the computation cost, the

communication cost and the size of our DAGmodel are important especially in mobile

computing with limited resources (e.g., small space in memory). Therefore, we will

also propose a DAG model to adapt in such a restrained environment.

165

References

Abdalla, M., Bellare, M. and Rogaway, P. (1999). DHAES: an encryption scheme based

on the diffie-hellman problem, IACR Cryptology ePrint Archive 1999.

Adam, N. R. and Wortmann, J. C. (1989). Security-control methods for statistical

databases: A comparative study, ACM Comput. Surv. pp. 515–556.

Aggarwal, C. C. and Yu, P. S. (2008). A general survey of privacy-preserving data min-

ing models and algorithms, Privacy-Preserving Data Mining - Models and Algorithms,

Vol. 34 of Advances in Database Systems, pp. 11–52.

Agrawal, D. and Aggarwal, C. C. (2001). On the design and quantification of privacy pre-

serving data mining algorithms, Proceedings of the twentieth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, Santa Barbara, California,

United States, pp. 247–255.

Agrawal, R., Evfimievski, A. V. and Srikant, R. (2003). Information sharing across pri-

vate databases, Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data, San Diego, California, USA, pp. 86–97.

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998). Automatic subspace

clustering of high dimensional data for data mining applications, Proceedings of the 1998

ACM SIGMOD international conference on Management of data, Seattle, Washington,

United States, pp. 94–105.

Agrawal, R., Imielinski, T. and Swami, A. N. (1993). Mining association rules between

sets of items in large databases, in P. Buneman and S. Jajodia (eds), Proceedings of the

1993 ACM SIGMOD International Conference on Management of Data, Washington,

D.C., pp. 207–216.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large

databases, VLDB ’94: Proceedings of the 20th International Conference on Very Large

Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 487–499.

166

REFERENCES

Agrawal, R. and Srikant, R. (2000). Privacy-preserving data mining, Proceedings of the

ACM international Conference on Management of Data, Dallas, Texas, United States,

pp. 439–450.

Atallah, M. J., Bykova, M., Li, J., Frikken, K. B. and Topkara, M. (2004). Private

collaborative forecasting and benchmarking, Proceedings of the 2004 ACM Workshop

on Privacy in the Electronic Society, WPES 2004, Washington, DC, USA, October 28,

2004, pp. 103–114.

Bar-Ilan, J. and Beaver, D. (1989). Non-cryptographic fault-tolerant computing in con-

stant number of rounds of interaction, Proceedings of the eighth annual ACM Symposium

on Principles of distributed computing, Edmonton, Alberta, Canada, pp. 201–209.

Barni, M., Orlandi, C. and Piva, A. (2006). A privacy-preserving protocol for neural-

network-based computation, Proceedings of the 8th ACM Workshop on Multimedia and

Security, Geneva, Switzerland, pp. 146–151.

Baudron, O., Fouque, P., Pointcheval, D., Stern, J. and Poupard, G. (2001). Practical

multi-candidate election system, Proceedings of the Twentieth Annual ACM Symposium

on Principles of Distributed Computing, PODC 2001, Newport, Rhode Island, USA,

pp. 274–283.

Ben-David, A., Nisan, N. and Pinkas, B. (2008). Fairplaymp: a system for secure multi-

party computation, CCS ’08: Proceedings of the 15th ACM conference on Computer

and communications security, Alexandria, Virginia, USA, pp. 257–266.

Ben-Or, M., Goldwasser, S. and Wigderson, A. (1988). Completeness theorems for non-

cryptographic fault-tolerant distributed computation, STOC ’88: Proceedings of the

twentieth annual ACM symposium on Theory of computing, Chicago, Illinois, United

States, pp. 1–10.

Benaloh, J. C. (1987). Secret sharing homomorphisms: keeping shares of a secret secret,

Proceedings on Advances in cryptology—CRYPTO86, Springer-Verlag, Santa Barbara,

California, United States, pp. 251–260.

Berkhin, P. (2002). Survey of clustering data mining techniques, Technical report, Accrue

Software.

167

REFERENCES

Bertino, E., Fovino, I. N. and Provenza, L. P. (2005). A framework for evaluating privacy

preserving data mining algorithms, Data Min. Knowl. Discov., pp. 121–154.

Blum, M. and Goldwasser, S. (1984). An efficient probabilistic public-key encryption

scheme which hides all partial information., Proceedings of CRYPTO on Advances in

cryptology, pp. 289–302.

Bodrato, M. (2010). A strassen-like matrix multiplication suited for squaring and higher

power computation, Proceedings of the 2010 International Symposium on Symbolic and

Algebraic Computation, ACM, pp. 273–280.

Boneh, D. (1998). The decision diffie-hellman problem, Algorithmic Number Theory, Third

International Symposium, ANTS-III, Portland, Oregon, USA, pp. 48–63.

Boneh, D., Goh, E. and Nissim, K. (2005). Evaluating 2-dnf formulas on ciphertexts,

Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cam-

bridge, MA, USA, pp. 325–341.

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers, COLT ’92: Proceedings of the fifth annual workshop on Computational

learning theory, Pittsburgh, Pennsylvania, United States, pp. 144–152.

Brakerski, Z., Gentry, C. and Vaikuntanathan, V. (2012). (leveled) fully homomorphic

encryption without bootstrapping, Innovations in Theoretical Computer Science 2012,

Cambridge, MA, USA, pp. 309–325.

Brandt, F. and Sandholm, T. (2008). On the existence of unconditionally privacy-

preserving auction protocols, ACM Trans. Inf. Syst. Secur. 11(2).

Brassard, G., Crépeau, C. and Robert, J. (1986). All-or-nothing disclosure of secrets,

Advances in Cryptology - Santa Barbara, California, USA, pp. 234–238.

Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. (1984). Classification and Regres-

sion Trees, Chapman & Hall/CRC, Belmont, CA: Wadsworth Int.

Brickell, J., Porter, D. E., Shmatikov, V. and Witchel, E. (2007). Privacy-preserving

remote diagnostics, CCS ’07: Proceedings of the 14th ACM conference on Computer

and communications security, ACM, New York, NY, USA, pp. 498–507.

168

REFERENCES

Bunn, P. and Ostrovsky, R. (2007). Secure two-party k-means clustering, Proceedings

of the 2007 ACM Conference on Computer and Communications Security, Alexandria,

Virginia, USA, pp. 486–497.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition,

Data Mining and Knowledge Discovery 2(2): 121–167.

Chaum, D., Crépeau, C. and Damg̊ard, I. (1988). Multiparty unconditionally secure

protocols (extended abstract), Proceedings of the 20th Annual ACM Symposium on

Theory of Computing, Chicago, Illinois, USA, pp. 11–19.

Chor, B. and Kushilevitz, E. (1993). A communication-privacy tradeoff for modular ad-

dition, Information Processing Letters 45(4): 205–210.

Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X. and Zhu, M. Y. (2002). Tools for privacy

preserving distributed data mining, In SIGKDD Explorations pp. 28–34.

Congress, U. S. (1996). Health insurance portability and accountability act of 1996, U.S.

Congress .

Coppersmith, D. and Winograd, S. (1987). Matrix multiplication via arithmetic progres-

sions, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,

New York, USA, pp. 1–6.

Coron, J., Lepoint, T. and Tibouchi, M. (2013). Batch fully homomorphic encryption over

the integers, IACR Cryptology ePrint Archive p. 36.

Coron, J., Naccache, D. and Tibouchi, M. (2012). Public key compression and modulus

switching for fully homomorphic encryption over the integers, Advances in Cryptology

- EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Cambridge, UK, pp. 446–464.

Cramer, R. and Damg̊ard, I. (2001). Secure distributed linear algebra in a constant

number of rounds, Advances in Cryptology - CRYPTO 2001, 21st Annual International

Cryptology Conference, Santa Barbara, California, USA, pp. 119–136.

Cramer, R., Damg̊ard, I. and Nielsen, J. B. (2001). Multiparty computation from threshold

homomorphic encryption, Advances in Cryptology - EUROCRYPT 2001, International

169

REFERENCES

Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, Aus-

tria, pp. 280–299.

Cramer, R. and Shoup, V. (1998). A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack, Advances in Cryptology - CRYPTO ’98, 18th

Annual International Cryptology Conference, Santa Barbara, California, USA, pp. 13–

25.

Dahl, M., Ning, C. and Toft, T. (2012). On secure two-party integer division, Financial

Cryptography and Data Security - 16th International Conference, FC 2012, Kralendijk,

Bonaire, pp. 164–178.

Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J. B. and Toft, T. (2006). Unconditionally

secure constant-rounds multi-party computation for equality, comparison, bits and ex-

ponentiation, Third Theory of Cryptography Conference, TCC 2006, New York, USA,

pp. 285–304.

Damg̊ard, I. and Jurik, M. (2001). A generalisation, a simplification and some applications

of paillier’s probabilistic public-key system, Public Key Cryptography, 4th International

Workshop on Practice and Theory in Public Key Cryptography, PKC 2001, Cheju Is-

land, Korea, pp. 119–136.

Das, A., Ng, W.-K. and Woon, Y.-K. (2001). Rapid association rule mining, CIKM

’01: Proceedings of the tenth international conference on Information and knowledge

management, ACM Press, Atlanta, Georgia, USA, pp. 474–481.

Domingos, P. M. and Pazzani, M. J. (1996). Beyond independence: Conditions for the

optimality of the simple bayesian classifier, Machine Learning, Proceedings of the Thir-

teenth International Conference (ICML ’96), Bari, Italy, pp. 105–112.

Dorigo, M., Birattari, M. and Stutzle, T. (2006). Ant colony optimization – artificial ants

as a computational intelligence technique, IEEE Computational Intelligence Magazine

1: 28–39.

Du, W. and Atallah, M. (2001a). Secure multi-party computation: A review and open

problems, Technical report, CERIAS Tech. Report.

170

REFERENCES

Du, W. and Atallah, M. J. (2001b). Privacy-preserving cooperative statistical analysis,

17th Annual Computer Security Applications Conference (ACSAC 2001), New Orleans,

Louisiana, USA, pp. 102–110.

Du, W., Han, Y. and Chen, S. (2004). Privacy-preserving multivariate statistical anal-

ysis: Linear regression and classification, Proceedings of the 4th SIAM International

Conference on Data Mining, Lake Buena Vista, Florida, pp. 222–233.

Du, W. and Zhan, Z. (2002). Building decision tree classifier on private data, Proceedings

of the IEEE International Conference on Privacy, Security and Data Mining, Maebashi

City, Japan, pp. 1–8.

Du, W. and Zhan, Z. (2003). Using randomized response techniques for privacy-preserving

data mining, Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, Washington, D.C., USA, pp. 505–510.

ECHR (2014). Handbook on european data protection law.

URL: http:// www. echr.coe. int/ Documents/Handbook_data_ protection_ENG.

pdf

Emekçi, F., Sahin, O. D., Agrawal, D. and El Abbadi, A. (2007). Privacy preserving

decision tree learning over multiple parties, Data Knowl. Eng. 63(2): 348–361.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise, Proceedings of 2nd Int. Conf.

on Knowledge Discovery and Data Mining, Menlo Park, CA, pp. 226–231.

Even, S., Goldreich, O. and Lempel, A. (1985). A randomized protocol for signing con-

tracts, Communications of the ACM 28(6): 637–647.

Evfimievski, A., Srikant, R., Agrawal, R. and Gehrke, J. (2002). Privacy preserving mining

of association rules, Proceedings of the eighth ACM SIGKDD international conference

on Knowledge discovery and data mining, Edmonton, Alberta, Canada, pp. 217–228.

Fouque, P., Poupard, G. and Stern, J. (2000). Sharing decryption in the context of voting

or lotteries, Financial Cryptography, 4th International Conference, FC., pp. 90–104.

171

REFERENCES

Frankel, Y., MacKenzie, P. D. and Yung, M. (1998). Robust efficient distributed rsa-

key generation, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of

Computing, Dallas, Texas, USA, pp. 663–672.

Freeman, D. M. (2010). Converting pairing-based cryptosystems from composite-order

groups to prime-order groups, Advances in Cryptology - EUROCRYPT 2010, 29th An-

nual International Conference on the Theory and Applications of Cryptographic Tech-

niques, French Riviera, pp. 44–61.

Freitas, A. A. (2002). A survey of evolutionary algorithms for data mining and knowledge

discovery, Advances in Evolutionary Computation, Springer-Verlag, pp. 819–845.

Freitas, A. A. and Timmis, J. (2007). Revisiting the foundations of artificial immune

systems for data mining, IEEE Transactions on Evolutionary Computation 11(4): 521–

540.

Friedman, J., Hastie, T. and Tibshirani, R. (2001). The elements of statistical learning,

Springer series in statistics.

Gamal, T. E. (1985). A public key cryptosystem and a signature scheme based on discrete

logarithms, IEEE Transactions on Information Theory 31(4): 469–472.

Gentry, C. (2009). Fully homomorphic encryption using ideal lattices, Proceedings of the

41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,

USA, pp. 169–178.

Gentry, C. and Halevi, S. (2011). Implementing gentry’s fully-homomorphic encryption

scheme, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,

pp. 129–148.

Gjøsteen, K. (2005). Homomorphic cryptosystems based on subgroup membership prob-

lems, Progress in Cryptology - Mycrypt 2005, First International Conference on Cryp-

tology in Malaysia, Kuala Lumpur, Malaysia, pp. 314–327.

Goethals, B., Laur, S., Lipmaa, H. and Mielikäinen, T. (2004). On private scalar product

computation for privacy-preserving data mining, Information Security and Cryptology

- ICISC 2004, 7th International Conference, Seoul, Korea, pp. 104–120.

172

REFERENCES

Goil, S., Nagesh, H. and Choudhary, A. (1999). Mafia: Efficient and scalable subspace

clustering for very large data sets, Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 443–452.

Goldreich, O. (2001). The Foundations of Cryptography - Volume 1, Basic Techniques,

Cambridge University Press.

Goldreich, O. (2004). The Foundations of Cryptography - Volume 2, Basic Applications,

Cambridge University Press.

Goldwasser, S. and Micali, S. (1982). Probabilistic encryption and how to play men-

tal poker keeping secret all partial information, Proceedings of the 14th Annual ACM

Symposium on Theory of Computing, San Francisco, California, USA, pp. 365–377.

Goldwasser, S., Micali, S. and Rackoff, C. (1989). The knowledge complexity of interactive

proof systems, SIAM Journal on Computing 18(1): 186–208.

Guha, S., Rastogi, R. and Shim, K. (1998). Cure: an efficient clustering algorithm for

large databases, SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international

conference on Management of data, Seattle, Washington, United States, pp. 73–84.

Han, J., Kamber, M. and Pei, J. (2006). Data mining: Concepts and techniques, Morgan

kaufmann.

Han, J., Pei, J. and Yin, Y. (2000). Mining frequent patterns without candidate generation,

SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, ACM Press, Dallas, Texas, United States, pp. 1–12.

Han, S. and Ng, W. K. (2008). Preemptive measures against malicious party in privacy-

preserving data mining, Proceedings of the SIAM International Conference on Data

Mining, SDM 2008, Atlanta, Georgia, USA, pp. 375–386.

Han, S., Ng, W. K., Wan, L. and Lee, V. C. S. (2010). Privacy-preserving gradient-descent

methods, IEEE Trans. Knowl. Data Eng. pp. 884–899.

Han, S., Ng, W. K. and Yu, P. S. (2009). Privacy-preserving singular value decomposition,

Proceedings of the 25th International Conference on Data Engineering, ICDE 2009,

Shanghai, China, pp. 1267–1270.

173

REFERENCES

Hesse, W., Allender, E. and Barrington, D. A. M. (2002). Uniform constant-depth thresh-

old circuits for division and iterated multiplication, J. Comput. Syst. Sci. pp. 695–716.

Hinneburg, A. and Keim, D. A. (1998). An efficient approach to clustering in large

multimedia databases with noise, Knowledge Discovery and Data Mining, New York,

USA, pp. 58–65.

Hipp, J., Guntzer, U. and Nakhaeizadeh, G. (2000). Algorithms for association rule mining

- a general survey and comparison, SIGKDD Explorations Newsletter 2(1): 58–64.

Hirt, M. and Sako, K. (2000). Efficient receipt-free voting based on homomorphic encryp-

tion, Advances in Cryptology - EUROCRYPT 2000, International Conference on the

Theory and Application of Cryptographic Techniques, Bruges, Belgium, pp. 539–556.

Howgrave-Graham, N. (2001). Approximate integer common divisors, Cryptography and

Lattices, International Conference, CaLC 2001, Providence, RI, USA, pp. 51–66.

Hsu, H.-H. (2006). Advanced data mining technologies in bioinformatics, Idea Group,U.S.

Huang, Y., Evans, D., Katz, J. and Malka, L. (2011). Faster secure two-party computation

using garbled circuits, USENIX Security Symposium.

Huang, Y., Malka, L., Evans, D. and Katz, J. (2011). Efficient privacy-preserving biometric

identification, Proceedings of the Network and Distributed System Security Symposium,

NDSS 2011, San Diego, California, USA.

Huang, Z., Du, W. and Chen, B. (2005). Deriving private information from randomized

data, Proceedings of the 2005 ACM SIGMOD international conference on Management

of data, Baltimore, Maryland, pp. 37–48.

Ioannidis, I., Grama, A. and Atallah, M. (2002). A secure protocol for computing dot-

products in clustered and distributed environments, Proceedings of the International

Conference on Parallel Processing, Vancouver, British Columbia, Canada, pp. 379–384.

Ishai, Y., Kilian, J., Nissim, K. and Petrank, E. (2003). Extending oblivious transfers effi-

ciently, Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology

Conference, Santa Barbara, California, USA, pp. 145–161.

174

REFERENCES

Ishai, Y. and Kushilevitz, E. (1997). Private simultaneous messages protocols with ap-

plications, Theory of Computing and Systems, 1997., Proceedings of the Fifth Israeli

Symposium, pp. 174–183.

Jagannathan, G., Pillaipakkamnatt, K. and Wright, R. N. (2006). A new privacy-

preserving distributed k-clustering algorithm, Proceedings of the Sixth SIAM Interna-

tional Conference on Data Mining, Bethesda, MD, USA, pp. 494–498.

Jagannathan, G. and Wright, R. N. (2005). Privacy-preserving distributed k-means clus-

tering over arbitrarily partitioned data, Proceedings of the 8th ACM International Con-

ference on Knowledge Discovery in Data Mining, Chicago, Illinois, USA, pp. 593–599.

Jha, S., Kruger, L. and McDaniel, P. (2005). Privacy preserving clustering, Computer Se-

curity - ESORICS 2005, 10th European Symposium on Research in Computer Security,

Milan, Italy, pp. 397–417.

Jiang, W. and Clifton, C. (2007). Ac-framework for privacy-preserving collaboration, Pro-

ceedings of the Seventh SIAM International Conference on Data Mining, Minneapolis,

Minnesota, USA, pp. 47–56.

Kantarcioglu, M. and Clifton, C. (2003). Privacy preserving naive bayes classifier for hor-

izontally partitioned data, IEEE ICDM Workshop on Privacy Preserving Data Mining,

Melbourne, FL, pp. 3–9.

Kantarcioglu, M. and Clifton, C. (2004). Privacy-preserving distributed mining of associa-

tion rules on horizontally partitioned data, IEEE Trans. Knowl. Data Eng. 16(9): 1026–

1037.

Kantarcioglu, M. and Kardes, O. (2006). Privacy-preserving data mining in malicious

model, Technical report.

Kantarcioglu, M. and Kardes, O. (2007). Privacy-preserving data mining applications in

the malicious model, Workshops Proceedings of the 7th IEEE International Conference

on Data Mining, Omaha, Nebraska, USA, pp. 717–722.

Kargupta, H., Datta, S., Wang, Q. and Sivakumar, K. (2003). On the privacy preserv-

ing properties of random data perturbation techniques, Proceedings of the Third IEEE

International Conference on Data Mining, Melbourne, Folrida, pp. 99–106.

175

REFERENCES

Karypis, G., Han, E. and Kumar, V. (1999). Chameleon: Hierarchical clustering using

dynamic modeling, IEEE Computer 32(8): 68–75.

Kerschbaum, F. (2008). Practical privacy-preserving benchmarking, Proceedings of The

IFIP TC-11 23rd International Information Security Conference, IFIP 20th World

Computer Congress, IFIP SEC 2008, Milano, Italy, pp. 17–31.

Kiltz, E., Leander, G. and Malone-Lee, J. (2005). Secure computation of the mean and

related statistics, Second Theory of Cryptography Conference, TCC 2005, Cambridge,

MA, USA, pp. 283–302.

Kolesnikov, V., Sadeghi, A. and Schneider, T. (2009). Improved garbled circuit building

blocks and applications to auctions and computing minima, Cryptology and Network

Security, 8th International Conference, CANS 2009, Kanazawa, Japan, pp. 1–20.

Kolesnikov, V. and Schneider, T. (2008). Improved garbled circuit: Free XOR gates and

applications, Automata, Languages and Programming, 35th International Colloquium,

ICALP 2008, Reykjavik, Iceland, pp. 486–498.

Laur, S., Lipmaa, H. and Mielikainen, T. (2006). Cryptographically private support vec-

tor machines, Proceedings of the 12th ACM International Conference on Knowledge

Discovery and Data Mining, Philadelphia, PA, USA, pp. 618–624.

Li, Y. (2010). Solving tsp by an aco-and-boa-based hybrid algorithm, International Con-

ference on Computer Application and System Modeling (ICCASM), pp. 189–192.

Lin, X., Clifton, C. and Zhu, M. Y. (2005). Privacy-preserving clustering with distributed

EM mixture modeling, Knowl. Inf. Syst. 8(1): 68–81.

Lindell, Y. and Pinkas, B. (2000). Privacy preserving data mining, Advances in Cryptology

- CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara,

California, USA, pp. 36–54.

Lindell, Y. and Pinkas, B. (2002). Privacy preserving data mining, J. Cryptology

15(3): 177–206.

Lindell, Y. and Pinkas, B. (2007). An efficient protocol for secure two-party computation

in the presence of malicious adversaries, Advances in Cryptology - EUROCRYPT 2007,

176

REFERENCES

26th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Barcelona, Spain, pp. 52–78.

Lindell, Y. and Pinkas, B. (2008). Secure multiparty computation for privacy-preserving

data mining, IACR Cryptology ePrint Archive.

Lindell, Y. and Pinkas, B. (2009). A proof of security of yao’s protocol for two-party

computation, J. Cryptology 22(2): 161–188.

Machanavajjhala, A., Kifer, D., Gehrke, J. and Venkitasubramaniam, M. (2007). L-

diversity: Privacy beyond k -anonymity, ACM Transactions on Knowledge Discovery

from Data (TKDD) 1(1).

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate

observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and

Probability, Berkeley, University of California Press, pp. 281–297.

Malkhi, D., Nisan, N., Pinkas, B. and Sella, Y. (2004). Fairplay - secure two-party compu-

tation system, Proceedings of the 13th USENIX Security Symposium, San Diego, CA,

USA, pp. 287–302.

Martens, D., Baesens, B. and Fawcett, T. (2011). Editorial survey: swarm intelligence for

data mining, Machine Learning 82(1): 1–42.

McSherry, F. and Talwar, K. (2007). Mechanism design via differential privacy, 48th An-

nual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Providence,

RI, USA, pp. 94–103.

Mei, D., Shi, X. and Zhao, F. (2009). An improved aco algorithm for vehicle schedul-

ing problem in military material distribution, IEEE International Conference on Grey

Systems and Intelligent Services, pp. 1596–1600.

Menezes, A., van Oorschot, P. C. and Vanstone, S. A. (1996). Handbook of Applied

Cryptography, CRC Press.

Mitchell, T. M. (1997). Machine Learning, McGraw-Hill.

Moskowitz, L. and Chang, I. S. (2000). A decision theoretical based system for information

downgrading, Technical report, DTIC Document.

177

REFERENCES

Naccache, D. and Stern, J. (1998). A new public key cryptosystem based on higher

residues, CCS ’98: Proceedings of the 5th ACM conference on Computer and commu-

nications security, ACM Press, San Francisco, California, USA, pp. 59–66.

Naor, M. and Pinkas, B. (1999). Oblivious transfer and polynomial evaluation, Proceed-

ings of the Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, USA,

pp. 245–254.

Naor, M. and Pinkas, B. (2001). Efficient oblivious transfer protocols, Proceedings of the

Twelfth Annual Symposium on Discrete Algorithms, Washington, DC, USA, pp. 448–

457.

Naor, M., Pinkas, B. and Sumner, R. (1999). Privacy preserving auctions and mechanism

design, in Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 129–139.

Okamoto, T. and Uchiyama, S. (1998). A new public-key cryptosystem as secure as

factoring, Advances in Cryptology - EUROCRYPT ’98, International Conference on

the Theory and Application of Cryptographic Techniques, Espoo, Finland, pp. 308–318.

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes,

Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory

and Application of Cryptographic Techniques, Prague, Czech Republic, pp. 223–238.

Paillier, P. and Pointcheval, D. (1999). Efficient public-key cryptosystems provably secure

against active adversaries, Advances in Cryptology - ASIACRYPT ’99, International

Conference on the Theory and Applications of Cryptology and Information Security,

Singapore, pp. 165–179.

Pinkas, B. (2002). Cryptographic techniques for privacy-preserving data mining, SIGKDD

Explorations 4(2): 12–19.

Pinkas, B., Schneider, T., Smart, N. P. and Williams, S. C. (2009). Secure two-party

computation is practical, IACR Cryptology ePrint Archive 2009: 314.

Prasad, P. K. and Rangan, C. P. (2006). Privacy preserving birch algorithm for clustering

over vertically partitioned databases, Secure Data Management,third VLDB Workshop,

SDM 2006, Seoul, Korea, pp. 84–99.

178

REFERENCES

Quinlan, J. R. (1986). Induction of decision trees, Machine Learning 1(1): 81–106.

Quinlan, J. R. (1993). C4.5: programs for machine learning, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.

Rabin, M. O. (1981). How to exchange secrets by oblivious transfer, Technical report,

Technical Report TR-81, Aiken Computation Laboratory, Harvard University.

Rivest, R. L., Shamir, A. and Adleman, L. M. (1978). A method for obtaining digital

signatures and public-key cryptosystems, Commun. ACM 21(2): 120–126.

Rizvi, S. and Haritsa, J. (2002). Maintaining data privacy in association rule mining,

Proceedings of the 28th Conference on Very Large Data Base, Hong Kong, pp. 682–693.

Rud, O. P. (2001). Data mining cookbook : modeling data for marketing, risk and customer

relationship management, Wiley.

Ryger, R. S., Kardes, O. and Wright, R. N. (2008). On the lindell-pinkas secure computa-

tion of logarithms: From theory to practice, Practical Privacy-Preserving Data Mining,

pp. 21–29.

Safavian, S. and Landgrebe, D. (1991). A survey of decision tree classifier methodology,

IEEE Trans. Systems, Man and Cybernetics 21(3): 660–674.

Sakuma, J., Kobayashi, S. and Wright, R. N. (2008). Privacy-preserving reinforcement

learning, Proceedings of the 25th international conference on Machine learning, ACM,

New York, USA, pp. 864–871.

Samarati, P. (2001). Protecting respondents’ identities in microdata release, IEEE Trans.

Knowl. Data Eng. 13(6): 1010–1027.

Schoenmakers, B. and Tuyls, P. (2006). Efficient binary conversion for paillier encrypted

values, Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, St. Petersburg,

Russia, pp. 522–537.

Seifert, J. W. (2007). Data mining and homeland security: An overview, CRS Report for

Congress.

Shamir, A. (1979). How to share a secret, Communications of the ACM 22(11): 612–613.

179

REFERENCES

Sheikholeslami, G., Chatterjee, S. and Zhang, A. (1998). Wavecluster: A multi-resolution

clustering approach for very large spatial databases, Proceedings of 24th International

Conference on Very Large Data Bases, VLDB, New York, USA, pp. 428–439.

Shmueli, G., Patel, N. R. and Bruce, P. C. (2006). Data mining for business intelligence :

concepts, techniques, and applications in Microsoft Office Excel with XLMiner, Wiley-

Interscience.

Smart, N. P. and Vercauteren, F. (2010). Fully homomorphic encryption with relatively

small key and ciphertext sizes, Public Key Cryptography - PKC 2010, 13th International

Conference on Practice and Theory in Public Key Cryptography, Paris, France, pp. 420–

443.

Stehlé, D. and Steinfeld, R. (2010). Faster fully homomorphic encryption, Advances in

Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and

Application of Cryptology and Information Security, Singapore, pp. 377–394.

Strassen, V. (1969). Gaussian elimination is not optimal, Numerische Mathematik

13(4): 354–356.

Su, C., Bao, F., Zhou, J., Takagi, T. and Sakurai, K. (2007). Privacy-preserving two-

party k-means clustering via secure approximation, 21st International Conference on

Advanced Information Networking and Applications (AINA 2007), Workshops Proceed-

ings, Volume 1, Niagara Falls, Canada, pp. 385–391.

Tan, P.-N., Steinbach, M. and Kumar, V. (2006). Introduction to data mining, Pearson

Addison Wesley.

Teng, Z. and Du, W. (2007). A hybrid multi-group privacy-preserving approach for build-

ing decision trees, The 11th Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD 2007), Nanjing, China, pp. 296–307.

Teo, S. G., Han, S. and Lee, V. C. S. (2013). Privacy preserving support vector machine

using non-linear kernels on hadoop mahout, 16th IEEE International Conference on

Computational Science and Engineering, CSE 2013, Sydney, Australia, pp. 941–948.

180

REFERENCES

Vaidya, J. and Clifton, C. (2002). Privacy preserving association rule mining in vertically

partitioned data, Proceedings of the 8th ACM International Conference on Knowledge

Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 639–644.

Vaidya, J. and Clifton, C. (2003). Privacy-preserving k-means clustering over vertically

partitioned data, Proceedings of the 9th ACM International Conference on Knowledge

Discovery and Data Mining, Washington, DC, USA, pp. 206–215.

Vaidya, J. and Clifton, C. (2004). Privacy preserving näıve bayes classifier for vertically

partitioned data, Proceedings of the SIAM International Conference on Data Mining,

Lake Buena Vista, Florida, USA, pp. 522–526.

Vaidya, J. and Clifton, C. (2005). Secure set intersection cardinality with application to

association rule mining, Journal of Computer Security 13(4): 593–622.

Vaidya, J., Clifton, C., Kantarcioglu, M. and Patterson, A. S. (2008). Privacy-preserving

decision trees over vertically partitioned data, ACM Transactions on Knowledge Dis-

covery from Data (TKDD), pp. 14:1–14:27.

Vaidya, J., Kantarcioglu, M. and Clifton, C. (2008). Privacy-preserving näıve bayes clas-

sification, Journal of Very Large Data Bases 17(4): 879–898.

Vaidya, J., Yu, H. and Jiang, X. (2008). Privacy-preserving svm classification, Knowledge

and Information Systems 14(2): 161–178.

van Dijk, M., Gentry, C., Halevi, S. and Vaikuntanathan, V. (2010). Fully homomorphic

encryption over the integers, Advances in Cryptology - EUROCRYPT 2010, 29th Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

French Riviera, France, pp. 24–43.

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y. and Theodoridis,

Y. (2004). State-of-the-art in privacy preserving data mining, SIGMOD, pp. 50–57.

Verykios, V. S., Elmagarmid, A. K., Bertino, E., Saygin, Y. and Dasseni, E. (2004).

Association rule hiding, IEEE Trans. Knowl. Data Eng. pp. 434–447.

Veugen, T. (2014). Encrypted integer division and secure comparison, International Jour-

nal of Applied Cryptography, pp. 166–180.

181

REFERENCES

Wang, W., Yang, J. and Muntz, R. R. (1997). Sting: A statistical information grid

approach to spatial data mining, Proceedings of Twenty-Third International Conference

on Very Large Data Bases, Morgan Kaufmann, Athens, Greece, pp. 186–195.

Wright, R. and Yang, Z. (2004). Privacy-preserving bayesian network structure compu-

tation on distributed heterogeneous data, Proceedings of the 10th ACM International

Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, pp. 713–718.

Yao, A. C. (1986). How to generate and exchange secrets (extended abstract), 27th Annual

Symposium on Foundations of Computer Science, Toronto, Canada, pp. 162–167.

Yi, X., Paulet, R. and Bertino, E. (2014). Homomorphic Encryption and Applications,

Springer Briefs in Computer Science, Springer.

Yu, H., Jiang, X. and Vaidya, J. (2006). Privacy-preserving SVM using nonlinear kernels

on horizontally partitioned data, Proceedings of the 2006 ACM Symposium on Applied

Computing (SAC), Dijon, France, pp. 603–610.

Yu, H., Vaidya, J. and Jiang, X. (2006). Privacy-preserving svm classification on verti-

cally partitioned data, Proceedings of the 10th Pacific-Asia Conference on Knowledge

Discovery and Data Mining, Singapore, pp. 647–656.

Zhan, J., Matwin, S. and Chang, L. (2007). Privacy-preserving collaborative association

rule mining, Journal of Network and Computer Applications 30(3): 1216–1227.

Zhang, N., Wang, S. and Zhao, W. (2004). A new scheme on privacy preserving association

rule mining, Proceedings of the 8th European Conference on Principles and Practice of

Knowledge Discovery in Databases, Pisa, Italy, pp. 484–495.

Zhang, N., Wang, S. and Zhao, W. (2005). A new scheme on privacy-preserving data

classification, Proceeding of the eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, Chicago, Illinois, USA, pp. 374–383.

Zhang, T., Ramakrishnan, R. and Livny, M. (1996). Birch: An efficient data clustering

method for very large databases, Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec, Canada, pp. 103–114.

Zhong, S. (2007). Privacy-preserving algorithms for distributed mining of frequent item-

sets, Inf. Sci. 177(2): 490–503.

182

REFERENCES

Zhou, Y., Guo, Q. and Gan, R. (2009). Improved aco algorithm for resource-constrained

project scheduling problem, International Conference on Artificial Intelligence and

Computational Intelligence, AICI’09, pp. 358–365.

183

