

Monash University

Faculty of Information Technology

Investigating the Effect of Fitness

Functions on the Performance of

Automated Testing Techniques

This thesis is presented in partial fulfilment of the requirements for the degree of Master of

Information Technology (Honours) at Monash University

By:

Ohood Dakheelallah Alrohili

23741880

Supervisor:

Dr. Aldeida Aleti

2015

© The author 2016. Except as provided in the Copyright Act 1968, this thesis may
not be reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copyright
content to my work without the owner's permission.

i

 DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another

degree or diploma at any university or other institute of tertiary education. Information

derived from the work of others has been acknowledged.

Signed by

Name: Ohood Dakheelallah Alrohili

Date: 28/11/2015

i

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Dr. Aldeida Aleti, for her guidance and support throughout

this thesis. I am profoundly indebted to her for her useful discussions and invaluable

suggestions for the thesis.

I also wish to express my gratitude to my rock in life: my husband, Mr. Mohammed

Alahmadi, for his love, support and understanding. I am also thankful to my kids, Lana and

Dhiaa, who always tell me to “have fun in exams” – you are my source of encouragement.

Moreover, my deepest thanks go to my family back home for their ongoing support and for

always being there for me, with a special mention for my sweethearts, Lamar and Farah. I

therefore lovingly dedicate this thesis to my parents, Dad Mr. Dakheelallah Alrohili and

Mom Mrs. Abeda Alrohili. I honestly believe that nothing I have achieved would have been

possible without your prayers and support; I hope one day my own kids will love me and be

as proud of me as I am of you.

Finally, my heartfelt praise goes to God, for His countless blessings.

ii

ABSTRACT

Testing is technically and economically crucial for ensuring software quality. One of the most

challenging testing tasks is to create test suites that will reveal potential defects in software.

However, as the size and complexity of software systems increase, the task becomes more

labour-intensive and manual test data generation becomes infeasible. To address this issue,

researchers have proposed different approaches to automate the process of generating test

data using optimisation techniques. Due to the non-linear nature of fitness functions and the

large search space, one direction of research has focussed on using metaheuristics, which are

approximate methods of finding good solutions in a reasonable amount of time.

For many years, researchers have been proposing different definitions of fitness functions for

use in the automatic generation of test data, utilising different measurements to evaluate the

quality of the test data produced. Investigating the conditions under which a fitness function

will either succeed in producing, or fail to produce high software coverage is critical for

understanding the suitability and limitations of different fitness function definitions, as well

as for automated test data generation. This study examines the performance of a variety of

fitness functions across diverse types of software, providing resources from which these

conditions may be derived. Experiments show the performance of fitness functions is

problem-dependent, such that the coverage obtained by a given function is impacted by the

software features being tested. To a large extent, software features which can be captured by

software metrics may be seen as an indicator of the possibility of a given fitness function

achieving high coverage.

Keywords: Fitness function, test data generation, metaheuristics, software metrics

iii

Table of Contents

DECLARATION ... i

ACKNOWLEDGEMENTS .. i

ABSTRACT .. ii

List of Figures .. i

List of Tables .. ii

Abbreviations and Acronyms .. iii

Chapter 1: INTRODUCTION ... 1

1.1 Background .. 1

1.2 Motivation and Objectives .. 2

1.3 Structure of the Thesis... 4

Chapter 2: BACKGROUND AND RELATED WORK .. 5

2.1 Introduction ... 5

2.2 Basic Concepts ... 5

2.3 Metaheuristic Search Techniques ... 7

2.3.1 Hill Climbing ... 7

2.3.2 Simulated Annealing .. 8

2.3.3 Genetic Algorithms (GAs) .. 9

2.4 Test Data Generation Using Metaheuristic Algorithms .. 11

2.4.1 Early Attempts .. 14

2.4.2 The Goal-oriented Approach ... 15

2.4.3 The Chaining Approach ... 16

2.4.4 Coverage-oriented Approaches ... 17

2.4.5. Structure-oriented Approaches ... 18
2.4.5.1 Branch Distance-oriented Approaches ... 18

2.4.5.2 Control-oriented Approaches .. 20

2.4.5.3 Combined Approaches .. 22

2.5 Discussion on Metaheuristics for the Generation of Test Data 24

2.5.1 Choice of Test Objects ... 28

2.5.2 Baselines for Comparison ... 28

2.5.3 Number of Experimental Runs ... 29

2.5.4 Data Analysis ... 29

2.5.5 Summary .. 31

2.6 Software Metrics ... 32

2.6.1 Software Code Metrics .. 33
2.6.1.1 Quantitative Metrics ... 33

2.6.1.2 Metrics of Program Flow Complexity .. 34

2.6.1.3 Object-oriented (OO) Metrics ... 35

2.6.2 Code Metrics for Software Testing .. 38

2.7 Conclusion .. 39

iv

Chapter 3: RESEARCH METHODOLOGY AND EXPERIMENT DESIGN 41

3.1 Introduction ... 41

3.2 Research Questions .. 41

3.3 Research Methodology .. 42

3.3.1 Testing Criteria ... 43

3.3.2 The Metaheuristic Search Technique .. 43

3.3.3 Fitness Functions .. 43
3.3.3.1 Coverage Level Fitness Function (CLF) .. 45

3.3.3.2 Distance-oriented Fitness Function (BDF) ... 46

3.3.3.3 Control-oriented Fitness Function (CFF) .. 47

3.3.3.4 Combined Fitness Function 1 (COM1) .. 47

3.3.3.5 Combined Fitness Function 2 (COM2) .. 48

3.3.4 Baseline for Comparison .. 49

3.3.5 Search-based Testing Tool ... 50

3.3.6 Structure-based Software Metrics ... 51
3.3.6.1 Description of Metrics ... 53

3.3.6.2 Tools for Measuring Software Metrics ... 54

3.3.7 Benchmark Test Objects .. 54

3.4 Experimental Design .. 57

3.4.1 Search Technique Settings ... 57
3.4.1.1 Representation .. 58

3.4.1.2 Search Operators ... 58

3.4.1.3 Setting up Parameters... 59

3.4.2 Search Budget ... 60

3.4.3 Experimental Procedure ... 61

3.4.4 Pilot Testing ... 61

3.5 Summary ... 62

Chapter 4: EXPERIMENTAL RESULTS AND ANALYSIS .. 63

4.1 Introduction ... 63

4.2 Summary of the Findings .. 63

4.3 Hypothesis Testing.. 68

4.3.1 Answer to the First Research Question ... 68

4.3.2 Discussion on the Analysis of the First Question .. 74

4.3.3 Answer to the Second Research Question .. 75
4.3.3.1 Size-related Measures .. 81

4.3.3.2 Complexity-Related Measures .. 83

4.3.4 Discussion on the Analysis of the Second Question .. 84

4.4 Threats to Validity .. 85

4.5 Summary ... 86

Chapter 5: CONCLUSION ... 87

5.1 Research Summary and Contributions ... 87

5.2 Future Work .. 89

v

References ... 90

i

List of Figures

Figure 2.1 a program snip .. 6

Figure 2.2 the control-flow graph (CFG) of the example shown in Figure 2.1; nodes are labelled

with the statement number of the corresponding statement, and (B) its control-dependence

graph (CDG) (adapted from Pargas, Harrold & Peck, 1999, p. 267) 6

Figure 2.3 High-level description of a hill climbing algorithm (adapted from McMinn, 2004, p.

107) ... 8

Figure 2.4 High-level description of a simulated annealing algorithm (adapted from McMinn,

2004, p. 108) ... 9

Figure 2.5 Crossover and mutation operations are applied to Parent 1 and Parent 2 to produce

new offspring (adapted from Mantere & Alander, 2005, p. 316) ... 10

Figure 2.6 High-level description of a genetic algorithm (adapted from McMinn, 2004, p. 111) 11

Figure 2.7 Schematic overview of automated test data generation using metaheuristic search

techniques (adapted from Harman, Mansouri & Zhang, 2009, p. 10) 12

Figure 2.8 An example of a control flow graph (CFG) (adapted from Pargas et al., 1999, p. 279)

 .. 20

Figure 2.9 Example for comparing fitness functions ... 21

Figure 2.10 Pargas et al.’s (1999) fitness landscape, for the example illustrated in Figure 2.9

(adapted from McMinn, 2004, p. 130) ... 22

Figure 2.11 Wegener et al.’s (2001) fitness landscape for the example illustrated in Figure 2.9

(adapted from McMinn, 2004, p. 132) ... 23

Figure 2.12 Derived Halstead metrics ... 34

Figure 2.13 Cyclomatic complexity metric ... 35

Figure 14 3.1 Conceptual framework of the research design .. 42

Figure 15 3.2 Branch distance example ... 46

Figure 16 3.3 Search Operators: crossover is applied at test suite level; mutation is applied to test

cases and test suites (adapted from Fraser & Arcuri, 2013b, p. 280) 58

Figure 17 4.1 The distribution of coverage in the 30 runs for coverage level function (CLF), branch

distance function (BDF), control fitness function (CFF), combined fitness function 1

(COM1), combined fitness function 2 (COM2) and random testing (RT). 67

Figure 20 4.2 An example of static attributes ... 82

file:///C:/Users/Ohood/Documents/Semester%202%202015/Thesis/Words/Final/23741880-OhoodAlrohili-AldeidaAleti-Thesis.docx%23_Toc436422586
file:///C:/Users/Ohood/Documents/Semester%202%202015/Thesis/Words/Final/23741880-OhoodAlrohili-AldeidaAleti-Thesis.docx%23_Toc436422586
file:///C:/Users/Ohood/Documents/Semester%202%202015/Thesis/Words/Final/23741880-OhoodAlrohili-AldeidaAleti-Thesis.docx%23_Toc436422586

ii

List of Tables

Table 2.1 A summary of test data generation studies using metaheuristics; simulating annealing

(SA), and genetic algorithms (GAs) ... 13

Table 22.2 Summary of Empirical Studies Assessing the Performance of Fitness Functions

Designed to Test the Generation of Data. Hill climbing (HC); simulating annealing (SA);

genetic algorithms (GAs); memetic algorithms (MA), and random testing (RT). 25

Table 3 2.3 Baselines for comparison, repetitions and statistical tests, used in the empirical studies

in Table 2.2: Hill climbing (HC) and random testing (RT) ... 30

Table 42.4 McCabe’s cyclomatic complexity ranges (adapted from Bhatti, 2011) 35

Table 5 2.5 Class-level OO metrics (adapted from D’Ambros, Lanza & Robbes, 2012) 37

Table 6 3.1 Specifications of the tested fitness functions .. 45

Table 7 3.2 The selected metrics ... 52

Table 8 3.3 The set of test objects ... 55

Table 9 3.4 Collected metric values for each test object ... 57

Table 10 4.1 The mean and standard deviation of the 30 trials of the six fitness function: coverage

level function (CLF), branch distance function (BDF), control fitness function (CFF),

combined fitness function 1 COM1, combined fitness function 2 (COM2) 64

Table 1 1 4.2 The Kruskal-Wallis tests on 30 runs of branch coverage in the test objects.

Statistically significant differences at a level of significance of 0.05 are shown in bold type

 .. 70

Table 12 4.3 Pairwise comparison of medians with respect to coverage using a Wilcoxon–Mann–

Whitney test. Statistically significant differences at a level of 0.003 are shown in bold type

 .. 72

Table 13 4.4 Code metric values after being normalised in the range [0:1] 77

Table 14 4.5 Spearman’s rank-order correlation coefficient (rs) in the top Table, and significance

(p) in the bottom Table. Statistically significant correlations at a level of 0.05 are shown in

bold type ... 79

iii

Abbreviations and Acronyms

BDF Distance-oriented fitness function

CBO Coupling between object classes

CFF Control-oriented fitness function

CFG Control flow graph

CK Chidamber and Kamerer's metrics

CLF Coverage-oriented fitness function

COM1 Combined fitness function

COM2 Combined fitness function

CYC McCabe cyclomatic complexity

DIT Depth of inheritance tree

GA Genetic algorithm

LCOM Lack of cohesion of methods

NCL Number of classes

NOA Number of attributes

NOC Number of children

NOM Number of methods

NSA Number of static attributes

NSM Number of static methods

NTG Number of test goals

OO Object-oriented

RFC Response for a class

rs Spearman’s correlation coefficient

TLOC Total lines of code

WMC Weighted methods per class

1

Chapter 1: INTRODUCTION

1.1 Background

Organisations and individuals worldwide have exponentially increased their reliance on

software to do their jobs effectively and efficiently. In turn, the quality of this software will

significantly affect the quality of their work. Software quality refers to the degree to which

software complies with its functional and non-functional requirements (Alander & Mantere,

2005; Aleti & Grunske, 2014). The functional requirements of an item of software will

ensure that it does what it was designed to do and does not do anything unintended (Alander

& Mantere, 2005). On the other hand, software’s non-functional requirements refer to its

usability, reliability, efficiency, portability, maintainability and compatibility (Aleti &

Grunske, 2014). It is therefore crucial to ensure software quality, as failure occurring when it

is run could lead to serious consequences (Gaikwad & Lodha, 2014). For instance, the

reliability of safety-critical systems, such as those used in cars, is vital. Moreover, the cost of

software failure was estimated at 0.6 % of the GDP in the US in 2002 (Copeland, 2004).

Software testing is a process of verification and validation performed during the software

development process, in order to ensure software quality. Among the most expensive tasks in

this process is the generation of test data which will fulfil a testing criterion (Ghani & Clark,

2009), accounting for approximately 40% of the total software development budget (Xiao,

El-Attar, Reformat & Miller, 2007). Automating test data generation can significantly reduce

the cost of testing, thus decreasing the overall cost of the entire software development

process.

A variety of automated test data generation techniques have been developed in the past few

decades. Random test data generators (Bird & Munoz, 1983; Thevenod-Fosse & Waeselynck,

1993; Voas, Morell & Miller, 1991) are some of the earliest techniques used. These

automatically create random inputs until an acceptable one is found. Since test data is devised

at random with no knowledge of the software structure or information on the test

requirements being incorporated into the generation process, random test data generators may

fail to find test data to satisfy such needs (Pargas, Harrold & Peck, 1999).

Another research direction for the automation of test data generation, which also constitutes

the topic of this thesis, has focussed on using metaheuristic search techniques. Metaheuristics

2

are a family of optimisation algorithms that utilise heuristics in order to find solutions to

combinatorial problems at a reasonable computational cost (Dreo & Siarry, 2007; El-Attar,

Miller, Reformat & Xiao, 2007). This approach to the testing of automation is called search-

based software testing (SBST) (El-Attar et al., 2007). It has been successfully applied to

many testing problems, including functional testing (Korel, 1990; Mansour & Salame, 2004),

non-functional testing (Nossal & Puschner, 1998), temporal testing (Eyres, Jones, Sthamer &

Wegener, 1997) and mutation testing (Harman & Jia, 2008).

Applications of metaheuristics for test data generation have drawn great interest from both

the research community and industrial organisations, such as Daimler, Microsoft, Nokia,

Ericsson, Motorola, and IBM (Orso & Rothermel, 2014). This interest was motivated by the

advantages offered by metaheuristics. Firstly, these are generic methods which are ready for

adaptation to any testing problem for which a test criterion can be measured, numerically

assessed and transformed into a fitness function (Anand et al., 2013; Lakhotia, McMinn &

Harman, 2010). Secondly, metaheuristic search algorithms are able to cope with noise, partial

data and inaccurate fitness (Harman, 2010). Furthermore, the search space of test data

generation, which is the space of possible inputs into the software, is very large, with the

absence of known optimal solutions (Harman & Clark, 2004). Thus, it is applicable to use

metaheuristics to seek good solutions and any testing problem for which a fitness function

can be defined may be tackled in this way.

1.2 Motivation and Objectives

In an automated test data process, metaheuristics are used to generate test cases that will

result in high coverage. Coverage refers to the percentage of code tested (Copeland, 2004).

The ultimate aim is to achieve maximum coverage (Gross et al., 2009), as this will lead to a

higher probability of finding bugs in the software (Arcuri & Fraser, 2013). Investigations

have shown that many faults can be detected when code coverage reaches 100% (Hutchins,

Foster, Goradia & Ostrand, 1994). The fitness function utilised will guide the search; in

effect, rewarding test data that are close to achieving high coverage. Thus, the effectiveness

of metaheuristics in actually covering the code will largely depend on the definition of the

fitness function.

For the last two decades, researchers have been proposing different definitions of fitness

functions for use in the automation of test data generation, where different measurements are

3

used to evaluate the quality of the test data produced. These measurements include structural

coverage (Roper, 1997); approach level (Pargas, Harrold & Peck, 1999); a distance

calculation (Fraser, Arcuri & McMinn, 2013; Shamshiri, Rojas, Fraser & McMinn, 2015), or

the combination of more than one measure (Tracey, 2000; Wegener, Baresel & Sthamer,

2001). For each new definition of fitness introduced, an empirical study is conducted to

determine which metaheuristic techniques perform best when using the new function, usually

based on a limited set of test objects. However, the results from these experimental studies

are generally not insightful (Hooker, 1995), as they are restricted to considering just one

fitness function and are limited to the type or size of benchmark test objects used. If a study

shows the superiority of one definition of the fitness function, it may be claimed there are

other definitions which have not been included in the study, but which are able to provide

outperformed coverage; or else there are untested objects where we would expect the new

fitness function to be outperformed by other functions. Most of the existing comparisons do

not describe the conditions under which a fitness function may produce high or low coverage

(Smith-Miles & Lopes, 2012).

Two key challenges need to be addressed. The first involves determing which fitness

definition is likely to offer the best coverage for a test object benchmark. Useful for this are

studies where diverse fitness functions are compared across a reasonable quantity of test

objects, with the type of test objects meeting the interests of the study (e.g. embedded or

object-oriented (OO) systems, or container classes). A good experimental study will reveal

the relationship between the performance of a fitness function and the characteristics of the

software being tested (Smith-Miles & Lopes, 2012). The outcome can be an automated

fitness function selection model, predicting the coverage obtained from the given function

which is likely to be best for a given test object.

The second key challenge to address is determining which types of test object software testers

can expect a given fitness function to produce high coverage for and why. Currently, there is

a lack of understanding of how the relative performance of different functions depends on the

software being tested (Stützle & Fernandes, 2004). This highlights the need to measure

features of software and explore their relationship with the coverage achieved through fitness

functions. Addressing this question is a valuable means of understanding the strengths and

weaknesses of different functions, with implications for an improved definition of these

functions.

4

The abovementioned gaps in existing research have provided the motivation for this thesis,

the research objectives are listed below:

- To investigate the influence of different definitions of fitness functions on the performance

of the automated testing techniques.

- To gather insights into the relationship between features of software systems and the

coverage achieved by fitness functions, for the purposes of understanding the performance of

these functions.

Through a comprehensive evaluation, we have shown that the effectiveness of a fitness

function is problem-dependent. Features of a test object that can be captured by code metrics

may largely be seen as an indicator, in terms of a function’s capacity to achieve high

coverage.

1.3 Structure of the Thesis

The thesis is organised into the following chapters:

Chapter 2 reviews and analyses work in the field of search-based automatic test data

generation.

The research methodology is presented in Chapter 3, which also explains the design of the

experiments.

Chapter 4 presents an analysis of the study findings. Illustrated here is how software aspects

influence the performance of automated testing techniques.

Chapter 5 summarises and concludes the thesis, with an outline of future research directions.

5

Chapter 2: BACKGROUND AND RELATED WORK

2.1 Introduction

A software test consists of two components: a test case consisting of a sequence of input

values, to be passed to the program upon execution, in order to observe the program’s

behaviour (Tonella, 2004), together with a definition of the expected outcomes. A test suite is

a set of test cases combined for the purposes of test execution. Identifying a test suite that

satisfies a selected testing criterion is known as test data generation (Korel, 1990).

This chapter reviews work in the field of search-based automatic test data generation for

structural testing, wherein test cases are defined on the basis of their internal program

structures. Formulating test cases by using knowledge of the internal program code will

increase confidence that software errors can be detected by the tests (Gross, Kruse, Wegener

& Vos, 2009). This chapter also identifies current gaps in existing studies.

The rest of the chapter is structured as follows. Section 2.2 briefly explains the basic

concepts, while Section 2.3 reviews examples of metaheuristic search techniques. The next

section surveys previous studies on the generation of test data using metaheuristics, as well as

the results achieved. A discussion on metaheuristic techniques in the topic under study is

presented in Section 2.5. Finally, software metrics are investigated in Section 2.6, with

Section 2.7 concluding the chapter.

2.2 Basic Concepts

Many structural testing approaches refer to the control flow graph (CFG), first presented by

Allen (1970). A CFG is a directed graph for a program under study. For a program, ‘F’, a

CFG is denoted as G = (N; E; s; e), where ‘N’ is a set of nodes, ‘E’ is a set of edges, and ‘s’

and ‘e’ are the unique entry and exit nodes to the graph. Each node in this graph corresponds

to a statement in the code and each edge represents a possible transfer of control between two

statements. Nodes corresponding to decision statements (such as ‘if’ or ‘while’ statements)

are referred to as ‘branching nodes’ and their outgoing edges as ‘branches’. Each branch is

labelled with a Boolean expression, referred to as a ‘predicate’, describing the conditions

6

under which a branch is traversed. For instance, Node 2 in Figure 2.1 is a branching node and

its predicate is (i<j).

Figure 2.1 a program snip

An input variable ‘’' of a program ‘P’ is either the variable that appears as an input parameter

of a procedure, or in an input statement. This variable could be of a different data type, such

as Boolean, integer, real, etc. Given that a vector of program input variables is I=

(i1,i2,…..,in), the domain Di1 of the input variable i1 is a set of all values that i1 can have. The

domain ‘D’ of program ‘P’ is the cross product, D = Di1 × Di2 ×…. Dxn,. A program input ‘x’

refers to a single point ‘x’ in the n-dimensional input space, x ∈ D. Furthermore, a path

through a CFG is a sequence of ordered nodes. An example of a path is <entry, 1, 2(F), 6,

exit> (Figure 2.2). A path is feasible if there is a program input for which the path is

traversed during program execution; otherwise, the path is not feasible.

Figure 2.2 the control-flow graph (CFG) of the example shown in Figure 2.1; nodes are labelled

with the statement number of the corresponding statement, and (B) its control-dependence

graph (CDG) (adapted from Pargas, Harrold & Peck, 1999, p. 267)

1. read i, j, k

2. if (i < j)

3. if (j < k)

4. i=k;

 else

5. k=i;

6. print i, j, k

7

A control dependency graph (CDG) is a directed graph used to demonstrate control

dependency concepts. Control dependency describes the reliance of an executed node on the

outcome of its previous branching nodes (i.e. an edge (X, Y) means that node ‘Y’ is control -

dependent on node ‘X’) (Ferrante, Ottenstein & Warren, 1987). For example, in Figure 2.2,

Node 3 is control dependent on 2(T). Node 2 itself has no control dependencies, except the

entry node. This information can be captured by a CDG. Figure 2.2 shows the CDG for the

example shown in Figure 2.1.

In structural testing, after formulating the program as a directed graph, metaheuristics are

employed to produce test data which will cover the desired graph elements (nodes, branches

or paths).

2.3 Metaheuristic Search Techniques

Metaheuristic search techniques rely upon the concept of a move from one solution to

another. These moves depend on the evaluation of candidate solutions, performed using a

fitness function (McMinn, 2004). Fitness functions serve to compare and contrast search

solutions with regard to the test criteria (Lakhotia et al., 2010). The fitness function is tailored

to direct the search into an optimal solution by estimating how close a candidate solution is to

satisfying a test criterion (McMinn, 2004). This section briefly reviews three metaheuristic

algorithms that have been most widely applied in software testing: hill climbing (HC),

simulated annealing (SA) and genetic algorithms (GA). These have been selected because

they represent a comprehensive range of different metaheuristic algorithms.

2.3.1 Hill Climbing

Hill climbing is a local search algorithm. It attempts to enhance one solution at a time, with a

randomly selected solution as a starting point. The neighbourhood of this candidate point is

examined in order to find a better neighbour. If a better candidate is discovered, then it

replaces the current solution. This process is repeated until no better neighbours can be found

for the current solution.

The hill climbing technique is likened to climbing a hill within a ‘landscape’ of a function to

maximise fitness. Peaks in the landscape signify local optimal fitness values, while troughs

reflect solutions with the poorest fitness values. Two different climbing strategies can in fact

8

be found. In a ‘steepest ascent’ climbing technique, all neighbours are assessed, with the

neighbour offering the best improvement being selected to replace the present solution. In the

‘first ascent’, neighbours are randomly investigated, with the first neighbour to offer an

improvement being selected.

Hill climbing is easy to implement and can provide quick results. Figure 2.3 gives a

description of the algorithm. Nevertheless, this technique can easily become stuck with the

local optimal. For instance, the hill climbing technique can lead to a solution at the peak of a

hill that is locally, but not necessarily globally, optimal. In this case, the search is trapped at

the peak of the hill and will be unable to investigate different areas of the landscape.

Figure 2.3 High-level description of a hill climbing algorithm (adapted from McMinn, 2004, p.

107)

Moreover, results gained from the hill climbing strategy depend on the initial solution. A

typical solution for minimising this issue is to extend the algorithm with a series of ‘restarts’,

including diverse initial solutions, in order to sample more of the search space (McMinn,

2004).

2.3.2 Simulated Annealing

Similar to the hill climbing technique, simulated annealing is based on the neighbourhood

search idea. However, it is less dependent on the starting solution. The original algorithm

proposed by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) simulated the

technique with the chemical process of annealing. Thirty years later, Kirkpatrick (1984)

proposed a form of this algorithm as the basis of the search mechanism.

Simulated annealing works by always accepting better solutions and probabilistically

accepting worse solutions. In accepting poorer solutions, the search aims to escape from local

Solution space S

Neighbourhood structure N

Fitness function to be maximized fit

Select a starting solution s ∈ S

Repeat

Select s’ ∈ N(s) such that fit (s’) > fit (s)

 s ← s’

Until fit (s) ≥fit (s’), ∀s’ ∈ N(s)

9

optima in the hope of finding better candidates. The probability (P) of accepting the inferior

candidate solution under consideration is measured as follows:

 𝑃 = 𝑒^(𝛿/𝑡) (2.1)

where δ is the difference in fitness values between the current solution and the neighbour, and

t is a control parameter known as the temperature (of the analogy with the physical annealing

procedure).

At the start of a search, the temperature is high to allow for less restricted movement around

the search space. It is therefore less dependent on the starting solution. The temperature is

gradually decreased as the search progresses. The basic algorithm can be seen in Figure 2.4.

Figure 2.4 High-level description of a simulated annealing algorithm (adapted from McMinn,

2004, p. 108)

2.3.3 Genetic Algorithms (GAs)

Genetic algorithms (GAs) use Darwin’s evolution principle. Solutions to a problem are

known as individuals and the components of the solution are referred to as genes. GAs work

Solution space S

Neighbourhood structure N

Number of solutions to consider at each temperature level num solns

Fitness function to be minimised fit

Select a starting solution s ∈ S

Select an initial temperature t > 0

Repeat

it ← 0

Repeat

Select s’ ∈ N(s) at random

 If fit (s’) −fit (s) < 0

s ← s’

Else

Generate a random number r, 0 ≤ r < 1

If r < e^(δ/t) Then s ← s’

End If

it ←it + 1

Until it = num solns

 Decrease t according to cooling schedule

until stopping condition is reached

10

on a population of solutions instead of just one solution at a time, making this a global

optimisation technique (Sthamer, 1995). Thus, the search can simultaneously explore the

landscape in multiple directions, resulting in better sampling of the search space, when

compared to a local search.

The initial population is randomly produced or seeded with pre-selected individuals. Next,

the population is iteratively evolved through two primary operators: crossover and mutation,

which are used to evolve new offspring. In a one-point crossover, a single crossover point is

randomly chosen in two parent solutions. Crossover operations recombine the genes of Parent

1 up to the crossover point and the genes subsequent to the crossover point of Parent 2, in

order to form Child 1, and vice versa for Child 2 (as can be seen in Figure 2.5). The mutation

operations randomly change the value of a randomly selected gene in the offspring.

Figure 2.5 Crossover and mutation operations are applied to Parent 1 and Parent 2 to produce

new offspring (adapted from Mantere & Alander, 2005, p. 316)

In spite of the randomised nature of the genetic operators, GAs are not a random search; they

exploit old knowledge held in a parent population to produce new offspring with enhanced

performance. In this manner, the population improves in every generation because it is

reproduced by selecting individuals with the best fitness values. Moreover, different selection

mechanisms can be utilised to choose individuals which will produce offspring for the next

generation. For instance, in the fitness-proportionate selection technique (Holland, 1975), the

probability of an individual being chosen for reproduction is proportional to its fitness. In the

linear ranking mechanism (Whitley, 1989), individuals are sorted according to their fitness

value. As a result, the probability of an individual being selected is then proportional to rank,

rather than directly in relation to the respective fitness value.

11

GAs iteratively perform evaluation, selection and recombination procedures until the search

finds an optimal solution or some stopping criterion has been met, such as the number of

generations or time. A genetic algorithm is shown in Figure 2.6.

Figure 2.6 High-level description of a genetic algorithm (adapted from McMinn, 2004, p. 111)

2.4 Test Data Generation Using Metaheuristic Algorithms

To successfully adapt a metaheuristic technique for generating test data, it is essential to

reformulate the latter as a search problem. Following this, one should define the necessary

parameters related to the chosen metaheuristic approach, such as fitness functions,

representation, and move or genetic operators (Clarke et al., 2003; McMinn, 2004).

For the generation of test data using metaheuristic techniques, one solution is a test case

consisting of a sequence of input values, passed to the program upon execution to observe its

behaviour (Tonella, 2004). Thus, a set of test cases will form a search space and the

representation of a candidate is usually a floating point number and binary code derived from

the underlying data types of the programming language used (Harman & Jones, 2001;

Harman, Mansouri & Zhang, 2009).

A neighbourhood structure in a candidate solution for local searches constitutes a collection

of solutions that are in some respects close to the current candidate solution (Tracey, Clark &

Mander, 1998). For numerical variables, such as real and integer variables, the

neighbourhood will be within a range of values that surround each individual value. The

neighbours of Boolean variables are ‘TRUE’ or ‘FALSE’ values, while the neighbours of

enumerated variables will consist of any value from the enumeration (Tracey, Clark &

Mander, 1998).

Randomly generate or seed initial population P

Repeat

 Evaluate fitness of each individual in P

 Select parents from P according to selection mechanism

 Recombine parents to form new offspring

 Construct new population P’ from parents and offspring

 Mutate P’

 P ←P’

until stopping condition is reached

12

A schematic overview of the most common approaches in the literature is presented in Figure

2.7. In these approaches, test inputs are generated with regard to a test adequacy goal, which

is a human input into the process (Harman et al., 2009).

Figure 2.7 Schematic overview of automated test data generation using metaheuristic search

techniques (adapted from Harman, Mansouri & Zhang, 2009, p. 10)

A test adequacy criterion for structure testing is a testing aim that can be numerically

measured and assessed, e.g. covered branches or statements. The test criterion is coded as a

fitness function (Harman, 2007). Once the fitness function is defined for a test criterion, then

the generation of test inputs can be automated using search-based software testing tools

(Harman et al., 2009).

The fitness function is used to evaluate the performance of candidate test inputs, according to

the current optimum. Usually, there is a spread of solutions, ranging in fitness from very poor

to good (Watkins & Hufnagel, 2006). In order to assess fitness, the program is executed for

the inputs generated, as shown in Figure 2.7. The execution is then monitored to examine the

fitness of the inputs and whether they satisfy the test criterion (Harman et al., 2009).

The fitness function plays a vital role in searches conducted using metaheuristic algorithms to

test data generation problems. The degree of search success could critically depend on the

definition of the fitness of individuals (Baresel, Sthamer & Schmidt, 2002; Harman, 2007;

Watkins & Hufnagel, 2006). A well-defined fitness function increases the likelihood of

13

finding a solution and reaching higher overall code coverage. Better guidance of the search

process can lead to optimisation with less iteration, thus consuming fewer system resources in

the process (Baresel et al., 2002; Watkins & Hufnagel, 2006).

Plotting the fitness of all possible solutions to a problem will result in a fitness landscape that

a metaheuristic algorithm will explore to find a good solution (Collet & Rennard, 2007). A

fitness landscape is used to visualise a testing problem and its candidate solutions with

respect to their perceived fitness. The highest peak in the landscape represents the solution

with the highest fitness value, this then being the best solution to the problem in hand.

Previous research into the automation of test data generation using metaheuristic algorithms

can be categorised based on the definition of the fitness function optimised in four groups:

the goal-oriented approach, the chaining approach, the coverage-oriented approach and the

structure-oriented approach. The approaches are summarised in Table 2.1 and discussed in

detail in the following sections.

Table 2.1 A summary of test data generation studies using metaheuristics; hill climbing

(HC), simulating annealing (SA), and genetic algorithms (GAs)

Article

Search Algorithm

Fitness Function Test Objects
HC SA GA

Miller &

Spooner

(1976)

+

Maximising coverage

From the literature (a matrix

factorisation subroutine and

sorting method)

Korel

(1990)

(AV

M)
Branch distance

A simple Pascal program that has

array and pointer structure and

does not contain procedure calls

Korel

(1992)
+

Minimising branch

distance (goal-

oriented)

Simple Pascal program that has

array and pointer structure and

does not contain procedure calls

Xanthakis

et al. (1992)
+

Minimising branch

distance
Pascal programs

Watkins

(1995)
+ Path coverage

The popular triangle classification

problem and two experimental

programs containing no loops

Sthamer

(1995)
+

Maximising branch

coverage

Four ADA problems (triangle

classification, linear search,

remainder calculation,

and direct sort)

14

Ferguson &

Korel

(1996)

+

Improving hard-to-

cover predicate branch

coverage (a chaining

approach)

Pascal problem (only supports the

generation of integer test data)

Jones et al.

(1996)
+ Branch coverage

Six ADA problems (quadratic

equation, triangle

classification, linear search,

remainder calculation, direct sort,

and generic quicksort)

Gallagher

&

Narasimhan

(1997)

+

Maximising coverage

(a chaining approach)

Large ADA programs (60,000

lines of code)

Roper

(1997)
+

Maximising branch

coverage
-

Tracey et

al. (1998)
+

Minimising branch

distance

Small ADA programs (20 to 200

lines of code)

Tracey,

Clark &

Mander

(1998)

+

Minimising branch

distance

A number of small ADA

examples

Pargas et al.

(1999)
+

Maximising statement

and branch coverage

(goal-oriented)

Six C-test programs

Tracey

(2000)
+ + +

Controlling

dependency

information with

branch distance

Two industrial systems

Michael et

al. (2001)
+

Conditions coverage

(a chaining approach)

C++ problem (2,000 lines of

code)

Wegener et

al. (2001)
+

Approaching level

with the branch

distance

Seven programs (5 to 154 lines of

code)

2.4.1 Early Attempts

Miller and Spooner (1976) were the first to suggest using search algorithms to automate test

data generation. The tester selects a path through the program and then produces a straight-

line version from the program that is equivalent to that path. The branch predicates in the

path are extracted and rearranged into Boolean assignments as a ‘path constraint’ form. A

15

real-valued function (f) is built for the whole path, to estimate how close all the branch

predicates on the path are to being satisfied. It is counted as positive when all the branch

predicates are true, and negative if the opposite is the case.

Test data are derived by choosing an initial set of data and then applying a numerical

optimisation algorithm, attempting to maximise the value of f. This is terminated when the

value of f becomes positive. The function, f is assigned by repeatedly executing the straight-

line version and automatically collecting the path constraint values.

It was not until 1990 that Miller and Spooner’s research directions were continued by Korel

(1990). In brief, to execute a particular path, Korel’s (1990) approach initially executes the

program with some arbitrary inputs. If an undesired branch is taken, a local search algorithm

known as the alternating variable method (AVM) (Cooper & Glass, 1965; Gill & Murray,

1974) is used to guide the program execution along the desired path, using a specific fitness

function derived from the predicate of the desired branch. This fitness function has a real

value, referred to as branch distance, which measures how close the predicate is to being

executed.

The main weakness of Korel’s (1990) method is its limited ability to detect the infeasibility

of the path (Ince, 1987; Muchnick & Jones, 1981; DeMillo et al., 1987). If an infeasible path

is selected and the infeasibility is not detected, then a significant computational effort could

be spent before the search process terminates. The problem of a path’s infeasibility means

that Korel’s (1990) approach is best suited for software featuring a relatively small number of

paths to reach the selected node (Korel, 1992).

2.4.2 The Goal-oriented Approach

Based on his previous work, Korel (1992) developed a new method, known as the goal-

oriented approach. This alleviates the problem of a path’s infeasibility. The idea of this

approach is to concentrate purely on branches that influence the execution of the goal node,

ignoring branches with no influence. This was achieved through the classification of a

program structure based exclusively on flow graph information, with regard to a goal node

classed as critical, semi-critical, or non-essential. This classification is determined prior to

program execution. Critical statements lead the execution flow away from the target node,

while semi-critical statements can lead to the latter through the back of a loop. Non-essential

statements do not have any influence on execution flow.

16

The search process will determine whether the program’s execution should continue through

the current branch, or via an alternative branch (i.e. the branch currently being reached does

not lead to the execution of the goal node). If an undesirable execution flow at the current

branch is monitored, then a real-valued function, called a ‘distance function’, is associated

with the branch. Metaheuristic algorithms are used to automatically find new inputs that will

change flow execution at the current branch. If the search fails to find new inputs, it is

terminated in the case of the critical branch, or will be continued through the current branch if

it is classed as semi-critical. The reason for this is that the target node may still be reached in

the next iteration of the loop, even if the control flow diverges from the goal node at the

semi-critical branch.

The goal-oriented method has some limitations. For instance, because this approach is based

solely on a flow graph of the program, this makes some nodes difficult to reach for some

programs (Ferguson & Korel, 1995), because the execution of a certain goal node could

require prior execution of other nodes in the program.

2.4.3 The Chaining Approach

The chaining approach (Ferguson & Korel, 1995, 1996; Korel, 1996) extends the goal-

oriented approach (Korel, 1992) to handle its limitations. This approach uses program

dependency concepts, combined with a program flow graph, to find solutions to branch

predicates by identifying a chain of nodes that affect the execution of the target node. This

chain is built up iteratively during execution and it must be visited prior to the execution of

the target node, in order to increase the chances of reaching the selected node.

The approach begins by executing a program for random inputs. During execution, a search

process will decide whether execution should continue through the current branch, or whether

an alternative branch should be taken because it does not lead to the target node. When the

latter case occurs, program execution is suspended and new inputs are generated, in order to

change the flow of execution at this branch. Data dependence analysis is used as a guide to

determine which input variables may affect a given branch predicate. If the search process

fails to find the inputs, the chaining approach will attempt to alter the flow and identify the

chain of the ‘essential’ nodes by using data dependence concepts and enabling the chain to be

executed first.

17

The work of Gallagher and Narasimhan (1997) adopts Ferguson and Korel’s (1996) chaining

approach, but unlike Ferguson and Korel’s (1996) method, their approach supports the

generation of real numeric types, strings and enumerated data structures. In addition, the

execution is not initially forced along the entire path, but is rather advanced progressively,

satisfying constraints step by step. This method of one decision at a time will help in the early

detection of path infeasibility. However, this method may become stuck in a local optimum.

Michael, McGraw and Schatz (2001) use a GA to cover all branches in a program for

condition coverage by delaying attempts to satisfy a particular condition until test data that

matches that condition is found. If a condition has been visited, but only one branch has been

exercised, GA shall be employed to cover the other branch. This method, however, may not

be suitable for generating test data for a single branch.

The main contribution of the chaining approach is the use of data dependence, which

improves the efficiency of optimisation searches (Gallagher & Narasimhan, 1997). Although

the chain approach can be effective for a larger class of programs, the use of the ‘find-any-

path’ concept could present some drawbacks. Firstly, it is hard to predict the coverage to be

provided because different paths exercise different branches, resulting in different levels of

coverage (Edvardsson, 1999). Secondly, the search time will significantly increase if there is

a high number of paths which need to be considered when processing a chain (Harman et al.,

2009).

2.4.4 Coverage-oriented Approaches

In coverage-oriented approaches, the fitness of individuals is rewarded on the basis of

covered program structures. Coverage refers to the percentage of lines of a code that has been

tested (Copeland, 2004). The ultimate aim is to achieve maximum coverage (Gross et al.,

2009), as this will lead to a higher probability of faults or bugs being found in the software

(Arcuri & Fraser, 2013). Various forms of coverage measures are used, as follows (Beizer,

2002):

 Statement coverage - estimates the percentage of program statements covered during

testing.

18

 Branch coverage - measures the extent to which branch statements in the code are

covered during the test. Examples of branch statements are ‘switch’, ‘if-else’ and ‘do-

while’ statements.

 Path coverage - measures the number of feasible paths through the graph produced

during the test.

Roper (1997) experiments with a genetic algorithm-based program to attain branch coverage.

Test data which cover more program branches are rewarded with higher fitness values. This

method lacks guidance for structures with a strong chance of being visited, such as a deeply

nested structure, or a branch predicate that needs a particular value from a large domain in

order to be true.

In his work, Watkins (1995) concentrates on full path coverage for programs. Test data that

follow unexecuted paths are assigned higher fitness values than those that pass via paths

which have already been covered, by penalising the fitness values of individuals that follow

paths already used during the search. However, this penalisation of executed paths does not

exploit the information in the branch predicates (Tracey, 2000). As a result, the quality of

guidance for the search technique in discovering new and hitherto undiscovered paths is

reduced.

Generally, coverage-oriented approaches do not achieve full coverage for large software

systems, because they suffer from a lack of the kind of guidance provided for those

unexplored structures, which are then only explored using a small sample of the overall input

domain (McMinn, 2004).

2.4.5. Structure-oriented Approaches

The fitness of individual rewards on the basis of either branch distance, control structures, or

both.

2.4.5.1 Branch Distance-oriented Approaches

Branch distance-oriented approaches exploit information from branch predicates, which

evaluate how far a predicate is from obtaining its opposite value. This is similar to earlier

work by Miller and Spooner (1976).

19

The work of Xanthakis et al. (1992) was the first to apply GA in the generation of structural

test data. This method follows similar lines to earlier work by Miller and Spooner and it

therefore suffers from problems which resemble those discussed in Section 2.4.1, such as the

limited ability to detect path infeasibility. A tester chooses a path and then the branch

predicates are extracted from it. A GA is employed to find test data which will satisfy all

branch predicates in the path at once. The fitness function sums up the values of all branch

distances.

Studies by Tracey et al. (Tracey, Clark, Mander & McDermid, 1998; Tracey, Clark &

Mander, 1998) employ simulated annealing to the generation of structural test data. The

approach aims to search for test data which will cover the program’s statements in turn. Thus,

the fitness function indicates whether or not the target statement has been exercised. The

fitness function is the branch distance, which indicates how close the current execution is to

adopting the desired branch according to the decision made. This means the fitness function

will return zero if the current execution leads to the target condition (branch or statement);

otherwise, it returns positive values.

The search proceeds while looking for test data to cover each statement in turn. When the

search process stagnates at one node and no further progress can be made, the approach will

attempt to generate test data for the next target node. Unlike Korel’s approach (1990), the

newly generated test data do not need to conform to an already successful sub-path. However,

this leads to the search losing information about its progress (McMinn, 2004). The reason for

this is because a solution that deviates from the desired path at an early stage of a search will

be assigned similar fitness values to those which deviate at an advanced stage of a search.

The work of Sthamer (1995) and Jones, Sthamer and Eyres (1996) has attempted to exercise

all branches in the software. Hence, it is not necessary to choose a path. A program is

instrumented to dynamically calculate fitness values during the execution of a program for

generating test data. The fitness function will exploit information contained in the branch

predicate, in order to compute how far it is from exercising the program branches. The fitness

function is formulated to return zero if test data that exercise the target branch are found. For

instance, if a branch predicate a==b has to be evaluated as ‘True’, the fitness value will then

be set as |a-b|, or according to the Hamming distance. For a branching condition a>= b, the

fitness function is formed by |b - a|. In every evaluation, if the test data obtain the fitness

20

value 0, it will indicate that the search has found test data which will fulfil the branching

condition.

The main criticism of branch distance-oriented techniques is that control information about

the target is not included in the fitness function. For instance, suppose the target branch is 6

in the graph shown in Figure 2.8. The test case ‘t1’ that follows the path <1(F),7 > and the

test case ‘t2’ that goes through the path <1(T),2(F),4 > will be rewarded with the same low

fitness value under Jones et al.’s (1996) schema, although ‘t2’ is closer to target node 6. This

happens because no control dependence information has been incorporated into the fitness

evaluation. This may cause the search to get stuck in local optima, thereby making it difficult

to obtain full coverage (McMinn, 2004; Wegener, Baresel & Sthamer, 2001). The control-

oriented approaches discussed in the next section will address this problem.

Figure 2.8 An example of a control flow graph (CFG) (adapted from Pargas et al., 1999, p. 279)

2.4.5.2 Control-oriented Approaches

Control-oriented approaches use control information for the fitness function. This is achieved

by using a control dependency graph to determine predicate paths for the intended node.

Pargas et al. (1999) apply a GA for statement and branch coverage, guided by the control

dependences in the program. For a goal node, a sequence of control-dependent nodes is

specified, which should be exercised for the execution of the goal node. The fitness function

is equivalent to the number of successful control-dependent node executions. Under this

schema, the test case ‘t1’ that follows the path <1(T), 2(F), 4 > has a higher fitness value than

the test case which goes through the path <1(F), 7 >.

21

If dn is the number of control-dependent nodes for the current target branch and en is the

number of successfully executed control-dependent nodes, Pargas et al.’s (1999) fitness

function can be expressed as follows:

 𝐹𝑖𝑡 = 𝑑𝑛 − en (2.2)

However, it is worth noting that only using control structures in fitness functions will form

plateaux on the fitness landscape (McMinn, 2004). As there is no distance information that

can be exploited, this will result in insufficient guidance towards unexplored structures. For

instance, Pargas et al.’s (1999) fitness landscape shown in Figure 2.10 has three plateaux. If

the solutions fail to fulfil one of the branch predicates, no branch distance information will be

given on how to descend the landscape for the search process, as guidance for those

individuals who are closer to exercising the desired node.

Figure 2.9 Example for comparing fitness functions

void landscape_example (int i, int j)

{

 if (i >= 10 && i <= 20)

{

if (j >= 0 && j <= 10)

{

// statement

// ...

}

}

}

22

Figure 2.10 Pargas et al.’s (1999) fitness landscape, for the example illustrated in Figure 2.9

(adapted from McMinn, 2004, p. 130)

2.4.5.3 Combined Approaches

Tracey (2000) uses simulated annealing to combine both branch distance and control

information for testing critical safety systems. The branch distance is calculated using

Sthamer’s (1995) approach, described in Section 2.4.5.1. The control information in this

method refers to the number of control-dependent nodes which are successfully reached

during an execution. This control information is used to scale branch distance values.

If dn is the number of control-dependent nodes for the current target branch and en is the

number of successfully executed control-dependent nodes, while bd is the branch distance,

the fitness function, fit will be computed using the following formulae (McMinn, 2004):

 𝑓𝑖𝑡 =
𝑒𝑛

𝑑𝑛
 × 𝑏𝑑

(2.3)

This scheme, however, results in unnecessary local optima in the fitness landscape (McMinn,

2004).

23

Wegener et al.’s (2001) approach follows the work of Tracey (2000) in computing branch

distance. The fitness function is zero if the target is reached; otherwise, it is computed by

normalising the branch distance and adding it to the approach level, as follows (Harman &

McMinn, 2010):

 𝑓𝑖𝑡 = (𝑑𝑛 − 𝑒𝑛 − 1) + 𝑛𝑜𝑟𝑚 (𝑏𝑑)

(2.4)

The (𝑑𝑛 − 𝑒𝑛 − 1) calculation is referred to as the approach level, al. Hence, the computed

fitness function in Equation 2.4 can be expressed as follows:

 𝑓𝑖𝑡 = 𝑎𝑙 + 𝑛𝑜𝑟𝑚 (𝑏𝑑)

(2.5)

The fitness function in Equation 2.5 has been used in many studies, such as the work of

Harman and McMinn (2010). Wegener et al.’s (2001) fitness landscape is shown in Figure

2.11.

Figure 2.11 Wegener et al.’s (2001) fitness landscape for the example illustrated in Figure 2.9

(adapted from McMinn, 2004, p. 132)

24

Although Wegener et al.’s (2001) fitness function imposes a fitness landscape which

resembles that of Pargas et al. (1999), the branch distance information employed by Wegener

et al. (2001) prevents plateaux from forming on the fitness landscape. As depicted in Figure

2.11, a sweeping landscape results from each level to the next. However, the landscape

presented by Wegener et al. (2001) is for the simple program shown in Figure 2.9 and a

similar landscape is not guaranteed for all test objects. Using the same fitness function with

other programs that have different structures will impose different landscapes. Therefore, it is

important to investigate how the internal program structure could affect the performance of a

fitness function. Hence, this study will examine the performance of different fitness functions

in problems with different structures.

2.5 Discussion on Metaheuristics for the Generation of Test Data

Different fitness functions have been presented and used to automate the test data generation

process, aiming for more cost-effective testing. To assess the performance of a certain fitness

function in terms of how effective and costly it is in attaining the test goals, previous research

has compared the results produced by metaheuristic algorithms, both with each other and

with alternatives, such as random generation. A summary of studies that assess the

performance of fitness functions is recorded in Table 2.2.

25

Table 22.2 Summary of Empirical Studies Assessing the Performance of Fitness

Functions Designed to Test the Generation of Data. Hill climbing (HC); simulating

annealing (SA); genetic algorithms (GAs); memetic algorithms (MA), and random

testing (RT).

Article

Search Method Evaluation

of

Performance

Factors

Test Objects

Outcomes of

the

Experiment HC SA GA

MA RT

Pargas et al.

(1999)
+

+

Statement and

branch

coverage

Six small test

programs

(21-82 lines

of code)

GAs

outperformed

the random

method for

three

programs

Tracey

(2000)
+ + +

+
Branch

distance

Two

industrial

systems

(nuclear

primary

protection

system and a

civil aircraft

engine

controller)

GAs are the

most effective

and efficient

of the

techniques

Tracey et al.

(2000)
 +

Branch

coverage

95 ADA

programs

between 10

and 200 lines

of code

Approach

proposed for

the use of

optimisation

techniques to

generate test

data in the

testing of

exceptions

Michael,

McGraw &

Schatz

(2001)

+

+
Condition

coverage

C/C++

programs

(triangle

classification

and an

autopilot

control

program for a

Boeing 737)

GAs obtain a

much higher

coverage than

the random

algorithms

Wegener et

al. (2001)
+

+
Branch

coverage

Seven

programs (5

to 154 lines

of code)

GAs achieve

the highest

levels of

coverage, with

greater

26

efficiency

Mansour &

Salame

(2004)

+ +

Path coverage

Eight

functions of

fewer than 86

lines of code

More paths

were covered

when using

SA; GAs were

faster than SA

Wang & Jeng

(2006)
+ +

+
Branch

coverage
Six programs

Memetic

Algorithms

outperform HC

and GA

Miller,

Reformat &

Zhang

(2006)

+

+
Branch

coverage

6 programs

(3.

conversion of

a

hexadecimal

number to a

decimal

number;

bonus

calculation;

quadratic

formula;

triangle

classification

and two sort

programs)

A little

difference for

simple

programs;

GAs can

achieve 100%

branch

coverage in a

much smaller

number of

generations

for large

programs

Watkins &

Hufnagel

(2006)

+

Path coverage

Triangle

classification

and an

industrial

program

(CAPBDG)

The branch

predicate and

inverse path

probability

approaches

were the best

performers

Xiao et al.

(2007)
+ +

Condition-

decision

coverage

Five C/C++

programs

GAs are

consistently

the best

performers

Harman &

McMinn

(2007)

+

Branch

coverage

Six real

world

programs

GAs can often

be

outperformed

by HC and RT

Arcuri &

Yao (2008)
+ + +

+

+
Branch

distance

Nine Java

container

classes

MA has the

best

performance

27

in all the

containers

except Vector.

Harman &

McMinn

(2010)

+

+

Maximised

coverage

Nine

programs

HC

outperformed

GAs

Bhattachary

a et al.

(2011)

+ + +

Branch

coverage

A small

synthetic

example

GAs

outperformed

HC and SA

Fraser,

Arcuri &

McMinn

(2013)

 + +
Branch

distance

16 open

source

projects

The MA

achieved up to

a 32% higher

branch

coverage than

the standard

GA

Fraser &

Arcuri

(2014)

 + +
Branch

distance

100 open

source

projects

A significant

improvement

in GAs over

RT when

employing the

Randoop tool

(Pacheco &

Ernst, 2007),

while similar

results were

produced

when utilising

the EvoSuite

tool (Fraser &

Arcuri, 2011b)

Shamshiri,

Rojas,

Fraser &

McMinn

(2015)

 +

+
Branch

distance

1,000

randomly

selected

classes

Little

difference

between the

coverage

achieved by

GAs,

compared to

RT

28

The studies shown in Table 2.2 exhibit broad variation in terms of types and sizes of test

objects, the methods of evaluation used, the number of experimental runs and data analysis.

2.5.1 Choice of Test Objects

In software engineering, the selection of test objects in which metaheuristic methods are

employed is critical, since the test objects have a paramount effect on the results obtained

(Fraser & Arcuri, 2013b). Thus, for any empirical investigation in software engineering, it is

preferable to consider several sizes, types and structures of software (Arcuri & Briand, 2014),

in order to gain sufficient confidence that the results obtained are not just applicable to the

test objects used (Ali, Briand, Hemmati & Panesar-Walawege, 2010), unless the proposed

method is to exclusively target a certain type of software.

Table 2.2 demonstrates that the test objects used in the studies were limited in their size, type

and functionality. Using a specific type or functionality of test object is only reasonable if the

proposed fitness function is aimed at that type. For instance, Arcuri and Yao (2008) aimed

purely at container classes, while Tracey (2000) targeted embedded systems. Table 2.2 also

illustrates that the test objects used are limited in their size. However, selecting test objects

with a small number of lines is reasonable if researchers want to manually investigate the test

object code. For instance, the triangle classification program is a benchmark used in many

studies, as seen in Table 2.2. The triangle classification program is designed to classify a

triangle, whether isosceles, scalene, equilateral, or invalid. This program is widely used for

path coverage testing because it has a manageable number of paths (i.e. 14 paths in all).

Subsequently, researchers tend to investigate each path individually, which is challenging

when the test object has a high number of paths. Although using a small test object meant the

investigation could be extensive, it highlights doubts as to whether or how results might be

generalised to real world programs, where they are usually of a substantially larger size and

have a much more complex structure.

2.5.2 Baselines for Comparison

Generally, when the performance of algorithms is investigated, it is required to include a

method as a baseline for comparison (Johnson, 2002), and metaheuristic algorithms are no

exception. According to Ali et al. (2010), in their systematic review of an empirical

investigation into search-based, test-case generation, the metaheuristic technique “can only be

assessed if it is compared with a carefully selected, meaningful baseline” (Ali et al., 2010, p.

29

747). The reason for this is that in the absence of known optimal solutions (Harman & Clark,

2004), using a baseline for comparison will justify and verify the results obtained using a

metaheuristic technique. In other words, the baseline method will demonstrate whether or not

the process of generating test data for a given software can be handled effectively by

employing metaheuristic algorithms.

The baseline for comparison could be a simple technique, such as a random search, or

another metaheuristic algorithm, such as hill climbing. Table 2.3 shows the baseline

comparison used in the studies discussed above.

2.5.3 Number of Experimental Runs

Since metaheuristic techniques are stochastic by nature (i.e. executing the same method twice

will yield different results) (Dreo & Siarry, 2007), it is crucial to account for the random

variation in metaheuristic methods. Explicitly, this is usually accomplished by running the

algorithms multiple times in order to capture the variation of the results obtained (Ali et al.,

2010).

In software engineering, it is not recommended to run the algorithms for fewer than 30 runs,

as this could result in unacceptably low levels of statistical power (i.e. it becomes very

difficult to use statistical tests to detect and prove large differences) (Arcuri & Briand, 2014).

However, there are exceptions, such as applying these algorithms in embedded systems,

where the process of generating each test suite could be extremely expensive in terms of time

and resources (Arcuri, Iqbal & Briand, 2010). Table 2.3 shows how many runs were

performed by the studies discussed above.

2.5.4 Data Analysis

As mentioned earlier, running a sufficient number of algorithms is essential to allow

statistical analysis to be carried out on the data. As metaheuristic techniques are attributed

with random variation, the use of statistical tests is of paramount importance in determining

whether the difference between comparisons is due to chance, or if there is a real difference

between them (Wohlin et al., 2012). Empirical studies that do not back their claims through

statistical evidence may cast doubts on their actual effectiveness (Arcuri & Briand, 2014;

Wohlin et al., 2012).

30

Table 2.3 shows that some of the above studies have included empirical analyses, supported

by some kind of statistical testing. In particular, these are t–tests (Efron, 1969) and Wilcoxon

Mann–Whitney tests (Mann & Whitney, 1947), where algorithms are compared in a pairwise

fashion. On the other hand, ANOVA was used in Watkins and Hufnagel’s (2006) work for

multiple comparisons. Conversely, Fraser et al. (2013) and Bhattacharya et al.

(2011) used effect size measures to quantify the relative effectiveness of algorithms.

Table 3 2.3 Baselines for comparison, repetitions and statistical tests, used in the empirical

studies in Table 2.2: Hill climbing (HC) and random testing (RT)

Article

Baselines

for

comparison

Repetitions
Statistical

Tests

Reported

Metrics

Pargas et al.

(1999)
- 32 runs -

CYC LOC

Tracey (2000) RT - -
-

Tracey et al.

(2000)
- - -

-

Michael, McGraw

& Schatz (2001)
- 5 runs -

-

Wegener et al.

(2001)
- 4-6 runs -

CYC LOC

Mansour &

Salame (2004)

HC and

Korel’s

algorithm

(1990)

20 runs -

CYC LOC

Wang & Jeng

(2006)
- - -

-

Miller, Reformat

& Zhang (2006)
RT 10 runs -

-

Watkins, &

Hufnagel (2006)
RT 9-100 runs ANOVA

-

Xiao et al. (2007) RT - -

-

Harman, &

McMinn (2007)
HC and RT 30 runs

t−test

with level

0.01

-

31

Arcuri A, Yao X.

(2008)
RT 100 runs

Mann

Whitney U-

tests

-

Harman &

McMinn (2010)
RT 60 times

One-tailed

Wilcoxon

rank

sum test

-

Bhattacharya,

Sakti, Antoniol,

Guéhéneuc &

Pesant (2011)

- 20 times

t-test and

Cohen d-

effect size

-

Fraser, Arcuri &

McMinn (2013)
- 30 runs

Two-tailed

Mann-

Whitney and

effect sizes

(Aˆ12)

U-test

-

Fraser & Arcuri

(2014)
- 10 runs

Two-tailed

Mann-

Whitney and

effect sizes

(Aˆ12)

U-test

-

Shamshiri, Rojas,

Fraser & McMinn

(2015)

- 50 runs

Mann-

Whitney U-

test at a

level of =

0:05

-

2.5.5 Summary

Despite the above limitations with regard to the type and size of test objects; the method of

evaluation used, and the number of experimental runs and data analysis, these experiments

are encouraging as they have been effective in proving the usefulness of metaheuristic search

techniques. However, the conclusions of these studies are limited, since each study has used

only one fitness function to measure the quality of the solutions generated. These studies did

not culminate in any sort of recommendations as to which definitions of fitness functions

offer better performance. Most useful are studies where diverse fitness functions are

compared across a reasonable quantity of test objects. The outcome can be an automated

fitness function selection model predicting the coverage obtained from the given function

32

which is likely to be best for a given test object. Therefore, this study investigates the

usefulness of different fitness functions with regard to their ability to achieve high coverage.

Moreover, most of the above studies fail to explain the conditions under which the tested

functions are expected to offer high or low coverage. It could be claimed that there are

untested objects, where one would expect the fitness function being tested to be outperformed

by other functions. For instance, a test object with multiple flag variables may not be

successfully tested with one particular fitness function, but it could achieve high coverage

using others (Baresel & Sthamer, 2003). Currently, there is a lack of understanding of how

the relative performance of different functions depends on the software under study (Stützle

& Fernandes, 2004). Addressing this issue will therefore increase our understanding of which

test objects are difficult to cover for any given function.

The present study will look into the possible relationship between the characteristics of the

test objects and the coverage obtained from a fitness function. The aim is to understand the

extent to which achieving high coverage is related to the characteristics of the software being

tested. This work will provide software architects and testers with a means of supporting their

decisions, as they will know that software with specific characteristics will enable a specific

fitness function to achieve higher coverage.

 To be able to assess the difficulty of a test object to be covered by a given fitness function,

software measurements which describe software features can be used. The following section

discusses some of these measurements.

2.6 Software Metrics

A software metric is a measurement directly collected from a program’s source code

(Subramanyam & Krishnan, 2003). Measurement refers to the process by which numerical

values are assigned to software attributes in a way which will describe them according to

clearly defined rules (Fenton & Bieman, 2014). As such, software metrics are a valuable

means of measuring and evaluating certain characteristics of software. These metrics are

therefore used as an indicator of the performance of specific software

Software metrics can be categorised into three groups: code metrics, process metrics and

resource metrics (Bhatti, 2011). Process metrics are more relevant to the measurement of

software process attributes, such as the effort required, estimated duration and process

33

quality, while resource metrics are needed for the estimation of resources required for a

software project, such as physical resources and man-power (developers).

Code metrics refer to those metrics which are directly countable from the source code. They

provide software developers with a valuable means of gaining insight into the code they are

developing. Since the focus of this study is on the generation of test data for structure testing,

wherein test cases are defined on the basis of the program code, it will exclusively discuss

and utilise code metrics. The following section explains the latter.

2.6.1 Software Code Metrics

Code metrics can be used to understand which parts of a code should be redeveloped or more

thoroughly tested. These metrics are utilised to identify potential risks and discern the current

state of a project (Lee, 2007). Code metrics can be further grouped into sub-categories, based

on the different measures they perform: quantitative metrics, metrics of program flow control

complexity and object-oriented metrics.

2.6.1.1 Quantitative Metrics

Quantitative metrics are concerned with the quantitative characteristics of a code, such as the

total number of methods of a program, the number of operations or operands in a program

and the number of comments and average lines per method.

LOC could well be the simplest and most elementary measure. They count the number of

source code lines and the original purpose of this metric was to estimate the man-power

(developers) needed for a project. LOC could also be used to observe what changes could

occur in different versions of a software item, in terms of LOC. However, LOC cannot be

used to compare programs in different languages, as programming languages can vary

greatly, depending on the language syntax and style (Bhatti, 2011).

Halstead metrics (Halstead, 1977) are a well-known example of quantitative metrics.

Halstead’s Length (HALL) is based on the number of operators and operands used in a

program. In contrast, Halstead’s Vocabulary (HALV) counts the number of different

operators and operands. Halstead derives other metrics, as shown in Figure 2.12.

34

Figure 2.12 Derived Halstead metrics

Although Halstead metrics enable developers to perform useful measures on code, there are

criticisms of Halstead’s methodology for deriving certain mathematical relationships between

the derived metrics (Marco, 1997). Marco (1997) shows that the computation of Halstead

metrics for simple programs, such as ‘Bubble sort’ suggests that the program is complex.

Subsequently, it is recommended to also include other metrics. The reason for this is that by

combining several software measurements, the weaknesses of individual metrics may be

compensated (Lammermann et al., 2008).

2.6.1.2 Metrics of Program Flow Complexity

This group of metrics is dependent on an analysis of the program’s CFG. An analysis of the

CFG will give the complexity of the source code. Complexity refers to the difficulty of

understanding the program code, explaining it to others, detecting and correcting its defects,

then maintaining it (Harrison, Magel, Kluczny & DeKock, 1982). The metrics of a program

flow’s complexity are built based on the assumption that the more complex the source code,

the more likely it is to contain errors.

The most commonly used metric in this category is McCabe’s cyclomatic complexity (CYC)

(McCabe, 1976). This is solely based on the program’s CFG. CYC is the maximum number

Primitive Metrics:

Number of unique operators: 𝜇1

Number of unique operands: 𝜇2
Total occurrences of operators: 𝑁1
Total occurrences of operands: 𝑁2

Potential operator count: 𝜇1
∗

Potential operands count: 𝜇2
∗

Derived Halstead:

Program length: 𝑁 = 𝑁1 + 𝑁2
Program‘s vocabulary size: 𝜇 = 𝜇1 + 𝜇2
Program volume (program content): 𝑉 = 𝑁 ∗ log2 𝜇
Program’s potential volume (the minimum size of a program): 𝑉∗ = (2 + 𝜇2

∗) log2(2 +
𝜇2

∗)
Program level: 𝐿 = 𝑉∗/𝑉
Program difficulty: 𝐷 = 1/𝐿

Error estimate for a program: 𝐿̂ =
2

𝜇1
∗

𝜇2

𝑁2

The intelligence content of a program: 𝐼 = 𝐿̂ ∗ 𝑉

Effort required to generate a program: 𝐸 =
𝑉

𝐿
=

𝜇1𝑁2𝑁 log2 𝜇

2𝜇2

Programming of each program by time (in seconds): 𝑇 = 𝐸/18

35

of linearly independent paths in a method. A path is linear if there is no branching statement

in the execution flow of the corresponding code. The higher the CYC value, the more paths

there are in the program, thus leading to more difficulties for a developer in understanding the

different paths. Figure 2.13 illustrates how CYC is computed.

Figure 2.13 Cyclomatic complexity metric

The complexity level of a program is decided on the basis of the computed CYC values, as

shown in Table 2.4. CYC metrics have received criticism regarding their weighting scheme.

For instance, CYC metrics evaluate simple and nested condition structures in the same

manner. Therefore, they receive the same weight. However, it is known that nested

conditional structures are harder and more complex to understand than simple non-nested

structures (Bhatti, 2011). Furthermore, CYCs consider a program on the basis of the number

of branching nodes present, irrespective of program size, or the size of the code under each

branching node.

Table 42.4 McCabe’s cyclomatic complexity ranges (adapted from Bhatti, 2011)

CYC Value Code Complexity

1 – 10 A simple program, without much risk

11 – 20 More complex program with moderate risk

21 – 50 Complex program with high risk

50+ Untestable program with high risk

2.6.1.3 Object-oriented (OO) Metrics

The above metrics were proposed before the concept of object-oriented (OO) programming

was established. However, the coding style of OO programming endorses the need for a new

Cyclomatic complexity (CYC) is calculated as: M = E − N + P

Where

M McCabe metric

E Number of edges of the graph of a program

N Number of nodes of the graph

P Number of connected components

36

kind of metrics which can represent OO concepts, such as inheritance, coupling and cohesion

(Basili, Briand & Melo, 1996).

The most frequently used metrics in the above group are Chidamber and Kamerer's (CK)

metrics (Chidamber & Kemerer, 1994). CK metrics measure the cohesion, complexity,

coupling and inheritance of OO systems, namely: weighted methods per class (WMC); depth

of inheritance (DIT); number of children (NOC); coupling between objects (CBO); response

for class (RFC), and lack of cohesion in methods (LCOM). These metrics can be defined as

follows:

 WMC measure the sum of the complexity of all methods defined in a class. The

complexity refers to CYC values. While CYC is measured at class level, WMC gives

an overall view of the class complexity.

 DIT defines the maximum length from the node to the root of the hierarchy tree of a

class. In a longer path in a class, it is more likely to be difficult to estimate its

behaviour. This may indicate an inappropriate abstraction in the design (Tang, Kao &

Chen, 1999). An empirical study of DIT validates that the deeper the inheritance, the

greater the chance of fault detection (Briand, Morasca & Basili, 1996). DIT could be

seen as an indicator of complexity; the higher the DIT value, the more complex the

software is supposed to be (Li & Henry, 1993b).

 NOC counts the number of immediate subclasses subordinated to a child class in the

class hierarchy. A class with a large number of children tends to be more complex.

Therefore, NOC can be seen as a measure of testability; the more children in a class,

the more changes need to be tested.

 CBO defines the connection and interdependency of an object in a class with other

objects (Bansiya & Davis, 2002). A class is considered to be coupled with another

class if it calls its method or accesses its instance variables (Tang et al., 1999). CBO is

a count of the number of other classes to which it is coupled.

 RFC is the cardinality of the set of all methods that can be invoked, in response to a

message to an object or the method of the class. This includes local methods and

methods in other classes. The larger the number of methods that respond to a

message, the greater the complexity of that class.

37

 LCOM measures the disparate nature of methods in the class. LCOM is the number

of disjoint pairs of methods in a class which do not share any member variable. A

higher value of LCOM implies a lack of cohesion. However, LCOM only considers

methods and instance variables implemented in the class, whereas what is inherited is

excluded.

Besides the CK metrics, Abreu and Carapuça (1994) propose class-level OO oriented metrics,

based on the quantity of the source code. Class-level OO metrics simply count the number of

attributes of a class, such as public attributes, private attributes and other object-oriented

attributes, as shown in Table 2.5.

Table 5 2.5 Class-level OO metrics (adapted from D’Ambros, Lanza & Robbes, 2012)

Name Description

Fan-in The number of other classes that reference the measured class

Fan-out The number of classes referenced by the measured class

NOA The number of attributes

NOPA The number of public attributes

NOPRA The number of private attributes

NOAI The number of attributes inherited

LOC The number of lines of code in a class

NOM The number of methods

NOPM The number of public methods

NOPRM The number of private methods

NOMI The number of methods inherited

38

2.6.2 Code Metrics for Software Testing

Software metrics give software developers the means to analyse the code, in order to be able

to improve it. A wide range of software metrics is used for different purposes in various

software development phases. For instance, software metrics have been used for

maintainability (Li & Henry, 1993b; Nogueira, Ribeiro, Carlos & Zenha-Rela, 2014; Riaz,

Mendes & Tempero, 2009); defect analysis (Subramanyam & Krishnan, 2003), and software

quality (Lincke, Gutzmann & Löwe, 2010; Rosenberg & Hyatt, 1997).

Few existing studies focus on the testability of software systems. Testability refers to the

degree to which a software enables another software to be validated (Standard, 2005).

Harrison and Samaraweera (1996) examined whether there is an association between the

number of test cases and design metrics in terms of code quality and the time required to

produce it for functional or OO paradigms. They found that the number of test cases could be

used as an indicator of the effort needed for functional and OO programs.

Bruntink and van Deursen (2006) investigated whether the values of CK metrics in a class are

correlated to the size of the corresponding test suite and the required testing effort for that

class. The results of their study suggest there is a significant correlation between CK metrics

and test-level metrics. Shrivastava and Jain (2010) used CK metrics to propose design

metrics, namely an automated test case for unit testing (ATCUT), in order to predict the

effort needed for class testing.

However, the above studies focus on the effort required for testing. There are very few

studies which have endeavoured to look into the possible correlation between code metrics

and the coverage percentage obtained from testing with metaheuristics. Lammermann et al.

(2008) investigated the suitability of code metrics for the assessment of whether search-

based testing can be successfully performed for a given OO program. The result of the study

suggests that there is a mediocre correlation between search-based testability and the code

metrics used in the study, i.e. LOC, Halstead’s length, Halstead’s vocabulary and CYC.

Daniel and Boshernitsan (2008) proposed a technique that uses code metrics for predicting

the test coverage achieved. They used code metrics and coverage to train decision tree

classifiers. The code metrics applied in the study were CYC, number of static field, number

of private class and number of public class. They found that the classifiers can accurately

predict a coverage degree of a given test object.

39

The use of code metrics for developing a better understanding of automatic testing using

metaheuristics is still an area with plenty of potential for research. This work investigates

whether code metrics used as an indicator of high coverage would be achievable through

metaheuristic tests. If this is the case, then it should be possible to decide, before the test,

which fitness function should be chosen for a given test object. Subsequently, when the

measurements of a given test object show that it would be difficult to achieve high coverage

using a certain fitness function, program transformations could be initiated, such as the flag

removal. This would lead to improvements in metaheuristic performance. This knowledge

will lead to a better understanding of how the software structure can adversely affect

performance or the accuracy of the automated testing techniques using metaheuristics.

2.7 Conclusion

To sum up, this chapter has surveyed, analysed, reviewed and critiqued previous work

undertaken using metaheuristic algorithms to generate test data for structural testing.

Previous research can be categorised based on the definition of the fitness function optimised

in four groups: the goal-oriented approach; the chaining approach; the coverage-oriented

approach, and the structure-oriented approach.

An understanding of how different fitness functions may affect the progress of a search can

improve the application of metaheuristics to software testing. Therefore, this study will

examine a number of different fitness functions in problems of varying levels of difficulty, as

a means of assessing their relative performance.

Following the above, this study will investigate the reason for obtaining specific coverage

from each fitness function, by analysing the potential relationships between the attributes of

test objects and the coverage obtained. The investigation of the effects of test object

properties on the suitability of fitness functions is important, since this could increase our

understanding of what makes test cases hard to generate. It is achieved using software

measurements as source information for evaluating whether or not a fitness function can

successfully cover a given test object.

The study of the possible relationship between the characteristics of a software item and the

desired coverage is important, since it is expected to contribute to the improvement of the

design for generating test data. This work will provide software architects and testers with a

40

means of supporting and validating their decisions, as they will be aware that a specific

fitness function can achieve higher coverage, through the application of software with certain

characteristics. The next chapter will discuss the research methodology for this study.

41

Chapter 3: RESEARCH METHODOLOGY AND

EXPERIMENT DESIGN

3.1 Introduction

The selection of the most appropriate research methodology will rely on the study’s

objectives. This chapter discusses the research design used and illustrates how the experiment

is set up for this study. The rest of the chapter is structured as follows: the research questions

are provided in Section 3.2 and the research methodology is presented in Section 3.3. The

design for the experiment is discussed in Section 3.4. Finally, Section 3.5 summarises the

chapter.

3.2 Research Questions

The objectives of this study are identified as follows:

- Investigating the influence of different definitions of fitness functions on the performance of

the automated testing techniques.

- Gathering insights into the relationship between features of software systems and the

coverage achieved by fitness functions, in order to understand the performance of functions.

In order to fulfil these objectives, there are two main research questions posed:

Research Question 1 (RQ1): Does the choice of a particular fitness function affect the

performance of automated testing techniques?

Hypothesis 0 (H0): the mean values of the coverage obtained from all the fitness functions

are the same.

Hypothesis 1 (H1): the mean values of the coverage obtained from all the fitness functions

are different.

Research Question 2 (RQ2): Is there a correlation between software metric values and

the coverage obtained by a given fitness function?

Hypothesis 0 (H0): There is no correlation between software metric values and the coverage

obtained by a given fitness function.

42

Hypothesis 1 (H1): There is a correlation between software metric values and the coverage

obtained by a given fitness function.

3.3 Research Methodology

This section discusses the major components and outlines the different phases of this

research. Figure 3.1 illustrates the conceptual framework of the research design. The

selection of testing criteria; search technique; fitness functions; baseline for comparison;

search-based testing tool; benchmark test objects, and software metrics are described below.

Figure 14 3.1 Conceptual framework of the research design

43

3.3.1 Testing Criteria

To evaluate the quality of an individual, this study focuses on branch coverage as a test goal,

aimed at covering all the branch statements in the code, such as ‘switch’, ‘while’ and ‘if-

else’. This is in consideration of the fact that branch coverage is motivated by the significant

cost of manually generating branch coverage test inputs (Harman & McMinn, 2010). An

experimental study shows that branch coverage criteria perform consistently with adequate

efficiency and effectiveness, compared with other coverage criteria (Gupta & Jalote, 2008).

Every branch in the object being tested was treated as a goal. The aim was to exercise each

goal twice to cover the true and false conditions of the branch. The reason for this was to

avoid directing the search towards covering the true value of a predicate, ignoring the case

where a false value is exercised. Otherwise, the search would oscillate between the two

contrasting values of the branches (true or false), resulting in partial coverage of the code

(Fraser & Arcuri, 2013b).

3.3.2 The Metaheuristic Search Technique

The genetic algorithm (GA) was the technique of choice to automate the generation of test

data. The outcomes of studies in Table 2.2 show that GAs outperform local search methods

for test data generation. These studies show that GAs have a greater ability to increase the

quality of tests and save the computational cost of testing. As discussed in Chapter 2, the way

local search techniques work is by maintaining a solution and exploring the search space

through steps within its neighbourhood; going from the current solution to a more appropriate

close one. However, local search techniques are unable to exploit the local correlation in the

structures of the search space in this way (Harman & Jones, 2001; Kirsopp, Shepperd & Hart,

2002). On the other hand, GAs iteratively perform evaluation, selection and recombination

procedures, which enable them to explore the search space in multiple directions. Hence,

GAs are much more effective for generating test data (Lefticaru & Ipate, 2008).

3.3.3 Fitness Functions

The measures for the fitness of test suites varied, as discussed in Chapter 2. Some studies

have used branch coverage (Roper, 1997), approach level (Pargas et al., 1999), a distance

calculation (Fraser et al., 2013; Shamshiri et al., 2015), or other measures (Tracey, 2000;

Wegener et al., 2001). The research question motivating this empirical study is concerned

44

with investigating the usefulness of these measures in identifying the fitness of individuals

for branch coverage. This is achieved through a sequence of experiments designed to evaluate

the relative performance of the five fitness functions used: coverage level function (CLF);

branch distance function (BDF); control fitness function (CFF); combined fitness function 1

(COM1), and combined fitness function 2 (COM2). These were selected to represent a

sufficiently extensive range of fitness function categories.

These different functions were then evaluated in terms of the branch coverage achieved. The

aim was to divide the code for the object being tested into a series of partial goals, each

designed to exercise a specific branch value (true or false condition). To satisfy each partial

goal, the fitness function guided the search; in effect, rewarding test suites that came close to

satisfying the partial goal. If a test suite covered the partial goal, it was rewarded with a

fitness value of ‘0’; otherwise, the respective test suite received a value greater than ‘0’,

depending on the definition of the fitness function utilised. As the functions measure fitness

differently, the fitness value of the test suites was normalised in the range [0, 1] to allow a

fair comparison between different measurements. The following normalisation function was

used (Arcuri, 2013):

 𝑛𝑜𝑟𝑚(𝑥) =
𝑥

(𝑥 + 1)

(3.1)

In the sections which follow, the definition of each of the fitness functions implemented is

explained. The strengths and weaknesses of these functions have been discussed in Chapter 2

and are summarised below in Table 3.1.

45

Table 6 3.1 Specifications of the tested fitness functions

Number

Title

Citation

Name

Category of Fitness Calculation

Coverage-

oriented

Branch -

oriented

Control-

oriented

1 CLF (Roper, 1997) Coverage level function +

2 BDF (Fraser & Arcuri, 2013b) Branch distance function +

3 CFF (Pargas et al., 1999) Control fitness function

+

4 COM1 (Tracey, 2000) Combined fitness function 1

+ +

5 COM2 (Wegener et al., 2001) Combined fitness function 2

+ +

3.3.3.1 Coverage Level Fitness Function (CLF)

The CLF was originally proposed by Roper (1997) for branch coverage. This function is

modified in this study to exercise both branch values (true and false), rather than arriving at

just one value, as in the original definition of the function. In this function, an individual is

rewarded on the basis of the number of branches executed. The individual covering the

highest number of branches in the code will gain the lowest fitness values. This function is

primarily concerned with ensuring that the highest possible level of coverage is achieved.

Let T be a test suite and B, the set of branches of the object being tested; the coverage level cl

(b,T) for each branch b ∈ B on test suite T is defined as follows:

𝑐𝑙(𝑏, 𝑇) = {

 0 If both values of the branch have been covered,
0.5 If the predicate has been executed once

 (either true or false condition)
1 Otherwise.

(3.2)

Hence, the overall fitness function of a test suite is calculated using the following equation:

𝑓𝑖𝑡(𝑇) = |𝑀| − |𝑀𝑇 | + ∑ 𝑐𝑙(𝑏, 𝑇)

𝑏∈𝐵

(3.3)

46

where M is the set of methods in the object and MT is the set of methods executed during the

test. The difference |𝑀| − |𝑀𝑇 | is used to reward coverage of methods in the test objects

which have no branch statements.

3.3.3.2 Distance-oriented Fitness Function (BDF)

The BDF (Fraser & Arcuri, 2013b) uses a branch distance measurement which reflects how

close a branch’s predicate is to being reached. Suppose, for example, the aim is to execute the

true value of the branch (L == 7) in Figure 3.2. If ‘L’ has the value of 5, then the branch

distance is computed using the formula |L-7|, which is 2 in this case. The closer the input data

is to 7, the closer the branch will be to being considered as exercised (i.e. being true). In the

event that the branch statement is encountered in the body of a loop, the smallest branch

distance is used.

Figure 15 3.2 Branch distance example

Let B be the set of branches of the test object and the minimal branch distance, dmin (b,T) for

each branch b ∈ B; the branch distance d (b,T) for each branch b ∈ B in test suite T shall be

defined as follows:

𝑑 (𝑏, 𝑇) = {

 0 If the branch has been covered
norm (dmin (b, T)) If the predicate has been executed

 at least twice
1 Otherwise

(3.4)

where dmin (b, T) is ‘0’ if at least one of the branch’s values (true or false) has been covered,

and > 0 otherwise. Thus, the fitness function of a test suite T is:

𝑓𝑖𝑡 (𝑇) = |𝑀| − |𝑀𝑇 | + ∑ 𝑑 (𝑏, 𝑇)

𝑏∈𝐵

(3.5)

while (true) {

if (L==7) // branching statement

{

//other statements

}

}

47

where M is the set of methods and MT is the set of methods executed during the test. Again,

the difference |𝑀| − |𝑀𝑇 | is used to reward coverage of methods in the test objects which

have no branch statements.

3.3.3.3 Control-oriented Fitness Function (CFF)

CFF utilises Pargas et al.’s (1999) definition. In this function, control information is extracted

from the control dependency graph, which is equivalent to the test object’s code, in order to

compute an individual’s fitness value. The fitness value is equivalent to the number of

successful control dependent node executions towards the intended branch (refer to Chapter 2

for a complete evaluation of the function).

Let dn be the number of control dependent nodes for the current target branch, and en be the

number of successfully executed control-dependent nodes; the fitness function f (b,T) for

each branch b ∈ B in test suite T is defined as follows:

 𝑓(𝑏, 𝑇) = 𝑛𝑜𝑟𝑚 (𝑑𝑛 – en) (3.6)

where T is the test suite, B is the set of branches of the test object and norm is a normalisation

function in the range [0, 1]. Thus, the fitness function of a test suite T is:

𝑓𝑖𝑡 (𝑇) = |𝑀| − |𝑀𝑇 | + ∑ 𝑓(𝑏, 𝑇)

𝑏∈𝐵

(3.7)

where M is the set of methods in T and MT is the set of methods executed during the test.

The difference |𝑀| − |𝑀𝑇 | is used to reward the coverage of methods in the test objects

with no branch statements.

3.3.3.4 Combined Fitness Function 1 (COM1)

COM1 is built on Tracey’s (2000) definition that combines both branch distance and control

information. The branch distance is calculated using Equation (3.4), mentioned above in

Section 3.3.3.2. The control information here refers to the number of control-dependent nodes

successfully attained during execution. This control information is used to scale branch

distance values (Refer to Chapter 2 for a description of this function).

48

Let T be the test suite and B be the set of branches of the test object; the fitness function f

(b,T) for each branch b ∈ B on test suite T is defined as follows:

 𝑓 (𝑏, 𝑇) = 𝑛𝑜𝑟𝑚 (
𝑒𝑛

𝑑𝑛
 × 𝑑(𝑏, 𝑇))

 (3.8)

The f (b,T) value is normalised: 𝑛𝑜𝑟𝑚 in the range [0, 1], dn is the number of control-

dependent nodes for the current target branch, en is the number of successfully executed

control-dependent nodes, and 𝑑 (𝑏, 𝑇) is the branch distance.

The fitness function of a given test suite, T is:

𝑓𝑖𝑡 (𝑇) = |𝑀| − |𝑀𝑇 | + ∑ 𝑓 (𝑏, 𝑇)

𝑏∈𝐵

(3.9)

where M is the set of methods and MT is the set of methods executed during the test. The

difference |𝑀| − |𝑀𝑇 | is used to reward the coverage of methods in the test objects which

have no branch statements.

3.3.3.5 Combined Fitness Function 2 (COM2)

COM2 is a version of the fitness function used in two prior studies by Harman & McMinn

(2010) and Wegener et al. (2001). The function combines both branch distance and an

approach level in its measurement. ‘Approach level’ (al) indicates how close the executed

path is, as compared to the required partial aim. It is proportionate to the numbers of control-

dependent nodes which are not encountered in the path executed by the test data and is

computed as follows:

where dn is the number of control-dependent nodes for the current target branch and en is the

number of successfully executed control-dependent nodes. Hence, the fitness function f (b,T)

for each branch b ∈ B in test suite T is defined as follows:

 𝑓(𝑏, 𝑇) = 𝑎𝑙 + 𝑛𝑜𝑟𝑚 (𝑑(𝑏, 𝑇))

(3.11)

 𝑎𝑙 = (𝑑𝑛 − 𝑒𝑛 − 1) (3.10)

49

The branch distance 𝑑(𝑏, 𝑇) is computed using Equation (3.4). The overall fitness function of

a test suite T with respect to all branches is computed as:

𝑓𝑖𝑡 (𝑇) = |𝑀| − |𝑀𝑇 | + ∑ 𝑓(𝑏, 𝑇)

𝑏∈𝐵

(3.12)

where M is the set of methods and MT is the set of methods executed during the test. The

difference |𝑀| − |𝑀𝑇| is used to reward coverage of methods in the test objects which have

no branch statements.

3.3.4 Baseline for Comparison

When the performance of metaheuristics is investigated, it is essential to include a method as

a baseline for comparison (Johnson, 2002), in order to justify and verify the results obtained

using the metaheuristic technique (Ali et al., 2010). For software testing, it is recommended

to use RT as a comparison baseline to assess the performance of search-based testing

techniques (Harman, Mansouri & Zhang, 2009). Several prior studies have utilised RT as a

method of evaluation (Arcuri & Yao, 2008; Harman & McMinn, 2007, 2010).

Although RT is the easiest of the automated testing techniques to apply, different studies

show that it still gives good coverage. For instance, different researchers (Bird & Munoz,

1983; Thevenod-Fosse & Waeselynck, 1993; Voas, Morell & Miller, 1991) have proved the

usefulness of the random test generator, compared with other test data generation techniques.

One investigation showed that RT results in similar coverage of the GA (Shamshiri et al.,

2015).

This study employs RT as a baseline for comparison for a dual purpose: It helps identify

whether the object being tested is simple enough to be covered by a simple testing technique;

otherwise, it justifies why it is necessary to use a complex metaheuristic technique.

Since RT is used here as a natural baseline in order to understand the effectiveness of the

fitness functions used, we are studying it with basic implementation. This means that the

search process randomly generates sequences of statements to the test objects, coupled with

randomly generated inputs. When a test case exercises a new branch statement that has not

50

been covered, it is inserted into a test suite, or else deleted. However, this strategy could

increase the size of the test suite, resulting in a high execution cost (Shamshiri et al., 2015).

One way of circumventing this problem is to determine the length (L) of test cases that will

be generated during the search (Arcuri & Yao, 2008). Although this implies there will always

be a maximum limit (L) to the length, the test cases can still have a random length.

3.3.5 Search-based Testing Tool

This study employs EvoSuite (Fraser & Arcuri, 2013b) in order to perform experiments in the

domain of test generation for object-oriented software. EvoSuite is an open source search-

based test data generation tool, which automatically generates JUnit test suites for a given

Java problem. EvoSuite uses a sandbox to take care of any potentially unsafe operations that

may harm the host machine, such as the deletion of files. This feature is vital because the test

objects used in this study are real-world programs and they will most likely have unsafe

operations.

It is appropriate to apply EvoSuite in this study for two different reasons. Firstly, EvoSuite

aims to evolve the entire test suite generation, considering the simultaneous testing of all the

tested branches in the programs. As such, the individuals of the search are test suites (sets of

test cases), contrary to the more common strategy of using an individual as a test case. An

investigation into the benefits of the entire test suite showed that it leads to better results,

because the feasibility or difficulty of a single test case does not affect the overall

performance of the entire test suite (Fraser & Arcuri, 2013a).

The second reason for using EvoSuite is to allow for a fair comparison between GA and RT

generation, by implementing both techniques on the same platform. According to Johnson

(2002), when different techniques are being assessed in relation to each other, it is vital to

ensure reasonably fair implementations for all these techniques in order for their effectiveness

to be comparable.

EvoSuite evolves candidate test suites aimed at covering all test goals, while at the same time

minimising the total size of the suite (i.e. reducing the number of test cases and their length).

As such, when there is a tie between test suites with respect to their fitness values, EvoSuite

chooses the test suite which is composed of a cumulatively lower number of statements. This

is done with the aim of improving search performance, since the longer the test suite, the

51

more memory and execution time required (Fraser & Arcuri, 2013b). Hence, the optimal

solution, T0, in a search problem refers to the test suites which exercise all branch statements

in the code. This will have the minimum number of statements, compared with other test

suites.

3.3.6 Structure-based Software Metrics

To answer RQ2, we investigated measurements of test objects’ source code, in order to figure

out whether software properties influence the performance of fitness functions. In order to

select suitable metrics for the experiment, we drew upon previous reviews of metrics

(Bruntink & van Deursen, 2006; Simons, Singer & White, 2015; Sjøberg, Anda & Mockus,

2012). Different and widely-used tools were employed to collect measures of the test objects’

source code, namely JHawk1 (Lincke, Lundberg & Löwe, 2008), VizzAnalyzer2 (Löwe,

Ericsson, Lundberg, Panas & Pettersson, 2003), Eclipse Metrics Plugin 1.3.63 (Narasimhan,

Parthasarathy & Das, 2009), and EvoSuite4 (Fraser & Arcuri, 2013b). The tools and metrics

are shown in Table 3.2. The plus sign ‘+’ indicates that a metric is calculated using the

corresponding tool.

1 http://www.virtualmachinery.com/jhawkprod.htm
2 www.arisa.se
3 http://metrics.sourceforge.net/
4 http://www.evosuite.org/

http://www.virtualmachinery.com/jhawkprod.htm
http://www.arisa.se/

52

Table 7 3.2 The selected metrics

Type Level Name Description

Tools

JHawk VizzAnalyzer

Eclipse

Metrics

Plugin

1.3.6

EvoSuite

Size

Method HALL Halstead Length +

Class

NOA Number of attributes +

NOM Number of methods +

WMC Weighted methods per class +

System

NCL Number of classes +

NSA Number of static attributes +

NSM Number of static methods +

NTG Number of test gaols +

TLOC Total line of code +

Complexity
Class

DIT Depth of inheritance +

NOC Number of children +

RFC Response for a class +

LCOM Lack of cohesion of methods +

System CBO Coupling between object classes +

In selecting the metrics, we considered those which measure two different aspects of a test

object: size and complexity. These aspects have been measured on three levels: method, class

and system, in order to gain a broader view of the features of the test objects.

Size-related metrics are quantitative measurements which express the length of a test object

in terms of the numbers of attributes, methods, classes and branches in it. Although the size

of the code would not be expected to be the basis for a direct assessment of the code’s

testability, it is plausible that larger test objects would impede the attainment of the test’s

goals. Hence, size-related measures could lead to conclusions about the possibility of

achieving high coverage. This group also includes measures evaluating the number of

possible paths through the object’s code, based on a control flow graph (CFG) of the object.

This would help determine whether the flow control properties of a given object can

influence the ability of the fitness function to guide the search progress towards those test

suites offering higher coverage.

An empirical investigation has shown that the more complex the software, the more complex

the corresponding test cases (Nogueira, 2012). We investigated whether this was true for the

coverage obtained using a given function; in other words, whether software complexity also

has an effect on the coverage achieved using a fitness function. Complexity-related metrics

53

quantify the structural properties of a test object, such as measures of coupling, dependency,

cohesion, and the nature of the object’s hierarchy. These aspects result in a complex control

flow, which might complicate a search for better solutions, resulting in the fitness functions

delivering lower performance.

3.3.6.1 Description of Metrics

The following is a brief description of the metrics presented, based on how the tools

implemented them:

 Halstead Length (HALL) counts the total number of operators and operands in a

method. Operators refer to method names, arithmetical operators and language

keywords, whereas operands express numeric and string constants.

 Number of methods (NOM) refers to the methods in a class. NOM includes private,

public and overridden methods.

 Weighted method count (WMC) represents the sum of weights for the methods of a

class. The method’s weight count was calculated according to suggestions made by Li

and Henry (1993a), where a method’s weight is equal to the number of possible

alternative paths through the code.

 Number of test goals (NTG) counts numbers of branches twice, taking into account

the two values (true and false) of a branch, plus the number of branchless methods.

Branchless methods are those methods which do not contain branching statements and

which could be covered by simply calling it.

 Lines of code (LOC) count the non-blank and non-comment lines of code of a

program.

 Depth of inheritance tree (DIT) expresses the maximum inheritance path from the

class to the root class. DIT values are calculated for each class. They indicate the

longest distance to the root of the hierarchy. This value is on an absolute scale ranging

from ‘0’ to the longest path towards the root class.

 Number of children (NOC) indicates the number of direct subclasses of a class.

NOC is calculated for each class. The values are integer values ranging from ‘0’ for

54

no children, to the maximum number of children a class will have on an absolute

scale.

 Coupling between object classes (CBO) expresses the number of classes to which a

class is coupled. A class is considered as coupled to another class if it calls its method

or accesses its instance variables (Tang et al., 1999).

 Response for a class (RFC) represents the set of methods which can potentially be

invoked in response to a message received by an object of the class. This includes

local methods and methods in other classes.

 Lack of cohesion of methods (LCOM) counts the number of disjointed pairs of

methods in a class which do not share any member variables. LCOM were first

implemented according to suggestions made by Chidamber and Kemerer (1994).

LCOM only considers methods and instance variables implemented in the class,

whereas inherited ones are excluded.

3.3.6.2 Tools for Measuring Software Metrics

Three different and widely-used tools are employed to collect measures of the test objects’

source code, namely VizzAnalyzer, JHawk and Eclipse Metrics Plugin 1.3.6. VizzAnalyzer

(Löwe et al., 2003) is a maintenance analyser plugin for the Eclipse IDE that was developed

at Växjö University (Sweden). It reads software code and performs a number of software

metrics. Here, VizzAnalyzer data produced by the metrics was imported into Excel, where it

was further analysed. VizzAnalyzer has in fact been used in several different studies

(Barkmann, Lincke & Lowe, 2009; Panas, Lincke, Lundberg & Lowe, 2005; Strein, Lincke,

Lundberg & Lowe, 2007; Wingkvist, Ericsson, Lincke & Lowe, 2010).

On the other hand, JHawk (Lincke et al., 2008) is a metrics calculation plugin for the Eclipse

IDE that allows snapshots of code metrics to be recorded. Eclipse Metrics Plugin 1.3.6

(Narasimhan et al., 2009) is an open source tool for collecting the code metrics from the

source code.

3.3.7 Benchmark Test Objects

To analyse the performance of the fitness functions, we selected programs which the test

generation system could be trialled on. In this research, we refer to such programs as test

55

objects. We randomly but uniformly selected nine different test objects from SF110’s corpus

of open source projects (Fraser & Arcuri, 2014). SF100 is a statistically sound representative

of a collection of 100 Java projects selected from the SourceForge website, which is one of

the largest repositories of open source projects on the Web. To avoid bias caused by only

considering the open source code, we also selected two case studies from the literature: string

case study subjects from Maragathavalli (2011) and a numerical case study previously

employed by Arcuri and Briand (2011). Both case studies were written in the Java

programming language.

The test objects were selected according to their testability. Each of these objects should be

run independently and in a way where they can properly de-allocate the resources used, such

as the memory. We balanced different types of classes: container classes, classes which make

greatly use of string process and numerical functions. Table 3.3 summarises the properties of

these test objects.

Table 8 3.3 The set of test objects

Number Name Description Branches

1 a4j
API handles all Web service requests to and from

Amazon.com
390

2 water-simulator Agent-based urban water demand simulator 64

3 dsachat A program for the role-play game, DSA 3224

4 greencow Printing a single statement 1

5 Petsoar
An open source answer to Sun's J2EE PetStore

project
26

6 Follow Monitor (‘follow’) text file system 560

7 Lilith
A logging and access event viewer for Logback,

log4j & java.util.logging
2258

8 Heal Health Education Assets Library 4906

9 Jgaap A Graphical Authorship Attribution Framework 98

10 NumericalCaseStudy
A numerical case study previously employed by

Arcuri and Briand (2011)
209

11 StringCaseStudy
String case study subjects from (Maragathavalli,

2011)
607

∑ 12343

56

Since this study focuses on branch coverage as a test criterion, particular attention was paid to

the number of branches each test object contained. As can be seen from Table 3.3, the

selected test objects vary greatly in the number of branch statements. The final number of

branch statements totalled 12,343, ranging from a small project with just a single branch

statement to a larger project with 2,258. An investigation revealed that a large number of

branching statements in a test object could result in complex, discontinuous and non-linear

search spaces (Lammermann et al., 2008). Such search spaces could reduce the performance

of the automated search techniques to that of a random search. Therefore, the number of

branch statements in a test object will directly influence the effectiveness of the fitness

functions.

When selecting the test objects, care was taken to ensure these objects had a wide value

spectrum for each selected metric. Table 3.4 shows the measures collected for each test

object. HALL varied between 19 and 8,012; NOM ranged between 1 and 2,301, NOA varied

from 0 to 980 and NCL, from 1 to 532. TLOC ranged between 13 and 52,553, and NOC,

between 0 and 101. WMC ranged from 1 to 5077, while CBO varied between 0 and 1,174,

NSA between 0 and 553 and NSM, between 1 and 114. NTG showed differences between 11

and 85,742, with DIT attaining values between 0 and 152, and RFC 1 and 3,473. Lastly,

LCOM varied between 1 and 33,191.

57

Table 9 3.4 Collected metric values for each test object

Test Objects HA

LL

N

O

A

NO

M

W

MC

N

CL

NS

A

NS

M

NT

G

TLO

C

DI

T

N

OC

CB

O

RF

C

LC

OM

a4j 146

3

17

4

478 696 45 1 1 857

42

515

1

0 0 65 55

3

130

26

water-

simulator

136

4

55

1

352 539 73 13

4

2 103

5

122

94

16 16 23

3

48

8

677

dsachat 640

1

14

0

228 532 31 16

3

6 325

0

510

7

6 6 93 33

7

106

0

greencow 19 0 1 1 1 0 1 11 13 0 0 0 1 1

petsoar 307 19

2

461 591 96 22 12 925

8

481

3

66 65 31

1

85

1

180

9

follow 660

5

14

2

396 524 81 74 18 886 794

8

46 40 26

7

55

1

511

1

lilith 801

2

98

0

230

1

507

7

53

2

55

3

91 771

46

525

53

15

2

87 11

74

28

07

315

81

heal 533

8

46

5

152

1

351

6

20

5

17

3

11

4

518

42

300

54

10

3

10

1

87

3

34

73

331

91

jgaap 106

0

87 83 136 22 0 2 133

1

152

7

13 8 59 10

5

75

NumericalCa

seStudy

193

7

6 14 94 11 7 2 394

6

615 0 0 0 16 15

StringCaseSt

udy

780 5 31 220 12 1 3 450

5

100

2

0 0 0 33 17

∑ 332

86

27

42

586

6

119

26

11

09

11

28

25

2

238

952

121

077

40

2

32

3

30

75

92

15

865

63

3.4 Experimental Design

This section explains the design of the experiments, including the search technique settings,

search budget, procedure for the experiments and pilot testing.

3.4.1 Search Technique Settings

Experiments were conducted in the domain of test generation for object-oriented software

using GAs. The aim was to produce test suites (sets of test cases) for a given test object, such

58

that the test suite maximises branch coverage, while at the same time minimising the number

and length of the test cases.

3.4.1.1 Representation

In these experiments, an individual is an entire test suite of variable size. The search space is

composed of all possible test suites and in its entirety, it can range in size from 1 to a

predefined maximum ‘N’ of test suites. A test case consists of a sequence of method calls to

construct objects in the test objects and call methods on them. The test case will range in size

from 1 to lmax possible statements. A statement can be an object constructor, a method call, a

variable assignment, a field, or a primitive.

Since test case length and test suite size may vary, individual representation is also of

variable size. However, although the research space produced is large, it is finite, since its

parameters (i.e. N and lmax) are finite.

3.4.1.2 Search Operators

The initial population is randomly generated. Subsequently, the population is iteratively

evolved through two primary operators: crossover and mutation, which are used to evolve

new offspring (Figure 3.3). The new generation is evolved in iterations until a stopping

criterion is met.

Figure 16 3.3 Search Operators: crossover is applied at test suite level; mutation is applied to test

cases and test suites (adapted from Fraser & Arcuri, 2013b, p. 280)

The crossover between two test suites, ‘T1’ and ‘T2’ produced two offspring: Child 1 and

Child 2. A single crossover point ‘r’ was randomly chosen from [0, 1] in two parent test

59

suites. Crossover operations recombined the genes of T1 up to the crossover point and the

genes after the crossover point of T2, to form Child 1 and vice versa for Child 2.

The mutation operator is implemented after the crossover operator. The mutation operator is

applied at two levels: test suite and test case level. The mutation operations will randomly

change a randomly chosen test suite. When test suite T is selected to be mutated, its test cases

are mutated with a probability of 1/|T |, where T is the number of test cases in the test suite.

When a test case is mutated, three different operations are sequentially applied: delete,

change and add. In a test case of length (L), each of its statements are deleted or changed

with the probability, 1/L, where ‘L’ is the number of statements in a test case. When deleting

statements leads to invalidated dependencies within the test case, dependent statements are

also removed. The changing test case means modifying its statements, taking into

consideration the validity of the entire test case; for instance, changing a method call while

retaining its return type. Lastly, the insertion process refers to adding a new statement to the

test case with a probability of σ = 1/L in a random position.

3.4.1.3 Setting up Parameters

As the parameter configurations of the GAs will greatly affect the coverage level achieved

(Lammermann et al., 2008), the GA parameters were kept constant during all the

experiments. This is necessary to ensure a fair comparison between results. The first

parameter is the population size, which specifies the number of test suites generated for the

initial population. Population size remained the same during the optimisation process (i.e. the

next generation has the same size as the initial generation). The population size for the GA

was set to 80 and the maximum test suite size (maximum number of test cases in a test suite)

was set to N = 100, with the length of the test cases set to L = 80. These settings were

experienced as being suitable, at a point where the test case covered did not require a longer

time.

The second parameter is the crossover rate: when two test suites are chosen to proceed to the

next generation, the crossover rate will determine the probability with which these two test

suites are crossed over. The crossover rate here is set at .75, which is considered to be ‘best

practice’ (Fraser & Arcuri, 2013b).

The third parameter is the mutation rate, which specifies the probability with which a test

suite will be altered. As explained in Section 3.4.1.2, the mutation rate depends on test suite

60

size and test case length. The initial probability of adding a new statement in a test case was

set to σ = 0.5, whereas the initial probability for inserting a test case into a test suite was set

to σ = 0.1.

The fourth parameter is the elitism rate, which determines the percentage or number of best

suites in a population which will automatically survive to the next generation. The elitism

rate was set at 1, which means one test suite. The best of the current population (its elite) is

automatically copied to the next generation.

The fifth parameter is the selection mechanism, which is the algorithm used to choose parent

test suites for reproduction from the current population. Rank selection was applied, where

each individual was chosen according to a probability that is proportionate to its rank and

individuals were ranked with respect to their fitness values (Srinivas & Patnaik, 1994). The

benefit of rank selection is that a fitter individual will not dominate the others, resulting in

premature convergence (Arcuri & Fraser, 2013). When there are two test suites with the same

fitness, shorter solutions are awarded higher ranks. Therefore, a test suite which obtains better

branch coverage and which is of shorter length will have a higher chance of being selected

for reproduction.

3.4.2 Search Budget

A search budget is a vital factor in search-based software engineering experiments (Arcuri &

Fraser, 2013). Search budget refers to the conditions under which the search should be

stopped, as finding an optimal solution is not always guaranteed (Harman & Clark, 2004).

The search budget can be expressed in many different formats, such as maximum execution

time, number of fitness evaluations and maximum number of statements executed. The

common format of the search budget in the literature is the number of fitness evaluations

(Safe, Carballido, Ponzoni & Brignole, 2004). However, as the test objects in this experiment

vary greatly in length, comparisons based on fitness evaluations can be meaningless, since

one test suite can be either extremely short or long compared with the others. To allow better

and less biased comparisons, the stopping condition was selected to be the maximum number

of statements executed, set at 1,000,000. That is, the search stops when a test suite with 100%

branch coverage is found, or 1,000,000 statements have been executed.

61

3.4.3 Experimental Procedure

Experiments were performed on a computer running a Linux operating system, with 2.5 GHz

computing cores and four gigabytes of memory. Since this study is a large scale experiment,

EvoSuite was used as a command-line tool, rather than an Eclipse plugin. For each

experiment, a shell-script was predefined to call EvoSuite with parameters set as command

line inputs to EvoSuite. The outputs were re-directed to local files. When all experiments

were finished, the outputs were collected and analysed.

Each test object was taken in turn, with the aim of recording the level of coverage that could

be achieved by each fitness function. Each trial was repeated 30 times to take the random

nature of the search technique into consideration. Therefore, in total, we had 11×6×30=1,980

experiments. The computational time required to finish a single trial may vary for each test

object. For instance, each trial of the smallest test object (greencow) took approximately five

minutes, whereas the largest test object (lilith) required around three to four hours to finish a

single run.

3.4.4 Pilot Testing

A pilot experiment was carried out prior to conducting the empirical study. The reason was to

assess the study’s feasibility and to estimate the time, cost and search budget needed to

accomplish it in full. Carrying out such a pilot experiment will permit an estimation of

appropriate settings for the experiments and enhance the research design, prior to the

performance of a large scale empirical study.

The pilot experiment was conducted with two fitness functions: coverage level function

(CLF) and branch distance function (BDF) on only three test objects: a4j, greencow and

jgaap. All experiments in the pilot study were repeated 10 times. Based on the results obtained

from this, modifications were made to the set-up for the experiments. For instance, two stop

conditions were tested: the number of fitness evaluations and the number of the statements

executed. Preliminary trials showed that the number of fitness evaluations would favour test

objects which are short in length. Moreover, the computational time taken to run the pilot

experiment would help us estimate the time required to run the empirical study and

subsequently, to determine the numbers of test objects that could be tested during the given

timeframe to complete this study.

62

3.5 Summary

This chapter presents the research questions and hypotheses that support it. It also discusses

the research approach employed in this study. Five different functions have been chosen and

implemented using Java programming language. To analyse the performance of the fitness

functions, we selected nine open-source projects and two case studies from the literature. A

total of 14 metrics were selected to evaluate different aspects of the test objects, such as size

and complexity.

The chapter also explains the design for the experiments in terms of the search technique

settings, search budget, and procedure for the experiments. The next chapter will provide the

study’s findings and will analyse them in the light of the research questions.

63

Chapter 4: EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Introduction

This chapter presents the results of the data collected from 1980 experiments conducted to

examine the coverage achieved by five fitness functions. Throughout this examination, we

investigated the performance of different fitness functions and the extent to which aspects of

the test objects influence their effectiveness. The rest of this chapter is organised into the

following sections: Section 4.2 presents a summary of the findings. An analysis of the

findings’ significance relative to the research questions is then presented in Section 4.3. A

discussion on the threats to the validity of this study follows in Section 4.4. Section 4.5 then

summarises the chapter.

4.2 Summary of the Findings

The means and standard deviations over the 30 runs of the fitness functions and test objects

are shown in Table 4.1. A higher mean indicates better performance, whereas a lower

standard deviation result means more consistent performance. The columns in the Table

below represent the five fitness functions tested, along with RT; the rows representing the test

objects. Bold text is used to identify the best performing methods in each trial.

64

Table 10 4.1 The mean and standard deviation of the 30 trials of the six fitness function: coverage level function (CLF), branch distance

function (BDF), control fitness function (CFF), combined fitness function 1 COM1, combined fitness function 2 (COM2)

Mean Std

Test Object CLF BDF CFF COM1 COM2 RT CLF BDF CFF COM1 COM2 RT

a4j 0.780 0.755 0.780 0.640 0.655 0.525 0.013 0.024 0.013 0.263 0.235 0.287

water-simulator 0.598 0.577 0.575 0.581 0.580 0.757 0.069 0.036 0.027 0.031 0.024 0.183

dsachat 0.738 0.700 0.740 0.740 0.741 0.736 0.021 0.096 0.012 0.012 0.013 0.018

greencow 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

petsoar 0.603 0.615 0.616 0.573 0.662 0.150 0.084 0.064 0.068 0.164 0.009 0.058

follow 0.820 0.810 0.816 0.822 0.807 0.827 0.025 0.027 0.048 0.022 0.050 0.028

Lilith 0.578 0.601 0.231 0.649 0.640 0.660 0.247 0.076 0.259 0.167 0.171 0.123

heal 0.495 0.618 0.614 0.396 0.319 0.498 0.240 0.021 0.011 0.285 0.295 0.230

jgaap 0.752 0.734 0.769 0.754 0.688 0.768 0.022 0.021 0.029 0.021 0.158 0.066

NumericalCaseStudy 0.845 0.851 0.835 0.844 0.838 0.836 0.026 0.025 0.028 0.022 0.023 0.024

StringCaseStudy 0.679 0.688 0.687 0.696 0.687 0.680 0.021 0.011 0.016 0.027 0.017 0.014

65

The results show that there is no one individual fitness function that outperforms all the

others in every test object. The performance of each function is different for different test

objects. For instance, while CLF has the best performance in ‘a4j’ (with 78% coverage), it

was the worst performing function in ‘heal’. Similarly, COM1 produced the best coverage for

StringCaseStudy, but provided the worst results for ‘heal’, with only 39% of the branching

statements being attained.

In the case of ‘greencow’, which is the smallest test object, all fitness functions found test

suites with 100% branch coverage, although it must be borne in mind that ‘greencow’ is a

very trivial test object, with only 1 method, 1 branch and 13 lines. In the larger test objects,

the six functions do not achieve 100% branch coverage: the larger the test object, the lower

the branch coverage. Examples of this are ‘heal’ (1,521 methods, and 4,906 branches) and

‘lilith’ (2,301 methods, and 2,258 branches), which have the lowest branch coverage of any

of the test objects, with the coverage percentage not exceeding 70% of any of these large test

objects. For instance, CFF achieved only 23% of the branching statements in ‘lilith’ and

COM1 and COM2 performed very poorly, with only 39% and 31% of the branches exercised,

respectively. However, there are cases where good-quality test cases were generated for

large problems. For example, in the case of ‘dsachat’ (228 methods, and 3,224 branches),

despite being a test object with a large number of branches, branch coverage was high for all

functions, exceeding 70% in every case.

The fairly poor performance of the six functions over the objects: ‘heal’ and ‘lilith’ can be

explained by the fact that they are large objects with a high number of methods and branches

which will result in a large and complex search space of input parameters. These two objects

have similar characteristics. For instance, ‘heal’ and ‘lilith’ are the largest with regard to the

number of static methods with 114 and 91, respectively. Static methods are considered as a

strongly disturbing influence on evolutionary testability (Lammermann, Baresel & Wegener,

2008), because they often need to be invoked many times to reach a condition, such as in a

case where local static variables are used as a timer and the only possible way to cover a

particular branch is by repeating method calls multiple times.

For medium-sized test objects, like ‘water-simulator’ (352 methods and 64 branches),

NumericalCaseStudy (14 methods and 209 branches), and StringCaseStudy (31 methods and

607 branches), all the functions exhibit similar performance, producing test suites with very

66

similar coverage. The biggest difference in the coverage percentage is observed for the

object ‘petsoar’ (461 methods and 26 branches), while the five GA implementations

produced test suites with close degrees of coverage (around 60%), random testing (RT)

struggles to produce test suites with similar results, finishing with just 15%.

However, RT did not always perform worse than the GA implementations at branch

coverage. In fact, it performed better than other techniques on two objects: ‘follow’ and

‘lilith’. The reason behind this might be that sophisticated methods, such as GAs might incur

extra computational overheads, due to their complex behaviour, compared with naive

techniques such as RT. The effect of these overheads can be extremely high and were hard to

define before running the experiments.

We observe that COM1 and COM2, have almost the same performance. This is more evident

for the following objects: ‘water-simulator’, ‘dsachat’ and ‘lilith’, where performance is

almost identical. Both COM1 and COM2 involve both branch distance and approach level in

their calculation of fitness values. On the other hand, the CLF function does not outperform

the other functions for any of the test objects, except for object ‘A4j’, where CLF produced

the same degree of CFF coverage, namely 78%. A possible explanation of this case might be

that CLF provides little guidance on structures that are unlikely to be covered by chance, such

as deeply nested structures. This is because CLF tends to reward test suites that cover the

longest paths through the test object. Thus, the exclusive use of coverage as fitness criteria

means that the search progress is mainly guided to cover a long and easily accessible

structure. Hence, CLF’s schema was unable to attain superior performance for most of the

test objects.

For a better understanding of the distribution of fitness values for the 30 runs, results are

visualised as boxplots in Figure 4.1. The results presented in the boxplots are collected within

the evaluation of different fitness functions, expressed on the x-axis. The y-axis denotes the

coverage values. The middle red lines represent the median value for each case.

67

(a) a4j (b) water-simulator

(c) dsachat
(d) greencow

(e) petsoar (f) follow

(g) lilith (h) heal

(i) jgaap (j) NumericalCaseStudy

(k) StringCaseStudy

Figure 17 4.1 The distribution of coverage in the 30 runs for coverage level function (CLF), branch distance

function (BDF), control fitness function (CFF), combined fitness function 1 (COM1), combined fitness

function 2 (COM2) and random testing (RT).

68

The above results show that for each test object, there is a fitness function that produced

better coverage for it. However, there is no best function to use on all test objects. A function

could be the best for one test object, but the worst for the others. This can be seen in Figure

4.1, where the coverage obtained by CFF for ‘lilith’ was very low compared to other

functions, although CFF produced high coverage for the ‘heal’ object. The opposite was

noted for COM1 and COM2, while there was a wide range of variation in the fitness values

obtained for the ‘heal object, which was not true of the coverage produced for the ‘lilith’

object.

These results show that the performance of different functions depends on the software object

being tested. That is, there are likely to be features of a test object that make it hard for

certain functions to produce similar coverage in it to what is produced in other objects. This

highlights the need to measure software features and explore their relationship with the

coverage achieved using fitness functions. To this end, the second aim of this study is to

figure out what features in a test object will make it hard for a particular search schema to

guide the search towards higher coverage.

4.3 Hypothesis Testing

Statistical analysis was performed using the scipy and numpy Python frameworks and the R

statistical tool (Ihaka & Gentleman, 1996). In order to determine which statistical test type

(parametric or non-parametric) should be used for testing the hypotheses, the underlying data

distribution was examined to find out whether it corresponded to the assumptions of the

parametric tests, in terms of the probability distribution of the data. As the data obtained does

not correspond to the assumptions of the parametric tests regarding the normality and equal

variance of the data, non-parametric tests were chosen for a sound analysis of the data.

4.3.1 Answer to the First Research Question

As seen in the discussion in Section 4.2, the fitness function produces diverse degrees of

coverage across the different test objects. In this section, the hypothesis testing is described,

carried out to determine whether there is a significant difference in the coverage obtained by

 (RQ1): Does the choice of a particular fitness function affect the performance

of automated testing techniques?

69

fitness functions for each test object. Statistical significance provides an indication of how

likely it is that the differences observed between the techniques being compared is due to

chance.

Kruskal–Wallis’ non-parametric test (Kruskal & Wallis, 1952) was used to check for a

significant difference in the performance of the fitness functions. The Kruskal–Wallis test

makes no assumptions regarding the distribution of the results in terms of their normality or

variance. However, the distribution of coverage attained by the functions must be similar in

shape and scale, in order to use the median as a measure of comparison. The distribution of

the functions’ performance was examined and the results show they were not identical (i.e.

they have different shapes and variability). It can be seen in the boxplots in Figure 4.1, that

the scale of distribution for RT (for example) is much larger than with the other functions. If

the distribution of performance for each function is similar, the length of the box and

whiskers plot should be approximately the same. Therefore, means (rather than medians) are

used as the main measure for the Kruskal-Wallis test. The 30 repeated trials for each of the

test objects were submitted for Kruskal-Wallis analysis. The functions were compared with

each other, with a null hypothesis of no significant difference in the performance achieved by

the fitness functions, as follows:

Hypothesis 0 (H0): the mean values of the coverage obtained from all the fitness functions

are the same.

Hypothesis 1 (H1): the mean values of the coverage obtained from all the fitness functions

are different.

Table 4.2 illustrates the Kruskal-Wallis test results from the mean of the coverage obtained

by the functions. Tests which were deemed to be statistically significant at a 0.05 level of

significance are shown in bold text. For the test objects, ‘greencow’, ‘follow’ and

‘NumericalCaseStudy’, the test results show the functions performing to the same degree in

these objects. This is not surprising for ‘greencow’, as this is the smallest test object, where

all the fitness functions found the optimal solution. On the other hand, eight Kruskal-Wallis

tests were found to be statistically significant. Therefore, there is evidence to suggest a

difference in the coverage achieved by fitness functions for those eight test objects,

whereupon the null hypothesis of the first question is rejected for the majority of the test

objects.

70

Table 11 4.2 The Kruskal-Wallis tests on 30 runs of branch coverage in the test objects.

Statistically significant differences at a level of significance of 0.05 are shown in bold

type.

Test Object Kruskal Wallis Test

a4j P < .05

water-simulator P < .05

Dsachat P < .05

greencow 1

Petsoar P < .05

Follow 0.12

Lilith P < .05

Heal P < .05

jgaap P < .05

NumericalCaseStudy 0.08

StringCaseStudy P < .05

However, Kruskal-Wallis test is an omnibus test statistic (Kruskal & Wallis, 1952). It does

not indicate which particular functions are statistically significantly different from the others;

it only indicates that at least one fitness function was different. To understand where exactly

these differences lie (i.e. between which fitness functions), we must use a post-hoc test. In

those test objects where the Kruskal-Wallis test was significant, pairwise comparisons were

made using the Wilcoxon–Mann–Whitney (Mann & Whitney, 1947) test, to determine where

significant differences in the coverage obtained were detected. Wilcoxon–Mann–Whitney is a

non-parametric test for comparing two independent groups, based on ranking.

However, performing several Wilcoxon–Mann–Whitney tests has a tendency to inflate the

Type I error. To compensate for this error inflation, a Bonferroni adjustment (Bonferroni,

71

1936) was made to adjust the level of significance at which the Wilcoxon–Mann–Whitney

test would be run. The adjusted level of significance, 𝛼 is computed as follows:

 𝛼 =
𝑝

z

(4.1)

where z is the number of pairwise tests and p is the level of significance.

Let F be the number of search schemas to be tested, whereby the number of pairwise

comparisons, z is calculated as follows:

𝑧 =

𝐹(𝐹 − 1)

2

(4.2)

Hence, the Wilcoxon–Mann–Whitney tests were run with the adjusted p level, 𝛼 .003. Table

4.3 demonstrates the Wilcoxon–Mann–Whitney test calculations.

72

Table 12 4.3 Pairwise comparison of medians with respect to coverage using a Wilcoxon–Mann–Whitney test. Statistically significant

differences at a level of 0.003 are shown in bold type.

a4j

water-simulator

BDF CFF COM1 COM2 RT

BDF CFF COM1 COM2 RT

CLF <0.003 0.47 0.21 <0.003 <0.003

CLF 0.10 0.10 0.33 0.21 <0.003

BDF

<0.003 0.04 0.25 0.07

BDF

0.49 0.20 0.24 <0.003

CFF

0.23 <0.003 <0.003

CFF

0.19 0.24 <0.003

COM1

0.07 0.01

COM1

0.29 <0.003

COM2

0.12

COM2

<0.003

Dsachat

petsoar

BDF CFF COM1 COM2 RT

BDF CFF COM1 COM2 RT

CLF 0.01 0.28 0.36 0.20 0.42

CLF 0.46 0.36 0.36 0.00 <0.003

BDF

<0.003 <0.003 <0.003 0.00

BDF

0.42 0.26 <0.003 <0.003

CFF

0.35 0.32 0.28

CFF

0.40 0.01 <0.003

COM1

0.21 0.39

COM1

0.03 <0.003

COM2

0.19

COM2

<0.003

73

lilith

heal

BDF CFF COM1 COM2 RT

BDF CFF COM1 COM2 RT

CLF <0.003 <0.003 0.05 0.48 0.19

CLF 0.19 0.38 0.07 0.03 0.27

BDF

<0.003 <0.003 <0.003 <0.003

BDF

0.20 <0.003 <0.003 0.02

CFF

<0.003 <0.003 <0.003

CFF

0.01 <0.003 0.09

COM1

0.01 <0.003

COM1

0.33 0.11

COM2

0.18

COM2

0.06

jgaap

StringCaseStudy

BDF CFF COM1 COM2 RT

BDF CFF COM1 COM2 RT

CLF <0.003 0.02 0.32 0.38 0.42

CLF <0.003 0.06 0.01 0.04 0.28

BDF

<0.003 <0.003 0.03 <0.003

BDF

0.49 0.17 0.36 0.00

CFF

0.02 0.01 0.05

CFF

0.16 0.42 0.02

COM1

0.26 0.47

COM1

0.17 0.00

COM2

0.29

COM2

0.02

74

Significant differences are more evident in some test objects than others. For example, in the

‘lilith’ object, the Mann–Whitney analysis indicates a statistical significance in the difference

between the performances of almost all the search schemes, while for the ‘StringCaseStudy’

object, only one pair comparison out of fifteen showed significant differences. For the object,

‘water-simulator’, there is an insignificant difference between the performance of the

functions. Hence, the coverage produced from a certain function is not the same across all the

test objects. For example, while these functions offer significantly different coverage of some

objects, they may perform the same in others. This poses the question whether the internal

structure of objects is responsible for this inconsistent performance of the functions across

those objects.

4.3.2 Discussion on the Analysis of the First Question

The ultimate aim in automated test case generation is to achieve ideal coverage (i.e. 100%),

as this will lead to a higher probability of finding faults in the software. Branch coverage of

less than 100% indicates that some branches are difficult to reach. Uncovered branching

statements could be infeasible for different reasons, such as private methods, dead code, and

abstract methods, as also observed by Goldberg, Wang and Zimmerman (1994). For instance,

private methods cannot be directly accessed in the generated test suites; it needs to be

invoked in the class’s public methods. Dead code may produce infeasible branches or

unreachable methods, such as abstract class methods, or abstract methods overridden in all

concrete subclasses.

We observed that the performance of the fitness functions varied according to the test object

used. This means that the performance of the fitness functions was problem-dependent and

suggests that the coverage obtained by a particular fitness function is likely to be influenced

by the features of the test object at hand. This led us to investigate how strongly the

performance of different functions depends on the objects being tested. To this end, we

measured features of the test objects and explored their relationship with the coverage

achieved using the different fitness functions.

An important observation which can be made is that RT produced similar results to the more

sophisticated GA implementations. These findings are in line with Shamshiri et al. (2015),

but in contrast with the results found by Fraser and Arcuri (2014), who report the superior

75

performance of GA over RT. These conflicting results suggest that the performance of the

automated testing technique is problem-dependent.

4.3.3 Answer to the Second Research Question

The second research question examines the relationship between the performance of fitness

functions and the code metric values of the test objects. A correlation analysis was performed

using Spearman’s rank-order correlation coefficient (Sheskin, 2007) for each pair of <the

coverage given by a fitness function, code metric values>. Hypotheses were formulated, such

that the null hypothesis makes no assumption of a correlation, as follows:

Hypothesis 0 (H0): There is no correlation between software metric values and the coverage

obtained by a given fitness function.

Hypothesis 1 (H1): There is a correlation between software metric values and the coverage

obtained by a given fitness function.

Spearman’s rank-order correlation coefficient is a non-parametric technique for measuring

the degree and strength of a relationship between two variables. The values of these variables

are ranked according to both variables and then the rankings are correlated, thus minimising

the impact of any nonlinear relationships between the two variables. We decided to use

Spearman’s correlation coefficient (and not the more common Pearson correlation), since this

correlation measurement makes no assumptions about the underlying data distribution and is

independent of the nature of the relationship between the two variables (Gravetter &

Wallnau, 2013).

The numerical coefficient ‘rs’ ranges between [-1:+1], in which: rs > 0 indicates a positive

correlation; rs < 0 indicates negative correlation (or correlation in the reverse direction), and

rs = 0 implies no correlation. The higher the ‘rs’ value, the stronger the relationship between

the two variables. The strength of the relationship is interpreted according to the following

categories (Christmann & Badgett, 2009): very weak in the range [0.000 to 0.200], weak in

the range [0.201 to 0.400], moderate in the range [0.401 to 0.600], strong in the range [0.601

to 0.800] and very strong in the range [0.801 to 1.000]. Besides the value of coefficient ‘rs’,

RQ2: Is there a correlation between software metric values and the coverage

obtained by a given fitness function?

76

Spearman’s rank-order correlation test gives the significance level p in each correlation,

indicating the probability that the correlation is due to chance.

Before applying Spearman’s test, all the metric values are normalised in the range [0:1], thus

allowing a fair comparison of variables coming from different ranges. The values are

normalised using the following equation (Everitt & Skrondal, 2002):

𝑍𝑖 =

𝑥𝑖 − min (𝑋)

max (𝑋) − min (𝑋)

(4.3)

where X=(x1, x2,...,xn): the value corresponding to metric i, min (X) is the smallest value

measured for metric I; max (X) is the maximum measured value for metric i: xi is a metric

value for a test object, and Zi is the the normalised value. Table 4.4 shows the normalised

code metric values.

77

Table 13 4.4 Code metric values after being normalised in the range [0:1]

Test Objects HALL NOA NOM WMC NCL NSA NSM NTG TLOC DIT NOC CBO FRC LCOM

a4j 0.181 0.178 0.207 0.137 0.083 0.002 0.000 1.000 0.098 0.000 0.000 0.055 0.159 0.392

water-simulator 0.168 0.562 0.153 0.106 0.136 0.242 0.009 0.012 0.234 0.105 0.158 0.198 0.140 0.020

dsachat 0.798 0.143 0.099 0.105 0.056 0.295 0.044 0.038 0.097 0.039 0.059 0.079 0.097 0.032

greencow 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

petsoar 0.036 0.196 0.200 0.116 0.179 0.040 0.097 0.108 0.091 0.434 0.644 0.265 0.245 0.054

follow 0.824 0.145 0.172 0.103 0.151 0.134 0.150 0.010 0.151 0.303 0.396 0.227 0.158 0.154

lilith 1.000 1.000 1.000 1.000 1.000 1.000 0.796 0.900 1.000 1.000 0.861 1.000 0.808 0.951

heal 0.665 0.474 0.661 0.692 0.384 0.313 1.000 0.605 0.572 0.678 1.000 0.744 1.000 1.000

jgaap 0.130 0.089 0.036 0.027 0.040 0.000 0.009 0.015 0.029 0.086 0.079 0.050 0.030 0.002

NumericalCaseStudy 0.240 0.006 0.006 0.018 0.019 0.013 0.009 0.046 0.011 0.000 0.000 0.000 0.004 0.000

StringCaseStudy 0.095 0.005 0.013 0.043 0.021 0.002 0.018 0.052 0.019 0.000 0.000 0.000 0.009 0.000

78

Table 4.5 below depicts the values of Spearman’s coefficient correlation ‘rs’ for each pair of

<the coverage given by a fitness function, code metric values>. The significant correlations at

95% confidence level are identified in bold. For the significant correlations, we can reject the

H0 – there is some correlation between the performance of the fitness function and the code

metric value; 41 pairs of metrics, among a total of 84, have a significant correlation between

them and thus, have the null hypothesis rejected. The strength of these correlations is

discussed next for each class of metrics.

79

Table 14 4.5 Spearman’s rank-order correlation coefficient (rs) in the top Table, and significance (p) in the bottom Table. Statistically

significant correlations at a level of 0.05 are shown in bold type.

 HALL NOA NOM WMC NCL NSA NSM NTG TLOC DIT NOC CBO FRC LCOM

CLF

-

0.0091

-

0.6545

-

0.5000

-

0.6273

-

0.6000

-

0.5388

-

0.4828

-

0.3455

-

0.5636

-

0.5629

-

0.5909

-

0.5597

-

0.5727

-

0.4273

BDF

-

0.1636

-

0.7636

-

0.6000

-

0.7182

-

0.6909

-

0.6530

-

0.5380

-

0.3909

-

0.6909

-

0.6606

-

0.6699

-

0.6606

-

0.6455

-

0.5182

CFF

-

0.2455

-

0.7909

-

0.6545

-

0.7636

-

0.7364

-

0.6895

-

0.5839

-

0.4636

-

0.7182

-

0.7072

-

0.6886

-

0.7065

-

0.6727

-

0.5545

COM

1

-

0.0818

-

0.7364

-

0.5727

-

0.6909

-

0.6727

-

0.6073

-

0.5196

-

0.3727

-

0.6364

-

0.6420

-

0.6606

-

0.6422

-

0.6364

-

0.4909

COM

2

-

0.1091

-

0.7273

-

0.6091

-

0.7182

-

0.7000

-

0.6256

-

0.5839

-

0.4273

-

0.6455

-

0.6699

-

0.6979

-

0.6698

-

0.6818

-

0.5455

RT
0.0455

-

0.6182

-

0.5364

-

0.6455

-

0.6364

-

0.5023

-

0.5564

-

0.4364

-

0.4909

-

0.6002

-

0.6281

-

0.5964

-

0.6273

-

0.4636

Correlation coefficient (rs)

80

 HALL NOA NOM WMC NCL NSA NSM NTG TLOC DIT NOC CBO FRC LCOM

CLF 0.9788 0.0289 0.1173 0.0388 0.0510 0.0872 0.1325 0.2981 0.0710 0.0714 0.0556 0.0734 0.0655 0.1899

BDF 0.6307 0.0062 0.0510 0.0128 0.0186 0.0294 0.0878 0.2345 0.0186 0.0269 0.0241 0.0269 0.0320 0.1025

CFF 0.4669 0.0037 0.0289 0.0062 0.0098 0.0189 0.0593 0.1509 0.0128 0.0149 0.0191 0.0151 0.0233 0.0767

COM

1
0.8110 0.0098 0.0655 0.0186 0.0233 0.0475 0.1014 0.2589 0.0353 0.0332 0.0269 0.0331 0.0353 0.1252

COM

2
0.7495 0.0112 0.0467 0.0128 0.0165 0.0395 0.0593 0.1899 0.0320 0.0241 0.0169 0.0242 0.0208 0.0827

RT 0.8944 0.0426 0.0890 0.0320 0.0353 0.1154 0.0755 0.1797 0.1252 0.0509 0.0385 0.0528 0.0388 0.1509

 Significance (p) value

81

4.3.3.1 Size-related Measures

Size-related measures include Halsted length (HALL); number of attributes (NOA); number

of classes (NCL); number of static methods (NSM); number of static attributes (NSA);

number of methods in a class (NOM); weight of method (WMC); number of test goals

(NTG), and total line of code (TLOC). Most of these metrics are negatively correlated with

the coverage obtained from the fitness function, suggesting that large test objects are harder

to cover.

Halsted length (HALL) counts the total number of arithmetical operators, numerics, constants

and language keywords, such as ‘return’ and ‘continue’. There is a lack of evidence to

suggest a correlation between HALL and any of the fitness functions. Unlike the results for

HALL, the values of coefficient ‘rs’ for number of attributes (NOA) suggest a very strong

negative correlation between NOA and the coverage achieved by all functions. A possible

explanation is given by the definition of NOA. The test object variables require initialisation

before testing can be performed. A higher number of variables will mean a longer time

required to construct a test case, resulting in high execution costs.

A class is considered as the heart of OO languages. There is evidence of a statistically

significant correlation between number of classes (NCL) metric values and between the

performances of all fitness functions, except for CLF. Here, Spearman's correlation

coefficient is in the range [-0.73, -0.63], which suggests a strong negative correlation. The

coverage produced by a test case is likely to be influenced by the number of classes.

For number of static methods (NSM), there is a lack of evidence to suggest a correlation

between NSM and the performance of the functions used. In contrast, number of static

attributes (NSA) metric values correlate with the coverage obtained by all the functions,

except for CLF; the more static the attributes, the lower the capacity of the functions to direct

the progress of the research towards full coverage. An example which will explain such

correlation is when static attributes are used as a timer in the code. In this case, to cover a

branching statement that has a timer, it is required to generate an input sequence of that static

attribute to cover the branch. For instance, ‘branching statement 2’ in Figure 4.2 requires the

execution of the function static_Example at least seven times for the true branch of

‘branching statement 2’ to become feasible, since the value of the static attribute, called

counter, will be retained at the end of the method call until the next time it is executed. In this

82

case, plateaux will form on the fitness landscape, because the search goal is not satisfied until

the method executes at least seven times for the predicate of ‘branching statement 2’ to be

true.

Figure 19 4.2 An example of static attributes

The number of methods in a class (NOM) metric only correlates strongly with the

performance of CFF and COM2 functions, whereas the weight of method (WMC) metric

values strongly correlate with coverage obtained by all fitness functions. The weight of the

method is proportionate to the number of possible alternative paths through the code. In

contrast to WMC, there is a lack of evidence to suggest a correlation between number of test

goals (NTG) and any of the fitness functions. NTG is in fact proportioned to the number of

branches in a test object. The results obtained for WMC and NTG suggest that it is not the

number but rather the positioning of the branches in a test object which will primarily

influence performance; for example, if two test objects have the same number of branches,

but differ in the positioning of the branches, such that the first object has branches in linear

order, while the other has branches in a nested structure. In this case, the latter object is the

harder to cover. The results obtained from Spearman's rank correlation for these two metrics

confirm this explanation.

The last metric to be discussed in this group is total line of code (TLOC). The results show a

statistically significant correlation between TLOC and the coverage achieved by the fitness

functions, except for CLF. This correlation may explain the 100% absent coverage achieved

by the functions for the test objects, except for ‘greencow’: a trivial test object consisting of

only of 13 lines of code. While the ‘greencow’ object was easy to cover, the larger test

objects were more difficult in terms of reaching a high level of coverage.

const int maximum = 7;

static int counter = 0;

bool static_Example (int a, int b, int c)

{

 if (counter < maximum) // branching statement 1

 counter ++;

 if (counter >= maximum) // branching statement 2

 return True;

 return False;

}

83

To sum up, the larger a test object in terms of the number of attributes, number of classes,

number of possible alternative paths (higher WMC) and number of lines of code, the more

difficult it is to obtain high coverage using the functions presented here.

4.3.3.2 Complexity-Related Measures

The second group of measures evaluates the complexity of the test objects. This group

includes depth of inheritance (DIT); number of children (NOC); coupling between object

classes (CBO); response for a class (RFC), and lack of cohesion of methods (LCOM).

Two metrics of the complexity-related measures deal with inheritance: DIT expresses the

maximum inheritance path from a class to the root class, whereas NOC indicates the number

of direct subclasses of a class within the class. Both metrics are strongly correlated to all the

functions. A possible explanation for this might be that a test object with a longer inheritance

path tends to contain a higher number of inherited attributes, methods and children classes.

In this case, it might become harder for the functions presented to guide the search progress

in exercising such complex structures.

CBO and RFC metrics measure dependencies on external classes and methods. CBO

expresses the number of classes to which a class is coupled. A class is considered coupled to

another class if it calls its method or accesses its instance variables. RFC represents the set of

methods which can potentially be invoked in response to a message received by an object

from the class. These two metrics are significantly correlated with all fitness functions. When

testing a class with dependencies on other classes or methods, the attributes of these classes

be initialised before they are used. Thus, the test will not only include the class being tested,

but may also include the coupled classes and dependent methods from other classes.

Therefore, the amount of initialisation required before testing will influence the search

budget.

The last metric to be discussed in this group is lack of cohesion of methods (LCOM). While

CBO measures how classes interact with each other, LCOM focuses on how a single class is

designed. LCOM measures how closely related the methods of a class are to each other. The

results show that LCOM does not correlate with the coverage obtained by any of the

functions presented. LCOM only considers methods and instance variables implemented in

the class, whereas inherited ones are excluded. Thus, the results show that cohesion does not

84

act as a critical influence on the performance of the functions presented, while coupling and

inherence do.

While the above complexity-related metrics correlate with all the functions presented, there is

a lack of evidence to confirm such a correlation with CLF. CLF rewards test suites on the

basis of the execution of branching statements, as discussed in Chapter 3. Therefore, it does

not exploit information from the code regarding its inheritance, cohesion or coupling. As this

function mainly counts the number of covered branches, it does not differentiate whether they

are present in a nested structure, such as multiple inheritance, or a simple class. Therefore,

the performance of CLF does not correlate with these metrics.

In summary, complexity-related metrics: DIT, NOC, CBO, FRC can be seen as an indicator

of the possible difficulty for the functions presented to guide the search process in covering a

given object.

4.3.4 Discussion on the Analysis of the Second Question

Based on the experiments, the relationship between code measures and function performance

will help us understand whether high coverage is possible for certain software systems. The

results show that each fitness function presented is correlated with some of the measures and

the strength of this correlation varied. This knowledge provides a better understanding of how

the fitness functions utilised could be influenced by the internal structure of a test object. For

instance, if a test object contains a large number of methods, it is hard to expect that CFF or

COM2 functions will guide the search to obtain higher coverage, as the performance of these

functions is negatively correlated with the number of methods. In this case, other functions

are recommended, which are not influenced by the application of a high number of methods,

such as COM1.

Spearman's rank correlation test is used to investigate the correlation between the

performance of the fitness functions and the code measurement. However, it is important to

note that a correlation relationship does not mean a cause and effect relationship. In other

words, the above results do not suggest that any of the code measures give rise to the

performance obtained, or vice versa. The correlations permit us to conclude that is possible to

observe certain testability indicators (based on the degree of coverage obtained) through the

measurements computed from a test object’s internal structure. A cause and effect

relationship is subject to further future study.

85

The correlation between NOM and the coverage obtained by the fitness functions needs

further examination, in order to give a better understanding of the impact of the type of

method: private, public, or overridden. The analysis of the impact of private and overridden

methods on the achievement of coverage is important, since both types of method could

increase the probability of low coverage, as discussed above in Section 4.3.2.

4.4 Threats to Validity

There are threats to validity in any empirical study, the current one included. This section

presents a brief overview of threats to validity and how they have been addressed. One

potential source of threat to the internal validity of this research stems from the experimental

design. When comparing different functions, it is essential to ensure that the comparison is as

reliable as possible. One potential source of bias consists of the settings used for setting up

the experiments. Therefore, care was taken to ensure that all parameters which do not reflect

the experimental procedure were kept constant during all the experiments.

Another threat to internal validity might come from using metaheuristics, since they are

stochastic by nature. To mitigate this threat, all experiments were repeated 30 times and

rigorous statistical procedures were followed to evaluate the results. To examine the

performance of one function compared to the other, a test for statistically significant

differences in the mean of the coverage was performed. Care was taken to first check the

distribution of the data, in order to ensure the most suitable statistical test was selected for

data analysis.

A source of bias may include the choice of test objects used in the empirical study, which

could potentially affect its external validity, i.e. the extent to which it is possible to generalise

from the results obtained. The wide range of software types makes it impossible to cover all

possible kinds of software. However, where possible, a variety of software type and sources

were used. The study draws upon codes from open source projects and case studies from the

literature. This has resulted in a total of 1,109 classes, 5,866 methods, 85,562 lines of code

and 12,343 branch statements, producing a large pool of results from which to make

observations. Nevertheless, we acknowledge that the results may not be generalised to other

automated testing techniques, programming languages, or paradigms.

86

Threats to construct validity may be related to the way the performance of fitness functions is

assessed. Branch coverage was used as a test criterion to evaluate the quality of the test suites

generated. However, the results may be different for other test suite properties, such as the

size of the test suite or the length of the test cases. Whether these properties are negatively

related with branch coverage is a matter for further study.

4.5 Summary

This chapter has introduced and evaluated results collected from 1,980 experiments. The

results obtained from the six search schemas suggest that the effectiveness of a fitness

function is problem-dependent. We were able to demonstrate a significant correlation

between code measures (most notably NOA, WMC, DIT, NOC, CBO, and RFC) and the

performance of fitness functions. In the next chapter, conclusions to this thesis and

recommendations for further research are presented.

87

Chapter 5: CONCLUSION

5.1 Research Summary and Contributions

The success of applying automated test data generation largely depends on how the definition

of the fitness function accurately represents the test aim. For many years, researchers have

been proposing different definitions of fitness functions for automatically generating test

data. In this study, the performance of five fitness functions are investigated: coverage level

function (CLF), branch distance function (BDF), control fitness function (CFF), combined

fitness function 1 (COM1), and combined fitness function 2 (COM2). These functions utilise

different measurements to evaluate the quality of the test data produced. CLF uses structural

coverage measurements orignally proposed by Roper (1997), whereas BDF employs branch

distance measures. In CFF, The fitness value is equivalent to the number of successful

statement executions through the code towards the target branch. Both COM1 and COM2

functions combine more than one measure to evaluate the fitness value.

The empirical study was performed on a total of 85,562 lines of code and 12,343 branch

statements. The results of the study show there was no fitness function that outperformed all

the other functions in all test objects; each function in fact provided diverse coverage over the

test objects, i.e. while providing best performance on some test objects, functions were

outperformed in others. Depending on the test objects, the worst performing function also

varied. This indicates that the performance of a fitness function is problem-dependent,

leading to investigation into whether the coverage obtained is impacted by features of

software systems.

Identifying those features of software systems which make the generation of test cases

difficult will help us understand the suitability and limitations of definitions of fitness

functions. Thus, one of the main tasks of this study was to measure software features and

explore their relationship with the coverage achieved by the fitness functions. This research

has aimed to provide a starting point for using software metrics to pinpoint the relationship

between the performance of a fitness function and the characteristics of the software being

tested. We looked at the following software metrics: Halsted length (HALL); number of

attributes (NOA); number of classes (NCL); number of static methods (NSM); number of

static attributes (NSA); number of methods in a class (NOM); weight of method (WMC);

88

number of test goals (NTG); total line of code (TLOC); depth of inheritance (DIT); number

of children (NOC); coupling between object classes (CBO); response for a class (RFC), and

lack of cohesion of methods (LCOM).

The study showed that software metrics are useful as an indicator of the possibility of

reaching high coverage using a given fitness function. The results show that the larger a test

object in terms of NOA, NCL, number of possible alternative paths (higher WMC) and

TLOC, the more difficult it is to obtain high coverage using any of the functions presented.

Testing those test objects which proved difficult to cover using a given fitness function

should be enhanced by considering other techniques; for instance, by increasing the search

budget for the test.

The results also show that it is not the number of branches, but rather the positioning of the

branches in a test object which will primarily influence the function’s performance. Branches

present in nested structures will increase the number of possible paths through the code,

leading to low coverage of the code. Testing objects with a high number of possible

alternative paths should be enhanced by using adequate code transformation; for instance,

transforming the code to a simpler version with fewer alternative paths, yet maintaining the

functionality of the software. Thus, these challenging characteristics (in this case higher

alternative paths) will no longer have a dramatic effect on the performance of the fitness

functions.

Investigating influences resulting from the characteristics of test objects plays a decisive role

in determining the coverage level provided by a given fitness function. When the

performance of a given function is hindered by the presence of certain software features, it is

hard to expect that function to produce test suites with high coverage. This facilitates a deeper

understanding of the strengths and weakness of the fitness functions, with implications for

improved definitions of such functions. The fitness function of the structural test needs to be

further improved in the light of the characteristics of the test objects.

Ideally, for a new software, different fitness functions should be compared, in order to be able

to select the function which is more likely to provide high coverage. Ultimately, fitness

function selection should be automated, so that the most appropriate fitness function is

utilised for a given test object. It is expected that the extra computational overheads will pay

off and more research is hoped for in this direction.

89

Nevertheless, the findings of this study should be regarded as exploratory rather than

conclusive, as they show how it is possible to find a significant relationship between software

characteristics (through code metrics commonly used to evaluate size and complexity) and

the coverage obtained by the fitness function. While these results are insightful, they are still

not generalisable. This study contributes to the research direction which focuses on

answering a question which has intrigued researchers for some time; about how we can

determine when a test object type is manageable for specific automated testing techniques.

5.2 Future Work

The investigation could be extended to other search algorithms, such as hill climbing (HC)

and simulated annealing (SA). A broader understanding would be gained of how performance

may be influenced across different search techniques when utilising different definitions of

fitness functions.

This study has focused on structural testing, wherein test cases are defined on the basis of

internal program structure. A study similar to this one should be carried out on functional

testing techniques, whereby test cases are produced, depending on the software requirements

and specifications and without any knowledge of the internal structure of the software.

Another possible area of future research would be to build a machine-learning model that

uses the software metric values applied in this study to predict the test coverage that could be

achieved by different fitness functions. The coverage obtained by the functions and the

software metric values measured from the test objects investigated in this study would be

used as input for specific machine-learning techniques. Examples of these techniques include

Bayesian networks and decision trees. Ultimately, automated fitness function selection is of

potential benefit to software testers and developers.

90

References

Ali, S., Briand, L.C., Hemmati, H. & Panesar-Walawege, R.K. (2010). A systematic review of the

application and empirical investigation of search-based test case generation. IEEE

Transactions on Software Engineering, 36(6), 742-762.

Arcuri, A. (2013). It really does matter how you normalize the branch distance in search‐based

software testing. Software Testing, Verification and Reliability, 23(2), 119-147.

Arcuri, A. & Briand, L. (2011). Adaptive random testing: An illusion of effectiveness? Paper

presented at the Proceedings of the 2011 International Symposium on Software Testing and

Analysis.

Arcuri, A. & Briand, L. (2012). Formal analysis of the probability of interaction fault detection using

random testing. IEEE Transactions on Software Engineering, 38(5), 1088-1099.

Arcuri, A. & Briand, L. (2014). A hitchhiker's guide to statistical tests for assessing randomized

algorithms in software engineering. Software Testing, Verification and Reliability, 24(3), 219-

250.

Arcuri, A. & Fraser, G. (2013). Parameter tuning or default values? An empirical investigation in

search-based software engineering. Empirical Software Engineering, 18(3), 594-623.

Arcuri, A., Iqbal, M.Z. & Briand, L. (2010). Black-box system testing of real-time embedded systems

using random and search-based testing. Testing Software and Systems (pp. 95-110): Springer.

Arcuri, A. & Yao, X. (2008). Search based software testing of object-oriented containers.

Information Sciences, 178(15), 3075-3095.

Bansiya, J. & Davis, C. G. (2002). A hierarchical model for object-oriented design quality assessment.

IEEE Transactions on Software Engineering, 28(1), 4-17.

Baresel, A. & Sthamer, H. (2003). Evolutionary testing of flag conditions. Paper presented at Genetic

and Evolutionary Computation Conference (GECCO 2003)..

Barkmann, H., Lincke, R. & Lowe, W. (2009). Quantitative evaluation of software quality metrics in

open-source projects. Paper presented at the International Conference on Advanced

Information Networking and Applications Workshops (WAINA’09).

Basili, V.R., Briand, L.C. & Melo, W.L. (1996). A validation of object-oriented design metrics as

quality indicators. IEEE Transactions on Software Engineering, 22(10), 751-761.

Bhatti, H.R. (2011). Automatic Measurement of Source Code Complexity. Master’s thesis, Lulea

University of Technology, Lulea, Sweden, 2011 [12] Милютин А.,«Метрики кода

программного обеспечения» http://www. viva64. com/ru/a/0045.

Binder, R. (2000). Testing object-oriented systems: Models, patterns, and tools: Addison-Wesley

Professional.

Bland, J.M. & Altman, D.G. (1995). Multiple significance tests: the Bonferroni method. BMJ,

310(6973), 170.

Briand, L.C., Morasca, S. & Basili, V.R. (1996). Property-based software engineering measurement.

IEEE Transactions on Software Engineering, 22(1), 68-86.

Bruntink, M. & van Deursen, A. (2006). An empirical study into class testability. Journal of Systems

and Software, 79(9), 1219-1232.

Chidamber, S.R. & Kemerer, C.F. (1994). A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20(6), 476-493.

Christmann, E.P. & Badgett, J.L. (2009). Interpreting assessment data: Statistical techniques you can

use: NSTA Press.

Collet, P. & Rennard, J.-P. (2007). Stochastic optimization algorithms. arXiv preprint

arXiv:0704.3780.

Corder, G.W. & Foreman, D.I. (2009). Nonparametric statistics for non-statisticians: A step-by-step

approach: John Wiley & Sons.

D’Ambros, M., Lanza, M. & Robbes, R. (2012). Evaluating defect prediction approaches: a

benchmark and an extensive comparison. Empirical Software Engineering, 17(4-5), 531-577.

Daniel, B. & Boshernitsan, M. (2008). Predicting effectiveness of automatic testing tools. Paper

presented at 23rd IEEE/ACM International Conference on Automated Software Engineering,

2008. (ASE 2008).

91

Dreo, J. & Siarry, P. (2007). Stochastic metaheuristics as sampling techniques using swarm

intelligence. I-Tech Education and Publishing: December.

Abreu, F.B. & Carapuça, R. (1994). Candidate metrics for object-oriented software within a taxonomy

framework. Journal of Systems and Software, 26(1), 87-96.

Efron, B. (1969). Student's t-test under symmetry conditions. Journal of the American Statistical

Association, 64(328), 1278-1302.

Everitt, B.S. & Skrondal, A. (2002). The Cambridge Dictionary of Statistics. Cambridge University

Press: Cambridge.

Fenton, N. & Bieman, J. (2014). Software metrics: A rigorous and practical approach: CRC Press.

Fraser, G. & Arcuri, A. (2011). EvoSuite: Automatic test suite generation for object-oriented

software. Paper presented at the Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering.

Fraser, G. & Arcuri, A. (2013a). 1600 faults in 100 projects: Automatically finding faults while

achieving high coverage with evosuite. Empirical Software Engineering, 1-29.

Fraser, G. & Arcuri, A. (2013b). Whole test suite generation. IEEE Transactions on Software

Engineering, 39(2), 276-291.

Fraser, G. & Arcuri, A. (2014). A large-scale evaluation of automated unit test generation using

EvoSuite. ACM Transactions on Software Engineering and Methodology (TOSEM), 24(2), 8.

Fraser, G. Arcuri, A. & McMinn, P. (2013). Test suite generation with memetic algorithms. Paper

presented at the Proceedings of the 15th Annual Conference on Genetic and Evolutionary

Computation.

Goldberg, A., Wang, T.-C. & Zimmerman, D. (1994). Applications of feasible path analysis to

program testing. Paper presented at the Proceedings of the 1994 ACM SIGSOFT

International Symposium on Software Testing and Analysis.

Gravetter, F. & Wallnau, L. (2013). Essentials of statistics for the behavioral sciences: Cengage

Learning.

Gross, H., Kruse, P.M., Wegener, J. & Vos, T. (2009). Evolutionary white-box software test with the

evotest framework: A progress report. Paper presented at the International Conference

on.Software Testing, Verification and Validation Workshops, 2009 (ICSTW'09).

Gupta, A. & Jalote, P. (2008). An approach for experimentally evaluating effectiveness and efficiency

of coverage criteria for software testing. International Journal on Software Tools for

Technology Transfer, 10(2), 145-160.

Halstead, M.H. (1977). Elements of Software Science (Operating and Programming Systems Series):

Elsevier Science Inc.

Harman, M., Mansouri, S.A. & Zhang, Y. (2009). Search based software engineering: A

comprehensive analysis and review of trends techniques and applications. Department of

Computer Science, King’s College London, Tech. Rep. TR-09-03.

Harman, M. & McMinn, P. (2007). A theoretical & empirical analysis of evolutionary testing and hill

climbing for structural test data generation. Paper presented at the Proceedings of the 2007

International Symposium on Software Testing and Analysis.

Harman, M. & McMinn, P. (2010). A theoretical and empirical study of search-based testing: Local,

global, and hybrid search. IEEE Transactions on Software Engineering, 36(2), 226-247.

Harrison, R. & Samaraweera, L. (1996). Using test case metrics to predict code quality and effort.

ACM SIGSOFT Software Engineering Notes, 21(5), 78-88.

Harrison, W., Magel, K., Kluczny, R. & DeKock, A. (1982). Applying software complexity metrics to

program maintenance. Computer, 9(15), 65-79.

Hooker, J.N. (1995). Testing heuristics: We have it all wrong. Journal of Heuristics, 1(1), 33-42.

Hutchins, M., Foster, H., Goradia, T. & Ostrand, T. (1994). Experiments of the effectiveness of

dataflow-and controlflow-based test adequacy criteria. Paper presented at the Proceedings of

the 16th International Conference on Software Engineering.

Ihaka, R. & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of

Computational and Graphical Statistics, 5(3), 299-314.

Johnson, D.S. (2002). A theoretician’s guide to the experimental analysis of algorithms. Data

Structures, near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS

Implementation Challenges, 59, 215-250.

92

Kruskal, W.H. & Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. Journal of the

American Statistical Association, 47(260), 583-621.

Lakhotia, K. (2009). Search–Based Testing. King’s College London.

Lammermann, F., Baresel, A. & Wegener, J. (2008). Evaluating evolutionary testability for structure-

oriented testing with software measurements. Applied Soft Computing, 8(2), 1018-1028.

Lee, Y. (2007). Automated source code measurement environment for software quality: ProQuest.

Lefticaru, R. & Ipate, F. (2008). A comparative landscape analysis of fitness functions for search-

based testing. Paper presented at the 10th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, 2008 (SYNASC'08). .

Li, W. & Henry, S. (1993a). Maintenance metrics for the object oriented paradigm. Paper presented

at the First International Software Metrics Symposium, 1993. .

Li, W. & Henry, S. (1993b). Object-oriented metrics that predict maintainability. Journal of Systems

and Software, 23(2), 111-122.

Lincke, R., Gutzmann, T. & Löwe, W. (2010). Software quality prediction models compared. Paper

presented at the 10th International Conference on Quality Software (QSIC), 2010.

Lincke, R., Lundberg, J. & Löwe, W. (2008). Comparing software metrics tools. Paper presented at

the Proceedings of the 2008 International Symposium on Software Testing and Analysis.

Löwe, W., Ericsson, M., Lundberg, J., Panas, T. & Pettersson, N. (2003). Vizzanalyzer-a software

comprehension framework. Paper presented at the Third Conference on Software Engineering

Research and Practise in Sweden, Lund University, Sweden.

Mann, H.B. & Whitney, D.R. (1947). On a test of whether one of two random variables is

stochastically larger than the other. The Annals of Mathematical Statistics, 50-60.

Maragathavalli, P. (2011). Search-based software test data generation using evolutionary

computation. arXiv preprint arXiv:1103.0125.

Marco, L. (1997). Measuring software complexity. Enterprise Systems Journal (April).

McCabe, T.J. (1976). A complexity measure. IEEE Transactions on Software Engineering, (4), 308-

320.

Narasimhan, V.L., Parthasarathy, P. & Das, M. (2009). Evaluation of a suite of metrics for component

based software engineering (CBSE). Issues in Informing Science and Information

Technology, 6(5/6), 731-740.

Nogueira, A.F. (2012). Predicting software complexity by means of evolutionary testing. Paper

presented at the Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering.

Nogueira, A.F., Ribeiro, B., Carlos, J. & Zenha-Rela, M. (2014). On the Evaluation of Software

Maintainability Using Automatic Test Case Generation. Paper presented at the 9th

International Conference on the Quality of Information and Communications Technology

(QUATIC), 2014..

Pacheco, C. & Ernst, M.D. (2007). Randoop: Feedback-directed random testing for Java. Paper

presented at the Companion to the 22nd ACM SIGPLAN Conference on Object-oriented

Programming Systems and Applications Companion.

Panas, T., Lincke, R., Lundberg, J. & Lowe, W. (2005). A qualitative evaluation of a software

development and re-engineering project. Paper presented at the 29th Annual IEEE/NASA

Software Engineering Workshop, 2005..

Pargas, R.P., Harrold, M.J. & Peck, R.R. (1999). Test-data generation using genetic algorithms.

Software Testing Verification and Reliability, 9(4), 263-282.

Riaz, M., Mendes, E. & Tempero, E. (2009). A systematic review of software maintainability

prediction and metrics. Paper presented at the Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering and Measurement.

Roper, M. (1997). Computer aided software testing using genetic algorithms. 10th International

Quality Week, San Francisco.

Rosenberg, L.H. & Hyatt, L.E. (1997). Software quality metrics for object-oriented environments.

Crosstalk Journal, 10(4).

Safe, M., Carballido, J., Ponzoni, I. & Brignole, N. (2004). On stopping criteria for genetic algorithms

Advances in Artificial Intelligence–SBIA 2004 (pp. 405-413): Springer.

93

Shamshiri, S., Rojas, J.M., Fraser, G. & McMinn, P. (2015). Random or Genetic Algorithm Search for

Object-Oriented Test Suite Generation? Paper presented at the Proceedings of the 2015

Conference on Genetic and Evolutionary Computation.

Sharma, R., Gligoric, M., Arcuri, A., Fraser, G. & Marinov, D. (2011). Testing container classes:

Random or systematic? Fundamental Approaches to Software Engineering (pp. 262-277):

Springer.

Sheskin, D. (2007). Spearman’s rank-order correlation coefficient. Handbook of Parametric and

Nonparametric Statistical Procedures, 1353-1370.

Shrivastava, D.P. & Jain, R. (2010). Metrics for Test Case Design in Test Driven Development.

International Journal of Computer Theory and Engineering, 2(6), 952-956.

Simons, C., Singer, J. & White, D.R. (2015). Search-based Refactoring: Metrics are not Enough

Search-Based Software Engineering (pp. 47-61): Springer.

Sjøberg, D.I., Anda, B. & Mockus, A. (2012). Questioning software maintenance metrics: a

comparative case study. Paper presented at the Proceedings of the ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement.

Smith-Miles, K. & Lopes, L. (2012). Measuring instance difficulty for combinatorial optimization

problems. Computers & Operations Research, 39(5), 875-889.

Srinivas, M. & Patnaik, L.M. (1994). Genetic algorithms: A survey. Computer, 27(6), 17-26.

Standard, I. (2005). Software engineering–software product quality requirements and evaluation

(square)–guide to square. ISO Standard, 25000, 2005.

Strein, D., Lincke, R., Lundberg, J.& Lowe, W. (2007). An extensible meta-model for program

analysis. IEEE Transactions on Software Engineering, 33(9), 592-607.

Stützle, T. & Fernandes, S. (2004). New benchmark instances for the QAP and the experimental

analysis of algorithms Evolutionary Computation in Combinatorial Optimization (pp. 199-

209): Springer.

Subramanyam, R. & Krishnan, M.S. (2003). Empirical analysis of CK metrics for object-oriented

design complexity: Implications for software defects. IEEE Transactions on Software

Engineering, 29(4), 297-310.

Tang, M.-H., Kao, M.-H. & Chen, M.-H. (1999). An empirical study on object-oriented metrics. Paper

presented at the Sixth International Software Metrics Symposium, 1999.

Tonella, P. (2004). Evolutionary testing of classes. ACM SIGSOFT Software Engineering Notes,

29(4), 119-128.

Tracey, N.J. (2000). A search-based automated test-data generation framework for safety-critical

software: Citeseer.

Wang, H.-C., Jeng, B. & Chen, C.-M. (2006). Structural testing using memetic algorithm. Paper

presented at the Proceedings of the Second Taiwan Conference on Software Engineering.

Wegener, J., Baresel, A. & Sthamer, H. (2001). Evolutionary test environment for automatic structural

testing. Information and Software Technology, 43(14), 841-854.

Wingkvist, A., Ericsson, M., Lincke, R. & Lowe, W. (2010). A metrics-based approach to technical

documentation quality. Paper presented at the Seventh International Conference on the

Quality of Information and Communications Technology (QUATIC), 2010..

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. & Wesslén, A. (2012).

Experimentation in Software Engineering: Springer Science & Business Media.

