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Abstract

Despite the central role played by the alveoli in respiration, the tools currently avail-
able for assessing alveoli are very limited. Most functional lung imaging techniques
lack the spatial resolution tomeasure function at the alveolar level.Those techniques
capable of measuring alveolar function overcome this limitation by inferring func-
tion indirectly. Contrast in the lungs, spatial and temporal resolution, and repro-
ducibility have all been significant impediments.

Processes that disrupt the normal function of the alveoli can have a serious impact
on lung function and health. Emphysema, which is characterised by the destruction
of alveoli, is the most common disease to directly affect the alveoli and is a leading
cause of morbidity andmortality around the world. Patients who receive mechanical
ventilation, particularly neonates, are also at risk of alveolar damage due to either
alveolar collapse or overdistension.

Propagation-based phase contrast imaging exploits the properties of coherent X-
ray radiation to produce remarkable contrast in images of the lungs. In projection,
phase contrast X-ray images of the lungs exhibit a strongly speckled appearance. In
this work it was shown that speckle produced by granular and porous materials like
the lungs is dependent on the microstructure of the material. A technique was devel-
oped to decode the speckle images and in the case of the lungs, measure the distri-
bution of alveolar diameters.

Initial work is based on modelling the lungs as a distribution of closely packed
spherical particles. Two different techniques, for sparsely and close-packed particles,
were developed for solving the inverse problem of determining the distribution of
particles producing X-ray speckle. The method is based on using the spatial autocor-
relation function as a speckle descriptor. Samples of glass microspheres were used to
validate the accuracy of the technique.

The focus shifts to biological samples with the development of a dual energy syn-
chrotron-based method for bone segmentation and suppression from chest X-rays.
This precedes the application of speckle analysis in the lungs where the lung speckle
is partially obscured by the ribcage.

Finally, the previously developed speckle analysis technique is employed to mea-
sure alveolar size in rabbit pup lungs. Initially in fixed, postmortem lungs where the
results showed good agreement to high resolution CT. Then proceeding to dynamic,
in vivo imaging of breathing lung, from which regional alveolar size and change in
alveolar size were determined. As expected, these measurements were found to cor-
relate closely with the respiratory phase. Towards validating in vivo accuracy, the
measured distribution of alveoli was used to estimate the total number of alveoli as



well as alveolar recruitment, which were found in good agreement with published
values.

Future work will focus on exploring applications in preclinical studies. Specific
areas in which this technique may provide new insights include early disease diag-
nosis and monitoring of therapeutic efficacy in emphysema, and our understanding
of the mechanisms of ventilator induced lung injury leading to the development of
improved mechanical ventilation strategies.

2



Acknowledgements

I would like to begin by thanking all my supervisors, and especially Andreas and
Marcus, for their support, guidance and time.Thanks to all the guys, past and present,
who I’ve had the pleasure of working alongside in the LDI lab — it’s been a lot of fun!
Thank you to Stuart Hooper and the team at The Richie Centre for your support and
assistance. And thank you toKentaroUesugi and all the beamline scientists at SPring-
8 for your assistance and hospitality. My trips to the SPring-8 synchrotron in Japan
were a real highlight of my time as a postgraduate student. Thanks to all the people
I’ve met along the way, whose energy and enthusiasm have been an inspiration. And
finally thanks to my family and friends, for your encouragement and support.



Publications

Constituent publications of this thesis

1. Carnibella,R.P., Fouras,A., Kitchen,M. J., (2012a). “Single-exposure dual-energy-
subtraction X-ray imaging using a synchrotron source”. In: Journal of Synchrotron
Radiation 19, pp. 954–959.

2. Carnibella, R. P., Kitchen, M. J., Fouras, A., (2012b). “Determining particle size
distributions from a single projection image”. In:Optics Express 20.14, pp. 15962–
15968.

3. Carnibella, R. P., Kitchen, M. J., Fouras, A., (2013). “Decoding the structure of
granular and porous materials from speckled phase contrast X-ray images”. In:
Optics Express 21.16, pp. 19153–19162.

4. Carnibella, R. P., Kitchen, M. J., Fouras, A., (2014). “Single-shot X-ray measure-
ment of alveolar size distributions”. In:Biomedical Applications inMolecular, Struc-
tural, and Functional Imaging. SPIE Medical Imaging. SPIE.

Other published articles

5. Thurgood, J., Hooper, S., Siew,M.,Wallace,M., Dubsky, S., Kitchen,M. J., Jamison,
R. A., Carnibella, R., Fouras, A., (2012). “Functional lung imaging during HFV
in preterm rabbits”. In: PLoS ONE 7.10, e48122.

6. Donnelley, M., Morgan, K. S., Siu, K. K. W., Fouras, A., Farrow, N. R., Carnibella,
R. P., Parsons, D. W., (2014). “Tracking extended mucociliary transport activity
of individual deposited particles: longitudinal synchrotron X-ray imaging in live
mice”. In: Journal of Synchrotron Radiation 21.4, pp. 768–773.

7. Kitchen, M. J., Buckley, G. A., Leong, A. F. T., Carnibella, R. P., Fouras, A., Wal-
lace, M. J., Hooper, S. B., (2015). “X-ray specks: low dose in vivo imaging of lung
structure and function”. In: Physics in Medicine and Biology 60.18, pp. 7259–7276.





Contents

1 Introduction 1
1.1 Granular and porous materials 1

1.1.1 The lungs and alveoli 2
Alveolar mechanics 2
Alveolar pathology 4

1.2 Assessing respiratory function 4
1.3 Functional lung imaging 5

1.3.1 X-ray imaging 5
Computed tomography 5
Four-dimensional computed tomography 5
Phase contrast X-ray imaging 6

1.3.2 Magnetic Resonance Imaging 9
1.3.3 Nuclear medicine 10

2D scintigraphy 10
Single-photon emission computed tomography 11
Positron emission tomography 11

1.3.4 Electrical impedance tomography 12
1.4 Background and theory: X-ray imaging 12

1.4.1 X-ray image formation 13
X-ray interaction with matter 13

Absorption contrast imaging 13
Phase contrast imaging 14

Propagation-based phase contrast imaging 15
1.4.2 X-ray speckle 17

1.5 Problem statement 19

2 Particle sizing I: Sparsely packed particles 21
2.1 Article - Determining particle size distributions from a single projec-

tion image 23

3 Particle sizing II: Closely packed particles 31
3.1 Article -Decoding the structure of granular andporousmaterials from

speckled phase contrast X-ray images 32
3.2 Additional particle sizing validation 43

4 Bone segmentation and suppression 47



4.1 Article - Single-exposure dual-energy-subtraction X-ray imaging us-
ing a synchrotron source 49

5 Measuring alveolar dimensions 57
5.1 Computed tomography bone subtraction and reprojection 58

5.1.1 Phase contrast enhanced computed tomograpahy 58
5.1.2 Bone segmentation and reprojection 58

5.2 Spatial frequency filtering 60
5.3 Comparison of autocorrelation functions using bone subtraction and

frequency filtering 62
5.4 Concluding comments on bone suppression 63
5.5 Article - Single-shotX-raymeasurement of alveolar size distributions 64

6 Measuring dynamic alveolar function 73
6.1 Introduction 73

6.1.1 A Direct Autocorrelation-Based Measurement Technique 73
6.2 Measuring the Dynamic Behaviour of Alveoli 76
6.3 Estimating the total number of alveoli 79

6.3.1 Theory 79
Estimating the number of alveoli from the alveolar distribu-
tion 79

Estimating the number of alveoli using the alveolar tidal vol-
ume 79

6.3.2 Method 80
6.3.3 Results/Discussion 81

6.4 Regional analysis 83
6.4.1 Theory 83
6.4.2 Method 83
6.4.3 Results/Discussion 84

7 Conclusions 87
7.1 X-ray speckle 87
7.2 Functional alveolar imaging 88
7.3 Bone suppression 88
7.4 Addendum 88
7.5 Future work 89
7.6 Summary 90

References 91

A Appendix 99



A.1 The lognormal distribution 99

B Appendix 101
B.1 Article - X-ray specks: low dose in vivo imaging of lung structure and

function 101



1 Introduction

The relatively recent development of phase contrast X-ray imaging techniques has
allowed the lungs to be imaged with an unprecedented level of contrast. In a single
projection X-ray image of the chest, the appearance of the highly speckled lung tis-
sue is striking (Figure 1.1 left). Based on the hypothesis that this seemingly random
speckle pattern encodes information about the size and shape of the air sacs in the
lungs, the work in this thesis concerns the development of methods for tackling the
inverse problem of retrieving information from the speckle. Ultimately, this will pro-
vide researchers with new tools for measuring alveolar size and function (Figure 1.1
right).
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Figure 1.1: Left: Phase contrast X-ray of a rabbit pup showing the strongly speckled appear-
ance of the lungs. Right: Overlay of measurements of regional alveolar diameter,
obtained using the techniques developed in this thesis.

1.1 Granular and porous materials

Due to the presence of millions of air sacs (known as alveoli) the lungs can be consid-
ered as a type of porousmaterial. Granular and porousmaterials are found all around
us, both natural andmanmade. A granular material is typically defined as consisting
of densely packed solid particles. Sand, powders and grains are examples. Jaeger et al.
(1996) provide a more thorough coverage of this topic. In contrast, porous materi-
als typically consist of a solid or liquid matrix containing empty voids. Concrete is
an example of a man made porous material (Kumar and Bhattacharjee, 2003). Bone
(Currey, 1988) and lung tissue (Lande and Mitzner, 2006) are examples of porous
biological materials. The distinction between granular and porous materials isn’t al-
ways clear. Soil, for example, is variously considered as both a granular and porous
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material (Danielson and Sutherland, 1986). Colloids, substances consisting of mi-
croscopic particles suspended in a matrix, share many of the properties of granular
and porous materials. The label: random heterogenous materials, is sometimes used
to describe all these materials. Characteristically, they consist of multiple material
phases in a random arrangement of grains or pores.The properties of thesematerials
is usually intrinsically related to their structure, which is the motivation for studying
the nature of these systems in detail. A comprehensive treatment of this topic can be
found in the textbook by Torquato (2005).

The particular focus of this thesis is the porous nature and associated properties
of the lungs, but the theory and techniques developed should be applicable across a
range of so-called random heterogenous materials.

1.1.1 The lungs and alveoli

The mammalian lungs consist of three major components: the large conducting air-
ways (in decreasing order of calibre these are the trachea, bronchi and bronchioles),
the respiratory airways (respiratory bronchioles, alveolar ducts and alveoli), and an
extensive network of blood vessels and capillaries. The process of respiration: the
exchange of oxygen and carbon dioxide between inspired air and the bloodstream,
takes place across the walls of the respiratory airways. Collectively the respiratory air-
ways are also referred to as the lung parenchyma. It’s estimated that approximately
80-90% of the total lung volume is composed of the lung parenchyma (Parent, 2015).
Alveoli make up by far the largest component of the parenchyma. Human lungs con-
tain hundreds of millions of thin walled alveoli (Ochs et al., 2004), giving them a
sponge like appearance (Figure 1.2 right). The alveoli, therefore, are considered to be
the primary respiratory units of the lungs.

Alveolar mechanics

Despite significant research into understanding the dynamics of the alveoli during
respiration, there has been much conjecture as to the relative contributions of alve-
olar expansion and alveolar recruitment/derecruitment (Carney et al., 1999, Hajari
et al., 2012). Alveolar recruitment refers to the opening of collapsed alveloi and dere-
cruitment to the opposite: the collapse of open alveoli. One invasive technique used
to investigate this question involved surgically placing a confocal microscope at the
lung surface so that a small region of peripheral alveoli could be imaged (Namati
et al., 2008). Questions were subsequently posed as to whether the peripheral alveoli
sampled were representative of alveoli throughout the lungs (Cereda et al., 2011) and
whether the insertion of the instrument itself could effect the alveoli beingmeasured
(Mertens et al., 2009). Another study using hyperpolarised MRI (Cereda et al., 2011)
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Figure 1.2: The conducting airways in the lung include the trachea, bronchi and bronchioles
(left1). However, most of the lung volume consists of millions of air sacs known
as alveoli, seen here on electron microscopy (right2).

tackled the same problem but this technique also has multiple drawbacks, which will
be covered in the discussion of functional MRI in section 1.3.2.

The use of mechanical ventilation is a potentially life saving intervention for a
range of conditions. Just one example is in severely premature infants that require
assisted ventilation to keep them alive, but at the same time are at risk of developing
serious pulmonary complications such as bronchopulmonary dysplasia due to ven-
tilator induced injury of their fragile, developing lungs (Jobe and Bancalari, 2001).
Any means then of minimising lung damage produced by the administration of me-
chanical ventilation has the potential to improve outcomes in neonatal intensive care.
The ability to monitor for over-distention or collapse of alveoli could form the basis
of a method for optimising and tailoring individualised ventilation strategies.

In adult patients with acute respiratory distress syndrome (ARDS), a similar oppor-
tunity to improve the efficacy and minimise the harm caused by mechanical ventila-
tion exists. ARDS is a condition that has a range of underlying causes, but is typically
associated with sepsis and is characterised by widespread inflammation in the lungs.
Currently, the mortality of this condition is high, ranging between about 10%–40%
depending on severity, with the reasons for its poor response to mechanical ventila-
tion and other therapies poorly understood (Crotti et al., 2001, Gattinoni et al., 2006,
Rittayamai and Brochard, 2015).

1[Untitled image of lung structure]. Retrieved September 3, 2015 from http://soft-matter.seas.
harvard.edu/index.php/Pulmonary_Surfactant

2Lung SEM, Medium Mag [Online image]. Retrieved July 10, 2016 from http://www1.udel.edu/
biology/Wags/histopage/empage/er/er6.gif
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Alveolar pathology

Chronic obstructive pulmonary disease (COPD) is estimated to affect two million
Australians and cost taxypayers $8.8 billion dollars a year (McKenzie et al., 2010).
Overwhelmingly, smoking is themost common cause of COPD. In developing coun-
tries air pollution is also a significant risk factor. A major component of COPD is
emphysema, which is characterised by destruction of alveolar walls, minimising the
surface area available for gas exchange. Additionally, the enlarged alveolar spaces re-
sult in increased lung compliance and work of breathing. The ability to screen for
early disease could potentially improve outcomes for patients by motivating lifestyle
changes or allowing the instigation of early therapies (Soriano et al., 2009).

1.2 Assessing respiratory function

Many technologies and techniques are currently available for studying the lungs and
lung function. The first distinction that can be made is between those that measure
structure and those thatmeasure function.The term, functional testing or imaging, is
used in the sense that these investigations can be used to qualify or quantify specific
functional characteristics of the lungs. Measurements of volumes, flow rates, pres-
sures and gas concentrations are all examples of functional measurements. If they
are to be physiologically relevant, functional measurements need to be performed
on living subjects.

The next distinction is between global and regional measurements. Pulmonary
function tests are a group of investigations, of which spirometry is themost common,
that measure a range of global parameters, typically at the mouth, as the patient per-
forms a series of respiratory manoeuvres. Testing of regional function on the other
hand is effectively synonymouswith functional imaging; the various imagingmodali-
ties allowing non-invasive access to the lungs. These investigations typically produce
measurements in the form of images, allowing measurements to be related to the
underlying and surrounding anatomy. Much effort has been devoted to comparing
global and regional techniques, in terms of their sensitivity as measures of damage
or disease (Fan et al., 2001), and in trying to identify the unique applications for
regional information.

The lungs are a dynamic organ and a healthy human takes around twelve breaths
a minute. Smaller animals that may be used in preclinical studies can breathe signifi-
cantly faster. This poses both an opportunity and a challenge for imaging techniques.
The opportunity is to be able to derive functional measurements from the dynamic
processes that are occurring over the respiratory cycle. The challenge is being able to
image with sufficient temporal resolution to capture this information.
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1.3 Functional lung imaging

1.3.1 X-ray imaging

Computed tomography

Computed tomography (CT) is a versatile tool commonly used in clinical practice for
assessing lung pathology. In simple terms, the process involves taking X-rays images
from multiple angles around a subject, which by means of computational inversion
can be used to reconstruct a three-dimensional representation of the subject. Clini-
cal scanners usually consist of a single X-ray source-detector pair, mounted within
a gantry, that rotates around the subject. The time taken to acquire a complete scan
therefore depends on the number of rows on the detector and the source-detector
rotation speed. Current third generation scanners are capable of scanning a 16 cm
tall region at around 3-4 frames per second with sufficient resolution to differentiate
structures down to about half a millimetre in size (The ImPACT Group, 2009). De-
spite continuing advances in CT technology, todays scanners neither have enough
detector rows nor are fast enough to image the entire breathing lung without sig-
nificant motion artifact. Furthermore, their spatial resolution is insufficient for dis-
criminating individual alveoli and, technical limitations aside, obtaining this level of
resolution would necessarily come at the expense of increased radiation dose.

One method of overcoming the limited temporal resolution of CT scanners in the
lungs is to acquire a pair of scans at end-expiration and end-inspiration, with the
patient holding their breath for the duration of each scan. Following regional regis-
tration, the change in the volume of air within the lungs (a non-physiological tidal
volume) can be estimated by the change in tissue CT number (Simon, 2000).

Another method is contrast enhanced tomography using a gas that is more radio-
opaque than air, typically non-radioactive Xenon. Wash-in and wash-out studies
(Chon et al., 2005) are performed by acquiring multiple scans after the gas is first
administered until it reaches equilibrium, and then while the subject is returned to
breathing regular air and the gas is washed out. In this respect it is similar to the some
of the nuclear medicine tests covered in section 1.3.3. The change in intensity or in-
tensity gradient over the series of scans can be used to estimate regional ventilation.
There are, however, drawbacks associated with the use of Xenon: the gas is expensive
and requires additional hardware. It is also a strong anaesthetic.

Four-dimensional computed tomography

The logical extension of breath hold techniques, four-dimensional computed tomog-
raphy (4DCT) is performedonpatientswho are allowed to breathe normally through-
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out the duration of the scan. The acquisition of CT projections can either be gated to
the respiratory cycle during acquisition or binned post acquisition (Pan et al., 2004).
The result is a sequence of reconstructions (typically 2-20) corresponding to a series
of time points during the respiratory cycle. Using a similar methodology to Simon
(2000), Guerrero et al. (2006) used intensity-based analysis to measure regional ven-
tilation.

Castillo et al. (2010) proposed an alternative approach to analysing 4D CT data
using a deformabale image registration technique to measure lung tissue motion. In
another study, Reinhardt et al. (2008) compared measurements using a combined
Xenon-enhanced and registration-based approach and found good agreement be-
tween the two. A different approach tomeasuring tissuemotion, known as computed
tomography particle image velocimetry (CT PIV) used a cross-correlation-based im-
age analysis technique similar to that used in PIV (Dubsky et al., 2011).

The biggest drawback associated with all the 4D CT techniques is the radiation
dose required. Even though the methods highlighted in this section don’t require
the resolution and associated dose necessary to discriminate structure at the level of
the alveoli, the dose is that of multiple CT scans: effectively one at each time point.
The gating or binning process also has a level of inherent inaccuracy and some degree
of motion artifact, typically blurring, will be present.

A major advance upon CT PIV, which takes advantage of phase contrast in the
lungs, four-dimensional X-ray velocimetry (4D XV; Figure 1.3) allows measurement
of tissue motion and regional ventilation from significantly fewer projection angles,
and therefore with less radiation dose than conventional 4DCT (Dubsky et al., 2012).
This is achieved by directly reconstructing themotion field rather than using conven-
tional CT reconstruction techniques.

As a point of clarification, although the references for both CT PIV and 4D XV are
to synchrotron-based work (i.e. phase contrast imaging) they have been included
in this section, rather than the next that covers phase contrast imaging techniques,
because phase contrast is not an absolute requirement.

Phase contrast X-ray imaging

Conventional X-ray imaging suffers from poor tissue contrast in the lungs. The thin
walled alveoli that make up much of the lung volume are weakly absorbing and pro-
duce little contrast in absorption-based X-ray imaging. Improving the contrast-to-
noise ratio and increasing spatial resolution both come at the expense of requiring
higher doses of radiation. The dose already associated with 4D protocals has been a
significant barrier to their more widespread adoption in clinical practice. The risk of
cancer from diagnostic X-ray techniques is real. Berrington de González et al. (2009)
estimated that 1.5% to 2% of cancers in the US could be attributable to CT scans
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Figure 1.3: Tidal volume (left) and expiratory time constant (right) in a rabbit pup lung, ob-
tained by 4D X-ray velocimetry. In coronal (a, b) and axial views (c, d). (Repro-
duced from Dubsky et al., 2012.)

alone.
A recent advance in X-ray imaging has been the development of phase contrast

imaging techniques that exploit the wave nature of X-rays to produce additional con-
trast (described in detail in section 1.4.1). To date, propagation-based phase contrast
imaging has proven to be the most practical of these techniques for medical imaging.
In particular, it has proven to be a powerful technique for lung imaging (Kitchen
et al., 2004). While alveoli are weakly absorbing, the abundant air-tissue interfaces
found in the lungs are strong generators of phase modulation, resulting in up to an
order of magnitude higher tissue contrast within the lungs (Kitchen et al., 2005),
without the use of any contrast agents (Figure 1.4). Additionally, because the con-
trast produced by phase does not contribute to the absorbed radiation dose, there is
also potential to minimise the dose. Kitchen et al. (2008) exploited phase contrast
to dynamically measure regional volume during initial aeration of newborn rabbit
pup lungs. The requirement of a coherent X-ray source dictated that the pioneering
work on this technique was conducted on synchrotron X-ray beamlines but much
progress has been made towards translating the technology to lab-based and clinical
X-ray sources.
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Figure 1.4: Absorption-based contrast (a,c) alongside propagation-based phase contrast (b,d)
in a rabbit pup lung. The increased contrast in the lung tissue is evident on the
radiographs and the line profiles in (e). (Reproduced from Lewis et al., 2005.)
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Schleede et al. (2012) and Meinel et al. (2014) used a lab-based ‘compact light
source’ with a grating-based technique to study emphysema in a mouse model. Dark
field image contrast obtained using this technique is a result of the scattering power of
the sample, which in turn is related to the alveolar size. They were able show that em-
physematous changes could be detected with greater sensitivity than conventional
X-ray. However, the ability to quantitively measure physiological parameters such as
alveolar size has yet to be demonstrated. Grating-based techniques can also be tech-
nically challenging, and inefficient in respect to radiation dose because the gratings
partially block the X-ray beam.

As a relatively new imaging modality, phase contrast X-ray imaging has many ap-
plications that have yet to be discovered. In this thesis it is the phase contrast pro-
duced by the alveoli that is exploited to make direct measurements of alveolar struc-
ture and function.

1.3.2 Magnetic Resonance Imaging

Alongside X-ray imaging, magnetic resonance imaging (MRI) is one of the mainstay
modalities in clinical imaging. The working principle of MRI is the measurement
of the electromagnetic field of charged nuclei in the body via radiofrequency signals
that can be elicited by a combination of an appliedmagnetic field and radiofrequency
stimulation. Typically it is the state of hydrogen atoms in the body, a major compo-
nent ofmost tissues, that is measured.MRI imaging of the lungs has proven challeng-
ing due to both the low tissue density and the abundance of oxygen, which produces
poor contrast and causes magnetic field inhomogeneities, respectively (Mills et al.,
2003).

Figure 1.5: Single breath hyperpolarised 3HeMRI showing gas trapping occurring in an asth-
matic patient’s left lower lobe. (Reproduced from Fain et al., 2010.)

However, the advent of contrast-based MRI techniques have been able to largely
overcome these difficulties (Ebert et al., 1996). The use of hyperpolarised helium,
3He, as a contrast agent has received the most attention (Fain et al., 2010; Figure 1.5).
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In its most basic application, a single inhalation plus breath-hold scan can be used
to identify regional filling defects (Samee et al., 2003). The development of fast MRI
acquisition techniques have allowed dynamic measurement during wash-in and and
wash-out phases (Holmes et al., 2008, Wild et al., 2003), as well as over the respi-
ratory cycle (Viallon et al., 2000, Salerno et al., 2001). Diffusion-weighted imaging
measures the diffusivity of 3He, producing maps of what is known as the apparent
diffusion coefficient (ADC). Since diffusion is dependent on airway calibre, the ADC
can be interpreted as an indirect measure of airway size. In the presence of disease,
such as emphysema, increased heterogeneity has been observed (Salerno et al., 2002,
Woods et al., 2006). Combining ADC measurements with a model of alveolar struc-
ture, Yablonskiy et al. (2002) were able to quantitatively estimate alveolar dimen-
sions.

Despite offering much promise, hyperpolarised MRI techniques have signficant
drawbacks that have limited their more widespread use. Firstly, the production of
hyperpolarised gas is both complicated and expensive. Compounding this, it has a
limited shelf life of around 24 hours, necessitating that it either be produced on-site
or express transported from a centralised production facility. The degree of hyper-
polarisation of the gas is affected by the RF pulses used in MRI, and the fact that it
rapidly diffuses in oxygen limits the range of imaging protocols that can be applied.
As a result of all these factors, diffusion weighted imaging is plagued by both a lack of
quantitive output and poor repeatability, frustrating attempts at longitudinal studies
and comparative analyses across subjects and imaging sites (Gierada et al., 2009).

1.3.3 Nuclear medicine

Nuclear medicine refers to a group of imaging techniques based on imaging the ra-
diation emitted by radioactive isotopes that have been administered to a patient. In
the context of lung imaging, these isotopes are administered in the form of inhaled
gases or aerosols. A common limitation of all of thesemethods is both poor temporal
(approximately 30 s per projection) and spatial resolution (128×128 pixel coverage
of the lungs). The total investigation time, from administration of isotopes to com-
pletion of imaging, can be hours.

2D scintigraphy

This technique, which has been around for over 40 years, typically uses krypton
(⁸1mKr) gas or aerosolised technetium (⁹⁹mTc) as a radioisotope. These substances
emit gamma radiation, which is detected by a specialised gamma camera. Images
are captured during the wash-in, equilibrium and wash-out phases and can be used
to identify localised changes in airflow. In addition to measuring airflow, injected
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Figure 1.6: SPECT/CT slices of a mouse lung. Ventilation and perfusion heatmaps are
coloured on an increasing scale from red to white. The color bar relates to the
log(V/Q) heatmaps. (Reproduced from Jobse et al., 2012.)

radioisotopes can also be used to measure perfusion.1 The most common clinical
application has been the combined ventilation/perfusion scan used to assist in the
diagnosis of pulmonary embolism. A ventilation/perfusion mismatch may be appar-
ent in the event of an embolism.

Single-photon emission computed tomography

Single-photon emission computed tomography (SPECT) is essentially the 3D volu-
metric equivalent of 2D scinitigraphy (Bajc et al., 2010). Increasingly commonly it
is being performed together with X-ray CT to allow mapping SPECT derived func-
tionalmeasurements of the underlying anatomy (Jobse et al., 2012; Figure 1.6). SPECT
is one of the functional techniques that has shown promise as a tool for the early de-
tection of COPD (Norberg et al., 2014).

Positron emission tomography

Positron emission tomography (PET) is a related but slightly different technique
based on the emission of positrons by a radioactive substance that then proceed
to produce gamma radiation when they interact with adjacent electrons. It also dif-
fers from SPECT in that the contrast agent is given intravenously, with the nitrogen-
based radiotracer diffusing from the pulmonary capillaries into the alveoli (Harris

1Perfusion refers to the delivery of blood to biological tissues.
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and Schuster, 2007). To date it hasn’t received as much attention as SPECT as a tech-
nique for studying lung function.

1.3.4 Electrical impedance tomography

Different tissue types in the body have different electrical conductivities and permi-
tivities depending on their free ion concentrations. Electrical impedance tomogra-
phy (EIT) exploits these variations by sampling impedance across pairs of electrodes
placed around the body and reconstructing the internal electrical properties (Ch-
eney et al., 1999; Figure 1.7). It is ideally suited to lung imaging because lung tissue
has significantly lower conductivity than other tissue types, resulting in strong image
contrast (Victorino et al., 2004). This technique can be quite useful for monitoring
the gross anatomy of the breathing lung in real-time. However, its broader utility is
limited since imaging is restricted to a single slice and even within that slice spatial
resolution is low.

FRC End-Inspiration

Figure 1.7: EIT (lower frames) and CT (upper frames) images from a patient at the start
(left) and end (right) of an inflation manoeuvre. The EIT images show the rel-
ative change in impedance. Air is dark on CT and an increase in air is bright on
EIT. No air is seen inflating the right lung — the airway has been completely ob-
structed by a mass. (Reproduced from Victorino et al., 2004.)

1.4 Background and theory: X-ray imaging

Having completed a survey of the different modalities and techniques for perform-
ing functional lung imaging, it is apparent that there is limited capability to study the

12



mechanics of the alveoli in vivo. This thesis describes the development of a new tech-
nique for measuring alveolar function, based on the analysis of X-ray lung speckle
produced by phase contrast imaging.

But before proceeding, some background on X-ray theory is necessary. This sec-
tion will cover both some of the fundamental theory concerned with describing the
behaviour of X-ray radiation as well as important developments and the state of the
art in phase contrast imaging and X-ray speckle. It provides a more thorough back-
ground to the work undertaken than could be covered in the papers that constitute
the majority of this thesis.

1.4.1 X-ray image formation

X-ray interaction with matter

Absorption contrast imaging

The mechanisms describing the interaction of X-rays with matter that are relevant at
the X-ray energies used in radiography are photoelectric absorption and Compton
scattering. In biological tissues, below about 25 keV photoelectric absorption is the
dominant interaction, with Compton scattering becomingmore significant at higher
energies. When X-rays are transmitted through matter, their energy is attenuated as
a result of the aforementioned interactions.

In conventional X-ray imaging (sometimes referred to as absorption contrast imag-
ing) it is the the process of X-ray attenuation that produces what we recognise as an
X-ray image or radiograph. That is, the difference in X-ray attenuation between dif-
ferent materials or a given material of varying thickness results in a difference in
intensity (i.e. contrast) at the X-ray detector. The attenuation of X-ray radiation as it
passes through a medium is described by the Beer-Lambert law:

I(t) = I0e
−
(

μ
ρ

)
ρt (1.1)

where I(t) is the X-ray intensity leaving themedium, I0 is the incident X-ray intensity,
μ
ρ is the medium’s mass attenuation coefficient, μ is the linear attenuation coefficient,
ρ is density and t is thickness.

The total linear attenuation coefficient is the sum of the linear attenuation coeffi-
cients due to each of the different interaction mechanisms:

μ = μphoto + μcomp + μother

where μphoto is the photoelectric absorption coefficient, μcomp is the Compton scatter-
ing coefficient and μother accounts for other less significant interactions.
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Mass attenuation coefficients for elements and a range ofmaterials have been calcu-
lated using theory and experimental data and are available online fromNIST (Berger
et al., 2012).

Phase contrast imaging

The two main advantages of imaging with a synchrotron light source are the high
brilliance (intensity) and high coherence (both temporal and spatial). Temporal co-
herence refers to the degree of correlation of awavefield between twopoints along the
direction of propagation and is an indication of the monochromaticity of a source.
Spatial coherence refers to the degree of correlation of awavefield between two points
perpendicular to the direction of propagation and is a measure of the uniformity of
the wave front. Diffraction and interference produced by coherent radiation is the
basis of phase contrast X-ray imaging.

As an electromagnetic wave, X-rays carry information in the form of both inten-
sity and phase. X-ray detectors are instruments that measure intensity. Retrieving
information about phase isn’t as straightforward. Typically approaches to measur-
ing the phase of electromagnetic radiation involve some means of converting phase
information to intensity.

X-ray interferometry uses silicon crystals to separate and then recombine X-ray
beams with one of the separated beams having been directed through the sample.
Phase modulation produced within the sample can be visualised when the beams
are recombined as interference patterns.

Analyser-based approaches (Chapman et al., 1997) also use a silicon (analyser)
crystal to separate the different phase components in the X-ray beam after it has
passed through the sample.

Propagation-based phase contrast imaging (PBI), which has already been covered
in some detail, encodes phase information in the interference produced when the
X-rays that have passed through the sample are allowed to propagate a sufficient dis-
tance before reaching the detector (Snigirev et al., 1995 Wilkins et al., 1996).

Grating-based X-ray imaging (Pfeiffer et al., 2007) uses phase gratings, rather than
a crystal, to generate interference patterns either before or after the incident beamhas
been perturbed by the sample.

In this work PBI is used exclusively. For medical imaging, particularly dynamic
imaging, this technique has a number of advantages. In terms of efficiency, it makes
use of all the intensity available unlike all other techniques which either partially
block or selectively filter the beam. Efficiency is especially important for performing
high speed imaging of dynamic biological systems. Crystal and grating-based tech-
niques also require that their optical elements are highly stable, which can pose a
challenge. PBI on the other hand is straightforward to implement and requires no
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specialist apparatus besides a coherent X-ray source.
In the next section a theoretical overview of PBI is provided, specifically outlining

themethod ofmodelling PBI that is integral to the technique developed in this thesis.

Propagation-based phase contrast imaging

Wave theory gives us the framework for describing both the intensity and phase of
X-ray radiation. A coherent, parallel, X-ray beam produced at a synchrotron can be
regarded as a plane electromagnetic wave, with both wave amplitude and phase ac-
counted for by the complex function:

U = A0eiφ

where A0 is the peak wave amplitude and φ is the phase shift of the wave.
Now in addition to X-ray attenuation we incorporate the phase shift that occurs

as the wavefield passes through a sample (Figure 1.8) by use of a projected thickness
approximation (Pogany et al., 1997). Essentially, the approximation neglects diffrac-
tion within the sample, which is valid when the sample thickness is small compared
to the propagation distance, zp. The phase shift within the sample is a function of the
complex index of refraction:

n = 1 − δ + iβ

where the refractive index decrement

δ =
reλ
k

∑
i

ni(f1)i

and re is the classical electron radius, λ is the wavelength, the wavenumber k = 2π
λ ,

ni is the concentration of atom i per unit volume and f1 is the real part of the forward
atomic scattering factor. β is directly related to the linear attenuation coefficient:

μ = 2kβ

For a single material we can calculate the phase shift from the refractive index
decrement:

φ = −kδt

Factoring in both the attenuation and the phase shift that occurs as the wavefield
passes through the sample, the wavefield exiting the sample as a function of its pro-
jected thickness can be expressed as:

Uexit(x, y) = A0e−ikδT(x,y)
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t φ

Figure 1.8: As X-rays pass through an object of thickness t, the phase of the wavefront that
leaves the object lags the original wavefront by φ.

whereT(x, y) is the projected thickness of the sample.Multiplematerials can bemod-
elled by treating each separately. For practical purposes, it is often convenient to treat
air as a vacuum.

Phase contrast in PBI is produced by allowing the wavefield to continue propagat-
ing beyond the sample. The interference that is produced is captured at the detector
plane. A convenientmeans of calculating the propagatedwavefield is by use of the an-
gular spectrum method (Nieto-Vesperinas, 2006). Using this method, the complex
wavefield is deconstructed into a collection of plane waves travelling in different di-
rections (hence the term angular spectrum). The angular spectrum representation
of the wavefield is obtained by simply taking its Fourier transform. In the angular
frequency domain, the wavefield is easily propagated a distance zp (Figure 1.9) by
multipying by the propagation term:

eizp
√

k2−k2x−k2y

where kx and ky are the coordinate axes in the angular frequency domain.

z
p

y

x

z

Source

Detector
Object

Figure 1.9: Configuration of source, object and detector for propagation-based phase con-
trast imaging

Combining all the components that have been described so far, the propagated
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wavefield at the detector plane can be expressed as

Udet(x, y, z = zp) = F−1
{
F
{
A0e−ikδT(x,y)} eiz√k2−k2x−k2y

}
where F and F−1 are Fourier and inverse Fourier transforms, respectively.

Finally, since intensity is proportional to the squared magnitude of the wavefunc-
tion we square both sides and replace A0 with the attenuated X-ray intensity accord-
ing to equation 1.1.The result is the following expression for the intensity observed at
the detector, which allows us to simulate the generation of X-ray images of a sample
with known internal geometry and material properties:

Idet(x, y, z = zp) = I0e−μT(x,y)
∣∣∣F−1

{
F
{
e−ikδT(x,y)} eiz√k2−k2x−k2y

}∣∣∣2
1.4.2 X-ray speckle

Finally, we return to the problem posed at the beginning of this chapter. That is, the
interpretation of the speckled pattern apparent in the propagation-based phase con-
trast projection images of lungs and other granular and porous materials.

In optics theory speckle has a specific definition. When the wavefronts of coher-
ent radiation interfere with each other as a result of a random scattering process,
the wavefront produced is the result of the addition of the amplitude and phase of
each of the individual scattered waves. If the wave amplitude and phase are treated
as vectors, the process can be visualised by adding the vectors graphically, producing
a plot that resembles a random walk. When the phase of the resultant wavefront is
uniformly distributed within the interval (−π, π), the speckle is considered fully de-
veloped. Speckle that doesn’t satisfy this requirement, either due to partial coherence
or limited scattering, is referred to as being partially developed (Goodman, 2006).

Lung speckle in PBI is partially developed speckle. Kitchen et al.(2004) modelled
lung alveoli as spheres, producing phase maps in which vortices can be seen as the
phase wraps the (−π, π) interval. In these same simulations we also see structure in
the phase map; in other words the phase is not uniformly distributed.

In the case of fully developed speckle, in most circumstances, the speckle size is
independent of the size of the scatterers (Goodman, 2006). However, a near-field
regime has been described (Giglio et al., 2000) in which the size of the speckle and
the scatterers is correlated. This type of speckle has been referred to as ‘near-field
speckle’. It is worth noting that the definition of this near-field differs from the more
widely used optics definition.2The theory holds for a scattering volume that produces

2Classically the near field is defined by the Fraunhofer distance such that z < 2d2

λ where z is the
distance from the scatterer, d is the diameter of the scatter and λ is the wavelength of the radiation.
The condition for near-field speckle differs in that znfs < dD

λ where D is the diameter of the beam of
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a delta-correlated field (i.e. fully developed speckle), which requires that the length-
scale of the scatters is not much greater than the wavelength or the radiation; that is
they are effectively point scatters. This implies a far more restrictive regime than the
requirement of the near-field speckle distance alone suggests.

Ferri et al. (2004) developed a technique they called heterodyne near-field scatter-
ing to essentially perform SAXS style analysis of particle systems such as colloids
using both visible and X-ray radiation (Cerbino et al., 2008).

While Cerbino et al. (2008) were able to extend the definition of the near-field
speckle toX-ray scattering, it was no longer independent of propagation distance and
required the use of a correction factor, which was, coincidentally, the phase contrast
transfer function (Pogany et al., 1997). Given that the the length-scale of the alveoli is
much greater than the X-ray wavelength, the framework provided by phase contrast
theory is arguably bothmore appropriate andmore useful for describing the nature of
this speckle. The fact that the scatterer and speckle size are correlated can intuitively
be explained by considering the narrow range of scattering angles (Kitchen et al.,
2004). In this case, the resultant image produced by PBI will still strongly resemble
the image of the superpositioned scatters rather than the uniformly random field of
fully developed speckle.

In chapter 2 amore rigorous theoretical proof of the speckle pattern being the result
of the superposition of the constituent scatterers or particles, in the context of phase
contrast X-ray imaging, is given. This concept is fundamental to all the work that
follows in this thesis because it forms the basis for being able to retrieve information
about the morphology of the particles in such a system from their speckle image.

radiation.
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1.5 Problem statement

Manydifferent processes in the lungs, both physiological and pathological, involve its
smallest functional units — the alveoli. Yet the ability to directly study the behaviour
of the alveoli in vivo is lacking.

Dynamic imaging can be a powerful tool for studying function and an array of
dynamic techniques have been developed to assess lung function. These techniques
make use of a range of approaches from imaging the flow or diffusion of gas in the
lungs to measuring the motion of the lung tissue. However, of all the methods cov-
ered in this chapter only hyperpolarised MRI is capable of making measurements of
alveolar function and its limitations are significant.

The development of phase contrast X-ray imaging allows us to visualise the fine
structure of the lungs for the first time without an impractically high radiation dose.
Phase contrast computed tomography can produce remarkably high resolution im-
ages of the alveoli but lacks for both spatial and temporal resolution in vivo.

The interpretation or decoding of two-dimensional phase contrast images of lung
speckle presents an opportunity to observe the dynamic behaviour of the alveoli in
the breathing lung in real-time. The development of such a technique is the primary
focus of the work in this thesis.

Secondary objectives are to further develop our understanding of the origins and
behaviour of speckle in the lungs (and other granular and porous materials) and to
develop the necessary infrastructure, in terms of image analysis techniques and hard-
ware, to facilitate the segmentation and analysis of the lung fields in two-dimensional
projection images.

This thesis consists of five chapters, four of which are based on peer reviewed pa-
pers. In chapter 2 we begin by exploring the nature of X-ray speckle produced by
sparsely packed granular and porous materials. The feasibility of extracting parti-
cle properties will be demonstrated while highlighting the effect of packing fraction
and porosity. This groundwork is extended in chapter 3 to densely packed particle
systems. A custom solver is developed to tackle the inverse problem of decoding the
speckle and the accuracy of the technique is demonstrated on samples of glass micro-
spheres. Chapter 4 outlines the development of a dual energy X-ray imaging system
for material separation. The system can be used to achieve bone suppression in chest
X-ray images allowing clear access to the lungs fields for the purpose of applying
speckle analysis techniques. In chapter 5 we look at an alternativemeans of analysing
lung speckle without the need for bone suppression. Images of inflation fixed lungs
are analysed and the the results presented. In the final chapter the technique is ex-
tended to dynamic in vivo lung imaging with a demonstration of the capability to
perform regional analysis of alveolar dynamics in a breathing lung.
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2 Particle sizing I: Sparsely packed
particles

The arrangement and packing of grains or pores in a constrained system presents
a complex mathematical problem. Key variables include the shape of the grains or
pores, the diversity of shapes and sizes, and the way in which they have been ar-
ranged. As outlined in the previous chapter, the primary application of this work is
in studying the porous structure of the lungs. However, the theory and methodology
described in this thesis are also applicable across a range of other materials.

Packing in granular and porousmaterials can be classified as either regular or irreg-
ular. Regular packing usually implies that particles are of uniform shape and size; for
example cubic and hexagonal arrangements of equal size spheres. More commonly
in nature, granular and porous materials have an irregularly packed structure. The
description, random packing, is often used synonymously with irregular packing be-
cause irregular packing can be achieved by randomly placing or pouring particles.
Similarly, the formation of the lungs, and specifically the alveoli, is a process strongly
influenced by randomness.

Packing fraction describes the volume of particles as a fraction of the total vol-
ume of the system and is equivalent to the porosity of a porous material. Random
close-packing describes a maximally packed state that for monodisperse spheres has
a packing fraction of 63.4 percent (Song et al., 2008). Polydisperse spheres and non-
spherical particles can achieve even higher packing fractions. Throughout this work
the terms packing fraction and porosity are used interchangeably. The terms close
and dense packing are also used interchangeably to refer to a near maximal packing
state. The term sparse packing is used to refer to packing fractions less than around
50 percent.

Phase contrast X-ray imaging allows us to visualise the superpositioned projec-
tions of the millions of alveoli found in the lungs. It was hypothesised that this in-
formation can be decoded to tell us about the size and shape of the alveoli. This is
an inverse problem. The first step towards obtaining a solution to an inverse prob-
lem is to solve the forward problem. In this case the forward problem amounts to
describing the image a particular arrangement of packed particles is expected to pro-
duce. The Percus Yevick approximation (Percus and Yevick, 1958) can be used to
describe the three dimensional correlation between randomly packed spheres for
packing fractions less than about 40 percent. However, an analytical or numerical
means for describing more densely packed random systems of particles could has
not been described in the literature.

In optics, diffraction theory tells us that, besides a scaling factor, the diffraction pat-
tern produced by multiple randomly located apertures is the same as that produced
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by a single aperture (Lipson et al., 2010). It was hypothesised that the same theory
could similarly be applied to the pattern formed by superposing the projected image
of randomly packed particles in Fourier space.Thiswould allow the forward problem
to be treated as a linear system: as the weighted sum of the contribution of different
particles. It would also make the inverse problem a relatively simple linear problem.
The catch, as it turns out, lies in the required randomness of the particles. As the
packing fraction or porosity of the particles increases, so too the degree of random-
ness decreases. This is because in a system of non-penetrating particles, the position
of particles is restricted to space unoccupied by other particles; whereas to be truly
random, a particle must be allowed to be reside anywhere. This problem can also be
identified and explained by examining the spatial autocorrelation function of such
a system. As the packing fraction increases, periodic oscillations begin to develop
in the autocorrelation function, highlighting that the positions of the particles are
correlated. This implies that particles are more or less likely to be found at certain
distances from their neighbours.

Unfortunately, or perhaps fortunately given their important role, alveoli in humans,
andmore generally inmammalian lungs, are densely packed.The respiratory portion
of the lungs (the parenchyma: respiratory bronchioles to alveoli), which accounts for
over 90 percent of the lung volume (Weibel, 1963; Ochs et al., 2004), has an estimated
alveolar fraction or porosity of around 65 percent (Ochs et al., 2004).

However, it was found that at packing fractions of less than ten per cent, one can
effectively assume that randomness dominates and a linear system model is valid.
The relative simplicity of this approach prompted further investigation, specifically
as a means of validating the hypothesis that the information contained within X-ray
speckle produced by a granular or porous material could be decoded. If this could
be demonstrated in a sparsely packed system, it would lay the groundwork for the
development of the tools required to tackle the more difficult problem of decoding
the structure of a close-packed systems, such as the lungs. Additionally, there may
be applications for such a technique in other areas where relatively sparsely packed
systems of particles are to be found.
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1. Introduction 

Granular, particulate and porous materials and systems are of interest across a spread of 

disciplines including material, chemical, geological and biological science and engineering. 

Many existing and new porous materials have special properties that are a consequence of 

their unique structure [1]. To geologists, the behavior of many natural systems, such as those 

comprised of sand, soil and snow, can be understood by studying the behavior of granular 

media [2]. As such, simple methods to characterize these materials and systems are in 

demand. 

Characterization techniques based on optical scattering [3,4] are well established but are 

limited to non-opaque samples. X-ray computed tomography (CT) and microtomography [5] 

are capable of imaging the structure of opaque samples, but suffer comparatively poor 

temporal resolution; furthermore, ionizing radiation dose can be problematic for biological 

samples. Diffraction based X-ray techniques [6–9] have to date been limited to studying 

particulates no larger than a few micrometres or have only been qualitative in nature. 

In this paper we show that for low volume fraction suspensions of particles, the spatial 

autocorrelation function (SAF) of a projection image of the particles is additive, and use this 

property to determine the distribution of particle sizes from a single image. 

2. Theory 

Many systems of interest consist of spheroidal particles dispersed in a pseudo-random 

arrangement within some medium. Planar X-ray imaging of such a system can produce a 

discernible speckle pattern. However, when the difference in attenuation between the particles 

and medium is small, the speckle contrast is poor. Propagation-based phase contrast X-ray 

imaging (PCXI) [10,11], using a partially coherent source, can produce significantly higher 

speckle contrast [9,12]. A typical speckle pattern can be seen in Fig. 1. 

 

Fig. 1. Schematic of propagation-based phase contrast X-ray imaging setup and image 

processing steps. The sample and detector are in-line and z is the propagation distance for 

phase contrast imaging. A region of a typical X-ray image has been magnified to highlight the 

speckled appearance produced by particles. A spatial autocorrelation is performed; which is 

azimuthally averaged to produce the final one-dimensional autocorrelation function. 

To obtain useful information from these speckled images, a statistical measure such as the 

SAF can be used. In the context of heterodyne imaging of particles, Alaimo et al. derive the 

property of linearity: that the autocorrelation function is a weighted sum of contributions from 

all the particles, which they use to recover the velocity distribution from a seeded flow [13]. 

For a side scattering (non-heterodyne) particle image velocimetry configuration, Fouras et al. 
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proposed that the total cross-correlation function is equal to the sum of the cross-correlation 

functions at each depth, and used this notion to perform three-dimensional velocity 

measurements from two-dimensional images [14–16]. Nguyen et al. extended this concept 

and used the SAF to infer particle concentration as a function of depth [17]. In what follows, 

the linearity property of the SAF: that the SAF of a projection image is equal to the sum of the 

SAF of each particle, will be justified in the context of X-ray imaging, with or without phase 

contrast, and be used to determine the distribution of particle sizes. 

For a sample comprised of randomly oriented particles or pores, the fluctuations in X-ray 

absorption across the image are generally small. So long as the net attenuation itself is not too 

large we can approximate the exponential decay in X-ray intensity to first order terms: 

 ( )( , )
( , ) 1 , ,

( , )
in

I x y
I x y T x y

I x y
µ

′
= −≃  (1) 

where I′(x,y) is the measured intensity, I
in

(x,y) is the incident intensity, µ  is the material linear 

attenuation coefficient assuming a single homogenous material and T(x,y) is the projected 

thickness of the particles / pores. 

In phase contrast X-ray imaging, intensity is again well approximated as a linear function 

of particle thickness for sufficiently short propagation distances (refer to the treatment of the 

transport of intensity equation by Paganin et al. [18]). This approximation is particularly 

accurate when high spatial frequencies are attenuated, which can be a result of the limited 

spatial coherence of the beam, the point spread function of the detection system and/or image 

post processing. 

In both cases, because the change in intensity can be treated as a linear function of the 

projected thickness, the intensity function for a distribution of particle sizes, in which the 

position of each particle is given by a randomly positioned delta function, can be expressed as 

a sum of convolutions: 

 [ ]
max

min 1

( , ) ( ) ( ) ( , ) ,
rR N

m m

n n r

r R n

I x y x x y y I x y
= =

 
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 
∑ ∑  (2) 

where I
m
 denotes that the image mean has been subtracted. Here we assume spherical particles 

of radius r, but note that the theory is valid for particles of any shape if their orientation are 

either identical or completely random (see [19]). We define the minimum and maximum radii 

as Rmin and Rmax, respectively. Here Nr is the number of particles of a particular radius. 

The power spectrum of this image is given by: 

 { } { } { }
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PSD ( , ) ( ) ( ) ( , )
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m m
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r R n

I x y x x y y I x y
= =
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 
∑ ∑F F  (3) 

where F denotes a Fourier transform. By application of the Wiener–Khinchin theorem, the 

autocorrelation function can be expressed as: 

 ( ){ } { } { }
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2
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SAF , ( ) ( ) ( , ) .
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Theoretically, the positions of particles in a suspension of non-penetrating particles cannot 

be truly random. However, for low volume fractions of particles, the positions of particles are 

only weakly correlated and the autocorrelation function can be approximated by the sum of 

the autocorrelation function of each particle: 
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Since the expected power spectrum of Nr randomly positioned delta functions can be 

shown to be Nr if the mean intensity is removed [19]: 

 { } { }SAF ( , ) SAF ( , ) .
max
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R

m m

rr

r R

I x y N I x y
=

= ∑  (6) 

For a distribution of particle sizes, if the SAF of all potential particle sizes is known, Eq. 

(6) is a linear inverse problem and the distribution, Nr, can be determined numerically. 

3. Simulations 

Computer simulations were undertaken to validate this theory and to demonstrate the ability 

to perform particle sizing. Synthetic samples were generated consisting of non-penetrating 

spherical glass particles randomly suspended in rectangular volumes (10 mm thick) with a 

total volume fraction of 2%. The position of each particle was generated randomly: a position 

was accepted if the particle to be inserted did not collide with any particles already in the 

volume. If a collision did occur, a new position was generated until an unoccupied location 

was found. At a volume fraction of 2%, the number of collisions is small, implying that the 

particles’ positions are only weakly correlated 

PCXI was simulated by reducing the volume to a projected thickness, calculating the 

transmitted wave function and propagating using the angular spectrum method [20]. The 

imaging source was a coherent monochromatic beam at 33 keV and the propagation distance 

between the sample and detector, z, was 50 cm (Fig. 1). The glass particles had a refractive 

index decrement, Re(1-n), of 4.863 × 10
−7

and an absorption coefficient of 127.36 m
−1

 [12]. 

The propagated intensity function was filtered with a Gaussian kernel to simulate the point 

spread function of the detector and binned to achieve an effective pixel size of 6 µm. This low 

pass filtering also accounts for the limited spatial coherence of an actual synchrotron beam 

[21]. The image mean was subtracted before a two-dimensional spatial autocorrelation was 

performed. The SAF was averaged over multiple windows (128 × 128 pixels) and azimuthally 

averaged (Fig. 1). 

For a simple mixture with an equal number of particles of two discrete diameters, the SAF 

should be an equally weighted sum of the SAFs of single spheres of each diameter, as is 

shown to be the case in Fig. 2. 

To model a more realistic sample, a mixture was generated in which particle diameters 

were sampled from a log-normal distribution: a skewed distribution whose logarithm is 

normally distributed, which is commonly used for the characterization of particle sizes [22]. 

The mean and standard deviation of the diameter’s logarithm were µ = 4.72 and σ = 0.231, 

respectively. The SAF was averaged over 1000 windows and 50 calibration SAFs were 

generated covering the range of particle sizes in the sample, each generated from the image of 

a single sphere. Solving for the distribution of particle diameters, Nr in Eq. (6), is a linear 

inverse problem. A least squares solver with a non-negative constraint and a second order 

finite-difference regularizer to penalize non-smooth solutions was used. The calculated 

distribution of particle diameters is presented in Fig. 3. The solution is shifted slightly away 

from the skew, which is the result of smoothing applied by the regularization term and 

depends on the choice of the regularization parameter. 
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Fig. 2. The autocorrelation function produced by an equal mixture of two particle sizes is equal 

to the weighted sum of the autocorrelation functions of particles of each size. SAF69 and 

SAF116 are equally weighted autocorrelation functions of single particles with diameters of 69 

µm and 116 µm respectively. SAF69,116 is the autocorrelation of an equal mixture (by number) 

of particles. All SAFs in this figure were averaged over 256 windows. 

 

Fig. 3. Calculated distribution of particle diameters from simulated data. Each point represents 

the fraction of particles of that diameter. 

4. Experimental results 

A physical experiment, to further demonstrate the validity of the theory outlined here, was 

performed in experimental Hutch 3 of beamline 20B2 at the SPring-8 synchrotron in Japan 

[23]. The source-to-sample distance of ~210 m provided an incident wavefield of sufficient 

spatial coherence for propagation-based phase contrast imaging. 

Because of the difficulty in obtaining particles for calibration purposes, a slightly different 

problem was tackled: to determine the ratio of mixtures of two particle sizes (where each 

nominal size is known to contain a distribution of diameters). 

Nine mixtures of glass particles of two sizes (nominally 69 µm and 116 µm; by Master 

sizer particle size analyzer log-normal distributions: µ = 4.26, σ = 0.227 and µ = 4.72, σ = 

0.231) were prepared in cuvettes (10x10x60 mm
3
) by suspension in white petroleum jelly. 

The total volume fraction was again chosen to be 2%. Imaging was performed with a 

monochromatic beam at an energy of 33 keV, with a propagation distance of 50 cm between 

sample and detector. The detector’s effective pixel size was 6 µm. 

Based on Eq. (6), the SAF for these samples can be expressed in the form: 

 { } 69 116
SAF ( , ) SAF (1 )SAFi x y f f= + −  (7) 
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where f is the volume fraction of the 69 µm particles and the calibration SAFs (SAF69 and 

SAF116) are obtained from samples of unmixed particles. f can be determined by inversion of 

Eq. (7). 
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Fig. 4. Experimentally obtained volume fraction of one particle size from nine bimodal 

mixtures averaged over 460 windows. True solutions lie on the solid line. 

The results for the fractions of each particle are presented in Fig. 4, and it can be seen that 

there is good agreement with the true values. Simulations of bimodal mixtures of particles 

with the same lognormal distributions used in the previous experiment were performed, and 

the results are presented in Fig. 5, which highlight the relationship between the error metric 

and the number of windows averaged over. The experimental error seen in Fig. 4 is more 

significant than that predicted by simulation. It is likely this discrepancy is largely due to 

inaccuracies in the preparation of the samples (e.g. uneven mixing). 

 

Fig. 5. Calculated volume fraction of one particle size in a mixture of two particles from 

simulated data; illustrating the reduction in error by averaging over 256 windows (b) versus 4 

windows (a). Ideal solutions lie on the solid line. (c) Root mean square error as a function of 

the number of windows averaged over. 

An apparent limitation evident in this experiment is the need for calibration samples. In 

principle it is possible to produce these samples, although a more practical approach would be 

to use simulated calibration samples in their place. However, the imaging system is complex 

and modeling it with the required accuracy is not trivial. 

A theoretical limit on the maximum volume fraction for this method has already been 

touched on. Decreasing randomness at higher volume fractions corresponds to a breakdown of 

the assumption that the particles’ positions are uncorrelated and the development of 

organization in their arrangement. This is analogous to the concept of the structure factor [24] 

in scattering techniques. Based on the SAF of synthetic samples, evidence of non-randomness 
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was observed for volume fractions greater than around 2-3%. However, in simulated 

experiments, comparable to those used to produce Fig. 5, increasing the volume fraction of 

particles only had a significant impact on the accuracy of solutions above 10%. 

5. Conclusions 

The methodologies discussed in this paper are expected to be useful for studying granular and 

particulate materials and systems with less radiation and higher temporal resolution than CT 

imaging, and at a scale beyond that where diffraction based X-ray scattering techniques have 

been demonstrated to be applicable. 

Simulations suggest the upper limit of packing fractions for these methods is around 10%. 

As the packing fraction increases, the assumption of randomness of the position of the 

particles begins to break down as the sample starts developing a degree of organization. By 

using the extra information present in the SAF of such systems, it is conceivable that these 

methodologies could be extended to more densely packed systems. 
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3 Particle sizing II: Closely packed
particles

In the previous chapter, a proof describing the formation of speckled projection im-
ages by volumes of grains or pores was presented. Additionally, it was shown that for
a simple system of spherical particles not exceeding a packing fraction or porosity
of around ten per cent, the distribution of the constituent particles could be found
from the X-ray speckle image.

In this chapter we will consider random close-packing of systems of particles, like
that produced by pouring microspheres into a container. Unlike the sparsely packed
volumes considered in the previous chapter, this model is expected to be a closer ap-
proximation to alveolar packing. How accurately alveoli can be modelled by spheres
is an open question. One way of considering the problem is that since the correlation
function is produced by many alveoli, effectively what we’re studying is the average
shape of the alveoli. Assuming the orientation of the alveoli is isotropic, it’s reason-
able to expect the average alveoli will approximate a sphere. This model isn’t perfect.
In reality, the alveolar structure is closer to an irregular honeycomb in appearance
than a cluster of spheres. Another concern is the impact of other structures, such
as the airways, present in the lung but not in a volume of spheres. It is also neces-
sary to contend with structures outside the lungs, such as bone and soft tissue. In
chapter 4 specific techniques for performing bone segmentation and suppression
are addressed. And in chapter 5 a method combining spatial frequency filtering and
radial averaging of the autocorrelation functions is shown to minimise or eliminate
contamination due to structures beyond the length scale of the alveoli.

Following the paper in section 3.1 describing a method for measuring the distribu-
tion of sizes of random close-packed volumes of particles, an additional validation
study has also been included.
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1. Introduction 

The study of granular and porous materials is relevant across a range of disciplines including 
material science, mechanical and chemical engineering, geophysics and biology. The 
development of cavitation bubbles in diesel injectors [1], the change in soil pore size during 
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wetting and drying [2] and the mechanics of alveoli in the breathing lung [3] are examples of 
dynamic systems, which existing imaging techniques are not well suited to studying. 

Expanding briefly on the example of the lung, despite much research, respiratory 
physiologists’ understanding of alveolar mechanics during respiration remains incomplete. 
The degree to which alveolar expansion and recruitment each contribute to inflation continues 
to be a topic of debate [3,4]. Dynamic imaging of lung alveoli is a particularly difficult 
problem because of their small size compared to that of the entire lung and the velocity at 
which they move. A free breathing mouse, for example, has millions of alveoli, each of the 
order of 100 um in diameter [5,6], packed inside a chest several centimetres wide, which 
respire 3-4 times a second. In addition to physiological studies, there is potential for disease 
detection applications using dynamic lung imaging techniques [7]. 

To non-destructively study the kinds of samples described, optical and other low energy 
imaging modalities, from visible light to terahertz frequencies [8–10], suffer from scattering 
and limited penetration depth. Ultrasound imaging has similar drawbacks [11]. 

X-ray computed tomography (CT) is a powerful and widely used technique for visualizing 
the three-dimensional structure of a sample. Despite not being inherently suited to studying 
dynamic systems because of the requirement for multiple projections at any time point, 
modern scanners are still capable of quite respectable temporal resolution. Third generation 
clinical CT scanners are capable of scanning at around 3-4 frames per second with sufficient 
spatial resolution to differentiate structures down to about half a millimetre in size [12]. 
However, this is still slower than many dynamic processes and the spatial resolution is too 
coarse for micro-imaging. Micro-tomography and even nano-tomography [13,14] are possible 
using an ultra-bright synchrotron source. A state of the art micro-tomography scanner, with 
an ultra-bright synchrotron radiation source, has been demonstrated capable of scanning an 
infant rat’s chest in half a second [15]. Another interesting example is 4D tomography of 
Xenopus gastrulation [16]. However, these scanners are incapable of the frame rates required 
to dynamically image rapidly moving systems such as breathing lungs. In addition to 
temporal resolution, a significant problem with CT is the high radiation dose, which is 
particularly relevant for biological samples. 

In lung imaging, hyperpolarized helium diffusion MRI has recently been used to try and 
measure alveolar dynamics [4]. There are a number of problems with this method, which 
include the difficulty and expense of obtaining hyperpolarized helium, the fact that diffusion 
is a relative measurement, and that airspace dimensions can only indirectly be obtained from 
these diffusion measurements [17]. 

At submicron scales, X-ray scattering techniques can be used to obtain structural 
information from single projection images [18–20]. Since scattering angles are inversely 
proportional to the size of the scattering particles, the problem of measuring increasingly 
smaller scattering angles limits the maximum feature size which can be studied. 

For studying particles tens to hundreds of microns in size, Carnibella et al. [21] presented 
a method for determining basic morphological parameters of randomly packed particles at 
low packing fractions from a single projection X-ray image. This method was based on the 
encoding of three-dimensional structural information in speckled two-dimensional X-ray 
images of the samples. Specifically, this method exploited the linearity of the spatial 
autocorrelation function (SAF) of these images. For densely packed systems of particles, the 
positions of individual particles are more strongly correlated and the SAFs are no longer 
linear. Therefore, a non-linear inverse method is necessary to decode their structure. In this 
paper, we present a technique using a genetic algorithm [22,23] (GA) to recover 
morphological parameters of randomly packed particles, without restriction on the packing 
fraction. 

We begin by describing the theoretical and technical background of the technique. We 
demonstrate, experimentally, its application in determining the distribution of diameters in a 
packed sample of glass microspheres. Finally, we use synthetic X-ray images of microspheres 
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to characterise the performance of our GA and the efficacy of propagation based phase 
contrast. 

2. Description of technique 

When a sample of randomly packed particles is imaged using absorption or phase contrast X-
ray imaging [24,25] (PCXI), the resulting image has a speckled appearance [26]. Examples of 
these images can be found in Figs. 1 and 3. We make note that this speckle is not necessarily 
so called near field speckle [20] and that, in fact, it is also produced in absorption based 
imaging. Speckle contrast, however, is markedly improved in PCXI. Carnibella et al. [21] 
showed that at low packing fractions, the SAF of a projection image of a sample is equal to 
the sum of the SAF of the image of each particle in that sample. This implies that the 
speckled images contain information about the morphology of the particles, since the SAF of 
the image of a single particle is directly related to its morphology. In the same paper, it was 
also found that at higher packing fractions this behaviour began to break down, which 
corresponded with the development of oscillations in the previously single peaked SAFs. It 
was hypothesised that these oscillations were related to both the shape (form) and 
organisation (structure) of the particles and that it should be possible to recover details of 
these properties. 

 

Fig. 1. An overview of the complete process of solving for particle statistics. On the left, a 
single phase contrast image of the sample is taken at a propagation distance, z, and its spatial 
autocorrelation function (SAF) calculated. On the right the genetic algorithm (GA) iterates 
over simulated particle SAFs to find the particle parameters that produce the closest match 
between the two SAFs. 
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Ideally, we seek an analytical expression for the SAF as a function of some parameters 
related to the morphology and/or structure of the particles. Then, an appropriate optimisation 
method could be applied to solve for these parameters. To our knowledge, no such analytical 
expression exists describing the distribution of particles in samples approaching random close 
packing [27]. We note that for lower packing densities (suspensions), the Percus-Yevick 
approximation can be used to obtain the radial distribution function analytically [28], and that 
this could potentially be used as the basis of an inverse method. 

Our method is based on stochastic modelling of particle packing, combined with physical 
modelling of the imaging process, using an iterative approach to solve the forward imaging 
problem until simulated results match experimental data. The particles are selected randomly 
from a distribution described by some parameters, and a GA attempts to find the set of these 
parameters that produces the best match between simulated and experimental SAFs. A simple 
outline of this procedure can be found in Fig. 1. GAs are particularly suited to this task 
because they tend to locate global minima and are robust in the presence of variability related 
to the stochastic nature of the simulations [29]. 

The experimental SAF is easily obtained after imaging a sample. Propagation based phase 
contrast X-ray images can be obtained by imaging with a coherent X-ray source such as a 
synchrotron or micro-focus lab source. The images are pre-processed by applying flat and 
dark field corrections: 
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where M is the number of pixels that have a centre within a circular band defined by the radii: 
l-0.5 and l + 0.5. Ideally, the window size should be such that it can capture the full SAF. The 
point at which the SAF settles near zero depends on the size of the particles. We found 
choosing a window size that captures at least the first three peaks of the SAF to be sufficient. 
Windowing is necessary because a single autocorrelation is not a consistent estimator of the 
true SAF: that is, the variance of the autocorrelation function does not decay to zero as the 
window size is increased [30]. 

We now outline the process of obtaining a simulated SAF, produced by a given set of 
parameter estimates. In the context of a GA, a set of parameter estimates is referred to as a 
chromosome. The simulation process begins with a description of the distribution of particle 
diameters. We use a volume weighted, lognormal probability density function (PDF), which 
can be characterised by two parameters: its geometric mean (GM) and geometric standard 
deviation (GSD). Many collections of particles including alveoli are well approximated by a 
lognormal distribution [31,32], however, any other PDF could be similarly used. The pouring 
of particles is simulated using molecular dynamics software (LIGGGHTS [33]). We assume 
the particles are spherical and non-penetrating. The mean packing fraction achieved was 60.0 
per cent. 
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Next, we simulate X-ray images of these particles. We consider the case of propagation 
based PCXI, the modality used in the experiments presented later. Following the method 
outlined by Kitchen et al. [26], the sample volume is first reduced to two dimensions by 
making a projection approximation [34]. Then, assuming a plane wave source, the exit wave 
field is calculated: 

 ,t ik t
exitU e eμ δ− −=  (5) 

where µ is the linear attenuation coefficient, δ is the refractive index decrement and t is the 
projected thickness of the sample. This wave field is then propagated a distance, z, to the 
plane of the detector using the angular spectrum method [35]. The intensity function of this 
wave field is convolved with a Gaussian kernel, described by a single parameter: its standard 
deviation, σblur, which accounts for the combined effects of partial coherence, the point spread 
function of the detector and penumbral blurring: 

 
2

sim propagated blur(0, ),I U N σ= ∗  (6) 

where N(µ,σ) is a normal distribution with mean, µ and standard deviation, σ. This last 
operation is simply the application of a Gaussian low pass spatial filter. The resulting image is 
binned to match the effective pixel size of the actual detector. The normalised two 
dimensional SAFs of smaller sample windows within the image are calculated. The SAF of 
multiple windows are averaged and that result radially averaged to produce the final 
simulated SAF. 

The GA requires an initial randomly generated population of Npop chromosomes. Each 
chromosome consists of the following parameters: the GM and the GSD of the distribution of 
particle diameters and the standard deviation of the Gaussian low pass filter kernel. Before 
running the algorithm it is necessary to set upper and lower limits for each parameter. 
Choosing limits which bracket smaller ranges will decrease convergence time. However, care 
must be taken to ensure that the range of each parameter encompasses the true, but unknown 
value. The cost of each chromosome is determined by calculating the sum of squared errors 
between the experimental SAF and a simulated SAF generated from each chromosome’s 
parameters. 

The Npop/2 chromosomes with the highest costs are discarded. Pairs of chromosomes are 
randomly selected, from a rank weighted population [23], to be parents. Uniform crossover 
using the BLX-0.5 operator [36] is performed to produce two offspring from each pair of 
parents. At the end of this process the population size remains unchanged. Mutations, 
according to a Gaussian distribution (standard deviation, σmutation) are randomly applied to a 
fraction, fmutation, of the parameters from any chromosomes other than that with the lowest cost 
(elitism): 

 mutated mutation lo hi( ) min(max( ( , ), x ), x ),x x N x σ=  (7) 

where x is the value of the parameter being mutated, N is a normal distribution and xlo and xhi 
are the lower and upper limits of that parameter. 

This process is repeated until the cost function shows no signs of improvement, at which 
point we assume the algorithm has reached the vicinity of the global minimum. Mutations are 
then disabled and the algorithm is allowed to continue until all the parameters have 
converged. The specific stopping criteria used in the following sections are described in each 
section. 

3. Application to experiments 

To test our technique, we conducted experiments on beamline BL20B2 at the Spring-8 
synchrotron, Japan [37]. A detuned Si(111) double crystal monochromator was used to 
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generate a monochromatic beam, with an energy of 34 keV to image solid glass microspheres. 
The sieved microspheres were nominally of 4 different ranges of diameters (63-75 µm, 75-90 
µm, 90-106 µm, 106-125 µm). Plastic cuvettes (10 × 50 × 10 mm3) filled with these 
microspheres were placed at a propagation distance of 0.5 m from the detector. The detector 
was a Hamamatsu C4880-41S, with an effective pixel size of 5.9 um. Exposure times were 2 
seconds. The SAF was averaged over approximately 200 windows (96 × 96 pixels, 1132.8 × 
1132.8 µm2). 

To simulate SAFs for the GA, the sample volume had the imaging area of a single 
experimental window and was 1 mm deep (1132.8 × 1132.8 × 1000 µm3). Spheres were 
modelled as soda lime glass, which when imaged at 34 keV have a linear absorption 
coefficient of 198.0 m−1 and a refractive index decrement of 4.67 × 10−7 [38]. The SAF was 
averaged over 16 windows (chosen as an acceptable balance between accuracy and 
computational effort). Other relevant parameters were the same as for the experimental setup. 

The GA was run with a population size of 12 and with the following limits on each 
parameter’s range: 20 µm to 120 µm for the GM, 1.01 to 1.3 for the GSD and 6 µm to 30 µm 
for the standard deviation of the Gaussian kernel. These limits were chosen to encompass all 
reasonable solutions, given we had prior information on the microspheres’ diameters. The 
mutation distribution, σmutation, was 0.2 of each parameter range and fmutation was 0.2. The GA 
was deemed to have reached the global minimum when the mean slope of the cost function 
for the last 10 iterations was equal to or greater than zero. With mutations disabled, the 
algorithm was allowed to continue until the difference between parameters across the 
population was less than 1 per cent. At this point the chromosome with the lowest cost was 
chosen as the solution. 

 

Fig. 2. The distributions of microsphere sizes obtained from experimental images. Nominal 
sieve sizes were (a) 63-75 µm, (b) 75-90 µm, (c) 90-106 µm and (d) 106-125 µm. These sizes 
are depicted by the light grey top hat functions. The darker grey curve is the distribution 
measured by a commercial particle sizer (Mastersizer 2000). The darkest/blue curve is the 
distribution measured by our method. 
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Table 1. Comparison of nominal microsphere sizes with geometric mean, geometric 
standard deviation and interquartile range (IQR) measured by a commercial particle size 

analyzer and phase contrast X-ray speckle analysis 

Nominal 
Range (µm) 

GM (µm)  GSD  IQR (µm) 
Mastersizer Speckle  Mastersizer Speckle  Mastersizer Speckle 

63-75 71.4 73.0  1.27 1.12  60.9-83.8 67.7-78.8 
75-90 85.8 86.8  1.27 1.17  72.9-101.0 77.9-96.7 
90-106 98.6 99.2  1.27 1.11  84.0-115.7 92.5-106.3 
106-116 113.4 115.3  1.27 1.13  96.4-133.4 106.5-124.9 

Computational effort is almost solely attributable to the simulation of pouring spheres. 
Running on a single 3 GHz processor core, for the window size described, the pouring 
simulations took on average around 5 minutes. For a population size of 12, when averaging 
over 16 windows, this means 192 pouring simulations per iteration of the GA. Fortunately, 
since every simulation window is completely independent, if enough cores are available, an 
entire iteration could be completed in a few minutes. Typically, less than 40 iterations were 
required for the GA to converge. 

Our results are displayed in Fig. 2 and quantified in Table 1. As can be seen, the mean 
microsphere diameters agree well with both the nominal particle sizes and those obtained by a 
commercial measurement system (Mastersizer 2000). Interestingly, the spread of diameters is 
less than that measured by the commercial system, and more closely agrees with the nominal 
sieve limits. 

Two second exposure times were used to obtain a high signal to noise ratio for testing this 
technique on a strongly attenuating sample and does not represent the best temporal 
resolution of the technique. For example, at this beamline much shorter exposure times (tens 
of milliseconds) are possible within the lungs [7,39,40], with frame rates as high as three 
hundred frames per second even achievable [41]. In comparison to the technique presented 
here, a high resolution CT scan may require of the order of 1000 projections. Hence we could 
obtain the same morphological information at 1000 times the frame rate and with 1/1000 the 
radiation dose of CT. 

4. Synthetic studies 

To characterise the performance of our solver and study the efficacy of X-ray phase contrast 
for sizing particles, we applied the technique to measure the distribution of sphere diameters 
from synthetically generated X-ray images. The synthetic images were generated using the 
same method as previously described. The distribution of sphere diameters had a GM of 56.7 
µm and a GSD of 1.14. These parameters are those of the largest sieved microspheres (106-
125 µm), which we had previously measured (Fig. 2). The width of the Gaussian kernel was 
also obtained from the previous experiment, having imaged samples at a number of 
propagation distances. Photon and readout noise were added according to the camera’s 
specifications and assuming photon counts similar to those recorded experimentally. The 
synthetic images were scaled to match the mean intensity and contrast of the 10 mm deep 
samples we measured experimentally (in our simulations other speckle characteristics were 
independent of sample depth). Synthetic images were generated at propagation distances 
between zero and three metres. Figure 3 shows that, to the eye, these synthetic speckle images 
closely match the corresponding experimental images. Synthetic experimental SAFs were 
produced by averaging 400 windows and radially averaging. 
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Fig. 3. The upper row is a series of experimental phase contrast X-ray images, of nominally 
106-125 µm glass microspheres, recorded at propagation distances of 0.01 m, 0.4 m, 1 m, 2 m 
and 3 m. For comparison, the lower row shows simulated images at the same propagation 
distances. The latter is based on solutions for the distribution of sphere sizes in the 
experimental images. Each image is 1132.8 × 1132.8 µm2. 

The GA was run with the following limits on each parameter’s range: 48 µm to 68 µm for 
the GM, 1.05 to 1.2 for the GSD and 6 µm to 35 µm for the standard deviation of the 
Gaussian kernel. To produce an estimate of uncertainty in the solution, upon convergence the 
algorithm was restarted (by keeping the best and randomly generating 11 new chromosomes) 
and run until the variables converged again. In this way the solver was allowed to converge a 
total of 10 times, which produced 10 solutions. In Figs. 4(a) and 4(b) the parameters 
belonging to each of these solutions is plotted. 

 

Fig. 4. (a) The geometric mean (GM) and (b) geometric standard deviation (GSD) of the 
distribution of microsphere diameters measured from synthetic phase contrast X-ray images at 
several propagation distances, z. In these two sub-figures, individual solutions are plotted as 
points, the parameters of the best solution are linked by a solid line, and the true solution is 
denoted by a horizontal dashed line. (c) The probability density functions (PDF) of 
microsphere diameters, measured at propagation distances of 0 m and 1 m. (d) The sum of 
absolute errors between the true and measured PDF at several propagation distances. The 
points at 0 m and 1 m correspond with the shaded area between the PDFs in (c). (e) Speckle 
contrast, measured as the standard deviation of image pixel intensities, as a function of 
propagation distance. 
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The spread of the GAs solutions (the points in 4(a) and (b)) at each propagation distance 
isn’t obviously correlated with the propagation distance or image contrast (Fig. 4(e)). This is 
consistent with this variability being the result of the stochastic nature of the simulations. 
Therefore, we expect that this variance can be reduced by averaging the SAF over more 
windows, at the expense of increased computation time. 

Overall, the best solutions are quite close to the true distributions of the microspheres’ 
diameters. Comparing the extremes of these solutions (at z = 0 m and z = 1 m) in Fig. 4(c) 
highlights that even in the worst case (z = 0 m), the solution is still quite accurate: the GM 
and GSD are in error by 1.5% and 2.9%, respectively. In Fig. 4(d) it can be seen that accuracy 
is worst at very short propagation distances, where phase contrast is weak, and at the largest 
propagation distances, where the size of the Gaussian kernel is greatest (not shown). The 
inverse relationship between the solution error and the speckle contrast is illustrated by 
comparing Figs. 4(d) and 4(e). Since speckle contrast is proportional to the signal to noise 
ratio, this relationship is not surprising. We note that our experimental images were of static 
samples, with a high intensity synchrotron source and significant exposure times. We expect 
that the benefit afforded by phase contrast would be of greater significance when imaging 
conditions are less ideal. 

We encountered an unexpected result in the behaviour of the Gaussian low pass filter 
kernel over the range of propagation distances. We found that this parameter increased almost 
linearly over the range of propagation distances, at a rate greater than expected by penumbral 
blurring for the known source size of 150 µm (horizontal) by 10 µm (vertical). As mentioned, 
this accounts for the decrease in contrast at the largest propagation distances. Our hypothesis 
is that this may be the result of scattering/refraction within the volume of the sample, which 
we assume is negligible when we make the projection approximation. Alternatively, or 
additionally, it may be the result of scattering by optical elements and/or air along the beam 
path which hasn’t been accounted for in our model. These hypotheses warrant further 
investigation. 

5. Conclusions 

In this paper we have outlined a new technique for the quantification of useful parameters 
related to random granular and porous systems without restriction on the mode of packing. 
The basis of the technique lies in retrieving structural information encoded in speckled phase 
contrast X-ray images of such systems. The experimental and synthetic results presented 
demonstrate the accuracy and robustness of this technique and that propagation based phase 
contrast significantly improves the accuracy. We have also shown that there is a limit to the 
gains that can be obtained by increasing the propagation distance due to an increase in 
blurring. The advantages of our technique are high temporal resolution and low radiation 
dose, which suggest potential applications for imaging dynamic and biological systems. 
Specifically, we envisage the technique being applied to the measurement of dynamic lung 
morphology, for physiological studies or disease detection. 
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3.2 Additional particle sizing validation

At the time of submission of the preceding paper, the commercial particle sizer (Mas-
tersizer 2000) had been deemed the gold standard measurement of the true distri-
bution of particle sizes. While there is reasonable correspondence between X-ray
speckle-based measurements and those made by the Mastersizer, and additionally
between these and the nominal particle diameters, it was decided to investigate the
discrepancies between each measurement technique further. The details of this in-
vestigation and its associated findings are presented here.

Microspheres from the same samples used in the paper were dusted onto an ad-
hesive Kapton backing to produce a monolayer of particles. These monolayers were
then imaged at high resolution on beamline 20XUat the SPring-8 synchrotron, Japan.
Phase contrast enhanced imaging was performed with 1m of propagation distance
between the sample and detector, so that the spheres’ edges were easily identifiable
(Figure 3.1a). The true edge of the particle lies between the two strongest black and
white phase contrast fringes. Images were taken with a PCO.edge scientific CMOS
camera (sCMOS; 6.5 µm pixels) using aHamamatsu beammonitor with a 10X objec-
tive lens installed.The resulting effective pixel size wasmeasured as 0.56 µm. Enough
images were taken to ensure sufficient sampling numbers (Table 3.1).

Table 3.1: Number of microspheres sampled for each nominal microsphere size.

Microsphere size (µm) Number of spheres
63-75 694
75-90 715
90-106 275
106-125 543

Diameter (μm)
(a) (b) (c)

Figure 3.1: Flat and dark field corrected phase contrast images of microspheres (a) are first
thresholded (b) before particle diameters are measured and binned to produce
histograms (c) of the size distribution.

Each image was analysed using ImageJ image processing software. After flat and
dark field correction, the image was thresholded (Figure 3.1b) and analysed using
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the software’s ‘Analyze Particles’ feature. Non-circular objects and objects deemed
too small to be a microsphere were rejected. Again, the number of microspheres
identified for each sample size can be found in Table 3.1. Finally histograms of the
measured particle diameters were produced using 2 µm wide bins (Figure 3.1c). We
will refer to this method from here on in as monolayer-based measurement.

In Figure 3.2 we compare these histograms with the nominal distributions and the
distributions measured by the Mastersize and the X-ray speckle analysis method. To
quantify these comparisons, the mean square error between the monolayer-based
histograms (reference) and each of the other measurements for each nominal distru-
ibtion was also calculated (Figure 3.3).

μ μ

Figure 3.2: The nominal (black top-hat), Mastersizer (red dashed), X-ray speckle (green) and
monolayer-based (blue–grey histogram)measured distributions (probability den-
sity functions) for each batch of microspheres. Working clockwise from top-left,
nominal microsphere sizes inmicrometres are 63-75 (69), 75-90 (83), 90-106 (98)
and 106-125 (116). Values in brackets are the midpoint of each range.

If the monolayer-based measurements are accepted as new gold standard, these
results indicate that the X-ray speckle-based technique has outperformed the com-
mercial particle sizer in all cases, based on the mean square error. When the shape of
the true distribution is closer to a uniform distribution than a lognormal distribution
(the nominally 69 and 83 µm microspheres), the nominal distribution proves to be
the best description of microsphere size. Potentially a less restrictive choice of distri-
bution could improve the performance of the technique. Nevertheless, it has proven
itself superior formore natural (Gaussian-like) distributions and in all cases has been
shown to measure particle distributions with greater accuracy than the commercial
particle sizer.
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Figure 3.3: Quantitive comparison (mean square error) of distributions measured by various
techniques relative to monolayer-based measurement.
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4 Bone segmentation and suppression

There are two significant differences between a chest X-ray containing the lungs and
an X-ray image of a volume of microspheres. The first, which was addressed in chap-
ter 3, concerns the validity of the approximation of the lungs and specifically the
alveoli as a volume of packed spheres. The second, which is the topic of this chapter,
is that a chest X-ray also contains the shadows of other structures that are outside
of the lungs. Some of these shadows are produced by soft tissues such as the heart,
the muscles of the chest wall and the skin. These materials have similar X-ray prop-
erties to water (being largely composed of water themselves) and tend to produce
large shadows with gentle gradients that can be effectively removed using a spatial
frequency filter.

More problematic than the soft tissue shadows are those of the bones of the ribcage
and spine. The significantly higher X-ray attenuation of bone, due to its high cal-
cium content, results in bony structures featuring prominently on a chest X-ray and
partially obscuring the view of the lung fields. The autocorrelation function of lung
speckle is significantly distorted by contamination with signal from bone (Figure
4.1), which is a problemwhenwe seek to use the autocorrelation function tomeasure
alveolar size. To date there have been many approaches developed for the purpose of
subtracting the shadows of bones from chest X-ray images. A selection of these are
outlined in the published paper in section 4.1.

Figure 4.1: X-ray lung speckle and corresponding spatial autocorrelation function (left) be-
side another image of lung speckle showing the autocorrelation function affected
by an overlying rib (right). In addition to producing a broad ridge in the autocor-
relation function, the rib has resulted in widening of the autocorrelation peak.

A method developed specifically for the purpose of bone subtraction for dynamic
imaging using a synchrotron X-ray source is presented in the following paper. The
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basis of the technique, dual energy imaging, is an established method of performing
material decomposition. Typically it is performed using an X-ray source capable of
rapidly switching voltage. Since a synchrotron X-ray source’s energy can’t be rapidly
switched in this fashion, to marry the benefits of synchrotron radiation and dual
energy imaging, there is a need for a synchrotron-basedmethods of performing dual
energy imaging.

The following method makes use of the usually unwanted higher harmonic ener-
gies, in addition to the fundamental energy produced by a crystal monochromator,
to effectively create a dual energy source. A series of inline scintillating screens sepa-
rated by a metal spectral filter are then used to simultaneously capture low and high
energy images. A full description of the method and an example of material separa-
tion of bone and soft tissue can be found in the paper.

Using this technique it is possible to achieve bone free images of the lung fields
with high temporal resolution.These images are suitable for analysis techniques such
as dynamic volume measurement (Kitchen et al., 2008) and autocorrelation-based
measurement of alveolar size, the focus of the final two chapters.
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Projection radiography of the chest has long been plagued by the presence
of bony anatomy obscuring visibility of the lungs and heart. Dual-energy
subtraction is a well known method for differentiating bone and soft tissue, but
existing techniques are not ideally suited to dynamic imaging. Herein a new
technique to address this problem is presented. The harmonic content of a
monochromated X-ray beam is exploited, and two in-line detectors are used to
perform single-exposure dual-energy imaging. Images of a phantom demon-
strate the ability to both separate and quantitatively measure the thickness of
constituent materials, whilst images of a mouse thorax demonstrate the ability to
separate bone and soft tissue in a biological specimen. The technique is expected
to improve the performance of dynamic lung imaging.

Keywords: dual-energy imaging; digital subtraction imaging; basis material decomposition;
dynamic imaging; X-ray imaging.

1. Introduction

Two significant problems with projection X-ray imaging are
the difficulty in differentiating superimposed structures and
the related problem of quantitatively measuring the material
properties of individual structures. Dual-energy X-ray imaging
is one technique which can overcome these limitations.
Consequently, some of the applications of dual-energy
imaging include bone differentiation on chest X-rays for the
purpose of improving tumour diagnosis (Fraser et al., 1986;
Kelcz et al., 1994), the diagnosis of cerebral haemorrhage
(Brockmann et al., 2010), lung perfusion measurement
(Thieme et al., 2008), cardiac imaging (Schwarz et al., 2008),
the diagnosis of urinary calculi (Graser et al., 2008) and gout
(Choi et al., 2009), and bone and fat density measurement
(Sartoris & Resnick, 1989; Jensen et al., 1995).

Growing interest in dynamic synchrotron X-ray imaging has
created demand for new methods of performing dual-energy
imaging, which can be used with a synchrotron source and
which are suitable for dynamic imaging. In particular, there
is need for a means of subtracting bone from dynamic lung
images. The shadows produced by the ribcage and spine are
a problem for regional lung volume measurement techniques
(Kitchen et al., 2008), which regard the chest as a two-
component system consisting of air and soft tissue. Regional
lung volume measurements, from dynamic image sequences
recorded at synchrotrons, have enabled researchers to assess
the efficacy of ventilation strategies employed to safely aerate
the lungs of premature neonates born with poor lung function

(Hooper et al., 2009). In other studies, researchers have
quantified the mechanics of lung tissue associated with
detecting early-stage pulmonary disease using synchrotron-
based imaging techniques (Fouras et al., 2012). In that work
the visibility of the ribcage was artificially suppressed in order
to isolate the motion of the lung tissue.

An alternative to dual-energy imaging for bone subtraction
has been developed by Suzuki et al. (2006), using a massive
training artificial neural network. That approach, however, can
be impractical because of the number of training samples
required. A recent study (Kitchen et al., 2011) showed that
dynamic lung image segmentation can be performed in the
context of phase-contrast X-ray imaging, using a Laue
analyser crystal, to reconstruct the complex refractive index of
a two-material system. However, that technique is compli-
cated by the ultra-small-angle scattering arising from the
airways, which increases the complexity of the reconstruction
procedure.

Digital dual-energy imaging was pioneered by Brody et al.
(1981) and Lehmann et al. (1981) who outlined the theory of
basis material decomposition and demonstrated bone and soft
tissue subtraction on chest X-ray images. They used a rapidly
switching polychromatic X-ray source to sequentially capture
low- and high-energy images (dual exposures). In this set-up
the delay between capturing the dual-energy images limits the
rate at which dynamic imaging can be performed and means
rapidly moving subjects are prone to motion artefacts. Xu et al.
(2011) developed a dual-energy system using flat panel
detectors with a 15 ms delay, which can acquire image pairs at
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up to 15 frames a second. Another issue, pertaining to the
use of a polychromatic source, is the non-linear relationship
between the log intensity measurements and material thick-
ness (Brody et al., 1981). The problem is not intractable, but
requires extensive calibration and is often handled qualita-
tively by adjusting a weighting factor until satisfactory mate-
rial subtraction is achieved.

An alternative to dual-exposure approaches is to selectively
capture X-rays of different energies from a single exposure
to polychromatic radiation, rather than changing the source
energy. Single-exposure dual-energy imaging systems (Speller
et al., 1983; Ishigaki et al., 1986) have been developed, which
consist of a piece of metal, acting as a high-pass X-ray filter,
sandwiched between two imaging plates or film-screen
cassettes. By simultaneously capturing low- and high-energy
images, motion artefacts are eliminated. Such an analogue
detection medium is not, however, suitable for dynamic
imaging. Phillips are developing a dual-layer sandwich
detector (Phillips, 2008), which will be able to simultaneously
record dual-energy images, but to date the technology is not
commercially available.

To perform dual-energy tomography with a synchrotron
source, Torikoshi et al. (2001, 2003) designed a system using
the harmonic energy content of a monochromated X-ray beam
to provide dual energies and used a rotating filter to alter-
natingly image at each energy.

The method presented in this paper is an evolution of the
early single-exposure systems, optimized to work with a
synchrotron source and digital detectors. Like Torikoshi et al.
(2001, 2003), a key feature of the technique is the use of the
harmonic energy content of a monochromated X-ray beam,
but here we simultaneously acquire images at both energies
using two detectors. The harmonic beam allows better energy
separation than polychromatic sources and also significantly
simplifies the systems of equations that need to be solved.
Consequently, more accurate results can be expected, with the
method only requiring a relatively simple calibration proce-
dure. The paper first outlines the system design and theory of
material decomposition. We then present experimental results
from a phantom to demonstrate the accuracy of the technique
followed by images of a mouse thorax to demonstrate the
ability to separate bone from the soft tissues.

2. Theory and method

2.1. X-ray harmonics for dual-energy imaging

Silicon crystals are commonly used to produce a mono-
chromatic beam from a polychromatic X-ray source. In
accordance with Bragg’s law,

n! ¼ 2d sin "; ð1Þ

where n is an integer, ! is the wavelength of the incident wave,
d is the distance between scattering planes and " is the angle
between the incident wave and scattering planes, photon
energy can be selected by adjusting the angle " at which the
X-ray beam strikes the crystal. Different orders n result in the

presence of harmonic frequencies in the reflected beam at the
same angle. Usually these harmonics are unwanted and efforts
are taken to suppress them. For example, with double-crystal
monochromators the first crystal is commonly detuned.

The experiments undertaken here were performed in
experimental hutch 3 of beamline 20B2 at the SPring-8
synchrotron in Japan (Goto et al., 2001). A Si(111) double-
crystal monochromator was used to produce a beam with a
fundamental energy of 17 keV and a third harmonic of 51 keV
[the second harmonic for the Si(111) reflection is forbidden].
Although higher-order harmonics (e.g. the fifth, seventh, etc.)
exist, their contribution can be neglected because each
harmonic becomes progressively weaker.

Ideally, a higher fundamental energy than 17 keV is desir-
able for imaging macroscopic objects. However, this energy
was chosen because the Gd2O2S:Tb (P43) phosphors used in
the detectors have a K-edge at 50.2 keV. By placing the third-
harmonic energy just beyond this (51 keV), the efficiency of
the phosphor is maximized.

2.2. Dual detectors

The imaging set-up used in these experiments is illustrated
in Fig. 1. A key feature is that the two phosphor screens are
positioned in-line with the beam. A mirror (1 mm-thick
aluminium-coated soda lime glass) angled at 45$, also on the
same axis, was used to transfer the image on the first screen to
a digital camera. In addition to the mirror, between the two
screens was a 3 mm-thick sheet of aluminium, which acts as a
high-pass energy filter.

For the front detector a PCO 4000 CCD camera (14 bit,
pixel size 9.0 mm % 9.0 mm, 4000 pixels% 2672 pixels) coupled
to a Nikon 105 macro lens (1.8:1 demagnification for an
effective pixel size of 16.2 mm) was used in combination with a
custom-made phosphor screen. The screen consisted of a
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Figure 1
Single-exposure dual-energy imaging set-up using a synchrotron source.
Initially the beam is dominated by the fundamental (low) energy
component. An aluminium plate acts as a high-pass filter so that
subsequently the harmonic (high) energy component dominates. Two
phosphors and cameras simultaneously capture the low- and high-energy
images. z1 and z2, the distances between the sample and detectors, were
8 cm and 36 cm, respectively.
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1 mm-thick quartz glass substrate, powder-coated with a
25 mm layer of P43 phosphor. For the rear detector a Hama-
matsu C9300-124 CCD camera (12 bit, same Kodak CCD as
the PCO 4000) with fibre-optic taper (1.8:1) was employed
(Uesugi et al., 2011). The fibre-optic coupling provided a high
numerical aperture to increase the sensitivity for the lower-
intensity second image. This configuration was used for all
experiments presented in this paper.

To account for differences in alignment and magnification
between detectors, a pair of images was taken of an object
containing three small metallic fiducial markers. Image regis-
tration was performed using these images to produce an affine
transform that could correct for discrepancies in translation,
scale, rotation and shear between images recorded by the two
detectors.

The rationale in choosing the materials and thicknesses of
the first phosphor screen, mirror and aluminium filter was
to find a balance between minimizing the contribution of the
fundamental energy at the second detector while preserving
the higher-energy harmonic component. The goal was that the
first and second cameras in this set-up are essentially oper-
ating as low- and high-energy detectors, respectively. The
actual proportion of each energy at each detector is taken into
account in the decomposition process.

2.3. Material decomposition

The attenuation of X-rays by any material is an energy-
dependent function of photoelectric absorption and X-ray
scattering. By measuring the combined attenuation of two
known materials, at two different energies, it is possible to
solve for the thickness of each material (Lehmann et al., 1981).
The following explains how this was achieved for the imaging
set-up described in the previous section.

The transmittance through each material in the path of the
beam, as a function of energy, can be expressed using the
Beer–Lambert attenuation law as

k Eð Þ ¼ I=I0 ¼ exp '# Eð Þt½ ); ð2Þ

where I0 and I are the intensity of the incident and transmitted
beam, respectively, #(E) is the material’s linear attenuation
coefficient at energy E, and t is its thickness.

The phosphor’s (P43) output in the visible spectrum can be
expressed as a function of its quantum efficiency (QE),

I Eð Þ ¼ SðEÞ½1' kP43 Eð Þ)QEP43ðEÞ; ð3Þ

where S(E) is the source strength.
The total transmittance measured by each detector is

equivalent to the flat-field (direct beam) corrected image,

T1 ¼
ksample E1ð Þ I1 E1ð Þ þ ksample E2ð Þ I1 E2ð Þ

I1 E1ð Þ þ I1 E2ð Þ

¼ image1

image1;flat

; ð4Þ

T2 ¼
QM

km E1ð Þ
! "

ksample E1ð ÞI2 E1ð Þ þ
QM

km E2ð Þ
! "

ksample E2ð ÞI2 E2ð ÞQM
km E1ð Þ
! "

I2 E2ð Þ þ
QM

km E2ð Þ
! "

I2 E2ð Þ

¼ image2

image2;flat

; ð5Þ

where, for the second detector, M is the number of other
materials the beam passes through in addition to the sample
(i.e. the first phosphor screen, the mirror and the aluminium
filter). E1 and E2 are the energy of the fundamental and third
harmonic, respectively.

Grouping constants, these expressions can be simplified to

T1 ¼ C1ksample E1ð Þ þ C2ksample E2ð Þ; ð6Þ

T2 ¼ C3ksample E1ð Þ þ C4ksampleðE2Þ; ð7Þ

for the first and second detectors, respectively.
The constants Cn are the fractions of the total measured

transmittance attributable to each energy. If these constants
are known, the sample’s transmittance and then the thickness
of each material can be found by solving the following
simultaneous equations,

ksample E1ð Þ
ksample E2ð Þ

# $
¼ C1 C2

C3 C4

# $'1
T1

T2

# $
; ð8Þ

t1

t2

# $
¼ #1ðE1Þ #2ðE1Þ

#1ðE2Þ #2ðE2Þ

# $'1
ln'1 ksample E1ð Þ

! "

ln'1 ksample E2ð Þ
! "

# $
; ð9Þ

where #m(E) is the linear attenuation coefficient of sample
material m at energy E, and tm is its thickness. The linear
attenuation coefficients used in this paper can be found in
Table 1.

For decomposition of biological samples, the aim is to
separate bone from soft tissue, where bone is relatively
homogeneous in its composition but not its density, and soft
tissue broadly includes skin, muscle, fat, internal organs, etc.
The simplification of the body as a two-component system is
valid because, in terms of attenuation, the difference between
the two components can primarily be attributed to the calcium
content of bone. This can be verified by observing that in the
NIST database (NIST, 2011) the attenuation coefficients of
various soft tissues (brain, breast, lung, muscle, ovary and
testis) differ from that of water at 17 keV by at most 15%
(breast). In comparison, the attenuation coefficient of bone is
over 900% that of water.

2.4. Calibration

Calibration is necessary for two reasons. Firstly, because
energy separation in this system is not perfect: the low-energy
detector measures a small fraction of the high-energy
component and vice versa. Secondly, calibration is a means of
accounting for all the materials between the sample and
second detector without specifically needing to know the
attenuation coefficients of each.
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The constants Cn can be determined by imaging at least two
different calibration samples for which the sample’s thickness
and attenuation coefficients are known. For the following
experiments the two calibration samples imaged were 1 mm
and 2 mm sheets of aluminium. The total transmittance for
each detector was calculated; for example, for the first cali-
bration sample at the first detector,

T1;calib1 ¼
I1;calib1 ' Idark

Iflat ' Idark

: ð10Þ

The theoretical transmittance, kn(E), of calibration sample n
was calculated using equation (1). Table 1 gives the attenua-
tion coefficients for aluminium at both energies used in this
paper. Finally, the following simultaneous equations can be
solved to obtain the calibration constants,

C1

C2

# $
¼ k1 E1ð Þ k1 E2ð Þ

k2 E1ð Þ k2 E2ð Þ

# $'1
T1;calib1

T1;calib2

# $
; ð11Þ

C3

C4

# $
¼ k1 E1ð Þ k1 E2ð Þ

k2 E1ð Þ k2 E2ð Þ

# $'1
T2;calib1

T2;calib2

# $
: ð12Þ

3. Results and discussion

3.1. Phantom image decomposition

A simple phantom, modelling the superposition of soft
tissue and bone, was constructed consisting of an aluminium
step wedge, with 1.5 mm-thick steps, placed in front of a plastic
(PMMA) rod with a diameter of 10 mm (Fig. 2a).

The images captured by each detector and the results of
material decomposition are also presented in Fig. 2. The
results show that the two materials have been clearly sepa-
rated. Furthermore, for the most part, accurate quantitative
values of the material thicknesses have been obtained. The
largest discrepancy evident is in the thickness of the second
(3 mm) aluminium step. The explanation for this discrepancy
illustrates two important issues that arose over the course of
conducting these experiments.

The first issue was the choice of energies. At 17 keV less
than 2% of X-rays will be transmitted through a 3 mm-thick
piece of aluminium. This results in the first detector, nominally
the low-energy detector, being totally dominated by the high-
energy component. Theoretically, this should not be an issue
because both detectors are treated as dual-energy detectors
according to the theory outlined in the previous section.
However, when approaching the limit in which little of the
low-energy beam is transmitted through the sample, the

equations become ill-conditioned and errors are magnified. A
fundamental energy of around 25 keV would have been
preferable, but this would place the third harmonic at 75 keV.
At such a high energy the phosphor is much less sensitive and
absorption contrast is diminished. A crystal monochromator
capable of producing a second harmonic, which was not
readily available for these experiments, could be expected to
perform significantly better at energies of 25.5 and 51 keV.

The second issue was the shape and stability of the beam.
The combination of the harmonic energy being physically
narrower, in addition to having a narrower rocking curve than
the fundamental energy, resulted in the system being sensitive
to drift and intensity fluctuations of the harmonic component.
When operating on images taken at different time points,
e.g. flat-field images and calibration images, even a small shift
of the harmonic can result in the introduction of significant
errors. We estimate the error arising in the calculation of the
transmittance at the second detector alone to be as much as
4% per pixel of vertical displacement of the harmonic. During
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Figure 2
(a) Region of plastic rod and aluminium step wedge imaged using the
dual-energy set-up. (b) Thickness of the aluminium wedge extracted by
dual-energy decomposition. (c) Thickness of the plastic rod. The solid
blue lines in (d) and (e) are the averaged cross-sectional thickness (mm)
through each material; the dotted red lines are the actual thickness. The
horizontal scale in subfigures (b)–(e) is consistent; ticks on the horizontal
axes in (d) and (e) are spaced 1 mm apart.

Table 1
Linear attenuation coefficients (cm'1) (NIST, 2011).

17 keV 51 keV

Aluminium 14.88 0.9608
PMMA 0.9675 0.2446
Cortical bone (ICRU-44) 12.15 0.7863
Soft tissue (ICRU-44) 1.297 0.2370
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the course of the experiments we estimate the rate of vertical
harmonic drift at around 1.3 pixels min'1. To compensate for
the effects of this drift, the harmonic peaks were manually
realigned before performing operations on images taken at
different time points. The results in Figs. 2 and 3, in compar-
ison with those obtained without this compensation (not
shown), show a significant improvement in accuracy. Ideally,
a more stable beam or more thorough beam tracking
throughout the experiment could have further improved the
quality of the results.

As a final observation, the image of the rod thickness
(Fig. 2c) shows the presence of strong vertical lines corre-
sponding to the edges of the aluminium step. These are the
result of propagation-based phase contrast (Snigirev et al.,
1995; Wilkins et al., 1996) produced by the edges of the step
wedge. The decomposition algorithm outlined in this paper is
based on a model of absorption contrast and therefore does
not account for the effects of diffraction. The simplest measure
to reduce phase contrast is to minimize the distance between
the sample and detectors, since this phase contrast is propa-
gation-based. It should also be pointed out that in biological
samples such abrupt sharp edges are rare so that at short
propagation distances phase contrast is much weaker.

3.2. Mouse thorax image decomposition

A small mouse was also imaged and a decomposition
performed to separate bone from soft tissue. The results are
presented in Fig. 3. Qualitatively, we see that the bones have

been clearly separated from the soft tissue. In Fig. 3(c) the
shadow or impression of the bones that have been removed is
visible upon close inspection. In some situations this is not
desirable, for example with correlation-based lung motion
tracking algorithms (Fouras et al., 2011), in which case adding
the equivalent bone thickness back to the soft tissue thickness
will remove, or at least significantly reduce, these shadows.

Quantitative values for both the thickness of bone and soft
tissue are in keeping with the external dimensions of the
mouse. In Fig. 4(a), which is a magnified bone image of a
section of the ribcage, a cross section through two ribs
measures their thickness to be approximately half their width
(Fig. 4b). A computed-tomography (CT) cross section through
some mouse ribs is also presented (Fig. 4c), which highlights
their non-uniform bone density. The discrepancy in thick-
nesses can be understood by considering that dual-energy
decomposition is specifically measuring the thickness of
cortical (compact) bone, and, because most bones are less
dense in the centre (cancellous or spongy), this technique will
tend to underestimate their anatomical thickness.

A final point is that these were static images of a deceased
mouse. In theory the only limitation to the speed of dynamic
imaging with this method is the intensity of the beam and
sensitivity of the detectors, since low- and high-energy images
are taken simultaneously. With a bright synchrotron source
and high-sensitivity digital detectors, we anticipate that
quantitative image reconstruction will be possible at video
frame rates. This remains the work of future studies.

4. Conclusion

A single-exposure method for performing dual-energy-
subtraction imaging with a synchrotron source has been
presented. The accuracy of the technique for performing
qualitative measurement of material thicknesses and the
ability to separate bone and soft tissue in a small animal
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Figure 3
(a) Plain X-ray image recorded by the first (low-energy) detector. (b)
Bone image obtained by dual-energy subtraction. (c) Soft tissue image. In
addition to separating these components the thickness (in cm) of each
material is given. Bars in the lower left corner of each subfigure are 1 mm
long.

Figure 4
(a) Bone image (projected thickness) of a section of a mouse ribcage. An
averaged cross section through the two ribs cut by the diagonal red line
can be seen in (b). (c) A CT cross section through some ribs from a similar
mouse, highlighting their non-uniform bone density. Bars in the lower left
corner of subfigures (a) and (c) are 1 mm long.
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specimen have been demonstrated. This method has applica-
tions for improving the performance of dynamic lung imaging
techniques performed with synchrotron sources.
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5 Measuring alveolar dimensions

In this chapter we turn our attention to the application of autocorrelation-based anal-
ysis of X-ray speckle to measure the distribution of alveolar size in the lungs. In the
previous chapter amethod to separate and remove bone from chest X-ray imageswas
outlined. The motivation for developing this method was to produce high temporal
resolution, bone free images of the speckle pattern produced by alveoli in the lungs
that would be suitable for autocorrelation-based analysis. Overlying bones (specifi-
cally the ribs, and to a lesser extent the spine) are problematic when attempting to
study alveolar speckle because they tend to dominate the autocorrelation function
due to their size and intensity.

However, the method of single exposure, dual energy bone subtraction described
in the previous chapter is currently limited to absorption-based X-ray imaging. The
key equations are based on the Beer-Lambert law, which describes X-ray attenuation
in matter. To be applicable in phase contrast imaging, these equations would need to
be expanded to also incorporate the the contribution of phase contrast. The relevant
theory is described in section 1.4.1 but its application to dual energy imaging is not
trivial (to begin with the system of equations will no longer be linear). Additionally,
without significant hardware upgrades — the X-ray/optical systems used in section
4.1 are too inefficient — the relatively poor signal-to-noise ratio of that dual energy
imaging system is an issue.

Until these challenges can be overcome, to move forward with the stated objective
of measuring alveoli, a method for achieving equivalent bone suppression in phase
contrast X-ray images of the lungs is needed. In the paper accompanying this chapter
(section 5.5) an alternative approach to bone suppression is outlined based on image
filtering in the frequency domain, which is shown to achieve equivalent results to
dual energy bone subtraction, and is used to demonstrate the measurement of the
distribution of alveolar diameter in the lungs.

In the paper, a technique for bone subtraction by segmentation and reprojection
of phase contrast CT is used to demonstrate the equivalency of the image frequency
filtering technique. Due to the relatively concise description of themethodology pro-
vided in the paper, a more detailed description of the CT-based bone subtraction
technique, the frequency filtering technique, and their equivalency is provided in
the following sections.
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5.1 Computed tomography bone subtraction and reprojec-
tion

5.1.1 Phase contrast enhanced computed tomograpahy

The method for performing propagation-based phase contrast CT is described in
section 3 of the accompanying paper.

CT reconstruction can be performed using any available reconstruction technique
— filtered back projection was used here. In phase contrast CT a phase retrieval step
is typically included to effectively “undo” the phase contrast edge enhancement and
obtain lownoise, quantitativeCT images.Here, becausewewould like to preserve the
phase contrast for the subsequent autocorrelation-based analysis, we skip the phase
retrieval step: CT reconstruction is performed exactly as for a conventional scan.

5.1.2 Bone segmentation and reprojection

Separating the bones and lungs on CT can be achieved by either segmenting the
lungs and removing the remainder (the method used in the paper) or just segment-
ing and removing the bones themselves. Differing from the paper slightly, here the
lattermethodwas used because the resulting reprojected slices can be compared back
directly to the original unprocessed projections.

Segmentation of the lungs (airspace) was performed using a region growing seg-
mentation algorithm (commonly referred to as a magic wand tool, e.g. Avizo 3D
software magic wand). This method requires the user to select a seed location some-
where in the airspace (the trachea is an obvious choice) and an intensity threshold
(midway between the mean tissue and mean air intensity was found to work well).
Morphological closing using a cubic 3×3×3 voxel element will grow the segmen-
tation boundary by around 3 voxels and help ensure that the lungs are completely
encapsulated in the segmentation. Voxels outside the lungs are replaced by the mean
soft tissue attenuation coefficient.

Segmentation of the bones is even more straightforward. Simple intensity-based
thresholding can be used with the threshold set between the the mean tissue and
mean bone intensities; a setting slightly below the mean bone intensity was found to
work well. Againmorphological closing with a 3×3×3 voxel element helps to ensure
sure that the bone edges are completely captured in the segmentation. The voxels of
segmented bone were replaced with the mean soft tissue intensity. This technique
produces output equivalent to the the dual energy bone subtraction technique out-
lined in the previous chapter. The sequence of steps is illustrated in Figure 5.1.

The common final step in both approaches is to reproject the now bone free volu-
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Figure 5.1: Sequence of phase contrast CT images illustrating the process of bone segmen-
tation and removal. Beginning with the raw CT reconstruction (left), bones are
thresholded by intensity (centre; shown in red) and replaced by the mean tissue
intensity (right).

metric CT data. This process consists of ray casting to simulate X-ray image forma-
tion. In the case of synchrotron imaging where the X-ray beam is essentially paral-
lel, this task is straightforward: a single ray projected through the CT volume corre-
sponds to the position of each pixel on the detector.

TheCT volume is integrated along the length of each ray to determine the intensity,
p, at detector location t, r, according to

log
(
p(t, r)

)
= −

∫
μ(x, y, z)dr

where μ(x, y, z) is the CT tissue attenuation coefficient at location x, y, z (see Figure
5.2). By rotating the CT volume, or equivalently the X-ray source and detector posi-
tions, about the z axis a projected image through the CT volume can be obtained at
any angle.

t

r

z

xy

X-ray source

Sample plane

Detector plane

β

Figure 5.2: Illustration of the planes and coordinate systems for CT reprojection.
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To test the reprojection process in isolation (without bone subtraction)we can look
at how closely the reprojected images match the original CT projections. These two
images are compared in Figure 5.3 and show good agreement.

Finally, in Figure 5.4 we see a comparison between the original projection image
and its equivalent, bone free, reprojected image.

Figure 5.3: A single projection image (left) and corresponding reprojected image (centre) of
a rabbit pup chest. The absolute difference between these 16-bit images has also
been calculated (right). The root mean square difference is 1813.

Figure 5.4: A single projection image (left) and corresponding bone free reprojected image
(right) of a rabbit pup chest.

5.2 Spatial frequency filtering

In the accompanying paper, spatial frequency filtering is used to suppress larger
structures, such as bones, while maintaining a strong lung speckle signal. A second
order Butterworth filter is used to perform image spatial frequency filtering before
autocorrelation-based analysis. The choice of a Butterworth filter was somewhat ar-
bitrary: a Gaussian or other filter shape may work equally well. The filter is applied
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in the frequency domain using fast Fourier transforms. The Butterworth filter kernel
is can be expressed as

H =

1 − 1

1 +
(

u2+v2
f2L

)2

 1

1 +
(

u2+v2
f2H

)2

where u and v are image coordinates in the frequency domain, and fL and fH are
the lower and upper cut-off frequencies, respectively. The lower cut-off frequency
is chosen to suppress structures larger than the lung speckle and the upper cut-off
frequency to suppress image noise. In the paper, only a lower cut-off frequency is
specified (i.e. it is a high pass filter) at 1/32 cycles per pixel.

The filter is applied using the Fourier transform pair

Ifiltered = IFFT(FFT(I) ·H)

where I is the original image and FFT and IFFT are the fast fourier and inverse fast
fourier transforms, respectively.

A comparison between frequency filtered projection and bone free reprojected im-
ages is provided in Figure 5.5. It can be seen that the bones haven’t been completely
suppressed, but it will be seen in the following section that they have little influence
on the globally averaged autocorrelation function. However, it does highlight the
potential value of a more effective bone suppression technique to improve the per-
formance of regional analysis (regional analysis is covered in the next chapter).

Figure 5.5: Frequency filtered projection (left) and bone free reprojected (right) lung images
(cut-off frequencies: fL = 1/32 cycles per pixel and fH = 1/5 cycles per pixel).
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5.3 Comparison of autocorrelation functions using bone
subtraction and frequency filtering

Figure 7 in the paper is a comparison of alveolar size distributions showing the equiv-
alency of frequency filtering with or without prior bone subtraction. To support the
decision to use frequency filtering, additional analysis is presented here, showing the
autocorrelation functions of the lung speckle to also equivalent. This is achieved by
comparing the autocorrelation of the lung speckle in the two frequency filtered im-
ages in Figure 5.5 — that is with and without bone subtraction.The technique for ob-
taining the global autocorrelation function is as described in the paper and is based
on the same imaging data. The resulting autocorrelation functions are presented in
Figure 5.6.

(μm)

Figure 5.6: The upper image contains the spatial autocorrelation functions for a single X-ray
projection (solid blue) and a bone-free reprojected image (dot–dashed red) of the
same rabbit pup chest. Identical frequency filtering was first applied to both X-ray
images. The lower plot is a magnified view of the shaded region around the first
few correlation peaks.

In Figure 5.6 we can see there is close agreement between the autocorrelation func-
tion obtained by both methods (root mean square difference of 0.06). This result, to-
gether with the comparison between measured alveolar distributions in Figure 7 in
the paper, suggests that frequency filtering alone provides sufficient bone suppres-
sion for the purpose of autocorrelation-based analysis of X-ray lung speckle.
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5.4 Concluding comments on bone suppression

In this extended introduction to the paper we have seen how spatial frequency filter-
ing, as a preprocessing measure, can be applied to phase contrast chest X-ray images.
This technique is used in the paper that follows and throughout the work on mea-
suring dynamic lung function in chapter 6. As such, it has proven to be a simple
but effective alternative to more onerous bone subtraction techniques such as dual
energy imaging.
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Single-shot X-ray measurement of alveolar size distributions 
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ABSTRACT   

Regional changes in lung microstructure are an important component of several common lung disorders and even in 
healthy lungs alveolar mechanics are poorly understood. Existing techniques capable of studying the lung microstructure 
have various limitations including poor temporal resolution. We present a technique, which can measure the distribution 
of alveolar diameters from a single, phase contrast chest X-ray. We present the results of analysis of synchrotron images 
of a rabbit pup’s lungs, which we compare with high-resolution computed tomography images. We demonstrate that 
measurements can be made with an exposure time of 40 ms, highlighting the unique potential for performing dynamic in 
vivo measurements. Applications include disease detection, assessment of therapeutics and physiological studies. 

Keywords: phase contrast, X-ray imaging, dynamic imaging, functional imaging, lung imaging, alveolar size 
 

1. INTRODUCTION  
Regional changes in lung microstructure are the predominant characteristic of several common lung disorders, such as 
emphysema and chronic obstructive pulmonary disease (COPD), and are increasingly of interest to those studying the 
pathophysiology of asthma1. Additionally, the mechanics of alveoli in the breathing lung has been a long standing topic 
of contention amongst physiologists2,3. 

However, it has only been in recent years that imaging techniques have allowed researchers and clinicians to explore this 
domain. 

Magnetic resonance imaging (MRI) with hyperpolarized noble gases is a functional lung imaging technique that has 
attained considerable popularity of late. The apparent diffusion coefficient (ADC) of these gases can be used directly as a 
relative measure of microstructural abnormalities4. Efforts have been made, using alveolar models, to obtain quantitative 
measurements from ADCs5. However, a significant factor limiting more widespread adoption of these techniques is the 
cost and difficulty in producing and obtaining the hyperpolarized gases. Another factor is machine dependence and poor 
repeatability of results. Additionally, measurements of alveolar morphology during lung inflation have required the need 
to use breath-holding techniques3, which presents a practical difficulty as well as a deviation from normal physiological 
respiration. 

High resolution computed tomography (CT) offers an alternative means of studying lung microstructure. Acquisition of 
time series data can be achieved by breath-hold maneuverers, by machines capable of sub-second scan times6, and by 
gating techniques7. Individual alveoli can be clearly visualized in post mortem CT scans of small animal lungs using 
synchrotron sources. However, this level of resolution is difficult to achieve in a live animal due to both respiratory and 
cardiac motion. Radiation dose is also a potential issue for living subjects. 

Propagation based phase contrast X-ray imaging is a technique utilizing a spatially coherent source, such as a 
synchrotron or micro-focus lab source, to achieve superior contrast in weakly absorbing media like the lungs8. Phase 
contrast images of the lungs have a strongly speckled appearance due to the superposition of many alveoli9. Dynamic 
X-ray velocimetry techniques10,11 can measure lung motion by exploiting the strong speckle contrast and are capable of 
quantifying regional tidal volumes. However, they are unable to retrieve quantitative morphological information. 
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In previous work we have shown that the speckle produced by an idealized (non-penetrating, spherical) porous medium 
contains information about the underlying porous structure and that the distribution of pore sizes can be accurately 
determined12. We hypothesize that the speckle produced by the lungs can be analysed in the same manner and that the 
distribution of alveolar sizes similarly measured.  

Here we present a technique for measuring alveolar dimensions from a single X-ray image together with experimental 
results from analysis of a rabbit pup’s lungs. The technique uses a simple imaging procedure, is capable of high temporal 
resolutions, and requires minimal radiation dose. 

 

2. DESCRIPTION OF TECHNIQUE 
The main concepts and details related to the technique are described in detail in a previous publication12. Briefly, the idea 
is to simulate X-ray images of a distribution of randomly packed non-penetrating spheres and to use an inverse method 
(solver) to match the spatial autocorrelation function (SAF) of this image with that measured experimentally. Some 
minor alterations to the procedure used in our previous work were necessary, which we will outline presently.  

An additional parameter, porosity, has been added to our packed sphere model. To achieve this, the volume is first 
packed with the desired number of small spheres, which are then allowed to grow to achieve the desired porosity and 
size distribution. The sphere growing was performed using LIGGGHTS13 discrete element method software. 

The solver has also been modified to only attempt to fit a specified subsection of the SAF: the region around the second 
trough [See Figs. 5(a,b)]. Our rationale is as follows. The secondary peaks and troughs in the SAF inform us of periodic 
structure(s) within the lung and we contend that this must almost exclusively be due to the tightly packed alveoli. The 
primary peak and trough are affected by other structures, such as terminal bronchioles and alveolar ducts, which are not 
as strongly periodic and that our current (spherical) model cannot account for. Additionally, because the signal to noise 
ratio of the SAF increases along the horizontal axis, solutions using the entire tail tend to be unstable, so we also truncate 
the tail. 

 

3. EXPERIMENTAL METHODS 
A scavenged rabbit pup (at 29 days gestational age) served as our sample. The pup, which had previously been 
mechanically ventilated, was inflation fixed with nitrogen at a pressure of 27 cmH20 and then set in agar in a cylindrical 
plastic tube. 

 
Figure 1. Schematic of the experimental imaging setup. A synchrotron or microfocus lab source is typically used to produce 
phase contrast.  Propagation based phase contrast is achieved by allowing a propagation distance, z, between the sample and 
detector.  

Imaging was performed on beamline BL20B2 at the Spring-8 synchrotron, Japan14. We used a propagation based phase 
contrast X-ray imaging technique, in which the X-ray detector was placed a distance of 0.975 m behind the sample. We 
used a monochromatic beam with an energy of 24 keV. 1800 images of the sample were taken between rotation angles of 
0 and 180 degrees with 40 ms exposure times. Images were captured using BM515 coupled to a pco.edge sCMOS 
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camera. The resultant 2042×2062 pixel images had an effective pixel size of 15.3 μm. Flat and dark field corrections 
were applied to all images. 

At this point the images were handled in two different ways. One process began by performing a phase contrast CT 
reconstruction of the chest. The entire airway tree and distal airspaces were then segmented using Avizo® 3D analysis 
software. Any voxels outside the lungs were filled with a tissue equivalent grey level. Finally, the volume was forward 
projected to produce an X-ray image of only the lungs [Fig. 2(a)].  

 
Figure 2. A re-projected image of a rabbit pup’s lungs (a), which was previously segmented from CT data. The lung speckle 
is enhanced by a high pass filter (b) and after applying a grid, the densest areas of the lungs are selected by a mask (c). The 
speckled appearance and grid, corresponding to the area highlighted in (c) can be more clearly visualized in the magnified 
view (d).  

An unmodified X-ray image [Fig. 3(a)], from the set of 1800 CT projections, at an angle corresponding with the 
re-projected image in Fig. 2(a) was also used for analysis. 

 
Figure 3. A single shot x-ray image of a rabbit pup’s chest (a) and the lung speckle retrieved after masking and application 
of a high pass filter (b). 

In both cases, the images were overlaid with a grid of windows (32×32 pixels with 50 per cent overlap) [Fig. 2(d)]. 
Windows were selected for analysis if their mean intensity was below a value, which was adjusted manually to obtain 
good coverage of the thicker (in projection) areas of the lungs [Figs. 2(c) and 3(b)]. A second order Butterworth high-
pass filter (cutoff frequency: 1/32 px-1) was then applied to enhance the lung speckle [Figs. 2(b,c) and 3(b)]. The 
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ensemble average of the two-dimensional SAF functions of all the windows was calculated before radially averaging to 
obtain the final one-dimensional SAF. 

The radially averaged SAF is passed as an input to the solver. Detailed explanations of the following parameters related 
to the solver can be found elsewhere12. The solver was run with a population size of 20. The parameter limits were: for 
the geometric mean diameter, 120 to 240 μm; for the geometric standard deviation, 1.01 to 1.5; for the Gaussian point 
spread function, 6 to 30 μm and for the porosity, 0.3 to 0.55. The mutation distribution was one fifth of each parameter 
range and the mutation frequency was 20 per cent. Convergence was defined as the mean slope of the cost function for 
the previous 10 iterations reaching zero. The solver was run a total of 10 times and the solution with the lowest cost 
ultimately selected as the final solution. 

 

4. RESULTS AND DISCUSSION 
We begin by re-presenting previously published results to demonstrate the accuracy of our method when applied to non-
penetrating spherical grains or pores. Good agreement can be observed between the nominal sizes of the glass 
microspheres and the distributions measured using our technique (Fig. 4). 

 
Figure 4. From a previous study, the probability density functions of glass microsphere diameters (in micrometres) measured 
using the same technique described here. The top-hat shaped distributions correspond with the nominal microsphere sizes 
and the other, lognormal distributions, with the results of our analysis. 

The distribution of alveolar diameters was first measured from the re-projected lung image [Fig. 2(c)] and is presented in 
Fig. 5(a). The geometric mean diameter was 172 μm and the geometric standard deviation 1.26 (the arithmetic mean was 
180 μm, and the arithmetic standard deviation 38.4 μm). 

In terms of performance of the solver there is good agreement between the SAF of the lung speckle and that produced by 
the model in the region of the second trough [Figs. 5(b,c)]. Beyond this region, particularly at the head of the SAF, the 
two functions diverge considerably. As discussed previously, we attribute this behaviour to the presence of structures 
other than the alveoli. 

Returning to the measured distribution, we were unable to find data in the literature for these parameters for a 
comparable animal but the diameters appear reasonable compared to those often cited for larger adult animals16. 
However, we can easily make a rough visual comparison between our measurements and the alveoli seen in a typical 
slice from our high-resolution CT reconstruction (Fig. 6). To the eye there is good agreement between illustrations of the 
sizes of representative alveoli at each quartile of the measured distribution and the alveoli observable in the CT image. 
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Figure 5. The distribution of small airway diameters (a) measured from a re-projected lung image. In (b), the spatial 
autocorrelation function of the re-projected lung image is depicted by the solid line, in comparison to the autocorrelation 
function of the proposed solution (cross hairs). A magnified view (c) of the region highlighted in (b) shows agreement 
between the two functions in our region of interest (the second trough). Units on the horizontal axes are micrometres. 

 

r  
Figure 6. A computed tomography slice of a rabbit pup’s lungs with a magnified view of the highlighted region on the right. 
In the magnified image are illustrations of alveoli corresponding with the 25th, 50th and 75th percentiles of alveolar 
diameters, corresponding with the distribution measured in Fig. 5(c). 

Next, we present the distribution of alveolar diameters measured from the chest X-ray image [Fig. 3(a)] in Fig. 7. This 
distribution matches the distribution measured from the re-projected lung reasonably well and demonstrates that we can 
measure the distribution of alveolar diameters from a single, phase contrast, chest X-ray image with only a 40 ms 
exposure time. This potentially translates to dynamic imaging at 25 frames per second or faster. 
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Figure 7. A comparison of the measured distribution of alveolar diameters (in micrometres) recovered from the re-projected 
(solid line) and single shot (dashed line) images.  

There were a number of limitations in this study. Firstly, we acknowledge the need for further and more thorough 
validation of the technique. Comparison against objective, quantitative analysis of CT data is one obvious approach. A 
further limitation was the use of immature animal lungs, which was simply a matter of expediency. Further studies using 
adult lungs are required. The technique could also be improved by development of a more realistic (and likely more 
complex) lung model, which could allow the solver to make use of the entire SAF. This could potentially improve both 
the accuracy and robustness of the technique. 

 

5. CONCLUSIONS 
We have demonstrated a method for measuring the distribution of alveolar diameters from a single, phase contrast X-ray 
image. These measurements, performed on a chest X-ray of a rabbit pup, show good agreement with high-resolution 
computed tomography images of the same animal’s lungs. The ability to perform the analysis on images with 
millisecond exposure times and with minimal radiation dose demonstrates the possibility of dynamic, in vivo 
measurements. Potential applications for the technique include disease detection, assessment of therapeutics and 
physiological studies. 
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6 Measuring dynamic alveolar function

6.1 Introduction

In the previous chapter a new single-shot X-ray technique for measuring the distri-
bution of alveolar size in the lungs was presented. The two obvious extensions of this
technique: measuring the change in alveolar size over the duration of a breath, and
measuring the alveolar size in different regions of the lungs, are both addressed in
this chapter.

In this chapter experimental results obtained from real-time, high resolution, in
vivo imaging of breathing rabbit pup lungs are presented demonstrating the capa-
bility to observe and quantify the change in alveolar size over the respiratory cycle.
These results are used to derive estimates of the total number of alveoli in the lungs,
which in turn can be compared to previously published values as one means of indi-
rect validation. Finally, capturing and visualising regional measurements of alveolar
size is explored.

6.1.1 A Direct Autocorrelation-Based Measurement Technique

The previous chapter was concerned with the analysis of a static, single-shot, chest
X-ray image.The next step is to consider a series of images taken over the duration of
each breath. The short exposure times necessary to perform high frame rate imaging
of this type of dynamic process are readily achievable using high sensitivity X-ray
detectors with bright synchrotron X-rays sources. In addition to achieving signifi-
cantly higher temporal resolution than is possible using computed tomography, the
radiation dose is also significantly lower.

It would appear then that besides the challenges of high speed imaging, the exten-
sion of X-ray speckle-based alveolar sizing to a dynamic sequence of X-rays images
would be straightforward. However, this isn’t the case because the change in alveolar
size during respiration is so small that the technique simply lacks the sensitivity to
measure it (this will be evident shortly).

An alternative technique, a variation of the solver-based technique described in
the previous chapter, based on the direct interpretation of the spatial autocorrelation
function of particle generated speckle, presents a solution.

So far, the spatial autocorrelation function has been used as a simple, compact
statistic for describing the speckle produced by grains or pores. As such, it is a con-
venient tool for comparing speckle patterns and, in this work, for generating a fit
or cost function for an inverse method. Using this approach it is possible to solve
for the morphological properties of granular and porous materials based on their
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speckle patterns.
The presence of oscillations in the autocorrelation function of densely packed sys-

tems of particles (as can be seen in Figure 6.1) was discussed previously. However, the
fact that these oscillations correspond, either directly or otherwise, to the ordering
or structure of the underlying material has only been touched on in passing (section
3.1). The obvious question is whether any useful information about the system or
material being studied can be obtained directly from the contours of these autocor-
relation functions. This question was investigated using simulated projection images
of packed particles.

Onemay recall that the packed particlemodel used previously is based on a lognor-
mal distribution of sphere sizes. The three parameters that fully describe this model
are the geometric mean (GM) and geometric standard deviation (GSD) of the dis-
tribution of sphere diameters and the its packing fraction or porosity. For reference,
the basic properties of the lognormal distribution can be found in Appendix A.1.

To study the effect of each on the autocorrelation function a baseline distribution
was nominated (geometric mean = 150 µm, GSD = 1.2 and porosity = 0.5) and the ef-
fect of varying the diameter for a range of geometric standard deviations and porosi-
ties was tested. Autocorrelation functions were generated by simulating phase con-
trast X-ray imaging of simple synthetic volumes of spherical particles using the same
method outlined in section 3.1. Each cubic volume, 2×2×2 mm3, was randomly
packed with non penetrating spheres. The propagation-based phase contrast param-
eters were chosen to match those used later for small animal imaging (X-ray energy
= 24 keV, propagation distance = 2 m and effective pixel size = 15.3 µm).

The positions of the first zero crossing and the first peak of the autocorrelation
function (these locations are highlighted in Figure 6.1) were determined for a range
of diameters, standard deviations and porosities. These results are presented in Fig-
ures 6.2 and 6.3.

In Figure 6.2 we see that for a constant GSD there is a linear relationship between
the position of the geometric mean and both the position of the first zero crossing
and the first peak. And in Figure 6.3 we see that the GSD has minimal, if any, effect
on both the position of the first zero crossing and first peak. In both scenarios note
the near one-to-one relationship between the the geometric mean diameter and the
position of the first peak.

From these results we see that the position of the first peak provides a reasonable
estimate of the geometric mean diameter. Furthermore, the gradient of the linear
relationship between these two parameters is near unity, independent of either the
geometric standard deviation or porosity. This relationship can be expressed as

ΔGM = ΔPeak1 (6.1)

A number of functions directly relating the zero and peak positions to the mean
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Figure 6.1: Spatial autocorrelation function of simulated X-ray image of spherical particles
(particle diameters followed a lognormal distribution with geometric mean =
100 µm, GSD = 1.1 and porosity = 0.5). The positions of the first zero and the
peak of the first oscillation have been highlighted.

diameter could also be derived from these results, but would be dependant on the
porosity and GSD. The advantage of the simple relationship in equation 6.1 is that
the change in diameter, of particular interest for dynamic measurements, can be eas-
ily obtained directly from the autocorrelation function. On the other hand, using
multiple autocorrelation landmarks to make these measurements could be a means
of reducing measurement error and increasing sensitivity.

The problem of dynamic lung imaging and dynamic measurement of the alveoli
in the breathing lung is now revisited with a new tool for estimating alveolar size
(though not the size distribution) directly from the spatial autocorrelation function
of X-ray lung speckle.
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Figure 6.2: Position of first zero crossing (left) and first peak (right) vs geometricmean radius
for a range of porosities. GSD = 1.25.

GSD

Figure 6.3: Position of first zero crossing (left) and first peak (right) vs geometric mean di-
ameter for a range of GSDs. Porosity = 0.5.

6.2 Measuring the Dynamic Behaviour of Alveoli

Dynamic imaging and subsequent analysis was performed on rabbit pups, as in sec-
tion 5.2. All experiments were approved by the Monash University Animal Ethics
Committee and the SPring-8 Animal Care and Use Committee (Japan). These an-
imals were controls for a separate experiment and no additional procedures were
carried out for the purposes of the work outlined here.

Pups were delivered at 30 days of gestation (near-term) by caesarean section. An
endotracheal tube was inserted via tracheostomy and the pups were ventilated for
several minutes to clear their lungs of fluid.

Propagation-based phase contrast X-ray imagingwas performedonbeamlineBL20B2
at the SPring-8 synchrotron (Goto et al., 2001). The propagation distance between
the sample and detector was 2 m. A monochromatic X-ray source with an energy of
24 keV was used.

Thepupsweremechanically ventilated at a respiratory rate of 60 breaths perminute
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Figure 6.4: A sequence of chest X-ray images of a newborn rabbit pup: 19 projection images
were captured over the course of a one second ventilation cycle. The respiratory
motion can be observed in video format: https://vimeo.com/172196119

(equal duration inspiratory and expiratory phases of 0.5 s). Images were captured us-
ing a lens-coupled scintillator and pco.edge sCMOS camera, with image acquisition
synchronised to the ventilator’s timing. The image exposure time was 10 ms and the
imaging rate was 19 frames per second. The combination of ventilation and imaging
rates produced 19 imaging time points per breath. Images overmultiple breaths were
recorded with the animal in a front facing orientation. An Image sequence of a single
breath can be seen in Figure 6.4. A trace of the tidal volume (the total volume of air
inspired during a normal breath), measured by a pneumotach device, was recorded
simultaneously.

Image processing was performed as described in section 5.2 except that spatial
frequency filtering was performed with a second order Butterworth band-pass filter
(cutoff frequencies: 1/32 and 1/5 cycles per pixel). The additional low pass compo-
nent of the filter serving to attenuate high frequency image noise and subsequently
improve analysis performance.

The position of the first peak of the autocorrelation function was calculated (by
cubic interpolation) at each frame of the ventilation cycle. Assuming the peak posi-
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tion is independent of the GSD and the porosity, which we saw to be the case to a
good approximation, equation 6.1 was used to calculate the change in alveolar diam-
eter by measuring the displacement of the first peak in each frame relative to frame
zero (end-expiration). The alveolar size: geometric mean diameter and volume (vol-
ume was calculated assuming spherical alveoli), is plotted below the measured tidal
volume trace in Figure 6.5.

Time (s)

Figure 6.5: Below the tidal volume measured by a pneumotach device are the corresponding
changes in geometric mean alveolar diameter and volume obtained by tracking
the displacement of the first autocorrelation peak.

In Figure 6.5 we see that the change in alveolar diameter over a breath is about
3 µm (2% increase) and the change in volume, the alveolar tidal volume, is around
1.3 nL (6.1% increase). Note that the technique is making measurements with sub-
pixel accuracy: 3 µm is less than the 15.3 µm effective pixel size of the imaging system.

The fact that it has proven necessary to measure with sup-pixel resolution goes
to explaining why the sensitivity of the solver-based technique was an issue and the
subsequent need for an alternative approach.
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6.3 Estimating the total number of alveoli

So far the focus has been on measurements of alveolar diameter and volume. The
problem of estimating the total number of alveoli in the lungs is now considered,
making use of all the information now at hand. This information includes measure-
ments of alveolar tidal volume, tidal volume measured by a pneumotach device and
total lung capacity estimated from a high resolution CT scan.

The ability to estimate alveolar number in vivo is of value for investigating both
physiological and pathological lung mechanics. Additionally, here, comparing these
numbers to those documented in the literature serves to provide some validation of
the technique.

6.3.1 Theory

Estimating the number of alveoli from the alveolar distribution

Assuming spherical alveoli, functional residual capacity (FRC) can be expressed as

FRC = N
∫

V(r) · PDF(r) dr+ VDS

where N is the total number of alveoli and V(r) is alveolar volume as a function of
alveolar radius, PDF(r) is the probability density function describing the number
weighted distribution of alveolar radii and VDS is the total dead space volume.

Simple rearrangement gives the number of alveoli:

N =
FRC − VDS∫

V(r) · PDF(r) dr
(6.2)

Estimating the number of alveoli using the alveolar tidal volume

Having obtained the number of alveoli at end-expiration (N0) using equation 6.2,
the number of alveoli at end-inspiration (N1) can be estimated using the alveolar
tidal volume measured from imaging (Figure 6.5). The difference in the number of
alveoli between end-expiration and end-inspiration represents the degree of alveolar
recruitment. The relationship between all the relevant variables is given by

Vt = N1

∫
V(r) · PDF1(r) dr− N0

∫
V(r) · PDF0(r) dr+ ΔVDS

where Vt is the global tidal volume, PDF0 and PDF1 are the number weighted distri-
butions at end-expiration and end-inspiration, respectively, and ΔVDS is the change
in dead space volume.
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Assuming that the standard deviation of the distribution doesn’t change (σ = σ0 =
σ1), the number of alveolar at end-expiration is given by

N1 =
Vt + N0

∫
V(r) · PDF0(r) dr∫

V(r) · PDF1(r) dr
(6.3)

6.3.2 Method

In addition to the dynamic imaging described in section 6.2, a high resolution chest
CT of a rabbit pup was performed to estimate the functional residual lung capac-
ity. Imaging at end-expiration was performed by gating to the ventilator. 450 images
were taken over a 180◦ range of projection angles by rotating the sample stage. Other-
wise all imaging parameters were the same as in section 6.2. CT reconstruction was
performed by filtered back projection. The lung parenchyma and airways were seg-
mented using a flood fill tool in Avizo 3D software (Figure 6.6). FRC was estimated
by determining the volume of air within the segmented airspaces, where the volume
of air for voxel ijk is

Vijk =
CTijk

CTair
Vvoxel

where CTijk is the CT number (in Hounsfield units) of voxel ijk, CTair is the CT num-
ber of air and Vvoxel is the total volume of each voxel.

Figure 6.6: For illustrative purposes, segmented lung parenchyma (right) alongside the cor-
responding CT slice (left).

A single frame image, coinciding with the end of expiration, was also analysed
employing the static X-ray speckle analysis technique used in section 5.5 to estimate
the end-expiratory distribution of alveolar sizes.
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6.3.3 Results/Discussion

Thedistribution of alveolar diameters obtained is shown in Figure 6.7. Note that until
this point distributions have been volume weighted distributions, which is sensible
given we are interested in the volume of air that is displaced during ventilation. The
number weighted distribution is also shown, which is needed to obtain an estimate
of the total number of alveoli as per equation 6.2.

Figure 6.7: Volume and number weighted distributions (probability density) of alveolar di-
ameters at end expiration obtained by lung X-ray speckle analysis. The solver’s
fitted, normalised autocorrelation function had a standard error of regression of
0.019.

All the relevant parameters required for calculating the total number of alveoli
using both the methods outlined in the previous section, via equations 6.2 and 6.3
are given in Table 6.1.Thedead space volume required for equation 6.2was estimated
as 26 percent of the tidal volume (Fowler, 1948).

Table 6.1: Parameters related to calculation of number of alveoli based on tidal volume. (*for
number-based distribution.)

Functional residual capacity 1.38ml
Tidal volume 0.3ml

Dead space volume 0.078ml
Alveolar diameter* (geometric mean, end expiration) 80.8 µm

Tidal change in alveolar diameter* 2.29 µm
Alveolar diameter GSD 1.41 µm

Finally, estimates of the number of alveoli in the lungs based on the alveolar dis-
tribution and the degree of alveolar recruitment are given in Table 6.2. These are
compared to stereological measurements of histological sections made by Kovar et
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al. (2002) and estimates of recruitment obtained by microscopy (Carney et al., 1999)
and hyperpolarised MRI (Hajari et al., 2012).

Table 6.2: Estimates of number of alveoli

Based on end-expiratory alveolar distribution 2.8 × 106

Kovar et al. (2002) 2.8 × 106

Table 6.3: Estimates of tidal alveolar recruitment

Based on alveolar tidal volume 7.6%
Hajari et al. (2012, human) 14%
Carney et al. (1999, canine) 162%

Kovar et al. (2002) studied postnatal development of alveoli in rabbits and their
estimate for the number of alveoli at term matches that obtained from the alveolar
distribution measured by autocorrelation-based analysis.

Based on the ventilation strategy (tidal volume of 0.3 ml) and the change in alve-
olar diameter/volume obtained directly from the autocorrelation function during
respiration, the number of alveoli recruited was estimated to be 211,000, which cor-
responds to an increase in the number of alveoli of 7.6 percent. There are only a few
studies in the literature that have attempted to quantify alveolar recruitment, none of
which have been performed in term rabbit pups. The figures from studies provided
for comparison in Table 6.3 are at best rough estimates based on interpolating the
data provided in these studies. Both studies were of adult lungs in species other than
rabbits. The huge variation in the results from these studies highlights the difficulty
in measuring alveolar recruitment. Carney et al. (1999) used surgical microscopy to
image and measure subpleural alveoli. Both the surgical technique and the restric-
tion of only studying subpleural alveoli were significant limitations in this study. On
the other hand Hajari et al. (2012) rely on a complex lung model in order to obtain
physiological or anatomical, quantitative measurements from MRI diffusion data.

The results in this section serve as both validation of the alveolar measurements
obtained via static anddynamic techniques and support the growing consensus of the
significance of alveolar recruitment. Furthermore, the ability to quantify the degree
of alveolar recruitment was demonstrated. Going forward, future studies can use this
technique to explore the degree of alveolar recruitment across normal physiology
(e.g. developmental physiology of the lungs) and disease.
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6.4 Regional analysis

All themeasurements obtained so far have been global measurements, in which aver-
aging has been performed over the entire lung fields. Averaging reduces noise in the
autocorrelation function, which is particularly helpful when trying to achieve accu-
rate sub-pixel measurements. However, averaging over the entire lung also negates
one of the key strengths of an imaging-based technique: spatial information.

This final section demonstrates how regional measurements can be obtained by
employing a less aggressive averaging regime and sacrificing a small amount of tem-
poral resolution.

6.4.1 Theory

This analysis is based on the same rabbit pup imaging dataset as the previous section.
Only the analysis itself differs.

Recalling the grid of windows that divides the lung into regions for autocorrela-
tion analysis (section 5.5, Figure 2d), limited spatial averaging can be achieved by
applying Gaussian weighted averaging of each radially averaged spatial autocorrela-
tion function and its neighbours. This is equivalent to Gaussian smoothing in the
context of image processing. It should be emphasised that here it is the autocorrela-
tion functions that are being averaged, not the local estimate of alveolar size or other
similarly derived quantities. The degree of averaging or smoothing is determined by
the standard deviation (sigma) of the Gaussian kernel.

Additionally, by averaging over multiple breaths additional noise reduction can be
achieved without further sacrificing spatial resolution. This process is particularly
practical when the subject is mechanically ventilated, and the imaging is gated to the
ventilation cycle, because there isminimal breath to breath variability. Gated imaging
in the case of a free breathing subject is still possible but is more involved and not as
effective.

6.4.2 Method

In this analysis the spatial autocorrelation function sampling windows were 32×32
px2, with 16 pixel spacing betweenwindows (i.e. 50 percent overlap between adjacent
windows).

Gaussian weighted averaging of these autocorrelation functions was performed by
convolution with a Gaussian kernel (sigma = 5 windows).

Autocorrelation functions were also averaged at the same phase of the ventila-
tion/respiratory cycle over a total of three breathes.

Regional diameter was obtained by adding the relative change in diameter, as deter-
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minedbymeasuring the change in the first peak position, to the global end-expiratory
GM diameter as follows:

GM(i, j, t) = GMglobal +
(
Peak1(i, j, 0)− Peak1(i, j, 0)

)
+ ΔPeak1

for window i, j at time point t.

6.4.3 Results/Discussion

Measurements of regional alveolar diameter are presented in Figure 6.8 in the form
of a sequence of images of the lung fields that have been coloured by alveolar (GM)
diameter.

Interestingly, Figure 6.8 shows an obvious trend of increasing alveolar size in the
lower regions of the lungs. This is somewhat counterintuitive as one might have ex-
pected to find the opposite due to increased fluid pressure in the lower regions of
the lungs. That this finding could be attributable to the effect of lung thickness or
the influence of larger conducting airways was considered but discounted. If lung
thickness was influencing measurements, a pattern around the edges of the lungs,
rather than the upper regions, would be expected. Similarly, the distribution of large
airways (central; airway diameter decreases towards the lung peripheries) isn’t con-
sistent with the observed pattern of alveolar diameter.

Because the change in alveolar size during respiration is small, it is easier to visu-
alise the regional changes in alveolar size by only observing the change in alveolar
diameter over time. An added level of complexity arises here because, since the lung
isn’t stationary, a window at a fixed location at the start of the inspiration will not
lie over the same area of the lung at the end of inspiration. To compensate for lung
motion and ensure we are comparing the same region between time points, bulk
two-dimensional lung motion was tracked using the cross-correlation of windows
between time points to estimate their displacement. All windows were shifted ac-
cording to this map of tissue displacement, relative to the first time point (start of
the breath). The difference in the peak position between time point zero and time
point n, corresponding to the tidal change in alveolar diameter, was calculated at
each window. The result is a sequence of images presented in Figure 6.9.

In Figure 6.9 the distribution of alveolar expansion appears to be quite heteroge-
neous throughout the lungs. An area of contraction, or decreasing alveolar size, is
also evident in the left lower lobe. The significance of this finding is unclear.

The primary aim of this section has been to demonstrate the capability to measure
dynamic alveolar function at a regional level. Some unexplained findings that have
arisen from the results obtained suggest that further investigation from a biological
perspective, although outside the scope of this work, is warranted.
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Figure 6.8: Sequence of lung images of a newborn rabbit pup over a complete ventilation
cycle, coloured by geometric mean alveolar diameter.
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Figure 6.9: Sequence of lung images of a newborn rabbit pup over a complete ventilation
cycle, coloured by change in geometric mean alveolar diameter (relative to the
start of inspiration).
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7 Conclusions

This thesis develops a suite of novel in vivo imaging techniques for studying the struc-
ture and dynamic behaviour of alveoli. It began with the development of the neces-
sary theoretical background, then progressed to validation studies of a simple lung
phantom before demonstrating the capability to perform in vivo lung imaging and
analysis in small animal models. In this final chapter the most important outcomes
of this research are presented and their significance highlighted before a brief discus-
sion of the future directions for this work.

7.1 X-ray speckle

This thesis began with an examination of the nature of the speckle produced by gran-
ular and porous materials such as the lungs. It builds upon the research of Kitchen et
al. (2004) andCerbino et al. (2008), and advances the state of knowledge on this topic.
Specifically, using phase contrast theory, it demonstrates how the speckled pattern
produced by relatively large structures (tens to hundreds of micrometres), imaged
with a coherent X-ray source, is directly related to the size of those structures. This
relationship, which proved to be linear for loosely packed granular and porous mate-
rials, allows us to measure the size of grains and pores from a single X-ray projection
image of a sample.

While the relationship between particles and the speckle pattern they produce is
more complicated in the case of densely packed particle systems due to short range
ordering, an inverse method for this problem was developed and used to accurately
measure the distribution of the sphere sizes in a lung phantom consisting of a volume
of packed glass microspheres.

An advantage of this technique, capable of measuring particles from a single pro-
jection image, compared to existing techniques such as computed tomography, is
high temporal resolution. This allows us to study the behaviour of dynamic systems
in real-time. Additionally, for biological specimens the reduction in radiation dose
compared to computed tomography is significant.This technique, based onpropagation-
based phase contrast X-ray imaging, also has the advantage of having a relatively
simple imaging protocol — in particular in comparison to techniques such as as hy-
perpolarised MRI and nuclear medicine.
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7.2 Functional alveolar imaging

At the very outset, the possibility of decoding the speckle produced by alveoli in
phase contrast images of the lungs was presented as a novel and powerful means of
measuring alveolar morphology. Building upon the methods developed and tested
on microspheres, the same speckle analysis technique was applied to the analysis of
X-ray lung speckle. Again, the key advantage of this method is its high temporal reso-
lution, which makes it possible to study the dynamic mechanics of the alveoli during
the respiratory cycle. The feasibility of measuring the dynamic behaviour of regional
alveoli during tidal breathing was demonstrated. The applications of this technique
range from basic physiological investigations of alveolar mechanics, to assessment
of alveolar pathology related to diseases such as emphysema and bronchopulmonary
dysplasia, and interventions such as mechanical ventilation. Of existing techniques,
only diffusionweightedMRI has a similar capability but suffers from significant prac-
tical limitations including cost, accuracy and repeatability.

7.3 Bone suppression

When attempting to analyse the lung fields in a simple chest X-ray projection im-
age, bones, particularly the ribs, can partially obscure a significant portion of the
lungs. Dual energy X-ray imaging and material separation is a technique that can be
used to remove or suppress the appearance of bones in such images. However, the
synchrotron-based dual energy technique developed here is unique in that it allows
true simultaneous dual energy imaging using a synchrotron light source. In this re-
spect it is also superior to commercial dual energy scanners that sequentially acquire
images at each energy. Beyond obtaining bone suppressed images for speckle-based
alveolar measurement, it has applications for other dynamic synchrotron-based lung
imaging techniques such as regional volume measurement (Kitchen et al., 2008).

7.4 Addendum

Between the end of the their candidature and the completion of this thesis, the author
contributed to another paper1 (Appendix B.1) using a similar technique to measure
lung structure, also in rabbit pup lungs. While that work is not included in its own
chapter we will briefly look at it here.

The paper describes a technique of analysing near-field lung speckle based on spec-

1Kitchen,M. J., Buckley, G. A., Leong, A. F. T., Carnibella, R. P., Fouras, A.,Wallace,M. J., Hooper,
S. B., (2015). “X-ray specks: low dose in vivo imaging of lung structure and function”. In: Physics in
Medicine and Biology 60.18, pp. 7259–7276.
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tral analysis of the speckle texture in Fourier space. It was shown that a peak in the
power spectrum corresponds to, and can therefore be used to determine, the domi-
nant length scale of the airways. Inmany respects this technique is very similar to that
used in chapter 6, in which the secondary peak positions in the autocorrelation func-
tion were used to estimate the mean alveolar diameter. In fact, the power spectrum
and autocorrelation are directly related by a single Fourier transform, as dictated by
the Wiener-Khinchin theorem.

Using this technique, Kitchen et al. were able to study the developmental maturity
of rabbit pup lungs at birth, discovering that there was significant variation between
pups.

The major advantage of this technique is the simplicity of it’s implementation.
However, the techniques previously presented in this thesis (i.e. the particle size dis-
tributionmeasurement) are not restricted to the near-field regime and aremore pow-
erful because they are capable of measuring the distribution of alveolar size.

7.5 Future work

In addition to the significant insights into measuring lung structure presented, due
to the constraints inherent in a work of this type or simply because they were be-
yond the scope of this work, there are a number of unanswered questions, potential
improvements and possible applications that merit future investigation.

In the process of modelling and simulating propagation-based phase contrast im-
ages of particles it was discovered, unexpectedly, that the Gaussian function that
models the point spread function of the imaging system was dependent on the prop-
agation distance. It was hypothesised that this may be the result of refraction within
the volume of the sample, which is neglected when using a projected thickness ap-
proximation. Just prior to submission of this thesis it came to light that the effective
source size of the synchrotron beamlinemay be larger than reported in the literature,
which would increase the degree of penumbral blurring. This matter is currently be-
ing investigated on the beamline. Regardless of the cause, for the purpose of this
work, it was possible to work around the issue using an empirically derived relation-
ship between propagation distance and point spread function.

In terms of bone suppression, improving the performance of the dual energy tech-
nique presented could make it a practical tool for dynamic synchrotron imaging.
More efficient scintillator-detector coupling and new technologies such as energy
resolving detectors will drive developments in this area.

In chapter 6we saw dynamic global and regional alveolar tidal volumemeasured in
rabbit pup lungs. Measurement noise was an issue, although spatial and temporal av-
eraging proved effective forms of noise reduction. Noise and associated errors arise
from the fact that changes in size are being measured at sub-pixel resolution, and
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for regional measurements from the requirement for ensemble averaging to obtain a
low variance autocorrelation function. In the future, ongoing advances in X-ray de-
tectors will produce detectors with increased sensitivity and higher spatial resolution.
Advanced statistical and image processing techniques may also be able to improve
the performance of autocorrelation-based analysis.This work will likely be driven by
the applications of the technology.

The application of the technique in preclinical studies to study and provide insights
into clinically relevant physiological processes and models of disease is the next step
for this technology and the most important aspect of future work. Studies of early
stage emphysema and mechanically induced lung injury are anticipated to follow.

7.6 Summary

The techniques developed in this thesis offer a new way of studying the dynamic
behaviour of the alveoli in the breathing lung.

This work began by establishing the necessary theoretical groundwork; validation
was performed using a simple lung phantom, methods of suppressing the effect of
bone on image analysis were explored and, finally, the capability to measure alveolar
size in vivo was demonstrated.

Future research will involve using the techniques developed here to gain new in-
sights into clinically relevant physiological and pathological processes.
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A Appendix

A.1 The lognormal distribution

The lognormal distribution describes a probability distribution, the logarithm of
which is a normal distribution, hence the name. Compared to the normal distribu-
tion it is skewed to the right. Another significant difference is that it starts at zero
and therefore cannot be negative.

The lognormal probability density function is defined as

PDF =
1

xσ
√

2π
e−

(lnx−μ)2

2σ2

where μ is referred to as the location parameter, σ the scale parameter and x is the
variable — in the context of this thesis that variable is the particle or alveolar diame-
ter.

The location and scale parameters are related to the geometric mean, median and
geometric standard deviation of the distribution:

GM = median = eμ

GSD = eσ .

The arithmetic mean and standard deviation can be obtained via

M = eμ+0.5∗σ2

SD = M
√
eσ2 − 1.

In the context of a distribution of particles, the distribution can be either volume
or number weighted. A volume weighted distribution describes the fraction of the
total volume that is composed of each particle diameter.This contrasts with a number
weighted distribution that more intuitively describes the number of particles of each
diameter. For a lognormal distribution, the relationship between the two weightings
is

μN = μV − 3σ2

where μN is the number weighted location parameter and μV the volume weighted
location parameter.
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Abstract
Respiratory health is directly linked to the structural and mechanical 
properties of the airways of the lungs. For studying respiratory development 
and pathology, the ability to quantitatively measure airway dimensions and 
changes in their size during respiration is highly desirable. Real-time imaging 
of the terminal airways with sufficient contrast and resolution during respiration 
is currently not possible. Herein we reveal a simple method for measuring 
lung airway dimensions in small animals during respiration from a single 
propagation-based phase contrast x-ray image, thereby requiring minimal 
radiation. This modality renders the lungs visible as a speckled intensity 
pattern. In the near-field regime, the size of the speckles is directly correlated 
with that of the dominant length scale of the airways. We demonstrate that 
Fourier space quantification of the speckle texture can be used to statistically 
measure regional airway dimensions at the alveolar scale, with measurement 
precision finer than the spatial resolution of the imaging system. Using this 
technique we discovered striking differences in developmental maturity in the 
lungs of rabbit kittens at birth.
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B.1 Article - X-ray specks: low dose in vivo imaging of lung
structure and function
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1. Background 

Pulmonary diseases are one of the greatest causes of human morbidity and mortality. Chronic 
obstructive pulmonary disease (COPD), the fifth leading cause of death in humans, occurs in 
10% of the population and its incidence is rapidly increasing (Pauwels and Rabe 2004). COPD 
includes emphysema, chronic bronchitis and some cases of asthma. For newborn infants, respi-
ratory failure is the greatest cause of morbidity and mortality, particularly for those born very 
preterm. Many of the surviving infants (~30%) develop bronchopulmonary dysplasia (BPD). 
BPD has major implications for the respiratory health of individuals throughout their lives 
(Jobe et al 2008). Forms of both COPD and BPD result in abnormal regional changes in air-
way structure. Our ability to reduce the burden of these diseases is impaired by our inability to 
image the lung with high resolution in vivo, particularly the small airways that harbour much 
of the pathology associated with these diseases. It is currently not possible to detect many 
forms of lung disease with imaging before they are clinically evident. High-resolution com-
puted tomography (CT) is the gold standard technology commonly used for imaging COPD as 
it can resolve airway structures down to the 7th generation (Milne and King 2014). However, 
with a spatial resolution of around 0.5 mm, it is unable to resolve the smallest terminal airways 
(alveoli), which range in average size from 80–210 µm (Irvin and Bates 2003). This is true of 
all other clinical imaging modalities. Micro-CT is capable of resolving these structures (see 
e.g. Beltran et al (2011), Sera et al (2013)), however the radiation dose is prohibitively high 
and it is currently impossible to perform in real-time for in vivo human diagnostics (Milne and 
King 2014). Any technique capable of non-invasively measuring regional changes in minor 
airway structures in vivo could provide huge benefits for pre-clinical studies and diagnostic 
imaging (Milne and King 2014).

Propagation-based phase contrast x-ray imaging (PBI) is a very simple technique for 
obtaining high contrast images of weakly absorbing materials including soft tissues. It relies 
on Fresnel diffraction and requires a partially coherent x-ray source but no additional optics 
to render phase changes visible upon free-space propagation to a spatially resolving detector 
(Wilkins et al 1996). The airways of the lungs can be made highly visible with PBI due to 
the large differences in refractive index between soft tissue and air at diagnostic energies. In a 
2D projection image, the many overlapping airways of the lungs create a speckled pattern of 
bright and dark spots resulting from interference effects (Yagi et al 1999, Suzuki et al 2002). 
Figure 1 shows the experimental configuration and a typical speckled image of the lungs. 
From a geometrical optics perspective, the lung tissue acts as an aberrated compound refrac-
tive lens causing local variations in focal volume that results in strong intensity variations 
(Kitchen et al 2004).

Speckle is commonly seen when coherent light is transmitted through or reflected from a 
random phase screen. In the laser community it has long been known that speckle encodes 
information about the scattering medium that created the speckle, and numerous methods 
have been developed to decode this information (Goodman 2000). When random media are 
imaged at sufficiently close distances to the object, speckles have approximately the same 
size as the scatterers that created them. This effect of ‘near-field speckle’ is independent of 
the number of scatterers in projection, the wavelength of radiation and the object-to-detector 
distance (ODD). However, in the far-field the speckle size grows with distance and the rela-
tion to the scatterer size is lost (Giglio et al 2000, Cerbino 2007). Various authors have given 
heuristic (Giglio et al 2000) and theoretical (Cerbino 2007) arguments as to why near-field 
speckle produces this simple relationship with the scatterer size.

Using x-rays, Cerbino et al (2008) showed that near-field speckle can provide statisti-
cal information about structural properties of colloidal samples. They obtained an order of 
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magnitude improvement in the accessible scattering vectors over state-of-the-art ultrasmall-
angle x-ray scattering (USAXS) instruments, such as the Bonse–Hart camera. Moreover, since 
the beam can be large enough to illuminate the entire sample, they showed a gain of roughly 
four orders of magnitude in area and total beam power and another two orders of magnitude 
because of lower temporal coherence requirements.

We recently reported a technique for using near-field PBI for measuring the size and popu-
lation of alveoli in small animal lungs in real-time (Leong et al 2014). That method utilised the 
Fourier space signature of speckle patterns created by aerated lung tissue (such as that shown 
in figure 1(c)) and was able to accurately measure the change in size of alveoli on the micron 
scale throughout respiration cycles. Each measurement of alveolar size was calculated from 
statistical analysis of individual images. To acquire the same information from a sufficiently 
high resolution CT scan would require extremely high x-ray exposure and a very fast scanner 
to avoid motion blur. The disadvantages of our previous technique are that (i) the total volume 
of air in the region-of-interest has to be measured and (ii) an image of the non-aerated lungs 
must be recorded for normalisation purposes. As described below, our new method overcomes 
these limitations.

Figure 1. (a) Illumination of a random phase object by partially coherent radiation 
creates a chaotic speckled intensity pattern upon propagation through space to the 
detector as a result of interference effects. The many airways in lung tissue can serve as 
a random phase screen for x-rays, resulting in a speckled pattern such as that shown in 
(b). This phase contrast image of the lungs of a newborn rabbit kitten was acquired at 
beamline 20B2 of the SPring-8 synchrotron. Beam energy, 24 keV. Object-to-detector 
propagation distance, 1 m. Image size, 22.9   ×   23.7 mm2. A 256   ×   256 pixel region-
of-interest indicated by the black square is shown magnified in (c), which reveals the 
speckle detail. (d) The 2D power spectrum of (c) (log scale). (e) Azimuthal average 
of (d) showing the raw data fit with a Pearson type VII function for measuring the 
position of the peak in the power spectrum caused by the speckle. The peak centroid 
at 6.2   ±   0.4 mm−1 reveals the dominant length scale of this region of lung speckle is 
159   ±   10 µm.
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In Leong et al (2013) we used the transport-of-intensity equation  (TIE) (Teague 1983) 
to find an analytic solution for the azimuthally averaged power spectrum of the near-field 
intensity of multiple randomly distributed spherical particles, a good approximation for lung 
tissue, given by:
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Here F denotes the Fourier transform, I is the intensity, z is the direction of the incident illu-
mination, L is the ODD, δ is the energy dependent refractive index decrement of the scattering 
medium, N is the number of particles contained within the field-of-view, R is their radius and 
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 is the transverse wavenumber in the ( )x y,  plane. We see that N, δ and L simply 

amplify the Fourier space signature as their values increase. The oscillatory term in square 

brackets is dominated by the cosine term as the sinc function rapidly decays with ⊥k , hence the 
amplitude of the peaks are almost constant for all spatial frequencies. This equation reveals 
that the size of the scattering objects govern the position and shape of the peaks, independent 
of sample depth, propagation distance or wavelength (within the near-field). In other words, 
when the propagation distance is sufficiently small, speckle size equals particle size, which 
agrees with previous studies (Giglio et al 2000, Cerbino 2007). We note that for a distribution 
of particles, equation (1) shows that more weighting will be given to larger particles and those 
with greater numbers as the amplitude scales with both R and N. In this model of spherical par-
ticles, the volume of the spheres (i.e. the lung volume, VL) will be π=V N R4 /3L

3 . Hence we 
see that the amplitude of the power spectrum (PS) in equation (1) is related to VL (strictly V R/L ).  
In this paper the power spectrum peak (PSPeak) amplitude is used as a simple measure to reveal 
approximate changes in lung air volume. Compare this with previous studies where quantita-
tive measures of lung air volume were required, which necessitated immersing the speciman 
in water (see Kitchen et al (2008), Leong et al (2013), Leong et al (2014)).

In Leong et al (2014) we compared two methods of measuring particle/airway dimensions 
from power spectra. Both used the fact that the lung speckles produce a characteristic peak in 
the power spectrum (figure 1), as governed by equation (1) and first shown by Hooper et al 
(2007). The first method measured the centroid of the peak (PSPeak) and calculated its recipro-
cal to determine the corresponding length scale in real space. The second measured the area 
under this peak (PSArea) and solved for the alveolar size using the lung air volume measured 
from the images. Both methods required an image of the unaerated lungs to be recorded to 
normalise the data. To accurately measure absolute lung air volume for method two required 
the animal to be immersed in water and to initially image the lungs in a non-aerated state 
(Kitchen et al 2008, Leong et al 2014). There we imaged the lungs of newborn rabbit kit-
tens and lung phantoms made from packed glass microspheres of known size, having similar 
dimensions to alveoli, to test these options. It was found that the PSArea gave consistently more 
reliable results. This was attributed to the fact that dense packing of the particles (or airways) 
produces short-range-ordering (SRO) that readily alters the PSPeak but only minimally affected 
the PSArea. The derivation in Leong et al (2014) for relating the PSPeak to the particle/alveolar 
size (equation (1)) assumed purely spatially random packing, which is not possible for a close-
packed system.

In this paper we demonstrate that SRO is a major component to the signal produced from 
packed particles, further validating our previous studies. However, we also show that the aer-
ated lungs of small animals exhibit only minimal SRO, even to quite high levels of aeration 
when the packing fraction becomes comparatively large. We then show that the discrepancy 
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between the PSArea and the PSPeak for lungs images shown by Leong et al (2014) largely arises 
because the PSPeak does not indicate the size of the alveoli per se, but instead reveals the domi-
nant feature size (length scale) in the image. For a fully aerated adult lung the alveoli occupy 
around 90% of the total airspace volume. However, when lung volumes are low, particularly in 
newborns when the lungs are aerating for the first time, the dominant length scale often does 
not result from the alveoli (that may be fluid filled or collapsed), but to the larger airways in 
the lungs. Since we used newborn rabbit kittens for our lung model, the PSPeak can be readily 
influenced by the level of aeration. Herein we show that this new understanding of what the 
PSPeak represents enables us to use this measurement to accurately quantify changes in the 
global and regional dominant airway size from a single projection image. Importantly, this 
approach does not require us to measure the lung air volume or record an image of the lungs 
in a non-aerated state to measure the airway dimensions.

2. Materials, methods and results

2.1. X-ray sources

Some experiments were conducted at the SPring-8 synchrotron beamline 20B2 in Hutch 3 
(Goto et al 2001). We also validated the technique using a laboratory based liquid metal jet 
x-ray source (Excillum, Sweden). For propagation-based imaging (PBI), spatial coherence is 
more important than temporal coherence (Wilkins et al 1996). The monochromatic synchro-
tron source has the advantage of being highly spatially coherent with the sample positioned 
~210 m from the 150   ×   10 µm2 source. By comparison, the laboratory source is polychro-
matic, with a characteristic peak at 25 keV. We employed a ~20   ×   20 µm2 spot size and 
a source-to-object distance (SOD) of around 43 cm to produce a beam of moderate spatial 
coherence that is capable of producing appreciable propagation-based phase contrast (Larsson 
et al 2013). Figure 1 shows the experimental configuration and image processing procedure.

2.2. Near-field speckle analysis

As figure 1 shows, all images were analysed by fitting a highly flexible Pearson VII function 
(see e.g. Kitchen et al (2010b)) to the peak in the azimuthally averaged PSPeak of square arrays 
cropped from a given data set. Azimuthally averaging greatly amplifies the signal-to-noise 
ratio of the peak, especially at high spatial frequencies as the number of points averaged over 
increases with spatial frequency. The characteristic length scale of the speckle was taken as the 
reciprocal of the peak position. The advantage of curve fitting enables measurement precision 
much finer than the system’s spatial resolution. Images were first corrected for the presence of 
detector artifacts and beam inhomogeneity using images of the direct beam and dark current, 
and corrected for blur caused by the point-spread function (PSF) of the imaging system. The 
PSF was corrected by direct Fourier space division of the images with the measured PSF. This 
amplifies high frequency noise, but is necessary to accurately determine the PSPeak position.

2.3. Test samples

2.3.1. Synchrotron-based near-field speckle imaging of lung phantoms. To experimentally 
confirm the validity of a near-field regime, where speckle size is approximately equal to object 
size and independent of the number of particles and propagation distance, we imaged dry 
packed soda-lime glass microspheres of known size ranges (63–75 µm and 106–125 µm). 
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The microspheres (Whitehouse Scientific, Ltd.) were poured into Polymethyl methacrylate 
(PMMA) containers of set thicknesses of 1, 2, 5, 10 and 20 mm. ODDs were 0.035, 0.13, 0.5, 
1.0, 1.5, 2.0 and 3.0 m. Monochromatic 30 keV x-rays were used and images were recorded 
with a Hamamatsu CCD detector (C4880-41 S) coupled to a powdered 10 µm thick gadolin-
ium oxysulfide (Gd2O2S:Tb+; P43) phosphor and a tandem lens system yielding an effective 
pixel size of 5.9 µm. PBI images of such samples are known to produce speckle patterns that 
are similar to those of the lung of small animals, hence they make for an ideal lung phantom 
where the dimensions of the refracting bodies are known (Kitchen et al 2004). Typical speckle 
patterns from x-ray images of glass microspheres and rabbit lungs are shown in figure 2.

Figure 3(a) quantifies the speckle size of the microspheres through power spectral analysis for the 
106–125 µm particles. A region wherein speckle size remains constant with propagation distance 
is observed for each sample thickness. The breakdown in this near-field regime was found to occur 
at shorter ODDs for thicker samples, and for smaller microspheres (63–75 µm; data not shown).

Within the near-field regime the dominant size of the microspheres measured from the 
PSPeak position is slightly lower than the manufacturer’s nominal size range and is below 
the mean size expected from the commercial measurement (figure 3(a)). As described by 
Carnibella et al (2012, 2013), this discrepancy results from close packing of the dry packed 
microspheres. As free particles of similar size become more closely packed they arrange 
themselves more periodically, like a rhombohedral crystal structure. The characteristic length 
scale of the speckle pattern is strongly influenced by the distance between planes formed by 
the particles. In a rhombohedral crystal structure this includes the length scale of √R 3, which 
is smaller than the particle diameter (2R) (Cumberland and Crawford 1987), leading to the 
underestimated particle size observed in figure 3(a).

2.3.2. Tomographic evidence for short-range ordering of packed glass microspheres. High 
resolution CT scans were collected of glass microspheres of various sizes poured into a 10 mm 
cuvette to observe how the particles packed together. Particle sizes were in the nominal ranges 
of 63–125 µm, 75–106 µm, 75–125 µm, 150–180 µm, 150–212 µm and 250–300 µm. The 
1800 projection images were recorded over 180° of rotation with an exposure time of 200 ms 

Figure 2. Phase-contrast x-ray images of speckle from glass microspheres with 
nominal size range 106–125 µm in a 10 mm thick PMMA container and from newborn 
rabbit lungs. Images are 1.5   ×   1.5 mm2.
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per frame and a propagation distance of 1 m at 30 keV. We employed a scientific-CMOS 
(sCMOS) (Hamamatsu ORCA Flash4.0; C11440-52U) x-ray camera with a straight fiber 
optic element coupled to a 10 µm thick gadolinium oxysulfide phosphor with a pixel size of 
6.39 µm. We used the single image phase retrieval algorithm of Paganin et al (2002) to pro-
vide a 3D reconstruction of the attenuation coefficient of the sample with much higher signal-
to-noise ratio than is possible with attenuation contrast CT (Beltran et al 2011).

Figure 4(a) shows the normalised autocorrelation (AC) of 2D slices of the microspheres 
taken from the CT datasets. As expected, each curve shows a Gaussian-like function near the 
origin whose half-width is approximately proportional to the size of the average particles. The 
curves then oscillate about zero at increasing distance from the origin. The peaks reveal the 
presence of short-range ordering of the close packed particles at those length scales.

2.3.3. Laboratory-based experiments. Two of the microsphere samples (63–75 µm and 106–
125 µm in 10 mm thick cuvettes) were imaged using the laboratory based x-ray source. The 
SOD was 0.5 m and the ODD was 6.0 m, yielding a geometric magnification factor of 13. We 
employed a fluoroscopy flat panel detector (Varian Paxscan 2020  +) with a native pixel size 
of 194 µm. With geometric magnification, the effective pixel size was 14.9 µm. Both samples 
showed clear speckle patterns. The measured size of the 63–75 µm microspheres was 57   ±   2 µm  
whilst that for the 150–180 µm sized microspheres was 141   ±   3 µm. Again we found the 
particle size was underestimated as a result of SRO.

2.4. Animal studies

Animal experiments were approved by the Animal Ethics Committees at SPring-8, Japan, and 
Monash University, Australia. All animals were imaged in hutch 3 of beamline 20B2 at the 
SPring-8 synchrotron. New Zealand white rabbit kittens were delivered by caesarean section at 
28 (n  =  11), 29 (n  =  6) and 30 (n  =  23) days gestational age (dGA; term  =  31–32 d). Neonates 
were humanely killed via anaesthetic overdose of sodium pentabarbitone (>100 mg kg−1),  

Figure 3. (a) The dominant size of glass microspheres calculated from the peak 
spatial frequency of the image power spectrum, shown as a function of ODD. Shading 
indicates the nominal microsphere size specified by the manufacturer (106–125 µm; 
dark grey) and the full-width half-maximum of the distribution measured via sieving 
with a commercial measurement system (Mastersizer 2000; light grey). Error bars are 
consistent for all distances but shown only for one plot for clarity. (b) The dominant 
size of terminal airspaces in neonatal rabbit lungs calculated from the speckle power 
spectrum, as a function of ODD. All kittens imaged here were 30 dGA. Only upper and 
lower error bars have been shown for clarity.
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then placed on a custom designed small animal ventilator (Kitchen et al 2010a) with an endo-
tracheal tube inserted into the mid-cervical trachea. A monochromatic beam energy of 24 keV 
was selected as it was previously found to provide optimal phase and absorption contrast-to-
noise ratio at this facility for small animal lung imaging studies (Kitchen et al 2008). At this 
energy, the surface entry dose to the sample in the hutch was approximately 225 mGy s−1,  
as measured using an ion chamber.

2.4.1. Near-field lung speckle analysis. To confirm that the near-field regime, wherein speckle 
size is approximately equal to object size, exists for imaging small animal lungs at diagnostic 
x-ray energies, images of the thoraces of five newborn rabbit kittens were recorded at various 
ODD between 0.13 m and 3.0 m, as seen in figure 2. The lungs of the deceased kittens were 
well aerated prior to imaging and an airway pressure of 20 cm H2O, delivered by the ventilator, 
was maintained within the lungs upon closing the endotracheal tube before setting each kitten 
in a 2% agarose solution to prevent object movement. A sCMOS detector (pco.edge; PCO AG, 
Kehlheim, Germany) was coupled to a 25 µm thick gadolinium oxysulfide (Gd2O2S:Tb+) 
powdered phosphor and a tandem lens system that provided an effective pixel size of 15.1 
µm. With a field-of-view (FOV) of 38.6   ×   32.6 mm2, the entire thorax was visible in a single 
exposure.

Figure 3(b) shows the measured dominant airspace size as a function of ODD for five 
kittens. We see slight differences in airway size between each animal, resulting primarily 
from differences in tissue compliance and airway pressure. The average size of the airways 
is similar to previously reported measures of alveolar dimensions for newborn rabbit kittens 
(Hooper et al 2007). Like the glass particle experiment, we observe a steady increase in the 
calculated airway dimension above a critical distance for each animal between 1.0 m and 1.5 
m at this energy and resolution. However, at short ODD lungs also show a decrease in the 
measured airway as a function of ODD. At ODDs below 0.75 m the speckle contrast-to-noise 
ratio is very weak and consequently the PSPeak is dominated by other low frequency struc-
tures, such as the ribcage, making the measured airway size meaningless. Each sequence 
goes through a minimum in the measured airway size at distances between 0.75 m and 1.5 m. 
Here the PSPeak position is more reliably measured, before the size again increases linearly 
with ODD. Similar to the glass microspheres, the distance at which the measured size begins 
to increase with ODD tended to become larger with increasing average airway/particle size. 
A propagation distance of 1.0 m was chosen as the optimal ODD for lung imaging at this 

Figure 4. Autocorrelations of CT slices of (a) glass microspheres and (b) rabbit kitten 
lungs. Peaks at large length scales in (a) result from short-range ordering of particles. 
This effect is not seen in (b).
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x-ray energy for this species as it is generally large enough to achieve a measureable signal 
and still remain within the near-field. Section 2.4.2 shows that at this distance speckle size is 
well correlated with the dominant size of the airspaces. We note that the larger length scale 
for the lungs, compared to the glass microspheres seen in figure 3, is consistent with the 
larger size of the speckles apparent in figure 2. Despite the stronger absorption and refraction 
effects of glass compared to lung tissue, both give measurements close to their expected size 
within their regions of validity.

2.4.2. Tomographic evidence for the absence of short-range ordering within the lungs. The 
close packing of airways in the lungs is crucial to the lungs achieving the large surface-area-
to-volume ratio required for respiration. SRO similar to that seen with packed glass micro-
spheres (figure 4(a)) therefore seems likely for lung tissue. To test this hypothesis we acquired 
high resolution CT images of the lungs of newborn rabbits. The 1800 projections recorded 
over 180° were acquired at a propagation distance of 1.0 m at 24 keV with a 50 ms exposure 
per frame at beamline 20B2. The same detector was used as for the glass particle CT with a 
1 m ODD. With a FOV of ~13.1   ×   13.1 mm2, we could observe most of the lungs of the kit-
tens in a single exposure. The total scan time was ~4 min. The surface entry radiation dose 
was ~20.3 Gy. Each kitten was imaged at multiple airway pressures. For the CT reconstruc-
tion, a phase retrieval algorithm focusing on the lung tissue was employed using the method 
described by Beltran et al (2011).

Figures 5 and 6 show reconstructed slices of the lungs of two kittens of different gestational 
ages at two different airway pressures. The size of the airways measured using the PSPeak 
position from the phase contrast projections is shown in these figures. It can be seen that the 
measured values closely match the actual airway dimensions. We also see that the airway 
dimensions vary with airway pressure; a point we shall return to in section 2.4.3 We also see a 
clear difference in lung behaviour between the near term (30 dGA; figure 5) and preterm (28 
dGA; figure 6) kittens. Minor airways (alveoli) of the 30 dGA kitten expand at high pressure, 
whereas those of the 28 dGA kitten collapse or reflood with lung liquid at low pressure, leav-
ing only the larger airways aerated.

Uncertainties in airway dimensions measured using the PSPeak position were estimated 
by assessing the variability of sizes measured from the PSPeak of animals imaged at differ-
ent projection angles at a fixed pressure, and by deliberately altering the initial estimates 
of the parameters in the curve fitting procedure. This gave a maximum systematic uncer-
tainty of 20 µm when the volume was low and the peaks difficult to fit. With a pixel size of  
15.1 µm and a 25 µm thick phosphor, the spatial resolution is around 45 µm. We note that 
the uncertainty is less than the spatial resolution as a result of the curve fitting interpolation. 
When the peaks are sufficiently strong and a reasonable estimate is used for the initial curve 
fitting parameters, the variability is as low as 5 µm, enabling high precision measurements of 
changes in airway dimensions within an animal, as seen in section 2.4.3.

Figure 4(b) shows the autocorrelations (ACs) of the lungs of several kittens from CT data. 
Interestingly, the ACs do not show clear peaks of the type seen in figure 4(a) for the packed 
glass microspheres. Instead the AC function for each kitten asymptotes toward zero at dis-
tances much larger than the alveolar diameter. We have also performed these measurements 
on 3D stacks of the CT slices and the 3D results are of identical form to the 2D results pre-
sented here. These results demonstrate a lack of SRO within the lung structure despite there 
being so many alveoli of similar size packed together. This suggests we can safely ignore any 
negligible contribution from SRO to the power spectra of phase contrast images of the lungs 
of small animals.
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Since SRO is not evident in lung tissue (figure 4(b)), the position of any PSPeak of phase 
contrast images of small animal lungs should faithfully represent the airway size under near-
field conditions. However, Leong et al (2014) saw clear differences between alveolar dimen-
sions measured from the PSPeak position and the PSArea method combined with the known lung 
air volume, VL. As we demonstrate below, this difference is now believed to result from the 
fact that the PSPeak position does not represent the average alveolar size, but instead simply 
represents the dominant length scale present in the image, which may or may not be the mean 
alveolar diameter. Furthermore, Leong et al (2014) showed that the PSPeak tended to underes-
timate the airway dimensions, as revealed by comparisons with granulometry applied to CT 
data of the lungs. However, we note in that analysis the peak position was not directly meas-
ured, rather it was measured after several pre-processing stages that tend to shift the power 
spectra towards higher spatial frequencies, particularly dividing the image by its absorption 
contrast image before subtracting the power spectrum of a non-aerated image of the same ani-
mal. There the absorption contrast image was approximated by performing phase retrieval on 
the images under the assumption the object was comprised of a single homogenous material.

Figure 7 shows the dominant airway dimension measured from the PSPeak of single phase con-
trast projections taken from CT datasets of the chest imaged at three airway pressures for kittens 
of different gestational ages. We successfully imaged three kittens aged between 29 and 30 dGA 
and four aged 28 dGA. The data is compared against the dominant range of alveolar dimensions 
measured by applying 3D granulometry software to the CT datasets assuming spherical alveoli 
(see Leong et al 2014). For all of the data measured at moderate to large volumes we see good 
agreement between the measurements. This provides further evidence that SRO is not affecting the 
power spectra, even at large lung air volumes. Conversely, at low volumes we see that the airway 

Figure 5. CT reconstruction from a near term 30 dGA rabbit kitten showing the lungs 
at atmospheric pressure (0 cmH2O; left) and when inflated to a pressure of 20 cmH2O 
(middle). Airways are dark grey and other tissues are lighter grey. Segments highlighted 
by white boxes are magnified in the right panel (dimensions of 1.9   ×   1.9 mm2). The 
upper and lower insets correspond to the left and middle panels, respectively. Mean 
airway dimensions measured from phase contrast projection images were 106   ±   10 
µm at 0 cmH2O and 125   ±   10 µm at 20 cmH2O. Solid white circles indicate these sizes 
for comparison to alveolar dimensions in the magnified segment. Outlined white circles 
indicate the airspace size at the other pressure.
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dimensions measured from power spectra overestimates the alveolar dimensions measured from 
granulometry. This results from the fact that many of the alveoli have collapsed at low pressure, 
hence the dominant length scale in the power spectral is biased toward the size of the major air-
ways. Figure 6 shows a clear example of how the minor airways collapse at low pressure.

2.4.3. In situ airway dimension analysis. The data shown in figure 7 is broken into colour-
coded segments based upon the gestational age of the kittens. Doing so revealed an unexpected 
effect. At large air volumes the dominant airway dimensions are all very similar between the 
kittens of different ages. However, at small volumes the separation between the groups greatly 
increased. In the youngest animals (28 dGA) the dominant airway dimension are very large, 
whilst at the oldest age (30 dGA) the opposite is true. CT data (see figures 5 and 6) confirms 
that in the young animals (28 dGA) the lungs are prone to collapse at low pressure, but with the 
older animals the majority of the terminal airways remain open but are reduced in size. Upon 
expiration, the minor airways in the premature animals either collapse (de-recruit) or refill 
with lung liquid still trapped in the lung’s interstitial tissue. Indeed, as these pups are likely to 
be surfactant deficient (Bland et al 1980, Raj and Bland 1986, Siew et al 2013), Laplace’s law 
predicts that wall tension within smaller airways will increase as the radius decreases, promot-
ing small airway collapse and redistribution of gas into larger airways (Prange 2002). Thus we 
have a useful finding whereby the power spectral analysis is capable of readily distinguishing 
between the developmental maturity of the lungs of newborn animals.

Further evidence for the sensitivity to differences in lung maturity are seen when looking at 
complete respiratory cycles of newborn (deceased) kittens in situ, as shown in figures 8 and 9. 
Images were recorded at 5 Hz with an exposure time of 40 ms. These rabbits were humanely 

Figure 6. CT reconstruction from a preterm 28 dGA rabbit kitten showing the lungs 
near atmospheric pressure (1 cmH2O; left) and when inflated to a pressure of 18 cmH2O 
(middle). Segments highlighted by boxes are magnified in the right panel (dimensions 
of 1.9   ×   1.9 mm2). Mean airway dimensions measured from phase contrast projection 
images were 159   ±   10 µm at 1 cmH2O and 132   ±   10 µm at 18 cmH2O. Solid white 
circles indicate these sizes for comparison to alveolar dimensions in the magnified 
segment. Outlined white circles indicate the airspace size at the other pressure.
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killed prior to taking their first breath and the lungs were still filled with fetal lung liquid prior 
to the onset of imaging and ventilation. These were the same animals used for the tomographic 
analysis in section 2.4.2 under the same experimental conditions. Air pressure was increased 
in 2 cmH2O increments, held for 5 s at each point, and decreased in the same manner after 
reaching full inflation.

Red curves in figures 8 and 9 show a semi-quantitative measure of lung air volume given 
by the amplitude of the PSPeak (see section 1). Black curves reveal the dominant airway dimen-
sions measured from the PSPeak position. We see that the airway size typically varies by up to 

Figure 7. Dominant airway dimensions measured from the peak of the power spectra 
for various lung air volumes for rabbit kittens of differing gestational age: 28 dGA 
(n  =  4; blue), 29 dGA (n  =  1; green) and 30 dGA (n  =  2; yellow). All volumes have 
been normalised to the maximum lung volume measured for all kittens. The more 
mature 29 and 30 dGA kittens show the expected trend that airway size increases with 
lung volume. By contrast, 28 dGA kittens show a clear reduction in the dominant airway 
size with increasing volume. The shaded background shows the dominant airway sizes 
measured from granulometry from the 3D tomograms of each animal, which shows 
close agreement with the size measured from the power spectra.

Figure 8. Graphs of the dominant airway size (left y-axis, black curve) from temporal 
image sequences of lungs ventilated in situ. Overlaid is the approximate lung air 
volume, normalised to the maximum value (right y-axis, red curve). The airway size 
increases with lung volume in rabbits at (a) 29 dGA and (b) 30 dGA.

M J Kitchen et alPhys. Med. Biol. 60 (2015) 7259

112



7271

30 µm during the ventilation cycle for the given air pressures employed. Most importantly we 
see that for the 29 dGA and 30 dGA kittens the airway dimensions follow the trend of the ven-
tilation cycle, but those of the 28 dGA kitten are 180° out-of-phase with the ventilation cycle. 
All other kittens in these age groups produced the same trends. Considering that the alveolar 
dimensions should increase with lung volume, this apparent reversal was unexpected. In our 
previous work (Leong et al 2014) we attributed this strange trend to effects associated with 
SRO. However, we now see that for immature lungs (28 dGA) the inflation slowly recruits 
increasingly smaller airways leading to a reduction in the dominant length scale measured 
from the power spectra. These small airways collapse upon expiration and reverse the trend. 
This result is consistent with the CT data shown above.

Finally, we note that figures 8 and 9 reveal that the measurement of airway dimensions is 
highly robust against noise, showing a fluctuation of around 3 µm (2–3%) when the volume 
is constant. This stability results from the robustness of the curve fitting procedure shown in 
figure 1.

2.4.4. In vivo airway dimension analysis. Next we demonstrate that airway dimensions can 
be measured in vivo. Here a 30 dGA kitten was initially ventilated with a sustained inflation 
to help recruit the lungs (te Pas et al 2009), followed by multiple ventilation cycles. Images 
were acquired at a frame rate of 20 Hz (figure 10) with a 40 ms exposure (surface entry dose 
~9 mGy per exposure). We see that when the lung initially aerates, the dominant length scale 
reduces to a minimum as smaller airways are successively recruited before they begin to 
expand to accommodate an increase in lung air volume. During subsequent standard ventila-
tion cycles the airway size follows the curve of the lung air volume, as expected for kittens in 
this age group.

2.4.5. Regional morphological lung analysis. All of the data shown thus far have been mea-
sured across the whole chest. As figure 1 suggests, regional distributions of airway dimensions 
can also be measured within a single image. Figure 11 shows the results of locally measuring 
the PSPeak using 128   ×   128 pixel windows raster scanned across the image shown in fig-
ure 1(b). The dominant airway size has a mean of 161 µm and a standard deviation of 9 µm 
across the chest. These length scales are consistent with that measured using the whole image, 
which was 159   ±   10 µm. Areas where the regional size measurement contains outliers occur 

Figure 9. Graph of the dominant airway size (left y-axis, black curve) from a temporal 
image sequence of lungs ventilated in situ in a 28 dGA rabbit. Overlaid is the approximate 
lung air volume, normalised to the maximum value (right y-axis, red curve). Contrary to 
the older animals, the dominant airspace size increases as lung volume decreases.
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mainly at the borders of the lung and along the frontal portion of the diaphragm where the 
speckle pattern is interrupted by strong phase contrast from large changes in phase gradient or 
lack of speckle signal outside the lungs. Elsewhere the size distribution is more homogenous, 
yet we still see variability in airway dimensions across the lungs.

3. Discussion

We have developed a robust, low dose in vivo technique for measuring the dominant lung air-
way size of small animals both globally and regionally across the lung. Measuring the airway 
dimensions locally with CT and granulometry here required a dose that was around 2,250 
times larger than from the single phase contrast image combined with speckle texture analysis. 
Although we have not optimised either technique for minimal dose, the spatial and contrast 
resolution for CT must be sufficiently high to resolve individual alveoli for the granulom-
etry to adequately measure alveolar dimensions. By comparison, speckled 2D phase contrast 
images readily provide statistical information that reveals changes in lung structure and func-
tion during respiration and with far greater precision.

Our technique is capable of measuring dynamic changes in respiratory function with real-
time quantitative output. Potential applications include assessment of strategies to reduce ven-
tilation-induced lung injury, respiratory monitoring of preterm infants, and the diagnosis and 
treatment of lung diseases. A key advantage is that it does not rely on any a priori information 
and requires only a single propagation-based phase contrast x-ray image.

Phase contrast imaging has already proven valuable for imaging respiratory diseases includ-
ing pulmonary fibrosis (Fouras et al 2012), cystic fibrosis (Morgan et al 2014), emphysema 
(Meinel et al 2013), lung cancer (Liu et al 2008) and for studying lung development at birth 
(Hooper et al 2011). We have commenced trialling the methods presented herein to determine 
how accurately this method works for other animal models and for detecting respiratory dis-
ease. Diseases including BPD and COPD are of particular interest as the airway dimensions 
and lung structure are altered by these diseases. We aim to determine whether single image 
analysis of lung speckle patterns in these diseases can provide a low dose alternative method 
to computed tomography for early disease detection.

Figure 10. Graph of the dominant airspace size of lungs in vivo in a ventilated newborn 
rabbit at 30 dGA (left y-axis, black curve). Overlaid is the approximate lung air volume, 
normalised to the maximum value (right y-axis, red curve). An initial 20 s sustained 
inflation is followed by regular ventilation with a 2.5 s period.
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Our technique was capable of measuring physiological differences in lung structure and 
function between preterm rabbits at 28 days gestational age and 29 or 30 days of gestation. 
This difference was especially clear at near atmospheric pressures where the degree of air-
space re-flooding or collapse significantly altered the dominant airspace size. This results 
from the major physiological transition in lung development preterm infants undergo from 
the saccular to alveolar stages in late pregnancy (Kotecha 2000, Fraga and Guttentag 2012). 
This transition is associated with increased activation of epithelial sodium channels that may 
account for the more efficient lung liquid clearance in rabbits at 29  +  d gestation (Olver et al 
2004). Alternatively, or in addition, this may be caused by increased surfactant production in 
lung tissue that lowers alveolar surface tension and inhibits collapse, leading to a larger func-
tional residual capacity of the lungs (Hills 1990, Hillman et al 2012).

A limitation of the current technique is a decrease in accuracy when there is a high degree 
of airspace collapse or re-flooding (as was the case for the 28 dGA rabbits). Fewer air-filled 
spaces within the lungs reduced the speckle contrast, also reducing the amplitude of the power 
spectrum peak, making curve fitting difficult.

Although it was necessary to correct for non-random packing in the glass microsphere 
samples, it was found that this was not needed for the rabbit lungs. The large number of length 
scales in the airway branching (West 1990) reduces the likelihood for ordered stacking of 
airspaces, introducing a degree of randomness. It is possible that there exists an intermediate 
stage where there is a small degree of ordered packing, which may require a small corrective 
factor. We next aim to investigate whether additional structural information can be directly 
extracted from the speckle texture, such as information about the distribution of airway sizes 
within the lungs (see Carnibella et al (2014)).

In other work we have investigated measuring particle and alveolar dimensions from phase 
contrast images using autocorrelation analysis of speckle patterns (Carnibella et al 2012, 
2013, 2014). For packed particles we used an iterative solver to simulate the particle sizes 

Figure 11. Map of the local dominant airway dimensions measured using power 
spectral analysis of figure 1(b). The accuracy of the map is low at the boundaries of the 
lung where the speckle pattern disappears within the ROI; invalid solutions have not 
been displayed.
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that was optimised when simulations were a close match to experimental data. That approach 
has the advantage of not being limited to the near-field condition. It also yields both the mean 
particle size and their size distribution. In those papers we note that the ACs of the phase 
contrast images had similar peaks to those seen in figure 4(a). Initially considered as evidence 
of SRO, we now appreciate that such peaks will exist in the absence of SRO. The AC of 
the phase contrast image of a single symmetric particle will have a peak that simply reveals 
that the Fresnel fringes are identical on either side of the particle. Hence the peak position 
approximately indicates the particle size. This is in contrast to the absorption contrast AC of 
a particle, whose size is related to the width of the zeroth order peak of the AC function. We 
note that the power spectrum is related to the AC via a Fourier transform according to the 
Wiener–Khinchin theorem, hence the information could potentially be extracted via either 
approach, but in our experience the power spectrum method has proven to be a simple, robust 
and accurate method that is faster to compute. AC techniques are well known for being highly 
robust to noise (Carnibella et al 2012), but curve fitting the power spectral peak also provides 
a noise robust solution.

Leong et al (2014) showed that airway dimensions can be measured from the PSArea pro-
vided the absolute lung air volume is known since the PSArea depends upon two unknown 
variables, namely the size and number of particles/alveoli (see equation(1)). Since our new 
technique provides an independent measure of their size it is theoretically possible to measure 
the lung air volume by combining the PSArea and PSPeak. However, since the lungs are sur-
rounded by many overlapping structures including bones, skin and fur that affect the power 
spectrum, an image of the chest with the lungs absent (e.g. collapsed or fluid filled) is required 
to quantitatively measure the lung air volume. For newborns this image may be obtainable 
because the fetal lung may be liquid filled, but in many cases will not be as it is difficult to 
image the lungs before the onset of breathing. We are currently investigating methods to accu-
rately recover volume without requiring a priori knowledge.

It is well known that propagation-based phase contrast can be achieved using a polychro-
matic micro-focus laboratory based x-ray source (Wilkins et al 1996). Furthermore, it has 
recently been shown that lung speckle patterns of the type shown here using synchrotron radia-
tion have been observed in the laboratory (Garson et al 2013). With powerful new x-ray sources 
capable of producing highly spatially coherent beams, such as the liquid metal jet employed 
here (see also Larsson et al (2013)) and new low noise sCMOS or photon counting detectors 
being developed, we expect that our technique will be suitable for clinical implementation.

This study demonstrates the quantitative retrieval of the dominant airway size from a single 
phase contrast projection image of rabbit lungs in vivo. This non-invasive technique is robust, 
low dose and sensitive to micron changes at sub-pixel resolution, making it ideally suited for 
dynamic imaging of respiratory function. It also provides regional information that shows 
the distribution of airway dimensions across the lungs, which may prove useful for the detec-
tion of early lung disease using much less radiation than CT and with greater sensitivity than 
absorption contrast imaging.
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