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Abstract

Flow-induced vibration (FIV) of an elastically mounted sphere represents one of the
most generic fundamental fluid-structure interaction problems. Since FIV can lead
to structural failures, numerous studies have focused on understanding the underlying
principles of FIV and its suppression. This thesis investigates the effects of rotation
and surface proximity on the flow-induced vibration of an elastically mounted sphere,
employing simultaneous displacement, force and vorticity measurements. It is found
that when a constant transverse rotation is imposed onto a sphere, the mean transverse
force acting on the sphere increases due to the Magnus Effect. In consequence, the
mean position of the sphere oscillation also shifts towards the direction of the Magnus
force. Due to asymmetry induced in the wake, the total fluctuating transverse force
acting on the sphere decreases. This leads to a progressive decrease in the vibration
amplitude response as the rotation ratio is increased.

Similar dynamics are observed when a non-rotating sphere approaches a free sur-
face, whereby an asymmetry in the vortex shedding is observed decreasing the total
fluctuating transverse force acting on the sphere. However, in this case, asymmetry is
induced due to diffusion of the upper vortex loop (closer to the free surface) into the free
surface. On the other hand, the dynamics of a piercing sphere are very different. The
vibration response and the associated wake structures of a piercing sphere are found to
be very different to that of a fully submerged sphere. The FIV response of a piercing
sphere exhibits two different regimes with characteristically different behaviours. Sur-
prisingly, for some immersion ratios, the vibration response is even higher than that for
the fully-submerged case.

Apart from the above mechanisms, where the vibrations are reduced in consequence
of a reduced fluctuating force acting on the sphere, vibrations can also be reduced by
deviating the vortex shedding frequency from the natural frequency of the system, in-
hibiting the ‘lock-in’ phenomenon. When sinusoidal rotary oscillation is imposed onto
a sphere such that its forcing frequency is in close proximity to the natural frequency
of the system, vibrations lock to the forcing frequency instead of the natural frequency.
Vibrations are greatly suppressed in this ‘lock-on’ region. During lock-on, the wake
structures remain similar to those for an oscillating sphere without any imposed rota-
tion; however, there is a change in the timing of the vortex formation. Surprisingly,
rotary oscillations can also instigate the intriguing FIV response ‘Rotary-induced vibra-
tion’ that is intrinsically different to other previously known FIV responses: combining
vortex-induced vibration and galloping.
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Nomenclature

English Symbols

Symbol Description

2D Two-dimensional

3D Three-dimensional

A Oscillation amplitude

A∗ Normalised oscillation amplitude

A∗10 Mean of the top 10 percent of the normalised oscillation amplitude

A∗max Maximum normalised oscillation amplitude

A∗rms Root mean square normalised oscillation amplitude

c Damping coefficient

k Spring constant

CA Added mass cofficient

CD Drag force coefficient

CL Lift force coefficient

Cvor Vortex force coefficient

Cy Transverse lift force coefficient

C ′yrms
Fluctuating transverse force coefficient

Cy Mean transverse force coefficient

CEA Effective added mass coefficient

D Sphere diameter

Dr Support rod diameter

D∗ Diameter ratio (D/Dr)

DOF Degree of freedom

f Oscillation frequency (Hz)

Continued on next page...
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Continued from previous page...

Symbol Description

fna Natural frequency of the system in air (Hz)

fnw Natural frequency of the system in water (Hz)

fr Forcing frequency (Hz)

fR Forcing frequency ratio (fr/fnw)

fSt Vortex shedding frequency of a stationary sphere (Hz)

f∗ Normalised oscillation frequency, f∗ = f/fnw

Fy Total transverse fluid force

FD Drag force

FL Total lift force

Fvor Vortex force

FIV Flow-induced vibration

FLAIR Fluids Laboratory for Aeronautical and Industrial Research

h Immersion depth of the sphere

h∗ Immersion ratio, h∗ = h/D

m Total oscillating mass of the system

mA Added mass

md Displaced fluid mass, πρD3/6

m∗ Mass ratio (m/md)

PIV Particle image velocimetry

px Pixels

Re Reynolds number based on free-stream velocity and the diameter of
the sphere (Re = UD/ν)

St Strouhal number

t Time

T Oscillation period

TTL Transistor-transistor logic

u, v, w Velocity components in the x, y and z directions respectively

U Free-stream velocity

U∗ Reduced velocity (U/fnwD)

U∗S Scaled reduced velocity (U∗St/f∗)

V Voltage

Continued on next page...
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Symbol Description

VIV Vortex-induced vibration

y Transverse displacement of the sphere

ẏ Transverse velocity of the sphere

ÿ Transverse acceleration of the sphere

Greek Symbols

Symbol Description

§ Thesis section

α Rotation ratio (α = ωD/2U)

αR Forcing velocity ratio (α = Dθ̇max/2U)

δ Standard deviation

∆t PIV time interval separating each image pair (ms)

η Free decay rate

µ Dynamic viscosity (kg.m−1s−1)
ν Kinematic viscosity, µ/ρ (m2s−1)

ω Rotational speed of the sphere

ρ Density (kg.m−3)

θ Angular displacement

θ̇max Maximum angular velocity of the sphere

φtotal Phase angle between the transverse lift force and the cylinder
displacement

φvortex Phase angle between the vortex force and the cylinder displacement

ζ Structural damping ratio

ζa Structural damping ratio in air

ζw Structural damping ratio in water

Subscripts

Symbol Description

max Maximum addition value

rms Root mean square value
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Chapter 1

Introduction

Great mindset brings in great results.

Flow-induced vibration (FIV) is encountered in a multitude of engineering applications.
Since FIV is a common cause of structural fatigue and damage, it is a cause of concern
for many cylindrical structures like riser tubes in offshore engineering, heat exchanger
tubes, pipelines, cylinder arrays in cooling systems, and civil engineering structures like
chimneys and bridges. The Tacoma Narrows Bridge collapse in 1940s is an example of a
serious structural failure caused by FIV. Among several different forms of FIV, the two
common fundamental types are vortex-induced vibration (VIV) and galloping. VIV
is caused by an alternate vortex shedding in the wake of an elastically mounted bluff
body. On the other hand, galloping is characterised by low-frequency body oscillations
in which the vibration amplitude increases monotonically with the flow velocity. Bluff
bodies with a circular cross section like a circular cylinder and a sphere are immune
to galloping in a steady flow unless an asymmetry is introduced into the system. The
current thesis principally focuses on the VIV phenomenon. The important character-
istic of such a phenomenon is ‘lock-in’ or ‘synchronisation’. The classic definition of
lock-in is described as the synchronisation of the vortex shedding frequency and the
body oscillation frequency with the natural frequency of the system. However, several
studies have reported a marked departure of the oscillation frequency from the natural
frequency during ‘lock-in’ in low mass-ratio systems of m∗ = O(10) (m∗ is defined as
the ratio of the total oscillating mass to the displaced fluid mass). VIV occurs for a
wide range of flow velocities, over which large body oscillation amplitudes are observed
reaching up to an order of magnitude of one characteristic length (i.e. diameter of a
circular cylinder or a sphere).

Considering the potential destructive effect of such vibrations on structures, a large
number of fundamental studies have focused on VIV that are summarised in the com-
prehensive reviews of Bearman (1984), Blevins (1990), Sarpkaya (2004), Williamson &
Govardhan (2004), Päıdoussis et al. (2010) and Naudascher & Rockwell (2012). Apart
from cylindrical structures, VIV is also a cause of concern for three-dimensional bodies,
the simplest case of which is the sphere. Several fundamental studies have investigated
the VIV response of an elastically mounted sphere in the past. Many practical situations
where VIV of a spherical body is encountered are marine buoys, underwater vessels,
submarines, tethered or towed spherical structures and underwater mines, among other
ocean engineering applications. Despite its ubiquitous practical significance in ocean
engineering, the VIV response of a sphere in such scenarios is not well understood. For
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instance, it is not known how the proximity to a free surface affects the VIV response
of a sphere and its wake structures. Furthermore, there appears to be no study so far
investigating the VIV response of a semi-submerged sphere that pierces the free surface
in spite of the fact that the offshore petroleum drilling and production operations often
consist of semi-submerged spherical structures. In light of this research gap, one of
the aims of this thesis is to experimentally investigate the effect of proximity to a free
surface on the VIV response of submerged and semi-submerged spheres.

Over the last four decades, a plethora of research studies have also focused on
investigating means of suppressing vortex-induced vibrations. For this reason, several
active and passive control methods have been studied for cylinders in order to suppress
VIV. Choi et al. (2008) provide a comprehensive review on various control methods
employed for flow over cylinders. Passive control methods do not consume external
energy and are fairly insensitive to changes in the flow direction. However, it is difficult
to dramatically reduce VIV, and the drag often increases. On the other hand, active
control methods such as moving-surface boundary-layer control (MSBC) and windward
suction/leeward blowing reduce VIV to a much lower level; however, the efficacy of both
of these active methods depends on the flow direction. Recently, the control of VIV by
rotary motion is receiving increased attention due to its insensitivity to flow direction,
efficacy over a broader range of flow parameters, and a greater extent of VIV reduction.

Previous studies on rigidly mounted spheres at low Reynolds numbers have demon-
strated that when a constant transverse rotation is imposed on a sphere, the vortex
shedding is suppressed for a certain range of rotation ratios (Loth 2008; Kim 2009; Poon
et al. 2010, 2014). Please note here, if the free-stream direction is considered as x-axis
and the vortex-induced vibrations are observed in y-axis (also shown in figure 2.5), then
the constant rotation should be imposed onto the sphere such that the axis of rotation
is perpendicular to both the x-axis and the y-axis, i.e., in the z-axis.

The question arises as to whether imposed rotation can suppress the vortex shedding
once the sphere is elastically mounted? This question has not been addressed yet for a
sphere. However, recently, researchers have tried addressing this question for a circular
cylinder. Surprisingly, it was found for an elastically mounted cylinder that the peak
vibration amplitude increased up to ∼ 76% over the non-rotating case (Wong et al.
2017). Similar results were obtained numerically for relatively lower Reynolds numbers
as well (Bourguet & Lo Jacono 2014). One can ask if similar behaviour would be
observed for a 3D bluff body, a sphere? The second aim of the current thesis is to
answer the above posed questions.

For an elastically mounted circular cylinder, a recent numerical study by Du & Sun
(2015) illustrated that the VIV of a cylinder can be effectively suppressed for appro-
priate control parameters by imposing sinusoidal rotary oscillations (axis of rotation
in the z-axis). However, the possibilities of using such a control method in controlling
the VIV response of a basic three-dimensional bluff body, a sphere, still remains un-
explored. There do not appear to be any studies so far reporting the effect of rotary
oscillations on the VIV response of a sphere. Therefore, in view of this research gap, the
third aim of this thesis is to experimentally investigate the effect of rotary oscillations
on the VIV response of a sphere.

To summarise, this thesis attempts to answer the following fundamental questions
and provide specific insight into the underlying flow physics:

1. What is the effect of free-surface proximity on the VIV response of a sphere?

2. What is the effect of sinusoidal rotary oscillation on the VIV response of a sphere?
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3. What is the effect of transverse rotation on the VIV response of a sphere?

In order to address the questions highlighted above, a comprehensive series of sys-
tematic experiments were undertaken. The sphere response is studied for a wide range
of forcing and flow parameters using simultaneous displacement, force and vorticity
measurements. Particle image velocimetry (PIV) measurements in the cross-plane and
the equatorial plane (containing the principal transverse vibrations) are used to un-
derstand the underlying dynamics. Flow visualisation using hydrogen bubbles and
Fluorescein dye is also undertaken in selected cases to provide further insight.

1.1 Structure of the thesis

The structure of the thesis is as follows:
Chapter 2: A brief review of the relevant literature is presented. The open ques-

tions are identified and the research gaps in the literature are established.
Chapter 3: An overview of the experimental methodologies, facilities, equipment

and procedures employed in the current study is provided.
Chapter 4: The effect of transverse rotation on the force coefficients of a rigidly-

mounted sphere is investigated. This short chapter on a rigidly mounted sphere provides
reference results for studying the rotation effects on an elastically mounted sphere.

Chapter 5: The effect of transverse rotation on the VIV response of an elastically
mounted sphere is presented. This chapter includes the publication by the author
entitled ‘Vortex-induced vibration of a rotating sphere’ published in the Journal of
Fluid Mechanics (2018), vol. 837, pp. 258-292.

Chapter 6: The effect of a free surface on the flow-induced vibration of a sphere
is presented. This chapter includes the publication by the author entitled ‘Vortex-
induced vibrations of a sphere close to a free surface’ published in the Journal of Fluid
Mechanics (2018), vol 846, pp. 1023-1058.

Chapter 7: The effect of imposed rotary oscillation is investigated on the flow-
induced vibration of a sphere. The findings of this study are reported in a publication
that is currently under review for the Journal of Fluid Mechanics.

Chapter 8: Finally, this chapter briefly draws conclusions and provides a sum-
mary of the main findings. It also includes recommendations for potential future work.
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Chapter 2

A Review of the Literature

Imagination is more important than
knowledge.

Albert Einstein

In this chapter, a review of previous relevant studies is presented. The literature review
is divided into six sections. § 2.1 briefly discusses the flow past a stationary sphere,
followed by § 2.2 on the VIV of a sphere without any imposed rotation. Section § 2.3
focuses on the effect of imposed transverse rotation on the VIV response of a sphere,
followed by § 2.4 on the effect of rotary oscillation. § 2.5 discusses in detail the effect of
proximity to a free surface on the flow-induced vibration of a sphere, and finally § 2.6
draws conclusions and identifies the research gaps to be addressed in the thesis.

2.1 Stationary sphere

Flow past a stationary sphere may be considered as a simplified case of the general fam-
ily of 3D bluff bodies around us. As for the flow around its two-dimensional counterpart,
the cylinder, instabilities are known to generate fully three-dimensional unsteady flow
in spite of the symmetry of the body. The Reynolds number, which quantifies the
ratio of the inertial force to the viscous force, is a powerful non-dimensional parameter
that helps to characterise various flow regimes within similar fluids in fluid-structure
interaction problems. The Reynolds number for flow around a sphere is usually defined
by

Re =
UD

ν
, (2.1)

where U is the free-stream velocity, D is the diameter of the sphere and ν is the kine-
matic viscosity of the fluid. The behaviour of the flow past a stationary sphere for
varying Reynolds numbers has been studied by various researchers. Taneda (1956) vi-
sualised the flow past a sphere for a Reynolds number range of 5 < Re < 300. He found
that the critical Re for the flow separation from the surface of the sphere was 24. This
resulted in the generation of a stationary axisymmetric vortex ring. He also reported
oscillations in the wake behind a sphere for Re ∼ 130. Later, Magarvey & Bishop
(1961) performed some dye visualisations for the passage of a liquid drop of an immis-
cible liquid in a liquid phase for 0 < Re < 2500 and observed vortex ring structures
similar to those observed by Taneda (1956). Magarvey & Bishop (1961) reported that
the rings remain stable and axisymmetric up to Re = 210. For 210 < Re < 270 in their
study, the flow remained steady but lost its axisymmetry, and dye was released in two
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Figure 2.1: Wake past a sphere in the hairpin shedding regime for Re = 320 (shown on the
top). Images at the bottom show the close-up view of the oscillating wake at about seven
diameters behind the sphere, seen simultaneously from the top (shown on the left) and the
side (shown on the right). Images taken from Leweke et al. (1999)

(a)Re = 268 (b)Re = 275 (c)Re = 290

Figure 2.2: Images showing the evolution of the oscillation in the between the second and
the third sphere wake transition. Image courtesy: The Polish-French cooperation in fluid
dynamics.
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2.1. Stationary sphere

parallel threads. At Re = 270, the double-threaded wake itself became unstable, and
vortex loops or hairpin vortices began shedding from the sphere. Although the liquid
drops tested by Magarvey & Bishop (1961) were deformable, they could still be con-
sidered to be of semi-rigid spherical shape due to the presence of surface impurities at
the liquid-liquid interface that effectively lead to a no-slip boundary condition. Leweke
et al. (1999) reported in their paper some striking dye-visualisation images showing
the wake for a sphere in the hairpin shedding regime, as also shown in figure 2.1. The
close-up top view and the side view of the wake clearly shows how the horseshoe-type
vortex loop is connected to the trailing legs of the loop shed in the previous cycle.
Later, Gumowski et al. (2008) proposed another transition including three-dimensional
peristaltic oscillations of the two trailing vortices prior to the hairpin shedding mode.
Figure 2.2 shows some spectacular dye-visualisation images taken by Gumowski et al.
(2008) showing the evolution of transition from the double-threaded wake regime to the
hairpin shedding regime. Nakamura (1976) also observed axisymmetric wakes behind
spherical shells up to Re = 190, but unlike Taneda (1956), they found a recirculating
eddy behind the sphere for Re = 7.3. It should be noted that Nakamura used spherical
shells with adjustable mass in order to cover a large range of Re, and the free move-
ment of the inside mass could have potentially affected the sphere’s motion and the
wake development.

Several numerical studies have also been conducted (see Thompson et al. (2001),
Johnson & Patel (1999), Ghidersa & Dušek (2000) and Tomboulides & Orszag (2000))
to study the wake structures behind a sphere. Tomboulides & Orszag (2000) conducted
direct numerical simulations (DNS) for 25 < Re < 1000 and observed steady axisym-
metric flow for Re < 212 with initial separation at Re = 20. They identified two early
bifurcations of the sphere wake, one at Re = 212 leading to a three-dimensional time
independent state, and the second one for 250 < Re < 285 resulting in a time periodic
flow. They also reported a double-threaded wake structure consisting of two opposite-
signed streamwise vortices, which generally appear as two dye threads emanating from
the recirculating region of the sphere in dye visualisation experiments. However, at
higher Reynolds number (Re > 800), the hairpin-shaped vortices begin to change from
laminar to turbulent vortices with alternate fluctuations, and the pattern continues at
least up to Re = 3.7× 105 (Sakamoto & Haniu 1990).

Taneda (1978) revealed in his flow-visualisations that at very high Reynolds numbers
of 3.8 × 105 ≤ Re ≤ 106, the sphere wake consists of streamwise line vortices that
rotate slowly and randomly about the streamwise axis. Figure 2.3 shows a schematic
representation of the vortex structures past a sphere at high Reynolds numbers. As
evident from the schematic, the vortex sheet shed from the sphere rolls up to form a
pair of streamwise vortices. In a cross-plane downstream of the sphere, one can see
a counter-rotating vortex pair (see the back view in figure 2.3). In the current study,
vorticity measurements will be carried out in a cross-plane that is placed 1.5 diameters
downstream from the sphere to investigate the dynamics of the counter-rotating vortex
pair. Table 2.1 summarises the wake transitions that occur as a function of the Reynolds
number for a stationary sphere.

Over a range of Reynolds number, the vortex shedding past a stationary sphere
occurs at a well-defined frequency. The non-dimensionalised frequency of the vortex
shedding is called Strouhal number that is expressed as

St =
fStD

U
, (2.2)
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Figure 2.3: Schematic representation of the vortex structures at high Reynolds numbers in
the range 3.8×105 ≤ Re ≤ 106. The lines with arrows indicates the streamlines on the vortex
sheet. The schematic has been adapted from Taneda (1978).

Re < 210 Axisymmetric wake state

210 < Re < 280 Planar symmetric, double-threaded wake

280 < Re < 800 Steady to unsteady transition

Re > 800 Turbulent

Table 2.1: Different transitions that occur in the wake of a stationary sphere for different
Reynolds numbers.
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102 103 104 105
0

0.1

0.2
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Approximate Re range

for the current study

Re

St

Figure 2.4: Strouhal number vs. Reynolds number for spheres. The two curves show the
upper and lower bounds of the data taken by Sakamoto & Haniu (1990) for spheres of different
sizes.

where fSt is the dominant vortex shedding frequency of a stationary sphere. Figure 2.4
shows the variation of the Strouhal number with the Reynolds number (based on the
sphere diameter) for a stationary sphere (Sakamoto & Haniu (1990)). The approximate
range of Reynolds numbers in the current study is also highlighted in the figure. This
regular periodic shedding past the sphere leads to large fluctuating pressure forces in
the direction transverse to the flow that might lead to vibrations in the transverse
direction, as will be discussed in the following section.

Vortex-induced vibrations (VIV)

In the above section, it was briefly discussed that the vortex shedding leads to large
fluctuating pressure forces in the direction transverse to the flow. When a sphere is elas-
tically mounted and the frequency of the fluctuations is close to the natural frequency of
the system, it can cause large-amplitude vibrations of the sphere. This type of vibration
caused by the fluctuating forces due to vortex shedding is known as vortex-induced vi-
bration (VIV). The important feature of such a system is ‘lock-in’ or ‘synchronisation’.
The classic definition of the lock-in phenomenon is described as the synchronisation of
the vortex shedding frequency fst and the body oscillation frequency f with the natural
frequency of the system fnw, i.e., f ∼ fst ∼ fnw or f∗ = f/fnw ∼ 1 (see Blevins (1990)
and Sumer (2006)). This definition may not be appropriate for systems of mass ratio
of the order of 10 (m∗ = O(10)) that are mostly encountered for structures vibrating in
water. In such systems, several studies have reported a marked departure of f∗ from
unity during lock-in (Moe & Wu 1990; Khalak & Williamson 1997; Gharib et al. 1998;
Govardhan & Williamson 2000). Khalak & Williamson (1999) hence suggested a more
suitable definition of synchronisation as the locking of the body oscillation frequency
with the frequency of the periodic wake vortex mode.

Although vibrations can also be observed in the streamwise direction, the vibrational
amplitudes are significantly larger in the transverse direction. For example, in the case
of a sphere, the peak transverse vibrations are ∼ 300% larger than the peak inline
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ck

k c

Figure 2.5: Definition sketch for the transverse vortex-induced vibration of a sphere. The
hydro-elastic system is simplified as a 1-DOF system constrained to move only in the cross-
flow direction. Here, U is the free-stream velocity, k the spring constant, D the sphere
diameter, and c is the structural damping of the system.

vibrations. Therefore, VIV problems are often simplified as one degree of freedom (1-
DOF) system constrained to move only in the cross-flow direction. Figure 2.5 shows
a schematic of the current fluid-structure problem, where the sphere is constrained to
move freely in the direction transverse to the flow. The governing equation of motion
for a sphere undergoing transverse VIV in this case can be described by

mÿ + cẏ + ky = Fy, (2.3)

where m is the total oscillating mass of the system, c is the structural damping, Fy is
the transverse fluid force, and k is the spring constant. As an approximation, it is often
assumed that the transverse force Fy(t) and the response displacement y(t) are both
sinusoidal and represented by

y(t) = A sin(2πft), (2.4)

Fy(t) = Fo sin(2πft+ φ), (2.5)

where Fo is the amplitude of Fy, and φ is the phase difference between the fluid force
and the body displacement.

VIV response of a bluff body is represented, in general, by the vibration amplitude
ratio A∗, and the frequency ratio f∗, as a function of U∗. The vibration amplitude
ratio A∗ is the non-dimensionalised oscillation amplitude. Several definitions of A∗ are
available in the literature, the most common one is A∗max that is the ratio of maximum
amplitude of the oscillation to the sphere diameter. As A∗max takes the value of a
single sample out of a fairely large sample, it might not be a true representative of the
amplitude response in some cases. Therefore, some researchers use A∗10 that takes the
value of the mean of the top 10% of the peak amplitudes. Another definition is A∗rms
that takes the rms of the displacement signal. Although, all the above definitions are
equally useful measure to showcase the behaviour of the amplitude response, the most
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common definition in use for the sphere studies (as used previously by the benchmark
studies) is A∗rms defined as

A∗ =
√

2Arms/D. (2.6)

Here, Arms is the rms of the sphere vibration amplitude. The frequency ratio f∗, is
defined as

f∗ = f/fnw, (2.7)

where f is the frequency of the sphere oscillations and fnw is the natural frequency of
the system in water. The reduced velocity U∗ is defined as

U∗ =
U

fnwD
. (2.8)

The other important non-dimensional parameter characterising such systems is the
mass ratio m∗ defined as

m∗ = m/md, (2.9)

where m is the total oscillating mass of the system and md is the displaced fluid mass.
All the set of relevant parameters for studying the VIV of spheres are listed in the table
2.2.

Based on the suggestions of Lighthill (1986) and as performed for the VIV of a
tethered sphere by Govardhan & Williamson (2000), the total transverse fluid force (Fy)
acting on a sphere can be split into a potential force (Fp), comprising the potential added
mass force, and a vortex force component (Fv) that is due to the vorticity dynamics.
From potential theory, the instantaneous Fp acting on the sphere can be expressed as

Fp(t) = −CAmdÿ(t) , (2.10)

where CA is the potential added mass coefficient (CA= 0.5 for a sphere). Thus, the
vortex force Fv can be computed from the equation

Fv(t) = Fy(t)− Fp(t) . (2.11)

If all the forces are normalised by (12ρU
2πD2/4), this reduces to

Cvortex(t) = Cy(t)− Cpot(t). (2.12)

Here, Cpot (the potential-flow lift coefficient) can be calculated based on the instanta-
neous body acceleration ÿ(t). Reverting back to the dimensional forces for the moment,
two equivalent forms can be written for the equation of motion

mÿ + cẏ + ky = Fo sin(ωt+ φtotal), (2.13)

and for vortex force

(m+mA)ÿ + cẏ + ky = Fv sin(ωt+ φvortex). (2.14)

The vortex phase φvortex, first introduced by Govardhan & Williamson (2000), is
the phase difference between Cvortex(t) and the body displacement y(t). The more con-
ventionally used total phase φtotal is the phase difference between the total force Cy and
the body displacement y(t). In general, phase jumps are associated with a switch from
one VIV mode to another, and have even been used to distinguish between different
modes (Govardhan & Williamson 2005).
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2.2 Vortex-induced vibration of a sphere

Large vibrations due to VIV can occur in a variety of engineering situations, such
as with flows past bridges, transmission lines, aircraft control surfaces, offshore struc-
tures, engines, heat exchangers, marine cables, towed cables, drilling and production
risers in petroleum production, moored structures, tethered structures, pipelines, and
other hydrodynamic and hydroacoustic applications. VIV is a significant cause of fa-
tigue damage that can lead to structural failures. Numerous studies have focused on
understanding the underlying principles of vortex-induced vibrations and its suppres-
sion, especially for cylinders. The immense practical significance of VIV has led to
various comprehensive studies in the past.

Some of the pioneer work in this field has been carried out by Michael Triantafyllou’s
research group at MIT and Charles Williamson’s research group at Cornell University.
The low mass ratio water channel experiments on cylinders reported by Khalak &
Williamson (1996, 1997, 1999) expanded our understanding and characterisation of VIV
vibration responses. On the other hand, Hover et al. (1997, 1998) developed a novel and
versatile force-feedback system that measures the forces acting on the test cylinder to
drive in real time a numerical simulation of an equivalent mass-dashpot-spring system.
The computed motion is then imposed onto the test cylinder. Using this ingenious
experiment, they suggested a 3D vortex formation process for the upper-lower branch
transition for a cylinder (Hover et al. 2004). As bodies become more directly practical,
they become more complex in shape; however, many of the phenomena discovered for
simpler geometries like a circular cylinder carry across to more involved structures.
For example, in the case of a tapered cylinder, Techet et al. (1998) discovered 2S and
2P modes occurring along different spanwise lengths of their tapered cylinder (2S-2P
hybrid mode).

However, unlike the situation for cylinders and slender bodies, there are relatively
fewer studies on VIV of elastically-mounted or tethered spheres despite its ubiqui-
tous practical significance, such as marine buoys, underwater mines, other offshore
structures, and tethered or towed spherical objects. Govardhan & Williamson (1997),
Williamson & Govardhan (1997), Jauvtis et al. (2001) and Govardhan & Williamson
(2005) were the first systematic and elaborate experimental studies carried out by Prof.
Williamson’s research group at Cornell university, investigating the VIV response of a
sphere. Followed by these benchmark studies, several experimental and numerical stud-
ies focused on the VIV response of a sphere (Pregnalato 2003; van Hout et al. 2010;
van Hout et al. 2013; Behara et al. 2011; Lee et al. 2013; Krakovich et al. 2013; Behara
& Sotiropoulos 2016). Based on the previous benchmark studies on the VIV response
of a sphere, the overall findings will be discussed in detail in the following subsections.

2.2.1 Modes of Vibration

Williamson & Govardhan (1997) and Govardhan & Williamson (1997) were the first
to investigate the VIV response of a sphere. They found that within a range of flow
velocities, where the oscillation frequency f is of the order of the vortex shedding
frequency of a stationary sphere fst, two modes of highly periodic large vibrations
occur, namely mode I and mode II.

As one increases the flow speed, the response transitions from mode I to mode II
at a point where the vortex phase φvortex (phase difference between the vortex force
and displacement) crosses through 90◦. Within the mode II regime, the total phase
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Amplitude ratio A∗rms Arms/D

Damping ratio ζ c/
√
k(m+mA)

Frequency ratio f∗ f/fnw

Mass ratio m∗ m/md

Mass-damping parameter ξ (m∗ + CA)ζ

Reduced velocity U∗ U/(fnwD)

Reynolds number Re UD/ν

Scaled normalised velocity U∗S (U∗/f∗)S = fvo/f

Strouhal number S fvoD/U

Table 2.2: Non-dimensional parameters that are often used to characterise VIV response of
a sphere. In this table: Arms is the rms of the vibration amplitude in y direction; D is the
sphere diameter; f is the body oscillation frequency; and fnw is the natural frequency of the
system in quiescent water. In addition, m is the total oscillating mass; c is the structural
damping factor with k the spring constant; U is the free-stream velocity; ν is the kinematic
viscosity; mA denotes the added mass, defined by mA = CAmd, where md is the mass of
the displaced fluid and CA is the added mass coefficient (0.5 for a sphere); fvo is the vortex
shedding frequency of a fixed body.

φtotal (phase difference between the total transverse force and displacement) crosses
through 90◦. This is somewhat similar to the case of its two-dimensional counterpart,
the cylinder, where there are three distinct modes, namely ‘Initial’, ‘Upper’ and ‘Lower’,
as shown by Khalak & Williamson (1999). These modes are separated by two phase
jumps; initial↔ upper transition is associated with a jump in φtotal, and upper↔lower
transition is associated with a jump in φvortex. However, these phase jumps are abrupt
for a cylinder. In contrast, for a sphere, both φtotal and φvortex increase continuously
and gradually as the response transitions from mode I to mode II. Figure 2.2.1 shows
the amplitude response of a sphere in comparison with that of a cylinder. In both the
cases, similar multiple response modes are observed with similar characteristics whereby
the body’s oscillation frequency rises well above its natural frequency( f∗ > 1). Both
principal modes of sphere vibrations are associated with the ‘lock-in’ of the vortex for-
mation frequency to the natural frequency of the system. For an elastically mounted
sphere with 2-DOF (tethered sphere), mode II and mode III are separated by a desyn-
chronised region in between them (see figure 2.7). However, for a sphere with 1-DOF,
the response proceeds gradually and continuously from mode II and mode III as the
flow velocity is increased. The differences in the response for 1-DOF and 2-DOF prob-
lems are highlighted in figure 2.7. Govardhan & Williamson (2005) suggested that this
behaviour is peculiarly associated with constraining the motion of the sphere in the
transverse direction.

The synchronisation regime discussed so far where mode I and mode II are ob-
served corresponds to flow speeds where fst ∼ O(f). This region can be termed
fundamental synchronisation regime of the sphere VIV response that extends from

13



Chapter 2. A Review of the Literature

Figure 2.6: Amplitude and frequency response versus normalized flow velocity for a sphere
and a cylinder. In (a) and (b), amplitude (A∗) and frequency (f∗) response for somewhat
different experimental conditions are given: (a) m∗ = 2.83; (b) m∗ = 0.76, where ζ = 0.008
in both cases. In (c) and (d), VIV response for a cylinder is given ((c) m∗ = 0.76, where
ζ = 0.008; (d) m∗ = 1.19, ζ = 0.005). Image reproduced from Govardhan & Williamson
(2005).

a non-dimensionalised velocity range of U∗ ∼ 5 − 10. For the case of a cylinder, no
significant response is observed outside the fundamental synchronisation regime. In
contrast, however, Jauvtis et al. (2001) discovered in their wind tunnel experiments
that a sphere exhibits large periodic vibrations even outside this regime. Such vibra-
tions have been termed mode III, which occurs for a higher reduced velocity range
of U∗ ∼ 20 − 40, where fst >> f . It was found that the principal vortex shedding
frequency was 3 − 8 times higher than the sphere oscillation frequency, hence such a
vibration phenomenon could not be explained using the classical ‘lock-in’ theory. Later,
Govardhan & Williamson (2005) suggested that in the absence of any body vibration
in mode III, there would be no fluid forcing at the low natural frequency of the sys-
tem. However, if the body was perturbed, it could generate a self-sustaining vortex
force that could amplify and saturate the body vibrations to large amplitudes. They
categorised mode III as ‘movement-induced excitation’ (Naudascher & Rockwell 2012).
van Hout et al. (2010) and Lee et al. (2013) also observed several regimes of vibrations
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for a heavy tethered sphere and a neutrally buoyant tethered sphere, respectively. The
former reported a response region III, which was linked to the mode III state reported
by Jauvtis et al. (2001), and the latter reported a chaotic regime VI, which was linked
to mode IV reported by Jauvtis et al. (2001). Both these studies reported these modes
to exhibit non-stationary chaotic dynamics, where large variation in amplitude is ob-
served. At extremely high velocities (U∗ > 100), a fourth mode of unsteady vibrations,
namely mode IV, with low periodicity was found by Jauvtis et al. (2001). In this mode,
the unsteady vibrations were characterised by intermittent bursts with large ampli-
tude vibrations. The origin of these large transient bursts of vibrations still remains
unknown.

To summarise, the sphere vibration response consists of two highly periodic funda-
mental modes of vibrations, namely mode I and mode II. These modes are observed
in the reduced velocity range of U∗ ∼ 5 − 10. In terms of the wake structures, both
the modes are characterised by two-sided chain of streamwise vortex loops (as it will
also be discussed in detail in section 2.2.3). However, there is a distinct change in the
timing of vortex pair formation for modes I and II (Govardhan & Williamson (2005)).
Mode III, on the other hand, is a type of ‘movement-induced vibration’, and is observed
for reduced velocity range of U∗ ∼ 20 − 40. In terms of wake structures, Govardhan
& Williamson (2005) found that mode III typically consists of thread-like streamwise
structures underlying multiple small-scale structures in the wake.

2.2.2 Effect of the mass-damping parameter and mass ratio

Govardhan & Williamson (2005) performed a comprehensive series of experiments and
produced a ‘Griffin plot’ for a sphere, to see the variation of the peak amplitude response
A∗max with a combined mass-damping parameter (m∗ + CA)ζ, as shown in figure 2.8.
Similar to the case of a cylinder, when the mass-damping is increased, the peak vibration
amplitude drops, and there is a decrease in the range of (U∗/f∗)S over which the
large periodic vibrations are observed, as clear from figure 2.8(a). The saturation
amplitude of A∗ ' 0.9 is reached for very low mass-damping systems ((m∗ + CA)ζ ≤
10−2)). However, for a very high mass-damping of (m∗ + CA)ζ > 0.5, there are almost
no vibrations. In figure 2.8 (b), the data is presented from a large range of mass
ratios (m∗ = 0.5 − 200) studied by the Cornell group, suggesting that the combined
mass-damping parameter is very useful in terms of collapsing the peak-amplitude data
for different mass ratios. Govardhan & Williamson (1997) studied the response of a
tethered sphere for a very low mass ratio of m∗ ∼ 0.76. They found that at such low
mass ratios, the two fundamental modes can be separated by non-periodic vibrations.
This is unlike higher mass ratio systems, where the response is highly periodic and
progresses gradually from mode I to mode II as the reduced velocity is increased. This
corroborates the effect of mass ratio on the vibration response of a sphere. For very
low mass ratios, one can observe non-periodic vibrations between the two fundamental
modes. Furthermore, the synchronisation regime widens considerably, and the peak
amplitude response also increases substantially with a saturation amplitude of A∗ ' 0.9.

2.2.3 Wake structures

The principal vorticity dynamics associated with VIV for a sphere is the motion of
streamwise vortex pairs rather than the dynamics of vorticity normal to the flow as in
the case of a cylinder VIV. Govardhan & Williamson (2005) suggested that the wake
structures behind the sphere at high Reynolds numbers can be compared to trailing
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Figure 2.7: Vibration response of an elastically mounted sphere with 2-DOF (shown in
(a) compared to 1-DOF (shown in (b)). 2-DOF system exhibits a desynchronised region
between mode II and mode III. The mass-damping is (a) (m∗ + CA)ζ = 0.0305 and (b)
(m∗ + CA)ζ = 0.9214. The images taken from Govardhan & Williamson (2005).

vorticies behind aircraft wings. They computed the transverse lift acting on a sphere
from the knowledge of the spacing and strength of the trailing tip vortices and directly
compared this lift with the force measurements from a force sensor. A reasonable agree-
ment between the two led them to conclude that most of the transverse force acting on
the sphere is given by the dynamics of the streamwise vorticity. They also carried out
extensive vorticity measurements to visualise the three-dimensional vortex structures
in the wake of a sphere undergoing VIV at a high Reynolds number of Re ≈ 3000. They
found that the dominant wake structures for both the modes were chains of streamwise
vortex loops on alternating sides of the wake, very similar to the wake of a stationary
sphere in the hairpin shedding regime as discussed in § 2. A central distinction between
the wake behind a stationary sphere and that behind an oscillating sphere is the fact
that in the static case, the vortex loops are formed in an irregular fashion, and the
azimuthal location at which the loops are formed changes every cycle, whereas when
a sphere oscillates, loops maintain symmetry with the horizontal plane containing the
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2.2. Vortex-induced vibration of a sphere

Figure 2.8: (a) Synchronised response of a sphere for varying mass-damping parameter
and (b) Griffin plot showing the variation of the peak vibration amplitude of a sphere with
the mass-damping parameter. In (b), the open symbols represent 1-DOF motion, bull’s
eyes present 2-DOF motion of the sphere. Following parameters apply to (a) for increasing
amplitude plots: (m∗ + CA)ζ = 0.333, 0.290, 0.261, 0.190, 0.151, 0.029; m∗ = 198.4, 156.6,
60.6, 53.6, 27.5, 2.8. Reynolds number at A∗

max = 3800, 4500, 6300, 5300, 5500, 9100. The
images are reproduced from Govardhan & Williamson (2005).
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Figure 2.9: Streamwise vorticity plots measured at 1.5D downstream of the sphere showing
counter-rotating vortex pair for both mode I and mode II. Each of the plots are separated by
a quarter-period. Re ≈ 3000 in both the cases. Image taken from Govardhan & Williamson
(2005).

principal transverse vibrations. The heads of those vortex loops pinch off to form vortex
rings several times the body diameter in the downstream. By observing the vertical
velocity in the equatorial plane, one can see a horizontal cut through the developing
vortex ring, showing a pair of opposite signs of vorticity somewhat similar to the 2P
mode of an oscillating cylinder (although its formation is further downstream than for
the cylinder).

However, by observing streamwise vorticity in a cross-plane closer to the sphere,
one can see a dominant counter-rotating streamwise vortex pairs for both the modes.
Figure 2.9 shows the streamwise vorticity measurements at 1.5D downstream of the
sphere showing counter-rotating vortex pair for both mode I and mode II. As the
sphere oscillates from one side to the other, the observed vorticity changes sign. This
is consistent with the fact that as the sphere oscillates from one side to the other,
hairpin loops from opposite sides are shed downstream into the wake. Figure 2.10
shows a spatio-temporal reconstruction of the sphere wake in both mode I and mode II
using the measured time sequence of streamwise vorticity by Govardhan & Williamson
(2005). One can clearly see interlinked two-sided chain of vortex loops in the resulting
three-dimensional structure in both the modes. In the current study, an analogous
approach will be utilised to study the wake dynamics. Similar to the measurements by
the above benchmark study, streamwise vorticity measurements will be carried out at a
distance ≈ 1.5D downstream of the sphere to highlight the dominant counter-rotating
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2.2. Vortex-induced vibration of a sphere

Figure 2.10: Three-dimensional structures for both Mode I and Mode II showing a two-
sided chain of streamwise vortex loops. Blue and red indicates clockwise and anti-clockwise
vorticity, respectively. Re ≈ 3000. Image taken from Govardhan & Williamson (2005).

vortex pair in the wake.

Effect of imposed rotary motion on the VIV response of a
sphere

As discussed earlier, large-amplitude vibrations caused by VIV over a wide range of
Reynolds number is a common cause of serious structural fatigue and damage, which
has led to a plethora of research studies focusing on suppressing VIV over the last four
decades. For this reason, several active and passive control methods have been studied
previously for 2D bluff bodies. Choi et al. (2008) provide a review on various control
methods employed for flow over bluff bodies. Although passive control methods do
not consume external energy and are fairly insensitive to changes in the flow direction,
their use tends to encounter difficulty in dramatically reducing VIV, and the drag often
increases. In contrast, active control methods such as moving-surface boundary-layer
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control (MSBC) (Mittal 2001) and windward suction leeward blowing (WSLB) (Dong
et al. 2008) reduce VIV to a much lower level; however, the efficacy of both these active
methods depends on the flow direction.

The control of VIV by rotary motion has received increased attention recently due to
its insensitivity to flow direction, efficacy over a broader range of flow parameters, and
the greater extent of VIV reduction. Studies by Du & Sun (2015) and Wong et al. (2017)
illustrated that the VIV of an elastically mounted cylinder can be effectively suppressed
using appropriate control parameters. However, the possibilities of utilising such control
methods in controlling the VIV response of a sphere still remain unexplored. In the
current study, the potential of this control method in controlling the VIV response
of a sphere is investigated through a series of systematic and extensive experiments.
Two different approaches are employed to prohibiting the lock-in phenomenon, and
thereby reducing the large vibrations for a three-dimensional bluff body. In the first
approach, suppression of VIV is achieved by means of an imposed transverse rotation.
In this approach, the aim is to reduce the strength of the vortex street, which can be
associated with a reduction of the transverse force acting on the sphere leading to a
reduced vibration response. This approach is discussed in detail in § 2.3. In the second
approach, an external forcing is imposed onto the sphere in the form of sinusoidal
rotary oscillations with a forcing frequency that is close to the natural frequency of
the system. This leads to locking of the vortex shedding frequency of the sphere to
the forcing frequency instead of the natural frequency (otherwise known as ‘lock-on’),
thus prohibiting the resonance. This approach will be discussed in detail in § 2.4. In
the following two sections, the relevant previous literature related to the above two
proposed approaches is discussed.

2.3 Effect of transverse rotation

A lot of literature is available reporting the effect of imposed constant rotation on a
rigidly mounted sphere. Previous numerical studies on the effect of rotation on rigidly
mounted rotating spheres have revealed suppression of the vortex shedding for a certain
range of rotation rates (Loth 2008; Kim 2009; Poon et al. 2010, 2014). These studies
were performed computationally at relatively low Reynolds numbers (Re ≤ 1000). On
the other hand, there have been some experimental studies conducted at considerably
higher Reynolds numbers (Re ≥ 6 × 104) that focused mainly on the effect of trans-
verse rotation on the fluid forces, e.g., the inverse Magnus effect (Macoll 1928; Barlow
& Domanski 2008; Kray et al. 2012; Kim et al. 2014), where the rotation induced lift
suddenly changes direction as the Reynolds number is increased. It is still unknown if
the rotation suppresses vortex shedding at such high Reynolds numbers. Nevertheless,
all these studies have observed a sudden dip in the lift and drag coefficients for a certain
rotation ratio (which varies with Re).

All these studies were performed on a rigidly mounted sphere. The question arises
as to whether imposed rotation can suppress the vortex shedding once the sphere is
elastically mounted? It is known that an elastically mounted sphere undergoes large
vibration due to VIV. In this case, can the imposed constant rotation potentially sup-
press the vibrations? This question has not been addressed yet for a sphere; however,
there were many studies reporting the effect of constant rotation on the VIV response
of an elastically mounted cylinder. Bourguet & Lo Jacono (2014) appear to have been
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2.3. Effect of transverse rotation

Figure 2.11: The vibration amplitude and frequency response for an elastically mounted
circular cylinder for different rotation rates as a function of reduced velocity. The figure is
reproduced from Wong et al. (2017).

the first to study computationally the effect of imposed transverse rotation on the VIV
response of a circular cylinder at Re = 100. Notably, they found that the peak ampli-
tude increases to ∼ 1.9 cylinder diameters, which is three times that of the non-rotating
case, as the rotation ratio was increased from 0 to 3.75. This study was followed by
another numerical study by Zhao et al. (2014b) at low Reynolds numbers. Later, Seyed-
Aghazadeh & Modarres-Sadeghi (2015) studied the same problem experimentally, over
the Reynolds number range Re = 350–1000. In contrast to the study by Bourguet & Lo
Jacono (2014), Seyed-Aghazadeh & Modarres-Sadeghi (2015) found that the imposed
rotation did not significantly influence the amplitude of oscillations. However, with the
increase in rotation rate, the synchronisation regime became narrower, and for α ≥ 2.4,
the cylinder oscillations were completely suppressed. Very recently, Wong et al. (2017)
carried out an experimental investigation on the effect of imposed rotation on the VIV
response of a circular cylinder for 1100 ≤ Re ≤ 6300. They demonstrated an increase
of up to ∼ 76% in the peak oscillation amplitude over the non-rotating case for rotation
rates close to 2 in the upper amplitude response branch. They reported that increasing
the rotation rate from 0 ≤ α ≤ 2 both broadens the synchronisation regime and in-
creases the peak amplitude response. Figure 2.11 shows the VIV response of a circular
cylinder for various rotation rates as a function of reduced velocity. As clear from the
figure, significant cylinder vibrations were observed for rotation rates up to α ≈ 3.5. It
is interesting to note here that although the experimental study by Seyed-Aghazadeh
& Modarres-Sadeghi (2015) was performed for relatively different Reynolds numbers,
the results are drastically different to the results of the studies by Wong et al. (2017)
and Bourguet & Lo Jacono (2014). Thus, even for VIV of a rotating cylinder, there
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appear to be conflicting results on the effect of rotation on the VIV response. One
question to be addressed is whether similar features are exhibited in the case of a ro-
tating sphere. Specifically, the current study examines the effect of the body rotation
on the VIV response of an elastically mounted sphere. This study aims to address the
following fundamental questions: How does constant imposed transverse rotation affect
the VIV response of the sphere, does it suppress or enhance the response, and how does
this depend on rotation rate? How does the rotation affect the flow near the sphere
surface and in the wake? The current study will endeavour to address these questions
in chapter 5.

2.4 Effect of sinusoidal rotary oscillation

As mentioned earlier, VIV can also be suppressed by forced sinusoidal rotary oscillations
of the bluff body, to prohibit the phenomenon of resonance or ‘lock-in’ by deviating the
vortex shedding frequency from the natural frequency of the system towards the forcing
frequency (also known as ‘lock-on’). The two important parameters characterising
the rotary oscillation motion of the sphere are the forcing frequency ratio fR and the
forcing velocity ratio αR. The forcing frequency ratio is expressed as the ratio of forcing
frequency, fr, and the natural frequency of the system, fnw, as

fR = fr/fnw. (2.15)

Alternatively, sometimes the non-dimensional forcing Strouhal number is used to char-
acterise the forcing

Sf =
frD

U
.

The other key parameter, the forcing velocity ratio αR, is expressed as the ratio of the
maximum tangential velocity of the sphere surface and the free-stream velocity U as

αR =
Dθ̇max

2U
, (2.16)

where θ̇max is the maximum angular velocity of the sphere.
The sinusoidal rotation imposed on the sphere can be expressed as

θ(t) = θo sin(2πfrt), (2.17)

where θ is time-dependent imposed angular displacement, θo is maximum angular dis-
placement and fr is the forcing frequency. In terms of the angular velocity, the imposed
rotation can be represented as

θ̇ = 2πfrθo cos(2πfrt). (2.18)

The velocity ratio αR, which is the ratio of the maximum tangential velocity of the
sphere to the free-stream velocity, hence, can also be written as

αR =
πfrθoD

U
. (2.19)

It is known from the previous studies that fR and αR are two crucial parameters in
determining the response of a bluff body.

22



2.4. Effect of sinusoidal rotary oscillation

This approach of controlling the wake by utilising sinusoidal rotary motion has
been extensively investigated on a fixed cylinder over the last four decades. Taneda
(1978) was the first to examine this experimentally for a rotary oscillating cylinder,
and reported the disappearance of vortex shedding for very high forcing frequencies.
Later, Tokumaru & Dimotakis (1991) reported a drag reduction of up to 80% for a
certain range of forcing frequencies and amplitudes of sinusoidal rotary oscillations.
This pioneering study inspired a number of systematic numerical studies aimed at un-
derstanding this wake control and the underlying dynamics, such as (Lu & Sato 1996;
Chou 1997; Baek & Sung 2000; Mahfouz & Badr 2000; Cheng et al. 2001; Shiels &
Leonard 2001; Tokumaru & Dimotakis 1991; Lee & Lee 2006; Choi et al. 2002; Kumar
et al. 2013). It is known for the case of a fixed cylinder that for a certain range of
forcing frequency ratios encompassing the natural frequency of the system, the vortex
shedding locks to the forcing frequency, leading to the ‘lock-on’ phenomenon (Chou
1997; Baek & Sung 2000). The state is accompanied by a significant drag reduction
(Tokumaru & Dimotakis 1991; Lu & Sato 1996; Chou 1997). The lock-on region widens
with increasing rotational speed (Mahfouz & Badr 2000). The boundaries of lock-on
and non-lock-on regions are associated with the modulation of the drag, lift and ve-
locity (Choi et al. 2002), and the non-lock-on regions exhibit quasi-periodicity (Baek
& Sung 2000). Several studies have focused on understanding the underlying dynam-
ics. It was found that the lock-on region is associated with enhanced separation and
vortex coalescence in the wake (Cheng et al. 2001; Shiels & Leonard 2001; Lee & Lee
2006). The experimental investigation by Thiria et al. (2006) also revealed that the
phase lag between the vortex shedding and the rotary motion of the cylinder effectively
gives either a constructive or destructive contribution to the wake, leading to a global
decrease or increase in fluctuations in the wake. All the above mentioned studies were
performed for a rigidly mounted cylinder under imposed sinusoidal rotation. However,
once the cylinder is given a degree of freedom in the transverse direction, the dynamics
could be very different.

Recently, Du & Sun (2015) investigated numerically the potential of rotary oscil-
lations to suppress VIV of an elastically mounted cylinder at Re = 350. They found
‘lock-on’ for a certain range of frequency ratio, which led to switching of vortex shedding
from the natural frequency to the forcing frequency, inhibiting resonance or VIV. The
extent of the lock-on region for a cylinder, as fR is varied, is shown in figure 2.12(a).
A reduction in the amplitude of the cylinder vibration of up to 99% of the cylinder
diameter was achieved with fR = 1.8 at a velocity ratio of αR = 2. Furthermore, they
also demonstrated that high enough velocity ratios need to be attained for effective
suppression. As evident from figure 2.12(b), the response is not effectively controlled
for αR < 1. Figure 2.12 (c) shows the flow regime where lock-on is observed for a
freely vibrating cylinder at Re = 350 and αR = 2. It is clear from the figure that
the lock-on regime became narrower with an increase in reduced velocity in their study.
Their vorticity measurements revealed that the strength of the vortex shedding was not
suppressed although transverse vibrations were suppressed. This led them to conclude
that in the lock-on region, the vibrations are suppressed due to switching of the vortex
shedding frequency from the natural frequency of the system to the forcing frequency.

The above mentioned studies demonstrated the potential of rotary oscillations in
controlling the VIV of a cylinder. There do not appear to be any studies so far inves-
tigating the potential of rotary oscillations in wake control for 3D bluff bodies, such as
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Figure 2.12: Vibration amplitude A∗ as a function of forcing frequency ratio fR (shown on
the left) and as a function of the forcing velocity ratio αR (shown on the right). The figures
are reproduced from Du & Sun (2015).
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Figure 2.13: Flow regime of an elastically mounted cylinder at αR = 2 for Re = 350. The
data reported by Du & Sun (2015)

spheres. However, a sphere is the most basic 3D body shape; it is certainly the one with
the most symmetry, and clearly spheres can undergo significant amplitude VIV. The
current study aims to produce an understanding of the effect of imposed rotary oscilla-
tions on the VIV response of a sphere for a wide range of forcing and flow parameters.
One question to be addressed is whether similar features (as discussed above for a fixed
cylinder) are exhibited in the case of an elastically mounted sphere. Specifically, this
study aims to address the following fundamental questions: Is ‘lock-on’ also observed
for a sphere exhibiting a 3D wake? If so, how does the lock-on range depend on various
forcing and flow parameters? How does this phenomenon affect the 3D wake structures
of the flow past a sphere? The current study will endeavour to address these questions
in chapter 7.

2.5 Effect of free surface on the VIV response of a sphere

One of the most practical situations where one encounters flow past elastically mounted
spheres is in the area of ocean engineering applications, eg., offshore structures, buoys,
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underwater vessels, submarines and floating power generation equipments, etc. Most
of these applications consist of structures very close to the free surface or piercing it.
Moreover, floating ocean structures for offshore petroleum drilling and production op-
erations also consist of submerged and semi-submerged structures. The VIV response
of 3D structures in such situations may be characteristically very different to those in
a fully submerged condition. Now the question emerges as to how the proximity to a
free surface can affect the VIV response of a sphere? Without addressing this question,
our attempt to understand completely the flow-induced vibration past a sphere remains
incomplete.

Despite ubiquitous practical applications, the flow past a sphere close to a free sur-
face, and also piercing it, is not well understood. Many studies have reported on the
two-dimensional counterpart, the cylinder, elaborating on the effect of a free surface
on the flow past that geometry. Reichl et al. (2005) studied the two-dimensional flow
past a cylinder close to a free surface at Re = 180. Their major finding was that for
low Froude number (Fr ≤ 0.3), where the surface deformation is minimal, the flow
is largely governed by geometric constraints and behaves similar to the flow past a
cylinder close to a no-slip wall. However, for higher Froude numbers, where surface
deformation becomes substantial, there is a significant surface vorticity generation that
can diffuse or convect into the main flow, altering the development of vortex shedding.
The flow in such cases is characterised by two metastable states, which can coexist
for the same system parameters. Such metastable states were previously observed in
the experimental investigations by Sheridan et al. (1995) and Sheridan et al. (1997).
The latter authors investigated experimentally the flow past a cylinder close to a free
surface over the Froude number range of 0.47 ≤ Fr ≤ 0.72 and Reynolds number range
5990 ≤ Re ≤ 9120. They reported that the flow past a cylinder close to a free sur-
face at high Froude number gives rise to fundamental classes of near wake structures
that are distinctly different from the wake of a completely submerged cylinder located
far beneath the free surface. Considering the limiting case of a piercing cylinder, Yu
et al. (2008) studied the flow past a cylinder piercing the free surface numerically for
Re = 1 × 105 at Froude numbers up to Fr = 3. Their results showed that the free
surface inhibits the vortex generation in the near wake, leading to reduced vorticity
and vortex shedding. For Fr = 0.8, the vortex structures exhibited strong 3D fea-
tures; however, the flow in the deep wake remained 2D. Furthermore, at Fr = 2, the
free-surface effect propagated throughout the wake, inhibiting regular vortex shedding
past the cylinder. Similar results were observed numerically by Inoue et al. (1993) and
Kawamura et al. (2002) for a piercing cylinder. The latter study reported a diverging
Kelvin wave system at the free surface and observed surface fluctuations related to the
shear-layer instabilities under the free surface. From all these studies, it can be inferred
for a cylinder that the free surface acts like a rigid-free-slip boundary for low Froude
numbers of Fr ≤ 0.5. For 0.8 ≤ Fr < 2, the free surface influences the shedding near
the free surface, leading to 3D features very close to the free surface; however, for very
high Froude numbers of Fr ≥ 2, the free surface was significantly deformed; there were
then strong wave-wake interactions, and the periodic vortex shedding was suppressed
for cylinder depths less than one diameter from the free surface.

Although the above mentioned studies focused on fixed cylinders, significant atten-
uation and alteration of the vortex shedding can be expected for an elastically mounted
cylinder. A very recent study by de Oliveira Barbosa et al. (2017) reported the effect of
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proximity to a solid wall boundary on the VIV response of a freely vibrating cylinder.
They observed a reduction in the amplitude response for gaps between 0.75 and 2 di-
ameters and an increase in the amplitude and frequency of oscillations for gaps smaller
than 0.75 diameters, when the cylinder actually impacted the boundary. In contrast
to the vast literature available on cylinders regarding the effect of wall boundary and
free surface, the literature on the VIV of a basic three dimensional body like a sphere
is extremely sparse.

There is a brief preliminary study by Mirauda et al. (2014) on the dynamic response
of a light (m∗= 1.34) tethered sphere in a shallow water flow. Although their study
lacked any forces or vorticity measurements to support their claims, they indicated a
reduction in the vibration response amplitude with the presence of a free surface. They
also stated that for 0 < h∗ ≤ 0.5, there was no mode II, and mode I occurred for
relatively lower reduced velocities compared to the fully submerged case. This claim,
however, was not backed up by simultaneous force measurements. It is known from
the previous benchmark studies that the total phase difference φtotal and vortex phase
difference φvortex are the key determinative factors in identifying the two modes of vi-
brations. The other prime limitation of the study was that there were large variations
in the blockage ratio with the immersion depth in their experimental setup. Also, there
were appreciable wall effects, as the sphere was placed close to the channel floor (3
mm from the channel wall), which were neglected. Although, not of direct relevance to
the present problem, it should be mentioned here that there have been some previous
investigations on the water entry of spheres (Truscott & Techet 2009b,a; Aristoff &
Bush 2009; Aristoff et al. 2010)

One can decipher here that it is not yet well understood how the proximity to the
free surface affects the VIV response. How the flow structures past a sphere are affected
when it is close to a free surface? What happens to the different modes of vibrations?
Furthermore, there appears to be no study so far investigating the VIV response of a
semi-submerged sphere that pierces the free surface. It is still unknown if the case of a
semi-submerged sphere, which is quite ubiquitous in ocean engineering, oscillates more
vigorously than a fully submerged sphere or if the vibrations are greatly reduced due
to the free surface? All these questions remain unanswered. That being the case, the
current study will endeavour to address these questions in chapter 6.

2.6 Chapter summary and research questions

In this chapter, a review of the relevant literature was presented. In the process, several
unanswered questions were identified and the gaps in the literature were established.
In this section, those gaps are summarised and presented again. Here, the principal
research questions to be addressed in the current study are proposed.

1. As it was discussed in § 2.3, previous studies performed on rigidly mounted spheres
reported suppression of vortex shedding for a certain range of rotational rates
when the transverse rotation was imposed onto the sphere. One can conjecture
here that an imposed rotation may suppress vibrations once the sphere is elasti-
cally mounted. However, for the case of an elastically mounted circular cylinder,
studies have shown conflicting results in terms of the effect of transverse rotation
on the vibration amplitude response of a cylinder. One may ask here, how the
imposed transverse rotation will affect the vibration response of a sphere once it
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is elastically mounted? Therefore, for this study, the first research question to be
addressed is:

What is the effect of imposed transverse rotation on the vortex-induced
vibrations of an elastically mounted sphere?

2. It was revealed in § 2.4 that some recent studies on elastically mounted cylinders
have demonstrated an effective control of vortex induced vibrations employing
sinusoidal rotary oscillations of the cylinder for a certain range of control param-
eters. However, the potential of this control method has not been investigated yet
on a 3D bluff body prototype, a sphere. Hence, in this study, the second research
question to be addressed is:

What is the effect of imposed sinusoidal rotary oscillation on the flow-
induced vibration of a sphere?

3. In § 2.5, it was discussed that the proximity to a free surface can have a strong
influence on the wake past a fixed cylinder. Furthermore, a recent preliminary
study on tethered spheres also indicated a considerable reduction in the vibration
response due to proximity to a free surface. On the other hand, there is no study
so far, to the best of the author’s knowledge, reporting the dynamics of a semi-
submerged sphere. As a consequence, the third research question to be addressed
in the current study is:

What is the effect of proximity to a free surface on the flow-induced
vibration of a fully submerged sphere? How does the response change
when the sphere pierces the free surface?

The above proposed research questions are addressed by carrying out an extensive
series of systematic experiments employing simultaneous displacement, force and vortic-
ity measurements. The sphere response will be measured for a wide range of forcing and
flow parameters. Particle image velocimetry (PIV) in the cross-plane and the equatorial
plane is employed to understand the underlying dynamics. The flow-visualisation using
hydrogen-bubbles and dye are also performed in some cases. In the following chapter 3,
the experimental methodologies, procedures and equipments employed in this study are
presented in detail.
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Chapter 3

Experimental Methodology

However difficult life may seem there
is always something you can do and
succeed at.

Stephen Hawking

3.1 Overview

This chapter provides an overview of the experimental methodologies, facilities, equip-
ments and procedures employed in the current study. In § 3.2, an outline of the com-
plete experimental arrangement is given. In the following sections, each method and
the equipment used is then decribed in detail. § 3.3 discusses the displacement mea-
surement procedure followed by § 3.4 which elaborates on the air bearing rig, and § 3.5
provides details of the force measurement methods. In § 3.6, the rotation rig and the
support setup is explained followed by § 3.7 which provides comprehensive details of
the flow visualisation techniques employed in the current study.

3.2 Experimental arrangement

The experiments were conducted in the recirculating free-surface water channel of the
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash Univer-
sity, Australia. The test section of the water channel has dimensions of 600 mm in
width, 800 mm in depth and 4000 mm in length. A mixed-flow pump that is powered
by an AC electric motor drives the water channel. The free-stream velocity in the chan-
nel could be varied continuously over the range 0.05 6 U 6 0.45 ms−1, corresponding
to the pump frequency range 5 − 50Hz. The operational frequency of the pump was
controlled digitally using the LabVIEW®software. The flow quality in the channel was
maintained by regular cleaning, and the periodic measurement of free-stream veloc-
ity and turbulent intensity. The upstream flow in the channel was conditioned by a
combination of mesh, honeycomb and a three dimensional 3:1 ratio contraction. This
enabled the free-stream turbulence level in the test section to be less than 1%. Further
characterisation details of the water channel facility can be found in Zhao (2012).

A schematic of the experimental setup is shown in figure 3.1. A low-friction air
bearing system was placed above the water channel that provided low structural damp-
ing and constrained the body motion to be in the transverse direction to the oncoming
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Figure 3.1: Schematic of the present experimental arrangement.

free-stream. The sphere model was vertically supported by a thin stiff driving rod that
was adapted to a rotor mechanism. The rotor mechanism was mounted to a 6-axis force
sensor coupled with the carriage. The set of experiments aimed at investigating the
effect of free surface were performed without the rotor rig. Particle image velocimetry
(PIV) was used along with the simultaneous displacement and force measurements to
detect and identify the main fluid structures in the region of interest. Details of each
experimental technique will be discussed in detail in the following sections.
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3.3 Displacement measurements

The body displacement was measured using a non-contact magnetostrictive linear vari-
able differential transformer (LVDT) (model SE 750-10000 manufactured by Macro
Sensor�, USA). Typically, an LVDT consists of a cylindrical magnetic core unit (usu-
ally attached to the oscillating mass whose displacement is to be measured) and a coil
assembly secured in a cylindrical stainless steel housing. It works on the principle of a
transformer, where a primary winding is excited by an external voltage source, and it
generates magnetic flux coupled to two secondary windings. Depending on the position
of the magnetic core, the voltage difference between the two secondaries change linearly.
A constant 24V DC was used to excite the LVDT and its output voltage ranged from
0-10V, corresponding to a linear measurement range of 0-250mm. The accuracy of the
LVDT was within ±0.01% of the 250 mm range available.

One should note here that the total transverse force acting on the sphere can be
derived from the measured displacement signal using the equation of motion 2.16. Pre-
cise determination of the force signal relies heavily on how accurately the velocity and
acceleration signals can be derived from the measured displacement signal. It was ob-
served that the LVDT signal could be prone to the electromagnetic noise emitted by
the driving motor, which decreased the accuracy of the force measurements. To rectify
this, an optical linear encoder (model: RGH24, Renishaw, UK) with a resolution of
1µm was also employed to measure the displacement signal. An optical encoder con-
sists of a linear scale containing alternating reference markers, and an optical sensor
unit that has a light source and a photo sensor. The linear scale in the current study
was a gold plated metallic strip with scaled facets with a 20µm pitch. It was powered
by an an external 5V DC supply. In the present setup, the scale was attached to the
fixed base plate of the air-bearing rig and the optical sensor unit was installed onto the
moving carriage. As the sensor unit moves with the oscillating body, it receives pulses
of light reflected by the linear scale’s markers that are registered as voltage signals.
Since the linear encoder was digital, electromagnetic noise did not affect the accuracy
of the displacement signal measurement. This considerably improved accuracy and en-
abled reliable velocity and acceleration signals to be derived, which, in turn, enabled
an accurate determination of the lift force signal as discussed above. This was tested
through a direct comparison against the lift force determined by the force sensor over
a wide range of U∗. It was found that the lift force measured using the force sensor
matched well that derived from the linear encoder and the LVDT signals, indicating
accurate measurements of the displacement and the lift force from several techniques.
This aspect will be elaborated in detail in § 3.5.

3.4 Air-bearing rig

The current hydro-elastic problem was modeled using a low-friction airbearing sys-
tem that provided low-structural damping and constrained the body motion to be in
the transverse direction to the incoming free-stream. Similar air bearings have been
extensively used in the past to experimentally simulate the low-friction condition in
such systems (Feng 1968; Khalak & Williamson 1997; Govardhan & Williamson 2005;
Zhao et al. 2014a). The current airbearing system was designed by Zhao et al. (2018)
and constructed in house by FLAIR and the Department of Mechanical and Aerospace
Engineering.
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Figure 3.2: An illustration of the current spring mass system (shown on the left) that can
be reduced to an equivalent spring mass system shown on the right.

The current setup utilised 4 porous carbon air bushings commercially manufactured
by NEWWAY® Air bearings, USA. The oscillating mass was supported by two hollow
carbon fiber guide shafts. It was found through several tests that the precision of the
guide shafts is absolutely crucial to the performance of the air-bearing rig. Replacing
the carbon fiber shafts with the aircraft grade stainless steel shafts with 0.007mm tol-
erance and a surface finish 16 RMS significantly improved the air bearing performance.
Compressed air was supplied to all the four air bushings at a pressure of 90 PSI that
provided the frictionless motion by creating a uniform thin layer of air acting as a lubri-
cant between the guide shafts and the bushings. It was important for the performance
of the bushings that the compressed air supply was filtered and regulated upstream to
maintain a continuous steady supply of clean and dry air. The structural stiffness of
the airbearing system was controlled by extension springs that were attached to both
sides of a slider carriage. For the current experiments, 2 stainless steel springs, model
B17-129, commerically manufactured by Century Spring Corp® were attached in series
on both the sides of the carriage. Each spring had an outer diameter of 7.137 mm, wire
diameter of 0.381 mm, free length of 63.5 mm, and spring constant of k ≈ 5.25Nm−1.
Figure 3.2 shows an illustration of the current spring mass system and its equivalent
spring mass system. The two springs on each side of the moving oscillating mass are
in series giving rise to an effective spring constant of k1 = k/2 & k2 = k/2. k1 and
k2 are now in parallel giving rise to a total equivalent spring constant for the system
to be keq = k. Hence, the overall spring constant of the system was the same as the
individual spring constant, i.e., 5.25 Nm−2. It was found that the heavy motor and
encoder wires can change the effective spring constant of the system. Also, they can
cause errors in the total oscillating mass of the system. Therefore, the thick and heavy
motor wires were replaced with very thin wires, and they were clamped at the carriage
first and then again at the ceiling so as to minimise obstruction to the low-friction
motion in the transverse direction. This also helped to reduce errors in the direct force
measurements.
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Figure 3.3: Figures showing the output reading of the ATI sensor for progressively increas-
ing/decreasing applied load in x direction (left) and in y direction (right).

3.5 Force measurements

The forces acting on the sphere were measured using a multi-axis load cell (Mini40,
ATI-IA), which measures six-component forces and moments (Fx, Fy, Fz, Mx, My,
Mz) with a resolution of 1/200 N for Fx and Fy, and 1/100 N for Fz. This load cell is
highly sensitive, based on silicon strain gauges, which provide a signal 75 times stronger
than the conventional foil gauges. It saturates at any load greater than its maximum
sensing range value, which is 20N in Fx and Fy, 60N in Fz, and 1 Nm in Mx, My and
Mz. For each data set, the raw analog voltages corresponding to all of the components
of (Fx, Fy, Fz, Mx, My, Mz) were acquired at 100Hz for more than 100 oscillation
cycles at each flow velocity, and were converted to a digital signal using a differential-
ended DAQ board system. The raw voltages were then converted to forces using a 6×6
calibration matrix (provided by ATI) that decouples all of the components to provide
the required drag and lift forces presented in this study.

The data sampling and recording were controlled via customized LabVIEW®8.5
VI programs (see Zhao 2012), while the data processing and analysis were performed
using MATLAB codes. The acquired signal was filtered using a Butterworth filter with
an order of 4 and a cut off frequency of 2. The performance of the load cell was exam-
ined by placing the ATI in the current experimental arrangement (see figure 2.5) and
then applying known loads in the x and y direction. Figure 3.3 shows the calibration
curves for the force sensor showing the output reading of the sensor as the applied load
is progressively increased and then decreased. Although, the commercially made ATI
sensor is extremely sensitive and accurate, it is susceptible to temperature changes, and
can give erroneous force readings if not properly insulated from heat sources (e.g. the
motor). As the stepper motor heats up during its operation, the heat conducts to the
sensor leading to large drifts in the force signal. A 10 mm non-conducting acetal plate
was installed between the rotor rig and the sensor to reduce the heat conduction. This
considerably reduced the temperature rise of the load cell and brought the drifting in
the force signal to acceptable levels. The results from one of the dry tests (performed
outside the water channel) is presented in figure 3.4, where the motor was run at 300
rpm for 5000 seconds and the temperature of the ATI was recorded using a resistance
temperature detector. For this test, the sphere was not attached to the rig so as to
make sure that no fluid forces are involved. The figure shows the force signal drifting
as a function of the temperature rise of the ATI load cell for the case when the insu-
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Figure 3.4: Figures showing the temperature rise of the load cell correlated with the drifting
in Fx and Fy with insulation installed (shown on right) compared to when it is not installed
(shown on left). The motor was run at 300 rpm for 5000 seconds in this test and the sphere
was not attached to the rig. T is normalised temperature of the force sensor and Fx and Fy

are normalised forces in the x-axis and y-axis, respectively.

lation is not installed (shown on the left) compared to the case when the insulation
is installed (shown on the right). As evident from the figure, the rise in the sensor’s
temperature translates almost linearly into the rise in Fx. For this particular case,
there was ∼ 17% increase in the sensor temperature due to operating motor that led to
∼ 17% increase in Fx and ∼ 11.3% increase in Fy. However, installing the insulation
reduced the temperature rise to only ∼ 4%, which reduced the drift in Fx to 3% and
the drift in Fy to less than 0.5% in 5000 seconds. Note here that during the actual
experiments, the signal was recorded for ∼100 sphere oscillation cycles, i.e., only ∼500
seconds. so the drifting was reduced to insignificant levels in both Fy and Fx. It should
be pointed out here that the signal drifting is very difficult to predict as it varies with
the rotational rate of the motor and other environmental factors. Thus, it was always
advisable to bias the sensor regularly so as to get correct readings. In the current
experiments, the sensor was biased after every 4-5 data points by stopping the motor
and the pump. A reference signal was recorded after the sphere reached a complete halt.
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In the current experimental arrangement (see figure 3.5), the force sensor is placed
above the rotor rig. In this situation, the force measured by the strain gauge or force
sensor in the y-direction, FSG, is not the direct measurement of the total transverse
force acting on the sphere (Fy). One has to consider the inertial term accounting for
the accelerating mass below the load cell as given by the following equation

Fy = FSG +mbÿ, (3.1)

where, mb is the mass below the strain gauge that includes the sphere, support structure,
rotation rig, and half of the mass of the sensor (See figure 3.5). Accurate estimation of
Fy relies on how accurately ÿ is derived from the measured displacement signal. This
method of force measurement has been termed the ‘direct force measurement ’ in the
current study, although, it is also a derived quantity in a sense. As discussed earlier,
Fy can also be computed from the measured displacement signal using the equation of
motion recollected below

Fy = mÿ + cẏ + ky.

Fy computed using this approach has been termed ‘derived force measurement ’. This
approach of computing Fy from the measured displacement signal is only appropriate
where highly accurate digital displacement measurements are possible. It also requires,
of course, accurate measurements of the relevant parameters of the spring-mass system
(total oscillating mass, spring constant and the structural damping). One can examine
the accuracy of the force sensor by directly comparing the forces computed using the
two approaches. As shown in figure 3.5, FSG is the direct reading output from the force
sensor that can also be computed from equation 2.16 by considering the top mass mt

of the system as shown below.

FSG = mtÿ + cẏ + ky.

Such a comparison is shown in figure 3.6 for three different reduced velocities in three
vibration modes of the sphere VIV response. The force derived from the above equation
considering the top mass of the system (shown in black) closely matches the direct force
sensor reading FSG (shown in red) in all the three modes of vibrations. Figure 3.7 shows
the variation of the rms of the total transverse force coefficient Cy rms with the reduced
velocity, computed from both the approaches. This comparison demonstrates that
the force sensor was able to accurately measure the forces in the current experimental
arrangement.
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3.6. Details of the rotation rig and the support setup

Most of the force coefficients reported in the current study employed the derived
force measurements. The force measurements from the load cell suffered from a greater
degree of noise, presumably from the electromagnetic sources. More importantly, the
load cell suffered large drifts in the force signal due to the motor operation; hence
the preference for the force derived from the displacement signal. In the first study
discussed in § 5, force coefficients utilising both the approaches have been reported.
However, the latter two studies discussed in § 6 and § 7, report only the derived force
measurements.

3.6 Details of the rotation rig and the support setup

3.6.1 Rotation rig

The rotary motion was driven using a miniature low-voltage micro-stepping motor
(model: LV172, Parker Hannifin, USA) with a resolution of 25 000 steps/revolution,
which was installed inside the rotor mechanism shown in figure 3.9. The rotation speed
was monitored using a digital optical rotary encoder (model: E5-1000, US Digital,
USA) with a resolution of 4000 counts/revolution. The motion control was realised
using Parker® 6K motor controllers and drivers. The laboratory computer hosted
a digital input-output interface that communicated with the 6K controller. All the
motor control parameters such as motor-controller scaling, operation modes, rotational
rates, frequency and amplitude of the sinusoidal rotary motion were input into the 6K
controller’s user interface. This information enabled the controller to control the DC
motor drivers that regulate the motion of the stepper motor. More details of the motion
control system can be found in Wong et al. (2017); Zhao et al. (2018).

To ensure that the motor was following the input motion profile precisely, the output
signal from the optical encoder built into the rotation rig was recorded and monitored
during the experiments. For experiments involving constant rotation (§ 5), the relative
error in the output rotation rate of the motor over the entire range of input rotation
rates tested in the current study was less than 0.22 % . For experiments involving the
rotary oscillations (§ 7), the relative error in the output frequency of the sinusoidal
motion profile was found to be less than 3% for the entire range of input frequencies
tested in the current study. The relative error in the output amplitude of the sinu-
soidal motion profile was less than 2%. Figure 3.8 shows the output motion profile of
the sphere for various input frequencies and amplitudes in mode I. The zero position
of the sinusoidal motion profile was found to drift with time, as is evident from the
figure. The drift increased with the increase in the forcing frequency. The maximum
drift was found to be less than αR = 0.057 over 50 cycles for αR = 0.5 and fR = 5. It
was assumed that such a small deviation or drift from the rotational zero position is
unlikely to affect the overall response of the cylinder.

3.6.2 Sphere models and the support setup

The sphere models used in the current study were solid spherical balls precision-
machined from acrylic plastic with a very smooth surface finish. The accuracy of the
diameter was within ± 20µm. In the current study, several sphere sizes of D = 40 mm,
70 mm, 80 mm and 120 mm were used. However, most of the experiments were per-
formed using a 80 mm sphere. The spherical models were supported using a cylindrical
support rod 3 mm in diameter, manufactured from hardened nitrided stainless steel for
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Figure 3.8: Time trace of the output signal from the encoder (shown on left) along with
the power spectra of the signal shown on the right. The input parameters were fR= 0.5 &
αR= 0.5 for (a), fR= 5 & αR= 0.5 for (b), fR= 0.5 & αR= 2 for (c), and fR= 5 & αR= 2
for (d). The corresponding output values are shown on top of each figure.

extra stiffness and to maintain straightness. This gave a diameter ratio D∗ between
the sphere and the support rod of 23.3. The immersion depth (measured from the top
of the sphere to the free surface) of the sphere was 1D. This support arrangement was
used for studying the effect of free surface discussed later in chapter 6. However, for
experiments involving the forced rotation of the sphere (chapter 7 and chapter 5), this
support arrangement was not appropriate mainly for two reasons. The primary reason
was that this support arrangement experienced significant wobbling with the applied
rotation to the sphere. Secondly, the rotating support rod can experience large Mag-
nus force and can potentially interfere with the sphere wake. For this reason, another
support arrangement was employed consisting of a fixed cylindrical shroud covering
the thin rotating rod. This decreased the diameter ratio to D∗ = 12.6. Decreasing
the diameter ratio can significantly affect the amplitude response of a sphere as shown
in figure 3.10. As evident from the figure, the peak vibration amplitude decreased by
almost 26 % by changing the D∗ from 23.3 to 12.6. Hence, another arrangement was
employed, where the shroud was set to approximately 0.5D to minimise its influence
while maintaining the structural support for the driving rod having an immersed length
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Figure 3.9: Schematic showing the cylindrical shroud support arrangement

of 0.5D exposed beyond the shroud. The total immersed length of the support setup
for the sphere was still ∼ 1D. With this shroud arrangement, the vibration amplitudes
recovered, reaching values similar to the D∗ = 23.3 case, as shown in figure 3.10. This
shroud-setup provided extra rigidity to the support, and was able to limit the wobbling
deflection associated with the sphere rotation to within ±0.01D, thereby minimising
undesirable perturbations to the structural dynamics and near-body wake by stabilising
the sphere’s rotary motion. This setup also helped limit the undesirable wake deflection
that would be caused by the large Magnus force on the unshrouded rotating cylindrical
rod. Hence, this shroud arrangement was used for all the experiments involving the
forced rotation of the sphere.

Systematic experiments were performed in this study investigating the effect of
free surface on the VIV response of a sphere, these are included in chapter 6. It was
found that depending on the immersion ratio h∗, which is the ratio of the immersion
depth to the sphere diameter, and the diameter ratio D∗, the VIV response of a sphere
can change significantly. Based on experimental evidence, it was established that the
optimum value of h∗ for studying the VIV response of a fully submerged sphere, for the
support rod and the free surface effects to be minimised, varies from h∗ ∼ 0.6 − 1.75.
Hence, the immersed length of 1D was chosen (h∗ = 1) for studying the VIV response
of a fully-submerged sphere.

3.7 Flow visualisations

3.7.1 Hydrogen-bubble and dye visualisations

For experiments involving constant rotation of the sphere, hydrogen-bubble and dye vi-
sualisations were performed to visualise the wake deflection. For the hydrogen-bubble
visualisations, a 50µ platinum wire, 500 mm long, was used to generate a continuous
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Figure 3.10: The vibration response of a sphere for three different support rod arrange-
ments. The data shown in square symbols correspond to the shroud-arrangement used in the
current study, where Dr = 3 mm for 0.5D immersed length (closer to the sphere) followed
by a stationary shroud of Dr = 6.35 for another 0.5D immersed length. The total immersed
length for all the three arrangements shown in the above figure is 1D.

sheet of hydrogen bubbles in the flow. The platinum wire was soldered in an F-shaped
stainless steel frame, and positioned upstream and parallel to the sphere axis. A poten-
tial of 50 VDC was found sufficient to produce a dense sheet of hydrogen bubbles. No
additional electrolytes were added to the tunnel flow. A continuous Nd:Yag laser was
used to illuminate the bubble sheet. A Nikon D7000 camera with 28mm lens was used
to record videos. Dye visualisation was also employed to visualise the flow. For this
purpose, a Fluoresceine dye was injected using a pitot tube (1 mm in diameter) placed
upstream of the sphere. As the dye propagates along a line in the flow, it mixes with
the surrounding fluid, and the dye lines lose their clarity, and rapidly decay. Thus, this
method of visualisation is restricted mainly to low fluid velocity. An ultraviolet lamp
was used to illuminate the dye. Images were recorded using a digital camera (model:
D7000, Nikon, Japan) equipped with a 50 mm lens that was positioned beneath the
water channel glass floor.

3.7.2 Particle image velocimetry (PIV)

Unlike the above-mentioned flow visualisation methods of dye and hydrogen bubble,
Particle image velocimetry is a non-intrusive flow-visualisation technique. It enables
instantaneous and high-spatial resolution velocity field measurements. One can derive
additional information such as vorticity, circulation and pressure distributions through
post-processing the data obtained from the PIV. This technique is extensively used in
experimental investigations, and has been documented in detail in Adrian (1991) and
Raffel et al. (2007). In the current study, vorticity field measurement using PIV were
performed in the central equatorial plane (x- y plane) as well as the cross-plane (y-z
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plane). The details of each PIV setup are given below:

3.7.2.1 Cross-plane PIV

The flow was seeded with 13µm hollow micro-spheres having a specific weight of
1.1 gm−3. In general, the particle density should be such that a 32 × 32 pixel win-
dow has approximately 4-5 particles. Fewer number of particles usually lead to error
vectors during cross-correlation. A non-coalescing solution was added in the water in
order to avoid coalescence of the particles. Laser reflection from big particles (O(1 mm))
can potentially burn the sensor of a highly sensitive camera like the one used in the
current study.

A continuous laser (model: MLL-N-532-5W, CNI, China) was placed beneath the
water channel glass floor to generate a laser sheet of thickness ∼ 3 mm parallel to the y-z
plane. The cross-plane PIV setup is shown in figure 3.1. Imaging was performed using
a high-speed camera (model: Dimax S4, PCO, AG) with a resolution of 2016 × 2016
pixels2 capable of capturing double images with a single exposure. This camera was
equipped with a 105 mm Nikon lens for the cross-plane PIV. By placing a scale in the
field of view and capturing an image by the camera, one can calculate the magnification
factor (M) in pixel mm−1 an essential piece of information for converting a distance unit
in images from pixels to a desired unit, mm in this case. The magnification factor was
found to be 10.72 pixel mm−1. A mirror was placed at 45◦ angle to the freestream
direction towards the downstream side of the sphere. The mirror was placed more than
6 diameters away from the sphere to avoid any upstream effects.

An external TTL signal generator was used to trigger the camera and the laser at
a sampling frequency in a sequence of 3100 image pairs. Each recorded image in a pair
was separated by a time ∆t. The signal generator’s TTL signal pulses were recorded
simultaneously with the sphere displacement signal measured by the LVDT or the linear
encoder. Hence, the position of the sphere was known at every instant the laser was
fired. This information is necessary for phase-averaging the data fields, which will be
discussed later. For studying the wake of bluff bodies, usually a constant spatial shift
of δd ≈8-10 pixels is sought between the two images in a pair. Hence, an approximate
∆t to be used in the equatorial PIV can be deduced for every flow velocity by using the
equation ∆t = δd /U . However, for the cross-plane PIV, ∆t calculated using the above
equation may be too large. Since the through-plane velocity of the tracer particles is
relatively large compared to the in-plane velocity, the particles captured in the first
image in a pair may already have passed through the plane when the second image is
captured. Hence, for the cross-plane PIV, one has to process a few image pairs in situ
and find a suitable ∆t by trial and error.

The PIV images were processed and the velocity fields deduced using in-house PIV
software developed originally by Fouras et al. (2008). The images in each pair are first
divided into a grid of 32×32 pixel2 interrogation windows. Fast Fourier Transform
(FFT) is then applied for calculating the discrete cross-correlation function between
the interrogation windows sampled from the two images in a pair with a 50% window
overlap. The average displacements (∆x and ∆y) of the particles in the interrogation
window are calculated statistically by locating the peak value in the cross-correlation
calculation. The location of the peak can be computed to a sub-pixel accuracy using
a least-square fit of the Gaussian function (Fouras & Soria 1998). An inverse Fourier
Transfer was then used to compute the velocity vectors. Thus, with the known values
of ∆t and M, the two-dimensional local velocity vectors can be accurately determined
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Figure 3.11: Schematic of the present experimental arrangement for the PIV measurement.

within the interrogation windows using the following equations

u =
∆x

∆t
; v =

∆y

∆t
. (3.2)

Vorticity field (ω) is an important quantity to examine the flow structures and can
easily be derived from the planar velocity field by using the following equation

ωz =
∂v

∂x
− ∂u

∂y
, (3.3)

where, ωz is out-of-plane z component vorticity vector that is relevant for the present
study. The accuracy of the vorticity measurements depend on the spatial distance
between the velocity points in the interrogation windows in an image pair and also
on the accuracy of the velocity field calculation. Fouras & Soria (1998) demonstrated
in their study that by applying a second order polynomial fit χ2 to the local velocity
components with analytic differentiation, the accuracy of the vorticity calculation is
improved compared to other methods based on finite difference calculations. Hence,
the current study used the χ2

21 method developed by Fouras & Soria (1998) that uses 21
surrounding velocity sampling points to calculate the vorticity fields. The vorticity field
reported in the current study were non-dimensionalised using the following equation

ω∗z =
ωzD

U
,

where, D is the sphere diameter. To highlight the significant large-scale structures
that dominate the sphere wake, the PIV measurements were phase-averaged over more
than 100 cycles. A phase-band averaging method was used for phase-averaging. For
each PIV measurement case, a set of 3100 image pairs were sampled at 10 Hz. Each
image set was sorted into 24 phase bins based on the sphere’s displacement and velocity
(see figure 3.12), resulting in more than 120 image pairs for averaging at each phase.
The final phase-averaged vorticity fields were also smoothed slightly using an iterative
Laplace filter to remove short length-scale structures and to better highlight the larger-
scale structures that dominate the wake.
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Figure 3.12: PIV phase-band averaging method

3.7.2.2 Equatorial PIV

The experimental procedure for the equatorial PIV was the same as the cross-plane
PIV except for a few differences that are highlighted here.

For the equatorial PIV, the continuous laser was placed on the side of the channel
to generate a laser sheet parallel to the x- y plane. The camera was positioned below
the water channel focusing on the laser plane through the glass floor of the channel.
The camera was equipped with a 50 mm Nikon lens giving rise to a Magnification factor
of 7.36 pixel mm−1 for the field-of-view in the equatorial-plane. This PIV arrangement
was employed in the first study on the effect of constant rotation on the VIV response
of a sphere (§ 5). However, the PIV was perfomed in the cross-plane.
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3.8 Experimental procedures and Validation of the setup

3.8.1 Free decay tests

Structural damping is an important parameter characterising the FIV response of bluff
bodies. FIV systems can experience three different kinds of damping sources: (1)
structural damping due to relative motion between different parts of the system and
impact; (2) fluid damping due to hydrodynamic forces exerted by the surrounding
fluid; (3) flexural damping due to flexing of materials. In the current problem, since
the sphere and the support system are rigid, only structural and fluid damping are
considered. Experimentally, this is measured employing a free decay test in air. For
the free decay test in the current experiments, the system was given an initial known
displacement Ao and then released to freely oscillate. The resultant damped motion
was recorded for the calculation of the structural damping and natural frequency of
the system. In order to minimise the air resistance, the sphere and the support system
were removed and an equivalent congregated mass was attached to the air bearing rig
carriage.

Under no external force, the governing equation for a 1-DOF damped free vibration
system can be given by

ÿ + 2ζωnẏ + ω2
ny = 0, (3.4)

where, ζ is the structural damping ratio defined by ζ = c/(2
√
km), and ωn is the natural

angular frequency of the system defined by ωn =
√
k/m. The solution to the above

equation for an underdamped system (0 < ζ < 1) can be represented by

y(t) = Aoe
−ζωnt sin(

√
1− ζ2ωnt). (3.5)

The decay rate of the system, defined as η = −ζωn, can thus be estimated from the
slope of a plot of ln ymax vs. time, t. For a very lightly damped system (ζ << 1), the
damped natural angular frequency ωd can be approximated as the undamped natural
angular frequency ωn as shown below

ωd =
√

1− ζ2ωn � ωn∀ ζ << 1. (3.6)

Consequently, the damped natural frequency fd can also be approximated as fn and
can be given by

fd ≈ fn =
ωn
2π

=
1

2π

√
k

m
(3.7)

For the current set of experiments, since the system is very lightly damped, the natural
frequency and the damping ratio in vacuum are assumed to be equal to their respective
values in air.

On similar lines, a free decay test in water was also performed to measure the natural
frequency of the system in water. During a free decay test in water, the system is not
only damped due to structural damping but also due to fluid damping. In stationary
water, the natural frequency of the system in water can be expressed as

fnw =
1

2π

√
k

m+mA
, (3.8)

where mA is the added mass of the bluff body defined by mA = CAmd. Here, CA is the
added mass coefficient (0.5 for the case of a sphere) and md is the displacement fluid
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Figure 3.13: An example of the free decay test in the air

mass. Figure 3.13 shows an example of free decay tests performed in air for a sphere
of diameter D = 80mm for a mass ratio of m∗ = 7.8. As shown in Figure 3.13(b),
the logarithmic maxima of free decay response closely followed the best linear fitting
line. Also, the natural frequency for every cycle of the free decay test was within 0.5%
of the estimated natural frequency fna. The estimated natural frequencies in air and
water give an added mass coefficient of CA = ((fna/fnw)2−1)m∗ = 0.52 that is in good
agreement with the known potential added mass for a sphere. The free decay tests in
air and water demonstrated that the current experimental rig exhibited the response of
a linear 1-DOF spring-mass system and that the performance of the air-bearing rig was
reliable. It was also established through various repeatability tests that the damping
ratio and the natural frequencies were repeatable for the current experimental rig.

3.8.2 VIV of a non-rotating sphere: Validation

In this section, the experimental methodologies discussed in the previous section will be
employed to reproduce the VIV response of a non-rotating and fully submerged sphere.
The results will be directly compared against the benchmark studies.

For this set of experiments, the spherical model was 80 mm in diameter supported
with a cylindrical support rod 3 mm in diameter. The immersed length of the support
rod was one diameter (80 mm). The free decay tests were conducted individually in air
and water to obtain the natural frequency in air, fna = 0.254, and in water, fnw = 0.245.
The mass ratio was m∗ = 7.8 and the structural damping of the system was ζ = 0.002.
The response was studied for the U∗ range of 3 ≤ U∗ ≤ 20, corresponding to a Reynolds
number range of approximately 5000 ≤ Re ≤ 30 000. The signal was acquired at 100 Hz
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Figure 3.14: Amplitude response of a fully submerged sphere obtained in the current study
compared to that reported by Govardhan & Williamson (2005). The mass damping in the
current study is (m∗ + CA)ζ = 0.0169, compared to approximately 0.03 in their study.

for approximately 170 cycles at each data point in this set of experiments.

In figure 3.14, the results from the current study are directly compared to the
results reported by Govardhan & Williamson (2005) for a similar mass ratio of m∗

= 7. The mass damping of the current study was (m∗ + CA)ζ = 0.0169, compared
to approximately 0.03 in their study. For comparison with their study here, A∗rms is
plotted against the scaled U∗S , defined as U∗S = (U∗/f∗)S ≡ fvo/f , where S is the
Strouhal number for the vortex shedding (≈ 0.18 in this case).

As evident from the figure, the amplitude response of a sphere in the current study
closely follows the trend reported by Govardhan & Williamson (2005). The vibrations
lock-in at U∗S ≈ 0.87, corresponding to a U∗ value of 4.5, continuously progressing
from mode I to mode II and reaching a peak saturation amplitude of 0.8 in both cases.
Although, in the study by Govardhan & Williamson (2005), the response at this mass
ratio is reported only until U∗S = 2, the current study reveals that after the peak
response in mode II, the amplitude response smoothly drops to a lower plateau that
extends towards mode III as U∗S �3. The vibrations in the ‘plateau’ region exhibit
slight differences to the highly periodic vibrations in mode II, albeit the frequency of
oscillation stays close to the natural frequency of the system over the entire U∗S range
examined in the current study.

Unlike the case of a tethered sphere with a very low mass ratio, where the two
vibration modes are distinctly separated by a desynchronised region, there is no such
separation between the two modes in 1-DOF hydroelastic VIV and with higher mass
ratio in this study. The transition between the modes is continuous and gradual with
U∗, hence it is difficult to differentiate between the two modes by just looking at the
amplitude response. The transition from one mode to the other is made clear through
observations of the phase differences between the force and the sphere displacement
signals for the two modes.

Figure 3.15 shows the variation of the total phase φtotal and the vortex phase φvortex
with U∗, correlated with the amplitude response. The results reported by Govardhan
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(bottom) with U∗, correlated with the amplitude response (top). Right: The variation of
the same response quantities reported by Govardhan & Williamson (2005) are presented for
comparison.

& Williamson (2005) for relatively a higher mass ratio of m∗ = 31.1 are also shown
for comparison. The response undergoes a transition from mode I to mode II when
φvortex crosses through 90◦, corresponding to the ‘inflection point’ in the amplitude
response. Likewise, within the mode II regime, φtotal passes continuously through 90◦,
corresponding to the peak of the amplitude response. The variations in the total and
the vortex phases obtained for m∗ = 7.8 in the current study closely match the trends
of the phases reported by Govardhan & Williamson (2005) previously for a higher mass
ratio of m∗ = 31.1.

In the current study, with the U∗ range further extended beyond U∗ = 14, a slight
decrease in both the total phase, φtotal, and the vortex phase, φvortex, was observed as
shown in the figure 3.15. Simultaneously a slight increase in the vibration amplitude is
also evident in the figure. This corresponds to the ‘plateau branch’ mentioned above in
figure 3.14 when (U∗/f∗)S �3. Jauvtis et al. (2001) reported the existence of another
mode of vibration, mode III, for higher U∗ values varying from 20 to 40 for a tethered
sphere of mass, m∗ = 80 in wind-tunnel experiments. Therefore, the vibrations in the
‘plateau branch’ can be considered to be approaching the mode III response of the
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sphere vibrations.

Herein, it is demonstrated that the vibration amplitude response as well the trends
in the total phase difference and vortex phase difference for an elastically mounted
sphere with 1-DOF obtained with the current study closely follows the trends reported
by previous benchmark studies.

3.9 Chapter summary

To summarise, the present chapter gave details of the experimental methodologies and
equipment that were employed in the current study. Extensive tests were performed
to confirm the repeatability and optimal performance of all the experimental methods.
The rig was able to reproduce the results from the benchmark studies, further demon-
strating the optimal performance of the experimental methods. Now, in the following
sections, these methodologies are utilised to explore the research questions that were
posed for the current study.
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Chapter 4

Flow past a transversely rotating
sphere

If you can’t explain it simply, you don’t
understand it well enough.

Albert Einstein

4.1 Abstract

Rotating bluff bodies are known to experience a side force due to a well-known phe-
nomenon called the Magnus effect. The Magnus effect is evident in many sports (cricket,
soccer, baseball, and football), where spinning balls are observed to change their tra-
jectories dramatically. In this chapter, we have experimentally investigated the effect of
imposed transverse rotation on the drag and lift forces experienced by a sphere in the
intermediate Reynolds number range (103 < Re < 104). The results show the consid-
erable effects of Reynolds number and the rotation ratio α (the ratio of the equatorial
velocity of a sphere to the free stream velocity) on the force coefficients. A sudden
drop was observed in both the lift and drag coefficients at a ‘critical’ α value, before a
recovery at a higher alpha value. This is unlike the behaviour for low Reynolds number
flow (Re < 1000), where the drag and lift coefficients monotonically increase. Flow
visualisations reveal that the boundary layer on the advancing side undergoes transi-
tion to turbulence close to the critical α that leads to an increase in the advancing side
separation angle, which could be related to the sudden drop in the force coefficients.

4.2 Introduction

Flow-structure interaction of rotating bluff bodies has been intriguing to scientists for
centuries. It finds applications not only in sports where spinning balls are known to
change trajectories but also in ship propulsion (Flettner rotors), external ballistics,
particle-laden flows, saltation of particles, and aeronautic applications. Rotating bluff
bodies are known to experience a side force (the Magnus force) due to a well-known
phenomenon called the Magnus effect, which is a consequence of the asymmetry of
flow separation on the advancing and retreating sides of a rotating body. The sphere,
which is the three-dimensional body with the highest symmetry, represents the ideal
body to investigate the flow physics further before tackling more complex bodies that
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surround us. Interestingly, the discovery of the Magnus effect for a sphere occurred
almost two centuries earlier than that of its two-dimensional counterpart, the circular
cylinder. However, there have been fewer experimental studies on rotating spheres due
to the challenges of developing experimental setups and drive systems that do not un-
duly interfere with the flow over them. Most of the previous literature on transversely
rotating spheres can be broadly classified into two groups: the first set of studies are
mostly numerical studies that focused on low Reynolds numbers of Re ≤ 1000 (e.g.,
Poon et al. (2010); Loth (2008); Tanaka et al. (1990); Tsuji et al. (1985)). The sec-
ond set of studies are mostly experimental studies that focused on very high Reynolds
numbers of Re ≥ 6× 105 (e.g., Macoll (1928); Barlow & Domanski (2008); Kray et al.
(2012); Kim et al. (2014)). Both these set of studies found different characteristic drag
and lift profiles for varying rotation rates. Studies performed at low Reynolds numbers
showed a monotonic increase in the force coefficients with the rotation rate α. How-
ever, the studies performed at high Reynolds numbers focused mainly on the inverse
Magnus effect, where one observes a sudden change in the direction of the lift force at a
‘critical’ rotation ratio. They observed the inverse Magnus effect for a narrow range of
rotation ratios at very high Reynolds numbers (Re ≥ 0.8×105). The question arises as
to how the force coefficients will look like in the intermediate Reynolds number range
(103 < Re < 104). Do the coefficients increase monotonically similar to that reported
for low Reynolds numbers or there is a sudden drop in the coefficients similar to that
observed at high Reynolds numbers? In any case, what is the underlying dynamics?
These questions remain unanswered. Moreover, the small magnitude of forces for in-
termediate Reynolds numbers make measurements even more challenging, at least in
low viscosity working fluids such as water and air. That is the reason, many previous
experimental studies on rotating spheres have been focused on higher Reynolds num-
bers in spite of the relevance of intermediate Reynolds numbers to many engineering
applications, such as particle flows where particle-particle and particle-wall collisions
can lead to combined translational and rotational motion of the spherical particles.
Moreover, due to difficulty of measuring quantitatively the flow near the surface of a
rotating sphere, the details behind the Magnus effect are not well understood. Recently,
lifting devices using the Magnus effect have been receiving attention due to their high
lift forces and stall resistance in spite of the added complexity of driving mechanisms.
It is crucial to know the rotation rates for which the forces suddenly drop for more
effective and safer designs. Therefore, in the current chapter, the effect of the rota-
tion ratio on the drag and lift profiles of a sphere is studied for intermediate Reynolds
numbers. Flow-visualisations using Fluorescein dye, and Particle Image Velocimetry
measurements were also performed to understand the underlying dynamics.

The aerodynamic forces on a spinning sphere, the drag (FD) and lift (FL) forces,
depend on various flow parameters such as density ρ, viscosity µ, sphere diameter D,
and sphere angular velocity ω. From dimensional analysis, we obtain:

Re =
ρUD

µ
, (4.1)

α =
Dω

2U
, (4.2)

CD, CL = f(Re, α), (4.3)
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Figure 4.1: Schematic showing the experimental arrangement (not to scale) for this study.

where the drag and lift coefficients, CD and CL, are defined as follows:

CD =
FD

1
2ρU

2A
, (4.4)

CL =
FL

1
2ρU

2A
, (4.5)

where A is sphere projected area (A = πD2/4).

4.3 Experimental arrangement

The spherical model used was 80 mm in diameter, with a smooth surface finish. It was
supported from the top apex using a cylindrical support rod. In order to avoid any
interference, the driving shaft (3 mm in diameter) was covered with a fixed cylindrical
shroud, 6.35 mm in diameter. The sphere was placed more than 2 diameters beneath
the free surface in order to minimize any free-surface effects. In order to drive the sphere
over a range of rotational speeds, a miniature low-voltage LV172 Parker stepper motor
was used. It was controlled using a Parker 6K controller. The vibration of the sphere
due to rotation was minimised by adopting a very stiff fixed support shaft supported
by miniature ball bearings at the end. More details of the rotation rig can be found in
Wong et al. (2017).

The forces acting on the sphere were measured using a multi-axis load cell (Mini40,
ATI-IA), which measures six-component forces and moments (Fx, Fy, Fz, Mx, My,
Mz) with a resolution of 0.005 N for Fx and Fy, and 0.01 N for Fz, respectively. For
each data set, the raw analogue voltages were acquired at 100 Hz for 300 s at each flow
velocity, and were converted to a digital signal using a differential-ended DAQ board
system. Fluorescein dye was used for flow visualisations. The dye was injected using
a pitot tube placed upstream of the sphere. PIV measurements were also carried out
in the equatorial plane in order to measure the separation angle. For this purpose, the
flow was seeded with 13µm hollow micro-spheres having a specific weight of 1.1 gm−3.
Imaging was performed using a high-speed camera (model: Dimax S4, PCO, AG) with
a resolution of 2016 × 2016 pixels2. This camera was equipped with a 200 mm Nikon
lens, giving a magnification of 34.28 pixel mm−1 for the field-of-view. Velocity fields

51



Chapter 4. Flow past a transversely rotating sphere

104
0.3

0.4

0.5

0.6

Zoomed in view

102 103 104 105 106

0

0.5

1

1.5
Achenbach (1972)

Roos et al (1971)

Maxworthy (1969)

Current study
Current study

Re range

Re

CD

Figure 4.2: Variation of the drag coefficient CD of a stationary sphere with Reynolds
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were deduced using in-house PIV software developed originally by Fouras et al. (2008),
using 32× 32 pixel2 interrogation windows in a grid layout with 50% window overlap.
The overall schematic of the experimental arrangement is shown in figure 4.1.

4.4 Stationary sphere validation

In order to verify the performance of the force balance in the current experimental ar-
rangement, the drag coefficient on a stationary sphere (70 mm in diameter) supported
using a cylindrical support rod of diameter 6.35 mm was measured. The sphere surface
was two diameters beneath the free surface. The force on the isolated support rod
was measured after removing the sphere and correcting the end condition using an end
plate. That force was subtracted from the measured force to correct the drag coeffi-
cient. Figure 4.2 shows that the drag coefficient estimated in the current experimental
arrangement collapses well and agrees with previous literature. It also suggests to rea-
sonable accuracy that the force on the cylinder and sphere add linearly to give the force
on the rod/sphere combination. As also highlighted in the figure, the Reynolds number
range for the current study lies in the ‘subcritical’ regime, where the drag coefficient
stays approximately constant for a wide range of Reynolds numbers. This intermediate
Reynolds number regime is not well explored in the literature in terms of the effect of
rotation on the force coefficients, as discussed in the previous section. Therefore, in
the following sections, the effect of rotation on the force coefficients in the intermediate
Reynolds number regime will be studied in detail. Results will be presented for a few
selected Reynolds numbers in this regime.

4.5 Forces on a rotating sphere

Figure 4.3 shows the variation of the lift coefficient CL, and the drag coefficient CD,
with the spin ratio α in all the three Reynolds number regimes for a selected set of
Reynolds numbers. Previous numerical study by Poon et al. (2014) performed at lower
Reynolds numbers (Re 6 1000) demonstrated a monotonic increase of lift and drag
coefficients with the rotation ratio α. However, the present study reveals a sharp
drop in the force coefficients beyond a certain α value. When the Reynolds number
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Figure 4.3: Variation of the lift coefficient CL (top) and the drag coefficient CD (bottom)
with the rotation ratio α for the current experiment compared to other studies at higher
Reynolds numbers.

is increased from 2.75 × 104 to 4.13 × 104 in the current study, no significant change
is observed in CL. However, CD decreases significantly, and the ‘critical’ alpha value
where the sudden stop is observed, also decreases. The results are consistent with those
from the previous experimental study at higher Reynolds numbers Kim et al. (2014),
which also revealed a sudden drop in the force coefficients, but for relatively lower α
values. One should note here that for very high Reynolds numbers of Re ≥ 105, the
dip in coefficients become dramatic, reaching negative CL values for a certain range of
α (Kim et al. 2014). For these rotational rates, the inverse Magnus effect is observed,
where the lift force acts in the opposite direction to that predicted by the Magnus effect.

Overall, one can see here that the critical α decreases with the increase in Reynolds
number. Also, the sudden drop in the coefficients become progressively smaller in
magnitude with the decrease in Reynolds number, and disappears ultimately for low
Reynolds numbers (at least in the range reported by the previous studies). However,
further studies might be required at low Reynolds number investigating the Magnus
effect at high rotational rates (α > 2) to confirm this claim as one may expect to see a
drop in coefficients (albeit very small in magnitude) at high rotation rates.

These results together with those from previous studies reveal that the ‘critical’ spin
ratio and the drop in force coefficients are Reynolds number dependent. The current
study indicates the drop can even be observed at Re = 2.75× 104, almost an order of
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magnitude below the critical Reynolds number of a sphere.
It is worth mentioning here that although the previous experimental studies by

Kim et al. (2014), Macoll (1928) and Kray et al. (2012) were performed for a similar
Reynolds number of ≈ 6 × 104, there are large variations in the reported data, as
evident from figure 4.4(a). Even at low Reynolds numbers, there are inconsistencies
in the data reported by different studies, see for e.g., figure 4.4(b). Because of these
inconsistencies in the reported data in the past, it was difficult to discern an overall
trend in the variation of the force coefficients over a wide range of Reynolds numbers.

4.6 Physics of the varying Magnus effect

In order to understand the underlying physics behind the sudden dip in the coefficients,
flow visualisations using Fluorescein dye were carried out. Figure 4.5 shows the top
view of the dye visualisations for a sphere rotating in the clockwise direction for various
spin ratios at a relatively smaller Reynolds number of Re = 3510. At this Reynolds
number the dye visualisations are much clearer, allowing the boundary layer transition
to be more easily observed as α is increased. In these flow visualisations, the flow is from
left to right. We observe that as α changes from 0 to 0.2, the wake loses its symmetry
and deflects in the direction of rotation, due to the Magnus effect. The wake deflects
increasingly more with increasing α, correlated with an increasing Magnus force. At α =
1.5, the boundary layer on the advancing side shows signs of turbulent transition that
might be leading to separation delay due to increased crossflow momentum transport.
At α = 3, both the boundary layers become turbulent, and a further increase in rotation
rate does not lead to any further increase in the force coefficients.

In order to get a quantitative measure of the changes in the separation angles due to
turbulent transition, Particle image velocimetry (PIV) was performed in the equatorial
plane passing through the centre of the sphere. Previous studies have shown that the lift
coefficients are directly related to the advancing and retreating side separation angles
(see Kim et al. (2014)) for a transversely rotating sphere. The retreating side separation
angles increase linearly with the increase in the spin ratio. However, the variation of
the advancing side separation angle (θadv) plays a key role in dictating the magnitude
and direction of the lift force acting on the sphere. Hence, in the current study, the
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(a) α = 0

(b) α = 0.2

(c) α = 1.5

(d) α = 3

Figure 4.5: Dye visualisation for a rotating sphere at Re = 3510 at marked spin ratios α.
The figure shows the top view when the sphere is rotating in the clockwise direction and the
flow is from left to right.
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Figure 4.6: Instantaneous velocity contours near the flow separation at the advancing side
of the sphere at (a) α = 0.1, (b) α = 0.4, (c) α = 0.9 and (d) α = 1.5. For this set of images,
the flow is from right to left and the sphere rotates in the clockwise direction. The Reynolds
number is 2.75× 104.

advancing side separation angles were estimated from the velocity fields based on the
criterion: uθ = 0 and ∂uθ/∂r = 0, where (r, θ) are polar coordinates with the origin
at the centre of the sphere. Figure 4.6 shows instantaneous velocity contours near the
separation point at four different spin ratios. The flow separation at the advancing side
of the sphere is clearly visible in the velocity contours. When the spin ratio is increased
from α = 0.1 to α = 0.4, the separation angle clearly decreases. However, when the
spin ratio is further increased to α = 0.9, which lies in the critical regime, the flow
reattaches to the sphere. A small recirculation bubble is also evident. This delays the
flow separation at the advancing side of the sphere. With a further increase in the spin
ratio to α = 1.5, the flow reattachment is absent and a turbulent boundary-layer flow is
formed without the formation of any separation bubble. Figure 4.7 shows the variation
of θadv with the spin ratio correlated with the variation of the lift coefficient. As evident
from the figure, when the spin ratio is increased from 0 to ≈ 0.5, θadv decreases almost
linearly. This bends the wake towards the advancing side of the sphere leading to an
increased Magnus force towards the retreating side. A correlated increase in the lift
coefficient is also evident in the figure. Beyond α = 0.5, a sudden increase in the
separation angle is observed correlated with a sudden drop in the lift coefficient. In the
‘critical regime’, the flow reattaches due to an increased momentum caused by transition
to turbulence. This causes a delay in the flow separation that increases θadv. When α
is further increased to higher values beyond the critical regime, θadv starts decreasing
again and CL starts increasing. At this stage the boundary layer on the retreating side
becomes turbulent too. For very high rotation rates (α > 2), both the boundary layers
become turbulent (also seen in the dye visualisations in figure 4.5). There is no Magnus
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effect beyond this rotation ratio and hence, there is no further increase in the force
coefficients. One can also infer here that for the Magnus effect to manifest, asymmetry
in the boundary layers is required. If both the advancing and the retreating boundary
layers are either laminar or turbulent, the Magnus effect is not observed.

4.7 Concluding remarks

In this study, we have shown that in the intermediate Reynolds number regime, a sudden
drop in the force coefficients is observed with the spin ratio. The critical α and the drop
in force coefficients depend on the Reynolds number. Flow visualisations reveal that
the boundary layer at the advancing side is turbulent in the critical regime. However,
for high spin ratios of α > 2, both the advancing and retreating side boundary layers
transition to turbulence beyond which a further increase in coefficients is not observed.
It is also shown using the PIV measurements that there is a sudden increase in the
advancing side separation angle in the critical regime, where the flow reattaches to the
sphere and a small recirculation bubble is formed. For higher spin ratios, the advancing
side boundary layer becomes turbulent and the separation angle starts decreasing again.
The current study helps us understand the underlying mechanism of the varying Magnus
effect for intermediate Reynolds numbers, and attempts to connect and bridge the
previous studies that were either performed for lower Reynolds numbers (Re ≤ 1000)
or much higher Reynolds numbers (Re ≥ 6 × 104). Due to limitations in acquiring
accurate force measurements in experiments at such Reynolds numbers, a wider range
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of Reynolds numbers could not be studied. However, in the intermediate Reynolds
number range studied, dips in the lift and drag coefficients are still observed, which
presumably translate directly to the inverse Magnus effect at higher Reynolds numbers.
Thus, the present study should be helpful in elucidating the underlying principles of
the varying Magnus effect as the Reynolds number approaches the critical regime.
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Chapter 5

Vortex-induced vibration of a
rotating sphere

Work hard in silence, let your success
be your noise

Frank Ocean

5.1 Overview of the chapter

In this chapter, the publication by the author entitled ‘Vortex-induced vibration of a
rotating sphere’ published in the Journal of Fluid Mechanics (2018), vol. 837, pp.
258-292, has been reproduced with permission Cambridge University Press© 2017.
In this paper, the effect of transverse rotation on the VIV response of an elastically
mounted sphere that is free to oscillate in the transverse direction has been investigated
through an extensive series of experiments employing simultaneous displacement, force
and vorticity measurements. The vibration response is studied for a wide parameter
space of rotational rate varying in the range 0 ≤ α ≤ 7.5, and reduced velocity in the
range 3 ≤ U∗ ≤ 18. The Reynolds numbers in the current study varied in the range
3000 ≤ Re ≤ 30000.

Interestingly, unlike its two-dimensional counterpart, the cylinder, the VIV response
of the sphere reduced gradually and steadily with increasing rotation rate, leading to
almost complete suppression for α ≥ 6. The synchronisation regime became narrower
with increasing α, and the peak amplitude response decreased almost linearly for α . 1.
The time-averaged mean displacement increased towards the retreating side of the
sphere with increasing α, due to an increase in the mean Magnus force. However,
the oscillation frequency remained close to the natural frequency of the system for all
cases. Recurrence analysis revealed a transition from a periodic to a chaotic state in
the recurrence map, complementing the occurrence of broadband frequency spectra at
the onset of bifurcation. Flow visualisations using the hydrogen bubbles and the PIV
techniques were performed in the equatorial plane containing the principal transverse
vibration. It was found that the flow was continuously drawn from the retreating side to
the advancing side of the sphere with increasing rotation rate, which led to entrainment
of fluid onto the advancing side. This entrainment of fluid gave rise to large one-sided
vortex shedding. For the rotation rates where VIV was found to be almost completely
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suppressed, the wake was found to be deflected towards the advancing side with large-
scale flow structures for all shedding cycles.
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Vortex-induced vibration of a rotating sphere

A. Sareen1, J. Zhao1,†, D. Lo Jacono2, J. Sheridan1, K. Hourigan1

and M. C. Thompson1

1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and
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2Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse,
CNRS, Toulouse, France

(Received 6 March 2017; revised 13 October 2017; accepted 16 November 2017;
first published online 20 December 2017)

Vortex-induced vibration (VIV) of a sphere represents one of the most generic
fundamental fluid–structure interaction problems. Since vortex-induced vibration
can lead to structural failure, numerous studies have focused on understanding
the underlying principles of VIV and its suppression. This paper reports on an
experimental investigation of the effect of imposed axial rotation on the dynamics
of vortex-induced vibration of a sphere that is free to oscillate in the cross-flow
direction, by employing simultaneous displacement and force measurements. The
VIV response was investigated over a wide range of reduced velocities (i.e. velocity
normalised by the natural frequency of the system): 3 6 U∗ 6 18, corresponding to
a Reynolds number range of 5000 < Re < 30 000, while the rotation ratio, defined
as the ratio between the sphere surface and inflow speeds, α = |ω|D/(2U), was
varied in increments over the range of 0 6 α 6 7.5. It is found that the vibration
amplitude exhibits a typical inverted bell-shaped variation with reduced velocity,
similar to the classic VIV response for a non-rotating sphere but without the higher
reduced velocity response tail. The vibration amplitude decreases monotonically and
gradually as the imposed transverse rotation rate is increased up to α = 6, beyond
which the body vibration is significantly reduced. The synchronisation regime, defined
as the reduced velocity range where large vibrations close to the natural frequency
are observed, also becomes narrower as α is increased, with the peak saturation
amplitude observed at progressively lower reduced velocities. In addition, for small
rotation rates, the peak amplitude decreases almost linearly with α. The imposed
rotation not only reduces vibration amplitudes, but also makes the body vibrations
less periodic. The frequency spectra revealed the occurrence of a broadband spectrum
with an increase in the imposed rotation rate. Recurrence analysis of the structural
vibration response demonstrated a transition from periodic to chaotic in a modified
recurrence map complementing the appearance of broadband spectra at the onset of
bifurcation. Despite considerable changes in flow structure, the vortex phase (φvortex),
defined as the phase between the vortex force and the body displacement, follows the
same pattern as for the non-rotating case, with the φvortex increasing gradually from
low values in Mode I of the sphere vibration to almost 180◦ as the system undergoes
a continuous transition to Mode II of the sphere vibration at higher reduced velocity.
The total phase (φtotal), defined as the phase between the transverse lift force and
the body displacement, only increases from low values after the peak amplitude

† Email address for correspondence: jisheng.zhao@monash.edu
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Vortex-induced vibrations of a rotating sphere 259

response in Mode II has been reached. It reaches its maximum value (∼165◦) close
to the transition from the Mode II upper plateau to the lower plateau, reminiscent
of the behaviour seen for the upper to lower branch transition for cylinder VIV.
Hydrogen-bubble visualisations and particle image velocimetry (PIV) performed in
the equatorial plane provided further insights into the flow dynamics near the sphere
surface. The mean wake is found to be deflected towards the advancing side of the
sphere, associated with an increase in the Magnus force. For higher rotation ratios,
the near-wake rear recirculation zone is absent and the flow is highly vectored from
the retreating side to the advancing side, giving rise to large-scale shedding. For a
very high rotation ratio of α = 6, for which vibrations are found to be suppressed, a
one-sided large-scale shedding pattern is observed, similar to the shear-layer instability
one-sided shedding observed previously for a rigidly mounted rotating sphere.

Key words: flow–structure interactions, vortex streets, wakes

1. Introduction
Vortex-induced vibration (VIV) of structures can occur in a variety of engineering

situations, such as with flows past bridges, transmission lines, aircraft control surfaces,
offshore structures, engines, heat exchangers, marine cables, towed cables, drilling
and production risers in petroleum production, moored structures, tethered structures,
pipelines and other hydrodynamic and hydroacoustic applications. VIV is a significant
cause of fatigue damage that can lead to structural failures. Numerous studies
have focused on understanding the underlying principles of flow-induced vibrations
and its suppression, especially for cylinders. The immense practical significance of
VIV has led to various comprehensive reviews, including Bearman (1984), Blevins
(1990), Sarpkaya (2004), Williamson & Govardhan (2004), Païdoussis, Price & De
Langre (2010) and Naudascher & Rockwell (2012). However, unlike the situation for
cylinders, there are relatively fewer studies on VIV of elastically mounted or tethered
spheres (e.g. Govardhan & Williamson 1997; Williamson & Govardhan 1997; Jauvtis,
Govardhan & Williamson 2001; Pregnalato 2003; Govardhan & Williamson 2005; van
Hout, Krakovich & Gottlieb 2010; Behara, Borazjani & Sotiropoulos 2011; Krakovich,
Eshbal & van Hout 2013; Lee, Hourigan & Thompson 2013; van Hout, Katz &
Greenblatt 2013a,b; Behara & Sotiropoulos 2016), despite its ubiquitous practical
significance, such as marine buoys, underwater mines, other offshore structures and
tethered or towed spherical objects. Because of the geometric shape of the body,
VIV of a sphere represents one of the most fundamental fluid–structure interaction
problems. It is a generic symmetrical three-dimensional prototype, and improved
understanding of VIV of a sphere provides a framework to comprehend VIV of more
complex three-dimensional bluff bodies around us.

Govardhan & Williamson (1997) and Williamson & Govardhan (1997) reported,
for the first time, the dynamics and forcing of a tethered sphere in a fluid flow. They
found that a tethered sphere could oscillate at a saturation peak-to-peak amplitude
of close to two body diameters. Jauvtis et al. (2001) discovered the existence of
multiple modes of vortex-induced vibration of a tethered sphere in a free stream,
namely Modes I, II and III. The first two modes, which occur over a velocity range
of U∗ ∼ 5–10, were associated with lock-in of the system natural frequency with
the vortex formation frequency, as occurs for the 2S and 2P modes for an excited
cylinder. However, Mode III, which occurs over a broad range of high velocity
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ranging from U∗ ∼ 20–40, does not have any apparent counterpart in the circular
cylinder VIV case. This was later categorised and explained as a ‘movement-induced
vibration’ by Govardhan & Williamson (2005). They further found an unsteady mode
of vibration, Mode IV, at very high reduced velocities, characterised by intermittent
bursts of large-amplitude vibration. The physical origin of such a mode of vibration
still remains unknown.

Previous numerical studies on the effect of rotation on rigidly mounted rotating
spheres at low Reynolds numbers (Re 6 300) (Kim 2009; Poon et al. 2014) have
revealed suppression of the vortex shedding for a certain range of rotation rates. These
studies were performed computationally at relatively low Reynolds numbers. On the
other hand, there have been some experimental studies conducted at considerably
higher Reynolds numbers (Re> 6× 104) that focus mainly on the effect of transverse
rotation on the fluid forces, e.g. the inverse Magnus effect (Macoll 1928; Barlow
& Domanski 2008; Kray, Franke & Frank 2012; Kim et al. 2014), where the
rotation-induced lift suddenly changes direction as the Reynolds number is increased.
It is still unknown if the rotation suppresses vortex shedding at such high Reynolds
numbers. Nevertheless, all these studies have observed a sudden dip in the lift and
drag coefficients for a certain rotation ratio (which varies with Re). The question arises
as to whether imposed rotation can suppress VIV of an elastically mounted sphere.

Bourguet & Lo Jacono (2014) studied computationally the effect of imposed
transverse rotation on the VIV response of a circular cylinder at Re = 100. Notably,
they found that the peak amplitude increases to ∼1.9 cylinder diameters, which is
three times that of the non-rotating case, as the rotation ratio was increased from
0 to 3.75. An extensive experimental study by Wong et al. (2017) on the effect of
imposed rotation on the VIV response of a circular cylinder for 1100 6 Re 6 6300
also demonstrated an increase of up to ∼80 % in the peak oscillation amplitude over
the non-rotating case for rotation rates less than 2. In contrast, Seyed-Aghazadeh &
Modarres-Sadeghi (2015) studied the same problem experimentally, over the Reynolds
number range Re= 350–1000. In this case, the amplitude response was found to only
increase marginally with rotation rate, increasing from 0.5 to 0.6 as the rotation ratio
was increased up to 2.4. Thus, even for VIV of a rotating cylinder there appear to
be conflicting results on the effect of rotation on the VIV response.

One question to be addressed is whether similar features are exhibited in the case of
a rotating sphere. Specifically, this paper examines the effect of the body rotation on
the VIV response of an elastically mounted sphere. This study addresses the following
fundamental questions: How does constant imposed transverse rotation affect the VIV
response of the sphere, does it suppress or enhance the response and how does this
depend on rotation rate? How does the rotation affect the flow near the sphere surface
and in the wake?

The experimental method used in the current study is detailed in § 2, and a
validation study based on VIV of a non-rotating oscillating sphere is given in § 3. In
§ 4, the results and discussion on VIV of a rotating sphere are presented. Following
this, § 5 focuses on analysis of flow visualisations and finally § 6 draws conclusions
for the important findings and the significance of the current study.

2. Experimental method
2.1. Fluid–structure system

A schematic showing the experimental arrangement for the problem of one-degree-of-
freedom (1-DOF) transverse VIV of a rotating sphere is presented in figure 1. The
elastically mounted sphere is free to oscillate in only one direction transverse to the
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U D

k

y

c

x

m

FIGURE 1. Definition sketch for the transverse vortex-induced vibration of a rotating
sphere. The hydro-elastic system is simplified as a 1-DOF system constrained to move
in the cross-flow direction. The axis of rotation is transverse to both the flow direction
(x-axis) and the oscillation axis (y-axis). Here, U is the free-stream velocity, k the spring
constant, D the sphere diameter, m the oscillating mass, c the structural damping, ω the
angular velocity. Fx and Fy represent the streamwise (drag) and the transverse (lift) force
components acting on the body, respectively.

Amplitude ratio A∗ A/D
Amplitude ratio A∗10 A10/D

Damping ratio ζ c/2
√

k(m+mA)

Frequency ratio f ∗ f /fnw

Mass ratio m∗ m/md

Mass-damping parameter ξ (m∗ +CA)ζ

Rotation ratio α |ω|D/(2U)
Reduced velocity U∗ U/( fnwD)
Reynolds number Re UD/ν
Scaled normalised velocity U∗S (U∗/f ∗)S= fvo/f
Strouhal number S fvoD/U

TABLE 1. Non-dimensional parameters used in this study. In the above parameters, A is
the structural vibration amplitude in the y direction, and A10 represents the mean of the top
10 % of amplitudes. D is sphere diameter; f is the body oscillation frequency and fnw is the
natural frequency of the system in quiescent water. m is the total oscillating mass, c is the
structural damping factor and k is the spring constant; U is the free-stream velocity, and ν
is the kinematic viscosity; mA denotes the added mass, defined by mA =CAmd, where md
is the mass of the displaced fluid and CA is the added-mass coefficient (0.5 for a sphere);
ω= rotational speed of the sphere; fvo is the vortex shedding frequency of a fixed body.

oncoming flow. The axis of rotation is perpendicular to both the flow direction and
the oscillation axis.

Table 1 presents the set of the relevant non-dimensional parameters in the current
study. In studies of flow-induced vibration (FIV) of bluff bodies, the dynamics of the
system is often characterised by the normalised structural vibration amplitude (A∗)
and frequency ( f ∗) responses as a function of reduced velocity. Note that A∗ here
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is defined by A∗ =
√

2Arms/D, where Arms is the root mean square (r.m.s.) oscillation
amplitude of the body. The reduced velocity here is defined by U∗=U/( fnwD), where
fnw is the natural frequency of the system in quiescent water. The mass ratio, an
important parameter in the fluid–structure system, is defined as the ratio of the mass
of the system (m) to the displaced mass of the fluid (md), namely m∗=m/md, where
md = ρπD3/6 with ρ being the fluid density. The non-dimensional rotation ratio, as
a measure of the ratio between the equatorial speed of the sphere to the free-stream
speed, is defined by α = |ω|D/(2U), where ω is the angular velocity of the sphere.
Physically, the rotation rate quantifies how fast the surface of the sphere is spinning
relative to the incoming flow velocity. The Reynolds number based on the sphere
diameter is defined by Re=UD/ν.

The governing equation for motion characterising cross-flow VIV of a sphere can
be written as

mÿ+ cẏ+ ky= Fy, (2.1)

where Fy represents fluid force in the transverse direction, m is the total oscillating
mass of the system, c is the structural damping of the system, k is the spring constant
and y is the displacement in the transverse direction. Using the above equation, the
fluid force acting on the sphere can be calculated with the knowledge of the directly
measured displacement, and its time derivatives.

2.2. Experimental details
The experiments were conducted in the recirculating free-surface water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash
University, Australia. The test section of the water channel has dimensions of
600 mm in width, 800 mm in depth and 4000 mm in length. The free-stream
velocity in the present experiments could be varied continuously over the range
0.05 6 U 6 0.45 m s−1. The free-stream turbulence level was less than 1 %. Further
characterisation details of the water channel facility can be found in Zhao et al.
(2014a,b).

A schematic of the experimental set-up is shown in figure 2. The hydro-elastic
problem was modelled using a low-friction airbearing system that provided low
structural damping and constrained the body motion to be in the transverse direction
to the oncoming free stream. The structural stiffness was controlled by extension
springs that were attached to both sides of a slider carriage. More details of the
hydro-elastic facility used can be found in Zhao et al. (2014a,b). The sphere model
was vertically supported by a thin stiff driving rod that was adapted to a rotor
mechanism. The rotor mechanism was mounted to a 6-axis force sensor coupled with
the carriage.

The sphere models used were solid spherical balls precision machined from
acrylic plastic with a very smooth surface finish. The accuracy of the diameter
was within ±20 µm. Two sphere sizes of D = 70 and 80 mm were tested in
the present experiments. The spherical models were supported using a cylindrical
support rod 3 mm in diameter, manufactured from hardened nitrided stainless steel
for extra stiffness and to maintain straightness. This gave a diameter ratio between
the sphere and the support rod of 23.3. For experiments with rotation, the 3 mm
support rod was supported by two miniature roller bearings, which were covered by
a non-rotating cylindrical shroud 6.35 mm in diameter manufactured from stainless
steel. This set-up provided extra rigidity to the support, which in turn minimised any
wobbling associated with the sphere rotation, as well as limiting undesirable wake
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Sphere

Top view

Bearings

Shroud
Driving rod

Rotor

Force sensor
Heat insulation plate

Carriage
Guide shaft

Back view

Springs

U

U

Side view

Airbearing system

Support structure

FIGURE 2. (Colour online) Schematic of the experimental set-up for the current study
showing different views.

deflection that would be caused by the large Magnus force on the unshrouded rotating
cylindrical rod. The immersed length of the shroud was set to approximately 0.6D
to minimise its influence while maintaining the structural support for the driving rod
having an immersed length of 0.5D exposed beyond the shroud. The total immersed
length of the support set-up for the sphere was approximately 1.1D. A preliminary
study by Mirauda, Volpe Plantamura & Malavasi (2014) revealed that free-surface
effects have an influence only when the immersion ratio (immersed length of the
support rod/diameter of the sphere) is less than 0.5. Given this, an immersion ratio
of ≈1 was chosen as a result of a trade-off between avoiding free-surface effects and
maintaining rigidity of the support system. Furthermore, experiments were performed
to determine the effect of the support rod on the amplitude response of the sphere. It
was concluded that the support rod/shroud does not have any significant influence on
the VIV response of the sphere for the diameter ratio (diameter of the rod/diameter
of the sphere) chosen in the current study. This set-up was able to limit the wobbling
deflection associated with the sphere rotation to within ±1 %D for the present
experiments, thereby minimising undesirable perturbations to the structural dynamics
and near-body wake by stabilising the sphere’s rotary motion.

The rotary motion was driven using a miniature low-voltage micro-stepping
motor (model: LV172, Parker Hannifin, USA) with a resolution of 25 000 steps per
revolution, which was installed inside the rotor mechanism shown in figure 2. The
rotation speed was monitored using a digital optical rotary encoder (model: E5-1000,
US Digital, USA) with a resolution of 4000 counts per revolution. In order to reduce
heat transfer from the motor to the force sensor, an insulation plate, made from acetal
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plastic, was installed between the rotor rig and the force sensor. Additionally, a small
fan was used to circulate the surrounding air to dissipate the heat generated by the
stepper motor. These corrective actions were found to be necessary to minimise signal
drifts in the force measurement signals due to thermal effects to acceptable levels.

In the current study, two methods were employed to obtain the transverse lift. In the
first method, the lift was derived from the measured displacement using (2.1). For the
other method, the lift was measured directly by the force sensor, although it was still
necessary to subtract the inertial term accounting for the accelerating mass below the
strain gauges (which includes the sphere, support structure, rotation rig and half the
mass of the force sensor) to determine the actual force on the sphere. In the current
paper, for cases where the signal-to-noise ratio is too low, the theoretical force has
been reported instead of the directly measured force. Where necessary, this distinction
is made clear in the discussion of results that follow.

The force sensor (model: Mini40, ATI-IA, USA) provided measurements of the
6-axis force and moment components (Fx, Fy, Fz, Mx, My, Mz), which in particular
had a resolution of 1/200 N for Fx and Fy. This allowed accurate measurements of
fluctuating lift and drag forces acting on the sphere.

The body displacement was measured using a non-contact (magnetostrictive) linear
variable differential transformer (LVDT). The accuracy of the LVDT was within
±0.01 % of the 250 mm range available. It was observed that signal noise of the
LVDT and the force sensor could be prone to the electromagnetic noise emitted by
the driving motor thereby decreasing the accuracy of the force measurements. Hence,
a linear encoder (model: RGH24, Renishaw, UK) with a resolution of 1 µm was
also employed to measure the displacement signal. Since the linear encoder was
digital, electromagnetic noise did not affect the accuracy of the displacement signal
measurement. This considerably improved accuracy and enabled reliable velocity and
acceleration signals to be derived, which, in turn, enabled an accurate determination of
the lift force signal as discussed above. This was tested through a direct comparison
against the lift force determined by the force sensor over a wide range of U∗. It was
found that the lift force measured using the force sensor matched well that derived
from the linear encoder and the LVDT signals, indicating accurate measurements of
the displacement and the lift force from several techniques.

The data acquisition and the controls of the flow velocity and the sphere rotation
rate were automated via customised LabVIEW programs. For each data set, the signals
of the displacement and force sensors were simultaneously acquired at a sampling
frequency of 100 Hz for at least 100 vibration cycles.

The natural frequencies and structural damping of the system in both air and water
were measured by conducting free decay tests individually in air and in quiescent
water. Experiments for two mass ratios m∗ = 7.8 and 14.2 are reported in this paper,
although only the latter was used for the rotational VIV studies because of the
presence of the added motor assembly in that case. The structural damping ratio
with consideration of the added mass was determined to be ζ = 4.13 × 10−3 and
1.46× 10−3 for m∗ = 7.8 and 14.2, respectively.

To gain insight into the flow dynamics, hydrogen-bubble flow visualisations were
performed in the equatorial plane of the sphere. Hydrogen bubbles were generated by
an upstream platinum wire of 50 µm in diameter and 500 µm in length, which was
powered by a potential difference of 50 VDC. A laser sheet of ∼3 mm in thickness
from a continuous laser (model: MLL-N-532-5W, CNI, China), aligned parallel to the
x–y plane, was employed to illuminate the bubbles.

Vorticity field measurements were also performed in the central equatorial plane
employing particle image velocimetry (PIV). For this purpose, the flow was seeded
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with 13 µm hollow micro-spheres having a specific weight of 1.1 g m−3. The laser
arrangement was the same as described above for the hydrogen-bubble visualisations.
Imaging was performed using a high-speed camera (model: Dimax S4, PCO, AG) with
a resolution of 2016× 2016 pixels2. This camera was equipped with a 50 mm Nikon
lens, giving a magnification of approximately 7.36 pixel mm−1 for the field of view.
Velocity fields were deduced using in-house PIV software developed originally by
Fouras, Lo Jacono & Hourigan (2008), using 32× 32 pixel2 interrogation windows in
a grid layout with 50 % window overlap. All the vorticity fields shown in the current
study were phase-averaged over more than 100 cycles. For each PIV measurement
case, a set of 3100 image pairs were sampled at 10 Hz. Each image set was sorted
into 24 phase bins based on the sphere’s displacement and velocity, resulting in more
than 120 image pairs for averaging at each phase. The final phase-averaged vorticity
fields were smoothed slightly using an iterative Laplace filter to remove short length
scale structures and to better highlight the larger-scale structures that dominate the
wake.

Flow visualisations using fluorescein dye were also captured for the non-oscillating
rotating sphere to better understand the effect of rotation on the near wake. For this
case, the dye was injected using a thin pitot tube (1 mm in diameter) placed upstream
of the sphere. Imaging was recorded using a digital camera (model: D7000, Nikon,
Japan) equipped with a 50 mm lens that was positioned beneath the water channel
glass floor.

In the present study, the VIV response is studied over a wide parameter space
encompassing 3 6 U∗ 6 18 and 0 6 α 6 7.5. The Reynolds number for the current
study varies between 5000 and 30 000.

3. VIV response of a non-rotating sphere
3.1. Vibration response measurements

The experimental methodologies used here were initially validated by comparing with
previously published results of Govardhan & Williamson (2005) for transverse VIV
of a non-rotating elastically mounted sphere. A sphere model of diameter 70 mm
was used in this validation study. As described above, the sphere was supported from
the top using a cylindrical support rod 3 mm in diameter with an immersed length of
90 mm. This gives a sphere to cylindrical support rod diameter of ∼23 : 1. The mass
ratio was m∗ = 7.8, comparable to m∗ = 7.0 used in experiments by Govardhan &
Williamson (2005). Free decay tests were conducted individually in air and water to
determine the natural frequency in air, fna = 0.495 Hz, and in water, fnw = 0.478 Hz.
Note that these values give an added-mass coefficient of CA= (( fna/fnw)

2
−1)m∗=0.52,

in good agreement with the known potential added mass for a sphere. The structural
damping ratio was measured as ζ = 4.14× 10−3, which again was comparable to the
case study with ζ = 4 × 10−3 of Govardhan & Williamson (2005). For this initial
study, the dynamic response of VIV was investigated over a reduced velocity range
of 2.7 6 U∗ 6 11, corresponding to a Reynolds number range of 7000 6 Re 6 28 000.
In figure 3, the amplitude response of the present study is compared directly to the
response curve of Govardhan & Williamson (2005) for the similar mass ratio. The
amplitude response for the higher mass ratio of m∗ = 14.2 used for the rotating
sphere experiments is also shown for comparison, as well as a significantly higher
mass ratio result for m∗ = 53.7 from Govardhan & Williamson (2005). Specifically,
the non-dimensional amplitude of oscillations, A∗, is plotted as a function of the
scaled reduced velocity, U∗S = (U

∗/f ∗)S ≡ fvo/f , where S is the Strouhal number for
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1 2 3
0

0.3

0.6

0.9

FIGURE 3. (Colour online) Comparison of the amplitude response obtained in the current
study for m∗=7.8 (blue triangles) to that obtained by Govardhan & Williamson (2005) for
a similar mass ratio of m∗= 7 (red square). The response for m∗= 14.2 (black diamonds)
from the current study is also shown along with the data by Govardhan & Williamson
(2005) for significantly higher mass ratio of m∗ = 53.7 (green circles).

the vortex shedding. Lock-in starts at U∗ = 4–5 for the sphere, which corresponds
to U∗S of 0.7–0.875. Here, the amplitude response is plotted against U∗S instead of
U∗ for the sake of direct comparison with the previous study, noting that it lines up
response curves for different mass ratios. Indeed, it can be noted that using U∗S does
line up the peaks well.

It can be noted that the vibration response progresses continuously from Mode I to
Mode II; indeed, the amplitude changes smoothly and continuously over the entire U∗
range. This is different from the VIV response for circular cylinders, where sudden
jumps are observed between the three different vibration branches. With an increase
in m∗ from 7.0 to 53.7, the peak amplitude in their study decreased. Similar behaviour
was observed in the current study, when the mass ratio was increased, although less
drastically, from 7.8 to 14.2.

For tethered spheres at higher U∗, Jauvtis et al. (2001) reported another vibration
mode, namely Mode III. In that case, the amplitude drops to almost zero between
Modes II and III, with Mode III occurring for U∗S & 3 and extending up to ∼8. For
a 1-DOF elastically mounted sphere, the situation appears slightly different with no
desynchronisation region between these modes. Instead, from the peak response in
Mode II, the amplitude drops smoothly to a lower plateau that extends smoothly into
Mode III as U∗S→ 3. Thus, the lower plateau response branch for U∗S & 2 in figure 3
might be considered to extend towards the Mode III response at the high U∗ end
(Govardhan & Williamson 2005). However, recall that Mode III is characterised by
a vibration response at close to the natural system frequency but far from the much
higher vortex shedding frequency. For the case considered here, with m∗ = 14.2, the
vibration frequency remains close to the natural frequency over the entire range of
the lower response branch as fvo/f increases beyond 2. The forcing caused by vortex
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0 5 10 15 20
–1

0

1

0 5 10 15 20
–1

0

1

0 5 10 15 20
–1

0

1(a) (b) (c)

FIGURE 4. (Colour online) Strongly periodic vibrations observed for (a) U∗ = 6.0
(Mode I) and (b) U∗ = 9.0 (Mode II), and (c) slightly less periodic oscillations at the
higher U∗ = 16.0 (→ Mode III).

shedding also remains at close to the natural frequency. This vibration response is
very similar to the bifurcation region III reported by van Hout et al. (2010) for a
heavy tethered sphere. They also observed less periodic, intermittent large oscillation
amplitudes in the transverse direction for higher U∗ values of U∗ > 15. A Mode III
response may occur beyond the U∗ limit of these experiments, which was imposed by
the strengths of the springs used.

Generally (near-)periodic vibrations are observed for the two fundamental vibration
modes, as shown in figure 4. However, the vibrations are less periodic in the higher
U∗ range. More light will be shed on this in the following sections.

The comparison in figure 3 shows that the overall agreement with previous
benchmark studies is excellent in terms of the two-mode amplitude response pattern,
the amplitude peak value and the extent of the lock-in region.

3.2. Force measurements for a non-rotating sphere
As an approximation, it is often assumed that Fy(t) and the response displacement y(t)
are both sinusoidal and represented by

y(t)= A sin(2πft), (3.1)
Fy(t)= Fo sin(2πf + φ), (3.2)

where Fo is the amplitude of Fy, and φ is the phase between the fluid force and the
body displacement.

Based on the suggestions of Lighthill (1986) and as performed for VIV of a tethered
sphere by Govardhan & Williamson (2000), the total transverse fluid force (Fy) can
be split into a potential force (Fpotential), comprising the potential added-mass force,
and a vortex force component (Fvortex) that is due to the vorticity dynamics. From the
potential theory, the instantaneous Fpotential acting on the sphere can be expressed as

Fpotential(t)=−CAmdÿ(t). (3.3)

Thus, the vortex force Fvortex can be computed from

Fvortex = Fy − Fpotential. (3.4)

If all the forces are normalised by ((1/2)ρU2πD2/4), this reduces to

Cvortex(t)=Cy(t)−Cpotential(t). (3.5)
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Here, Cpotential (the potential-flow lift coefficient) can be calculated based on the
instantaneous body acceleration ÿ(t). Reverting back to the dimensional forces for the
moment, two equivalent forms can be written for the equation of motion

mÿ+ cẏ+ ky= Fo sin(ωt+ φtotal), (3.6)

and for vortex force

(m+mA)ÿ+ cẏ+ ky= Fvortex sin(ωt+ φvortex). (3.7)

The vortex phase φvortex, first introduced by Govardhan & Williamson (2000), is
the phase difference between Cvortex(t) and the body displacement y(t). The more
conventionally used total phase φtotal is the phase difference between the total force
Cy and the body displacement y(t). In general, phase jumps are associated with
a switch from one VIV mode to another, and have even been used to distinguish
between different modes (Govardhan & Williamson 2005). The instantaneous relative
phases between the two forces reported in this paper are calculated using the Hilbert
transform as detailed in Khalak & Williamson (1999).

According to Govardhan & Williamson (2005), there is a vortex phase shift of
approximately 100◦ when the vibration response switches from Mode I to Mode II.
They observed that the vortex phase gradually increases from ∼50 in Mode I to ∼150◦
as the amplitude reaches the peak response in Mode II. The change in the total phase
is relatively more abrupt, and it changes from ∼0◦ to ∼150◦; however, there is little
change over the transition range between Modes I and II.

As is evident from figure 5, for the current set of experiments (m∗ = 14.2 and
ζ = 1.40 × 10−3), the vortex phase and the total phase change as the vibration
response switches from Mode I to Mode II, broadly following the trend of phase
variations reported by Govardhan & Williamson (2005). The vortex phase starts to
rise from ∼50◦ at the start of Mode I and reaches almost 180◦ towards the peak
amplitude of Mode II, while the total phase only begins to rise from ∼0◦ as the
response reaches close to the peak values in Mode II. Indeed, the total phase only
reaches its maximum value of '160◦ as the Mode II response transitions from its
upper to lower ‘plateau’. In a sense, this appears similar to the observed behaviour
for VIV of a circular cylinder. Although there are no sudden jumps or hysteresis
between the branches for 1-DOF VIV of a sphere, the vortex phase and total phase
transitions are broadly correlated with the initial→upper branch cylinder transition
and the upper→lower branch cylinder transition, respectively, even though the phase
jumps are much more gradual for the sphere transitions. Thus, the phase transitions
suggest a sphere/cylinder mode equivalence for 1-DOF VIV of Mode I ≡ Initial
Branch, Mode II (upper plateau) ≡ upper branch and Mode II (lower plateau) ≡
lower branch, although of course, for the sphere there is lock-in to the natural system
frequency over a much wider range fvo/f range than occurs for the circular cylinder.
The phase jumps seem slightly more distinct in the current set of experiments than in
those of Govardhan & Williamson (2005), possibly because of the lower mass ratio
of m∗ = 14.2 used here (rather than m∗ = 31.2). Note that for a tethered sphere, for
which the mode classification was developed, the response drops abruptly after the
Mode II peak and hence there is no lower plateau.

Figure 6(a) shows the r.m.s. transverse lift coefficient as a function of U∗ for
m∗ = 14.2. It can be noted that C′yrms

jumps up at the beginning of Mode I at the
onset of lock-in, and steadily decreases as the response transitions to Mode II. It
remains almost constant beyond U∗ = 10. Figure 6(b) shows the variation of the
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Vortex phase
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Transition
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FIGURE 5. Variation of the total phase (φtotal) and the vortex phase (φvortex) with U∗.
(a,c) measured phase variations (c) correlated with the amplitude response curve (a). The
vortex phase starts to rise from ∼50◦ at the start of Mode I, while the total phase only
begins to rise from ∼0◦ as the response reaches close to the peak values in Mode II. The
dashed line shows the approximate boundary between Modes I and II. Here, A∗10 is the
mean of the top 10 % of amplitude peaks (as used by Hover, Miller & Triantafyllou 1997
and Morse, Govardhan & Williamson 2008). (b,d,e) comparison with previous results of
Govardhan & Williamson (2005) (adapted with permission) for the higher mass ratio of
m∗ = 31.1.

4
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FIGURE 6. Variation of C′yrms
(a) and Cx (b) with reduced velocity.

mean drag coefficient Cx with U∗. Note that the time-mean drag coefficient does
not remain constant with increasing U∗, while the sphere is oscillating. Cx also
jumps up when the sphere locks in. These results are consistent with the previous
observations of Govardhan & Williamson (2005) for an elastically mounted sphere
but for a significantly different mass ratio and damping. A small jump in both the
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coefficients is observed at U∗ ∼ 10. This is associated with the peak response in
Mode II. Clear boundaries for the onset of Mode II were not known previously and
φvortex was considered to be the criterion for distinguishing Mode II from Mode I.
From this study, it is found that φtotal is also a useful criterion to distinguish between
mode branches, as it jumps more abruptly, completing its transition to ∼165◦ at the
start of the lower plateau beyond the main Mode II peak. Associated jumps were
observed in the force coefficients as well, again demarcating the boundaries between
mode branches.

4. Effect of rotation on the VIV response of a sphere
This section focuses on VIV of an oscillating sphere subject to constant rotation.

This set of experiments used a higher mass ratio of m∗ = 14.2, because of the extra
oscillating mass from the inclusion of the rotation component of the rig. The natural
frequencies of the system in air and water were 0.275 Hz and 0.269 Hz, respectively,
with the damping ratio of ζ = 1.46 × 10−3. A sphere model of diameter 80 mm
was attached to a 3 mm rod supported using a shroud support system as described
previously in § 2.2. It was found that this support set-up closely reproduced the
amplitude response previously reported by Govardhan & Williamson (2005). For each
point in U∗–α parameter space, more than 100 oscillation periods were recorded at
an acquisition rate of 100 Hz. During these experiments, for chosen values of the
rotation ratio, the flow velocity was varied in small steps to obtain a wide reduced
velocity range. The Reynolds number varied between 5000 and 30 000 as the reduced
velocity was increased.

To investigate the effect of α on the vibration response of the sphere, U∗ was varied
over the range 36U∗6 18, in increments of 0.5. For each U∗ scan, the response was
studied for discrete rotation ratios from the range 0 6 α 6 7.5.

4.1. Effect of rotation on the vibration response
The amplitude response as a function of reduced velocity is plotted in figure 7 for
different rotation rates. As discussed, for α = 0, when the sphere is not rotating, the
amplitude response curve (reproduced previously in figure 3) closely matches that of
Govardhan & Williamson (2005), with the amplitude of vibration gradually increasing
from Mode I to Mode II, and then dropping in amplitude but still maintaining a
strong oscillatory response at higher U∗. When α is increased slightly to 0.2, the
amplitude response remains similar to the non-rotating case for U∗ 6 8.0; however,
the A∗ peak in Mode II is suppressed noticeably and the amplitude response drastically
drops beyond U∗ = 14. For α = 0.3 and 0.4, a similar sudden drop in the response
is seen at relatively lower U∗ values. A sudden rebound in the amplitude response
for α = 0.3 is evident at a U∗ value of ∼16–17. Such a rebound was also observed
for α= 0.25 and α= 0.35. This sudden increase in the amplitude near an α value of
0.3 at higher U∗ values was repeatable and was not observed for other rotation rates
tested in the current study. A plausible rationale for such a rebound is discussed in
§ 4.3.1. For higher rotation rates (α> 0.4), the amplitude response drops immediately
after reaching the A∗ peak, rather than from a plateau, as for the cases of α = 0.3
and 0.4.

As α is increased, the U∗ range over which a synchronised VIV response
characterised by highly periodic large amplitude vibrations is observed becomes
progressively narrower. The end of synchronisation region decreases consistently from
U∗> 20 to U∗∼ 7 as α is increased from 0 to 4.0. Meanwhile, the magnitude of the
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FIGURE 7. (Colour online) The vibration amplitude response as a function of reduced
velocity for different rotation rates.

1.51.00.50
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0.6
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2.0

FIGURE 8. Maximum amplitude variation with rotation rate. The straight line is an
approximate fit for α 6 1.

peak of amplitude response also decreases consistently from A∗ = 0.76 to 0.03. For
higher α values, no discernible peak can be detected. In addition, the peak amplitude
tends to occur at a lower U∗ with increasing α for α6 2. However, for higher rotation
rates, the U∗ value corresponding to the A∗ peak increases slightly.

Figure 8 shows the variation of the A∗ peak with rotation rate. It is found that the
decrease in the saturation amplitude is approximately linear with increasing rotation
rate for α. 1, and it decreases to zero more slowly beyond that α range. The overlaid
straight line represents an approximate fit for the lower α range.

Figure 9 shows representative time traces of the vibration amplitude for different
response branches for α = 0.5. Similar to the case for a non-rotating sphere, the
vibration is highly periodic in regions where the sphere oscillates strongly. For regions
where the VIV response was found to be suppressed, the vibration was not periodic,
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FIGURE 9. Time trace of the displacement signal at α = 0.5 for different values of U∗.
For case (a) U∗ = 6, case (b) U∗ = 9 and case (c) U∗ = 12.

Purely sinusoidal

0.2
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0.4
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1.2

FIGURE 10. (Colour online) Variation of the periodicity, P , versus reduced velocity for
different rotation rates. The dashed line arrow indicates the direction of increasing α. Here,
P is shown for a few representative cases of α = 0, 0.4, 0.5, 1.2, 2.5 and 7.5.

and was characterised by intermittent bursts of vibrations, as shown in figure 9(c) for
U∗ = 12 and α = 0.5. This was found to be true for all rotation rates investigated.

Following Jauvtis et al. (2001), the periodicity of the vibration response can be
quantified by defining the periodicity, P , of a signal as

P =
√

2yrms/ymax. (4.1)

For a purely sinusoidal signal, P is equal to unity. Figure 10 shows how the
periodicity varies with U∗ for different values of α. It is evident that the response
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FIGURE 11. (Colour online) Variation of non-dimensional mean displacement of the
sphere (y/D) with the reduced velocity for different rotation rates. The dashed line arrow
represents the direction of increasing α.

is highly periodic for the non-rotating case and it becomes relatively less periodic
for the higher U∗ values (beyond U∗ = 12). The sphere exhibits highly periodic
oscillations for α 6 0.3, but the oscillation periodicity decreases for higher α values.
For higher rotation rates (α > 0.4), it was observed that the periodicity starts to
decrease as soon as the response reaches its saturation amplitude, until it reaches a
plateau value, where the vibration amplitude is negligible and no further decrease in
the response is observed with any further increase in U∗. Thus it can be concluded
that the rotation not only decreases the amplitude of vibration but also makes the
vibration less periodic.

Figure 11 shows the non-dimensional time-averaged displacement of the sphere
as a function of reduced velocity for increasing rotation rates. The time-averaged
displacement remains around zero for the non-rotating case, but increases with α.
This is due to the rotation-induced Magnus force that exerts a one-sided fluid force
acting on the sphere. It can be noted that beyond α= 1.5, there is very slight increase
in the time-averaged displacement, suggesting that the magnitude of the Magnus force
is limited. Similar behaviour has also been observed in previous studies of rigidly
mounted rotating spheres by Macoll (1928), Barlow & Domanski (2008), Kray et al.
(2012) and Kim et al. (2014), showing that the increase in the lift coefficient of a
sphere reaches a plateau as α is increased to a certain value, which depends on the
Reynolds number.

Figure 12 shows logarithmic-scale power-spectrum plots depicting the dominant
oscillation frequency content ( f ∗ = f /fnw) as a function of reduced velocity for
both the non-rotating case (α = 0) and the rotating case (α = 1). The dashed line
represents the value of fvo, which is the vortex shedding frequency of a static sphere.
Note that the power spectra were computed using fast Fourier transforms (FFTs) of
the displacement time series for each U∗ and then normalised by the maximum power.
As can be seen in the figure, the dominant oscillation frequency remained close to
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FIGURE 12. (Colour online) Frequency response as a function of U∗ correlated with the
amplitude response curve (above): (a.i,a.ii) α = 0; (b.i,b.ii) α = 1. Here, the contour map
represents a logarithmic-scale power spectrum depicting the frequency ( f ∗= f /fnw) content
as U∗ is varied. The dashed line represents the value of fvo, which is the vortex shedding
frequency of a static sphere.

the natural frequency of the system over the entire lock-in range for the rotating and
non-rotating cases. This was found to be true for all α values investigated.

Figure 13 shows phase-space plots of the measured velocity (ẏ) (normalised by
its maximum value) versus (normalised) fluctuating displacement (ỹ) at α = 0.5 for
four different U∗ values spanning the range from where the frequency response
is near periodic to where it becomes chaotic. Figure 13(a) shows a relatively thin
topologically circular structure corresponding to a strongly periodic sphere vibration
response. On the other hand, as the sphere goes through the transition from a
near periodic to less periodic response, as depicted in figure 13(b,d), the width of
the phase-space region covered by successive orbits increases substantially. This is
consistent with the frequency contour plots shown previously in figure 12), and the
accompanying displacement time traces shown in this figure. Even at U∗= 9.5, where
the vibration amplitude has dropped considerably from the peak response, there are
signs of intermittency or mode switching, which increase at higher U∗. For an even
higher U∗ value of 14.0, as shown in figure 13(d), where the vibration amplitude
is very small, a highly non-periodic response is observed with intermittent bursts of
higher-amplitude vibrations located within an otherwise minimal response.

To add further insight to this transition, a variant of the Poincaré surface of section
approach was used to further investigate the transition to non-stationary dynamics.
These maps are obtained by plotting normalised sphere displacement, y/D, against
its value one complete cycle previously. The points are mapped at every upward
zero crossing of the sphere transverse velocity for more than 100 vibration cycles.
This approach was used to explore the transition to chaos in the wake of a rolling
sphere by Rao et al. (2012) based on numerical simulations, showing the breakdown
of periodic orbits through the appearance of Kolmogorov–Arnold–Moser (KAM) tori
eventually resulting in a chaotic state as the Reynolds number was further increased.
Figure 14 shows such recurrence maps at α = 0.5 for four different U∗ values. As
is evident from figure 14(a), at U∗ = 6, when the vibrations are highly periodic,
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FIGURE 13. (Colour online) Phase-space plots for α= 0.5, correlated with the time trace
of the fluctuating displacement signal (above each map) at four different reduced velocities:
(a) U∗ = 6; (b) U∗ = 9.5; (c) U∗ = 10.5; (d) U∗ = 14.0.

the points are clustered over a confined region of parameter space consistent with a
near-periodic system state. As the U∗ value is increased to higher values of U∗= 9.5
and U∗ = 10.5, as shown in 14(b) and (c), respectively, the points start to spread
in space, mainly along a diagonal line. For U∗ = 14.0, the points now appear much
more randomly distributed over a larger region. Together with the phase portraits and
frequency spectra, this sequence of plots indicates that the system is undergoing a
transition to chaotic oscillations.

To further explore how the vibration response evolves gradually from periodic to
chaotic, figure 15 presents corresponding recurrence plots (RPs) based on the body
displacement signal for the aforementioned four U∗ values at α = 0.5. Recurrence
plots, first designed by Eckmann, Kamphorst & Ruelle (1987) to visually analyse
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FIGURE 14. Recurrence maps for yo/D, taken for each upward zero crossing of the sphere
transverse velocity at α= 0.5 for various U∗ values: U∗= 6 (a); 9.5 (b); 10.5 (c); 14 (d).

the recurring patterns in time series of dynamical systems, have been utilised in a
great variety of scientific areas, from physics (e.g. detection of chaos in nonlinear
dynamical systems), to finance and economics, Earth science, biological systems (e.g.
in cardiology, neuro-psychology), etc. A historical review of RPs has been given by
Marwan (2008). The construction method for the present RPs is detailed in Marwan
et al. (2007). As illustrated in figure 15(a), for the case of U∗= 6.0, where the body
vibration is highly periodic, the RP exhibits diagonal oriented periodic checkerboard
structures. These structures are symmetric about the main (45◦) diagonal (also known
as the line of identity (LOI)). As demonstrated in Marwan (2003) and Marwan
et al. (2007), the diagonal lines parallel to the LOI indicate that the evolution of
states of a dynamical system is similar at different epochs, while the diagonal lines
orthogonal to the LOI also indicate the evolution of states of a dynamical system
is similar at different epochs but with respect to reverse time. It is apparent that
these diagonal lines parallel to the LOI are separated by a fixed horizontal distance
matching the oscillation period, which is indicative of highly periodic recurrent
dynamics with a single dominant frequency. As noted in Marwan et al. (2007), for
a quasi-periodic system (as opposed to the current case), the distances between the
diagonal lines may vary to form more complex recurrent structures. As the reduced
velocity is increased to U∗= 9.5 and 10.5 in figures 15(b) and 15(c), respectively, the
periodicity of body vibration tends to reduce with less parameter space covered by
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FIGURE 15. (Colour online) Recurrence plots (lower) of the time series of the normalised
body displacement (upper) for U∗= 6.0 (a), 9.5 (b), 10.5 (c) and 14.0 (d) at α= 0.5. Note
that τ = t/T is the normalised time.

checkerboard patterns in the RPs. It should also be noted that there is an increasing
trend of horizontal (and mirror vertical) curvy lines, which indicate the evolution
of states of the system is similar at different epochs but with different rates; in
other words, the dynamics of the system could be changing (Marwan et al. 2007)
(e.g. a non-stationary system with time-varying frequency). As the velocity is further
increased to U∗=14.0 in figure 15(d), it becomes difficult to identify any well-defined
checkerboard or recurrent structures in the RP. Some horizontal curvy lines and their
mirrored counterparts become flatter compared to the cases of U∗ = 9.5 and 10.5,
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FIGURE 16. (Colour online) The VIV response contour map for a rotating sphere in U∗–α
parameter space. Different contour lines depict different amplitude levels as shown in the
figure legend.

indicating that some states do not change or change slowly for some time (e.g. for
12 < τ < 17). Additionally, the RP exhibits some single points, indicating that the
process may be an uncorrelated random or even anti-correlated (Marwan et al. 2007).
At this point, it can be concluded that the state of the dynamical system becomes
chaotic.

As an alternative depiction of the amplitude responses displayed in figure 7,
figure 16 shows a response contour map of the sphere vibration in U∗–α parameter
space. This clearly shows the shift in high-amplitude response to lower U∗ values
as the rotation rate is increased. Even though rotation suppresses large-amplitude
oscillation as α is increased towards unity, there remains a band of moderate
oscillation centred at U∗∼ 5.5 that decreases in amplitude much more slowly beyond
this α value. Perhaps also of interest is that high-amplitude oscillation is mainly
limited to α . 0.8. Previous studies (e.g. Giacobello, Ooi & Balachandar 2009; Kim
2009; Poon et al. 2014, and references therein) have shown that the onset of the
shear-layer instability wake state of a non-oscillating rotating sphere occurs beyond
this α value. That wake state forms when fluid that passes the retreating side of the
sphere is pushed towards the other side of the wake to form a distinctive one-sided
separating shear layer, thus changing the characteristic formation and release of
vortex loops that defines the non-rotating wake state. The nature of the wake state
as a function of rotation rate is examined using flow visualisation and particle image
velocimetry in § 5.

4.2. The effective added-mass coefficient and critical mass ratio
Previous studies of VIV of a circular cylinder have shown the existence of a critical
mass ratio, m∗crit, below which large-amplitude body oscillations will persist up
to infinite U∗ (Govardhan & Williamson 2002; Jauvtis & Williamson 2004). The
critical mass ratio can be deduced, as given by Govardhan & Williamson (2002),
by evaluating the effective added-mass coefficient CEA in the synchronisation regime.
The effective added mass, mEA = CEAmd, is (the negative of) the component of
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FIGURE 17. Effective added mass as a function of U∗ for α = 0 (E) and 1 (@). Data
from Govardhan & Williamson (2005) for low-mass 2-DOF tethered spheres are provided
for comparison (×, m∗ = 1.31; +, m∗ = 2.83).

the total force in phase with the acceleration divided by the acceleration. Its
significance is that from (3.2) under the condition of low damping, the system
frequency depends on the sum of the system mass plus the effective added mass, i.e.
2πf =

√
k/(m+mEA), hence if m→−mEA, the system response frequency becomes

unbounded. Non-dimensionalising this equation and rearranging gives an expression
for CEA:

CEA =m∗
(

1− f ∗2

f ∗2

)
+

(
CA

f ∗2

)
, (4.2)

in which CA is the potential-flow added-mass coefficient (CA = 0.5 for a non-rotating
or rotating sphere).

For low mass-damping(m∗-ζ ) systems, as proposed by Govardhan & Williamson
(2002), the critical mass ratio can be evaluated by m∗crit =max(−CEA). Govardhan &
Williamson (2002) reported m∗crit = 0.54 for 1-DOF transverse VIV of a cylinder and
m∗crit= 0.52 for the 2-DOF case, and m∗crit∼ 0.6 for 2-DOF VIV of a sphere. All these
values were reported for very low mass-damping systems (m∗ζ 6 0.04) for moderate
Reynolds numbers of Re ∼ 2000 to Re ∼ 20 000. The mass-damping coefficient here
is approximately 0.02.

Figure 17 shows the variation of CEA with U∗ in the synchronisation range, for the
current study with m∗ = 14.2, for both the non-rotating case (α = 0) and a rotating
case (α = 1). The coefficient CEA is computed using (4.2), in the same manner as in
Govardhan & Williamson (2002). Results from the current study are directly compared
to previously reported CEA data for sphere vibrations with 2-DOF (tethered spheres)
for relatively low mass ratios. It can be observed from the figure that CEA for a non-
rotating sphere (α = 0) with 1-DOF is similar to that of the 2-DOF case. The mass
ratio does not seem to significantly affect CEA, at least for this range of m∗. With
imposed rotation, CEA for sphere vibration reduces more quickly with U∗, following
the shift in the response curves with rotation rate, as is evident in figure 17. However,
the maximum value of −CEA appears similar.

The maximum of −CEA for the cases shown in figure 17 is ∼0.7. Hence, from
the above comparison, it can be concluded that the critical mass for both rotating
and non-rotating sphere vibration is m∗crit ∼ 0.7. However, there is some scatter in the
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FIGURE 18. Variation of the total phase (φtotal) and the vortex phase (φvortex) with U∗ for
α = 1. Measured phase variations (b), correlated with the amplitude response curve (a).
The vortex phase starts to rise from low values at the start of Mode I reaching ∼170◦
near the peak of Mode II. In contrast, the total phase only begins to rise from ∼0◦ as
the response reaches close to the peak values in Mode II. (Compare figure 5).

data, which is consistent with the relatively large mass ratio relative to the critical
mass ratio causing the system frequency to depart only slightly from the natural
frequency. Thus, the result is not inconsistent with the value of m∗crit ' 0.6 proposed
by Govardhan & Williamson (2002) using much lighter spheres. Perhaps what is
more interesting is that the non-rotating and rotating values are similar. The result
also seems to suggest that the critical mass is not sensitive to the number of degrees
of freedom of oscillation, in agreement with the finding for a circular cylinder.

4.3. Effect of rotation on the force coefficients
In this section, the focus is on the effect of transverse rotation on the lift force
coefficient for the first two modes within the fundamental synchronisation regime.
Results are presented for a selection of rotation rates studied for the same experimental
configuration used previously in § 4.1. The dimensionless fluctuating total lift
coefficient C′yrms

, and the total phase (φtotal) and the vortex phase (φvortex) are defined
in accordance with the discussion in § 3.2.

Figure 18 shows the variation of the total phase (φtotal) and the vortex phase (φvortex)
with U∗ for α = 1.0. It can be observed that the vortex phase (φvortex) starts to rise
from low values (∼30–40◦) at the start of Mode I reaching ∼170◦ near the A∗10 peak
of Mode II. In contrast, the total phase (φtotal) only starts to rise from ∼0◦ as the
amplitude response reaches close to the peak value in Mode II. These trends were
also evident in the non-rotating case shown in figure 5. However, when the vibrations
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FIGURE 19. (Colour online) Variation of the C′yrms
with reduced velocity for different

rotation rates.

are suppressed, beyond U∗ = 10 in this case, both φtotal and φvortex settle down at
approximately 90◦. Similar behaviour was observed for other rotation rates as well.

Figure 19 shows the r.m.s. of total lift coefficient C′yrms
versus the reduced velocity

for various rotation rates. Note that for α = 7.5 the signal-to-noise ratio was poor in
the force sensor signals due to negligible response of the sphere, hence the theoretical
estimate (as discussed in § 2) has been reported for that case. For the non-rotating case
(α = 0), there is a sudden jump in C′yrms

at U∗ ∼ 5 that is associated with the sudden
increase in the amplitude response (lock-in), as shown in figure 7. For increasing α,
the fluctuating force coefficient decreases monotonically and gradually, in accordance
with the decreasing amplitude response, as shown in figure 7. The peak value of C′yrms

also decreases gradually with increasing α. For α=7.5, no jump was observed in C′yrms
,

consistent with negligible body oscillations, as shown in figure 7. These observed
behaviours of the coefficient C′yrms

are consistent with the amplitude response. It
appears that the imposed transverse rotation decreases the fluctuating component of
the lift force, and in turn, that leads to a decrease in the oscillation amplitude.

Figure 20(b) shows the time trace of the total lift force coefficient, Cy, for rotation
rate α= 0.7, at a reduced velocity of U∗= 6, correlated with the sphere displacement
(shown in figure 20a). As apparent from the figure, there is an evident asymmetry in
the force signal as the sphere traverses from the advancing side to the retreating side.
This is indicative of the differences in the wake shedding pattern from one half-cycle
to the next as the sphere moves from one side to the other. This will be examined
further in § 5.

4.3.1. Competition between the Magnus force and the fluctuating lift force
The imposed rotation decreases the fluctuating component of the transverse force

that drives the oscillations of the sphere. It also increases the mean component of
the transverse force due to the Magnus effect. Hence, in order to better understand
the dynamics of this problem, the total transverse force coefficient acting on the
sphere can be split into two components, as Cy = Cy + C′yrms

, where Cy is the
time-averaged mean transverse force coefficient and C′yrms

is the fluctuating transverse
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Retreating side

Advancing side

0

0.5

–0.5

0

5 6 7 8 9 10

2

–2

(a)

(b)

FIGURE 20. Time trace of the total lift coefficient, Cy (b), correlated with the
displacement signal (a) for α= 0.7 at U∗= 6. Asymmetry in the force signal as the sphere
traverses from the advancing to the retreating side is evident in the time trace.

force coefficient. Under resonance, where the assumption is often made that (U∗/f ∗)
and f ∗ are constant, A∗ is directly correlated to Cy for a fixed mass-damping system
by

A∗ ∝
C′y sin φ

(mA +CA)ζ
, (4.3)

where φ is the phase difference between the body displacement and transverse force.
This can be derived from (2.1), (3.2) and (3.1), as also shown by Williamson &
Govardhan (2004). Also, the non-dimensionalised mean displacement of the sphere,
y/DU∗2, is directly correlated to the mean transverse force coefficient Cy by

y
DU∗2

=
Cy

2π3(CA +m∗)
. (4.4)

Initially, for the non-rotating sphere undergoing VIV, Cy is zero and C′yrms
drives the

oscillations. As α is increased, the component of Cy increases and the r.m.s. value of
the fluctuating component C′yrms

decreases. For lower rotation rates, the Magnus effect
is not very strong, so there seems to be a competition between the increasing Magnus
force and the competing fluctuating transverse force. Such a competition is evident for
only lower rotation rates in the current study.

In the left column, figure 21(a–d) shows that the fluctuating oscillation amplitude,
A∗, is closely correlated with the fluctuating transverse force coefficient, C′yrms

, and
the non-dimensionalised mean displacement amplitude, y/DU∗2, directly correlates
with the mean transverse force coefficient, Cy, for α = 0.4. The right column
of figure 21(e–h) shows the same plots for α = 2.5. These variations confirm
the theoretical relationships given by the two equations above. The response for
α = 0.4 can be broadly divided into three regimes for this case. In region I, Cy

′

rms
is large due to the resonance between the vortex shedding and body oscillation
frequencies covering Mode I and the Mode II peak. For this region, Cy is reduced
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FIGURE 21. Comparison of the response characteristics for α = 0.4 (a–d) and α = 2.5
(e–h). The quantity plotted in each row is shown at the left.

with a concomitant effect in y/DU∗2. In region II, which corresponds to the plateau
response range after the Mode II peak, the fluctuating forcing is less and the mean
force increases, leading to increased mean displacement offset. The competition
between the two force components is clearly evident. In region III, the Magnus
effect dominates, with Cy again reaching a constant value close to that at low U∗
before lock-in. Simultaneously, there is sudden drop in the A∗ and Cy

′

rms in the
desynchronisation regime at high U∗.

The sudden rebound in the amplitude response observed for a rotation rate of
α= 0.3 at higher U∗ values of ∼16–17 (see figure 7) can also be explained on such
grounds. A brief study by Sareen et al. (2016) investigated the effect of rotation
on the force coefficients of a fixed rotating sphere by measuring the drag and lift
coefficient for varying rotation rates (0 6 α 6 6) at several Reynolds numbers. They
observed a sudden drop in the lift coefficient at α = 0.3 for a Reynolds number of
Re = 2.75 × 104. Interestingly, the Reynolds number where the sudden rebound is
observed in the current study varies between 2.75× 104 and 2.9× 104 corresponding
to the U∗ range 16–17. Thus, it can be conjectured that here also there is a sudden
drop in the mean lift force acting on the sphere at α= 0.3 for U∗∼ 16–17. In lieu of
the competition between the mean lift force and the fluctuating force, the fluctuating
force is allowed to suddenly increase leading to a sudden rebound in the amplitude
response.

However, at higher rotation rates, for example at α = 2.5 as shown in figure 21,
the Magnus force dominates over the entireU∗ range, even though there is a narrow
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resonant regime. This leads to almost constant values of y/DU∗
2 and Cy. For this case,

A∗ and Cy
′

rms remain at low values over the entire U∗ range. How the sphere rotation
affects vortex shedding and thereby leads to the attenuation of VIV will be discussed
in § 5.

5. Modes of vortex formation

The wake of a stationary sphere at high Reynolds number (Re & 1000) is highly
unsteady and chaotic. It is characterised by interlinked vortex rings or hairpin loops
emanating from the surface of the sphere at an azimuthal location that changes from
cycle to cycle. The low Reynolds number precursor structures have been observed
previously in the dye visualisations of the wake of a liquid drop of Magarvey
& Bishop (1961), and further experiments of Sakamoto & Haniu (1990), Leweke
et al. (1999) and Ormières & Provansal (1999). Interlinked vortex loops have also
been reported in numerical simulations concerning the wake of a static sphere by
Tomboulides, Orszag & Karniadakis (1993), Johnson & Patel (1999), Mittal (1999)
and Thompson, Leweke & Provansal (2001).

Similar vortex loops have also been observed in the wake of an elastically mounted
sphere undergoing VIV. Previous visualisations of a rising bubble by Brücker (1999)
suggested that the wake consisted of hairpin vortices. Sakamoto & Haniu (1990) also
observed a similar two-sided chain of vortex loops with alternating signs. Vorticity
measurements by Govardhan & Williamson (2005) showed planar symmetric vortex
loops (hairpins) of opposite sign emanating from the two sides of a non-rotating
sphere undergoing VIV. The central distinction between the wake behind a static
sphere and an oscillating sphere is that in the case of an oscillating sphere, the
loops have a preferred orientation and maintain a symmetry with the horizontal plane
containing the principal transverse vibration. Lee et al. (2013) covered a wide range
of Reynolds number 50 6 Re 6 12 000 and classified the flow and response of a
neutrally buoyant tethered sphere in various regimes depending on the Reynolds
number. They also observed unsteady helix-shaped vortical structures in the wake
at higher Reynolds number, presumably associated with the neutral buoyancy of the
sphere.

But what happens if we impose a transverse rotation to the sphere while it
undergoes VIV? From previous studies on rigidly mounted spheres, it is known that
the transverse rotation imposes strong asymmetry in the wake, causing the loops
to bend towards the advancing side (the side of the sphere moving in the direction
opposite to the fluid) of the sphere due to the Magnus effect (Magnus 1853), which
in consequence increases the ‘lift force’ towards the retreating side (the side of the
sphere moving in the same direction as the fluid). Previous numerical studies by
Giacobello et al. (2009), Kim (2009) and Poon et al. (2014) reported suppression of
the vortex shedding for a certain range of rotation rates that depended on the Reynolds
number. However, when α was increased, the vortex shedding resumed, although it
was very different to the vortex shedding at lower α values that is associated with the
‘buildup and release’ of the recirculation bubbles behind the sphere. From examining
the velocity and vorticity fields near the surface, they conjectured the shedding to
be a shear-layer instability of the Kelvin–Helmholtz type. The flow at such high α

values is characterised by single-sided shedding at the advancing side of the sphere.
There have been only a few experimental studies on rigidly mounted rotating

spheres at very high Reynolds numbers (Re > 6 × 104) (e.g. Macoll 1928; Barlow
& Domanski 2008; Kim et al. 2014; Kray, Franke & Frank 2014). All these studies
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(a) (b)

(c) (d)

FIGURE 22. Dye visualisation images of a rigidly mounted (non-VIV case) rotating sphere
at Re= 3510 for (a) α = 0, (b) α = 0.2, (c) α = 1.5 and (d) α = 3. Flow is from left to
right. The deflection of the wake in the direction of rotation is evident from the images.
For α = 3, the near wake becomes wider than the smaller α cases.

focused on the effect of the rotation rate on the force coefficients for understanding
the inverse Magnus effect observed at such high Reynolds numbers. They found that
the rotation causes asymmetry between the boundary layer separation at the retreating
side and the advancing side of the sphere. There was no consensus as to whether
the rotation suppresses the vortex shedding at such high Reynolds numbers or not.
Figure 22 shows the effect of rotation on a rigidly mounted sphere for a Reynolds
number of Re = 3510, using dye visualisation. The vectoring of the wake towards
the advancing side is clearly evident. Between α= 1.5 and 3, the deflection does not
increase further, although the near wake increases in width with the retreating side
separating shear layer becoming less well defined.

The question arises, how does the transverse rotation change the wake patterns
behind an elastically mounted sphere undergoing VIV? What causes the VIV response
to be suppressed? In order to get an insight into the underlying flow dynamics,
hydrogen-bubble visualisations were undertaken in the equatorial plane of the sphere
to gauge the effect of rotation.

Figure 23 shows instantaneous hydrogen-bubble flow visualisation images for the
elastically mounted rotating sphere in the equatorial plane for U∗ = 6 (Mode I) at
α = 0, 1, 2.5 and 6. The flow is from left to right and the sphere is rotating anti-
clockwise. The first column shows images for the instant when the sphere is at the
peak of one cycle (phase of π) in the y direction and the second column shows the
images for the instant when the sphere reaches the peak amplitude in the opposite
direction (phase of 3π/2). The centreline has been overlaid in the images to show the
wake deflection more clearly. Some visually identified structures have been marked in
red. Since the flow at high Reynolds numbers is three-dimensional and chaotic, the
hydrogen bubbles do not necessarily stay in the laser plane. In spite of this, some
structures are identifiable and the broad flow dynamics can be readily interpreted from
these visualisations.

For α = 0, in case (a), the wake is deflected upwards when the sphere reaches
the peak displacement, and as the phase changes from π to 3π/2, the wake changes
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(a) (b)

(c) (d)

(e) ( f )

(g)

Fluid entrainment
Fluid entrainment
leading to large-scale
vortices

(h)

3

y

0

y

0

In
cr

ea
si

ng

FIGURE 23. (Colour online) Instantaneous images of the hydrogen-bubble visualisation in
the equatorial plane for the following cases: (a,b) U∗= 6, α= 0, (c,d) U∗= 6, α= 1, (e, f )
U∗ = 6, α= 2.5, (g,h) U∗ = 6, α= 6. Panels (a,c,e,g) show images when the sphere is at
its lowest position, and (b,d, f,h) when it is at its highest position.
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orientation from upwards to downwards. The wake deflection is symmetrical, as
expected for a non-rotating oscillating sphere undergoing VIV. The wake deflection
and sphere displacement are in the opposite direction. Also, the roll-up of the
separating shear layers just behind the sphere on both the sides can be seen, which
convect downstream as vortical structures (shown in the horizontal cut through the
interlinked vortex loops present in the wake).

As α is increased from 0 to 6, the wake structure changes. As shown in
figure 23(a,c,e,g), the deflection increases (towards the advancing side) and the wake
widens due to the rotation of the sphere in the anti-clockwise direction (Magnus
effect). Due to this rotation-induced forcing, the mean displacement of the sphere
shifts towards the retreating side of the sphere (see § 4.1).

With increased rotation, the flow from the retreating side is vectored towards the
advancing side. The flow is continuously drawn upwards by the sphere rotation; the
flow structures, therefore, exhibit a large-scale shedding pattern. Case (g) clearly
shows very large-scale vortices shed at the advancing side of the sphere for α = 6,
when the VIV is greatly suppressed.

With increased entrainment of fluid from the retreating side to the advancing
side, it can be conjectured that the shear layer becomes unstable, and the vortices
are shed further upstream with increasing rotation, as is evident in case (g). At
high rotation rates, e.g. case (e) and case ( f ), the recirculation bubble is evidently
mostly suppressed. This near wake is very similar to the ‘shear-layer instability’
regime reported by Giacobello et al. (2009), Kim (2009) and Poon et al. (2014)
for rigidly mounted rotating spheres at low Reynolds number (Re 6 1000). They
reported single-sided shedding on the advancing side of the rotating sphere. They
also observed suppression of the recirculation bubbles and the large-scale shedding
patterns with increasing rotation.

For the phase of 3π/2 (cases b,d, f,h), as α increases from 0 (case b) to 1 (case d),
the downward deflection of the wake decreases. For α = 2.5, the wake is rather
deflected slightly upwards and for α = 6, the wake is highly deflected towards the
advancing side. Since the wake is always deflected towards the advancing side for
all shedding cycles, there is little oscillating force acting on the sphere to induce
sizeable vibrations. This is also evident in measurements of the r.m.s. of the transverse
fluctuating force coefficient C′yrms

reported in § 4.3. Figure 19 shows C′yrms
is negligible

for U∗ = 6 at α = 6. Hence, VIV is (almost) suppressed for α = 6 (case h) and the
sphere is displaced towards the retreating side.

Owing to the fact that hydrogen-bubble visualisations provide mostly qualitative
information, particle image velocimetry (PIV) was employed in the central equatorial
plane (plane of symmetry) to provide more quantitative information, allowing an
alternative view of the main near-wake features. Figure 24 shows representative
near-wake vorticity maps, phase-averaged over more than 100 oscillation cycles,
in the central equatorial plane for the same experimental conditions as shown in
figure 23. As is evident from figure 24(a,b), the phase-averaged wake of a non-rotating
oscillating sphere consists of a counter-rotating vortex pair downstream that represents
a cut through a vortex ring, as previously reported by Govardhan & Williamson (2005).
The deflections observed in the overall wake patterns in all cases are consistent with
those observed earlier using the hydrogen-bubble visualisations (figure 23). For α= 0,
the wake deflections at opposite ends of the oscillation cycle are symmetric, but they
becomes increasingly unsymmetric with increasing α, until for α = 6 the vibrations
are almost suppressed. The wake at α= 6 is considerably wider than the other cases.
For the phase of 3π/2, as the rotation rate increases from α= 0 to 1, it can clearly be
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FIGURE 24. (Colour online) Equatorial near-wake vorticity maps obtained from phase-
averaged PIV for the following cases: (a,b) U∗ = 6, α = 0, (c,d) U∗ = 6, α = 1, (e, f )
U∗ = 6, α = 2.5 and (g,h) U∗ = 6, α = 6. Panels (a,c,e,g) show images corresponding to
when the sphere is at its lowest position, and (b,d, f,h) when it is at its highest position.
The blue contours show clockwise vorticity and red contours show anti-clockwise vorticity.
The normalised vorticity range is ω∗ = ωD/U (where ω is the vorticity) ∈ [−3, 3] for
α = 0, [−2, 2] for α = 1 and α = 2.5 and [−1, 1] for α = 6.
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seen that the wake deflection angle towards the retreating side (downwards) decreases.
When α is further increased to 2.5, the downward deflection angle is almost zero.
For α = 6, the wake is now deflected in the opposite direction (advancing side). The
presence of anti-clockwise vorticity encircling the sphere on the retreating side points
towards highly vectored flow from the retreating to the advancing side. Also, the
recirculation region is absent for higher rotation rates. These findings are congruous
with the more qualitative hydrogen-bubble visualisations.

Although the wake of a sphere is intrinsically highly three-dimensional and chaotic
at such high Reynolds numbers, the flow visualisations in the plane of symmetry
(equatorial plane) still provide important insights into the underlying flow dynamics.

6. Conclusions

An extensive series of experiments and flow visualisations have been performed to
study the effect of transverse rotation on the VIV response of a sphere. Transverse
rotation was imposed such that the axis of rotation was perpendicular to the
flow direction. The vibration response was studied for a wide parameter space
of 0 6 α 6 7.5 and 3 6 U∗ 6 18. Interestingly, unlike its two-dimensional counterpart,
the cylinder, the VIV response of the sphere reduced gradually and steadily with
increasing the rotation ratio, leading to an almost complete suppression for α > 6.0.
With some similarities to the non-rotating case, the amplitude response of a rotating
sphere exhibited a bell-shaped curve, showing vibration Modes I and II for α 6 1. It
was also found that the synchronisation regime became narrower with increasing α,
and also the peak amplitude response gradually decreased almost linearly for α . 1.
For α > 0.5, the amplitude response dropped off rapidly with increasing U∗ as soon
as the peak response was reached, whereas, for lower rotation ratios of α6 0.4, large
oscillation amplitudes were still encountered at higher U∗ values after the A∗ peak
was reached in Mode II. The oscillation frequency remained close to the natural
frequency of the system for all cases.

Furthermore, it was found that oscillation amplitudes not only decreased but also
the oscillations became less periodic with increasing rotation. Recurrence analysis
revealed a transition from periodic to chaotic in the recurrence map complementing
the occurrence of broadband frequency spectra at the onset of bifurcation. The
time-averaged mean displacement increased towards the retreating side of the sphere
with increasing α, due to an increase in the mean Magnus force. A substantial jump
in fluctuating lift force coefficient, Cy

′

rms, was observed when lock-in occurred at
the start of the Mode I response. The peak value of C′yrms

as U∗ was increased was
found to decrease consistently with the rotation rate, following a trend similar to
that of the vibration amplitude. Imposed rotation increased the mean component
of the transverse force (Cy) due to the Magnus effect. It simultaneously decreased
the fluctuating component of the transverse force (C′yrms

), which decreased the VIV
response.

Compared to VIV of a low mass-damped cylinder, the total and vortex phase
transitions are much less sharp, as the VIV mode changes. However, overall the
phase transitions are similar. The vortex phase jumps as the response changes from
Mode I to Mode II, and the total phase jumps from low to high values as the Mode
II vibration transitions to the lower plateau, which is only observed for α . 0.4.

Flow visualisations using hydrogen bubbles and the PIV techniques were performed
in the equatorial plane containing the principal transverse vibration. With increased
rotation, the wake deflected more and more towards the advancing side of the sphere.
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The flow was continuously drawn from the retreating side to the advancing side of the
sphere with increasing rotation rate, which led to entrainment of fluid at the advancing
side. This entrainment gave rise to large-scale one-sided vortex shedding. This flow
behaviour is very similar to the ‘shear-layer instability’ regime reported by previous
studies for rigidly mounted rotating spheres. For the rotation rates where the VIV
was found to be completely suppressed, the wake was found to be always deflected
towards the advancing side with large-scale flow structures for all shedding cycles. A
lack of an oscillating force acting on the sphere led to near suppression of the VIV.
This also led to a shift in the mean displacement of the sphere towards the retreating
side. Measurements of the fluctuating transverse force coefficients C′yrms

and Cy were
also consistent with the flow visualisation observations.
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Chapter 6

Effect of free surface on the
flow-induced vibrations of a
sphere

Try not to become a man of success,
but rather try to become a man of
value

Albert Einstein

Overview of the chapter

In this chapter, the publication by the author entitled ‘Vortex-induced vibrations of
a sphere close to a free surface’ published in the Journal of Fluid Mechanics (2018),
vol 846, pp. 1023-1058, has been reproduced with permission Cambridge University
Press© 2018. In this paper, a comprehensive series of experiments and wake measure-
ments have been performed to investigate the effect of proximity to a free surface on
the VIV response of fully- and semi-submerged spheres. The response was studied over
a wide range of reduced velocities, 3 ≤ U∗ ≤ 20, capturing the initial resonance band,
and immersion ratios of 0 ≤ h∗ ≤ 1 for the fully-submerged sphere and 0 < h∗ < −1
for the semi-submerged sphere.

For a fully submerged sphere, the vibration amplitude decreased and the synchro-
nisation region narrowed gradually with a decrease in the immersion ratio. Mode II
occurred for progressively lower U∗ values with decreasing h∗. In contrast, for the
semi-submerged sphere, different dynamics was observed. Two regimes were identi-
fied, depending on the immersion ratio showing different characteristic responses. The
amplitude response in regime II was characterised by two distinct peaks correspond-
ing to mode I and mode II of the vibration response observed for a fully submerged
sphere. The response was found to be relatively insensitive to the Froude number in
the range tested, 0.05 ≤ Fr ≤ 0.45, with the response curve shape unaffected, although
increasing the Froude number did lead to a slight reduction in the peak amplitude. PIV
wake measurements in the cross-plane 1.5D downstream from the rear of the sphere
revealed reduction in vorticity of the upper vortex of the longitudinal vortex pair that
was closer to the free surface. For the piercing sphere case, only the lower vortex of the
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pair was visible at 1.5D downstream; it appears that the upper vortex was effectively
lost through diffusion into the free surface.
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Vortex-induced vibrations of a sphere close to a
free surface

A. Sareen1,†, J. Zhao1, J. Sheridan1, K. Hourigan1 and M. C. Thompson1

1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and
Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia

(Received 14 November 2017; revised 7 February 2018; accepted 1 April 2018)

Results are presented from an experimental investigation into the effects of proximity
to a free surface on vortex-induced vibration (VIV) experienced by fully and
semi-submerged spheres that are free to oscillate in the cross-flow direction. The VIV
response is studied over a wide range of reduced velocities: 3 6 U∗ 6 20, covering
the mode I, mode II and mode III resonant response branches and corresponding to
the Reynolds number range of 5000 . Re . 30 000. The normalised immersion depth
of the sphere is varied in small increments over the range 0 6 h∗ 6 1 for the fully
submerged case and 0 6 h∗ 6 −0.75 for the semi-submerged case. It is found that
for a fully submerged sphere, the vibration amplitude decreases monotonically and
gradually as the immersion ratio is decreased progressively, with a greater influence
on the mode II and III parts of the response curve. The synchronisation regime
becomes narrower as h∗ is decreased, with the peak saturation amplitude occurring
at progressively lower reduced velocities. The peak response amplitude decreases
almost linearly over the range of 0.5 6 h∗ 6 0.185, beyond which the peak response
starts increasing almost linearly. The trends in the total phase, φtotal, and the vortex
phase, φvortex, reveal that the mode II response occurs for progressively lower U∗
values with decreasing h∗. On the other hand, when the sphere pierces the free
surface, there are two regimes with different characteristic responses. In regime I
(−0.5 < h∗ < 0), the synchronisation region widens and the vibration amplitude
increases, surprisingly becoming even higher than for the fully submerged case in
some cases, as h∗ decreases. However, in regime II (−0.56 h∗6−0.75), the vibration
amplitude decreases with a decrease in h∗, showing a very sharp reduction beyond
h∗ < −0.65. The response in regime II is characterised by two distinct peaks in the
amplitude response curve. Careful analysis of the force data and phase information
reveals that the two peaks correspond to modes I and II seen for the fully submerged
vibration response. This two-peak behaviour is different to the classic VIV response
of a sphere under one degree of freedom (1-DOF). The response was found to be
insensitive to the Froude number (Fr=U/

√
gD, where U is the free-stream velocity,

D is the sphere diameter and g is the acceleration due to gravity) in the current range
of 0.05 6 Fr 6 0.45, although higher Froude numbers resulted in slightly lower peak
response amplitudes. The wake measurements in the cross-plane 1.5D downstream of
the rear of the sphere reveal a reduction in the vorticity of the upper vortex of the
trailing vortex pair, presumably through diffusion of vorticity into the free surface.
For the piercing sphere case, the near-surface vorticity completely diffuses into the
free surface, with only the opposite-signed vortex visible in the cross-plane at this
downstream position. Interestingly, this correlates with an even higher oscillation

† Email address for correspondence: anchal.sareen@monash.edu
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amplitude than the fully submerged case. Finally, the effects of immersion ratio and
diameter ratio (D∗ = sphere diameter/support-rod diameter) are quantified, showing
care needs to be taken with these factors to avoid unduly influencing VIV predictions.

Key words: flow–structure interactions, vortex shedding, wakes

1. Introduction
Flow past a sphere in close proximity to a free surface, or piercing it, has a number

of potential practical applications, such as offshore structures, underwater vessels,
buoys, submarines and especially power generation equipment using wave and tidal
energy. Most floating ocean structures for offshore petroleum drilling and production
operations also consist of submerged and semi-submerged structures. Despite such
practical applications, the flow past a sphere close to a free surface, and also piercing
it, is not well understood. Many studies have reported on the two-dimensional
counterpart, the cylinder, elaborating on the effect of a free surface on the flow past
that geometry. Reichl, Hourigan & Thompson (2005) studied the two-dimensional
flow past a cylinder close to a free surface at Re= 180. Their major finding was that
for low Froude number (Fr6 0.3), where the surface deformation is minimal, the flow
is largely governed by geometric constraints and behaves similarly to the flow past a
cylinder close to a no-slip wall. However, for higher Froude numbers, where surface
deformation becomes substantial, there is significant surface vorticity generation that
can diffuse or convect into the main flow, altering the development of vortex shedding.
The flow in such cases is characterised by two metastable states, which can coexist
for the same system parameters. Such metastable states were previously observed in
the experimental investigations by Sheridan, Lin & Rockwell (1995) and Sheridan,
Lin & Rockwell (1997). The latter authors investigated experimentally the flow past a
cylinder close to a free surface over the Froude number range of 0.476Fr6 0.72 and
Reynolds number range 59906Re6 9120. They reported that the flow past a cylinder
close to a free surface at high Froude number gives rise to fundamental classes of
near-wake structures that are distinctly different from the wake of a completely
submerged cylinder located far beneath the free surface. Considering the limiting case
of a piercing cylinder, Yu, Avital & Williams (2008) studied the flow past a cylinder
piercing the free surface numerically for Re = 1 × 105 at Froude numbers up to
Fr= 3. Their results showed that the free surface inhibits the vortex generation in the
near wake, leading to reduced vorticity and vortex shedding. For Fr= 0.8, the vortex
structures exhibited strong three-dimensional (3-D) features; however, the flow in the
deep wake remained two-dimensional. Furthermore, at Fr = 2, the free-surface effect
propagated throughout the wake, inhibiting regular vortex shedding past the cylinder.
Similar results were observed numerically by Inoue, Baba & Himeno (1993) and
Kawamura et al. (2002) for a piercing cylinder. The latter study reported a diverging
Kelvin wave system at the free surface and observed surface fluctuations related to
the shear-layer instabilities under the free surface. From all these studies, it can be
inferred for a cylinder that the free surface acts like a rigid free-slip boundary for
low Froude numbers of Fr 6 0.5. For 0.8 6 Fr < 2, the free surface influences the
shedding near the free surface, leading to 3-D features very close to the free surface;
however, for very high Froude numbers of Fr > 2, the free surface was significantly
deformed; there were then strong wave–wake interactions, and the periodic vortex
shedding was suppressed for cylinder depths less than one diameter from the free
surface.
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Although the above-mentioned studies focused on fixed cylinders, significant
attenuation and alteration of the vortex shedding can be expected for an elastically
mounted cylinder. A very recent study by de Oliveira Barbosa et al. (2017) reported
the effect of proximity to a solid wall boundary on the vortex-induced vibration (VIV)
response of a freely vibrating cylinder. They observed a reduction in the amplitude
response for gaps between 0.75 and 2 diameters and an increase in the amplitude
and frequency of oscillations for gaps smaller than 0.75 diameters, when the cylinder
actually impacted the boundary.

Unlike the situation for circular cylinder VIV, there are relatively few previous
studies on VIV of even a fully submerged tethered sphere (Govardhan & Williamson
1997; Williamson & Govardhan 1997; Jauvtis, Govardhan & Williamson 2001;
Pregnalato 2003; Govardhan & Williamson 2005; van Hout, Krakovich & Gottlieb
2010; Behara, Borazjani & Sotiropoulos 2011; Krakovich, Eshbal & van Hout 2013;
Lee, Hourigan & Thompson 2013; Behara & Sotiropoulos 2016). Williamson &
Govardhan (1997), Govardhan & Williamson (1997) and Jauvtis et al. (2001) reported
the existence of multiple modes of vibrations in a free stream, namely modes I, II
and III. Modes I and II, which occur over a reduced velocity range of U∗ ∼ 5–10,
are the fundamental modes of vibrations that are associated with the lock-in of the
vortex-shedding frequency with the system natural frequency, similar to the 2S and 2P
modes for an excited circular cylinder. Mode III occurs over a wide range at higher
reduced velocities U∗ ∼ 20–40, where the vortex-shedding frequency is much higher
than the vibration frequency. This state leads to remarkably regular vibrations with a
vibration period corresponding to three to eight vortex-shedding periods. This robust
mode does not have any apparent counterpart in VIV of a circular cylinder. This
was later categorised as a ‘movement-induced vibration’ by Govardhan & Williamson
(2005). Van Hout et al. (2010) and Lee et al. (2013) also observed several regimes
of vibrations for a heavy tethered sphere and a neutrally buoyant tethered sphere,
respectively. The former reported a response region III, which was linked to the mode
III state reported by Jauvtis et al. (2001), and the latter reported a chaotic regime VI,
which was linked to mode IV reported by Jauvtis et al. (2001). Both these studies
reported these modes to exhibit non-stationary chaotic dynamics, where large variation
in amplitude is observed. This was also reported by an extensive experimental study
by Sareen et al. (2018).

All the above-mentioned studies focused on a fully submerged sphere located well
away from a boundary. However, when a sphere is elastically mounted close to a
free surface, the dynamics could be very different. There is a very brief preliminary
study by Mirauda, Plantamura & Malavasi (2014) on the dynamic response of a
light (m∗ = 1.34, where m∗ = total oscillating mass (m)/mass of the displaced fluid
(md)) tethered sphere in a shallow water flow. Although their study lacked any forces
or vorticity measurements to support their claims, they indicated a reduction in the
vibration response amplitude with the presence of a free surface. However, the main
limitation of the study was that there were large variations in the blockage ratio with
the immersion depth in their experimental set-up. Also, there were appreciable wall
effects, as the sphere was placed close to the channel floor (3 mm from the channel
wall), which were neglected. There appears to be no study so far investigating the
VIV response of a semi-submerged sphere that pierces the free surface. It is still
unknown if the case of a semi-submerged sphere, which is quite ubiquitous in
ocean engineering, oscillates more vigorously than a fully submerged sphere or if
the vibrations are greatly reduced due to the free surface. These questions remain
unanswered. The current study systematically documents the effect on the VIV
response of a free surface, for fully and semi-submerged spheres.
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1026 A. Sareen, J. Zhao, J. Sheridan, K. Hourigan and M. C. Thompson

U U

h

Free surface

k c

k c

x

z

D x

y

D

Side view Top view(a) (b)

FIGURE 1. Schematic showing an overview of the experimental arrangement and definition
of the geometric and flow parameters: (a) side view and (b) top view. Here, D is the
sphere diameter, U is the free-stream velocity, k is the spring constant of the system and
c is the structural damping; h is the distance measured from the top of the sphere to the
free surface.

For these experiments, the sphere is elastically mounted in the transverse direction
to the oncoming flow, where the principal VIV vibrations are observed. The VIV
response is investigated experimentally over a wide range of reduced velocities and
submergence depths, employing comprehensive displacement, force and vorticity
measurements. To further understand the flow dynamics, various flow visualisation
techniques are also employed.

In the present study, the following questions are addressed. Does the proximity to
the free surface attenuate the vibrations of a sphere? What happens to the different
modes of vibrations? Does the proximity to the free surface change the wake structure
of the sphere? What happens in the limiting case of a piercing sphere? Does it still
vibrate with analogues of the characteristic modes seen for fully submerged spheres?

The experimental method used in the current study is detailed in § 2, and a
validation study based on VIV of a non-rotating oscillating sphere is given in § 3. In
§ 4, the effect of a free surface on the VIV response of a fully submerged sphere
is discussed. Following this, § 5 focuses on the VIV response of a semi-submerged
sphere piercing the free surface, § 6 focuses on the effect of the support rod. In
§ 7, the vorticity measurements are presented and discussed, supported by flow
visualisations. Finally § 8 draws together conclusions, summarising important findings
and the significance of the current study.

2. Experimental details
2.1. Fluid–structure system

Figure 1 presents a brief schematic of the current fluid–structure interaction problem
showing an overview of the experimental arrangement together with definitions of the
important geometric and flow parameters. The sphere is elastically mounted in the
direction transverse to the oncoming flow. The distance from the free surface is varied
in terms of the parameter h∗ = h/D – the immersion ratio – where h is the distance
measured from the top of the sphere surface to the undisturbed free surface directly
above and D is the sphere diameter.
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Vortex-induced vibrations of a sphere close to a free surface 1027

Amplitude ratio A∗rms

√
2Arms/D

Damping ratio ζ c/2
√

k(m+mA)

Diameter ratio D∗ D/Dr

Frequency ratio f ∗ f /fnw

Froude number Fr U/
√

gD
Mass ratio m∗ m/md

Mass-damping parameter ξ (m∗ +CA)ζ

Immersion ratio h∗ h/D
Reduced velocity U∗ U/(fnwD)
Reynolds number Re UD/ν
Scaled normalised velocity U∗S (U∗/f ∗)S= fvo/f
Scruton number Sc 2mζ/ρD2

Strouhal number S fvoD/U

TABLE 1. Non-dimensional parameters used in this study. In the above parameters, Arms is
defined as the root mean square of the structural vibration amplitude in the y direction. D
is sphere diameter; Dr is the support-rod diameter, f is the body oscillation frequency and
fnw is the natural frequency of the system in quiescent water; m is the total oscillating mass,
c is the structural-damping factor and k is the spring constant; U is the free-stream velocity,
and ν is the kinematic viscosity; mA denotes the added mass, defined by mA=CAmd, where
md is the mass of the displaced fluid and CA is the added-mass coefficient (0.5 for a
sphere); fvo is the vortex-shedding frequency of a fixed body.

Table 1 shows the set of non-dimensional parameters relevant for the current study.
In problems involving flow-induced vibrations (FIV) of bluff bodies, the response
dynamics of the system is often characterised by the normalised vibration amplitude
(A∗) and frequency response (f ∗) versus reduced velocity. In the current study, the
normalised amplitude response is defined as A∗ =

√
2Arms/D, where Arms is the root

mean square (r.m.s.) of the oscillation amplitude of the body. The reduced velocity
is defined as U∗=U/fnwD, where U is the free-stream velocity and fnw is the natural
frequency of the system in quiescent water. Another important parameter in the
current fluid–structure system is the mass ratio defined as m∗=m/md, where m is the
total oscillating mass of the system, and md is the displaced fluid mass (md= ρπD3/6
with ρ being the fluid density).

The governing equation for motion characterising cross-flow VIV of a sphere can
be written as

mÿ+ cẏ+ ky= Fy, (2.1)

where Fy represents fluid force in the transverse direction, m is the total oscillating
mass of the system, c is the structural damping of the system, k is the spring
constant and y is the displacement in the transverse direction. Using the above
equation, the fluid force acting on the sphere can be calculated from the directly
measured displacement, and its time derivatives.

As a first approximation, it is often assumed that y(t) and Fy(t) are both
approximately sinusoidal and can be represented by

y(t)= A sin(2πft), (2.2)
Fy(t)= Fo sin(2πft+ φ), (2.3)

where A is the displacement amplitude, Fo is the amplitude of Fy and φ is the phase
between the fluid force and the body displacement.
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1028 A. Sareen, J. Zhao, J. Sheridan, K. Hourigan and M. C. Thompson

As done for VIV of spheres and cylinders by Govardhan & Williamson (2000), the
total transverse fluid force (Fy) can be split into a potential force Fpotential (comprising
the potential added-mass force) and a vortex force Fvortex that is due to the vorticity
dynamics. From potential theory, the instantaneous Fpotential acting on the sphere can
be expressed as

Fpotential(t)=−CAmdÿ(t), (2.4)

with CA the potential added-mass coefficient (CA= 0.5 for a sphere). Thus, the vortex
force Fvortex can be computed from

Fvortex = Fy − Fpotential. (2.5)

The vortex phase is the phase difference between the vortex force and the body
displacement and the total phase φtotal is the phase difference between the total force
and the body displacement. In general, phase jumps are associated with a switch
from one VIV mode to another, and have even been used to distinguish between
different modes (Govardhan & Williamson 2005). The instantaneous relative phases
between the two forces are calculated using the Hilbert transform (e.g. see Khalak
& Williamson 1999). For the piercing sphere cases, the potential force is calculated
considering the fraction of the sphere that is submerged and assuming that the
added-mass coefficient remains the same.

2.2. Experimental details
The experiments were conducted in the recirculating free-surface water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash
University, Australia. The test section of the water channel has dimensions of
600 mm in width, 800 mm in depth and 4000 mm in length. The free-stream
velocity in the present experiments could be varied continuously over the range
0.05 6 U 6 0.45 ms−1. The free-stream turbulence level was less than 1 % in the
current experiments.

The current hydro-elastic problem was modelled using a low-friction air-bearing
system that provided a very low structural damping and almost frictionless motion of
the sphere in the transverse direction to the oncoming flow. The structural stiffness
was controlled by extension springs that were attached to both sides of a slider
carriage. Further details of the hydro-elastic facility can be found in Zhao et al.
(2014a,b).

A detailed schematic of the experimental set-up is presented in figure 2, showing
important components of the set-up. The sphere models used in the present study
were solid spherical balls precision-machined from acrylic plastic with a very smooth
surface finish. The accuracy of the diameter was within ±200 µm. Different spheres
with sizes of D = 40 mm, D = 80 mm and 120 mm were used in the current
experiments. The spherical models were supported using a thin cylindrical support
rod 3 mm in diameter, manufactured from hardened nitrided stainless steel for extra
stiffness and to maintain straightness.

The body displacement was measured using a linear encoder (model: RGH24,
Renishaw, UK) with a resolution of 1 µm. Since the linear encoder was digital,
electromagnetic noise did not affect the accuracy of the displacement signal
measurement. This provided highly accurate displacement signals and allowed
reliable velocity and acceleration signals to be derived. This enabled an accurate
determination of the lift force signal to be derived from the displacement signal
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Vortex-induced vibrations of a sphere close to a free surface 1029

Air bearing
(DOF normal to page)

Force balance

Support rod

Laser sheet

Test sphere

Cylindrical lens Linear encoder Laser sheet

Camera
Springs

Mirror

Laser

Mirror

x x

U U

z y

Side view Top view(a) (b)

FIGURE 2. (Colour online) Experimental schematic (not to scale) showing an overview
of the experimental arrangement.

using (2.1). In the experimental study by Sareen et al. (2018), the process was
tested through a direct comparison against the lift force determined by a force sensor
over a wide range of U∗. It was found that the lift force derived from the linear
encoder displacement signal matched well with that measured using the force sensor,
except that they were generally smoother, indicating accurate measurements of the
displacement and the lift force. Zhao et al. (2014b) also reported such a comparison.
Hence, all the force coefficients reported in the current study are derived from the
measured displacement signal. It should be noted that the lift force obtained using
the force sensor includes the inertial force associated with the acceleration of the
mass below the force sensor (e.g. see Zhao et al. (2014b) and Sareen et al. (2018)).
That term, which is derived by calculating the acceleration from the displacement
signal, needs to be subtracted from the measured force to give the lift force. Hence
the force sensor by itself does not enable the lift force to be measured directly. Also,
the force measurements from the force sensor suffered from a greater degree of
noise, presumably from electromagnetic sources; hence, the preference for the force
derived from the displacement signal. Note here that this approach is appropriate
only because highly accurate digital displacement measurements are possible with the
current displacement encoder. Of course, one requires accurate measurements of the
relevant parameters of the spring–mass system (total oscillating mass, spring constant
and the structural damping).

The data acquisition and the controls of the flow velocity were automated via
customised LabVIEW programs. For each data set, the displacement signal was
acquired at a sampling frequency of 100 Hz for at least 100 vibration cycles.

The natural frequencies and structural damping of the system in both air and water
were measured by conducting free decay tests individually in air and in quiescent
water. Most of the experiments reported in this paper were performed for a mass ratio
of m∗ = 7.8. The structural damping ratio with consideration of the added mass was
determined to be ζ = 2.04× 10−3. The Scruton number Sc (mass-damping parameter)
for the current study was 0.00134.
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1030 A. Sareen, J. Zhao, J. Sheridan, K. Hourigan and M. C. Thompson

To gain insight into the flow dynamics, velocity field measurements using
particle image velocimetry (PIV) were undertaken in the cross-plane, 1.5 diameters
downstream of the sphere. For this purpose, the flow was seeded with 13 µm hollow
micro-spheres having a specific weight of 1.1 g m−3. A laser sheet of ∼3 mm
thickness from a continuous laser (model: MLL-N-532-5W, CNI, China), aligned
parallel to the y–z plane, was employed to illuminate the laser plane. A mirror was
placed at 45◦ angle to the free-stream direction towards the downstream side of
the sphere. The mirror was placed more than six diameters away from the sphere.
Imaging was performed using a high-speed camera (model: Dimax S4, PCO, AG) with
a resolution of 2016× 2016 pixels2. This camera was equipped with a 105 mm Nikon
lens, giving a magnification of approximately 11.34 pixel mm−1 for the field of view.
Velocity fields were deduced using in-house PIV software developed originally by
Fouras, Lo Jacono & Hourigan (2008), using 32× 32 pixel2 interrogation windows in
a grid layout with 50 % window overlap. All the vorticity fields shown in the current
study were phase-averaged over more than 100 cycles. For each PIV measurement
case, a set of 3100 image pairs were sampled at 10 Hz. Each image set was sorted
into 24 phase bins based on the sphere’s displacement and velocity, resulting in more
than 120 image pairs for averaging at each phase.

In the present study, the VIV response was studied over a wide reduced velocity
range of 36U∗6 20. The immersion ratio was varied over a range of 06 h∗6 1 for
the first set of experiments, and −0.0626 h∗6−0.750 for the next set of experiments
with the piercing sphere. The Reynolds number for the current study varied between
5000 and 30 000.

3. VIV response of a fully submerged sphere: validation experiments

In this section, the VIV response of a fully submerged sphere is presented. For
this set of experiments, the spherical model was 80 mm in diameter supported with
a cylindrical support rod 3 mm in diameter. The immersed length of the support rod
was one diameter (80 mm). The free decay tests were conducted individually in air
and water to obtain the natural frequency in air, fna = 0.2539, and in water, fnw =

0.2455. The mass ratio was m∗ = 7.8 and the structural damping of the system was
ζ = 0.002. The response was studied for the U∗ range of 3 6 U∗ 6 20, corresponding
to a Reynolds number range of approximately 5000 6 Re 6 30 000. The signal was
acquired at 100 Hz for approximately 170 cycles at each data point in this set of
experiments.

In figure 3, the results from the current study are directly compared to the results
reported by Govardhan & Williamson (2005) for a similar mass ratio of m∗ = 7.
The mass damping of the current study was (m∗ + CA)ζ = 0.0169, compared to
approximately 0.03 in their study. For comparison with their study here, A∗rms is
plotted against the scaled U∗S , defined as U∗S = (U∗/f ∗)S ≡ fvo/f , where S is the
Strouhal number for the vortex shedding (≈0.18 in this case).

As evident from the figure, the amplitude response of a sphere in the current study
closely follows the trend reported by Govardhan & Williamson (2005). The vibrations
lock in at U∗S ≈ 0.87, corresponding to a U∗ value of 4.5, continuously progressing
from mode I to mode II and reaching a peak saturation amplitude of 0.8 in both
cases. Although, in the study by Govardhan & Williamson (2005), the response at
this mass ratio is reported only until U∗S = 2, the current study reveals that after
the peak response in mode II, the amplitude response smoothly drops to a lower
plateau that extends towards mode III as U∗S → 3. The vibrations in the ‘plateau’
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1.0
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Plateau branch

Govardhan & Williamson (2005)
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FIGURE 3. Amplitude response of a fully submerged sphere obtained in the current study
compared to that reported by Govardhan & Williamson (2005). The mass damping in the
current study is (m∗ +CA)ζ = 0.0169, compared to approximately 0.03 in their study.

region exhibit slight differences to the highly periodic vibrations in mode II, even
though the frequency of oscillation stays close to the natural frequency of the system
over the entire U∗S range examined in the current study.

Unlike the case of a tethered sphere with a very low mass ratio, where the two
vibration modes are distinctly separated by a desynchronised region, there is no such
separation between the two modes in 1-DOF hydro-elastic VIV and with higher mass
ratio in this study. The transition between the modes is continuous and gradual with
U∗, hence it is difficult to differentiate between the two modes by just looking at the
amplitude response. The transition from one mode to the other is made clear through
observations of the phase differences between the force and the sphere displacement
signals for the two modes.

Figure 4 shows the variation of the total phase φtotal (phase difference between the
sphere displacement and the total transverse force) and the vortex phase φvortex (phase
difference between the sphere displacement and the vortex force) with U∗, correlated
with the amplitude response. The results reported by (Govardhan & Williamson 2005)
for a relatively higher mass ratio of m∗ = 31.1 are also shown for comparison. As
is evident from the figure, the response in the current study undergoes a transition
from mode I to mode II when φvortex crosses through 90◦, corresponding to the
‘inflection point’ in the amplitude response. Likewise, within the mode II regime,
φtotal passes continuously through 90◦, corresponding to the peak of the amplitude
response. Similar trends in the total and the vortex phases were also observed in
the data reported by (Govardhan & Williamson 2005) for a higher mass ratio of
m∗ = 31.1.

In the current study, with the U∗ range further extended beyond U∗ = 14, a slight
decrease in both the total phase, φtotal, and the vortex phase, φvortex, was observed as
shown in the figure 4. Simultaneously a slight increase in the vibration amplitude is
also evident in the figure. This corresponds to the ‘plateau branch’ mentioned above
in figure 3 when (U∗/f ∗)S→ 3. Jauvtis et al. (2001) reported the existence of another
mode of vibration, mode III, for higher U∗ values varying from 20 to 40 for a tethered
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0.5
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FIGURE 4. (Colour online) Variation of the total phase φtotal (b) and vortex phase φvortex
(c) with U∗, correlated with the amplitude response (a). For comparison, the variations
reported by Govardhan & Williamson (2005) are also presented (blue square symbols).
The mass ratio of the current study is m∗ = 7.8 compared to 31.3 in their study.

sphere of mass, m∗ = 80 in wind tunnel experiments. Therefore, the vibrations in
the ‘plateau branch’ can be considered to be approaching the mode III response of
the sphere vibrations. A careful study of the wake in this region could shed more
light on the subtle differences between the modes, which is somewhat difficult and
complex to unravel for three-dimensional and chaotic flows like these. As pointed
out by e.g. Govardhan & Williamson (2005), the scaled reduced velocity (U∗/f ∗)S
is a useful parameter to remove mass ratio effects on sphere VIV response, as it
aligns the peaks of different data sets corresponding to different mass ratios. However,
this scaling does not work for the current study for a sphere near or piercing a free
surface, therefore, the sphere VIV response is presented as a function of U∗ instead
of (U∗/f ∗)S in the remainder of the article.

4. Effect of free surface on the VIV response of a fully submerged sphere
In this section, the effect of a free surface on the VIV response of a sphere is

studied. The immersion ratio is sequentially varied from h∗= 1 (fully submerged case)
to h∗ = 0 (when the top of the sphere touches the free surface) in small increments.
Note that a water-level controller is installed in the water channel to maintain a
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FIGURE 5. (Colour online) Variation of the amplitude response (A∗rms) with reduced
velocity (U∗) for various immersion ratios.

constant water level over time. In addition, during experiments the change in the
water level was found to be less than ∼1 % of the sphere diameter as the velocity
was changed between the minimum and maximum values (0.05 to 0.45 ms−1). Free
decay tests in water were performed for each set of experiments to estimate fnw for
each case. The data were acquired generally at 100 Hz for 120 cycles, and for 240
cycles in some cases, where vibrations were not very periodic.

Figure 5 shows the variation of A∗rms with U∗ for various immersion ratios h∗.
For h∗ = 1, the response gradually progresses from mode I to mode II, approaching
the plateau branch for higher U∗ values (15 6 U∗ 6 20), as observed previously by
Govardhan & Williamson (2005) and Sareen et al. (2018) for relatively higher mass
ratios of m∗ = 31.1 and m∗ = 14.2, respectively. At this h∗, the response is similar to
the previously reported VIV responses, corroborating the negligible effect of the free
surface at this submergence depth. However, when the immersion ratio was decreased
to 0.625, the response tapers off for U∗ > 18. This drop becomes more prominent
for h∗ 6 0.5 cases, with the reduction observed for progressively smaller U∗ values
with decreasing h∗. It is evident that the vibration response for h∗ 6 0.625 loses the
‘plateau branch’, which is typical of a fully submerged VIV response of a sphere. It
can also be noticed from figure 5 that the vibrations lock in to the natural frequency
at relatively lower U∗ values with a decrease in h∗.

The vibrations remain fairly periodic in the synchronisation region for all immersion
ratios. Figure 6 shows the time trace of the sphere vibrations for different U∗ values at
an immersion ratio of h∗= 0.25. For U∗= 6 and 12 the vibrations are highly periodic,
whereas for U∗ = 15 the vibrations are clearly non-periodic, and are characterised by
sudden bursts of intermittent small vibrations. This behaviour was found to be true
for all the other cases tested in this study. Consequently, A∗rms may not be the best
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FIGURE 6. Variation of the displacement amplitude (y/D) with dimensionless time (t/T)
for various U∗ values at an immersion ratio of 0.25. Here, t is time and T is the oscillation
period.
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FIGURE 7. Amplitude response of a sphere for h∗ = 0.375. Here, the shaded region is
bounded by the mean of the top 10 % of peaks and the mean of the bottom 10 % of
peaks, giving an indication of the periodicity/regularity of the signal.

representation of the response characteristics outside the synchronisation regime in this
scenario, where small bursts of non-periodic vibrations are observed, as the estimated
A∗rms value may change substantially with the sampling time. In order to demonstrate
the large variations in the amplitude, especially in this region, an alternative way of
presenting VIV response is shown in figure 7, where the mean of top 10 % of the
peaks and the mean of bottom 10 % of the peaks are also plotted. This also gives
a good indication of the variation in the signal over the sampling time at each U∗

value. This plot highlights the significant variations in the displacement amplitude for
higher U∗ values, and that the vibrations are much less periodic in the higher reduced
velocity range. This type of response is a typical of all the h∗ values investigated in
the current study.
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FIGURE 8. (a) Variation of the peak saturation amplitude A∗max with h∗. (b) Variation of
U∗peak with h∗.
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FIGURE 9. (Colour online) Frequency contour plots for h∗ = 0.1875 (c) and h∗ = 0 (d).
The amplitude response curves correlated with the frequency contour plots are also shown
in (a,b).

The synchronisation regime, the U∗ range where large amplitude vibrations are
observed, becomes narrower with decreasing h∗. The variation of the peak saturation
amplitude, Amax, with h∗ is shown in the figure 8. For 0.56 h∗6 1, the peak saturation
amplitude remains almost constant; however, for 0.185 6 h∗ 6 0.5, there is a sharp
linear decrease in A∗max with decreasing h∗. Interestingly, when h∗ is further decreased,
a linear increase in the peak response amplitude is observed. In contrast, the U∗

corresponding to Amax, which is denoted by U∗peak in figure 8(b), decreases almost
linearly with h∗ in the range 0 6 h∗ 6 0.625.

Figure 9 shows logarithmic-scale power-spectrum plots depicting the dominant
vibration frequency ( f ∗ = f /fnw) as a function of U∗ for two different immersion
ratios. It is clear from the contour plots that the frequency stays close to the
natural frequency (lock-in) for all U∗ values. It can be observed that within the
synchronisation regime the signal exhibits a clean frequency response with maximum
power close to f ∗y = 1. However, a broader range of frequencies is observed outside
the synchronisation regime, where small non-periodic vibrations are observed.

Figure 10 shows the variation of the r.m.s. of the transverse force coefficient, Cyrms,
with U∗ for varying immersion ratios, h∗. As evident from the figure, there is a sudden
jump in Cyrms associated with the sudden increase in the amplitude response during
lock-in, as shown in figure 5. The U∗ corresponding to lock-in shifts to the left with
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FIGURE 10. (Colour online) Variation of Cyrms with U∗ for varying immersion ratios h∗.
The direction of the arrow shows the shift of the lock-in to smaller reduced velocities.
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FIGURE 11. (Colour online) Variation of the total phase φtotal (a) and vortex phase φvortex
(b) with U∗, for three different immersion ratios.

decreasing h∗, as indicated by the arrow in the figure. For higher U∗ values of U∗ >
10, there is a relatively larger influence of decreasing h∗ in terms of decreasing the
transverse fluctuating force acting on the sphere. Similar behaviour was observed for
the displacement amplitudes as well, where the amplitudes were greatly influenced in
the higher U∗ range, as shown in figure 5. These observed behaviours of the transverse
fluctuating force coefficient Cyrms are consistent with the amplitude response.

Figure 11 shows the variation of the total phase φtotal and the vortex phase φvortex

with U∗ for three different immersion ratios. For h∗ = 1, φvortex gradually increases
from ≈20◦ to ≈170◦ as the sphere response continuously progresses from mode I to
mode II; however, φtotal only starts increasing when the response has reached the peak
saturation value. This is consistent with the previously reported trends for the phases
by Govardhan & Williamson (2005) and Sareen et al. (2018). For h∗= 0.5, both φtotal

and φvortex start reducing at higher U∗ values, unlike the h∗=0 case, where both phases
settle down at ≈90◦ for higher U∗ values. Another interesting point to note here is that
φtotal starts rising at progressively lower U∗ values for decreasing h∗. This is consistent

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

16
 M

ay
 2

01
8 

at
 0

1:
22

:4
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
29

0 Chapter 6. Effect of free surface on the flow-induced vibrations of a sphere

112



Vortex-induced vibrations of a sphere close to a free surface 1037

with the linear decrease of U∗peak with U∗, as discussed above in figure 8. It can be
concluded here that the mode II response occurs for progressively lower U∗ values
with decreasing h∗.

It follows that in the parameter space studied here, as the sphere comes closer to
the free surface, the transverse fluctuating force acting on the sphere decreases with a
greater influence in the higher U∗ range. Consequently, there is a consistent decrease
in the displacement amplitude response of the sphere. For the cases where highly
reduced vibrations were observed, the response was less periodic, characterised by
sudden bursts of small vibrations with larger variations in amplitudes. The location of
the peak saturation amplitude progressively shifts to the left with decreasing h∗, with
the amplitude initially decreasing linearly but with a sudden linear increase beyond
h∗ . 0.2.

The response was also studied for cases where the sphere pierces the free surface.
Interestingly, the dynamics are quite different. The results are discussed in detail in
the following section.

5. VIV of a semi-submerged sphere
This section focuses on the VIV response of a semi-submerged sphere piercing

the free surface. The immersion depth ratio, h∗, of the sphere was varied in small
increments between 0 and −0.75, where h∗= 0 denotes the case when the free surface
just touches the top of the sphere. The response was studied for the reduced velocity
range of 2.5 6 U∗ 6 20 for all the immersion ratios. Each data point was acquired
at an acquisition rate of 100 Hz, for more than ∼200 cycles for the highly periodic
oscillations (at lower U∗ values) and ∼400 cycles for the non-periodic vibrations (at
higher U∗ values).

5.1. Vibration response measurements
The response of a semi-submerged sphere can be divided into two regimes, one with
0< h∗ <−0.5, and the other with −0.5 6 h∗ 6−0.75, due to distinct differences in
the response characteristics. Figure 12 shows the variation of A∗rms with U∗ for various
h∗ values for both these regimes. In regime I, as h∗ is decreased from −0.062 to
−0.375, the displacement amplitude progressively increases and the synchronisation
region sequentially widens.

In contrast to regime I, the displacement amplitude in regime II decreases with a
decrease in h∗, as can be observed in figure 12(b). The amplitude response for −0.5<
h∗ 6 −0.75 is characterised by two peaks, unlike regime I, where only one peak is
evident for the U∗ range tested. As observed from the figure, the drop in amplitude is
dramatic between −0.650 and −0.688, which was found to be repeatable in follow-up
experiments. The amplitudes for h∗ =−0.688 and −0.750 are highly reduced with a
suppression of vibrations for U∗ > 15.

Figure 12(c) shows the variation of the peak amplitude, A∗max, with h∗. Intriguingly,
for h∗ = −0.250, −0.375 and −0.5, the amplitudes become even higher than the
amplitude response of a fully submerged sphere (shown with dashed horizontal line).
In these cases, the vibrations corresponding to the peak amplitude remain highly
periodic; however, the periodicity decreases as the response decreases at higher U∗
values, as also shown in the following discussion.

In figure 13, the time trace of the displacement signal is shown at selected U∗
values for h∗ = −0.062 (regime I) and h∗ = −0.750 (regime II). As evident in
regime I (left column), the vibrations are highly periodic for U∗ = 6.2; however, for
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FIGURE 12. (Colour online) Amplitude response of a sphere piercing the free surface. (a)
The amplitude response in regime I. (b) The amplitude response in regime II. (c) Variation
of the peak amplitude, A∗max, with h∗. The dashed arrow in (a,b) represents the direction
of increasing h∗ (in magnitude).

U∗ = 12.4 in the decreasing amplitude branch of the response, the vibrations are of
similar magnitude but the periodicity has decreased. For U∗ = 17.1, the vibrations
become highly non-periodic and consist of small amplitude intermittent vibrations.
This behaviour was found to be typical of all other cases in regime I. In regime II
on the other hand, the two peaks are separated by a transition region, where there is
a sudden decrease in the amplitude; nevertheless, the vibrations are still locked in.

As evident in the frequency contours plots for these h∗ values shown in figure 14,
there are slight differences in the frequency spectrum as well in the two regimes.
For h∗ =−0.062, there is an increase in the frequency of vibration (albeit small) as
the response progresses from the increasing A∗ branch to the decreasing A∗ branch
extending towards a highly non-periodic vibration branch at higher U∗. On the
contrary, for h∗=−0.750, the frequency remains constant over the entire range of U∗.
The question arises, what causes two peaks in regime II? Insight into the transition
between the vibration modes in this scenario can be gained through analysis of the
force measurement data, as explained in detail in the following section.

5.2. Force measurements
For 1-DOF VIV, the transition between the principal modes of vibrations is continuous
and gradual, unlike for the small mass ratio 2-DOF case. Hence, it is difficult to
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FIGURE 13. (Colour online) Variation of the displacement amplitude (y/D) with
non-dimensional time (t/T) for various U∗ values at an immersion ratio of h∗ =−0.062
(left) and h∗=−0.750 (right). The corresponding amplitude response is shown at the top.

infer the existence of two modes and their existence boundaries from the amplitude
response alone. A careful inspection of the force measurement data can provide insight
into the mode transitions. Hence, the total transverse force coefficient, Cytotal, and the
vortex force coefficient, Cvortex, were derived from the displacement signal and its time
derivatives. The total phase, φtotal, and the vortex phase, φvortex, were also computed
to understand the mode transitions in both these regimes.

In figure 15, the variation of φtotal and φvortex with U∗ is shown for three different
h∗ values in both the regimes. In regime I, both φtotal and φvortex increase from lower
values to up to ∼170◦, indicating the presence of mode I and II vibrations. In contrast,
φvortex in regime II jumps up to ∼170◦ during lock-in and remains constant over the
entire U∗ range. For h∗=−0.625 and h∗=−0.500, where two peaks in the amplitude
response were observed (see figure 12), the total phase crosses 90◦ twice, in line with
the presence of two peaks in the amplitude response. However, it is difficult to infer
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FIGURE 14. (Colour online) Variation of the frequency response (c,d) correlated with the
amplitude response (a,b) for two different semi-submerged cases: (a,c) h∗=−0.062, with
the sphere slightly piercing the surface; (b,d) h∗=−0.750, where only a small section of
the sphere is submerged.
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FIGURE 15. (Colour online) Variation of the total phase, φtotal, (a,b) and the vortex phase,
φvortex, (c,d) for three different h∗ values in regime I (a,c) and regime II (b,d).

from this what is the physical basis of the two peaks. A careful inspection of the
Cvortex variation helps to make the picture clearer.

Figure 16 shows the variation of Cvortex for various immersion ratios for both the
regimes. As evident in figure 16(a), the vortex force coefficient jumps up abruptly
at the vibration lock-in, at approximately U∗ ≈ 5 in these cases, and then starts
decreasing. However, for U∗ ≈ 8–10, Cvortex starts increasing again, indicating the
transition to mode II of the vibration response. This trend was also observed by
Govardhan & Williamson (2005) for the 1-DOF fully submerged sphere VIV case.
The two peaks in the vortex force indicates these two vibration modes. On the other
hand in regime II, it can be observed that the first peak is smaller than the second
peak. Also, the transition from the first peak to the second occurs at lower U∗ values
compared to regime I for h∗ = −0.625 and −0.650. Beyond the transition, Cvortex
gradually increases to a saturation value and then decreases to a lower value with
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FIGURE 16. (Colour online) Variation of the vortex force coefficient (Cvortex) with
reduced velocity (U∗) for various immersion ratios: (a) regime I; (b) regime II.
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FIGURE 17. (Colour online) Variation of the total transverse force coefficient, Cytotal, with
U∗ for varying immersion ratios h∗.

no other peak for all the cases in regime II. It can be conjectured here that there
are only two fundamental modes of vibrations for all these cases and there is no
mode III, at least within the U∗ range studied. The two peaks in regime II indeed
correspond to modes I and II.

Figure 17 shows the variation of the total transverse force coefficient, Cytotal, with
increasing U∗ for various h∗ values. The total force also follows a similar trend.
However, it is not easy to demarcate the two modes and their transitions just by
looking at this plot as there is no other peak evident (significantly bigger) for regime
II for higher U∗ values.

It is an interesting finding that although for a 1-DOF sphere VIV, there is no clear
demarcation between the two modes for the fully submerged case, the VIV response
of a semi-submerged sphere can show a transition region between the two where the
amplitude drops, in line with the transition between the two vibration modes seen in
low mass ratio tethered sphere studies.
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FIGURE 18. (Colour online) Effect of Froude number on the amplitude response curves
for the case when the sphere is just touching the free surface. (a) Mass ratio m∗ = 7.8
for spheres of diameter 80 mm and 120 mm. (b) Mass ratio m∗ = 28.7 for spheres of
diameter 40 mm and 80 mm. Note that the Froude number varies with reduced velocity
as well as sphere diameter.

5.3. Effect of Froude number
The Froude number (Fr) is an important parameter in problems involving proximity
to a free surface. It is defined as the ratio of the inertial force to the gravitational
force, and it quantifies the deformation at the free surface. In the current problem, Fr
can be defined as Fr=U/

√
gD for a fixed h∗ case.

In the current study, the Froude number is based on the sphere diameter, and Fr
varies over the range of 0.05 6 Fr 6 0.45 for both scenarios: where the sphere is
close to the free surface; and also where the sphere pierces the free surface. From
previous studies with circular cylinders, it can be conjectured that in this range of
Froude numbers, there will no large surface deformations at the free surface leading
to any significant wave–wake interactions. Nevertheless, some tests were performed to
check the sensitivity of the VIV response to a change in Froude number in this range.

The response was measured for three spheres of different sizes: D= 40, 80 and 120
mm. Since changing the size of the sphere changes m∗ due to change in the displaced
fluid mass and the sphere mass, extra weights were placed on top of the air-bearing
rig to maintain the same mass ratio, when possible. Figure 18(a) shows the response
of a sphere of size 120 mm compared to that for a 80 mm sphere, for m∗ = 7.8 and
h∗ = 0. The Froude number range changed from 0.06 6 Fr 6 0.45 (for the 80 mm
sphere) to 0.03 6 Fr 6 0.2 (for the 120 mm sphere); however, no significant change
in the shape of the response curve was found. Note here that Fr scales with the U as
well, so it increases with increasing U∗. Similarly, in figure 18(b), the response of a
sphere of D= 40 mm is shown compared to that for the 80 mm sphere, for m∗= 28.7
and h∗ = 0. The Froude number range in this case changed from 0.06 6 Fr 6 0.45
(for the 80 mm sphere) to 0.11 6 Fr 6 0.6 (for the 40 mm sphere); however, again
no significant change in the response curve shape was seen. Despite this, these two
figures do show a slight increase in peak amplitude as the diameter of the sphere is
increased, or the Froude number is reduced. However, overall, it can be inferred that
the VIV response is relatively insensitive to the Froude number in this Froude number
range.

For a high Froude number range of Fr > 2, significant wave–wake interactions can
be expected for the sphere. Of course, for a 3-D flow past a sphere at this higher
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FIGURE 19. (a) Change in the mass ratio as the immersion ratio is varied for the
semi-submerged sphere. (b) Variation in the effective added-mass coefficient at different
immersion ratios as a function of the reduced velocity.

Reynolds number, capturing the time-varying surface deformations and their effect on
the 3-D structures would be complicated and this remains open for future studies.

In summary, the current results are representative of the general problem of sphere
VIV close to or piercing the free surface for a low Fr range.

5.3.1. Effect of mass ratio
Due to nature of the problem set-up, the displaced fluid mass changes with

each immersion ratio for a semi-submerged sphere. This changes the mass ratio
and the effective added-mass coefficient for the sphere with each h∗ as shown in
figure 19(a,b).

When the peak amplitude response of a sphere with either 1-DOF (y-only motion)
or 2-DOF (x–y motion) is plotted against the mass-damping parameter, it collapses
the data onto a single curve. Such a curve is known as a Griffin plot, as shown in
figure 20. The open circles are data reported by Govardhan & Williamson (2005)
for 1-DOF and 2-DOF cases. The peak amplitude for a fully submerged sphere in
the current study, plotted as the solid diamond symbol, also falls on the same curve,
noting that in practice there is a slight Reynolds number dependence (see Govardhan
& Williamson 2006 for the effect on circular cylinder VIV). For the semi-submerged
sphere, the mass damping changes substantially from 0.018 to 0.1 as h∗ varies from
−0.062 to −0.750. According to figure 20, this should only result in a variation of
A∗max of less than 20 %. However, the situation is not quite as simple as this because
the semi-submerged immersed body geometry can no longer be described as spherical
once part of it lies above the waterline, and the effect of the free surface is to alter
the wake, and hence the vortex forcing, considerably, as vorticity diffuses into the
free surface. As can be gauged from the data presented in the previous sections, the
current problem of a semi-submerged sphere shows characteristics distinct from the
fully submerged case. Hence, further tests were undertaken to determine the sensitivity
of the response to m∗.

Figure 21(a) shows the variation of vibration amplitude with U∗ for two different
m∗ values at h∗=−0.062 with the sphere just piercing the surface, while figure 21(b)
shows the effect of the mass ratio for h∗ = −0.25 when the sphere has a greater
proportion of its volume above the waterline. As evident from these figures, the
amplitude response is more sensitive to a change in mass ratio than for the fully
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Current
experiments
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10010–110–210–3

FIGURE 20. Griffin plot for the VIV of a sphere: variation of A∗max with the mass-damping
parameter (m + CA)ζ . Open circle (◦), the data reported by Govardhan & Williamson
(2005); solid diamond, A∗max for a fully submerged sphere in the current study; solid
triangle, A∗max reported by Sareen et al. (2018).
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FIGURE 21. (Colour online) Variation of A∗rms with U∗ for different mass ratios: (a) h∗=
−0.062; (b) h∗ =−0.25.

submerged case. For instance, for the case when the top of the sphere is just above
the water surface at h∗ = −0.062, doubling the mass ratio from m∗ = 7.8 to 15.6
(and hence the mass-damping ratio from 0.017 to 0.032) results in a reduction in
the peak amplitude of approximately 30 %. However, the predicted variation from
the Griffin plot (figure 20) for a fully submerged sphere is only a few per cent. The
second case, for h∗ = 0.25, also shows a much greater reduction than predicted by
the Griffin plot variation. Thus, the presence of the free surface has a much stronger
effect on the reduction in the peak amplitude with mass-damping ratio. Despite this,
the general reduction in the synchronisation range, and the reduction of amplitude at
higher U∗ values, is consistent with the trend observed for a fully submerged sphere.
Unfortunately, limits on the weight that the air-bearing rig could support meant
that it was not possible to quantify the effect further at higher mass-damping ratios.
However, this clearly indicates that further future work is required in order to fully
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Piercing
sphere
regime

Free-
surface
effect

Support rod
effect

Optimum 0.7
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0 0.5 1.0 1.5 2.0 2.5–1.0 –0.5

FIGURE 22. (Colour online) Variation of A∗max with h∗ highlighting various regimes where
different effects are dominant. The marked (in red) optimum h∗ denotes the suggested
approximate optimum value of h∗ for studying the VIV response of a fully submerged
sphere if the support rod and the free-surface effects are to be minimised. The results are
shown for D∗ = 26.6.

understand and characterise mass-damping ratio effects on VIV of a semi-submerged
sphere.

6. Effect of the support mechanism
In § 4, the sphere VIV response was studied for immersion ratios varying in the

range 06 h∗6 1. It was shown that for h∗= 1, the free-surface effect is negligible (at
least in the U∗ range 0 6 U∗ 6 20), and the response matched well with the previous
study of a fully submerged sphere (Govardhan & Williamson 2005) (who also used
h∗ ∼ 1). For higher immersion ratios (h∗ > 1), one expects to see the response of a
fully submerged sphere. However, in the current study, when the immersion ratio was
increased from 1< h∗6 2.5, another regime was found, where the support-rod effects
were dominant. Mode I and mode II were found to be quite robust to the changes
in immersion depths; however, the response in the ‘plateau’ branch was greatly
influenced. It was found that not only the immersion ratio but also the diameter ratio
(D∗ =D/Dr), with Dr being the support-rod diameter, can have significant influences
on the vibration amplitude response. More detailed discussions on the support rod
and submergence effects are provided in appendix A as they may be useful for future
studies.

6.1. Peak response variation with submergence ratio
Figure 22 shows the variation of peak amplitude, A∗max, with the immersion ratio, h∗,
summarising the results in the current and previous sections. Based on the current
study, the response can be conveniently categorised into several regimes where certain
effects are dominant. Amongst other things, this figure highlights that the suggested
optimum h∗ for studying the response of a fully submerged sphere, if free surface and
support-rod effects are to be minimised, corresponds to h∗ ≈ 1D. However, there are
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also strong effects of D∗ on the peak response, and both h∗ and D∗ strongly affect
the amplitude response at higher reduced velocities beyond where the peak response
occurs.

7. Wake measurements
7.1. Vorticity measurements in the cross-plane

In terms of VIV wake dynamics, the central distinction between a three-dimensional
body like a sphere, and its two-dimensional counterpart, the cylinder, is that VIV
of a sphere is induced by streamwise vorticity. This is in contrast to the cylinder
whose dynamics are mainly induced by spanwise vortex structures in the wake. The
generation of lift from the presence of streamwise vortex structures in the former case
is analogous to the induced force on an aircraft wings due to counter-rotating trailing
tip vortices. Govardhan & Williamson (2005) demonstrated this by comparing the
direct force measurements from a force sensor to the vortex force calculated using
the knowledge of strength and spacing of the streamwise vortices. Therefore, the
principal conclusion one may draw is that most of the transverse force on the sphere
is associated with the streamwise vorticity, and with the knowledge of the strength of
the upper vortex and the spacing between the vortex pair, one may deduce the vortex
force acting on the sphere. As performed for a sphere undergoing VIV with 1-DOF
by Govardhan & Williamson (2005), the vortex force (or the lift force) acting on the
sphere in this case can be given by the expression

Fvortex =−ρUvτb, (7.1)

where Uv is the convection speed of the trailing vortices, τ is the strength of the upper
vortex and b is the spacing between the vortices.

Particle image velocimetry (PIV) measurements in a plane normal to the flow
can reveal important insights into the temporal evolution of streamwise vorticity
as the vortex loops pass through the cross-plane. Hence, in the current study, the
measurement of the streamwise vorticity has been carried out in a cross-plane at a
distance of 1.5D from the sphere rear surface similar to the vorticity measurements
by Govardhan & Williamson (2005). Figure 23 shows the vorticity contour plots
phase-averaged (over more than 100 cycles) at two different phases of the oscillation
cycle for a fully submerged sphere (h∗ = 1). The plots are shown for a reduced
velocity of U∗ = 10, which corresponds to the peak amplitude in the VIV response
(the heart of mode II). The top boundary in all the contour plots reported in the
paper marks the free-surface boundary.

As clearly observed from figure 23(a,b), the streamwise vorticity consists of a
dominant counter-rotating vortex pair symmetric across the horizontal plane, which is
consistent with the formation of vortex loops on both the sides of the wake (Sakamoto
& Haniu 1990; Brücker 1999; Govardhan & Williamson 2005). Streamwise vorticity
measurements by Govardhan & Williamson (2005) also revealed a counter-rotating
streamwise vortex pair similar to the current study. As the sphere oscillates from one
side to the other, the observed vorticity changes sign. In figure 23(a), the blue vortex
(anticlockwise vorticity) is above the red vortex (clockwise vorticity). On the other
hand, when the sphere traverses towards the opposite side, the vorticity changes sign
with the red vortex now above the blue vortex. This is congruent with the fact that
as the sphere oscillates from one side to the other, hairpin loops from opposite sides
are shed downstream into the wake. Vorticity measurements in a cross-plane, 1.5D
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FIGURE 23. (Colour online) Streamwise vorticity plots for a fully submerged sphere
VIV at U∗ = 10 taken 1.5D downstream of the sphere. The above phase-averaged
plots from cross-sectional digital particle image velocimetry (DPIV) measurements show
mean vorticity contours at approximately the two opposite extremes of the displacement
cycle. The position of the sphere is shown by the dashed circle. Blue contours show
anticlockwise vorticity and red contours show clockwise vorticity. Contour levels vary in
eight steps in the range ωD/U ∈ [−3.33, 3.33]. The top boundary indicates the location
of the free surface.

downstream of the sphere by Govardhan & Williamson (2005), also reported similar
findings for a fully submerged sphere.

The question arises: how do these counter-rotating vortex pairs (depicting
propagating streamwise vortex pairs) change when the sphere moves closer to
the free surface? In order to answer this question, similar streamwise vorticity
measurements at 1.5D downstream were undertaken for several different immersion
ratios. Figure 24(a–d) shows vorticity contour plots at several phases of the oscillation
cycle for a sphere close to a free surface, in this case for an immersion ratio of
h∗= 0.125. As evident from the figure, the orientation of the vortex pair has changed
dramatically due to proximity to the free surface, indicating that the vortex loops
change orientation and the horizontal plane through the sphere centre no longer acts
as a plane of symmetry.

In figure 24 when the sphere traverses to one side, the vortex closer to the free
surface (red) is reduced in size remarkably; however, as the sphere returns to the
other side, the red vortex is seemingly restored and instead the size of the blue
vortex is reduced substantially. This means that the anticlockwise (blue) vorticity
is the dominant vorticity during the first half of the cycle and the clockwise (red)
vorticity is dominant in the next half. These observations of vorticity transformation
via turning, stretching and diffusion in the current results are perhaps related to the
case of a vortex ring approaching a free surface as reported by Zhang, Shen & Yue
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FIGURE 24. (Colour online) Streamwise vorticity measurements (phase-averaged) for
U∗ = 10 for a sphere with an immersion ratio of h∗ = 0.125 at marked phases over a
displacement cycle. The corresponding displacement phases are depicted in the plot above.
See figure 23 for further information.

(1999). They demonstrated that the mechanisms of vorticity transformation via turning,
stretching and diffusion take on distinct roles in the two surface layers, i.e. an inner
viscous layer and an outer blockage layer. Similar observations of disconnection and
termination of vortex lines at the free surface have been made previously by several
studies, e.g. Bernal & Kwon (1989), Gharib & Weigand (1996) and Zhang et al.
(1999) for the case of an approaching vortex ring near a free surface, Reichl et al.
(2005) for the case of a fixed cylinder near a free surface, Ohring & Lugt (1991) for
a vortex pair near a free surface and also in the review study by Sarpkaya (1996) on
the vorticity and free-surface interactions.

In the current case, where the vortex pair is streamwise orientated during the initial
evolution, the dynamics may be even simpler. As the upper vortex of the pair advects
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Vortex-induced vibrations of a sphere close to a free surface 1049

downstream, the stress-free free-surface condition means that a velocity gradient
cannot be maintained, i.e. the vortex diffuses into the free surface (e.g. Wu 1995;
Brøns, Thompson & Leweke 2014). Thus, the pair becomes unequal in strength. This
causes rotation in the cross-plane through mutual induction, allowing the lower vortex
of the pair to move outwards and upwards. During the second half of the cycle, the
newly formed vortex pair originating from the opposite side experiences the same
dynamics, except with the signs swapped and positions reversed. One can also notice
asymmetric deformation of the vortex pair due to unequal induced strains due to the
presence of the free surface.

It can be concluded here that as the sphere traverses from one side to the other (in
one displacement cycle), the strength of the upper vortex decreases in the cross-plane.
This reduction in the strength of the upper vortex suggests a reduction in the vortex
force (or lift) acting on the sphere (see (7.1)). Since the transverse force acting on the
sphere decreases in this case, the vibration amplitude could be expected to decrease.
This is consistent with the amplitude response measurements shown earlier in figure 5.
There is considerable reduction in the amplitude response of the sphere for h∗= 0.125
at U∗ = 10 compared to the fully submerged sphere.

An interesting case is where the sphere pierces through the free surface.
Figure 25(a–d) shows cross-stream vorticity contour plots for h∗ = −0.25 at
U∗ = 10. Notably, at a distance 1.5D downstream, the upper vorticity has completely
disappeared. In contour panels (a) and (b), only anticlockwise vorticity is present
in the cross-plane. For panels (c,d), only clockwise vorticity is present. Of course,
there may still be some vorticity of opposite sign in the region (in the same plane)
not captured by the PIV imaging plane. Also, these observations indicate that the
formation length of the vortices is significantly longer compared to a fully submerged
case, and large elliptic deformation is evident. From these vorticity contour plots, it
seems likely that there are no hairpin vortex loops that develop in the wake past the
sphere for a piercing sphere case. Hence, the VIV dynamics in this case are very
different to that of the fully submerged case. For a partially submerged sphere (in this
case, h∗ =−0.25, i.e. only 75 % of the sphere is submerged), as the sphere traverses
from one side to the other, only one streamwise vortex is seen in the cross-plane with
alternate signs, in contrast to the fully submerged sphere, where a counter-rotating
vortex pair is seen with alternate signs. However, for this case, the vibrations are
larger compared to the fully submerged case, as shown in the amplitude response
measurements in figure 12. To obtain the full picture of the vortex dynamics for this
case, with implications for the sphere forcing, would seem to require capturing the
vorticity formation closer to the sphere. This is difficult to capture with the current
PIV imaging set-up.

In order to obtain a better perspective of the wake structures, spatio-temporal
reconstructions of the sphere wake at a Reynolds number of ∼Re = 1.5 × 104 are
shown in figure 26, employing 24 cross-stream vorticity fields, each phase-averaged
over more than 100 sphere oscillation cycles. A convection velocity of U (free-stream
velocity of 0.196 ms−1) was assumed to build the three-dimensional images. As is
evident in figure 26(a), the wake comprises a two-sided chain of streamwise vortex
loops. Govardhan & Williamson (2005) also reported similar wake structures for the
sphere wake, but at a lower Reynolds number of Re=3000. On the other hand, for the
case when the sphere is much closer to the free surface, at h∗= 0.125 in figure 26(bi),
the loops twist to attach to (and diffuse into) the free surface alternatively. This
observation is clearer in figure (bii), which shows the same structures but from a
different perspective view (zoomed in view from the bottom).
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0.5

0

–0.5

1.0

1.5

1.0–0.5 0.5–1.0 0

(c)

0.5

0

–0.5

1.0

1.5(d)

1.0–0.5 0.5–1.0 0

0.5

0

–0.5

1.0

1.5

1.0–0.5 0.5–1.0 0

(a)

0.5

0

–0.5

1.0

1.5(b)

1.0–0.5 0.5–1.0 0

FIGURE 25. (Colour online) Streamwise vorticity measurements (phase-averaged) for U∗=
10 for a sphere with an immersion ratio of h∗ = −0.25 at several phases through a
displacement cycle. See figure 23 for further details.

7.2. Some comments on surface patterns and deformations
In order to gain some qualitative insight into the free-surface deformation patterns, an
ultraviolet lamp was placed just above the water channel facing downwards towards
the wake. A Nikon D7000 camera was placed upstream to capture the free-surface
patterns. In quiescent water, the UV lamp reflection appeared as a straight horizontal
band, and as the free surface deforms, this deformation can be captured by visualising
the UV reflection patterns.

Figure 27(a) shows the UV lamp pattern for h∗= 0 and U∗= 5. In this case, there
is minimal free-surface deformation, hence the UV reflection appears as a horizontal
band with little distortion that would be caused by surface waves. However, at a
relatively higher U∗ value of 12 (figure 27b), small surface ripples are clearly visible
with a standing wave at the front of the surface. On the other hand, for h∗ = 0.25,
as shown in figure 27(c), there is very small deformation (unlikely to be significant);
however, patterns resembling Kelvin-type waves are visible on the surface, which are
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(bii)

(perspective view 1)

(perspective view 2)

FIGURE 26. (Colour online) Spatio-temporal reconstructions of the streamwise vorticity
crossing the transverse plane at a distance 1.5D from the sphere rear surface for (a)
h∗ = 1, and (b) h∗ = 0.125, based on the phase-averaged streamwise vorticity. Figures
(bi) and (bii) show two different perspective views of the same case, h∗ = 0.125. The
wake is shown for U∗ = 10, corresponding to a Reynolds number of ∼1.5 × 104. Blue
indicates anticlockwise vorticity, and red clockwise vorticity (both in the x–y plane). The
x–y plane at the z/D= 1.5 boundary of the visualisation box indicates the location of the
free surface. A convection velocity of U (free-stream velocity) of 0.196 ms−1 was used
for the reconstructions.
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(a) (b)

(c) (d )

Band of UV light Surface deflection

Surface patterns

FIGURE 27. (Colour online) Images showing the surface distortion for h∗ = 0 at U∗ = 5
(a) and U∗= 12 (b), and for h∗= 0.25 (c) and h∗=−0.25 (d) at U∗= 15. The UV lamp
was placed above the water channel facing downwards towards the wake. The free-surface
patterns were viewed using a Nikon camera placed upstream.

probably due to the piercing support rod. For a piercing sphere case, as shown in
figure 27(d), the patterns are very different, with appreciable surface deformation seen
as a standing wave structure.

In most of these cases, the surface wave structures are of low amplitude of less
than two per cent of the sphere diameter. However, for h∗ = 0.125, they exceeded
∼4 % for U∗ & 15. The limiting case of h∗ = 0 had deformations in the vicinity of
the submerged sphere of ∼10 % at U∗& 15. The surface deformations were estimated
by measuring the approximate dip in the free surface in close proximity to the sphere
using scaled images similar to those shown in figure 27. The observation of generally
small surface deformation over most of the parameter space investigated is consistent
with the relatively small effect of Froude number observed in § 5.3. Much higher
Froude numbers are expected to lead to significantly larger surface deformations, in
turn leading to nonlinear wave–wake interactions and complicated dynamics; however,
even for the small Froude numbers examined in this paper, the proximity to the free
surface has a strong effect on the VIV and the wake dynamics.

8. Conclusions
A comprehensive series of experiments and wake measurements have been

performed to investigate the effect of proximity to the free surface on the VIV
response of fully and semi-submerged spheres. The response was studied over a wide
range of reduced velocities, 3 6 U∗ 6 20, capturing the initial resonance band, and
immersion ratios of 0 6 h∗ 6 1 for the fully submerged sphere and 0 < h∗ < −1 for
the semi-submerged sphere. For a fully submerged sphere, the vibration amplitude
decreased and the synchronisation region narrowed gradually with the decrease
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in the immersion ratio. Mode II occurred for progressively lower U∗ values with
decreasing h∗.

In contrast, for the semi-submerged sphere, different dynamics was observed.
Two regimes were identified, depending on the immersion ratio showing different
characteristic responses. In regime I, covering (−0.5 < h∗ < 0), the synchronisation
region widened and the vibration amplitude increased. However, in regime II, the
vibration amplitude decreased with a decrease in h∗, accompanied with a very sharp
reduction beyond h∗ <−0.65. The amplitude response in regime II was characterised
by two distinct peaks corresponding to mode I and mode II of the vibration response
observed for a fully submerged sphere.

The response was found to be relatively insensitive to the Froude number in the
range tested, 0.05 6 Fr 6 0.45, with the response curve shape unaffected, although
increasing the Froude number did lead to a slight reduction in the peak amplitude.
It was also found that the immersion ratio and the diameter ratio (D∗ = sphere
diameter/support-rod diameter) of the support can have significant influences on the
VIV response of a sphere. These effects were quantified.

PIV wake measurements in the cross-plane 1.5D downstream from the rear of the
sphere revealed reduction in vorticity of the upper vortex of the longitudinal vortex
pair that was closer to the free surface. This is consistent with vorticity diffusion into
the free surface. Since this reduces the circulation in the upper vortex, the vortex pair
twists towards the free surface as it propagates downstream due to mutual induction.
For the piercing sphere case, only the lower vortex of the pair was visible at 1.5D
downstream; it appears that the upper vortex was effectively lost through diffusion
into the free surface. This changes the wake dynamics substantially and indeed a
larger oscillation amplitude than the fully submerged case is observed. Surface flow
visualisations of the free surface revealed different surface patterns for the fully
submerged and the semi-submerged cases; however, the total surface distortion was
relatively minor, in line with the lower Froude numbers covered by this study.
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Appendix A
The presence of a sting or trip wire near the boundary layer of a bluff body is

known to alter the boundary layer transitions and hence the wake and its size. This
leads to changes in the drag coefficient and heat transfer measurements. Mostly,
previous experimental studies on the flow past spheres were performed with spheres
supported using either tethers or stings. The location of the sphere support systems
can also have remarkable influences. Raithby & Eckert (1968) studied the effect of
the support position on the flow near the surface of a sphere using flow visualisation
techniques. They concluded that in the case of a cross-flow support position, the
boundary layer is still attached when it meets the support rod with ensuing violent
interactions, leading to an altered wake near the sphere. However, at subcritical
Reynolds numbers, the boundary layer is already separated when it encounters the
support. It was shown that no significant general disturbance was produced for
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1.0
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FIGURE 28. (Colour online) Variation of A∗rms with U∗ for various immersion ratios.

these Reynolds numbers. In the current study, the Reynolds number regime is well
below the critical Rec, i.e. in the subcritical regime, and the sphere is supported at the
cross-flow support position. Although significant changes in the wake are not expected
in the current study, it is shown by systematic experiments that the immersion ratio
(h∗) and the diameter ratio (D∗ =D/Dr), with Dr the support-rod diameter, can have
significant influences on the vibration amplitude response.

This short study essentially follows on from the work of Govardhan & Williamson
(2005), who found that a support rod with a diameter ratio of 1 : 30 was sufficiently
thin not to strongly affect the amplitude response curve. However, the selection of
the rod diameter and submergence depth involves a compromise between a number of
competing factors: providing sufficient structural stiffness, minimising the direct effect
on the sphere wake, reducing the resonant response of the rod, reducing sphere and
cylinder wake interaction, avoiding free-surface effects; it was therefore decided that
documenting these influences would be worthwhile.

A.1. Effect of the immersion ratio
Figure 28 shows the response curves for a sphere supported with a circular cross-
section cylindrical rod for various immersion ratios h∗. In this case, the sphere of
diameter D= 80 mm is supported with a rod of Dr = 3 mm, equating to a diameter
ratio of D∗ = 26.6. Also, the change in damping with the change in the support-rod
length was found to be negligible.

When the immersion ratio was increased from 1 to 1.75, there were no significant
changes in the responses. On the other hand, increasing h∗ to 1.875 led to a sudden
drop in the amplitude at higher U∗ values. This trend was observed for h∗ > 1.875.
The U∗ value at which the sudden drop is observed, decreased progressively with
increasing h∗. Nonetheless, for U∗6 10, the response shape remained similar, although
there was a not insignificant decrease in the peak amplitude, by approximately 10 %,
as h∗ was increased from 1 to 2.5. Also, it is evident from the figure that increasing
h∗ does not shift the position of the peak to the left; they are aligned for all cases
examined. However, the peak vibration amplitude A∗max decreases almost linearly with
the immersion ratio h∗, as shown in figure 29.
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FIGURE 29. Variation of the peak saturation amplitude Amax with h∗.
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FIGURE 30. Variation of the displacement amplitude (y/D) with non-dimensional time
(t/T) for two U∗ values at an immersion ratio of 2.25.

The displacement time trace for one of the h∗ values (h∗ = 2.25 in this case), for
which the amplitude is strongly affected at higher U∗ values, is shown in figure 30.
At U∗ = 10, the signal is highly periodic; on the other hand, at U∗ = 16, where
the amplitude has dropped substantially, the signal is no longer periodic and instead
consists of intermittent small bursts of vibration. Figure 31 shows that there is an
associated drop in the transverse force coefficient with the corresponding decrease in
the amplitude response shown in the figure 28. The vortex and the total phases for all
the h∗ values follow a similar trend in mode I; however, in mode II, both the phases
drop to lower values at U∗ values, progressively decreasing with the increasing h∗, as
shown in figure 32.

A.2. Effect of the diameter ratio
For all the above cases, the diameter ratio, D∗, was fixed at 26.6 and only the
immersion ratio was varied. D∗ is another important parameter that can influence the
amplitude response. Hence, the effect of D∗ was studied by keeping the immersion
ratio fixed at unity (where free-surface effects are insignificant) while varying the
diameter ratio. Figure 33(a) shows the amplitude response of a sphere supported by a
rod with D∗ varying in small steps from 26.6 to 7. Figure 33(b) shows the fluctuation
in the amplitude response for D∗= 11. Note here that the error bars are delimited by
the mean of the top 10 % of the peaks and the mean of the bottom 10 % of the peaks
of the displacement signal. It can be clearly seen that there are large fluctuations
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FIGURE 31. (Colour online) Variation of the r.m.s. cross-stream force coefficient Cyrms
with reduced velocity U∗ for varying immersion ratios h∗.
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FIGURE 32. (Colour online) Variation of the total phase φtotal (a) and the vortex phase
φvortex (b) with U∗ for a series of different immersion ratios.

in the displacement signal, i.e. the displacement signal is highly non-periodic, for
higher U∗ values. This behaviour was typical of all the cases tested in the current
study.

Another interesting point to note is that, unlike the previous case discussed above
where all the response curves were essentially aligned, the peak responses here shift
to the left gradually with increasing D∗. In fact, the initial part of the response curve
seems almost the same for each case, but the amplitude begins to be reduced at
a smaller reduced velocity as the diameter ratio is lower. This suggests different
underlying dynamics compared to the previous one. Although not undertaken here,
a study of the wake interactions from the cylindrical rod and the sphere would
be informative, and help to determine the physical basis of this substantial effect.
Nevertheless, the current investigations quantify substantial effects on the amplitude
response, and suggest some care is necessary with body mounting and positioning
for sphere VIV experiments.
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FIGURE 33. (Colour online) (a) Variation of A∗rms with U∗ for a range of support-rod
diameter ratios. (b) Example of the fluctuations in the oscillation amplitude for the case
of D∗= 11.0 through error bars delimiting the range of amplitude variation from cycle to
cycle.
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Chapter 7

Flow-induced Vibration of a
Rotary Oscillating Sphere

If I have the belief that I can do it, I
shall surely acquire the capacity to do
it even if I may not have it at the
beginning

Mahatma Gandhi

7.1 Overview of the chapter

In this chapter, the publication titled ‘The effect of imposed rotary oscillation on the
flow-induced vibration of a sphere’ published in the Journal of Fluid Mechanics (2018),
vol 855, pp. 703–735, has been reproduced with permission Cambridge University
Press© 2018. In this paper, a comprehensive series of experiments and wake measure-
ments were performed to examine the effect of imposed rotary oscillation on the FIV
of a sphere that is elastically mounted in the cross-flow direction. The response was
investigated for a wide range of forcing parameters, non-dimensional forcing frequency,
fR, in the range 0 ≤ fR ≤ 5, forcing amplitude, αR, in the range 0 ≤ αR ≤ 2, and
reduced velocity U∗ between 0 ≤ U∗ ≤ 20.

It was found that when the forcing frequency fr was in close proximity to the natural
frequency fnw, the vibrations locked-on to fr instead of fnw inhibiting the resonance
response. The vibrations were greatly suppressed in the lock-on region, except for the
case when fR = fnw, where an ‘enhanced resonance’ response was observed leading to
very large amplitudes, even greater than those observed for the non-rotating sphere in
some cases. In the lock-on region, a sudden jump in the total phase was observed from 0◦

to 180◦. The displacement signal was highly modulated in the non lock-on regions. Near
the lock-on boundaries, a wide spectrum of frequencies was observed. Interestingly,
suppression was also observed in the non lock-on regions for very high fR and αR values.
Mode I was found to be quite resistant to control requiring very high velocity ratios
for the suppression of vibrations. On the other hand, control (suppression) was most
effective for mode III. Overall, relatively high velocity ratios were required to suppress
the vibrations. The width of the RLO region increased with an increase in αR for all
three modes. When the reduced velocity was increased progressively, several types of
responses with different characteristic behaviours were observed. For some cases, the
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vibration amplitudes increased monotonically with an increase in U∗. Such vibrations
have been termed ‘Rotary induced vibrations’. The phase difference between the rotary
oscillations and the sphere displacement φrot was found to be crucial in determining
the response. Monotonically decreasing φrot values were always associated with the
monotonically increasing responses. Wake measurements performed in the cross-plane
revealed structures similar to those for an oscillating sphere without imposed rotation;
however, there was a change in the timing of vortex formation. For a high frequency
ratio of fR = 3, there was a clear reduction in the streamwise vorticity consistent with
a reduced amplitude response.
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The effect of imposed rotary oscillation on
the flow-induced vibration of a sphere

A. Sareen1,†, J. Zhao1, J. Sheridan1, K. Hourigan1 and M. C. Thompson1

1Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and
Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia

(Received 6 February 2018; revised 27 June 2018; accepted 11 August 2018;
first published online 19 September 2018)

This experimental study investigates the effect of imposed rotary oscillation on the
flow-induced vibration of a sphere that is elastically mounted in the cross-flow
direction, employing simultaneous displacement, force and vorticity measurements.
The response is studied over a wide range of forcing parameters, including the
frequency ratio fR and velocity ratio αR of the oscillatory forcing, which vary between
0 6 fR 6 5 and 0 6 αR 6 2. The effect of another important flow parameter, the
reduced velocity, U∗, is also investigated by varying it in small increments between
0 6 U∗ 6 20, corresponding to the Reynolds number range of 5000 . Re . 30 000. It
has been found that when the forcing frequency of the imposed rotary oscillations,
fr, is close to the natural frequency of the system, fnw, (so that fR = fr/fnw ∼ 1), the
sphere vibrations lock on to fr instead of fnw. This inhibits the normal resonance or
lock-in leading to a highly reduced vibration response amplitude. This phenomenon
has been termed ‘rotary lock-on’, and occurs for only a narrow range of fR in the
vicinity of fR = 1. When rotary lock-on occurs, the phase difference between the
total transverse force coefficient and the sphere displacement, φtotal, jumps from
0◦ (in phase) to 180◦ (out of phase). A corresponding dip in the total transverse
force coefficient Cy (rms) is also observed. Outside the lock-on boundaries, a highly
modulated amplitude response is observed. Higher velocity ratios (αR > 0.5) are more
effective in reducing the vibration response of a sphere to much lower values. The
mode I sphere vortex-induced vibration (VIV) response is found to resist suppression,
requiring very high velocity ratios (αR > 1.5) to significantly suppress vibrations
for the entire range of fR tested. On the other hand, mode II and mode III are
suppressed for αR > 1. The width of the lock-on region increases with an increase
in αR. Interestingly, a reduction of VIV is also observed in non-lock-on regions
for high fR and αR values. For a fixed αR, when U∗ is progressively increased, the
response of the sphere is very rich, exhibiting characteristically different vibration
responses for different fR values. The phase difference between the imposed rotary
oscillation and the sphere displacement φrot is found to be crucial in determining the
response. For selected fR values, the vibration amplitude increases monotonically with
an increase in flow velocity, reaching magnitudes much higher than the peak VIV
response for a non-rotating sphere. For these cases, the vibrations are always locked
to the forcing frequency, and there is a linear decrease in φrot. Such vibrations have
been termed ‘rotary-induced vibrations’. The wake measurements in the cross-plane
1.5D downstream of the sphere position reveal that the sphere wake consists of vortex
loops, similar to the wake of a sphere without any imposed rotation; however, there

† Email address for correspondence: anchal.sareen@monash.edu
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is a change in the timing of vortex formation. On the other hand, for high fR values,
there is a reduction in the streamwise vorticity, presumably leading to a decreased
total transverse force acting on the sphere and resulting in a reduced response.

Key words: flow–structure interactions, vortex streets, wakes

1. Introduction
Vortex-induced vibration (VIV) of structures is encountered in a variety of

engineering situations, such as for flows past offshore structures, bridges, heat
exchangers, aircraft, pipelines and other hydrodynamic applications. The practical
significance of VIV has led to numerous studies focusing on understanding the
underlying physics, including the comprehensive reviews by Bearman (1984), Blevins
(1990), Sarpkaya (2004), Williamson & Govardhan (2004), Païdoussis, Price & De
Langre (2010) and Naudascher & Rockwell (2012). Most of the previous studies,
however, were focused on two-dimensional (2-D) bluff bodies like cylinders. There
are relatively fewer studies on the VIV of elastically mounted or tethered spheres
despite their ubiquitous practical significance, such as marine buoys, underwater
mines, other offshore structures and tethered or towed spheroidal objects. Govardhan
& Williamson (1997), Williamson & Govardhan (1997) and Jauvtis, Govardhan &
Williamson (2001) were among the first to report on the VIV response of a sphere
identifying three fundamental modes of vibration, namely modes I, II and III. Since
then, a number of systematic studies have investigated the VIV response of spheres,
e.g. Pregnalato (2003), Govardhan & Williamson (2005), van Hout, Krakovich &
Gottlieb (2010), Behara, Borazjani & Sotiropoulos (2011), Krakovich, Eshbal & van
Hout (2013), Lee, Hourigan & Thompson (2013), Behara & Sotiropoulos (2016) and
Sareen et al. (2018a).

Large-amplitude vibration caused by VIV over a wide range of Reynolds number
is a common cause of serious structural fatigue and damage, which has led to a
plethora of research studies focusing on suppressing VIV over last four decades. For
this reason, several active and passive control methods have been studied previously
for 2-D bluff bodies. Choi, Jeon & Kim (2008) provide a review of various control
methods employed for flow over bluff bodies. Although passive control methods
do not consume external energy and are fairly insensitive to changes in the flow
direction, it tends to be difficult to dramatically reduce VIV, and the drag often
increases. In contrast, active control methods such as moving-surface boundary-layer
control (MSBC) (Mittal 2001) and windward suction leeward blowing (WSLB) (Dong,
Triantafyllou & Karniadakis 2008) reduce VIV to a much lower level; however, the
efficacy of both these active methods depends on the flow direction.

The control of VIV by rotary motion has received increased attention recently due
to its insensitivity to flow direction, efficacy over a broader range of flow parameters
and the greater extent of VIV reduction. A recent experimental study by Sareen et al.
(2018a) reported suppression of VIV of a sphere by means of an imposed transverse
rotation for a wide range of Reynolds numbers and reduced velocities. They reported
a reduction in the strength of the vortex street, which can be associated with a
reduction of the transverse force acting on the sphere. VIV can also be suppressed
by forced sinusoidal rotary oscillations of the bluff body, to prohibit the phenomenon
of resonance or ‘lock-in’ by deviating the vortex shedding frequency from the natural
frequency of the system towards the forcing frequency (also known as ‘lock-on’).
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This approach has been extensively investigated on a fixed cylinder over the last
four decades. Taneda (1978) was the first to examine this experimentally for a rotary
oscillating cylinder, and reported the disappearance of vortex shedding for very high
forcing frequencies. Later, Tokumaru & Dimotakis (1991) reported a drag reduction
of up to 80 % for a certain range of forcing frequencies and amplitudes of sinusoidal
rotary oscillations. This pioneering study inspired a number of systematic numerical
studies aimed at understanding this wake control and the underlying dynamics, such
as Tokumaru & Dimotakis (1991), Lu & Sato (1996), Chou (1997), Baek & Sung
(2000), Mahfouz & Badr (2000), Cheng, Chew & Luo (2001), Shiels & Leonard
(2001), Choi, Choi & Kang (2002), Lee & Lee (2006) and Kumar et al. (2013). It is
known for the case of a fixed cylinder that for a certain range of forcing frequency
ratios encompassing the natural frequency of the system, the vortex shedding locks
to the forcing frequency, leading to the ‘lock-on’ phenomenon (Chou 1997; Baek
& Sung 2000). The state is accompanied by a significant drag reduction (Tokumaru
& Dimotakis 1991; Lu & Sato 1996; Chou 1997). The lock-on region widens with
increasing rotational speed (Mahfouz & Badr 2000). The boundaries of lock-on and
non-lock-on regions are associated with the modulation of the drag, lift and velocity
(Choi et al. 2002), and the non-lock-on regions exhibit quasi-periodicity (Baek &
Sung 2000). Several studies have focused on understanding the underlying dynamics.
It was found that the lock-on region is associated with enhanced separation and vortex
coalescence in the wake (Cheng et al. 2001; Shiels & Leonard 2001; Lee & Lee
2006). The experimental investigation by Thiria, Goujon-Durand & Wesfreid (2006)
also revealed that the phase lag between the vortex shedding and the rotary motion
of the cylinder effectively gives either a constructive or destructive contribution to
the wake, leading to a global decrease or increase in fluctuations in the wake.

Recently, Du & Sun (2015) investigated numerically the potential of rotary
oscillations to suppress VIV of an elastically mounted cylinder at Re = 350. They
found ‘lock-on’ for the elastically mounted cylinder, which led to switching of vortex
shedding from the natural frequency to the forcing frequency, inhibiting resonance or
VIV. They observed effective control only for large enough velocity ratios, and the
lock-on regime became narrower with an increase in reduced velocity. They observed
no significant reduction in the strength of vortices in the wake.

The papers discussed so far report on rotational control of 2-D bluff bodies.
However, there do not appear to be studies investigating the potential of rotary
oscillations in wake control for 3-D bluff bodies, such as spheres. However, a
sphere is the most basic 3-D body shape; certainly the one with the most symmetry,
and clearly spheres can undergo significant amplitude VIV. A sphere provides a
starting framework to comprehend VIV control of more complex three-dimensional
bluff bodies. The current study aims at producing an understanding of the effect of
imposed rotary oscillations on the VIV response of a sphere for a wide range of
forcing and flow parameters. One question to be addressed is whether similar features
(as discussed above for a fixed cylinder) are exhibited in the case of an elastically
mounted sphere. Specifically, this study addresses the following fundamental questions:
Is ‘lock-on’ also observed for a sphere exhibiting a 3-D wake? If so, how does
the lock-on range depend on various forcing and flow parameters? How does this
phenomenon affect the 3-D wake structures of the flow past a sphere?

The outline of the article is as follows. The experimental methodology for the
current experiments is detailed in § 2. The VIV response of a non-rotating oscillating
sphere is briefly presented in § 3. Section 4.1 discusses in detail the effect of frequency
ratio on the VIV response of a sphere, followed by § 4.2 on the effect of velocity ratio.
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Top view

U

œ = œo sin (2πfr t)

œ

k c

D x

y

FIGURE 1. Definition sketch for the transverse vortex-induced vibration of a sphere
undergoing forced rotary oscillations. The hydro-elastic system is simplified as a
one-degree-of-freedom (1-DOF) system constrained to move only in the cross-flow
direction. The axis of rotation (z) is transverse to both the flow direction (x-axis) and
the oscillation axis (y-axis). Here, U is the free-stream velocity, k the spring constant, D
the sphere diameter, c the structural damping and θ the imposed angular displacement.

§ 4.3 focuses on the effect of the reduced velocity on the VIV response. Section 5
discusses the effect on the wake structures, and finally § 6 draws conclusions, and
summarises the important findings and significance of the current study. To be clear,
in this article, if the vibrations are locked to the natural frequency, the phenomenon
is termed ‘lock-in’ or ‘resonance’, and if they are locked to the forcing frequency
instead, it is termed ‘lock-on’ or, in this case,‘rotary lock-on’.

2. Experimental method
A schematic showing the experimental arrangement of the current fluid–structure

interaction problem is presented in figure 1. The sphere is elastically mounted in the
direction transverse to the incoming flow. The axis of the sinusoidal rotary oscillations
imposed on the sphere is transverse to the flow direction and the free vibration axis.

The two important parameters characterising the rotary oscillation motion of the
sphere are fR and αR. Here, fR is the forcing frequency ratio, expressed as the ratio of
forcing frequency, fr, and the natural frequency of the system, fnw, as

fR = fr/fnw. (2.1)

Alternatively, sometimes the non-dimensional forcing Strouhal number is used to
characterise the forcing

Sf =
frD
U
. (2.2)

The other key parameter, αR, is the forcing velocity ratio expressed as the ratio of the
maximum tangential velocity of the sphere surface and the free-stream velocity U as

αR =
Dθ̇max

2U
, (2.3)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

01
 N

ov
 2

01
8 

at
 0

9:
45

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
66

7

Chapter 7. Flow-induced Vibration of a Rotary Oscillating Sphere

140



The effect of imposed rotary oscillation on the FIV of a sphere 707

Amplitude ratio A∗rms

√
2Arms/D

Damping ratio ζ c/
√

k(m+mA)

Forcing frequency ratio fR fr/fnw

Frequency ratio f ∗ f /fnw

Forcing Strouhal number Sf frD/U
Mass ratio m∗ m/md

Mass-damping parameter ξ (m∗ +CA)ζ

Reduced velocity U∗ U/( fnwD)
Reynolds number Re UD/ν
Scaled normalised velocity U∗S (U∗/f ∗)S= fvo/f
Strouhal number S fvoD/U
Transverse force coefficient Cy (rms) Fy/(

1
8ρU2πD2)

Velocity ratio αR Dθ̇max/(2U)

TABLE 1. Non-dimensional parameters used in this study. In this table: Arms is the root-
mean-square (r.m.s.) value of the vibration amplitude in the y direction; D is the sphere
diameter; f is the body oscillation frequency; fr is the frequency of the imposed rotary
oscillation; and fnw is the natural frequency of the system in quiescent water. In addition, m
is the total oscillating mass; c is the structural damping factor with k the spring constant;
U is the free-stream velocity; ν is the kinematic viscosity; mA denotes the added mass,
defined by mA =CAmd, where md is the mass of the displaced fluid and CA is the added
mass coefficient (0.5 for a sphere); θ̇max = maximum angular velocity of the sphere; fvo
is the vortex shedding frequency of a fixed body and Fy is the fluid force acting on the
sphere in the transverse direction.

where θ̇max is the maximum angular velocity of the sphere. All other relevant non-
dimensional parameters for the current study are listed in table 1.

The governing equation of motion describing the cross-flow motion of the sphere
can be written as

mÿ+ cẏ+ ky= Fy, (2.4)

where Fy is the fluid force in the transverse direction, m is the total oscillating mass
of the system, y is the displacement in the transverse direction, c is the structural
damping of the system and k is the spring constant. Using the above equation, the
total fluid force in the transverse direction can be calculated with the knowledge of
the directly measured displacement, and its time derivatives. The sinusoidal rotation
imposed on the sphere can be expressed as

θ(t)= θo sin(2πfrt), (2.5)

where θ is time-dependent imposed angular displacement, θo is maximum angular
displacement and fr is the forcing frequency. In terms of the angular velocity, the
imposed rotation can be represented as

θ̇ = 2πfrθo cos(2πfrt). (2.6)

The velocity ratio αR given in (2.3) can thus be written as

αR =
πfrθoD

U
. (2.7)
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FIGURE 2. (Colour online) Schematic of the experimental set-up for the current study
showing the side and top-down views.

2.1. Experimental details
The experiments were conducted in the recirculating free-surface water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash
University, Australia. The test section of the water channel is 600 mm in width,
800 mm in depth and 4000 mm in length. The free-stream velocity can be varied
continuously over a range of 0.056U 6 0.45 m s−1. The free-stream turbulence level
for the current experiments was less than 1 % at intermediate flow speeds.

Figure 2 shows a schematic of the current experimental set-up. The sphere was
elastically mounted in the transverse direction using a low-friction air-bearing system
that provides low structural damping. The structural stiffness was controlled by
extension springs. More details of the hydro-elastic facility can be found in Zhao et al.
(2018). A solid spherical ball of diameter D= 80 mm (accuracy within ±0.200 mm)
precision-machined from acrylic plastic was used in the current experiments. The
sphere model had a smooth polished surface finish. It was supported with a cylindrical
shroud support system. The immersed length of the total support set-up for the sphere
was one diameter. A more complete description of the current experimental set-up
can be found in Sareen et al. (2018a).

The rotary motion was driven using a miniature low-voltage micro-stepping motor
(model: LV172, Parker Hannifin, US) with a resolution of 25 000 steps/revolution.
The rotary oscillations were monitored using a digital optical rotary encoder (model:
E5-1000, US Digital, US) with a resolution of 4000 counts/revolution. The sphere
displacement was measured using a linear encoder (model: RGH24, Renishaw, UK)
with a resolution of 1 µm. The data acquisition and the controls of the flow velocity
and the sphere oscillations were automated via customised LabVIEW programs.
For each data set, the signal was acquired at a sampling frequency of 100 Hz for
more than 100 vibration cycles. The natural frequencies and structural damping of
the system in both air and water were measured by conducting free decay tests
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individually in air and in quiescent water. The natural frequencies in air and water
were found to be fna = 0.208 ± 0.005 and fnw = 0.200 ± 0.005, respectively. The
structural damping ratio with consideration of the added mass was determined to be
ζ = 4.3 × 10−3

± 0.0006. The results in the current study are reported for a mass
ratio of m∗ = 12.116± 0.004.

To gain better insight into the flow dynamics, particle image velocimetry (PIV)
measurements were employed in the cross-plane, 1.5 diameters downstream of the
sphere. The flow was seeded with 13 µm hollow micro-spheres having a specific
weight of 1.1 g m−3. A continuous laser (model: MLL-N-532-5W, CNI, China) was
used to illuminate a laser plane of ∼3 mm thickness aligned parallel to the y–z plane.
A mirror was placed at 45◦ angle to the free-stream direction towards the downstream
side of the sphere. The mirror was placed more than 6 diameters downstream of the
sphere to limit any upstream disturbance. A distance of ≈2 diameters is sufficient to
avoid any upstream effect of the mirror in this set-up (see Venning 2016). Imaging
was performed using a high-speed camera (model: Dimax S4, PCO, AG) with a
resolution of 2016× 2016 pixels2. The camera was equipped with a 105 mm Nikon
lens, giving a magnification factor of 10.73 pixel mm−1 for the field-of-view. Velocity
fields were deduced using in-house PIV software developed originally by Fouras, Lo
Jacono & Hourigan (2008), using 32 × 32 pixel2 interrogation windows in a grid
layout with 50 % window overlap. All the vorticity fields shown in the current study
were phase-averaged over more than 100 cycles. For each PIV measurement case, a
set of 3100 image pairs were collected by sampling at 10 Hz. Each image set was
sorted into 24 phase bins based on the sphere’s displacement and velocity, resulting
in more than 120 image pairs for averaging at each phase. The final phase-averaged
vorticity fields were smoothed slightly using an iterative Laplace filter to remove
small length-scale structures and to better highlight the larger-scale structures that
dominate the wake.

3. VIV response of a sphere without control

In this section, we provide a brief overview of what is already known for an
elastically mounted sphere undergoing VIV. A more detailed validation study based
on the VIV response of an elastically mounted sphere without imposed rotation can
be found in Sareen et al. (2018a,b).

The VIV response of an elastically mounted sphere (1-DOF) without imposed
rotation consists of two fundamental modes of vibration, modes I and II, in the
synchronisation region followed by a ‘plateau branch’, which appears to be a precursor
to mode III, seen at higher reduced velocities (Govardhan & Williamson 2005; Sareen
et al. 2018a,b). The vibrations in the plateau region are not as highly periodic as
the vibrations in mode II, albeit that the frequency of oscillation stays close to the
natural frequency of the system for the entire U∗ range. Although the vortex shedding
remains similar in all three modes of vibration, there is a change in the timing of
the vortex formation. Govardhan & Williamson (2005) and Sareen et al. (2018a,b)
showed that the sphere vibration response transitions from mode I to mode II when
the phase difference between the vortex force and the sphere displacement, φvortex,
crosses through 90◦, corresponding to an inflection point in the amplitude response.
Similarly, within mode II, the phase difference between the total transverse force
and sphere displacement, φtotal, passes through 90◦, corresponding to the peak of the
amplitude response. The variations of φtotal and φvortex for the current experimental
set-up can be found in Sareen et al. (2018a,b).
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(U*/f*)S
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FIGURE 3. (Colour online) Amplitude response of an elastically mounted sphere (1-DOF)
obtained in the current study (u) with a mass damping of (m∗ + CA)ζ = 0.03 compared
to previous studies by Govardhan & Williamson (2005) (c) with a mass damping
approximately 0.92 and Sareen et al. (2018b) (p) with a mass damping of 0.0169.

Unlike the case of a tethered sphere with 2-DOF, where the modes are separated
by a desynchronised reduced velocity range (Jauvtis et al. 2001; Govardhan &
Williamson 2005), the vibration amplitude for a sphere in the 1-DOF case increases
gradually and continuously from mode I to mode II (4.5 . U∗ . 15) leading to
an almost constant amplitude in the plateau branch (15 6 U∗ < 30). Although it
is difficult to demarcate the two modes in the 1-DOF case, there are considerable
changes in the phase difference between the sphere displacement and the total
transverse force φtotal, and the phase difference between the sphere displacement and
the vortex force, φvortex. The response transitions from mode I to mode II when
φvortex crosses through 90◦, corresponding to the ‘inflection point’ in the amplitude
response. Likewise, within the mode II regime, φtotal passes continuously through 90◦,
corresponding to the peak of the amplitude response (Govardhan & Williamson 2005;
Sareen et al. 2018a,b). Lowering the mass-damping parameter (m∗ + CA)ζ leads to
greater vibration amplitudes and a widened synchronisation regime, as shown in
figure 3. The mass damping of the current study is (m∗ + CA)ζ = 0.03, compared to
approximately 0.92 in the study by Govardhan & Williamson (2005) and 0.0169 in
the study by Sareen et al. (2018b). When plotted against the scaled U∗S , defined as
U∗S = (U

∗/f ∗)S≡ fvo/f , where S is the Strouhal number for vortex shedding (≈0.18 in
this case), the saturation amplitudes (peaks) line up for all the results with different
mass-damping parameters, as was demonstrated by Govardhan & Williamson (2005).

4. Effect of rotary oscillations on the vibration response
4.1. Effect of the forcing frequency ratio

In this section, the effect of forcing frequency ratio, fR, on the sphere VIV response is
discussed. The response is studied for a wide range of frequency ratios varying from
0 to 5 in small increments at several fixed velocity ratios; however, only a few of the
representative cases are discussed in detail here. The results are presented for three U∗
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values of U∗= 6, 10 and 15, corresponding to modes I, II and mode III, respectively,
of the sphere VIV response.

4.1.1. Mode I
Figure 4(a) shows the variation of the r.m.s. of the amplitude of the sphere

oscillations, A∗rms, with fR. Figures 4(b) and 4(c) present the frequency power spectral
density (PSD) contours of the sphere displacement and the total transverse force,
respectively. Figures 4(d) and (e) show the variation of the coefficient of the total
transverse force, Cy (rms), and the total phase difference, φtotal, respectively.

As evident in figure 4(a), when fR is gradually increased from 0 to ∼0.5, A∗rms
progressively decreases in magnitude. The vibrations remain locked to the natural
frequency of the system, i.e. f ∗ = 1, as shown in figure 4(b). Although the frequency
response shows a clear dominant frequency at f ∗=1, the displacement is modulated in
the presence of the forcing, as is clear from the time trace of the sphere displacement
shown in figure 5(a). As is also evident from figure 4(c), unlike the frequency contour
plot of the sphere displacement, the PSD of the total transverse force does not show
a single frequency in this region. Previous studies on rotationally oscillating cylinders
have also noted highly modulated states in the non-lock-on regions (Choi et al. 2002).

When fR is further increased to higher values beyond 0.5, the vibrations start to
lock on to fR instead of fnw, as is clearly discernible in figure 4(b). Figure 4(c) shows
that the total lift force also locks on to fR. This marks the start of the rotary lock-on
(RLO) region that extends from 0.5 . fR . 1.5 (bounded by dashed vertical lines).
In the RLO region, the vibrations and the total transverse force are locked to the
forcing frequency instead of the natural frequency, which prohibits the fluid–structure
energy transfer. The vibrations are highly suppressed in this range except the case
when all the characteristic frequencies of the system are equal, i.e. fR= f ∗= fnw; here,
the vibration amplitude is close to that of a sphere without imposed rotation, and the
displacement signal is highly periodic as shown in figure 5(c). In the RLO region,
Cy (rms) drops to lower values with a sudden dip for the fR = f ∗ = fnw case (shown
in figure 4d). Also, figure 4(e) shows that there is a sudden jump in the total phase
difference, φtotal, from almost 0◦ (in phase) to 180◦ (out of phase). Such a sudden jump
in φtotal is associated with the change in the timing of vortex formation, as will be
shown later in § 5 through wake measurements. Such a region of rotary lock-on, where
the sphere displacement locks on to the forcing frequency, has also been observed
recently for an elastically mounted cylinder under imposed rotary oscillation in the
experimental study by Wong et al. (2018). They also observed a sudden jump in φtotal

from 0◦ to 180◦ for a cylinder in the rotary lock-on region.
One can also note a transition region near the lock-on boundaries in figure 4(b).

This region has a richness in frequency content and relatively broadened spectral
densities that appear to be caused by competing fnw and fr. This is clearer for higher
U∗ responses shown later in this section. The time traces of the displacement signal
near the boundaries (shown in figures 5b and 5d) indicate a quasi-periodic state. Baek
& Sung (2000) previously reported quasi-periodic states near the lock-on boundaries
for a cylinder. When fR is further increased to higher values, fR > 2, the vibrations
again start to lock in to the natural frequency of the system instead of the forcing
frequency. For 2 < fR 6 5, the vibration amplitudes and φtotal recover and become
close to their initial values without imposed rotation (shown in a and d). The time
trace of the sphere displacement (figure 5e) shows a highly periodic response in this
range.
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FIGURE 4. (Colour online) The response of an elastically mounted sphere under imposed
rotary oscillation is presented as a function of forcing frequency ratio, fR, at a fixed
velocity ratio of αR = 1 for the mode 1 response (U∗ = 6). (a) The variation of r.m.s.
of the oscillation amplitude (A∗rms). The dotted line represents the amplitude of a sphere
with no imposed rotation. (b,c) Power spectral density (PSD) contour plots of the sphere
displacement signal and the total transverse force (coefficient), respectively. The dotted
line represents where the normalised frequency response, f ∗, equals the forcing frequency
ratio fR. (d) The variation of the r.m.s. force coefficient of the total transverse lift
Cy (rms). (e) The variation of the total phase difference, φtotal. The horizontal dotted line
shows φtotal for a non-rotating sphere. The dashed vertical lines indicate the approximate
lock-on boundaries. Note that the colour bar applies to the frequency plot, indicating the
normalised spectral power on a log10 scale.
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FIGURE 5. (Colour online) Time traces of the sphere displacement in mode I for different
frequency ratios of (a) fR = 0.3, (b) fR = 0.5, (c) fR = 1, (d) fR = 1.9 and (e) fR = 4. The
velocity ratio is fixed at αR = 1.

Figure 6 shows the response characteristics, similar to those shown previously, but
for a relatively higher velocity ratio of αR = 1.5 in mode I. One can clearly see
the difference that the transition region (or the non-lock-on region, where the flow is
neither locked in nor locked on), where a wide spectrum of frequencies is observed,
now extends for a wider range of fR values between 1.5 . fR . 3. Also, the lock-in
region is observed for a narrow range of high fR values in the range 3< fR < 5. The
vibration amplitude in the lock-in region does not recover to the values close to the
non-rotating case but rather remains <0.2D. So, as the velocity ratio is increased to
αR = 1.5, the transition region becomes wider, and lock-in occurs for a narrow range
of fR values. For even higher velocity ratio of αR= 2 (not discussed here), the lock-in
region disappears, and the transition range extends until the maximum fR tested in the
current study.

4.1.2. Mode II
Figure 7 shows the response quantities for U∗ = 10, (in the heart of mode II) at a

fixed velocity ratio of αR = 0.5. One can note here that unlike mode I, the vibration

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

01
 N

ov
 2

01
8 

at
 0

9:
45

:3
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
66

7

7.1. Overview of the chapter

147



714 A. Sareen, J. Zhao, J. Sheridan, K. Hourigan and M. C. Thompson

0

0.1

0.2

0.3

A* rm
s

f*

C y
(r

m
s)

ƒ t
ot

al
 (d

eg
.)

f* C y
0.4

0.5(a)

(b)

(c)

(d)

(e)

0

0.1

0.2

0.3

0.4

0.5

0

0 1 2 3
fR

4 5

100

200

0

1

2

3

4

5

-3

-2.5

-2

-1.5

-1

-0.5

0

0

1

2

3

4

5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0

Mode I, åR = 1.5

f* = fR

RLO Lock-in

FIGURE 6. (Colour online) The response of an elastically mounted sphere under imposed
rotary oscillation is presented as a function of forcing frequency ratio, fR, at the fixed
velocity ratio of αR = 1.5 in the mode I region (U∗ = 6). Refer to figure 4 for further
details.

amplitudes do not drop at all before entering the RLO region. However, as the sphere
response enters the RLO region, the response characteristics are similar to mode I,
with a sudden jump in A∗rms for fR = 1 and a corresponding drop in Cy (rms) and φtotal.
Immediately past fR = 1, the vibrations become out of phase with the total transverse
force, and the vibration amplitudes drop to highly reduced values. A transition region
with a wide spectrum of frequencies and highly modulated vibration amplitudes (see
figure 8b) is also evident in the frequency contour plot as the response exits the RLO
region. For 2 . fR . 3, the vibrations lock back to fnw and the vibration amplitudes
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FIGURE 7. (Colour online) The response quantities of an elastically mounted sphere with
imposed rotary oscillations is presented as a function of forcing frequency ratio, fR, at a
fixed velocity ratio of αR= 0.5 in mode II (U∗= 10). Refer to figure 4 for further details.

start to recover. The dominant frequency of the transverse force, however, remains
the forcing frequency (see figure 7c). As the response approaches the vicinity of fR=

3, the vibrations lock on to the third subharmonic of the forcing frequency, f ∗ =
fR/3, although the effect is localised to a small fR range. Figure 7(c) shows that the
transverse force locks on simultaneously to the third harmonic as well. This is termed
‘tertiary lock-on’ (TLO). Such a region of tertiary lock-on has also been observed
previously for a cylinder allowing 1-DOF transverse movement under imposed rotary
oscillation (Wong et al. 2018), and also for a rigidly mounted cylinder (Choi et al.
2002; Thiria et al. 2006). The TLO region is also characterised by a sudden jump
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FIGURE 8. (Colour online) Time traces of the sphere displacement in mode II for different
frequency ratios of (a) fR = 1.1, (b) fR = 2, (c) fR = 3 and (d) fR = 4.8. The velocity ratio
is fixed at αR = 0.5.

in φtotal and Cy (rms), as evident from figures 7(e) and (d), respectively. The time trace
of the sphere displacement reveals a highly periodic response in the TLO region (see
figure 8c). As the sphere exits the TLO region, the dominant frequency again becomes
fnw; however, unlike standard lock-in, there is no clean single frequency response. The
vibrations exhibit amplitude modulation, as evident from figure 8(d). The vibration
amplitude drops to lower values, ∼0.2, and remains almost constant until fR = 5.

It is interesting to see how the response changes as the velocity ratio is increased to
αR= 1. Figure 9 shows the observed response for a higher velocity ratio of αR= 1 in
mode II. The lock-in and the tertiary lock-on regions are absent for αR= 1, unlike the
αR = 0.5 case. Again, the vibration amplitude for the fR = f ∗ = fnw case in the mode
II region is even higher than the non-rotating case (shown as a dashed line in a). An
interesting point to note here is that for fR > 2, although φtotal recovers to its initial
non-rotating values, the vibration amplitude does not recover to its initial value as
observed in mode I. Near the lock-on boundaries, a rich frequency content is observed,
however; it extends until fR= 3. For fR> 3, the frequency no longer follows the fR line
and the vibration is highly reduced. In this case, the vibration is neither locked in (as
characterised by a single frequency response at f ∗= 1) nor locked on (as characterised
by a single frequency response at f ∗= fR). Interestingly, the dominant frequency of the
lift force remains fR for fR > 3. Overall, the characteristics of the RLO region remain
the same with a sudden jump in φtotal from 0◦ to 180◦, and a drop in Cy (rms) correlated
with the jump in A∗rms.
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FIGURE 9. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of forcing frequency ratio, fR, at a fixed
velocity ratio of αR = 1 in mode II (U∗ = 10). Refer to figure 4 for further details.

4.1.3. Mode III
Figure 10 shows the response curves at even higher U∗ values towards the mode III

region. As evident from the figure, the width of rotary lock-on region is decreased in
mode III, extending only between 0.8< fR < 1.4. Another interesting point to note is
that for the fR= f ∗= fnw case, the vibration amplitude reaches a value of more than one
sphere diameter, which is ∼66 % higher than for the non-rotating case. The imposed
rotation is very effective in mode III in suppressing vibration for the entire range of fR
tested in the current study (except of course the fR= fnw resonant case). The response
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FIGURE 10. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of forcing frequency ratio, fR, at a fixed
velocity ratio of αR = 1 in mode III (U∗ = 15). Refer to figure 4 for further details.

characteristics in mode III are quite similar to mode II (the αR = 1 case), where the
vibrations do not recover to higher values after exiting the rotary lock-on region, and
a broad frequency spectrum is observed for higher fR values. However, in mode III,
the vibration frequency and the lift frequency follows the f ∗ = fR line for the entire
range of fR tested, unlike in the case of mode II. It appears that the transition region
extends until fR = 5 in this case. Interestingly, a clean single frequency response is
observed for the lift force for 2 . fR . 4, as seen in figure 10(c).
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FIGURE 11. (Colour online) The response quantities of an elastically mounted sphere
with imposed rotary oscillations is presented as a function of velocity ratio, αR, at fixed
frequency ratios of fR = 1.2 (a,c,e) and fR = 3 (b,d, f ) in mode II. The dashed red line
demarcates the two regions obtained as the velocity ratio is varied in the above cases.
The vibrations are greatly suppressed beyond the dashed line for both the frequency ratios
shown above.

4.2. Effect of velocity ratio
In this section, the effect of another important forcing parameter on the sphere
vibration response, the velocity ratio αR, is investigated. The velocity ratio was varied
over the range 0 6 αR 6 2 in small increments, keeping constant values of U∗ and
fR. The response was studied for U∗ = 10 (heart of mode II) and frequency ratios of
fR = 1 (resonance), fR = 1.2 (lock-on) and fR = 3 (non-lock-on).

Figure 11(a) shows the response as a function of αR at a constant value of fR =

1.2 in mode II. It can be seen that when the velocity ratio is increased gradually to
αR = 0.5, there is a progressive decrease in A∗rms. The dominant frequency remains
as fnw (see figure 11c). However, when αR is increased beyond 0.5, the oscillation
frequency locks on to the forcing frequency (f ∗ = 1.2), as shown in figure 11(c), and
the displacement becomes out of phase with the total transverse force, as shown in
figure 11(e). The vibrations are highly suppressed for αR >0.5 with ∼77.7 % reduction
in the vibration amplitude compared to the case of a sphere without imposed rotation.
This demonstrates that values of αR > 0.5 are desirable for effective suppression of
VIV in mode II, at least for fR = 1.2. An obvious question is that when fR is outside
the lock-on range, what velocity ratios are favourable for reducing the amplitude of
oscillations?

To answer this question, another frequency ratio was chosen in the non-lock-on
range and the response was investigated. Figure 11(b,d, f ) shows the response
quantities for fR = 3.0 in mode II. Initially, when αR is increased, there are no
significant changes in the vibration amplitude compared to the case of the sphere
without any imposed forcing. The oscillations are locked to the natural frequency of
the system, as shown in figure 11(d). However, there is a sharp reduction in A∗rms
beyond αR & 0.7. For higher αR values, the vibrations are suppressed completely. In
the frequency spectrum plot figure 11(d), a wide spectrum of frequencies is evident
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FIGURE 12. (Colour online) Time traces of the sphere displacement for frequency ratios
fR = 1.2 (a,c) and fR = 3 (b,d) at two different velocity ratios of αR = 0.3 and αR = 1.3.

for αR > 0.7. The forcing frequency fR = 3 is also present; however, fnw remains the
dominant frequency. For this case, the sphere vibrations are neither locked in (single
frequency response at f ∗ = 1) nor locked on (single frequency response at f ∗ = fR)
and the frequency contour map is characterised by a wide spectrum of frequencies.
φtotal remain close to 90◦ for the entire range of αR (except the higher αR values,
where small deviation can be observed). An interesting thing to note here is that
suppression of vibrations can be observed for a sphere even in the non-lock-on range
for high enough αR values.

Figure 12(a,c) shows the time trace of the sphere displacement at fR = 1.2 for the
two different velocity ratios of αR= 0.3 (a) and αR= 1.3 (c). For αR= 0.3, a pulsating
signal is evident with a beating frequency ∼|fr− fnw|. For αR= 1.3, on the other hand,
beating is not clear and the vibrations are not very periodic. Figure 12(b,d) shows the
time trace of the sphere displacement at fR=3 for two different velocity ratios αR=0.3
(b) and αR= 1.3 (d). For αR= 0.3, the vibrations are highly periodic without any signs
of amplitude modulation. On the contrary, at αR=1.3, where highly reduced vibrations
are observed (A∗rms< 0.08), the displacement signal is highly non-periodic with chaotic
intermittent vibrations similar to the ones reported by Sareen et al. (2018a) in their
experimental study on an elastically mounted sphere with imposed constant rotation.

Another interesting case to examine is fR = 1, where vibration amplitudes higher
than the non-rotating case can be observed, depending on the U∗ and αR, as was
shown in § 4.1. Figure 13 shows the response quantities for fR= 1 for varying velocity
ratios in mode II. As αR increases from 0 6 αR 6 0.5, φtotal decreases almost linearly
from 90◦ to 0◦ but the vibration amplitudes remain close to the non-rotating sphere
case. In this range, the sphere displacement has modulation over a very large period
of ∼40 cycles, as is clear from the time trace of the sphere displacement shown in
figure 13(b). The degree of modulation decreases for αR = 0.6 (see figure 13(d)). For
0.5<αR 62, the vibration amplitudes increase by ∼94 % compared to the non-rotating
sphere case. In this range, the displacement is always in phase with the total transverse
force acting on the sphere, and the vibrations become highly periodic without any
signs of amplitude modulation (see figure 13( f )).

To summarise the discussions so far on the effect of the two main forcing
parameters on the vibration response of a sphere, all the results are synthesised
and presented as contour plots in Figure 14. Figure 14(a–c) shows the amplitude
response (A∗rms) contours over the fR − αR parameter space for all three modes of
sphere vibrations. The contour plots show there are two observed lock-on regions:
rotary lock-on (RLO) and tertiary lock-on (TLO). These regimes are determined
by examining the body vibration frequency response as a function of fR for each
fixed αR. Such regions have also been recently identified for an elastically mounted
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FIGURE 13. (Colour online) The response quantities of an elastically mounted sphere
with the imposed rotary oscillations is presented as a function of velocity ratio, αR, at
a fixed frequency ratio of fR= 1 (a,c,e) for mode II. (b,d, f ) The time traces of the sphere
displacement for αR = 0.3 (d), αR = 0.6 (d) and αR = 1.2 ( f ).

cylinder by Wong et al. (2018). Evidently, these lock-on regions are a function of
all three forcing parameters: fR, αR and U∗. For all three sphere vibration modes,
the RLO region exists over a narrow window in the vicinity of fR = 1. For αR < 1,
the RLO region occurs in a narrow band around fR = 1 but becomes considerably
wider for higher velocity ratios, resulting in an inverted pear-shaped region. A tertiary
lock-on region (TLO) was also observed in mode II in the vicinity of fR= 3 for very
low velocity ratios of αR 6 0.5. The RLO region remains fairly similar in mode I
and mode II. However, for mode III, the RLO region becomes narrower for αR 6 1
and considerably wider for higher velocity ratios of αR > 1.5. As evident from the
contour plots, the reduced velocity can also influence the lock-in and TLO regions.
The lock-in region becomes significantly smaller for mode II (U∗ = 10) compared to
mode I (U∗ = 6), and vanishes completely for mode III (U∗ = 15). TLO, however,
was only observed for fR = 3 at very low velocity ratios (αR 6 0.5) in mode I and
mode III.

In general, mode I was found to be quite robust, requiring high velocity ratios for
the suppression of vibrations. The control was highly effective in mode III, with a
highly reduced response obtained over the entire parameter space studied (except for
the fR= fnw case). For the fR= fnw case, the sphere exhibited an ‘enhanced resonance’,
where vibrations increased to much higher values compared to the non-rotating case.
Overall, higher velocity ratios of αR > 1 were effective in suppressing the vibrations.
Suppression of vibration was observed even in the non-lock-on region at high fR and
αR values.

4.3. Effect of reduced velocity
In this section, the effect of another important flow parameter, the reduced velocity,
U∗, is discussed. In order to systematically investigate the effect of U∗, both the
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FIGURE 14. (Colour online) Plots showing the contours of A∗rms as a function of αR and
fR in mode I (a), mode II (b) and mode III (c). Different regions highlighted with dashed
lines.

other forcing parameters (αR and fR) were kept constant and U∗ was varied in small
increments from 0 to 20. The results are presented for αR= 1 at several representative
fR values.

Figure 15 shows the response quantities for fR = 0.3 (a) and fR = 0.9 (b) at a
fixed velocity ratio of αR = 1. In the plots depicting the phases, the phase difference
between the imposed rotary oscillation and the sphere displacement, φrot, is also
shown along as φtotal. It is found that φrot, i.e. the phase difference between the
imposed rotary oscillation and the sphere displacement is an important parameter
affecting the response of the sphere to the imposed rotation during lock-on conditions.
Readers should note here that φrot is only useful in lock-on regions, where the sphere
displacement is locked to the forcing frequency. As evident from panel (a), for U∗
varying from ∼4.5 to ∼12, the vibrations are locked to the natural frequency. There
is an increase in the displacement amplitude with a corresponding increase in the
transverse force coefficient. The displacement is in phase with the total transverse
force (or φtotal= 0). The time trace of the sphere displacement shows a highly periodic
response in this region (see figure 16a). This indicates the occurrence of lock-in over
this range. However, for higher values of U∗ > 12, φrot drops to almost zero. In this
region, the vibrations are locked to fR and the frequency at fnw becomes weaker in
power. There is no significant increase in the amplitude response up to U∗ = 20.
This region cannot be termed lock-in. The time trace shows amplitude and frequency
modulation in this range (see figure 16c). In this region, the two frequencies compete
with each other; such a region is termed the ‘lock-in + RIV’ region in the text.

For fR = 0.9, the response clearly has two regions with different characteristic
behaviours. For 0 6 U∗ . 8, the vibrations are locked to fR instead of fnw, and there
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FIGURE 15. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of reduced velocity for a fixed frequency
ratio of fR = 0.3 (a) and fR = 0.9 (b) at αR = 1. See figure 4 for a detailed description
of the figures. The blue-filled circular symbols in the phase plots represent the phase
difference between the rotary oscillations and the displacement. The ‘Lock-in + RIV’
region highlighted for fR = 0.9 indicates the U∗ values for which the two frequencies
compete with each other.
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FIGURE 16. (Colour online) Time traces of the sphere displacement for fR = 0.3 (a,c)
and fR = 0.9 (b,d) for a velocity ratio of αR = 1. (a,c) Time traces for U∗ = 8 and 15,
respectively. (b,d) Time traces for U∗ = 6 and U∗ = 10, respectively.

is a linear decrease in φrot from ∼130◦ to 0◦. This is clearly not lock-in. It will be
shown later in the text that such a region corresponds to the rotary-induced vibrations
(RIV). Nevertheless, the time trace shows highly periodic vibrations in this range. For
8 < U∗ < 14, on the other hand, the behaviour is similar to lock-in. The vibrations
are locked to fnw, there is a jump in Cy (rms), and φtotal remains close to 0◦. However,
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FIGURE 17. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of reduced velocity for a fixed frequency ratio
of fR= 1.0 (a) and fR= 1.1 (b) at a value of αR= 1. Refer to figure 4 for further details.

the time trace of the displacement signal shows beating in this range due to fr being
very close to fnw. When U∗ is increased beyond U∗ > 15, the vibrations lock to fR

again. In this range, both φtotal and φrot approach 0◦. In this region, extending from
8<U∗ < 20, it can be conjectured that the two frequencies compete with each other
and there is no clear lock-in or lock-on region.

Therefore, depending on the U∗ value, the vibrations may lock to fnw or fR. If
vibrations lock to fnw in the synchronisation region, lock-in or resonance is observed;
however, if they lock to fR, the response is reflected in φrot. Monotonically decreasing
φrot values coincide with monotonically increasing A∗rms (that lead to RIV response)
and constant φrot values coincide with constant amplitudes. This behaviour will be
further clarified in later discussions. φrot was plotted here to highlight its correlation
with the amplitude response in the lock-on regions. During lock-in, however, φrot does
not signify anything as the displacement and rotary oscillation do not exhibit the same
frequency: φrot is fixed at 90◦ in lock-in regions.

4.3.1. Rotary-induced vibrations
Figure 17 shows the response for fR = 1 (a) and fR = 1.1 (b). Overall, it is evident

that neither frequency ratio exhibits the typical bell-shaped response known for a non-
rotating sphere VIV over this U∗ range. Unlike the non-rotating case, φtotal remains
at 0◦ for the entire range of U∗ tested. Also, the vibrations are locked to the forcing
frequency. Clearly, this is not a lock-in phenomenon.
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FIGURE 18. (Colour online) Time traces of the sphere displacement for fR = 1 (a,c) and
fR = 1.1 (b,d) for reduced velocities of U∗ = 4 and U∗ = 12.

For fR = 1, initially the vibration amplitude increases almost linearly in the range
0 < U∗ < 10. In this range, φrot is not fixed at ∼90◦, as was previously found for
lock-in, but decreases monotonically from ∼170◦ to lower values. The vibrations are
highly periodic as clear from figure 18(a), and the frequency contour plot shows a
clean single frequency response at f ∗ = 1. Interestingly, a ‘kink’ can be observed in
the frequency response when φrot crosses zero at U∗ = 10. Beyond this point in U∗,
there are large modulations in the sphere displacement signal (at a low frequency) as
evident from the time trace shown in figure 18(c). Also, φrot and A∗rms remain almost
constant.

For fR = 1.1, initially the vibrations are not very periodic in the range 0< U∗ < 6
(see figure 18b) but as the reduced velocity is increased further (U∗ > 6), the
vibrations become periodic (see figure 18d). For U∗ > 6, the frequency plot shows
a clean frequency at f ∗ = fR = 1.1. Also, φrot decreases monotonically from ∼260◦
to 90◦, and correspondingly, the vibration amplitude increases monotonically (almost
linearly) with the increase in reduced velocity for the entire range of U∗ tested in
the current study.

The vibration response observed in the above cases show some similarities to the
‘wake-induced vibration (WIV)’ reported by Assi, Bearman & Meneghini (2010), or
called ‘wake-induced galloping’ by Bokaian & Geoola (1984) and Brika & Laneville
(1999) for an elastically mounted cylinder placed downstream of a fixed cylinder. The
latter studies reported that for a fixed structural damping, the downstream cylinder can
exhibit vortex resonance, WIV, combined vortex resonance and WIV, or separately
vortex resonance and WIV depending on the cylinders’ separation. Assi et al. (2010)
suggested that wake-induced vibration (WIV) requires a frequency input such as
upstream vortex shedding to occur. They also highlighted that the upstream vortices
interfering with the downstream cylinder induce fluctuations in the fluid force. A
favourable phase lag between the fluid force and the displacement ensures a positive
energy transfer from the flow to the structure that sustains the oscillations. One may
infer here that the wake of the fixed cylinder placed upstream provides an oscillating
forcing to the elastically mounted cylinder placed downstream. In the current study,
however, the forcing is imposed on the sphere itself in contrast to the less controlled
forcing of their study. The vibrations are not generated by a wake upstream but rather
by rotary oscillations imposed on the sphere. Thus, it makes sense to describe such
vibrations as ‘rotary-induced vibrations (RIV)’. Similar vibrations have also been
observed recently for an elastically mounted cylinder with imposed rotary oscillation
by Wong et al. (2018). They reported vibration increasing monotonically with U∗ for
fR = 1 and αR = 1.
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FIGURE 19. (Colour online) The response characteristics of an elastically mounted sphere
with imposed rotary oscillations is presented as a function of reduced velocity for a fixed
frequency ratio of fR= 3 (a) and fR= 4 (b) at a αR value of αR= 1. Refer to figure 4 for
further details.

Nevertheless, it should be mentioned here that the vibrations observed in the current
study are very different to the galloping response known for isolated non-circular bluff
bodies, that is, a low frequency phenomenon observed at very high flow velocities
(Blevins 1990; Zhao et al. 2014b). In contrast, in the current study, vibrations
exhibiting RIV were always locked to the forcing frequency. It was also evident
that monotonic increasing amplitudes were associated with the monotonic decreasing
φrot values (from ∼180◦ to lower values). It can be conjectured here based on this
evidence that RIV will only occur in the U∗ range where lock-on is observed. The
case of monotonically decreasing φrot values from ∼180 to lower values leads to
monotonically increasing amplitude. In cases where φrot remains constant, there is
no appreciable increase in the vibration amplitude. In § 4.1, it was shown that the
lock-on range varies with U∗, becoming narrower with increasing U∗. This leaves a
very narrow window of fR values where lock-on, and hence RIV, can be observed for
the entire range of U∗ tested in the current study.

In § 4.1, the results showed suppression of vibrations for very high frequency
( fR > 3) and velocity ratios (αR > 1), even in non-lock-on regions. The question
arises as to whether a specific set of parameters leads to RIV or VIV, or both? To
investigate this, high frequency ratios of fR = 3 and fR = 4 were also investigated.
Figure 19 shows the response characteristics for fR = 3 (a) and fR = 4 (b). A wide
lock-in region is evident for both the frequencies extending from ∼4.5 to ∼11, with
a corresponding jump in the Cy (rms). As previously, φtotal is fixed at 0◦ in the lock-in
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FIGURE 20. (Colour online) Time traces of the sphere displacement for U∗ = 6 (a) and
U∗ = 18 (b) for fR = 3.

region, and the time trace of the displacement signal is highly periodic, as shown in
figure 20 (a). When U∗ is increased beyond the lock-in region, the frequency contour
plot shows a wide spectrum of frequencies. The frequency does not lock on to fR,
and nor is there a clean single frequency response at f ∗ = 1, as observed for lock-in.
Interestingly, φtotal approached 90◦ in this region. The time trace of the displacement
signal shows a non-periodic signal in this range (see figure 20b).

5. Wake measurements
The VIV of a sphere is induced by streamwise vorticity, in contrast to its

two-dimensional counterpart, the cylinder, whose dynamics is mainly induced by
spanwise vorticity. PIV measurements in a plane normal to the flow can reveal
important insights into the temporal evolution of the streamwise vorticity as the
vortex loops pass through a cross-plane. Hence, the current study employs PIV
measurements in the cross-plane at a distance of 1.5D from the sphere’s downstream
surface, similar to that employed by Govardhan & Williamson (2005) and Sareen
et al. (2018b). Figure 21 shows the vorticity contour plots, phase-averaged over more
than 100 cycles, at four different phases of the oscillation cycle, separated by a quarter
period, for a sphere without any imposed rotary oscillation. The plots are shown for
a reduced velocity of U∗ = 6 (mode I). As evident from figure 21, the streamwise
vorticity consists of a dominant counter-rotating vortex pair consistent with the legs of
vortex loops forming on both the sides of the sphere wake (Sakamoto & Haniu 1990,
Govardhan & Williamson 2005 and Sareen et al. 2018b). As the sphere traverses
from one side to the other, the vorticity changes sign, corresponding to hairpin loops
being shed downstream into the wake from opposite sides.

To understand how the wake structures differ in the lock-on region compared to the
lock-in region, some representative cases were chosen in mode I to give an overview
of the underlying associated wake dynamics. PIV measurements were also performed
for a fixed velocity ratio of αR = 1 at U∗ = 6 in mode I for four different fR values.
Considering the limitation of the present experimental set-up, measurements were
not performed for very high U∗ values, where very large vibration amplitudes are
observed. Moreover, studying the wake in mode I should be sufficient to highlight
some of the main features of the lock-on phenomenon. The chosen fR values are as
follows: fR = 1, where all the dominant frequencies are equal, leading to amplitudes
higher than for the non-rotating sphere; fR= 0.9 corresponding to a lock-on frequency
just under fR = 1; fR = 1.1 corresponding to lock-on frequency just past fR = 1; and
fR = 3, corresponding to the lock-in region, where the amplitudes recover after the
lock-on region.

Figure 22 shows the streamwise vorticity plots for four different phases, separated
by a quarter period of the oscillation cycle, for fR = 0.9 at a velocity ratio of αR = 1
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FIGURE 21. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗ = 6) without any imposed rotation. Each of these
plots are separated by a quarter period, and were measured at a distance of x/D = 1.5
from the sphere. The dashed lines show the maximum displacement of the sphere and
the sphere location. Blue contours show clockwise vorticity, red anti-clockwise vorticity.
The normalised vorticities vary in eight steps in the range ω∗ = ωD/U ∈ [−3, 3], where
ω is the vorticity.

in mode I. The position of the sphere (placed upstream) and the maximum extent of
the sphere vibration have been marked in dashed lines. As evident from the plots, the
wake consists of a counter-rotating vortex pair similar to the wake of a sphere without
any imposed rotation. However, there is a slight change in the timing of the vortex
formation. This finding is consistent with the fact that as the vibrations lock to the
forcing frequency, there is a slight change in φtotal as shown in figure 4.

When the streamwise vorticity for another lock-in frequency of fR= 1.1 is examined
as shown in figure 23, a drastic change in the vortex formation timing is clearly
evident. The plots are exactly 180◦ out of phase with the plots shown in figure 21
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FIGURE 22. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗ = 6) for the frequency ratio of fR = 0.9 under lock-on.
Refer to figure 21 for further details.

for a non-rotating sphere. This is congruent with the data reported in figure 4, where
one can clearly see that φtotal jumps from ∼0◦ to 180◦ as fR increases from fR = 1 to
fR = 1.1 in the lock-on range. To provide a better perspective on the wake structures,
spatio-temporal reconstructions of the sphere wake were generated for the fR = 1.1
case and compared to the fR = 0 case, as shown in figure 24(b) and figure 24(a).
The spatio-temporal reconstruction was generated from 24 cross-stream vorticity
fields, each phase-averaged for more than 100 cycles. A convection velocity of U
(free-stream velocity) was assumed to build the 3-D image. As evident in this case,
the wake consists of an alternating two-sided chain of vortex loops, similar to the
wake of an oscillating sphere with no imposed rotation reported by Govardhan &
Williamson (2005) and Sareen et al. (2018b). Of course, this reconstruction should
not be viewed as a typical image of the wake, since it is only representative of the
average wake behaviour as it passes through a fixed downstream plane.
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FIGURE 23. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗= 6) for fR= 1.1 during the lock-on phenomenon. Refer
to figure 21 for further details.

On the other hand, the streamwise vorticity plot for fR = 1, as shown in figure 25,
is similar to that for a sphere without any imposed rotation; there is seen to be
a similar timing of vortex (loop) shedding. Again, this is consistent with the data
reported in figure 4. One can conclude here that there is a change in the timing of
vortex formation as the vortex shedding locks to fR with no appreciable change in the
vortex structures. The streamwise vorticity field consists of a counter-rotating vortex
pair which flips sign as the sphere traverses from one side to the other, as for the
wake of a sphere with no imposed rotation. Another interesting case to examine is
that of higher frequency ratios ( fR > 2), where the vibrations lock in to fnw again
and the amplitude response recovers. Figure 26 shows streamwise vorticity plots for
fR= 3 for the same parameters discussed earlier for other cases. The timing of vortex
formation is similar to that for the non-rotating case. However, there is an evident
reduction in the streamwise vorticity in this case. As also shown in figure 4, the
vibration amplitude and the total transverse force coefficient are smaller than for the
non-rotating case. Therefore, it can be concluded here that although the vibration
frequency reverts to locking in to fnw instead of fr in this case, a reduction in the
vibration amplitude could still be observed due to the reduction in the streamwise
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FIGURE 24. (Colour online) Three-dimensional spatio-temporal reconstruction of the
sphere wake based on phase-averaged streamwise vorticity (crossing the transverse plane at
a distance 1.5D from the sphere rear surface) for (a) fR= 0 and (b) fR= 1.1 and αR= 1 in
the lock-in regime. The wake is shown for mode I (U∗= 6), corresponding to a Reynolds
number of ∼8000. Blue indicates anti-clockwise vorticity, and red clockwise vorticity
(both in the x-y plane). The figure clearly shows that the dominant wake structures remain
the same for both the cases; however, there is a clear change in the timing of vortex
shedding for fR = 1.1 compared to fR = 0.

vorticity, in turn leading to a lower total transverse force acting on the sphere. The
effect of high fR is more pronounced in mode II and mode III, where the vibrations
were highly suppressed, as shown in figures 9 and 10.

6. Conclusions
A comprehensive series of experiments and wake measurements were performed

to examine the effect of imposed rotary oscillation on the FIV of a sphere that is
elastically mounted in the cross-flow direction. The response was investigated for
a wide range of forcing parameters, non-dimensional forcing frequency, fR, in the
range 06 fR 6 5, forcing amplitude, αR, in the range 06 αR 6 2, and reduced velocity
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FIGURE 25. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗= 6) for a frequency ratio of fR= 1.0 under resonance.
Refer to figure 21 for further details.

U∗ between 0 6 U∗ 6 20. It was found that when the forcing frequency fr was in
close proximity to the natural frequency fnw, the vibrations locked on to fr instead
of fnw,l inhibiting the resonance response. The vibrations were greatly suppressed in
the lock-on region, except for the case when fR = fnw, where an ‘enhanced resonance’
response was observed leading to very large amplitudes, even greater than those
observed for the non-rotating sphere in some cases. In the lock-on region, a sudden
jump in the total phase was observed from 0◦ to 180◦. The displacement signal was
highly modulated in the non-lock-on regions. Near the lock-on boundaries, a wide
spectrum of frequencies was observed. Interestingly, suppression was also observed
in the non-lock-on regions for very high fR and αR values. Mode I was found to
be quite resistant to control, requiring very high velocity ratios for the suppression
of vibrations. On the other hand, control (suppression) was most effective for mode
III. Overall, relatively high velocity ratios (quantified in this paper) were required
to suppress the vibrations. The width of the RLO region increased with an increase
in αR for all three modes. When the reduced velocity was increased progressively,
several types of responses with different characteristic behaviours were observed.
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FIGURE 26. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗ = 6) for fR = 3. Refer to figure 21 for further details.

For some cases, the vibration amplitudes increased monotonically with an increase
in U∗. Such vibrations have been termed ‘rotary-induced vibrations’. The phase
difference between the rotary oscillations and the sphere displacement φrot was found
to be crucial in determining the response. Monotonically decreasing φrot values were
always associated with the monotonically increasing responses. Wake measurements
performed in the cross-plane revealed structures similar to those for an oscillating
sphere without imposed rotation; however, there was a change in the timing of vortex
formation. For a high frequency ratio of fR = 3, there was a clear reduction in the
streamwise vorticity consistent with a reduced amplitude response.
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Chapter 8

Conclusions and
Recommendations for Future
Work

The important thing is to never stop
questioning

Albert Einstein

This thesis endeavours to understand the effect of transverse rotation and rotary
oscillation on the flow-induced vibration of a sphere and opens up the possibilities
of utilising such methods as effective control mechanisms of regulating flow-induced
vibration of a 3D bluff body. It also attempts to broaden the current understanding
of the dynamic response of an elastically mounted sphere in close proximity to a free
surface. However, inevitably, a number of new fundamental questions have also emerged
from the current thesis. In this final chapter, the important conclusions are drawn in
§ 8.1, followed by § 8.2, where some of the newly emerged questions from this thesis
are discussed along with some recommendations for future work to follow.

8.1 Conclusions

8.1.1 VIV of a transversely rotating sphere

A comprehensive series of experiments and flow visualisations were performed to study
the effect of transverse rotation on the VIV response of a sphere. The vibration re-
sponse was studied for a wide parameter space of 0 ≤ α ≤ 7.5 and 3 ≤ U∗ ≤ 18.
Interestingly, unlike its two dimensional counterpart, the cylinder, the VIV response of
the sphere reduced gradually and steadily with increasing rotation ratio, leading to an
almost complete suppression for α ≥ 6.0. It was also found that the synchronisation
regime became narrower with increasing α, and the peak amplitude response gradu-
ally decreased almost linearly for α . 1. The oscillation frequency remained close to
the natural frequency of the system for all cases indicating that the vibrations remain
locked-in for a transversely rotating sphere at least in the parameter space tested in
the current study.

Furthermore, it was found that the oscillation amplitudes not only decreased but
also the oscillations became less periodic with increasing rotation. Recurrence analysis
of the structural vibration response demonstrated a transition from a periodic state to a

171



Chapter 8. Conclusions and Recommendations for Future Work

chaotic state in a modified recurrence map complementing the appearance of broadband
spectra at the onset of bifurcation. The time-averaged displacement increased towards
the retreating side of the sphere with increasing α, due to an increase in the mean
Magnus force. However, the peak fluctuating transverse force coefficient, C ′yrms

, was
found to decrease consistently with the rotation rate, following a trend similar to that
of the vibration amplitude.

Hydrogen-bubble visualisations and PIV measurements revealed that the sphere
wake deflected progressively towards the advancing side as the rotation ratio was in-
creased. Also, the flow was continuously drawn from the retreating side to the advancing
side of the sphere with increasing rotation ratio, which led to fluid entrainment at the
advancing side. This entrainment gave rise to a large-scale one-sided vortex shedding.
For the rotation ratios where the VIV was found to be completely suppressed, the wake
was found to be always deflected towards the advancing side with large-scale flow struc-
tures for all shedding cycles. The wake deflection towards the advancing side led to an
increased Magnus force and mean sphere displacement towards the retreating side. A
lack of an oscillating force acting on the sphere led to near suppression of the VIV.

8.1.2 Effect of free surface on the VIV response of a sphere

To study the effect of free surface, the sphere response was studied over a wide range
of reduced velocities, 3 ≤ U∗ ≤ 20, and immersion ratios of −1 < h∗ ≤ 1. For a fully
submerged sphere, the vibration amplitude decreased and the synchronisation region
narrowed gradually with the decrease in the immersion ratio. Mode II occurred for
progressively lower U∗ values with decreasing h∗. In contrast, a different dynamics
was observed for the semi-submerged sphere. Two regimes were identified showing
different characteristic responses. In regime I (−0.5 < h∗ < 0), the synchronisation
region widened and the vibration amplitude increased with decreasing h∗. However,
in regime II (−0.5 ≤ h∗ < −1), the vibration amplitude decreased with a decrease
in h∗. The amplitude response in regime II was characterised by two distinct peaks
corresponding to mode I and mode II of the vibration response unlike regime I, where
the response gradually progressed from mode I to mode II similar to that of a fully
submerged sphere.

The response was found to be relatively insensitive to the Froude number in the
range tested (0.05 ≤ Fr ≤ 0.45). The response curve shape was independent of Fr and
the peak vibration amplitude only slightly reduced with increasing the Froude number.
PIV wake measurements revealed reduction in vorticity of the upper vortex (closer to
a free surface) of the longitudinal vortex pair due to vorticity diffusion into the free
surface. For the piercing sphere case, only the lower vortex of the pair was visible at
1.5D downstream; it appears that the upper vortex was effectively lost through diffusion
into the free surface.

8.1.3 Effect of rotary oscillation on the VIV response of a sphere

To study the effect of rotary oscillation, the sphere response was investigated for a wide
range of frequency ratios, 0 ≤ fR ≤ 5, forcing amplitude ratios, 0 ≤ αR ≤ 2, and
reduced velocities of 0 ≤ U∗ ≤ 20. It was found that when the forcing frequency ratio
was close to 1, i.e., when the forcing frequency fr was in close proximity to the natural
frequency fnw, the vibrations locked-on to fr instead of fnw inhibiting the resonance
response. The vibrations were greatly suppressed in the lock-on region, except for the
case when fR = 1, where an ‘enhanced resonance’ response was observed leading to
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very large amplitudes, even greater than those observed for the non-rotating sphere in
some cases. In the lock-on region, a sudden jump in the total phase difference, φtotal,
was observed from 0◦ to 180◦. The displacement signal was highly modulated in the
non lock-on regions. Near the lock-on boundaries, a wide spectrum of frequencies was
observed. Interestingly, suppression was also observed in the non lock-on regions for
very high fR and αR values. Mode I was found to be quite resistant to control re-
quiring very high velocity ratios for the suppression of vibrations. On the other hand,
control (suppression) was most effective for mode III. Overall, relatively high velocity
ratios were required to suppress the vibrations. The width of the rotary lock-on region
increased with an increase in αR for all three modes. When the reduced velocity was in-
creased progressively, several types of responses with different characteristic behaviours
were observed. For some cases, the vibration amplitudes increased monotonically with
an increase in U∗. Such vibrations have been termed ‘Rotary induced vibrations’. The
phase difference between the rotary oscillations and the sphere displacement φrot was
found to be crucial in determining the response. Wake measurements performed in
the cross-plane revealed structures similar to those for an oscillating sphere without
imposed rotation; however, there was a change in the timing of vortex formation. For
high frequency ratios (fR ≥ 3), there was a clear reduction in the streamwise vorticity
consistent with a reduced amplitude response.

8.2 Recommendations for future work

8.2.1 Effect of rotary oscillation

� It was found in the current study that for a certain set of forcing parameters,
rotary oscillation can instigate ‘Rotary-induced vibrations’ that are intrinsically
different to other previously known FIV responses: combining vortex-induced vi-
brations and galloping. The phase difference between the rotary oscillation and
the sphere displacement plays an important role in the dynamics; however, fur-
ther research is needed to understand completely the dynamics of rotary induced
vibration. It might be fairly complicated to understand this mechanism for a 3D
wake of a sphere. However, it should be relatively easy to study this for 2D vortex
shedding from a cylinder.

� Apart from imposing rotary oscillation onto a bluff body, there might be several
other interesting ways of introducing forcing into the wake. Placing another
static sphere upstream of an elastically mounted sphere is one possibility, where
the interaction of the two wakes will presumably give rise to several types of FIV
responses depending on the size and distance between the spheres. This study
should be helpful in expanding the knowledge of FIV.

8.2.2 Effect of a free surface

� The current thesis investigated the response of a sphere in a close proximity to
a free surface for a moderate range of Froude numbers. However, for relatively
higher Froude numbers (Fr ≥ 2), there could be significant surface vorticity
generation that can diffuse or convect into the main flow, altering the development
of vortex shedding. For a 3D flow past a sphere at high Reynolds numbers, it
could be complicated to capture the time-varying surface deformations and their
effect on the 3D structures. Nevertheless, this remains open for future studies.
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� It was found in the current study that the FIV response of a semi-submerged
sphere is fairly sensitive to the change in the mass-damping compared to a fully-
submerged sphere. However, due to limitations of the experimental set-up, it was
not possible to quantify the effect of mass ratio at higher mass-damping ratios.
It is recommended to investigate this in the future. Presumably, this might be
relatively easy to implement in a numerical study.

8.2.3 Passive control

� Although passive control methods are extensively studied for a circular cylin-
der, such methods remain unexplored for a sphere. Depending on the practical
situation, sometimes passive control is the most feasible and easy to implement
control method. It is expected that simple geometric modifications like a trip wire
or dimples on the sphere surface will not only reduce drag but also be able to
limit vibrations. It is recommended that such VIV control methods for a sphere
should be explored in the future.

� An MIT team (Terwagne et al. 2014) developed spherical balls with ‘smart mor-
phable surfaces’ that can change their surface texture from smooth to dimpled
and vice versa depending on the flow conditions. Made of soft polymer with a
hollow centre and a thin coating of a stiffer polymer, the sphere becomes dimpled
when the air is pumped out of the hollow centre, causing it to shrink. Increas-
ing pressure returns the surface to a smooth state. Using this, they were able
to control the drag of a sphere by up to a factor of two, over a range of flow
conditions. It is expected that such approaches may provide real-time control of
VIV for a wide range of Reynolds numbers. It is recommended that such innova-
tive methods should be explored in the future as a means to control flow-induced
vibration.
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