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Abstract

We define the H(R)-algebra of a space as the algebraic object consisting of the
graded cohomology groups of the space with coefficients in a general ring R, to-
gether with all primary cohomology operations on these groups, subject to the
relations between the operations. This structure can be encoded as a functor from
the category H(R) containing products of Eilenberg-Mac Lane spaces over R to
the category of pointed sets.

The free H(R)-algebras are the H(R)-algebras of a product of Eilenberg-Mac
Lane spaces. In this thesis we show how to construct free simplicial resolutions of

H(R)-algebras using the free and underlying functors.

Given a space X, we also construct a cosimplicial space such that the cohomology
of this cosimplicial space is a free simplicial resolution of the H(R)-algebra of X.
For R = F,, the finite field on p elements, this cosimplicial resolution fits the E?
page of a spectral sequence and give convergence results under certain finiteness
restrictions on X. For R = Z, the integers, a similar result is not obtained and

the reasons for this are given.
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Chapter 1

Introduction

In this thesis we construct resolutions of the algebraic object consisting of the
cohomology groups of a CW,—complex with coefficients in an arbitrary ring with
unity R, together with all the primary cohomology operations acting on this graded
group. The algebras over the Steenrod algebra is an example of this kind of

algebraic object for R = Fs.

We take an approach that is Eckmann-Hilton dual to that of Stover’s work on
[I-algebras [53]. The Stover construction has led to a number of applications in
homotopy theory. These inlcude the development of resolution model categories by
Dwyer, Kan and Stover [22], some new spectral sequences [53, 36] and homotopy

calculations [27].

The Eckmann-Hilton dual to II-algebras appeared in [46] but that was for R = Z
only and was called an H-algebra. To allow for arbitrary rings we will call them
H(R)-algebras, so that an H(Fy)-algebra would be an algebra over the Steenrod
algebra. The structure of (R )-algebras can be encoded in a functor from H(R),
the category of products of Eilenberg-Mac Lane spaces over R to the category
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of pointed sets. In fact, in the terminology of Borceux [13], Lawvere [39] and

Ehresmann [25, 24] H(R)-algebras can be thought of as models of a product sketch.

The category of H(R)-algebras do not form an abelian category so to do homotopy
theory on them we need to define a model category structure and work with free
simplicial resolutions. We define model category structures in Chapter 4 and using
the model category structure of Section 4.1.2, we are able to prove the existence

of free simplicial resolutions of H(R)-algebras in Chapter 5.

In Chapter 5, the simplicial construction formed by using the free and underlying
functors together with the natural transformations (counit and unit of adjunction)
is proven to be a resolution. Our proof holds for any model category with free
and underlying functors. This is analogous to the construction of resolutions by
Huber’s standard method [35] with slight modifications. We show in Chapter 3
that for R = Z we also need an infinite product sketch and give results for a model

category on these models in Section 4.1.2.

The other model category structure (Section 4.3) is Bousfield’s resolution model
category on cosimplicial spaces [15] allowing a comparison of the free cosimplicial
space, constructed in Chapter 6, with the Bousfield-Kan resolution on simplicial
sets ([16], I 4.1). The resolution of Chapter 6 using Eilenberg-Mac Lane spaces
is generally infinite dimensional, even if the space is finite and will generally be
connected, even if the space was not. For R = Z it is not possible to show a
G-equivalence with Bousfield-Kan resolution because the resolution by products of

Eilenberg-Mac Lane spaces is not acyclic for all abelian group coefficients.

Nevertheless for R = F,, and for a space X with finitely generated cohomology
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groups the G-equivalence with Bousfield-Kan resolution allows some applications.
Using the vector dual and working with homology with homology co-operations,
the resolution by Eilenberg-Mac Lane spaces fits into the E? page of the Bousfield
homology spectral sequence converging to the homology of X which then may be

redualized to give information on cohomology.

The spectral sequence can also be applied to the mapping space map, (Y, X) for a
fixed finite space Y. Setting Y to be a circle gives a spectral sequence converging

to the homology of the loops on X.



Chapter 2

Preliminaries

2.1 Basic category theory and definitions

2.1.1 Natural transformations

In this thesis for composition of morphisms in a general category C, fg is used to
denote ¢ following f.

Definition 2.1.1. Let L, R : C — D be covariant functors. A natural transfor-
mation ([41], 1.4) 9 from L to R is a class of morphisms, 9x : LX — RX, such
that for each object X € C and for all morphisms f: X — Y in C, the following

diagram 1s commutative.

Ix

LX RX
Lf Rf
LY rm RY

The composition of two natural transformations are defined in the obvious way,
but we will make a short note of how natural transformations are defined on a

composition of functors ([35], 1 ).



2.1.2 Composition of natural transformations and functors

Let v : L — R be a natural transformation, U and V' be covariant functors such

that the compostion of functors ULV and URV are defined. Then,

Uy :UL — UR, is defined as
(U9)y = U(Vy).

WV : LV — RV, is defined as
(ﬁV)X = 19\/)(.

Combining (2.1) and (2.2) we define

U9V ULV — URV, as
(UﬂV)X = Uﬁvx.

(2.1)

(2.2)

(2.3)

Fact 2.1.2. ([35], § 1) Let U and V' be functors and ¢ and ¢’ be natural transfor-

mations, then

(UIV)UIV) = U9V

(2.4)

Lemma 2.1.3. For any two natural transformations ¢ : L — R and ¢ : M —

N the following identities hold when the respective compositions are defined ([28],

Appendiz) or ([35], $1).

Mo

ML MR
YL YR
NL N3 NR

(YR)(M¢) = (N)(4L)
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oM

LM RM
Ly Ry
LN —— RN
(RY)(oM) = (oN)(Ly)) (2.6)

Example 2.1.4. Let I — FU!, R= FU', M —=FU, N =1,
¢ = hFU", 1 = ¢ in equation (2.6), then we have

FUFU — MU EY _ prritl pry

FU'€ FU*tle
FU'I : FU™T
hFU'I
Then
FUFU'¢« hFU'FU = hFU" FU'¢ (2.7)

Example 2.1.5. Let L = FU, R=FU? M = FU, N=FU* ¢=u,
Y = hFU" in equation (2.5), then we have

FUFU —FU pUipy?

hFUlFUl hFU'FU?
FUTFU i, FUTFU?
Then
FUFU'v hFU'FU = hFU'FU* FU'v (2.8)

2.1.3 Adjoints

In this section, we explain the concept of adjoint functors between categories that

will be used to define free objects in a category. There are two common ways to
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define the adjunction of functors. Definition 2.1.7 is given using natural trans-
formations called unit and counit of adjunction and Definition 2.1.8 is described

using Hom sets ([41], IV.1).

Notation 2.1.6. We will use idx to denote the identity map from an object X to
itself within a category. The identity functor will be denoted by I and the identity

natural transformation on a functor G is denoted by 1¢.

Definition 2.1.7. Let L : C — D and R : D — C be functors. L is left adjoint

to R, if and only if there exists natural transformations,

(i) n: 1 — RL, called the unit of adjunction and

(ii) € : LR — I called the counit of adjunction such that the following two

diagrams commudte.

L RLR —* R (2.9)
'z el nR T
L LRL R
Ln

Definition 2.1.8. Let L : C — D and R : D — C be functors. L is left adjoint
to R, if there exists a family of bijections

Homp(LX,Y) = Home(X, RY) (2.10)
which is natural in X and Y .

Notation 2.1.9. We will use SET to denote the category of sets, &rp for the

category groups and Ab for the category of abelian groups.

Definition 2.1.10. Let C be a category whose objects are sets with some additional
structure and morphisms of C respecting this structure. A functor which ”forgets”

some or all the structure of the objects in C is called an underlying functor ([41],

L3).



Definition 2.1.11. Let C be a category where the underlying functor U is defined
on C. Then F s called a free functor if F is left adjoint to U. We denote F' 4 U
to mean F' s left adjoint to U.

Example 2.1.12. Let U be the underlying functor from &rp — SET which send
a group G € &rp to the underlying set of G. The free functor F' from SET — Grp
sends a set A € SET to the free group generated on the elements of A.

2.1.4 Categorical Duality

To each category C there is an associated opposite category C°?. The objects of C?
are the objects of C. However, for any morphism f : @ — b in C, the corresponding
morphism in C? is defined as f : b — a (the direction of the arrow reversed).
Also the composition fP¢g? = (gf)° in C°?. According to this, a contravariant
functor S : C — D can be regarded as a covariant functor S : C?? — D. Therefore,
for every statement in a category C that can be expressed as a diagram, there is
a corresponding statement in the opposite category C° by reversing arrows and
order of composition just as explained above. This procedure of interchanging

arrows and order of composition is called categorical duality.

2.1.5 Limits

Next, we define a limit in a category. Terminal objects, products, equalizers and

pullbacks can be unified using the concept of limit.

Definition 2.1.13. Let L be a functor from D to C, a cone ([12], 2.6.1) on L
consists of an object C' in C and for every object Dy € D, a morphism tp, : C —

LD in C, such that, for every morphism d : Dy — Dy in D, tp, = L(d)tp,.

Notation 2.1.14. We will denote a cone on a functor L by (C, (tp,)p,ep)-



Definition 2.1.15. A limit ([12], 2.6.2), if it exists, of a functor R: D — C is a
cone (L, (tp)pep) on R such that, for every cone (M, (qp)pep) 0n R, there exists
a unique morphism m : M — L such that for every D € D, with qp =tpm. The

limit of a functor is also the terminal object in the category of cones on C.

Remark 2.1.16. Let D be an ordered category, the limit of the functor R : D —
C, if it exists will be denoted by limgep Xy, where Xy € C. Dually the colimat if it

exists will be denoted by colimgep Xy, where Xy € C.
Here as an example, we will show that products are a particular type of limit.

Example 2.1.17. Let D be the discrete category with only two elements and no
non-identity morphisms. Also let R: D — C, so a cone on R is an object A € C
with morphisms RD, PRI PN RD,, where Dy, Dy € D. If the terminal cone
RD, &y RD;y on R exists then for any other cone (C,cy,cq), there is a
unique morphism of cones u : (C,cy,ca) —> (L, t1,t2) with ¢; = tju, j = 1,2,
by the universal property of the terminal object. Thus, the following diagram

commutes.

RD, L RD,

t1 to

The limit (L, t1, to), if it exists, in this case is called the binary product ([12], 2.1.1)
of RDy and RD, and we denote it by (RD; x RDy,ty,ts).

Definition 2.1.18. Let J be a set and {Cs|li € J} be a family of objects in a
category C. A product ([12], 2.1.4) of that family is an object HCi together

ied
with morphisms {pr; : HC’Z» — C;} such that for any family of morphisms
icJ



{fi Y — Ci|i € J} there is a unique morphism {fitics : Y —> HCi with
icJ
pri{ fi}ics = fi for alli € J. Thus we have the commutative diagram

Y ——M > ;
{fities H Ci
1€J
The categorical dual of a product is called a coproduct.

Definition 2.1.19. Let J be a set and {C;|i € J} be a family of objects in a

category C. A coproduct ([12], 2.2.1) of that family is an object HC’,- together
with morphisms {inc; : C; — HCZ} such that for any familyli; morphisms
{fi : C;, — Y'|i € J} there is a Z;;ique morphism < f; >icr: HCZ' — Y with
< fi >ieq tnc; = f; for all i € J. Thus we have the commutatwiegdiagmm

&

inc;

Y <fi>ieJ H Ci

ieJ
Definition 2.1.20. In any category C and for a diagram of the form
f

A B

the equalizer ([12], 2.4.1) of f and g is the object E and an arrow e : E — A
such that given any z : Z — A with fz = gz, there is a unique u : Z — E with

ecu = 2.

B
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Definition 2.1.21. If a category C has a zero object, 3, then for any two objects
A, B € C, the unique maps A — 3 and 3 — B have a composite 0 : A — 3 —>

B, called the zero map.

Definition 2.1.22. In a general category C, with zero object, the kernel of a map
f A — B s a pair consisting of an object K and a map k : K — A with fk =0
(the zero map), such that, if there is any other map z : Z — A with fz =0 then

there exists a unique u : Z — K making the triangle z = ku commute.

K A B (2.11)

The kernel in a general category is an instance of an equalizer. To see this, firstly in
a category that has equalizers we let g be the zero map (factor g as A — 3 — B,
given in Defintion 2.1.21) in the diagram of Definition 2.1.20. Then (K k) is the

equalizer of f and 0 and gives the kernel diagram (2.11).

Definition 2.1.23. In a category C with maps f and g as follows A Tyo B,
the pullback ([12], 2.5.1) of f and g consists of arrows A &<~ P 25 B such that
forany zy : Z — A and 29 : Z — B with fz1 = gzo, then there is a unique map

u: 4 — P making the following diagram commute.

(2.12)

11



That is zy = pru and z3 = pou. Given a pullback square (2.12) the map p; is called
a pullback of g along f (/32], 7.2.10).

Notation 2.1.24. The pullback of diagram (2.12) is denoted by A X¢ B.

Definition 2.1.25. In a category C with maps [ and g as follows A J oo B,
the pushout ([12], 2.5.1) of f and g consists of arrows A Ly P <2 B such that
forany z1 : A — Z and z9 : B — Z with z1 f = 229, then there is a unique map

u: P — Z making the following diagram commute.

C J B (2.13)

That is zy = wiy and zy = uiz. Given a pushout square (2.13) the map iy is called

a pushout of f along g ([32], 7.2.10).
Notation 2.1.26. The pushout of diagram (2.13) is denoted by A]], B.

The following theorem further explains how products, equalizers and pullbacks are

interrelated.

Theorem 2.1.27. A category has finite products and equalizers if and only if it
has pullbacks and a terminal object ([6], 5.16).

Theorem 2.1.28. A category has all limits of some cardinality iff it has all equal-
izers and products of that cardinality, where C has limits (resp. products) of car-
dinality x if and only if C has a limit for every diagram D : J; — C where

card(Jy) < k (resp. C has all products of k many objects) ([6], 5.24).

12



2.1.6 Canonical construction of pullbacks

In any category with all pullbacks, equalizers and products, there is a canonical way
to construct pullbacks using products and equalizers. In this section we explain
how this is done following ([1], Theorem 11.11). Let (Pb, o, 3) be the pullback of
the diagram (2.14)

AL cB (2.14)
First we construct the product (A x B,pra,prg) of A and B and then by the
universal property of the product there exists a unique map k : Pb — A X B

such that (2.15) is commutative.

Pb (2.15)

o B
I
P'I‘B
A I

" AxB——B

Next, we construct the equalizer of the diagram (2.16)

fPra

Ax B (2.16)

gPrp
Suppose (E,e) is the equalizer of the diagram (2.16), then by the universal property

of the equalizer there exists a unique map w; : Pb — FE such that (2.17) is

commutative
e fPra
FE Ax B C (2.17)
A gPrp
Uy V !
Pb

Since E —— A x B is a map into a product A x B, we have the commutative

square (2.18)

g B (2.18)
Prae g
A———C

13



but (Pb, a, B) is the pullback of the diagram (2.14), so there exists a unique map
us : E — Pb. The maps uy : E — Pb (unique map into the pullback) and
uy : Pb — E (unique map into the equalizer) are both universal maps such that

(2.19) is commutative.

E Lrpe (2.19)
u2
Pb 5 B
Prae
o g9
A C

Therefore the equalizer of the diagram (2.16) is also the pullback of (2.14). It
should also be noted that since the pullback is given as an equalizer of the diagram

(2.16), pullback is a subobject of the product A x B ([6], pg 105).

2.2 Simplicial and cosimplicial objects

Simplicial objects are generalizations of the geometric simplicial complexes used
in algebraic topology. First, we define the category of ordinal numbers and then

give a definition of simplicial objects.
Definition 2.2.1. The category of ordinal numbers denoted by A has

1. objects, the ordered sets [n| = {0,1,...,n},n > 0.

2. morphisms, the order preserving maps f : [n] — [m] (that is those maps f

such that whenever x <y then f(z) < f(y)).

Theorem 2.2.2. Fvery map f, in the category A can be uniquely decomposed
([54], 8.1.2) as compositions of

14



1. injective order preserving maps 6' : [n — 1] — [n], 0 <i<n

given by j s j for j <i and j > j+1 forj>i

{0,1,...i—1,d,i+1,....n—1}—={0,1,...,i—1,i+1,i+2,...,n}

2. surjective order preserving maps o' : [n+1] — [n], 0 < j <n

given by j+— 7 for j <iand j— j—1 forj>1i

{0,1,...i—1i+1,i+2....n+1 —{0,1,...i—1,dii+1,...,n}

Definition 2.2.3. A simplicial object ([5/], 8.1.3) S, in a category C, is defined

as a covariant functor S : A? — C. Equivalently, a simplicial object in C, is a

sequence of objects A,, n > 0 in C, with face maps d} : A, — Ap—1, 0 < i< n

and degeneracies s7 : A, — Ayp1, 0 < j < n, satisfying the simplicial identities

([54], 8.1.3):

did; = djd; if 1<y
dis; = sjdi if 1 <]
djs; = djq155 =1d

dis; = s;diq if t>754+1
sisj = Sjp1s if 1<)

We can think of a simplicial object as a diagram

<—dg—

d} 53
Ao so—> i A i ~—d—— Ay

4 si o
2

(2.20)

(2.21)

Definition 2.2.4. An augmented simplicial object ([54], 8.4.6) is a simplicial

object A, together with a map € : Ay — A_q, to an object A_; € C such that

edy = edy. The map € : Ag — A_1 is referred to as the augmentation.

15



Definition 2.2.5. A cosimplicial object ([54], 8.1.4) ¢S, in a category C, is
defined as a covariant functor ¢S : A — C or equivalently, as a sequence of objects
A" n >0 in C, with coface maps d, : A" — A", 0 < i < n and degeneracies

sl AL — A0 < j < n, satisfying the cosimplicial identities ([54], 8.1.4):

dd = dd ifi<jy

Sd = d'st dif i<

s = sdt =id (2.22)
Sdt = d7's ifi>j+1

st = STl if i<y

Similar to a simplicial object we can represent a cosimplicial object as a diagram

- A
I [0 2 1
AY G 9 Al d} DI A% (2.23)
1 = 53 <~
_dQé

Notation 2.2.6. The category of simplicial objects over C is denoted sC and sim-

plicial sets as sSET . The category of cosimplicial objects over C is denoted ¢C.

Notation 2.2.7. We will use A™ to denote the standard n-simplex and A® to de-
note the cosimplicial space with A™ in each cosimplicial dimension and the obvious

coface and codegeneracy maps.

Definition 2.2.8. A map of simplicial objects S — S’ is a natural transformation
of functors of the form A’ — C (and dually maps of cosimplicial objects are
natural transformations). Alternatively a simplicial map ([52], 2.1) f : K — L
between two simplicial objects K and L, in a category C is a family of morphisms

{fn}n>0 where f, : K,, — L, satisfying
L difn = fn-1d;
2. Sifn = fn—l—lSi 0<:<n.

16



2.2.1 Homotopy between two simplicial objects in a gen-

eral category

We will use the following definition of a simplicial homotopy ([54], 8.3.11 or [45])
in the proof of Lemma 5.2.9 to show a simplicial homotopy between two maps of

simplicial abelian groups.

Definition 2.2.9. Let X, and Y, be simplicial objects in a category C, and f, g :
Xo — Ys. A simplicial homotopy between f and g is a sequence of maps h}' :
X, — Yo, for0<i<n andn > 0;

such that

(A) dg*thg = gn

(B) dpiihy = fa

(C) dih; = h;_1d; (i < j)
(D) djsihjrr = djiah;

(E) dih; = h;diy (i >j+1)
(F) sihj = hj1s; (i < §)

(G) Sihj = hjsifl (Z > j)

2.2.2 Monads and comonads

Definition 2.2.10. A comonad ([41], VI.1) in a category C consists of a functor

1 :C — C and natural transformations,

€: L — I(the counit) and v : L — 12 (the comultiplication)

17



such that the following diagrams commute.

1— Y .2 (2.24)
v lv
2 3
1 T 1
1 (2.25)

v

/

v

There is a dual construction to comonads called monads.

12 P 1r

Definition 2.2.11. A monad ([/1], VI.1) in a category C consists of a functor

T : C — C and natural transformations,
n: I — T(the unit) and : T* — T (the multiplication)

such that the following diagrams commute.

T3 T2 (2.26)
i H
2
T m T

I (2.27)

Theorem 2.2.12. (/26], §2.1)
FEvery adjoint pair F 41U with U : D — C, F': C — D, with unit of adjunction
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n: le — UF and counit of adjunction € : FU — Ip gives rise to a comonad

(L,e,v) on D, where

l = FU:D—7D
e : 1 —1T

v = FnU: 1L — 12

Dually an adjoint pair also gives rise to a monad ([26], § 2.1), but we will not use

this result and so we leave the details to the reader.

2.2.3 Construction of simplicial objects from a comonad

In [35], Huber shows that given a comonad (L,¢,v) on C and A an object in the

category C we can define, for all n > 0,

A, : =1"1A
d? . L"MA— 1"A where, d := Llel™" (2.28)

s oo 1"A — 1" A where, s = 1'v1""

to get a simplicial object in C. The augmentation is given by dj =¢: LA — A
(c.f. Definition 2.2.4).

Lemma 2.2.13 shows that for a comonad (L, ¢, ) on C, € determines the augmen-

tation.
Lemma 2.2.13. The natural transformation € of a comonad (L, €,v) on C satisfies
e(el) =¢(Le) (2.29)
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Proof. Let L=1, R=1, M =1, N=1, ¢ =¢, 1 = ¢ in equation (2.6),
then we get diagram (2.30). The identity (2.29) holds in C is equivalent to diagram

(2.30) being commutative

1l —= 7 (2.30)
el el
IL————1I
O

Dually, given a monad (T,n, ) on a category C with an object A, we can define
A" = T A, The coface map d’, : A"' — A" is given by d’, = T'nT"* and

the codegeneracy map s', : A" — A" is given by s¢ = TiuT" "

Remark 2.2.14. A dual result to identity (2.29) holds for a monad (T,n, 1) in
any category, which would imply (nT)n = (Tn)n, thus giving a coaugmentation.

2.2.4 Homotopy groups of a simplicial (abelian) group

Definition 2.2.15. A chain complex (C,0)of groups is a sequence of groups

and group homomorphisms

61 871—1 8n

On+1 On+2
Cn Cn—l—l

Co

Cn—l

(2.31)
such that Im(0p41) C ker(0,), that is the composite 0,110, = 0 for all n.

We can define the homotopy groups of a simplicial abelian group via the Moore

chain complex. Let Gy — G_; be an augmented simplicial abelian group

< f%
Gy (2.32)
. :lg

G <—¢ 0 4d—
—1 0 °0 1

1
d} s

ORRRH
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Definition 2.2.16. For the augmented simplicial abelian group (2.32) the associ-
ated Moore chain complex ([54], 8.4.6) is defined as

N,G: = G forp>0

N,G: = G-y forp=-1

N,G: = 0 forp<—1 (2.33)
Op: = Zp: (=1)'d? where p > 1
Oy: = 220

The corresponding Moore chain complex for the diagram (2.52) is

do—d1 dO_d1+d2

0 G_1<—G)y

el Go--

The addition of maps dg(),--- ,db(z) at a point x € G, for the Moore chain

complex (2.33) is defined as pointwise addition within the abelian group G,.

Using Dold-Kan ([54], 8.4.1) correspondence we have the isomorphisms

Wn(G0> = Hn(NpG)

Definition 2.2.17. An augmented simplicial abelian group (2.32) is a simplicial
resolution ([54], 8.4.6) of G_1 if

(i) 7 (Ge) =0 forn >0 (acyclic)
(i1) mo(Ge) = Gy for n =0 (augmentation gives an isomorphism)

Fact 2.2.18. ([54], 8.4.6) In an abelian category the two conditions given in Def-

inition 2.2.17 is equivalent to the augmented Moore chain complex being exact.
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Let G, be a simplicial group given by the diagram (2.34)

Jl 1 <—d§—
se—>__ 4 G} ~—di—— Gy (2.34)
0 20 N P
0

Go

Definition 2.2.19. Moore chain complex (N,G,0),>0 of the simplicial group G
is defined as ([42], 17.3)

N,G: = Gy forp=0
N,G: = Gpnkerd}---N kerdy forp >0
d,: = dij wherep>0

Using the Moore chain complex of the simplicial group G,, we can define the

homotopy groups of the simplicial group G, as ([42], 17.3, 17.4)

m(Ge) = H,(N,G) = ker 0,/Im Op41

Fact 2.2.20. The homotopy groups of Definition 2.2.19 are isomorphic to those
of Definition 2.2.16 if G, is a simplicial abelian group.
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Chapter 3
H(R)-algebras

We will use spaces to mean pointed connected CW-complexes and denote it by
CW, . In this chapter we introduce objects that model the primary cohomology
structure of a space with coefficients in a ring R. We call these objects H(R)-
algebras and they are Eckmann-Hilton dual to the I1I-algebras of homotopy theory.

First we introduce an Hy(R)-algebra in Section 3.1, which is the algebraic struc-
ture of graded cohomology groups with all n-ary cohomology operations acting on
them. In Section 3.2, we explain the free functor from the category of pointed sets
to the category of Hy(R)-algebras and also the unit and counit of adjunction.
The functor description of H(R)-algebras forms a model of a sketch in the sense

of Ehresmann (25, 24] and this will be shown in Section 3.4.

In this thesis we will be interested in the cases when R = Z or when R = [,

where T, is the finite field with p elements and p is a prime number.

Definition 3.0.21. An Eilenberg-Mac Lane space ([5], 2.5) over a ring R is a
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space denoted by K(R,n) with the property

R ifi=n
mi(K(R,n)) =
0 otherwise
Notation 3.0.22. We will use [A, B] to denote homotopy classes of pointed maps
from A to B and as we will be working over any fized ring R, K" will be used
to mean K(R,n). The reduced cohomology groups of a space X are given by
H"(X;R) = [X,K"] and we will use H"(X) to denote H"(X;R) because we will

be working over any fixed ring R.

Definition 3.0.23. X € C is a group object ([31], § 1) if and only if [A, X]
has a natural group structure for all A € C. Then A — [A, X] gives a functor
CW — &rp.

Fact 3.0.24. QK (R, n) = K(R,n—1) ([5], 2.5)

3.1 Hy(R)-algebras

Definition 3.1.1. Let Hy(R) be the category with objects, the finite products of
FEilenberg-Mac Lane spaces over R, including the point and morphisms the homo-

topy classes of maps between them.

3.1.1 Hy(R)-algebras as graded groups with operations

For any spaces X and Y and any map f : X — Y, for any homotopy class of
maps y € H"(Y) there is an induced abelian group homomorphism of cohomology
[ HY(Y) — H™(X) given by f*(y) = yf. Primary operations give additional
algebraic structure to the graded cohomology groups of a space which is natural,
meaning that the morphism induced on cohomology by f : X — Y respects this

additional algebraic structure. This is formalized in the following definition.
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Definition 3.1.2. An n-ary cohomology operation 6 : H™ (X)x---x H™(X) —
HY(X),n € N, is primary if, given any any spaces X and Y and any map f :

X — Y | the following naturality diagram commutes.

H™(X) x - x H™(X)2 H(X)
f*x,._f*T Tf*
H™(Y) x - x H™(Y) 2 HU(Y)

Definition 3.1.3. The cohomology Hy(R)-algebra of a space X can be defined as
the collection of graded abelian groups {H"(X;R)}, ey with all the n-ary primary

cohomology operations acting on these groups. Equivalently as a functor [X, | :

H(R) — SET ..

Remark 3.1.4. In Defintion 3.1.3 the Hy(R)-algebra, satisfies what Blanc and
Stover calls a ‘category of universal graded algebras’ (CUGA) [9]. All CUGA’s

have all limits and colimits [9].

There is another definition of Hy(R)-algebras, which is more general than Defini-
tion 3.1.3. The second definition describes Hy(R)-algebras as a functor and this

definition is valid for abstract Hy(R)-algebras that do not come from a space.

3.1.2 Hy(R)-algebras as a functor

Definition 3.1.5. A Hy(R)-algebra is a functor from Hy(R) to the category

SET . of graded pointed sets, preserving products and sending the point to 0.

In Figure 3.1, we have denoted Z(K") as Z" and Z(*) as 0. All identical copies of
7' are identified in SET ..

The maps of Hy(R) induce primary operations on the graded set Z%, i € [

including the abelian group addition.
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Figure 3.1

Example 3.1.6. For any X € CW,,
(X, |:HN(R) — SET.

is an Hy(R)-algebra with the image the cohomology Hy(R)-algebra given in
Definition 3.1.3

From Definition 3.1.5 we know that a 7y (R)-algebra morphism is a natural trans-

formation.

Definition 3.1.7. A Hy(R)-algebra morphism X : Z — W is a natural trans-
formation. That is, for every C' € Hy(R) there exists Ac : Z(C) — W(C) such
that for any morphism o : C — C" in Hy(R) we have W(a) e = Ao Z ().

Notation 3.1.8. The category of Hyx(R)-algebras and Hy(R)-algebra morphisms
will be denoted by Hn(R) — ALG.

3.2 Free H(R)-algebras

The cohomology Hy(R)-algebra of a product of Eilenberg-Mac Lane spaces is a
free H (R )-algebra. This can be shown theoretically using the Yoneda Lemma as

in [12]. In [46], Percy showed an explicit construction of a free functor which is
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left adjoint to the underlying functor between Hy(R) — ALG and SET .. In this
section we will explain the free functor F, given in [46] followed by the unit and

counit of adjunction.

3.2.1 Free functor F

Let G, and B, be graded pointed sets and f : G, — B, be a graded function,
where we denote f, : G, — B, to be a function on each grade. Let F' be a

functor from the category of graded pointed sets to Hy(R) — ALG. We define

FG, = [H H K}, | where G, =G, \ *

neN gegy
To show how F' acts on the map f, let j € J, index the set of points in G, whose
image under f,, is b € B, . That is, f,(g;) = b, for some b € B, . We identify the
factors idgn : Kj' — K;j and using the universal property of the product we get

the map {idgn}jey, + K — H H K, in diagram (3.1).

neN jeJy
n
Kr (3.1)
idgen pra,
2 MIx <TI0 %
b {’LdKn }je]b 93 9
neN jeJ, neN geGyp

IT II {ix}ien
Define £ [T [T K7 22 [T [ Ky —mt IBIES

neNpe B, nENpeImfy neN geGy,
then we get induced map f*: [H H K, |— [H H Ky, .
neNgeay neNpeB;,

We define Ff = f*: FG, — FB, .
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3.2.2 Unit of adjunction

The unit of adjunction is defined by the natural transformation ng, : G, —

UFG,, where g € G, is taken to pry : H H K; — K and x is taken to

neN geq,
oe ([T TI &

nENgeG;
3.2.3 Counit of adjunction

Denote Z"~ = Z(K™)~ to be the image under the functor Z of K™ in SET.,
without the basepoint. Form the product H H Z,.

neNyezZn—
Select the element (u),ezn— nen that takes the element u from the set Z~ indexed

by u. Then we can identify

II 11 2z = 11 1I z&".

neNyeZn— neNyeZn—

Z (H H K}), since Z preserves products.

neNyezZn—

So we identify (u)yezn— neny With w € Z(H H K.

neNyezZn—
Let o € FUZ be given by a cohomology class of the map « : H H K] — K?
neNyezZn—
for some p € N, then Zo is an operation Z(H H K}) — Z(KP?).

neNyezZn—
For every p € N, we define the counit of adjunction ez : FUZ(K?) — Z(KP?) by

a— Za(w) € ZP.

3.3 H(R)-algebra

In Chapter 6, we give a construction 7'(X) on a space X, which is Eckmann-Hilton
dual to Stover’s construction V(X) from ([53], 2.2). The construction 7'(X) is

homotopy equivalent to an infinite product of Eilenberg-Mac Lane spaces over R.
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For a cohomology H (R)-algebra of a product of Eilenberg-Mac Lane spaces to be
free, the map representing o € FUZ needs to be contained in Hy(R), otherwise
the counit of adjunction is not defined. Thus we need to modify our definition of

Hy(R) to contain universal arrows for infinitary operations.

In the case of R = F,, all maps out of an infinite product of Eilenberg-Mac
Lane spaces over I, factor through a finite subproduct because [, is algebraically
compact ([34], Prop 2.1). So H(IF,) only needs to contain finite products to define
free H(F,)-algebras.

However, for a general ring R and R = Z in particular, the property that maps out
of an infinite product of Eilenberg-Mac Lane spaces do not factor through a finite
subproduct because Z is not algebraically compact. So to define free Hy(Z)-
algebras we need the category Hy(Z) to contain universal arrows for infinitary

operations. Thus we have the definition;

Definition 3.3.1. Let H(R) be the category with objects, arbitrary (possibly in-
finite) products of FEilenberg-Mac Lane spaces over R, including the point and

morphisms the homotopy classes of maps between them.

Definition 3.3.2. An H(R)-algebra is a functor from H(R) to SET ., preserving

products and sending the point to 0.

Definition 3.3.3. The cohomology H(R)-algebra of a space can be defined as the
collection of graded abelian groups { H"(X;R)}, oy with all the primary cohomology

operations acting on these groups.

Notation 3.3.4. The category of H(R)-algebras and H(R)-algebra morphisms
will be denoted by H(R) — ALG.
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3.4 Sketches

Lawvere introduced, in his 1963 doctorial thesis [39], an alternative method of en-
coding algebraic theories without using generators and their relations. Historically
the problem of the structure of cohomology algebras has been studied from the
perspective of a universal graded algebra. These rely on knowing the generators of
the primary operations and their relations. Since the generators and their relations
of H(R)-algebras are not always known for a general ring R, in this thesis we will
apply the technique of Lawvere theories in which the generators and their relations
are encoded in a category and do not need to be known explicitly. The idea behind
Lawvere theory is that morphisms in a Lawvere theory correspond to the opera-
tions of the algebraic theory. The relations satisfied by the generators correspond
to the the fact that certain morphisms are equivalent. We will use a generalization
of Lawvere theory called models of sketches introduced by Ehresmann in [25, 24].
The functor definition of H(R)-algebras allows us to define the H(R)-algebras in

the context of Ehresmann’s models of sketches.

Definition 3.4.1. A sketch S = {T,P,Z} ([13], 5.6.1) is a triple with a small
pointed category T with

(i) a set P of cones on functors R : D — T, defined on small categories D;

(ii) a set T of cocones on functors R : D — T, defined on small categories D.

Definition 3.4.2. Let S be a sketch. A model ([13], 5.6.2) of a sketch S in a
category W is a covariant functor S-model VW : T — W which preserves limits

and colimits of the category T .

Remark 3.4.3. Definitions 3.4.1 and 3.4.2 are too general for our purposes and

we will restrict the set P in Definition 3.4.1 to contain only small products, since
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we are not interested in other limits and the set I to be empty. Therefore, by a

model of a sketch in Definition 3.4.2 we mean only product preserving functors.

Definition 3.4.4. If P in Definition 3.4.1 contains only finite products then the

sketch is referred to as a finite product sketch.

Remark 3.4.5. For our purposes we take T-models in SET .. That is functors
of the following form W : T — SET., and homomorphisms of T-models are

natural transformations between such functors.

Definition 3.4.6. A sketch T is multisorted with objects from a set of sorts S,

if every object in T is a product of elements from S.

Example 3.4.7. Let A be the category of finite ordinals and order preserving
maps. Setting 7 = A, the 7T-models in a category C are the simplicial objects
in C. Similarly the A-models in a category C form the cosimplicial objects of C.
Both of these theories 7 = A% and 7 = A are single sorted, with the set of all
the objects of A thought of as the sort.

Example 3.4.8. The category of Hy(R)-algebras and H (R )-algebra morphisms
given in Definition 3.1.5 and 3.1.7 is corepresentable by 7 = Hy(R). Hn(R) is
sorted by the spaces K(R,n), n > 1. Then Hx(R)-algebras are the Hy(R)-
models in SET,. This agrees with the Definition 3.1.5 of Hx(R)-algebras being
the product preserving functors from Hy(R) to SET ..

Similarly, if we let 7 = H(R), then the H(R)-models in SET . are H(R)-algebras
given in Definition 3.3.2.

Example 3.4.9. Let H(F,) be the category of Definition 3.3.1 with R = F,. Then
H(F,) is sorted by the spaces K (F,,n) , n > 1 and the models of H(F,) in SET.
are algebras over the mod-p Steenrod algebra ([8], § 1).
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Remark 3.4.10. All the finite product sketches modelled on SET , have all limits
and colimits [2]. In [40], Linton gives a general proof for the existence of a canon-
ical free functor F from SET to the models of a finite product sketch T -model,

that is left adjoint to the underlying functor U.

Remark 3.4.11. In ([13] 5.6.8) it is shown for a sketch S = {T,P,Z} if either
P or L is empty then the models of S are locally presentable. Addmek and Rosicky
([2] or [13] 5.5.8), show that all locally presentable categories have all limits and
colimits. Therefore, even in the general case with infinite product of Eilenberg-Mac
Lane spaces, for the category of H(R)-models in SET . all limits and colimits exist
because I is empty (c.f. Remark 3.4.3).

3.5 Simplicial H(R)-algebras

The free and underlying adjunction between H(R) — ALG and SET , gives rise to
comonad on H(R)—.ALG by Theorem 2.2.12. Using this comonad we can form an
augmented simplicial H(R)-algebra for an H(R)-algebra Z as explained in Section
2.2.3.

<—d§—
7~ FU(Z) —s= Z5_ FUX(Z) 0 = FU%(Z) - (3.2)
~<di—

Each FU™(Z), for n > 0 in (3.2) is a free H(R)-algebra when considered individ-

ually.

In Figure 3.2, we have denoted FU"(Z)(K") as FU™"(Z') and Z(K") as (Z%).
Each row in Figure 3.2 is an H(R)-algebra (c.f. Figure 3.1). All identical copies
of FU"(Z") in SET, are identified. As illustrated in Figure 3.2, cohomology
operations on FU"(Z), for n > 0 is induced by the cohomology operations in Z,

because F'U™ is a functor.
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SET

FU?(ZY) FU?(Z%)e s » FU2(Z') FU%(Z?) FU*(Z™)

FU(Z™)

Z m

Figure 3.2

A simplicial H(R)-algebra can be explained using Figure 3.3, where a horizontal
strip shows a graded abelian group with primary cohomology operations acting
on them (each row is an H(R)-algebra). In Figure 3.3 any vertical strip gives a
simplicial abelian group because the natural transformations d}* and s} in (3.2) act
on the j column to give natural transformations d? ,; and s?,; and these natural

transformations satisfy the simplicial identities.

SET .
FU%(Z)
S A ) )
) ] o L FUZY) FUNZY)  FUNZ)

FU(Z)

N g

(Z2) ««« FU(ZY) FU(Z9) FU(Z™)

v | |
Zl\_/( 72 e Zi\/ VAl zm
<A

Figure 3.3

Notation 3.5.1. We will use (FU)4(Z) to denote the simplicial H(R)-algebra on

Z constructed using the free functor F' and underlying functor U.
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Lemma 3.5.2. Let (FU)J(Z) be a simplicial H(R)-algebra augmented by the
H(R)-algebra Z_. The simplicial maps d} and s induce a morphism of H(R)-

algebras.

Proof. The face and degeneracy maps in a simplicial #(R)-algebra are the nat-
ural transformations d and s given in equation (2.28), therefore these natural
transformations commute with all the primary cohomology operations. Hence

morphisms of H(R)-algebras. O
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Chapter 4

Model categories

To construct resolutions in Chapter 4 and Chapter 5, we need a proper framework
to define resolutions and model category theory allows us to do this. The purpose
of this chapter is to define all the model category structures that will be used in

this thesis.

In the first section we give the model category axioms and in Section 4.1.1 we give
a model category structure for a simplicial model of a finite product sketch. Then
we describe Bousfield’s resolution model category structure [15] on the category
cC of cosimplicial objects over a model categroy C. Bousfield’s resolution model
category of cosimplicial spaces is a generalization of the Dwyer-Kan-Stover [22]

theory of resolution model category on simplicial spaces.

4.1 Model category structure

Model categories, developed by Quillen in [47] give the most general context in
which the tools of homotopy theory can be used. Homotopy theory allows prob-

lems in a general category to be reformulated in a more tractable algebraic setting.
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A model category is a category with three distinct classes of morphisms satisfying
axioms making localization functorial with an image in &rp. Categories which
satisfy the model category axioms include the category of chain complexes over
a commutative ring, the category of topological spaces and a category of simpli-
cial sets. The homotopy theory of the category of chain complexes forms what
we know as homological algebra (abelian case), but, the main purpose of model
category theory is to study homotopy theory in non-abelian categories of which
topological spaces are a motivating example. The category of Il-algebras and also
the category of H(R)-algebras are non-abelian categories, so we need the notion
of model category to do homotopy on these categories.

Before we define a model category we give the following definition [23]

Definition 4.1.1. A map g : A — B is a retract of a map f: X — Y in a

category, if there is a commutative diagram

with ri =14 and sj = 1p.

The reason why we defined retracts is because isomorphisms are closed under
retracts (that is, the retract of an isomorphism is an isomorphism) in any category.
In order to localize over weak equivalences so they become isomorphisms in the
quotient category we will require the distinguished classes of maps of a model

category to be closed under retracts.

Definition 4.1.2. Let C be a category. A model category structure ([25], $3) on
C is given by 3 classes of maps : weak equivalences, fibrations and cofibrations,

satisfying the axioms.
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(MC1) Finite limits and colimits exist in C

(MC2) If f and g are maps in C such that gf is defined and if any two of f,g,gf

1s a weak equivalence then so is the third.
(MC3) Fibrations, cofibrations and weak equivalences are closed under retracts.

(MC4) Given a commutative diagram

A——s X A——s X
L \p \Z Jp
B— Y B— Y

where i : A — B is a cofibration and p : X — Y is a fibration, then a
lift shown in the diagram on the right by the dotted arrow exists, if i or p

1s also a weak equivalence.
(MC5) Every map f in C can be factored as f = pi in two ways, where

1 1s a cofibration and p is a fibration and a weak equivalence.

p is a fibration and i is a cofibration and a weak equivalence.

A map that is a fibration and a weak equivalence is called an acyclic fibration and
a map that is a cofibration and a weak equivalence is called a acyclic cofibration.
(MC1) implies that there is an initial object ¢ and a terminal object e in any model
category. In a model category, A is a cofibrant object if there is a cofibration

¢ — A, and B is a fibrant object if there is a fibration B — e.

Definition 4.1.3. The homotopy category Ho(C) of a model category C is the
category with the same objects as C and morphisms between X and Y as [X, }A/]

where X and Y denotes a cofibrant fibrant replacement for X and 'Y respectively.

Remark 4.1.4. The cofibrations in a model category are the maps that satisfy the
Left Lifting Property (LLP) with repsect to the acyclic fibrations and the acyclic
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cofibrations are maps that satisfy the LLP with respect to the fibrations. The dual
statements also hold. Using this criteria once a fibration (or a cofibration) is fixed

then cofibrations (or a fibration) are already determined [25].

4.1.1 Model category structure on simplicial models of a

finite product sketch

One of the fundamental observations in Quillen’s work on homotopical algebra [47],
is that, in an non-abelian category, resolutions of an object by a chain complex

has to be replaced by a simplicial resolution.

The following Theorem shows there is a canonical model category structure given
on any simplicial model of a finite product sketch (c.f. remark 3.4.10). If T
is a finite product sketch the category of simplicial 7-models will be denoted
by s7T-model. This method was initially used by Quillen ([47], I1.4) to show a
model structure on varieties of algebras and later generalised by other authors
[33, 32]. The idea behind it is to transport the model structure on sSET. to
one on s7-model using the adjunction 7T-model % SET ., where U and F are

underlying and free functors respectively.

Fact 4.1.5. ([8], prop 4.1) Let T be a finite product sketch, then there is a model
category structure on s7-models. Let X,, Y, € sT-models. In this model structure

amap f: X, — Y, of sT-model is
1. a weak-equivalence if U(T)f : U(X.) — U(Y,) is weak-equivalence of sSET,.
2. a fibration if U(T)f : U(X.) — U(Ys) is a Kan fibration.

The cofibrations are the maps that satisfy the left lifting property with repect to
the fibrations.
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Example 4.1.6. In Example 3.4.8, we showed Hy(R)-algebras are an Hy(R)-
model in SET,. Then we can apply Theorem 4.1.5 to get a model category struc-

ture on simplicial Hy(R)-algebras.

4.1.2 Resolution model structure on s7-model

In this section we explain the model category stucture from [8], which can be
applied to simplicial H(R)-algebras from Section 3.5, for R = Z. This is very im-
portant because it is hard to define model category structures on simplicial models
of infinite product sketches but if the models of a sketch are locally presentable

then using Fact 4.1.8 we can give a resolution model category structure.

Definition 4.1.7. (/8], § 4) Let A, be a simplicial T-model of a sketch in SET .

By m,A. we mean the composition
mpAe : T 20s $SET, 2~ SET.
where m, is the p™" homotopy group functor on simplicial sets.

Fact 4.1.8. ([8], § 4) If a locally presentable model of a sketch 7-model (c.f.
Remark 3.4.11) has an underlying graded group structure then a map of simplicial

T-models f: W, — Z, is a

i. weak equivalence if and only if 7, f : m, W, — 7,7, is an isomorphism for all

n > 0.

ii. fibration if and only if the underlying map as graded groups is a surjection

onto the base point component.

Cofibrations are the maps that satisfy the left lifting property with respect to the

fibrations.
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4.2 Model category on Cosimplicial objects

4.2.1 Latching and Matching objects for cosimplicial ob-

jects in a category

Definition 4.2.1. Let X* be a cosimplicial object. The latching objects L™ X® in
C forn >0 ([15], 2.2), are defined as

L"X® = COlimgz[k]ﬁ[n]Xk

with 6 ranging over the injections [k] — [n] in A for k <n. The maps L"X* —
X" in C are the latching maps. Similarly we define the matching objects ([15],
2.2) M"X*® in C forn >0 as

M"'X*® = 1im9:[n}_>[k]Xk
with 0 ranging over surjections [n| — [k] in A for k < n. The maps X™ — M"X*
are the matching maps.

4.2.2 Reedy model structure

Definition 4.2.2. Let C be a model category. A map f: X* — Y* in cC is called

([48] or [15], 2.2):

1. a Reedy weak equivalence if each f : X" — Y™ 1s a weak homotopy equiva-

lence in C for each n > 0;

ii. a Reedy fibration if the map X™ — Y™ Xpymye M"X*® (c.f. Notation 2.1.24)

s a fibration in C for all n > 0;

iii. a Reedy cofibration if the map X" [[;nye L"Y* — Y™ (c.f. Notation 2.1.26)

1s a cofibration in C for alln > 0.
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Fact 4.2.3. ([48] or [15], 2.2) If C is a model category then ¢C has a model
category structure called a Reedy model category, with Reedy weak equivalences,

Reedy fibrations and Reedy cofibrations.

4.3 Resolution model category on spaces

4.3.1 §G-injectives

Definition 4.3.1. A model category is called a left proper pointed model category
([15], 3.1), if each pushout of a weak equivalence along a cofibration is a weak

equivalence.

Definition 4.3.2. (/15], 3.1) Let C be a left proper pointed model category and G
be a class of group objects in the homotopy category Ho(C). A mapi: A — B in
Ho(C) is called G-monic when i* : [B,Q"G] — [A,Q"G] is onto for each G € G
and n > 0. A map in C is called G-monic when the induced map is G-monic in

Ho(C).

Definition 4.3.3. ([15], 3.1) An object C € Ho(C) is called G-injective when
i* 1 [B,Q"C] — [A,Q"C] is onto for each G-monic map i : A — B in Ho(C)

andn > 0. An object C in C is called G-injective when it is G-injective in Ho(C).

Definition 4.3.4. ([15], 3.1) Ho(C) has enough G-injectives when each object of
Ho(C) is the source of a G-monic map to a G-injective target. A class of group
objects G in Ho(C) is called a class of injective models if Ho(C) has enough G-

mjectives.

4.3.2 G-resolution model structure on cC

The model category on simplicial groups is defined as follows.

41



Definition 4.3.5. A homomorphism in the category sGrp is a weak equivalence or
a fibration when its underlying map in sSET is a weak equivalence or a fibration.
The cofibrations of sGrp are the maps that satisfy the left lifting property with
respect to all the acyclic cofibrations. ([47], 11.3).

Definition 4.3.6. A map f: X* — Y* in cC is called
1. a G-equivalence when f* : [Y*,Q"G] — [X°*,Q"G] is a weak equivalence in

sGrp for each G € G and n > 0.

2. a G-cofibration when f is a Reedy cofibration and f*: [Y* Q"G] — [X*, Q"G]
is a cofibration in sGrp for each G € G and n > 0.

3. a G-fibration when f: X" — Y™ Xpymye M"X*® is a G-injective fibration in C
forn > 0.

Definition 4.3.7. Let cCY denote the category cC with weak equivalences defined

as G-equivalences, with cofibrations as G-cofibrations and fibrations as G-fibrations.

Fact 4.3.8. ([15], 3.3) If C is a left proper pointed model category with a class
G of injective models in Ho(C) then ¢CY is a left proper pointed simplicial model

category.

Definition 4.3.9. A weak G-resolution ([15], 6.1) of A € C is a G-equivalence
A — X* in cC where A is a constant cosimplicial object, such that X™ € G for

n > 0.

If C is a left proper pointed model category with a class G of injective models in
Ho(C), then Fact 4.3.8 gives the G-resolution model category cCY.

4.3.2.1 Bousfield-Kan resolution and R-completion

In this section we will describe a construction from ([16], 1.2 and [15], 7.2) called

the Bousfield-Kan resolution of a space X.
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Definition 4.3.10. Let X be a pointed simplicial set and R a commutative ring.
Let R : SET . — SET., defined by (RX)™ is the free R-module on X,, modulo
the relation [x] = 0 (all degenerate simplices are the base point). There are also

natural maps

1. ¢ : X — RX, given by x — 1.z, where ¢ s the inclusion of basis into the

simplicial R-module and

2.y 1 R2X — RX, given by ry - rox = 11792, where 1y is the multiplication

inside the the simplicial R-module.

Then (R, ¢,v) is called the Bousfield-Kan triple (monad) ([16], 1.2 or [15]) on
the category sSET ..

Note: RX does not inherit an R-module structure if X is not pointed ([16], I 2.2,
2.4).

Using the monad (R, ¢, 1) Bousfield forms a cosimplicial space R*X and in ([16],
I 4.1) it is shown that X — R*X is a cosimplicial resolution of X in the sense of
Huber [35]. The cosimplicial resolution of X is referred to as the Bousfield-Kan

resolution of X.

4.3.2.2 Total objects

Definition 4.3.11. Let X € sC, then the n'" skeleton ([16], VIII 2.13) of X is
a sub-object of X generated by all the simplices of X of dimension < n. We will
denote the n'" skeleton of X as sk, X.

Definition 4.3.12. For a cosimplicial space X*®, we define the space Tot(X*®) ([50],
page 149) as the space of cosimplicial maps from A® x Alq] to X* (c.f. Notation
2.2.7). That is

Tot(X*®), = Homeew, (A® x A? X*) (4.1)
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For s > 0, we define
Tots(X*), = Homeew, (sksA® x A7 X*). (4.2)

Fact 4.3.13. [37] For a cofibration A* — Y* and a fibrant X* the map Hom(Y*, X*) —
Hom(A*, X*) is a fibration.

The inclusion is : skys_1A®* — skyA® induces a map if : Hom(sksA®, X*) —
Hom(sks 1A%, X*)
By (4.2), we have

it Tots(X*®) — Tots_1(X*) (4.3)
From ([29], VII (4.16)) the inclusion map i, is a cofibration, then by Fact 4.3.13,
it is clear that (4.3) is a fibration. Thus for a cosimplicial space X*®, we obtain a

tower of fibrations
Tot(X®) — -+ — Tot(X*®) — Toty_1(X*) — --- —> Toto(X*®)  (4.4)
Tot(X*) is the limit of the sequence (4.4),
Tot X*® = lim Tot, X*
—

Definition 4.3.14. The total space Tot(R*X), of the Bousfield-Kan resolution
of X, is called the R-completion ([16], 1 4.2) of the space X, denoted by R..X.
Equivalently, R X is the limit of a tower of fibrations { RsX }s>_1, where R X =
Tot s R*X .

Fact 4.3.15. A map f: X — Y induces an isomorphism H,(X;R) = H.(Y;R)
if and only if f induces a homotopy equivalence R, X = R, Y ([16], I 5.5).

Definition 4.3.16. A space is called R-good ([16], I 5.1) if the map from the space
X to its R-completion is a homology isomorphism,

That is H.(X: R) — H,(RxwX; R).
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Example 4.3.17. Let G contain all the simplicial R-modules. Then the Bousfield-
Kan resolution X — R*X in cosimplicial sSET, is a weak G-resolution of X in

the model category sSETY.
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Chapter 5

Free simplicial resolution of

H(R)-algebras

In this chapter we will give the definition of a free simplicial resolution of H(R)-
algebra in Definition 5.2.1. A free simplicial resolution of a H(R)-algebra Z is a
cofibrant simplicial replacement for Z in the model category described in Section
4.1.2. The main result of this chapter is Theorem 5.2.11, and in this theorem we
show a simplicial H(R)-algebra Z, augmented by Z constructed in Section 3.5 is

a free simplicial resolution for Z.

Definition 5.0.18. Leti: A —— X be an inclusion. A is a retract ([5], 1.4.1)
of X if there is a map r : X — A such that ri = id 4.

Fact 5.0.19. ([35], §3) Let i : A —— X be an inclusion and r : X — A be a

retract. If ir =2 idx then A = X are homotopy equivalent.

5.1 The natural transformation h

We will prove what Huber refers to as standard method originally devised by

Godement [28]. The standard method applies to any category C if it satisfies the
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following conditions;
(i) an underlying functor U : C — D exists
(ii) a free functor F': D — C exists and F is left adjoint to U

(iii) a natural transformation h : I — FU exists such that eh = 1, where € is

the counit of adunction.

In Subsection 5.1.1 we will use the free and underlying functors from Section 3.2.1
on H(R) — ALG to show a natural transformation h exists satisfying condition

(iii) given above.

5.1.1 h acting on H(R)-algebras

Let Z be an H(R)-algebra, that is a set of graded abelian groups {Z"|n € N} with
all the primary cohomology operations acting on them. UZ is a graded set since

Z"=Z(K"™) € SET ., for each n € N, so for each t € Z",

FuzZ=]I] [I K" 1:H(R)— SET..

neNtezZn—

Definition 5.1.1. We define a natural transformation h : I — FU on Z by
hz(t) = pry, fort € Z™ and pry : H H K} — K.

neNtezZn—

In the next lemma we will show that A is a natural transformation.
Lemma 5.1.2. h: [ — FU is a natural transformation on Z € H(R) — ALG.

Proof.

Let t € X and w: X — Z. So we need to show the square 5.1 is commutative.

hx

X FU(X) (5.1)
w LFU(”LU)
Z "2 FU(Z)
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By definition we have hx(t) = pry and hz(w(t)) = pryw which are cohomology
classes. From Section 3.2.1 we know F'U(w) is induced by a product map sending

Kﬁ)(t) to H K which in particular maps KZ(t) isomorphically to K;'. Hence

w(t;)=w(t)
FU (w) takes pry to pry).

Therefore, the square commutes. 0

Lemma 5.1.3. Let e : FU — [ be the counit of adjunction for any Z € H(R) —
ALG, given in Section 3.2.3, then ezhy = 1.

Proof. To show ezhy; = 1z, by definition of hy and ez we have for any Z €

H(R) — ALG

ez(hz(t)) = ez(pre)
=t

SO eZhZ = 12.

5.1.2 Induced maps

From Section 3.5 we know the face and degeneracy maps of a simplicial H(R)-
algebra induces a face and degeneracy maps of simplicial abelian groups (c.f. Fig-
ure 3.3). We will denote the face and degeneracy maps of vertical strip (5 sim-

plicial abelian group) in Figure 3.3 by
(i) €z : FU(Z7) — Z7 is the augmentation.

(i) d

4 2 FU(Z9) — FU™(Z7) is the i'" face map

(iii) s"

g 2 FUY(Z9) — FU"2(Z7) is the i degeneracy map.
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As h in Definition 5.1.1 is a natural transformation we have an induced map on
the j' simplicial abelian group which will be denoted by hy; : Z7 — FU(Z7).
Lemma 5.1.2 and Lemma 5.1.3 implies hy; satisfies the condition (iii). That is

€zihzi = 1. Diagram (5.2) shows the j** simplicial abelian group of Figure 3.3.

d2 .
€ . 0. dizj ) S}ZJ' 2z ]
7i Z3 FU(Z]) 023 FUZ(Z]) S FU3(Z]) ..
d(lJZj s(.lJZj d(Q)Zj
(5.2)

5.2 Construction of a free-underlying resolution

Dual to Stover ([53], 5.4), we will define a free simplicial resolution of a H(R)-
algebra.

Definition 5.2.1. A free simplicial resolution of a H(R)-algebra Z is a simplicial
H(R)-algebra Fy augmented by Z with the following properties:

(i) mpFe =0 forp>0
(ii) mpFe =Z forp=20

(iii) F, is a free H(R)-algebra for each n > 0.

Our Theorem 5.2.11 is an analogous result to Huber’s ([35], Theorem 3.2) or
Weibel’s ([54], Proposition 8.6.10). In Huber’s proof to show the simplicial object
(FU)s(Z) € C is a free resolution he uses a functor T' : C — SET ., which
satisfies a condition he calls T-triviality ([35], Definition 3.1) and then he shows
the simplicial set T'((FU)l(Z)) is weakly homotopy equivalent to the constant
simplicial set of Z. Huber defines a map f to be a weak equivalence when the

underlying map in pointed simplicial sets is weakly homotopy equivalent as a Kan
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complex. Finally he explains how to put a group structure on these underlying

simplicial sets.

At the time Huber wrote his paper [35], model category theory [47] and Lawvere’s
theory of algebraic structures [39] were not known. Huber’s result from the point
of view of model category theory, can be applied to construct resolutions in the
model category structure described in Fact 4.1.5 (which is a generalization of the
model category given by Quillen in ([47] II.4 Theorem 4)). Resolutions constructed
using our Theorem 5.2.11 can be applied if we are working in the model category
structure described in Section 4.1.2. This is the main difference between our
Theorem 5.2.11 and Huber’s result, because the notion of a weak equivalence is

different for the two model categories.

Weibel’s Proposition 8.6.10, says that, given a pair of adjoint functors with F
left adjoint to U and U : C — Ab, then for every Z € C, the underlying set
U(FU)eZ) — U(Z) is acyclic. Just like Huber’s result this can be applied to
Fact 4.1.5 but not to the results of Section 4.1.2. Also one other difference between
our Theorem 5.2.11 and Weibel’s result is that to apply Weibel’s result, the target
category for the underlying functor needs to be Ab and in our case we need a pair
of adjoint functors with the target of underlying functor to any category that has

a underlying set structure.

The first row of Figure 5.1 are functors and natural transformations giving sim-
plicial abelian groups as in diagram (5.2) when applied to Z’ from Figure 3.3.
The second row of Figure 5.1 are functors and natural transformations giving the

constant simplicial group ! when applied to an Z7.

!Constant simplicial obect [54], 8.1.1
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L FUB :32 <‘so FU? —%> _

071 42
dgdyd3

sosoh

dydydg

- 0
d2 <sl— —dl> FU —d= 1
ddd} d3 id
id id id
- I : I : <=1
, sSh h id
—dg=> 1 1
— —d >
U3 —d3= —%0 FU? 07 <s0— FU —d§~ [
—dé—> <sl— —dl> 0
dyd} dg id
id id id
i : I : <=1
Figure 5.1

Lemma 5.2.2. Figure 5.1 is a commutative diagram.

Proof. A square of the form

d
FUn+ ’ o
dn
(do)n+l
I id I

is commutative because

(do)"dyx =

do)" " dodo(do)" !

d0>n+1

(
(
(
(
(i
(
(
(

iterating (k — 2) times)

(using dd;* =

id)(do)"™, where 0 < k < n.

o1

di_dit for i < j)



Similarly

is commutative because

(do)n+1sk

FUntt Fum
(do)™*! B (do)™
I i I
do)™ D) (do)E dosi
do)"” (k1) (do)ksk—1d0
do)" ") (do)* " dysk_1do (using d"'s? =
) )

(
do)"~ k) (do)" ' sp—a(dp)?
iterating (k — 2) times)
do)"~ "1 (doso) (do)*

(
(
(
(
(
(
(do)"
(

Also a square of the form

id)(dp)", where 0 <k <n-—1.

is commutative because

di(s0)"h

I 4 I
(s@"hj (s0)""1h
do
Funtt ror
dn
(dkS())(S())n lh
(sodr—1)(s0)" 'h  (using dj*'s} = s7'd}
(iterating (k — 1) times)
(50)" " (diso)(50)" *h  (using ditfy's} = id)
(So)n lh
(50)" 'h(id), where 0 <k <n—1.
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n—1_m
jldz

for i < j)
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Finally a square of the form

(so)"t1h (s0)™h

F Un+2 F Un+1

is commutative because

se(50)"h = (s£50)(s50)" 'h
= (808k-1)(50)" " 'h (using s*'sT = sH ! for i < j)
= (80)%sx_2(80)""2h

(iterating (k — 2) times)
= (s0)"s0(s0)" "R
= (s0)""'h
= (s0)""'h(id), where 0 <k <n.
This concludes the diagram given above being commutative. O]

Example 5.2.3. If we apply the simplicial functor ® in Lemma 5.2.2 to Z7 we
get the simplicial abelian group (5.2). Then, Lemma 5.2.2 shows ®—@, @—®

and ®—® is a map of simplicial abelian groups (2.2.8).

(do)™T! (50)"h

Let f be the map ®—®@—®), that is, FU""! I FU™ ! in Figure

5.1 and f is defined explicitly by

fao=1
fo = hdj

fa = (50)"h(do)""".
Lemma 5.2.4. The chain map @—@—@ is the identity 1.
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Proof.

n times

—_—N—
(d0>n+1(50>nh = do (d(] B (do(do S(])So) . 50) h
o
- doh
= ¢€h

= 1 by Lemma 5.1.3.

]

Remark 5.2.5. If the chain map @—®@ of Lemma 5.2.4 is an inclusion then
according to Definition 5.0.18, @ is a retract of @.

Fact 5.2.6. ([41] I.5) Let f and g be morphisms in a category where fg = id then
f is epic and g is monic. In the category of abelian groups f epic is the same as

f is surjective and ¢ is monic is the same as g is injective.
Lemma 5.2.7 is only applicable to categories where inclusion map is defined.

Lemma 5.2.7. The chain maps @—® at Z? (c.f. Example 5.2.3) is an inclusion

map.

Proof. From Lemma 5.2.4 and Fact 5.2.6 it is clear that @—® is monic, hence a

1-1 map in the category of abelian groups. O

The next step is to show that f is homotopic to identity chain map ¢dg from
@®—®. A homotopy between f and idg can be given by the sequence of maps
h: FUYZ) — FU"™(Z), for n > 0, defined by
hy' = h
hy = hFU" . IFU"' — FUFU™!

R = (s0)'hi "(do)" where 0 <i<n

)
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First we will prove Lemma 5.2.8 which will be used in Lemma 5.2.9.

Lemma 5.2.8.

(1) 5;'?11

Proof. (I)

n _ 1nt+l
hy = hy"s

n+1gpn

i+

n+1
Sit1

hy

m+lin _ 1n—1_n
di—l—l hO - hO dz

n
K3

= FUMepymtD-HDp pyntt

= FUFU'«FU" 'hFU'FUFU""

= (FUFU'ehFU'FU)FU™ " by equation (2.4)

= (hFU'FU'¢)FU™" by Example 2.1.4 (5.3)
= hFU'FU"'FU'€FU"" by equation (2.4)

— hFU"FU'FU""

= hy~ld}

FUT YwFU " hFU™ !

FUFU'vFU" '"hFU'FUFU""
(FUFU'vhFU'FU)FU™ " by equation (2.4)
(hFU'FU*FU'v)FU"" by Example 2.1.5 (5.4)
hFU'FU*FU" 'FU'vFU™ " by equation (2.4)
hFU" P FUVFU™

n+1l_n
hy™s;

O

Lemma 5.2.9. Let f be the map ©—@—@, that 1s, FU — I — FU 1in

Figure 5.1 and idg be identity chain map FU" ' — FUH,

Then f is simplically homotopic idg.
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Proof.

FU? % s FU —t9—> I
1
hd o't
e G FU —a— I
(A)
dyhg' = €eh =1 where 1:I — I is the identity natural transformation

dg—i—lhg —_ GFUTL—H]’LFUn—H
= e¢hFU™!

= 1FU™!

where 1FU™ . FU™ — FU™! is the identity natural transformation. So all

of these maps gives idg.

(B)
diiihn = dyiy(s0)"ho(do)”

= dytiso(s0)" tho(do)"
= Sgdn(So)n_lhg(do)n

(iterating dso = sodu_1 (n — 1) times)
= (s0)"dihg(do)"
= (s0)"hg "do(do)" using (5.3)
= (50)"h(do)"*"!

= fa
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di(so)’ hy,_;(do)’
di(s0)"(s0)”~"h9_;(do)?~ Vg (dy)’

sodi—1(s0)' " (s0)’ ~'h)_;(do)’~ TV dody (do)™!
(iterating (i — 2) times)

(50) " duso(so) " iy (do)’ =V (do) ™" di-1 (o)
((50) " (50)" gy ((doY =V (do)" " do) d

(

(50)" ™ htn1)—(-1)((do) )i where n —j = (n—1) —

h=ld;

;b = dj(s0)'hg " (do)’
= d;so(s0)? " hi 7 do(do)’
= sodj1(s0)’ g do(do) !
(iterating (1—2) times)
(50)’ " dy(s0)hg " do(do)’~
(50)"Lhy do(do) ! using di(sg) = id
= (50 Zsodih 7T (oYt by di(so) = id and (5.3)
(50)" 2dasohy ]Jrl(clo)j’1 using sod; = dasg
(iterating (j — 2) times)
= dj(s0) " hy UV (do) ™!
= d;h”

jlo5—1

o7

(-1



d:h? = di(so)’hg?(do)’ where i > j+1

= d;so(s0)’ 'hg? (do)’
= sodi_1(s0)’ " hy 7 (do)?
(iterating (j — 1) times)
(s0)di—jhg " (do)’
(s0)7he ™" d;_y_jdo(do)’ ™ by (5.3)
= (so)’hgy " dod;—1—j11(do)
(iterating (j — 1) times)
(s0) o~ (do) dio1—

- h?_ldi_l

si(50)7h0 7 (dy)? where (i < 7)

SiSQ(So)j_lhg_j(d())j_i(doSo)do(do)i_l using do(So) = Zd

S08i—1(50)" " hy 7 (do)? ™ (do)?s1(do)" ™
(iterating (¢ — 1) times)
(So)iSO(So)jilhg_j(do)jii(do)iJrlSi
(So)j+1hg+l—(j+1) (dg)jHSi

n+1
hj+1 Si

o8



(s0)7hy" ™7 (do) s;_y where (i < j)
(s0)hg™V ™ (doY ™ dosiy
(50)7hy" ™7 (do) i1 1dy

: (1terat1ng (j — 1) times)

= (o) sohg™ ™ siay(d)’
(50)? " s0si_jhgy~ I(dy)? by (5.4)
(50)" " si—j4150hp 7 (do)’
(iterating (j — 1) times)

= si-j+5(50)hg 7 (do)’

= si(s0)’hg 7 (do)’

= Szh;z
]

Remark 5.2.10. From Lemma 5.2.7, the map @— @ 1is an inclusion and by
Lemma 5.2.4, @ is a retract of © then by Fact 5.0.19, © and @ have the same
homotopy type (that is the corresponding homotopy groups are the same) when the

maps [ and ide are homotopic.

Theorem 5.2.11. Let Z be a H(R)-algebra and (FU)4(Z) be the free simpli-

cial H(R)-algebra augmented by Z, constructed using the adjoint pair SET . é
F

H(R) — ALG. Then (FU)4(Z) is a free simplicial resolution of Z in the sense of

Definition 5.2.1.

Proof. From Section 3.5 an augmented simplicial H(R)-algebra (FU).(Z) can
be thought of as simplicial abelian groups in sSE7. From Remark 5.2.10 the j**

simplicial abelian group from diagram (5.2) is homotopy equivalent to the constant
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simlicial abelian group. Instead of calculating the homotopy groups of simplicial

abelian group (5.2) we will calculate the homotopy groups of the constant simplicial

abelian group, since (5.2) has the same homotopy type as the constant simplicial

abelian group by Lemma 5.2.9 and Remark 5.2.10.

First, we form the Moore chain complex for the augmented constant simplicial

abelian group

71 id A id 7 d__zj...

as explained in (2.33). Then (5.5) simplifies to

0 7i 4 gj 0 A d__ gi...

since all d;’s are identity maps.

The homology groups of the chain complex (5.6) is either
(i) ker(0)/im(id) = Z7/Z7 = 0

(ii) ker(id)/im(0) =0/0 =0

This means the chain complex (5.6) is exact everywhere and by Definition 2.2.17

and Fact 2.2.18 the zeroth homology is the augmentation. Also as h is a homotopy

the two augmented Moore chain complexes (5.6) and the Moore chain complex cor-

responding to (5.2) have the same homology. Therefore the Moore chain complex

corresponding to (5.2) is exact.
Hence by Fact 2.2.18
m(FU)o(Z7) =0 if i >0

mo(FU)(Z7) = 27
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The composition of the simplicial functor FU,Z : H(R) — Ab followed by the
homotopy mg : Ab — SET . defines a functor H(R) — SET ., therefore defining
an H(R)-algebra.

From Figure 3.3 where each row is an H(R)-algebra we have dyyy, = df) : FUZ —

Z is a morphism of H(R)-algebras.

FUZ

/—\
H(R) Vv SET (5.7)

Now we have the isomorphism 7o FUZ =7z (on each column of Figure 3.3) induced
by daug, & morphism of H(R)-algebras. By naturality of cohomology operations
moFUZ has the same H(R)-algebra structure as Z. O
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Chapter 6

A cosimplicial resolution of a

space

The purpose of this Chapter is to show how to construct a cosimplicial resolution
of a space X using products of Eilenberg-Mac Lane spaces.

First we show a functorial construction 7" on CW, and we show the construction
T(X) is homotopy equivalent to a product of Eilenberg-Mac Lane spaces. There
are two natural maps ¢ and § which can be constructed together with 7' and
the triple (7', ¢, ) forms a monad on spaces. After that we apply Huber’s stan-
dard construction [35] on the monad (7',<, ) to form a cosimplicial space. Then,
in Theorem 6.3.2 we show this cosimplicial space is a resolution in the sense of
Huber [35]. Finally in Theorem 6.3.5 we show cohomology #H(R)-algebra of this

cosimplicial resolution is augmented by the #H(R)-algebra of X.

6.1 Construction 7'(X)

It is known from elementary homotopy theory ([5], Proposition 1.4.9) that every

null-homotopic map f* : X — K9 indexed by a set i € S, factors through a
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path space PKY, but for each i € S, f¥ may factor through PKY indexed by a
map gfj( where 5 € J indexes the number of null-homotopies for each : € S. The

map ev : PK? — K7 in diagram (6.1) is the evaluation map.

PK4 (6.1)

X I K1

Conversely, given any map g,fj( : X — PK?? the composition ev gfj( is null-

homotopic.

6.1.1 The maps ¢ and ¢

We let ¢ : H H Ky — H H K;I_X_ be the map described as follows.

qeN XX Ka qeN gX. X s PKa
J

For a map f: X — K9 if it is null-homotopic it has a factorization through the
path space as shown in diagram (6.1). But, for every null-homotopic map there
may be many null-homotopies. So, for each null-homotopic f* : X — K9 we

can construct a map ¢ X

Kiy (6.2)
project

q

identify
K  ——~ K1
H ev gi)](_ X

g7%:X—PKa

Then ¢ factors through H H K1y followed by H H qﬁfix.

qEN fX 2y qEN fX oy
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Let e be the map H H PK;’_X S H H K;J_X such that e evaluates

qeN gX: X PKa !
J

each path in H H PKZ? at its end point.
4EN g X X~ PECa !

geN gf :X—+PK4
J

6.1.2 T(X)

For any space X € CW., , we define T'(X) as the pullback of ¢ and e as shown in
diagram (6.3).

T(X) 2] PK, (6.3)
qeN ggjf_ :X—PKd
p1x inc Le
q ¢ q
II II &5 I I x5
qgeN fX: X Ka 4N g X X P !

Analogous to the explanation given in Section 2.1.6, we will think of the pullback

T(X) as an equalizer to the diagram

[T II xaxIT II PxY — I1 Ky

q€N fX.X 5 Ka qeN gi)j :X—PK4 ’ oP1X ¢eN g:X—PKa 7

(6.4)

In diagram (6.3), the map inc is the inclusion of T'(X) into the product

1T 11 KJ‘ZZ_XXH 11 PEK]y. (6.5)

qeN X X Ka qeN gX. X s PKa
J

The maps p;x and pyx are the projections from (6.5) onto H H K;X and
qeN X X Ka

H H PK;X respectively. We will write Py x := pix tncand Pox := pox inc.
9€N gX:X— PK1 N
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6.1.3 Geometric description of 7'(X)

T(X) is the equalizer of the diagram (6.4), so from ([6], pg 105) we know that
T(X) is a sub-object of the product given in (6.5) . Since T'(X) is a sub-object of
the product (6.5) we can think of 7'(X) as a subspace of the product (6.5). This
subspace consists of factors of K]‘% indexed by non null-homotopic maps and also
those indexed by null-homotopic maps. The points in the connected component
of each factor of K§ indexed by a null-homotopic map f =ev g;, j € J (by (6.1)
) are identified with the end points of the paths of all the path spaces PK o Note
that a single null-homotopic map f : X — K7 can have many maps g; : X —

PK1 factoring through the same path space.

Proposition 6.1.1. T(X) is homotopy equivalent to a product Eilenberg-Mac Lane

spaces

Proof. From (6.5) and the description given above we know the space T'(X) is a
subspace of Eilenberg-Mac Lane spaces KJ? and path spaces PK{. Contracting
any path space leaves the set of loops on K9, but since QK? = K97! we have

T(X) is homotopy equivalent to a product of Eilenberg-Mac Lane spaces. ]

Remark 6.1.2. Given that T(X) is a sub-object of (6.5), in the proofs to follow we
will use factors of K§ C T(X) and PK{ C T(X) even though for null homotopic

maps [ = ev g the two spaces quc and PK] are identified as described above.

6.1.4 T acting on maps

Before we define T'(X) as a functor we need to define T'(X) on maps. For a map

b: X — Y in CW, , we define T'(b) : T(X) — T(Y) as described below.

First we construct T(Y) as in diagram (6.3). If f¥ : Y — K7 and g}? Y —
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PK? then by composing b with these maps we get the maps f¥v: X — Y — K4

andgzb X —Y — PK1.

Since

II 11 K;Z-YbCH 11 K

q€EN f¥ h: X 5 K4 q€EN fX: X 5 Ka

and

I esell T

qeN g¥ b: X > PK 4 qeN gX. X PKA
J

we have the maps
P ject
0 —=11 Il &x==1I1 1I &
qeN fX: X Ka Z qeN f¥ b X > K4

and

T I

7

qeN XX—>PKq qeN Yb :X—+PK4

We also have the maps
II I & —11 11 &%
4EN fY b: X K4 4N fY .y K4

and

I I P —11 H PIGy .

qeN g¥ b: X > PK4 qeN Y- Y —PKe
J

(6.6)

(6.7)

(6.8)

(6.9)

where the maps (6.8) and (6.9) are the identification of the corresponding factors.

The composition of the maps (6.6) and (6.8) and the composition of the maps (6.7)

and (6.9) can be completed to form the outer commutative square of the diagram
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(6.10). The outer square clearly commutes as we are just taking subproducts of
T(X) indexed by maps factoring through Y and identifying with copies of K7 and
PK? indexed by those maps in the pullback of T'(Y).

e 1 0 | IO | I ) O

qeN gX: X+ PK4 qeN gY b: X > PK4
J J

Pix \Lidentify

q Py q

I I = T(v) I I rxp

geN fX.X sKa q€N gY .y PKa K
J

projectl Py \Le
identify ¢

II I &%, II II x5 11 Koy

qeN Y b: X Ka q€N Y.y s Kq 4€N gY .y s PKa g
J

(6.10)

Therefore, by the universal property of the pullback (cf.(2.12)), we get a unique
map T'(b) from T(X) to T(Y).

6.1.5 The functor T

To show T is a functor, first we will prove the following lemma.

Lemma 6.1.3. Letb: X — Y and a:Y — Z be maps of spaces X,Y and Z.
Then T'(ab) = T'(a)T'(b).

Proof. Let f : Z — K% and g : Z — PK9, then by composing the maps we
getfZZa:Y—>Z—>K‘1andgia:Y—>Z—>PK‘1.

Given the maps a : ¥ — Z and b : X — Y, using Section 6.1.4, we have
T(a):T(Y)— T(Z) and T'(b) : T(X) — T(Y) respectively.
Furthermore using the composition ab: X — Y — Z we can get fZab: X —

Y — Z — K9 and g%ab : X — Y — Z — PK? and again as shown in
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Section 6.1.4

T(X) Pl_X> H H K}IX project H H K;{Zab 1dent1fy H H qu 6 11

qeN fX. X 5 Ka €N fZab: X K4 9€N fZ:Z7 - Ka

and

sz H H PKq p!‘OJeCt H H PKqZ " 1dent1fy H H PKq (612)

geNg X Y:X—PK4 qeN qzab X—PK4 geN ¢ Z .Z—PKd

implies a unique map T'(ab) : T(X) — T(Z).

(6.11) shows a map that takes KJ‘ZZ )

morphically to K%, C T(Z). Similarly 6.12 is a map that takes PK;I.Z,ab C T(X)

C T(X) indexed by a map fZab, homeo-

indexed by a map gi ab, homeomorphically to PK;_Z cT(Z).

ij

But T'(ab) : T(X) — T(Z) can also be factored as

T( P1x H H Kq proJectH H K‘?yb

qeN fX: X Ka qeN Y b X s Ka
Lidentify
() T(Y) H H Kq_y project H H qua
geN Y.y ke geN fZay ke
Lidentify
T(a) T(Z) II II x5

qeN fZ. 7y Ka

(6.13)
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and (6.12) can be factored as

o)== 11 PKgglmH 11 Py,

qeN gX: X s PK4 qeN gY b: X - PK4
g 'j
jidentify
Pox q project q

e I I1 ey 1 P

9;. gija’
q€N gY .y »PK4 ! 4€N gZ a:Y — PKa
J
lidentify
Pyx

1 I res

i .

qeN ¢Z .7 PKa !

J
(6.14)

The two diagrams (6.13) and (6.14) explains the composition T'(a)T'(b).

T(a) is basically a projection out to factors of T(Y) indexed by fZa and gi a,
similarly T'(b) is a projection out to factors of T(Y) indexed by fYb and gZ_ b.
Therefore the composition T'(a)T'(b) is a projection out to factors of 7'(X') indexed
by fZab and ggab.

Hence we have T'(ab) = T'(a)T'(b). O

Lemma 6.1.4. Letidyx : X — X be the identity map on X and 1px) : T(X) —
T(X) be the identity map on T(X) then T(idx) = 1px).

Proof. Let f* : X — K% and g} : X — PK?% The maps f* = fidy :
X — X — K7 and gi)j = gfj(idx : X — X — PK? are used to define
T(idx) : T(X) — T(X), by Section 6.1.4. It is clear that T'(idx) takes all the
factors of T'(X) identically to T'(X).

Therefore, T(1x) = 1p(x). O

Using Lemma 6.1.3 and Lemma 6.1.4 we have shown the construction 7" on spaces

is a functor, T : CW, — CW, .

69



Let T'(X) := T(X), and iterating this functorial construction on spaces n-times,
where n € N, we get the space T"(X) := T(T"'(X)), for n > 1. There are two
natural maps ¢x : X — T(X) and Bx : T*(X) — T(X), associated with this

construction, which we will explain now.
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6.1.6 Unit ¢y

Given a space X, and for every map f : X — K there are canonical maps {f{*} :

X — H H K]‘{X such that f = pr {f/}, where pr; : H H Ky —
qeN fX: X Ka qeN fX: X Ka
K}] is the canonical projection. Similarly, for every g : X — PK9 there are

canonical maps {g;\} : X — H H PK;X such that g = pry{g]\ }.
geN gi)](,:X%PKq K

{9:5}

(6.15)

II II PxL

geN gX: X PKa !
J

II Il %

qeN fiX:X—>Kq qugfj(_:X—)PKq

The image of ¢ are products of Kg_x, which are end points of the path space
vy

as explained in section 6.1 therefore the outer square commutes. Then by the

universal property of the pullback the map ¢x : X — T'(X) is the unique map

into the pullback.

Lemma 6.1.5. ¢ : [ — T, defined by sx for each X € CW, is a natural trans-

formation.

Proof. To show ¢ : [ — T is a natural transformation we need to show the square

(6.16) commutes for any b: X — Y in CW,.

I(X) —* = T(X) (6.16)
I(b)‘ \T(b)
(V) —"—T(Y)



Given b: X — Y, from Section 6.1.4 we have T'(b) : T(X) — T(Y).

X {fY b} H H K;Yb 1dent1fy H H qu (617)

9eN f¥b: X Ka q€N fY.y s Ka
and
{gz q identify q
x50 Pig, =S ] T PR (618)
i.
qeN g¥ b: X PK 1 / qEN gY: y_>qu
g

combined with the universal property of the pullback gives the map T'(b)cx
I(X) —T(X)—T(Y).

Themaps{fzy}b:X—>Y—>H H quand{gz}b X —Y —

qeN Y.y » Ka

H H PK;’Y together with the universal property of the pullback defines
geN QB;:YHPKCI K

syI(0) : I[(X) — I(Y) — T(Y). Since {f'b} = {f"}b and {g] b} = {g} }b, we
have ¢yb = T'(b)sx. O

6.1.7 Multiplication Sx

For any space X, T?(X) is the pullback shown in the following diagram.

TQ(X) Porx H H PK;TX (6.19)

€N gTX.7(X)—PK4 !
J
Pirx LE
q q
H H KfTX H H Kev 97
vj

k3

qeN fTX.T(X)— K1 geN g,L.T]_X:T(X)—>PK‘1

If f: X — K¢, then there is a factor of K§ in H H K1 7x and we have the

qeN fX: X Ka
map

proPoc T(X) 25T T K9 25 kG (6.20)

qeN XX Ka
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Hence there will be a factor of K I‘f,,f Py I H H K1 jrx- Therefore we have
qeN fTX.T(X)— K4
the map,

P PTr(prePix)
pT(prfPlx)PlTX . T 1TX H H K]({_TX % Kngplx . (621)
qeN fTX.T(X)— K4 '

From the space H H K1 jTx We project to factors of the form H H

geN fTX T(X)—K4 qeN

and then identify with factors of the form H H

qeN XX Ka

So we haveamapH H K}’ZTX —>H H K.

qeN fTX.T(X)— K qeN X X Ka

pryPix

Using a similar argument, if ¢ : X — PK9 it can be shown that there is a

map H H PK;IT x — H H PKqu where we identify the factor

€N gTX.7(X)—PK4 ! 9€N gX. X 5 PK4
J
q T
of PKpT pein [ ]I PElx with PKYin PKx
J J
qeN giTjX:T(XHPKq qeN gi)](,:X%PKq
e IR R 1) (2
g prgPax
qeN TXT X)—PK4 qeN
Pirx 6X ‘identify
K° Srx Pax PK?
FTX (X) gX
1 14
qeN fTX.7(X)»Ka qeN gX: X »PKa !
J

lproject Pix le
q ldentlfy q
HHKPTfPIX K X evg

qeN qeN fX X Ka qeN g X—PK14

(6.22)
The outer square in the diagram (6.22) commutes because the inner square of
diagram (6.22) and diagram (6.19) commute. Therefore by the universal property
of the pullback there exist a unique map Bx : T?(X) — T(X).
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Lemma 6.1.6. 3 : T? — T, defined by Bx for each X € CW, is a natural

transformation.

Proof. To show 3 : T? — T is a natural transformation we need to show the

following square commutes for any b : X — Y in CW,.

The map T'(a)Bx : T*(X) — T(Y) factors through T(X) as shown in Figure

Porx project
2 q q
T2() I II Pl ——1II IT  PES p
qugz;X:T(X)%PKq g qeENpry Py x:TX > PK4
Prrx identify
Pyx project
| I | T(X) [ II resx—11 II Prjy
: g* g a
9€N fTX.p(X)»Kd 4ENgX . X PKd ‘g 9€NgY a:X +PK4 K
J J
T(a)
project Pix identify
identify Poy
I I se— I I & o) —— I PKjy
pr{i1x fi 9g;.
geNpry Py x:TX— K4 g€eN XX Ka 9€NgY .y - PK4a 7
J
project Py e

I I sy, —=I1 II =11 II &,
J

9€N Y a: X 5 Ka €N Yy 5 Ka ‘ 9E€NgX . X > PKa
J

Figure 6.1

Let 1 be the map identify prve Pix : TX — Kj{iy and 7, be the map identifyprgl;;a Pox :
TX — PK},. (6.1) shows, maps that take factors K and PKY, in T%(X)

J
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indexed by maps v; and v, homeomorphically to K }IY and PK;Z-Y, in T(Y') respec-

J

tively.

Porx project
T2(X) I 11 PE! e —]] II PEK rx 1)
4€N gTX.7(X)»PK4 Kl 4€N gTX T (a):T(X)—PK K
J "]

idcntifyl

Pirx 7%(a)

Pory project
[T  II K P <——1 Il rs—11 11  PKS .k,
; 9l -
9N fTX.P(X)sKa 9€N gTY .TY 5 PKa i a€NpryPay:Y =+ PK1
J
project Piry identify
identify Py
q q q
11 11 Kirvp— I 11 Kjry ) —— I II P}y
qeN fTY 7(a):T(X)— K9 qeN fTY .7y s K4 qeNgY .y s PK4 7
fi i 9i;
project Pry e

I I ey =11 II x——= 11 II &
J

q€Npry Pry:Y =K1 aeN Y.y s Ka 9ENgX. X 5 PK4
i i

Figure 6.2

Let pryy PiyT(a) + T(X) — K}Iy, then (6.2) shows maps that take factors

Kz”fiY PiyT(a) 11 T?(X) homeomorphically to K]‘fiy in T(Y).

It is clear that both the maps prfyPlyT(a) and identifyprfya P, x take the fac-
tors K;f_ya to Kq_y. So pryy PiyT(a) = identifyprfiya P, x index the same factor of
K9 C T?(X) that is mapped homeomorphically to K, . Similarly pr,y PiyT(a) =

identify proy,, Pax Therefore BxT'(a) = T%(a)By. O
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6.2 The monad (T,¢,f3)

The triple (T, ) forms a monad on spaces, which we verify shortly. The triple
(T,s,B) is a monad if it satisfies the two diagrams given in (2.27) and (2.26).

Lemma 6.2.1. For each X € CW,

(Z) BX§T(X) = 1T(X)
(i) BxT(sx) = lrex)

Proof. First we will prove Sxcrx) = lr(x)

Let f: X — K9, then we have the map

priPic TX) 2SS T T K9 25 KD

qeN X X Ka

as explained in (6.20). Using the universal property of the product there exists a

unique map {prPix}: T(X) — H H K'r into the subproduct indexed
geN fIX. X K4 Z
by projection.

Kzrme H H KJ(ZZTX (623)

qeN fTX. X K4

{pryPi1x}
pryPix

T(X)

As Bx projects onto factors that are indexed by projections Bx¢r(x) is equivalent
to Bx{pryPix}. As ¢r(x) takes K7 in T(X) identically to the factor indexed
by K, p in T*(X), we have Bxcr(x) takes K} in T(X) identically to factors
indexed by K§ in T'(X). Similarly, PK{ in T'(X) is taken to PK{ in T'(X). Hence

Bxsrx) = lrx).
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(ii) Now we need to show, BxT'(cx) = lpx). We define T'(cx) as explained in
Section 2.1.2 (cf.2.1). We apply the functor 7" on the map ¢y : X — T'X, to get
T<x = T(sx) as shown in the diagram (6.24).

T(X) a T%(X) (6.24)
Sx T(sx)
X = T(X)

From Section 6.1.4 we know how T acts on maps, so we have

H H K;,;X‘ project H H K;TX 1dent1fy H H K;ZTX

9€EN fX.X K4 q€N fTX ¢y X Ka qeN fTX.7(X)—>Ka

(6.25)
Therefore T'(cx) takes K;Txgx in T(X) to K‘I rx in T?(X).

For every f : X — K?asin Section 6.1.7 there is a factor of KJ? C H H K
qeN fX. X Ka

and a factor of K, p  C H H K;fx and from the map (6.25) we get
qeN fIX.7(X)—K4

q Pproject H H q identify H H q
H H Kf KPTfP1X Sx KprP1X

qEN f:X—)Kq qEN p?"fplx QX:X—>K‘7 qEN ij'PlxlT(X)—)Kq

(6.26)
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This can also be explained by a diagram as follows

Kq

pryPix

prf;TX

‘ pryPix T(X) T T2(X) Pirx H H

qeN fTX.T(X)— K4

Ky

T identify

q
f X Tlex) H H KprP1X<X

qGNprplxcszHKq

T project

X—L . 7(X) x IT II &5

qeN X X Ka

iqu

q
KPTfP1X SX

(6.27)

Therefore T'(cx) identifies K C T'(X) with the factor of K} C T?(X) which

pryPix

Bx then identifies back with K]‘i’. It is clear that a similar argument for path spaces

holds. O
Now we proceed to show the associative diagram (2.26) of a monad holds.
Lemma 6.2.2. For each X € CW, BxBrx) = Bx(TBx).

Proof. Given Sy : T*(X) — T(X), we take the functor T on this map to get the

commutative square (6.28).

T2(X) ————T3(X) (6.28)
ﬁxt jT(ﬁx)
T(X) —— T*(X)



If f: X — K9, then we have the map pryPirx : T(X) — K? by (6.20) and also
the map pry, p Pirx : T?(X) — K% by (6.21). So the map pryPirx indexes a

factor of K. p . in H H Kfrx and the map pry,, pi, Pir2x indexes a
k2
qeN fTX T(X)—K4

q
factor of Kp"prfPlTx Py b H H KfT2 - Using Section 2.1.2 we define
€N fT2X.72(X) - K4

TBx as T(BX)'

q
prprepyx P1rx

Prprp Py x P1TX

r) L) S]] K,
qeN fTQX T2(X S Ka idkq
prOJectl/
r P,
Prpry Py x F1TX By T(6x) H H K}]Txﬁ
qeN fTX By X K4
identifyl/
q T 2 PITX
KprPIX p?“fplx T(X) T ( H H K‘%TX

geN fIX.T(X)—» K4

pryPrx
KSTfPU(
(6.29)
Then T'(Bx) takes the factor of KngTfplTX Pa, to the factor of KT p .
3
KgrprplTxplﬂx cT <X) <630>
T(BX)l
Kzrmex C T*(X)
5Xl
K{ CT(X)
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It is clear that Sx Br(x) takes K — K1

q . .
Pror sy Prrx P T S A similar argument

shows diagram (2.26) holds for path spaces. Hence the associative square (2.26)

for the monad commutes. O

6.3 Cosimplicial resolution

Given X € CW.,, and the monad (7, ) of Section 6.2 we will follow the method
explained in Section 2.2.3 of constructing a cosimplicial object in CW, from a
monad. The monad (7 s, ) generates a cosimplicial functor (C", ", ¢! ),>0, Where

r¥nr T n

we define
C"(X) = T""Y(X),n>0
S ¢ C"HX) — C™(X) where, & :=T'¢T"" and 0<i<n

oy 1+ C"N(X)— C™(X) where, o) :=T'BT"". and 0 <i<n

We apply the cosimplicial functor (C™, 4", ¢’ ),>0 to the space X, to get the cosim-

YN n

plicial object C*X coaugmented by X as in diagram (6.31), where ¢x : X —
C°(X) is the coaugmentation (Remark 2.2.14).

Notation 6.3.1. To simplify the notation we will write 8!, and o?, for o and
ol respectively.

—69—

X —2 0O(X) 207 <ot CH(X) 5= 7 C2(X) - -- (6.31)

1 —5§—> 1
We then take the ¢'* cohomology functor on the cosimplicial space (6.31) to obtain
HI(X) Lo H9(C*X), which is a simplicial abelian group augmented by H?(X).

The arrows are reversed because the functor H? is contravariant

2

q daug a( 0 0. <di— q(l —si> 'édg_ a( 2
HI(X) <22 Ha(CO(X )~ =87 H9(CH (X)) ~*}7 <ai— HO(C2(X) -

809- éd%—
(6.32)

80



The face map d and the degeneracy map s} in the simplicial abelian group
H?(C*X) are induced by 4’ and of, respectively. The augmentation map dg.,
in the simplicial abelian group H9(C*X) is induced by ¢x. Using (2.2.19) we get

the Moore chain complex

HY(CO(X)) HY(CY(X)) N kerd!

(6.33)

In Theorem 6.3.2, we will show the chain complex (6.33) is acyclic

Theorem 6.3.2. Let ® € HY(CP' (X)), p > 1 be such that &} " () = &?~'(®) =
= dij(@) =0 € HYCP2(X)). Then there erists v € HI(CP(X)) such that
do(v) = ® and di(y) = d3(7) = --- = dj(7) = 0.

Proof. We choose f : CP~'(X) — K9 such that f is a map representing the
class ® € HI(CP71(X)). Then we let v represent the class [pryPirvs(x)], where
pryPire(xy : CP(X) — K.

(i) First, we will show df(y) = ®. Consider the map ¢ro(x) : CP1(X) —
TCP1(X), defined by

Ccr1(X) ﬂ)TC’P—l( EELLICONN H H K;_TP(X) (6.34)

qGN pr(X) Tp( )—>K‘1

v

K4

and a similar map into the product of path spaces.
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The map 52 = ¢rv(x) induces the map dj), so we get

do(y) = dolpryPrirecx)]
= [pr¢Pirex) 0,)
= [pryPire(x) srex)]
= [f]
= .

(ii) To show df(y) = dy(y) = --- = db(y) = 0. Let 1 < j < pthen 0 < j—1 <p—1.

Given the maps 6)_1 : C?72(X) — CP7Y(X) and f : CP71(X) — K9, we have
the following well-defined composition,

Jj—1

, 5

FETLOP (X)) — 2 or N (X) —L— K. (6.35)
Since fézj is a map from CP~%(X) — K9, there is a factor of K;éj,i in

.
H H K;Tp,l(x) and hence a map prf(sg;:}PlTpfl(X) cCOPHX) —
nel fiTp_l(X>:TP—1(X)—>Kq '
q

Kféf;j .

From Section 2.1.2 , for 7 > 1, we have

6 = (T7<I"7)x
= (TT" TP )%
_ T(Tj_qu(p_l)_(j_l))X
= T§7,
From Section 6.1.4 we know how functor 7" act on the map 5;:} : CP (X)) —

CP~1(X), also using a similar argument as in diagram (6.27) we get the following

diagram
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K1<torx) Lererix P T ]
qeN fTPX.Tp(X)— K4

T identify

fa]_} j—1 j—1 q
_ J— J—
P 5p71 T5p71 | | | | KprX(;

ENfTPX6J Lpp— (X)) K4

Kl

idgeq

T project

Cr2(X) L Ter2(X) X T I1 K

q€N fiTpflx:TP—l(X)aKq

K;zsgj
(6.36)
Now T5§j takes the factor K}'fégj to the factor KF.
Therefore, chasing the diagram (6.36) we have
priPirey T8~ = pr rr=1 o) (6.37)
which implies prfPlTp(X)(SZ{ = prféijPlqu(X) (6.38)
SO d?[prfplTp(X)] = [prf(;;jPITpfl(X)]- (639)

Since by our hypothesis d; (D) = f ~1 is null-homotopic, then the map pr f5i- 1P1Tp 1(x)
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TP(X) — K? ,_, factors through the path space as in (6.3).

&y
P,rp-1
p 2TrP—1Xx q
T(X) PKng,IX (6.40)
T
9EN gTP=1X . Tp-1 X, PK4 !
J
Pirp-1x le
q ¢ q
R I I &
i i
Q€N prPIX.Tp—1 x5 K4 geN 171X, x spRa 7
J

So there is an homeomorphic map factoring through the path space and therefore

j—1
iy

each [prfag;:}PlTpfl(X)] = dj(7) (in (6.39)) factors through the path space PK;
hence it is null-homotopic.
By (i) and (ii) we have ker d?~' = im d¥. O

Corollary 6.3.3. Let dj = dgug, then
0 1
HI(X) & Ho(00(x)) &2 HY(CY (X)) Nkerd! s exact.

Proof. The same argument given in the proof of (i) in Theorem 6.3.2 can be used
to show that if ® € H1(C%(X)) is such that d}(®) = 0 € H4(X) then there exists
v € HY(C'(X)) such that di(vy) = [priPircosrx) = [f] = @.

In the proof of Lemma 6.2.1 (ii) we have defined T'sx. Then letting §) = cx
and using a similar argument as in the proof of Theorem 6.3.2 (ii) it can be

easily verifed that di(y) = 0. Therefore ker dy,,, = ker d) = im dj, hence exact at

HI(C(X)). O
Theorem 6.3.4.

(1) mHI(C*X) =0 if p > 1

(1) moHY(C*X) = HY(X) is an isomorphism for all ¢ > 1
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Proof. Let [®] € HY(X) be the class representing f : X — K9, since dgy, is

induced by the map ¢y : X — T'X. The diagram is commutative

X—>—1x)—> =T I Kty (6.41)

qeN fX: X Ka

E
q
Kf
f

Therefore f = pryPixsx which implies [f] = daug[prsPix|. Therefore dg,, is onto.
From homological algebra we know ([49]) if dgy, in 0 «— H(X) Lo HY(C°(X))

is onto then we have a short exact sequence
0« HI(X) <2 H9(CV(X))  kerdauy < 0
which splits as
H(X) = H'(C"(X)) /kerdy,y = H(C"(X)) /im dg
Since ToH(C*X) = H1(C°(X))/im d}, we have
(I) mHY(C*X)=0if¢g>1
(IT) meHY(C*X) = HY(X)

daug

Note: dgyuy onto in 0+ HY(X) +—= HI(C°(X)) also implies this sequence is exact
at HY(X). Then by Theorem 6.3.2 and Corollary 6.3.3 the augmented Moore
chain complex for (6.32) is exact, so we could use Fact 2.2.18 to deduce the same

conclusion. O
Theorem 6.3.5. ToH*(C*X) = H*(X).

Proof. Let C*X be a cosimplicial space (6.31). We take the functor [C*X, ] :
H(R) — SET . as shown in Figure 6.3. In Figure 6.3 each column is a simplicial

abelian group and each row is an H(R)-algebra.
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SET

HY(CH(X)) H? (Cl(X))

R

0
0 HY(CUX)) H*C'(X)) e+« H(COX)) HI(C"(X)) H™C"(X))
0

Figure 6.3

From Theorem 6.3.4 we have 7o H(C*X) = H?(X). For any cohomology opera-
tion « : HK’“ — K™, there is an induced map ay : HH”Z'(X) — H™(X).

ieJ ieJ
We also have the isomorphism dg,, H H"(C*X)/kerdg,y = H moH™ (C*X
ied ieJ
H H"™(X). Since dg,4 is a natural transformation we have the commutative square
ieJ

[T H"(C*X)/kerdq, [[H™(C*X)/kerdy, (6.42)
ieJ ieJ
[ [
[[moH™(C*X) menx [[mH™(C*X)
ieJ ieJ
dl daug
[THa"(x) ox H™(X)
e

Therefore it is clear that H(R)-algebra structure of H*(X) is the same as the
H(R)-algebra structure of moH*(C*X) O
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Chapter 7

Application and future work

7.1 Problems with the construction 7'(X) for R =
7

Our construction 7'(X) in Section 6.1 is dual to Stover’s construction V(X)) ([53],
2.2). Then in ([53], 2.3 and 2.4), Stover constructs a simplicial space, V,.X, from
a CW, space X, where V, X is homotopy equivalent to a wedge of spheres in each
simplicial dimension. Taking the p-th homotopy group of this simplicial space gives
a simplicial group m,(V4eX) and the homotopy groups of these simplicial groups
satisfy

mmp(VeX) =0 forall ¢>1 and p>1
Tomp(VeX) = my(X)

Zisman’s ([18], Appendix) modification of the Bousfield-Friedlander spectral se-
quence has E}a s = Tqmp X, and this spectral sequence converges strongly to m,,(| X|)
(where | X,| denotes the realization of the simplicial space X,). Therefore Stover’s

resolution fit into the E? page of the Zisman’s Bousfield-Friedlander spectral se-
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quence and he could conclude
Eg,q = TgmpVe X = mpiq(|VaX])

Using ([53], 2.6 and 3.4) Stover shows in ([53], 3.5) there is a homotopy equivalence
between |V, X | and X and this allowed him to identify the E? terms of the spectral

sequence with his resolution converging to the Il-algebra m,(X).

It was hoped the dual Stover construction 7'(X') would provide better understand-
ing of the algebra of integral cohomology operations including the unstable com-
positions and torsion cross cap products ([46] ¢ 3) and allow more powerful tools

incoporating this structure.

We identify two main problems associated with Z coefficients with our work in
contrast to Stover.

1. From Theorem 6.3.4 we have
(a) mpHI(C*X)=01ifp>1
(b) meHY(C*X) = H(X) is an isomorphism for all ¢ > 1

Dual to Stover we would like to use a cohomology spectral sequence (Dwyer Spec-
tral sequence [21]) with E? = m,HY(X*) which converges to H?*¢(Tot(X?*)).
However, this spectral sequence is not known to converge for R = Z, even when

R = F, it has some convergence issues.

2. The second point to note is that Tot(X*®) may not have the same cohomology
type as X or the R-completion R, X.

Fact 7.1.1. Bousfield in ([15], 7.5) has shown that given a monad (T,7,u) and

X € Ho(C) such that T preserves weak equivalences and has the further properties
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(a) TX is a group object in Ho(C)

(b) QTX is T-injective in Ho(C)

then the monad (T,n,u) fits into his framework ([15], 7.5) and the cosimplicial
space X*® coming from this monad gives rise to a homotopy spectral sequence
([15], 5.8) which converges to m,_,(Tot(X*)). He observes that in ([15], 4.9 and
7.7), only when G contains Eilenberg-Mac Lane spaces over all R-modules (not
just Eilenberg-Mac Lane spaces over R itself) will Tot(X*®) = R,X. This means

resolutions must be acyclic for cohomology in all R-module coefficients.

Our monad (7, ) of Section 6.2 is only acyclic over a fixed ring R. So for the

cosimplicial resolution X — 7*X we may not have Tot(X®) = R, X.

This suggests that we could modify our definition for H(Z) to contain products
and loops of Eilenberg-Mac Lane spaces over all Z-modules, but then we run into
set-theoretic complications. According to Mac Lane ([41] page 23) the category
R — mod is a large category. We want to modify H(R) to contain arbitrary
products formed from a proper class, but forming products over a proper class is

not defined according to ([43], pg 108).

7.2 The construction 7'(X) for R =T,

Although Tot(X*) may not be R-equivalent to R, X for our cosimplicial resolution
with coefficients in an arbitrary ring R as explained in Section 7.1, this is not the
case for R = F,. From Example 3.4.9 we know that H(F,)-algebras are the
algebras over the Steenrod algebras and it turns out that H(FF,)-algebras are more

nicely behaved as compared to H(Z)-algebras.

From algebra we know that any F,-module (a vector space) is a direct sum of
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copies of IF,,. For a cosimplicial resolution X — X* to be acyclic over [F,, implies
the resolution is acyclic over all F,-vector spaces ([17], ¢ 11) because they are a

direct sum of copies of IF,. Consequently we have Tot(7°X) = R, X.

7.3 Homology spectral sequence for a cosimpli-
cial space

We will use homology instead of cohomology because the homology spectral se-
quence for a cosimplicial space is known to converge strongly for field coefficients
under certain conditions given below [14]. To use the homology spectral sequence
we will need to go from cohomology to homology and for this we will need to
impose some finiteness conditions on the space X. The main reason we need these

conditions is due to Fact 7.3.3, but first we give some definitions.

Definition 7.3.1. A space X is of finite type ([16], V 7.5) if H,(X;R) is finitely

generated for all n > 0.

Definition 7.3.2. A space X is finite if X has a finite number of finitely generated
homology groups.

Fact 7.3.3. From algebra we know that a finite dimensional vector space has
the same dimension as its algebraic dual, therefore both the vector space and
its algebraic dual have a finite basis. This result does not hold for an infinite

dimensional vector space.

Remark 7.3.4. For a space X of finite type the graded vector space H"(X;F,) is
isomorphic to its algebraic dual H,(X;F,) = Hom(H"(X;F,);F,). This can also

be derived from the universal coefficient theorem. That is, for the exact sequence
0 —Ext(H,_1(X),G) — H"(X;G) —= Hom(H,(X),G) —=0 (7.1)
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the Ext term vanishes for field coefficients giving the required ismorphism H, (X;F,)
Hom(H"(X;F,);F,) ([30], 3.1).

The H(F,)-algebra (Steenrod algebra) structure is still preserved because the Steen-

rod algebra has a dual action on homology giving a coalgebra over the Steenrod

algebra [14].

Definition 7.3.5. A Generalized Eilenberg-Mac Lane space (denoted by R-GEM)

1s a space homotopy equivalent to HK(Ai,ni) with A; an R-module and I an
iel

indexing set ([20], § 5).

Definition 7.3.6. A connected space X is called nilpotent ([51], $5) if its fun-

damental group acts nilpotently on each m;(X) fori > 1. A connected space X is

called p-nilpotent it it is nilpotent and 7;(X) is a p-group with bounded torsion for

each 1.

Shipley [51] generalizes the convergence conditions for the homology spectral se-
quence developed by Bousfield in [14] from earlier work ([17], § 10). In Shipley’s
result the space Tot(X*) is required to be p-good where as in Bousfield’s result

([14], 3.6) he needed Tot(X*) to be simply connected.

Fact 7.3.7. (Shipley [51], ¢ 2 and Theorem 6.1) Let X* be a fibrant cosimplicial
space with each X*® p-nilpotent and X* of finite type for each s. Assume either

(a) Tot(X*) is of finite type or
(b) lim H,Tots(X?*) is finitely generated
—

Then the homology spectral sequence for X*® has E‘f’t = 1" Hy(X*;F,) and this
spectral sequence converges strongly to H,(Tot(X*®)) if and only if Tot(X*®) is
p-good.
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Example 7.3.8. Let X be a simply connected space. If there are null-homotopic
maps X — K(F,,2) a factor of PK(F,,2) = QK(F,,2) = K(F,,1) is used in
the construction of T'(X). The space T'(X) may not be nilpotent without more
restrictions on X. This is because the construction T'(X) becomes more and more
connected at each simplicial dimension.

Note: T?%(X) onwards is simply connected.

Remark 7.3.9. The cosimplicial resolution T*X 1is generally infinite and not
nilpotent, therefore the resolution does not directly satisfy the conditions of the
homology spectral sequence (7.3.7). However, because T*X is G-equivalent to
R*X for G the set of Eilenberg-Mac Lane spaces over all F, vector spaces in the
resolution model category, the E*-term gives an isomorphism 7 H,(R*X;F,) =
T Hy(T*X;F,). With m°H(R*X;F,) converging to H,(RX;F,) = H.(X;F,)
([16], I 5.1 5.2 and III 5.4), so R*X can be replaced with T*X and we have
T Hy(T*X;F,) = H.(X;F,).

7.4 Mapping space

Definition 7.4.1. Let X andY be pointed spaces then the mapping space map, (Y, X)

15 the space of continuous maps from'Y to X with the compact open topology.

Fact 7.4.2. (Shipley [51], Theorem 6.2) Let X and Y be spaces such that Y is
finite and X is of finite type. Assume either

(a) map, (Y, RwX) is of finite type.
(b) lim H, map, (Y, Tot,R*X) is finitely generated
—

Then the homology spectral sequence for map, (Y, R*X) strongly converges to
H, map, (Y, R X) if and only if map, (Y, R X) is p-good.
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Remark 7.4.3. Similar to Remark 7.3.9, because we have a G-equivalence be-
tween the cosimplicial resolutions R*X and T*X giving an isomorphism of the
E?-term of the homology spectral sequence applied to the mapping space, we have
m°Hy(map, (Y, R*X);F,) = m°Hy(map, (Y, T*X);F,). Then by Fact 7.4.2 the spec-
tral sequence for the mapping space with E?, = 7° Hy(map, (Y, R*X);F,) converges
to H,(map, (Y, R X);F,). Replacing R*X with T*X we have

E?, = n°Hy(map, (Y, T*X);F,) converges to H,(map, (Y, RscX); Fp).

Example 7.4.4. If Y = S*, then map, (S, T*X) = QT*X. So we get the mapping
space spectral sequence converging to H,(map,(S*, R X);F,) = H.(QRX;F,).

7.5 Future work

1. In Definition 3.3.2 we have defined abstract H(Z)-algebras, as product preserv-
ing functors from H(Z) to SET .. The realization problem can be stated as: Which
abstract H(Z)-algebras can be realized as a cohomology H(Z)-algebra? The real-
ization problem for H(F,)-algebras, that is, which algebras over the Steenrod alge-
bra can be realized, were studied by many and solved for special cases [3, 38, 19, 4].
We can ask whether dual methods to those used to realize II-algebras [7, 10] can

be used for both Z and F, coefficients.

2. Can the conditions be found, so the cohomology spectral sequence with EY? =
mp,HI(X*; Z) converges to H*(Tot(X*);Z) and can this be used to show TotX*

has the same cohomology as the augmentation H*(X;Z).

3. It is known that under certain conditions the cohomology spectral sequence
of a cosimplicial space converges for F, coefficients [21, 11]. By studying the

conditions for which the spectral sequence converges, can we get results directly

93



using the cohomology spectral sequence without having to use dual vector spaces

and homology spectral sequence?

4. As discussed in Section 7.1, for the T'ot(X*) = R, X we need G to be Eilenberg-
Mac Lane spaces over all Z-modules. Can Bousfield’s conditions ([15], 7.5) be
relaxed so that the resolutions being acyclic to smaller test set still works? For ex-
ample, G containing products of Eilenberg-Mac Lane spaces over finitely generated

abelian groups.

5. How can we interpret 7°H;(map, (Y, 7°X);F,) as a derived functor? In the dia-
gram of categories and functors in Figure 7.1, we know the functor [map, (Y, 7°X), |:

H(F,) — sF,-VEC is a covariant functor and Hom( ,F,) is a contravariant func-

tor.
H(Fp) map, (Y, T*X). sF,-VEC Hom ¢F,-VEC
Figure 7.1

Therefore the composition Hom/([map,(Y,7*X), |,F,) is contravariant and hence
sends products in H(F,) to coproducts in cF,-VEC. The image of the functor
Hom([map, (Y, T*X), |,F,) is H.(map,(Y,T*°X);F,). Another question we can
ask that is related to this is, what is the categorical setting for the co-model
objects of a sketch category? Or equivalently how can we encode the homology

operation structure as a natural transformation?
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