Cyclic Direct Simple Shear Test on Soft Clay at Low Normal Stress

As applicable to offshore pipeline axial walking

BY YANG AO

BEng (Honours, Civil) Monash University Australia

A thesis submitted in fulfilment of the requirement for the degree of Master of Engineering Science (Research)

> Department of Civil Engineering Monash University Australia

> > February 2015

Notice 1

Under the Copyright Act 1968, this thesis must be used only under the normal conditions of scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

To my mother and father,

who are devoted like Eastern parents and liberal like Western parents

Executive summary

Offshore pipelines play a significant role in transporting energy resources such as crude oil and natural gas from offshore platforms to processing facilities. The on-bottom stability of offshore pipelines is influenced significantly by the geotechnical conditions on the seabed. Pipelines undergo a number of thermal cycles during their operational life. At the end of each thermal cycle, some part of the expansion recovers, whereas the irrecoverable expansion accumulates at the free ends and causes the pipe to move axially in one direction, a phenomenon known as axial walking. The test results from the Monash Advanced Pipe testing System (MAPS) imply that pipe axial walking induces relative movements of the soil below the pipe. Since the pipe-soil interaction is extensively influenced by the soil response, the portion of the soil below the pipe which undergoes shearing, characterised as the shear zone, is significant for pipe axial walking assessment and thus needs thorough investigation.

The research program reported here investigates the behaviour of soil within the shear zone in pipe axial walking problems. Cyclic direct simple shear tests on soft clay at low normal stress are performed as applicable to axial walking problems. The soil response in the shear zone is characterised as undrained, partially drained, or drained, based on cyclic shearing velocities and the relationship between residual shear resistance and shearing velocity is investigated. Finite element analyses are also conducted to capture the behaviour of soil within the shear zone, utilising an advanced constitutive soil model. Based on the results from both experimental work and numerical analysis, a set of data is established which can be applied in the calibration of large-scale pipe axial walking modelling, and provide guidance on the design practice of offshore pipelines when considering on-bottom stability in axial direction.

Declaration

I thereby declare that material contained in this thesis has not been published in any other degree or diploma in any other institution. To the best of my knowledge no material presented within has been previously published or written by others except where references are sighted in the text.

Yang Ao Department of Civil Engineering Monash University Australia February 2015

Acknowledgements

I would like to express my deepest gratitude to my main supervisor, Professor Jayantha Kodikara, for his guidance and support over the past two years. This research program could not have progressed smoothly without his expertise and his assistance throughout the course of the program. Professor Kodikara's generosity and kindness to me has made the past two years one of the most memorable times of my life. I would also like to thank my co-supervisor Dr Dilan Robert, especially for his invaluable guidance in numerical modelling. Many thanks are due to Dr M.Senthilkumar and Dr P.Rajeev, who assisted me greatly at the beginning of the research program.

I would like to thank the staff in the Department of Civil Engineering, Monash University. Our Research and Postgraduate Manager is the incredible Ms Jenny Manson, and I have always been amazed how Jenny manages approximately 100 postgraduate research students all by herself. I thank the laboratory staff who helped me complete the experimental work, Mr Mike Leach and Mr Long Goh, and Dr Ben Shannon who provided the soil properties data and assisted me in setting up the tests. Dr Alex McKnight assisted by proofreading the final version for grammar and style.

I offer many thanks to my fellow postgraduate students, Qianyi Song, Yang Liu, Iris Yan Yang, Bo Zou, Xiao Yang and Andrew Fujia Luo, as my out-of-work time would have been much less fun without you guys. Thanks to my officemates in Room 117 building 36, Michael Von'T Steen, my unofficial career advisor, Asgar Ali, and others too numerous to name individually.

Table of Contents

Executive summary	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	viii
List of Tables	xi
Chapter 1 Introduction	1
1.1 Background	1
1.2 Research Objectives	3
1.3 Structure of thesis	4
Chapter 2 Literature review	6
2.1 Offshore pipeline axial walking	6
2.1.1 Axial pipe-soil interaction	6
2.1.2 Drained and undrained soil resistance	7
2.1.3 Cyclic axial response in an effective stress framework	9
2.1.4 Theoretical framework for axial resistance	12
2.2 Shear zone in offshore pipeline axial walking	16
2.3 Generic load-displacement relationship in pipe axial walking	17
2.4 Residual resistance and undrained/drained limits in MAPS	19
2.5 Utilising cyclic direct simple shear test in offshore pipeline axial walking p	roblems21
2.6 Direct simple shear test	22
2.6.1 Development of direct simple shear test	22
2.6.2 Drained and undrained direct simple shear test	26
2.6.3 Constant-volume undrained equivalent test	27
2.6.4 The advantages of direct simple shear test over triaxial test	27
2.6.5 Non-uniformities in direct simple shear test	
2.6.6 The effect of side boundaries on the uniformities of stress/strain	29
2.7 Summary	
Chapter 3 Experimental program and results	31
3.1 Soil selection	
3.1.1 General soil properties	
3.1.2 Specific gravity	

3.1.3 Particle size analysis	
3.1.4 Atterberg limits analysis	
3.1.5 Oedometer analysis	
3.1.6 Triaxial tests	
3.1.7 Summary	
3.2 Experimental set-up	
3.2.1 GDS direct simple shear testing system	
3.2.2 Specimen preparation	
3.2.3 Pore pressure measurement	
3.3 Test methodology	
3.3.1 Consolidation and normal stress	
3.3.2 Shearing velocity and shearing amplitude	
3.3.3 Summary of test approach	
3.4 Test results	
3.4.1 Consolidation stage	
3.4.2 Cyclic shearing stage	47
3.5 Concluding remarks	
Chapter 4 Numerical modelling	
Chapter 4 Numerical modelling	58 58
Chapter 4 Numerical modelling 4.1 Finite element model 4.1.1 Critical state soil theory and modified Cam-clay model	
Chapter 4 Numerical modelling 4.1 Finite element model	
 Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 	
 Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 	
 Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 	58 58 58 59 59 59 62 63
 Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 4.2 Finite element analyses results 	58 58 58 59 59 59 62 63 63
 Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model. 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model	58 58 58 59 59 59 62 63 63 65
 Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 4.2 Finite element analyses results 4.2.1 Scope of the analyses. 4.2.2 Consolidation stage 	58 58 58 59 59 62 63 63 65 65 65
Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model. 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 4.2 Finite element analyses results 4.2.1 Scope of the analyses. 4.2.2 Consolidation stage 4.2.3 Cyclic shearing stage.	58 58 58 59 59 59 62 63 63 65 65 65 70
Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 4.2 Finite element analyses results 4.2.1 Scope of the analyses. 4.2.2 Consolidation stage 4.3 Summary of major findings	58 58 58 59 59 62 63 63 65 65 65 70 82
Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 4.2 Finite element analyses results 4.2.1 Scope of the analyses. 4.2.2 Consolidation stage 4.3 Summary of major findings Chapter 5 Conclusions and recommendations	58 58 58 59 59 62 63 63 65 65 65 70 82 85
Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model. 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 4.2 Finite element analyses results 4.2.1 Scope of the analyses. 4.2.2 Consolidation stage 4.3 Summary of major findings Chapter 5 Conclusions and recommendations 5.1 Conclusions	58 58 58 59 59 62 63 63 65 65 65 65 70 82 85
Chapter 4 Numerical modelling 4.1 Finite element model. 4.1.1 Critical state soil theory and modified Cam-clay model 4.1.2 Two-dimensional finite element model 4.1.3 Material properties. 4.1.4 Load and boundary conditions 4.1.5 Validation of the finite element model 4.2 Finite element analyses results 4.2.1 Scope of the analyses. 4.2.2 Consolidation stage 4.3 Summary of major findings Chapter 5 Conclusions and recommendations 5.1 Conclusions 5.2 Recommendations for future research.	58 58 58 59 59 59 62 63 63 65 65 65 70 82 85 85 85

Cyclic direct simple shear test on soft clay at low normal stress

Appendices	91
A. Critical state soil theory and modified Cam-clay model	91
B. Additional FEA results	
C. Sample .inp file of the finite element model	

List of Figures

Figure 2.1 Axial friction resistance schematic with mobilisation displacement and breakout (Bruton et al., 2008)
Figure 2.2 Interface shearing: kaolin clay and Storeælt clay till (White and Cathie, 2011, Steenfelt, 1993)9 -
Figure 2.3 Time history during cyclic axial pipe testing (White et al., 2011b) 10 -
Figure 2.4 Friction factor response in cyclic axial pipe testing (White et al., 2011b) 11 -
Figure 2.5 (a) Total stress interpretation of axial response (b) Effective stress interpretation of axial response (White et al., 2011b) 12 -
Figure 2.6 (a) Schematic diagram for analysis of velocity effects for planar shearing (b) Stress paths in $e - \ln \sigma_v$ space (Randolph et al., 2012) 13 -
Figure 2.7 (a) Example relationships between excess pore pressure and time or shear strain Planar shearing responses for different normalised velocities Variation in resistance with (b)time; (c)displacement (Randolph et al., 2012)15 -
Figure 2.8 Shear zone underneath axially-walking pipe (Senthilkumar, 2013) 16 -
Figure 2.9 (a) Shear zone underneath axially walking pipe and (b) loading pattern of direct simple shear test 17 -
Figure 2.10 Generic pipe load-displacement curve with emphasis on residual resistance (Senthilkumar, 2013)
Figure 2.11 Normalised residual resistance at various displacement rates and pipe embedments for (a) smooth pipe and (b) rough pipe (Senthilkumar, 2013) 20 -
Figure 2.12 An illustration of the direct shear box (Zekkos et al., 2010) 23 -
Figure 2.13 Illustrations of direct simple shear test (left) and direct shear test (right) 24 -
Figure 2.14 S.G.I Direct Simple Shear Device (Kjellman, 1951) 25 -
Figure 2.15 (a) NGI direct simple shear device (b) Reinforced rubber membrane (Bjerrum and Landva, 1966) 26 -
Figure 2.16 Stresses acting on test sample: (a) in direct simple shear apparatus; (b) in true simple shear (Airey and Wood, 1987) 28 -
Figure 2.17 Side view of a plasticine sample after shearing under a normal stress of 12kPa (Roscoe, 1953) 29 -
Figure 2.18 Three vertical boundary configurations considered (Grognet, 2011) 29 -
Figure 3.1 Soil sample of Prestige NY and Seabed Silt (Senthilkumar, 2013) 32 -
Figure 3.2 Particle size distribution curves (Senthilkumar, 2013, Shannon, 2013) 33 -
Figure 3.3 USGS Charts (Senthilkumar, 2013, Shannon, 2013) 34 -

Figure 3.4 Consolidation and re-consolidation curves of oedometer tests (Senthilkumar, 2013, Shannon, 2013)
Figure 3.5 GDS Standard Simple Shear System (GDS-STDSS) 37 -
Figure 3.6 Specimen preparation and insertion 38 -
Figure 3.7 Pore pressure measurement configuration 40 -
Figure 3.8 (a) De-airing water apparatus (b) Water injection 41 -
Figure 3.9 Measuring cylinder connecting to the top drainage port 41 -
Figure 3.10 Variations in horizontal load readings due to rail friction 43 -
Figure 3.11 Consolidation displacement vs. (a) Elapsed time (b) Normalised time 46 -
Figure 3.12 PPT Readings at consolidation stage 46 -
Figure 3.13 Cyclic shearing of the soil specimen 48 -
Figure 3.14 Excess pore pressure development at shearing stage 50 -
Figure 3.15 Continuous consolidation at shearing stage 51 -
Figure 3.16 Shear stress-strain relationship for (a) 0.3mm/s and (b) 0.03mm/s 53 -
Figure 3.17 Shear stress-strain relationship for (a) 0.005mm/s and (b) 0.0005mm/s 54 -
Figure 3.18 Residual resistance versus normalised velocity 56 -
Figure 4.1 Two-dimensional finite element model 59 -
Figure 4.2 Implementation of deformation pattern in cyclic shearing in FEA model 63 -
Figure 4.3 Comparison between experimental and FEA shear stress-strain curves 64 -
Figure 4.4 (a) Vertical displacement vs. normalised time and (b) void ratio vs. normalised time plots at consolidation stage
Figure 4.5 Excess pore pressure reference element 68 -
Figure 4.6 (a) Excess pore pressure Δu vs. normalised time and (b) $\Delta u/\sigma_n$ vs. normalised time plots at consolidation stage
Figure 4.7 (a) horizontal displacement function and (b) shear strain definition 70 -
Figure 4.8 Pore pressure distribution at cyclic shearing stage 71 -
Figure 4.9 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 10kPa
Figure 4.10 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 60kPa
Figure 4.11 Void ratio versus shear strain plots for applied vertical stress of 10kPa and shear amplitude of 10% of H76 -
Figure 4.12 Void ratio versus shear strain plots for applied vertical stress of 60kPa and shear amplitude of 10% of H

Figure 4.13 Shear stress-strain curves for applied vertical stress of 10kPa 79 -
Figure 4.14 Shear stress-strain curves for applied vertical stress of 60kPa 80 -
Figure 4.15 Effective stress interpretation of shear stress-strain relationship 81 -
Figure 4.16 Residual resistance versus normalised velocity 83 -
Figure A.1 (a) e -log p' curve of an isotropic consolidation test and (b) consolidation curve in the e -ln p' plane (Helwany, 2007)
Figure A.2 Critical state definition (Helwany, 2007) 94 -
Figure A.3 (a) Normal consolidation and critical state lines in the <i>e</i> -ln p' plane (b) yield surface of a Cam-clay model in the q - p' plane (Helwany, 2007)
Figure A.4 State boundary surface of the Cam-clay model (Helwany, 2007) 95 -
Figure A.5 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 20kPa
Figure A.6 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 40kPa 100 -
Figure A.7 Void ratio versus shear strain plots for applied vertical stress of 20kPa and shear amplitude of 10% of H 101 -
Figure A.8 Void ratio versus shear strain plots for applied vertical stress of 40kPa and shear amplitude of 10% of H 102 -
Figure A.9 Shear stress-strain curves for applied vertical stress of 20kPa 103 -
Figure A.10 Shear stress-strain curves for applied vertical stress of 40kPa 104 -

List of tables

Table 3.1 General soil properties (Senthilkumar, 2013) 31 -
Table 3.2 Specific Gravity of Seabed silt and Prestige NY (Senthilkumar, 2013) 32 -
Table 3.3 Consolidation parameters from oedometer tests (Senthilkumar, 2013, Shannon,
2013) 35 -
Table 3.4 Parameters and properties in triaxial tests (Senthilkumar, 2013, Shannon, 2013)-36
-
Table 3.5 Geotechnical properties of Seabed silt and Prestige NY kaolinite (Senthilkumar,
2013, Shannon, 2013) 36 -
Table 3.6 Soil properties and test parameters at consolidation stage
Table 3.7 Test parameters at the cyclic shearing stage 47 -
Table 4.1 Material inputs for the finite element modelling
Table 4.2 Vertical permeability for different void ratio levels 61-
Table 4.3 Variables in finite element analyses.

Chapter 1 - Introduction

1.1 Background

Offshore pipelines play a significant role in transporting energy resources such as crude oil and natural gas from offshore platforms to processing facilities. Due to the increasing demand for fossil fuels in recent years, and the development of technology which makes access to deep-sea energy resources possible, the offshore energy industry has grown rapidly. Longer pipelines are laid and such pipelines are required to operate at more extreme conditions. For instance, high operating temperature and pressure need to be applied within some offshore pipelines to prevent petroleum from solidification. Such new technical challenges mean that a better understanding of the behaviour of offshore pipelines is required and the design code for offshore pipelines needs to be upgraded accordingly.

In deep water, pipelines are often left unburied on the seabed. Therefore, the on-bottom stability of offshore pipelines is influenced significantly by the geotechnical conditions on the seabed. Pipeline instability may be caused by the loading from the wave-induced currents (Fujiwara et al., 2011, Myrhaug and Ong, 2011, Chakkarapani et al., 2011). The thermal expansion and contraction corresponding to the production and shutdown cycles of offshore platforms may also cause pipeline instability (Casola et al., 2011). Pipelines undergo a number of such thermal cycles during their operational life. At the end of each thermal cycle, some part of the expansion recovers, whereas the irrecoverable expansion accumulates at the free ends and causes the pipe to move axially in one direction, a phenomenon known as axial walking. Consequently, the soil in contact with the pipe is also subjected to both static and dynamic loading, which may affect the long-term mechanical stability of pipelines. The pipesoil interaction is analogous to structure-soil interaction in foundation problems involving cohesive soils. However, unlike foundations of many structures where flexibility is usually not allowed, offshore pipelines can retain certain flexibility without exceeding the limit state at the centre (Randolph, 2011). Similar to foundation problems, the pipe-soil interaction can be divided into vertical, axial and lateral directions. The pipe-soil interaction in both vertical and lateral directions has been investigated extensively (Merifield et al., 2008, Zhou et al., 2008), whereas the axial pipe-soil interaction, which is regarded as the primary cause of pipeline instability, is yet to be clearly established. Some work has been done, for example, by Bruton et al. (2007), White et al. (2011a) and Randolph (2012). Most recently, a

specialised 2-D electric actuator system, the Monash Advanced Pipe-testing System (MAPS), has been developed at Monash University, Australia. The results from scaled axial soil-pipe interaction tests using MAPS have been made available (Senthilkumar, 2013).

The MAPS results imply that pipe axial walking induces relative movements of the soil below the pipe (Senthilkumar, 2013). Since the pipe-soil interaction is extensively influenced by the soil response, the portion of the soil below the pipe which undergoes shearing, characterised as the *shear zone*, is significant for pipe axial walking assessment, and therefore needs to be investigated thoroughly. Cyclic direct simple shear testing is proposed as the preferred testing method to conduct the investigation owing to its various merits, including its loading pattern, allowing the rotation of principal stress axes, the small specimen size required and its shear failure planes.

The results of the current research program will advance the understanding of soil behaviour within the shear zone in pipeline axial walking problems, by performing laboratory soil tests and conducting numerical modelling and analyses. Based on the results from both experimental work and numerical analysis, a set of data will be established which can be applied in the calibration of large-scale pipe axial walking modelling, and provide guidance on the design practice of offshore pipelines when considering on-bottom stability in axial direction.

1.2 Research objectives

The aim of the research program is to investigate soil behaviour within the shear zone in pipe axial walking problems, and to advance the understanding of offshore pipeline instability in the axial direction.

The specific objectives are:

- 1. Provide a comprehensive literature review to build a conceptual framework upon which the research program is based.
- 2. Establish an appropriate laboratory testing approach to investigate the soil behaviour within the shear zone.
- 3. Develop numerical modelling capacity to capture the soil behaviour within the shear zone in finite element analysis.
- 4. Based on the results from experimental work and numerical analysis, complement and improve the results obtained from MAPS tests.
- 5. Establish a set of data which can be applied in the calibration of the modelling of large-scale pipe axial walking.

1.3 Structure of thesis

This thesis consists of five chapters, a list of references and appendices. The chapters are summarised below.

Chapter 1 – Introduction

The first chapter contains an introduction to the problem, the scope of the project and the objectives.

Chapter 2 – Literature review

Chapter 2 provides a comprehensive literature review upon which the conceptual framework is built.

Chapter 3 – Experimental program and results

Chapter 3 presents the experimental program and the experimental results. First the soil selected for the experimental program is introduced. This is followed by an elaboration of the experimental set-up and the presentation of the experimental results.

Chapter 4 – Numerical modelling

The numerical modelling work of the current research program is presented in this chapter. The critical state soil theory, upon which the Modified Cam-clay model is based, and the model itself are introduced, followed by the two-dimensional finite element analysis (FEA) of the cyclic direct simple shearing on soft clay. Finally the results of the analyses are presented.

Chapter 5 – Conclusions and recommendations

The major findings of the research program are summarised and conclusions are presented, followed by recommendations for future research.

Appendices

Detailed elaborations of the critical state soil theory and the modified Cam-clay model are provided in Appendix A. Additional finite element analysis results are presented in Appendix

B. An example ".inp" file for the two-dimensional finite element soil model developed is provided in Appendix C

Chapter 2 - Literature review

A comprehensive literature review was conducted to build a conceptual framework upon which the research program was based. First, current research into offshore pipeline axial walking is introduced. An investigation of the shear influence zone induced by axiallywalking offshore pipelines is presented. A generic pipe load-displacement relationship that can be applied to characterise pipe axial walking behaviour is discussed. This is followed by the proposal to use cyclic direct simple shear testing to investigate the soil behaviour within the shear zone. A discussion of the relevant parameters in offshore pipeline axial walking is presented. Detailed information about direct simple shear testing is introduced in terms of its development, and variety and uniformity in soil specimens.

2.1 Offshore pipeline axial walking

Offshore pipeline axial walking is a phenomenon of the undesired accumulation of axial displacement of offshore pipelines during operational cycles. Tornes et al. (2000) provided the first comprehensive study of pipe axial walking, and this was followed by analytical solutions linking pipe-soil friction and pipe axial walking presented by Carr et al. (2006). White et al. (2011a) reported some experimental data on pipe-soil axial resistance, demonstrating the influence of drainage and excess pore water pressure. The data indicate that axial resistance, as a portion of submerged pipe weight, can vary from as low as 0.1 to greater than 1. A framework for pipe-soil axial resistance based on an effective stress approach was set out by White & Cathie (2011), covering both undrained and drained conditions. It was argued that axial resistance tends towards the drained values during cycles of pipe movement, regardless of the rate or duration of each movement. This is due to the fact that the soil surrounding the pipe will eventually reach a critical state, at which excess pore water pressure generation will not take place. A reliable prediction of this mechanism could bring significant design benefits, as drained resistance is usually higher than undrained resistance. Consequently, a higher range of axial resistance can be applied, leading to more cost-effective design.

2.1.1 Axial pipe-soil interaction

Bruton et al. (2008) divided axial pipe-soil interaction into two stages as shown by the 'brittle' response in Figure 2.1: (i) breakout axial resistance and (ii) residual axial resistance. When

the pipe is loaded for the first time, a breakout or peak axial resistance can take place which reduces to a residual axial resistance after breakout. The displacement at which this peak occurs is defined as the mobilisation displacement. A peak is not observed during subsequent loading and this leads to a ductile breakout response, as illustrated by the 'ductile' curve in Figure 2.1.

Figure 2.1 Axial friction resistance schematic with mobilisation displacement and breakout (Bruton et al., 2008)

The friction falls away to residual axial resistance when the pipeline reaches larger axial displacement, and the term 'residual' is used by analogy with the residual friction angle which is mobilised within fine-grained soil after continued shearing along a single plane.

The 'drained' response shown in Figure 2.1 corresponds to slow pipe axial displacement, where excess pore water pressure does not build up, and the axial resistance is profoundly higher in this case.

The axial response is thus significantly influenced by the generation and dissipation of excess pore water pressure which leads to undrained and drained soil behaviour. It is likely that the response is between fully undrained and fully drained in typical field conditions.

2.1.2 Drained and undrained soil resistance

Oliphant and Maconochie (2006) presented a method for estimating axial soil resistance using a relative roughness parameter, and made recommendations on the displacements necessary to mobilise peak and residual undrained and drained soil resistance. It is argued that the application of undrained and drained soil resistance will depend on the rate of straining as well as on the duration of pipeline loading for axial resistance.

The dimensionless group vD/c_v can be used to establish the most likely soil response (Randolph and House, 2001), where v is the velocity of the pipeline, D is the pipe diameter and c_v is the consolidation coefficient. The soil response may be bounded by

$$\frac{vD}{c_v} < 1.0$$
 for the fully drained condition and (2.1)

$$\frac{vD}{c_v} > 20.0$$
 for the fully undrained condition (2.2)

The value of c_v depends on both the permeability and compressibility of the soil and should be measured at low stress levels, as applicable to offshore pipeline axial walking.

During interface shearing, the response of a fine-grained soil ranges from fully drained to fully undrained for various velocities (White and Cathie, 2011). Figure 2.2 demonstrates the steady residual resistance measured during monotonic shearing of normally consolidated kaolin clay over a rough steel surface at different velocities. The kaolin was normally consolidated to 2.5kPa before shearing. A direct shear box was modified to operate at low stress levels as applicable to the offshore pipeline context. The results from shearing of a concrete-clay till interface at various velocities (Steenfelt, 1993) are plotted in Figure 2.2.

Figure 2.2 Interface shearing: kaolin clay and Storeælt clay till (White and Cathie, 2011, Steenfelt, 1993)

The responses of both the kaolin clay and the Storeælt clay till are close in terms of both the limiting drained and undrained resistances as well as the velocity range over which the transition takes place.

2.1.3 Cyclic axial response in an effective stress framework

The first deep water deployment of the Fugro SMARTPIPE (White et al., 2011b) focused on the axial pipe-soil interaction on soft clay. The tool was equipped with pore pressure measurement capacity on the surface of the test pipe, which allows the cyclic axial response to be interpreted in an effective stress framework.

The time histories of imposed vertical load, imposed axial pipe movement and measured axial resistance are presented in Figure 2.3. A modest peak in axial resistance was observed during the first sweep and ductile response followed during all subsequent sweeps.

Figure 2.3 Time history during cyclic axial pipe testing (White et al., 2011b)

As it is possible to measure the excess pore pressure at the pipe soil surface, the data obtained from the cyclic axial pipe test can be compared in terms of both total stress and effective stresses. The mean shear stress τ_{av} on the pipe surface is calculated as

$$\tau_{\rm av} = \frac{F}{\pi D/2} \tag{2.3}$$

where F is the axial pipe-soil load per unit length and D is diameter of the model pipe.

The friction factor based on the total stress FF is defined as

$$FF = \tau_{av}/V \tag{2.4}$$

where V is the vertical pipe-soil load per unit length

The friction factor based on effective stress FF' is defined as

$$FF' = \tau_{av} / \sigma'_{n,av} \tag{2.5}$$

where $\sigma'_{n,av}$ is the mean normal or vertical effective stress

The friction factor response during cyclic axial pipe test is shown in Figure 2.4, both in terms of total stress and effective stress. The total stress response is smoother than the effective

stress response. This is due to the variations between the excess pore pressures measured by the sensors, which indicate that the excess pore pressure was not uniformly distributed at the pipe soil surface.

Figure 2.4 Friction factor response in cyclic axial pipe testing (White et al., 2011b)

When the responses are plotted in the form of total and effective stress failure criteria as illustrated in Figure 2.5, the effective stress interpretation is the most consistent. While the axial response in total stress interpretation varies for each cycle, all sweeps in each direction overlie each other in the effective stress interpretation.

Figure 2.5 (a) Total stress interpretation of axial response (b) Effective stress interpretation of axial response (White et al., 2011b)

Analysis of the field data also suggests that the mobilisation of axial resistance is a timerelated process instead of being linked to the distance of shearing. The suggestion is consistent with the excess pore pressure development in the sweeps. In other words, full pipesoil resistance is only mobilised when steady pore pressures are reached.

2.1.4 Theoretical framework for axial resistance

Randolph et al. (2012) introduced a theoretical framework based on planar shearing to assess the magnitude of axial resistance. In the scenario shown in Figure 2.6(a), a slab is sheared at velocity v across a soil surface. The pressure exerted by the slab on the soil is q, and shearing occurs within a shear band of thickness h_s . Excess pore pressure Δu_s is generated during shearing and a shear strain of γ is reached after a time t = $\gamma h_s/v$.

Figure 2.6 (a) Schematic diagram for analysis of velocity effects for planar shearing (b) Stress paths in $e - \ln \sigma_v$ space (Randolph et al., 2012)

The response of soil within the shear band is presented in Figure 2.6(b). Compression takes place in drained shearing corresponding to an ultimate decrease in void ratio of Δe_{max} , and the volumetric strain in this case is $\Delta \varepsilon_{v,max}$. For undrained shearing, excess pore pressure of Δu_{max} is generated. When the shearing is partially drained or partially undrained, the volumetric strain $\Delta \varepsilon_v$ and excess pore pressure Δu may be related by

$$\Delta \varepsilon_{v} = -\frac{\Delta e}{1+e_{0}}$$
$$= \Delta \varepsilon_{v,max} + \frac{\lambda}{1+e_{0}} \ln(1-\frac{\Delta u}{q})$$
(2.6)

The corresponding limiting shear stress, τ_f , can be expressed as

$$\tau_{\rm f} = (q - \Delta u) \tan \emptyset'$$
$$= \mu q (1 - \frac{\Delta u}{q})$$
(2.7)

where $\mu = t \tan \emptyset'$

The zone influenced by excess pore water pressures may be considered to extend a distance of l into the soil, where

$$l = \sqrt{12c_{\nu}t}$$

Therefore the volumetric strain $\Delta \varepsilon_{v}$ can be expressed as

$$\Delta \varepsilon_{\nu} = \frac{\lambda}{1+e_0} \frac{\Delta u}{q} \sqrt{1.33 \frac{c_{\nu} t}{h_s^2}}$$
$$= \frac{\lambda}{1+e_0} \frac{\Delta u}{q} \sqrt{1.33 \gamma \frac{c_{\nu}}{h_s \nu}}$$
(2.9)

Combine this relationship with Equation 2.1 gives

$$\Delta \varepsilon_{v,max} \frac{1+e_0}{\lambda} + \ln\left(1 - \frac{\Delta u}{q}\right) = \frac{\Delta u}{q} \sqrt{1.33 \frac{c_v t}{h_s^2}}$$
$$= \frac{\Delta u}{q} \sqrt{1.33 \gamma \frac{c_v}{h_s v}}$$
(2.10)

Figure 2.7(a) provides example relationships between excess pore pressure and time or shear strain divided by normalised velocity vh_s/c_v . Four curves for various values of $\Delta \varepsilon_{v,max}(1+e_0)/\lambda$ are presented. $\Delta \varepsilon_{v,max}(1+e_0)/\lambda$ is a quantity which quantifies the distance of the initial state from the critical state. The upper limit of $\Delta u/q$ is close to unity, resulting in almost zero effective stress on shearing.

Figure 2.7 (a) Example relationships between excess pore pressure and time or shear strain Planar shearing responses for different normalised velocities Variation in resistance with (b)time; (c)displacement (Randolph et al., 2012)

To develop a complete shear stress-displacement relationship, Randolph et al. (2012) proposed a simple hyperbolic response of the form

$$\tau = \frac{G_0 \gamma}{1 + R_f G_0 \gamma / \tau_f} \tag{2.11}$$

with a small-strain shear modulus G_0 and hyperbolic parameter R_f (Duncan and Chang, 1970).

Figure 2.7(b) shows the variation of τ/q with time for different normalised velocities, vh_s/c_v . The responses for various velocities are intercepted by a common backbone curve after failure based on Equation (2.7). The same responses are shown in Figure 2.7(c) as a function of displacement, normalised by the shear band thickness h_s .

2.2 Shear zone in offshore pipeline axial walking

Axially-walking offshore pipelines induce relative movement of the soil underneath the pipe. Since the pipe-soil interaction is extensively influenced by the soil response, the portion of the soil below the pipe which undergoes shearing, characterised as the *shear zone*, is significant for pipe axial walking assessment. To characterise the shear zone, Senthilkumar (2013) applied image correlation analysis in MAPS testing. Based on the observations and results from the experiments conducted, the shear zone can be illustrated as in Figure 2.8.

Figure 2.8 Shear zone underneath axially-walking pipe (Senthilkumar, 2013)

The shear zone consists of two parts. The first part, *zone h*, is the soil block from the depth immediately below the pipe to a depth of h. When pipe axial walking takes place, the soil within zone h moves together with the pipe at the same displacement rate. This zone can be considered as the direct failure zone. The second part, *zone H-h*, is the soil block from the depth of h to the depth of H, where H is the limit depth of shear influence. The soil in this zone is mobilised when axial walking occurs, but the soil does not move together with the pipe at the same displacement rate. Instead, the displacement decreases as the depth increases.

The experimental data (Senthilkumar, 2013) suggest that higher axial displacement rate would lead to a deeper shear zone, i.e. a larger value of H. It was found that the depth of zone h increases with both pipe axial displacement rate and pipe embedment. In contrast, the depth of zone H-h increases with increasing axial displacement rate, but it is largely independent of

pipe embedment. The axial displacement rate depends primarily on soil axial resistance as well as on the expansion/contraction rate of the pipe wall, which in turn depends on the heating/cooling rate and the properties of the pipe and the soil. If the pipe axial displacement rate can be reduced, the extent of the shear influence on soil can also be reduced.

It is also worth noticing that the soil within the shear zone is subjected to axial loading while under vertical loading due to the pipe's weight. This loading pattern can be closely resembled by the direct simple shear test, as shown in Figure 2.9, in particular for *zone H-h*.

Figure 2.9 (a) Shear zone underneath axially walking pipe and (b) loading pattern of direct simple shear test

2.3 Generic load-displacement relationship in pipe axial walking

(Senthilkumar, 2013) proposed a generic pipe load-displacement relationship curve (Figure 2.10), which can be applied to characterise pipe axial walking behaviour. This load-displacement curve was constructed based on the experimental outcomes of physical pipe-soil interaction testing, using the Monash Advanced Pipe-testing System (MAPS).

The load-displacement curve comprises three major components: pre-peak, peak and residual resistance. The experimental results show that at a particular embedment depth, the rate of pipe axial displacement has no or negligible influence on the pre-peak load-displacement relationship. Therefore, in Figure 2.10 the pre-peak portions of the fast/undrained and

slow/drained load-displacement curves are the same for a particular embedment depth. However, increasing embedment depth means an increase in contact area, resulting in higher axial resistance.

Figure 2.10 Generic pipe load-displacement curve with emphasis on residual resistance (Senthilkumar, 2013)

The peak resistance of the shear load, depicted by τ_h in Figure 2.10, was found at its highest value in the initial shearing cycle based on experimental observation. With increasing number of shearing cycles τ_h weakens gradually and eventually becomes negligible. The peak resistance τ_h was influenced by the embedment of the pipe and was found to be more profound in undrained conditions than in drained conditions.

The residual resistance, which is the primary component in the load-displacement curve, was dominated by pipe axial displacement rate. The fast/undrained residual resistance is defined as the undrained limit, whereas the slow/drained one is defined as the drained limit. The region between the undrained and drained limits is regarded as the transition zone and

characterised as *the failure region governed by pipe axial displacement rate*. Furthermore, under undrained conditions, the level of residual resistance was also found to be influenced by pipe embedment. Therefore, the undrained limit of residual resistance is further divided into the upper and lower undrained limits, based on pipe embedment. The region between the lower and upper undrained limits is characterised *as the failure region governed by pipe embedment*.

2.4 Residual resistance and undrained/drained limits in MAPS

The residual resistance levels in MAPS tests at various displacement rates are presented in Figure 2.11 (Senthilkumar, 2013). The axial pipe residual resistance is normalised by the maximum recorded vertical load V_{max} and the axial displacement rate is normalised by the effective pipe diameter D' and the coefficient of consolidation C_{v} . Figure 2.11(a) shows the residual resistance for smooth pipe surface conditions and Figure 2.11(b) shows the residual resistance for rough pipe surface conditions.

The plots show that the residual resistances at different pipe embedments converge to an unchanged level when the axial displacement rate increases. This limit can be considered as the axial displacement rate beyond which the residual resistance is not affected by the increase of axial displacement rate. In other words, it can be considered as the undrained limit. Similarly, the drained limit of the residual resistance can be obtained from the plots, and it is observed that higher embedment depths result in higher level of residual resistance.

Figure 2.11 Normalised residual resistance at various displacement rates and pipe embedments for (a) smooth pipe and (b) rough pipe (Senthilkumar, 2013)

2.5 Utilising cyclic direct simple shear test in offshore pipeline axial walking problems

In offshore pipeline axial walking problems, the seabed soil underneath the pipe undergoes cyclic shearing with low vertical/normal stress imposed. In order to further investigate the soil behaviour within the shear zone, in particular the load-displacement relationship, cyclic direct simple shear testing was proposed as the preferred testing method. Direct simple shear testing has been used extensively in offshore geotechnical engineering applications. The increasing popularity of the direct simple shear test is mainly due to the relatively small sample size required, and the shearing pattern, which closely resembles the loading condition in offshore geotechnical engineering problems. Particularly for offshore pipeline axial walking scenarios, the soil within the shear zone is subjected to horizontal cyclic shearing while under a vertical load, which is similar to the loading pattern in the direct simple shear test. Furthermore, cyclic shearing can be applied in the direct simple shear test, which can simulate the expansion and contraction in pipeline operation and shutdown cycles. The direct simple shear test also has merits compared with other testing methods. It is the only standard test that allows the rotations of principle stress axes (Airey and Wood, 1987) and unlike in direct shear testing where the shear failure plane is fixed as the horizontal plane, the failure plane in direct simple shear tests is not pre-defined.

When utilising direct simple shear tests in investigating pipeline axial walking problems, it is important to have sound knowledge of the relevant parameters involved. It has been determined that the primary variables are effective normal stress, shearing velocity and shearing amplitude. Some research literature has given guidance on the magnitude of these variables.

Normally the magnitude of the effective normal stress imposed on the soil underneath the pipe is relatively low in pipe axial walking problems. The effective normal stress (σ'_n) equals the total normal stress (σ_n) minus the pore water pressure (u). In drained cases, total normal stress (σ_n) may not be equal to the effective normal stress (σ'_n) since pore water pressure can be very high due to the depth of seabed, which can be in the order of kilometres. Bruton et al. (2007) suggest that the effective normal stress generated by typical pipeline weights is at the levels of 2kPa to 10kPa. The first stage of the Furgo SMARTPIPE project (White et al.,

2011b) saw an effective normal stress between 1kPa to 3kPa. In a pipe interface shearing example given by White and Cathie (2011), an effective normal stress of 5kPa was applied.

Regarding the shearing velocities, the magnitude of pipeline velocities ranges from 0.5mm/s to 0.001mm/s, and could even be lower for fully drained conditions. Bruton et al. (2007) advised that the available field data on pipeline velocities were limited, and an example problem provided in the literature showed that pipeline velocities only exceed 0.2mm/s near pipe ends and the durations are very short, and an average velocity of 0.005mm/s was given. In the first stage of the Furgo SMARTPIPE project (White et al., 2011b), 0.04mm/s was applied for sweeps 1-4 and 0.15mm/s for sweeps 5 and 6. In the SAFEBUCK JIP project (White et al., 2011a), where testing was performed on a soft marine clay, 0.5mm/s was used but for sweep no. 22, 0.001mm/s was applied. In a direct shear test (White and Cathie, 2011), where normally consolidated kaolin clay was sheared on a steel interface, 0.003mm/s was applied. In the Monash Advanced Pipe-testing System (MAPS), the maximum velocity was 0.5mm/s and the minimum was 0.01mm/s. The selection of shearing rate in the current research program is intended to cover the undrained, partially drained and drained conditions in pipe axial walking.

No clear guidance is provided on how to transfer the pipe axial walking displacements into the shearing amplitude of direct simple shear tests. The 'Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils' (ASTM-D6528, 2007) suggests at least a 20% shear strain for shear strength determination purpose.

2.6 Direct simple shear test

As discussed previously, cyclic direct simple shear testing was selected as the method for investigating the behaviour of soil within the shear zone. In this section, detailed knowledge of the direct simple shear test is presented in terms of its development, variety, uniformities in soil samples and the interpretation of test results.

2.6.1 Development of direct simple shear test

The direct simple shear test (DSS) is an improvement on the direct shear test, and both tests have been developed in order to investigate the shear strength of soil. The direct shear test
simulates the effect of shear loads acting on a predetermined failure surface. In these tests a circular or rectangular soil specimen is placed in a split box, as shown in Figure 2.12.

Figure 2.12 An illustration of the direct shear box (Zekkos et al., 2010)

In the first stage a normal load is applied at the top of the box and in the second stage, a shear load is applied at the top or bottom of the split box, which causes the specimen to shear along the predetermined failure plane between the two parts of the split box. During the test, the shear and normal stresses are measured and plotted against the horizontal displacement. A peak in the stress-strain curves is often observed. The progression of the normal displacement versus the horizontal displacement provides information about the contraction or dilation behaviour of the soil specimen (Grognet, 2011). In direct shear tests, the shear stress-strain distribution is highly non-uniform. This is due to a high concentration of stresses developing at the front and back edges of the soil specimen, which creates a progressive failure so that the total shear strength of the specimen is not fully mobilized. In addition, the strain restraints which force the failure in one direction create an unknown state of stress in the specimen (Terzaghi et al., 1996). The direct shear test is useful in determining the shear strength of soils, but not their stress-strain response (Bardet, 1997).

Due to the limitations of the direct shear tests, the direct simple shear test was introduced in order to achieve a more uniform specimen stress-strain distribution. Figure 2.13 illustrates the difference between the direct simple test and the direct shear test. In the direct simple test the soil specimen is confined by a wire-reinforced membrane or stacked rings. At the consolidation stage a normal stress is applied and the specimen is consolidated under one-dimensional conditions. The consolidation phase is followed by the shearing of the soil in one dimension only. This strain condition is called the simple shear strain condition (Dyvik et al., 1987).

Figure 2.13 Illustrations of direct simple shear test (left) and direct shear test (right)

The first direct simple shear device was developed by the Swedish Geotechnical Institute (S.G.I) in 1936, as illustrated in Figure 2.14 below (Kjellman, 1951). This apparatus was able to test circular soil specimens with a height of 60mm and diameter of 20mm confined by a rubber membrane and aluminium rings. The sample was first consolidated using lead weights and drainage was allowed by placing porous stones at both the top and bottom of the soil specimen. The soil specimen was then sheared from the top plate, while maintaining either a constant load or constant sample height. To avoid slippage between the specimen and the plates, the top and bottom caps were often equipped with teeth. Vertical and horizontal load cells were used to record the normal stress and shear stress, and displacement gauges were applied to measure the vertical displacement and shear strain. The device was able to maintain a constant area of potential sliding during shearing, and to improve the homogeneity of the stress distribution when compared with the direct shear device.

Figure 2.14 S.G.I Direct Simple Shear Device (Kjellman, 1951)

Kjellman's idea (Kjellman, 1951) of using a cylindrical sample confined with a reinforced rubber membrane was further developed by the Norwegian Geotechnical Institute (NGI) (Bjerrum and Landva, 1966), and a photograph of the apparatus is shown in Figure 2.15(a). A soil sample 80mm in diameter and 10mm high was confined in a rubber membrane reinforced with a spiral winding of wire with a diameter of 0.15mm wound at 25 turns per cm, as shown in Figure 2.15(b).

Figure 2.15 (a) NGI direct simple shear device (b) Reinforced rubber membrane (Bjerrum and Landva, 1966)

The confining membrane allows one-dimensional consolidation to occur while maintaining a constant cross-sectional area. At the consolidation stage, the major principal stress σ_1 is equal to the normal stress applied. During shearing a rotation of the principal stress will occur as a result of the increase in shear stress. The NGI direct simple shear device has since become the basis of the design of many later direct simple shear devices.

2.6.2 Drained and undrained direct simple shear test

Drained direct shear conditions are achieved by applying a constant normal load during shearing and applying an appropriate shearing rate so that no excess pore water pressure would build up during shearing. Drained direct simple shear testing is usually performed on granular materials such as sand, since the drained parameters of granular materials are most likely to be investigated.

For cohesive material like clay, the undrained parameters are most likely to be investigated. Therefore, for cohesive materials undrained direct simple shear testing is usually performed. However, several direct simple shear test devices are unable to perform truly undrained testing for two main reasons. Firstly, there may be difficulties in blocking the drainage in a direct simple shear test, because of the lack of pressurised cell which can provide back pressure. Secondly, pore pressure measurement may not be available when using direct simple shear devices.

2.6.3 Constant-volume undrained equivalent test

Since some apparatuses may not be able to perform truly undrained tests, undrained direct simple shear tests were carried out as constant-volume tests (Bjerrum, 1954). Bjerrum and Landva (1966) outlined that 'during the shear phase of the constant-volume tests the specimens were drained and the rate of strain applied was selected such that the pore pressures in the specimen were zero throughout the tests; the height of the specimen was then kept constant by varying the vertical load on the sample'. Therefore, the undrained-equivalent constant-volume test is in essence a drained direct simple shear test with normal load variations.

Further, Bjerrum and Landva (1966) argued that in constant volume tests, the change in applied normal stress equals the change in pore water pressure which would have occurred in truly undrained direct simple shear tests. This argument was verified by Dyvik et al. (1987) for normally consolidated clay. Based on tests results, it was concluded that static undrained-equivalent constant volume tests on normally consolidated clays produce the same results as truly undrained tests. The assumption that the change in applied normal stress equals the change in pore water pressure which would have occurred in truly undrained direct simple shear tests was therefore verified. This is valid for saturated soils. The undrained-equivalent constant-volume direct simple shear test provides undrained parameters of cohesive soils. The American Society for Testing and Materials (ASTM) 'Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils'(ASTM-D6528, 2007) is based on the concept of constant volume testing, and many commercially-available direct simple shear devices are built according to ASTM-D6528, such as the GDS Shear base system used in the current research program.

2.6.4 The advantages of direct simple shear test over triaxial test

Airey and Wood (1987) argue that as a standard test the direct simple shear test has apparent merits when compared with the triaxial test. In direct simple shear testing it is relatively easy to set up the soil samples and consolidation takes place at a fast rate due to the small sample height. Furthermore, it is the only standard test that allows the rotations of principle stress axes. Such rotations take place in a large proportion of field situations and lead to a reduction in strength (Symes et al., 1984). However, there has been much discussion about the

applicability and suitability of the parameters obtained from direct simple shear testing (Saada and Townsend, 1981, Vucetic and Lacasse, 1982).

2.6.5 Non-uniformities in direct simple shear test

The direct simple shear test apparatus has been particularly criticised because it is unable to impose uniform stress on soil samples (Airey and Wood, 1987). The absence of complementary shear stress along the vertical boundaries of the soil sample means that ideal stress conditions cannot be achieved in the direct simple shear apparatus. As shown in Figure 2.16(a) in the test only the average normal stress, σ , the average shear stress, τ , and in some cases the average radial stress, σ_t are measured along the boundaries. Theoretical and experimental analyses have been conducted to investigate the relationship between the measured stresses and the stresses on a deformed soil sample in direct simple shear, as illustrated in Figure 2.16(b).

Figure 2.16 Stresses acting on test sample: (a) in direct simple shear apparatus; (b) in true simple shear (Airey and Wood, 1987)

Theoretical analyses have been performed using linear elastic samples (Lucks et al., 1972, Shen et al., 1978, Wright et al., 1978), but the results of these analyses give conflicting pictures of the degree of uniformity of stress. According to Lucks et al. (1972), over 70% of the sample was uniformly stressed, while Wright et al. (1978) concluded that direct simple shear tests cannot provide either reliable stress-strain relationships or absolute failure values. The test results from Vucetic and Lacasse (1982), who performed tests on real soils at various height-to-diameter ratios, showed that the measured soil behaviour is not affected by non-uniformities. In order to have a better understanding of stress non-uniformities, a circular simple shear device in which samples are surrounded by an array of load cells was developed (Budhu, 1979, Airey, 1984), so that the detailed stress-distribution can be measured. A comparison of the uniformity of stress in sands and clays was made by Airey and Wood

(1984) and they concluded that for the more plastic clay samples the uniformity improves significantly. Therefore, the results from direct simple shear tests on clay can be applied with more confidence than the results from tests on sands.

2.6.6 The effect of side boundaries on the uniformities of stress/strain

According to Roscoe (1953), under low normal stress conditions, the non-uniformities of strain are significant with straight vertical side boundaries, as shown in Figure 2.17 below. Despite the fact that the sides were made as smooth as possible, the sample did not deform as a parallelogram and separation could be observed at the corner with acute angles.

Figure 2.17 Side view of a plasticine sample after shearing under a normal stress of 12kPa (Roscoe, 1953)

Grognet (2011) developed an experimental device to investigate the effect of the vertical side boundaries on the uniformity of stress/strain in direct simple shear tests. Three different vertical side boundary configurations were considered, as shown in Figure 2.18 below.

Figure 2.18 Three vertical boundary configurations considered (Grognet, 2011)

Configuration 1 is the conventional straight vertical side boundary, with two PVC plates enclosing the soil specimen. Configuration 2 is vertical boundaries comprising of a series of strips which can slide on top of each other, very similar to the stack of rings used in commercially-available Geonor devices. These strips are added to improve the stress/strain homogeneity by preventing tiling and separation. Configuration 3 is similar to Configuration 2, except that vanes intruding inside the soil specimen are provided, which can increase the number of corners along the vertical boundaries.

Grognet (2011) showed that with the presence of the strips and vanes, the stress/strain uniformity was improved compared with conventional straight vertical boundaries, and separation of the specimen at the acute corner is reduced. Based on the findings, the use of frictionless containing rings in the present commercially-available direct simple shear devices can improve the stress/strain uniformity.

2.7 Summary

A comprehensive literature review was conducted to build a conceptual framework upon which the research program was based. Offshore pipeline axial walking is the undesired accumulation of axial displacement of offshore pipelines during operation cycles. Research indicates that the axial resistance will tend towards the drained values during cycles of pipe movement, regardless of the rate or duration of each movement. A reliable prediction of this mechanism could bring significant design benefits, as drained resistance is usually higher than undrained resistance. Consequently, a higher range of axial resistance can be applied, leading to more cost-effective design. The pipe-soil interaction in pipe axial walking problems is extensively influenced by the soil response. The axial response is significantly influenced by the generation and dissipation of excess pore water pressure which leads to undrained and drained soil behaviour. It is likely that the response is between fully undrained and fully drained in typical field conditions. Analysis of the field data also suggests that the mobilisation of axial resistance is a time-related process instead of being linked to the distance of shearing. This suggestion is consistent with excess pore pressure development in cycles. In other words, the full pipe-soil resistance is only mobilised when steady pore pressures are reached. The residual resistance is the primary component of the loaddisplacement relationship in pipe axial walking, and it is dominated by the axial displacement rate.

The portion of the soil below the pipe which undergoes shearing, characterised as the shear zone, is significant for pipe axial walking assessment. Cyclic direct simple shear testing was selected as the preferred testing method to conduct an investigation into the soil behaviour within the shear zone owing to its various merits, including its loading pattern, allowing the rotation of principle stress axes, the small specimen size required, and its shear failure planes.

Chapter 3 - Experimental program and results

This chapter presents the experimental program and results. First the soil selected for the experimental program is introduced, followed by an elaboration of the experimental set-up. Finally the experimental results are presented.

3.1 Soil selection

The initial aim of the investigation was to simulate the environment of the petroleum pipelines which were to be laid on the seabed of the North Western Shelf, Australia. However, the use of actual soil material from the field was found to be not feasible due to both accessibility as well as quantity issues. As an alternative, as suggested by researchers at the University of Western Australia (UWA Centre for Offshore Foundation Systems), a kaolinite soil known as Prestige NY from Granville (NSW) was selected as the soil to be tested in the experimental program. Prestige NY kaolinite is commercially available and it was concluded that it exhibits similar characteristics to those of the seabed soil (Senthilkumar, 2013).

Various properties of both Prestige NY kaolinite and seabed silt have been investigated by Shannon (2013) and Senthilkumar (2013), including specific gravity analysis, particle size analysis, Atterberg limits tests, oedometer analysis, mineralogy analysis and triaxial testing.

3.1.1 General soil properties

The general soil properties of the Seabed silt and Prestige NY kaolinite clay are compared in Table 3.1, and the physical appearance of the soils is shown in Figure 3.1.

Table 3.1 General soil properties (Senthilkumar, 2013)			
	Seabed silt	Prestige NY	
Colour	Green	White	
Swelling/Non-swelling	Non-swelling	Non-swelling	

Figure 3.1 Soil sample of Prestige NY and Seabed Silt (Senthilkumar, 2013)

3.1.2 Specific Gravity

Specific gravity analysis was carried out for both soils, using an automatic density analyser. The measured specific gravity of both the Seabed silt and Prestige NY is given in Table 3.2 below.

Table 3.2 Specific Gravity of Seabed silt and Prestige NY (Senthilkumar, 2013)

Seabed silt	2.63
Prestige NY	2.61

3.1.3 Particle size analysis

The average particle size distribution of both soils is given in Figure 3.2. The distribution indicates that for both soils the majority of the particles are clay-sized.

Figure 3.2 Particle size distribution curves (Senthilkumar, 2013, Shannon, 2013)

3.1.4 Atterberg limits analysis

The aims of the Atterberg limits analysis are to determine the liquid limit and plastic limit of the soil. The results are plotted on the USGS chart given in Figure 3.3. Both soils exhibit liquid limits as high as 50% of the gravimetric water content. According to the classification, the Prestige NY kaolinite is classified as inorganic highly plastic clay (CH) but falls close to the boundary of CL soils, whereas the seabed silt is classified as organic silt (MH). Despite the different classifications the two soils fall into, their close proximity on the USGS charts indicates that they exhibit similar wetting characteristics.

Unified Soil Classification System Plasticity Chart

Figure 3.3 USGS Charts (Senthilkumar, 2013, Shannon, 2013)

3.1.5 Oedometer analysis

Oedometer tests were performed to determine the consolidation parameters of the two soils. The soils were prepared with a gravimetric water content of approximately twice the liquid limit and one-dimensional consolidation was implemented. The void ratio versus consolidation pressure curve is shown in Figure 3.4 and the consolidation parameters are given in Table 3.3.

Figure 3.4 Consolidation and re-consolidation curves of oedometer tests (Senthilkumar, 2013, Shannon, 2013)

	Seabed silt	Prestige NY
Initial Gravimetric Water Content (%)	120 ≈2×LL	100 ≈2×LL
Average Compression Index, c _c	0.46	0.40
Compressibility Parameter, λ	0.199	0.173
Average Swelling index, c _s	0.12	0.11
Unload/Reload Parameter, κ	0.053	0.046
Average Coefficient of Consolidation, $c_{\rm v}~(m^2\!/\!sec)$	1.2×10 ⁻⁷	2.89×10 ⁻⁷
Average Permeability (m/s)	1.8×10 ⁻⁹	3.6×10 ⁻⁹
Coefficient of Compressibility, $m_v (kPa^{-1})$ at 50-100 kPa step	0.0016	0.0012
Secondary Compression, c_{α}	0.0058	0.0057

Table 3.3 Consolidation parameters from oedometer tests (Senthilkumar, 2013, Shannon, 2013)

3.1.6 Triaxial tests

The main purpose of conducting the triaxial tests was to determine the undrained/drained friction angle and other relevant properties that can be applied in numerical modelling of soil behaviour. Table 3.4 below gives the parameters applied and the properties determined in the triaxial tests.

	Seabed silt	Prestige NY
Initial Gravimetric Water Content (%)	$120 \approx 2 \times LL$	$100 \approx 2 \times LL$
Drained/Undrained Friction Angle, ϕ ' (°)	19.65	21.9
Critical State Line, M	0.80	0.89
Average Coefficient of Consolidation, $c_v (m^2/sec)$	1.2×10 ⁻⁷	2.19×10 ⁻⁷

Table 3.4 Parameters and properties in triaxial tests (Senthilkumar, 2013, Shannon, 2013)

3.1.7 Summary

A summary of the average geotechnical properties of the seabed silt and the Prestige NY kaolinite is presented in Table 3.5. The closeness of the properties of both soils justifies the selection of Prestige NY kaolinite as the soil used in the experimental program.

Table 3.5 Geotechnical properties of Seabed silt and Prestige NY kaolinite (Senthilkumar, 2013, Shannon, 2013)

	Seabed silt	Prestige NY
Specific Gravity	2.63	2.61
Liquid Limit (%)	55	52
Average Compression Index, c _c	0.46	0.40
Compressibility Parameter, λ	0.199	0.173
Average Swelling Index, c _s	0.12	0.11
Unload/Reload Parameter, κ	0.053	0.046
Average Coefficient of Consolidation, $c_v (m^2/sec)$	1.2×10 ⁻⁷	2.9×10 ⁻⁷
Average Permeability (m/s)	1.8×10 ⁻⁹	3.6×10 ⁻⁹
Secondary Compression, c_{α}	0.0058	0.0057
Critical State Friction Angle, ϕ ' (°)	19.7	21.9
Critical State Line, M	0.8	0.85

3.2 Experimental set-up

3.2.1 GDS Direct Simple Shear Testing System

In the experimental program of the current research, cyclic direct simple shear tests were performed on Prestige NY kaolinite clay at low normal stress, using the GDS Standard Simple Shear System (GDS-STDSS), as shown in Figure 3.5. The GDS-STDSS system is an electro-mechanical shear testing device which is designed to meet and exceed the requirements of ASTM-D6528 (2007), 'Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils'.

Figure 3.5 GDS Standard Simple Shear System (GDS-STDSS)

The apparatus is a fully self-contained system with no requirements for compressed air or hanging weights. Normal (axial) and shear forces are applied using GDS electro-mechanical force actuators. Each axis (normal or shear) can be controlled in displacement (strain or velocity) mode as well as load or stress mode, which means that both constant-volume and constant-load tests can be performed. As the system is capable of performing cyclic shearing, it meets the needs of the research program. Axial and shear load readings are controlled under closed-loop feedback. Top cap fixity is assured through a system of crossed roller linear guides to minimise top cap rocking during shearing.

3.2.2 Specimen preparation

The Prestige NY kaolinite was first mixed from the powder state to a slurry using a soil mixer, achieving a 70% initial moisture content. The specimens tested in the GDS simple shear system are cylindrical specimens 50mm in diameter. The specimen is laterally confined by Teflon-coated low friction retaining rings, as shown in Figure 3.6(a), ensuring a constant cross-sectional area during shearing. The initial height of the specimen can be varied by adjusting the number of rings. During soil specimen preparation and insertion, the friction rings are first constrained by supporting forms and the reconstituted soil is inserted into the sample preparation apparatus, as shown in Figure 3.6(b). The assembly is then placed in the system as shown in Figure 3.6(c) and the supporting forms are secured into place as shown in Figure 3.6(d).

Figure 3.6 Specimen preparation and insertion

3.2.3 Pore pressure measurement

It is difficult to achieve truly undrained conditions in direct simple shear testing, unless a pressurised chamber is installed inside the system to host the sample. The GDS-STDSS

Chapter 3 Experimental program and results

system was not originally designed to be capable of doing truly undrained tests and to be equipped with pore pressure measurement capacity. ASTM-D6528 (2007) specifies that constant-volume undrained-equivalent direct simple shear testing can be conducted to determine undrained soil properties in such systems. As presented previously, Bjerrum and Landva (1966) argued that in constant volume testing, the change in applied normal stress equals the change in pore water pressure which would have occurred in truly undrained direct simple shear testing. This argument was verified by Dyvik et al. (1987) for normally consolidated clay.

The intention of the current research program was not to establish truly undrained conditions in direct simple shear tests. The drainage was kept open at the consolidation stage as well as during cyclic shearing. However, when the applied shearing rate/velocity is not slow enough and consequently the soil response is not fully drained, some amount of excess pore pressure builds up, since dissipation of excess pore pressure is not fast enough. Therefore, pore pressure measurement capacity is still required to better interpret and analyse the test results.

Modification to the original GDS-STDSS system was carried out to equip the device with pore pressure measurement capacity. The base pedestal of the specimen set-up, where the bottom porous stone is attached, is connected to a pore pressure transducer (PPT) through the bottom drainage port as shown in Figure 3.7. When the base pedestal is saturated and the bottom drainage valve is closed, the reading from the PPT gives an estimation of the pore pressure level at the bottom of the specimen.

Figure 3.7 Pore pressure measurement configuration

The pore pressure transducer installed is the P620GDS-1MPa-C2.5 transducer produced by GDS Instruments. The transducer was connected to the GDS RS232 Data interface. Connecting the transducer to the data interface enables the transducer to work with the GDS-STDSS system under the same platform of GDSLAB, thus achieving simultaneous data recordings in the test.

Deionised water was used to saturate the transducer and the base pedestal. The water was first de-aired using a pump as illustrated in Figure 3.8(a). The base pedestal was immersed in water for 24 hours to make sure that it is fully saturated prior to sample insertion. The de-aired water was injected into the transducer through the bottom valve using a syringe, as shown in Figure 3.8(b). The readings of the PPT were closely monitored throughout the process to ensure that excess pore pressure was not built up.

Figure 3.8 (a) De-airing water apparatus (b) Water injection

The bottom valve was closed when saturation was completed. The top drainage port was kept open during consolidation as well as the shearing stages, and the water coming out from the top drainage port was recorded using a measuring cylinder, as shown in Figure 3.9.

Figure 3.9 Measuring cylinder connecting to the top drainage port

3.3 Test methodology

3.3.1 Consolidation and normal stress

In the current experimental program, ideally the soft clay (Prestige NY kaolinite) would be normally consolidated one-dimensionally to an appropriate vertical/normal stress in the GDS-STDSS system. When the consolidation stage is completed, cyclic direct simple shear testing on the soil specimen would commence under the same normal stress.

As discussed previously, normally the magnitude of effective normal stress imposed on the soil underneath the pipe is relatively low in pipe axial walking problems. The effective normal stress (σ'_n) equals the total normal stress (σ_n) minus the pore water pressure (u). In drained cases, total normal stress (σ_n) may not be equal to the effective normal stress (σ'_n) since the pore water pressure can be very high due to the depth of the seabed, which can be in the order of kilometres. Based on the available literature (Bruton et al., 2007) , the effective normal stress imposed in pipe axial walking is in the range of 2kPa to 10kPa.

However, it was observed and confirmed in the tests that the friction from the horizontal motor rail of the GDS-STDSS system produced undesired variations in the horizontal/shear load readings, as demonstrated in Figure 3.10. In the tests presented in Figure 3.10, the horizontal motor moves back and forth in a sinusoidal function with an amplitude of 2mm, without a soil specimen in place. Vertical stresses of 0kPa, 20kPa and 40kPa were applied on top of the horizontal motor and the readings of the horizontal load cell were recorded.

Chapter 3 Experimental program and results

Figure 3.10 Variations in horizontal load readings due to rail friction

As Figure 3.10 shows, the magnitude of variations in horizontal/shear stress readings due to friction is between 2kPa and 5kPa, given the specimen diameter of 50mm. Several attempts were made to eliminate the variations in load readings due to rail friction, including correcting the raw horizontal load readings by offsetting the variations due to friction. However, due to the randomness of the variations, the outcome of the correction was deemed unsatisfactory. It is therefore concluded that the current testing system cannot produce satisfactory horizontal load readings under very low normal stress. The test results also show that the magnitude of the friction does not rise significantly with increasing applied vertical stress. As a result, a higher consolidation and normal stress of 60kPa was applied in the experimental program to minimise the effect of the rail friction.

3.3.2 Shearing velocities and shearing amplitude

The selection of shearing velocities in the current research program was intended to cover the undrained, partially drained and drained conditions in pipe axial walking.

Regarding the shearing amplitude, analysis of field data (White et al., 2011b) suggests that the mobilisation of axial resistance is a time-related process instead of being linked to the distance of shearing. This suggestion is consistent with the excess pore pressure development in the sweeps. In other words, full pipe-soil resistance is only mobilised when steady pore pressures are reached. Combining this with the guidance from ASTM-D6528 (2007), a single shearing amplitude of 10% of specimen height was used in cyclic direct simple shearing. It is worth noting that the value of height in this case should be taken as the specimen height when the consolidation stage is completed.

3.3.3 Summary of test methodology

The Prestige NY kaolinite was first mixed from the powder state to a slurry using a soil mixer, achieving a 70% initial moisture content. The initial specimen height before consolidation was approximately 26mm. All soil specimens were first normally consolidated one-dimensionally in the GDS-STDSS system before shearing took place. Cyclic direct simple shear tests were performed on the normally consolidated specimens under a constant normal stress. The cyclic shearing followed a sinusoidal horizontal displacement function and the shearing amplitude was 10% of the specimen height. Various shearing velocities were applied, to cover the undrained, partially drained and fully drained responses.

3.4 Test results

3.4.1 Consolidation stage

The consolidation stages for all tests reported here were performed identically. The Prestige NY kaolinite was first mixed from the powder state to a slurry using a soil mixer, and staged consolidation was carried out within the GDS STDSS system. First, a consolidation stress of 20kPa was applied and the consolidation stress was increased to 40kPa and 60kPa subsequently. Table 3.6 outlines the key soil properties and test parameters at the consolidation stage.

Average initial soil moisture	content 71.13%	
Average initial soil wet densit	ty 1.42 g/cm ³	
Initial soil specimen height	26.36mm	
	Consolidation Stress (kPa)	Consolidation Time (min)
	20kPa	120
Staged Consolidation	40kPa	120
	60kPa	until pore water pressure level stabilised

Table 3.6 Soil properties and test parameters at consolidation stage

The consolidation displacement vs. time curves are presented in Figure 3.11 . Figure 3.11(a) is the plot of consolidation displacement in mm versus elapsed time in minutes. Figure 3.11(b) is the plot of consolidation displacement as a percentage of final displacement versus normalised time $c_v t/H^2$, where

 c_v is the average coefficient of consolidation, taken as $2.9 \times 10^{-7} \text{m}^2/\text{sec}$;

t is the elapsed time in seconds;

H is the initial soil specimen height in meters, taken as 0.02636m. The bottom drainage port was closed during consolidation as one-way drainage is considered.

As demonstrated in Figure 3.11, due to the relatively small specimen size in the GDS-STDSS system, the consolidation stage can be completed within a normalised time of $c_v t/H^2 = 12$ (12 hours).

Figure 3.11 Consolidation displacement vs. (a) Elapsed time (b) Normalised time

Figure 3.12 PPT Readings at consolidation stage

The readings of the pore pressure transducer (PPT) at the consolidation stage are plotted in Figure 3.12. The readings show that there is a delayed response from the PPT readings. To be more specific, when the consolidation stress increases, the PPT readings do not rise immediately to a peak. Instead, a gradual increase or delayed response is observed from the readings. Further, the change in PPT reading is not equal to the actual excess pore pressure

that builds up in the specimen. As introduced earlier, due to the limitations of the experimental set-up, the PPT was connected to the bottom drainage port instead of within the specimen. Therefore, the PPT can only provide an estimation of the pore pressure level at the bottom drainage port. Nevertheless, the PPT readings can provide some useful data when analysing the excess pore pressure development in the specimen at both consolidation and cyclic direct simple shearing stages.

3.4.2 Cyclic shearing stage

Cyclic direct simple shear tests were performed on the normally consolidated specimens under a constant normal stress applied. Table 3.7 summarises the test parameters at the cyclic shearing stage.

Applied normal stress during shearing	Average specimen height before shearing	Shearing amplitude	Shearing velocities	No. of cycles
60kPa	19.50mm	10% of specimen height	0.3mm/s 0.03mm/s 0.005mm/s 0.0005mm/s	10-30

Table 3.7 Test parameters at the cyclic shearing stage

The application of a constant normal stress is consistent with the vertical loading condition of the soil underneath the pipe in pipe axial walking, where the vertical load is due to the pipe's weight. Similar to the drainage path of the soil underneath the pipe where there is free drainage at the soil surface, the top drainage port was kept open at the shearing stage. The shearing amplitude was 10% of the specimen height. Various shearing velocities were applied, to cover the undrained, partially drained and fully drained responses. The period of one cycle ranges from approximately 26 seconds for fast shearing to 1560 seconds for slow shearing.

The specimen was sheared by mobilising the horizontal load motor, as shown in Figure 3.13, and the horizontal displacement followed a sinusoidal function.

Chapter 3 Experimental program and results

0%

10% 0% Shear strain (% of H)

10%

Figure 3.13 Cyclic shearing of the soil specimen

Pore pressure development

Shearing velocities significantly affect the level of the excess pore pressure that builds up during cyclic shearing, and therefore dominate whether the soil response in the shear zone is undrained, partially drained or fully drained in pipe axial walking. The readings of the pore pressure transducer were recorded and Figure 3.14 presents the PPT readings versus time plots. The shearing velocities, from fastest to slowest, are (a) 0.3mm/s, (b)0.03mm/s, (c) 0.005mm/s and (d) 0.0005mm/s.

The shear strain versus time curves are also plotted on the same figure for each shearing velocity. The plots show that for high shearing velocities like those shown in Figures 3.14(a) & (b), excess pore pressure continuously builds up as cyclic shearing progresses, and higher velocity induces higher levels of excess pore pressure. The fast shearing cases can be characterised as undrained shearing. If the shearing velocity is moderate, like that shown in Figure 3.14(c), excess pore pressure is generated and plateaus after reaching a moderate level. As cyclic shearing continues, excess pore pressure dissipates eventually. The moderate shearing cases can be characterised as partially drained. For very slow shearing like that shown in Figure 3.14(d), the level of the excess pore pressure that builds up during shearing is negligible compared with faster cases. Therefore, the slow shearing cases can be characterised as drained.

Continuous consolidation

Continuous consolidation of the specimens was observed as the cyclic shearing progressed. This is due to the fact that free drainage at the top of the soil is permitted during cyclic shearing. This drainage path is similar to the drainage path of the soil in the shear zone underneath the axially-walking pipe, where water is free to drain from the soil surface. Figure 3.15 illustrates the vertical displacement (as a percentage of specimen height H) versus shear strain plots at the cyclic shearing stage. The shearing velocities, from fastest to slowest, are (a) 0.3mm/s, (b) 0.03mm/s, (c) 0.005mm/s and (d) 0.0005mm/s.

When the shearing velocity is 0.3mm/s, the specimen consolidates continuously without a clear tendency towards convergence. However, the increase of vertical displacement is relatively small, only passing 5% of specimen height H after 30 cycles. Under a shearing velocity of 0.03mm/s, the vertical displacement increases to 5% of H after 5 cycles and there is a clear tendency towards convergence. The vertical displacement converges to 12% of H after 20 cycles. For the slow shearing cases of 0.005mm/s and 0.0005mm/s, the vertical displacement increases to 5% of H after 2 cycles and 1 cycle respectively. There are clear tendencies towards convergence and the vertical displacements converge to 13% of H for 0.005mm/s.

Chapter 3 Experimental program and results

Figure 3.14 Excess pore pressure development at shearing stage

Figure 3.15 Continuous consolidation at shearing stage

Shear stress-strain relationship

The shear stress-strain relationships at the cyclic shearing stage are plotted on Figure 3.16 for shearing velocities (a) 0.3mm/s;(b) 0.03mm/s and Figure 3.17 for shearing velocities (a) 0.005mm/s; (b) 0.0005mm/s. The level of shear resistance is presented as τ/σ_{total} , where τ is the shear/horizontal stress and σ_{total} is the total normal stress applied.

At a high shearing velocity of 0.3mm/s as shown in Figure 3.16(a), a peak or breakout shear resistance is observed when the specimen is sheared for the first time, reaching a peak of just over $\tau/\sigma_{total}=0.4$. The shear resistance gradually reduces to a residual level of $\tau/\sigma_{total}=0.17$ after 5 cycles and the shear stress-strain relationship remains stable for the subsequent cycles, representing a ductile response.

At a moderate shearing velocity of 0.03mm/s as shown in Figure 3.16(b), a peak shear resistance takes place when the specimen is first loaded, reaching a peak of approximately τ/σ_{total} =0.25. The shear resistance reduces to a residual level and shows ductile response in cycle 2. The response stays ductile for subsequent cycles. However, the level of residual shear resistance increases gradually as cyclic shearing continues. This is due to the fact that excess pore pressure dissipates and effective stress rises as shearing continues, resulting in higher shear resistance. The residual shear resistance is close to τ/σ_{total} =0.2 in cycles 2-5 but gradually grows to τ/σ_{total} =0.32 in cycles 6-20.

At low shearing velocities of 0.005mm/s and 0.0005mm/s as shown in Figure 3.17 (a) and (b) respectively, only ductile response is observed when the specimen is first sheared, and the shear resistance is always residual. The level of residual shear resistance increases gradually as excess pore pressure dissipates and effective stress rises, and the shear resistance converges to $\tau/\sigma_{total}=0.46$ for 0.005mm/s and to $\tau/\sigma_{total}=0.52$ for 0.0005mm/s.

(b) 0.03mm/s

Figure 3.16 Shear stress-strain relationship for (a) 0.3mm/s and (b) 0.03mm/s

Chapter 3 Experimental program and results

Figure 3.17 Shear stress-strain relationship for (a) 0.005mm/s and (b) 0.0005mm/s

3.5 Concluding remarks

Shearing velocities significantly affect the level of the excess pore pressure that builds up during cyclic shearing, and therefore dominate whether the soil response in the shear zone is undrained, partially drained or fully drained in pipe axial walking. At a high shearing velocity, excess pore pressure builds up continuously and the shearing is undrained. At a moderate shearing velocity, excess pore pressure builds up and dissipates and effective stress rises eventually, resulting in higher shear resistance. At a low shearing velocity, no excess pore pressure builds up and the shearing velocity, no excess pore pressure builds up and the shearing velocity.

Continuous consolidation of the specimens was observed as the cyclic shearing progressed. This is due to the fact that free drainage at the top of the soil is permitted during cyclic shearing. This drainage path is similar to the drainage path of the soil in the shear zone underneath the axially-walking pipe, where water is free to drain from the soil surface.

The residual shear resistance in cyclic shearing indicates the level of axial soil resistance in the shear zone when offshore pipeline axial walking occurs. Figure 3.18 shows the residual shear resistance versus velocity plot for the cyclic direct simple shear tests performed. The level of shear resistance is presented as τ/σ_{total} , where τ is the shear/horizontal stress and σ_{total} is the total normal stress applied. The shearing velocity is normalised as $\nu H/c_v$, where

 υ is the shearing velocity in m/sec;

H is the soil specimen height before shearing, taken as 0.0195m.

 $c_v\,$ is the average coefficient of consolidation, taken as 2.9×10 $^{-7}\,m^2/sec$;

The residual resistance levels versus axial displacement rate plots in MAPS tests are also presented in Figure 3.18(Senthilkumar, 2013). The results are from the tests with smooth pipe surface at various pipe embedment depths. The axial pipe residual resistance is normalised by the maximum recorded vertical load V_{max} and the axial displacement rate is normalised by the effective pipe diameter D' and the coefficient of consolidation C_{ν} .

Figure 3.18 Residual resistance versus normalised velocity

The residual resistance in cyclic direct simple shear tests indicates the level of shear resistance of the soil in the shear zone, while the residual resistance in MAPS tests represents the pipe-soil interface resistance in the axial direction. The velocity in the direct simple shear tests is normalised by the specimen height, whereas the velocity in the MAPS tests is normalised by the effective pipe diameter. The above facts mean that the relationships between residual shear resistance and shearing velocity in direct simple shear tests and in MAPS tests do not match exactly with each other. Nevertheless, Figure 3.18 suggests that some shifting factors or transferring equations may be developed to relate the residual resistance as well as the undrained/drained limit in direct simple shear tests to those in pipe-soil interface interaction in the axial direction. If standard test methods such as the current direct simple shear test can be applied in practical design taking offshore pipeline axial walking into consideration, the process would be significantly simplified in terms of time and cost.

More results for cyclic direct simple shear tests can be obtained from finite element analysis and a set of data can be established which can be applied in the calibration of large-scale pipe axial walking modelling, and provide guidance on the design practice of offshore pipelines when considering on-bottom stability in axial direction.

Chapter 4 – Numerical Modelling

The numerical modelling work of the current research program is presented in this chapter. Finite element analyses were conducted to capture the behaviour of soil within the shear zone, using the Abaqus Standard finite element analysis software package. Abaqus is a suite of powerful engineering simulation programs based on the finite element method and it is capable of solving a wide range of problems from simple linear analysis to complicated nonlinear behaviour. In particular, for this research program, the soil constitutive model is capable of incorporating shear-induced pore water pressure generation. This requires an advanced constitutive soil model such as Modified Cam-clay model, which is included in the Abaqus standard package.

The critical state soil theory, upon which the Modified Cam-clay model is based, and the model itself are introduced in this chapter, followed by the two-dimensional finite element analysis (FEA) of cyclic direct simple shearing on soft clay, and the results of the analyses are presented.

4.1 Finite element model

4.1.1 Critical state soil theory and modified Cam-clay model

The specific model implemented in Abaqus Standard is an extension of the Modified Camclay model (Abaqus 6.13 Online Documentation). The model is based on the critical state soil theory developed by researchers at Cambridge University (Roscoe et al., 1958, Burland and Roscoe, 1969, Schofield and Wroth, 1968). The model is capable of describing the stressstrain behaviour of soft soils. In particular, the model can predict pressure-dependent soil strength and the compression and dilatancy (volume change) caused by shearing. Because the model is based on critical state theory, it predicts unlimited soil deformations without changes in stress or volume when the critical state is reached.

Detailed elaborations of the critical state soil theory and the modified Cam-clay model are provided in Appendix A.
4.1.2 Two-dimensional finite element model

A two-dimensional finite element model has been developed in Abaqus to simulate cyclic direct simple shearing on soft clay (Prestige NY kaolinite). The dimensions of the 2-D model are consistent with the dimensions of the soil specimen in the experimental program, as shown in Figure 4.1. The initial height of the model (H) is 18.67mm and the length of the model (L) is 50mm. The soil specimen in the experimental program is a cylinder of 50mm diameter and an average initial height of 26.36mm. The soil is represented by 4-node bilinear displacement and pore pressure element (CPE4P).

Figure 4.1 Two-dimensional finite element model

4.1.3 Material properties

Table 4.1 presents the soil properties in the modified Cam-clay model that was applied to simulate the elastic and plastic behaviour of the soft clay (Prestige NY kaolinite) in finite element analysis. The soil properties of the Prestige NY kaolinite are based on the various tests conducted previously at Monash University, Australia (Shannon, 2013, Senthilkumar, 2013) and the initial soil conditions are consistent with the initial soil conditions in the experimental program. It was assumed that the soil is fully saturated (i.e. S=1) and the initial water content (ω_0) was equal to 70%.

Initial conditions		
Specific gravity, G _s	2.61	
Degree of saturation, S	1	
Initial water content, ω_0	70%	
Initial void ratio, e_0	1.827	
Initial saturate density, ρ_{sat}	1.57g/cm ³	
Modified Cam-clay inputs		
	Shear = Poisson	
Porous Elastic	Logarithmic elastic bulk modulus, κ	0.040
	Poisson's ratio, v	0.3
Clay Plasticity	Intercept, N	2.10
	Logarithmic plastic bulk modulus, λ	0.174
	Stress ratio at critical state, M	0.85

Table 4.1 Material inputs for the finite element modelling

In the 'Porous Elastic' Modified Cam-clay inputs, the 'Shear=Poisson' option was chosen to compute the instantaneous shear modulus G from the bulk modulus and Poisson's ratio. The Poisson's ratio was assumed to be a constant of 0.3 under drained conditions.

To properly simulate the pore pressure development in the soil, the vertical permeability at different void ratio levels was defined as given in Table 4.2. The permeability input was based on the experimental investigation of the vertical and horizontal permeability of kaolin clay by Al-Tabbaa and Wood (1987) as well as on the tests performed at Monash University, Australia (Shannon, 2013, Senthilkumar, 2013)

Void ratio, <i>e</i>	Vertical permeability, k_v in m/s
0.8	2.6184E-10
0.9	3.7991E-10
1.0	5.3000E-10
1.1	7.1627E-10
1.2	9.4295E-10
1.3	1.2143E-09
1.4	1.5348E-09
1.5	1.9086E-09
1.6	2.3404E-09
1.7	2.8346E-09
1.8	3.3958E-09
1.9	4.0284E-09
2.0	4.7373E-09
2.1	5.5270E-09
2.2	6.4022E-09
2.3	7.3678E-09
2.4	8.4284E-09
2.5	9.5888E-09

Table 4.2 Vertical permeability for different void ratio levels

4.1.4 Load and boundary conditions

Consolidation stage

At the consolidation stage, the soil is normally consolidated and a constant consolidation stress is applied uniformly on the top surface of the soil model. Pore water is free to drain from the top surface and drainage is not allowed at the bottom, as in the experimental set-up. The model is constrained on both the left and right vertical sides and no displacement is allowed in the horizontal direction (x-direction). The model can be compressed one-dimensionally in the vertical direction (y-direction) at the consolidation stage.

Cyclic shearing stage

At the cyclic shearing stage, the soil is subjected to a constant vertical stress applied uniformly on the top surface of the soil model. Pore water is free to drain from the top surface and drainage is not allowed at the bottom. The constraints on the vertical sides are released and displacement is allowed in both the horizontal direction (x-direction) and the vertical direction (y-direction).

Cyclic shearing is implemented by specifying the horizontal displacement of the element nodes along the vertical sides. The horizontal displacements of the nodes along the vertical sides are linearly distributed and the two nodes at the same height level (i.e. y coordinates are the same) have the same horizontal displacement, as demonstrated in Figure 4.2(a). This implementation of cyclic shearing closely simulates the horizontal displacement of the soil specimen in the experimental program, where the specimen is constrained by a stack of retaining rings, as shown in Figure 4.2(b). As in the experimental program, the cyclic horizontal displacement also follows a sinusoidal function.

Figure 4.2 Implementation of deformation pattern in cyclic shearing in FEA model

4.1.5 Validation of the finite element model

The results of the finite element analysis with the use of actual soil properties were compared with the experimental data to validate the model. As discussed in Chapter 3, the pore pressure transducer (PPT) in the experimental program is not capable of recording real-time pore pressure level within the soil specimen and can only give an estimation of the pore pressure level at the bottom of the specimen. As a result, it is not feasible to compare the pore pressure level in the FEA with that in the experimental program to validate the model. Nevertheless, the shear stress-strain relationships in FEA and experimental results can be compared.

Figure 4.3 shows a comparison of shear stress-strain curves between the experimental and finite element analysis results. In the results presented the vertical stress is 60kPa, the shear amplitude is 10%, the shearing velocity is 0.005mm/s. Therefore, it is fully drained shearing.

Figure 4.3 Comparison between experimental and FEA shear stress-strain curves

The peak shear stress prediction of the finite element analysis matches the experimental data closely, but there is some difference between the experimental curve and the FEA curve. While the initial portion of the shear stress-strain responses of the experimental and FEA results are close, the experimental results indicate that the slope of the curve changes continuously in subsequent shearing cycles and the curve forms an overall shape close to an ellipse, as shown in Figure 4.3. In contrast, the slope of the FEA curve remains constant before reaching the peak shear stress level, and the curve forms an overall shape close to a parallelogram. This difference can be explained by the yielding function of the modified Cam-clay model. In this model, the soil behaviour is elastic until the stress state of the soil specimen (p', q) hits the yield surface. The shear modulus G remains unchanged after the soil reaches critical state and the slope of the FEA curve therefore remains constant for subsequent shearing cycles.

4.2 Finite element analysis results

4.2.1 Scope of the analyses

Using the finite element model developed, a parametric study was conducted to investigate the influence of vertical stress, shearing velocity and shearing amplitude on the soil behaviour in the shear zone. Table 4.3 summarises the variables in the finite element analyses (FEA). Unlike in the experimental program, where the testing equipment could not produce satisfactory horizontal load readings under very low vertical stress, a very low consolidation/vertical stress can be applied in the finite element analysis. Five shearing velocities were applied in the FEA, covering the undrained, partially drained and drained responses in cyclic shearing. Shearing amplitudes of 5% and 10% of specimen height were applied in FEA, and the height was taken as the specimen height when the consolidation stage was completed.

Table 4.3 Variables in finite element analyses

Consolidation/Vertical Stress	Shearing Velocity	Shearing Amplitude
10kPa 20kPa 40kPa 60kPa	1.0mm/s 0.3mm/s 0.03mm/s 0.005mm/s 0.0005mm/s	5% of H 10% of H

4.2.2 Consolidation stage

Vertical displacement

A constant vertical stress is applied at the consolidation stage and the analysis enters the cyclic shearing stage when excess pore pressure dissipation is completed. The vertical displacement vs. time and void ratio vs. time plots at the consolidation stage are presented in Figures 4.4(a) and (b) respectively. The time is normalised as $c_v t/H^2$, where c_v is the average coefficient of consolidation, taken as $2.9 \times 10^{-7} m^2/sec$;

t is the elapsed time in seconds;

H is the initial soil height in meters, taken as 0.01867m. The bottom drainage port was closed during consolidation, as such one-way drainage is considered.

The results show that higher consolidation stress results in larger vertical displacement and further compression of the soil skeleton. The void ratio decreases from the initial void ratio of 1.827 to 1.5 under an applied vertical stress of 10kPa, whereas the void ratio drops from 1.827 to 1.4 under an applied vertical stress of 60kPa.

Figure 4.4 (a) Vertical displacement vs. normalised time and (b) void ratio vs. normalised time plots at consolidation stage

Excess pore pressure development

The excess pore pressure level is measured in the centre-bottom element, which is Element 20 of the model as shown in Figure 4.5. Figure 4.6 (a) is the excess pore pressure Δu vs. normalised time plot and Figure 4.6(b) is the $\Delta u/\sigma_n$ vs. normalised time plot at consolidation stage, where σ_n is the vertical stress applied at the top surface of the soil.

Figure 4.5 Excess pore pressure reference element

Figure 4.6 demonstrates that the excess pore pressure responses at the consolidation stage can be simulated appropriately and recorded simultaneously in the finite element analysis. As predicted, the applied vertical stress is first taken entirely by the excess pore pressure such that $\Delta u/\sigma_n = 1$. The soil skeleton gradually takes the vertical pressure and the excess pore pressure dissipates until dissipation is completed such that $\Delta u/\sigma_n = 0$.

Figure 4.6 (a) Excess pore pressure Δu vs. normalised time and (b) $\Delta u/\sigma_n$ vs. normalised time plots at consolidation stage

4.2.3 Cyclic shearing stage

As in the experimental program, the horizontal displacement follows a sinusoidal function at the cyclic shearing stage as demonstrated in Figure 4.7(a). The shear strain γ is defined as

$$\gamma = \frac{\delta}{H_{ps}} \times 100\% \tag{4.1}$$

where δ is the horizontal displacement of the top nodes in the FEA model, and H_{ps} is the height of the soil model before shearing starts, as shown in Figure 4.7(b).

Figure 4.7 (a) horizontal displacement function and (b) shear strain definition

Pore pressure development

The pore pressure development in the soil at cyclic shearing stage was analysed and an example contour of pore pressure distribution within the soil model is shown in Figure 4.8. In this example presented, the applied vertical stress is 60kPa, the shearing velocity is 0.3mm/s and the shearing amplitude is 5% of H.

Figure 4.8 Pore pressure distribution at cyclic shearing stage

Figure 4.8 shows that the shear-induced pore pressure can be simulated in the current finite element model and the pore pressure in the soil is not uniformly distributed. Local maxima and minima are observed close to the boundaries of the soil, including the vertical sides and the corners. It is also observed that pore pressure distribution within the core of the model (middle 1/3) is relatively uniform and the excess pore pressure level is again measured in the centre-bottom element, which is Element 20 of the model, as shown in Figure 4.5.

The pore pressure versus time plots are presented in Figures 4.9 and 4.10 for applied vertical stresses of 10kPa and 60kPa respectively. The shear strain versus time curves are also plotted

on the same figures. The pore pressure versus time plots for applied vertical stresses of 20kPa and 40kPa are included in Appendix B.

As elaborated in Chapter 3, the pore pressure transducer readings in the experimental program can only provide an estimation of the pore pressure level in the soil specimen, whereas the exact pore pressure within the soil can be obtained using finite element analysis. Nevertheless, the pore pressure development in the finite element analyses is consistent with the pore pressure development in the experimental results.

At high shearing velocities (1mm/s & 0.3mm/s), excess pore pressure continuously builds up as cyclic shearing progresses, and induces a higher level of excess pore pressure. Therefore it is undrained shearing.

At moderate shearing velocities (0.03mm/s & 0.005mm/s), excess pore pressure is generated and peaks after reaching a moderate level. As cyclic shearing continues, excess pore pressure dissipates eventually. Therefore it is partially drained shearing.

At very low shearing velocities (0.0005mm/s & 0.0001mm/s), excess pore pressure does not build up and therefore it is drained shearing.

For an applied vertical stress σ_n of 10kPa, the maximum excess pore pressure Δu generated is close to 2kPa, which gives $\Delta u/\sigma_n$ close to 0.2. However, for applied vertical stresses σ_n of 20kPa, 40kPa and 60kPa, the maximum excess pore pressure Δu generated is close to $\Delta u/\sigma_n = 0.5$.

In Figures 4.9 and 4.10, when comparing the excess pore pressure development of analyses that have the same vertical stress and shearing velocities but vary in amplitude (5%, 10%), it is clear that shear amplitude has little or no effect on the generation of excess pore pressure during cyclic shearing. This finding is consistent with the suggestion made by White et al. (2011b), who argue that the mobilisation of axial resistance in offshore pipelines is a time-related process rather than being linked to the distance of shearing.

Chapter 4 Numerical modelling

Figure 4.9 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 10kPa

Figure 4.10 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 60kPa

Continuous consolidation

Since the pore water is free to drain from the top surface of the soil model, continuous consolidation takes place at the cyclic shearing stage in the finite element analyses. This is consistent with what was observed in the experimental results. The void ratios versus shear strain plots at the cyclic shearing stage are presented in Figures 4.11 and 4.12 for applied vertical stresses of 10kPa and 60kPa respectively. The void ratios versus shear strain plots at the cyclic shearing stage for applied vertical stresses of 20kPa and 40kPa are included in Appendix B. The void ratio is measured from Element 20 of the model as shown in Figure 4.5 and the analysis results with a shear amplitude of 10% of H are presented.

At high shearing velocities (1mm/s & 0.3mm/s), the decrease in void ratio is minimal because excess pore pressure continuously builds up and it is undrained shearing. At moderate shearing velocities (0.03mm/s & 0.005mm/s), the void ratio drops continuously as excess pore pressure dissipates and the soil skeleton compresses further. As cyclic shearing progresses, the void ratio converges as the dissipation of excess pore pressure is completed and there is no further compression. At very slow shearing velocity (0.0005mm/s & 0.0001mm/s), most of the compression of the soil skeleton and the decrease in void ratio occur in the first two cycles, and there is no further change in void ratio in subsequent cycles.

Figure 4.11 Void ratio versus shear strain plots for applied vertical stress of 10kPa and shear amplitude of 10% of H

Figure 4.12 Void ratio versus shear strain plots for applied vertical stress of 60kPa and shear amplitude of 10% of H

Shear stress-strain relationship

The shear stress-strain curves at the cyclic shearing stage are plotted on Figures 4.13 and 4.14 for applied vertical stresses of 10kPa and 60kPa respectively. The shear stress-strain curves at the cyclic shearing stage curves for applied vertical stresses of 20kPa and 40kPa are provided in Appendix B. The level of shear stress is normalised as τ/σ_n , where τ is the shear stress and σ_n is the applied vertical stress at the top surface.

At high shearing velocities (1mm/s & 0.3mm/s), the shearing is undrained and τ/σ_n remains unchanged as cyclic shearing progresses. For a very low applied vertical stress of 10kPa, the undrained shear resistance equals $\tau/\sigma_n=0.4$, while for applied vertical stresses of 20kPa, 40kPa and 60kPa, the undrained shear resistance gives $\tau/\sigma_n=0.25$. This difference can be explained by the level of excess pore pressure generated under a vertical stress of 10kPa. For an applied vertical stress σ_n of 10kPa, the maximum excess pore pressure Δu generated is close to 2kPa, which gives $\Delta u/\sigma_n$ close to 0.2. However, for applied vertical stresses σ_n of 20kPa, 40kPa and 60kPa, the maximum excess pore pressure Δu generated is close to $\Delta u/\sigma_n$ = 0.5.

At moderate shearing velocities of 0.03mm/s and 0.005mm/s, the shearing is partially drained and τ/σ_n increases as cyclic shearing progresses. This is because excess pore pressure dissipates and effective stress increases, resulting in higher shear resistance. The initial shear resistance is close to the undrained shear resistance ($\tau/\sigma_n=0.4$ for $\sigma_n=10$ kPa and $\tau/\sigma_n=0.25$ for $\sigma_n=20,40,60$ kPa). As cyclic shearing continues, the shear resistance eventually reaches a peak level close to $\tau/\sigma_n=0.45$. Shearing amplitude has no effect on the peak resistance level.

At low shearing velocities of 0.0005mm/s and 0.0001mm/s, the shearing is drained and fully drained shear resistance is reached within 4 cycles for 5% shear amplitude and 2 cycles for 10% shear amplitude. The fully drained shear resistance is at a level close to $\tau/\sigma_n=0.48$.

Chapter 4 Numerical modelling

Figure 4.13 Shear stress-strain curves for applied vertical stress of 10kPa

Chapter 4 Numerical modelling

Figure 4.14 Shear stress-strain curves for applied vertical stress of 60kPa

Effective stress interpretation

Finite element analysis is capable of providing effective stress levels at the cyclic shearing stage and the shear stress-strain relationship can therefore be interpreted in terms of effective stress. Figure 4.15 presents the effective stress interpretation of the shear stress-strain relationship of applied vertical stresses of 10kP and 60kPa with shear amplitude of 10%. τ/σ'_n is plotted against γ , where τ is the shear stress, σ'_n is the effective vertical stress and γ is the shear strain.

Figure 4.15 Effective stress interpretation of shear stress-strain relationship

In the effective stress interpretation, all shear stress-strain curves overlie each other, except for the initial responses. This is true for both cycles at a particular shearing velocity, and cycles at different shearing velocities. This verifies that the axial shear resistance in the shear zone is dominated by the excess pore pressure levels. The effective stress interpretation also suggests that, despite the fact that the experimental set-up cannot produce satisfactory output at a low vertical stress (i.e. 10kPa), the application of a higher vertical stress (i.e. 60kPa) can still capture the appropriate soil behaviour in cyclic shearing.

4.3 Summary of major findings

Finite element analyses were conducted to capture the behaviour of soil within the shear zone, using the modified Cam-clay model. A two-dimensional finite element model has been developed and analyses were performed applying varying vertical stresses, shearing velocities and shearing amplitudes. The soil behaviour in the shear zone, in particular the shear-induced pore pressure, can be simulated using the current finite element model.

For an applied vertical stress σ_n of 10kPa, the maximum excess pore pressure Δu generated is close to 2kPa, which gives $\Delta u/\sigma_n$ close to 0.2. However, for applied vertical stresses σ_n of 20kPa, 40kPa and 60kPa, the maximum excess pore pressure Δu generated is close to $\Delta u/\sigma_n = 0.5$. When comparing the excess pore pressure development of analyses that have the same vertical stress and shearing velocities but vary in amplitude (5%, 10%), it was found that shear amplitude has little or no effect on the generation of excess pore pressure during cyclic shearing. This finding is consistent with the suggestion made by White et al. (2011b), who argue that the mobilisation of axial resistance in offshore pipelines is a time-related process rather than being linked to the distance of shearing.

Since the pore water is free to drain from the top surface of the soil model, continuous consolidation takes place at the cyclic shearing stage in the finite element analyses, which is consistent with what was observed in the experimental results.

Figure 4.16 presents the residual shear resistance versus velocity plot of the finite element analyses completed. The level of shear resistance is presented as τ/σ_{total} , where τ is the shear/horizontal stress and σ_{total} is the total normal stress applied. The shearing velocity is normalised as $\nu H/c_v$, where

 υ is the shearing velocity in m/sec;

H is the soil specimen height before shearing;

 c_v is the average coefficient of consolidation, taken as 2.9×10 -7 m2/sec ;

The residual resistance levels versus velocity plots of the experimental program are also presented in Figure 4.16.

The undrained shear resistance gives $\tau/\sigma_n=0.4$ for a very low applied vertical stress of 10kPa, while for applied vertical stresses of 20kPa, 40kPa and 60kPa, the undrained shear resistance level is close to $\tau/\sigma_n=0.25$. This is because under a very low vertical stress of 10kPa the maximum excess pore pressure Δu generated gives $\Delta u/\sigma_n$ close to 0.2, whereas for vertical stresses σ_n of 20kPa, 40kPa and 60kPa, the maximum excess pore pressure Δu generated is close to $\Delta u/\sigma_n = 0.5$. In comparison, the experimental results indicate an undrained residual resistance of $\tau/\sigma_n=0.17$. The level of fully drained shear resistance is consistent under different applied vertical stresses, being close to $\tau/\sigma_n=0.48$. In comparison, the experimental results indicate a fully drained shear resistance of $\tau/\sigma_n=0.52$. The difference in shear resistance levels between the finite element analysis and the experimental program may be attributed to the limitations of the experimental equipment and some disparities in the drainage conditions.

Figure 4.16 also identifies the drained and undrained limits of the residual resistance, and the distribution of residual resistance against normalised velocity is uniform.

Figure 4.16 Residual resistance versus normalised velocity

In the effective stress interpretation, all shear stress –strain curves overlie each other, except for the initial responses. This is true for both cycles at a particular shearing velocity, and

cycles at different shearing velocities. This verifies that the axial shear resistance in the shear zone is dominated by the excess pore pressure levels. The effective stress interpretation also suggests that, despite the fact that the experimental set-up cannot produce satisfactory output at a low vertical stress (i.e. 10kPa), the application of a higher vertical stress (i.e. 60kPa) can still capture the appropriate soil behaviour in cyclic shearing.

Chapter 5 – Conclusions and recommendations

This thesis presents the results of research on the behaviour of soil within the shear zone in pipe axial walking problems. Both experimental and numerical modelling studies were undertaken. This chapter summarises the major findings of the present research, and provides recommendations for future research.

5.1 Conclusions

Offshore pipeline axial walking is the undesired accumulation of axial displacement of offshore pipelines during operation cycles. Research indicates that the axial resistance will tend towards the drained values during cycles of pipe movement, regardless of the rate or duration of each movement. A reliable prediction of this mechanism could bring significant design benefits, as drained resistance is usually higher than undrained resistance. Consequently, a higher range of axial resistance can be applied, leading to more costeffective design. The pipe-soil interaction in pipe axial walking problems is extensively influenced by the soil response. The axial response is significantly influenced by the generation and dissipation of excess pore water pressure which leads to undrained and drained soil behaviour. It is likely that the response is between fully undrained and fully drained in typical field conditions. Analysis of the field data also suggests that the mobilisation of axial resistance is a time-related process instead of being linked to the distance of shearing. This suggestion is consistent with excess pore pressure development in cycles. In other words, the full pipe-soil resistance is only mobilised when steady pore pressures are reached. The residual resistance is the primary component of the loaddisplacement relationship in pipe axial walking, and it is dominated by the axial displacement rate.

The portion of the soil below the pipe which undergoes shearing, characterised as the *shear zone*, is significant for pipe axial walking assessment. Cyclic direct simple shear testing was selected as the preferred testing method to conduct the investigation owing to its various merits, including its loading pattern, allowing rotation of principle stress axes, the small specimen size required, and its shear failure planes. Furthermore, a finite element model has

been developed which can capture the behaviour of soil within the shear zone, utilising an advanced constitutive soil model.

Both experimental and numerical analysis results suggest that at a high shearing velocity, excess pore pressure builds up continuously in the shear zone and the shearing is undrained. At a moderate shearing velocity, excess pore pressure builds up and dissipates, and effective stress drops and rises, eventually resulting in a drained shear resistance. At a low shearing velocity, no excess pore pressure builds up and the shearing is drained.

The relationship between residual shear resistance and shearing velocity has been established and the drained and undrained limits of the residual resistance have been identified in cyclic direct simple shear tests. Some shifting factors or transferring equations may be developed to relate the residual resistance as well as the undrained/drained limits in direct simple shear tests to those in pipe-soil interface interactions in the axial direction. If standard test methods such as the current direct simple shear test can be applied in the practical design, taking offshore pipeline axial walking into consideration, the process would be significantly simplified in terms of time and cost.

5. 2 Recommendations for future research

Some modifications to the standard direct simple shear devices are required if direct simple shear testing is to be widely used in practical design taking offshore pipeline axial walking into account. First and foremost, since the effective stresses in axial walking problems are very low, the device should be capable of providing reliable load readings under very low stress levels (2kPa to 10kPa). In addition, although the truly undrained condition is not required in such tests, it is desirable that the real-time pore water pressure level in the specimen can be accurately measured.

A more complicated three-dimensional finite element model can be developed based on the current two-dimensional model, if convergence issues can be resolved. The data obtained from both experimental work and numerical analysis can be applied in the calibration of large-scale pipe axial walking modelling, and provide guidance on the design of offshore pipelines considering on-bottom stability in axial direction.

References

- AIREY, D. & WOOD, D. 1984. Discussion of "Specimen Size Effect in Simple Shear Test" by M. Vucetic and S. Lacasse (December, 1982). *Journal of Geotechnical Engineering*, 110, 439-442.
- AIREY, D. W. 1984. *Clays in circular simple shear apparatus* Ph.D. thesis University of Cambridge, United Kingdom.
- AIREY, D. W. & WOOD, D. M. 1987. Evaluation of direct simple shear tests on clay. *Geotechnique*, 37, 25-35.
- AL-TABBAA, A. & WOOD, D. M. 1987. Some measurements of the permeability of kaolin. *Geotechnique*, 37, 499-503.
- ASTM-D6528 2007. Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. *D* 6528-07
- BARDET, J.-P. 1997. Experimental Soil Mechanics Prentice-Hall, Inc.
- BJERRUM, L. 1954. *Theoretical and experimental investigation on the shear strength of soil,* Oslo, Norwegian Geotechnical Institute Publication 5.
- BJERRUM, L. & LANDVA, A. 1966. Direct simple-shear tests on a Norwegian quick clay. *Geotechnique*, 16, 1-20.
- BRUTON, D., CARR, M. & WHITE, D. J. 2007. The influence of pipe-soil interaction on lateral buckling and walking of pipelines - The SAFEBUCK JIP. The 6th International Offshore Site Investigation and Geotechnics Conference: Confronting New Challegnes and Sharing Knowledge. London, UK, 133-148.
- BRUTON, D., CARR, M. & WHITE, D. J. 2008. Pipe-Soil Interaction during Lateral Buckling and Pipeline Walking The SAFEBUCK JIP. Offshore Technology Conference, 5-8 May 2008, Houston, Texas, USA.
- BUDHU, M. 1979. Simple shear deformation of sands. Ph.D. Thesis, University of Cambridge, United Kingdom.
- BURLAND, J. B. & ROSCOE, K. H. 1969. Local Strains and Pore Pressures in a Normally Consolidated Clay Layer During One-Dimensional Consolidation. *Géotechnique* [Online], 19. Available: <u>http://www.icevirtuallibrary.com/content/article/10.1680/geot.1969.19.3.335</u>.
- CARR, M., SINCLAIR, F. & BRUTON, D. 2006. Pipeline Walking Understanding the Field Layout Challenges, and Analytical Solutions Developed for the SAFEBUCK JIP. *Proc Offshore Tech Conf.*

- CASOLA, F., EL-CHAYEB, A., GRECO, S. & CARLUCCI, A. 2011. Characterization of pipe soil interaction and influence on HPHT pipeline design. 21st International Offshore and Polar Engineering Conference, Maui, Hawaii,USA. 111-121.
- CHAKKARAPANI, V., NAIR, A., WHOOLEY, A., CHAUVET, C., ELTAHER, A. & JUKES, P. 2011. Vibration assessment methodology for subsea pipework. 30th International Conference on Ocean,Offhosre and Arctic Engineering, Rotterdam, The Netherlands. 737-743.
- DASSAULT 2013. Dassault Systèmes. Abaqus Online Documentatio.
- DUNCAN, J. M. & CHANG, C. Y. 1970. Nonlinear analysis of stress and strain in soils *ASCE J. Soil Mech. Found,*, Div. 96 No.SM5, 1629-1653.
- DYVIK, R., BERRE, T., LACASSE, S. & RAADIM, B. 1987. Comparison of truly undrained and constant volume direct simple shear tests. *Geotechnique*, 37, 3-10.
- FUJIWARA, T., UTO, S. & KANADA, S. 1997. An experimental study of the effects that change the vibration mode of riser VIV. ASME Conference Proceedings. 487-492.
- GROGNET, M. 2011. The boundary conditions in direct simple shear tests- *Developments* for peat testing at low normal stress. Master of Science Thesis, Delft University of Technology, The Netherlands.
- HELWANY, S. 2007. *Applied Soil Mechanics with Abaqus Applications* John Wiley & Sons, Inc. New Jersey, United States.
- KJELLMAN, W. 1951. Testing The Shear Strength of Clay in Sweden. Géotechnique, 2, 225-232.
- LUCKS, A. S., CHRISTIAN, J. T., BRANDOW, G. E. & HOEG, K. 1972. Stress Conditions in NGI simple shear test *Journal of Soil Mechanics, ASCE,* 98,SM1, 155-160.
- MERIFIELD, R., WHITE, D. J. & RANDOLPH, M. F. 2008. The ultimate undrained resistance of partially embedded pipelines. *Geotechnique*, 58, 461-470.
- MYRHAUG, D. & ONG, M. C. 2011. Long-and short-crested random wave-induced scour below pipelines. *Proceedings of the Institution of Civil Engineers: Maritime Engineering*, 164, 173-184.
- OLIPHANT, J. & MACONOCHIE, A. 2006. Axial pipeline-soil interaction. San Francisco, CA, United States: International Society of Offshore and Polar Engineers.
- RANDOLPH, M. F. 2011. *Offshore geotechnical engineering* Abingdon, Oxon ; New York :, Spon Press.
- RANDOLPH, M. F. Offshore geotechnics The challenges of deepwater soft sediments. Geotechnical Special Publication, 2012. 241-271.

- RANDOLPH, M. F. & HOUSE, A. R. 2001. The complementary roles of physical and computational modelling. *Int. J. of Physical Modelling in Geotechnics*, 1, 1-8.
- RANDOLPH, M. F., WHITE, D. J. & YAN, Y. 2012. Modelling the axial soil resistance on deep-water pipelines. *Geotechnique*, 62, 837-846.
- ROSCOE, K. H. An apparatus for the application of simple shear to soil samples Proceedings Third ICSMFE 1953. 186-191.
- ROSCOE, K. H., SCHOFIELD, A. N. & WROTH, C. P. 1958. On The Yielding of Soils. *Géotechnique* [Online], 8.
- SAADA, A. S. & TOWNSEND, F. C. 1981. STATE OF THE ART LABORATORY STRENGTH TESTING OF SOILS. *ASTM Special Technical Publication*, 7-77.
- SCHOFIELD, A. N. & WROTH, C. P. 1968. Critical State Soil Mechanics, McGraw-Hill, New York.
- SENTHILKUMAR, M. 2013. *Offshore pipe-clay seabed interaction in axial direction*. Ph.D. thesis. Monash University, Australia
- SHANNON, B. 2013. Fracture Propagation of Cohesive Soils Under Tensile Loading and Desiccation Ph.D. thesis. Monash University, Australia.
- SHEN, C. K., SADIGH, K. & HERRMANN, L. R. 1978. Analysis of the NGI simple shear apparatus for cyclic soil testing. *ASTM Special Technical Publication*, 148-162.
- STEENFELT, J. S. Sliding resistance for foundations on clay till. Proc. Wroth Memorial Conference, Predictive Soil Mechanics, 1993 Thomas Telford. 664–684.
- SYMES, M. J. P. R., GENS, A. & HIGHT, D. W. 1984. Undrained anisotropy and principal stress rotation in saturated sand. *Geotechnique*, 34, 11-27.
- TERZAGHI, K., PECK, R. B. & MERSI, G. 1996. *Soil Mechanics in Engineering Practice*, Wiley-Interscience
- TORNES, K., OSE, B. A., JURY, J. & THOMSON, P. 2000. Axial creeping of high temperature flowlines caused by soil ratcheting. *Proceedings 19 Int. Conf. on Offshore Mechanics and Arctic Eng, OMAEth.*
- VUCETIC, M. & LACASSE, S. 1982. Specimen size effect in simple shear test. Journal of the Geotechnical Engineering Division, ASCE, 108, 1567-1585.
- WHITE, D. J. & CATHIE, D. N. Geotechnics for subsea pipelines. 2nd International Symposium on Frontiers in Offshore Geotechnics, ISFOG 2010, November 8, 2010 -November 10, 2010, 2011 Perth, WA, Australia. Taylor & Francis - Balkema, 87-123.
- WHITE, D. J., GANESAN, S. A., BOLTON, M. D., BRUTON, D. A. S. & LANGFORD, D. 2011a. SAFEBUCK JIP Observations of Axial Pipe-soil Interaction from Testing on

Soft Natural Clays. *Proceedings of the Offshore Technology Conference*. Houston, Texas, USA.

- WHITE, D. J., HILL, A. J., WESTGATE, Z. J. & BALLARD, J. C. 2011b. Observations of pipe-soil response from the first deep water deployment of the SMARTPIPE®. *Frontiers in Offshore Geotechnics II*. 851-856.
- WRIGHT, D. K., GILBERT, P. A. & SAADA, A. S. Shear devices for determing dynamic soil properties. Specialty Conference, Earthquake Engineering and Soil Dynamics 1978 Pasadena 1056-1075.
- ZEKKOS, D., ATHANASOPOULOS, G. A., BRAY, J. D., GRIZI, A. & THEODORATOS, A. 2010. Large-scale direct shear testing of municipal solid waste. *Waste Management*, 30, 1544-1555.
- ZHOU, H., WHITE, D. J. & RANDOLPH, M. F. 2008. Physical and numerical simulation of shallow penetration of a cylindrical object into soft clay. GeoCongress, New Orleans, United States. 108-117.

Appendices

Appendix A Critical state soil theory and modified Cam-clay model

Introduction

The specific model implemented in Abaqus Standard is an extension of the Modified Camclay model (Abaqus 6.13 Online Documentation). The model is based on the critical sate soil theory developed by researchers at Cambridge University (Roscoe et al., 1958, Burland and Roscoe, 1969, Schofield and Wroth, 1968). The model is capable of describing the stressstrain behaviour of soft soils. In particular, the model can predict the pressure-dependent soil strength and the compression and dilatancy (volume change) caused by shearing. Because the model is based on critical state theory, it predicts unlimited soil deformations without changes in stress or volume when the critical state is reached.

The Cam-clay model assumes that the soil is fully saturated. When the soil is loaded, significant irreversible (plastic) volume changes occur, due to the water that is expelled from the voids. In critical state soil theory, the state of a soil specimen is characterised by three parameters: mean effective stress p', deviator stress (shear stress) q, and void ratio e. The mean effective stress can be defined in terms of the principal effective stresses σ'_1 , σ'_2 , σ'_3 as

$$p' = \frac{1}{3}(\sigma_1' + \sigma_2' + \sigma_3')$$
(A.1)

and the shear stress is defined as

$$q = \frac{1}{\sqrt{2}}\sqrt{(\sigma_1' - \sigma_2')^2 + (\sigma_2' - \sigma_3')^2 + (\sigma_1' - \sigma_3')^2}$$
(A.2)

For the consolidation stage of a consolidated-drained triaxial compression test, $\sigma'_1 = \sigma'_2 = \sigma'_3$, where σ'_3 is the confining pressure, thus

$$p' = \frac{1}{3}(\sigma_1' + \sigma_2' + \sigma_3') = \sigma_3'$$
(A.3)

and

$$q = 0 \tag{A.4}$$

For the shearing stage of a triaxial compression test $\sigma'_1 \neq \sigma'_2 = \sigma'_3$, therefore

$$p' = \frac{1}{3}(\sigma_1' + \sigma_2' + \sigma_3') = \frac{1}{3}(\sigma_1' + 2\sigma_3')$$
(A.5)

And

$$q = \frac{1}{\sqrt{2}}\sqrt{2(\sigma_1' - \sigma_3')^2} = \sigma_1' - \sigma_3'$$
(A.6)

The effective stress path of a triaxial test represents the locus of the effective stress state in the p'- q plane. For a consolidated-drained triaxial test, the effective stress path is a straight line and the slope of the line is defined as $\Delta q/\Delta p'$.

Because σ'_3 is constant and from Equation A.6

$$\Delta q = \Delta \sigma_1' - \Delta \sigma_3' = \Delta \sigma_1' - 0 = \Delta \sigma_1$$

And from Equation A.5

$$\Delta p' = \frac{1}{3} (\Delta \sigma_1' + \Delta 2 \sigma_3') = \frac{1}{3} (\Delta \sigma_1' + 0) = \frac{\Delta \sigma_1'}{3}$$

Therefore

$$slope = \frac{\Delta \sigma_1'}{\Delta \sigma_1' / 3} = 3$$

Normal consolidation line and Unloading-reloading lines

A typical *e*-log *p*' curve of an isotropic consolidation test is shown in Figure A.1(a). The maximum past pressure exerted on the clay specimen is defined as the pre-consolidation pressure p'_c , and a normally consolidated (NC) clay is defined as a clay that has a present vertical effective stress p'_0 equal to its pre-consolidation pressure p'_c . An over-consolidated (OC) clay is defined as a clay that has a present vertical effective stress less than its pre-consolidation pressure. The over-consolidation ratio is the ratio of the pre-consolidation pressure to the present vertical effective stress (OCR = p'_c / p'_0).

The pre-consolidation pressure is located near the point where the e-log p' curve changes its slope. The compression index (C_c) and swelling index (C_s) can also be obtained from the e-

 $\log p$ curve. The compression index is the slope of the loading portion in the *e*-log *p* plane, and the swelling index is the slope of the unloading portion.

Figure A.1 (a) e-log p' curve of an isotropic consolidation test and (b) consolidation curve in the e-ln p' plane (Helwany, 2007)

In the derivation of the modified Cam-clay model, it is assumed that when a soil sample is consolidated under isotropic stress conditions ($p' = \sigma'_1 = \sigma'_2 = \sigma'_3$), the relationship between its void ratio (e) and $\ln p'$ is a straight line. This line is the normal consolidation line shown in Figure A.1(b). In addition, there exists a set of straight unloading-reloading (swelling) lines that describe the unloading-reloading behaviour of the soft soil in the e-ln p' plane. The plane λ is the slope of the normal consolidation line and κ is the slope of the unloading-reloading line.

In the $e - \ln p$ ' plane, the normal consolidation line is defined by the equation

$$e = e_N - \lambda \ln p' \tag{A.7}$$

and the equation for an unloading-reloading line has the form

$$e = e_c - \kappa \ln p' \tag{A.8}$$

The material parameters λ , κ , and e_N are unique for a particular soil, and e_N is the void ratio on the normal consolidation line at unit mean effective stress (point A in Figure A.1b).

Slopes λ and κ of the normal consolidation and unloading-reloading lines in the *e-ln p*' plane are related to the compression index (C_c) and swelling index (C_s):

$$\lambda = \frac{C_c}{\ln 10} = \frac{C_c}{2.3} \tag{A.9}$$

and

$$\kappa = \frac{C_s}{\ln 10} = \frac{C_s}{2.3} \tag{A.10}$$

Critical state line

Increasing the shear stress on a soil specimen, will eventually lead to a state in which further shearing can occur without changes in volume, as shown in Figure A.2, known as Critical state condition. The critical state line (CSL) (Figures A.3a and b) is a representation of the critical state condition. The critical state line in e-p'-q space is shown in Figure A.4.

Figure A.2 Critical state definition (Helwany, 2007)

Figure A.3 (a) Normal consolidation and critical state lines in the *e*-ln p' plane (b) yield surface of a Cam-clay model in the q-p' plane (Helwany, 2007)

Figure A.4 State boundary surface of the Cam-clay model (Helwany, 2007)

Consolidated-drained (CD) or consolidated-undrained (CU) triaxial tests on representative soil specimens need to be conducted to obtain the critical state line. The critical state friction angle of the soil can be obtained from triaxial tests, by drawing the effective stress Mohr's

circle that represents a critical state condition. A straight-line tangent to the effective-stress Mohr's circle is drawn, which represents the effective-stress Mohr-Coulomb failure criterion. The slope of this line is the critical state friction angle ϕ' . The slope of the critical state line in the *p*'- *q* plane, M (Figure A.3b), can be calculated as

$$M = \frac{6\sin\phi'}{3-\sin\phi'} \tag{A.11}$$

In reference to Figure A.3(b), the critical state line has the following equation in the p'-q plane:

$$q_f = M p'_f \tag{A.12}$$

where p'_f is the mean effective stress at failure and q_f is the shear stress at failure. This failure criterion bears the same meaning as the Mohr-Coulomb failure criterion

$$\tau_f = c' + \sigma' \tan \phi' \tag{A.13}$$

where τ_f is the shear stress at failure and σ' is the effective normal stress, and c' is the cohesion.

The critical state line is parallel to the normal consolidation line in the $e-\ln p$ ' plane, as shown in Figure A.3(a). The equation of the critical state line in this plane is given as

$$e_f = e_\Gamma - \lambda \ln p' \tag{A.14}$$

where e_f is the void ratio at failure and e_{Γ} is the void ratio of the critical state line at p' = 1kPa. The parameters e_N and e_{Γ} are related by the equation

$$e_{\Gamma} = e_N - (\lambda - \kappa) \ln 2 \tag{A.15}$$

Yield function

In the p'- q plane, the modified Cam-clay yield surface is an ellipse given by

$$\frac{q^2}{p'^2} + M^2 \left(1 - \frac{p'_c}{p'} \right) = 0 \tag{A.16}$$

Figure A.3(b) shows an elliptical yield surface corresponding to a pre-consolidation pressure p'_c . The parameter p'_c controls the size of the yield surface and is different for each unloading-reloading line. The parameter p'_c is used to define the hardening behaviour of the soil. The soil behaviour is elastic until the stress state of the soil specimen (p',q) hits the yield surface. The soil behaves in a plastic manner after reaching the yield surface. Figure A.4 presents the yield surface in e-p'-q space, termed the state boundary surface.

Elastic response

The elastic response of the Modified Cam-clay model is defined by Young's modules E, shear modulus G, Poisson's ratio v, and bulk modulus K. These parameters are related by

$$E = 3K(1 - 2v) \tag{A.17}$$

and

$$G = \frac{3K(1-2v)}{2(1+v)}$$
(A.18)

The elastic behaviour of soil is nonlinear and stress-dependent. Therefore, the elastic moduli need be presented in incremental form.

For soils modelled by the Modified Cam-clay model, the bulk modulus *K* is stress-dependent. The bulk modulus depends on the mean effective stress p', void ratio e_0 , and unloading-reloading line slope κ . The elastic behaviour is described by

$$K = \frac{(1+e_0)p'}{\kappa} \tag{A.19}$$

Substituting Equation 39 into Equation 37 and 38 yields

$$E = \frac{3(1-2\nu)(1+e_0)p'}{\kappa}$$
(A.20)

and

$$G = \frac{3(1-2\nu)(1+e_0)p'}{2(1+\nu)\kappa}$$
(A.21)

Young's modules *E* and shear modulus *G* are not constants. They are a function of the mean effective stress p', void ratio e_0 , unloading-reloading line slope κ and Poisson's ratio v. For simplicity, Poisson's ratio v is commonly assumed to be constant.

Appendix B Additional FEA results

Additional results of the finite element analyses are presented in this appendix, including the pore pressure development, consolidation and shear stress-strain curves.

Figure A.5 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 20kPa

Figure A.6 Excess pore pressure development at cyclic shearing stage for applied vertical stress of 40kPa

Figure A.7 Void ratio versus shear strain plots for applied vertical stress of 20kPa and shear amplitude of 10% of H

Figure A.8 Void ratio versus shear strain plots for applied vertical stress of 40kPa and shear amplitude of 10% of H

Figure A.9 Shear stress-strain curves for applied vertical stress of 20kPa

Figure A.10 Shear stress-strain curves for applied vertical stress of 40kPa

Appendix C sample .inp file of the finite element model

An example .inp file for the two dimensional finite element soil model developed is provided in this appendix. This .inp file is for an analysis with an applied vertical stress of 60kPa, shearing velocity of 0.03mm/s and shear amplitude of 10%. This file outlines how the model is constructed, how the soil properties are defined and how the loadings and boundary conditions are implemented.

	10 0 0 10 7 10 0 0 0
Job name: 2D FEA soil model	40, 0.048/499982, 0.
** Applied vertical stress = 60kPa	41, 0.050000007, 0.
** Shearing velocity = 0.03mm/s	42, 0., 0.000933500007
** Shearing amplitude = 10%	43, 0.00124999997, 0.000933500007
** Generated by: Abaqus/CAE 6.11-1	44, 0.00249999994, 0.000933500007
*Preprint, echo=NO, model=NO, history=NO, contact=NO	45, 0.00374999992, 0.000933500007
**	46, 0.00499999989, 0.000933500007
** PARTS	47 0.00625000009 0.000933500007
**	48 0.00749999983 0.000933500007
*Part name=soil	49.0.00875000004.0.000933500007
Find Dart	50 0 0000000000000000000000000000000000
	51 0.0112500004 0.000022500007
*	51, 0.0112500004, 0.000955500007
	52, 0.0125000002, 0.000933500007
** ASSEMBLY	53, 0.013/499999, 0.00093350000/
	54, 0.0149999997, 0.000933500007
*Assembly, name=Assembly	55, 0.0162499994, 0.000933500007
**	56, 0.0175000001, 0.000933500007
*Instance, name=soil-1, part=soil	57, 0.0187500007, 0.000933500007
*Node	58, 0.0199999996, 0.000933500007
1, 0., 0.	59, 0.0212500002, 0.000933500007
2, 0.00124999997. 0.	60, 0.0225000009, 0.000933500007
3, 0,00249999994, 0,	61, 0.0237499997, 0.000933500007
4 0 003749999992 0	62 0.0250000004 0.000933500007
5 0 00499999989 0	63 0.0262499992 0.000933500007
6 0 00625000009 0	64 0.0274000000 0.000033500007
7 0 0074000009, 0.	65 0.02274999999, 0.000933500007
7,0.00749999983, 0.	(6, 0.0287500005, 0.000955500007)
8, 0.008/3000004, 0.	66, 0.0299999999, 0.000933500007
9, 0.00999999978, 0.	67, 0.03125, 0.000933500007
10, 0.0112500004, 0.	68, 0.0324999988, 0.000933500007
11, 0.0125000002, 0.	69, 0.0337500013, 0.000933500007
12, 0.0137499999, 0.	70, 0.0350000001, 0.000933500007
13, 0.01499999997, 0.	71, 0.036249999, 0.000933500007
14, 0.0162499994, 0.	72, 0.0375000015, 0.000933500007
15, 0.0175000001, 0.	73, 0.0387500003, 0.000933500007
16, 0.0187500007, 0.	74, 0.0399999991, 0.000933500007
17, 0.0199999996, 0.	75, 0.0412500016, 0.000933500007
18. 0.0212500002. 0.	76. 0.0425000004. 0.000933500007
19,0.0225000009 0	77 0.0437499993 0.000933500007
20 0 0237499997 0	78 0.0450000018 0.000933500007
21, 0.0250000004 0	79. 0.0462500006. 0.000933500007
21, 0.0250000004, 0.0000004, 0.000000000000000000	80 0 0474999994 0 000933500007
22, 0.0274000000 0	80, 0.047400082, 0.000033500007
23, 0.02749999999, 0.	81, 0.0487499982, 0.000933300007
24, 0.0287500005, 0.	82, 0.0500000007, 0.000933500007
25, 0.02999999993, 0.	83, 0., 0.00186/00001
26, 0.03125, 0.	84, 0.00124999997, 0.00186700001
27, 0.0324999988, 0.	85, 0.00249999994, 0.00186700001
28, 0.0337500013, 0.	86, 0.00374999992, 0.00186700001
29, 0.0350000001, 0.	87, 0.00499999989, 0.00186700001
30, 0.036249999, 0.	88, 0.00625000009, 0.00186700001
31, 0.0375000015, 0.	89, 0.00749999983, 0.00186700001
32, 0.0387500003, 0.	90, 0.00875000004, 0.00186700001
33, 0.0399999991, 0.	91, 0.00999999978, 0.00186700001
34. 0.0412500016. 0.	92. 0.0112500004 0.00186700001
35 0 0425000004 0	93 0 0125000002 0 00186700001
36 0 0/37/00003 0	04 0 0137400000 0 00186700001
30, 0.073 (777775), 0.	94, 0.013/477777, 0.00100/00001 05, 0.0140000007, 0.00186700001
57, 0.0430000016, 0.	95, 0.0149999997, 0.00180700001
56, 0.0402500000, U.	90, 0.0102499994, 0.00186/00001
<i>59</i> , 0.04 / 49999994, 0.	97, 0.0175000001, 0.00186700001

98, 0.0187500007, 0.00186700001 99, 0.0199999996, 0.00186700001 100, 0.0212500002, 0.00186700001 101, 0.0225000009, 0.00186700001 102, 0.0237499997, 0.00186700001 103, 0.0250000004, 0.00186700001 104, 0.0262499992, 0.00186700001 105, 0.0274999999, 0.00186700001 106, 0.0287500005, 0.00186700001 107, 0.0299999993, 0.00186700001 108. 0.03125, 0.00186700001 109, 0.0324999988, 0.00186700001 110, 0.0337500013, 0.00186700001 111, 0.0350000001, 0.00186700001 112, 0.036249999, 0.00186700001 113, 0.0375000015, 0.00186700001 114, 0.0387500003, 0.00186700001 115, 0.0399999991, 0.00186700001 116, 0.0412500016, 0.00186700001 117, 0.0425000004, 0.00186700001 118, 0.0437499993, 0.00186700001 119, 0.0450000018, 0.00186700001 120, 0.0462500006, 0.00186700001 121, 0.0474999994, 0.00186700001 122, 0.0487499982, 0.00186700001 123, 0.050000007, 0.00186700001 0., 0.00280050002 124 125, 0.00124999997, 0.00280050002 126, 0.00249999994, 0.00280050002 127, 0.00374999992, 0.00280050002 128, 0.00499999989, 0.00280050002 129, 0.00625000009, 0.00280050002 130, 0.00749999983, 0.00280050002 131, 0.00875000004, 0.00280050002 132, 0.00999999978, 0.00280050002 133, 0.0112500004, 0.00280050002 134, 0.0125000002, 0.00280050002 135, 0.0137499999, 0.00280050002 136, 0.0149999997, 0.00280050002 137, 0.0162499994, 0.00280050002 138, 0.0175000001, 0.00280050002 139, 0.0187500007, 0.00280050002 140, 0.0199999996, 0.00280050002 141, 0.0212500002, 0.00280050002 142, 0.0225000009, 0.00280050002 143, 0.0237499997, 0.00280050002 144, 0.0250000004, 0.00280050002 145, 0.0262499992, 0.00280050002 146, 0.0274999999, 0.00280050002 147, 0.0287500005, 0.00280050002 148, 0.0299999993, 0.00280050002 0.03125, 0.00280050002 149 150, 0.0324999988, 0.00280050002 151, 0.0337500013, 0.00280050002 152, 0.035000001, 0.00280050002 153, 0.036249999, 0.00280050002 154, 0.0375000015, 0.00280050002 155, 0.0387500003, 0.00280050002 156, 0.0399999991, 0.00280050002 157, 0.0412500016, 0.00280050002 158, 0.0425000004, 0.00280050002 159, 0.0437499993, 0.00280050002 160, 0.0450000018, 0.00280050002 161, 0.0462500006, 0.00280050002 162, 0.0474999994, 0.00280050002 163, 0.0487499982, 0.00280050002 164, 0.050000007, 0.00280050002 165. 0., 0.00373400003 166, 0.00124999997, 0.00373400003 167, 0.00249999994, 0.00373400003 168, 0.00374999992, 0.00373400003 169, 0.00499999989, 0.00373400003 170, 0.00625000009, 0.00373400003 171, 0.00749999983, 0.00373400003 172, 0.00875000004, 0.00373400003

173, 0.00999999978, 0.00373400003 174, 0.0112500004, 0.00373400003 175, 0.0125000002, 0.00373400003 176, 0.0137499999, 0.00373400003 177, 0.0149999997, 0.00373400003 178, 0.0162499994, 0.00373400003 179, 0.0175000001, 0.00373400003 180, 0.0187500007, 0.00373400003 181, 0.0199999996, 0.00373400003 182, 0.0212500002, 0.00373400003 183, 0.0225000009, 0.00373400003 184, 0.0237499997, 0.00373400003 185, 0.0250000004, 0.00373400003 186, 0.0262499992, 0.00373400003 187, 0.0274999999, 0.00373400003 188, 0.0287500005, 0.00373400003 189, 0.0299999993, 0.00373400003 190, 0.03125, 0.00373400003 191, 0.0324999988, 0.00373400003 192, 0.0337500013, 0.00373400003 193, 0.0350000001, 0.00373400003 194, 0.036249999, 0.00373400003 195, 0.0375000015, 0.00373400003 196, 0.0387500003, 0.00373400003 197, 0.0399999991, 0.00373400003 198, 0.0412500016, 0.00373400003 199, 0.0425000004, 0.00373400003 200, 0.0437499993, 0.00373400003 201, 0.0450000018, 0.00373400003 202, 0.0462500006, 0.00373400003 203, 0.0474999994, 0.00373400003 204, 0.0487499982, 0.00373400003 205, 0.050000007, 0.00373400003 0...0.00466750003 206. 207, 0.00124999997, 0.00466750003 208, 0.00249999994, 0.00466750003 209, 0.00374999992, 0.00466750003 210, 0.00499999989, 0.00466750003 211, 0.00625000009, 0.00466750003 212, 0.00749999983, 0.00466750003 213, 0.00875000004, 0.00466750003 214, 0.00999999978, 0.00466750003 215, 0.0112500004, 0.00466750003 216, 0.0125000002, 0.00466750003 217, 0.0137499999, 0.00466750003 218, 0.0149999997, 0.00466750003 219, 0.0162499994, 0.00466750003 220, 0.0175000001, 0.00466750003 221, 0.0187500007, 0.00466750003 222, 0.0199999996, 0.00466750003 223, 0.0212500002, 0.00466750003 224, 0.0225000009, 0.00466750003 225, 0.0237499997, 0.00466750003 226, 0.0250000004, 0.00466750003 227, 0.0262499992, 0.00466750003 228, 0.0274999999, 0.00466750003 229, 0.0287500005, 0.00466750003 230, 0.0299999993, 0.00466750003 0.03125, 0.00466750003 231 232, 0.0324999988, 0.00466750003 233, 0.0337500013, 0.00466750003 234, 0.035000001, 0.00466750003 235, 0.036249999, 0.00466750003 236, 0.0375000015, 0.00466750003 237, 0.0387500003, 0.00466750003 238, 0.0399999991, 0.00466750003 239, 0.0412500016, 0.00466750003 240, 0.0425000004, 0.00466750003 241, 0.0437499993, 0.00466750003 242, 0.0450000018, 0.00466750003 243, 0.0462500006, 0.00466750003 244, 0.0474999994, 0.00466750003 245, 0.0487499982, 0.00466750003 246, 0.050000007, 0.00466750003 247, 0., 0.00560100004

248, 0.00124999997, 0.00560100004 249, 0.00249999994, 0.00560100004 250, 0.00374999992, 0.00560100004 251, 0.00499999989, 0.00560100004 252, 0.00625000009, 0.00560100004 253, 0.00749999983, 0.00560100004 254, 0.00875000004, 0.00560100004 255, 0.00999999978, 0.00560100004 256, 0.0112500004, 0.00560100004 257, 0.0125000002, 0.00560100004 258, 0.0137499999, 0.00560100004 259, 0.0149999997, 0.00560100004 260, 0.0162499994, 0.00560100004 261, 0.0175000001, 0.00560100004 262, 0.0187500007, 0.00560100004 263, 0.0199999996, 0.00560100004 264, 0.0212500002, 0.00560100004 265, 0.0225000009, 0.00560100004 266, 0.0237499997, 0.00560100004 267, 0.0250000004, 0.00560100004 268, 0.0262499992, 0.00560100004 269, 0.0274999999, 0.00560100004 270, 0.0287500005, 0.00560100004 271, 0.0299999993, 0.00560100004 0.03125, 0.00560100004 272. 273, 0.0324999988, 0.00560100004 274, 0.0337500013, 0.00560100004 275, 0.0350000001, 0.00560100004 276, 0.036249999, 0.00560100004 277, 0.0375000015, 0.00560100004 278, 0.0387500003, 0.00560100004 279, 0.0399999991, 0.00560100004 280, 0.0412500016, 0.00560100004 281, 0.0425000004, 0.00560100004 282, 0.0437499993, 0.00560100004 283, 0.0450000018, 0.00560100004 284, 0.0462500006, 0.00560100004 285, 0.0474999994, 0.00560100004 286, 0.0487499982, 0.00560100004 287, 0.050000007, 0.00560100004 0., 0.00653450005 288. 289, 0.00124999997, 0.00653450005 290, 0.00249999994, 0.00653450005 291, 0.00374999992, 0.00653450005 292, 0.00499999989, 0.00653450005 293, 0.00625000009, 0.00653450005 294, 0.00749999983, 0.00653450005 295, 0.00875000004, 0.00653450005 296, 0.00999999978, 0.00653450005 297, 0.0112500004, 0.00653450005 298, 0.0125000002, 0.00653450005 299, 0.0137499999, 0.00653450005 300, 0.0149999997, 0.00653450005 301, 0.0162499994, 0.00653450005 302, 0.0175000001, 0.00653450005 303, 0.0187500007, 0.00653450005 304, 0.0199999996, 0.00653450005 305, 0.0212500002, 0.00653450005 306, 0.0225000009, 0.00653450005 307, 0.0237499997, 0.00653450005 308, 0.0250000004, 0.00653450005 309, 0.0262499992, 0.00653450005 310, 0.0274999999, 0.00653450005 311, 0.0287500005, 0.00653450005 312, 0.0299999993, 0.00653450005 313. 0.03125, 0.00653450005 314, 0.0324999988, 0.00653450005 315, 0.0337500013, 0.00653450005 316, 0.0350000001, 0.00653450005 317, 0.036249999, 0.00653450005 318, 0.0375000015, 0.00653450005 319, 0.0387500003, 0.00653450005 320, 0.0399999991, 0.00653450005 321, 0.0412500016, 0.00653450005 322, 0.0425000004, 0.00653450005

323, 0.0437499993, 0.00653450005 324, 0.0450000018, 0.00653450005 325, 0.0462500006, 0.00653450005 326, 0.0474999994, 0.00653450005 327, 0.0487499982, 0.00653450005 328, 0.050000007, 0.00653450005 0., 0.00746800005 329. 330, 0.00124999997, 0.00746800005 331, 0.00249999994, 0.00746800005 332, 0.00374999992, 0.00746800005 333, 0.00499999989, 0.00746800005 334, 0.00625000009, 0.00746800005 335, 0.00749999983, 0.00746800005 336, 0.00875000004, 0.00746800005 337, 0.00999999978, 0.00746800005 338, 0.0112500004, 0.00746800005 339, 0.0125000002, 0.00746800005 340, 0.0137499999, 0.00746800005 341, 0.0149999997, 0.00746800005 342, 0.0162499994, 0.00746800005 343, 0.0175000001, 0.00746800005 344, 0.0187500007, 0.00746800005 345, 0.0199999996, 0.00746800005 346, 0.0212500002, 0.00746800005 347, 0.0225000009, 0.00746800005 348, 0.0237499997, 0.00746800005 349, 0.0250000004, 0.00746800005 350, 0.0262499992, 0.00746800005 351, 0.0274999999, 0.00746800005 352, 0.0287500005, 0.00746800005 353, 0.0299999993, 0.00746800005 354, 0.03125, 0.00746800005 355, 0.0324999988, 0.00746800005 356, 0.0337500013, 0.00746800005 357, 0.0350000001, 0.00746800005 358, 0.036249999, 0.00746800005 359, 0.0375000015, 0.00746800005 360, 0.0387500003, 0.00746800005 361, 0.0399999991, 0.00746800005 362, 0.0412500016, 0.00746800005 363, 0.0425000004, 0.00746800005 364, 0.0437499993, 0.00746800005 365, 0.0450000018, 0.00746800005 366, 0.0462500006, 0.00746800005 367, 0.0474999994, 0.00746800005 368, 0.0487499982, 0.00746800005 369, 0.050000007, 0.00746800005 0., 0.00840150006 370. 371, 0.00124999997, 0.00840150006 372, 0.00249999994, 0.00840150006 373, 0.00374999992, 0.00840150006 374, 0.00499999989, 0.00840150006 375, 0.00625000009, 0.00840150006 376, 0.00749999983, 0.00840150006 377, 0.00875000004, 0.00840150006 378, 0.00999999978, 0.00840150006 379, 0.0112500004, 0.00840150006 380, 0.0125000002, 0.00840150006 381, 0.0137499999, 0.00840150006 382, 0.0149999997, 0.00840150006 383, 0.0162499994, 0.00840150006 384, 0.0175000001, 0.00840150006 385, 0.0187500007, 0.00840150006 386, 0.0199999996, 0.00840150006 387, 0.0212500002, 0.00840150006 388, 0.0225000009, 0.00840150006 389, 0.0237499997, 0.00840150006 390, 0.0250000004, 0.00840150006 391, 0.0262499992, 0.00840150006 392, 0.0274999999, 0.00840150006 393, 0.0287500005, 0.00840150006 394, 0.0299999993, 0.00840150006 395, 0.03125, 0.00840150006 396, 0.0324999988, 0.00840150006 397, 0.0337500013, 0.00840150006

398, 0.0350000001, 0.00840150006 399, 0.036249999, 0.00840150006 400, 0.0375000015, 0.00840150006 401, 0.0387500003, 0.00840150006 402, 0.0399999991, 0.00840150006 403, 0.0412500016, 0.00840150006 404, 0.0425000004, 0.00840150006 405, 0.0437499993, 0.00840150006 406, 0.0450000018, 0.00840150006 407, 0.0462500006, 0.00840150006 408, 0.0474999994, 0.00840150006 409, 0.0487499982, 0.00840150006 410, 0.050000007, 0.00840150006 0., 0.00933500007 411. 412, 0.00124999997, 0.00933500007 413, 0.00249999994, 0.00933500007 414, 0.00374999992, 0.00933500007 415, 0.00499999989, 0.00933500007 416, 0.00625000009, 0.00933500007 417, 0.00749999983, 0.00933500007 418, 0.00875000004, 0.00933500007 419, 0.00999999978, 0.00933500007 420, 0.0112500004, 0.00933500007 421, 0.0125000002, 0.00933500007 422, 0.0137499999, 0.00933500007 423, 0.0149999997, 0.00933500007 424, 0.0162499994, 0.00933500007 425, 0.0175000001, 0.00933500007 426, 0.0187500007, 0.00933500007 427, 0.0199999996, 0.00933500007 428, 0.0212500002, 0.00933500007 429, 0.0225000009, 0.00933500007 430, 0.0237499997, 0.00933500007 431, 0.0250000004, 0.00933500007 432, 0.0262499992, 0.00933500007 433, 0.0274999999, 0.00933500007 434, 0.0287500005, 0.00933500007 435, 0.0299999993, 0.00933500007 436. 0.03125, 0.00933500007 437, 0.0324999988, 0.00933500007 438, 0.0337500013, 0.00933500007 439, 0.0350000001, 0.00933500007 440, 0.036249999, 0.00933500007 441, 0.0375000015, 0.00933500007 442, 0.0387500003, 0.00933500007 443, 0.0399999991, 0.00933500007 444, 0.0412500016, 0.00933500007 445, 0.0425000004, 0.00933500007 446, 0.0437499993, 0.00933500007 447, 0.0450000018, 0.00933500007 448, 0.0462500006, 0.00933500007 449, 0.0474999994, 0.00933500007 450, 0.0487499982, 0.00933500007 451, 0.050000007, 0.00933500007 452. 0., 0.0102685001 453, 0.00124999997, 0.0102685001 454, 0.00249999994, 0.0102685001 455, 0.00374999992, 0.0102685001 456, 0.00499999989, 0.0102685001 457, 0.00625000009, 0.0102685001 458, 0.00749999983, 0.0102685001 459, 0.00875000004, 0.0102685001 460, 0.00999999978, 0.0102685001 461, 0.0112500004, 0.0102685001 462, 0.0125000002, 0.0102685001 463, 0.0137499999, 0.0102685001 464, 0.0149999997, 0.0102685001 465, 0.0162499994, 0.0102685001 466, 0.0175000001, 0.0102685001 467, 0.0187500007, 0.0102685001 468, 0.0199999996, 0.0102685001 469, 0.0212500002, 0.0102685001 470, 0.0225000009, 0.0102685001 471, 0.0237499997, 0.0102685001 472, 0.0250000004, 0.0102685001

473, 0.0262499992, 0.0102685001 474, 0.0274999999, 0.0102685001 475, 0.0287500005, 0.0102685001 476, 0.0299999993, 0.0102685001 0.03125, 0.0102685001 477 478, 0.0324999988, 0.0102685001 479, 0.0337500013, 0.0102685001 480, 0.0350000001, 0.0102685001 481, 0.036249999, 0.0102685001 482, 0.0375000015, 0.0102685001 483, 0.0387500003, 0.0102685001 484, 0.0399999991, 0.0102685001 485, 0.0412500016, 0.0102685001 486, 0.0425000004, 0.0102685001 487, 0.0437499993, 0.0102685001 488, 0.0450000018, 0.0102685001 489, 0.0462500006, 0.0102685001 490, 0.0474999994, 0.0102685001 491, 0.0487499982, 0.0102685001 492, 0.050000007, 0.0102685001 493, 0., 0.0112020001 494, 0.00124999997, 0.0112020001 495, 0.00249999994, 0.0112020001 496, 0.00374999992, 0.0112020001 497, 0.00499999989, 0.0112020001 498, 0.00625000009, 0.0112020001 499, 0.00749999983, 0.0112020001 500, 0.00875000004, 0.0112020001 501, 0.00999999978, 0.0112020001 502, 0.0112500004, 0.0112020001 503, 0.0125000002, 0.0112020001 504, 0.0137499999, 0.0112020001 505, 0.0149999997, 0.0112020001 506, 0.0162499994, 0.0112020001 507, 0.0175000001, 0.0112020001 508, 0.0187500007, 0.0112020001 509, 0.0199999996, 0.0112020001 510, 0.0212500002, 0.0112020001 511, 0.0225000009, 0.0112020001 512, 0.0237499997, 0.0112020001 513, 0.0250000004, 0.0112020001 514, 0.0262499992, 0.0112020001 515, 0.0274999999, 0.0112020001 516, 0.0287500005, 0.0112020001 517, 0.0299999993, 0.0112020001 518, 0.03125, 0.0112020001 519, 0.0324999988, 0.0112020001 520, 0.0337500013, 0.0112020001 521, 0.0350000001, 0.0112020001 522, 0.036249999, 0.0112020001 523, 0.0375000015, 0.0112020001 524, 0.0387500003, 0.0112020001 525, 0.0399999991, 0.0112020001 526, 0.0412500016, 0.0112020001 527, 0.0425000004, 0.0112020001 528, 0.0437499993, 0.0112020001 529, 0.0450000018, 0.0112020001 530, 0.0462500006, 0.0112020001 531, 0.0474999994, 0.0112020001 532, 0.0487499982, 0.0112020001 533, 0.050000007, 0.0112020001 0., 0.0121355001 534 535, 0.00124999997, 0.0121355001 536, 0.00249999994, 0.0121355001 537, 0.00374999992, 0.0121355001 538, 0.00499999989, 0.0121355001 539, 0.00625000009, 0.0121355001 540, 0.00749999983, 0.0121355001 541, 0.00875000004, 0.0121355001 542, 0.00999999978, 0.0121355001 543, 0.0112500004, 0.0121355001 544, 0.0125000002, 0.0121355001 545, 0.0137499999, 0.0121355001 546, 0.0149999997, 0.0121355001 547, 0.0162499994, 0.0121355001

548, 0.0175000001, 0.0121355001 549, 0.0187500007, 0.0121355001 550, 0.0199999996, 0.0121355001 551, 0.0212500002, 0.0121355001 552, 0.0225000009, 0.0121355001 553, 0.0237499997, 0.0121355001 554, 0.0250000004, 0.0121355001 555, 0.0262499992, 0.0121355001 556, 0.0274999999, 0.0121355001 557, 0.0287500005, 0.0121355001 558, 0.0299999993, 0.0121355001 559. 0.03125, 0.0121355001 560, 0.0324999988, 0.0121355001 561, 0.0337500013, 0.0121355001 562, 0.0350000001, 0.0121355001 563, 0.036249999, 0.0121355001 564, 0.0375000015, 0.0121355001 565, 0.0387500003, 0.0121355001 566, 0.0399999991, 0.0121355001 567, 0.0412500016, 0.0121355001 568, 0.0425000004, 0.0121355001 569, 0.0437499993, 0.0121355001 570, 0.0450000018, 0.0121355001 571, 0.0462500006, 0.0121355001 572, 0.0474999994, 0.0121355001 573, 0.0487499982, 0.0121355001 574, 0.050000007, 0.0121355001 575, 0., 0.0130690001 576, 0.00124999997, 0.0130690001 577, 0.00249999994, 0.0130690001 578, 0.00374999992, 0.0130690001 579, 0.00499999989, 0.0130690001 580, 0.00625000009, 0.0130690001 581, 0.00749999983, 0.0130690001 582, 0.00875000004, 0.0130690001 583, 0.00999999978, 0.0130690001 584, 0.0112500004, 0.0130690001 585, 0.0125000002, 0.0130690001 586, 0.0137499999, 0.0130690001 587, 0.0149999997, 0.0130690001 588, 0.0162499994, 0.0130690001 589, 0.0175000001, 0.0130690001 590, 0.0187500007, 0.0130690001 591, 0.0199999996, 0.0130690001 592, 0.0212500002, 0.0130690001 593, 0.0225000009, 0.0130690001 594, 0.0237499997, 0.0130690001 595, 0.0250000004, 0.0130690001 596, 0.0262499992, 0.0130690001 597, 0.0274999999, 0.0130690001 598, 0.0287500005, 0.0130690001 599, 0.0299999993, 0.0130690001 0.03125, 0.0130690001 600, 601, 0.0324999988, 0.0130690001 602, 0.0337500013, 0.0130690001 603, 0.0350000001, 0.0130690001 604, 0.036249999, 0.0130690001 605, 0.0375000015, 0.0130690001 606, 0.0387500003, 0.0130690001 607, 0.0399999991, 0.0130690001 608, 0.0412500016, 0.0130690001 609, 0.0425000004, 0.0130690001 610, 0.0437499993, 0.0130690001 611, 0.0450000018, 0.0130690001 612, 0.0462500006, 0.0130690001 613, 0.0474999994, 0.0130690001 614, 0.0487499982, 0.0130690001 615, 0.050000007, 0.0130690001 0., 0.0140025001 616, 617, 0.00124999997, 0.0140025001 618, 0.00249999994, 0.0140025001 619, 0.00374999992, 0.0140025001 620, 0.00499999989, 0.0140025001 621, 0.00625000009, 0.0140025001 622, 0.00749999983, 0.0140025001

623, 0.00875000004, 0.0140025001 624, 0.00999999978, 0.0140025001 625, 0.0112500004, 0.0140025001 626, 0.0125000002, 0.0140025001 627, 0.0137499999, 0.0140025001 628, 0.0149999997, 0.0140025001 629, 0.0162499994, 0.0140025001 630, 0.0175000001, 0.0140025001 631, 0.0187500007, 0.0140025001 632, 0.0199999996, 0.0140025001 633, 0.0212500002, 0.0140025001 634, 0.0225000009, 0.0140025001 635, 0.0237499997, 0.0140025001 636, 0.0250000004, 0.0140025001 637, 0.0262499992, 0.0140025001 638, 0.0274999999, 0.0140025001 639, 0.0287500005, 0.0140025001 640, 0.0299999993, 0.0140025001 0.03125, 0.0140025001 641 642, 0.0324999988, 0.0140025001 643, 0.0337500013, 0.0140025001 644, 0.0350000001, 0.0140025001 645, 0.036249999, 0.0140025001 646, 0.0375000015, 0.0140025001 647, 0.0387500003, 0.0140025001 648, 0.0399999991, 0.0140025001 649, 0.0412500016, 0.0140025001 650, 0.0425000004, 0.0140025001 651, 0.0437499993, 0.0140025001 652, 0.0450000018, 0.0140025001 653, 0.0462500006, 0.0140025001 654, 0.0474999994, 0.0140025001 655, 0.0487499982, 0.0140025001 656, 0.050000007, 0.0140025001 657, 0., 0.0149360001 658, 0.00124999997, 0.0149360001 659, 0.00249999994, 0.0149360001 660, 0.00374999992, 0.0149360001 661, 0.00499999989, 0.0149360001 662, 0.00625000009, 0.0149360001 663, 0.00749999983, 0.0149360001 664, 0.00875000004, 0.0149360001 665, 0.00999999978, 0.0149360001 666, 0.0112500004, 0.0149360001 667, 0.0125000002, 0.0149360001 668, 0.0137499999, 0.0149360001 669, 0.0149999997, 0.0149360001 670, 0.0162499994, 0.0149360001 671, 0.0175000001, 0.0149360001 672, 0.0187500007, 0.0149360001 673, 0.0199999996, 0.0149360001 674, 0.0212500002, 0.0149360001 675, 0.0225000009, 0.0149360001 676, 0.0237499997, 0.0149360001 677, 0.025000004, 0.0149360001 678, 0.0262499992, 0.0149360001 679, 0.0274999999, 0.0149360001 680, 0.0287500005, 0.0149360001 681, 0.0299999993, 0.0149360001 0.03125, 0.0149360001 682. 683, 0.0324999988, 0.0149360001 684, 0.0337500013, 0.0149360001 685, 0.035000001, 0.0149360001 686, 0.036249999, 0.0149360001 687, 0.0375000015, 0.0149360001 688, 0.0387500003, 0.0149360001 689, 0.0399999991, 0.0149360001 690, 0.0412500016, 0.0149360001 691, 0.0425000004, 0.0149360001 692, 0.0437499993, 0.0149360001 693, 0.0450000018, 0.0149360001 694, 0.0462500006, 0.0149360001 695, 0.0474999994, 0.0149360001 696, 0.0487499982, 0.0149360001 697, 0.050000007, 0.0149360001

098, 0., 0.0138093001
699, 0.00124999997, 0.0158695001
700, 0.00249999994, 0.0158695001
701, 0.00374999992, 0.0158695001
702, 0.00499999989, 0.0158695001
703, 0.00625000009, 0.0158695001
704, 0.00749999983, 0.0158695001
705 0.00875000004 0.0158695001
705, 0.00075000004, 0.0158695001
700, 0.009999999978, 0.0138093001
707, 0.0112300004, 0.0138093001
/08, 0.0125000002, 0.0158695001
709, 0.0137499999, 0.0158695001
710, 0.0149999997, 0.0158695001
711, 0.0162499994, 0.0158695001
712, 0.0175000001, 0.0158695001
713. 0.0187500007. 0.0158695001
714 0.0199999996 0.0158695001
715 0.0212500002 0.0158695001
716, 0.0225000002, 0.0158695001
717, 0.0223000009, 0.0158093001
/1/, 0.025/49999/, 0.0158695001
/18, 0.0250000004, 0.0158695001
719, 0.0262499992, 0.0158695001
720, 0.0274999999, 0.0158695001
721, 0.0287500005, 0.0158695001
722, 0.0299999993, 0.0158695001
723, 0.03125, 0.0158695001
724, 0.0324999988, 0.0158695001
725 0.0337500013 0.0158695001
726, 0.0350000001, 0.0158695001
727, 0.036240000, 0.0158695001
727, 0.050249999, 0.0158095001
/28, 0.03/5000015, 0.0158695001
/29, 0.038/500003, 0.0158695001
730, 0.0399999991, 0.0158695001
731, 0.0412500016, 0.0158695001
732, 0.0425000004, 0.0158695001
733, 0.0437499993, 0.0158695001
734, 0.0450000018, 0.0158695001
735, 0.0462500006, 0.0158695001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001 738, 0.0500000007, 0.0158695001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001 738, 0.050000007, 0.0158695001 739, 0.00158030001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001 738, 0.050000007, 0.0158695001 739, 0., 0.0168030001 740, 0.0124000007, 0.0158020001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001 738, 0.050000007, 0.0158695001 739, 0., 0.0168030001 740, 0.00124999997, 0.0168030001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001 738, 0.050000007, 0.0158695001 739, 0., 0.0168030001 740, 0.00124999997, 0.0168030001 741, 0.00249999994, 0.0168030001
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.0062500009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ \end{array}$
$\begin{array}{c} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.0500000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ \end{array}$
$\begin{array}{c} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.04874999922, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 747, 0.0099999978, 0.0168030001\\ \end{array}$
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.04874999982, 0.0158695001 738, 0.0500000007, 0.0158695001 739, 0., 0.0168030001 740, 0.00124999997, 0.0168030001 741, 0.00249999994, 0.0168030001 742, 0.00374999992, 0.0168030001 743, 0.00499999989, 0.0168030001 744, 0.00625000099, 0.0168030001 745, 0.00749999983, 0.0168030001 746, 0.00875000044, 0.0168030001 747, 0.0099999978, 0.0168030001 748, 0.0112500004, 0.0168030001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001 738, 0.050000007, 0.0158695001 739, 0., 0.0168030001 740, 0.00124999997, 0.0168030001 741, 0.0024999997, 0.0168030001 742, 0.00374999992, 0.0168030001 743, 0.00499999989, 0.0168030001 744, 0.0062500009, 0.0168030001 745, 0.0074999983, 0.0168030001 746, 0.0087500004, 0.0168030001 748, 0.0112500004, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.00499999989, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.009999978, 0.0168030001748, 0.0112500004, 0.0168030001749, 0.013749999978, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0, 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.00499999989, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001748, 0.0112500004, 0.0168030001749, 0.012500002, 0.0168030001751, 0.014999997, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.0500000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.00499999989, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.00999999978, 0.0168030001748, 0.0112500004, 0.0168030001749, 0.012500002, 0.0168030001751, 0.0149999997, 0.0168030001751, 0.0149999997, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499992, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.00499999989, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001748, 0.0112500004, 0.0168030001749, 0.012500002, 0.0168030001750, 0.0137499999, 0.0168030001751, 0.0149999977, 0.0168030001752, 0.0162499994, 0.0168030001
$\begin{array}{c} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.04874999922, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 745, 0.00875000004, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 747, 0.0099999978, 0.0168030001\\ 748, 0.0112500004, 0.0168030001\\ 749, 0.012500002, 0.0168030001\\ 750, 0.0137499999, 0.0168030001\\ 751, 0.0149999997, 0.0168030001\\ 752, 0.0162500001, 0.0168030001\\ 753, 0.017500001, 0.0168030001\\ 754, 0.0180200002\\ 9000000000000000000000000000000$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.003749999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 747, 0.0099999978, 0.0168030001\\ 749, 0.012500002, 0.0168030001\\ 750, 0.01374999997, 0.0168030001\\ 751, 0.0149999997, 0.0168030001\\ 752, 0.0162499994, 0.0168030001\\ 753, 0.017500001, 0.0168030001\\ 754, 0.0187500007, 0.0168030001\\ 754, 0.0187500007, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 744, 0.00625000004, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 747, 0.0099999978, 0.0168030001\\ 748, 0.0112500004, 0.0168030001\\ 749, 0.012500002, 0.0168030001\\ 750, 0.0137499999, 0.0168030001\\ 751, 0.0149999997, 0.0168030001\\ 752, 0.01624999994, 0.0168030001\\ 753, 0.017500001, 0.0168030001\\ 754, 0.0187500007, 0.0168030001\\ 755, 0.0199999996, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.001249999997, 0.0168030001\\ 741, 0.002499999994, 0.0168030001\\ 742, 0.003749999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 745, 0.007499999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 747, 0.00999999978, 0.0168030001\\ 749, 0.012500004, 0.0168030001\\ 750, 0.0137499999, 0.0168030001\\ 751, 0.0149999997, 0.0168030001\\ 753, 0.0175000001, 0.0168030001\\ 754, 0.0187500007, 0.0168030001\\ 755, 0.0199999996, 0.0168030001\\ 756, 0.0212500002, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 745, 0.007499999983, 0.0168030001\\ 745, 0.007499999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 746, 0.0125000002, 0.0168030001\\ 750, 0.0137499999, 0.0168030001\\ 751, 0.0149999997, 0.0168030001\\ 755, 0.0162499994, 0.0168030001\\ 755, 0.0187500007, 0.0168030001\\ 755, 0.0199999996, 0.0168030001\\ 755, 0.0199999996, 0.0168030001\\ 755, 0.022500002, 0.0168030001\\ 757, 0.022500009, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499992, 0.0158695001\\ 738, 0.0500000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 746, 0.0112500002, 0.0168030001\\ 750, 0.01374999997, 0.0168030001\\ 751, 0.0149999997, 0.0168030001\\ 753, 0.017500007, 0.0168030001\\ 754, 0.0187500007, 0.0168030001\\ 755, 0.0199999996, 0.0168030001\\ 755, 0.0122500002, 0.0168030001\\ 755, 0.0225000009, 0.0168030001\\ 757, 0.0225000009, 0.0168030001\\ 758, 0.0237499997, 0.0168030001\\ \end{array}$
$\begin{array}{l} 735, 0.0462500006, 0.0158695001\\ 736, 0.0474999994, 0.0158695001\\ 737, 0.0487499982, 0.0158695001\\ 738, 0.050000007, 0.0158695001\\ 739, 0., 0.0168030001\\ 740, 0.00124999997, 0.0168030001\\ 741, 0.00249999994, 0.0168030001\\ 742, 0.00374999992, 0.0168030001\\ 743, 0.00499999989, 0.0168030001\\ 744, 0.00625000009, 0.0168030001\\ 744, 0.00625000004, 0.0168030001\\ 745, 0.00749999983, 0.0168030001\\ 746, 0.00875000004, 0.0168030001\\ 747, 0.0099999978, 0.0168030001\\ 748, 0.0112500004, 0.0168030001\\ 750, 0.01374999997, 0.0168030001\\ 751, 0.0149999997, 0.0168030001\\ 752, 0.0162499994, 0.0168030001\\ 753, 0.017500001, 0.0168030001\\ 755, 0.019999996, 0.0168030001\\ 755, 0.019999996, 0.0168030001\\ 755, 0.012500002, 0.0168030001\\ 755, 0.0237499997, 0.0168030001\\ 758, 0.0237499997, 0.0168030001\\ 759, 0.025000004, 0.0168030001\\ 759, 0.0250000004, 0.0168030001\\ 759, 0.0250000004, 0.0168030001\\ 759, 0.0250000004, 0.0168030001\\ 759, 0.0250000000000000000000000000000000000$
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.0024999997, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.004999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.009999978, 0.0168030001749, 0.012500002, 0.0168030001750, 0.01374999997, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001755, 0.019999996, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.022500009, 0.0168030001758, 0.0237499997, 0.0168030001759, 0.025000004, 0.0168030001759, 0.025000004, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001748, 0.0112500004, 0.0168030001749, 0.012500002, 0.0168030001750, 0.01374999997, 0.0168030001751, 0.0149999997, 0.0168030001752, 0.0162499994, 0.0168030001753, 0.017500007, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.022500002, 0.0168030001758, 0.0237499997, 0.0168030001759, 0.025000004, 0.0168030001760, 0.024999992, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001760, 0.024999992, 0.0168030001761, 0.0274999999, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499992, 0.0158695001738, 0.050000007, 0.0158695001739, 0, 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001748, 0.0112500004, 0.0168030001749, 0.012500002, 0.0168030001750, 0.0137499999, 0.0168030001751, 0.014999997, 0.0168030001753, 0.0175000001, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001759, 0.025000009, 0.0168030001760, 0.026249997, 0.0168030001761, 0.0274999997, 0.0168030001762, 0.0287500005, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499992, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.00499999989, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.00999999978, 0.0168030001748, 0.0112500004, 0.0168030001750, 0.0137499999, 0.0168030001751, 0.0149999997, 0.0168030001755, 0.0199999996, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.0225000009, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.022500009, 0.0168030001759, 0.0237499997, 0.0168030001759, 0.02600004, 0.0168030001760, 0.0262499992, 0.0168030001761, 0.027499999, 0.0168030001762, 0.0287500005, 0.0168030001763, 0.029990903, 0.0168030001
735, 0.0462500006, 0.0158695001 736, 0.0474999994, 0.0158695001 737, 0.0487499982, 0.0158695001 738, 0.050000007, 0.0158695001 739, 0., 0.0168030001 740, 0.00124999997, 0.0168030001 741, 0.0024999997, 0.0168030001 742, 0.0374999992, 0.0168030001 743, 0.00499999989, 0.0168030001 744, 0.0062500009, 0.0168030001 745, 0.00749999983, 0.0168030001 746, 0.0087500004, 0.0168030001 747, 0.0099999978, 0.0168030001 748, 0.0112500004, 0.0168030001 750, 0.01374999997, 0.0168030001 750, 0.01374999997, 0.0168030001 751, 0.0149999997, 0.0168030001 752, 0.0162499994, 0.0168030001 753, 0.017500007, 0.0168030001 754, 0.0187500007, 0.0168030001 755, 0.0199999996, 0.0168030001 756, 0.0212500002, 0.0168030001 758, 0.0237499997, 0.0168030001 759, 0.025000004, 0.0168030001 759, 0.025000004, 0.0168030001 750, 0.024999997, 0.0168030001 756, 0.0212500002, 0.0168030001 756, 0.0212500002, 0.0168030001 756, 0.02499997, 0.0168030001 750, 0.025000004, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.0024999997, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.004999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.009999978, 0.0168030001748, 0.0112500002, 0.0168030001750, 0.01374999997, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001755, 0.019999996, 0.0168030001755, 0.019999996, 0.0168030001755, 0.012500002, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001756, 0.0237499997, 0.0168030001760, 0.0262499992, 0.0168030001761, 0.0274999993, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001764, 0.0274999993, 0.0168030001764, 0.0274999993, 0.0168030001764, 0.0274999993, 0.0168030001764, 0.0274999993, 0.0168030001764, 0.0274999993, 0.0168030001764, 0.02125000005, 0.0168030001764, 0.0274999993, 0.0168030001764, 0.0274999993, 0.0168030001764, 0.0237500005, 0.0168030001765, 0.0237500005, 0.0168030001764, 0.03125, 0.0168030001765, 0.0234090088, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.004999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.009999978, 0.0168030001749, 0.012500002, 0.0168030001750, 0.013749999978, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000004, 0.0168030001758, 0.0237499997, 0.0168030001759, 0.025000004, 0.0168030001759, 0.025000004, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001760, 0.0262499992, 0.0168030001761, 0.0274999993, 0.0168030001762, 0.0287500005, 0.0168030001763, 0.029999993, 0.0168030001764, 0.03125, 0.0168030001764, 0.0324500045, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001764, 0.032450005, 0.0168030001 <t< td=""></t<>
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001749, 0.012500002, 0.0168030001750, 0.0137499999, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001753, 0.017500007, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001759, 0.025000004, 0.0168030001760, 0.02459992, 0.0168030001761, 0.027500005, 0.0168030001762, 0.0287500005, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001766, 0.0337500013, 0.0168030001766, 0.03499998, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766, 0.034999988, 0.0168030001766,
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0, 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001748, 0.0112500004, 0.0168030001749, 0.012500002, 0.0168030001750, 0.0137499999, 0.0168030001751, 0.014999997, 0.0168030001755, 0.01999997, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001759, 0.025000004, 0.0168030001760, 0.0262499992, 0.0168030001761, 0.0274999997, 0.0168030001762, 0.0287500005, 0.0168030001763, 0.029999993, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001765, 0.032499988, 0.0168030001766, 0.0337500013, 0.0168030001767, 0.035000004, 0.0168030001767, 0.035000004, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0, 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.00499999989, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.00999999978, 0.0168030001748, 0.0112500004, 0.0168030001750, 0.0137499999, 0.0168030001751, 0.0149999997, 0.0168030001755, 0.019999997, 0.0168030001755, 0.019999996, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001760, 0.0262499992, 0.0168030001761, 0.0274999993, 0.0168030001762, 0.0287500005, 0.0168030001763, 0.0237999993, 0.0168030001764, 0.03125, 0.0168030001765, 0.0324999988, 0.0168030001766, 0.0337500013, 0.0168030001766, 0.0337500013, 0.0168030001766, 0.0337500013, 0.0168030001766, 0.0337500013, 0.0168030001766, 0.0342499999, 0.0168030001766, 0.0342499999, 0.0168030001766, 0.0342499999, 0.0168030001766, 0.0342499999, 0.0168030001766, 0.0342499999, 0.0168030001766, 0.0342499999, 0.0168030001766, 0.0342499999, 0.0168030001766, 0.0342499999, 0.0168030001767, 0.035000001, 0.0168030001768, 0.0362499999, 0.0168030001 </td
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.0024999997, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.004999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.009999978, 0.0168030001748, 0.0112500004, 0.0168030001750, 0.01374999997, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001753, 0.017500007, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001760, 0.0262499992, 0.0168030001761, 0.0274999993, 0.0168030001764, 0.03125, 0.0168030001765, 0.0324999988, 0.0168030001765, 0.0324999988, 0.0168030001766, 0.03375000015, 0.0168030001767, 0.0350000001, 0.0168030001768, 0.036249999, 0.0168030001769, 0.0375000015, 0.0168030001769, 0.0375000015, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.0024999997, 0.0168030001742, 0.00374999992, 0.0168030001743, 0.004999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.009999978, 0.0168030001749, 0.012500002, 0.0168030001750, 0.013749999978, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001753, 0.017500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001759, 0.025000004, 0.0168030001760, 0.0262499992, 0.0168030001761, 0.0274999993, 0.0168030001762, 0.0287500005, 0.0168030001764, 0.03125, 0.0168030001764, 0.0325, 0.0168030001764, 0.0325, 0.0168030001765, 0.032499998, 0.0168030001766, 0.0337500013, 0.0168030001767, 0.035000001, 0.0168030001767, 0.035000001, 0.0168030001767, 0.0325000005, 0.0168030001767, 0.035000001, 0.0168030001767, 0.035000001, 0.0168030001767, 0.0357500005, 0.0168030001767, 0.0387500003, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001744, 0.0062500009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001749, 0.012500002, 0.0168030001750, 0.01374999997, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001753, 0.017500007, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001756, 0.0237499997, 0.0168030001759, 0.025000004, 0.0168030001760, 0.026499992, 0.0168030001761, 0.0274999999, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001764, 0.0325, 0.0168030001764, 0.0325, 0.0168030001764, 0.0325, 0.0168030001764, 0.0325, 0.0168030001766, 0.0337500003, 0.0168030001767, 0.035000001, 0.0168030001767, 0.035000001, 0.0168030001767, 0.035000001, 0.0168030001770, 0.0387500003, 0.0168030001771, 0.039999991, 0.0168030001
735, 0.0462500006, 0.0158695001736, 0.0474999994, 0.0158695001737, 0.0487499982, 0.0158695001738, 0.050000007, 0.0158695001739, 0., 0.0168030001740, 0.00124999997, 0.0168030001741, 0.00249999994, 0.0168030001742, 0.00374999992, 0.0168030001744, 0.00625000009, 0.0168030001745, 0.00749999983, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001746, 0.00875000004, 0.0168030001747, 0.0099999978, 0.0168030001749, 0.012500002, 0.0168030001750, 0.0137499999, 0.0168030001751, 0.014999997, 0.0168030001752, 0.0162499994, 0.0168030001753, 0.017500007, 0.0168030001754, 0.0187500007, 0.0168030001755, 0.019999996, 0.0168030001756, 0.0212500002, 0.0168030001757, 0.0225000009, 0.0168030001758, 0.0237499997, 0.0168030001764, 0.03125, 0.0168030001765, 0.032499992, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001765, 0.032499998, 0.0168030001764, 0.03125, 0.0168030001764, 0.03125, 0.0168030001764, 0.0325000013, 0.0168030001765, 0.032499998, 0.0168030001766, 0.0375000013, 0.0168030001767, 0.0350000013, 0.0168030001769, 0.0375000013, 0.0168030001770, 0.0387500003, 0.0168030001770, 0.0387500003, 0.0168030001772, 0.0412500016, 0.0168030001

773, 0.0425000004, 0.0168030001
774, 0.0437499993, 0.0168030001
775. 0.0450000018. 0.0168030001
776 0.0462500006 0.0168030001
777 0.0474000004 0.0168030001
778 0.0497400082 0.0168030001
778, 0.0487499982, 0.0168030001
779, 0.0500000007, 0.0168030001
780, 0., 0.0177365001
781, 0.00124999997, 0.0177365001
782, 0.00249999994, 0.0177365001
783 0 00374999992 0 0177365001
784 0.00499999989 0.0177365001
785, 0.00625000000, 0.0177365001
785, 0.00025000009, 0.0177505001
/80, 0.00/49999985, 0.01//305001
787, 0.00875000004, 0.0177365001
788, 0.00999999978, 0.0177365001
789, 0.0112500004, 0.0177365001
790. 0.0125000002. 0.0177365001
791 0.0137499999 0.0177365001
702 0.0140000007 0.0177265001
792, 0.01499999997, 0.0177303001
/93, 0.0162499994, 0.01//365001
794, 0.0175000001, 0.0177365001
795, 0.0187500007, 0.0177365001
796, 0.0199999996, 0.0177365001
797. 0.0212500002. 0.0177365001
798 0.0225000009 0.0177365001
790,0.0225000009,0.0177365001
799, 0.0257499997, 0.0177305001
800, 0.0250000004, 0.0177365001
801, 0.0262499992, 0.0177365001
802, 0.0274999999, 0.0177365001
803, 0.0287500005, 0.0177365001
804, 0.0299999993, 0.0177365001
805 0.03125 0.0177365001
806 0.0324999988 0.0177365001
807 0.0327500013 0.0177365001
807, 0.0557500015, 0.0177505001
808, 0.035000001, 0.017/365001
809, 0.036249999, 0.0177365001
810, 0.0375000015, 0.0177365001
811, 0.0387500003, 0.0177365001
812, 0.0399999991, 0.0177365001
813. 0.0412500016. 0.0177365001
814 0.0425000004 0.0177365001
815 0.0/37/99993 0.0177365001
815, 0.0450000018, 0.0177365001
810, 0.0430000018, 0.0177365001
817, 0.0462500006, 0.0177365001
818, 0.0474999994, 0.0177365001
819, 0.0487499982, 0.0177365001
820, 0.0500000007, 0.0177365001
821, 0., 0.0186700001
822. 0.00124999997. 0.0186700001
823 0.00249999994 0.0186700001
824 0.00374000002 0.0186700001
824, 0.00374999992, 0.0180700001
823, 0.004999999999, 0.0180700001
826, 0.00625000009, 0.0186/00001
827, 0.00749999983, 0.0186700001
828, 0.00875000004, 0.0186700001
829, 0.00999999978, 0.0186700001
830, 0.0112500004, 0.0186700001
831 0.0125000002 0.0186700001
832 0.0137499999 0.0186700001
822, 0.014000007, 0.0186700001
833, 0.0149999997, 0.0180700001
834, 0.0162499994, 0.0186/00001
835, 0.0175000001, 0.0186700001
836, 0.0187500007, 0.0186700001
837, 0.0199999996, 0.0186700001
838, 0.0212500002, 0.0186700001
839, 0.0225000009, 0.0186700001
840, 0.0237499997, 0.0186700001
841 0.0250000004 0.0186700001
842 0.0262400002 0.0196700001
042, 0.0202499992, 0.0180/00001 842, 0.0274000000, 0.0192700001
645, U.UZ/4999999, U.U186/00001
844, 0.028/500005, 0.0186700001
845, 0.0299999993, 0.0186700001
846, 0.03125, 0.0186700001

848, 0.0337500013, 0.0186700001
849, 0.0350000001, 0.0186700001
850 0.036249999 0.0186700001
851 0.0375000015 0.0186700001
852, 0.0297500002, 0.0186700001
852, 0.0387500005, 0.0180700001
853, 0.0399999991, 0.0186700001
854, 0.0412500016, 0.0186700001
855, 0.0425000004, 0.0186700001
856, 0.0437499993, 0.0186700001
857, 0.0450000018, 0.0186700001
858 0.0462500006 0.0186700001
859 0.0474999994 0.0186700001
860 0 0497400092 0 0196700001
800, 0.0487499982, 0.0180700001
861, 0.0500000007, 0.0186700001
*Element, type=CPE4P
1, 1, 2, 43, 42
2, 2, 3, 44, 43
3. 3. 4. 45. 44
4 4 5 46 45
5 5 6 47 46
5, 5, 0, 17, 10
0, 0, 7, 40, 47
/, /, 8, 49, 48
8, 8, 9, 50, 49
9, 9, 10, 51, 50
10, 10, 11, 52, 51
11. 11. 12. 53. 52
12 12 13 54 53
13 13 14 55 54
14 14 15 56 55
14, 14, 15, 50, 55
15, 15, 16, 57, 56
16, 16, 17, 58, 57
17, 17, 18, 59, 58
18, 18, 19, 60, 59
19, 19, 20, 61, 60
20 20 21 62 61
20, 20, 21, 02, 01 21, 21, 22, 63, 62
21, 21, 22, 03, 02 22, 22, 22, 64, 62
22, 22, 23, 04, 05
25, 25, 24, 65, 64
24, 24, 25, 66, 65
25, 25, 26, 67, 66
26, 26, 27, 68, 67
27, 27, 28, 69, 68
28, 28, 29, 70, 69
29 29 30 71 70
30 30 31 72 71
50, 50, 51, 72, 71
51, 51, 52, 75, 72
32, 32, 33, 74, 73
33, 33, 34, 75, 74
34, 34, 35, 76, 75
35, 35, 36, 77, 76
36, 36, 37, 78, 77
37, 37, 38, 79, 78
38, 38, 39, 80, 79
39 39 40 81 80
10 10 11 82 81
+0, +0, +1, 02, 01 11, 12, 24, 92
41, 42, 43, 64, 63
42, 43, 44, 85, 84
43, 44, 45, 86, 85
44, 45, 46, 87, 86
45, 46, 47, 88, 87
46, 47, 48, 89, 88
47, 48, 49, 90, 89
48 49 50 91 90
49 50 51 92 91
50, 51, 52, 91
JU, JI, J2, J3, J2 51, 52, 52, 04, 02
51, 52, 53, 94, 93
52, 53, 54, 95, 94
53, 54, 55, 96, 95
54, 55, 56, 97, 96
55, 56, 57, 98, 97
56 57 58 99 98
57 58 50 100 00
51, 50, 57, 100, 77 59, 50, 60, 101, 100
36, 39, 60, 101, 100
59, 60, 61, 102, 101
60. 61. 62. 103. 102

61, 62, 63, 1	04, 103
62, 63, 64, 1	05, 104
63, 64, 65, 1	06, 105
64, 65, 66, 1	07, 106
65, 66, 67, 1	08, 107
66, 67, 68, 1	09, 108
67, 68, 69, 1	10, 109
68, 69, 70,	11, 110
69, 70, 71, 1	12, 111
70, 71, 72, 1	13, 112
71, 72, 73,	14, 113
72, 73, 74, 1	15, 114
73, 74, 75, 1	16, 115
/4, /5, /6,	17,110
/5, /6, //,	18, 117
/6, //, /8, 1	19, 118
79 70 90 1	20, 119
70, 79, 80, 1	21, 120
80 81 82	22, 121
81 83 84	25, 122
82 84 85	26 125
83 85 86 1	20, 125
84 86 87 1	28 127
85 87 88	29,127
86 88 89	30, 129
87 89 90 1	31 130
88, 90, 91, 1	32, 131
89, 91, 92, 1	33, 132
90, 92, 93, 1	34, 133
91, 93, 94, 1	35, 134
92, 94, 95, 1	36, 135
93, 95, 96, 1	37, 136
94, 96, 97, 1	38, 137
95, 97, 98, 1	39, 138
96 98 99 1	40, 139
97, 99, 100,	141, 140
97, 99, 100, 98, 100, 101,	141, 140 142, 141
97, 99, 100, 98, 100, 101, 99, 101, 102,	141, 140 142, 141 143, 142
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103	141, 140 142, 141 143, 142 , 144, 143
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104	141, 140 142, 141 143, 142 , 144, 143 , 145, 144
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ \end{array}$
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ \end{array}$
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ \end{array}$
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\end{array}$
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\\ , 156, 155\end{array}$
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116	$141, 140 \\ 142, 141 \\ 143, 142 \\ , 144, 143 \\ , 145, 144 \\ , 146, 145 \\ , 147, 146 \\ , 148, 147 \\ , 149, 148 \\ , 150, 149 \\ , 151, 150 \\ , 152, 151 \\ , 153, 152 \\ , 154, 153 \\ , 155, 154 \\ , 156, 155 \\ , 157, 156 \\ , 157, 15$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117	$141, 140 \\ 142, 141 \\ 143, 142 \ 144, 143 \ 145, 144 \ 146, 145 \ 147, 146 \ 148, 147 \ 149, 148 \ 150, 149 \ 151, 150 \ 152, 151 \ 153, 152 \ 154, 153 \ 155, 154 \ 156, 155 \ 157, 156 \ 158, 157 \\$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118, 119	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\\ , 156, 155\\ , 157, 156\\ , 158, 157\\ , 159, 158\\ , 160, 159\\ , 161, 160\\ 162, 161\\ \end{array}$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\\ , 156, 155\\ , 157, 156\\ , 158, 157\\ , 159, 158\\ , 160, 159\\ , 161, 160\\ , 162, 161\\ \end{array}$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\\ , 155, 154\\ , 157, 156\\ , 158, 157\\ , 159, 158\\ , 160, 159\\ , 161, 160\\ , 162, 161\\ , 163, 162\\ , 164, 163\\ , 166\\ , 165\end{array}$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\\ , 155, 154\\ , 155, 157\\ , 159, 158\\ , 160, 159\\ , 161, 160\\ , 162, 161\\ , 163, 162\\ , 164, 163\\ , 166, 165\\ \end{array}$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126	$\begin{array}{r} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\\ , 155, 155\\ , 157, 156\\ , 158, 157\\ , 159, 158\\ , 160, 159\\ , 161, 160\\ , 162, 161\\ , 163, 162\\ , 164, 163\\ , 164, 163\\ , 167, 166\\ 168\\ 167\\ \end{array}$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126 123, 126, 127	$\begin{array}{c} 141, 140\\ 142, 141\\ 143, 142\\ , 144, 143\\ , 145, 144\\ , 146, 145\\ , 147, 146\\ , 148, 147\\ , 149, 148\\ , 150, 149\\ , 151, 150\\ , 152, 151\\ , 153, 152\\ , 154, 153\\ , 155, 154\\ , 155, 154\\ , 155, 154\\ , 155, 157\\ , 158, 157\\ , 159, 158\\ , 160, 159\\ , 161, 160\\ , 162, 161\\ , 163, 162\\ , 164, 163\\ , 166, 165\\ , 167, 166\\ , 168, 167\\ , 169, 168\end{array}$
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126 123, 126, 127 124, 127, 128 125, 128, 129	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126 123, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 155, 154 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126 123, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130 127, 130, 131	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126 123, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130 127, 130, 131 128, 131, 132	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 169, 168 , 170, 169 , 171, 170 , 172, 171
97, 99, 100, 97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 106, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126 123, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130 127, 130, 131 128, 131, 132 129, 132, 133	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170 , 172, 171 , 173, 172 , 174, 173
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130 127, 130, 131 128, 131, 132	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170 , 172, 171 , 173, 172 , 174, 173
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130 137, 134, 135	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170 , 172, 174 , 173, 172 , 174, 173 , 175, 174
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 126, 126 123, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130 127, 130, 131 128, 131, 132 130, 133, 134 131, 134, 135 132, 135, 136	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 155, 154 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170 , 172, 171 , 173, 172 , 174, 173 , 175, 174 , 176, 175 , 177, 176
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 125, 126 123, 126, 127 124, 127, 138 125, 128, 129 126, 129, 130 127, 130, 131 128, 131, 134, 135 132, 135, 136 133, 136, 137	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170 , 172, 171 , 173, 172 , 174, 173 , 175, 174 , 176, 175 , 177, 176 , 178, 177
97, 99, 100, 98, 100, 101, 99, 101, 102, 100, 102, 103 101, 103, 104 102, 104, 105 103, 105, 106 104, 106, 107 105, 107, 108 106, 108, 109 107, 109, 110 108, 110, 111 109, 111, 112 110, 112, 113 111, 113, 114 112, 114, 115 113, 115, 116 114, 116, 117 115, 117, 118 116, 118, 119 117, 119, 120 118, 120, 121 119, 121, 122 120, 122, 123 121, 124, 125 122, 126, 126 123, 126, 127 124, 127, 128 125, 128, 129 126, 129, 130 127, 130, 131 128, 131, 134, 135 132, 135, 136 133, 134, 137, 138	141, 140 142, 141 143, 142 , 144, 143 , 145, 144 , 146, 145 , 147, 146 , 148, 147 , 149, 148 , 150, 149 , 151, 150 , 152, 151 , 153, 152 , 154, 153 , 155, 154 , 156, 155 , 157, 156 , 158, 157 , 159, 158 , 160, 159 , 161, 160 , 162, 161 , 163, 162 , 164, 163 , 166, 165 , 167, 166 , 168, 167 , 169, 168 , 170, 169 , 171, 170 , 172, 171 , 173, 172 , 174, 173 , 175, 174 , 176, 175 , 177, 176 , 178, 177 , 179, 178

136, 139, 140, 181, 180
137, 140, 141, 182, 181
139, 142, 143, 184, 183
140, 143, 144, 185, 184
141, 144, 145, 186, 185
142, 145, 146, 187, 186
144, 147, 148, 189, 188
145, 148, 149, 190, 189
146, 149, 150, 191, 190 147, 150, 151, 192, 191
148, 151, 152, 193, 192
149, 152, 153, 194, 193
150, 153, 154, 195, 194
152, 155, 156, 197, 196
153, 156, 157, 198, 197
154, 157, 158, 199, 198
155, 158, 159, 200, 199
157, 160, 161, 202, 201
158, 161, 162, 203, 202
159, 162, 163, 204, 203
161, 165, 166, 207, 206
162, 166, 167, 208, 207
163, 167, 168, 209, 208
164, 168, 169, 210, 209 165, 169, 170, 211, 210
166, 170, 171, 212, 211
167, 171, 172, 213, 212
168, 172, 173, 214, 213
170, 174, 175, 216, 215
171, 175, 176, 217, 216
172, 176, 177, 218, 217
173, 177, 178, 219, 218
175, 179, 180, 221, 220
176, 180, 181, 222, 221
177, 181, 182, 223, 222
179, 183, 184, 225, 224
180, 184, 185, 226, 225
181, 185, 186, 227, 226
182, 180, 187, 228, 227
184, 188, 189, 230, 229
185, 189, 190, 231, 230
186, 190, 191, 232, 231 187, 191, 192, 233, 232
188, 192, 193, 234, 233
189, 193, 194, 235, 234
190, 194, 195, 236, 235
192, 196, 197, 238, 237
193, 197, 198, 239, 238
194, 198, 199, 240, 239
196, 200, 201, 242, 241
197, 201, 202, 243, 242
198, 202, 203, 244, 243
200, 204, 205, 246, 245
201, 206, 207, 248, 247
202, 207, 208, 249, 248
205, 206, 209, 250, 249 204, 209, 210, 251, 250
205, 210, 211, 252, 251
206, 211, 212, 253, 252
207, 212, 213, 254, 253 208, 213, 214, 255, 254
209, 214, 215, 256, 255
210, 215, 216, 257, 256

211. 216. 217. 258. 25	7
212, 217, 210, 250, 25	0
212, 217, 218, 259, 25	8
213 218 219 260 25	9
215, 210, 217, 200, 25	
214, 219, 220, 261, 26	0
215 220 221 262 26	1
213, 220, 221, 202, 20	1
216 221 222 263 26	2
210, 221, 222, 200, 20	-
217, 222, 223, 264, 26	3
218 223 224 265 26	1
216, 225, 224, 205, 20	4
219 224 225 266 26	5
	~
220, 225, 226, 267, 26	6
221 226 227 268 26	7
221, 220, 227, 208, 20	/
222, 227, 228, 269, 26	8
222 228 220 270 20	0
223, 228, 229, 270, 26	9
224 229 230 271 27	0
224, 227, 250, 271, 27	
225, 230, 231, 272, 27	1
ລວ (ລວ (ລວ ລຳ ສວ) ລອ	2
220, 231, 232, 273, 27	2
227 232 233 274 27	3
220, 222, 224, 275, 27	-
228, 233, 234, 275, 27	4
229 234 235 276 27	5
229, 254, 255, 276, 27	5
230, 235, 236, 277, 27	6
221 226 227 278 27	7
251, 250, 257, 270, 27	/
232, 237, 238, 279, 27	8
122 120 120 100 27	0
233, 238, 239, 280, 27	7
234, 239, 240, 281, 28	0
	ĭ
255, 240, 241, 282, 28	1
236 241 242 282 28	2
250, 241, 242, 205, 20	-
237, 242, 243, 284, 28	3
120 142 244 205 20	4
238, 243, 244, 283, 28	4
239 244 245 286 28	5
240, 245, 246, 207, 20	~
240, 245, 246, 287, 28	6
241 247 248 289 28	8
241, 247, 240, 207, 20	0
242, 248, 249, 290, 28	9
242 240 250 201 20	Δ
245, 249, 250, 291, 29	U
244 250 251 292 29	1
211, 200, 201, 202, 20	-
245, 251, 252, 293, 29	2
246 252 253 294 29	3
240, 252, 255, 274, 27	5
247, 253, 254, 295, 29	4
248 254 255 206 20	5
246, 254, 255, 290, 29	5
249. 255. 256. 297. 29	6
250, 256, 257, 200, 20	-
250, 256, 257, 298, 29	/
251 257 258 200 20	8
251, 257, 250, 277, 27	0
252, 258, 259, 300, 29	9
253 259 260 301 30	0
255, 259, 200, 501, 50	0
254, 260, 261, 302, 30	1
255 201 202 202 20	2
255, 261, 262, 505, 50	2
256 262 263 304 30	3
250, 202, 205, 501, 50	4
257, 263, 264, 305, 30	4
258 264 265 306 30	5
250, 204, 205, 500, 50	5
259, 265, 266, 307, 30	6
260 266 267 308 30	7
200, 200, 207, 308, 30	/
261, 267, 268, 309, 30	8
262 268 260 210 20	0
202, 208, 209, 510, 50	7
263, 269, 270, 311, 31	0
264 270 271 212 21	1
204, 270, 271, 312, 31	1
265. 271. 272. 313. 31	2
260, 271, 272, 214, 21	-
266, 272, 273, 314, 31	3
267 273 274 315 31	Δ
207, 275, 274, 515, 51	-
268, 274, 275, 316, 31	5
260 275 276 217 21	6
209, 273, 270, 317, 31	0
270, 276, 277, 318, 31	7
271 277 270 210 21	0
211, 211, 218, 319, 31	0
272, 278, 279, 320, 31	9
272 270 200 221 22	0
215, 219, 280, 321, 32	U
274 280 281 222 22	1
217,200,201,322,32	1
275, 281, 282, 323, 32	2
76 101 101 114 11	2
210, 282, 283, 324, 32	3
277, 283, 284, 325, 32	4
270 204 205 226,02	5
218, 284, 285, 326, 32	3
279 285 286 327 32	6
2,2,203,200,327,32	ž
280, 286, 287, 328, 32	/
281 288 280 220 22	9
201, 200, 209, 330, 32	/
	0
282, 289, 290, 331, 33	0
282, 289, 290, 331, 33	1
282, 289, 290, 331, 33 283, 290, 291, 332, 33	1
282, 289, 290, 331, 33 283, 290, 291, 332, 33 284, 291, 292, 333, 33	1 2
282, 289, 290, 331, 33 283, 290, 291, 332, 33 284, 291, 292, 333, 33 285, 290, 291, 292, 333, 33	1 2 2

207 204 205 226 225	
287, 294, 295, 336, 335	
288, 295, 296, 337, 336	
289, 296, 297, 338, 337	
290, 297, 298, 339, 338	
291, 298, 299, 340, 339	
292, 299, 300, 341, 340	
293, 300, 301, 342, 341	
294, 301, 302, 343, 342	
295, 302, 303, 344, 343	
290, 303, 304, 345, 344	
297, 304, 305, 340, 343	
298, 505, 500, 547, 540	
300 307 308 349 348	
301 308 309 350 349	
302 309 310 351 350	
303, 310, 311, 352, 351	
304, 311, 312, 353, 352	
305, 312, 313, 354, 353	
306, 313, 314, 355, 354	
307, 314, 315, 356, 355	
308, 315, 316, 357, 356	
309, 316, 317, 358, 357	
310, 317, 318, 359, 358	
311, 318, 319, 360, 359	
312, 319, 320, 361, 360	
313, 320, 321, 362, 361	
314, 321, 322, 363, 362	
315, 322, 323, 364, 363	
316, 323, 324, 365, 364	
317, 324, 325, 366, 365	
318, 325, 326, 367, 366	
319, 326, 327, 368, 367	
320, 327, 328, 369, 368	
321, 329, 330, 371, 370	
322, 330, 331, 372, 371	
323, 331, 332, 373, 372 324, 332, 333, 374, 373	
324, 332, 333, 374, 373	
226, 224, 225, 276, 275	
320, 334, 335, 370, 373	
320, 334, 333, 370, 373 327, 335, 336, 377, 376 328, 336, 337, 378, 377	
327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378	
327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379	
327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380	
327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381	
327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382	
327, 335, 336, 377, 376 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383	
326, 354, 353, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384	
326, 354, 355, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385	
326, 354, 355, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386	
326, 354, 355, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387	
320, 334, 335, 376, 377 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388	
320, 334, 335, 376, 377 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389	
320, 334, 335, 376, 377 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390	
327, 335, 336, 377, 376 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391	
327, 335, 336, 377, 376 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392	
327, 335, 336, 377, 376 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 394, 393 344, 352, 353, 394, 393	
326, 354, 355, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 354, 355, 394, 395, 394	
326, 354, 355, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 395, 396, 395 346, 354, 355, 396, 395	
320, 334, 335, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 353, 354, 395, 396, 395 347, 355, 356, 397, 396 346, 354, 355, 396, 397 347, 355, 356, 377, 396	
320, 334, 335, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 355, 356, 397, 396 345, 355, 356, 357, 398, 397 346, 354, 355, 396, 397, 396 347, 358, 300, 308	
320, 334, 335, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 346, 354, 355, 396, 395 347, 355, 356, 397, 398, 397 349, 357, 358, 359, 398 340, 358, 359, 400, 399	
320, 334, 335, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 346, 354, 355, 396, 395 347, 355, 356, 397, 396 348, 356, 357, 398, 397 349, 357, 358, 399, 398 350, 358, 359, 400, 399 351, 359, 360, 401, 400	
320, 334, 335, 376, 377 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 347, 355, 356, 397, 396 347, 355, 356, 397, 396 348, 359, 358, 399, 398 350, 358, 359, 400, 399 351, 352, 353, 394, 393 345, 355, 356, 397, 396 347, 355, 356, 397, 398 350, 358, 359, 400, 399 351, 359, 360, 401, 400 352, 360, 361, 402, 401	
320, 334, 335, 370, 373 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 51, 352, 393, 392 344, 352, 353, 354, 395, 394 346, 354, 355, 396, 395 347, 355, 356, 397, 396 348, 356, 357, 398, 397 349, 357, 358, 399, 398 350, 358, 359, 400, 399 351, 352, 360, 401, 400 352, 360, 361, 402, 401 353, 361, 362, 403, 402	
320, 334, 335, 370, 373 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 354, 395, 394 346, 354, 355, 396, 395 347, 355, 356, 397, 396 348, 356, 357, 398, 397 349, 357, 358, 399, 398 350, 358, 359, 400, 399 351, 352, 360, 401, 400 352, 360, 361, 402, 401 353, 361, 362, 403, 402 354, 362, 363, 404, 403	
320, 334, 335, 370, 373 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 340, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 344, 352, 353, 394, 395 346, 354, 355, 396, 395 347, 355, 356, 397, 396 348, 356, 357, 398, 397 349, 357, 358, 399, 398 350, 358, 359, 400, 399 351, 352, 360, 401, 400 352, 360, 361, 402, 401 353, 361, 362, 403, 402 354, 362, 363, 404, 403 355, 363, 364, 405, 404	
320, 334, 335, 370, 373 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 344, 352, 353, 394, 393 345, 355, 356, 397, 396 348, 356, 357, 398, 397 349, 357, 358, 399, 398 350, 358, 359, 400, 399 351, 352, 360, 401, 400 352, 361, 362, 403, 402 354, 362, 363, 404, 403 355, 363, 364, 405, 404 356, 364, 365, 406, 405	
320, 334, 335, 370, 373 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 386, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 344, 352, 353, 394, 393 345, 355, 356, 397, 396 348, 356, 357, 398, 397 349, 357, 358, 399, 398 350, 358, 359, 400, 399 351, 352, 360, 401, 400 352, 363, 604, 402, 401 353, 361, 362, 403, 402 354, 362, 363, 404, 403 355, 363, 364, 405, 404 356, 364, 365, 406, 405 357, 365, 366, 407, 406	
320, 334, 335, 370, 373 327, 335, 336, 377, 376 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 384, 383 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 344, 352, 353, 394, 393 345, 355, 356, 397, 396 348, 356, 357, 398, 397 349, 357, 358, 399, 398 350, 358, 359, 400, 399 351, 352, 360, 401, 400 352, 360, 361, 402, 401 353, 361, 362, 403, 402 354, 362, 363, 404, 403 355, 363, 364, 405, 406 355, 363, 364, 405, 406 355, 363, 364, 405, 406 355, 363, 364, 405, 406 356, 364, 365, 406, 405 357, 365, 366, 407, 406	
320, 334, 335, 370, 373 327, 335, 336, 377, 378, 377 328, 336, 337, 378, 377 329, 337, 338, 379, 378 330, 338, 339, 380, 379 331, 339, 340, 381, 380 332, 340, 341, 382, 381 333, 341, 342, 383, 382 334, 342, 343, 384, 383 335, 343, 344, 385, 384 336, 344, 345, 384, 385 337, 345, 346, 387, 386 338, 346, 347, 388, 387 339, 347, 348, 389, 388 340, 348, 349, 390, 389 341, 349, 350, 391, 390 342, 350, 351, 392, 391 343, 351, 352, 393, 392 344, 352, 353, 394, 393 345, 355, 356, 397, 396 344, 355, 356, 397, 396 344, 355, 356, 397, 396 344, 355, 356, 397, 398 350, 358, 359, 400, 399 351, 352, 360, 401, 400 352, 360, 361, 402, 401 353, 361, 362, 403, 402 354, 362, 363, 404, 403 355, 363, 364, 405, 406 356, 364, 365, 406, 405 357, 358, 369, 404 356, 364, 365, 406, 405 357, 365, 366, 407, 406 358, 366, 367, 408, 407 359, 366, 367, 408, 407	

261	270	271	412 411
501,	570,	5/1,	412, 411
362	371	372	413 412
2.02,	272	272,	414 412
363,	372,	3/3,	414, 413
364	373	374	415 414
200.	272,	275	416 415
365,	374,	375,	416, 415
366	375	376	417 416
200,	270,	277	410, 417
367,	376,	377,	418, 417
368	377	378	419 418
500,	<i>511</i> ,	570,	419, 410
369,	378,	379,	420, 419
370	379	380	421 420
570,	51),	500,	421, 420
371,	380,	381,	422, 421
372	381	382	423 422
272,	201,	202,	123, 122
373,	382,	383,	424, 423
374	383	384	425 424
574,	505,	504,	425, 424
375,	384,	385,	426, 425
376	385	386	127 126
370,	205,	500,	427, 420
377,	386,	387,	428, 427
378	387	388	129 128
270,	2007,	200,	429, 420
379,	388,	389,	430, 429
380	389	390	431 430
200,	200,	370,	431, 430
381,	390,	391,	432, 431
382	391	392	433 432
302,	202	372,	433, 432
383,	392,	393,	434, 433
384	393	394	435 434
204,	<i>373</i> ,	207	435,454
385,	394,	395,	436, 435
386	395	396	437 436
300,	<i>373</i> ,	3,00,	437,430
387,	396,	397,	438, 437
388	397	398	439 438
200,	200	200	140, 120
389,	398,	399,	440, 439
390.	399.	400,	441,440
201	100	401	112 111
591,	400,	401,	442, 441
392,	401,	402,	443, 442
393	402	403	444 443
201	102,	105,	445 444
394,	403,	404,	445, 444
395	404	405.	446.445
206	105	106	117 116
590,	405,	400,	447, 440
397,	406,	407,	448, 447
398	407	408	449 448
200,	107,	100,	110, 110
399,	408,	409,	450, 449
400.	409.	410.	451.450
401	111	412	452 452
401,	411,	412,	435, 432
402,	412.	413.	454, 453
103	113 [´]	A1A	155 151
405,	- 1 <i>5</i> ,	TIT ,	+55, +5+
404,	414,	415,	456, 455
405	415	416	457 456
100,	410	417	150, 150
406,	416,	41/,	458, 457
407.	417.	418.	459.458
100	110	410	160 150
408,	410,	419,	400, 459
409,	419,	420,	461, 460
410	120	121	162 161
410,	720,	721,	402,401
411,	421,	422,	463, 462
412.	422.	423.	464.463
412 [′]	122	121	-)
415,	423,	/1 //1	165 161
414,		т∠т,	465, 464
415	424,	425,	465, 464 466, 465
т 1 <i>Э</i> ,	424, 425	425,	465, 464 466, 465 467, 466
110	424, 425,	425, 426,	465, 464 466, 465 467, 466
416,	424, 425, 426,	425, 426, 427,	465, 464 466, 465 467, 466 468, 467
416, 417	424, 425, 426, 427	425, 426, 427, 428	465, 464 466, 465 467, 466 468, 467 469, 468
416, 417,	424, 425, 426, 427,	425, 426, 427, 428,	465, 464 466, 465 467, 466 468, 467 469, 468
416, 417, 418,	424, 425, 426, 427, 428,	425, 426, 427, 428, 429,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469
416, 417, 418, 419,	424, 425, 426, 427, 427, 428, 429.	425, 426, 427, 428, 429, 430.	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470
416, 417, 418, 419, 420	424, 425, 426, 427, 428, 429, 429,	425, 426, 427, 428, 429, 430, 421	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470
416, 417, 418, 419, 420,	424, 425, 426, 427, 428, 429, 430,	425, 426, 427, 428, 429, 430, 431,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471
416, 417, 418, 419, 420, 421,	424, 425, 426, 427, 428, 429, 430, 431,	425, 426, 427, 428, 429, 430, 431, 432,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472
416, 417, 418, 419, 420, 421, 422	424, 425, 426, 427, 428, 429, 430, 431, 432	425, 426, 427, 428, 429, 430, 431, 432, 433	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474 473
416, 417, 418, 419, 420, 421, 422, 422,	424, 425, 426, 427, 428, 429, 430, 431, 432,	425, 426, 427, 428, 429, 430, 431, 432, 433,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473
416, 417, 418, 419, 420, 421, 422, 423,	424, 425, 426, 427, 428, 429, 430, 431, 432, 433,	425, 426, 427, 428, 429, 430, 431, 432, 433, 434,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474
416, 417, 418, 419, 420, 421, 422, 422, 423, 424	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 475, 474
416, 417, 418, 419, 420, 421, 422, 422, 423, 424, 425	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 424	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475
416, 417, 418, 419, 420, 421, 422, 423, 424, 425,	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435,	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476
416, 417, 418, 419, 420, 421, 422, 422, 423, 424, 425, 426.	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436.	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437.	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477
416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 478, 477
416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 420	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437,	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 436,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478
$\begin{array}{c} 416, \\ 417, \\ 418, \\ 419, \\ 420, \\ 421, \\ 422, \\ 423, \\ 424, \\ 425, \\ 426, \\ 427, \\ 428, \end{array}$	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 433, 434, 435, 436, 436, 438,	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479
416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429.	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 436, 437, 438, 439.	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440.	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479 481, 480
416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440	425,, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479 481, 480 482 481
416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 424, 425, 426, 427, 428, 429, 430,	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 436, 437, 438, 439, 440,	425, 422, 422, 422, 422, 422, 422, 422,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479 481, 480 482, 481
$\begin{array}{c} 416, \\ 417, \\ 418, \\ 419, \\ 420, \\ 421, \\ 422, \\ 423, \\ 424, \\ 425, \\ 426, \\ 427, \\ 428, \\ 429, \\ 430, \\ 431, \end{array}$	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 436, 437, 438, 439, 440, 441,	425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 436, 437, 438, 439, 440, 441, 442,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479 481, 480 482, 481 483, 482
416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 436, 437, 438, 439, 440, 441, 442	422, 4226, 4227, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479 481, 480 482, 481 483, 482 484, 483
416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 432,	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 4436, 4437, 4440, 441, 4442,	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 444, 444,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 477, 476 478, 477 479, 478 480, 479 481, 480 482, 481 483, 482 484, 483
416, 417, 418, 419, 420, 421, 422, 422, 422, 424, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433,	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443,	425, 4226, 4227, 428, 429, 430, 431, 432, 433, 434, 435, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 443, 444,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479 481, 480 482, 481 483, 482 484, 483 485, 484
$\begin{array}{c} 416,\\ 417,\\ 418,\\ 419,\\ 420,\\ 421,\\ 422,\\ 423,\\ 424,\\ 425,\\ 426,\\ 427,\\ 428,\\ 429,\\ 430,\\ 431,\\ 432,\\ 433,\\ 434,\\ \end{array}$	424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 444,	425, 4226, 4227, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444,	465, 464 466, 465 467, 466 468, 467 469, 468 470, 469 471, 470 472, 471 473, 472 474, 473 475, 474 476, 475 477, 476 478, 477 479, 478 480, 479 481, 480 482, 481 483, 482 484, 483

436, 446, 447, 488, 487
437, 447, 448, 489, 488
438, 448, 449, 490, 489
440, 450, 451, 492, 491
441, 452, 453, 494, 493
442, 453, 454, 495, 494
443, 454, 455, 496, 495
444, 455, 456, 497, 496
445, 450, 457, 498, 497
447, 458, 459, 500, 499
448, 459, 460, 501, 500
449, 460, 461, 502, 501
450, 461, 462, 503, 502
451, 462, 463, 504, 503
453, 464, 465, 506, 505
454, 465, 466, 507, 506
455, 466, 467, 508, 507
456, 467, 468, 509, 508
457, 468, 469, 510, 509
458, 469, 470, 511, 510
460, 471, 472, 513, 512
461, 472, 473, 514, 513
462, 473, 474, 515, 514
463, 474, 475, 516, 515
464, 475, 476, 517, 516
465, 470, 477, 518, 517
467, 478, 479, 520, 519
468, 479, 480, 521, 520
469, 480, 481, 522, 521
470, 481, 482, 523, 522
4/1, 482, 483, 524, 525
473 484 485 526 525
474, 485, 486, 527, 526
475, 486, 487, 528, 527
476, 487, 488, 529, 528
477, 488, 489, 530, 529
478, 489, 490, 531, 530
480, 491, 492, 533, 532
481, 493, 494, 535, 534
482, 494, 495, 536, 535
483, 495, 496, 537, 536
484, 490, 497, 538, 557
486, 498, 499, 540, 539
487, 499, 500, 541, 540
488, 500, 501, 542, 541
489, 501, 502, 543, 542
490, 502, 503, 544, 543
491, 505, 504, 545, 544
493, 505, 506, 547, 546
494, 506, 507, 548, 547
495, 507, 508, 549, 548
496, 508, 509, 550, 549
497, 509, 510, 551, 550
499, 511, 512, 553, 552
500, 512, 513, 554, 553
501, 513, 514, 555, 554
502, 514, 515, 556, 555
503, 515, 516, 557, 556
504, 510, 517, 558, 557
506, 518, 519, 560, 559
507, 519, 520, 561, 560
508, 520, 521, 562, 561
509, 521, 522, 563, 562
JIU, JZZ, JZJ, JU4, JUJ

511, 523, 524, 565, 564
512 524 525 566 565
513 525 526 567 566
514 526 527 569 567
514, 520, 527, 508, 507
515, 527, 528, 569, 568
516, 528, 529, 570, 569
517, 529, 530, 571, 570
518, 530, 531, 572, 571
519 531 532 573 572
520 532 533 574 573
520, 552, 555, 574, 575
521, 534, 535, 576, 575
522, 535, 536, 577, 576
523, 536, 537, 578, 577
524, 537, 538, 579, 578
525, 538, 539, 580, 579
526, 539, 540, 581, 580
527 540 541 582 581
528 541 542 583 582
520, 541, 542, 505, 502
529, 542, 545, 584, 585
530, 543, 544, 585, 584
531, 544, 545, 586, 585
532, 545, 546, 587, 586
533, 546, 547, 588, 587
534, 547, 548, 589, 588
535, 548, 549, 590, 589
536 549 550 591 590
537 550 551 592 591
537, 550, 551, 592, 591
538, 551, 552, 593, 592
539, 552, 553, 594, 593
540, 553, 554, 595, 594
541, 554, 555, 596, 595
542, 555, 556, 597, 596
543, 556, 557, 598, 597
544 557 558 599 598
545 558 559 600 599
546 550 560 601 600
540, 559, 500, 001, 000
547, 560, 561, 602, 601
548, 561, 562, 603, 602
549, 562, 563, 604, 603
550, 563, 564, 605, 604
551, 564, 565, 606, 605
552, 565, 566, 607, 606
553 566 567 608 607
554 567 568 609 608
555 568 569 610 609
555, 508, 509, 010, 009
556, 569, 570, 611, 610
557, 570, 571, 612, 611
558, 571, 572, 613, 612
559, 572, 573, 614, 613
560, 573, 574, 615, 614
561, 575, 576, 617, 616
562, 576, 577, 618, 617
563 577 578 619 618
564 578 579 620 619
565 570 590 621 620
505, 579, 580, 021, 020
500, 580, 581, 622, 621
567, 581, 582, 623, 622
568, 582, 583, 624, 623
569, 583, 584, 625, 624
570, 584, 585, 626, 625
571, 585, 586, 627, 626
572, 586, 587, 628, 627
573, 587, 588, 629, 628
574 588 589 630 629
575 589 590 631 630
576 500 501 622 621
570, 570, 571, 052, 051
577, 591, 592, 633, 632
578, 592, 593, 634, 633
579, 593, 594, 635, 634
580, 594, 595, 636, 635
581, 595, 596, 637, 636
582, 596, 597, 638, 637
583, 597, 598, 639, 638
584 598 599 640 639
585 599 600 641 640
,, 000, 041, 040

586, 600, 601, 642, 641
587, 601, 602, 643, 642
588, 602, 603, 644, 645
590, 604, 605, 646, 645
591, 605, 606, 647, 646
592, 606, 607, 648, 647
593, 607, 608, 649, 648
594, 608, 609, 650, 649
595, 609, 610, 651, 650
597, 611, 612, 653, 652
598, 612, 613, 654, 653
599, 613, 614, 655, 654
600, 614, 615, 656, 655
601, 616, 617, 658, 657
603, 618, 619, 660, 659
604, 619, 620, 661, 660
605, 620, 621, 662, 661
606, 621, 622, 663, 662
607, 622, 623, 664, 663
609 624 625 666 665
610, 625, 626, 667, 666
611, 626, 627, 668, 667
612, 627, 628, 669, 668
613, 628, 629, 670, 669
614, 629, 630, 671, 670
616, 631, 632, 673, 672
617, 632, 633, 674, 673
618, 633, 634, 675, 674
619, 634, 635, 676, 675
620, 635, 636, 677, 676
622, 637, 638, 679, 678
623, 638, 639, 680, 679
624, 639, 640, 681, 680
625, 640, 641, 682, 681
626, 641, 642, 683, 682
627, 642, 643, 684, 685
629, 644, 645, 686, 685
630, 645, 646, 687, 686
631, 646, 647, 688, 687
632, 647, 648, 689, 688
633, 648, 649, 690, 689
635, 650, 651, 692, 691
636, 651, 652, 693, 692
637, 652, 653, 694, 693
638, 653, 654, 695, 694
639, 654, 655, 696, 695
641 657 658 699 698
642, 658, 659, 700, 699
643, 659, 660, 701, 700
644, 660, 661, 702, 701
645, 661, 662, 703, 702
646, 662, 663, 704, 705
648, 664, 665, 706, 705
649, 665, 666, 707, 706
650, 666, 667, 708, 707
651, 667, 668, 709, 708
052, 008, 009, 710, 709
654, 670, 671, 712, 711
655, 671, 672, 713, 712
656, 672, 673, 714, 713
657, 673, 674, 715, 714
658, 674, 675, 716, 715
660, 676, 677, 718, 717
, , , ,

661, 677, 678, 719, 718
001.0//.0/0./17./10
662, 678, 679, 720, 719
663, 679, 680, 721, 720
664 680 681 722 721
665, 661, 662, 722, 721
665, 681, 682, 723, 722
666, 682, 683, 724, 723
667 683 684 725 724
007, 085, 084, 725, 724
668, 684, 685, 726, 725
669, 685, 686, 727, 726
670 686 687 728 727
070, 000, 007, 720, 727
671, 687, 688, 729, 728
672, 688, 689, 730, 729
673 689 690 731 730
(74, (00, (01, 720, 721
6/4, 690, 691, /32, /31
675, 691, 692, 733, 732
676 692 693 731 733
(77, 0)2, 0)3, 734, 735
6//, 693, 694, /35, /34
678, 694, 695, 736, 735
679 695 696 737 736
079, 095, 090, 757, 750
680, 696, 697, 738, 737
681, 698, 699, 740, 739
682 699 700 741 740
082, 099, 700, 741, 740
683, 700, 701, 742, 741
684, 701, 702, 743, 742
685 702 703 744 743
085, 702, 705, 744, 745
686, 703, 704, 745, 744
687, 704, 705, 746, 745
699 705 706 747 746
088, 703, 700, 747, 740
689, 706, 707, 748, 747
690, 707, 708, 749, 748
601 708 700 750 740
091, 708, 709, 750, 749
692, 709, 710, 751, 750
693, 710, 711, 752, 751
604 711 712 753 752
094, 711, 712, 755, 752
695, 712, 713, 754, 753
696, 713, 714, 755, 754
607 714 715 756 755
097, 714, 715, 750, 755
698, 715, 716, 757, 756
699, 716, 717, 758, 757
700 717 718 759 758
700, 717, 718, 759, 758
701, 718, 719, 760, 759
702, 719, 720, 761, 760
703 720 721 762 761
703, 720, 721, 702, 701
704, 721, 722, 763, 762
705, 722, 723, 764, 763
706 723 724 765 764
700, 723, 724, 705, 704
/0/, /24, /25, /66, /65
700 705 700 707 700
/08, /25, /26, /6/, /66
708, 725, 726, 767, 766
709, 726, 727, 768, 767
708, 725, 726, 767, 766 709, 726, 727, 768, 767 710, 727, 728, 769, 768
708, 725, 726, 767, 766 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769
708, 725, 726, 767, 766 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770
708, 725, 726, 767, 766 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 720, 731, 772, 771
708, 725, 726, 767, 768 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771
708, 725, 726, 767, 766 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772
708, 725, 726, 767, 768 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773
708, 725, 726, 767, 766 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774
708, 725, 726, 767, 768 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775
708, 725, 726, 767, 768 709, 726, 727, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 736, 777, 776 718, 735, 736, 777, 776
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 736, 777, 776 719, 736, 737, 778, 777
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 743, 744, 785, 784
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 743, 744, 785, 786
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 744, 785, 784 726, 744, 745, 786, 785 727, 745, 746, 787, 786
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 743, 744, 785, 784 726, 744, 745, 786, 785 727, 745, 746, 787, 786
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 743, 744, 785, 784 726, 744, 745, 786, 785 727, 745, 746, 787, 786 728, 746, 747, 788, 787
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 743, 784 724, 742, 743, 784, 783 725, 745, 746, 787, 786 728, 746, 747, 788, 787 729, 747, 748, 789, 788
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 743, 744, 785, 784 726, 744, 745, 786, 785 727, 745, 746, 787, 786 728, 746, 747, 788, 787 729, 747, 748, 789, 788 730, 748, 749, 790, 789
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 745, 746, 787, 786 728, 744, 745, 786, 787 729, 747, 748, 789, 788 730, 747, 748, 749, 790, 789 724, 742, 743, 744, 785, 784 726, 747, 748, 789, 788 730, 747, 748, 749, 790, 789
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 745, 746, 787, 786 728, 746, 747, 788, 787 729, 747, 748, 789, 788 730, 748, 749, 790, 789 731, 749, 750, 791, 790
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 738, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 744, 745, 784 726, 747, 748, 784, 783 725, 745, 746, 787, 786 726, 747, 748, 789, 788 730, 741, 749, 750, 791, 790 732, 750, 751, 792, 791
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 745, 746, 787, 786 728, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 743, 744, 785, 784 726, 747, 748, 787, 786 728, 746, 747, 788, 787 729, 747, 748, 789, 788 730, 748, 749, 750, 791, 790 732, 750, 751, 792, 791 733, 751, 752, 793, 792
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 734, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 742, 743, 784, 783 725, 743, 744, 785, 784 726, 744, 745, 786, 785 727, 745, 746, 787, 786 728, 746, 747, 788, 787 729, 747, 748, 789, 788 730, 748, 749, 790, 789 731, 749, 750, 791, 790 732, 750, 751, 792, 791 733, 751, 752, 733, 794, 793
708, 725, 726, 767, 768, 767 710, 727, 728, 769, 768 711, 728, 729, 770, 769 712, 729, 730, 771, 770 713, 730, 731, 772, 771 714, 731, 732, 773, 772 715, 732, 733, 774, 773 716, 733, 734, 775, 774 717, 738, 735, 776, 775 718, 735, 736, 777, 776 719, 736, 737, 778, 777 720, 737, 738, 779, 778 721, 739, 740, 781, 780 722, 740, 741, 782, 781 723, 741, 742, 783, 782 724, 743, 744, 785, 784 725, 745, 746, 787, 786 728, 746, 747, 788, 787 729, 747, 748, 789, 788 730, 748, 749, 790, 789 731, 749, 750, 791, 790 732, 750, 751, 752, 793, 792 733, 751, 752, 733, 744, 793

736, 754, 755, 796, 795	*******
737, 755, 756, 797, 796	*******
738, 756, 757, 798, 797	*Nset. nset=bottom. instance=soil-1. generate
739, 757, 758, 799, 798	1. 41. 1
740, 758, 759, 800, 799	*Elset_elset=bottom_instance=soil-1_generate
741, 759, 760, 801, 800	1. 40. 1
742, 760, 761, 802, 801	*Nset_nset=ton_instance=soil-1_generate
743, 761, 762, 803, 802	821. 861. 1
744, 762, 763, 804, 803	*Elset_elset=ton_instance=soil-1_generate
745, 763, 764, 805, 804	761, 800, 1
746 764 765 806 805	*Nset_nset=sides_instance=soil-1
747, 765, 766, 807, 806	1. 41. 42. 82. 83. 123. 124. 164. 165. 205. 206. 246. 247.
748, 766, 767, 808, 807	287. 288. 328
749, 767, 768, 809, 808	329, 369, 370, 410, 411, 451, 452, 492, 493, 533, 534, 574, 575,
750 768 769 810 809	615 616 656
751 769 770 811 810	657 697 698 738 739 779 780 820 821 861
752, 770, 771, 812, 811	*Elset_elset=sides_instance=soil-1
753, 771, 772, 813, 812	1. 40. 41. 80. 81. 120. 121. 160. 161. 200. 201. 240. 241.
754, 772, 773, 814, 813	280. 281. 320
755 773 774 815 814	321 360 361 400 401 440 441 480 481 520 521 560 561
756, 774, 775, 816, 815	600, 601, 640
757, 775, 776, 817, 816	641, 680, 681, 720, 721, 760, 761, 800
758, 776, 777, 818, 817	*Nset_nset=soil_instance=soil-1_generate
759 777 778 819 818	1 861 1
760, 778, 779, 820, 819	*Elset_elset=soil_instance=soil-1_generate
761 780 781 822 821	1 800 1
762, 781, 782, 823, 822	*Nset_nset=_PickedSet9_internal_instance=soil-1_generate
763, 782, 783, 824, 823	821 861 1
764 783 784 825 824	*Elset_elset=_PickedSet9_internal_instance=soil-1_generate
765, 784, 785, 826, 825	761 800 1
766 785 786 827 826	*Elset elset= top S3 internal instance=soil-1 generate
767 786 787 828 827	761 800 1
768 787 788 829 828	*Surface_type=ELEMENT_name=ton
769 788 789 830 829	ton S3 S3
770 789 790 831 830	*Nset nset=hottom PP internal instance=soil-1 generate
771 790 791 832 831	
772 791 792 833 832	*Nset nset= PickedSet9 PP internal instance=soil-1
773 792 793 834 833	generate
774 793 794 835 834	821 861 1
775 794 795 836 835	*Neet neet=ton PPinternal_instance=soil-1_generate
776 795 796 837 836	821 861 1
777 796 797 838 837	*End Assembly
778 797 798 839 838	**
779 798 799 840 839	***********Defining Layer Sets
780 799 800 841 840	*Nset_nset=Laver-1_instance=soil-1
781 800 801 842 841	821 861
782 801 802 843 842	*Nset_nset=Laver-2_instance=soil-1
783 802 803 844 843	780 820
784 803 804 845 844	*Nset_nset=Laver-3_instance=soil-1
785, 804, 805, 846, 845	739 779
786, 805, 806, 847, 846	*Nset_nset=I aver-4_instance=soil-1
787 806 807 848 847	698 738
788 807 808 849 848	*Neet_neet=Laver_5_instance=soil_1
789,808,809,850,849	657 697
790, 809, 810, 851, 850	*Neet_neet=Laver_6_instance=soil_1
791 810 811 852 851	616 656
702 811 812 853 852	*Neet_neet=Laver_7_instance=soil_1
793 812 813 854 853	575 615
704 813 814 855 854	*Neat_neat=Lawar & instance=soil 1
795, 817, 815, 856, 855	534 574
706 815 816 857 856	*Neet_neet=Laver 0_instance=soil 1
797 816 817 858 857	403 533
798 817 818 859 858	*Neet_neet=Laver_10_instance=soil_1
799 818 819 860 859	452 492
800 819 820 861 860	*Nset_nset=Laver_11_instance=soil_1
*Nset_nset= PickedSet2 internal generate	411 451
1 861 1	*Nset_nset=Laver_12_instance=soil_1
*Flset elset= PickedSet2 internal generate	370 410
1 800 1	*Nset_nset=Laver_13_instance=soil_1
** Section: soil	320 360
*Solid Section elset= PickedSet? material=camelav	*Nset_nset=Laver-14_instance=soil-1
sona botton, eiser _riekousetz, materiar camelay	288 328
, *End Instance	*Nset_nset=Laver-15_instance=soil-1
**	247 287
	*Nset_nset=Laver-16_instance=soil-1
	Liser, hoer Eager 10, mountee 5011-1

206, 246 *Nset, nset=Layer-17, instance=soil-1 165,205 *Nset, nset=Layer-18, instance=soil-1 124, 164 *Nset, nset=Layer-19, instance=soil-1 83, 123 *Nset, nset=Layer-20, instance=soil-1 42,82 ** ***** *End Assembly ** ** Define the sinusoidal function for the horizontal/shear displacement *Amplitude, name=Cyclic_Shearing_Amp, definition=PERIODIC 1, 0.02964, 0., 0. 1.59 0., ** Shearing Rate = 0.03mm/s ** Shearing Amplitude = 1.59mm ** Period T=212s ** Circular frequency = 2pi/T = 0.02964rad/s ** ** MATERIALS ** ** Define the modified Cam-Clay model *Material, name=camclay *Density 1.57. *POROUS ELASTIC, SHEAR=POISSON ** kappa v 0.04, 0.3 *CLAY PLASTICITY, INTERCEPT=2.1 **Lam M ao beta K T 0.174, 0.85, , 1., 1., , ** Define Horizontal and Vertical Permeability at Different Void Ratio Level *Permeability, specific=10. 2.6184e-10, 0.8 3.7991e-10, 0.9 5.3e-10, 1. 7.1627e-10, 1.1 9.4295e-10, 1.2 1.2143e-09, 1.3 1.5348e-09, 1.4 1.9086e-09, 1.5 2.3404e-09, 1.6 2.8346e-09, 1.7 3.3958e-09, 1.8 4.0284e-09, 1.9 4.7373e-09, 2. 5.527e-09, 2.1 6.4022e-09, 2.2 7.3678e-09, 2.3 8.4284e-09, 2.4 9.5888e-09.2.5 ***** ***** *INITIAL CONDITIONS, TYPE=STRESS, GEOSTATIC soil, 0.0, 0.01867, -0.104, 0., 0.4, 0.4 *Initial Conditions, TYPE=RATIO Soil, 1.827 *Initial Conditions, TYPE=SATURATION Soil, 1.0 *Initial Conditions, Type=PORE PRESSURE Soil, 0, 0.01867, 0.1867, 0.0 **** BOUNDARY CONDITIONS** ** ** Name: bottom Type: Displacement/Rotation *Boundary bottom, 2, 2 ** Name: sides Type: Displacement/Rotation

*Boundary sides, 1, 1 ** ** ** STEP: Step-1 ** *Step, name=Step-1, nlgeom=YES, unsymm=YES *Geostatic ** BOUNDARY CONDITIONS ** ** Name: botpore Type: Pore pressure *Boundary bottom_PP_, 8, 8, 0.1867 ** Name: toppore Type: Pore pressure *Boundary _PickedSet9_PP_, 8, 8 ** ** LOADS ** ** Name: Load-1 Type: Gravity *Dload soil, GRAV, 9.81, 0., -1. ** ** OUTPUT REQUESTS ** *Restart, write, frequency=0 ** FIELD OUTPUT: F-Output-1 *Output, field, variable=PRESELECT ** ** HISTORY OUTPUT: H-Output-1 *Output, history, variable=PRESELECT *End Step ** _ _____ ** ** STEP: Step-2 ** *Step, name=Step-2, nlgeom=YES, inc=10000, unsymm=YES, AMPLITUDE=RAMP *Soils, consolidation, end=PERIOD, utol=1000. 0.001, 50., 1e-25, 5., ** BOUNDARY CONDITIONS ** ** Name: botpore Type: Pore pressure *Boundary, op=NEW ** Name: bottom Type: Displacement/Rotation *Boundary, op=NEW bottom, 2, 2 ** Name: sides Type: Displacement/Rotation *Boundary, op=NEW sides. 1. 1 ** Name: toppore Type: Pore pressure *Boundary, op=NEW ** LOADS ** ** Name: Load-2 Type: Pressure *DsLoad top, P, 60. **** OUTPUT REQUESTS** *Restart, write, frequency=0 ** ** FIELD OUTPUT: F-Output-1 *Output, field, variable=PRESELECT ** HISTORY OUTPUT: H-Output-1 ** *Output, history, variable=PRESELECT

*End Step ** ** STEP: Step-3 *Step, name=Step-3, nlgeom=YES, inc=10000, unsymm=YES, AMPLITUDE=RAMP *Soils, consolidation, end=ss, utol=100. 0.001, 172800., 1e-25, 500., 1e-15 ** END=SS end when steady step is reached ** 0.001= initial increment size, 172800=period=48hrs, 1e-25= min increment size. ** 500= max increment size ** End the consolidation when the pore pressure change is less than 1e-15kPa ** BOUNDARY CONDITIONS ** ** Name: topporestep3 Type: Pore pressure *Boundary top_PP_, 8, 8, 0 **** OUTPUT REQUESTS** ** *Restart, write, frequency=0 ** FIELD OUTPUT: F-Output-1 *Output, field, variable=PRESELECT ** HISTORY OUTPUT: H-Output-1 *Output, history, variable=PRESELECT *End Step ** ____ ** ** STEP: Step-4 ** *Step, name=Step-4, nlgeom=YES, inc=100000 *Soils, consolidation, end=PERIOD, utol=100. 0.001, 4240, 1e-25, 5., ** 0.001=initial increment size, 4240=period, 1e-25=min inc size, 5=max inc size ** Period = 212s, Number of Cycles = 20, Total Time=4240s ** BOUNDARY CONDITIONS ** Name: bottom Type: Displacement/Rotation *Boundary, op=NEW bottom, 2, 2 bottom, 1, 1 ** Name: sides Type: Displacement/Rotation *Boundary, op=NEW ** Name: topporestep3 Type: Pore pressure ** The pore pressure at top is set as 0kPa *Boundary, op=NEW top_PP_, 8, 8, 0 ***********Define Top Shearing BCs ** Name: Shearing-Layer-1 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp top, 1, 1, 0.001 *************Define Linear Side BCs ** The following lines define the cyclic shear/horiozntal displacement of nodes at the vertical edges ** Name: Shearing-Layer-2 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-2, 1, 1, 0.00095 ** Name: Shearing-Layer-3 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-3, 1, 1, 0.0009 ** Name: Shearing-Layer-4 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-4, 1, 1, 0.00085 ** Name: Shearing-Layer-5 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp

Layer-5, 1, 1, 0.0008 ** Name: Shearing-Layer-6 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-6, 1, 1, 0.00075 ** Name: Shearing-Layer-7 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-7, 1, 1, 0.0007 Name: Shearing-Layer-8 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-8, 1, 1, 0.00065 ** Name: Shearing-Layer-9 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-9, 1, 1, 0.0006 Name: Shearing-Layer-10 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-10, 1, 1, 0.00055 ** Name: Shearing-Layer-11 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-11, 1, 1, 0.0005 ** Name: Shearing-Layer-12 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-12, 1, 1, 0.00045 ** Name: Shearing-Layer-13 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-13, 1, 1, 0.0004 ** Name: Shearing-Layer-14 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-14, 1, 1, 0.00035 ** Name: Shearing-Layer-15 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-15, 1, 1, 0.0003 ** Name: Shearing-Layer-16 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic Shearing Amp Layer-16, 1, 1, 0.00025 ** Name: Shearing-Layer-17 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-17, 1, 1, 0.0002 ** Name: Shearing-Layer-18 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-18, 1, 1, 0.00015 ** Name: Shearing-Layer-19 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-19, 1, 1, 0.0001 ** Name: Shearing-Layer-20 Type: Displacement/Rotation *Boundary, op=NEW, amplitude=Cyclic_Shearing_Amp Layer-20, 1, 1, 0.00005 ***** ******* ****** **** OUTPUT REQUESTS** ** *Restart, write, frequency=0 ** FIELD OUTPUT: F-Output-1 ** *Output, field, variable=ALL ** HISTORY OUTPUT: H-Output-1 *Output, history, variable=PRESELECT *End Step