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Abstract

In this thesis we study the evolution of hypersurfaces under weighted volume
preserving curvature flows. Specifically we consider the stability of spheres
and finite cylinders as stationary solutions to the flows. The flows are
formulated as a partial differential equation for a height function and an
existence result is obtained when the height function is small. Through
further analysis we prove that the sphere and finite cylinder, provided the
radius of the finite cylinder satisfies a certain condition, are stable. That
is, we prove that if a graph over a sphere or cylinder has small height
function its flow exists for all time and converges to a sphere or cylinder
respectively. This is the first result proving that there exist non-axially

symmetric hypersurfaces that converge to cylinders under the flows.

In the case of volume preserving mean curvature flow near a cylinder, we
improve the above results to obtain greater regularity of the flow and con-
vergence with respect to a stricter norm. Analysing the condition on the
radius in this situation we find it is necessary in order for the cylinder to
be stable. The analysis also leads to the surprising result that certain con-
stant mean curvature unduloids are stable stationary solutions to the axially
symmetric flow in high dimensions. The last result of the thesis proves the
instability of two dimensional catenoids under the classical mean curvature

flow.

The results in this thesis are obtained using functional analysis and semi-
group methods, which can be applied since the linearised speed operators
are sectorial. The stability results come from analysing the spectrum of the

linearised operators and analysing the center manifold of the system.
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Introduction

1.1 Background

The mean curvature flow (MCF) evolves a hypersurface over time with speed that at
each point is given by its mean curvature and the direction is along the unit normal.
The flow was first studied in a geometric measure theory setting by Brakke in [16].
If we consider an embedding of the hypersurface Xo : M™ — R™t! then the flow is
equivalent to solving the partial differential equation (PDE) for a family of embeddings
X : M"x[0,T) — R

88)15( =—-Hv, X (-,0) = X, (1.1)
where the mean curvature, H, is given by the sum of the principal curvatures, k,, of
the hypersurface Q; := X (M",t) and v is a choice of unit normal of €.

This flow has been extensively studied, with many results relating to the asymptotic
behaviour of the hypersurfaces and formulation of singularities. A classic paper by
Huisken [30] proved that uniformly convex hypersurfaces under MCF, with n > 2, will
shrink to a point in a finite time while becoming asymptotically spherical. This means
that, after a rescaling to preserve area and to have the flow exist for all time, the flow
converges to a sphere. This result has been expanded on by Gage and Hamilton [23]
who proved the analogous case with n = 1. Grayson [25] showed that plane curves
will become convex before they become singular. This leads to the remarkable result
that any smooth, closed, compact, plane-embedded curve will shrink to a point in a

finite time while asymptotically becoming a circle. Ecker and Huisken, [I8], expanded
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their research to include non-compact hypersurfaces and proved long time existence for
the flow where the initial hypersurface is an entire graph over the plane and satisfies a
gradient bound. They also prove that if the initial hypersurface satisfies a linear growth
condition then the hypersurface becomes asymptotically selfsimilar. Results relating
to singularities can be found in [II, 8, [32], 33}, 43] for example.

A related problem is the volume preserving mean curvature flow, where a forcing
term is added to the PDE so that an enclosed volume relating to the hypersurface is

constant throughout the flow:
ng—( Man,u—H)V, X (-,0) = X, (1.2)
where du is the induced measure on €);. This flow was first studied for hypersurfaces
by Huisken in [31] where he proved that initially convex hypersurfaces have a flow that
exists for all time and converges to a sphere as ¢ — oo. For non-convex, compact,
closed hypersurfaces Escher and Simonett in [2I] proved that if a hypersurface is a
graph over a sphere with height function sufficiently small, then under the flow it will
converge to a sphere. A similar result was obtained by Li [36] where, instead of having
small height function, the hypersurface was average mean convex with small traceless
second fundamental form. Athanassenas and Kandanaarachchi, [12], make use of axial
symmetry to remove any conditions on curvature and obtain convergence to spheres
under the assumption no singularities develop on the axis of rotation.
The case where the initial hypersurface has a boundary has also been studied. In

this case it is assumed that gy is smoothly embedded in the domain
W={zeR"™:0<z,4 <d},

with d > 0 and 0929 C OW. The open set enclosed by €2y and W will be labelled ®
and it is the volume of ® that is preserved under the flow. The boundary conditions
for the flow are that €2; meets OW orthogonally. Assuming €2y to be axially symmetric
it was proved in [I1] that the flow exists for all time and converges to a cylinder in W
of volume Vol (®), under the assumption

Vol ()

Q| <
Q0] < 7

(1.3)

This constraint ensures that the solution never touches the axis of rotation, so that no

singularities develop.



1.1 Background

The volume preserving mean curvature flow can be generalised to the weighted
volume preserving curvature flows. These flows evolve a hypersurface over time by a
symmetric function of the principal curvatures, along with a global forcing term. The

PDE that represents the flow is given by:

o0X 1 _
m=(M/ nF<*’”>=<“>d“—F<“>)”’ X60=X,  {14)

where F' (k) = F (k1,...,kn) and E (k) = Z (K1, ..., ky) are smooth, symmetric func-
tions of the principal curvatures, ko, of ;. Note that we must restrict to initial
hypersurfaces such that [, Z (k) du > 0.

When E = E,, an elementary symmetric function of the principal curvatures (see
(2.1), the flow is the mixed volume preserving curvature flow and preserves a certain
quantity of the hypersurface (see Corollary. This flow has been previously studied
by McCoy in [40] where he proved that under some additional assumptions on F', for
example strict positivity, homogeneity of degree one, convexity and increasing on the
positive cone, strictly convex hypersurfaces have a flow that exists for all time and the
hypersurfaces converge to a sphere as t — co. This was an extension of [39], where he
proved the result under the condition that F' = H. Volume preserving flows, = = 1,
have been been studied by Cabezas-Rivas and Sinestrari in [17] for the case where F
h

mean curvature, H,, = (")_1Em. The flow was shown to take

is a power of the m! m

initially convex hypersurfaces that satisfy the pinching condition E,, > CH", for a
specific constant C, to spheres.

Throughout this thesis we will consider the case where the initial embedding is
a normal graph over another hypersurface, i.e. X,, (p) = Xo (p) + po (p) vo (p) for
p € M"™, where we now define X to be an embedding of the base hypersurface and v
is a normal to the base hypersurface. In this case the flow is equivalent, up to a
tangential diffecomorphism (see Lemma , to the PDE:

(1.5)
where we use a p subscript to show the dndence of quantities on the height function.

~ |2 ~
The quantity /1 + ‘Vp‘ , see Section 1.3 for a definition of |Vp

gradient function used in [I§] as it is the inverse of the inner product between the
normals of Q, := X, (M") and Qg := Xy (M") (see Lemma [2.3.1). When the base

, is similar to the
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hypersurface has a boundary we use the Neumann boundary condition Vp|y,m v =0,
where v and v form an orthonormal basis for the normal space of OM", see Figure
for a graph over a cylinder. This boundary condition is natural as it is known that

critical points to the area functional under a volume constraint necessarily satisfy it,

[9; 14].

Figure 1.1: A graph over a cylinder satisfying the Neumann boundary condition

We also have the following assumptions on F' and =:
(A1) F and E are smooth, symmetric functions
(A2) gTIZ (ko) >0 for everya=1,...,n
(A3) =(ko) > 0.

The conditions |(Al)| and ensure isotropicity and parabolicity of the flow, respec-
tively, while condition ensures there exists a neighbourhood of zero such that
/ un 2 (Kp) dpp > 0 for any p in this neighbourhood. We again have the classical

volume preserving mean curvature flow for F'(k,) = H and = (k,) = 1:

% - ,/1+‘6p’2< MnH(p) dup—H(p)>, p(0) = po. (1.6)

In this thesis we will consider the stability of the sphere of radius R, /7, and
the cylinder of radius R and length d, %ﬂﬁ,d, under the weighted volume preserving

curvature flows, as well as the stability of catenoids under mean curvature flow. In the
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cases of the cylinder and catenoid the presence of a boundary can cause difficulties in
the analysis. In the case of a cylindrical graph, we set up a related PDE on the torus
with one flat direction 91% q= ,7};_1 X il to overcome these difficulties. That is, we
extend the metric, g, and the second fun&amental form, A, of the cylinder evenly so
that they are symmetric (0,2)-forms on the torus. Note that the former becomes the
metric on 91?7 4+ We can then use the formulas in Section to define the operator
Ky, and volume form du,, abstractly for a function u on 9];?7 4+ Which replaces p as our

‘height’ function, and consider the PDE:

gltb = W (fﬂlgd = (1nu) djia /zs,d Pl = ) e = F(w) R

(1.7)

In the case that u is an even function K, and du, preserve this symmetry, therefore

the speed operator will also preserve the symmetry. Hence, any solution to (|1.7)) where
ug is even will remain even for all time and will therefore satisfy Vul| oen V= 0,

whenever u is differentiable. Further, if u is even we have that:

1
fy]? = (K‘u) duu

,d

1
F (ky) 2 (ky) dpy, = — / F (Kky) 2 (Kky) dpy,
/9/5@ f%ﬂ]g’d E (k) dpu Jg

R,

(1.8)
and hence an even solution to l' restricted to %]{d satisfies with the correct
boundary conditions. It is also clear that a solution to (1.5)) with Neumann boundary
condition will extend evenly to a solution of , compare Figures and

As before we have the specific case of the volume preserving mean curvature flow:

ou
= .1
a1 +

@ur ( . H (u) dpy — H(u)) , u(+,0) =ug. (1.9)

1.2 Overview

The remainder of this thesis is split into seven chapters. Chapter [2] provides some
background to the differential geometry used in this thesis. We start by including some
definitions of important quantities of a hypersurface and useful curvature identities.
The evolution of these quantities under a flow of the form , along with formulas
for how to calculate them in the case of a normal graph are also given. The neces-

sary functional analysis background is provided in Chapter [3| including definitions of
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Figure 1.2: An extension of a graph over a cylinder satisfying the Neumann boundary
condition (Figure i to a graph over the torus

interpolation spaces and sectorial operators. The experienced reader may skip these
chapters.

In Chapter [4] we prove two short time existence results for the weighted volume
preserving curvature flows and an improved version for the volume preserving mean
curvature flow case. We start by calculating the linearisation of the speed operator
about both the sphere and cylinder and then extend it to give the linearisation of the
speed in . The linearised operators are then shown to be sectorial, which is the
main assumption needed in order to obtain short time existence of the flows. These
theorems are both local in nature, as they only apply to hypersurfaces that have a height
function that is small in a little-Holder space. The chapter finishes by improving on
this for the volume preserving mean curvature flow of graphs over cylinders. In this
case short time existence is proved for all valid height functions; further, the solution
is found to be smooth after the initial time.

The question of stability of spheres under the weighted volume preserving curvature
flows is addressed in Chapter 5] Through calculation of the eigenvalues of the linearised
speed operator the sphere is found to be linearly stable (all eigenvalues are non-positive).
A locally invariant exponentially attractive center manifold is found to exist for the
flow and it is proven to consist entirely of functions whose graph is a sphere. Thus we
obtain the stability result: if the initial graph function is small, then under it will

converge exponentially fast to a function whose graph is a sphere. Chapter [6] covers
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similar material for the case of graphs over a cylinder by analysing (1.7). However, in
this case the eigenfunctions in the flat direction can yield positive eigenvalues. For the

system to be linearly stable we require the assumption:

d | 85 (m) (0= 1)

R >
S (ko)

Chapter [7] is split into three sections. The first deals with improving the results
of Chapter [6] in the case of volume preserving mean curvature flow. It uses the short
time existence result proved at the end of Chapter [4] and a bootstrapping method to
obtain convergence with respect to stricter norms. Section two investigates the con-
dition on the radius of the cylinder, i.e. that cylinders are only stable if R > dﬂﬂ.
To show that this condition is necessary to obtain stability, the simplified case of ax-
ially symmetric flow is considered. By introducing a parameter, that depends solely
on the enclosed volume of the hypersurface, the flow is shown to be equivalent to a
PDE on the space of average zero function . A bifurcation analysis of the stationary
solutions to this PDE is undertaken. It is found that there is a continuously differen-
tiable curve of non-cylindrical stationary solutions that passes through a cylinder of
radius R = @. This means that any open neighbourhood about a cylinder of this
radius must contain a non-cylindrical stationary solution to the flow. Further analysis
shows that the stationary solutions on the curve close to the cylinder are unstable in
dimensions ten and under but are stable under axially symmetric volume preserving
perturbations in dimensions eleven and above. The last section of this chapter deals
with determining the height functions for these stationary solutions explicitly. The vol-
ume enclosed by the hypersurfaces is also calculated and the bifurcation curve plotted,
in order to highlight the change in stability as the dimension increases.

Lastly, in Chapter |8 we investigate the classical MCF and show how the techniques
in this paper can be applied to the MCF setting. As an example we consider normal
graphs over catenoids. The speed operator linearised about zero is found to be a
sectorial operator and we obtain a local short time existence result. A spectral analysis
of the operator shows the catenoid is linearly unstable and we prove the existence of

stable and unstable manifolds for the flow.
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1.3 Notation and Definitions

In this section we define some of the notation and conventions that will be used through-
out the thesis. We will use the Latin characters i, j,k,... as indices and we use the
Einstein summation convention to sum over repeated indices, unless explicitly stated.
In the cases that we do not employ the Einstein summation convention we use the
indices a, b, .... The Kronecker delta will be denoted (5;-, which is equal to one if i = j
and zero otherwise.

When dealing with normal graphs we will use the notation gg; and hf to refer to
the metric and Weingarten map of the base hypersurface, €2g. Often we will need to

consider the inverse of the tensor (5;’“ + phf) Gkl <6§ + piozé), so we define this to be

(3,)¥ and also define ‘@pf :=(J,)¥V;pV jp, where V is the Levi-Civita connection on
Qo.
We use the notation .#% to represent a sphere of radius R and € ; = 5’}?_1 x (0, d)
to represent a cylinder of radius R and length d. The torus will be denoted by
Rd = yg_l x .7 11, and it will be equipped with the ‘flat’ metric obtained by evenly
extending the ¢ dﬂmetric. We consider the local coordinates on the cylinder and torus
given by p = (g, z), with q a point on the sphere (in local coordinates), 0 < z < d for
the cylinder and —d < z < d for the torus.
Throughout the thesis f,v will be used to denote general functions on a manifold,
while a function on . or €y ; will be denoted by p and a function on 7%, will be
denoted by u. We will often need to move between a bounded, continuous function

on the cylinder with boundary and a function on the torus, hence we make use of the

notation:

S - M

Likewise when moving from a function on a torus to a function on the cylinder we

define the restriction:
u|?gd = u|7;” (q,2) :==u(q,z) z€[0,d],q¢€ Ygil, (1.11)

in the case n = 1 we use the notation u||g 4.
The characters X, Y, Z will often be used to denote Banach spaces. An open ball in

a space X of radius r centred at a point x will be denoted Bx ,(x). When we consider
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a function space on a manifold with boundary, X (M "), we often have functions that

satisfy the boundary condition, B [f]|;,; = 0; we therefore define:
Xp (M") :={f € X (M") : B[f]lgpm =0} .

The characters O, U, V, W will be used to denote open sets. In particular we define

the subspaces of valid graph functions over the sphere, torus and cylinder:

Uka := {,0 enbe (Y p > —R} , (1.12)
Vi = {u € W* (74,) u> ~R}, (1.13)
Via = {p € hk@’a (?7%7(1) tp> —R} , (1.14)

oz

see Section for a definition of the little-Holder spaces hF?.

For a nonlinear operator G : Y — X we denote the Fréchet derivative of G by 9G.
In the case where G has multiple arguments we use a subscript, e.g. 0o, to indicate
which argument it is with respect to. The space of linear operators from Y to X will be
denoted £ (Y, X) and for a linear operator A : Y C X — X we denote its spectrum by
o (A) and resolvent set by p (A). We also define the following subsets of the spectrum:

o1 (A):={N€c(A): Re(N) >0}, (1.15)
o_(A):={N€o(A4): Re(\) <0}, (1.16)
o> (A):={A€o(A): Re(\) >0}, (1.17)
and the spectral constants:
w_:=— sup Re(\), (1.18)
Aeo_(A)
Wy = /\EiO'Iif(A) Re()). (1.19)

In the case where o, (A) consists of a finite number of isolated eigenvalues, we
denote its spectral projection by P.. That is, P : X — X such that if we define
Ay = Alp, vyand A_ = Al;_p,)y), then 0 (Ay) =0y (A) and 0 (A_) =0 (A).
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Differential Geometry

Background

This chapter is designed to give an overview of the differential geometry knowledge used
within the thesis. We start by investigating the properties of an immersed hypersur-
face. Section discusses the flows that will be considered throughout the thesis. In
Section we will consider the specific case of normal graphs and recast the geometric

quantities in terms of the graph function.

2.1 Hypersurfaces

Consider an n-dimensional manifold M™, an immersion X : M" — R"t! and let
Q1 C R*""! be the image of M™ under this immersion. Local coordinates on M™ will
be denoted by z!,..., 2" and, by using “” to denote the inner product on R™"*!, the
metric, g, of €2 induced by the immersion X is given in component form by:
00X X
Y5 = ot Gxi
The components of the inverse metric, ¢~', will be denoted ¢*/. The normal to € is
denoted by v and the second fundamental form, A = (h;;), can be calculated from:
I’X
—— .y
oz*dxd

hij:—

The Weingarten map can then be represented by the matrix # = (hf ) = (gikhkj),

the eigenvalues of this matrix are the principal curvatures of {2 and are denoted by

11



2. DIFFERENTIAL GEOMETRY BACKGROUND

Kq. Other important curvature terms include the norm of the second fundamental
form |A| = (gij gklhikhﬂ)l/ % and the elementary symmetric functions of the principal

curvatures:

1 a=20
E, = ’ 2.1
¢ { 21§b1<...<ba§n [lizi ke, a=1,...,n, 1)

note that £y = H, the mean curvature.
When taking derivatives of tensor fields on M™ we will often use the Levi-Civita

connection V, which for a (r, s)-tensor T is given by:

4 A L o . o
g1 Jr 11...05 J1lj2...gr Jradi--Jgr—1l 1l J1--Jr ! J1--Jr
Vil Gl = gk oDl e A T T Dhin Ty i = = Ui T3 50 00

where Ffj are the Christoffel symbols:

1 Ogij  Ogu  0gij
koL op j il 99ij
by = 29 <(9xi * dxd Ozt )

The hypersurface Laplacian will be denoted by A := ¢¥V,;V; and the hypersurface
measure by du = y/det (¢) de. For a compact hypersurface 2 we also have the quan-

tities:

L (n+1)(" ! wEn_ady a=0,...,n
Vo '_{ 1(/0l(<b)()) Ju g a=n+1, (22)

where ® is an (n + 1)-dimensional region associated to Q. For a closed hypersurface
® is the enclosed volume, while if the hypersurface is a graph over a cylinder the
volume is that enclosed by the hypersurface and the end hyperplanes. The area of the
hypersurface, ||, is proportional to V,,, i.e. || = (n + 1)V}, and in the case where Q
is convex V, coincides with the o' mixed volume, see [5] for a definition. The average
of a function f: M™ — R is denoted by:
fdup:= 1 fdu.
Mn €2 Jam

Various important identities involve the second fundamental form; we provide some

here that are used in the study of curvature flows. The Codazzi equations state that

VA is a fully symmetric (0, 3)-tensor:

The Gauss-Weingarten relations use the tangent vectors and normal of 2 as a basis for
R™*! in order to express the second derivative of the immersion:
X L 0X
0xidxi Y Ozk

hijI/, (24)

12



2.2 Curvature Flows

and the derivative of the normal:

o 0X
ozt ' oxk’

(2.5)
Using the formula for the Levi-Civita connection, (2.4)) can also be expressed as:
ViVjX = —hijll.

Lastly we have that the elementary symmetric functions of the principal curvatures

satisfy the identity, found in Equation (5.86) of [24] also see Appendix [B|for a complete

proof:
0Fq 41 » . 0E,
— =FE,0 —h —*, 2.6
oh;; b ™on, (26)
where a =0, ...,n (in the a = n case we use the convention E,;; = 0).

2.2 Curvature Flows

We present here some evolution equations for the properties of a family of hypersurfaces
undergoing a flow of the form in equation (1.4]), a derivation can be found in [4]. For

ease we do not show the explicit dependence on & in this section.

Lemma 2.2.1.

(a)

o2 (o [ r=r)
—o(—— | FEdu—F)h;
ot Jan Edp Jagn J

(b)

0du < 1 _ )
= — F=Zdu—F ) Hdu
ot an:du M
“ 0 0X
l: LA v pbudniad
ot 9°Vi oxd
(d) ,
Oh; myy V,F ( L F=d F) hi BT
ot 9 VmV TomZdp Jym = mlt;

From these equations we are able to calculate how the quantities V, evolve under

(1.4) and find that mixed volume preserving flows, i.e. when = = F 1, preserve V;,_,.

13



2. DIFFERENTIAL GEOMETRY BACKGROUND

Lemma 2.2.2.
av, 0 a=0,
= n -1 _
dt 3 s Buvea (75 Ja FEd=F) dpa =10 on+1.

Proof. The case of [ = n + 1 follows immediately from the first variation of volume,

Vopr [ OX
dt _/Mn ar v

which gives:

The other cases are given by McCoy in Lemma 4.3 of [40] for the case where §2; are
convex hypersurfaces. McCoy uses the definition of mixed volumes of convex hyper-
surfaces, see [5], which are not valid unless the hypersurface is convex. To obtain the
result for all solutions to the flow we take the divergence the identity in to obtain

fora=0,...,n:

. Ea . ) . Ea . Ea
gk’zvk (8“) :gk]vkEa _ gkzvkh] 87 _ gkzhind <8 >

i ™ ohi Oht,
e S}Zi . ZZZ — gV, (gﬁ;)
="V hi, g;ﬁ; ~ """V ihym, gfi: ~ Iomg" Vi (gi:)
Al

where to get to the second last line we use the Codazzi equation (2.3)). Hence, due to

rad v <‘g}i§’> = 0 we have that ¢*'V, <g§g> =0 for all a = 0,...,n. Now we can
j j

derive the evolution equation:

dVy En—q . F2d
m+n(§‘/=/ 0 +(bf “—F)H&ﬂmi
a n

dat ot Jym Edp
_, Oht " F2d
:/ 8E"z- a O <W —F) HE, ,du
« O Ot Sy Edp
8En7a ) an FEd/l/ aEn,a 3
— 7 9"V Vi F — <H - F 7 hmhj'
/ . 8hj J Jon Edp ahj J
. F2d
+ <W - F) HE,_,dy
Jara Edpe
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2.3 Normal Graphs

n\ dV, 0Fn_q [y FE dp
1 e — m N4 gy R MrT = T F)\HE,_,
(n+ )<a> dt /nv ( oni Y Vi )Jr(anEdu )

~F=d ) Ernii_a
+ <fMM _ F> hi <8+1 _ EnaCW) du

Sy Edu oht,
S un FEdp
= 1-— S —F | Ept1-4d
(n+ a) /M" < [ Edp nt1—a @f,
where the second last line is due to (2.6 and the last line is due to the homogeneity of
En+1—a- O

Corollary 2.2.3. If = = FE,11 then is the mized volume preserving curvature

flow and it preserves V,,_, as long as the flow exists.

2.3 Normal Graphs

Consider an embedding of a hypersurface X : M™ — R"*!, which has metric §, second
fundamental form A = <h2j>, Weingarten map W and normal vp. Let Q, be a normal
graph over €y := X (M") given by the height function p : M™ — R. Q, can be
represented by the embedding:

Xp = Xy + p1o (27)
Such a graph hypersurface is well defined for any p that satisfies ||p[|p~ < - —, where
Kmaz = MaXqe(1p) ||FallLe 15 the maximum of the absolute values of the principal

curvatures of (9. Note that when M" = /% or €7 ; we will always take X to be the

natural embedding.

Lemma 2.3.1. The tangent vectors, metric, inverse metric and normal of the hyper-

surface 2, are given by:

= (8F iLk 0 5t iLl- V.oV 29
(9p)i5 = |07 + phi ) Gr (05 + phy ) + VipVp, (2.9)
g g ~o2\ ! 4 .
(007 =@ = (1490 ) @) @ v (2.10)
and . ox
vy = ————— (yo —(3,)"" (6; + ph;) Vrpaxso> ) (2.11)
1+ ‘Vp‘

15



2. DIFFERENTIAL GEOMETRY BACKGROUND

. ° ° ~ |2 .
where (§,)" is the inverse of (5{“ + phf) Tkl (5; + phé) and ‘Vp‘ = (9,)"VipVp.
Note that due to the restriction on the size of the height function the quantity

(I + pW> is always invertible.

Proof. The first equation follows directly from the Gauss Weingarten relation in
and the second equation follows from the definition of the induced metric. The formula
for the inverse metric is given in terms of (g,)%, which is itself defined as the inverse of
a (0,2)-tensor. While this may seem unusual, we will see later that the quantity (g,)"
has an alternate interpretation that makes its calculation simpler.

To calculate the equation of the normal we let v, = b(p) (1/0 + c(p)l%> and dot

it with the tangent vectors:
_ . l k T kY o
0= b(p) (Voo + clp)! (8 + it ) )
Therefore:
! okl ) N o,
c(p) =—9g (I + PW) kVip = —(3p) <5k + phk) Vip.

The quantity b(p) is found using the unit vector condition and noting that for the

direction of v, and vy to be consistent, b(p) is positive.
b() 2 = 1+ (5,)"" (35 + p(hy)3) (35)' (7 + phi) Vo Vipgsy
= 14 64(3,)""V,pVip
_2
=1+ ‘Vp’ )
O

We note here that if we consider the foliation of normal graphs given by constant

p then (gp)ij is the inverse metric of the corresponding foliation; this simplifies calcu-

lations for many hypersurfaces. For example if M™ = .7} then (g,)"” = ﬁé“ . We
-2
now consider some curvature quantities for Q, and define L(p) := /1 + Vp’ :

Lemma 2.3.2. The second fundamental form and mean curvature of Q, are given by:
(Rp)ij =L(p)~" (—Vz'VjP + (85 + phi)haj + (30) (55 + ph3)Vip (;Lisvjp + ’ibjsvip)

+p(90)"" (6 + pil;)vsilijvrp> (2.12)
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2.3 Normal Graphs

H(p) =L(p) (@)™ @) (5 + ph?) hsyVioVip + L(p) @) (5 + ph?) b
+pL(0) ™ (L(0)2(5)7 = @)™ GV VpVip) 3" (8 + phy ) Vhis Vep
= L)~ (L(0)*(Gp) 7 = (3)*(5,)"V10Vip) ViVp. (2.13)

Proof. We start by calculating the second derivative of the embedding using the Gauss-
Weingarten relations and .

%X o Ohl 0X .\ 02X 0? vy
AAs = <hévjp+paxj> =T+ (5é+phé) e EAY

D202 pR 021027 | 9zi0x P ori
Ohk . 0X,
<h V]p—i-pa ; +phlf‘ +h§”‘Vz’P> 87’“0

* (822621 — hyy (55 + Pilﬁ)) v
- (E?Vjp + BEVip + pVhE + (5lk n p;’ﬁc) fﬁj) 9Xo

oxk
82p o s o
* <8:z:i8xj ~ hsj (6i + phi)) g

The last line used the equation for the covariant derivative of the Weingarten map,
\%i hk iy + Fk Al — Fﬁ]hf . Using the definition of the second fundamental form and

8$J l] (2
equation (|2 we obtain:
-1 9 s 7s an ~ \Tp[sS ° s ° °
(h)i =L(p) ™" ( hay (85 + ph3) = 5+ (8)7 (65 + ph3) Vo (hisVsp + hsoVip)

+I7Vep + p(3,)7 (55 + pﬁ;)vrpvjﬁis) ;
which gives (2.12)) by converting the partial derivatives of p to covariant derivatives

and using the Codazzi equation (2.3]). Equation (2.13)) follows from ([2.10)), (2.12)) and
the definition of H(p) = (g,)” (h,)ij, note that:

(90)" (s (68 b3 + @) 05+ ph)Vep (RisVip + by Vip))
=2 ((5,)" = L(p) 25" (5)"VpVip) (3p)7 (5} + ph3)his V1oV 0
+ (57 hsj (8 + phi) = L(o) > @) (35" by (5% + ph3) Vio¥ip
=2(35)9(3) (85 + phi)his V10V s = L(p)~(5,)"(5) " hss (85 + phi ) Vip¥ip
o (5)hsy (97 + B3 = 2L(0)2(3,) ()"

(@) hsj (57 + ok ) + L(0)(G)" 3)"hsj (57 + phi) VioVip.

W‘ (05 + ph3)hisVipVp
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2. DIFFERENTIAL GEOMETRY BACKGROUND

O]

We finish this chapter by proving that a solution to equation ([1.5)) is equivalent to
a solution to (|1.4).

Lemma 2.3.3. Let p: M™ x [0,T) be a solution to with initial condition po, then
X, is tangentially diffeomorphic to the solution of with initial condition X, .

Proof. Let ¢ : M™ x [0,T) — M™ be a diffeomorphism satisfying the system:

i RCAVS
ﬁf:_(flfd/ FEd,u—F>(gp)v]p2,
M =GR ! \/1+‘@p‘

and set X (p,t) = X, (é(p,t),t). Then, using equatlons and ., X satisfies
T3):

X 0X,  0X,0¢
ot ot = Ozt Ot
dp

1 - (9)7Vp
- | FEdu—-F
ot (anEdu/n a )

1+

0Xo
- ( 5"3+ h’C 8—|—V,0V0)

v 1

1 1 0X
- — (f Edﬂ/ FEdu — F) (uo (6’“+ h’“) a$,f>
\/1+‘Vp‘ M
:<1H/ FEdM—F)I/
an.:d,u n
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Functional Analysis Background

This chapter is designed to give an overview of the functional analysis knowledge used
within the thesis. We will introduce interpolation spaces for a Banach couple and define
the little-Holder spaces, which are their own interpolation spaces. In Section [3.2] we will
define what it means for an operator to be sectorial, as well as prove that an elliptic
operator on the little-H6lder spaces is sectorial. The section ends with some results for

perturbations of sectorial operators.

3.1 Interpolation Spaces

The continuous interpolation spaces that we consider in this thesis are defined for
a Banach couple Z C Y and are given by the interpolation functor (Y,Z2),, where
6 € (0,1). They are defined, see [38], as follows:

(Y,Z)g = {f €Y : lim t_eK(t,f,Y,Z) :0},
t—0+
where
Kt f.Y,Z):=inf (| f—gly +1tlgllz)-
g€z

The norms on these spaces are:

1l v, 2, = Ht_eK (& 1,Y, Z)HLoo(o,oo)'

The reiteration theorem for interpolation spaces allows for easier characterisation of

interpolation spaces.
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3. FUNCTIONAL ANALYSIS BACKGROUND

Theorem 3.1.1 (Remark 1.2.16 [38]). For 09,601,602 € (0,1) and Y, Z Banach spaces
such that Z C Y:

((Ya Z)el 72)90 = (Ya Z)(1790)91+90 ) (Y7 (Ya 2)91)00 = (Y7 Z)gleo .

An immediate consequence is:

((}/7 Z)91 ’ (Y7 Z)@Q)QO = (}/7 Z)(1—90)91+9092 ° (31)

Another useful result relates to interpolating between Z and a closed subspace of
Y.

Lemma 3.1.2. Let Y, Z be Banach spaces such that Z C'Y and U be a closed subspace
of Y that has an associated projection P :Y — U with the properties:

IPWllly < Cullylly, for ally € Y and ||[Pl2]||, < Calzll,, forallz € Z. (3.2)

Then
Y, 2)y,nU =(U,ZNU),, forall 8 € (0,1), (3.3)

where U is endowed with the same norm as'Y and Z NU has the same norm as Z.

Proof. We fix § € (0,1) and suppose that « € (U,ZNU),. Since U and Y have the
same norm we have that K(t,z,U, ZNU) = K(t,x,Y, ZNU) for all t > 0 and by taking
the infinum over the larger space we therefore have K (t,x,U, ZNU) > K(t,z,Y, Z) for
all t > 0. Therefore

0= lim t °K(t,z,U,ZNU) > lim t °K(t,2,Y,Z) >0,

t—0t t—0+
and hence z € (Y, Z),NU,so (U,ZNU), C (Y,Z),NU.
Now suppose x € (Y, Z),NU then for all t > 0 and z € Z we can use (3.2)) to obtain

the estimate

|z — Pl]|ly + t|Ple]ll; = |1P[z = 2]lly +tlIP2]llz < Cs (= zlly +tlzll5),
where C5 := max(Cy, C2). By taking the infinum over z € Z we therefore have, for all
t>0:

inf (e — Plellly + t1PLll) < G inf (e — 2lly + ¢zl ) = Gy (1, ¥, 2).

Since z only appears as P[z] in the left hand side the infinum can be taken over z € ZNU
and hence K(t,z,U,ZNU) < C3K(t,x,Y,Z). Therefore
0=Cs lim t °K(t,2,Y,2)> lim t °K(t,2,U,ZNU) >0,
t—0t t—0t
and hence z € (U,ZNU),. Thus, (Y,2),NnU C (U,ZNU), and we obtain the result.
O
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3.1 Interpolation Spaces

Throughout this dissertation we will be considering functions of varying degrees of
regularity; here we introduce the different Banach spaces that will be considered, see
also [38]. Let B = (f1,...,02) be a multi-index with |3| = >_;", §;, then for an open
set U C R"™ the Holder spaces are defined for £ € N and a € (0,1) as:

o (0) = feC’((?):sup_W<oo ,
why

che () i={f e C*(U): D7f € ¢*(0) for all B, |8 =k},

where D is the derivative operator on R™. Here we use that C* (U) is the space of
functions defined on U that are k times continuously differentiable in U, with derivatives
up to the order k bounded and continuously extendable up to the boundary. The norms

on these spaces are:

DB _ DB
Mwwﬂmm+zmﬂﬁiwmw
8=k %25,

where

Ilor(y = D sup| D7 f(a)|.

18|<k 2€U
The little-Holder spaces are closed subspaces of the Holder spaces; they share the same

norm as the Holder spaces and are defined as:

0<|z—y|<r

hke (0) = {f e CH(U): DPf € h*(U) for all B, |B| = k}

=0y,

These spaces are able to be extended to a manifold by means of an atlas and, in the

case of a manifold with metric, are equipped with the norm:

[VPu(p) — VPu(q)]

lllpscarmy = lallramy + > sup L9 (3.4)
|/B‘_kp,q€M” d(pa q)
" p#q

where d(-,-) is the geodesic distance, [22]. Note that when writing the norm we will
drop the space the function is over when it is clear. We have the following lemma for
the relationship between the norm of a function on the cylinder and its odd and even

extensions on the torus.
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3. FUNCTIONAL ANALYSIS BACKGROUND

Lemma 3.1.3. Fiz o € (0,1) and let p € hO <?,,é’d) then u, € h0 (§£d> and

1l[po.e = [[pl[po.c-

Further if p(q,0) = p(q,d) = 0 and we set v, to be its odd extension to TR q» then
€ hoo (§£d> and
[ollno.e < (lvpllno.e < 2lpl[po.a-
Proof. We first note that if p € C° (?z’d) then u, € C° ( ﬁd) and ||u,l|co = ||pllco-
We now define for p, = (g, z4) € TR @ € {1,2}, the point p, := (qa,|24|) € ?Ed
and seek a bound of the form
up(p1) = uy(p2)| _ 1o(P1) — p(2) .
d(p1, p2)* d(p1, p2)*
for all p1,ps € ﬂéﬁd. If 21,29 € [0,d] or 21, 22 € (—d,0) then we have equality, whereas
if z; € [0,d] and z3 € (—d,0) then d(p1, p2) > d(p1, p2) so the bound holds. Therefore:

|up(p1) = up(p2)| [p(P1) — p(P2)]

lim sup < lim sup LA
r—0 pl,pgeﬁgyd d(p17p2)a r—0 pl,pzeﬂj’%"d d(p17p2)a
0<d(p1,p2)<r 0<d(p1,p2)<r

Clim sup PO = p(p2)

r=0 P1.P2ECR g d(p1,p2)°
0<d(p1,p2)<r

=0.

So u, € h% g%% 4 ) and the equality of norms follows from taking the supremum in
equation 1) and from ||u,l[po.a > ||up|%;d||ho,a = |lpllno.o-
We now turn to the odd extension and note that if p € CY (?Ed) and is zero

at z = 0 then v, € C° (ﬂlgd) and |[vpllco = ||pllco. In this case we note that if
z1 € (0,d) and zy € (—d,0) then either the geodesic joining p; and ps crosses z = 0,
or z = d. Therefore it passes through a point p = p(p1,p2) = (¢(p1,p2),0), or
p = p(p1,p2) = (¢(p1,p2),d). This point can be associated with the corresponding
point on the cylinder, hence p(p) = 0. We therefore obtain:

[0p(P1) — vo(P2)| _|p(P1) + p(P2)]
d(p1,p2)” d(p1,p2)”
_lp(p1) = p(p) + p(P2) — p(P)|
d(p1,p2)*
p(P1) — p(p )|+|P(P2) p(P)|
1,P2)* d(p1,p2)”
(P)| | Ip(P2) — p(P)|
o R (3.6)

/\_

y P2
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3.1 Interpolation Spaces

We now fix an r € (0,d/2) and, due to the symmetry of the domain and v,, we have
that:

sup [vp(p1) — Upip2)| — sup sup [vp(p1) — Upip2)|
pl,pgeﬁ'ﬁ"d d(p17p2) pleﬂﬁd pQGg]?,L,d d(p17p2)
0<d(p1,p2)<r z1€[0,d] 0<d(p1,p2)<r

—max | sup sup lp(p1) — p(P2)]

2 4 «
PIEC Ry P2ETRy d(p1,p2)
0<d(p1 ,p2)<1“

[vp(P1) — vp(P2)l

sup sup (3.7)
pleg}?,dlﬁegﬁ!d\?ﬁ,d d(p17p2)a
z1€[0,d] 0<d(p1,p2)<r
Now if z; € {0,d} then we have that:
Pl )
1’2631%4\%%,(1 d(p17p2) p2€9}§l,d\¥%,d d(pla pQ)
0<d(p1,p2)<r 0<d(p1,p2)<r

Pacey d(p1, p2)”
0<d(ﬁ1 7pz)<'r’

where we have used that
{p2€ T4 22 € (=d,0),0 <d(p1,p2) <7} C{p2 € T 4:0<d(p1,p2) <7},
since d(p1,p2) = d(p1,p2). Lastly if z; € (0,d) we can use equation (3.6) to conclude:

sup ‘Up(pl) _”p(p2)’

pQEQIZ’f,d’ 29€(—d,0) d(pl,P2)a
0<d(p1,p2)<r

C o ED—e® o) = ()
N Pzeggyd, z9€(—d,0) d(ﬁl’ﬁ)a pzegﬁ’,d, z9€(—d,0) d(ﬁ?)ﬁ)a
0<d(p1,p2)<r 0<d(p1,p2)<r
< sup Ip(plz - p(zis)l + sup |p(p2) —Npgp)l
pyeoey,  AUD1,P3) meet,  4D2D)
0<d(p1,p3)<r 0<d(p1,p2)<r
< sup PPV ps)] sup p(p2) — p(p3)|
T omeoep,  APLPR)Y e ppeoep,  A(P2:P3)*
0<d(p1,p3)<r 0<d(ps3,p2)<r ’
Therefore:
sup sup !Up(Pl) - Upip2)| <2 sup sup lp(p1) — P(z2)|
e T p2eT] 4 ne-a0)  AUD1,P2) PIET,  P2cTha d(p1,p2)
21 G(O,d) 0<d(p1,p2)<7' 0<d(p1,p2)<'r
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3. FUNCTIONAL ANALYSIS BACKGROUND

and hence by combining with equations (3.7) and (3.8)) we have that:

sup [vp(P1) — vp(p2)] <9 sup lp(p1) — p(p2)|

PLP2ETE d(p1, p2)” ety  A(P1,P2)”
0<d(p1,p2)<r 0<d(p1,p2)<r

Taking the limit » — 0 gives that v, € RO (,ng). The bound on the norm also
follows from equation ((3.6]). O

Corollary 3.1.4. Fiz |l € {1,2}, a € (0,1) and let p € hl’; <?%7d> then its even

Oz
extension u, 18 in hbe (9£d> and
[ollpta < llupllpea < 2llpllpra-
Proof. We first note that if p € C!y (?};d), I € {1,2}, then u, € C" (ﬂé‘d> and
Oz ’
llupllct = ||pllci- When defined, we have the derivatives given by:
Vip(q,z) z€10,d,
vzp(qa _Z) z € (_d70>7

o Vaup(q, 2) z € [0,d],
" _VRIO(qa _Z) S (_d7 0)7

Viuy(q, z) = { i #mn,

and

ViVip(q,z) z€]0,d],
ViVjp(a,—z) z € (=d,0),
ViVip(q, z) z € [0,d],
—ViVip(q,—2) =z € (=d,0),
Since all these functions are either even or odd, by Lemma [3.1.3] we get the result. [

i,j#Enori=j=mn,

ViVjuy(q, z) = {

10r j=n.

ViVjuy(q, z) = {

The interpolation functors allow characterisation of the little-Holder spaces in terms

of the continuous function spaces:

W (0) = (¢ (0).¢1 (D)), . (3.9)
for | € N and 6 € (0,1) such that 1§ ¢ N, [38]. Here we use the notation that
he (U) = plol(o=lo)) (U), for a real number ¢ € R. The Reiteration Theorem

then gives the following corollary.
Corollary 3.1.5. For any | € Ny such that 0y (I 4+ 602 — 01) + 01 ¢ N:
0,01 (17 1,02 (17 — 90(l+92791)+91 [ 7
(n0% () ,n (U))GO h (0). (3.10)

The above theorem can be extended to little-Holder spaces on manifolds without

boundary, see for example equation 19 in [26].
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3.2 Sectorial Operators

3.2 Sectorial Operators

A linear operator, A: Z C Y — Y, is called sectorial if there exist 6 € (g,w), weR
and M > 0 such that

(l) p(A) ) SQ,w = {>‘ cC:A 7é ) | arg(A - w)| < 0}7
(i) (1RO Al ey < gy for all A € Sp,

here p(A) is the resolvent set, R(\, A) = (M — A)~! is the resolvent operator and
| - lz(v,yy is the standard linear operator norm, [38].
We also have the following lemma from [38] that gives a sufficient condition for an

operator to be sectorial.

Proposition 3.2.1 (Proposition 2.1.11 [38]). Let A: Z CY — Y be a linear operator
such that p(A) contains a half plane {\ € C: Re(\) > w}, and

[ARN, A)[lzivyy < M, Re()) > w, (3.11)
with w € R, M > 0. Then A is sectorial.

We also have a different characterisation:

Lemma 3.2.2. Assume that p(A) contains the half plane {\ € C : Re(\) > w}, then
the condition is equivalent to

|zllz < K||(M — A)[2]|ly, forallz€ Z, Re(\) > w, (3.12)
for some k > 0.
Proof. 1f holds, then we obtain the bound
[Azlly = [[AL = A)[=] + Al]ly
<N = Ay + [ Allezn 2l 2
< (L4 sl Allzzy) A = A) ]y

for all z € Z, which gives us (3.11)).
Alternatively we wish to bound ||z||z, assuming (3.11]). For Re(\) > w we have:

I2ll2 = IR, 4) (M = A)fz] + (@ = V2] 1z
<R, A)llegr (M = A)[2] + (w0 = Vsl
< IR, lleez) (10T = DLy + [ = 1] 121y )
< IR, A)llez) (1+2M) [ = ALy
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3. FUNCTIONAL ANALYSIS BACKGROUND

We now assume Z and Y are Banach spaces with Z dense in Y. As defined by

Amann in [3] we let:
H(Z,Y):={Ae L(Z,Y):G(A) is a strongly continuous analytic semigroup},

where G(A) = {e_tA it > O}. This space can be seen to be equivalent to the space
of sectorial operators. Firstly, by Proposition 2.1.4 in [38], see also Remark 2.1.5, if
A: Z — Y is sectorial then G(—A) is a strongly continuous analytic semigroup and
hence —A € H(Z,Y) (in fact G(—A) is strongly continuous if and only if Z is dense in
Y'). The reverse implication follows by combining Proposition with the following

theorem:

Theorem 3.2.3 (Theorem 1.2.2 [3]). A € H(Z,Y) if and only if there exist K > 1 and
w > 0 such that wl 4+ A is an isometry from Z to'Y and

L IOT+ Ay
= ATl + Iz

<k, forallz€ Z, Re(\)>w.

We now introduce the Shauder estimates on the Holder spaces. These will be used

in Theorem to determine a class of sectorial operators.

Theorem 3.2.4 (Theorem 27 (a) [15]). Let A be a linear, elliptic differential operator
of order k on a manifold, M™, that is compact without boundary. Given a constant

a € (0,1) and an integer I > 0 there are constants c¢1, ca, c3 such that for every

= Ck—l—l,oz (Mn)’
[l grrra < cillAfe]llcra + callvllco < esflvf|ortia-

Moreover, if one restricts v so that it is orthogonal (in L*(M™)) to the nullspace of A,

then we can let co = 0 (with a new constant cy ).

Another standard theorem of elliptic operators that we require is the following;:

Theorem 3.2.5 (Theorem 37 [15]). Let A be a linear, uniformly elliptic differential
operator of order k on a manifold, M™, that is compact without boundary. The eigen-

values of A are discrete, having a limit point only at infinity.

These estimates allow us to prove that elliptic operators are sectorial as maps into

the Holder or little-Holder spaces.
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3.2 Sectorial Operators

Theorem 3.2.6. Let k,l € Ny, o € (0,1) and A : BFTho (M™) — hbe (M™) (or from
Ck+be (M™) to O (M™)) be a linear, uniformly elliptic differential operator of order

k, where M™ is compact without boundary. Then —A is sectorial.

Proof. First we note that due to the compact embedding h*Tb (M™) C hb® (M™) the
spectrum of A consists entirely of eigenvalues. By Theorem [3.2.5] there exists w such
that, if A is any eigenvalue of A, then Re(\) > —w and hence A + A is a linear
isomorphism for all Re (A) > w. Therefore by Theorem (since the little-Holder

norms are the same as the Holder norms) we obtain the bound:
lollprste < cr]] (A + A) [V]]| p1as (3.13)

for all v € h**+5@ (M™) and Re (\) > w. Hence by Lemma and Proposition

we have that — A is sectorial. The proof for the Holder spaces is the same. O

Another important property of sectorial operators is the fact that they remain

sectorial under certain perturbations, see the following two propositions.

Proposition 3.2.7 (Proposition 2.4.1 [38]). Let 6 € (0,1) and A: Z — 'Y be sectorial.
Then:

o I[fBe L((Y,Z)y,Y) then A+ B : Z — 'Y is sectorial. This remains true if = 0.
o I[fBe L(Z,(Y,Z)p) then A+ B : Z —Y is sectorial. This remains true if 6 = 1.

Proposition 3.2.8 (Proposition 2.4.2 [38]). Let A: Z — Y be sectorial with constants
w,0, M, and let B € L(Z,Y), with || Bl z(zy) < ﬁ Then A+ B : Z — 'Y is sectorial.
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4

Existence in Interpolation Spaces

In this chapter we analyse the existence of solutions to equation for initial condi-
tions in the interpolation spaces. The calculations are carried out in the little-Ho6lder
spaces so that solutions are continuous in time at ¢ = 0; however similar results are
valid for functions in the Holder spaces. We begin the calculations by linearising the
speed of the height function at the base hypersurface. This is then shown to be a sec-
torial operator on the interpolation spaces and existence in these spaces can be proven.
For the case of the volume preserving flow the flow is quasilinear, which allows for

improvement in the regularity for times greater than zero.

4.1 Linearisation

To analyse the flow in equation (|1.5)) we will consider its linearisation about the base

hypersurface. The speed operator is given by:

G (p) == L(p) (h(p) — F (Kyp)), (4.1)
-2
where h (p) := m Jom F (Kp) B (K)) dpp and L(p) == /1 + ‘Vp‘ . We first
turn our attention to the global part of the equation.

Lemma 4.1.1. For a constant principal curvatures hypersurface Qo C R*1 i.e. where
Ko(p) = Ko for all p € M™, the linearisation of the weighted average curvature function
about p =0 € C? (M™) is:

Oh (0) [v] = - OF (Kp) ,—g [v] dpro,
forv e C? (M™).
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4. EXISTENCE IN INTERPOLATION SPACES

Proof. For a Fréchet differentiable f we have:

8(/1nfmm>[d——/;naﬂﬂdum

so calculating we obtain:

1
Oh(0) [v] = 9 (an E(kp)i (p) duo /M"
[v]

:an E(L,O) dpio 0 </ n o) 7 (5p) 11 (0) d,uo) p=0

_ Jam E (ko) F (K0) dpio = (k d
(Jasn E (ko) duo)2 (/ . (5p) 1 (p) Mo)
1

~ Ju E (K0) dio ( . (2 (kp) 1 (p) F (Kp))] =g [v] dpio

[]

EMMW%M@MM>
p=0

[1]

[]

p=0

~F ) [0 ) (0)]o oo

1 / ) = (ko) OF (Rp)‘pzo [v] dpto.

~ Jar = (50) dpto

The lemma follows since = (kg) is constant over M™. O

Importantly, we see that the linearisation of the speed does not depend on the weight
function used when averaging the curvature function. This allows us to treat all the

weighted volume preserving curvature flows at once. Using the chain rule the lineari-

sation of the curvature function can be written as 8F(np)|p:0 =5, gfi (ko)Okq (0).

To proceed we need the following lemma:

Lemma 4.1.2. Let x(p) be a principal curvature of the hypersurface €2, with corre-

sponding unit (with respect to the Qo metric) principal direction ((,)", then:
9k (0) = —C'¢IV;V; — k(0)?,
where ¢t = ((o)*.
Proof. We start by noting that the condition §;;(¢,)"(¢,)? = 1 implies:
3¢ 0(6)'] =g = 0. (42)

Next, from the definition of x (p) we have that (g,)%(h,)i;(¢p)? = & (p) (¢p)! so, by

linearising about p = 0, we obtain:

Chuj 0(gp)" |+ 9" 0l + i O |,y = 'O (0) + 1(0) A(G)'] oy
(4.3)
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4.1 Linearisation

Multiplying this equation by §;xC* as well as using that fllollj = k(0) éljé' L and 1} we

obtain:
9k (0) = ginCF Iy 3(9p)il‘p:0 + P! O(hp)ijl mg + GirCE Gy a(Cp)j’pzo
= —GirC ¢TIy g g 9(9p)pal jmo + e (Pp)ijl =g + Chy 8(Cp)j|p:0
= —5”%}1 8(9p>pq|p:0 + fléj 8(hp)lj‘p:o + ’f(o)éljél 8(<p)j‘p:0
= {1 (0(hp)igl oy = 1 O(g0)ial o) -
We use the second fundamental form for a normal graph given in :
(hp)ij =L(p)~* (hi (élj + p%‘) — Vz'VjP>
+ L(p)1(g,)"® (5;2 + P%) (iljlvip + haVjp + pvlilij) Vip-

In order to calculate the linearisation at p = 0 we note that 0L(0) = 0 and L(0) = 1,
hence the L(p)~! factor does not affect the linearisation. Also note that the last term
is second order in p, so it also vanishes when taking the linearisation at p = 0. The

linearisation at p = 0 is then easily found to be:

O(hp)ijl,—o = —ViV; + hih;. (4.4)
From the formula for the metric given in we have that 9(gp)igl ,—o = 2f°LZ-q, so:

Dk (0) = (il (-vivj - imﬁg) (4.5)

The result then follows from C]hzlhé = H(O)iLilél = H(O)Qéilél and because ( is a unit

vector. UJ

Combining these results, we are able to give the full linearisation of the speed

operator at a hypersurface of constant principal curvatures.

Proposition 4.1.3. Let Qg be a hypersurface with constant principal curvatures and
Coa be the unit principal direction vector corresponding to the principal curvature kq(0),

i.e. hf(g = ka(0)&) (where we do not sum over a). Then:

~ OF
g OKq

G (0) [v] (o) (GiEIVaV; + Ra0)?) v
" OF o
B ; 87% (KJO) ][M” (C;CLJIV’LV] * Ka(0)2> v d/,LO’

forve C*(M™).
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4. EXISTENCE IN INTERPOLATION SPACES

We can simplify this expression in the case that )y is a sphere using the fact that

all principal curvatures are equal, so g—F (ko) = (‘?TIZ (ko) for all a = 1,...,n. We also

K1

use the divergence theorem to remove the derivatives from the global term.
Corollary 4.1.4. The linearisation of at p=0€ C%(SR) is given by:

9G4 (0)[v] = g:l (ko) <(Ayg n %) v — % o vduo) , (4.6)

forve C*(FR).

For u € C? (91?11) we set

Gy (u) :=4/1+ ’@UF (fgﬁd = (11%) e /y}g,d F (ky) E (ky) dpy, — F (nu)> (4.7)

and the result of Proposition is still applicable, with x4(0) and éa given by even
extensions of the principal curvatures and directions on the cylinder. We order &, such

that x,,(0) = 0, and hence g—fl (ko) = % (ko) foralli=1,...,n— 1.

Corollary 4.1.5. The linearisation of atu=0¢ C? (91%161) 18:

oF n—1 oF d*v  OF n—1
9G(0)[v] = P (ko) (Aygl + Rg> v+—— (ko) 92 oy (ko) RQ][ . v dpo,

L?I:x’,,d
(4.8)
for v e C? (fﬁd).

4.2 A Sectorial Operator

In this section we will prove an important property of the linearisations 0Gs(p) and
0G1(u) for p, u in a neighbourhood of zero. We show that for each of these operators
there exists a sectorial operator A : h%%0 (M™) — h%%0 (M™) such that the original
operator is the part of A in h%® (M™), a € (g, 1), which is an interpolation space by
equation . More precisely we have the following lemmas:

Lemma 4.2.1. For any 0 < a <1 and 0 < og < « there exists a neighbourhood, Oy 1,
of 0 € K> (SR such that the operator 0G4(p) : h** (FB) — hO% (FSR) is the part in
RO (FR) of a sectorial operator A, : h**0 (Sf) — h00 (FR) for all p € Oy 1.
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4.2 A Sectorial Operator

Proof. We start by fixing « and choosing any g such that 0 < ag < a. We next define
the functional G : K20 (7)) — R0 (FB):

Gs(p) :=L(p) (h(p) — F (k) (4.9)

so that if we set A, = 0G(p) it is clear that OG(p) is the part in h%* (S5) of A,. It
remains to prove that A, is sectorial for p € O. To do this we use equation (4.6) to

calculate Ap:

oF n
Ao['l)] = anl (ko) <<Ayf + RQ) R2f}gvdu0> . (4.10)
Since we have that (mg) is positive, the operator —A;, where
~ OF
Ay = 5 (ko) (Ay + RQ) (4.11)

is uniformly elliptic and hence Ay : h>0 (FB) — h®0 (FR) is sectorial, by Theorem
B:2.6] Also the map

oF n
U—>—a—( )RQJ[RUd'uO (4.12)

is in £ (h®0 (SF), h** (SF)) so by Proposition we have that Ay is sectorial.
This then implies by Propositionthat A, = Ao+ (0Gs(p) — 0G5(0)) is sectorial for
all p in a neighbourhood of zero, O5 o C h**0 (). By setting Os1 = Os2Nh>* (SF)
we finish the proof. O

Lemma 4.2.2. For any 0 < a <1 and 0 < ag < « there exists a neighbourhood, Oy 1,
of 0 € h%® (‘%ﬁd) such that the operator OGy(u) : h® (91%[1) — h0e (9£d> is the
part in hO (‘Z;fd) of a sectorial operator A, : h*%0 (yﬁd) — pYa0 (‘%R?d) for all
u < Ot71.

Proof. The proof follows the same reasoning as in Lemma We give here only the
differences in the proof. Firstly

- OF n-1 oF ok

Here again, —A; is uniformly elliptic, since gf (ko) , %1 (ko) > 0. Secondly the factor

in front of the global term is different, however this does not affect the calculations. [
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4. EXISTENCE IN INTERPOLATION SPACES

4.3 Existence

We are now able to obtain short time existence for the weighted volume preserving
curvature flow in equation ([1.4) with an initial hypersurface that is a graph over a
sphere or cylinder with small height function. We will be using Theorem 8.4.1 in [3§],

which we restate with some simplifications:

Theorem 4.3.1. Let G : O C h*>*(M") — % (M™), a € (0,1), be such that G
and OG are continuous in O and for every v € O the operator OG(v) is the part in
h%* (M™) of a sectorial operator A : h#%0 (M™) — h%2 (M™), ay € (0,c). Then for
every v € O there are 6,r > 0, such that if ||vg — 0||p2.« < r, then the problem:

v'(t) = G(v(t), 0 <t <4, v(0) = v,
has a unique mazimal solution v € C ([0,8), h** (M™)) N C* ([0,4), k%> (M™)).

We now prove existence for hypersurfaces close to a sphere. This result, for the case

of mixed volume preserving flows, has been included in the paper [27].

Theorem 4.3.2. There exist §,r > 0 such that for any function py € h*>“ (S} satis-
fying ||pollpz.« < 1 the equation , with M"™ = /%, has a unique mazximal solution:

p € C([0,6),h** (FF)) NC([0,8), kO (FR)) .

Moreover, the graph over a sphere Q,, has a weighted volume preserving curvature flow

fort €10,0), which is given, up to a tangential diffeomorphism, by Qp)-

Proof. As in the remark following Condition 4.2 in [6]: since F' and = are smooth,
symmetric functions of the principal curvatures they are also smooth functions of the
elementary symmetric functions, which depend smoothly on the components of the
Weingarten map. It is easily seen that the Weingarten map depends smoothly on
p € Uaq, note that Uz, is defined in . Therefore G5 depends smoothly on
p € Oy 3 C Us o, where the choice of O, 3 is such that if p € O, 3 then fy’g E(kp) dp, > 0.
The sectorial condition was established in Lemma for a neighbourhood Og 1, so
the proof is complete by using Theorem with O = 041N Og3 and v = 0. O

In order to obtain existence for the flow of graphs over cylinders, we first use the

same arguments to obtain an existence theorem for the PDE (1.7)):

Theorem 4.3.3. There exists §,r > 0 such that if ug satisfies ||ug||p2.0 <1 then
has a unique maximal solution u € C ([O, 5), h®e (ng)) nct <[0,5), RO (‘Zﬁd) )
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4.4 Improvements for Volume Preserving Mean Curvature Flow

Since ||upg||p2.« is controlled by | po||p2., see Corollary and a solution to
|} with initial condition wu,,, restricted to %’d, is a solution of 1) we obtain the

following corollary:

Corollary 4.3.4. There ezists 0,7 > 0 such that for any function py € hiﬁ (?Z’d)

oz

satisfying ||pollp2.a < 7 the equation , with M™ = €4 4, has a unique mazimal

solution:
peC ([o, R (%@) ¢ (10,6),0° (ra))
Moreover, the graph over a cylinder €),, has a weighted volume preserving curvature

flow for t €10,6), which is given, up to a tangential diffeomorphism, by Q).

4.4 Improvements for Volume Preserving Mean Curva-

ture Flow

In this section we consider the volume preserving mean curvature flow for graphs over
cylinders. While the results in Section [4.3] are still valid, we can improve upon them
by using the fact that the flow is quasilinear. In place of Theorem we are able
to apply Theorem 12.1 in [2] (see also Theorem 2.11 in [7]), which has a less strict

regularity condition for the initial function. This work has been included in [2§].

Theorem 4.4.1 (Theorem 12.1 [2]). Suppose that 0 < v < a < 8 < 1, that Og41,4 i
open in h*+1 (M™), and that

(Q.1) € OO (Onaan H (HE427 (™) HET (M™)) > hE2 (M)

Then, for each vg € Ogt18 := Ogq1,4 N RFHLB (M™), there exists § > 0 such that the

autonomous quasilinear parabolic Cauchy problem
0 =—Qv)[v]+ f(v), t >0, v(0) =wg (4.14)
possesses a unique maximal solution:
v e C([0,8),0p41.8) N C ((0,5) B2 (Mn>) .

The space H (Z,Y) was introduced in Section where it was also shown that
A being sectorial is equivalent to —A € H (Z,Y). The second stated property of the
solution, i.e. that v € C ((O, §), hk+2 (M”)), is not explicitly stated in the theorem,
however is mentioned in a remark at the top of page 70 of [2], also see Corollary 2.13
in [7].
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4. EXISTENCE IN INTERPOLATION SPACES

Theorem 4.4.2. For any pg € 171”30, 0 < By < 1, there exists § > 0 such that the
PDE with M™ = ‘fﬁ’d and Neumann boundary condition has a unique maximal

solution:
peC ([0,5), ‘71,50) nc <(0’5)’ hzéfl (ngﬁd)) ’

for any B1 € (0, Bo). Moreover the graph over the cylinder Q,, has a volume preserving

mean curvature flow for t € [0,9), which is given, up to a tangential diffeomorphism,

by Lp(e)-

Proof. As in Section we prove existence of solutions for the PDE (|1.9)) and hence
obtain a solution to 1' with M" = & ;. We first fix ap € (f1, fo) and search for a
splitting G¢(u) = —Q(u)[u] + f(u), u € V3 g,, such that

Q1) € € (Vaags H (W35 (Tig) 1O (Tiia) ) % 102 (Ti2))

We use the equation for the mean curvature operator given in (2.13]) to obtain the
splitting H (u) = J (u) [u] + K (u), where
3 2 i ik il o
J () ==L () (L) @)Y = (3) () ViuViu) 5= (4.15)

and
K () ==L (0) " ()" (§u )" (5;’ + uﬁf) by ViuVyu + L (u) ™" (5) (5; + uii;) =
L () (L) (37 = (3" (37 ViuTiu) 5V (4.16)

We note that the functions are smooth on Vj 4, that is K € C* <V1’a0, hO:a0 (,ZQCO)

and J € C (Viaq, £ (h2 (72,) 1% (72,4)) ). We now obtain the splitting for
G¢(u), by defining:

QU)lv] =~ (u) (][ () o) dp— T () [v]) (4.17)
and
f(u) :==L(u) ( - K (u) dpy — K(u)) . (4.18)

Note that f € C*° (Vk+17a,hk’a (ﬂéﬁd)> for any £k € Ny and o € (0,1), so it only
remains to show that Q(u) € H (hwl (zgd) B0 (zg d)) for all u € Vi o, We will

in fact prove something more general that will be used in the subsequent corollary.

36



4.4 Improvements for Volume Preserving Mean Curvature Flow

We let k € Ng and o, 8 € (0,1). L(u)J(u) is uniformly elliptic for all u € Vi41 q,
so we use Theorem [3.2.6( to conclude —L(u)J(u) : hF*2P (f}gd) — Rk (f}gd) is

sectorial. We also have the bound

o] dpp| | L(w)]|r.

L(u) fy el dn

o7
“R,d

<C(u )IlvH02
<C(u)lv]lp2e,

for any € € (0,3). Therefore by the perturbation result in Proposition (i) we
conclude that, for all u € Vi1, —Q(u) : hk+2.8 (9&%) S <91~721d) is sectorial,

that is Q(u) € H (hk“ﬁ (y£d> ,hk’ﬁﬁﬁ,d))'

Therefore we can apply Theorem to obtain a solution, u(t), to (L.9)) such that
we C([0,8), Vi) 0 C ((0,0), 0% (T2)) (4.19)

and by taking p(t) := u(t)

¢n, we obtain the result. ]

As a corollary of this theorem we are able to obtain higher spatial regularity of p(t)
when ¢ > 0. In fact we obtain that the solution is smooth instantaneously after the

initial time, and hence the flow is smoothing.
Corollary 4.4.3. Let p(t) be the solution found in Theorem [4.4.2 with initial condition

po € ‘71750, then p € C* ((0,5),6’%" (‘5}%0) NncC ([0,(5),‘7175()) , i.e. for anyt € (0,0)
Oz ?
the hypersurface defined by p(t) is smooth, as is the map t — p(t).

Proof. We again prove the regularity result by proving the same regularity result for the

solution, u(t), to (L.9). By the proof of Theorem[4.4.2) we have Gy(u) = —Q(u)[u]+ f(u),

where
Q.)€ € (Vipa.ao M (W22 (F3) 092 (Ta) ) x BB (7)) (4.20)

for any k € Ny and «, 8 € (0,1). The smoothness in time then follows from the remark
in the second paragraph on page 71 of [2] or from Corollary 2.13 in [7]. To get the
spatial regularity we perform a bootstrapping method, similar to the proof of Theorem
1in [19].

We will prove by induction that if ug € Vj g,, then for any k& € Ny we have:

ued ((07 5)7 Vk+1,ﬁk) nc <(07 6)7 hk+275k+1 (y}?,d)) ) (421)
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4. EXISTENCE IN INTERPOLATION SPACES

where {3; 220 is any sequence satisfying j3; € (0, Bj—1), we will also define the sequence
aj € (Bjt1, Bj)-

The k£ = 0 case follows from the proof of Theorem We now assume
holds for some k£ € Ny and let 7 € (0,9). By the inductive assumption the function
w(r) is in Vi g, N RS20 (78) = Vi,

Due to (4.20) we have:

(Q, f) e 0> (Vk+2,ak+1aH (hk+37ﬁk+2 (9}?@) 7hk+1,/3k+2 (yél’d)) % hk+17ak+1 (9}?@)) ,
(4.22)
so we can apply Theorem to obtain a solution to ([1.6)):

uweC ([0, 5)7 Vk+2,ﬁk+1) nc <(()’ 5)7 43,842 (y}g(») :

with u(0) = u(r) € Vk+2,ﬁk+1-
By uniqueness of solutions to the flow we also have that u(t) = u(t—7) for ¢t € (7,6),

where ¢ := min(é + , 9), and hence

weC ([T, 5), VM,&H) ne ((T, 5), hf+3: e+ (zgd)) :

We note that if 6 +7 > § then @(t) extends u(t) and maintains the same regularity,
which contradicts the maximality of §. Now we assume that 6 + 7 < §. By Theorem
12.5 in [2] we conclude that either @(t) approaches the boundary of Viyo4,,, or that
|@(t)||pes20 — 00, as t — &, for each 6 € (agy1,1). The same must be true of u(t)
as t — 6 + 7. However, by , uwld+71) € Vit2,8141 C Vit2,a;,,> 50 does not tend
to the boundary, and Hu(ngT)Hhk+z,5k+l < o0o. Since fr+1 € (g41,1), we have a

contradiction and 6 +7 = §, so
we C (I7,0), Visagr) N C ((7,0), B30 (F2,) )
But this is true for all 7 € (0,0), hence we obtain
we C((0,8), Visag,,) N C ((o, §), hi+3 e (zgd)) ,
so by induction we have that is true for all k € Ny. Therefore, for all £ € Ny:
we € ((0,8),C52 (77,))

Combining this with the smoothness in time we obtain the result. O
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Stability of Weighted Volume
Preserving Curvature Flows near

Spheres

This chapter deals with the stability of spheres under the flow . We will again
consider initial hypersurfaces that are graphs over the sphere with small height function
and prove that their weighted volume preserving curvature flow exists for all time and
the hypersurfaces converge to a sphere. We do this by setting up an exponentially
attractive center manifold and showing that it consists entirely of spheres. Since all the
results are local we will often only need to deal with the linearisation at zero, as it is
the dominant term in the evolution equation. We highlight this term by rewriting the

evolution equation:
p(t) = 0G5 (0)[p(t)] + Gs(p(t), Gs(v) = Gs(v) — IG(0)[]. (5.1)

Note that G is a smooth function in a neighbourhood of zero, which satisfies G5(0) = 0
and dG4(0) = 0. The results of this chapter, in the case of mixed volume preserving

curvature flow, are included in [27].

5.1 Eigenvalues

In this section we investigate the spectrum of the operator dG4(0) given in equation

l} However, we will first consider the operator A, given in equation 1) We

39
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CURVATURE FLOWS NEAR SPHERES

(n)

P

m._ =7 1=
M, '_{ (l+n) le{0,1}. (5.2)

n

Lemma 5.1.1. The spectrum of Ay : h®® (FB) C WO (FR) — hO () is given by

o(d) = {-oC e =0 e

with eigenfunctions the spherical harmonics.

will denote the n-dimensional spherical harmonics of order I by Y, ” where [ € N,

1<p< Ml(n) and

Proof. Due to the compact embedding of h*® (%) in h% (.#}) the spectrum consists

entirely of eigenvalues. It is well known that the eigenfunctions of the spherical Lapla-

7(2), 771(”};?71) and

hence the eigenfunctions of A are also the spherical harmonics and the corresponding

oF l(l+n—-1
6= g0 (=)

which proves the lemma. ]

cian are the spherical harmonics, Y with corresponding eigenvalue

eigenvalues are

Lemma 5.1.2. The spectrum of 0G4(0) : k% () C h%® (R) — O (SR consists
of a sequence of isolated non-positive eigenvalues given by:
oF (I—1)(+n)
s =¢—— ———~1eN;,
06, (0) = { - (e e
with corresponding eigenfunctions given by:
v i=1p=0,

T reN 1<p< M.

It follows that zero is an isolated eigenvalue of multiplicity n + 2 and the zeroth and

first order spherical harmonics form the basis for the corresponding eigenspace.

Proof. We start by noting that again the spectrum must consist solely of eigenvalues
and that Yo(fll) = 1 is an eigenfunction of 0G4(0) with eigenvalue zero; we label this
eigenfunction vy . Now we note that the operator 0G(0) is self adjoint with respect to

the L?-inner product on h** (.#5). To see this, consider v, w € h?“ (.#}) and compute:

0G(0)[v]w dug = / (AS [v] — }7;2][ vdu0> w dpg
o EZ

IR
- n
=/ As[v]wduo—@ vduo/ w dig
IR SR IR
- n
— [ vlulduo - g5 [ vdnof wino,
SR R R
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5.2 Center Manifold

where we use that A, is self adjoint with respect to the L2-inner product, since it is a

multiple of the Laplacian on the sphere plus a constant. Hence:

0G(0)[v]w dpg :/ v (As[w] - 122][ wd,uo> dpg
o o

= / vOG(0)[w] dpg.
7R

on
/R

Therefore we need only consider eigenfunctions that are L2-orthogonal to Yb(fll) =1, in
order to characterise the remainder of the spectrum. This means that for an eigenfunc-

tion v with eigenvalue A we assume the property:

/ Ud/JO:O)
7R

and hence

M = G4(0)[v] = Ag[v].

Thus the remaining eigenfunctions of 9G(0) are precisely the remaining eigenfunctions
of A, which are given in Lemma O

5.2 Center Manifold

This section deals with the fact that having a nontrivial nullspace of dGs(0) means
that we are unable to obtain a priori bounds on the solution. To address this we shall
construct a local invariant center manifold for the flow and investigate its contents.

We start the investigation by providing an existence theorem for center manifolds

along with some properties. We let k € Ny, o € (0,1) and
A P00 (M™) — Wb (M)

be a sectorial operator for some oy € (0, ). Assume that o4 (A) consists of a finite

number of isolated eigenvalues and define:
X = Py (B2 (M), X = (1= Py) (Bbe (™))

the center subspace and stable subspace respectively. We also note that since X€ is

finite dimensional all norms on it are equivalent and we don’t include any subscripts.
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Theorem 5.2.1 (Theorem 9.2.2 [38]). Let G € C' (O,r"* (M™)) with G(0) = 0 and
0G(0) = 0, where O C h*+22 (M™) is a neighbourhood of zero. There exists Ry > 0

such that for any r € (0, R1] there is a Lipschitz continuous function v, : X¢ — Xj .,

such that the graph of 7, is an invariant for the system:

2(1) = A2 ()] + Pi Gy (20 y(®)] ¥/(6) = A-[y(®)] + (= Py) |Gy (2(0), y(0)]
(5.3)
2(0) = 20 € X°, y(0) = yo € Xii9.a;

where Gy (z,y) := G (77 (%) T+ y) and n: X¢ — R is a cut-off function such that
0<n(x) <1, nx) =11zl <1, n(@) =0 [lz]pre = 2.

Furthermore v, is the unique map satisfying
0
o) = [ e =Py [Gr twn(smn) (s ds (5.4)
—00

where w,(s;z,7,) is the solution to

w(s) = Ay fw(s)] + Py | Gr(w(s), 1 (w(s)] , w(0) = 2. (5.5)

If in addition G is | times continuously differentiable, with | > 2, then there exists
R; > 0 such that if v € (0, R then v, € C'™5! and

(@) |Asla] + Py |Gy (2, 70(@)|| = A-bw(@)] + (= Py) |Gy (2, 7(2))]

Proposition 5.2.2 (Proposition 9.2.3 [38]). Let the assumptions in Theorem [5.2.]]
hold with G at least twice continuously differentiable. There exists Ry > 0 such that if
r € (0, Ry] and (z,(t), y-(t)) € X¢x Bys 0) is a solution to for allt > 0 then

k+2,a’r(

e (£) = e (@e ()l ppr20 < M(w)e™ " [lyo — 7 (20) [ pp+2.0 (5.6)

for any w € (0,w_), see (1.18). Further if ||zo||pra and ||yo||pr+2.a are small enough
then the solution to satisfies the assumptions.

Note that [38] starts by assuming that ||zg|/pr.. and ||yol||ys+2.« are small before
deriving the estimate (5.6). However, it is clear from the proof that once long time
existence is obtained, this assumption is not needed. Stating the proposition in this

manner also allows us to prove, by taking ¢ — oo in (5.6|), the following corollary:

Corollary 5.2.3. Let r € (0, Ry] and suppose (z,(t),y,(t)) € X x Bx; , . r(0)isa

stationary solution to (5.9), i.e. (z,(t),yr(t)) = (w0, y0) for allt > 0. Thenyo = v, (z0).
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5.2 Center Manifold

This result is a special case of Theorem 2.3 in [44], where it was proved that any
eternal bounded solution to must be contained in the center manifold. However,
the graph function used in [44] is defined differently to above and while they can be
seen to be equivalent on Bxe ,(0), the above corollary is enough for our purposes.

In the case of weighted volume preserving curvature flows for graphs over spheres,

the local system we consider is:

S () +ym)]. 2(0) = Pilpol,
y(t) = 0G(0)-[y(®)] + (1 = Py) [Gy (0 (22) +5(1)) ], 9(0) = (T = P)lo),
(5.7)
for pg € h>* (SF).

Theorem 5.2.4. There exists Ry > 0 such that for any r € (0, Rg] there is a function
v € CM (X, X35 ) such that v,(0) = 0 and 8v,(0) = 0. Further, M; := graph(v,)
has dimension n+ 2 and if pg € M, then the solution to , p(t), is in MS as long
a5 Pylp(t)] € By, (0).

We call M¢ a locally invariant manifold. Note that since 0G;(0) is self adjoint with
respect to the L2-inner product, (-,-), it commutes with the L2-orthogonal projection

onto X¢:

1
Plp] == % le .. (5.8)
o <Ul,a7 vl,a> ’

That is, P[0Gs(0)[v]] = 0G4(0) [P[v]] = 0 for all v € h>* (#F). Notably this means
that P [pFT2e (FR)] = N (0G4(0)) and (I — P) [hF+2 (F)] = Range (0G4(0)), so
P = P, the spectral projection associated to o4(0Gs(0)). This also means that

n+1 ”vl,a”hk,a fyﬁ |v1,a‘ dpo

0G5(0)1 = 0. Note that if we define a o =), T
for any k € Ny and a € (0,1):

we have that

[P [plllpee < arallpllcos 1= Po)lplllpee < (1 + ara)llpllpea- (5.9)

We now set

S:={pe Uy :Q,is asphere}.

Lemma 5.2.5. There exists a neighbourhood of zero, Wy C X, such that M¢ and S
are identical inside (W5 N Bxe<,(0)) x Bx; »(0), for any r € (0, Ry).
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Proof. Firstly, since any py € S N <BXC’T(O) X BXSQJ"(OD is a stationary solution

to (0.1) and hence also to (5.7)), we use Corollary to conclude that pg € ME.
The rest of the proof follows as in [2I]: If p € S, then we obtain the parame-

ters ¥ = (Yo,...,Yn+1) € R"™2, where yo := R — R, R is the radius of Q,, and
(Y1, .- Yns1) € R" 1 is the center of the graph. Since

X, = R (Y0 ) o (V)

we have the relationship:

n+1 n+1 n+1

n 2 n
(R+y0)* = R2 =3 ((R+ V{7 = va) = (R+p2 2R+ p) > uaid + >4
a=1 a=1 a=1
(5.10)

Solving this equation for R + p gives

ntl n+1 2 n+1
R+p=> y¥\" + (Z yaiﬁ(,ﬁ)) + (R +10)> Z v2,
a=1

a=1

and by setting

n+1 n+1 2 n+1
= Yav1a— Ruig+ (Z yam,a) ( (R +y0)? Z ya) vio, (5.11)
a=1

a=1

we have p = x(y). We will consider xy : U C R"™? — h%*(#F), where U is a
neighbourhood of zero such that y is smooth on it. It is clear from the construction
that for any p € S, with sufficiently small norm, there exists a y € U such that

p = x(y). We now calculate the linearisation of x at zero acting on x € R"*2:

n+1 3)(
o(O0)z] =) 5= (0)za
"e0 Ya
_ (R4 yo)vio
= Zo
n+1 2 2 n+1
Za:l YaV1,a + (R + yO) - Ea 1 ya V1,0 0
y:
1
. g: oL Vlg %:Zill YpU1p — Yal1,0 ‘.
\/(Z?ff ybvl,b) + ((R +y0)2 = ) yz?) V1,0
y=0
n+1
=3 aona (512)
a=0
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We now consider the map y(y) : U — X given by x(y) := Pi[x(y)]. Again
the linearisation at zero is given by dx(0)[z] = Y.'T3 2414 and hence is the iden-
tity map with respect to the basis vi,, 0 < p < n + 1, of X¢. Therefore there
exists a neighbourhood of zero, V' C X¢ such that y is a diffeomorphism from V
onto its image, W, C X¢ Further, the function 75 := yox ' —1 : W, — X5 o
parametrises S as a graph over X¢ locally. Since from the first remark of the proof
we have that SN <BXC’T(O) X BXS,aﬂ“(O)) C M¢, we conclude that & and M¢ coincide

inside (W N Bxer(0)) x Bxs (0). Note also that Ys[w,npye,(0) = ¥rlwinBye . 0)- B

5.3 Convergence to a Sphere

In this section we prove the main result of the chapter, that the spheres are stable under
the weighted volume preserving curvature flows. The main result we will be using is

again from [3§]:

Proposition 5.3.1 (Proposition 9.2.4 [38]). Let the assumptions of Theorem hold
and xg, Yo satisfy the same smallness condition. If r € (O,Rz], there exists * € X¢
such that the system has a solution for allt > 0 and

lzr (£) = wr (& 2, o) b+ lye () =0 (wr (& 2, 7)) i, < Clw)e™ [lyo =7 (20) lps2.0,
for any w € (0,w_).

Theorem 5.3.2. There erists a neighbourhood of zero, Oy C h*® (“R), such that for
po € Og, then the flow with initial hypersurface €, exists for all time. Further-

more, the hypersurfaces converge exponentially fast to a sphere as t — oo, with respect
to the h» (R topology, o € (0,1).

Proof. We fix 7 € (0, Ry] and start the proof by noting that if z € W N Bxe,(0) then
x+7,(x) defines a sphere by Lemma and hence is a stationary solution to equation

B, ie.

0= 0G;(0)[z + 7 ()]
= 0G5 (0)[z + 7 (2)]

Gs(@ +(2))

G (0(2) 2 ).

By taking the projection of this equation we see that x = Py[x + v,(z)] is a stationary

+
+

solution of

w(t)

wt) =Py |G (1 (2 ) wo) + 3w )] 0i0) =
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hence w,(t;z,v,) = « for all z € W, N Bxe(0).

We now consider pp small enough so that, by equation (5.9), we can apply Propo-
sition with w_ = g—fl (ko) "R—JEQ, to obtain, for any w € (0,w_), T € X° such
that:

s () = w3, (8, 30 00+l (8) = 30 e (8., 30 520
< Ce ! |[(I = Py)lpo] = 1 (Pilpo]) iy (5.13)

where (x,(t),y,(t)) solves (5.7). By evaluating this at ¢t = 0 we obtain the bound:

[P [po] = Zllpoe < C (I = Py)lpo] = v (Prlpo])ll 2.0 - (5.14)

This allows us to bound Z in terms of py.

1Z][po.a < ([P [po] — Z[|po.a + [ Py [po] || po.e
< C (I = Py)lpo] — v (Pi[po]) [ p2.a + ao,allpollpz.e
< C (I = Py)lpolllpze + v (Pilpo))lp2.a) + ao.allpollp2.e
< C((1+az2a)llpollnze + b |1 P+ [polllpo.0) + ao.allpollnz.e
< Cllpollp2.e; (5.15)

where we use (5.9) and where b, is the Lipschitz constant of 7,. Therefore if pg is
small enough we have that £ € W, N Bxe ,(0) and hence, by the first part of the proof,

wy(t; Z,7y) = z. Equation (5.13)) now simplifies to:
l227(£) = Z[lpo.cc + |y (t) = (@)l p20 < Ce™ (I = Py)[po] = v (Pi[po]) lp2.a - (5.16)

The last part of the proof involves proving that z,(t) € Wy N Bxe (0) for all t > 0
and hence p(t) = x,(t) + y,(t) is a solution to (5.1) for all ¢ > 0. We use a similar
calculation to the one we used to derive (5.15):

[z ()[po.e < [lzr(t) = Zllpoo + [|Z([p0.0
< Ce ™ ||(I = Py) [po] = % (Pilpo])llp2.0 + Cllpollpza
< O = Py) [polllpz.a + e (Prlpo])[[p2.0) + Cllpollp2.e
< C((1 4 aza) llpollnze + br [|1P [po]llpo.e) + Cllpollpza
< Cllpollpz.a- (5.17)

Therefore by considering py small enough we have that p(t) = x,.(t) +y,(t) is a solution
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to for all t > 0 with Py [p(t)] = z,(t) and (I — Py)[p(t)] = yr(t). Hence:

lp(t) = (Z + 9 (2))In2e = |Prlp()] = Z + (I = Py)[p(t)] = 7 () [[n2.0
< Prlp()] = Zllpze + 11 = Pr)lp(b)]
< C[Pp(®)] = Zllpoo + |(I = P)[p(t)] = 7 (%) [p2.
< Ce ™ (I = Py )lpo] — v (Pilpo])ll 2.0

where we used equivalence of norms on X¢. We have therefore found that p(t) converges
exponentially to Z + 7,(Z), which by Lemma is a sphere. O

The previous theorem proves that the spheres are stable stationary solutions to
the weighted volume preserving curvature flow, that is hypersurfaces close to a sphere
under the flow converge to a sphere near the original one. We also have the following
corollary concerning the stability of hypersurfaces that converge to spheres under the

flow. We find that hypersurfaces near them also converge to spheres.

Corollary 5.3.3. Let p(t) be a solution to the equation , which exists for all time
and converges to zero. Suppose further that g—,’i (mp(t)) > 0 for all t € [0,00) and
i=1,...,n. Then there exists a neighbourhood, Oy 4, of p(0) in h** (SR), 0 < a < 1,
such that for every vg € Og 4 the solution to with initial condition vy exists for all

time and converges to a function near zero whose graph is a sphere.

Proof. This follows by the same arguments given in [26]. Since p(t) converges to zero
in the h>®-topology, there exists a time, 7', such that p(T) € O; (

and, as O is open, there exists an open ball, ma(yg),e(p(T)) C O, of radius
e centred at p(T'). We consider the linearisation of h(p) about p(t):

given in Theorem

1
fyn = ( Kp(t) ) bt p(r)
B f/" ( )E( Kot )) dpp(t)

(fW( o) ) 7

Lo = () g < OF (50| =iy [VIZ (0] it
1’%“ Fp p(t

Oh (p (1)) [v] = O(F (k) E(Rp) 1(P)) =iy [v] dpto

O (E(kp) (P iy dbto

/ F (k) 9/ (59) 1(0)) ) o) o

“R

—h(p(t)) | O E (ko) (p))l,—p) [V] duo) :

R
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Therefore the linearisation of G (p) around p(t) is:

L
(p(t)) /Lyn Bp(t) [’U] d:up(t)a

0G, (p(t) = Apylt] + ——=
g fy;; = (”p(t)) dpvo(ry J .7

where
Aplv] := (h(p) — F (kp)) OL(p)[v] — L(p)OF (ky)[v],

and

Bplv] = E(kp) OF (k,)[v] = (h(p) = F(ky)) (02 (k)) [v] + E (k) dIn[u(p)[v]) -

The fact that L(p) > 0 and is a first order operator, together with the condition
that gTi (np(t)) > 0 for all t € [0,00) and @ = 1,...,n, ensures that the operator
—Ap4) is uniformly elliptic for every ¢ € [0,00) (see [4]). Hence by Theorem
Ay s W20 () — h%0 (F1) is sectorial.

We also have that B, : C? (/%) — C°(#8) is a bounded second order operator
and therefore the global term in the linearisation is in £ (h®? (SE), k%0 (1)), for
any € (0,1). By choosing 5 < ag we can apply the perturbation result in Proposition
(i) to conclude that 0G5 (p(t)) is sectorial for all ¢ € [0, T]. Hence, by Proposition
9G (p) is sectorial for all p € O (p(t)) C k> (FF), a neighbourhood of p(t).

By Theorem 8.4.4 in [38] the flow depends continuously on the initial condition

p

in a neighbourhood of pg. Therefore there exists a ball Bhgya( 1) s(po) such that if
1),

vy € BhQ,a(eyﬁ) s(po) then the solution, v(t), to 1) with initial condition vy exists

for t € [0,T] and v(T) € Bh%&(yg),e(p(T))' Since v(T) is in Og, by Theorem W

the solution to (1.5 with initial condition v(7T") converges to a function near zero that

defines a sphere. By uniqueness of the flow we get the result. O
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Stability of Weighted Volume
Preserving Curvature Flows near

Finite Cylinders

In this chapter we look at the stability of finite cylinders under the flow , with
the boundary condition that the hypersurfaces meet a pair of parallel hyperplanes
orthogonally. We will consider initial hypersurfaces that are graphs over cylinders of
length d and radius R. When the height function is small, we prove that if the radius of
the cylinder satisfies a certain condition, then its weighted volume preserving curvature
flow exists for all time and the hypersurfaces converge to a cylinder. To deal with the
boundary conditions we will continue to work with the PDE , then translate the
results to the geometric setting. This chapter follows the same pattern as Chapter
where we set up an exponentially attractive center manifold and prove it consists

entirely of cylinders. We will again rewrite the PDE to highlight the dominant term:
u'(t) = 9G(0)[u(t)] + Gi(u(t)), (6.1)

where

Gi(v) = Gi(v) — DG4(0)[v].

Note that G is a smooth function in a neighbourhood of zero, which satisfies G;(0) = 0

and 9G(0) = 0.
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6.1 Eigenvalues
In this section we investigate the spectrum of the operator dG¢(0) given in equation
(4.8). However, we will first consider the operator A, given in equation 1)

Lemma 6.1.1. The spectrum of A; : h®® (9&%) C hOe (Z&fd) — hoe (ﬂlgd) is
given by

g([lt) _ {_ <§::L(H0)m2712 N g—,i(h',o) (-1l +n-— 1)) -y GNO},

d? R?

with eigenfunctions:

mnz _ -

. mmz _ B
vgama(g.2) =sin (“7 ) V5V (@) 1< p < M"Y,

where the constants Ml(nfl) and the spherical harmonics Yi(;fl) are defined at the start
of Section [5.1]

Proof. For ease of notation we set F} o = g—i (ko) and F, o = g% (ko). Due to the

compact embedding of h?® (5717%1 d) in RO <g7]§ d) the spectrum consists entirely of
eigenvalues. The operator A, is also self adjoint with respect to the L2-inner product
on h>® (9}%). To see this we consider v, w € h*® (95(1):

n—1 0%v
<F170Ayg_1v + F170(R2)U + Fn,oaz2> w dHO

Aifelwdn = |

7 7
'7R,d ’7R,d

-1
=F1,0/ / ’LUAynfl'URn_l dodz+ Fip (n 5 )/ vw dpg
sy Jp! R R gn

R,d

02

+Fhp / / w—an_1 dz do
yg—l ’/(//é 0z

-1
=Fip / / vAyn_uuR”_l do dz + FLOLz) / vw dg
sy Joptt TR R an

82

+ Fho / / U—Z}Rnfl dz do
gut )1 0z

= / ’UAt [w] d,u'07
gn

R,d

where do is the volume form on .}
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6.1 Eigenvalues

To further analyse the spectrum of A; we consider eigenfunctions that have the
factorisation v(q, z) = X(q)Z(z), where q € 5”1?_1 and z € .3, —d < z < d. Therefore

(Fio (8 + " )+ By ) K@) 2(2) = AX (@)20),

so after expanding the terms we have

FZ()8 X (@) + FraX(@2'G) + (Fuo

Therefore we can separate the variables:
Ay XD Fp2'(2) (n -1 A >
X(q) Fi0Z(z) R?2  Fio/)
We set both sides to equal a constant & € R, which gives

1
Fn,O

(Fl,og — Fig (”];21) n )\> Z2(z).  (6.2)

Ayn1X(q) = —£X(q), Z2"(2) =

As given in Section the eigenfunctions of the spherical Laplacian are the spheri-
cal harmonics, so X;,(q) = Ylv(gfl)(q) for 1 < p< Ml(nfl), and the corresponding
eigenvalues are —§; = w. Substituting & into the second equation in lb gives:
1 (-1l +n-1)
72"(2)= — | F A Z(2).
0 =g (A= 1) 20

The eigenfunctions of this system are again the spherical harmonics, but this time

in one-dimension. They can be written as Zy,1(z) = cos (3%), for m € No, and

Zm2(z) = sin (mgz), for m € N. Hence we have the relationship

1 (=11 +n-1) m?n?
F - .
Fno < 10 R2 A PE

Therefore the eigenvalues of A; are:

m2m? (-—1D(l+n-1)
Am = — (Fn’0d2 + F1p 2 ) )

with corresponding eigenfunctions:

M2 y (=1 . (MTZN (n—1
d >Yl(p a) Ul’p’m’Q(q’Z):sm( d )Yl(p '(a),

'Ul,p,m,l(q’ Z) = CO8 (

where m,l € Ng, 1 <p < Ml(n_l). Since v;50,2 = 0 we drop the final subscript in the
case of m = 0 and set v;;0.1(q,2) = vipo(q,2) = Ylfgfl)(q). The spherical harmon-
ics are dense in the continuous functions on Yg_l and ygl, so the functions vj g, m 1
and vy, 2 are dense in the continuous functions 3&3 - Hence we have completely

characterised the spectrum of 4. ]
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Lemma 6.1.2. The spectrum of 0G4(0) : h>® (gﬁ,d> C hoe (9&%) — RO (ﬂlgd)

consists of a sequence of isolated eigenvalues given by:

OF (e \m2p2  OF (4 B .
o(0G+(0)) = {_M ( ;’2)  omy (ko) (1 Ri)(l+ 1)

:m,lENo,l—i—le},
6

with eigenfunctions:

mwz) (n—1) mﬂ'Z) Y(n_l)(q),

Ul,p,m,l(qa Z) = COSs ( d Lp (Q), Ul,p,m,l(qa Z) = sin ( d

for1<p< Ml(n_l), and v1,0,0 = 1.

Furthermore if

d | 55 (ko) (n—1)
R>— 5F
d e (Ko)

then all eigenvalues are non-positive and zero is an isolated eigenvalue of multiplicity

(6.4)

n—+1 with a basis of the eigenspace being the zeroth and first order spherical harmonics

n—1 . n
on S~ as functions on 9R,d'

Proof. We start by noting that again the spectrum must consist solely of eigenvalues
and that Yo(ﬁfl) = 1 is an eigenfunction of 0G¢(0) with eigenvalue zero; we label this
eigenfunction vy 99. Now we note that the operator 0G(0) is self adjoint with respect
to the L% inner product on h% (ﬁj’id). To see this, consider v,w € h* (ﬂﬁd) and

compute:

~ oF n—1
0G(0)[v]w dpy = / (At[v] ~ (ko) —55 ][ vd/,L()) w dpyg
T T K1 ’=Jzp,
~ oF n—1
= / Ag[v]w dpo — Drn (ko) Rg][ ’Ud,uo/ w dpg
TR 1 TR Th
~ oF n—1
— / vA[w] dpy — EP (ko) 72 / vd,u,o][ w dpg,
Rd 1 Tha Tha

where we use that A4; is self adjoint with respect to the L?-inner product. Hence:

~ OF -1
9GO dpo= [ o (At[w] - ) " f Wdﬂo> o
TR k1 Tha

— / vOG(0)[w] dpp.
Tha

o7
‘7R,d
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Therefore we need only consider eigenfunctions that are L?-orthogonal to Yo(ﬁ_l) in or-
der to characterise the remainder of the spectrum. This means that for an eigenfunction

v with eigenvalue A\ we assume the property:

/ vdug =0,
T, Tod

and hence

M = 9G4 (0)[v] = A¢[v].

Thus the remaining eigenfunctions of 9G¢(0) are precisely the remaining eigenfunctions

of A;, which are given in Lemma
We now consider the sign of the eigenvalues as given in (6.3)). It is clear that A;,,

is strictly decreasing in both [ and m and we have that Ao = 0 while

Aol = — <8af51(fﬁ'/0)772 B %(no)(n—l)>.

d? R?

Therefore, under the assumption (6.4]), the only non-negative eigenvalue is A\; o = 0 and

it has multiplicity 1 + Ml(n_l) =n+1. O

Note that if R = % %

Dkn K'O)
However, we exclude this case for reasons that will be discussed in Section

then all the eigenvalues remain non-positive.

6.2 Center Manifold

Much of the remainder of this chapter follows the work set out in Chapter We

consider the local system:

#(1) = 0GH (0)+[o(0)] + Pi |Gr (n (%2 ) )} 2(0) = Px[uo),
y() = 0GO)-[y(®)] + (= P1) |Gi (n (“2) +y(1)) |, 9(0) = (I = Pi)uo),
(6.5)
for ug € h>“ (‘Z‘?,d)'

Theorem 6.2.1. Assuming the condition , there exists Ry > 0 such that for any
r € (0, Ry] there is a function v, € OV (X, X35 ) such that ~,(0) = 0 and 84,(0) = 0.
Further, if ug € MS := graph(v,) then the solution to (6.1)), u(t) is in MS as long as
Plu(t)] € Bxe,(0). The dimension of M¢ is n+ 1.
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Again, since 9G4 (0) is self adjoint with respect to the L2-inner product, it commutes
with the L?-orthogonal projection onto X¢:

Pl =" Mvmo. (6.6)

= (01,0,0,V1,0,0)

That is, P [0G(0)[u]] = 0G4(0) [P[u]] = 0 for all u € h?® (Zﬁd>. Notably this means
that P [h’““’o‘ (zg d)} = N (9G4(0)) and (I — P) [h’f%a (ygd)] — Range (9G4(0)),
so P = Py, the spectral projection associated to o (9G¢(0)). This also means that

”Ulqa,()”hk,a fﬂj’%d |v17ﬂ,0| dpo

9G(0)4+ = 0. Note that if we define agq = > o, (v1,a,0,01,a,0) we obtain
the same bounds as in (5.9):
P[]l e < @rallullco, 1= Po)lulllppe < 1+ ara)llullpee, (6.7)

where k € Ny and « € (0,1)
We set
C:={uecVou:u=u,and,is a cylinder},

and note that if u € C then it is an equilibrium of (6.1]), see ([1.10) for the definition of
Up.
Lemma 6.2.2. Assuming the condition , there exists a neighbourhood of zero,

We C X¢, such that Mg and C are identical inside (W.N Bxe,(0)) x Bxs_»(0), for
any r € (0, Ry).

Proof. Firstly, since any ug € C N (BXC,’!’(O) X Bxga,r(o)) is a stationary solution to
(6.1]), we use Corollary |5.2.3| to conclude that ug € M¢S. The rest of the proof follows

in a similar manner to Lemma |5.2.5¢f If u € C, then there exists a p € hzéa (%’d)

independent of z, that describes a cylinder and such that v = u,. From t}?é graph of
p we obtain the parameters y = (yo,...,y,) € R""! where yo :== R’ — R, R’ is the
radius of Q,, and (y1,...,¥yn,0) is the point in R+ where 1,’s axis of rotation meets
the z = 0 hyperplane. Since

X, =R (V0 v D) e (Vv )

we have the relationship:

n

Rty =R?=3" (B+o¥ " —y,) . (68)

a=1
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6.3 Convergence to a Cylinder

This is essentially the same equation as ((5.10]) so we obtain

n n 2
R+p= Z yaYl(Z_l) + (Z yaYl(Z—l)) + (R+y0)? Z Y2,
a=1 a=1

and if we set

n n
)= Yavra0— Rvi00+ (Z yavl,ap) ( (R +y0)? Z ya> 1,00, (6.9)
a=1

a=1

we have u = u, = x(y). We also have x : U C R h2’°‘< }%d), where U is a
neighbourhood of zero, and it is clear from the construction that for any u € C, with
sufficiently small norm, there exists a y € U such that v = x(y). This map is also
smooth on U and we use equation to obtain:

n
= E LaV1,a,0,
a=0

where & € R**1,

Considering the map y(y) : U — X¢ given by x(y) := Py[x(y)], the linearisation
at zero is given by 9x(0)[x] = > .I'_, 24V1,4,0 and hence is the identity map with respect
to the basis v1 0, 0 < p < n, of X¢. Therefore there exists a neighbourhood of zero
V C X°€ such that y is a diffeomorphism from V onto its image, W, C X¢. Further, the

1

function 5 := xyox™ — 1 : W, — X3 , parametrises C as a graph over X¢ locally. Since

from the first remark of the proof we have that C N (BXC,T(C) X Bxga,r(0)> C Mg, we
conclude that C and M coincide inside (W. N Bxe<,(0)) x Bx;_.(0). Note that we

also have ’V‘WcﬂBxc,r(O) = ’Yr\WcmBXc,T(O)' -

6.3 Convergence to a Cylinder

In this section we prove the main result of the chapter, that the cylinders with large

enough radius are stable under the weighted volume preserving curvature flows.

Theorem 6.3.1. Assuming the condition , there exists a neighbourhood of zero
O. C hza (?Zd), 0 < a < 1, such that if pg € O, then the flow with initial
hypersurface Qy, exists for all time. Furthermore, the hypersurfaces converge exponen-

tially fast to a cylinder as t — oo, with respect to the h>® (?%d) topology, o € (0,1).
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Proof. The proof is very similar to the proof of Theorem [5.3.2l For completeness we
include the essential steps here. Again we fix r € (0, RQ] and, since the center manifold
is comprised locally of stationary solutions to the flow, we have w,(t;x,~,) = x for all
x € W, N Bxe,(0), where w,(t; z,v,) solves

) =Py |G (1 (") wit) st | w0 =

Also, by (6.7)), if ug is small enough we can apply Proposition with

F 2 F —1 OF 1
0 s 0 n 0 n+ ) (6.10)

w_ = min (8:‘6” (I{o) ﬁ — 67/“ (Ro) ?, 8751 (HO) R2

to obtain, for any w € (0,w_), T € X€ such that:

[ (8) = wr (&2, v ) [n0.0 +llyr () = e (wr (8.2, 72)) [ 520
< Cem¥||(I = Pp)luo] — v (Pilug]) [lp2e,  (6.11)

where (z,(t),yr(t)) solves (6.5). By evaluating this at ¢ = 0 we obtain the bound
|Z||po.c < Clluo||pz.e asin (5.15). So if ug is small enough we have z € W, N Bxe,(0).
Hence, by the first part of the proof w,(¢; Z,7,) = Z and (6.11)) simplifies to:

e (£) = Zllpo.c + 1y (t) = (@) Iz < Ce™ (I = Pi)luo] = v (Py[uo]) [lp2.a- (6.12)

The bound ||z, (t)|[0.« < C|lug|[p2.« is then obtained by the same calculations as in
(5.17) and, by considering ug small enough, we have u(t) = x,.(t) + y,(t) is a solution
to (6.1)) for all ¢ > 0. Hence:

[u(t) = (Z + (@) lp2e = [ Prlu(®)] = 2 + (I = Po)[ut)] = 7 (T)]| 2o
< NPr[u®)] = Zlpze + 11 = Pr)u(®)] = 7 () [n2.
< ClPy[u(®)] = Zl[po.e + [I(I = Pr)u(®)] = 7 ()| p2.0
< Ce™'|[(I = Py)uo] = v (Pi[uo]) 2., (6.13)

where we used equivalence of norms on X¢ and we obtain that u(t) converges expo-
nentially to us := T + 7.(T) € ME.
Finally, since ||, ||p2.« is controlled by || po||p2.« for any pg € hga <?;%d), see Corol-
oz
lary [3.1.4] there exists a neighbourhood of zero such that if pg is in this neighbourhood

then w,, is small and the above analysis is applicable. Therefore p(t) = u(t) 7,
converges exponentially fast to ueo ’?}3 ,» which by Lemma is a cylinder. O
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6.3 Convergence to a Cylinder

A direct consequence of the theorem is the existence of non-axially symmetric hy-
persurfaces that converge to a cylinder under the flow. We also have the following
corollary concerning the stability of hypersurfaces that converge to cylinders under the

flow.

Corollary 6.3.2. Let p(t) be a solution to the equation , with R satisfying ,

which exists for all time and converges to zero. Suppose further that 5% (K‘,p(t)) >0 for

allt € [0,00) and i = 1,...,n. Then there exists a neighbourhood, O.1 C h25o‘ (?7% d),
& K

0 < a <1, of po such that for every vg € O 1 the solution to with initial condition

vy exists for all time and converges to a function near zero whose graph is a cylinder.

Proof. This follows by analysing (1.7)) using the same arguments given in Corollary
with the obvious changes. [J
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7

Stability of Volume Preserving
Mean Curvature Flow near

Finite Cylinders

Here we consider hypersurfaces that are close to a cylinder and evolve them using the
volume preserving mean curvature flow. This is a special case of the problem considered
in Chapter [6] and as such the results of that chapter are still applicable. In particular,
we have shown there exists an exponentially attractive center manifold and if the initial
hypersurface is h%%-close to a cylinder, for any o € (0, 1), then it converges to a cylinder

with respect to the h>® norm, under the assumption

dvn—1

™

R > (7.1)

This assumption should be compared to the condition (|1.3]), which was used in [I1]
to prove convergence to cylinders in the case of axial symmetry. In the case of the
hypersurface being a cylinder the assumption 11.3% reduces to R > nd. Since the right
hand side is strictly greater than dm, Theorem |6.3.1| shows that l' can be relaxed

™

by assuming the axially symmetric hypersurfaces are close to a cylinder. The condition
also appears in [9], which proves that two dimensional cylinders of large radius
are stable solutions to the isoperimetric problem.

In this chapter we extend this result to include initial hypersurfaces that are hl-
close to a cylinder, for any 8 € (0,1). The existence of solutions to the flow with such
an initial condition was proved in Theorem We also have that the flow becomes
smooth instantaneously (Corollary and we will find that this allows us to obtain

convergence to a cylinder in the C*-topology for any k € N. The last two sections of
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7. STABILITY OF VOLUME PRESERVING MEAN CURVATURE
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this chapter deal with condition (7.1). It will be investigated through a bifurcation

analysis of the stationary solution equation and from a geometric point of view.

7.1 Smooth Convergence to a Cylinder

In this section we prove the convergence of solutions of the volume preserving mean
curvature flow to cylinders if the initial height function is small in hléﬁ <?§%d>, for
any € (0,1). The results of this section are also included in [2§]. We follow [20] in
using results presented in [42]. If, in addition to the assumptions in Theorem we
assume that o4 (A) C iR, then we have the following results:

Proposition 7.1.1 (Proposition 5.4 [42]). Let w. € (0,w—_) and consider equations

and with A = —=Q(0) — 9f(0) and G(u) = —Q(u)[u] + f(u) — Alu|, see also
4.14)). There exists R > 0 such that for every r € (0, R] there exists a K, € RT,
with lim,_,0 K, =0, and Wk+1,ﬁ C hFt1B8 (‘%?,d) a neighbourhood of zero, such that if

ug € Wkﬂﬁ then the solution to with xo = Pylug] and yo = (I — Py)[ug] satisfies
t
|2 (7) = D (7, 1) || po.0 < K / eHrtwe)(s=1) 1y () — 4, (2(5))|| prs2a ds, 0 <7 <t <6,
T
where Wy (7,t) == wp (T — t;2,(t), ) for T € R, t € [0,6). Furthermore

[lwr (75 Py [uo], yr) — @r (7, 1) || 0.0

t
< Kpe~ Brtwo)r / eI twe)s |y () — (2 (5)) || p2ea ds, T <0 <t < 6.
0

Theorem 7.1.2 (Theorem 5.8 [42]). There exists R € (0, R'] such that for allr € (0, R,
K, +w. < w_ and the solution to with xo = Py[uo], yo = (I — Py )[uo] satisfies

1y (&) = e (@ () || 2.0 < % I(I = Py)[uo] — v (Piluol)ll a5, t € (0,87 (uo))

for any w € (K, +w.,w_) and each initial value uy € Wk+1,6- Note that C only depends
on the difference 8 — a.

We now fix [ € No, @ € (0,1), By € (a,1), we € (0,w—_), see (6.10), and define
Br = Bo — W Let R; be the constant from applyjng Theorem |7.1.2| to the system
(6.5) with k =1, 8 = 8, and @ = @, and fix r € (0, R}, w € (K, + we,w—). The aim
for the remainder of this section is to find a set W; ¢ hl:fo (9&%) such that if ug € W,
then the solution, u(t), to (1.9 exists for all time and converges to an element in M¢,

defined in Theorem [6.2.11
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7.1 Smooth Convergence to a Cylinder

To achieve this, we first note that, assuming (|7 , we can apply Theorem and
Corollary |5.2.3| to obtain functions v, € C1! (XC Xiio Bes ) for all 0 < k <[, we set

b, to be the maximum of their Lipschitz constants. The arguments in Lemma [6.2.2] are

still valid for each 7, and hence ¥|w,By. ,.(0) = Yk |W.nBxe ,.(0)- Therefore, when we
work on W, N Bxe,(0) we denote all maps by 7.

We now obtain bounds for how much x,(¢) can grow over a short time period.

Lemma 7.1.3. There exists a neighbourhood of zero, U C hP0 (Z?d)) 7 >0 and
C > 0 such that if ug € U then

[ (t) = Py [uo]llpo.0n < ClI(I = Py)[uo] = (P [uo]) 60, ¢ € [0,7].
where C' depends on the choices of &, By, I, 7, we. and w.

Proof. The mapping (t,up) — u(t) is a continuous semiflow by Theorem Hence,
we can find 7 € (0,0) and a neighbourhood of zero U C W g, such that if ug € U
then u(t) € (W.N Bxe,(0)) x BXf,goﬂ‘(O) for all ¢ € [0,7]. In particular, this means
that Py [u(t)] € W, N Bxe,(0) for all ¢t € [0,7] so that and are equivalent
on this time interval. Therefore, u(t) = z,(t) + yr(t), w, (1;2,(t),7) = z,(t) and
Wy (7,t) = z,(t) for all t € [0,7] and 7 € R.

We now set 7 = 0 in the second estimate in Proposition then apply Theorem
to obtain for ¢ € [0, 7]:

1Py [uo] — 27 (8)[|po.s0 < K / Hrtel?| |y, (5) = 7(,(5)) |20 ds,

—(Krtwe))s
<K.C / gm0 Poloo] = (P o ds

KTCF (l‘f‘ﬁg /81)

S( (Ko + ))MHU_PH[“O]—7(P+[UO])Hhmo,

where I'(z) is the gamma function. O

This allows us to obtain convergence in the 22?1 norm.

Lemma 7.1.4. There exists a neighbourhood of zero, V. C hb:Po <ﬂ£d>, and 7 > 0
such that if ug € V then the flow (1.9) has a solution for allt > 0 and the solution u(t)

satisfies
lu(t) = (& +5(@))llp2e0 < Ce™N[(I = Pi)[uo] — F(Pyfuo])llp1s0. t = 7,

for some T € W.N Bxe,(0). Here C depends on r, &, By, I, and w.
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Proof. We consider U and T as given in Lemma and proceed to bound u(7), when
ug € U. Using u(T) = x,(T) + y-(7):

[u(P)l[p2.81 < Nr(P)llnzen + lyr(T) = 3(@r (T 2280 + 17 (20 (7)) 42,51

_ Ce T _
< (C+ b llzr (F)lpo.n + —=ggzzy 11 — Py )[uwo] = (Prluo]) 51505

T 2

where we have used that 74 is Lipschitz, the equivalence of norms on X¢ and Theorem
Continuing, via Lemma [7.1.3] we have:

[w(T)lp2.e0 <C (|2 (7) = Py [uo]llpo.60 + [P [uo]l[po.sr)

Ce—uﬁ' -
+ —=ggra 1 — Py)[uo] =7 (Pi[uo]) [l 515
T2
Ce—wi’ -
<\ O+ —=z7 ) I = Py)luo] = ¥(Ps [uo]) 5150 + Cll Py [uo]l[po.61
T2
SC(%7557/807Z’W) ||u0”h17ﬁ0 . (72)

Therefore there exists V' C U such that if ug € V, then u(7) is close to zero in

h25 (91? d)‘ Hence we can apply the result in the proof of Theorem [6.3.1|to conclude
that the solution, @(t), to the flow (1.9)) together with the initial condition u(7) exists,
Py lu(t)] € WeN Bxe,(0) for all time, and u(t) satisfies equation (6.13)), i.e.

la(t) = (& + (@) Iz < Ce™ (I = Pe)[u(7)] = 7 (Prlu(P)])llp2.00 >0

for some z € W, N Bxe,(0). However, by uniqueness of the flow, we also have that

u(t) = u(t + 7) for t > 0, so, using the transformation t — t — 7, we obtain for ¢t > 7:

lu(t) = (@ +5(@))llp20 < Ce™ T = Po)[u(m)] = 7 (P [u(7)]) | 2.0

C —w _
< —ra e I = P)luo] — 7 (P [uo)) [l 1.4
T2

where we again used Theorem [7.1.2] O

Note this theorem provides stability of cylinders under perturbations in A% but
before stating this result we obtain higher convergence for the solution. Furthermore,
we now have, due to comments in the proofs of Lemma and Theorem that
if ug € V then Py[u(t)] € W, N Bxe,(0) for all t > 0. Hence, u(t) = z,(t) + y,(t),
wy (T3 20(t),7) = z,(t) and Wy, (7,t) = 2, (t) for all t > 0 and 7 € R.

Since we have convergence of the solution, we can obtain a bound independent of

the time 7, we follow [20] to achieve this.
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7.1 Smooth Convergence to a Cylinder

Lemma 7.1.5. If ug € V then for allt > 0 we have

e—wt
() — @ + 3(0)) e < tC 1 = P[] — 7 (P [ug)) .o

where C' depends on the choices of &, Po, I, 7, w. and w.

Proof. Using that w;,(7,t) = 2,(t), the first bound in Proposition simplifies to:

t
[2r(7) = 2r ()|l po.pr < Kr/ M=y, (5) = 5 (20(5)) 2.0 ds,

for 0 < 7 < t. We use Lemma together with the bound for Z in the proof of
Theorem and equation to obtain the bound |lu(t)||,2.8 < C|luol|p1.60 for
t > 7. This, together with the flow being continuous on h'%0, means we can ensure
u(r) € Wl,ﬁo for all 7 > 0, shrinking V' if necessary. We can therefore apply Theorem
to the function a(s) = u(s + 7):

[ (7) = 2 ()| posr < Ky / (e o= G (s — 1) = 7(Er (5 = 7)) 2 ds

e(KT—&—wc $—T) (o)1 e
< CK, / e 5,(0) =A@ 0)) s ds

1 B()+B1

- (Krtwe—w)(s—7)
= CE o (7) = 3Dl [ e
T 2

S—T

1-Bo+81 HyT(T) - :V(xT(T))HhLﬁO'
2

As the right hand side is independent of ¢ we can take it to infinity and, using that
Theorem implies that lim;_,~ z,(t) = Z, obtain a bound for 7 > 0:

[2r(T) = Zllposr < Cllyr(T) = 3(2r (7)) 4150 (7.3)

Note that this has a very similar form to the bound in Lemma|7.1.3] except this is valid
for all 7 > 0 and bounds the distance to the limiting function, instead of the initial

function. Finally we achieve the bound:
[u(t) = (Z +7(Z))llp2e0 <l (t) = Zlp260 + lyr(t) = 7(Z) |20
<SCllar(t) = Zllpoer + [lyr () = (e (£)) 42,61
(

+ 17 () = 3(@) 200
<(C + b))l (8) = Zllpoer + [lyr () = F(2r(8))] 281

<Cllyr(t) = Y(@r(t)) 2.5 (7.4)
and hence using Theorem we obtain the result. O
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To obtain convergence with respect to norms of higher regularity we first need

another lemma.

Lemma 7.1.6. For any k € NogN[0,1] there exists a Uy such that if uy € Uy, then for

(k—i—l)
t> = &

I(1 = Py) [u(®)] =7 (Py [u®)) |l re26100 < Cre™ (I = Py)[uo] = 7 (Pr[uo]) |1, -
(7.5)
1 k+l (1750*54>
where 7 > 0 is given in Lemma|7.1.4, and Cj, = C*+1 (%) H1)C is constant
wn Theorem [7.1.2

Proof. The base case is easily achieved, with Uy = U, by using Theorem

1T = Py) [(®)] = 5 (P [a®D 2 <tC 1T = Py) [io] — 7 (P o))
<y 10 = PO ol =7 (Pl
t

for t > to.
Now we assume that (7.5]) is true for some & < [ — 1 and we prove it is true for
k + 1. Firstly we bound the solution at the time ¢; using (7.5):

lu(ti)llprr2snpn < lor ()l eresen + 17 @e () rr2000
+ llyr () = 7 (@r () [ 28001
<Cre™ " ||(I = Py)[uo] = (Py[uo]) 4180 + (C 4 be) [l (t4) | 0.0
<Cre™ " ||(I = Py)[uo] =7 (Py[uo]) |15
+ C ([l (tk) — Py [uo]llpos + 1P+ [uo]llp0.6:)
< (Cre™™ +O) (I = Py )[uo) =7 (Py[uo]) [l 1.5
+ a0, l|uollp1.60
< ((Cre™" + C) (1 + a,g + brlo,,) + ao,p, ) luollpr.e0 - (7.6)

where to obtain the second last bound we used Lemma [7.1.3] Therefore we can make
U1 small enough such that u(ty) € Wk+2,ﬁk+1 and hence we obtain a solution to ,
a(t) € hFt3Peee (9}%), such that @(0) = u(t;) and it satisfies the bound in Theorem
Now by uniqueness we have that u(t) = u(t + tx) for ¢ > 0. So for t > ty41 we
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have

(I = Py) [w(®)] =7 (P [u(®)]) ] o438

Ce—w(t—tk)

< - )M (I = Py) [ute)] — 7 (P [u(t)])]] k428000
) e

= C(?ﬁi) (T = Py) [uo] = (P [uo]) | 1.60 (7.7)

to

where we have once again used the inductive assumption ((7.5). This then proves the
bound (/7.5 for all k£ € Ny 0,1]. O

We are now able to obtain convergence to Z + J(z) in hl*22.

Theorem 7.1.7. For any l € Ny, @ € (0,1), o € (@,1) there exists a neighbourhood
of zero, Wi C hléﬂo (?7;{ d): such that if pg € W) then its flow by exists for all
E K

time and converges exponentially fast in C*2 to the height function pso, where Q. is

a cylinder.

Proof. By Corollary we can choose W such that if pg € W; then u,, € U; and
thus have the result in Lemma In particular for t > 7 we have, using ((7.3):

lu(t) = &+ @) llysza < 20 (t) = Fllysza + lyr ) = 3 @ 0) e
+ 117 @ (1) = 3@ 20
<(C 4 b0) e (t) = Fllyor + 11y (1) = 3 (@ (0) lpasc
<C g (t) = 3 (@ (5) e
<CCLe™" (I = Py)luo] = 7 (P uo]) 1.5 - (7.8)

Therefore, we have shown that p(t) = wu(t) ’?72 , converges exponentially fast, in C!, to
Poo = (T + (7)) ‘?7% ,» Which by Lemma is the height function for a cylinder. [
7.2 Bifurcation Analysis

In Section it was found that for the eigenvalues of the linearisation of G¢(u) about

zero to be non-positive, the radius of the cylinder needs to satisfy the condition

SE (ko) (n—l).

R >
IE (ko)

SRS
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However we excluded the case of equality and instead assumed the radius satisfied the
strict inequality. In this section we discover that any neighbourhood of the cylinder
with radius R = dT\/ﬁ contains constant mean curvature (CMC) unduloids, which do
not converge to a cylinder under the volume preserving mean curvature flow as they
are stationary solutions. Therefore the strict inequality was indeed necessary to obtain

Theorems [6.3.1] and [7.1.7 The axially symmetric volume preserving mean curvature

flow is equivalent to the PDE:

2
% _Gu) =14 (gi) A O | (7.9)
2y ﬁ n—1
H (u) == dz? + (7.10)

du\ 2 3/2 du\2 ’
(1+(@)°)" w1 (@)
Note that H(u) is the mean curvature of the hypersurface obtained by rotating the
graph of the function u(z) around the z-axis and du,, = p(u)dz = /1 + (%)QU"_l dz.

We have removed the presence of R from the equation since we will be considering the

flow near cylinders of various radii. We seek solutions in the space

h2 (5@1> = {u € ™ (5@) cu(z) = u(—z)} :
As in [35], we use that the flow preserves enclosed volume to obtain an equivalent

PDE on the space of average zero functions:

™

hivg‘ (yi) =qvE hgva (5@1) : / v(z)dz =0
7 g 7
To simplify notation we will define the projection operator:

Py : h>° (Yﬁl) — hi’g (Y%l) , Polu] == — fy udz. (7.11)

71
d
Before we are able to state the equivalent flow, we require a function that recreates
a function u € h2® (y}l > given its projection Py[u] and the enclosed volume of its

corresponding hypersurface, Vol(u).

Lemma 7.2.1. For each ny € R" there exist Vi, a neighbourhood of the constant

function "n—;l € 2~ y}), and Uy, a neighbourhood of (0,1m0) € hi’g <5@ x R, as
well as a smooth diﬁeoﬁwrphism Upy + Uyy — Vi, see Figure such that for all
(w,n) € Uy, we have Py [ty (@, n)] = @ and Vol (1, (a,n)) = 2wpd ("T_l> , where wy,

s the volume of the unit n-ball.
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2,
he,O
Figure 7.1: Mapping between zero mean functions and graph functions

Proof. We consider the function

—1\"
O(u,a,1m) = | Po[u] — @ wnd ][yl u"dz — (”n ) . (7.12)
d

™

We note that the points (”T_l, 0,17> are zeros of ® and we calculate its linearisation
with respect to the first argument:

NP (u,u,n)v] = Po[v],nwnd][ u" o dz
7

™

Evaluating at the point <"n—_01, 0, 770>, for any ng € R, gives:

1 1 n—1
0, ® <n,0,770) [v] = | Polv], nwnd <n > ][ vdz
Yl 7o S

1
d

™

If v is in the null space of 91 ("n—_ol, 0, 170), then by the above equation Py[v] = 0

and fyl vdz = 0. The only such function is v = 0, thus the null space is trivial.
7d
An871

By considering v = v + Pond(n—1)"=T>

for any (v,\) € h2§ (74 ) x R, it follows that

019 ("n—;l,o,no) . 2 (5’5) — hg:g (Yi) x R is bijective. We therefore use the
implicit function theorem to obtain the function v, : U,, — V;, with the property
that for any (u,a,n) € V,, x Uy, we have

CD(u?ﬂa’r/) = (Oa 0) U= wno(aa 77)'
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We note some additional properties of 1,,. We have the representation

(o (u,m) =u+ i (L (a,n)dz, (7.13)
d

so u = 4 + C, where C is some constant and, hence, ‘Cil—;‘ = %. The point (0,7)

corresponds to a cylindrical hypersurface of mean curvature n since

-1
wmm,n):"n -

(7.14)
Lastly the following lemma gives the linearisations of 1,
Lemma 7.2.2. For any (u,n) € Uy, and v € hi’g‘ <Y}> we have:
fyﬁ VYo (U, )" 10 d2
rsi il = 0=
and (n— 1)
Oat (1) = ol For n (@)t dz’
Proof. We start by taking the linearisation of the equation
© (¢, (u,m), 4, 1) = (0,0) (7.15)
with respect to u, using we obtain:
Py vt (5.5 = s (@) Ort ()l dz | = (0.0),
d
Hence
@)l =+ £ Ovi (.l (7.16)
d
and )

fyl Yo (@, )™ L1ty (@, ) [0] dz = 0.

By substituting the first of these equations into the second we obtain

Ve (1, 77)”7177 dz + ][ Uno (T, 77)n71 dz][ Ity (u,n)[v] dz = 0.
71 71 71
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This gives us
fyf}i Yo (1, m)" 10 d2

fy; 1/’770(@777)”_1 dz’

™

f Ot (1, 1) 0] dz = —
7

and combining with equation ([7.16) gives the first result. To obtain the second result
we take the derivative of ([7.15)), again using (|7.12]), with respect to 7.

1)
P [82¢T)0 (a,n)], nwnd ]éﬁl (o (a, 77)"_152%0 (a,n)dz + <nnn+1) = (0,0),

since the first component tells us that dst)y, (@, n) does not depend on z, the result is

then obtained from the second component. O

To simplify the notation we define, for (a,7n) € Uy,:

F”]O (ﬂ, 77) =H (%0 (aa 77)) (7.17)

and

_ di\ o _

Guian = (14 (5) | £, et (e - Fy@n || @9
da

where dfiy, (7,1) = fin,(7,n) dz = u(vo(7,n)) dz. We then obtain an equivalent flow to

(7.9) (in a neighbourhood of np):

Lemma 7.2.3. Let u(t) be a solution to the flow

ou

ot G”]O (ﬂ, 77)7 E(O) = U, (719)

where (ug,n) € Uy,. Then Yy, (u(t),n) is a solution to (7.9). Conversely if u(t),

. . a n—1
t € [0,9), is a solution to (7.9) such that Po[u(t)],W € Uy, for each
t €[0,6), then Polu(t)] is a solution to (7.19) with n = -l

"/fy}i ul dz
™

Proof. We start by assuming @(t) is a solution to (7.19)) and set u(t) = ¥y, (a(t),n).
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We then use Lemma to calculate the time derivative of u(t) explicitly:

ou _ ou
o 0w (@) |51

=01 (1, 1) [Go (@(t), 1))
fy; u(t)" Py [G(u(t))] dz
fyfé u(t)" " dz
I w016 lule)
=G (u(t)) — ﬁfyl u(t)"1dz

™

fyé U(t)nil\/(i) (fy1 dﬂu( ) — H(u(t))) dz

=B [G(u(®))] -

=G (u(t)) —
> (fyl 1)) iy — H(u(t») Qb
=G(u(t)) — —
(U( )) fyé u(t)”_l dz
=G(u(?))
The converse statement is obvious from the definition of G, . O

In particular, this means that equations (7.9 and - have the same stationary
solutions and that the curve (0, ) for R € R+ such that (0, ) € U,,, is a family
of stationary solutions to , we call this curve of solutions the tr1v1a1 solution curve.

We seek to find nontrivial solution curves to the equation

Gy (11,1) = 0 (7.20)

using bifurcation theory and hence find non-cylindrical CMC hypersurfaces. More pre-

cisely, we wish to prove that there exist non-cylindrical CMC hypersurfaces arbitrarily

close to the cylinders of mean curvature H,, := ™™— Vdn_l.

Theorem 7.2.4. The points (0, Hy,), for m € N, are the only bifurcation points on the

trivial curve. That is, for each m € N there exists a nontrivial continuously differen-

tiable curve in hi’g (Y}) x R* through (0, Hy,):

{(Fm,sanm,s) HCES (*67 5), (Fm,Oaan) = (Ova)} C Unoa (7'21)

such that
Gu,, (Fm,ssMm,s) = 0 for s € (=6,0),
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and all solutions of Gy, (i,n) = 0 in a neighbourhood of (0, H,,) are either trivial
solutions or on the nontrivial curve in )

Proof. We start by determining the linearisation of Gy, (,n) with respect to the func-
tion variable at the point (0,7). As it is clear that the projection Py commutes with

the linearisation operator we will instead consider the functional:

- di\ 2
Gutmn) =1+ (5) | £, Fnt@mdman - B | (2
< d

To simplify notation, we define Wiy, (@,n) = In(fiy, (@, n)), so dfiy, (i, 1) = Wno (@) 1,

and O dfiy, (@, 0)[0] = 01 Wy, (4, 1)[0] dfin, (4, m). We also use u’ to represent % and

drop the 7o subscript. Note that f, . g(@,n)di(0,n) = f 1 g(@,n)dz, where g is an
4 d

arbitrary function. Taking the Fréchet derivative of (7.22) g;ves:

—1 =/

OGlamlil = | f | P diti ) = Plan)

™

+V1ta? OvF (u, n)[o] dpa(u, n) — O F (1, m)[]

d 7y
wll/f(s/;n) 1 + w20, F(,n)[0]
o yﬁmmmm—zﬁgaummwmm
’ (7.23)
From we have:
O F(a,n)[o] = OH (¥ (u,n)) [Or¢(a, n)[v]] . (7.24)

Using that fy}i vdz =0 in Lemma [7.2.2[ gives 011 (0,n)[v] = ©; so combining this with
(723) and (729) gives:

01G(0,)[0] = ]i; oH (”;1> @] dz — 0H (” . 1) @],
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therefore 9,G(0,7)[0] has zero mean for all T, hence

21G(0,m)[F] = 1 G (0, n)[7] = l[y; oH <” . 1) @] dz — OH <” - 1) 7).

™

Linearising ([7.10)) gives

. 3"’y (n _ 1)v (n _ 1)u’q/
OH = — — , 7.25
(u)[v] (1 + u'2)3/2 + (1+u?2)52  2y/1T+ a2  u(l+u'?)3/2 ( )
hence
- 772 " 772
=1 _ =l 5o 5 U
26Ol =" + o fy o+ —vdz
2
_n no_
= 2
v+ _ 11), (7.26)
and 9
G (0,m)[7] = —-o. (7.27)

The null space and range of ([7.26)) are easily calculated:

span {cos (%)} no = Hy,, some m € N|

{0} otherwise,

N (21G(0,m0)) = {

_ hely ygl / {COS (%)} no = Hy, some m € N,
Range (81G(O,n0)) =
hgf)‘ I otherwise.

The implicit function theorem therefore guarantees bifurcation cannot occur on the
trivial curve except at the points (0, Hy,), hence from now we consider just the points

(0, Hp,); m can be thought of as a fixed natural number from here on. We set

) 4 < H,,z
U, = Ay, COS ,
vn—1

-1

where A, := Hcos ( Hnm_zl) L’ We have
~ . 2H,, A H,.z _
8%2G(OaHm)[Um] T a1 S <m> ¢ Range (51G(07Hm)) ) (7.28)

therefore we can apply Theorem 1.5.1 from [34] and conclude that bifurcation occurs

at the point (0, Hy,) and we label the curve (7, 5, 7m,s)- O
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he® R
/’1>\1\\VHm Qj}Hm
== \ R P
I/ Hy, \ s > UHm
1 | // \\
/
‘\ K I/ \\/ \l
N . \
~___~- \ Hm /I

Figure 7.2: Non-trivial solution curve for equation 1D and its image under g,

The curve ([7.21)) is shown in Figure along with the curve ¥, (T s, m,s), which

is a curve of stationary solutions to ([7.9)).

Corollary 7.2.5. There exists a continuously differentiable family of nontrivial azially

symmetric CMC hypersurfaces that includes the cylinder of radius T}I—:ﬂl, they are given

by the profile curves py, s := VY, (Tm,ss Mm.,s)

[0,d]-

In particular, this corollary states that any neighbourhood of a cylinder with mean
curvature Hy = ”Tm contains CMC unduloids, which do not converge to a cylinder
under the volume preserving mean curvature flow as they are stationary solutions.
Therefore we obtain a counter example to Theorem if R = %=1 1y this way

P
the theorem is sharp.

We now aim to study the stability of the nontrivial stationary solutions to ([7.19))
that are close to the bifurcation point (0, H;). We do this by investigating the shape
of n1,s. Note that for m > 2 the CMC unduloids are known to be unstable since the

hypersurfaces contain a full period, [10].

Theorem 7.2.6. The bifurcation curves in satisfy:

diim,s

J =0 7.29
ds |,._o ( )

and d2 2 3 42

s — 10n — 2)H3 A2,
nz’ _ e )2 : (7.30)

ds? |, 12(n — 1)
dnm,s

, we use equation (1.6.3) from [34]:

Proof. To calculate =7

_ i@:n [agléfim (0, Hm)[ﬁmvﬁm]] (7 31)
s=0 2 77;1 [8%2GHm (O> Hm)[{)mﬂ 7

dnim,s
ds
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where @, is an element not in the range of &1Gp,, (0, Hy,) such that [T 0. = 1,

and v}, € hgf; <¢7§ > the dual space to the codomain, such that 0} (0,,) = 1 and

vn—1

05, (01G g, (0, Hyp)[0]) = 0. Due to (7.28) we can take @, = By, cos ( Himz ), where

1
B, = HCOS ( H’"z ) ‘ , and therefore

0] = — 4 5cos ( %) iz, (7.32)

_ 0,
for all v € he,g Sy
Recalling ((7.28)) we have

%, (065G, (0, Hy)[im]] =07, [QHmAm COS( = )}

n—1 Jn—1
2H, A

Calculating 02, Gy,, (0, Hyn)[0m, U] is a long process. We step through it gradually
and obtain the formula in (7.43). We start by linearising ([7.23|) with respect to w.

Suppressing the H,,, subscript, we calculate:
a%lé(ﬂv 77) [65 7]}]
vwGan) + @voG ] PTG | A b e

1+Ul2 (1+ul2
L o F )] — 217, )] i, ) — 0 F (@, )l
_— 71}_7 u? v 1) U7 v
Vizae \Jo OO T e e Gt = A

+1+W( O F (1, ), ] —
7

B e N K T P
s Vi 1+ a2 ’

é(ﬂa U)alW(ﬂa 77) [T}]
VT

81F(ﬁ, 77) [’D] dﬂ(ﬂ, 77) 1 81W(ﬂ, 77)[@] dﬂ(’a’ 77)

_l’_

(81F(a, n)[o] — > nW (a,n)[w] dp(a,mn)

A=

SRR

S

%aﬂ(u, o] di(a,n) o W (@, m)[@] dja(a, n)

™

+
=

A=
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Simplifying this by using (7.23)) gives:

611G( ,n)[0, W]
i (v’alG(a,n) (@] + @'01G (1, ) [@]) (1 — 2020w/ G (1, )
- 1+ a2 + (1+a?)?
It a? (fy ; 02 F (i, n)[5, @] — alG(a’”%(a’ W )
31é(ﬂ>ﬁ)[5]3lw(a7ﬁ)[w] é(a77])62 W(ﬂan)[@7w] —
- ][y; 1+ " \/Ii + u”? An(t )

@/ G, m) (W (@, n)[o] + 'O W (@ n)w))
+][/ : (1+u?)3/2 1 du(u,n)) :

Evaluating at (0, H,,) gives:
8%16(07[{771)[@7@]
= O3 F (0, Hyp) [0, @) dz — 071 F (0, Hyp) [0, @)

7 4

™

-1, OG0, Hyp)[@]01W (0, Hy)[5] + 01G(0, Hyn)[5)00W (0, Hy)[0)] 2.

Therefore

8%16<0, Hm)[ﬁv ﬁ)] =F [8%16(07 Hm)[@ﬂ Uﬂ

= 04, F(0, Hy,)[v,w) dz — 93, F(0, H,,)[0, ). (7.35)
5”1

We now linearise (|7.24)):

O F (a,n)[0, @] =02H (y(a,)) (014 (a, n)[v], o (@, m)[w]
+OH (4 (a,n)) [0 (@, n)[v, @] | (7.36)

evaluating at (0, H,,) gives

02, F (0, Hy)[5, @) = 92 H <”H_

m

1) (5, @] +aH< 0 ) [02,40(0, Hy) [0, @] . (7.37)
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To calculate 82,1(0, H,,)[0, ] we use Lemma ((7.2.2)):
fy(li w(ﬂ, 77)”_1 dz

]Cyé 1/1(11; 77)”7117 dz fyﬁ (n - 1)¢(717 77)”72311/1(717 ’7)[’“7] dz

a%lw(ﬂa 77) [2_}, Ui] ==

+

<fy§g P(a,m) ! dz>2 ; (7.38)

so using fy}i vdz = fﬂé wdz = 0,90, Hp) = %7 and 819 (0, Hy )[@] = @ we obtain

039(0, Hy) [0, W] = —Hp, v dz. (7.39)
7

™

Next we calculate the second variation of H from (7.25):

1,01, 1,0, "0, "y 02,.0,,.1

3(uv"w + W + W) 15w 0w 2(n — 1)vw

O*H = .
(u)[v, w] (L + w2y A+ 272 BYita?
(n —Dow +u'v'w)  (n—1o'w 3(n— Du*v'w’ 7 40
W2(1 + u'2)3/2 u(l + w2)32 w(l + w252 (7.40)
hence
—1 2H}
O*H <nH > [v, w] = 0 _T)va — Hpv'w'. (7.41)

Substituting (7.37)), (7.39) and (7.41]) into (7.35)) gives:

02.G(0, Hyp)[5, ] _][ O2H (”_1> 5,@) — Hiy

" o0 dz0H <" — 1) 1] dz

s Hy,

n—1

)

— 9*H <"H_1> [0, 0] + Hyp,

vw dzOH <
74

2H3 2B
:][ ’”Qz_;w—Hmz_/ﬂ/—i— m ][ vw dz dz
7 (n—1) n—1Jg

™ ™

2H3 H?

— ™_ 5w + Hy,o'w — —2 vwdz
(n — 1)2 n — 1 71

< d

™

2H3 2H3
— =l = m_ = H =l = m
mU W (n— 1)22110 o mU W 1)

vwdz, (7.42)
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and consequently
O11G(0, Hyp) [0, Do)

_ H3 A% . < Hpz > | 2Hp AL cod? ( Hpz )

e 3 2m n- 3 2\/nf1
-1, et () - e () @

™

oo () o (225)

]2(,”)(“08(5%)Q(HCOS(;I%))@)

 —(n+1)H3 A2 < < 2H,,z
- 2(n-1)? Vn—1)"
Therefore o7, [87,G(0, Hy, ) [0, O] ] = 0 and hence %‘ - 0.
We will use equations (1.6.11) and (1.6.8) from [34] to calculate the second derivative
Prs | =1 [08,G(0, H) i, D, O] + 35, [03G (0, Hyn) [, @]

ds? |_, 3 o, [0%,G(0, Hy, ) [0m]] ’
(7.44)

(7.43)

where 0,, solves
1 G(0, Hyp)[Os D) — B2y [031G(O, Hy) [0, D] T + 01G(0, Hyy ) [10]) = 0. (7.45)

Using equations ([7.43) and (|7.26)) we have that w,, satisfies
- 1)H3 A? 2H, H?
(n+ DA, mcos( mz>+w;;+ ™ By, = 0,

2(n —1)2 Jn—1 n—1
and hence ( VA2
_ n+1)H,A;, 2H,,z

Since 05, [1] = 0, we obtain from (7.42):
6:1 [8%16(07Hm)[@m7wm]]
(n+1)H} A3, _, [ 2’ — 1)si <2Hmz> . < Hyz >
=0, | —2(n—1)sin | —— | sin | ——
6(n—1)* ™ vn—1 n—1
+2 cos (jHLZl> cos <\/HL'21 }
n— n—
_(n+ 1)anA215* [(n— 1) <cos < 3H,z > B cos( Hp,z ))
 6(n—1)3 " Vn—1 Vvn—1

e () e ()
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¥, [011G (0, Hyp) [, Wi

(n+1)H2 A3 3Hmz H,,z
= — (n—2)cos
S 6(n—1)3 vn—1
—(n—2)(n+ l)anAm
6(n—1)3B,,
Lastly we must calculate 951, G (0, Hp,)[0m, Om, Om], again this is a lengthy calcula-

tion and we do it in steps. We will first calculate 92,,G (0, Hyn)[0m, Om, Om], however

(7.47)

even this is very complicated, so we will only calculate the important parts. In particu-
lar, we note that we will be setting @ = 0, so terms such as @'m(u, v, w, Z,n) will vanish,

but more importantly any integral terms will vanish when acted on by the projection,

Py. Using ([7.34) we find

7 (@/alé(a, n)[@] + @' ,G(1, ) [@}) o' 01, m) 7]
1+ a? (1+u?)?

Y 1 + ’17,/26%11[7(@, 77) [’Dv ’U_), 5:] + ﬂ'm(a, 177 QD, fa 77)

8%llé‘;(f% 77)[1_)7 ’LT), j] =

for some operators m(u,
01G(0, H,,) we have

&
GI
\.gl
&
=
Q0
=
(oW
=
—
&
<
&
Kl
2
=
o
@
<
3
0
E
-+
=
@
=
=3
wn
ko)
=¥
o
@
O
=

a1211@(0, Hm)[@m, (U @m] = ][ p(o, Oy Vs Dpm,s Hm) dz — 8?11}5(0, Hm)[@ma (S @m]'
s

Ja

Taking the projection gives

031G(0, Hyp) [Omy Oy O] = g 311 F (0, Hp) [0y Oy O] dz
- 5%1115(07 H) [V Oms O]
so that
2, [0811G(0, Hy) [Brm, O, O] = =05, [0711F(0, Hypn) [Brm, O, O] ] - (7.48)
To calculate 83, F (0, Hy) [0, Om, O] we linearise :
Ot F(a,n)[o, @, 7] =0°H (y(a,n)) 14 (a, n)[0), Or14 (@, m)[@), D14 (4,
+ 0% H ((a,n)) 0719 (u, ) [0, 7], 019 (@, n) [w]]
+0%H (y(a,n)) [01¢ (@, )@, 7], d1¢(a, n)[v]]
+ 07 H (Y(a,n)) [0719(a, n) [0, @], 19 (F, ) [z]
+OH (Y(a,n)) [071¢(a,n)[v

n)[z]]

)

/\/—\/-\/—\

Ui
u,n

n
) 1]
n

|
S\

7]

) )
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Therefore, using (7.39)),

— PPN n—1\_. _
OO0, H s 6] 0P (") T s ]
m

1
—3H,, £ 2 d:0H <” ) 1, 5]
Sy Hy,

wot1 () (0O, H) o] (749

By considering ((7.38) we see that 97,1 (i, n)[v, W] maps into the constant functions, thus
its linearisation does as well. This means that the final term in ((7.49) will disappear

when we act on it with the dual element, so we set Cy, := 951;9(0, Hp) [0, O, Om)-

From f_, cos? 2z ) dz = 1 and equation (7.41)) we obtain:
7 Jn—T 2

) o 1 A H72nC
ai))llF(()?Hm)[’Um»Umv’Um] - < ) n— in

'Umﬂ-]ma'Um
_3H,, A2 2H3 A, H,,z
n — 1 vn—1
3 n—1 anCm
=0 H < > n—1

:()’fj?; cos (%) . (7.50)

Noting that any terms such as w'm(u,v,w,z) or u”p(u,v,w,x) will vanish, so we
g Yy

'Um7vma'Um

don’t include them explicitly, we are able to easily linearise (7.40)):

3("w'r" + VW' + Vw2 6(n—1Dovwx  (n— 1)z

O*H (u)v,w, 2] = _
(UMU w ‘T] (1 4 Ul2)5/2 u4m u2(1 T u/2)3/2
n — 1 (vw'z’ + vwz
- ( uQ)((l + u/2)3/2 ) + u'm(u, v, w,z) + u"p(u, v, w, z).
Therefore

n—1\,. . .
33H< I ) [Oms Oy O]
m
— 99" B ~12 6H;4n®?n 3H2 A/2 0
mYm (n—1)3 n— 1
_GHR R0, 6H, 0,
n—1 (n—1)3

_ —6H2 A, o8 H,z H2 A2 <in? Hp,z n H2 A2, cos? < Hp,z )) ’
n—1 vVn—1 n—1 vVn—1 (n—1)? vVn—1
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where we used that, by definition, v,, is in the null space of ([7.26)). Simplifying we have
—1
PH (”Hm> (6, B O]
_ —3Hn Ay, cos < Hz ) <(n —1) <1 — cos < 2Hmz )) + 1+ cos <2Hm’2>>
 (n—1)3 vn—1 n—1 vn—1
—3H} A3 cos ( Hpyz > ( (n — 2) cos < 2H,2 >)
= n—(n—
(n—1)3 vn—1 vn—1
—3H1 A3 (2 ( Hpz > (n—2) < < Hpz ) N < 3H,2 )))
=—"™""(2ncos —(n— cos cos
2(n—1)3 vn—1 vn—1 vn—1
—3H} A3 Hp,z 3H,,z
=_—_——mn 2 = —(n—2 = : 51
= 1) ((n—i— )cos( n—1> (n )cos( n—l)) (7.51)
Combining equations ([7.51)), (7.49) and (7.48]) we arrive at

o, [0811G (0, Hyp) [Omy D, ]|

= [SH’%LAE)” ((n + 2) cos <HmZ ) — (n —2)cos ( 32 ))
S 2(n—1)3 Vn—1 Vvn—1
3HA A3 COS< Hpyz > B H%Cm]

(n—1)2 vn—1 n—1
InH2 A3,
T 2(n—1)3B,, (7:52)
Substituting ((7.33)), (7.47) and (7.52)) into equation ((7.44) gives:
Pims|  —(n—1)Bm [ IHp AL, (n—2)(n+1)Hp A
ds? |9 ~ 6HmAm \2(n—1)3B, 2(n —1)3B,,
_ (n®*—10n—2)H} A2,
12(n — 1)2
O

We are now able to prove a surprising stability result for unduloids under the volume

preserving mean curvature flow in high dimensions.

Corollary 7.2.7. For n < 10 the unduloids close to the cylinder of radius d\/@ are
unstable equilibria of equation , while for n > 11 they are stable under volume
preserving azially symmetric perturbations. That is, if n > 11 there exists € > 0 and a
neighbourhood, Ug C hzj([o, d)), of p1,s for any |s| € (0,¢€), such that for any py € Us
that encloses the samedfiolume as p1,s, the flow , with M™ = ‘Kﬁd and Neumann

boundary condition, exists for all time and the solution p(t) converges exponentially

fast to p1s ast — oo.
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7.2 Bifurcation Analysis

Proof. We start by noting that the eigenvalues of 61 G g, (0, Hy), except for the dominant
one, lie in the open complex halfplane, Re (A\) < 0. Through a perturbation argument
this is also true of the operator 9;G H,(T1,5,M,5) as long as s is small. We now determine
the sign of the dominant eigenvalue of ;G g, (71,6, M1,s) for s small. By Proposition 1.7.2

in [34], there exists € € (0,0) and a continuously differentiable curve:
{)\1’5 : ‘8‘ < 6,)\1’0 = 0} C R,
such that
NG, (F1s,m,s)[01 +016] = A s(01 + 01 6), (7.53)

where v1 5, for |s| < e, is a continuously differentiable curve in range of 01G g, (F1.5,71,5)

satisfying v 9 = 0. Also, since dZ;’S |s=0 = 0, we have that for |s| < e (possibly making

€ smaller),
sign(A1,5) = sign(H1 —m1,4), (7.54)

by equation (1.7.46) in [34].

For n < 10 we see from equation that 71 s has a local maximum at 710 = Hi
and hence the eigenvalue A\ s is positive for 0 < |s| < e. However, if n > 11, we see
that 71 s has a local minimum at 7y o = H; and hence the eigenvalue A1 s is negative for
0 < |s| < e. We also note that 9;G , (0, Hy)[?] is the negative of an elliptic operator, so
by Theorem |3.2.6]it is a sectorial operator on the little-Holder spaces. The perturbation
result in Proposition then ensures that 9,G g, (71,5,71,5) is sectorial for all |s| < e
(again possibly making e smaller).

We can now apply Theorem 9.1.7 in [38] to obtain, in dimensions 2 < n < 10, a
nontrivial backward solution, u(t), of with n = 1 ¢ such that:

[a(t) — F1sllp2.a < Ce¥, t <0, (7.55)

where C,w > 0. By setting p(t) := u, (@(t),m1,5) |j0,q We obtain a nontrivial backward
solution to (1.6 such that

lp(t) = prsllpee = ||V (@), m1s) loa) — Y (Frssms) lo,a] 2.0
<|[Ym, (@), m,s) = Y, (s, M)l 2.0
<blla(t) — F1sllp2.a
<bCe“t, t <0,

where we have used that g, is Lipschitz, with constant b. Thus the unduloid defined
by p1s is an unstable stationary solution of ((1.2)) when 2 <n < 10.
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7. STABILITY OF VOLUME PRESERVING MEAN CURVATURE
FLOW NEAR FINITE CYLINDERS

When n > 11 we prove stability of the unduloid defined by p; s by applying Theorem
9.1.7 in [38]. There exist C,r,w > 0 such that if ||ag — 71 s||p2.« < r then the solution,
u(t), of (7.19) with n = 71 s and initial condition % is defined for all ¢ > 0 and satisfies

[a(t) = Frsllpze + ||& ()] 00 < Ce ™ ltio — Frslly2a » £ > 0. (7.56)

This convergence is shown on the right hand side axes of The function 7 4 is
highlighted by a red dot and the equation proves that any function on the red
line converges to it under . Figure also shows the mapping of this set under
Y H,, which gives all the functions, u, in a neighbourhood of ¥, (71,5, 71,s) that satisfy

Vol(u) = Vol (Y, (F1,s,M1,s))-

2.«

he R

/\\\\VH1 ¢H1
7 n—1 N _ U
I/ __Hl \ L ~ H,
! . | ,///\\ N
[ ) / ;o \ \\
N / PN /
\ ’ D |

N -

~___~- \ Hl /I

2«
he,O

Figure 7.3: Sets of functions (red) that converge to nontrivial stationary solutions to the

flows (7.9) (left) and (7.19) (right)
Considering po such that ||po — p1,s][2.« < 7 and Vol(pg) = Vol(p1,s); then we have

1Po[tpe) — T1sllp2e = 170 [tpy — Ymy (F1is,m1,8)] [l 2.a
<2 ||upy — Yay (T1,sM1,8) | 2.0
<4|po — Y, (Frs:m.5) ljo,a) || 2.0
<r.

So, by the above calculations, there is a solution, @(t), of (7.19) with n = ;s and

u(0) = Pouy,] that satisfies (7.56). By setting p(t) = vu, (U(t),m,s) |j0,q We obtain a
solution to ([1.6)) with p(0) = v, (Polupe]; 11,s) lj0,a) = Upolj0,a) = po such that

() = prsllyze = [m (@), m1s) lo.g) — Vi (Frss Ms) [0, | 2.0
< |m, (@(t),m,s) — Y, (1,5, 71.8) [ 2,0
<blu(t) — 71,5/l 2.0
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7.3 Geometric Construction of Bifurcation Curves

Therefore from ((7.56):
lp(t) = prs

h2,«a Sbceith HPO[UPO] - fl,s”hza ) t 2 0

Thus the unduloid defined by p s is a stable stationary solution of (1.2]) under volume

preserving axially symmetric perturbations when n > 11. O

7.3 Geometric Construction of Bifurcation Curves

In this section we consider an alternative method for constructing the bifurcation curves
found in Section [7.2] We will use a representation of the axially symmetric CMC hy-
persurfaces to calculate the enclosed volume of such hypersurfaces and hence explicitly
give a formula for 1y .

The n-dimensional axially symmetric CMC hypersurfaces were studied in [29],

where the profile curve, p(z), was shown to satisfy:

P 1
z :/ dx, (7.57)
p(0) et )
Ci+Hgn | 1

where (' is a constant and H is the mean curvature of the hypersurface. We note that

for this representation the cylinders can only be treated through limits. Similarly, we
can only treat the unduloids with half a period, i.e. when m = 1. However, when we
obtain the formula for the enclosed volume of p; s we will be able to generalise it to
any amount of periods. To obtain the bifurcation curve in Section [7.2] we apply the

boundary conditions % = % = 0 and we will also define s := %.

The derivative, %, is given implicitly by

2
dp _ (/)
dz Cl—l—%p” .

From % = 0 we obtain that C; = p(0)"~! — HeO" and hence

dz =0
P
z :/ ! dx,
p(0) o 2 .
PO+ @ —p(0)") )

and using the change of variables x = p(0)z gives:

1

_P_
p(0)
2= ol0) [ 2
1 zn—1
\/< 14 He0) (f"—l)) -1

n

dz, (7.58)
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with
n—1 2
_P_
dp <p(0)> 1
dz Hp(0) p \" o
14 220 ()"~ 1)
We next apply the boundary condition % =0 and use the formula pgg; = %z to
obtain . - .
1 =t (1 =)™ 1-—
(I+s)" = (L—s) p(0)
thus:
1
2= p(0 / 9 dz. (7.60)
\/ 221 ((1+s)" —(1—s)") )2 1
23 1+s)n =14 ((14s)"—1—(1—s)"—1)(1—s)z"
Finally, evaluating at z = d gives:
-1
1+s
1—s 1
p(0) =d / dx . (7.61)

1 \/( Zn1((148)"—(1—s)") )2 1
25(14s)" 1+ ((1+s)"~1-(1—s)»~1)(1—s)z"

Equations and define the family of constant mean curvature hypersur-
faces that meet the hyperplanes z = 0, d orthogonally, i.e. p1s. We note here that as
s — 0 the values of p; 5(0) and p; s(d) approach each other, so we should arrive at a
cylinder. In fact, lims_,0 p1 5(0) = d‘/i
Hi. Also the formula (1 — s)p1 s(d) = (1 + s)p1,5(0) shows that as s — =1 one of the

ends of the profile curve tends to the axis of rotation and the resulting axially symmet-

and so it is the cylinder with mean curvature

ric hypersurface intersects the axis of rotation. In this case it represents a hemisphere.

This can also be seen explicitly using (7.60) and (7.61)):

-1

o 1(0) = d /loldf - ([—ﬁm_l:—d,

—P1,—1 —p1,—1

z:—d/ ‘ #dx:—d[—\/l—ﬁ}ld’ =d 1—(p1d‘1)2,

1 I

€T
or equivalently 22 + ,0%_1 = d?, a quarter circle of radius d centred at (0,0).
The n-dimensional shell method calculates the volume of a solid of revolution when

integrating parallel to the axis of revolution:

PI,S(d)

Vollpr) = Soa [ 5 20 dp, (7.62)
PLS(O)
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7.3 Geometric Construction of Bifurcation Curves

where S,,_1 is area of the unit (n — 1)-sphere. In this situation Vol(p; s) corresponds
to the volume enclosed by the cylinder with length d and radius p; s(d) and outside of
the CMC hypersurface, therefore the volume enclosed by the CMC hypersurface is:

PI,S(d)

Vol(p1,s) = wnp1,s(d)"d — nwy, / Pn_lz(p) dp
,01,3(0)

1+s\"
= nd son
and ((122) 70

B npl’s(o)nJrl /
d 1

1+s —
1-—s Y gn—1
/ Y dz dy |
1 2

(7.63)

where we have used the change of variable p = p; 4(0)y to get to the second line. In
order to extend this to allow any number of periods we note that the volume of an
unduloid made up of m half periods, will be m times the volume of a half period
unduloid between plates a distance % apart. Hence the volume of the m!" family of
rotationally symmetric hypersurfaces is Vol(pm, s) = Vollprs), Using equation

mn

we have 7, s = (n—1) ¢ Wﬁs) =m(n—1)¢/ #p‘is) and hence a parametrisation

of the bifurcation parameter in is obtained. The change of 7 s from being a
maximum to a minimum can also be seen through plots of the normalised parameter
M,s := M,sd for the different dimensions, see Figure

These plots confirm that the bifurcation parameter (volume enclosed) is a maximum
(minimum) at the cylinder if n < 10, while for n > 11 it is a minimum (maximum)
at the cylinder; see Figure for a close up of the turning point for dimensions ten
and eleven. Interesting phenomena are also apparent in dimensions eight and higher
where additional turning points appear. In dimension eight, a local maximum and
minimum of the enclosed volume occur within the family of unduloids. In dimensions
nine and ten, the turning points separate from each other and these points are the
global maximum and minimum volume of the family. In dimensions eleven and higher
only the local minimum of the volume occurs and it remains a global minimum volume
of the family. This behaviour is very intriguing and it would be of interest to know

what is special about these unduloids.
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8

Mean Curvature Flow near

Catenoids

In this chapter we consider the mean curvature flow equation in , whose stationary
solutions are the minimal surfaces. We show how to analyse the stability of these min-
imal surfaces using the techniques in this thesis. We consider the case of the catenoid
and find it is an unstable stationary solution to the flow, i.e. there are surfaces arbi-
trarily close to the catenoid that do not flow towards the catenoid. We will prove this

by considering normal graphs over the catenoid:

Gt = {i (cosh (Z - d) cos(6), cosh (z - d) sin(9), *— d) CR3:
0, 2) € [0,27) x (0,d1)}, (8.1)

where dy,c € RT and d € R. The flow (|1.1)) is then equivalent to the evolution equation
for the height function:

p _ o S 12 @
3 = Gealp) == —\/1+ [Vp[*H(p), P

Due to the presence of boundary conditions we work on the torus 9[121 =S x yail ,

™

= 0. (8.2)
2=0,d1

with local coordinates (6, z), and with the function spaces:
nEe (72) = {u e B (72) sul0.2) = u(d.—2) }.

Since AP (%21) is a closed subspace of hF® (%21), for any k € Ny and o € (0,1), we

can apply Lemma where the projection operator is u(f,z) — %, to
conclude, using (3.10]), that
G CAR ) e A (8.3)
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8. MEAN CURVATURE FLOW NEAR CATENOIDS

for all 6y,01,02 € (0, 1) and [ € Ny such that 6 (l+(92 —91) + 01 ¢ N. By now
defining Ge(u), u € hE™2° (%21), to be the even extension of Geq(ulsix[0,4,]), We have

the equivalent PDE:
% = G(u). (8.4)
It is of note that the instability result proved in this chapter could also be obtained
by using that the catenoid is unstable as a critical point of the area functional, i.e.
there are surfaces close to it with the same boundary but smaller area, [I3| 37]. This
means that the mean curvature flow starting from one of these surfaces cannot return
to the catenoid, since the mean curvature flow decreases the area of a surface over time,
130].

We will use the following Theorems from [38] to determine the stability of catenoid:

Theorem 8.0.1 (Theorem 9.1.7 (i) [38]). Let O C h2® (1) be a neighbourhood of 0
such that G € C* (O, ho (%ﬁ)) is a nonlinear function with G(0) = 0 and dG(0) = 0.
If A h2P (%21) — h2P (%21), B € (0,a), is sectorial and satisfies 0~ (A) # & and
wy >0, see (1.17) and (1.19). Then the null solution of

u'(t) = Afu(t)] + G(u(t)), u(0) = ug (8.5)

is unstable in h>" (%21) Specifically, there exist nontrivial backward solutions to

converging to zero as t goes to megative infinity.

We let P be the spectral projection associated with the spectral set o~ (A) and
define X* = P (W2 (72)). X* = (1 = Po) (W2°(72)).

Theorem 8.0.2 (Theorem 9.1.8 [38]). Let G and A satisfy the conditions in Theorem
8.0.1. If o(A) NiR = &, then for any o € (B, 1) there exists:

(i) ro, Ro > 0 and a Lipschitz continuous function
¢ : Bxuy(0) = X°,

differentiable at 0 with 0¢(0) = 0, such that for every ug belonging to the graph of
¢ problem has a unique backward solution, v(t), in C ((—oo, 0], h2 (%21)),

such that HU”L“((—oo,Oth’“) < Ry. Moreover e_wtv(t) cC ((—O0,0], hz,a (%21))
for every w € (0,wy). Conversely, if has a backward solution v which
satisfies the previous bound and || P> [v(0)]||,0.0 < 7o then v(0) € graph(¢).
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(i) ri, R1 > 0 and a Lipschitz continuous function
Y : Bxs ., (0) = X,
differentiable at 0 with 0Y(0) = 0, such that for every ug belonging to the graph
of ¥ problem has a unique solution, u(t), in C ([O, oo),hz’a (%ﬁ)) such

that |’u"LN((07w)7h2,a) < Ry. Moreover ewtu(t) cC ([07 ), hZ’a ('Zl%)) for every
w € (0,w_). Conversely, if has a solution uw which satisfies the previous
bound and (I — P>)[u(0)][|,2. < 71 then u(0) € graph(y).

If in addition G € C*! <O, RO (,Zfl)) for k € N, then v and ¢ are k times differen-
tiable, with Lipschitz k-th order derivatives.

The graphs of ¢ and v are called the local unstable manifold and local stable manifold

respectively.

Lemma 8.0.3. For any v € h2? (%21) we have

1 1 0% 0% 2v
G (0] = ——F——— ( + > + .
cosh? (M%d> 2 00% 02 2 cosh? (lz‘%d>

Proof. We use that 9G,(0) is the even extension of 0Gq(0). From Lemma [4.1.2}

0Gea(0)[v] = —OH (0) 0]

== 9k (0)[v]

2
= Z CLCIViV i + ka(0)%0
a=1
2v

2 cosh? (Z;d)

= Ay v+

O

The linearised operator is therefore the negative of a uniformly elliptic operator,
hence is sectorial in hg’ﬂ (%21) by Theorem and we can use Theorem to
obtain existence for (8.4) and hence (8.2)).

Theorem 8.0.4. There exists 6,r > 0 such that for any function pg satisfying the Neu-
mann boundary conditions and ||po||p2.« < 7, the equation has a unique solution:

peC <[0, ), h2 (W)) ¢ ((0,6), 0% (F7)) .

oz
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8. MEAN CURVATURE FLOW NEAR CATENOIDS

Moreover, the graph over the catenoid €./, Q,,, has a mean curvature flow fort € [0,0)

which is gien, up to a tangential diffeomorphism, by ).
We now consider the eigenvalues 0G(0).

Lemma 8.0.5. The spectrum of 0G.(0) : hZ” (72) — h? (1) consists entirely
of isolated eigenvalues with the first eigenvalue satisfying 0 < A\ < c% Furthermore
0 ¢ o(0G.(0)) except in the exceptional case when di = d, where d is defined for
d € (—cIn(1++/2),0) U (cIn(1 + v/2),00) by the equations

d cosh (d;cCl) + cosh? <d;d> cosh (¢) +cosh® (§) -

- — = = : , d>0, (8.6)
¢ sinh (d;cd> sinh (CEI)
and undefined otherwise.
We note here that the function f(z) = z — %‘Eghs(z) has critical points at

z==In (1 + \/Q), with a local minimum at z = —In (1 + \/5) and a local maximum
at z = In (1 + v/2), while being unbounded as |z| tends to infinity or zero. Therefore for
each d € (—cIn(14++/2),0)U(cIn(1++/2), 00) there is a single solution to the equations
, while for other values of d there are no strictly positive solutions. Also note that
if d € (—cIn(1+ v/2),0) then d € (d + c¢In(1 4 /2), 00), while if d € (cIn(1 + v/2), 00)
then d € (d — c¢In(1 + v/2), d).

Proof. We start by investigating the null space using separation of variables. Let
u(f,z) = X (0) Z(z) be an element of the null space. Therefore

L L xn 1" 2 B
or by rearranging
1 " ¢ 11 2 .
x5 O+ | 252" O+ —7mn | =

2 (|z]—d
cosh ( - )
Both terms are therefore constant and we obtain X”(0) = £¢X(6). Due to the periodic

condition in the @ variable this is only possible for:
Xy, (0) = Cy cos (nf) + Cysin (nh) ,
where n € Ny. Therefore Z(z) must satisfy

1 2
Z"(z) + S| ——F — n?| Z(z) =0.
¢ \ cosh? <|Z|_d>

c




The solutions to this equation are given in terms of the associated Legendre polynomials

of the first and second kind, represented by P/, and @}, respectively:

Zn(z) = CL P! <tanh <|Z|C_ d)) + CHQ7 (tanh (’Z‘C_ d)) . (8.7)

Pl is given by

" —1)" " dn+1
Pl'(z) = ( 2) (1—2?) /de”“ (z®+1)

T n =0,

=<¢ —V1-22 n=1,

0 n > 2,

and the first two associated Legendre polynomials of the second kind are

x 142 (x2—1)log(%f—i>—2x
Q) =5 o <1 —x> BRI e

2
For n > 2 Q7 (z) has no zeros and a single turning point at = 0 for even n, and a
single zero at = 0 and no turning points for odd n.
We now consider the three different cases, n = 0, n = 1 and n > 2, separately and
enforce that Z,(z) has continuous first derivative at z = 0 and z = d. For the n = 0

case we have

Zo(2) = Cy tanh <‘Z’c_ d) + 0y <<‘Z‘C_ d) tanh ('Z’c_ d) . 1> ,

which has derivative

2= ) (6 s (o (= (1)),

So to be continuously differentiable we require:

- —2d d\ = - 2d; — 2d di —d\ =
Ci + <0.5 sinh <> — C> Cy=0, Ci+ <0.5 sinh < L > + ! p ) Cy=0,

C &

since d; > 0 and 0.5sinh(2z)+ 2z is a one-to-one function this system has only the trivial

solution. Now we consider the n = 1 case:

Zy(z) = —C)sech ('Z’C_ d> —Cy (<|Z|C_ d) sech <|Z|C_d> + sinh ('z’c_ d>> :
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8. MEAN CURVATURE FLOW NEAR CATENOIDS

which has derivative

|z|sech M%d ~ _
Z1(2) :y <01 tanh (’Z‘d>
c

() (E) et (E))).

Requiring continuous differentiability gives
—d\ = —d —d —d -
tanh (> Ci+ <<> tanh <) — 1 — cosh? <)> Cy =0,
c c c c
tanh (dl — d) C1+ <(d1 — d> tanh <d1 — d) — 1 — cosh? <dl_d>) Cy = 0.
c c c c

Note that if either d = 0 or d; = d, then C3 = 0 and hence C; = 0, so we only obtain

the trivial solution. In the other cases we obtain

_ cosh (d) + cosh? (4) d\ =
C < ¢ — — | Cy=0
L ( sinh (%) c 2 '

o d C_ d - cosh (#) + cosh? (dlc_d> G0

: di—d
sinh <1T>

Therefore C; = Cy = 0 unless d; = J, in which case:

) 0 (LB (B2 (HL)).

Lastly we consider the n > 2 case:

2261 = st (o (1)),

The derivative is given by

Z(2) = L]C’z sech? (’Z‘ _ d) Qﬁ” (tanh (|Z| _ d>> ,
cz c c

so requiring differentiability gives

QY <tanh <_d>> =0, i (tanh (dl — d)) =0.
c c

However Q7'(z) = 0 has at most one solution and since tanh(z) is one-to-one we find

that only the trivial solution exists. Hence the operator has no null space except in the

exceptional case of d; = d, in which case the null space is the span of

) — ( (h ()I ()h (9 'fl > et ( |!—d> i ( H—d>) cos (6).
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and

uz(0,2) = ((COSh (Sl)n;: (Cf;hg () - ‘Z') sech <|z\c— d> — sinh <|Z|C_d)> sin (0) .

To investigate the dominant eigenvalue we use that 0G¢(0) is self adjoint with

respect to the inner product:

—d
<u,v>—/ /uvccosh2 L dfdz,
7 Jst ¢

a1

and so has an associated bilinear form given by

1 0u Ov Ou Ov 2uv
3, ol = — (0G(0)[u], v) .
“lw) /yl /Slcaeaa 02 02 ccosh2(lzl;d) df dz = —(0G.(0)[u],v)
c

Therefore the largest eigenvalue is given by the Rayleigh quotient:

where we minimise over u € hé’ﬁ (Zfl) We obtain an upper bound on the eigenvalue by
ignoring the positive derivative terms in the integral and using that sech?(z) < cosh?(2)
for all z € R:

2 [y Jor e sech? () doa

2
2

/\1 S—min S

Loy J wrecosh? (E2) d a
a1

To obtain the lower bound we calculate the Rayleigh quotient of v = 1:

2(1,1)
(1,1)
Sy, Jon 267 sech® (2= aga

fy}ifl Js1 ccosh? (@) df dz
8 (tanh (%) — tanh (d;cdl>>
¢ (21 + c (sinh (24) — sin (220 ))

> 0.

A > —
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8. MEAN CURVATURE FLOW NEAR CATENOIDS

This allows us to apply Theorems [8.0.1| and [8.0.2f to (8.4) and, via its equivalence
to (8.2), obtain the following result.

Theorem 8.0.6. The finite catenoid is an unstable stationary solution to the mean

curvature flow. That is there exists ro > 0 such that for any neighbourhood of zero,

O C h2éa (%42/), there exists po € O and T > 0 such that the solution to satisfies
22

|p(T) ||p2.e > 0. Moreover if di # d then there exists local unstable and stable manifolds
for the system. In particular there exists a r1 > 0 such that if pg is an element of the

stable manifold with py € th,a(%) (0) then the mean curvature flow of the surface
(%

;71

Oz
defined by po exists for all time and converges exponentially fast to a catenoid.
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Appendix A

Bifurcation Curves of Other
Constant Mean Curvature

Equations

In this section we return to studying the bifurcation of solutions to constant mean
curvature equations, first covered in Section We will consider an additional two
constant mean curvature equations. The first such equation takes the same form as
however instead of the map u = ty, (@, n) we use u = (@, n) = @+ ”T_l Setting
Fi(4,n) = H (¢¥(a,n)) and dg(4,n) = 1 (@,n) dz = p (¥(@,m)) dz we then have the

equation:

Gr(an) =Py |VIF @GR | | F@n)dm(@n) - R || =0, (A1)

7 a

™

note that now varying u does affect the volume of the hypersurface. The last equation
we consider drops the global term and replaces it with the parameter 7, i.e. it forces
the corresponding hypersurface to have the same mean curvature as the cylinder it is

a graph over, due to this we don’t force our function to have zero mean.
GQ(a’ 77) == Fl(ﬂvn) =0, (A2>

note we have also left out the v/1 + @2 term as this equation no longer has relevance
to a flow; however, it should be noted that this term does not affect the bifurcation

properties.
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A. BIFURCATION CURVES OF OTHER CONSTANT MEAN
CURVATURE EQUATIONS

Theorem A.0.1. The points (0, Hy,), for m € N, are the only bifurcation points on

the trivial curve of solutions to G1(i,n) = 0. That is, for each m € N there erists a

nontrivial continuously differentiable curve in hi’g 5{}) x RY through (0, Hy,):

{(Fm,s:Mm,s) 5 € (=0,0), (Tm,0,Mm,0) = (0, Hp)}, (A.3)

such that
G1 (Fm,s,Mm,s) = 0 for s € (—4,9), (A.4)

and all solutions of Gy (4,n) = 0 in a neighbourhood of (0, Hy,) are either trivial solu-
tions or on the nontrivial curve in [A.5).

Furthermore J
Sms| o, (A.5)
ds |,
and
d217m75 B ng (n2 —4n — 8) (A.6)
ds? |._g 12(n—14 Hp/n—14 H2)? ’

Proof. We start by noting that the function ¢ is the first order (with respect to )
approximation of v, about the point (0,7)9), so much of the analysis in the proofs of
Theorems [7.2.4] and [7.2.6] can be used. In fact the only real change occurs when we

calculate dQ;S’;"S N In this case, instead of equation ([7.50)) we have
3 r A 3 n—1Y\. . .
011 F1(0, Hpy) [0y Oy O] = O°H [0y Oy Oy | (A.7)
and hence i s
- = 3(n+2)H,; A
* 2 -~ o ~ m-™m
U [0111G1(0, Hip) [0, Dy 0] = 2(n—1)°B,, (A.8)
So from ([7.44]) we obtain:
Prims| _ —(n=1)Bp (3(n+2)H, A (n—2)(n+1)H; A,
ds? |, 6H,p A, 2(n —1)3Bp, 2(n —1)3By,
(n? —4n — 8)H3 A2
_ m<im A9
12(n —1)2 (A-9)
O

Corollary A.0.2. For 2 < n < 5 the bifurcation curves of equation that pass
through a trivial solution are subcritical, that is nm, 0 is a local mazximum on the curve,

while for n > 6 they are supercritical, that is 1,0 s a local minimum on the curve.
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Theorem A.0.3. The points (0, Hy,), for m € N, are the only bifurcation points on

the trivial curve of solutions to Ga(ii,n) = 0. That is, for each m € N there erists a
nontrivial continuously differentiable curve in hi’g‘ 5 é ) x Rt through (0, Hy,):
{(fm,sy nm,s) HERS (_57 5)7 (me(), 77771,0) = (07 Hm)} ) (A.lO)

such that
Go (Fm,ss Mm,s) = 0 for s € (=6,0), (A.11)

and all solutions of G (4,n) = 0 in a neighbourhood of (0, Hy,) are either trivial solu-
tions or on the nontrivial curve in .

Furthermore
dnm s
—_— =0 A.12
el =0 (A.12)
and 4
d>n,, s H —10n — 10
Llms| = (n* —10n — 10) - (A.13)
ds* |9 12(n—1+ Hp,vn—1+H2)

Proof. Due to the difference between this equation and the others it is easier to start
from scratch and use known results as we proceed. Therefore, we linearise G with

respect to the functional component:

01 Gty m)[0] = — 00 F (1, m) o] = —OH (u no 1) . (A.14)

Therefore, using equation ([7.25)), we have

_ 2 _ 2
01G2(0,7)[0] = 7" + —L—5, 92,Go(0,7)[7] = —L 3. (A.15)

v
n—1 n—1

These are the same operators found in the proof of Theorem Hence, the same
analysis gives the existence of bifurcation points on the trivial curve precisely at the
points (0, Hy,).

Taking the second linearisation we obtain

- _ -1
01 Ga(u,n)[v, w] = 0% Fi(a, n)[v, w] = ~0°H (ﬂ + - 7 ) [0, w]. (A.16)
So we use equation (7.41)) to calculate:
0%,G5(0, Hy,) [0, w] = ﬂm + Hp o'’ (A.17)
11 I m I (n o 1)2 m 9 .
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A. BIFURCATION CURVES OF OTHER CONSTANT MEAN
CURVATURE EQUATIONS

and hence, since 7y, has not changed, we have

2H3 .
811G2(O Hp) [0, O] = 7(71 —1)2 72n + Hyp vy, ,2

o (e () - e ()
= s (i (1o ()

(e ()
A (s (Z22))

Therefore o7, (8%, G2(0, Hyp)[0m, 0m]] = 0 and hence m, s

ds =0.

s=0
To calculate d;”gs we first need to calculate w,,. Substituting (A.18) and
into glves -
H3 A2 2H,,z . HZ O
M(n—i%—(n—l—l)cos( n_1>>+wm—|—n_mlwm:0, (A.19)
and hence
H,, A2, 2H,,z
U = ————= [ 3(n — 3 1 . A.20
W 6(n—1) (n—3)+ (n+1)cos L (A.20)
Therefore, using (A.17)), we obtain
a121@2(0a Hm)[@mawm] (A.Ql)

-H, A, . <Hmz ) n+1H2A2 s <2Hmz )
=H,, sin
\/n— n 3(n —1)3/2 Vn—1
3(n—1)3 cos

Vn—1
H4A3(n+1 ( (n—1) ECOS Hpz )_COS<
L6 -3)

S 6(n—1)3

6(n—1 vn—1 \/7
Thus
B —(n? —Tn+ 16)HL A>
~% 2 H A T — (n m m. A.2
Um [811G2(07 m) [0 wm]] 6(n —1)3By, (A.23)



Lastly we use (7.51)) to calculate:

n—1

8?11@(07Hm)[®m7®m7®m] = - 83H< H > [ﬁmvﬁmyﬁm]

_3HLAZ (n+2) <COS< Hpz > n=2 ( 3Hpz )>
 2(n—1)3 vn—1 n+ 2 vn—1/))’

(A.24)
therefore, as in (A.§]),
. A 3(n+2)HE A3
* 3 ~ ~ ~
U [0711G2(0, Hip) [0, Dy 0] = 2 — 1)3%mm. (A.25)
So by substituting this along with (A.23)) into (7.44]) we obtain
d* M s _ —(n—=1)By (3(n+ 2)HA A3 B (n? — Tn + 16)H}, A3,
ds? |._,  6HmAnm 2(n — 1)3B,, 2(n — 1)3By,
_ (n®*—10n+10)H3 A2,
12(n — 1)2 ’
U

Corollary A.0.4. For 2 < n < 8 the bifurcation curves of equation that pass

through a trivial solution are subcritical, while for n > 9 they are supercritical.
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Appendix B

Elementary Symmetric Function

Identities

The aim of this appendix is to provide a complete proof of equation ({2.6). This equation

appears in [24] for the case where the hypersurface is convex; however here we will prove

it for the elementary symmetric functions of an arbitrary matrix. We consider a matrix

A= (A;), which has eigenvalues A,. The elementary symmetric functions are then
given by

a
Ey=1, E, = Z bei,1gagn. (B.1)
1<bi<...<bg<n i=1
We first obtain a formula relating F,1 to the previous elementary symmetric func-

tions; this was proved in [41] but we reproduce the proof here for completeness.

Lemma B.0.1.

a+1
(a4 1) Earr = 3 (=1)"tr <Ab) Bai1op, 0<a<n-—1. (B.2)
b=1
Proof. We start by noting that the elementary symmetric functions are the coefficients

of a certain polynomial:
n n
[T+ xat) =D Eat,
a=1 a=0

Considering |t| < minj<,<y |Ae| ™! we can take the logarithm of both sides to remove

the product:

)

n
> 14 Agt| =In
a=1

n
Z E,t°
a=0
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B. ELEMENTARY SYMMETRIC FUNCTION IDENTITIES

and we are able to take the derivative with respect to ¢

ZA (1+Aat)™ <ZaE t9= 1) (;Eata)_l.

Using the series expansion (1 + A\gt) ' = S 2 o(=1)2Ab¢ | we obtain

ZaE o1 = (ZZ Ay )(g()m)

b=0 a=1

_ (i(—l)btr (Ab+1) tb> (;Z:O Eat“>

b=0
= 31l (AP et
b=0 a=0

Now we equate coefficients. Firstly for the coefficient of t¢ where ¢ > n we obtain

0= Z (—1)°tr <Ab+1) E,

b=c—n

while for the coefficient of ¢ where 0 < ¢ < n — 1 we obtain

c

(e DBz = > (~1)°tr (4"1) B,y

b=0

which is the result. O

This lemma leads to a formula for the derivative of the elementary symmetric func-

tions.

Proposition B.0.2.

8Ea+1 - b b]
— = — <a<n-1. .

Proof. The proof of this formula is by induction. We first show it is true when a = 0:

OB,  0tr(4) i o

L_ P8 5 = (Ab) E B.4

DAL DAL ) Z( ) 0—b- ( )
J J b=0

We now assume that (B.3)) holds for all 0 < a < ¢ — 1, where ¢ is an integer between 1

and n — 1. Taking the derivative of (B.2):

c+1

(c+ 1)6521 _ Z(_l)b—‘rlb <Ab—1)i o +Z 1P+l ( ) 8%;—1;’
J J
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and using (B.3|) we obtain

(C+ 1)652—1-1 :il(_l)b-f—lb (Ab_l)jEc-i-l—b
J b=1
c c—b .
b+l b _vd [4d)!
+ ;( 1) tr (A ) d:O( 1) (A )’L Ec—b—d
ZCH )b+ -1\’
b:1( 1) b(A )iEc—‘rl—b
c—1 . c—d
v (4 10+ b
+d:0( 1) (A ) 621( 1)+ (A )Ec_b_d

[ .

=Y (-DUa+1) (A7) Eeea+ cj(—l)d (Ady (¢ — d)Ee_g
d=0

=N (=14 +1) <Ad)j Ee—d,

where we used equation (B.2)) to obtain the second last line. Cancelling the factor of c+1
gives that (B.3]) is true for a = ¢. Hence by induction it is true of all 0 < a <n—1. O

We now obtain the main result of the appendix, which is stated in terms of the
Weingarten map in equation (2.6)).

Corollary B.0.3.

OEq 11 . OB,
OA: koA

, 0<a<n—1. (B.5)

Proof. For a = 0 the right hand side of 1) is 55 so the equation follows from |)
For 1 < a <n —1 we calculate using equation (B.3):

OF.11  i0Fs  « j ] k
oar Mg —b§:20<—1>” (4), B+ 4] g(—l)b (47), Fa-ros

—E,0) + Za:(—nb (Ab>j Eap+ azl(—l)b (Ab“)j E, 14
b=1

b=0
—E,00 + bz:;(—nb (Ab)j E, b+ g(—nb—l (Ab>j E, s

—E,6..
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