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Abstract

In this thesis we study the evolution of hypersurfaces under weighted volume

preserving curvature flows. Specifically we consider the stability of spheres

and finite cylinders as stationary solutions to the flows. The flows are

formulated as a partial differential equation for a height function and an

existence result is obtained when the height function is small. Through

further analysis we prove that the sphere and finite cylinder, provided the

radius of the finite cylinder satisfies a certain condition, are stable. That

is, we prove that if a graph over a sphere or cylinder has small height

function its flow exists for all time and converges to a sphere or cylinder

respectively. This is the first result proving that there exist non-axially

symmetric hypersurfaces that converge to cylinders under the flows.

In the case of volume preserving mean curvature flow near a cylinder, we

improve the above results to obtain greater regularity of the flow and con-

vergence with respect to a stricter norm. Analysing the condition on the

radius in this situation we find it is necessary in order for the cylinder to

be stable. The analysis also leads to the surprising result that certain con-

stant mean curvature unduloids are stable stationary solutions to the axially

symmetric flow in high dimensions. The last result of the thesis proves the

instability of two dimensional catenoids under the classical mean curvature

flow.

The results in this thesis are obtained using functional analysis and semi-

group methods, which can be applied since the linearised speed operators

are sectorial. The stability results come from analysing the spectrum of the

linearised operators and analysing the center manifold of the system.
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1

Introduction

1.1 Background

The mean curvature flow (MCF) evolves a hypersurface over time with speed that at

each point is given by its mean curvature and the direction is along the unit normal.

The flow was first studied in a geometric measure theory setting by Brakke in [16].

If we consider an embedding of the hypersurface X0 : Mn → Rn+1 then the flow is

equivalent to solving the partial differential equation (PDE) for a family of embeddings

X : Mn × [0, T )→ Rn+1:

∂X

∂t
= −Hν, X (·, 0) = X0, (1.1)

where the mean curvature, H, is given by the sum of the principal curvatures, κa, of

the hypersurface Ωt := X (Mn, t) and ν is a choice of unit normal of Ωt.

This flow has been extensively studied, with many results relating to the asymptotic

behaviour of the hypersurfaces and formulation of singularities. A classic paper by

Huisken [30] proved that uniformly convex hypersurfaces under MCF, with n ≥ 2, will

shrink to a point in a finite time while becoming asymptotically spherical. This means

that, after a rescaling to preserve area and to have the flow exist for all time, the flow

converges to a sphere. This result has been expanded on by Gage and Hamilton [23]

who proved the analogous case with n = 1. Grayson [25] showed that plane curves

will become convex before they become singular. This leads to the remarkable result

that any smooth, closed, compact, plane-embedded curve will shrink to a point in a

finite time while asymptotically becoming a circle. Ecker and Huisken, [18], expanded

1



1. INTRODUCTION

their research to include non-compact hypersurfaces and proved long time existence for

the flow where the initial hypersurface is an entire graph over the plane and satisfies a

gradient bound. They also prove that if the initial hypersurface satisfies a linear growth

condition then the hypersurface becomes asymptotically selfsimilar. Results relating

to singularities can be found in [1, 8, 32, 33, 43] for example.

A related problem is the volume preserving mean curvature flow, where a forcing

term is added to the PDE so that an enclosed volume relating to the hypersurface is

constant throughout the flow:

∂X

∂t
=

( 
Mn

H dµ−H
)
ν, X (·, 0) = X0, (1.2)

where dµ is the induced measure on Ωt. This flow was first studied for hypersurfaces

by Huisken in [31] where he proved that initially convex hypersurfaces have a flow that

exists for all time and converges to a sphere as t → ∞. For non-convex, compact,

closed hypersurfaces Escher and Simonett in [21] proved that if a hypersurface is a

graph over a sphere with height function sufficiently small, then under the flow it will

converge to a sphere. A similar result was obtained by Li [36] where, instead of having

small height function, the hypersurface was average mean convex with small traceless

second fundamental form. Athanassenas and Kandanaarachchi, [12], make use of axial

symmetry to remove any conditions on curvature and obtain convergence to spheres

under the assumption no singularities develop on the axis of rotation.

The case where the initial hypersurface has a boundary has also been studied. In

this case it is assumed that Ω0 is smoothly embedded in the domain

W =
{
x ∈ Rn+1 : 0 < xn+1 < d

}
,

with d > 0 and ∂Ω0 ⊂ ∂W . The open set enclosed by Ω0 and W will be labelled Φ

and it is the volume of Φ that is preserved under the flow. The boundary conditions

for the flow are that Ωt meets ∂W orthogonally. Assuming Ω0 to be axially symmetric

it was proved in [11] that the flow exists for all time and converges to a cylinder in W

of volume V ol (Φ), under the assumption

|Ω0| ≤
V ol (Φ)

d
. (1.3)

This constraint ensures that the solution never touches the axis of rotation, so that no

singularities develop.
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1.1 Background

The volume preserving mean curvature flow can be generalised to the weighted

volume preserving curvature flows. These flows evolve a hypersurface over time by a

symmetric function of the principal curvatures, along with a global forcing term. The

PDE that represents the flow is given by:

∂X

∂t
=

(
1´

Mn Ξ (κ) dµ

ˆ
Mn

F (κ) Ξ (κ) dµ− F (κ)

)
ν, X (·, 0) = X0, (1.4)

where F (κ) = F (κ1, . . . , κn) and Ξ (κ) = Ξ (κ1, . . . , κn) are smooth, symmetric func-

tions of the principal curvatures, κa, of Ωt. Note that we must restrict to initial

hypersurfaces such that
´
Mn Ξ (κ) dµ > 0.

When Ξ = Ea, an elementary symmetric function of the principal curvatures (see

(2.1)), the flow is the mixed volume preserving curvature flow and preserves a certain

quantity of the hypersurface (see Corollary 2.2.3). This flow has been previously studied

by McCoy in [40] where he proved that under some additional assumptions on F , for

example strict positivity, homogeneity of degree one, convexity and increasing on the

positive cone, strictly convex hypersurfaces have a flow that exists for all time and the

hypersurfaces converge to a sphere as t→∞. This was an extension of [39], where he

proved the result under the condition that F = H. Volume preserving flows, Ξ ≡ 1,

have been been studied by Cabezas-Rivas and Sinestrari in [17] for the case where F

is a power of the mth mean curvature, Hm =
(
n
m

)−1
Em. The flow was shown to take

initially convex hypersurfaces that satisfy the pinching condition En > CHn, for a

specific constant C, to spheres.

Throughout this thesis we will consider the case where the initial embedding is

a normal graph over another hypersurface, i.e. Xρ0 (p) = X0 (p) + ρ0 (p)ν0 (p) for

p ∈Mn, where we now define X0 to be an embedding of the base hypersurface and ν0

is a normal to the base hypersurface. In this case the flow (1.4) is equivalent, up to a

tangential diffeomorphism (see Lemma 2.3.3), to the PDE:

∂ρ

∂t
=

√
1 +

∣∣∣∇̃ρ∣∣∣2( 1´
Mn Ξ (κρ) dµρ

ˆ
Mn

F (κρ) Ξ (κρ) dµρ − F (κρ)

)
, ρ (·, 0) = ρ0,

(1.5)

where we use a ρ subscript to show the dependence of quantities on the height function.

The quantity

√
1 +

∣∣∣∇̃ρ∣∣∣2, see Section 1.3 for a definition of
∣∣∣∇̃ρ∣∣∣, is similar to the

gradient function used in [18] as it is the inverse of the inner product between the

normals of Ωρ := Xρ (Mn) and Ω0 := X0 (Mn) (see Lemma 2.3.1). When the base

3



1. INTRODUCTION

hypersurface has a boundary we use the Neumann boundary condition ∇ρ|∂Mn ·υ = 0,

where υ and ν form an orthonormal basis for the normal space of ∂Mn, see Figure

1.1 for a graph over a cylinder. This boundary condition is natural as it is known that

critical points to the area functional under a volume constraint necessarily satisfy it,

[9, 14].

Figure 1.1: A graph over a cylinder satisfying the Neumann boundary condition

We also have the following assumptions on F and Ξ:

(A1) F and Ξ are smooth, symmetric functions

(A2) ∂F
∂κa

(κ0) > 0 for every a = 1, . . . , n

(A3) Ξ (κ0) > 0.

The conditions (A1) and (A2) ensure isotropicity and parabolicity of the flow, respec-

tively, while condition (A3) ensures there exists a neighbourhood of zero such that´
Mn Ξ (κρ) dµρ > 0 for any ρ in this neighbourhood. We again have the classical

volume preserving mean curvature flow for F (κρ) = H and Ξ (κρ) = 1:

∂ρ

∂t
=

√
1 +

∣∣∣∇̃ρ∣∣∣2( 
Mn

H (ρ) dµρ −H (ρ)

)
, ρ (·, 0) = ρ0. (1.6)

In this thesis we will consider the stability of the sphere of radius R, S n
R , and

the cylinder of radius R and length d, C n
R,d, under the weighted volume preserving

curvature flows, as well as the stability of catenoids under mean curvature flow. In the

4



1.2 Overview

cases of the cylinder and catenoid the presence of a boundary can cause difficulties in

the analysis. In the case of a cylindrical graph, we set up a related PDE on the torus

with one flat direction T n
R,d = S n−1

R ×S 1
d
π

to overcome these difficulties. That is, we

extend the metric, g, and the second fundamental form, A, of the cylinder evenly so

that they are symmetric (0, 2)-forms on the torus. Note that the former becomes the

metric on T n
R,d. We can then use the formulas in Section 2.3 to define the operator

κu and volume form dµu abstractly for a function u on T n
R,d, which replaces ρ as our

‘height’ function, and consider the PDE:

∂u

∂t
=

√
1 +

∣∣∣∇̃u∣∣∣2( 1´
T n
R,d

Ξ (κu) dµu

ˆ
T n
R,d

F (κu) Ξ (κu) dµu − F (κu)

)
, u (·, 0) = u0.

(1.7)

In the case that u is an even function κu and dµu preserve this symmetry, therefore

the speed operator will also preserve the symmetry. Hence, any solution to (1.7) where

u0 is even will remain even for all time and will therefore satisfy ∇u|∂CnR,d
· υ = 0,

whenever u is differentiable. Further, if u is even we have that:

1´
T n
R,d

Ξ (κu) dµu

ˆ
T n
R,d

F (κu) Ξ (κu) dµu =
1´

CnR,d
Ξ (κu) dµu

ˆ
CnR,d

F (κu) Ξ (κu) dµu,

(1.8)

and hence an even solution to (1.7) restricted to C n
R,d satisfies (1.5) with the correct

boundary conditions. It is also clear that a solution to (1.5) with Neumann boundary

condition will extend evenly to a solution of (1.7), compare Figures 1.1 and 1.2.

As before we have the specific case of the volume preserving mean curvature flow:

∂u

∂t
=

√
1 +

∣∣∣∇̃u∣∣∣2( 
T n
R,d

H (u) dµu −H (u)

)
, u (·, 0) = u0. (1.9)

1.2 Overview

The remainder of this thesis is split into seven chapters. Chapter 2 provides some

background to the differential geometry used in this thesis. We start by including some

definitions of important quantities of a hypersurface and useful curvature identities.

The evolution of these quantities under a flow of the form (1.4), along with formulas

for how to calculate them in the case of a normal graph are also given. The neces-

sary functional analysis background is provided in Chapter 3, including definitions of

5



1. INTRODUCTION

Figure 1.2: An extension of a graph over a cylinder satisfying the Neumann boundary

condition (Figure 1.1) to a graph over the torus

interpolation spaces and sectorial operators. The experienced reader may skip these

chapters.

In Chapter 4 we prove two short time existence results for the weighted volume

preserving curvature flows and an improved version for the volume preserving mean

curvature flow case. We start by calculating the linearisation of the speed operator

about both the sphere and cylinder and then extend it to give the linearisation of the

speed in (1.7). The linearised operators are then shown to be sectorial, which is the

main assumption needed in order to obtain short time existence of the flows. These

theorems are both local in nature, as they only apply to hypersurfaces that have a height

function that is small in a little-Hölder space. The chapter finishes by improving on

this for the volume preserving mean curvature flow of graphs over cylinders. In this

case short time existence is proved for all valid height functions; further, the solution

is found to be smooth after the initial time.

The question of stability of spheres under the weighted volume preserving curvature

flows is addressed in Chapter 5. Through calculation of the eigenvalues of the linearised

speed operator the sphere is found to be linearly stable (all eigenvalues are non-positive).

A locally invariant exponentially attractive center manifold is found to exist for the

flow and it is proven to consist entirely of functions whose graph is a sphere. Thus we

obtain the stability result: if the initial graph function is small, then under (1.5) it will

converge exponentially fast to a function whose graph is a sphere. Chapter 6 covers

6



1.2 Overview

similar material for the case of graphs over a cylinder by analysing (1.7). However, in

this case the eigenfunctions in the flat direction can yield positive eigenvalues. For the

system to be linearly stable we require the assumption:

R >
d

π

√√√√ ∂F
∂κ1

(κ0) (n− 1)
∂F
∂κn

(κ0)
.

Chapter 7 is split into three sections. The first deals with improving the results

of Chapter 6 in the case of volume preserving mean curvature flow. It uses the short

time existence result proved at the end of Chapter 4 and a bootstrapping method to

obtain convergence with respect to stricter norms. Section two investigates the con-

dition on the radius of the cylinder, i.e. that cylinders are only stable if R > d
√
n−1
π .

To show that this condition is necessary to obtain stability, the simplified case of ax-

ially symmetric flow is considered. By introducing a parameter, that depends solely

on the enclosed volume of the hypersurface, the flow is shown to be equivalent to a

PDE on the space of average zero function . A bifurcation analysis of the stationary

solutions to this PDE is undertaken. It is found that there is a continuously differen-

tiable curve of non-cylindrical stationary solutions that passes through a cylinder of

radius R = d
√
n−1
π . This means that any open neighbourhood about a cylinder of this

radius must contain a non-cylindrical stationary solution to the flow. Further analysis

shows that the stationary solutions on the curve close to the cylinder are unstable in

dimensions ten and under but are stable under axially symmetric volume preserving

perturbations in dimensions eleven and above. The last section of this chapter deals

with determining the height functions for these stationary solutions explicitly. The vol-

ume enclosed by the hypersurfaces is also calculated and the bifurcation curve plotted,

in order to highlight the change in stability as the dimension increases.

Lastly, in Chapter 8 we investigate the classical MCF and show how the techniques

in this paper can be applied to the MCF setting. As an example we consider normal

graphs over catenoids. The speed operator linearised about zero is found to be a

sectorial operator and we obtain a local short time existence result. A spectral analysis

of the operator shows the catenoid is linearly unstable and we prove the existence of

stable and unstable manifolds for the flow.

7



1. INTRODUCTION

1.3 Notation and Definitions

In this section we define some of the notation and conventions that will be used through-

out the thesis. We will use the Latin characters i, j, k, . . . as indices and we use the

Einstein summation convention to sum over repeated indices, unless explicitly stated.

In the cases that we do not employ the Einstein summation convention we use the

indices a, b, . . .. The Kronecker delta will be denoted δij , which is equal to one if i = j

and zero otherwise.

When dealing with normal graphs we will use the notation g̊kl and h̊ki to refer to

the metric and Weingarten map of the base hypersurface, Ω0. Often we will need to

consider the inverse of the tensor
(
δki + ρ̊hki

)
g̊kl

(
δlj + ρ̊hlj

)
, so we define this to be

(g̃ρ)
ij and also define

∣∣∣∇̃ρ∣∣∣2 := (g̃ρ)
ij∇iρ∇jρ, where ∇ is the Levi-Civita connection on

Ω0.

We use the notation S n
R to represent a sphere of radius R and C n

R,d = S n−1
R × (0, d)

to represent a cylinder of radius R and length d. The torus will be denoted by

T n
R,d = S n−1

R ×S 1
d
π

, and it will be equipped with the ‘flat’ metric obtained by evenly

extending the C n
R,d metric. We consider the local coordinates on the cylinder and torus

given by p = (q, z), with q a point on the sphere (in local coordinates), 0 < z < d for

the cylinder and −d < z ≤ d for the torus.

Throughout the thesis f, v will be used to denote general functions on a manifold,

while a function on S n
R or C n

R,d will be denoted by ρ and a function on T n
R,d will be

denoted by u. We will often need to move between a bounded, continuous function

on the cylinder with boundary and a function on the torus, hence we make use of the

notation:

uρ = uρ (q, z) :=

{
ρ (q, z) z ∈ [0, d],
ρ (q,−z) z ∈ (−d, 0).

(1.10)

Likewise when moving from a function on a torus to a function on the cylinder we

define the restriction:

u|CnR,d = u|CnR,d (q, z) := u(q, z) z ∈ [0, d], q ∈ S n−1
R , (1.11)

in the case n = 1 we use the notation u|[0,d].

The characters X, Y , Z will often be used to denote Banach spaces. An open ball in

a space X of radius r centred at a point x will be denoted BX,r(x). When we consider

8



1.3 Notation and Definitions

a function space on a manifold with boundary, X
(
M̄n

)
, we often have functions that

satisfy the boundary condition, B [f ]|∂M = 0; we therefore define:

XB

(
M̄n

)
:=
{
f ∈ X

(
M̄n

)
: B [f ]|∂Mn = 0

}
.

The characters O, U , V , W will be used to denote open sets. In particular we define

the subspaces of valid graph functions over the sphere, torus and cylinder:

Uk,α :=
{
ρ ∈ hk,α (S n

R ) : ρ > −R
}
, (1.12)

Vk,α :=
{
u ∈ hk,α

(
T n
R,d

)
: u > −R

}
, (1.13)

Ṽk,α :=

{
ρ ∈ hk,α∂

∂z

(
C
n
R,d

)
: ρ > −R

}
, (1.14)

see Section 3.1 for a definition of the little-Hölder spaces hk,α.

For a nonlinear operator G : Y → X we denote the Fréchet derivative of G by ∂G.

In the case where G has multiple arguments we use a subscript, e.g. ∂2, to indicate

which argument it is with respect to. The space of linear operators from Y to X will be

denoted L (Y,X) and for a linear operator A : Y ⊂ X → X we denote its spectrum by

σ (A) and resolvent set by ρ (A). We also define the following subsets of the spectrum:

σ+ (A) := {λ ∈ σ (A) : Re (λ) ≥ 0} , (1.15)

σ− (A) := {λ ∈ σ (A) : Re (λ) < 0} , (1.16)

σ> (A) := {λ ∈ σ (A) : Re (λ) > 0} , (1.17)

and the spectral constants:

ω− := − sup
λ∈σ−(A)

Re(λ), (1.18)

ω+ := inf
λ∈σ>(A)

Re(λ). (1.19)

In the case where σ+ (A) consists of a finite number of isolated eigenvalues, we

denote its spectral projection by P+. That is, P+ : X → X such that if we define

A+ := A|P+(Y ) and A− := A|(I−P+)(Y ), then σ (A+) = σ+ (A) and σ (A−) = σ− (A).

9



1. INTRODUCTION
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Differential Geometry

Background

This chapter is designed to give an overview of the differential geometry knowledge used

within the thesis. We start by investigating the properties of an immersed hypersur-

face. Section 2.2 discusses the flows that will be considered throughout the thesis. In

Section 2.3 we will consider the specific case of normal graphs and recast the geometric

quantities in terms of the graph function.

2.1 Hypersurfaces

Consider an n-dimensional manifold Mn, an immersion X : Mn → Rn+1 and let

Ω ⊂ Rn+1 be the image of Mn under this immersion. Local coordinates on Mn will

be denoted by x1, . . . , xn and, by using “·” to denote the inner product on Rn+1, the

metric, g, of Ω induced by the immersion X is given in component form by:

gij =
∂X

∂xi
· ∂X
∂xj

.

The components of the inverse metric, g−1, will be denoted gij . The normal to Ω is

denoted by ν and the second fundamental form, A = (hij), can be calculated from:

hij = − ∂2X

∂xi∂xj
· ν.

The Weingarten map can then be represented by the matrix W =
(
hji

)
=
(
gikhkj

)
,

the eigenvalues of this matrix are the principal curvatures of Ω and are denoted by

11



2. DIFFERENTIAL GEOMETRY BACKGROUND

κa. Other important curvature terms include the norm of the second fundamental

form |A| =
(
gijgklhikhjl

)1/2
and the elementary symmetric functions of the principal

curvatures:

Ea :=

{
1 a = 0,∑

1≤b1<...<ba≤n
∏a
i=1 κbi a = 1, . . . , n,

(2.1)

note that E1 = H, the mean curvature.

When taking derivatives of tensor fields on Mn we will often use the Levi-Civita

connection ∇, which for a (r, s)-tensor T is given by:

∇kT j1...jri1...is
=
∂T j1...jri1...is

∂xk
+ Γj1klT

lj2...jr
i1...is

+ . . .+ ΓjrklT
j1...jr−1l
i1...is

−Γlki1T
j1...jr
li2...is

− . . .−ΓlkisT
j1...jr
i1...is−1l

,

where Γkij are the Christoffel symbols:

Γkij =
1

2
gkl
(
∂glj
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
.

The hypersurface Laplacian will be denoted by ∆ := gij∇i∇j and the hypersurface

measure by dµ =
√

det (g) dx. For a compact hypersurface Ω we also have the quan-

tities:

Va :=

{ (
(n+ 1)

(
n
a

))−1 ´
Mn En−a dµ a = 0, . . . , n

V ol (Φ) a = n+ 1,
(2.2)

where Φ is an (n + 1)-dimensional region associated to Ω. For a closed hypersurface

Φ is the enclosed volume, while if the hypersurface is a graph over a cylinder the

volume is that enclosed by the hypersurface and the end hyperplanes. The area of the

hypersurface, |Ω|, is proportional to Vn, i.e. |Ω| = (n+ 1)Vn, and in the case where Ω

is convex Va coincides with the ath mixed volume, see [5] for a definition. The average

of a function f : Mn → R is denoted by: 
Mn

f dµ :=
1

|Ω|

ˆ
Mn

f dµ.

Various important identities involve the second fundamental form; we provide some

here that are used in the study of curvature flows. The Codazzi equations state that

∇A is a fully symmetric (0, 3)-tensor:

∇khij = ∇ihjk = ∇jhki. (2.3)

The Gauss-Weingarten relations use the tangent vectors and normal of Ω as a basis for

Rn+1 in order to express the second derivative of the immersion:

∂2X

∂xi∂xj
= Γkij

∂X

∂xk
− hijν, (2.4)

12



2.2 Curvature Flows

and the derivative of the normal:

∂ν

∂xi
= hki

∂X

∂xk
. (2.5)

Using the formula for the Levi-Civita connection, (2.4) can also be expressed as:

∇i∇jX = −hijν.

Lastly we have that the elementary symmetric functions of the principal curvatures

satisfy the identity, found in Equation (5.86) of [24] also see Appendix B for a complete

proof:
∂Ea+1

∂hij
= Eaδ

j
i − h

j
m

∂Ea
∂him

, (2.6)

where a = 0, . . . , n (in the a = n case we use the convention En+1 = 0).

2.2 Curvature Flows

We present here some evolution equations for the properties of a family of hypersurfaces

undergoing a flow of the form in equation (1.4), a derivation can be found in [4]. For

ease we do not show the explicit dependence on κ in this section.

Lemma 2.2.1.

(a)
∂gij
∂t

= 2

(
1´

Mn Ξ dµ

ˆ
Mn

FΞ dµ− F
)
hij

(b)
∂ dµ

∂t
=

(
1´

Mn Ξ dµ

ˆ
Mn

FΞ dµ− F
)
H dµ

(c)
∂ν

∂t
= gij∇iF

∂X

∂xj

(d)

∂hjj
∂t

= gim∇m∇jF −
(

1´
Mn Ξ dµ

ˆ
Mn

FΞ dµ− F
)
himh

m
j

From these equations we are able to calculate how the quantities Va evolve under

(1.4) and find that mixed volume preserving flows, i.e. when Ξ = Ea+1, preserve Vn−a.

13
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Lemma 2.2.2.

dVa
dt

=

{
0 a = 0,(
n+1
a

)−1 ´
M En+1−a

(
1´

Mn Ξ dµ

´
Mn FΞ dµ− F

)
dµ a = 1, . . . , n+ 1.

Proof. The case of l = n + 1 follows immediately from the first variation of volume,

which gives:

dVn+1

dt
=

ˆ
Mn

∂X

∂t
· ν dµ.

The other cases are given by McCoy in Lemma 4.3 of [40] for the case where Ωt are

convex hypersurfaces. McCoy uses the definition of mixed volumes of convex hyper-

surfaces, see [5], which are not valid unless the hypersurface is convex. To obtain the

result for all solutions to the flow we take the divergence the identity in (2.6) to obtain

for a = 0, . . . , n:

gki∇k

(
∂Ea+1

∂hij

)
=gkj∇kEa − gki∇khjm

∂Ea
∂him

− gkihjm∇k
(
∂Ea
∂him

)
=gkj∇khim

∂Ea
∂him

− gkiglj∇khlm
∂Ea
∂him

− hjmgki∇k
(
∂Ea
∂him

)
=gkj∇khim

∂Ea
∂him

− gkiglj∇lhkm
∂Ea
∂him

− hjmgki∇k
(
∂Ea
∂him

)
=− hjmgki∇k

(
∂Ea
∂him

)
,

where to get to the second last line we use the Codazzi equation (2.3). Hence, due to

gki∇k
(
∂E0

∂hij

)
= 0 we have that gki∇k

(
∂Ea
∂hij

)
= 0 for all a = 0, . . . , n. Now we can

derive the evolution equation:

(n+ 1)

(
n

a

)
dVa
dt

=

ˆ
Mn

∂En−a
∂t

+

(´
Mn FΞ dµ´
Mn Ξ dµ

− F
)
HEn−a dµ

=

ˆ
Mn

∂En−a
∂hij

∂hij
∂t

+

(´
Mn FΞ dµ´
Mn Ξ dµ

− F
)
HEn−a dµ

=

ˆ
Mn

∂En−a
∂hij

gim∇m∇jF −
(´

Mn FΞ dµ´
Mn Ξ dµ

− F
)
∂En−a
∂hij

himh
m
j

+

(´
Mn FΞ dµ´
Mn Ξ dµ

− F
)
HEn−a dµ

14
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(n+ 1)

(
n

a

)
dVa
dt

=

ˆ
Mn

∇m

(
∂En−a
∂hij

gim∇jF

)
+

(´
Mn FΞ dµ´
Mn Ξ dµ

− F
)
HEn−a

+

(´
Mn FΞ dµ´
Mn Ξ dµ

− F
)
him

(
∂En+1−a
∂him

− En−aδmi
)
dµ

=(n+ 1− a)

ˆ
Mn

(´
Mn FΞ dµ´
Mn Ξ dµ

− F
)
En+1−a dµ,

where the second last line is due to (2.6) and the last line is due to the homogeneity of

En+1−a.

Corollary 2.2.3. If Ξ = Ea+1 then (1.4) is the mixed volume preserving curvature

flow and it preserves Vn−a as long as the flow exists.

2.3 Normal Graphs

Consider an embedding of a hypersurface X0 : Mn → Rn+1, which has metric g̊, second

fundamental form Å =
(̊
hij

)
, Weingarten map W̊ and normal ν0. Let Ωρ be a normal

graph over Ω0 := X0 (Mn) given by the height function ρ : Mn → R. Ωρ can be

represented by the embedding:

Xρ = X0 + ρν0 (2.7)

Such a graph hypersurface is well defined for any ρ that satisfies ‖ρ‖L∞ < 1
κmax

, where

κmax = maxa∈[1,n] ‖κa‖L∞ is the maximum of the absolute values of the principal

curvatures of Ω0. Note that when Mn = S n
R or C n

R,d we will always take X0 to be the

natural embedding.

Lemma 2.3.1. The tangent vectors, metric, inverse metric and normal of the hyper-

surface Ωρ are given by:

∂Xρ

∂xi
=
(
δki + ρ̊hki

) ∂X0

∂xk
+∇iρν0, (2.8)

(gρ)ij =
(
δki + ρ̊hki

)
g̊kl

(
δlj + ρ̊hlj

)
+∇iρ∇jρ, (2.9)

(gρ)
ij = (g̃ρ)

ij −
(

1 +
∣∣∣∇̃ρ∣∣∣2)−1

(g̃ρ)
ik(g̃ρ)

jl∇kρ∇lρ, (2.10)

and

νρ =
1√

1 +
∣∣∣∇̃ρ∣∣∣2

(
ν0 − (g̃ρ)

rp
(
δsp + ρ̊hsp

)
∇rρ

∂X0

∂xs

)
, (2.11)
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2. DIFFERENTIAL GEOMETRY BACKGROUND

where (g̃ρ)
ij is the inverse of

(
δki + ρ̊hki

)
g̊kl

(
δlj + ρ̊hlj

)
and

∣∣∣∇̃ρ∣∣∣2 = (g̃ρ)
ij∇iρ∇jρ.

Note that due to the restriction on the size of the height function the quantity(
I + ρW̊

)
is always invertible.

Proof. The first equation follows directly from the Gauss Weingarten relation in (2.5)

and the second equation follows from the definition of the induced metric. The formula

for the inverse metric is given in terms of (g̃ρ)
ij , which is itself defined as the inverse of

a (0, 2)-tensor. While this may seem unusual, we will see later that the quantity (g̃ρ)
ij

has an alternate interpretation that makes its calculation simpler.

To calculate the equation of the normal we let νρ = b(ρ)
(
ν0 + c(ρ)l ∂X0

∂xl

)
and dot

it with the tangent vectors:

0 = b(ρ)
(
∇iρ+ c(ρ)l

(
δki + ρ̊hki

)
g̊kl

)
.

Therefore:

c(ρ)l = −g̊kl
(
I + ρW̊

)−1
i
k∇iρ = −(g̃ρ)

lk
(
δik + ρ̊hik

)
∇iρ.

The quantity b(ρ) is found using the unit vector condition and noting that for the

direction of νρ and ν0 to be consistent, b(ρ) is positive.

b(ρ)−2 = 1 + (g̃ρ)
rp
(
δsp + ρ(hρ)

s
p

)
(g̃ρ)

iq
(
δjq + ρ̊hjq

)
∇rρ∇iρ̊gsj

= 1 + δrq(g̃ρ)
iq∇rρ∇iρ

= 1 +
∣∣∣∇̃ρ∣∣∣2 .

We note here that if we consider the foliation of normal graphs given by constant

ρ then (g̃ρ)
ij is the inverse metric of the corresponding foliation; this simplifies calcu-

lations for many hypersurfaces. For example if Mn = S n
R then (g̃ρ)

ij = R2

(R+ρ)2 g̊
ij . We

now consider some curvature quantities for Ωρ and define L(ρ) :=

√
1 +

∣∣∣∇̃ρ∣∣∣2.

Lemma 2.3.2. The second fundamental form and mean curvature of Ωρ are given by:

(hρ)ij =L(ρ)−1
(
−∇i∇jρ+ (δsi + ρ̊hsi )̊hsj + (g̃ρ)

rp(δsp + ρ̊hsp)∇rρ
(̊
his∇jρ+ h̊js∇iρ

)
+ρ(g̃ρ)

rp(δsp + ρ̊hsp)∇s̊hij∇rρ
)

(2.12)
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and

H(ρ) =L(ρ)−3(g̃ρ)
ik(g̃ρ)

jl
(
δsi + ρ̊hsi

)
h̊sj∇kρ∇lρ+ L(ρ)−1(g̃ρ)

ij
(
δsi + ρ̊hsi

)
h̊sj

+ ρL(ρ)−3
(
L(ρ)2(g̃ρ)

ij − (g̃ρ)
ik(g̃ρ)

jl∇kρ∇lρ
)

(g̃ρ)
pr
(
δsp + ρ̊hsp

)
∇s̊hij∇rρ

− L(ρ)−3
(
L(ρ)2(g̃ρ)

ij − (g̃ρ)
ik(g̃ρ)

jl∇kρ∇lρ
)
∇i∇jρ. (2.13)

Proof. We start by calculating the second derivative of the embedding using the Gauss-

Weingarten relations (2.4) and (2.5):

∂2Xρ

∂xi∂xj
=

(
h̊li∇jρ+ ρ

∂h̊li
∂xj

)
∂X0

∂xl
+
(
δli + ρ̊hli

) ∂2X0

∂xl∂xj
+

∂2ρ

∂xi∂xj
ν0 +∇iρ

∂ν0

∂xj

=

(
h̊ki∇jρ+ ρ

∂h̊ki
∂xj

+ Γ̊kij + ρ̊hliΓ̊
k
lj + h̊kj∇iρ

)
∂X0

∂xk

+

(
∂2ρ

∂xi∂xj
− h̊lj

(
δli + ρ̊hli

))
ν0

=
(̊
hki∇jρ+ h̊kj∇iρ+ ρ∇j h̊ki +

(
δkl + ρ̊hkl

)
Γ̊lij

) ∂X0

∂xk

+

(
∂2ρ

∂xi∂xj
− h̊sj

(
δsi + ρ̊hsi

))
ν0

The last line used the equation for the covariant derivative of the Weingarten map,

∇j h̊ki =
∂h̊ki
∂xj

+ Γ̊klj h̊
l
i − Γ̊lij h̊

k
l . Using the definition of the second fundamental form and

equation (2.11) we obtain:

(hρ)ij =L(ρ)−1

(̊
hsj

(
δsi + ρ̊hsi

)
− ∂2ρ

∂xi∂xj
+ (g̃ρ)

rp(δsp + ρ̊hsp)∇rρ
(̊
his∇jρ+ h̊js∇iρ

)
+Γ̊rij∇rρ+ ρ(g̃ρ)

rp(δsp + ρ̊hsp)∇rρ∇j h̊is
)
,

which gives (2.12) by converting the partial derivatives of ρ to covariant derivatives

and using the Codazzi equation (2.3). Equation (2.13) follows from (2.10), (2.12) and

the definition of H(ρ) = (gρ)
ij(hρ)ij , note that:

(gρ)
ij
(̊
hsj

(
δsi + ρ̊hsi

)
+ (g̃ρ)

rp(δsp + ρ̊hsp)∇rρ
(̊
his∇jρ+ h̊js∇iρ

))
=2
(

(g̃ρ)
ij − L(ρ)−2(g̃ρ)

ik(g̃ρ)
jl∇kρ∇lρ

)
(g̃ρ)

rp(δsp + ρ̊hsp)̊his∇rρ∇jρ

+ (g̃ρ)
ij h̊sj

(
δsi + ρ̊hsi

)
− L(ρ)−2(g̃ρ)

ik(g̃ρ)
jl̊hsj

(
δsi + ρ̊hsi

)
∇kρ∇lρ

=2(g̃ρ)
ij(g̃ρ)

rp(δsp + ρ̊hsp)̊his∇rρ∇jρ− L(ρ)−2(g̃ρ)
ik(g̃ρ)

jl̊hsj

(
δsi + ρ̊hsi

)
∇kρ∇lρ

+ (g̃ρ)
ij h̊sj

(
δsi + ρ̊hsi

)
− 2L(ρ)−2(g̃ρ)

ik(g̃ρ)
rp
∣∣∣∇̃ρ∣∣∣2 (δsp + ρ̊hsp)̊his∇kρ∇rρ

=(g̃ρ)
ij h̊sj

(
δsi + ρ̊hsi

)
+ L(ρ)−2(g̃ρ)

ik(g̃ρ)
jl̊hsj

(
δsi + ρ̊hsi

)
∇kρ∇lρ.
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We finish this chapter by proving that a solution to equation (1.5) is equivalent to

a solution to (1.4).

Lemma 2.3.3. Let ρ : Mn× [0, T ) be a solution to (1.5) with initial condition ρ0, then

Xρ is tangentially diffeomorphic to the solution of (1.4) with initial condition Xρ0.

Proof. Let φ : Mn × [0, T )→Mn be a diffeomorphism satisfying the system:

∂φi

∂t
= −

(
1´

Mn Ξ dµ

ˆ
Mn

FΞ dµ− F
)

(g̃ρ)
ij∇jρ√

1 +
∣∣∣∇̃ρ∣∣∣2 ,

and set X̃ (p, t) = Xρ (φ(p, t), t). Then, using equations (2.8) and (2.11), X̃ satisfies

(1.4):

∂X̃

∂t
=
∂Xρ

∂t
+
∂Xρ

∂xi
∂φi

∂t

=
∂ρ

∂t
ν0 −

(
1´

Mn Ξ dµ

ˆ
Mn

FΞ dµ− F
)

(g̃ρ)
ij∇jρ√

1 +
∣∣∣∇̃ρ∣∣∣2

((
δki + ρ̊hki

) ∂X0

∂xk
+∇iρν0

)

=
1√

1 +
∣∣∣∇̃ρ∣∣∣2

(
1´

Mn Ξ dµ

ˆ
Mn

FΞ dµ− F
)(

ν0 − (g̃ρ)
ij∇j

(
δki + ρ̊hki

) ∂X0

∂xk

)

=

(
1´

Mn Ξ dµ

ˆ
Mn

FΞ dµ− F
)
νρ.
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3

Functional Analysis Background

This chapter is designed to give an overview of the functional analysis knowledge used

within the thesis. We will introduce interpolation spaces for a Banach couple and define

the little-Hölder spaces, which are their own interpolation spaces. In Section 3.2 we will

define what it means for an operator to be sectorial, as well as prove that an elliptic

operator on the little-Hölder spaces is sectorial. The section ends with some results for

perturbations of sectorial operators.

3.1 Interpolation Spaces

The continuous interpolation spaces that we consider in this thesis are defined for

a Banach couple Z ⊂ Y and are given by the interpolation functor (Y,Z)θ, where

θ ∈ (0, 1). They are defined, see [38], as follows:

(Y, Z)θ :=

{
f ∈ Y : lim

t→0+
t−θK (t, f, Y, Z) = 0

}
,

where

K (t, f, Y, Z) := inf
g∈Z

(‖f − g‖Y + t ‖g‖Z) .

The norms on these spaces are:

‖f‖(Y,Z)θ
:=
∥∥∥t−θK (t, f, Y, Z)

∥∥∥
L∞(0,∞)

.

The reiteration theorem for interpolation spaces allows for easier characterisation of

interpolation spaces.
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Theorem 3.1.1 (Remark 1.2.16 [38]). For θ0, θ1, θ2 ∈ (0, 1) and Y , Z Banach spaces

such that Z ⊂ Y :(
(Y, Z)θ1 , Z

)
θ0

= (Y,Z)(1−θ0)θ1+θ0
,
(
Y, (Y,Z)θ1

)
θ0

= (Y,Z)θ1θ0 .

An immediate consequence is:(
(Y, Z)θ1 , (Y,Z)θ2

)
θ0

= (Y, Z)(1−θ0)θ1+θ0θ2
. (3.1)

Another useful result relates to interpolating between Z and a closed subspace of

Y .

Lemma 3.1.2. Let Y , Z be Banach spaces such that Z ⊂ Y and U be a closed subspace

of Y that has an associated projection P : Y → U with the properties:

‖P [y]‖Y ≤ C1 ‖y‖Y , for all y ∈ Y and ‖P [z]‖Z ≤ C2 ‖z‖Z , for all z ∈ Z. (3.2)

Then

(Y,Z)θ ∩ U = (U,Z ∩ U)θ , for all θ ∈ (0, 1), (3.3)

where U is endowed with the same norm as Y and Z ∩ U has the same norm as Z.

Proof. We fix θ ∈ (0, 1) and suppose that x ∈ (U,Z ∩ U)θ. Since U and Y have the

same norm we have that K(t, x, U, Z∩U) = K(t, x, Y, Z∩U) for all t > 0 and by taking

the infinum over the larger space we therefore have K(t, x, U, Z ∩U) ≥ K(t, x, Y, Z) for

all t > 0. Therefore

0 = lim
t→0+

t−θK(t, x, U, Z ∩ U) ≥ lim
t→0+

t−θK(t, x, Y, Z) ≥ 0,

and hence x ∈ (Y,Z)θ ∩ U , so (U,Z ∩ U)θ ⊂ (Y, Z)θ ∩ U .

Now suppose x ∈ (Y,Z)θ∩U then for all t > 0 and z ∈ Z we can use (3.2) to obtain

the estimate

‖x− P [z]‖Y + t ‖P [z]‖Z = ‖P [x− z]‖Y + t ‖P [z]‖Z ≤ C3 (‖x− z‖Y + t ‖z‖Z) ,

where C3 := max(C1, C2). By taking the infinum over z ∈ Z we therefore have, for all

t > 0:

inf
z∈Z

(‖x− P [z]‖Y + t ‖P [z]‖Z) ≤ C3 inf
z∈Z

(‖x− z‖Y + t ‖z‖Z) = C3K(t, x, Y, Z).

Since z only appears as P [z] in the left hand side the infinum can be taken over z ∈ Z∩U
and hence K(t, x, U, Z ∩ U) ≤ C3K(t, x, Y, Z). Therefore

0 = C3 lim
t→0+

t−θK(t, x, Y, Z) ≥ lim
t→0+

t−θK(t, x, U, Z ∩ U) ≥ 0,

and hence x ∈ (U,Z ∩ U)θ. Thus, (Y,Z)θ ∩ U ⊂ (U,Z ∩ U)θ and we obtain the result.
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3.1 Interpolation Spaces

Throughout this dissertation we will be considering functions of varying degrees of

regularity; here we introduce the different Banach spaces that will be considered, see

also [38]. Let β = (β1, . . . , β2) be a multi-index with |β| =
∑n

i=1 βi, then for an open

set U ⊂ Rn the Hölder spaces are defined for k ∈ N and α ∈ (0, 1) as:

Cα
(
Ū
)

:=

f ∈ C (Ū) : sup
x,y∈Ū
x 6=y

|f(x)− f(y)|
|x− y|α

<∞

 ,

Ck,α
(
Ū
)

:=
{
f ∈ Ck

(
Ū
)

: Dβf ∈ Cα
(
Ū
)

for all β, |β| = k
}
,

where D is the derivative operator on Rn. Here we use that Ck
(
Ū
)

is the space of

functions defined on Ū that are k times continuously differentiable in U , with derivatives

up to the order k bounded and continuously extendable up to the boundary. The norms

on these spaces are:

‖f‖Ck,α(Ū) := ‖f‖Ck(Ū) +
∑
|β|=k

sup
x,y∈Ū
x 6=y

|Dβf(x)−Dβf(y)|
|x− y|α

,

where

‖f‖Ck(Ū) :=
∑
|β|≤k

sup
x∈Ū

∣∣∣Dβf(x)
∣∣∣ .

The little-Hölder spaces are closed subspaces of the Hölder spaces; they share the same

norm as the Hölder spaces and are defined as:

hα
(
Ū
)

:=

f ∈ Cα (Ū) : lim
r→0

sup
x,y∈Ū

0<|x−y|<r

|f(x)− f(y)|
|x− y|α

= 0

 ,

hk,α
(
Ū
)

:=
{
f ∈ Ck,α

(
Ū
)

: Dβf ∈ hα
(
Ū
)

for all β, |β| = k
}
.

These spaces are able to be extended to a manifold by means of an atlas and, in the

case of a manifold with metric, are equipped with the norm:

‖u‖hk,α(Mn) = ‖u‖Ck(Mn) +
∑
|β|=k

sup
p,q∈Mn

p6=q

|∇βu(p)−∇βu(q)|
d(p, q)α

, (3.4)

where d(·, ·) is the geodesic distance, [22]. Note that when writing the norm we will

drop the space the function is over when it is clear. We have the following lemma for

the relationship between the norm of a function on the cylinder and its odd and even

extensions on the torus.
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Lemma 3.1.3. Fix α ∈ (0, 1) and let ρ ∈ h0,α
(
C
n
R,d

)
then uρ ∈ h0,α

(
T n
R,d

)
and

‖ρ‖h0,α = ‖uρ‖h0,α .

Further if ρ(q, 0) = ρ(q, d) = 0 and we set vρ to be its odd extension to T n
R,d, then

vρ ∈ h0,α
(
T n
R,d

)
and

‖ρ‖h0,α ≤ ‖vρ‖h0,α ≤ 2‖ρ‖h0,α .

Proof. We first note that if ρ ∈ C0
(
C
n
R,d

)
then uρ ∈ C0

(
T n
R,d

)
and ‖uρ‖C0 = ‖ρ‖C0 .

We now define for pa = (qa, za) ∈ T n
R,d, a ∈ {1, 2}, the point p̄a := (qa, |za|) ∈ C

n
R,d

and seek a bound of the form

|uρ(p1)− uρ(p2)|
d(p1,p2)α

≤ |ρ(p̄1)− ρ(p̄2)|
d(p̄1, p̄2)α

, (3.5)

for all p1,p2 ∈ T n
R,d. If z1, z2 ∈ [0, d] or z1, z2 ∈ (−d, 0) then we have equality, whereas

if z1 ∈ [0, d] and z2 ∈ (−d, 0) then d(p1,p2) ≥ d(p1, p̄2) so the bound holds. Therefore:

lim
r→0

sup
p1,p2∈T n

R,d

0<d(p1,p2)<r

|uρ(p1)− uρ(p2)|
d(p1,p2)α

≤ lim
r→0

sup
p1,p2∈T n

R,d

0<d(p1,p2)<r

|ρ(p̄1)− ρ(p̄2)|
d(p̄1, p̄2)α

= lim
r→0

sup
p1,p2∈C

n
R,d

0<d(p1,p2)<r

|ρ(p1)− ρ(p2)|
d(p1,p2)α

=0.

So uρ ∈ h0,α
(
T n
R,d

)
and the equality of norms follows from taking the supremum in

equation (3.5) and from ‖uρ‖h0,α ≥ ‖uρ|CnR,d‖h0,α = ‖ρ‖h0,α .

We now turn to the odd extension and note that if ρ ∈ C0
(
C
n
R,d

)
and is zero

at z = 0 then vρ ∈ C0
(
T n
R,d

)
and ‖vρ‖C0 = ‖ρ‖C0 . In this case we note that if

z1 ∈ (0, d) and z2 ∈ (−d, 0) then either the geodesic joining p1 and p2 crosses z = 0,

or z = d. Therefore it passes through a point p̃ = p̃(p1,p2) = (q̃(p1,p2), 0), or

p̃ = p̃(p1,p2) = (q̃(p1,p2), d). This point can be associated with the corresponding

point on the cylinder, hence ρ(p̃) = 0. We therefore obtain:

|vρ(p1)− vρ(p2)|
d(p1,p2)α

=
|ρ(p̄1) + ρ(p̄2)|
d(p1,p2)α

=
|ρ(p̄1)− ρ(p̃) + ρ(p̄2)− ρ(p̃)|

d(p1,p2)α

≤|ρ(p̄1)− ρ(p̃)|
d(p1,p2)α

+
|ρ(p̄2)− ρ(p̃)|
d(p1,p2)α

≤|ρ(p̄1)− ρ(p̃)|
d(p̄1, p̃)α

+
|ρ(p̄2)− ρ(p̃)|
d(p̄2, p̃)α

. (3.6)
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We now fix an r ∈ (0, d/2) and, due to the symmetry of the domain and vρ, we have

that:

sup
p1,p2∈T n

R,d

0<d(p1,p2)<r

|vρ(p1)− vρ(p2)|
d(p1,p2)α

= sup
p1∈T n

R,d

z1∈[0,d]

sup
p2∈T n

R,d

0<d(p1,p2)<r

|vρ(p1)− vρ(p2)|
d(p1,p2)α

= max

 sup
p1∈C

n
R,d

sup
p2∈C

n
R,d

0<d(p1,p2)<r

|ρ(p1)− ρ(p2)|
d(p1,p2)α

,

sup
p1∈T n

R,d

z1∈[0,d]

sup
p2∈T n

R,d
\Cn

R,d

0<d(p1,p2)<r

|vρ(p1)− vρ(p2)|
d(p1,p2)α

 . (3.7)

Now if z1 ∈ {0, d} then we have that:

sup
p2∈T n

R,d
\Cn

R,d

0<d(p1,p2)<r

|vρ(p1)− vρ(p2)|
d(p1,p2)α

= sup
p2∈T n

R,d
\Cn

R,d

0<d(p1,p2)<r

|ρ(p̄2)|
d(p1, p̄2)α

≤ sup
p2∈Cn

R,d

0<d(p̄1,p2)<r

|ρ(p̄1)− ρ(p2)|
d(p̄1,p2)α

, (3.8)

where we have used that

{p2 ∈ T n
R,d : z2 ∈ (−d, 0), 0 < d(p1,p2) < r} ⊂ {p2 ∈ T n

R,d : 0 < d(p̄1, p̄2) < r},

since d(p1,p2) = d(p̄1, p̄2). Lastly if z1 ∈ (0, d) we can use equation (3.6) to conclude:

sup
p2∈T n

R,d
, z2∈(−d,0)

0<d(p1,p2)<r

|vρ(p1)− vρ(p2)|
d(p1,p2)α

≤ sup
p2∈T n

R,d
, z2∈(−d,0)

0<d(p1,p2)<r

|ρ(p̄1)− ρ(p̃)|
d(p̄1, p̃)α

+ sup
p2∈T n

R,d
, z2∈(−d,0)

0<d(p1,p2)<r

|ρ(p̄2)− ρ(p̃)|
d(p̄2, p̃)α

≤ sup
p3∈∂Cn

R,d

0<d(p̄1,p3)<r

|ρ(p̄1)− ρ(p3)|
d(p̄1,p3)α

+ sup
p2∈C

n
R,d

0<d(p̄1,p2)<r

|ρ(p2)− ρ(p̃)|
d(p2, p̃)α

≤ sup
p3∈∂Cn

R,d

0<d(p̄1,p3)<r

|ρ(p̄1)− ρ(p3)|
d(p̄1,p3)α

+ sup
p2∈C

n
R,d,p3∈∂Cn

R,d

0<d(p3,p2)<r

|ρ(p2)− ρ(p3)|
d(p2,p3)α

.

Therefore:

sup
p1∈T n

R,d

z1∈(0,d)

sup
p2∈T n

R,d
, z2∈(−d,0)

0<d(p1,p2)<r

|vρ(p1)− vρ(p2)|
d(p1,p2)α

≤ 2 sup
p1∈C

n
R,d

sup
p2∈C

n
R,d

0<d(p1,p2)<r

|ρ(p1)− ρ(p2)|
d(p1,p2)α

,
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and hence by combining with equations (3.7) and (3.8) we have that:

sup
p1,p2∈T n

R,d

0<d(p1,p2)<r

|vρ(p1)− vρ(p2)|
d(p1,p2)α

≤ 2 sup
p1,p2∈C

n
R,d

0<d(p1,p2)<r

|ρ(p1)− ρ(p2)|
d(p1,p2)α

.

Taking the limit r → 0 gives that vρ ∈ h0,α
(
T n
R,d

)
. The bound on the norm also

follows from equation (3.6).

Corollary 3.1.4. Fix l ∈ {1, 2}, α ∈ (0, 1) and let ρ ∈ hl,α∂
∂z

(
C
n
R,d

)
then its even

extension uρ is in hl,α
(
T n
R,d

)
and

‖ρ‖hl,α ≤ ‖uρ‖hl,α ≤ 2‖ρ‖hl,α .

Proof. We first note that if ρ ∈ C l∂
∂z

(
C
n
R,d

)
, l ∈ {1, 2}, then uρ ∈ C l

(
T n
R,d

)
and

‖uρ‖Cl = ‖ρ‖Cl . When defined, we have the derivatives given by:

∇iuρ(q, z) =

{
∇iρ(q, z) z ∈ [0, d],

∇iρ(q,−z) z ∈ (−d, 0),
i 6= n,

∇nuρ =

{
∇nρ(q, z) z ∈ [0, d],

−∇nρ(q,−z) z ∈ (−d, 0),

and

∇i∇juρ(q, z) =

{
∇i∇jρ(q, z) z ∈ [0, d],

∇i∇jρ(q,−z) z ∈ (−d, 0),
i, j 6= n or i = j = n,

∇i∇juρ(q, z) =

{
∇i∇jρ(q, z) z ∈ [0, d],

−∇i∇jρ(q,−z) z ∈ (−d, 0),
i or j = n.

Since all these functions are either even or odd, by Lemma 3.1.3 we get the result.

The interpolation functors allow characterisation of the little-Hölder spaces in terms

of the continuous function spaces:

hlθ
(
Ū
)

=
(
C
(
Ū
)
, C l

(
Ū
))

θ
, (3.9)

for l ∈ N and θ ∈ (0, 1) such that lθ /∈ N, [38]. Here we use the notation that

hσ
(
Ū
)

= hbσc,(σ−bσc)
(
Ū
)
, for a real number σ ∈ R. The Reiteration Theorem 3.1.1

then gives the following corollary.

Corollary 3.1.5. For any l ∈ N0 such that θ0 (l + θ2 − θ1) + θ1 /∈ N:(
h0,θ1

(
Ū
)
, hl,θ2

(
Ū
))

θ0
= hθ0(l+θ2−θ1)+θ1

(
Ū
)
. (3.10)

The above theorem can be extended to little-Hölder spaces on manifolds without

boundary, see for example equation 19 in [26].
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3.2 Sectorial Operators

3.2 Sectorial Operators

A linear operator, A : Z ⊂ Y → Y , is called sectorial if there exist θ ∈
(
π
2 , π

)
, ω ∈ R

and M > 0 such that

(i) ρ(A) ⊃ Sθ,ω := {λ ∈ C : λ 6= ω, | arg(λ− ω)| < θ},

(ii) ‖R(λ,A)‖L(Y,Y ) ≤ M
|λ−ω| for all λ ∈ Sθ,ω,

here ρ(A) is the resolvent set, R(λ,A) = (λI − A)−1 is the resolvent operator and

‖ · ‖L(Y,Y ) is the standard linear operator norm, [38].

We also have the following lemma from [38] that gives a sufficient condition for an

operator to be sectorial.

Proposition 3.2.1 (Proposition 2.1.11 [38]). Let A : Z ⊂ Y → Y be a linear operator

such that ρ(A) contains a half plane {λ ∈ C : Re(λ) ≥ ω}, and

‖λR(λ,A)‖L(Y,Y ) ≤M, Re(λ) ≥ ω, (3.11)

with ω ∈ R, M > 0. Then A is sectorial.

We also have a different characterisation:

Lemma 3.2.2. Assume that ρ(A) contains the half plane {λ ∈ C : Re(λ) ≥ ω}, then

the condition (3.11) is equivalent to

‖z‖Z ≤ κ‖(λI −A)[z]‖Y , for all z ∈ Z, Re(λ) ≥ ω, (3.12)

for some κ > 0.

Proof. If (3.12) holds, then we obtain the bound

‖λz‖Y = ‖(λI −A)[z] +A[z]‖Y
≤ ‖(λI −A)[z]‖Y + ‖A‖L(Z,Y )‖z‖Z
≤ (1 + κ‖A‖L(Z,Y ))‖(λI −A)[z]‖Y ,

for all z ∈ Z, which gives us (3.11).

Alternatively we wish to bound ‖z‖Z , assuming (3.11). For Re(λ) ≥ ω we have:

‖z‖Z = ‖R(ω,A) [(λI −A)[z] + (ω − λ)z] ‖Z
≤ ‖R(ω,A)‖L(Y,Z)‖(λI −A)[z] + (ω − λ)z‖Y

≤ ‖R(ω,A)‖L(Y,Z)

(
‖(λI −A)[z]‖Y +

∣∣∣ω
λ
− 1
∣∣∣ ‖λz‖Y )

≤ ‖R(ω,A)‖L(Y,Z) (1 + 2M) ‖(λI −A)[z]‖Y
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We now assume Z and Y are Banach spaces with Z dense in Y . As defined by

Amann in [3] we let:

H(Z, Y ) := {A ∈ L (Z, Y ) : G(A) is a strongly continuous analytic semigroup} ,

where G(A) =
{
e−tA : t ≥ 0

}
. This space can be seen to be equivalent to the space

of sectorial operators. Firstly, by Proposition 2.1.4 in [38], see also Remark 2.1.5, if

A : Z → Y is sectorial then G(−A) is a strongly continuous analytic semigroup and

hence −A ∈ H(Z, Y ) (in fact G(−A) is strongly continuous if and only if Z is dense in

Y ). The reverse implication follows by combining Proposition 3.2.1 with the following

theorem:

Theorem 3.2.3 (Theorem 1.2.2 [3]). A ∈ H(Z, Y ) if and only if there exist κ ≥ 1 and

ω > 0 such that ωI +A is an isometry from Z to Y and

κ−1 ≤ ‖(λI +A)[z]‖Y
|λ|‖z‖Y + ‖z‖Z

≤ κ, for all z ∈ Z, Re(λ) ≥ ω.

We now introduce the Shauder estimates on the Hölder spaces. These will be used

in Theorem 3.2.6 to determine a class of sectorial operators.

Theorem 3.2.4 (Theorem 27 (a) [15]). Let A be a linear, elliptic differential operator

of order k on a manifold, Mn, that is compact without boundary. Given a constant

α ∈ (0, 1) and an integer l ≥ 0 there are constants c1, c2, c3 such that for every

v ∈ Ck+l,α (Mn),

‖v‖Ck+l,α ≤ c1‖A[v]‖Cl,α + c2‖v‖C0 ≤ c3‖v‖Ck+l,α .

Moreover, if one restricts v so that it is orthogonal (in L2(Mn)) to the nullspace of A,

then we can let c2 = 0 (with a new constant c1).

Another standard theorem of elliptic operators that we require is the following:

Theorem 3.2.5 (Theorem 37 [15]). Let A be a linear, uniformly elliptic differential

operator of order k on a manifold, Mn, that is compact without boundary. The eigen-

values of A are discrete, having a limit point only at infinity.

These estimates allow us to prove that elliptic operators are sectorial as maps into

the Hölder or little-Hölder spaces.
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Theorem 3.2.6. Let k, l ∈ N0, α ∈ (0, 1) and A : hk+l,α (Mn) → hl,α (Mn) (or from

Ck+l,α (Mn) to C l,α (Mn)) be a linear, uniformly elliptic differential operator of order

k, where Mn is compact without boundary. Then −A is sectorial.

Proof. First we note that due to the compact embedding hk+l,α (Mn) ⊂ hl,α (Mn) the

spectrum of A consists entirely of eigenvalues. By Theorem 3.2.5 there exists ω such

that, if λ is any eigenvalue of A, then Re (λ) > −ω and hence λI + A is a linear

isomorphism for all Re (λ) ≥ ω. Therefore by Theorem 3.2.4 (since the little-Hölder

norms are the same as the Hölder norms) we obtain the bound:

‖v‖hk+l,α ≤ c1‖ (λI +A) [v]‖hl,α , (3.13)

for all v ∈ hk+l,α (Mn) and Re (λ) ≥ ω. Hence by Lemma 3.2.2 and Proposition 3.2.1

we have that −A is sectorial. The proof for the Hölder spaces is the same.

Another important property of sectorial operators is the fact that they remain

sectorial under certain perturbations, see the following two propositions.

Proposition 3.2.7 (Proposition 2.4.1 [38]). Let θ ∈ (0, 1) and A : Z → Y be sectorial.

Then:

• If B ∈ L((Y,Z)θ, Y ) then A+B : Z → Y is sectorial. This remains true if θ = 0.

• If B ∈ L(Z, (Y, Z)θ) then A+B : Z → Y is sectorial. This remains true if θ = 1.

Proposition 3.2.8 (Proposition 2.4.2 [38]). Let A : Z → Y be sectorial with constants

ω, θ,M , and let B ∈ L(Z, Y ), with ‖B‖L(Z,Y ) <
1

M+1 . Then A+B : Z → Y is sectorial.
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4

Existence in Interpolation Spaces

In this chapter we analyse the existence of solutions to equation (1.5) for initial condi-

tions in the interpolation spaces. The calculations are carried out in the little-Hölder

spaces so that solutions are continuous in time at t = 0; however similar results are

valid for functions in the Hölder spaces. We begin the calculations by linearising the

speed of the height function at the base hypersurface. This is then shown to be a sec-

torial operator on the interpolation spaces and existence in these spaces can be proven.

For the case of the volume preserving flow the flow is quasilinear, which allows for

improvement in the regularity for times greater than zero.

4.1 Linearisation

To analyse the flow in equation (1.5) we will consider its linearisation about the base

hypersurface. The speed operator is given by:

G (ρ) := L(ρ) (h (ρ)− F (κρ)) , (4.1)

where h (ρ) := 1´
Mn Ξ(κρ) dµρ

´
Mn F (κρ) Ξ (κρ) dµρ and L(ρ) :=

√
1 +

∣∣∣∇̃ρ∣∣∣2. We first

turn our attention to the global part of the equation.

Lemma 4.1.1. For a constant principal curvatures hypersurface Ω0 ⊂ Rn+1, i.e. where

κ0(p) = κ0 for all p ∈Mn, the linearisation of the weighted average curvature function

about ρ = 0 ∈ C2 (Mn) is:

∂h (0) [v] =

 
Mn

∂F (κρ)|ρ=0 [v] dµ0,

for v ∈ C2 (Mn).
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Proof. For a Fréchet differentiable f we have:

∂

(ˆ
Mn

f dµ0

)
[v] =

ˆ
Mn

∂f [v] dµ0,

so calculating we obtain:

∂h (0) [v] = ∂

(
1´

Mn Ξ(κρ)µ (ρ) dµ0

ˆ
Mn

Ξ (κρ)F (κρ)µ (ρ) dµ0

)∣∣∣∣
ρ=0

[v]

=
1´

Mn Ξ (κ0) dµ0
∂

(ˆ
Mn

Ξ (κρ)F (κρ)µ (ρ) dµ0

)∣∣∣∣
ρ=0

[v]

−
´
Mn Ξ (κ0)F (κ0) dµ0(´

Mn Ξ (κ0) dµ0

)2 ∂

(ˆ
Mn

Ξ (κρ)µ (ρ) dµ0

)∣∣∣∣
ρ=0

[v]

=
1´

Mn Ξ (κ0) dµ0

(ˆ
Mn

∂ (Ξ (κρ)µ (ρ)F (κρ))|ρ=0 [v] dµ0

−F (κ0)

ˆ
Mn

∂ (Ξ (κρ)µ (ρ))|ρ=0 [v] dµ0

)
=

1´
Mn Ξ (κ0) dµ0

ˆ
Mn

Ξ (κ0) ∂F (κρ)|ρ=0 [v] dµ0.

The lemma follows since Ξ (κ0) is constant over Mn.

Importantly, we see that the linearisation of the speed does not depend on the weight

function used when averaging the curvature function. This allows us to treat all the

weighted volume preserving curvature flows at once. Using the chain rule the lineari-

sation of the curvature function can be written as ∂F (κρ)|ρ=0 =
∑n

a=1
∂F
∂κa

(κ0)∂κa (0).

To proceed we need the following lemma:

Lemma 4.1.2. Let κ (ρ) be a principal curvature of the hypersurface Ωρ with corre-

sponding unit (with respect to the Ω0 metric) principal direction (ζρ)
i, then:

∂κ (0) = −ζ̊iζ̊j∇i∇j − κ(0)2,

where ζ̊i := (ζ0)i.

Proof. We start by noting that the condition g̊ij(ζρ)
i(ζρ)

j = 1 implies:

g̊ij ζ̊
j ∂(ζρ)

i
∣∣
ρ=0

= 0. (4.2)

Next, from the definition of κ (ρ) we have that (gρ)
il(hρ)lj(ζρ)

j = κ (ρ) (ζρ)
i so, by

linearising about ρ = 0, we obtain:

ζ̊j h̊lj ∂(gρ)
il
∣∣∣
ρ=0

+ ζ̊j g̊il ∂(hρ)lj |ρ=0 + g̊il̊hlj ∂(ζρ)
j
∣∣
ρ=0

= ζ̊i∂κ (0) + κ(0) ∂(ζρ)
i
∣∣
ρ=0

.

(4.3)
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Multiplying this equation by g̊ikζ̊
k as well as using that ζ̊ l̊hlj = κ(0)̊glj ζ̊

l and (4.2), we

obtain:

∂κ (0) = g̊ikζ̊
kζ̊j h̊lj ∂(gρ)

il
∣∣∣
ρ=0

+ g̊ikζ̊
kζ̊j g̊il ∂(hρ)lj |ρ=0 + g̊ikζ̊

kg̊il̊hlj ∂(ζρ)
j
∣∣
ρ=0

= −g̊ikζ̊kζ̊j h̊lj g̊ipg̊ql ∂(gρ)pq|ρ=0 + ζ̊ lζ̊j ∂(hρ)lj |ρ=0 + ζ̊ l̊hlj ∂(ζρ)
j
∣∣
ρ=0

= −ζ̊pζ̊j h̊qj ∂(gρ)pq|ρ=0 + ζ̊ lζ̊j ∂(hρ)lj |ρ=0 + κ(0)̊glj ζ̊
l ∂(ζρ)

j
∣∣
ρ=0

= ζ̊iζ̊j
(
∂(hρ)ij |ρ=0 − h̊

q
j ∂(gρ)iq|ρ=0

)
.

We use the second fundamental form for a normal graph given in (2.12):

(hρ)ij =L(ρ)−1
(̊
hli

(̊
glj + ρ̊hlj

)
−∇i∇jρ

)
+ L(ρ)−1(g̃ρ)

kp
(
δlp + ρ̊hlp

) (̊
hjl∇iρ+ h̊il∇jρ+ ρ∇l̊hij

)
∇kρ.

In order to calculate the linearisation at ρ = 0 we note that ∂L(0) = 0 and L(0) = 1,

hence the L(ρ)−1 factor does not affect the linearisation. Also note that the last term

is second order in ρ, so it also vanishes when taking the linearisation at ρ = 0. The

linearisation at ρ = 0 is then easily found to be:

∂(hρ)ij |ρ=0 = −∇i∇j + h̊lih̊lj . (4.4)

From the formula for the metric given in (2.9) we have that ∂(gρ)iq|ρ=0 = 2̊hiq, so:

∂κ(0) = ζ̊iζ̊j
(
−∇i∇j − h̊il̊hlj

)
(4.5)

The result then follows from ζ̊j h̊il̊h
l
j = κ(0)̊hilζ̊

l = κ(0)2g̊ilζ̊
l and because ζ̊ is a unit

vector.

Combining these results, we are able to give the full linearisation of the speed

operator at a hypersurface of constant principal curvatures.

Proposition 4.1.3. Let Ω0 be a hypersurface with constant principal curvatures and

ζ̊a be the unit principal direction vector corresponding to the principal curvature κa(0),

i.e. h̊ji ζ̊
i
a = κa(0)ζ̊ja (where we do not sum over a). Then:

∂G (0) [v] =

n∑
a=1

∂F

∂κa
(κ0)

(
ζ̊iaζ̊

j
a∇i∇j + κa(0)2

)
v

−
n∑
a=1

∂F

∂κa
(κ0)

 
Mn

(
ζ̊iaζ̊

j
a∇i∇j + κa(0)2

)
v dµ0,

for v ∈ C2 (Mn).
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4. EXISTENCE IN INTERPOLATION SPACES

We can simplify this expression in the case that Ω0 is a sphere using the fact that

all principal curvatures are equal, so ∂F
∂κ1

(κ0) = ∂F
∂κa

(κ0) for all a = 1, . . . , n. We also

use the divergence theorem to remove the derivatives from the global term.

Corollary 4.1.4. The linearisation of (4.1) at ρ = 0 ∈ C2 (S n
R ) is given by:

∂Gs(0)[v] =
∂F

∂κ1
(κ0)

((
∆S n

R
+

n

R2

)
v − n

R2

 
S n
R

v dµ0

)
, (4.6)

for v ∈ C2 (S n
R ).

For u ∈ C2
(
T n
R,d

)
we set

Gt (u) :=

√
1 +

∣∣∣∇̃u∣∣∣2( 1´
T n
R,d

Ξ (κu) dµu

ˆ
T n
R,d

F (κu) Ξ (κu) dµu − F (κu)

)
(4.7)

and the result of Proposition 4.1.3 is still applicable, with κa(0) and ζ̊a given by even

extensions of the principal curvatures and directions on the cylinder. We order κu such

that κn(0) = 0, and hence ∂F
∂κ1

(κ0) = ∂F
∂κi

(κ0) for all i = 1, . . . , n− 1.

Corollary 4.1.5. The linearisation of (4.7) at u = 0 ∈ C2
(
T n
R,d

)
is:

∂Gt(0)[v] =
∂F

∂κ1
(κ0)

(
∆S n−1

R
+
n− 1

R2

)
v+

∂F

∂κn
(κ0)

∂2v

∂z2
− ∂F
∂κ1

(κ0)
n− 1

R2

 
T n
R,d

v dµ0,

(4.8)

for v ∈ C2
(
T n
R,d

)
.

4.2 A Sectorial Operator

In this section we will prove an important property of the linearisations ∂Gs(ρ) and

∂Gt(u) for ρ, u in a neighbourhood of zero. We show that for each of these operators

there exists a sectorial operator A : h2,α0 (Mn) → h0,α0 (Mn) such that the original

operator is the part of A in h0,α (Mn), α ∈ (α0, 1), which is an interpolation space by

equation (3.10). More precisely we have the following lemmas:

Lemma 4.2.1. For any 0 < α < 1 and 0 < α0 < α there exists a neighbourhood, Os,1,

of 0 ∈ h2,α (S n
R ) such that the operator ∂Gs(ρ) : h2,α (S n

R ) → h0,α (S n
R ) is the part in

h0,α (S n
R ) of a sectorial operator Aρ : h2,α0 (S n

R )→ h0,α0 (S n
R ) for all ρ ∈ Os,1.
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4.2 A Sectorial Operator

Proof. We start by fixing α and choosing any α0 such that 0 < α0 < α. We next define

the functional Ḡs : h2,α0 (S n
R )→ h0,α0 (S n

R ):

Ḡs (ρ) := L(ρ) (h (ρ)− F (κρ)) , (4.9)

so that if we set Aρ = ∂Ḡs(ρ) it is clear that ∂G(ρ) is the part in h0,α (S n
R ) of Aρ. It

remains to prove that Aρ is sectorial for ρ ∈ O. To do this we use equation (4.6) to

calculate A0:

A0[v] =
∂F

∂κ1
(κ0)

((
∆S n

R
+

n

R2

)
v − n

R2

 
S n
R

v dµ0

)
. (4.10)

Since we have that ∂F
∂κ1

(κ0) is positive, the operator −Ãs, where

Ãs :=
∂F

∂κ1
(κ0)

(
∆S n

R
+

n

R2

)
, (4.11)

is uniformly elliptic and hence Ãs : h2,α0 (S n
R ) → hα0 (S n

R ) is sectorial, by Theorem

3.2.6. Also the map

v → − ∂F
∂κ1

(κ0)
n

R2

 
S n
R

v dµ0 (4.12)

is in L
(
h2,α0 (S n

R ) , h2,α0 (S n
R )
)

so by Proposition 3.2.7 we have that A0 is sectorial.

This then implies by Proposition 3.2.8 that Aρ = A0+
(
∂Ḡs(ρ)− ∂Ḡs(0)

)
is sectorial for

all ρ in a neighbourhood of zero, Os,2 ⊂ h2,α0 (S n
R ). By setting Os,1 = Os,2∩h2,α (S n

R )

we finish the proof.

Lemma 4.2.2. For any 0 < α < 1 and 0 < α0 < α there exists a neighbourhood, Ot,1,

of 0 ∈ h2,α
(
T n
R,d

)
such that the operator ∂Gt(u) : h2,α

(
T n
R,d

)
→ h0,α

(
T n
R,d

)
is the

part in h0,α
(
T n
R,d

)
of a sectorial operator Au : h2,α0

(
T n
R,d

)
→ h0,α0

(
T n
R,d

)
for all

u ∈ Ot,1.

Proof. The proof follows the same reasoning as in Lemma 4.2.1. We give here only the

differences in the proof. Firstly

Ãt =
∂F

∂κ1
(κ0)

(
∆S n−1

R
+
n− 1

R2

)
+
∂F

∂κn
(κ0)

∂2

∂z2
. (4.13)

Here again, −Ãt is uniformly elliptic, since ∂F
∂κ1

(κ0) , ∂F∂κn (κ0) > 0. Secondly the factor

in front of the global term is different, however this does not affect the calculations.
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4. EXISTENCE IN INTERPOLATION SPACES

4.3 Existence

We are now able to obtain short time existence for the weighted volume preserving

curvature flow in equation (1.4) with an initial hypersurface that is a graph over a

sphere or cylinder with small height function. We will be using Theorem 8.4.1 in [38],

which we restate with some simplifications:

Theorem 4.3.1. Let G : O ⊂ h2,α (Mn) → h0,α (Mn), α ∈ (0, 1), be such that G

and ∂G are continuous in O and for every v̄ ∈ O the operator ∂G(v̄) is the part in

h0,α (Mn) of a sectorial operator A : h2,α0 (Mn) → h0,α0 (Mn), α0 ∈ (0, α). Then for

every v̄ ∈ O there are δ, r > 0, such that if ‖v0 − v̄‖h2,α ≤ r, then the problem:

v′(t) = G(v(t)), 0 ≤ t < δ, v(0) = v0,

has a unique maximal solution v ∈ C
(
[0, δ), h2,α (Mn)

)
∩ C1

(
[0, δ), h0,α (Mn)

)
.

We now prove existence for hypersurfaces close to a sphere. This result, for the case

of mixed volume preserving flows, has been included in the paper [27].

Theorem 4.3.2. There exist δ, r > 0 such that for any function ρ0 ∈ h2,α (S n
R ) satis-

fying ‖ρ0‖h2,α ≤ r the equation (1.5), with Mn = S n
R , has a unique maximal solution:

ρ ∈ C
(
[0, δ), h2,α (S n

R )
)
∩ C1

(
[0, δ), h0,α (S n

R )
)
.

Moreover, the graph over a sphere Ωρ0 has a weighted volume preserving curvature flow

for t ∈ [0, δ), which is given, up to a tangential diffeomorphism, by Ωρ(t).

Proof. As in the remark following Condition 4.2 in [6]: since F and Ξ are smooth,

symmetric functions of the principal curvatures they are also smooth functions of the

elementary symmetric functions, which depend smoothly on the components of the

Weingarten map. It is easily seen that the Weingarten map depends smoothly on

ρ ∈ U2,α, note that U2,α is defined in (1.12). Therefore Gs depends smoothly on

ρ ∈ Os,3 ⊂ U2,α, where the choice of Os,3 is such that if ρ ∈ Os,3 then
´
S n
R

Ξ(κρ) dµρ > 0.

The sectorial condition was established in Lemma 4.2.1 for a neighbourhood Os,1, so

the proof is complete by using Theorem 4.3.1 with O = Os,1 ∩Os,3 and v̄ = 0.

In order to obtain existence for the flow of graphs over cylinders, we first use the

same arguments to obtain an existence theorem for the PDE (1.7):

Theorem 4.3.3. There exists δ, r > 0 such that if u0 satisfies ‖u0‖h2,α ≤ r then (1.7)

has a unique maximal solution u ∈ C
(

[0, δ), h2,α
(
T n
R,d

))
∩ C1

(
[0, δ), h0,α

(
T n
R,d

))
.
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Since ‖uρ0‖h2,α is controlled by ‖ρ0‖h2,α , see Corollary 3.1.4, and a solution to

(1.7) with initial condition uρ0 , restricted to C
n
R,d, is a solution of (1.5) we obtain the

following corollary:

Corollary 4.3.4. There exists δ, r > 0 such that for any function ρ0 ∈ h2,α
∂
∂z

(
C
n
R,d

)
satisfying ‖ρ0‖h2,α ≤ r the equation (1.5), with Mn = C n

R,d, has a unique maximal

solution:

ρ ∈ C
(

[0, δ), h2,α
∂
∂z

(
C
n
R,d

))
∩ C1

(
[0, δ), h0,α

(
C
n
R,d

))
.

Moreover, the graph over a cylinder Ωρ0 has a weighted volume preserving curvature

flow for t ∈ [0, δ), which is given, up to a tangential diffeomorphism, by Ωρ(t).

4.4 Improvements for Volume Preserving Mean Curva-

ture Flow

In this section we consider the volume preserving mean curvature flow for graphs over

cylinders. While the results in Section 4.3 are still valid, we can improve upon them

by using the fact that the flow is quasilinear. In place of Theorem 4.3.1, we are able

to apply Theorem 12.1 in [2] (see also Theorem 2.11 in [7]), which has a less strict

regularity condition for the initial function. This work has been included in [28].

Theorem 4.4.1 (Theorem 12.1 [2]). Suppose that 0 < γ < α < β < 1, that Ok+1,α is

open in hk+1,α (Mn), and that

(Q, f) ∈ C0,1
(
Ok+1,α,H

(
hk+2,γ (Mn) , hk,γ (Mn)

)
× hk,α (Mn)

)
.

Then, for each v0 ∈ Ok+1,β := Ok+1,α ∩ hk+1,β (Mn), there exists δ > 0 such that the

autonomous quasilinear parabolic Cauchy problem

v̇ = −Q(v)[v] + f(v), t > 0, v(0) = v0 (4.14)

possesses a unique maximal solution:

v ∈ C ([0, δ) , Ok+1,β) ∩ C
(

(0, δ) , hk+2,γ (Mn)
)
.

The space H (Z, Y ) was introduced in Section 3.2, where it was also shown that

A being sectorial is equivalent to −A ∈ H (Z, Y ). The second stated property of the

solution, i.e. that v ∈ C
(
(0, δ) , hk+2,γ (Mn)

)
, is not explicitly stated in the theorem,

however is mentioned in a remark at the top of page 70 of [2], also see Corollary 2.13

in [7].
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4. EXISTENCE IN INTERPOLATION SPACES

Theorem 4.4.2. For any ρ0 ∈ Ṽ1,β0, 0 < β0 < 1, there exists δ > 0 such that the

PDE (1.6) with Mn = C n
R,d and Neumann boundary condition has a unique maximal

solution:

ρ ∈ C
(

[0, δ), Ṽ1,β0

)
∩ C

(
(0, δ), h2,β1

∂
∂z

(
C
n
R,d

))
,

for any β1 ∈ (0, β0). Moreover the graph over the cylinder Ωρ0 has a volume preserving

mean curvature flow for t ∈ [0, δ), which is given, up to a tangential diffeomorphism,

by Ωρ(t).

Proof. As in Section 4.3, we prove existence of solutions for the PDE (1.9) and hence

obtain a solution to (1.6) with Mn = C n
R,d. We first fix α0 ∈ (β1, β0) and search for a

splitting Gt(u) = −Q(u)[u] + f(u), u ∈ V2,β1 , such that

(Q, f) ∈ C0,1
(
V1,α0 ,H

(
h2,β1

(
T n
R,d

)
, h0,β1

(
T n
R,d

))
× h0,α0

(
T n
R,d

))
.

We use the equation for the mean curvature operator given in (2.13) to obtain the

splitting H (u) = J (u) [u] +K (u), where

J (u) := −L (u)−3
(
L (u)2 (g̃u)ij − (g̃u)ik(g̃u)jl∇ku∇lu

) ∂2

∂xi∂xj
, (4.15)

and

K (u) :=L (u)−3 (g̃u)ik(g̃u)jl
(
δsi + ůhsi

)
h̊sj∇ku∇lu+ L (u)−1 (g̃u)ij

(
δsi + ůhsi

)
h̊sj

+ L (u)−3
(
L (u)2 (g̃u)ij − (g̃u)ik(g̃u)jl∇ku∇lu

)
Γ̊sij∇su. (4.16)

We note that the functions are smooth on V1,α0 , that is K ∈ C∞
(
V1,α0 , h

0,α0

(
T n
R,d

))
and J ∈ C∞

(
V1,α0 ,L

(
h2,β1

(
T n
R,d

)
, h0,β1

(
T n
R,d

)))
. We now obtain the splitting for

Gt(u), by defining:

Q(u)[v] := −L (u)

( 
T n
R,d

J (u) [v] dµu − J (u) [v]

)
(4.17)

and

f(u) := L (u)

( 
T n
R,d

K (u) dµu −K (u)

)
. (4.18)

Note that f ∈ C∞
(
Vk+1,α, h

k,α
(
T n
R,d

))
for any k ∈ N0 and α ∈ (0, 1), so it only

remains to show that Q(u) ∈ H
(
h2,β1

(
T n
R,d

)
, h0,β1

(
T n
R,d

))
for all u ∈ V1,α0 . We will

in fact prove something more general that will be used in the subsequent corollary.
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We let k ∈ N0 and α, β ∈ (0, 1). L(u)J(u) is uniformly elliptic for all u ∈ Vk+1,α,

so we use Theorem 3.2.6 to conclude −L(u)J(u) : hk+2,β
(
T n
R,d

)
→ hk,β

(
T n
R,d

)
is

sectorial. We also have the bound∥∥∥∥∥L(u)

 
T n
R,d

J(u)[v] dµu

∥∥∥∥∥
hk,β

=

∣∣∣∣∣
 

T n
R,d

J(u)[v] dµu

∣∣∣∣∣ ‖L(u)‖hk,β

≤C(u)‖v‖C2

≤C(u)‖v‖h2,ε ,

for any ε ∈ (0, β). Therefore by the perturbation result in Proposition 3.2.7 (i) we

conclude that, for all u ∈ Vk+1,α, −Q(u) : hk+2,β
(
T n
R,d

)
→ hk,β

(
T n
R,d

)
is sectorial,

that is Q(u) ∈ H
(
hk+2,β

(
T n
R,d

)
, hk,β

(
T n
R,d

))
.

Therefore we can apply Theorem 4.4.1 to obtain a solution, u(t), to (1.9) such that

u ∈ C ([0, δ), V1,β0) ∩ C
(

(0, δ), h2,β1
(
T n
R,d

))
, (4.19)

and by taking ρ(t) := u(t)|CnR,d we obtain the result.

As a corollary of this theorem we are able to obtain higher spatial regularity of ρ(t)

when t > 0. In fact we obtain that the solution is smooth instantaneously after the

initial time, and hence the flow is smoothing.

Corollary 4.4.3. Let ρ(t) be the solution found in Theorem 4.4.2 with initial condition

ρ0 ∈ Ṽ1,β0, then ρ ∈ C∞
(

(0, δ), C∞∂
∂z

(
C n
R,d

))
∩C

(
[0, δ), Ṽ1,β0

)
, i.e. for any t ∈ (0, δ)

the hypersurface defined by ρ(t) is smooth, as is the map t 7→ ρ(t).

Proof. We again prove the regularity result by proving the same regularity result for the

solution, u(t), to (1.9). By the proof of Theorem 4.4.2 we have Gt(u) = −Q(u)[u]+f(u),

where

(Q, f) ∈ C∞
(
Vk+1,α,H

(
hk+2,β

(
T n
R,d

)
, hk,β

(
T n
R,d

))
× hk,α

(
T n
R,d

))
, (4.20)

for any k ∈ N0 and α, β ∈ (0, 1). The smoothness in time then follows from the remark

in the second paragraph on page 71 of [2] or from Corollary 2.13 in [7]. To get the

spatial regularity we perform a bootstrapping method, similar to the proof of Theorem

1 in [19].

We will prove by induction that if u0 ∈ V1,β0 , then for any k ∈ N0 we have:

u ∈ C ((0, δ), Vk+1,βk) ∩ C
(

(0, δ), hk+2,βk+1
(
T n
R,d

))
, (4.21)
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where {βj}∞j=0 is any sequence satisfying βj ∈ (0, βj−1), we will also define the sequence

αj ∈ (βj+1, βj).

The k = 0 case follows from the proof of Theorem 4.4.2. We now assume (4.21)

holds for some k ∈ N0 and let τ ∈ (0, δ). By the inductive assumption the function

u(τ) is in Vk+1,βk ∩ hk+2,βk+1

(
T n
R,d

)
= Vk+2,βk+1

.

Due to (4.20) we have:

(Q, f) ∈ C∞
(
Vk+2,αk+1

,H
(
hk+3,βk+2

(
T n
R,d

)
, hk+1,βk+2

(
T n
R,d

))
× hk+1,αk+1

(
T n
R,d

))
,

(4.22)

so we can apply Theorem 4.4.1 to obtain a solution to (1.6):

ū ∈ C
(
[0, δ̄), Vk+2,βk+1

)
∩ C

(
(0, δ̄), hk+3,βk+2

(
T n
R,d

))
,

with ū(0) = u(τ) ∈ Vk+2,βk+1
.

By uniqueness of solutions to the flow we also have that u(t) = ū(t−τ) for t ∈ (τ, δ̃),

where δ̃ := min(δ̄ + τ, δ), and hence

u ∈ C
(

[τ, δ̃), Vk+2,βk+1

)
∩ C

(
(τ, δ̃), hk+3,βk+2

(
T n
R,d

))
.

We note that if δ̄+ τ > δ then ū(t) extends u(t) and maintains the same regularity,

which contradicts the maximality of δ. Now we assume that δ̄ + τ < δ. By Theorem

12.5 in [2] we conclude that either ū(t) approaches the boundary of Vk+2,αk+1
or that

‖ū(t)‖hk+2,θ → ∞, as t → δ̄, for each θ ∈ (αk+1, 1). The same must be true of u(t)

as t → δ̄ + τ . However, by (4.21), u(δ̄ + τ) ∈ Vk+2,βk+1
⊂ Vk+2,αk+1

, so does not tend

to the boundary, and
∥∥u(δ̄ + τ)

∥∥
hk+2,βk+1 < ∞. Since βk+1 ∈ (αk+1, 1), we have a

contradiction and δ̄ + τ = δ, so

u ∈ C
(
[τ, δ), Vk+2,βk+1

)
∩ C

(
(τ, δ), hk+3,βk+2

(
T n
R,d

))
.

But this is true for all τ ∈ (0, δ), hence we obtain

u ∈ C
(
(0, δ), Vk+2,βk+1

)
∩ C

(
(0, δ), hk+3,βk+2

(
T n
R,d

))
,

so by induction we have that (4.21) is true for all k ∈ N0. Therefore, for all k ∈ N0:

u ∈ C
(

(0, δ), Ck+2
(
T n
R,d

))
.

Combining this with the smoothness in time we obtain the result.

38



5

Stability of Weighted Volume

Preserving Curvature Flows near

Spheres

This chapter deals with the stability of spheres under the flow (1.4). We will again

consider initial hypersurfaces that are graphs over the sphere with small height function

and prove that their weighted volume preserving curvature flow exists for all time and

the hypersurfaces converge to a sphere. We do this by setting up an exponentially

attractive center manifold and showing that it consists entirely of spheres. Since all the

results are local we will often only need to deal with the linearisation at zero, as it is

the dominant term in the evolution equation. We highlight this term by rewriting the

evolution equation:

ρ′(t) = ∂Gs(0)[ρ(t)] + Ḡs(ρ(t)), Ḡs(v) := Gs(v)− ∂Gs(0)[v]. (5.1)

Note that Ḡs is a smooth function in a neighbourhood of zero, which satisfies Ḡs(0) = 0

and ∂Ḡs(0) = 0. The results of this chapter, in the case of mixed volume preserving

curvature flow, are included in [27].

5.1 Eigenvalues

In this section we investigate the spectrum of the operator ∂Gs(0) given in equation

(4.6). However, we will first consider the operator Ãs given in equation (4.11). We
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will denote the n-dimensional spherical harmonics of order l by Y
(n)
l,p where l ∈ N0,

1 ≤ p ≤M (n)
l and

M
(n)
l :=

{ (
l+n
n

)
−
(
l+n−2
n

)
l ≥ 2,(

l+n
n

)
l ∈ {0, 1}.

(5.2)

Lemma 5.1.1. The spectrum of Ãs : h2,α (S n
R ) ⊂ h0,α (S n

R )→ h0,α (S n
R ) is given by

σ(Ãs) =

{
− ∂F
∂κ1

(κ0)
(l − 1)(l + n)

R2
: l ∈ N0

}
,

with eigenfunctions the spherical harmonics.

Proof. Due to the compact embedding of h2,α (S n
R ) in h0,α (S n

R ) the spectrum consists

entirely of eigenvalues. It is well known that the eigenfunctions of the spherical Lapla-

cian are the spherical harmonics, Y
(n)
l,p , with corresponding eigenvalue −l(l+n−1)

R2 and

hence the eigenfunctions of Ãs are also the spherical harmonics and the corresponding

eigenvalues are

ξl =
∂F

∂κ1
(κ0)

(
n

R2
− l(l + n− 1)

R2

)
,

which proves the lemma.

Lemma 5.1.2. The spectrum of ∂Gs(0) : h2,α (S n
R ) ⊂ h0,α (S n

R )→ h0,α (S n
R ) consists

of a sequence of isolated non-positive eigenvalues given by:

σ(∂Gs(0)) =

{
− ∂F
∂κ1

(κ0)
(l − 1)(l + n)

R2
, l ∈ N

}
,

with corresponding eigenfunctions given by:

vl,p =

{
Y

(n)
0,1 l = 1, p = 0,

Y
(n)
l,p l ∈ N, 1 ≤ p ≤M (n)

l .

It follows that zero is an isolated eigenvalue of multiplicity n + 2 and the zeroth and

first order spherical harmonics form the basis for the corresponding eigenspace.

Proof. We start by noting that again the spectrum must consist solely of eigenvalues

and that Y
(n)

0,1 = 1 is an eigenfunction of ∂Gs(0) with eigenvalue zero; we label this

eigenfunction v1,0. Now we note that the operator ∂Gs(0) is self adjoint with respect to

the L2-inner product on h2,α (S n
R ). To see this, consider v, w ∈ h2,α (S n

R ) and compute:

ˆ
S n
R

∂Gs(0)[v]w dµ0 =

ˆ
S n
R

(
Ãs[v]− n

R2

 
S n
R

v dµ0

)
w dµ0

=

ˆ
S n
R

Ãs[v]w dµ0 −
n

R2

 
S n
R

v dµ0

ˆ
S n
R

w dµ0

=

ˆ
S n
R

vÃs[w] dµ0 −
n

R2

ˆ
S n
R

v dµ0

 
S n
R

w dµ0,
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where we use that Ãs is self adjoint with respect to the L2-inner product, since it is a

multiple of the Laplacian on the sphere plus a constant. Hence:

ˆ
S n
R

∂Gs(0)[v]w dµ0 =

ˆ
S n
R

v

(
Ãs[w]− n

R2

 
S n
R

w dµ0

)
dµ0

=

ˆ
S n
R

v∂Gs(0)[w] dµ0.

Therefore we need only consider eigenfunctions that are L2-orthogonal to Y
(n)

0,1 = 1, in

order to characterise the remainder of the spectrum. This means that for an eigenfunc-

tion v with eigenvalue λ we assume the property:

ˆ
S n
R

v dµ0 = 0,

and hence

λv = ∂Gs(0)[v] = Ãs[v].

Thus the remaining eigenfunctions of ∂Gs(0) are precisely the remaining eigenfunctions

of Ãs, which are given in Lemma 5.1.1.

5.2 Center Manifold

This section deals with the fact that having a nontrivial nullspace of ∂Gs(0) means

that we are unable to obtain a priori bounds on the solution. To address this we shall

construct a local invariant center manifold for the flow (5.1) and investigate its contents.

We start the investigation by providing an existence theorem for center manifolds

along with some properties. We let k ∈ N0, α ∈ (0, 1) and

A : hk+2,α0 (Mn)→ hk,α0 (Mn)

be a sectorial operator for some α0 ∈ (0, α). Assume that σ+(A) consists of a finite

number of isolated eigenvalues and define:

Xc := P+

(
hk+2,α (Mn)

)
, Xs

k,α := (I − P+)
(
hk,α (Mn)

)
,

the center subspace and stable subspace respectively. We also note that since Xc is

finite dimensional all norms on it are equivalent and we don’t include any subscripts.
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Theorem 5.2.1 (Theorem 9.2.2 [38]). Let G ∈ C1
(
O, hk,α (Mn)

)
with G(0) = 0 and

∂G(0) = 0, where O ⊂ hk+2,α (Mn) is a neighbourhood of zero. There exists R1 > 0

such that for any r ∈ (0, R1] there is a Lipschitz continuous function γr : Xc → Xs
k+2,α

such that the graph of γr is an invariant for the system:

x′(t) = A+[x(t)] + P+

[
G̃r (x(t), y(t))

]
, y′(t) = A−[y(t)] + (I − P+)

[
G̃r (x(t), y(t))

]
,

(5.3)

x(0) = x0 ∈ Xc, y(0) = y0 ∈ Xs
k+2,α,

where G̃r(x, y) := G
(
η
(
x
r

)
x+ y

)
and η : Xc → R is a cut-off function such that

0 ≤ η(x) ≤ 1, η(x) = 1 if ‖x‖hk,α ≤ 1, η(x) = 0 if ‖x‖hk,α ≥ 2.

Furthermore γr is the unique map satisfying

γr(x) =

ˆ 0

−∞
e−sA−(I − P+)

[
G̃r (wr(s;x, γr), γr(wr(s;x, γr)))

]
ds, (5.4)

where wr(s;x, γr) is the solution to

w′(s) = A+[w(s)] + P+

[
G̃r(w(s), γr(w(s)))

]
, w(0) = x. (5.5)

If in addition G is l times continuously differentiable, with l ≥ 2, then there exists

Rl > 0 such that if r ∈ (0, Rl] then γr ∈ C l−1,1 and

∂γr(x)
[
A+[x] + P+

[
G̃r (x, γr(x))

]]
= A−[γr(x)] + (I − P+)

[
G̃r (x, γr(x))

]
.

Proposition 5.2.2 (Proposition 9.2.3 [38]). Let the assumptions in Theorem 5.2.1

hold with G at least twice continuously differentiable. There exists R̃2 > 0 such that if

r ∈ (0, R̃2] and (xr(t), yr(t)) ∈ Xc×BXs
k+2,α,r

(0) is a solution to (5.3) for all t ≥ 0 then

‖yr(t)− γr(xr(t))‖hk+2,α ≤M(ω)e−ωt ‖y0 − γr(x0)‖hk+2,α , (5.6)

for any ω ∈ (0, ω−), see (1.18). Further if ‖x0‖hk,α and ‖y0‖hk+2,α are small enough

then the solution to (5.3) satisfies the assumptions.

Note that [38] starts by assuming that ‖x0‖hk,α and ‖y0‖hk+2,α are small before

deriving the estimate (5.6). However, it is clear from the proof that once long time

existence is obtained, this assumption is not needed. Stating the proposition in this

manner also allows us to prove, by taking t→∞ in (5.6), the following corollary:

Corollary 5.2.3. Let r ∈ (0, R̃2] and suppose (xr(t), yr(t)) ∈ Xc × BXs
k+2,α,r

(0) is a

stationary solution to (5.3), i.e. (xr(t), yr(t)) = (x0, y0) for all t ≥ 0. Then y0 = γr(x0).
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This result is a special case of Theorem 2.3 in [44], where it was proved that any

eternal bounded solution to (5.7) must be contained in the center manifold. However,

the graph function used in [44] is defined differently to above and while they can be

seen to be equivalent on BXc,r(0), the above corollary is enough for our purposes.

In the case of weighted volume preserving curvature flows for graphs over spheres,

the local system we consider is:

x′(t) = ∂Gs(0)+[x(t)] + P+

[
Ḡs

(
η
(
x(t)
r

)
+ y(t)

)]
, x(0) = P+[ρ0],

y′(t) = ∂Gs(0)−[y(t)] + (I − P+)
[
Ḡs

(
η
(
x(t)
r

)
+ y(t)

)]
, y(0) = (I − P+)[ρ0],

(5.7)

for ρ0 ∈ h2,α (S n
R ).

Theorem 5.2.4. There exists R̃2 > 0 such that for any r ∈ (0, R̃2] there is a function

γr ∈ C1,1
(
Xc, Xs

2,α

)
such that γr(0) = 0 and ∂γr(0) = 0. Further, Mc

r := graph(γr)

has dimension n+ 2 and if ρ0 ∈Mc
r, then the solution to (5.1), ρ(t), is in Mc

r as long

as P+[ρ(t)] ∈ BXc,r(0).

We callMc
r a locally invariant manifold. Note that since ∂Gs(0) is self adjoint with

respect to the L2-inner product, 〈·, ·〉, it commutes with the L2-orthogonal projection

onto Xc:

P [ρ] :=
n+1∑
a=0

〈ρ, v1,a〉
〈v1,a, v1,a〉

v1,a. (5.8)

That is, P [∂Gs(0)[v]] = ∂Gs(0) [P [v]] = 0 for all v ∈ h2,α (S n
R ). Notably this means

that P
[
hk+2,α (S n

R )
]

= N (∂Gs(0)) and (I − P )
[
hk+2,α (S n

R )
]

= Range (∂Gs(0)), so

P = P+, the spectral projection associated to σ+(∂Gs(0)). This also means that

∂Gs(0)+ = 0. Note that if we define ak,α :=
∑n+1

a=0

‖v1,a‖hk,α
´
Sn
R
|v1,a| dµ0

〈v1,a,v1,a〉 we have that

for any k ∈ N0 and α ∈ (0, 1):

‖P+[ρ]‖hk,α ≤ ak,α ‖ρ‖C0 , ‖(I − P+)[ρ]‖hk,α ≤ (1 + ak,α)‖ρ‖hk,α . (5.9)

We now set

S := {ρ ∈ U2,α : Ωρ is a sphere} .

Lemma 5.2.5. There exists a neighbourhood of zero, Ws ⊂ Xc, such that Mc
r and S

are identical inside (Ws ∩BXc,r(0))×BXs
2,α,r

(0), for any r ∈ (0, R̃2].
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Proof. Firstly, since any ρ0 ∈ S ∩
(
BXc,r(0)×BXs

2,α,r
(0)
)

is a stationary solution

to (5.1) and hence also to (5.7), we use Corollary 5.2.3 to conclude that ρ0 ∈ Mc
r.

The rest of the proof follows as in [21]: If ρ ∈ S, then we obtain the parame-

ters y = (y0, . . . , yn+1) ∈ Rn+2, where y0 := R′ − R, R′ is the radius of Ωρ, and

(y1, . . . , yn+1) ∈ Rn+1 is the center of the graph. Since

Xρ = R
(
Y

(n)
1,1 , . . . , Y

(n)
1,n+1

)
+ ρ

(
Y

(n)
1,1 , . . . , Y

(n)
1,n+1

)
we have the relationship:

(R+ y0)2 = R′2 =
n+1∑
a=1

(
(R+ ρ)Y

(n)
1,a − ya

)2
= (R+ ρ)2 − 2(R+ ρ)

n+1∑
a=1

yaY
(n)

1,a +
n+1∑
a=1

y2
a.

(5.10)

Solving this equation for R+ ρ gives

R+ ρ =

n+1∑
a=1

yaY
(n)

1,a +

√√√√(n+1∑
a=1

yaY
(n)

1,a

)2

+ (R+ y0)2 −
n+1∑
a=1

y2
a,

and by setting

χ(y) :=
n+1∑
a=1

yav1,a −Rv1,0 +

√√√√(n+1∑
a=1

yav1,a

)2

+

(
(R+ y0)2 −

n+1∑
a=1

y2
a

)
v1,0, (5.11)

we have ρ = χ(y). We will consider χ : U ⊂ Rn+2 → h2,α (S n
R ), where U is a

neighbourhood of zero such that χ is smooth on it. It is clear from the construction

that for any ρ ∈ S, with sufficiently small norm, there exists a y ∈ U such that

ρ = χ(y). We now calculate the linearisation of χ at zero acting on x ∈ Rn+2:

∂χ(0)[x] =
n+1∑
a=0

∂χ

∂ya
(0)xa

=
(R+ y0)v1,0√(∑n+1

a=1 yav1,a

)2
+
(

(R+ y0)2 −
∑n+1

a=1 y
2
a

)
v1,0

∣∣∣∣∣∣∣∣
y=0

x0

+
n+1∑
a=1

v1,a +
v1,a

∑n+1
b=1 ybv1,b − yav1,0√(∑n+1

b=1 ybv1,b

)2
+
(

(R+ y0)2 −
∑n+1

b=1 y
2
b

)
v1,0


∣∣∣∣∣∣∣∣
y=0

xa

=
n+1∑
a=0

xav1,a. (5.12)
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We now consider the map χ̄(y) : U → Xc given by χ̄(y) := P+[χ(y)]. Again

the linearisation at zero is given by ∂χ̄(0)[x] =
∑n+1

a=0 xav1,a and hence is the iden-

tity map with respect to the basis v1,p, 0 ≤ p ≤ n + 1, of Xc. Therefore there

exists a neighbourhood of zero, V ⊂ Xc, such that χ̄ is a diffeomorphism from V

onto its image, Ws ⊂ Xc. Further, the function γ̄s := χ ◦ χ̄−1 − I : Ws → Xs
2,α

parametrises S as a graph over Xc locally. Since from the first remark of the proof

we have that S ∩
(
BXc,r(0)×BXs

2,α,r
(0)
)
⊂Mc

r, we conclude that S andMc
r coincide

inside (Ws ∩BXc,r(0))×BXs
2,α,r

(0). Note also that γ̄s|Ws∩BXc,r(0) = γr|Ws∩BXc,r(0).

5.3 Convergence to a Sphere

In this section we prove the main result of the chapter, that the spheres are stable under

the weighted volume preserving curvature flows. The main result we will be using is

again from [38]:

Proposition 5.3.1 (Proposition 9.2.4 [38]). Let the assumptions of Theorem 5.2.2 hold

and x0, y0 satisfy the same smallness condition. If r ∈ (0, R̃2], there exists x̄ ∈ Xc

such that the system (5.3) has a solution for all t ≥ 0 and

‖xr(t)−wr(t; x̄, γr)‖hk,α+‖yr(t)−γr(wr(t; x̄, γr))‖hk+2,α ≤ C(ω)e−ωt‖y0−γr(x0)‖hk+2,α ,

for any ω ∈ (0, ω−).

Theorem 5.3.2. There exists a neighbourhood of zero, Os ⊂ h2,α (S n
R ), such that for

ρ0 ∈ Os, then the flow (1.4) with initial hypersurface Ωρ0 exists for all time. Further-

more, the hypersurfaces converge exponentially fast to a sphere as t→∞, with respect

to the h2,α (S n
R ) topology, α ∈ (0, 1).

Proof. We fix r ∈ (0, R̃2] and start the proof by noting that if x ∈Ws ∩BXc,r(0) then

x+γr(x) defines a sphere by Lemma 5.2.5 and hence is a stationary solution to equation

(5.1), i.e.

0 = ∂Gs(0)[x+ γr(x)] + Ḡs(x+ γr(x))

= ∂Gs(0)[x+ γr(x)] + Ḡs

(
η
(x
r

)
x+ γr(x)

)
.

By taking the projection of this equation we see that x = P+[x+ γr(x)] is a stationary

solution of

w′(t) = P+

[
Ḡs

(
η

(
w(t)

r

)
w(t) + γr(w(t))

)]
, w(0) = x,
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hence wr(t;x, γr) = x for all x ∈Ws ∩BXc,r(0).

We now consider ρ0 small enough so that, by equation (5.9), we can apply Propo-

sition 5.3.1, with ω− = ∂F
∂κ1

(κ0) n+2
R2 , to obtain, for any ω ∈ (0, ω−), x̄ ∈ Xc such

that:

‖xr(t)− wr(t; x̄, γr)‖h0,α+‖yr(t)− γr(wr(t; x̄, γr))‖h2,α

≤ Ce−ωt‖(I − P+)[ρ0]− γr(P+[ρ0])‖h2,α , (5.13)

where (xr(t), yr(t)) solves (5.7). By evaluating this at t = 0 we obtain the bound:

‖P+[ρ0]− x̄‖h0,α ≤ C ‖(I − P+)[ρ0]− γr (P+[ρ0])‖h2,α . (5.14)

This allows us to bound x̄ in terms of ρ0.

‖x̄‖h0,α ≤ ‖P+[ρ0]− x̄‖h0,α + ‖P+[ρ0]‖h0,α

≤ C ‖(I − P+)[ρ0]− γr (P+[ρ0])‖h2,α + a0,α‖ρ0‖h2,α

≤ C (‖(I − P+)[ρ0]‖h2,α + ‖γr (P+[ρ0])‖h2,α) + a0,α‖ρ0‖h2,α

≤ C ((1 + a2,α) ‖ρ0‖h2,α + br ‖P+[ρ0]‖h0,α) + a0,α‖ρ0‖h2,α

≤ C‖ρ0‖h2,α , (5.15)

where we use (5.9) and where br is the Lipschitz constant of γr. Therefore if ρ0 is

small enough we have that x̄ ∈Ws ∩BXc,r(0) and hence, by the first part of the proof,

wr(t; x̄, γr) = x̄. Equation (5.13) now simplifies to:

‖xr(t)− x̄‖h0,α + ‖yr(t)− γr(x̄)‖h2,α ≤ Ce−ωt ‖(I − P+)[ρ0]− γr (P+[ρ0])‖h2,α . (5.16)

The last part of the proof involves proving that xr(t) ∈Ws ∩BXc,r(0) for all t ≥ 0

and hence ρ(t) = xr(t) + yr(t) is a solution to (5.1) for all t ≥ 0. We use a similar

calculation to the one we used to derive (5.15):

‖xr(t)‖h0,α ≤ ‖xr(t)− x̄‖h0,α + ‖x̄‖h0,α

≤ Ce−ωt ‖(I − P+) [ρ0]− γr (P+[ρ0])‖h2,α + C‖ρ0‖h2,α

≤ C (‖(I − P+) [ρ0]‖h2,α + ‖γr (P+[ρ0])‖h2,α) + C‖ρ0‖h2,α

≤ C ((1 + a2,α) ‖ρ0‖h2,α + br ‖P+[ρ0]‖h0,α) + C‖ρ0‖h2,α

≤ C‖ρ0‖h2,α . (5.17)

Therefore by considering ρ0 small enough we have that ρ(t) = xr(t)+yr(t) is a solution
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to (5.1) for all t ≥ 0 with P+[ρ(t)] = xr(t) and (I − P+)[ρ(t)] = yr(t). Hence:

‖ρ(t)− (x̄+ γr(x̄))‖h2,α = ‖P+[ρ(t)]− x̄+ (I − P+)[ρ(t)]− γr(x̄)‖h2,α

≤ ‖P+[ρ(t)]− x̄‖h2,α + ‖(I − P+)[ρ(t)]− γr(x̄)‖h2,α

≤ C‖P+[ρ(t)]− x̄‖h0,α + ‖(I − P+)[ρ(t)]− γr(x̄)‖h2,α

≤ Ce−ωt ‖(I − P+)[ρ0]− γr (P+[ρ0])‖h2,α ,

where we used equivalence of norms on Xc. We have therefore found that ρ(t) converges

exponentially to x̄+ γr(x̄), which by Lemma 5.2.5 is a sphere.

The previous theorem proves that the spheres are stable stationary solutions to

the weighted volume preserving curvature flow, that is hypersurfaces close to a sphere

under the flow converge to a sphere near the original one. We also have the following

corollary concerning the stability of hypersurfaces that converge to spheres under the

flow. We find that hypersurfaces near them also converge to spheres.

Corollary 5.3.3. Let ρ(t) be a solution to the equation (1.5), which exists for all time

and converges to zero. Suppose further that ∂F
∂κi

(
κρ(t)

)
> 0 for all t ∈ [0,∞) and

i = 1, . . . , n. Then there exists a neighbourhood, Os,4, of ρ(0) in h2,α (S n
R ), 0 < α < 1,

such that for every v0 ∈ Os,4 the solution to (1.5) with initial condition v0 exists for all

time and converges to a function near zero whose graph is a sphere.

Proof. This follows by the same arguments given in [26]. Since ρ(t) converges to zero

in the h2,α-topology, there exists a time, T , such that ρ(T ) ∈ Os (given in Theorem

5.3.2) and, as Os is open, there exists an open ball, Bh2,α(S n
R),ε(ρ(T )) ⊂ Os, of radius

ε centred at ρ(T ). We consider the linearisation of h(ρ) about ρ(t):

∂h (ρ (t)) [v] =
1´

S n
R

Ξ
(
κρ(t)

)
dµρ(t)

ˆ
S n
R

∂ (F (κρ) Ξ (κρ)µ(ρ))|ρ=ρ(t) [v] dµ0

−

´
S n
R
F
(
κρ(t)

)
Ξ
(
κρ(t)

)
dµρ(t)(´

S n
R

Ξ
(
κρ(t)

)
dµρ(t)

)2

ˆ
S n
R

∂ (Ξ (κρ)µ(ρ))|ρ=ρ(t) dµ0

=
1´

S n
R

Ξ
(
κρ(t)

)
dµρ(t)

(ˆ
S n
R

∂F (κρ)|ρ=ρ(t) [v]Ξ
(
κρ(t)

)
dµρ(t)

+

ˆ
S n
R

F
(
κρ(t)

)
∂ (Ξ (κρ)µ(ρ))|ρ=ρ(t) [v] dµ0

−h (ρ (t))

ˆ
S n
R

∂ (Ξ (κρ)µ(ρ))|ρ=ρ(t) [v] dµ0

)
.
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Therefore the linearisation of Gs (ρ) around ρ(t) is:

∂Gs (ρ(t)) = Aρ(t)[v] +
L (ρ(t))´

S n
R

Ξ
(
κρ(t)

)
dµρ(t)

ˆ
S n
R

Bρ(t)[v] dµρ(t),

where

Aρ[v] := (h(ρ)− F (κρ)) ∂L(ρ)[v]− L(ρ)∂F (κρ)[v],

and

Bρ[v] := Ξ (κρ) ∂F (κρ)[v]− (h(ρ)− F (κρ)) (∂Ξ (κρ) [v] + Ξ (κρ) ∂ ln |µ(ρ)[v]) .

The fact that L(ρ) > 0 and is a first order operator, together with the condition

that ∂F
∂κi

(
κρ(t)

)
> 0 for all t ∈ [0,∞) and i = 1, . . . , n, ensures that the operator

−Aρ(t) is uniformly elliptic for every t ∈ [0,∞) (see [4]). Hence by Theorem 3.2.6,

Aρ(t) : h2,α0 (S n
R )→ h0,α0 (S n

R ) is sectorial.

We also have that Bρ : C2 (S n
R ) → C0 (S n

R ) is a bounded second order operator

and therefore the global term in the linearisation is in L
(
h2,β (S n

R ) , h0,α0 (S n
R )
)
, for

any β ∈ (0, 1). By choosing β < α0 we can apply the perturbation result in Proposition

3.2.7 (i) to conclude that ∂Gs (ρ(t)) is sectorial for all t ∈ [0, T ]. Hence, by Proposition

3.2.8, ∂Gs (ρ) is sectorial for all ρ ∈ O (ρ(t)) ⊂ h2,α0 (S n
R ), a neighbourhood of ρ(t).

By Theorem 8.4.4 in [38] the flow depends continuously on the initial condition

in a neighbourhood of ρ0. Therefore there exists a ball Bh2,α(S n
R),δ(ρ0) such that if

v0 ∈ Bh2,α(S n
R),δ(ρ0) then the solution, v(t), to (1.5) with initial condition v0 exists

for t ∈ [0, T ] and v(T ) ∈ Bh2,α(S n
R),ε(ρ(T )). Since v(T ) is in Os, by Theorem 5.3.2

the solution to (1.5) with initial condition v(T ) converges to a function near zero that

defines a sphere. By uniqueness of the flow we get the result.
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6

Stability of Weighted Volume

Preserving Curvature Flows near

Finite Cylinders

In this chapter we look at the stability of finite cylinders under the flow (1.4), with

the boundary condition that the hypersurfaces meet a pair of parallel hyperplanes

orthogonally. We will consider initial hypersurfaces that are graphs over cylinders of

length d and radius R. When the height function is small, we prove that if the radius of

the cylinder satisfies a certain condition, then its weighted volume preserving curvature

flow exists for all time and the hypersurfaces converge to a cylinder. To deal with the

boundary conditions we will continue to work with the PDE (1.7), then translate the

results to the geometric setting. This chapter follows the same pattern as Chapter

5 where we set up an exponentially attractive center manifold and prove it consists

entirely of cylinders. We will again rewrite the PDE to highlight the dominant term:

u′(t) = ∂Gt(0)[u(t)] + Ḡt(u(t)), (6.1)

where

Ḡt(v) := Gt(v)− ∂Gt(0)[v].

Note that Ḡt is a smooth function in a neighbourhood of zero, which satisfies Ḡt(0) = 0

and ∂Ḡt(0) = 0.
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6. STABILITY OF WEIGHTED VOLUME PRESERVING
CURVATURE FLOWS NEAR FINITE CYLINDERS

6.1 Eigenvalues

In this section we investigate the spectrum of the operator ∂Gt(0) given in equation

(4.8). However, we will first consider the operator Ãt given in equation (4.13).

Lemma 6.1.1. The spectrum of Ãt : h2,α
(
T n
R,d

)
⊂ h0,α

(
T n
R,d

)
→ h0,α

(
T n
R,d

)
is

given by

σ(Ãt) =

{
−

(
∂F
∂κn

(κ0)m2π2

d2
+

∂F
∂κ1

(κ0) (l − 1)(l + n− 1)

R2

)
: m, l ∈ N0

}
,

with eigenfunctions:

vl,p,m,1(q, z) = cos
(mπz

d

)
Y

(n−1)
l,p (q), 1 ≤ p ≤M (n−1)

l ,

vl,p,m,2(q, z) = sin
(mπz

d

)
Y

(n−1)
l,p (q), 1 ≤ p ≤M (n−1)

l ,

where the constants M
(n−1)
l and the spherical harmonics Y

(n−1)
l,p are defined at the start

of Section 5.1.

Proof. For ease of notation we set F1,0 = ∂F
∂κ1

(κ0) and Fn,0 = ∂F
∂κn

(κ0). Due to the

compact embedding of h2,α
(
T n
R,d

)
in h0,α

(
T n
R,d

)
the spectrum consists entirely of

eigenvalues. The operator Ãt is also self adjoint with respect to the L2-inner product

on h2,α
(
T n
R,d

)
. To see this we consider v, w ∈ h2,α

(
T n
R,d

)
:

ˆ
T n
R,d

Ãt[v]w dµ0 =

ˆ
T n
R,d

(
F1,0∆S n−1

R
v + F1,0

(n− 1)

R2
v + Fn,0

∂2v

∂z2

)
w dµ0

=F1,0

ˆ
S 1
d
π

ˆ
S n−1
R

w∆S n−1
R

vRn−1 dσ dz + F1,0
(n− 1)

R2

ˆ
T n
R,d

vw dµ0

+ Fn,0

ˆ
S n−1
R

ˆ
S 1
d
π

w
∂2v

∂z2
Rn−1 dz dσ

=F1,0

ˆ
S 1
d
π

ˆ
S n−1
R

v∆S n−1
R

wRn−1 dσ dz + F1,0
(n− 1)

R2

ˆ
T n
R,d

vw dµ0

+ Fn,0

ˆ
S n−1
R

ˆ
S 1
d
π

v
∂2w

∂z2
Rn−1 dz dσ

=

ˆ
T n
R,d

vÃt[w] dµ0,

where dσ is the volume form on S n−1
1
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6.1 Eigenvalues

To further analyse the spectrum of Ãt we consider eigenfunctions that have the

factorisation v(q, z) = X(q)Z(z), where q ∈ S n−1
R and z ∈ S 1

d
π

, −d < z ≤ d. Therefore(
F1,0

(
∆S n−1

R
+
n− 1

R2

)
+ Fn,0

∂2

∂z2

)
X(q)Z(z) = λX(q)Z(z),

so after expanding the terms we have

F1,0Z(z)∆S n−1
R

X(q) + Fn,0X(q)Z ′′(z) +

(
F1,0

n− 1

R2
− λ
)
X(q)Z(z) = 0.

Therefore we can separate the variables:

−
∆S n−1

R
X(q)

X(q)
=
Fn,0Z

′′(z)

F1,0Z(z)
+

(
n− 1

R2
− λ

F1,0

)
.

We set both sides to equal a constant ξ ∈ R, which gives

∆S n−1
R

X(q) = −ξX(q), Z ′′(z) =
1

Fn,0

(
F1,0ξ − F1,0

(n− 1)

R2
+ λ

)
Z(z). (6.2)

As given in Section 5.1 the eigenfunctions of the spherical Laplacian are the spheri-

cal harmonics, so Xl,p(q) = Y
(n−1)
l,p (q) for 1 ≤ p ≤ M

(n−1)
l , and the corresponding

eigenvalues are −ξl = −l(l+n−2)
R2 . Substituting ξl into the second equation in (6.2) gives:

Z ′′(z) =
1

Fn,0

(
F1,0

(l − 1)(l + n− 1)

R2
+ λ

)
Z(z).

The eigenfunctions of this system are again the spherical harmonics, but this time

in one-dimension. They can be written as Zm,1(z) = cos
(
mπz
d

)
, for m ∈ N0, and

Zm,2(z) = sin
(
mπz
d

)
, for m ∈ N. Hence we have the relationship

1

Fn,0

(
F1,0

(l − 1)(l + n− 1)

R2
+ λ

)
= −m

2π2

d2
.

Therefore the eigenvalues of Ãt are:

λl,m = −
(
Fn,0

m2π2

d2
+ F1,0

(l − 1)(l + n− 1)

R2

)
,

with corresponding eigenfunctions:

vl,p,m,1(q, z) = cos
(mπz

d

)
Y

(n−1)
l,p (q), vl,p,m,2(q, z) = sin

(mπz
d

)
Y

(n−1)
l,p (q),

where m, l ∈ N0, 1 ≤ p ≤ M
(n−1)
l . Since vl,p,0,2 = 0 we drop the final subscript in the

case of m = 0 and set vl,p,0,1(q, z) = vl,p,0(q, z) = Y
(n−1)
l,p (q). The spherical harmon-

ics are dense in the continuous functions on S n−1
R and S 1

d
π

, so the functions vl,p,m,1

and vl,p,m,2 are dense in the continuous functions T n
R,d. Hence we have completely

characterised the spectrum of Ãt.

51



6. STABILITY OF WEIGHTED VOLUME PRESERVING
CURVATURE FLOWS NEAR FINITE CYLINDERS

Lemma 6.1.2. The spectrum of ∂Gt(0) : h2,α
(
T n
R,d

)
⊂ h0,α

(
T n
R,d

)
→ h0,α

(
T n
R,d

)
consists of a sequence of isolated eigenvalues given by:

σ(∂Gt(0)) =

{
−

∂F
∂κn

(κ0)m2π2

d2
−

∂F
∂κ1

(κ0) (l − 1)(l + n− 1)

R2
: m, l ∈ N0, l +m ≥ 1

}
,

(6.3)

with eigenfunctions:

vl,p,m,1(q, z) = cos
(mπz

d

)
Y

(n−1)
l,p (q), vl,p,m,1(q, z) = sin

(mπz
d

)
Y

(n−1)
l,p (q),

for 1 ≤ p ≤M (n−1)
l , and v1,0,0 = 1.

Furthermore if

R >
d

π

√√√√ ∂F
∂κ1

(κ0) (n− 1)
∂F
∂κn

(κ0)
(6.4)

then all eigenvalues are non-positive and zero is an isolated eigenvalue of multiplicity

n+ 1 with a basis of the eigenspace being the zeroth and first order spherical harmonics

on S n−1
R as functions on T n

R,d.

Proof. We start by noting that again the spectrum must consist solely of eigenvalues

and that Y
(n−1)

0,1 = 1 is an eigenfunction of ∂Gt(0) with eigenvalue zero; we label this

eigenfunction v1,0,0. Now we note that the operator ∂Gt(0) is self adjoint with respect

to the L2-inner product on h0,α
(
T n
R,d

)
. To see this, consider v, w ∈ h2,α

(
T n
R,d

)
and

compute:

ˆ
T n
R,d

∂Gt(0)[v]w dµ0 =

ˆ
T n
R,d

(
Ãt[v]− ∂F

∂κ1
(κ0)

n− 1

R2

 
T n
R,d

v dµ0

)
w dµ0

=

ˆ
T n
R,d

Ãt[v]w dµ0 −
∂F

∂κ1
(κ0)

n− 1

R2

 
T n
R,d

v dµ0

ˆ
T n
R,d

w dµ0

=

ˆ
T n
R,d

vÃt[w] dµ0 −
∂F

∂κ1
(κ0)

n− 1

R2

ˆ
T n
R,d

v dµ0

 
T n
R,d

w dµ0,

where we use that Ãt is self adjoint with respect to the L2-inner product. Hence:

ˆ
T n
R,d

∂Gt(0)[v]w dµ0 =

ˆ
T n
R,d

v

(
Ãt[w]− ∂F

∂κ1
(κ0)

n− 1

R2

 
T n
R,d

w dµ0

)
dµ0

=

ˆ
T n
R,d

v∂Gt(0)[w] dµ0.
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6.2 Center Manifold

Therefore we need only consider eigenfunctions that are L2-orthogonal to Y
(n−1)

0,1 in or-

der to characterise the remainder of the spectrum. This means that for an eigenfunction

v with eigenvalue λ we assume the property:

ˆ
T n
R,d

v dµ0 = 0,

and hence

λv = ∂Gt(0)[v] = Ãt[v].

Thus the remaining eigenfunctions of ∂Gt(0) are precisely the remaining eigenfunctions

of Ãt, which are given in Lemma 6.1.1.

We now consider the sign of the eigenvalues as given in (6.3). It is clear that λl,m

is strictly decreasing in both l and m and we have that λ1,0 = 0 while

λ0,1 = −

(
∂F
∂κn

(κ0)π2

d2
−

∂F
∂κ1

(κ0) (n− 1)

R2

)
.

Therefore, under the assumption (6.4), the only non-negative eigenvalue is λ1,0 = 0 and

it has multiplicity 1 +M
(n−1)
1 = n+ 1.

Note that if R = d
π

√
∂F
∂κ1

(κ0)(n−1)

∂F
∂κn

(κ0)
then all the eigenvalues remain non-positive.

However, we exclude this case for reasons that will be discussed in Section 7.2.

6.2 Center Manifold

Much of the remainder of this chapter follows the work set out in Chapter 5. We

consider the local system:

x′(t) = ∂Gt(0)+[x(t)] + P+

[
Ḡt

(
η
(
x(t)
r

)
+ y(t)

)]
, x(0) = P+[u0],

y′(t) = ∂Gt(0)−[y(t)] + (I − P+)
[
Ḡt

(
η
(
x(t)
r

)
+ y(t)

)]
, y(0) = (I − P+)[u0],

(6.5)

for u0 ∈ h2,α
(
T n
R,d

)
.

Theorem 6.2.1. Assuming the condition (6.4), there exists R̃2 > 0 such that for any

r ∈ (0, R̃2] there is a function γr ∈ C1,1
(
Xc, Xs

2,α

)
such that γr(0) = 0 and ∂γr(0) = 0.

Further, if u0 ∈ Mc
r := graph(γr) then the solution to (6.1), u(t) is in Mc

r as long as

P [u(t)] ∈ BXc,r(0). The dimension of Mc
r is n+ 1.

53



6. STABILITY OF WEIGHTED VOLUME PRESERVING
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Again, since ∂Gt(0) is self adjoint with respect to the L2-inner product, it commutes

with the L2-orthogonal projection onto Xc:

P [u] :=

n∑
a=0

〈u, v1,a,0〉
〈v1,a,0, v1,a,0〉

v1,a,0. (6.6)

That is, P [∂Gt(0)[u]] = ∂Gt(0) [P [u]] = 0 for all u ∈ h2,α
(
T n
R,d

)
. Notably this means

that P
[
hk+2,α

(
T n
R,d

)]
= N (∂Gt(0)) and (I − P )

[
hk+2,α

(
T n
R,d

)]
= Range (∂Gt(0)),

so P = P+, the spectral projection associated to σ+(∂Gt(0)). This also means that

∂Gt(0)+ = 0. Note that if we define āk,α :=
∑n

a=0

‖v1,a,0‖hk,α
´
T n
R,d
|v1,a,0| dµ0

〈v1,a,0,v1,a,0〉 we obtain

the same bounds as in (5.9):

‖P+[u]‖hk,α ≤ āk,α ‖u‖C0 , ‖(I − P+)[u]‖hk,α ≤ (1 + āk,α)‖u‖hk,α , (6.7)

where k ∈ N0 and α ∈ (0, 1)

We set

C := {u ∈ V2,α : u = uρ and Ωρ is a cylinder} ,

and note that if u ∈ C then it is an equilibrium of (6.1), see (1.10) for the definition of

uρ.

Lemma 6.2.2. Assuming the condition (6.4), there exists a neighbourhood of zero,

Wc ⊂ Xc, such that Mc
r and C are identical inside (Wc ∩BXc,r(0)) × BXs

2,α,r
(0), for

any r ∈ (0, R̃2].

Proof. Firstly, since any u0 ∈ C ∩
(
BXc,r(0)×BXs

2,α,r
(0)
)

is a stationary solution to

(6.1), we use Corollary 5.2.3 to conclude that u0 ∈ Mc
r. The rest of the proof follows

in a similar manner to Lemma 5.2.5: If u ∈ C, then there exists a ρ ∈ h2,α
∂
∂z

(
C
n
R,d

)
,

independent of z, that describes a cylinder and such that u = uρ. From the graph of

ρ we obtain the parameters y = (y0, . . . , yn) ∈ Rn+1, where y0 := R′ − R, R′ is the

radius of Ωρ, and (y1, . . . , yn, 0) is the point in Rn+1 where Ωρ’s axis of rotation meets

the z = 0 hyperplane. Since

Xρ = R
(
Y

(n−1)
1,1 , . . . , Y

(n−1)
1,n ,

z

R

)
+ ρ

(
Y

(n−1)
1,1 , . . . , Y

(n−1)
1,n , 0

)
we have the relationship:

(R+ y0)2 = R′2 =

n∑
a=1

(
(R+ ρ)Y

(n−1)
1,a − ya

)2
. (6.8)
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6.3 Convergence to a Cylinder

This is essentially the same equation as (5.10) so we obtain

R+ ρ =

n∑
a=1

yaY
(n−1)

1,a +

√√√√( n∑
a=1

yaY
(n−1)

1,a

)2

+ (R+ y0)2 −
n∑
a=1

y2
a,

and if we set

χ(y) :=
n∑
a=1

yav1,a,0−Rv1,0,0 +

√√√√( n∑
a=1

yav1,a,0

)2

+

(
(R+ y0)2 −

n∑
a=1

y2
a

)
v1,0,0, (6.9)

we have u = uρ = χ(y). We also have χ : U ⊂ Rn+1 → h2,α
(
T n
R,d

)
, where U is a

neighbourhood of zero, and it is clear from the construction that for any u ∈ C, with

sufficiently small norm, there exists a y ∈ U such that u = χ(y). This map is also

smooth on U and we use equation (5.12) to obtain:

∂χ(0)[x] =

n∑
a=0

xav1,a,0,

where x ∈ Rn+1.

Considering the map χ̄(y) : U → Xc given by χ̄(y) := P+[χ(y)], the linearisation

at zero is given by ∂χ̄(0)[x] =
∑n

a=0 xav1,a,0 and hence is the identity map with respect

to the basis v1,p,0, 0 ≤ p ≤ n, of Xc. Therefore there exists a neighbourhood of zero

V ⊂ Xc such that χ̄ is a diffeomorphism from V onto its image, Wc ⊂ Xc. Further, the

function γ̄ := χ ◦ χ̄−1− I : Wc → Xs
2,α parametrises C as a graph over Xc locally. Since

from the first remark of the proof we have that C ∩
(
BXc,r(c)×BXs

2,α,r
(0)
)
⊂Mc

r, we

conclude that C and Mc
r coincide inside (Wc ∩BXc,r(0)) × BXs

2,α,r
(0). Note that we

also have γ̄|Wc∩BXc,r(0) = γr|Wc∩BXc,r(0).

6.3 Convergence to a Cylinder

In this section we prove the main result of the chapter, that the cylinders with large

enough radius are stable under the weighted volume preserving curvature flows.

Theorem 6.3.1. Assuming the condition (6.4), there exists a neighbourhood of zero

Oc ⊂ h2,α
∂
∂z

(
C
n
R,d

)
, 0 < α < 1, such that if ρ0 ∈ Oc, then the flow (1.4) with initial

hypersurface Ωρ0 exists for all time. Furthermore, the hypersurfaces converge exponen-

tially fast to a cylinder as t→∞, with respect to the h2,α
(
C
n
R,d

)
topology, α ∈ (0, 1).
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Proof. The proof is very similar to the proof of Theorem 5.3.2. For completeness we

include the essential steps here. Again we fix r ∈ (0, R̃2] and, since the center manifold

is comprised locally of stationary solutions to the flow, we have wr(t;x, γr) = x for all

x ∈Wc ∩BXc,r(0), where wr(t;x, γr) solves

w′(t) = P+

[
Ḡt

(
η

(
w(t)

r

)
w(t) + γr(w(t))

)]
, w(0) = x.

Also, by (6.7), if u0 is small enough we can apply Proposition 5.3.1 with

ω− = min

(
∂F

∂κn
(κ0)

π2

d2
− ∂F

∂κ1
(κ0)

n− 1

R2
,
∂F

∂κ1
(κ0)

n+ 1

R2

)
, (6.10)

to obtain, for any ω ∈ (0, ω−), x̄ ∈ Xc such that:

‖xr(t)− wr(t; x̄, γr)‖h0,α+‖yr(t)− γr(wr(t; x̄, γr))‖h2,α

≤ Ce−ωt‖(I − P+)[u0]− γr (P+[u0]) ‖h2,α , (6.11)

where (xr(t), yr(t)) solves (6.5). By evaluating this at t = 0 we obtain the bound

‖x̄‖h0,α ≤ C‖u0‖h2,α as in (5.15). So if u0 is small enough we have x̄ ∈ Wc ∩ BXc,r(0).

Hence, by the first part of the proof wr(t; x̄, γr) = x̄ and (6.11) simplifies to:

‖xr(t)− x̄‖h0,α + ‖yr(t)− γr(x̄)‖h2,α ≤ Ce−ωt‖(I − P+)[u0]− γr (P+[u0]) ‖h2,α . (6.12)

The bound ‖xr(t)‖h0,α ≤ C‖u0‖h2,α is then obtained by the same calculations as in

(5.17) and, by considering u0 small enough, we have u(t) = xr(t) + yr(t) is a solution

to (6.1) for all t ≥ 0. Hence:

‖u(t)− (x̄+ γr(x̄))‖h2,α = ‖P+[u(t)]− x̄+ (I − P+)[u(t)]− γr(x̄)‖h2,α

≤ ‖P+[u(t)]− x̄‖h2,α + ‖(I − P+)[u(t)]− γr(x̄)‖h2,α

≤ C‖P+[u(t)]− x̄‖h0,α + ‖(I − P+)[u(t)]− γr(x̄)‖h2,α

≤ Ce−ωt‖(I − P+)[u0]− γr(P+[u0])‖h2,α , (6.13)

where we used equivalence of norms on Xc, and we obtain that u(t) converges expo-

nentially to u∞ := x̄+ γr(x̄) ∈Mc
r.

Finally, since ‖uρ0‖h2,α is controlled by ‖ρ0‖h2,α for any ρ0 ∈ h2,α
∂
∂z

(
C
n
R,d

)
, see Corol-

lary 3.1.4, there exists a neighbourhood of zero such that if ρ0 is in this neighbourhood

then uρ0 is small and the above analysis is applicable. Therefore ρ(t) = u(t)|CnR,d
converges exponentially fast to u∞|CnR,d , which by Lemma 6.2.2 is a cylinder.
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6.3 Convergence to a Cylinder

A direct consequence of the theorem is the existence of non-axially symmetric hy-

persurfaces that converge to a cylinder under the flow. We also have the following

corollary concerning the stability of hypersurfaces that converge to cylinders under the

flow.

Corollary 6.3.2. Let ρ(t) be a solution to the equation (1.5), with R satisfying (6.4),

which exists for all time and converges to zero. Suppose further that ∂F
∂κi

(
κρ(t)

)
> 0 for

all t ∈ [0,∞) and i = 1, . . . , n. Then there exists a neighbourhood, Oc,1 ⊂ h2,α
∂
∂z

(
C
n
R,d

)
,

0 < α < 1, of ρ0 such that for every v0 ∈ Oc,1 the solution to (1.5) with initial condition

v0 exists for all time and converges to a function near zero whose graph is a cylinder.

Proof. This follows by analysing (1.7) using the same arguments given in Corollary

5.3.3 with the obvious changes. �
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7

Stability of Volume Preserving

Mean Curvature Flow near

Finite Cylinders

Here we consider hypersurfaces that are close to a cylinder and evolve them using the

volume preserving mean curvature flow. This is a special case of the problem considered

in Chapter 6 and as such the results of that chapter are still applicable. In particular,

we have shown there exists an exponentially attractive center manifold and if the initial

hypersurface is h2,α-close to a cylinder, for any α ∈ (0, 1), then it converges to a cylinder

with respect to the h2,α norm, under the assumption

R >
d
√
n− 1

π
. (7.1)

This assumption should be compared to the condition (1.3), which was used in [11]

to prove convergence to cylinders in the case of axial symmetry. In the case of the

hypersurface being a cylinder the assumption (1.3) reduces to R ≥ nd. Since the right

hand side is strictly greater than d
√
n−1
π , Theorem 6.3.1 shows that (1.3) can be relaxed

by assuming the axially symmetric hypersurfaces are close to a cylinder. The condition

(7.1) also appears in [9], which proves that two dimensional cylinders of large radius

are stable solutions to the isoperimetric problem.

In this chapter we extend this result to include initial hypersurfaces that are h1,β-

close to a cylinder, for any β ∈ (0, 1). The existence of solutions to the flow with such

an initial condition was proved in Theorem 4.4.2. We also have that the flow becomes

smooth instantaneously (Corollary 4.4.3) and we will find that this allows us to obtain

convergence to a cylinder in the Ck-topology for any k ∈ N. The last two sections of
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this chapter deal with condition (7.1). It will be investigated through a bifurcation

analysis of the stationary solution equation and from a geometric point of view.

7.1 Smooth Convergence to a Cylinder

In this section we prove the convergence of solutions of the volume preserving mean

curvature flow to cylinders if the initial height function is small in h1,β
∂
∂z

(
C
n
R,d

)
, for

any β ∈ (0, 1). The results of this section are also included in [28]. We follow [20] in

using results presented in [42]. If, in addition to the assumptions in Theorem 4.4.1, we

assume that σ+ (A) ⊂ iR, then we have the following results:

Proposition 7.1.1 (Proposition 5.4 [42]). Let ωc ∈ (0, ω−) and consider equations

(5.3) and (5.5) with A = −Q(0)− ∂f(0) and G(u) = −Q(u)[u] + f(u)−A[u], see also

(4.14). There exists R′ > 0 such that for every r ∈ (0, R′] there exists a Kr ∈ R+,

with limr→0Kr = 0, and W̃k+1,β ⊂ hk+1,β
(
T n
R,d

)
a neighbourhood of zero, such that if

u0 ∈ W̃k+1,β then the solution to (5.3) with x0 = P+[u0] and y0 = (I −P+)[u0] satisfies

‖xr(τ)− w̃r(τ, t)‖h0,α ≤ Kr

ˆ t

τ
e(Kr+ωc)(s−τ)‖yr(s)− γr(x(s))‖hk+2,α ds, 0 < τ ≤ t < δ,

where w̃r(τ, t) := wr(τ − t;xr(t), γr) for τ ∈ R, t ∈ [0, δ). Furthermore

‖wr(τ ;P+[u0], γr)− w̃r(τ, t)‖h0,α

≤ Kre
−(Kr+ωc)τ

ˆ t

0
e(Kr+ωc)s‖yr(s)− γr(xr(s))‖h2,α ds, τ ≤ 0 ≤ t < δ.

Theorem 7.1.2 (Theorem 5.8 [42]). There exists R̄ ∈ (0, R′] such that for all r ∈ (0, R̄],

Kr + ωc < ω− and the solution to (5.3) with x0 = P+[u0], y0 = (I − P+)[u0] satisfies

‖yr(t)− γr(xr(t))‖hk+2,α ≤
Ce−ωt

t
1−β+α

2

‖(I − P+)[u0]− γr (P+[u0])‖hk+1,β , t ∈ (0, t+(u0))

for any ω ∈ (Kr+ωc, ω−) and each initial value u0 ∈ W̃k+1,β. Note that C only depends

on the difference β − α.

We now fix l ∈ N0, ᾱ ∈ (0, 1), β0 ∈ (ᾱ, 1), ωc ∈ (0, ω−), see (6.10), and define

βk = β0 − k(β0−ᾱ)
l+1 . Let R̄l be the constant from applying Theorem 7.1.2 to the system

(6.5) with k = l, β = βl and α = ᾱ, and fix r ∈ (0, R̄l], ω ∈ (Kr + ωc, ω−). The aim

for the remainder of this section is to find a set Wl ⊂ h1,β0

(
T n
R,d

)
such that if u0 ∈Wl

then the solution, u(t), to (1.9) exists for all time and converges to an element in Mc
r,

defined in Theorem 6.2.1.
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7.1 Smooth Convergence to a Cylinder

To achieve this, we first note that, assuming (7.1), we can apply Theorem 5.2.1 and

Corollary 5.2.3 to obtain functions γk,r ∈ C1,1
(
Xc, Xs

k+2,βk+1

)
for all 0 ≤ k ≤ l, we set

br to be the maximum of their Lipschitz constants. The arguments in Lemma 6.2.2 are

still valid for each γk,r and hence γ̄|Wc∩BXc,r(0) = γk,r|Wc∩BXc,r(0). Therefore, when we

work on Wc ∩BXc,r(0) we denote all maps by γ̄.

We now obtain bounds for how much xr(t) can grow over a short time period.

Lemma 7.1.3. There exists a neighbourhood of zero, U ⊂ h1,β0

(
T n
R,d

)
, τ̄ > 0 and

C > 0 such that if u0 ∈ U then

‖xr(t)− P+[u0]‖h0,β1 ≤ C‖(I − P+)[u0]− γ̄(P+[u0])‖h1,β0 , t ∈ [0, τ̄ ].

where C depends on the choices of ᾱ, β0, l, r, ωc and ω.

Proof. The mapping (t, u0)→ u(t) is a continuous semiflow by Theorem 4.4.2. Hence,

we can find τ̄ ∈ (0, δ) and a neighbourhood of zero U ⊂ W̃1,β0 such that if u0 ∈ U

then u(t) ∈ (Wc ∩BXc,r(0)) × BXs
1,β0

,r(0) for all t ∈ [0, τ̄ ]. In particular, this means

that P+ [u(t)] ∈ Wc ∩ BXc,r(0) for all t ∈ [0, τ̄ ] so that (1.9) and (6.5) are equivalent

on this time interval. Therefore, u(t) = xr(t) + yr(t), wr (τ ;xr(t), γ̄) = xr(t) and

w̃r(τ, t) = xr(t) for all t ∈ [0, τ̄ ] and τ ∈ R.

We now set τ = 0 in the second estimate in Proposition 7.1.1 then apply Theorem

7.1.2 to obtain for t ∈ [0, τ̄ ]:

‖P+[u0]− xr(t)‖h0,β1 ≤ Kr

ˆ t

0
e(Kr+ωc)s‖yr(s)− γ̄(xr(s))‖h2,β1 ds,

≤ KrC

ˆ t

0

e−(ω−(Kr+ωc))s

s
1−β0+β1

2

‖(I − P+)[u0]− γ̄ (P+[u0]) ‖h1,β0 ds

≤
KrCΓ

(
1+β0−β1

2

)
(ω − (Kr + ωc))

1+β0−β1
2

‖(I − P+)[u0]− γ̄ (P+[u0]) ‖h1,β0 ,

where Γ(x) is the gamma function.

This allows us to obtain convergence in the h2,β1 norm.

Lemma 7.1.4. There exists a neighbourhood of zero, V ⊂ h1,β0

(
T n
R,d

)
, and τ̄ > 0

such that if u0 ∈ V then the flow (1.9) has a solution for all t ≥ 0 and the solution u(t)

satisfies

‖u(t)− (x̄+ γ̄(x̄))‖h2,β1 ≤ Ce−ωt‖(I − P+)[u0]− γ̄(P+[u0])‖h1,β0 , t ≥ τ̄ ,

for some x̄ ∈Wc ∩BXc,r(0). Here C depends on r, ᾱ, β0, l, and ω.
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Proof. We consider U and τ̄ as given in Lemma 7.1.3 and proceed to bound u(τ̄), when

u0 ∈ U . Using u(τ̄) = xr(τ̄) + yr(τ̄):

‖u(τ̄)‖h2,β1 ≤ ‖xr(τ̄)‖h2,β1 + ‖yr(τ̄)− γ̄(xr(τ̄))‖h2,β1 + ‖γ̄(xr(τ̄))‖h2,β1

≤ (C + br)‖xr(τ̄)‖h0,β1 +
Ce−ωτ̄

τ̄
1−β0+β1

2

‖(I − P+)[u0]− γ̄(P+[u0])‖h1,β0 ,

where we have used that γ̄ is Lipschitz, the equivalence of norms on Xc and Theorem

7.1.2. Continuing, via Lemma 7.1.3, we have:

‖u(τ̄)‖h2,β1 ≤C (‖xr(τ̄)− P+[u0]‖h0,β1 + ‖P+[u0]‖h0,β1 )

+
Ce−ωτ̄

τ̄
1−β0+β1

2

‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0

≤
(
C +

Ce−ωτ̄

τ̄
1−β0+β1

2

)
‖(I − P+)[u0]− γ̄(P+[u0])‖h1,β0 + C‖P+[u0]‖h0,β1

≤C(τ̄ , ᾱ, β0, l, ω) ‖u0‖h1,β0 . (7.2)

Therefore there exists V ⊂ U such that if u0 ∈ V , then u(τ̄) is close to zero in

h2,β1

(
T n
R,d

)
. Hence we can apply the result in the proof of Theorem 6.3.1 to conclude

that the solution, ū(t), to the flow (1.9) together with the initial condition u(τ̄) exists,

P+[ū(t)] ∈Wc ∩BXc,r(0) for all time, and ū(t) satisfies equation (6.13), i.e.

‖ū(t)− (x̄+ γ̄(x̄))‖h2,β1 ≤ Ce−ωt ‖(I − P+)[u(τ̄)]− γ̄ (P+[u(τ̄)])‖h2,β1 , t ≥ 0

for some x̄ ∈ Wc ∩ BXc,r(0). However, by uniqueness of the flow, we also have that

ū(t) = u(t+ τ̄) for t ≥ 0, so, using the transformation t 7→ t− τ̄ , we obtain for t ≥ τ̄ :

‖u(t)− (x̄+ γ̄(x̄))‖h2,β1 ≤ Ce−ω(t−τ̄) ‖(I − P+)[u(τ̄)]− γ̄ (P+[u(τ̄)])‖h2,β1

≤ C

τ̄
1−β0+β1

2

e−ωt ‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0 ,

where we again used Theorem 7.1.2.

Note this theorem provides stability of cylinders under perturbations in h1,β0 , but

before stating this result we obtain higher convergence for the solution. Furthermore,

we now have, due to comments in the proofs of Lemma 7.1.3 and Theorem 7.1.4, that

if u0 ∈ V then P+[u(t)] ∈ Wc ∩ BXc,r(0) for all t ≥ 0. Hence, u(t) = xr(t) + yr(t),

wr (τ ;xr(t), γ̄) = xr(t) and w̃l,r(τ, t) = xr(t) for all t ≥ 0 and τ ∈ R.

Since we have convergence of the solution, we can obtain a bound independent of

the time τ̄ , we follow [20] to achieve this.
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7.1 Smooth Convergence to a Cylinder

Lemma 7.1.5. If u0 ∈ V then for all t > 0 we have

‖u(t)− (x̄+ γ̄(x̄))‖h2,β1 ≤
Ce−ωt

t
1−β0+β1

2

‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0 ,

where C depends on the choices of ᾱ, β0, l, r, ωc and ω.

Proof. Using that w̃l,r(τ, t) = xr(t), the first bound in Proposition 7.1.1 simplifies to:

‖xr(τ)− xr(t)‖h0,β1 ≤ Kr

ˆ t

τ
e(Kr+ωc)(s−τ)‖yr(s)− γ̄(xr(s))‖h2,β1 ds,

for 0 < τ ≤ t. We use Lemma 7.1.4 together with the bound for x̄ in the proof of

Theorem 6.3.1 and equation (7.2) to obtain the bound ‖u(t)‖h2,β1 ≤ C‖u0‖h1,β0 for

t ≥ τ̄ . This, together with the flow being continuous on h1,β0 , means we can ensure

u(τ) ∈ W̃1,β0 for all τ ≥ 0, shrinking V if necessary. We can therefore apply Theorem

7.1.2 to the function ũ(s) = u(s+ τ):

‖xr(τ)− xr(t)‖h0,β1 ≤ Kr

ˆ t

τ
e(Kr+ωc)(s−τ)‖ỹr(s− τ)− γ̄(x̃r(s− τ))‖h2,β1 ds

≤ CKr

ˆ t

τ

e(Kr+ωc)(s−τ)

(s− τ)
1−β0+β1

2

e−ω(s−τ)‖ỹr(0)− γ̄(x̃r(0))‖h1,β0 ds

= CKr‖yr(τ)− γ̄(xr(τ))‖h1,β0

ˆ t

τ

e(Kr+ωc−ω)(s−τ)

(s− τ)
1−β0+β1

2

ds

≤
CKrΓ

(
1+β0−β1

2

)
(ω − (Kr + ωc))

1−β0+β1
2

‖yr(τ)− γ̄(xr(τ))‖h1,β0 .

As the right hand side is independent of t we can take it to infinity and, using that

Theorem 7.1.4 implies that limt→∞ xr(t) = x̄, obtain a bound for τ > 0:

‖xr(τ)− x̄‖h0,β1 ≤ C‖yr(τ)− γ̄(xr(τ))‖h1,β0 . (7.3)

Note that this has a very similar form to the bound in Lemma 7.1.3, except this is valid

for all τ > 0 and bounds the distance to the limiting function, instead of the initial

function. Finally we achieve the bound:

‖u(t)− (x̄+ γ(x̄))‖h2,β1 ≤‖xr(t)− x̄‖h2,β1 + ‖yr(t)− γ̄(x̄)‖h2,β1

≤C‖xr(t)− x̄‖h0,β1 + ‖yr(t)− γ̄(xr(t))‖h2,β1

+ ‖γ̄(xr(t))− γ̄(x̄)‖h2,β1

≤(C + br)‖xr(t)− x̄‖h0,β1 + ‖yr(t)− γ̄(xr(t))‖h2,β1

≤C‖yr(t)− γ̄(xr(t))‖h2,β1 , (7.4)

and hence using Theorem 7.1.2 we obtain the result.
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To obtain convergence with respect to norms of higher regularity we first need

another lemma.

Lemma 7.1.6. For any k ∈ N0 ∩ [0, l] there exists a Uk such that if u0 ∈ Uk then for

t ≥ tk := (k+1)τ̄
l+1

‖(I − P+) [u(t)]− γ̄ (P+ [u(t)])‖
hk+2,βk+1 ≤ Cke−ωt ‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0 ,

(7.5)

where τ̄ > 0 is given in Lemma 7.1.4, and Ck = Ck+1
(
l+1
τ̄

) k+1
2

(
1−β0−ᾱ

l+1

)
, C is constant

in Theorem 7.1.2.

Proof. The base case is easily achieved, with U0 = U , by using Theorem 7.1.2:

‖(I − P+) [u(t)]− γ̄ (P+ [u(t)])‖h2,β1 ≤
Ce−ωt

t
1−β0+β1

2

‖(I − P+) [u0]− γ̄ (P+[u0])‖h1,β0

≤ Ce−ωt

t
1
2

(
1−β0−ᾱ

l+1

)
0

‖(I − P+) [u0]− γ̄ (P+[u0])‖h1,β0 ,

for t ≥ t0.

Now we assume that (7.5) is true for some k ≤ l − 1 and we prove it is true for

k + 1. Firstly we bound the solution at the time tk using (7.5):

‖u(tk)‖hk+2,βk+1 ≤‖xr(tk)‖hk+2,βk+1 + ‖γ̄ (xr(tk))‖hk+2,βk+1

+ ‖yr(tk)− γ̄ (xr(tk))‖hk+2,βk+1

≤Cke−ωtk ‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0 + (C + br) ‖xr(tk)‖h0,β1

≤Cke−ωtk ‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0

+ C (‖xr(tk)− P+[u0]‖h0,β1 + ‖P+[u0]‖h0,β1 )

≤
(
Cke

−ωtk + C
)
‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0

+ ā0,β1 ‖u0‖h1,β0

≤
((
Cke

−ωtk + C
)

(1 + ā1,β0 + brā0,β1) + ā0,β1

)
‖u0‖h1,β0 , (7.6)

where to obtain the second last bound we used Lemma 7.1.3. Therefore we can make

Uk+1 small enough such that u(tk) ∈ W̃k+2,βk+1
and hence we obtain a solution to (1.9),

ū(t) ∈ hk+3,βk+2

(
T n
R,d

)
, such that ū(0) = u(tk) and it satisfies the bound in Theorem

7.1.2. Now by uniqueness we have that ū(t) = u(t + tk) for t ≥ 0. So for t ≥ tk+1 we
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have

‖(I − P+) [u(t)]− γ̄ (P+ [u(t)])‖
hk+3,βk+2

≤ Ce−ω(t−tk)

(t− tk)
1−βk+1+βk+2

2

‖(I − P+) [u(tk)]− γ̄ (P+ [u(tk)])‖hk+2,βk+1

≤ CCke
−ωt

t
1
2

(
1−β0−ᾱ

l+1

)
0

‖(I − P+) [u0]− γ̄ (P+ [u0])‖h1,β0 , (7.7)

where we have once again used the inductive assumption (7.5). This then proves the

bound (7.5) for all k ∈ N0 ∩ [0, l].

We are now able to obtain convergence to x̄+ γ̄(x̄) in hl+2,ᾱ.

Theorem 7.1.7. For any l ∈ N0, ᾱ ∈ (0, 1), β0 ∈ (ᾱ, 1) there exists a neighbourhood

of zero, Wl ⊂ h1,β0
∂
∂z

(
C
n
R,d

)
, such that if ρ0 ∈ Wl then its flow by (1.6) exists for all

time and converges exponentially fast in C l+2 to the height function ρ∞, where Ωρ∞ is

a cylinder.

Proof. By Corollary 3.1.4 we can choose Wl such that if ρ0 ∈ Wl then uρ0 ∈ Ul and

thus have the result in Lemma 7.1.6. In particular for t > τ̄ we have, using (7.3):

‖u(t)− (x̄+ γ̄(x̄))‖hl+2,ᾱ ≤‖xr(t)− x̄‖hl+2,ᾱ + ‖yr(t)− γ̄ (xr(t))‖hl+2,ᾱ

+ ‖γ̄ (xr(t))− γ̄(x̄)‖hl+2,ᾱ

≤(C + br) ‖xr(t)− x̄‖h0,β1 + ‖yr(t)− γ̄ (xr(t))‖hl+2,ᾱ

≤C ‖yr(t)− γ̄ (xr(t))‖hl+2,ᾱ

≤CCle−ωt ‖(I − P+)[u0]− γ̄ (P+[u0])‖h1,β0 . (7.8)

Therefore, we have shown that ρ(t) = u(t)|CnR,d converges exponentially fast, in C l, to

ρ∞ := (x̄+ γ̄(x̄)) |CnR,d , which by Lemma 6.2.2 is the height function for a cylinder.

7.2 Bifurcation Analysis

In Section 6.1 it was found that for the eigenvalues of the linearisation of Gt(u) about

zero to be non-positive, the radius of the cylinder needs to satisfy the condition

R ≥ d

π

√√√√ ∂F
∂κ1

(κ0) (n− 1)
∂F
∂κn

(κ0)
.
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However we excluded the case of equality and instead assumed the radius satisfied the

strict inequality. In this section we discover that any neighbourhood of the cylinder

with radius R = d
√
n−1
π contains constant mean curvature (CMC) unduloids, which do

not converge to a cylinder under the volume preserving mean curvature flow as they

are stationary solutions. Therefore the strict inequality was indeed necessary to obtain

Theorems 6.3.1 and 7.1.7. The axially symmetric volume preserving mean curvature

flow is equivalent to the PDE:

∂u

∂t
= G(u) :=

√
1 +

(
∂u

∂z

)2
 

S 1
d
π

H(u) dµu −H(u)

 , (7.9)

H (u) :=
−d2u
dz2(

1 +
(
du
dz

)2)3/2
+

n− 1

u

√
1 +

(
du
dz

)2 , (7.10)

Note that H(u) is the mean curvature of the hypersurface obtained by rotating the

graph of the function u(z) around the z-axis and dµu = µ(u) dz =

√
1 +

(
du
dz

)2
un−1 dz.

We have removed the presence of R from the equation since we will be considering the

flow near cylinders of various radii. We seek solutions in the space

h2,α
e

(
S 1

d
π

)
:=
{
u ∈ h2,α

(
S 1

d
π

)
: u(z) = u(−z)

}
.

As in [35], we use that the flow preserves enclosed volume to obtain an equivalent

PDE on the space of average zero functions:

h2,α
e,0

(
S 1

d
π

)
:=

v ∈ h2,α
e

(
S 1

d
π

)
:

ˆ
S 1
d
π

v(z) dz = 0

 .

To simplify notation we will define the projection operator:

P0 : h2,α
e

(
S 1

d
π

)
→ h2,α

e,0

(
S 1

d
π

)
, P0[u] := u−

 
S 1
d
π

u dz. (7.11)

Before we are able to state the equivalent flow, we require a function that recreates

a function u ∈ h2,α
e

(
S 1

d
π

)
given its projection P0[u] and the enclosed volume of its

corresponding hypersurface, V ol(u).

Lemma 7.2.1. For each η0 ∈ R+ there exist Vη0, a neighbourhood of the constant

function n−1
η0
∈ h2,α

e

(
S 1

d
π

)
, and Uη0, a neighbourhood of (0, η0) ∈ h2,α

e,0

(
S 1

d
π

)
× R, as

well as a smooth diffeomorphism ψη0 : Uη0 → Vη0, see Figure 7.1, such that for all

(ū, η) ∈ Uη0 we have P0 [ψη0(ū, η)] = ū and V ol (ψη0(ū, η)) = 2ωnd
(
n−1
η

)n
, where ωn

is the volume of the unit n-ball.
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h2,α
e R

h2,α
e,0

n−1
η0

Vη0

η0

Uη0

ψη0

Figure 7.1: Mapping between zero mean functions and graph functions

Proof. We consider the function

Φ(u, ū, η) :=

P0[u]− ū, ωnd

 
S 1
d
π

un dz −
(
n− 1

η

)n . (7.12)

We note that the points
(
n−1
η , 0, η

)
are zeros of Φ and we calculate its linearisation

with respect to the first argument:

∂1Φ(u, ū, η)[v] =

P0[v], nωnd

 
S 1
d
π

un−1v dz

 .

Evaluating at the point
(
n−1
η0
, 0, η0

)
, for any η0 ∈ R+, gives:

∂1Φ

(
n− 1

η0
, 0, η0

)
[v] =

P0[v], nωnd

(
n− 1

η0

)n−1  
S 1
d
π

v dz

 .

If v is in the null space of ∂1Φ
(
n−1
η0
, 0, η0

)
, then by the above equation P0[v] = 0

and
ffl
S 1
d
π

v dz = 0. The only such function is v = 0, thus the null space is trivial.

By considering v = v̄ +
ληn−1

0
nωnd(n−1)n−1 , for any (v̄, λ) ∈ h2,α

e,0

(
S 1

d
π

)
× R, it follows that

∂1Φ
(
n−1
η0
, 0, η0

)
: h2,α

e

(
S 1

d
π

)
→ h2,α

e,0

(
S 1

d
π

)
× R is bijective. We therefore use the

implicit function theorem to obtain the function ψη0 : Uη0 → Vη0 with the property

that for any (u, ū, η) ∈ Vη0 × Uη0 we have

Φ(u, ū, η) = (0, 0)⇔ u = ψη0(ū, η).

67



7. STABILITY OF VOLUME PRESERVING MEAN CURVATURE
FLOW NEAR FINITE CYLINDERS

We note some additional properties of ψη0 . We have the representation

ψη0(ū, η) = ū+

 
S 1
d
π

ψη0(ū, η) dz, (7.13)

so u = ū + C, where C is some constant and, hence, du
dz = dū

dz . The point (0, η)

corresponds to a cylindrical hypersurface of mean curvature η since

ψη0(0, η) =
n− 1

η
. (7.14)

Lastly the following lemma gives the linearisations of ψη0 :

Lemma 7.2.2. For any (ū, η) ∈ Uη0 and v̄ ∈ h2,α
e,0

(
S 1

d
π

)
we have:

∂1ψη0(ū, η)[v̄] = v̄ −

´
S 1
d
π

ψη0(ū, η)n−1v̄ dz

´
S 1
d
π

ψη0(ū, η)n−1 dz
,

and

∂2ψη0(ū, η) = − (n− 1)n

ηn+1
ffl
S 1
d
π

ψη0(ū, η)n−1 dz
.

Proof. We start by taking the linearisation of the equation

Φ (ψη0(ū, η), ū, η) = (0, 0) (7.15)

with respect to ū, using (7.12) we obtain:P0 [∂1ψη0(ū, η)[v̄]]− v̄, nωnd
 

S 1
d
π

ψη0(ū, η)n−1∂1ψη0(ū, η)[v̄] dz

 = (0, 0).

Hence

∂1ψη0(ū, η)[v̄] = v̄ +

 
S 1
d
π

∂1ψη0(ū, η)[v̄] dz, (7.16)

and  
S 1
d
π

ψη0(ū, η)n−1∂1ψη0(ū, η)[v̄] dz = 0.

By substituting the first of these equations into the second we obtain

 
S 1
d
π

ψη0(ū, η)n−1v̄ dz +

 
S 1
d
π

ψη0(ū, η)n−1 dz

 
S 1
d
π

∂1ψη0(ū, η)[v̄] dz = 0.
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This gives us

 
S 1
d
π

∂1ψη0(ū, η)[v̄] dz = −

ffl
S 1
d
π

ψη0(ū, η)n−1v̄ dz

ffl
S 1
d
π

ψη0(ū, η)n−1 dz
,

and combining with equation (7.16) gives the first result. To obtain the second result

we take the derivative of (7.15), again using (7.12), with respect to η.P0 [∂2ψη0(ū, η)] , nωnd

 
S 1
d
π

ψη0(ū, η)n−1∂2ψη0(ū, η) dz +
(n− 1)n

ηn+1

 = (0, 0),

since the first component tells us that ∂2ψη0(ū, η) does not depend on z, the result is

then obtained from the second component.

To simplify the notation we define, for (ū, η) ∈ Uη0 :

F̄η0(ū, η) := H (ψη0(ū, η)) (7.17)

and

Ḡη0(ū, η) := P0

√1 +

(
dū

dz

)2
 

S 1
d
π

F̄η0(ū, η) dµ̄η0(r̄, η)− F̄η0(ū, η)

 , (7.18)

where dµ̄η0(r̄, η) = µ̄η0(r̄, η) dz = µ(ψ0(r̄, η)) dz. We then obtain an equivalent flow to

(7.9) (in a neighbourhood of η0):

Lemma 7.2.3. Let ū(t) be a solution to the flow

∂ū

∂t
= Ḡη0(ū, η), ū(0) = ū0, (7.19)

where (u0, η) ∈ Uη0. Then ψη0(ū(t), η) is a solution to (7.9). Conversely if u(t),

t ∈ [0, δ), is a solution to (7.9) such that

P0[u(t)], n−1

n

√ffl
S 1
d
π

un0 dz

 ∈ Uη0, for each

t ∈ [0, δ), then P0[u(t)] is a solution to (7.19) with η = n−1

n

√ffl
S 1
d
π

un0 dz
.

Proof. We start by assuming ū(t) is a solution to (7.19) and set u(t) = ψη0(ū(t), η).
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We then use Lemma 7.2.2 to calculate the time derivative of u(t) explicitly:

∂u

∂t
=∂1ψη0(ū, η)

[
∂ū

∂t

]
=∂1ψη0(ū, η)

[
Ḡη0(ū(t), η)

]
=P0 [G(u(t))]−

´
S 1
d
π

u(t)n−1P0 [G(u(t))] dz

´
S 1
d
π

u(t)n−1 dz

=G(u(t))−

´
S 1
d
π

u(t)n−1G(u(t)) dz

´
S 1
d
π

u(t)n−1 dz

=G(u(t))−

´
S 1
d
π

u(t)n−1
√

1 +
(
∂u
∂z

)2(ffl
S 1
d
π

H(u(t)) dµu(t) −H(u(t))

)
dz

´
S 1
d
π

u(t)n−1 dz

=G(u(t))−

´
S 1
d
π

(ffl
S 1
d
π

H(u(t)) dµu(t) −H(u(t))

)
dµu(t)

´
S 1
d
π

u(t)n−1 dz

=G(u(t)).

The converse statement is obvious from the definition of Ḡη0 .

In particular, this means that equations (7.9) and (7.19) have the same stationary

solutions and that the curve
(
0, n−1

R

)
, for R ∈ R+ such that (0, n−1

R ) ∈ Uη0 , is a family

of stationary solutions to (7.19); we call this curve of solutions the trivial solution curve.

We seek to find nontrivial solution curves to the equation

Ḡη0(ū, η) = 0 (7.20)

using bifurcation theory and hence find non-cylindrical CMC hypersurfaces. More pre-

cisely, we wish to prove that there exist non-cylindrical CMC hypersurfaces arbitrarily

close to the cylinders of mean curvature Hm := mπ
√
n−1
d .

Theorem 7.2.4. The points (0, Hm), for m ∈ N, are the only bifurcation points on the

trivial curve. That is, for each m ∈ N there exists a nontrivial continuously differen-

tiable curve in h2,α
e,0

(
S 1

d
π

)
× R+ through (0, Hm):

{(r̄m,s, ηm,s) : s ∈ (−δ, δ), (r̄m,0, ηm,0) = (0, Hm)} ⊂ Uη0 , (7.21)

such that

ḠHm (r̄m,s, ηm,s) = 0 for s ∈ (−δ, δ),
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and all solutions of ḠHm (ū, η) = 0 in a neighbourhood of (0, Hm) are either trivial

solutions or on the nontrivial curve in (7.21).

Proof. We start by determining the linearisation of Ḡη0(ū, η) with respect to the func-

tion variable at the point (0, η). As it is clear that the projection P0 commutes with

the linearisation operator we will instead consider the functional:

G̃η0(ū, η) :=

√
1 +

(
dū

dz

)2
 

S 1
d
π

F̄η0(ū, η) dµ̄η0(ū, η)− F̄η0(ū, η)

 . (7.22)

To simplify notation, we define W̄η0(ū, η) = ln(µ̄η0(ū, η)), so dµ̄η0(ū, η) = eW̄η0 (ū,η) dz

and ∂1 dµ̄η0(ū, η)[v̄] = ∂1W̄η0(ū, η)[v̄] dµ̄η0(ū, η). We also use u′ to represent du
dz and

drop the η0 subscript. Note that
ffl
S 1
d
π

g(ū, η) dµ̄(0, η) =
ffl
S 1
d
π

g(ū, η) dz, where g is an

arbitrary function. Taking the Fréchet derivative of (7.22) gives:

∂1G̃(ū, η)[v̄] =
ū′v̄′√
1 + ū′2

 
S 1
d
π

F̄ (ū, η) dµ̄(ū, η)− F̄ (ū, η)


+
√

1 + ū′2

 
S 1
d
π

∂1F̄ (ū, η)[v̄] dµ̄(ū, η)− ∂1F̄ (ū, η)[v̄]


+
√

1 + ū′2

 
S 1
d
π

F̄ (ū, η)∂1W̄ (ū, η)[v̄] dµ̄(ū, η)

−
 

S 1
d
π

F̄ (ū, η) dµ̄(ū, η)

 
S 1
d
π

∂1W̄ (ū, η)[v̄] dµ̄(ū, η)


=
ū′v̄′G̃(ū, η)

1 + ū′2
−
√

1 + ū′2∂1F̄ (ū, η)[v̄]

+
√

1 + ū′2

 
S 1
d
π

∂1F̄ (ū, η)[v̄]− G̃(ū, η)√
1 + ū′2

∂1W̄ (ū, η)[v̄] dµ̄(ū, η)

 .

(7.23)

From (7.17) we have:

∂1F̄ (ū, η)[v̄] = ∂H(ψ(ū, η)) [∂1ψ(ū, η)[v̄]] . (7.24)

Using that
ffl
S 1
d
π

v̄ dz = 0 in Lemma 7.2.2 gives ∂1ψ(0, η)[v̄] = v̄; so combining this with

(7.23) and (7.24) gives:

∂1G̃(0, η)[v̄] =

 
S 1
d
π

∂H

(
n− 1

η

)
[v̄] dz − ∂H

(
n− 1

η

)
[v̄] ,
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therefore ∂1G̃(0, η)[v̄] has zero mean for all v̄, hence

∂1Ḡ(0, η)[v̄] = ∂1G̃(0, η)[v̄] =

 
S 1
d
π

∂H

(
n− 1

η

)
[v̄] dz − ∂H

(
n− 1

η

)
[v̄] .

Linearising (7.10) gives

∂H(u)[v] =
−v′′

(1 + u′2)3/2
+

3u′′u′v′

(1 + u′2)5/2
− (n− 1)v

u2
√

1 + u′2
− (n− 1)u′v′

u(1 + u′2)3/2
, (7.25)

hence

∂1Ḡ(0, η)[v̄] = v̄′′ +
η2

n− 1
v̄ −

 
S 1
d
π

v̄′′ +
η2

n− 1
v̄ dz

= v̄′′ +
η2

n− 1
v̄, (7.26)

and

∂2
12Ḡ(0, η)[v̄] =

2η

n− 1
v̄. (7.27)

The null space and range of (7.26) are easily calculated:

N
(
∂1Ḡ(0, η0)

)
=

{
span

{
cos
(
Hmz√
n−1

)}
η0 = Hm some m ∈ N,

{0} otherwise,

Range
(
∂1Ḡ(0, η0)

)
=


h0,α
e,0

(
S 1

d
π

)
/
{

cos
(
Hmz√
n−1

)}
η0 = Hm some m ∈ N,

h0,α
e,0

(
S 1

d
π

)
otherwise.

The implicit function theorem therefore guarantees bifurcation cannot occur on the

trivial curve except at the points (0, Hm), hence from now we consider just the points

(0, Hm); m can be thought of as a fixed natural number from here on. We set

v̂m = Am cos

(
Hmz√
n− 1

)
,

where Am :=
∥∥∥cos

(
Hmz√
n−1

)∥∥∥−1

h2,α
. We have

∂2
12Ḡ(0, Hm)[v̂m] =

2HmAm
n− 1

cos

(
Hmz√
n− 1

)
/∈ Range

(
∂1Ḡ(0, Hm)

)
, (7.28)

therefore we can apply Theorem I.5.1 from [34] and conclude that bifurcation occurs

at the point (0, Hm) and we label the curve (r̄m,s, ηm,s).
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h2,α
e R

h2,α
e,0

n−1
Hm

VHm

Hm

UHm

ψHm

Figure 7.2: Non-trivial solution curve for equation (7.20) and its image under ψHm

The curve (7.21) is shown in Figure 7.2, along with the curve ψHm (r̄m,s, ηm,s), which

is a curve of stationary solutions to (7.9).

Corollary 7.2.5. There exists a continuously differentiable family of nontrivial axially

symmetric CMC hypersurfaces that includes the cylinder of radius n−1
Hm

, they are given

by the profile curves ρm,s := ψHm(r̄m,s, ηm,s)|[0,d].

In particular, this corollary states that any neighbourhood of a cylinder with mean

curvature H1 = π
√
n−1
d contains CMC unduloids, which do not converge to a cylinder

under the volume preserving mean curvature flow as they are stationary solutions.

Therefore we obtain a counter example to Theorem 7.1.7 if R = d
√
n−1
π . In this way

the theorem is sharp.

We now aim to study the stability of the nontrivial stationary solutions to (7.19)

that are close to the bifurcation point (0, H1). We do this by investigating the shape

of η1,s. Note that for m ≥ 2 the CMC unduloids are known to be unstable since the

hypersurfaces contain a full period, [10].

Theorem 7.2.6. The bifurcation curves in (7.21) satisfy:

dηm,s
ds

∣∣∣∣
s=0

= 0 (7.29)

and
d2ηm,s
ds2

∣∣∣∣
s=0

=
(n2 − 10n− 2)H3

mA
2
m

12(n− 1)2
. (7.30)

Proof. To calculate
dηm,s
ds

∣∣∣
s=0

, we use equation (I.6.3) from [34]:

dηm,s
ds

∣∣∣∣
s=0

=
−1

2

ṽ∗m
[
∂2

11ḠHm(0, Hm)[v̂m, v̂m]
]

ṽ∗m
[
∂2

12ḠHm(0, Hm)[v̂m]
] , (7.31)
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where ṽm is an element not in the range of ∂1ḠHm(0, Hm) such that ‖ṽm‖h0,α = 1,

and ṽ∗m ∈ h0,α
e,0

(
S 1

d
π

)∗
, the dual space to the codomain, such that ṽ∗m(ṽm) = 1 and

ṽ∗m(∂1ḠHm(0, Hm)[v̄]) = 0. Due to (7.28) we can take ṽm = Bm cos
(
Hmz√
n−1

)
, where

Bm :=
∥∥∥cos

(
Hmz√
n−1

)∥∥∥−1

h0,α
, and therefore

ṽ∗m[v̄] =
2

Bm

 
S 1
d
π

v̄ cos

(
Hmz√
n− 1

)
dz, (7.32)

for all v̄ ∈ h0,α
e,0

(
S 1

d
π

)
.

Recalling (7.28) we have

ṽ∗m
[
∂2

12ḠHm(0, Hm)[v̂m]
]

=ṽ∗m

[
2HmAm
n− 1

cos

(
Hmz√
n− 1

)]
=

2HmAm
(n− 1)Bm

. (7.33)

Calculating ∂2
11ḠHm(0, Hm)[v̂m, v̂m] is a long process. We step through it gradually

and obtain the formula in (7.43). We start by linearising (7.23) with respect to ū.

Suppressing the Hm subscript, we calculate:

∂2
11G̃(ū, η)[v̄, w̄]

=
v̄′w̄′G̃(ū, η) + ū′v̄′∂1G̃(ū, η)[w̄]

1 + ū′2
− 2ū′2v̄′w̄′G̃(ū, η)

(1 + ū′2)2
−
√

1 + ū′2∂2
11F̄ (ū, η)[v̄, w̄]

+
ū′w̄′√
1 + ū′2

 
S 1
d
π

∂1F̄ (ū, η)[v̄]− G̃(ū, η)√
1 + ū′2

∂1W̄ (ū, η)[v̄] dµ̄(ū, η)− ∂1F̄ (ū, η)[v̄]


+
√

1 + ū′2

 
S 1
d
π

∂2
11F̄ (ū, η)[v̄, w̄]− ∂1G̃(ū, η)[w̄]∂1W̄ (ū, η)[v̄]√

1 + ū′2
dµ̄(ū, η)

−
 

S 1
d
π

G̃(ū, η)∂2
11W̄ (ū, η)[v̄, w̄]√
1 + ū′2

− ū′w̄′G̃(ū, η)∂1W̄ (ū, η)[v̄]

(1 + ū′2)3/2
dµ̄(ū, η)

+

 
S 1
d
π

(
∂1F̄ (ū, η)[v̄]− G̃(ū, η)∂1W̄ (ū, η)[v̄]√

1 + ū′2

)
∂1W̄ (ū, η)[w̄] dµ̄(ū, η)

−
 

S 1
d
π

∂1F̄ (ū, η)[v̄] dµ̄(ū, η)

 
S 1
d
π

∂1W̄ (ū, η)[w̄] dµ̄(ū, η)

+

 
S 1
d
π

G̃(ū, η)√
1 + ū′2

∂1W̄ (ū, η)[v̄] dµ̄(ū, η)

 
S 1
d
π

∂1W̄ (ū, η)[w̄] dµ̄(ū, η)

 .
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Simplifying this by using (7.23) gives:

∂2
11G̃(ū, η)[v̄, w̄]

=
ū′
(
v̄′∂1G̃(ū, η)[w̄] + w̄′∂1G̃(ū, η)[v̄]

)
1 + ū′2

+
(1− 2ū′2)v̄′w̄′G̃(ū, η)

(1 + ū′2)2

+
√

1 + ū′2

 
S 1
d
π

∂2
11F̄ (ū, η)[v̄, w̄]− ∂1G̃(ū, η)[w̄]∂1W̄ (ū, η)[v̄]√

1 + ū′2
dµ̄(ū, η)

−
 

S 1
d
π

∂1G̃(ū, η)[v̄]∂1W̄ (ū, η)[w̄]√
1 + ū′2

+
G̃(ū, η)∂2

11W̄ (ū, η)[v̄, w̄]√
1 + ū′2

dµ̄(ū, η)

−
 

S 1
d
π

G̃(ū, η)∂1W̄ (ū, η)[v̄]∂1W̄ (ū, η)[w̄]√
1 + ū′2

dµ̄(ū, η)− ∂2
11F̄ (ū, η)[v̄, w̄]

+

 
S 1
d
π

ū′G̃(ū, η)
(
w̄′∂1W̄ (ū, η)[v̄] + v̄′∂1W̄ (ū, η)[w̄]

)
(1 + ū′2)3/2

dµ̄(ū, η)

 .

(7.34)

Evaluating at (0, Hm) gives:

∂2
11G̃(0, Hm)[v̄, w̄]

=

 
S 1
d
π

∂2
11F̄ (0, Hm)[v̄, w̄] dz − ∂2

11F̄ (0, Hm)[v̄, w̄]

−
 

S 1
d
π

∂1G̃(0, Hm)[w̄]∂1W̄ (0, Hm)[v̄] + ∂1G̃(0, Hm)[v̄]∂1W̄ (0, Hm)[w̄] dz.

Therefore

∂2
11Ḡ(0, Hm)[v̄, w̄] =P0

[
∂2

11G̃(0, Hm)[v̄, w̄]
]

=

 
S 1
d
π

∂2
11F̄ (0, Hm)[v̄, w̄] dz − ∂2

11F̄ (0, Hm)[v̄, w̄]. (7.35)

We now linearise (7.24):

∂2
11F̄ (ū, η)[v̄, w̄] =∂2H (ψ(ū, η)) [∂1ψ(ū, η)[v̄], ∂1ψ(ū, η)[w̄]]

+ ∂H (ψ(ū, η))
[
∂2

11ψ(ū, η)[v̄, w̄]
]
, (7.36)

evaluating at (0, Hm) gives

∂2
11F̄ (0, Hm)[v̄, w̄] = ∂2H

(
n− 1

Hm

)
[v̄, w̄] + ∂H

(
n− 1

Hm

)[
∂2

11ψ(0, Hm)[v̄, w̄]
]
. (7.37)
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To calculate ∂2
11ψ(0, Hm)[v̄, w̄] we use Lemma (7.2.2):

∂2
11ψ(ū, η)[v̄, w̄] =−

(n− 1)
ffl
S 1
d
π

ψ(ū, η)n−2v̄∂1ψ(ū, η)[w̄] dz

ffl
S 1
d
π

ψ(ū, η)n−1 dz

+

ffl
S 1
d
π

ψ(ū, η)n−1v̄ dz
ffl
S 1
d
π

(n− 1)ψ(ū, η)n−2∂1ψ(ū, η)[w̄] dz(ffl
S 1
d
π

ψ(ū, η)n−1 dz

)2 ; (7.38)

so using
ffl
S 1
d
π

v̄ dz =
ffl
S 1
d
π

w̄ dz = 0, ψ(0, Hm) = n−1
Hm

and ∂1ψm(0, Hm)[w̄] = w̄ we obtain

∂2
11ψ(0, Hm)[v̄, w̄] = −Hm

 
S 1
d
π

v̄w̄ dz. (7.39)

Next we calculate the second variation of H from (7.25):

∂2H(u)[v, w] =
3(u′v′′w′ + u′v′v′′ + u′′v′w′)

(1 + u′2)5/2
− 15u′′u′2v′w′

(1 + u′2)7/2
+

2(n− 1)vw

u3
√

1 + u′2

+
(n− 1)(u′vw′ + u′v′w)

u2(1 + u′2)3/2
− (n− 1)v′w′

u(1 + u′2)3/2
+

3(n− 1)u′2v′w′

u(1 + u′2)5/2
, (7.40)

hence

∂2H

(
n− 1

Hm

)
[v, w] =

2H3
m

(n− 1)2
vw −Hmv

′w′. (7.41)

Substituting (7.37), (7.39) and (7.41) into (7.35) gives:

∂2
11Ḡ(0, Hm)[v̄, w̄] =

 
S 1
d
π

∂2H

(
n− 1

Hm

)
[v̄, w̄]−Hm

 
S 1
d
π

v̄w̄ dz∂H

(
n− 1

Hm

)
[1] dz

− ∂2H

(
n− 1

Hm

)
[v̄, w̄] +Hm

 
S 1
d
π

v̄w̄ dz∂H

(
n− 1

Hm

)
[1]

=

 
S 1
d
π

2H3
m

(n− 1)2
v̄w̄ −Hmv̄

′w̄′ +
H3
m

n− 1

 
S 1
d
π

v̄w̄ dz dz

− 2H3
m

(n− 1)2
v̄w̄ +Hmv̄

′w̄′ − H3
m

n− 1

 
S 1
d
π

v̄w̄ dz

=Hmv̄
′w̄′ − 2H3

m

(n− 1)2
v̄w̄ −

 
S 1
d
π

Hmv̄
′w̄′ − 2H3

m

(n− 1)2
v̄w̄ dz, (7.42)
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and consequently

∂2
11Ḡ(0, Hm)[v̂m, v̂m]

=
H3
mA

2
m

(n− 1)
sin2

(
Hmz√
n− 1

)
− 2H3

mA
2
m

(n− 1)2
cos2

(
Hmz√
n− 1

)
−
 

S 1
d
π

H3
mA

2
m

(n− 1)
sin2

(
Hmz√
n− 1

)
− 2H3

mA
2
m

(n− 1)2
cos2

(
Hmz√
n− 1

)
dz

=
H3
mA

2
m

2(n− 1)2

(
(n− 1)

(
1− cos

(
2Hmz√
n− 1

))
− 2

(
1 + cos

(
2Hmz√
n− 1

))

−
 

S 1
d
π

(n− 1)

(
1− cos

(
2Hmz√
n− 1

))
− 2

(
1 + cos

(
2Hmz√
n− 1

))
dz


=
−(n+ 1)H3

mA
2
m

2(n− 1)2
cos

(
2Hmz√
n− 1

)
. (7.43)

Therefore ṽ∗m
[
∂2

11Ḡ(0, Hm)[v̂m, v̂m]
]

= 0 and hence
dηm,s
ds

∣∣∣
s=0

= 0.

We will use equations (I.6.11) and (I.6.8) from [34] to calculate the second derivative

d2ηm,s
ds2

∣∣∣∣
s=0

=
−1

3

ṽ∗m
[
∂3

111Ḡ(0, Hm)[v̂m, v̂m, v̂m]
]

+ 3ṽ∗m
[
∂2

11Ḡ(0, Hm)[v̂m, w̄m]
]

ṽ∗m
[
∂2

12Ḡ(0, Hm)[v̂m]
] ,

(7.44)

where w̄m solves

∂2
11Ḡ(0, Hm)[v̂m, v̂m]− ṽ∗m

[
∂2

11Ḡ(0, Hm)[v̂m, v̂m]
]
ṽm + ∂1Ḡ(0, Hm)[w̄m] = 0. (7.45)

Using equations (7.43) and (7.26) we have that w̄m satisfies

−(n+ 1)H3
mA

2
m

2(n− 1)2
cos

(
2Hmz√
n− 1

)
+ w̄′′m +

H2
m

n− 1
w̄m = 0,

and hence

w̄m = −(n+ 1)HmA
2
m

6(n− 1)
cos

(
2Hmz√
n− 1

)
. (7.46)

Since ṽ∗m[1] = 0, we obtain from (7.42):

ṽ∗m
[
∂2

11Ḡ(0, Hm)[v̂m, w̄m]
]

=
(n+ 1)H4

mA
3
m

6(n− 1)3
ṽ∗m

[
−2(n− 1) sin

(
2Hmz√
n− 1

)
sin

(
Hmz√
n− 1

)
+2 cos

(
2Hmz√
n− 1

)
cos

(
Hmz√
n− 1

)]
=

(n+ 1)H4
mA

3
m

6(n− 1)3
ṽ∗m

[
(n− 1)

(
cos

(
3Hmz√
n− 1

)
− cos

(
Hmz√
n− 1

))
+ cos

(
Hmz√
n− 1

)
+ cos

(
3Hmz√
n− 1

)]
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ṽ∗m
[
∂2

11Ḡ(0, Hm)[v̂m, w̄m]
]

=
(n+ 1)H4

mA
3
m

6(n− 1)3
ṽ∗m

[
n cos

(
3Hmz√
n− 1

)
− (n− 2) cos

(
Hmz√
n− 1

)]
=
−(n− 2)(n+ 1)H4

mA
3
m

6(n− 1)3Bm
. (7.47)

Lastly we must calculate ∂3
111Ḡ(0, Hm)[v̂m, v̂m, v̂m], again this is a lengthy calcula-

tion and we do it in steps. We will first calculate ∂3
111G̃(0, Hm)[v̂m, v̂m, v̂m], however

even this is very complicated, so we will only calculate the important parts. In particu-

lar, we note that we will be setting ū = 0, so terms such as ū′m(ū, v̄, w̄, x̄, η) will vanish,

but more importantly any integral terms will vanish when acted on by the projection,

P0. Using (7.34) we find

∂2
111G̃(ū, η)[v̄, w̄, x̄] =

x̄′
(
v̄′∂1G̃(ū, η)[w̄] + w̄′∂1G̃(ū, η)[v̄]

)
1 + ū′2

+
v̄′w̄′∂1G̃(ū, η)[x̄]

(1 + ū′2)2

−
√

1 + ū′2∂3
111F̄ (ū, η)[v̄, w̄, x̄] + ū′m(ū, v̄, w̄, x̄, η)

+
√

1 + ū′2
 

S 1
d
π

p(ū, v̄, w̄, x̄, η) dµ̄(ū, η),

for some operators m(ū, v̄, w̄, x̄, η) and p(ū, v̄, w̄, x̄, η). Since v̂m is in the null space of

∂1G̃(0, Hm) we have

∂2
111G̃(0, Hm)[v̂m, v̂m, v̂m] =

 
S 1
d
π

p(0, v̂m, v̂m, v̂m, Hm) dz − ∂3
111F̄ (0, Hm)[v̂m, v̂m, v̂m].

Taking the projection gives

∂2
111Ḡ(0, Hm)[v̂m, v̂m, v̂m] =

 
S 1
d
π

∂3
111F̄ (0, Hm)[v̂m, v̂m, v̂m] dz

− ∂3
111F̄ (0, Hm)[v̂m, v̂m, v̂m],

so that

ṽ∗m
[
∂2

111Ḡ(0, Hm)[v̂m, v̂m, v̂m]
]

= −ṽ∗m
[
∂3

111F̄ (0, Hm)[v̂m, v̂m, v̂m]
]
. (7.48)

To calculate ∂3
111F̄ (0, Hm)[v̂m, v̂m, v̂m] we linearise (7.36):

∂3
111F̄ (ū, η)[v̄, w̄, x̄] =∂3H (ψ(ū, η)) [∂1ψ(ū, η)[v̄], ∂1ψ(ū, η)[w̄], ∂1ψ(ū, η)[x̄]]

+ ∂2H (ψ(ū, η))
[
∂2

11ψ(ū, η)[v̄, x̄], ∂1ψ(ū, η)[w̄]
]

+ ∂2H (ψ(ū, η))
[
∂2

11ψ(ū, η)[w̄, x̄], ∂1ψ(ū, η)[v̄]
]

+ ∂2H (ψ(ū, η))
[
∂2

11ψ(ū, η)[v̄, w̄], ∂1ψ(r̄, η)[x̄]
]

+ ∂H (ψ(ū, η))
[
∂3

111ψ(ū, η)[v̄, w̄, x̄]
]
.
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Therefore, using (7.39),

∂3
111F̄ (0, Hm)[v̂m, v̂m, v̂m] =∂3H

(
n− 1

Hm

)
[v̂m, v̂m, v̂m]

− 3Hm

 
S 1
d
π

v̂2
m dz∂

2H

(
n− 1

Hm

)
[1, v̂m]

+ ∂H

(
n− 1

Hm

)[
∂3

111ψ(0, Hm)[v̂m, v̂m, v̂m]
]
. (7.49)

By considering (7.38) we see that ∂2
11ψ(ū, η)[v̄, w̄] maps into the constant functions, thus

its linearisation does as well. This means that the final term in (7.49) will disappear

when we act on it with the dual element, so we set Cm := ∂3
111ψ(0, Hm)[v̂m, v̂m, v̂m].

From
ffl
S 1
d
π

cos2
(
Hmz√
n−1

)
dz = 1

2 and equation (7.41) we obtain:

∂3
111F̄ (0, Hm)[v̂m, v̂m, v̂m] =∂3H

(
n− 1

Hm

)
[v̂m, v̂m, v̂m] +

H2
mCm
n− 1

− 3HmA
2
m

2

(
2H3

mAm
(n− 1)2

cos

(
Hmz√
n− 1

))
=∂3H

(
n− 1

Hm

)
[v̂m, v̂m, v̂m] +

H2
mCm
n− 1

− 3H4
mA

3
m

(n− 1)2
cos

(
Hmz√
n− 1

)
. (7.50)

Noting that any terms such as u′m(u, v, w, x) or u′′p(u, v, w, x) will vanish, so we

don’t include them explicitly, we are able to easily linearise (7.40):

∂3H(u)[v, w, x] =
3(v′′w′x′ + v′w′′x′ + v′w′x′′)

(1 + u′2)5/2
− 6(n− 1)vwx

u4
√

1 + u′2
+

(n− 1)v′w′x

u2(1 + u′2)3/2

+
(n− 1)(vw′x′ + v′wx)

u2(1 + u′2)3/2
+ u′m(u, v, w, x) + u′′p(u, v, w, x).

Therefore

∂3H

(
n− 1

Hm

)
[v̂m, v̂m, v̂m]

= 9v̂′′mv̂
′2
m −

6H4
mv̂

3
m

(n− 1)3
+

3H2
mv̂
′2
mv̂m

n− 1

= −6H2
mv̂
′2
mv̂m

n− 1
− 6H4

mv̂
3
m

(n− 1)3

=
−6H2

mAm
n− 1

cos

(
Hmz√
n− 1

)(
H2
mA

2
m

n− 1
sin2

(
Hmz√
n− 1

)
+

H2
mA

2
m

(n− 1)2
cos2

(
Hmz√
n− 1

))
,
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where we used that, by definition, v̂m is in the null space of (7.26). Simplifying we have

∂3H

(
n− 1

Hm

)
[v̂m, v̂m, v̂m]

=
−3H4

mA
3
m

(n− 1)3
cos

(
Hmz√
n− 1

)(
(n− 1)

(
1− cos

(
2Hmz√
n− 1

))
+ 1 + cos

(
2Hmz√
n− 1

))
=
−3H4

mA
3
m

(n− 1)3
cos

(
Hmz√
n− 1

)(
n− (n− 2) cos

(
2Hmz√
n− 1

))
=
−3H4

mA
3
m

2(n− 1)3

(
2n cos

(
Hmz√
n− 1

)
− (n− 2)

(
cos

(
Hmz√
n− 1

)
+ cos

(
3Hmz√
n− 1

)))
=
−3H4

mA
3
m

2(n− 1)3

(
(n+ 2) cos

(
Hmz√
n− 1

)
− (n− 2) cos

(
3Hmz√
n− 1

))
. (7.51)

Combining equations (7.51), (7.49) and (7.48) we arrive at

ṽ∗m
[
∂2

111Ḡ(0, Hm)[v̂m, v̂m, v̂m]
]

= ṽ∗m

[
3H4

mA
3
m

2(n− 1)3

(
(n+ 2) cos

(
Hmz√
n− 1

)
− (n− 2) cos

(
3Hmz√
n− 1

))
+

3H4
mA

3
m

(n− 1)2
cos

(
Hmz√
n− 1

)
− H2

mCm
n− 1

]
=

9nH4
mA

3
m

2(n− 1)3Bm
. (7.52)

Substituting (7.33), (7.47) and (7.52) into equation (7.44) gives:

d2ηm,s
ds2

∣∣∣∣
s=0

=
−(n− 1)Bm

6HmAm

(
9nH4

mA
3
m

2(n− 1)3Bm
− (n− 2)(n+ 1)H4

mA
3
m

2(n− 1)3Bm

)
=

(n2 − 10n− 2)H3
mA

2
m

12(n− 1)2
.

We are now able to prove a surprising stability result for unduloids under the volume

preserving mean curvature flow in high dimensions.

Corollary 7.2.7. For n ≤ 10 the unduloids close to the cylinder of radius d
√
n−1
π are

unstable equilibria of equation (1.2), while for n ≥ 11 they are stable under volume

preserving axially symmetric perturbations. That is, if n ≥ 11 there exists ε > 0 and a

neighbourhood, Us ⊂ h2,α
d
dz

([0, d]), of ρ1,s for any |s| ∈ (0, ε), such that for any ρ0 ∈ Us
that encloses the same volume as ρ1,s, the flow (1.6), with Mn = C n

R,d and Neumann

boundary condition, exists for all time and the solution ρ(t) converges exponentially

fast to ρ1,s as t→∞.
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Proof. We start by noting that the eigenvalues of ∂1ḠH1(0, H1), except for the dominant

one, lie in the open complex halfplane, Re (λ) < 0. Through a perturbation argument

this is also true of the operator ∂1ḠH1(r̄1,s, η1,s) as long as s is small. We now determine

the sign of the dominant eigenvalue of ∂1ḠH1(r̄1,s, η1,s) for s small. By Proposition I.7.2

in [34], there exists ε ∈ (0, δ) and a continuously differentiable curve:

{λ1,s : |s| < ε, λ1,0 = 0} ⊂ R,

such that

∂1ḠH1(r̄1,s, η1,s)[v̂1 + v1,s] = λ1,s(v̂1 + v1,s), (7.53)

where v1,s, for |s| < ε, is a continuously differentiable curve in range of ∂1ḠH1(r̄1,s, η1,s)

satisfying v1,0 = 0. Also, since
dη1,s

ds |s=0 = 0, we have that for |s| < ε (possibly making

ε smaller),

sign(λ1,s) = sign(H1 − η1,s), (7.54)

by equation (I.7.46) in [34].

For n ≤ 10 we see from equation (7.30) that η1,s has a local maximum at η1,0 = H1

and hence the eigenvalue λ1,s is positive for 0 < |s| < ε. However, if n ≥ 11, we see

that η1,s has a local minimum at η1,0 = H1 and hence the eigenvalue λ1,s is negative for

0 < |s| < ε. We also note that ∂1ḠH1(0, H1)[v̄] is the negative of an elliptic operator, so

by Theorem 3.2.6 it is a sectorial operator on the little-Hölder spaces. The perturbation

result in Proposition 3.2.8 then ensures that ∂1ḠH1(r̄1,s, η1,s) is sectorial for all |s| < ε

(again possibly making ε smaller).

We can now apply Theorem 9.1.7 in [38] to obtain, in dimensions 2 ≤ n ≤ 10, a

nontrivial backward solution, ū(t), of (7.19) with η = η1,s such that:

‖ū(t)− r̄1,s‖h2,α ≤ Ceωt, t ≤ 0, (7.55)

where C,ω > 0. By setting ρ(t) := ψH1 (ū(t), η1,s) |[0,d] we obtain a nontrivial backward

solution to (1.6) such that

‖ρ(t)− ρ1,s‖h2,α =
∥∥ψH1 (ū(t), η1,s) |[0,d] − ψH1 (r̄1,s, η1,s) |[0,d]

∥∥
h2,α

≤‖ψH1 (ū(t), η1,s)− ψH1 (r̄1,s, η1,s)‖h2,α

≤b ‖ū(t)− r̄1,s‖h2,α

≤bCeωt, t ≤ 0,

where we have used that ψH1 is Lipschitz, with constant b. Thus the unduloid defined

by ρ1,s is an unstable stationary solution of (1.2) when 2 ≤ n ≤ 10.
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When n ≥ 11 we prove stability of the unduloid defined by ρ1,s by applying Theorem

9.1.7 in [38]. There exist C, r, ω > 0 such that if ‖ū0 − r̄1,s‖h2,α < r then the solution,

u(t), of (7.19) with η = η1,s and initial condition ū0 is defined for all t ≥ 0 and satisfies

‖ū(t)− r̄1,s‖h2,α +
∥∥ū′(t)∥∥

h0,α ≤ Ce−ωt ‖ū0 − r̄1,s‖h2,α , t ≥ 0. (7.56)

This convergence is shown on the right hand side axes of 7.3. The function r̄1,s is

highlighted by a red dot and the equation (7.56) proves that any function on the red

line converges to it under (7.19). Figure 7.3 also shows the mapping of this set under

ψH1 , which gives all the functions, u, in a neighbourhood of ψH1 (r̄1,s, η1,s) that satisfy

V ol(u) = V ol (ψH1 (r̄1,s, η1,s)).

h2,α
e R

h2,α
e,0

n−1
H1

VH1

H1

UH1

ψH1

Figure 7.3: Sets of functions (red) that converge to nontrivial stationary solutions to the

flows (7.9) (left) and (7.19) (right)

Considering ρ0 such that ‖ρ0 − ρ1,s‖h2,α <
r
4 and V ol(ρ0) = V ol(ρ1,s); then we have

‖P0[uρ0 ]− r̄1,s‖h2,α = ‖P0 [uρ0 − ψH1 (r̄1,s, η1,s)]‖h2,α

≤2 ‖uρ0 − ψH1 (r̄1,s, η1,s)‖h2,α

≤4
∥∥ρ0 − ψH1 (r̄1,s, η1,s) |[0,d]

∥∥
h2,α

<r.

So, by the above calculations, there is a solution, ū(t), of (7.19) with η = η1,s and

ū(0) = P0[uρ0 ] that satisfies (7.56). By setting ρ(t) = ψH1 (ū(t), η1,s) |[0,d] we obtain a

solution to (1.6) with ρ(0) = ψH1 (P0[uρ0 ], η1,s) |[0,d] = uρ0 |[0,d] = ρ0 such that

‖ρ(t)− ρ1,s‖h2,α =
∥∥ψH1 (ū(t), η1,s) |[0,d] − ψH1 (r̄1,s, η1,s) |[0,d]

∥∥
h2,α

≤‖ψH1 (ū(t), η1,s)− ψH1 (r̄1,s, η1,s)‖h2,α

≤b ‖ū(t)− r̄1,s‖h2,α
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Therefore from (7.56):

‖ρ(t)− ρ1,s‖h2,α ≤bCe−ωt ‖P0[uρ0 ]− r̄1,s‖h2,α , t ≥ 0.

Thus the unduloid defined by ρ1,s is a stable stationary solution of (1.2) under volume

preserving axially symmetric perturbations when n ≥ 11.

7.3 Geometric Construction of Bifurcation Curves

In this section we consider an alternative method for constructing the bifurcation curves

found in Section 7.2. We will use a representation of the axially symmetric CMC hy-

persurfaces to calculate the enclosed volume of such hypersurfaces and hence explicitly

give a formula for η1,s.

The n-dimensional axially symmetric CMC hypersurfaces were studied in [29],

where the profile curve, ρ(z), was shown to satisfy:

z =

ˆ ρ

ρ(0)

1√(
xn−1

C1+H
n
xn

)2

− 1

dx, (7.57)

where C1 is a constant and H is the mean curvature of the hypersurface. We note that

for this representation the cylinders can only be treated through limits. Similarly, we

can only treat the unduloids with half a period, i.e. when m = 1. However, when we

obtain the formula for the enclosed volume of ρ1,s we will be able to generalise it to

any amount of periods. To obtain the bifurcation curve in Section 7.2 we apply the

boundary conditions dρ
dz

∣∣∣
z=0

= dρ
dz

∣∣∣
z=d

= 0 and we will also define s := ρ(d)−ρ(0)
ρ(d)+ρ(0) .

The derivative, dρ
dz , is given implicitly by

dρ

dz
=

√√√√( ρn−1

C1 + H
n ρ

n

)2

− 1.

From dρ
dz

∣∣∣
z=0

= 0 we obtain that C1 = ρ(0)n−1 − Hρ(0)n

n and hence

z =

ˆ ρ

ρ(0)

1√(
xn−1

ρ(0)n−1+H
n

(xn−ρ(0)n)

)2

− 1

dx,

and using the change of variables x = ρ(0)x̄ gives:

z = ρ(0)

ˆ ρ
ρ(0)

1

1√(
x̄n−1

1+
Hρ(0)
n

(x̄n−1)

)2

− 1

dx̄, (7.58)
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with

dρ

dz
=

√√√√√√


(
ρ
ρ(0)

)n−1

1 + Hρ(0)
n

((
ρ
ρ(0)

)n
− 1
)


2

− 1.

We next apply the boundary condition dρ
dz

∣∣∣
z=d

= 0 and use the formula ρ(d)
ρ(0) = 1+s

1−s to

obtain

H =

(
(1 + s)n−1 − (1− s)n−1

(1 + s)n − (1− s)n

)
n(1− s)
ρ(0)

, (7.59)

thus:

z = ρ(0)

ˆ ρ
ρ(0)

1

1√(
x̄n−1((1+s)n−(1−s)n)

2s(1+s)n−1+((1+s)n−1−(1−s)n−1)(1−s)x̄n

)2
− 1

dx̄. (7.60)

Finally, evaluating at z = d gives:

ρ(0) = d

ˆ 1+s
1−s

1

1√(
x̄n−1((1+s)n−(1−s)n)

2s(1+s)n−1+((1+s)n−1−(1−s)n−1)(1−s)x̄n

)2
− 1

dx̄


−1

. (7.61)

Equations (7.60) and (7.61) define the family of constant mean curvature hypersur-

faces that meet the hyperplanes z = 0, d orthogonally, i.e. ρ1,s. We note here that as

s → 0 the values of ρ1,s(0) and ρ1,s(d) approach each other, so we should arrive at a

cylinder. In fact, lims→0 ρ1,s(0) = d
√
n−1
π and so it is the cylinder with mean curvature

H1. Also the formula (1 − s)ρ1,s(d) = (1 + s)ρ1,s(0) shows that as s → ±1 one of the

ends of the profile curve tends to the axis of rotation and the resulting axially symmet-

ric hypersurface intersects the axis of rotation. In this case it represents a hemisphere.

This can also be seen explicitly using (7.60) and (7.61):

ρ1,−1(0) = d

ˆ 0

1

1√
1
x̄2 − 1

dx̄

−1

= d

([
−
√

1− x̄2
]0

1

)−1

= −d,

z = −d
ˆ −ρ1,−1

d

1

1√
1
x̄2 − 1

dx = −d
[
−
√

1− x̄2
]−ρ1,−1

d

1
= d

√
1−

(ρ1,−1

d

)2
,

or equivalently z2 + ρ2
1,−1 = d2, a quarter circle of radius d centred at (0, 0).

The n-dimensional shell method calculates the volume of a solid of revolution when

integrating parallel to the axis of revolution:

V ol(ρ1,s) = Sn−1

ˆ ρ1,s(d)

ρ1,s(0)
ρn−1z(ρ) dρ, (7.62)
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where Sn−1 is area of the unit (n − 1)-sphere. In this situation V ol(ρ1,s) corresponds

to the volume enclosed by the cylinder with length d and radius ρ1,s(d) and outside of

the CMC hypersurface, therefore the volume enclosed by the CMC hypersurface is:

V ol(ρ1,s) = ωnρ1,s(d)nd− nωn
ˆ ρ1,s(d)

ρ1,s(0)
ρn−1z(ρ) dρ

= ωnd

((
1 + s

1− s

)n
ρ1,s(0)n

−nρ1,s(0)n+1

d

ˆ 1+s
1−s

1

ˆ ȳ

1

ȳn−1√√√√( x̄n−1
(

1+s− (1−s)n
(1+s)n−1

)
2s+

(
1−( 1−s

1+s )
n−1

)
(1−s)x̄n

)2

− 1

dx̄ dȳ

 ,

(7.63)

where we have used the change of variable ρ = ρ1,s(0)ȳ to get to the second line. In

order to extend this to allow any number of periods we note that the volume of an

unduloid made up of m half periods, will be m times the volume of a half period

unduloid between plates a distance d
m apart. Hence the volume of the mth family of

rotationally symmetric hypersurfaces is V ol(ρm,s) =
V ol(ρ1,s)
mn . Using equation (7.12)

we have ηm,s = (n − 1) n

√
ωnd

V ol(ρm,s)
= m(n − 1) n

√
ωnd

V ol(ρ1,s)
and hence a parametrisation

of the bifurcation parameter in (7.21) is obtained. The change of η1,s from being a

maximum to a minimum can also be seen through plots of the normalised parameter

η̄1,s := η1,sd for the different dimensions, see Figure 7.4.

These plots confirm that the bifurcation parameter (volume enclosed) is a maximum

(minimum) at the cylinder if n ≤ 10, while for n ≥ 11 it is a minimum (maximum)

at the cylinder; see Figure 7.5 for a close up of the turning point for dimensions ten

and eleven. Interesting phenomena are also apparent in dimensions eight and higher

where additional turning points appear. In dimension eight, a local maximum and

minimum of the enclosed volume occur within the family of unduloids. In dimensions

nine and ten, the turning points separate from each other and these points are the

global maximum and minimum volume of the family. In dimensions eleven and higher

only the local minimum of the volume occurs and it remains a global minimum volume

of the family. This behaviour is very intriguing and it would be of interest to know

what is special about these unduloids.
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Figure 7.4: Normalised bifurcation parameter in different dimensions
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8

Mean Curvature Flow near

Catenoids

In this chapter we consider the mean curvature flow equation in (1.1), whose stationary

solutions are the minimal surfaces. We show how to analyse the stability of these min-

imal surfaces using the techniques in this thesis. We consider the case of the catenoid

and find it is an unstable stationary solution to the flow, i.e. there are surfaces arbi-

trarily close to the catenoid that do not flow towards the catenoid. We will prove this

by considering normal graphs over the catenoid:

C A :=

{
1

c

(
cosh

(
z − d
c

)
cos(θ), cosh

(
z − d
c

)
sin(θ),

z − d
c

)
⊂ R3 :

(θ, z) ∈ [0, 2π)× (0, d1)} , (8.1)

where d1, c ∈ R+ and d ∈ R. The flow (1.1) is then equivalent to the evolution equation

for the height function:

∂ρ

∂t
= Gca(ρ) := −

√
1 + |∇̃ρ|2H(ρ),

∂ρ

∂z

∣∣∣∣
z=0,d1

= 0. (8.2)

Due to the presence of boundary conditions we work on the torus T 2
d1

:= S1×S 1
d1
π

,

with local coordinates (θ, z), and with the function spaces:

hk,αe
(
T 2
d1

)
:=
{
u ∈ hk,α

(
T 2
d1

)
: u(θ, z) = u(θ,−z)

}
.

Since hk,αe
(
T 2
d1

)
is a closed subspace of hk,α

(
T 2
d1

)
, for any k ∈ N0 and α ∈ (0, 1), we

can apply Lemma 3.1.2, where the projection operator is u(θ, z) 7→ u(θ,z)+u(θ,−z)
2 , to

conclude, using (3.10), that(
h0,θ1
e

(
T 2
d1

)
, hl,θ2e

(
T 2
d1

))
θ0

= hθ0(l+θ2−θ1)+θ1
e

(
T 2
d1

)
, (8.3)
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for all θ0, θ1, θ2 ∈ (0, 1) and l ∈ N0 such that θ0 (l + θ2 − θ1) + θ1 /∈ N. By now

defining Ge(u), u ∈ hk+2,α
e

(
T 2
d1

)
, to be the even extension of Gca(u|S1×[0,d1]), we have

the equivalent PDE:
∂u

∂t
= Ge(u). (8.4)

It is of note that the instability result proved in this chapter could also be obtained

by using that the catenoid is unstable as a critical point of the area functional, i.e.

there are surfaces close to it with the same boundary but smaller area, [13, 37]. This

means that the mean curvature flow starting from one of these surfaces cannot return

to the catenoid, since the mean curvature flow decreases the area of a surface over time,

[30].

We will use the following Theorems from [38] to determine the stability of catenoid:

Theorem 8.0.1 (Theorem 9.1.7 (ii) [38]). Let O ⊂ h2,α
e

(
T 2
d1

)
be a neighbourhood of 0

such that G ∈ C1
(
O, h0,α

e

(
T 2
d1

))
is a nonlinear function with G(0) = 0 and ∂G(0) = 0.

If A : h2,β
e

(
T 2
d1

)
→ h0,β

e

(
T 2
d1

)
, β ∈ (0, α), is sectorial and satisfies σ>(A) 6= ∅ and

ω+ > 0, see (1.17) and (1.19). Then the null solution of

u′(t) = A[u(t)] +G(u(t)), u(0) = u0 (8.5)

is unstable in h2,α
e

(
T 2
d1

)
. Specifically, there exist nontrivial backward solutions to (8.5)

converging to zero as t goes to negative infinity.

We let P> be the spectral projection associated with the spectral set σ>(A) and

define Xu := P>

(
h0,α
e

(
T 2
d1

))
, Xs := (I − P>)

(
h2,α
e

(
T 2
d1

))
.

Theorem 8.0.2 (Theorem 9.1.8 [38]). Let G and A satisfy the conditions in Theorem

8.0.1. If σ(A) ∩ iR = ∅, then for any α ∈ (β, 1) there exists:

(i) r0, R0 > 0 and a Lipschitz continuous function

φ : BXu,r0(0)→ Xs,

differentiable at 0 with ∂φ(0) = 0, such that for every u0 belonging to the graph of

φ problem (8.5) has a unique backward solution, v(t), in C
(

(−∞, 0], h2,α
e

(
T 2
d1

))
,

such that ‖v‖
L∞((−∞,0],h2,α

e ) ≤ R0. Moreover e−ωtv(t) ∈ C
(

(−∞, 0], h2,α
e

(
T 2
d1

))
for every ω ∈ (0, ω+). Conversely, if (8.5) has a backward solution v which

satisfies the previous bound and ‖P>[v(0)]‖
h0,α
e
≤ r0 then v(0) ∈ graph(φ).
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(ii) r1, R1 > 0 and a Lipschitz continuous function

ψ : BXs,r1(0)→ Xu,

differentiable at 0 with ∂ψ(0) = 0, such that for every u0 belonging to the graph

of ψ problem (8.5) has a unique solution, u(t), in C
(

[0,∞), h2,α
e

(
T 2
d1

))
such

that ‖u‖
L∞((0,∞),h2,α

e ) ≤ R1. Moreover eωtu(t) ∈ C
(

[0,∞), h2,α
e

(
T 2
d1

))
for every

ω ∈ (0, ω−). Conversely, if (8.5) has a solution u which satisfies the previous

bound and ‖(I − P>)[u(0)]‖
h2,α
e
≤ r1 then u(0) ∈ graph(ψ).

If in addition G ∈ Ck,1
(
O, h0,α

e

(
T 2
d1

))
for k ∈ N, then ψ and φ are k times differen-

tiable, with Lipschitz k-th order derivatives.

The graphs of φ and ψ are called the local unstable manifold and local stable manifold

respectively.

Lemma 8.0.3. For any v ∈ h2,β
e

(
T 2
d1

)
we have

∂Ge(0)[v] =
1

cosh2
(
|z|−d
c

) ( 1

c2

∂2v

∂θ2
+
∂2v

∂z2

)
+

2v

c2 cosh4
(
|z|−d
c

) .
Proof. We use that ∂Ge(0) is the even extension of ∂Gca(0). From Lemma 4.1.2:

∂Gca(0)[v] = −∂H(0)[v]

= −
2∑

a=1

∂κa(0)[v]

=

2∑
a=1

ζ̊iaζ̊
j
a∇i∇jv + κa(0)2v

= ∆C A v +
2v

c2 cosh4
(
z−d
c

)

The linearised operator is therefore the negative of a uniformly elliptic operator,

hence is sectorial in h0,β
e

(
T 2
d1

)
by Theorem 3.2.6, and we can use Theorem 4.3.1 to

obtain existence for (8.4) and hence (8.2).

Theorem 8.0.4. There exists δ, r > 0 such that for any function ρ0 satisfying the Neu-

mann boundary conditions and ‖ρ0‖h2,α ≤ r, the equation (8.2) has a unique solution:

ρ ∈ C
(

[0, δ), h2,α
∂
∂z

(
C A

))
∩ C1

(
[0, δ), h0,α

(
C A

))
.
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Moreover, the graph over the catenoid C A , Ωρ0, has a mean curvature flow for t ∈ [0, δ)

which is given, up to a tangential diffeomorphism, by Ωρ(t).

We now consider the eigenvalues ∂Ge(0).

Lemma 8.0.5. The spectrum of ∂Ge(0) : h2,β
e

(
T 2
d1

)
→ h0,β

e

(
T 2
d1

)
consists entirely

of isolated eigenvalues with the first eigenvalue satisfying 0 < λ1 ≤ 2
c2

. Furthermore

0 /∈ σ(∂Ge(0)) except in the exceptional case when d1 = d̃, where d̃ is defined for

d ∈ (−c ln(1 +
√

2), 0) ∪ (c ln(1 +
√

2),∞) by the equations

d̃

c
−

cosh
(
d̃−d
c

)
+ cosh3

(
d̃−d
c

)
sinh

(
d̃−d
c

) =
cosh

(
d
c

)
+ cosh3

(
d
c

)
sinh

(
d
c

) , d̃ > 0, (8.6)

and undefined otherwise.

We note here that the function f(z) = z − cosh(z)+cosh3(z)
sinh(z) has critical points at

z = ± ln
(
1 +
√

2
)
, with a local minimum at z = − ln

(
1 +
√

2
)

and a local maximum

at z = ln
(
1 +
√

2
)
, while being unbounded as |z| tends to infinity or zero. Therefore for

each d ∈ (−c ln(1+
√

2), 0)∪ (c ln(1+
√

2),∞) there is a single solution to the equations

(8.6), while for other values of d there are no strictly positive solutions. Also note that

if d ∈ (−c ln(1 +
√

2), 0) then d̃ ∈ (d+ c ln(1 +
√

2),∞), while if d ∈ (c ln(1 +
√

2),∞)

then d̃ ∈ (d− c ln(1 +
√

2), d).

Proof. We start by investigating the null space using separation of variables. Let

u (θ, z) = X (θ)Z(z) be an element of the null space. Therefore

1

cosh2
(
|z|−d
c

) ( 1

c2
X ′′ (θ)Z(z) +X (θ)Z ′′(z)

)
+

2

c2 cosh4
(
|z|−d
c

)X (θ)Z(z) = 0,

or by rearranging

1

X (θ)
X ′′ (θ) +

 c2

Z(z)
Z ′′(z) +

2

cosh2
(
|z|−d
c

)
 = 0.

Both terms are therefore constant and we obtain X ′′(θ) = ξX(θ). Due to the periodic

condition in the θ variable this is only possible for:

Xn (θ) = C1 cos (nθ) + C2 sin (nθ) ,

where n ∈ N0. Therefore Z(z) must satisfy

Z ′′(z) +
1

c2

 2

cosh2
(
|z|−d
c

) − n2

Z(z) = 0.
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The solutions to this equation are given in terms of the associated Legendre polynomials

of the first and second kind, represented by Pnm and Qnm respectively:

Zn(z) = C̄1P
n
1

(
tanh

(
|z| − d
c

))
+ C̄2Q

n
1

(
tanh

(
|z| − d
c

))
. (8.7)

Pn1 is given by

Pn1 (x) =
(−1)n

2
(1− x2)n/2

dn+1

dxn+1

(
x2 + 1

)
=


x n = 0,

−
√

1− x2 n = 1,

0 n ≥ 2,

and the first two associated Legendre polynomials of the second kind are

Q0
1(x) =

x

2
log

(
1 + x

1− x

)
− 1, Q1

1(x) =
(x2 − 1) log

(
1+x
1−x

)
− 2x

2
√

1− x2
.

For n ≥ 2 Qn1 (x) has no zeros and a single turning point at x = 0 for even n, and a

single zero at x = 0 and no turning points for odd n.

We now consider the three different cases, n = 0, n = 1 and n ≥ 2, separately and

enforce that Zn(z) has continuous first derivative at z = 0 and z = d. For the n = 0

case we have

Z0(z) = C̄1 tanh

(
|z| − d
c

)
+ C̄2

((
|z| − d
c

)
tanh

(
|z| − d
c

)
− 1

)
,

which has derivative

Z ′0(z) =
|z|sech2

(
|z|−d
c

)
cz

(
C̄1 + C̄2

(
sinh

(
|z| − d
c

)
cosh

(
|z| − d
c

)
+

(
|z| − d
c

)))
.

So to be continuously differentiable we require:

C̄1 +

(
0.5 sinh

(
−2d

c

)
− d

c

)
C̄2 = 0, C̄1 +

(
0.5 sinh

(
2d1 − 2d

c

)
+
d1 − d
c

)
C̄2 = 0,

since d1 > 0 and 0.5 sinh(2z)+z is a one-to-one function this system has only the trivial

solution. Now we consider the n = 1 case:

Z1(z) = −C̄1sech

(
|z| − d
c

)
− C̄2

((
|z| − d
c

)
sech

(
|z| − d
c

)
+ sinh

(
|z| − d
c

))
,
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which has derivative

Z ′1(z) =
|z|sech

(
|z|−d
c

)
cz

(
C̄1 tanh

(
|z| − d
c

)
+C̄2

((
|z| − d
c

)
tanh

(
|z| − d
c

)
− 1− cosh2

(
|z| − d
c

)))
.

Requiring continuous differentiability gives

tanh

(
−d
c

)
C̄1 +

((
−d
c

)
tanh

(
−d
c

)
− 1− cosh2

(
−d
c

))
C̄2 = 0,

tanh

(
d1 − d
c

)
C̄1 +

((
d1 − d
c

)
tanh

(
d1 − d
c

)
− 1− cosh2

(
d1 − d
c

))
C̄2 = 0.

Note that if either d = 0 or d1 = d, then C̄2 = 0 and hence C̄1 = 0, so we only obtain

the trivial solution. In the other cases we obtain

C̄1 +

(
cosh

(
d
c

)
+ cosh3

(
d
c

)
sinh

(
d
c

) − d

c

)
C̄2 = 0,

C̄1 +

d1 − d
c
−

cosh
(
d1−d
c

)
+ cosh3

(
d1−d
c

)
sinh

(
d1−d
c

)
 C̄2 = 0.

Therefore C̄1 = C̄2 = 0 unless d1 = d̃, in which case:

Z1(z) = C̄2

((
cosh

(
d
c

)
+ cosh3

(
d
c

)
sinh

(
d
c

) − |z|
c

)
sech

(
|z| − d
c

)
− sinh

(
|z| − d
c

))
.

Lastly we consider the n ≥ 2 case:

Zn(z) = C̄2Q
n
1

(
tanh

(
|z| − d
c

))
.

The derivative is given by

Z ′n(z) =
|z|C̄2

cz
sech2

(
|z| − d
c

)
Qn1
′
(

tanh

(
|z| − d
c

))
,

so requiring differentiability gives

Qn1
′
(

tanh

(
−d
c

))
= 0, Qn1

′
(

tanh

(
d1 − d
c

))
= 0.

However Qn1
′(x) = 0 has at most one solution and since tanh(z) is one-to-one we find

that only the trivial solution exists. Hence the operator has no null space except in the

exceptional case of d1 = d̃, in which case the null space is the span of

u1(θ, z) =

((
cosh

(
d
c

)
+ cosh3

(
d
c

)
sinh

(
d
c

) − |z|
c

)
sech

(
|z| − d
c

)
− sinh

(
|z| − d
c

))
cos (θ) ,
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and

u2(θ, z) =

((
cosh

(
d
c

)
+ cosh3

(
d
c

)
sinh

(
d
c

) − |z|
c

)
sech

(
|z| − d
c

)
− sinh

(
|z| − d
c

))
sin (θ) .

To investigate the dominant eigenvalue we use that ∂Ge(0) is self adjoint with

respect to the inner product:

〈u, v〉 =

ˆ
S 1
d1
π

ˆ
S1

uvc cosh2

(
|z| − d
c

)
dθ dz,

and so has an associated bilinear form given by

L (u, v) =

ˆ
S 1
d1
π

ˆ
S1

1

c

∂u

∂θ

∂v

∂θ
+ c

∂u

∂z

∂v

∂z
− 2uv

c cosh2
(
|z|−d
c

) dθ dz = −〈∂Ge(0)[u], v〉 .

Therefore the largest eigenvalue is given by the Rayleigh quotient:

λ1 = −min
L (u, u)

〈u, u〉
,

where we minimise over u ∈ h1,β
e

(
T 2
d1

)
. We obtain an upper bound on the eigenvalue by

ignoring the positive derivative terms in the integral and using that sech2(z) ≤ cosh2(z)

for all z ∈ R:

λ1 ≤ −min

−2
´
S 1
d1
π

´
S1 u

2c−1sech2
(
|z|−d
c

)
dθ dz

´
S 1
d1
π

´
S1 u2c cosh2

(
|z|−d
c

)
dθ dz

≤ 2

c2
.

To obtain the lower bound we calculate the Rayleigh quotient of u = 1:

λ1 ≥ −
L (1, 1)

〈1, 1〉

=

´
S 1
d1
π

´
S1 2c−1sech2

(
|z|−d
c

)
dθ dz

´
S 1
d1
π

´
S1 c cosh2

(
|z|−d
c

)
dθ dz

=
8
(

tanh
(
d
c

)
− tanh

(
d−d1
c

))
c
(

2d1 + c
(

sinh
(

2d
c

)
− sinh

(
2d−2d1

c

)))
> 0.
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8. MEAN CURVATURE FLOW NEAR CATENOIDS

This allows us to apply Theorems 8.0.1 and 8.0.2 to (8.4) and, via its equivalence

to (8.2), obtain the following result.

Theorem 8.0.6. The finite catenoid is an unstable stationary solution to the mean

curvature flow. That is there exists r0 > 0 such that for any neighbourhood of zero,

O ⊂ h2,α
∂
∂z

(
C A

)
, there exists ρ0 ∈ O and T > 0 such that the solution to (8.2) satisfies

‖ρ(T )‖h2,α > r0. Moreover if d1 6= d̃ then there exists local unstable and stable manifolds

for the system. In particular there exists a r1 > 0 such that if ρ0 is an element of the

stable manifold with ρ0 ∈ Bh2,α
∂
∂z

(C A ),r1(0) then the mean curvature flow of the surface

defined by ρ0 exists for all time and converges exponentially fast to a catenoid.
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Appendix A

Bifurcation Curves of Other

Constant Mean Curvature

Equations

In this section we return to studying the bifurcation of solutions to constant mean

curvature equations, first covered in Section 7.2. We will consider an additional two

constant mean curvature equations. The first such equation takes the same form as

(7.20) however instead of the map u = ψη0(ū, η) we use u = ψ̄(ū, η) := ū+ n−1
η . Setting

F̄1(ū, η) = H
(
ψ̄(ū, η)

)
and dµ̄1(ū, η) = µ̄1(ū, η) dz = µ

(
ψ̄(ū, η)

)
dz we then have the

equation:

Ḡ1(ū, η) := P0

√1 + ū′(z)2

 
S 1
d
π

F̄1(ū, η) dµ̄1(ū, η)− F̄1(ū, η)

 = 0, (A.1)

note that now varying ū does affect the volume of the hypersurface. The last equation

we consider drops the global term and replaces it with the parameter η, i.e. it forces

the corresponding hypersurface to have the same mean curvature as the cylinder it is

a graph over, due to this we don’t force our function to have zero mean.

Ḡ2(ū, η) := η − F̄1(ū, η) = 0, (A.2)

note we have also left out the
√

1 + ū′2 term as this equation no longer has relevance

to a flow; however, it should be noted that this term does not affect the bifurcation

properties.
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A. BIFURCATION CURVES OF OTHER CONSTANT MEAN
CURVATURE EQUATIONS

Theorem A.0.1. The points (0, Hm), for m ∈ N, are the only bifurcation points on

the trivial curve of solutions to Ḡ1(ū, η) = 0. That is, for each m ∈ N there exists a

nontrivial continuously differentiable curve in h2,α
e,0

(
S 1

d
π

)
× R+ through (0, Hm):

{(r̄m,s, ηm,s) : s ∈ (−δ, δ), (r̄m,0, ηm,0) = (0, Hm)} , (A.3)

such that

Ḡ1 (r̄m,s, ηm,s) = 0 for s ∈ (−δ, δ), (A.4)

and all solutions of Ḡ1 (ū, η) = 0 in a neighbourhood of (0, Hm) are either trivial solu-

tions or on the nontrivial curve in (A.3).

Furthermore
dηm,s
ds

∣∣∣∣
s=0

= 0, (A.5)

and
d2ηm,s
ds2

∣∣∣∣
s=0

=
H3
m

(
n2 − 4n− 8

)
12(n− 1 +Hm

√
n− 1 +H2

m)2
. (A.6)

Proof. We start by noting that the function ψ̄ is the first order (with respect to ū)

approximation of ψη0 about the point (0, η0), so much of the analysis in the proofs of

Theorems 7.2.4 and 7.2.6 can be used. In fact the only real change occurs when we

calculate
d2ηm,s
ds2

∣∣∣
s=0

. In this case, instead of equation (7.50) we have

∂3
111F̄1(0, Hm)[v̂m, v̂m, v̂m] = ∂3H

(
n− 1

Hm

)
[v̂m, v̂m, v̂m, ] (A.7)

and hence

ṽ∗m
[
∂2

111Ḡ1(0, Hm)[v̂m, v̂m, v̂m]
]

=
3(n+ 2)H4

mA
3
m

2(n− 1)3Bm
. (A.8)

So from (7.44) we obtain:

d2ηm,s
ds2

∣∣∣∣
s=0

=
−(n− 1)Bm

6HmAm

(
3(n+ 2)H4

mA
3
m

2(n− 1)3Bm
− (n− 2)(n+ 1)H4

mA
3
m

2(n− 1)3Bm

)
=

(n2 − 4n− 8)H3
mA

2
m

12(n− 1)2
. (A.9)

Corollary A.0.2. For 2 ≤ n ≤ 5 the bifurcation curves of equation (A.1) that pass

through a trivial solution are subcritical, that is ηm,0 is a local maximum on the curve,

while for n ≥ 6 they are supercritical, that is ηm,0 is a local minimum on the curve.
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Theorem A.0.3. The points (0, Hm), for m ∈ N, are the only bifurcation points on

the trivial curve of solutions to Ḡ2(ū, η) = 0. That is, for each m ∈ N there exists a

nontrivial continuously differentiable curve in h2,α
e,0

(
S 1

d
π

)
× R+ through (0, Hm):

{(r̄m,s, ηm,s) : s ∈ (−δ, δ), (r̄m,0, ηm,0) = (0, Hm)} , (A.10)

such that

Ḡ2 (r̄m,s, ηm,s) = 0 for s ∈ (−δ, δ), (A.11)

and all solutions of Ḡ2 (ū, η) = 0 in a neighbourhood of (0, Hm) are either trivial solu-

tions or on the nontrivial curve in (A.10).

Furthermore
dηm,s
ds

∣∣∣∣
s=0

= 0, (A.12)

and
d2ηm,s
ds2

∣∣∣∣
s=0

=
H3
m

(
n2 − 10n− 10

)
12(n− 1 +Hm

√
n− 1 +H2

m)2
. (A.13)

Proof. Due to the difference between this equation and the others it is easier to start

from scratch and use known results as we proceed. Therefore, we linearise Ḡ2 with

respect to the functional component:

∂1Ḡ2(ū, η)[v̄] = −∂1F̄1(ū, η)[v̄] = −∂H
(
ū+

n− 1

η

)
[v̄]. (A.14)

Therefore, using equation (7.25), we have

∂1Ḡ2(0, η)[v̄] = v̄′′ +
η2

n− 1
v̄, ∂2

12Ḡ2(0, η)[v̄] =
2η

n− 1
v̄. (A.15)

These are the same operators found in the proof of Theorem 7.2.4. Hence, the same

analysis gives the existence of bifurcation points on the trivial curve precisely at the

points (0, Hm).

Taking the second linearisation we obtain

∂2
11Ḡ2(ū, η)[v̄, w̄] = −∂2

11F̄1(ū, η)[v̄, w̄] = −∂2H

(
ū+

n− 1

η

)
[v̄, w̄]. (A.16)

So we use equation (7.41) to calculate:

∂2
11Ḡ2(0, Hm)[v̄, w̄] =

−2H3
m

(n− 1)2
v̄w̄ +Hmv̄

′w̄′, (A.17)
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A. BIFURCATION CURVES OF OTHER CONSTANT MEAN
CURVATURE EQUATIONS

and hence, since v̂m has not changed, we have

∂2
11Ḡ2(0, Hm)[v̂m, v̂m] = − 2H3

m

(n− 1)2
v̂2
m +Hmv̂

′2
m

= Hm

(
−HmAm√
n− 1

sin

(
Hmz√
n− 1

))2

− 2H3
mA

2
m

(n− 1)2
cos2

(
Hmz√
n− 1

)
=

H3
mA

2
m

2(n− 1)2

(
(n− 1)

(
1− cos

(
2Hmz√
n− 1

))
−2

(
1 + cos

(
2Hmz√
n− 1

)))
=

H3
mA

2
m

2(n− 1)2

(
n− 3− (n+ 1) cos

(
2Hmz√
n− 1

))
. (A.18)

Therefore ṽ∗m
[
∂2

11Ḡ2(0, Hm)[v̂m, v̂m]
]

= 0 and hence
dηm,s
ds

∣∣∣
s=0

= 0.

To calculate
d2ηm,s
ds2

∣∣∣
s=0

we first need to calculate w̄m. Substituting (A.18) and

(A.15) into (7.45) gives

H3
mA

2
m

2(n− 1)2

(
n− 3− (n+ 1) cos

(
2Hmz√
n− 1

))
+ w̄′′m +

H2
m

n− 1
w̄m = 0, (A.19)

and hence

w̄m = − HmA
2
m

6(n− 1)

(
3(n− 3) + (n+ 1) cos

(
2Hmz√
n− 1

))
. (A.20)

Therefore, using (A.17), we obtain

∂2
11Ḡ2(0, Hm)[v̂m, w̄m] (A.21)

= Hm

(
−HmAm√
n− 1

sin

(
Hmz√
n− 1

))(
(n+ 1)H2

mA
2
m

3(n− 1)3/2
sin

(
2Hmz√
n− 1

))
+

H4
mA

3
m

3(n− 1)3

(
3(n− 3) cos

(
Hmz√
n− 1

)
+ (n+ 1) cos

(
2Hmz√
n− 1

)
cos

(
Hmz√
n− 1

))
=
H4
mA

3
m(n+ 1)

6(n− 1)3

(
−(n− 1)

(
cos

(
Hmz√
n− 1

)
− cos

(
3Hmz√
n− 1

))
+

6(n− 3)

n+ 1
cos

(
Hmz√
n− 1

)
+

(
cos

(
Hmz√
n− 1

)
+ cos

(
3Hmz√
n− 1

)))
=

H4
mA

3
m

6(n− 1)3

(
n(n+ 1) cos

(
3Hmz√
n− 1

)
− (n2 − 7n+ 16) cos

(
Hmz√
n− 1

))
. (A.22)

Thus

ṽ∗m
[
∂2

11Ḡ2(0, Hm)[v̂m, w̄m]
]

=
−(n2 − 7n+ 16)H4

mA
3
m

6(n− 1)3Bm
. (A.23)
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Lastly we use (7.51) to calculate:

∂3
111Ḡ(0, Hm)[v̂m, v̂m, v̂m] =− ∂3H

(
n− 1

Hm

)
[v̂m, v̂m, v̂m]

=
3H4

mA
3
m(n+ 2)

2(n− 1)3

(
cos

(
Hmz√
n− 1

)
− n− 2

n+ 2
cos

(
3Hmz√
n− 1

))
,

(A.24)

therefore, as in (A.8),

ṽ∗m
[
∂3

111Ḡ2(0, Hm)[v̂m, v̂m, v̂m]
]

=
3(n+ 2)H4

mA
3
m

2(n− 1)3Bm
. (A.25)

So by substituting this along with (A.23) into (7.44) we obtain

d2ηm,s
ds2

∣∣∣∣
s=0

=
−(n− 1)Bm

6HmAm

(
3(n+ 2)H4

mA
3
m

2(n− 1)3Bm
− (n2 − 7n+ 16)H4

mA
3
m

2(n− 1)3Bm

)
=

(n2 − 10n+ 10)H3
mA

2
m

12(n− 1)2
.

Corollary A.0.4. For 2 ≤ n ≤ 8 the bifurcation curves of equation (A.2) that pass

through a trivial solution are subcritical, while for n ≥ 9 they are supercritical.
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CURVATURE EQUATIONS

100



Appendix B

Elementary Symmetric Function

Identities

The aim of this appendix is to provide a complete proof of equation (2.6). This equation

appears in [24] for the case where the hypersurface is convex; however here we will prove

it for the elementary symmetric functions of an arbitrary matrix. We consider a matrix

A =
(
Aij

)
, which has eigenvalues λa. The elementary symmetric functions are then

given by

E0 = 1, Ea =
∑

1≤b1<...<ba≤n

a∏
i=1

λbi , 1 ≤ a ≤ n. (B.1)

We first obtain a formula relating Ea+1 to the previous elementary symmetric func-

tions; this was proved in [41] but we reproduce the proof here for completeness.

Lemma B.0.1.

(a+ 1)Ea+1 =
a+1∑
b=1

(−1)b+1tr
(
Ab
)
Ea+1−b, 0 ≤ a ≤ n− 1. (B.2)

Proof. We start by noting that the elementary symmetric functions are the coefficients

of a certain polynomial:
n∏
a=1

(1 + λat) =
n∑
a=0

Eat
a.

Considering |t| < min1≤a≤n |λa|−1 we can take the logarithm of both sides to remove

the product:
n∑
a=1

ln |1 + λat| = ln

∣∣∣∣∣
n∑
a=0

Eat
a

∣∣∣∣∣ ,
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B. ELEMENTARY SYMMETRIC FUNCTION IDENTITIES

and we are able to take the derivative with respect to t

n∑
a=1

λa (1 + λat)
−1 =

(
n∑
a=1

aEat
a−1

)(
n∑
a=0

Eat
a

)−1

.

Using the series expansion (1 + λat)
−1 =

∑∞
b=0(−1)bλbat

b, we obtain

n∑
a=1

aEat
a−1 =

( ∞∑
b=0

n∑
a=1

(−1)bλb+1
a tb

)(
n∑
a=0

Eat
a

)

=

( ∞∑
b=0

(−1)btr
(
Ab+1

)
tb

)(
n∑
a=0

Eat
a

)

=

∞∑
b=0

n∑
a=0

(−1)btr
(
Ab+1

)
Eat

a+b.

Now we equate coefficients. Firstly for the coefficient of tc where c ≥ n we obtain

0 =

c∑
b=c−n

(−1)btr
(
Ab+1

)
Ec−b,

while for the coefficient of tc where 0 ≤ c ≤ n− 1 we obtain

(c+ 1)Ec+1 =
c∑
b=0

(−1)btr
(
Ab+1

)
Ec−b,

which is the result.

This lemma leads to a formula for the derivative of the elementary symmetric func-

tions.

Proposition B.0.2.

∂Ea+1

∂Aij
=

a∑
b=0

(−1)b
(
Ab
)j
i
Ea−b, 0 ≤ a ≤ n− 1. (B.3)

Proof. The proof of this formula is by induction. We first show it is true when a = 0:

∂E1

∂Aij
=
∂tr(A)

∂Aij
= δji =

0∑
b=0

(−1)b
(
Ab
)j
i
E0−b. (B.4)

We now assume that (B.3) holds for all 0 ≤ a ≤ c− 1, where c is an integer between 1

and n− 1. Taking the derivative of (B.2):

(c+ 1)
∂Ec+1

∂Aij
=

c+1∑
b=1

(−1)b+1b
(
Ab−1

)j
i
Ec+1−b +

c∑
b=1

(−1)b+1tr
(
Ab
) ∂Ec+1−b

∂Aij
,
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and using (B.3) we obtain

(c+ 1)
∂Ec+1

∂Aij
=

c+1∑
b=1

(−1)b+1b
(
Ab−1

)j
i
Ec+1−b

+

c∑
b=1

(−1)b+1tr
(
Ab
) c−b∑
d=0

(−1)d
(
Ad
)j
i
Ec−b−d

=
c+1∑
b=1

(−1)b+1b
(
Ab−1

)j
i
Ec+1−b

+

c−1∑
d=0

(−1)d
(
Ad
)j
i

c−d∑
b=1

(−1)b+1tr
(
Ab
)
Ec−b−d

=
c∑

d=0

(−1)d(d+ 1)
(
Ad
)j
i
Ec−d +

c−1∑
d=0

(−1)d
(
Ad
)j
i

(c− d)Ec−d

=
c∑

d=0

(−1)d(c+ 1)
(
Ad
)j
i
Ec−d,

where we used equation (B.2) to obtain the second last line. Cancelling the factor of c+1

gives that (B.3) is true for a = c. Hence by induction it is true of all 0 ≤ a ≤ n−1.

We now obtain the main result of the appendix, which is stated in terms of the

Weingarten map in equation (2.6).

Corollary B.0.3.

∂Ea+1

∂Aij
= Eaδ

j
i −A

j
k

∂Ea
∂Aik

, 0 ≤ a ≤ n− 1. (B.5)

Proof. For a = 0 the right hand side of (B.5) is δji so the equation follows from (B.4).

For 1 ≤ a ≤ n− 1 we calculate using equation (B.3):

∂Ea+1

∂Aij
+Ajk

∂Ea
∂Aik

=

a∑
b=0

(−1)b
(
Ab
)j
i
Ea−b +Ajk

a−1∑
b=0

(−1)b
(
Ab
)k
i
Ea−1−b

=Eaδ
j
i +

a∑
b=1

(−1)b
(
Ab
)j
i
Ea−b +

a−1∑
b=0

(−1)b
(
Ab+1

)j
i
Ea−1−b

=Eaδ
j
i +

a∑
b=1

(−1)b
(
Ab
)j
i
Ea−b +

a∑
b=1

(−1)b−1
(
Ab
)j
i
Ea−b

=Eaδ
j
i .
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