
Moving Range Query Processing in Spatial
Databases

by

Haidar AL-Khalidi, MCompSc

Thesis
Submitted by Haidar AL-Khalidi

for fulfilment of the requirements for the degree of

Doctor of Philosophy (0190)

Supervisor: A/Professor David Taniar

Associate Supervisor: Dr. John Betts

Clayton School of Information Technology
Monash University

December, 2014

c⃝ Copyright

By

Haidar AL-Khalidi

2014

Notice 1

Under the Copyright Act 1968, this thesis must be used only under the nor-

mal conditions of scholarly fair dealing. In particular, no results or conclusions

should be extracted from it, nor should it be copied or closely paraphrased

in whole or in part without the written consent of the author. Proper written

acknowledgement should be made for any assistance obtained from this thesis.

Notice 2

I certify that I have made all reasonable efforts to secure copyright per-

missions for third-party content included in this thesis and have not knowingly

added copyright content to my work without the owner’s permission.

ii

To All People I Love

iii

Contents

List of Tables . ix

List of Figures . x

Abstract . xiii

Acknowledgments . xvii

1 Introduction . 2

1.1 Research Objectives and Motivation 4

1.2 Major Problems . 5

1.3 Thesis Contributions . 7

1.3.1 Approximate Range Query 7

1.3.2 Safe Region in Moving Range Query 10

1.3.3 Monitoring Moving Range Query 11

1.3.4 Lookforward Moving Range Query 12

1.4 Thesis Organisation . 13

2 Related Work . 16

2.1 Range Query Processing based on Euclidean Distance 16

2.1.1 Static Range Query . 17

2.1.2 Moving Range Query . 20

iv

2.2 Range Query Processing based on Road Network Distance 24

2.2.1 Range Euclidean Restriction 26

2.2.2 Range Network Expansion 27

2.3 Approximate Query Processing 27

2.4 Safe Region Processing . 29

2.4.1 Fixed Safe Region . 31

2.4.2 Dynamic Safe Region . 32

2.5 Summary . 33

3 Approximate Static and Moving Range Query 36

3.1 Motivation . 37

3.2 Approximate Static Range Query based on Euclidean Distance . . 38

3.2.1 Lowerbound Approximate Static Range Query (Lower-

bound ASR) . 39

3.2.2 Upperbound Approximate Static Range Query (Upper-

bound ASR) . 41

3.2.3 Approximate Static Range Query (ASR) 43

3.2.4 ASR Algorithm . 44

3.3 Approximate Moving Range Query based on Euclidean Distance 49

3.3.1 Moving Range Query . 49

3.3.2 Approximate Moving Range Query (AMR) Techniques . . 54

3.3.3 AMR Algorithms . 60

3.4 Approximate Static Range Query based on Road Network Distance 62

3.4.1 Approximate Range Euclidean Restriction (ARER) 64

3.4.2 Approximate Range Network Expansion (ARNE) 65

3.4.3 ASR Algorithms in the Road Network 67

3.5 Approximate Moving Range Query based on Road Network . . . 69

v

3.5.1 Moving Range Query - Preliminaries 69

3.5.2 Approximate Moving Range (AMR) Techniques 73

3.5.3 AMR Algorithms (based on Road Network) 74

3.6 Experimental Results . 77

3.6.1 Query based on Euclidean Distance 79

3.6.2 Query based on Road Network Distance 85

3.7 Summary . 89

4 Safe Region in Moving Range Query 94

4.1 Motivation . 95

4.2 Range Safe Region . 97

4.2.1 Basic Safe Region . 98

4.2.2 Enhanced Safe Region . 100

4.2.3 Extended Safe Region . 103

4.3 Calculating the Area of the Extended Safe Region 107

4.3.1 Calculating the Intersection of Two Circles 109

4.3.2 Using Monte-Carlo Simulation to Calculate Safe Region

Area . 109

4.4 Algorithms of Safe Region . 112

4.4.1 Basic Safe Region Algorithm 112

4.4.2 Enhanced Safe Region Algorithm 112

4.4.3 Extended Safe Region Algorithm 113

4.5 Experimental Results . 114

4.5.1 Accuracy when Using Monte-Carlo Simulation to Calcu-

late Safe Region Area . 116

4.5.2 Initial Safe Region . 118

4.5.3 Continuous Safe Region 118

vi

4.5.4 Constructing the Safe Region 118

4.6 Summary . 120

5 Monitoring Moving Range Query 124

5.1 Motivation . 125

5.2 Linear Motion Function to Monitor a Query inside Safe Region . 126

5.2.1 Query within One Object 129

5.2.2 Query within Two Objects 130

5.2.3 Query within Multi Objects 132

5.2.4 Query within Multi Objects in/out the Result List 133

5.3 Support Arbitrary Moving Query 134

5.4 Algorithm to Monitor Moving Query inside Extended Safe Region136

5.5 Experimental Results . 136

5.5.1 Moving Query in Different Environments 138

5.5.2 Case Studies . 139

5.6 Summary . 141

6 Lookforward Moving Range Query 144

6.1 Motivation . 145

6.2 Approximate Trajectory Techniques - Preliminaries 146

6.2.1 Top-Down Approximate Technique 148

6.2.2 Sliding Window Approximate Technique 151

6.3 Lookforward Moving Range Query 154

6.3.1 Filter Step and Refinement Step 155

6.3.2 Expansion Step . 157

6.3.3 Half Space Step - on Original Path 159

6.3.4 Split Step . 160

6.3.5 Result Step . 165

vii

6.3.6 LMR Algorithm . 165

6.4 Simplifying the Query Path . 167

6.4.1 Simple Trajectory . 168

6.4.2 Approximate Trajectory 168

6.5 Experimental Results . 169

6.5.1 Experiment . 170

6.5.2 Case Studies . 172

6.6 Summary . 173

7 Conclusion and Future Work . 178

7.1 Overview . 178

7.2 Conclusion . 179

7.3 Future Work . 181

Appendix A Abbreviations . 184

Publications . 188

Last Thing . 202

viii

List of Tables

2.1 Summary of query types and their limitations 32

3.1 The minimum distance between item X and the query point q . . 46

3.2 Euclidean distance between split points 58

3.3 The network distance between objects and the query point q in

Figure 3.10 . 65

3.4 The network distance between objects, nodes and the query point

q in Figure 3.11 . 66

5.1 Start and end angles . 133

6.1 Minimum distance between the object and the query path [S,D] . 157

A.1 Symbols used throughout this thesis 184

ix

List of Figures

1.1 Example of moving range query 3

1.2 Study organisation . 13

2.1 An example of range query in mobile navigation 18

2.2 Range query using R-tree . 19

2.3 An example of moving range query in mobile navigation 21

2.4 Fork dilemma when predicting a moving query 24

2.5 Range query in a spatial network database using an online map . 26

2.6 Safe region . 31

3.1 Approximate static range query on R-tree 45

3.2 Filter step and refinement step in moving range query 50

3.3 Split step in moving range query 52

3.4 Object segment and result segment 53

3.5 Moving range query . 54

3.6 Approximate moving range query on R-tree 56

3.7 Range Search Minimisation in approximate range query 56

3.8 The range area of approximate moving range query 57

3.9 Split Points Minimisation in approximate moving range query . . 59

3.10 ARER in the road network . 64

3.11 ARNE in the road network . 66

x

3.12 Moving range query based on spatial road network 71

3.13 Retrieving interest objects in ASR compared with range query (R) 80

3.14 Number of false hits in ASR compared with range query (R) . . 81

3.15 Approximate splitting point in AMR based on Euclidean distance

compared with moving range query (MR) 83

3.16 Number of split points in AMR and moving range query (MR) . 84

3.17 Filter step . 85

3.18 False hits in Euclidean distance 86

3.19 Approximate Range Euclidean Restriction ARER 87

3.20 Approximate Range Network Expansion ARNE 88

3.21 Approximate splitting point in AMR based on road network com-

pared with moving range query (MR) 90

4.1 Basic Safe Region . 100

4.2 Query moves in opposite direction 101

4.3 Two closest objects to the border of the query 102

4.4 Enhanced Safe Region . 103

4.5 Treating objects as query . 106

4.6 Extended Safe Region (formed by overlapping objects) 107

4.7 Types of Extended Safe Regions 108

4.8 Area of intersection of two circles 110

4.9 Demonstration software calculating the area of a safe region

corresponding to a static query 111

4.10 Example of safe regions (Basic, Enhanced and Extended) 117

4.11 Simulation model vs. analytical model 117

4.12 Initial safe regions in different environments 119

4.13 Total area of safe region crossed by moving query 120

xi

4.14 Number of objects needed to construct the Extended Safe Region 121

5.1 Safe region using linear function 130

5.2 Monitoring q within range of two objects 131

5.3 Safe regions with different edges 133

5.4 Arbitrary moving query inside safe region 135

5.5 Distance that a query travels before leaving its safe region 138

5.6 The average distance the query can move until its objects of

interest change in different density environments 139

5.7 Distance that query can travel before the objects of interest change140

5.8 Distance of the closest object in all directions from the query . . 141

6.1 Top-down algorithm using Douglas Peucker algorithm 150

6.2 Sliding window algorithm using BOPW algorithm 153

6.3 Sliding window algorithm using NOPW algorithm 154

6.4 Filter step and refinement step 156

6.5 Expansion step . 158

6.6 Half space step . 160

6.7 Split step . 164

6.8 Object segment and result segment 165

6.9 Simple approximate trajectory . 168

6.10 Approximate trajectory using Douglas Peucker algorithm 169

6.11 Number of split points in moving range query and LMR based

on road network . 171

6.12 Case study 1 . 172

6.13 Case study 2 . 174

xii

Moving Range Query Processing in Spatial
Databases

Haidar AL-Khalidi, MCompSc

Monash University, 2014

Supervisor: A/Professor David Taniar

Associate Supervisor: Dr. John Betts
j

Abstract

Recent developments in mobile communications have brought dramatic and

fundamental changes to the modern world. These developments have resulted in

a great demand for applications that integrate geographic locations and services

to fulfill the user’s needs. Different types of spatial queries are used in such

applications, however, most studies consider the moving range query to be

the most common, and frequently used. The moving range query is used to

find all objects of interest within a given radius while the user who invokes

the query is moving. During the last decade, some studies in moving range

queries considered Euclidean geometry, where the distance between two objects

is determined by their relative position in space. Some other studies considered

network distance, wherein the trajectory between two objects is specified by the

underlying network.

The main objective of all the previous studies is to process moving range

queries efficiently. However, most of these studies focus on index efficiency

and less effort has been made to address the issues of moving query updating

and optimisation, which are crucial factors affecting system performance. In

xiii

this thesis, we attempt to investigate this possibility by proposing four new

processing techniques.

First, we introduce a new “approximate moving range query” to optimise

the query process in two ways: i) we reduce the amount of time needed to

obtain the results; and ii) we give the users alternative options in order to

avoid another search(es) when searching an empty result or a massive number

of objects in the result. The result of our experiments show that our techniques

are successful in terms of reducing the number of split points and false hits.

Also, the approximate results are of a high quality compared to the exact results.

Furthermore, our algorithms reduce the number of communications between the

mobile device and the databases server, indicating their performance is better in

terms of lower search time and improved search accuracy.

Second, we present a technique to deal with the moving range query called

“safe region”. The high computation and communication costs of monitoring

and updating the location of the moving range query needs to be considered, as

the calculation of the range query needs to be re-evaluated whenever the query

moves. Our aim is to avoid any communication between the query and the server

while the query moves within the specified safe region. We have extended the

size of the safe region to reduce the amount of supplementary communication.

Our main objective is to reduce the need for continuous monitoring of the query,

and eliminate the need for the user to follow a defined path.

Third, we propose a linear model called “monitoring moving range query”

to monitor moving queries inside a safe region. Our technique gives the users

the ability to monitor themselves and inform the server when leaving the safe

region. This will give the user more privacy and reduce the load on the server.

Also, our technique will eliminate the need for the user to follow a defined

path. We use the time and the concept of the safe region together, hence, if the

xiv

query makes a sudden turn, the result will not be affected because the query

will still be located inside the safe region.

Finally, we introduce a novel query processing technique for the moving

range query in spatial network databases, called “lookforward moving range

query”. Our technique is related to Euclidean and network distance to retrieve

related objects and at the same time to exclude unrelated ones. Our technique

can distinguish between the significant important objects and the minor important

objects inside the range query. Our technique improves the selectivity of the

filter step to reduce the number of candidate objects, and consequently, minimise

the number of communications between the mobile device and the database

server. The lookforward moving range query achieves a better running time and

delivers a better performance having fewer split points than the original moving

range query as shown on our experiments.

xv

Moving Range Query Processing in Spatial
Databases

Declaration

I declare that this thesis is my own work and has not been submitted in
any form for another degree or diploma at any university or other institute
of tertiary education. Information derived from the published and unpublished
work of others has been acknowledged in the text and a list of references is
given.

Haidar AL-Khalidi
December 14, 2014

xvi

Acknowledgments

I would like to thank everyone who helped to make this possible. It has been
an incredible journey of self-discovery, and I love every last one of you. . .

First of all, I would like to express my special appreciation and thanks to my
supervisor, Associate Professor Dr. David Taniar. You have been a tremendous
mentor for me. I would like to thank you for encouraging my research and for
allowing me to grow as a research scientist. Many thanks for your patience and
valuable advice during my candidature. Your advice on both research as well
as on my career have been priceless.

I would also like to thank my co-supervisor, Dr. John Betts, for helpful ad-
vice and insight. His valuable editorial and technical advice have been essential
to the completion of my Ph.D. thesis.

In addition, a thank you goes to Professor Maytham Safar (Kuwait Univer-
sity). I have been extremely lucky to have a person like you who cared so much
about my work, and who responded to my questions and queries so promptly.

I would especially like to thank all the staff of Clayton School of Information
Technology at Monash University. All of you have been there to support me
whenever I needed any help during my Ph.D. program.

I thank all my wonderful friends in our spatial database reading group Dr.
Kefeng Xuan, Dr. Geng Zhao, Dr Thao P. Nghiem, Dr. Sultan Alamri, Kiki
Maulana, Dr. Kinh Nguyen and Dr. Muhammad A. Cheema.

A special thanks to my family, including my in-laws. Words cannot express
how grateful I am to my mother, and father for all of the sacrifices that you
have made on my behalf. Your prayer for me was what sustained me thus far.
Many thanks for your support, encouragement and patience during three and a
half years of my Doctorate in Information Technology.

xvii

At the end, special thanks goes out to my lovely wife Zainab, who spent
sleepless nights with me and was always my support in the moments when
there was no one to answer my queries. She inspired me and provided constant
encouragement during the entire process, as well as continuously proofing my
document.

Haidar AL-Khalidi

Monash University

December 2014

xviii

1

Chapter 1
Introduction

1.1 Research Objectives and Motivation 4

1.2 Major Problems . 5

1.3 Thesis Contributions . 7

1.4 Thesis Organisation . 13

1

Introduction

Over the last two decades, spatial databases have received increasing interest

due to their important role in many modern applications, such as Geographic

Information Systems (GIS), multimedia databases, urban planning, and traveller

information systems (Xuan, Zhao, Taniar, Safar, & Srinivasan, 2011; Bustos &

Navarro, 2009; Safar, 2008). The key characteristic that makes this type of

database a powerful tool is its ability to manipulate the data, instead of only

storing and representing the data. The most basic form of such manipulation

is answering queries related to spatial properties of data (Corral et al., 2000).

The response to a query returns all objects of interest that satisfy the selection

conditions, and are close to the given query. There are many types of queries

in spatial and mobile databases proposed and studied in the last decade. One of

the most important and frequently used ones among these queries is the moving

range query.

Moving range query (Continuous range query) is defined as the retrieval

of information of objects of interest while the query moves, and continuous

monitoring of the change of the query results over a certain time period. For

2

1. INTRODUCTION 3

Figure 1.1: Example of moving range query

the rest of the thesis term of the moving range query will be used instead of

the term of continuous range query.

Definition: Given a set of spatial objects P = [p1, p2, ..., pn] and a query

path q = [S,D], where S and D are start and distention point of the path (q)

respectively. All objects within a radius e from the path (i.e. DE(q, pi) ≤ e)

will be in the result list of the moving range query.

In Figure 1.1 the user invokes a range query at location S looking for all

objects of interest within a specific distance while s/he moves to destination D.

For example, a driver of a moving car posted the following query: “Give me

the locations and names of the petrol stations offering unleaded fuel for less

than $1.50 per litre within 2km”. In this example, the central location of the

query is the car on the move and the target objects are buildings within 2km

with respect to the location of the car on the move.

The moving range query raises challenges to researchers because the move-

ment of the central location consequently changes the query result. Several

studies have been conducted to address these challenges. However, many limi-

tations still need to be addressed with a demand for further improvements to be

1. INTRODUCTION 4

made. In Section 1.1, we clarify the objectives of this thesis. In Section 1.2 the

main problems of the existing approaches are explained. Section 1.3 presents

our contributions. Finally, Section 1.4 presents the outline of the thesis.

1.1 Research Objectives and Motivation

With the growing popularity of mobile navigation and Global Position System

(GPS) in mobile information systems, the efficient processing of a moving range

query has been of increasing interest. The traditional range query is meant to be

static, where the query is based on the current users’ location (Bustos & Navarro,

2009; Xuan, Zhao, Taniar, Rahayu, et al., 2011) and the results are based on a

static range query. Once the results are assembled by the server, then they will

be sent to the query user. But, when users are moving, the static range query

will not be adequate, therefore, the moving range query has been developed.

Over the years, researchers have used two types of distance measurement to

locate objects of interest , namely Euclidean distance measurement and road

network distance measurement. Measuring using Euclidean spaces means that

the distance between two objects is determined by their relative position in

space (i.e., a straight and direct distance between two spatial objects). On the

other hand, measuring using road network distance means considering the actual

network distance between two objects (the length of the shortest road connection

between them on the map) (Zhao et al., 2014). This type of measurement has

been used because in real life there should be an underlying road network

where spatial objects are located. In this thesis, we cover both of these types

of measurements in processing moving and static range query processing.

Our motivation in this study is based on the reality that: most existing

works mainly focus on index efficiency, while less effort is made to address the

1. INTRODUCTION 5

limitations of query processing and updating. However, these are crucial factors

affecting system performance. As well, existing works in processing moving

range queries require a vast amount of network distance computation along with

continuous online communications between the user and the database server to

update the query result. In addition to a careful consideration of the query

path direction, in some cases, ignoring the direction from the query point to the

objects of interest may result in having the passed-by objects of interests in the

result list.

Thus, the main objective of our research is to:

• investigate new ways to process the moving range query more efficiently

and accurately.

• present new range queries that minimise the communication cost of track-

ing the moving query.

• develop a new model to obtain the result in a short time with high quality

guaranteed answers.

• construct a new technique to reduce the need for continuous monitoring

of the query, and eliminate the need for the user to follow a defined path.

1.2 Major Problems

In this thesis, we concentrate on finding adequate solutions to the existing

limitations of processing and updating moving range queries to satisfy two

criteria: the computational time and the cost of the query search. Several studies

have been conducted during the last decade to reduce the computational time

and the cost of the search, however, there is a demand for further improvement

which we have framed as several problems:

1. INTRODUCTION 6

• Problem 1: The excessive amount of time needed to obtain the results.

Many false hits are retrieved when the query radius e is expanded, which

makes processing moving range query time consuming. Also, the den-

sity of the objects and the performance of the range query technique

are inversely proportional, while the set size of the answer is directly

proportional to the size of the spatial region.

• Problem 2: Two issues arise when critical objects (i.e., objects with

minimum distance to the query path equal or almost equal to e) enter a

query boundary for only short time: i) relevant objects, name false misses,

may not be included in the results, and ii) the user does not have time to

react when critical objects are present for only a few seconds.

• Problem 3: Split points (split nodes) are the locations where query results

are updated. The number of split points is twice the number of objects

of interest (Xuan, Zhao, Taniar, Safar, & Srinivasan, 2011), the effect of

which is a substantial increase in the communication traffic between the

mobile user and the server.

When the range query results change, the database server informs the

mobile user, so a need for continuous online communication is created in

order to update the user with the changed results. Also, it is important

to note that in wireless environments, mobile devices experience limited

bandwidth and low-quality communication (Chow et al., 2009).

• Problem 4: Communication between a user and a random moving query

is significant and expensive with real-time updating of query answers.

In some applications delays result in outdated answers and in situations

with a high density (500 objects) of objects and continuous updating the

1. INTRODUCTION 7

editing is so fast (less than five seconds) that it reduces the user’s ability

to make decisions. Also, with inaccurate prediction of the location of a

random moving query frequent updates of its location are required, so it

becomes important to reduce the number of location updates. When a

user, however, is following a predicted path the client (user) should not

need to inform the server of its location.

1.3 Thesis Contributions

This thesis specifically aims to improve the processing of the moving range

query, develop a new model to obtain the results in a short time and with

guaranteed high quality. In this thesis, we also introduce a new query algorithm

to reduce the location updates and the communication between the query and

the server. Furthermore, we construct a new technique to reduce the need for

continuous monitoring of the query, and eliminate the need for the user to

follow a defined path.

1.3.1 Approximate Range Query

Mobile communication technologies have brought significant change to everyday

life. One of the growing applications is mobile navigation, which helps users

navigate crowded roads using the best route and gives answers to location

queries (Zhao et al., 2014). The execution of users’ queries, however, comes at

a high cost.

A quest to improve the efficiency of query search techniques has led to

investigation of the concept of approximate (Arya et al., 2009). In real life

exactness in location information of an object is not required for all applications

1. INTRODUCTION 8

(Petkova et al., 2009). For example, a traveller wants to know the arrival time

of the next train. The exact location is not important.

Also, in some applications such as GIS and cellular networks, the compre-

hensive data and the number of objects of interest in addition to the costly

I/o operations and response time, all these factors contribution to the necessity

of examining the approximate techniques in order to obtain an efficient results

(Corral et al., 2002).

The approximation concept is used in this thesis to improve the processing

and efficiency of range queries (i.e., static and moving). Novel techniques are

introduced to demonstrate that the approximate results can be obtained much

faster and at less cost than the exact results. To date no studies have been

conducted using an approximate static range query relying on a distance based

query and using a moving range query in the context of approximation.

Our research presented here was published in (Al-Khalidi et al., 2011; AL-

Khalidi et al., 2013; AL-Khalidi, Taniar, & Safar, 2013).

In spatial databases and using the static range query, search time is important

and is affected by the number of retrieval objects and the size of the range

query, which retrieves all objects in a range from a particular query point. The

result takes an excessive amount of time and can return no result or a huge

number of objects, thus necessitating another search. Also, repeated false hits

(i.e., irrelevant objects as candidates) are investigated and are a waste of time.

These problems can be addressed using the concept of approximation which

provides valuable results much faster. Three novel approximate methods are

introduced, namely, Lowerbound approximate static range query (Lowerbound

ASR) and Upperbound approximate static range query (Upperbound ASR) and

approximate static range query (ASR) to enhance the performance of the range

query by using different factors to bound the range search.

1. INTRODUCTION 9

The moving range query has the problem of a large number of communica-

tions between the database server and the mobile device. In areas with a high

density of objects and fast updating of the search result, users have some diffi-

culty in making decisions. These problems are addressed once again using the

approximation concept. Two approximate moving range query techniques are

proposed: reduction of the range search to reduce the number of critical objects

and minimise search time; and reduction of the number of split points to reduce

the number of times that results are updated and the number of communications

with the server.

Implementing range queries (static and moving) based on spatial network

databases, namely Range Euclidean Restriction RER and Range Network Ex-

pansion RNE, requires lengthy calculation times to obtain the essential results.

These queries need a massive number of calculations of the road work in all

directions looking for objects of interest. The queries based on road network are

similar to those queries based on Euclidean distance. They are also suffer from

repeated false hits and a result list with a massive number of objects or with ab-

solutely no objects. Therefore, we design two new methods, called Approximate

Range Euclidean Restriction (ARER) and Approximate Range Network Expan-

sion (ARNE) to eliminate the problems of the former methods (Range Euclidean

Restriction RER and Range Network Expansion RNE). We also introduce an-

other two methods for moving range query named Range Search Minimisation

and Split Points Minimisation. In these techniques, we introduce lowerbound

which minimises the actual range search to exclude the internal nodes that fall

outside the lowerbound. We also improve the filter step to reduce the number

of candidate objects and the number of communications with the server. The

technique has better running time and performance, but with low false hits and

reasonable false misses.

1. INTRODUCTION 10

1.3.2 Safe Region in Moving Range Query

In the moving range query, the query is assumed to be constantly moving.

Minimising the frequent updates of the query location and keeping low costs

while monitoring the moving query are the two main challenges researchers

have to face. We address these challenges and present new efficient methods

using the safe region concept, called range safe region.

The safe region is an area where the set of objects of interest does not

change as long as the query remains inside it. The aim of the safe region is

to reduce the number of the query location updates by reducing the number

of queries to the server. The main challenge is how to keep the query result

up to date while the user is moving and how to reduce to the minimum the

server’s monitoring for the user. In response, we introduce three new types of

safe regions called: Basic, Enhanced, and Extended. Monte-Carlo simulation is

used to calculate the total area of the safe region.

This work was published in (Al-Khalidi et al., 2013b; AL-Khalidi, Taniar,

Betts, & Alamri, 2013).

Our contributions can be summarised as follows: First, we propose a new

technique to construct a safe region, termed the range safe region. The aim

of this technique is to avoid any communication between query and server

while the query moves within the specified safe region. Second, we extend the

range safe region to reduce the amount of supplementary communication. Using

these techniques reduces the need for continuous monitoring of the query, and

eliminates the need for the user to follow a defined path. We use a discrete-

event simulation method with a high degree of accuracy to calculate the area of

the safe regions that have been formed by overlapping range objects. Finally,

we compare the Basic, Enhanced and Extended safe regions when the query

1. INTRODUCTION 11

is static and when it is moving. Our method reduces the amount of query

monitoring by the server and prevents any communication costs while the query

moves within its specified constructed safe region. The new method also allows

a user to move within the safe region without revealing their location, thus

preserving their privacy.

1.3.3 Monitoring Moving Range Query

The moving range query requests constant reporting of its results which extend

from the registration of the query to its cancellation. This is called the effective

period of the query. Over this time, the query results must be continuously

updated even if the query conditions remain unaltered during the effective period

(Shengsheng & Chen, 2011). To reduce the updating costs while the query

moves continuously, the safe region concept has been proposed (AL-Khalidi,

Taniar, Betts, & Alamri, 2013; Cheema et al., 2011; Cho et al., 2013; Mokbel

et al., 2004), which allows the query to report its current location and to request

a new result only when it exits its current safe region. These two factors have

the potential to significantly reduce communication and computational overheads.

Because the query does not communicate with the server once it enters its safe

region, neither the query nor the server will be aware of when and from which

direction the query will leave its assigned safe region. Consequently, the server

would not be able to calculate a new safe region for the query to roam in or

update the result list without delay.

In this thesis, we present our technique for continuously monitoring a range

query inside the Extended Safe Region. A linear function is proposed to monitor

the moving query within its safe region. Since the Extended Safe Region has an

irregular shape, it is necessary to find a method to monitor the query inside it.

1. INTRODUCTION 12

Our method reduces the costs associated with communications in client-server

architectures because an update of the location will be reported only when the

query leaves its assigned safe region or upon the server’s request. Computational

results show that our method is successful in handling moving query patterns.

Our method does not suffer from the problem of fork dilemma because it is

not calculated as a linear function of time alone. By contrast, in our method

we use the time and the concept of the safe region together, hence, if the query

makes a sudden turn, the result will not be affected because the query will still

be located inside the safe region.

Our technique of monitoring the moving query was published in (Al-Khalidi

et al., 2014, 2013a).

1.3.4 Lookforward Moving Range Query

In our thesis, we focus on a special type of query called moving range query. All

traditional range queries try to find all objects of interest around the query point

without direction constraint. We propose a novel query processing technique

for moving range query based on spatial network databases, called lookforward

moving range query (LMR). In this technique, we introduce a new way to

distinguish between the significant important objects and the minor important

objects inside the boundary of the moving range query.

We only take attention of the objects that are located in the direction of the

user while he/she is moving, and exclude all objects that are behind the moving

user or will make him/her divert away from his/her trajectory. We also improve

the selectivity of the filter step to reduce the number of the candidate objects,

and consequently, minimise the number of communications between the mobile

device and the database server. The resulting technique achieves a better running

1. INTRODUCTION 13

Introduction

Chapter 1

Related Work

Chapter 2

Concluding Summary

Chapter 7

Approximate Query

Chapter 3

Safe Region Query

Chapter 4

LookForward Query

Chapter 6

Monitoring Query

Chapter 5

Moving Range Query Processing in Spatial Databases

Figure 1.2: Study organisation

time and delivers a better performance, having low a member of split points.

To the best of our knowledge, this is the first work dealing with the efficient

processing of exclusion of some objects inside the boundary of the range query

which are unimportant to the user. We have employed the advantages of the

approximate trajectory to achieve a better result for forward objects of interest.

1.4 Thesis Organisation

This thesis is organised, as referred in Figure 1.2, as follows:

• Chapter 2 reviews the relevant existing work and basic theoretical back-

ground of different spatial query types in spatial and temporal databases.

1. INTRODUCTION 14

• Chapter 3 presents novel approximate queries for static and moving queries

based on Euclidean and road network databases.

• Chapter 4 presents new types of dynamic safe regions for moving range

queries. The size of these safe regions varies depending on the objects’

locations around the query.

• Chapter 5 presents a new method to monitor the query (client) itself in

order to divide the load between the server and the client and to give the

query the ability to move randomly. This method overrides the problem

of fork dilemma by employing the linear function and the safe region

together.

• Chapter 6 presents a novel lookforward moving range query based on

road networks, to emphasis the objects are located in the direction of the

moving query, and also to limit the query from diverting back from its

original path.

• Chapter 7 concludes this thesis and discusses directions for future work.

Chapter 2
Related Work

2.1 Range Query Processing based on Euclidean Distance 16

2.2 Range Query Processing based on Road Network Distance . . 24

2.3 Approximate Query Processing 27

2.4 Safe Region Processing . 29

2.5 Summary . 33

15

2

Related Work

In this chapter, we will present the existing related work in order to gain a

sufficient understanding of some of the key elements in the spatial queries field.

We start by describing range query processing in mobile navigation applications

in Section 2.1. Section 2.2, presents the related work of range queries based on

road networks. Section 2.3, describes the related work for approximate queries,

and in Section 2.4 we provide an overview of the related work for safe region.

Finally, in Section 6, a summary of the existing limitations will be presented.

2.1 Range Query Processing based on Euclidean

Distance

Range query is one of the most frequently used queries in Geographical Infor-

mation Systems (GIS), such as Google Maps, Whereis Maps, Bing Maps and

mobile devices, and also in other areas such as multimedia database queries

(Bustos & Navarro, 2009; Waluyo et al., 2004). The range query is applied to

find all objects of interest within a given region or radius, and it can be applied

16

2. RELATED WORK 17

whether the users are moving or not. A range query can be either a static range

query or a moving range query. Each is now discussed in turn.

2.1.1 Static Range Query

Static range query (or for simplicity range query) is applied when the user is

not moving and demands a set of objects of interest. Range query depends on

the current location of the user, and it can be defined as: given a query point q

(user’s location or query location), a radius e (the range of the search specified

by the user) and a set of special objects P (e.g., hospitals or restaurants), find

all objects of interest P within radius e from q.

Most literature regarding range approaches is based on R-tree (Guttman,

1984), which is used to index multidimensional information due to its efficiency

and good performance. Also these approaches employ the branch-and-bound

searching algorithm (Roussopoulos et al., 1995) to query spatial points storing

in R-tree. Figure 2.1 illustrates an example of a range query in a digital map.

The objects of interest (i.e., restaurants) are listed by the numbers 1 to 13.

The user wants to have all objects within 2km from where she stands. The

highlighted objects with red colour represent objects of interest that will be

received by the user, and the highlighted objects with blue colour represent

objects out of the range that will not be included in the result.

Consider Figure 2.2 which shows the processing of range query using R-tree.

The range usually corresponds to a circular area or a rectangle window around

a query point which is the centre of the range. All objects whose location fall

within the range area will be objects of interest. There are three entries for each

node, where the objects {a,b, ...,k} represent the set of points. The traversal

on R-tree starts from the root in a depth first manner, visiting only the internal

2. RELATED WORK 18

Figure 2.1: An example of range query in mobile navigation

nodes that have minimum distance (MinDist) to the query point, which is equal

or less than e (e.g, R1, R2). This process is recursively repeated until all of the

leaf nodes that have equal or less minimum distance than e from q are detected.

In this case, non-intersecting entries are pruned because they do not have a

qualified point (e.g., R3, R7), and also because their minimum distance from q

is greater than e. The step of pruning non-qualified nodes is called filter step,

and the output from filter step should pass a refinement step since the object

should be examined to specify the result.

In general, range query requires filter step and refinement step (Papadias

et al., 2003; Philippe Rigaux, 2002; Safar, 2005) to obtain the essential result.

Filter step is used to select objects whose MBR (minimum boundary rectangle)

overlaps with the range query to obtain candidates that fall within a specific

range e, pruning all MBRs with MinDist to q that are greater than e. Refinement

step, on the other hand, is used to sequentially scan the objects that pass the

filter step, and then perform the special test on the actual geometry of the

objects whose MBRs satisfy the filter step.

2. RELATED WORK 19

R1

R3

R4

R5

R6

R7R2

a

b

d

c

e

f

h

g
i

k

q

j

MinDist(R1) =

MinDist(R4)

MinDist(R5) =

MinDist(f)

MinDist(c)
MinDist(R6)

MinDist(R2)

R5 R6 R7

R1 R2

R3 R4

a b c d e f g h i j k

Figure 2.2: Range query using R-tree

The refinement step is done on-line (Papadias et al., 2003; Safar, 2005).

The objects that pass the filter step successfully, but fail to pass the refinement

step, are called false hits. Consequently, lots of false hits will lead to extra

time to search and an enormous amount of communication between the mobile

device and the database server. Also, false hits cause extra input/output access,

where input/output access is considered to be the most expensive operation in

computer systems, as it requires disk arm movement, which is very slow in

comparison to central processing unit (CPU) operations. Therefore, minimising

input/output access is the ultimate objective in any query processing algorithms

(Taniar et al., 2008).

Several studies have been conducted during the last decade to process range

queries efficiently and accurately (Papadias et al., 2003; Mokbel et al., 2004,

2. RELATED WORK 20

2005; R. Cheng et al., 2007; Stojanovic et al., 2008; Pesti et al., 2010; Wang &

Zimmermann, 2011). Thus, there is a demand for further improvements to be

made for a number of situations. First, the excessive amount of time that may

be needed to obtain the results. Second, many false hits are retrieved when the

radius e is expanded, which makes the range query processing time consuming.

Finally, if the density of the objects is very high, the performance of the range

technique will dramatically decrease. However, the main disadvantage of range

query is the retrieval of many redundant false hits.

2.1.2 Moving Range Query

Range query is location-dependent, which is based on the current users loca-

tion (Bustos & Navarro, 2009; Xuan, Zhao, Taniar, Safar, & Srinivasan, 2011;

Cheema et al., 2011, 2013). The results are based on a static range query, and

once the results are assembled by the server then they will be sent to the query

user. The static range query is not adequate for moving users. In the moving

range query, also called continuous range query, users may use a predefined

path or move randomly. The moving range query can be considered as two

cases: predefined or random moving range query. They are now discussed.

Moving Range Query - Predefined Path

In the predefined path, moving range query can be defined as: given a set

of special objects P (e.g., hospitals), and a query path q = [S,D] (user’s path

between two points, S = start point and D = destination (end) point), and radius

e, retrieve all objects within the distance e to every point in the query path q

(line segment).

2. RELATED WORK 21

Figure 2.3: An example of moving range query in mobile navigation

Figure 2.3 illustrates an example of moving range in a digital map. The

objects of interest (i.e., restaurants) are listed by the numbers 1 to 26. The user

wants all objects within 1km while she is driving (moving) from the start point

(S) to the destination point (D). All of the highlighted objects in red will be in

the result list, while the highlighted objects in blue will not be included in the

result list.

The problem of dealing with data that are continuously changing, due to

the position of moving objects, was first addressed by Sistla et al. (Sistla

et al., 1997). They identified the importance of the continuous concept in a

nearest neighbours query, and therefore, they proposed a new data model to

represent moving objects in data systems. The user’s position was represented

as a function of time, that is, it changes as time passes, even without an

explicit update. Sistla et al. proposed a query language which enables the

specification of future queries (i.e., queries that refer to future states of the

database). However, they did not discuss access or processing methods (Tao et

al., 2002).

2. RELATED WORK 22

In another study, Song et al. (Song & Roussopoulos, 2001) proposed the first

algorithm for continuous nearest neighbour query processing. This algorithm

employed sampling to compute the result, but it suffered from the common

drawbacks of sampling. Therefore, if the sampling rate is low, then the result

will be incorrect, otherwise, significant computational processing is required.

Tao et al. (Tao et al., 2002) proposed a solution based on performing one single

query for the entire path. They extend the approach to address continuous k

nearest neighbours queries. Most of the efforts, afterwards, were concentrating

on improving the performance of continuous k nearest neighbours processing

methods (Safar & Ebrahimi, 2006; Zhao et al., 2014).

The aim of the moving query is to find split points (split nodes) (i.e., the

locations where the query results will be updated) to reduce the communication

cost of tracking the moving query. Also, the server needs to inform the user

when the range query results change. Consequently, a new need for continuous

online communication between the user and the database server appears due

to the necessity of updating. It is also necessary to mention that in wireless

environments, mobile devices suffer from limited bandwidth and low-quality

communications (Chow et al., 2009). However, the following problems occur:

1. The number of split points is twice as many as the number of objects

of interest (Xuan, Zhao, Taniar, Rahayu, et al., 2011). This leads to a

significant increase in communication between the mobile user and the

server.

2. Fast updating of the results in areas with a high density of objects deprives

the user of the opportunity to make a decision.

3. The existence of critical objects (i.e., objects with minimum distance to

the query path equal or almost equal to e, DE(q, pi) ≈ e) that enter the

2. RELATED WORK 23

boundary of the query for a very short period poses two problems: i)

false misses, where relevant objects are not included in the result, and ii)

when critical objects are present only for a short time period, the user

then has insufficient time to plan and react.

The main disadvantage of moving range query approaches is the increased

number of updating results that lead to a raise the number of communications

with the server.

Moving Range Query - Random Path

To track a moving query in a non-defined path (or random path), the concept

of path prediction was introduced. Path prediction enables better results and

reduces the location update frequency in object tracking while preserving ac-

curacy. Different models for predicting the future position of a moving query

have been proposed over the years; however, they only offer accurate route

predictions in the short term.

A simple prediction model represents an object’s future location by a linear

function of time, based on the most recently reported location and velocity of the

object (Jeung et al., 2010). This representation is typically adopted in the context

of indexing (Jensen et al., 2004; Šaltenis et al., 2000) because it is compact, easy

to obtain, and reduces the amount of updates compared with constant functions

of time. However, this model does not offer accurate predictions beyond the

short term. Furthermore, linear predictions suffer from the fork dilemma for

path prediction. Therefore, a more complex, non-linear prediction model has

been introduced. In this model the recursive motion function (Tao et al., 2004)

achieves better predictions by finding a curve that best fits the last few reported

locations of a moving object. However, in this model, the problem of fork

2. RELATED WORK 24

Figure 2.4: Fork dilemma when predicting a moving query

dilemma has not been solved, and the model fails to predict sudden direction

changes (i.e., turns). Figure 2.4 shows the fork dilemma problem that linear

predictions are suffering from during path prediction. Linear prediction fails to

predict the object’s movement at the turn.

Generally, inaccurate prediction of a random moving query leads to frequent

updates of the object’s location (i.e., communication is an expensive operation).

Therefore, reducing the number of location updates is necessary since users

do not need to inform the server of their location as long as they follow the

predicted path, which is known to both the server and the client.

2.2 Range Query Processing based on Road Net-

work Distance

Range query processing depends on Euclidean distance to provide the relative

position of the spatial object. In some circumstances, the location of spatial

objects may need to be specified by the underlying network and not by Euclidean

space. Thus, researchers (Papadias et al., 2003; Safar, 2008; Ghadiri et al., 2011;

Xuan, Zhao, Taniar, Safar, & Srinivasan, 2011) investigated range query using

network distance. The aim of this query is to find spatiotemporal object(s) of

interest which satisfy expected spatiotemporal relationships given segments of

2. RELATED WORK 25

trajectory(ies). This type of query is to retrieve all objects within the diameter

of the query (q) in a trajectory segment(s). For example, find all post offices

along the specific trajectory segment from q to distance e.

In 2003, Papadias et al. (Papadias et al., 2003) proposed two algorithms,

Range Euclidean Restriction (RER) and Range Network Expansion (RNE), taking

advantage of location and connectivity to efficiently prune the search space.

RER and RNE can find all objects of interest within the given region or radius,

and can be defined as: given q a query point (user’s location), e a radius (the

range of the search specified by the user) and P a set of special objects (e.g.,

post office or petrol station), find all object(s) of interest pi ∈ P within network

distance DN from q.

To give an example of a range query in a GPS map, consider Figure 2.5

where objects of interest (i.e., takeaway shops) are listed by the numbers 1 to

17. The user is asking for all of the objects within 2.5km from where he stands.

The red objects (i.e., 1-6) represent objects of interest that will be received by

the user because their network distance is less than 2.5km. The blue objects

(i.e., 7-17) represent objects out of the range where their distance to q is more

than 2.5km, consequently, this will exclude them from the result list.

RER and RNE algorithms give a solution for range queries in network

databases by introducing an architecture that integrates the network and Eu-

clidean information and captures spatial entities. However, the number of com-

munications is fairly high when performing these two methods in addition to

their costly pre-computations. Hence, using such methods in real life applica-

tions is not reliable.

2. RELATED WORK 26

1

2

3

4

5

6

7
8

9

10

11

12
13

14

15

16

17

Figure 2.5: Range query in a spatial network database using an online map

2.2.1 Range Euclidean Restriction

The RER algorithm is based on a Dijkstra algorithm to find the shortest path. By

using R-tree, the RER method first performs a range query at the entity dataset

and returns the set of qualified objects S′ within the diameter of the range which

is based on the Euclidean distance from the query (q). This range diameter

(Euclidean distance) serves as the upper boundary of the search area and then

retrieves the data entities falling on these segments. S′ is guaranteed to avoid

false misses (i.e., DN(q, p) ≤ DE(q, p) ≤ diam/2, where DN , DE and diam/2

refer to the network, Euclidean distance and radius of the query, respectively),

but it may contain a large number of false hits. However, the set of objects S′

have to be refined to filter the false hits from the candidate objects by applying

network expansion in the next step until all the candidates are tested or all the

segments in the range are exhausted.

2. RELATED WORK 27

2.2.2 Range Network Expansion

The RNE algorithm first computes the set QS of qualifying segments (paths

branching out from the query point) within network distance e from q and then

retrieves the data entities falling on these segments. In other words, set all paths

(segments) that may contain object(s) of interest in QS, and then evaluate these

paths in QS to find the objects of interest. This is done by traversing the index

tree, such as R-tree, and while visiting each node in the index tree, joining

the node of the index tree with the qualifying segments QS, in order to check

whether the node (e.g., MBR if it is a non-leaf node, or object of interest if it

is a leaf node) is located in QS or not.

2.3 Approximate Query Processing

The exhaustive processing to find the exact answer to a query can be pro-

hibitively expensive, depending on the query nature and data properties. This

is generally due to the exponential nature of the problem search. The relatively

high complexity of range searching has led researchers to consider the problem

in the context of approximation. A geometric way to do this is to consider the

range shape to be fuzzy, and allow points that are close to the range boundary

to either be counted or not. The user supply approximation parameter ε > 0

(i.e., ε distance absolute error), where the range shape e is bounded and points

lying within distance ε . diam(e) of the boundary of the range may or may not

be included (da Fonseca & Mount, 2010).

Many researchers have proposed improvements in the performance of the

approximate search, however most of their work has been related to the perfor-

mance of the approximate nearest neighbour search query in Euclidean space

2. RELATED WORK 28

and its drawbacks. Bern (Bern, 1993) considered the problem of the approxi-

mate nearest neighbour (i.e., closest-point problem). He proposed a data struc-

ture based on quadtrees, and used Euclidean space which provided logarithmic

query time. However, the approximation error factor for his algorithm was a

fixed function of dimension. Furthermore, Arya and Mount (Arya & Mount,

1993) proposed a data structure which achieves poly-logarithmic query time in

the expected case, and nearly linear space. In their algorithm the approxima-

tion error factor was an arbitrary positive constant, fixed at preprocessing time.

This algorithm found the nearest neighbour in a moderately large dimension

significantly faster than other existing practical approaches.

In another study, Arya et al. (Arya et al., 1998) strengthened the results of

that algorithm significantly by proposing a method called ε-approximate method

which guaranteed that the quality of the result is bounded by some constant in

terms of distance error, given a positive tolerate real ε (ε ≥ 0) as a maximum

distance relative error. However, in the ε-approximate method, the trade-off

between the cost and the accuracy of the result cannot be controlled easily

since it depends on the value of ε which is an unbounded positive real. Corral

et al. (Corral et al., 2002; Corral & Vassilakopoulos, 2005), on the other hand,

proposed a new version of approximate nearest neighbour called α-allowance

method to bound the distance relative error γ .

In a different study, Chow et al. (Chow et al., 2009) proposed an algorithm

of approximate range nearest queries, to return an answer set that includes the

approximate nearest object(s) to every point in a range area. Their algorithm

minimised the number of objects (i.e., returned as objects of interest) in order

to minimise the transmission time of sending the answer to the user. They

used a Voronoi diagram to index the objects which partition the space into a

set of polygons so that each polygon has exactly one object. Another study

2. RELATED WORK 29

was conducted by Arya et al. (Arya et al., 2012, 2009), which modified the

index structure of the objects to get the result of the range search. The result

is approximate depending on the relative error that has been given by the user.

Subsequently, Fonseca et al. (da Fonseca et al., 2013; da Fonseca & Mount,

2010) proposed a similar data structure to retrieve the approximate result but it

depended on the absolute error.

2.4 Safe Region Processing

Recent developments in mobile communication technologies have brought dra-

matic and fundamental changes to our everyday lives. This is due to the growing

demand for a technology to help users navigate crowded roads while they are

moving, guiding them to the best route, and answering their queries (Stojanovic

et al., 2008; Ogiela & Ogiela, 2009). Mobile navigation and location aware

systems are two applications among the most prominent mobile information

services (Ilarri et al., 2012). Many different types of moving queries have been

used in such applications.

A moving query continuously returns sets of objects of interest which extend

from the registration of the query to its cancellation. Over this time, the query

results must continuously be updated even when the query conditions remain

unaltered. Therefore, to reduce the updating costs when a query is continuously

moving the safe region has been proposed, where the set of the objects of

interest does not change as long as the moving query remains in this region.

Assume in Figure 2.6 that a user wants to know the closest two fuel stations

as he/she moves along. In this scenario, the user (at position q) poses a query

to the server returning points p1 and p2. After processing the query, the server

returns the result to the user. The reason behind introducing the safe region is

2. RELATED WORK 30

to keep this result the same as long as the user remains in a certain area around

the initial position, which we are referring to using a shaded area. In addition

to the query result, the server has to return the dimension of the query’s safe

region, according to which the user can determine whether a new query should

be issued or not by checking whether it is still inside the safe region. Given the

fact that moving users have limited storage and limited processing capabilities

compared to the server, it put the burden on the server side to perform additional

processing for the initial query in order to reduce the number of the subsequent

queries. Moreover, the representation of the safe region has to be compact in

order to reduce the network cost, the storage requirements and the computation

that must be performed at the user side.

Many safe region methods have been proposed to achieve efficient evaluation

by reducing the communication and updating costs. Some of these methods

apply time-based techniques (R. Cheng et al., 2007; Hu, 2005), in which users

need to report their query locations to the server after every t time units to

attain up-to-date information. While others employ distance-based techniques

(Zhang et al., 2003; Cho et al., 2013), in which users need to report their query

locations to the server after every d distance units. However, neither time-based

nor distance-based techniques are accurate in obtaining a correct query response

when they use a fixed time or a fixed distance frame for constructing the safe

region. Therefore, some distance-based techniques have used a dynamic distance

for constructing the safe region, which is accurate in obtaining the response,

however, these techniques do not predict when and where the mobile user will

leave the safe region.

2. RELATED WORK 31

q

p1

p2

Figure 2.6: Safe region

2.4.1 Fixed Safe Region

Hu et al. (Hu, 2005) proposed a generic framework to handle continuous

queries with safe regions whereby the location updates from mobile clients are

further reduced. This study was limited in that it was based on the assumptions

that queries are static which might not be feasible in real-world applications.

Another approach proposed by Cheng et al. (R. Cheng et al., 2007), was

a time-based location update mechanism which was designed to improve the

temporal data consistency for the objects relevant to queries. In this type of

safe region, the query sends an update containing its current location to the

server every timestamp or fixed distance. To be able to send location updates

more frequently, data objects with significance to the correctness of query results

are required. However, this method had a main limitation: an object would

repeatedly send location updates to the server when it is enclosed by a query

region, that does not need it (Hsueh et al., 2009).

2. RELATED WORK 32

Table 2.1: Summary of query types and their limitations

Query Limitations

Static range query

• Time consuming
• Many false hits
• Expensive computations
• Efficiency is inversely proportional to the
density

Moving range query (path
defined)

• Many split points
• Fast updating to the results
• Existence of critical objects
• Continuous online communications
• The user has no privacy

Random moving range
query (path prediction)

• Inaccurate predictions for long term
• Fork dilemma
• Frequent updates to the query’s location
• Continuous monitoring

2.4.2 Dynamic Safe Region

In 2003 researchers proposed a dynamic safe region (Zhang et al., 2003). Its

main limitation is that the existing approaches use rectangular safe regions only,

and they are not applicable to the moving circular range queries. A recent

search (Yung et al., 2012; Cheema et al., 2013, 2011) introduced a circular safe

region for a moving query. In this type of safe region, the query has to update

frequently enough to keep a reasonable tracking precision. This method did

not calculate the area, which means the server is always in a standby situation

expecting contact from the query. In addition, this method did not show how

the server will be aware of the new location of the user when the user leaves

its current safe region.

2. RELATED WORK 33

2.5 Summary

In this chapter, we have shown that most studies on range queries attempted to

process static and moving range queries efficiently and accurately. Nevertheless,

there is a demand for further improvements to be made to address limitations

summarised in Table 2.1. We also discussed the approximate concept in spatial

databases where we examined the work of many researchers, however their

work related to the performance of the approximate nearest neighbour query in

Euclidean space. Then we explored the principle of the safe region in location-

aware mobile devices and we reviewed some safe region techniques in moving

queries.

2. RELATED WORK 34

Chapter 3
Approximate Static and Moving

Range Query

3.1 Motivation . 37

3.2 Approximate Static Range Query based on Euclidean Distance . 38

3.3 Approximate Moving Range Query based on Euclidean Distance 49

3.4 Approximate Static Range Query based on Road Network Distance 62

3.5 Approximate Moving Range Query based on Road Network . . 69

3.6 Experimental Results . 77

3.7 Summary . 89

Publications and Submissions:

1. AL-Khalidi, H. Taniar, D. and Safar, M. (2013), Approximate algorithms for

static and moving range queries in mobile navigation. In Computing. Springer,

95(10-11), pp.949-976.

2. AL-Khalidi, H. Abbas, Z. and Safar, M. (2013), Approximate range query

processing in spatial network databases. In Multimedia Systems. Springer,

19(2), pp.151-161.

35

3

Approximate Static and Moving

Range Query

A spatial range query is used to find objects of interest within a given radius.

This type of query is common in a mobile environment for mobile users to

be able to find surrounding objects of interest. Traditionally, a range query

will return all objects within a given radius. However, in many circumstances,

having all objects is not necessary, especially when there are already enough

objects close to the query point. In other circumstances, expanding the radius

may give users better results, especially when there are a lot of objects just

outside the search boundary. Therefore, in this chapter, we present new range

queries, called approximate static range query and approximate moving range

query, where the query results are approximate, rather than exact.

The rest of the chapter is organised as follows. Section 3.1 states our

motivation, followed by the next two Sections 3.2 and 3.3 in which we introduce

our proposed methods based on Euclidean distance, that is, approximate static

range query and approximate moving range query, respectively. Section 3.4

and Section 3.5 present our methods: approximate static range and approximate

36

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 37

moving range query, based on road network distance. Performance experiments

are covered in Section 3.6. Finally, Section 3.7 summaries the chapter.

3.1 Motivation

Recent developments in mobile communication technologies have brought dra-

matic and fundamental changes in our everyday life. One of the most noted and

growing applications of mobile information services is mobile navigation, due

to the growing demand for the technology that helps users navigate on crowded

roads, guides them to the best route, and gives answers to their queries (Zhao

et al., 2014).

The high cost of executing users queries has led to the quest for query

search techniques that can be performed efficiently. Therefore, the context

of approximation has been considered (Arya et al., 2009). In practice, not

all applications demand exactness in the location information of the object of

interest (Petkova et al., 2009). For example, a passenger wants to know if the

next bus is arriving soon, or a library member wants to know if a specific book

has been returned. Hence, the exact location is not necessary.

On the other hand, in applications such as Geographic Information Systems

(GIS) and cellular networks, the amount of data can be very large and a huge

number of objects of interest for the final result may need to be considered.

Also, it is important to consider the huge cost with respect to response time and

input/output. Consequently, the use of the approximate techniques are worthy

of examination, especially when the results are obtained at much lower cost

(Corral et al., 2002).

In this chapter, we are going to improve the processing of range queries (i.e.,

static and moving) using approximation. We will introduce novel techniques to

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 38

process such types of queries efficiently. We show that approximate results

are as valuable as exact results, however, they can be obtained much faster

than the exact results with less cost. To the best of our knowledge, no studies

have been conducted in approximate static range query relying on a distance

based query. Moreover, there is no work that deals with the moving range

query in the context of approximation. Our research presented in this chapter

was published in (Al-Khalidi et al., 2011; AL-Khalidi et al., 2013; AL-Khalidi,

Taniar, & Safar, 2013).

3.2 Approximate Static Range Query based on Eu-

clidean Distance

The consideration of search time is important in spatial databases, and in the

state of the range query, the search time is affected by the number of retrieved

objects and the size of range query e.

In general, the range query retrieves all objects that are within a certain range

e from a given query point q, thereby necessitating an excessive amount of time

to obtain the essential results. Also, when the search is finalised and returns

a result of either a massive number of objects or absolutely no results, then

users need to submit another query which leads to another search. Furthermore,

repeated false hits (i.e., irrelevant objects as candidates) that occur during the

search should be considered since each false hit is a waste of search time. Thus,

we consider these problems in the context of approximation, since approximate

results are acceptable, and they can be obtained much faster. On the other hand,

KNN (K nearest neighbour) is not suitable to solve all these problems, because

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 39

this method retrieves a specific number of objects (K) regardless of the distance

from the query.

We propose three novel approximate range methods for static query, namely

Lowerbound approximate static range query (Lowerbound ASR) and Upper-

bound approximate static range query (Upperbound ASR) and approximate

static range query (ASR) to enhance the performance of the range query by us-

ing different factors to bound the query. The following subsections will describe

these methods.

3.2.1 Lowerbound Approximate Static Range Query (Lower-

bound ASR)

The Lowerbound ASR method reduces the search time by retrieving fewer

results. lowerbound e× (1− γ) is introduced where all of objects of interest

within the lowerbound range will be retrieved, in addition to retrieving some

of the objects of interest that fall between the lowerbound range and the exact

range. There are two reasons to retrieve less results. The first is to avoid

retrieving objects of interest that fall away from the query q (especially in a

high density environment). The second is to return the result in a short time.

The Lowerbound ASR functions as follows: Given a tolerated positive real

γ (0 ≤ γ ≤ 1) as maximum distance relative error, the result of Lowerbound

approximate static range query (Lowerbound ASR) within distance e is (1− γ)

approximate range. When the pruning heuristic is applied on the Lowerbound

ASR algorithm, the following will take place:

1. Filter step: MBR R will be discarded, if MinDist(R,q)> e× (1− γ).

2. Refinement step: an object pi is discarded, if MinDist(pi,q)≥ e.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 40

The decrement of the lowerbound depends on the value of e multiplied by

(1−γ). If γ = 0, then the approximate algorithm behaves just as the exact range

query algorithm, where the output represents the exact results. Also, if γ = 1,

then the approximate algorithm will retrieve all the objects within distance e

from q and these objects are within the MBRs that intersect q.

Let P be a point dataset (P ̸= ϕ) in d-dimensional Euclidean space P ⊂ Ed ,

e the radius of the query (e ∈ ℜ+) and q query point (q ∈ Ed). Then, the result

of the Lowerbound approximate static range query with respect to a query point

q is the set Lowerbound ASR(P′,q,e,−γ). To find the Lowerbound ASR, two

parts of the result should be found:

1. The exact range search RS, the exact result, to the area that is within

the lowerbound (P,q,e× (1− γ)) = { (p1, p2, ..., pm) ∈ Pm : pi ̸= p j i ̸= j

1 ≤ i, j ≤ m and

∀i ∈ P−{p1, p2, ..., pm},dist(p1,q) ≤ dist(p2,q) ≤ ... ≤ dist(pm,q) ≤ e×

(1− γ)≤ dist(pi,q)}

2. The (1− γ)approximate range AR−, the approximate result, to the area

that is between the lowerbound and the exact range (P′′,q,e,−γ) = {(p′1,

p′2, ..., p′z) ∈ Pz : p′i ̸= p′ j ; i ̸= j ; m ≤ i, j ≤ z and

∃p′i∈P−{p1, p2, ..., pn, p′1, p′2, ..., p′z},e×(1−γ)≤ dist(p′1,q)≤ dist(p′2,

q)≤ ...≤ dist(p′z,q)≤ e ≤ dist(p′i,q)}

In other words, Lowerbound ASR(P′,q,e,−γ) =RS(P,q,e×(1−γ)) ∪ AR−(P′′

,q,e, −γ))

In Lowerbound ASR, we use R-tree to answer the query starting from the

root. Each MBR that intersects with the lowerbound is recursively searched

looking for the qualifying points and in the same time the non-intersecting

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 41

MBRs are pruned. Up to this stage, R-tree just provides the filter step. The

output of the filter step has to pass the refinement step, which in turn examines

the objects to achieve the result. Any object pi that passes the filter step and

MinDist(pi,q)> e will be excluded from the result. Our approach, Lowerbound

ASR, guarantees that any object pi that passes the formula (MinDist(pi,q)−

e)/e ≤ −γ is included in the result. In this case, the algorithm discards all

MBRs R when MinDist(R) is larger than e× (1− γ), and the objects not within

those MBRs and away from q by distance e are also discarded.

3.2.2 Upperbound Approximate Static Range Query (Upper-

bound ASR)

Upperbound ASR gives alternative choices to the user since more objects are

retrieved without extra search time. This approach guarantees the retrieval of all

objects of interest within e distance from q (i.e., the exact result) in addition to

retrieving some of the objects of interest that fall just out of the range distance

e, but within a distance relative error (γ). There are two reasons for retrieving

this extra result: first, to avoid the null result (especially in a low density

environment) and second, to give the user more choices without affecting the

search time and also to avoid having another search.

Upperbound ASR functions as follows: Given a tolerated positive real γ

(0 ≤ γ ≤ 1) as maximum distance relative error, the result of the Upperbound

approximate static range query (Upperbound ASR) within distance e is (1+ γ)

approximate range. When the pruning heuristic is applied on the Upperbound

ASR algorithm, the following occurs:

1. Filter step: MBR R will be discarded, if MinDist(R,q)> e .

2. Refinement step: an object pi is discarded, if MinDist(pi,q)> e× (1+γ).

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 42

The increment of upperbound depends on the value of e multiplied by (1+ γ).

If γ = 0, then the approximate algorithm behaves as an exact range query

algorithm, where the output represents the exact precise solution. Also, if

γ = 1, then the approximate algorithm will retrieve all objects within distance

2e from q, and these objects are within the MBRs that intersect the range search

e (i.e., the boundary of the query).

Let P be a point dataset (P ̸= ϕ) in Ed , and e the radius of the query (e∈ℜ+)

and q ∈ Ed . Then, the result of the Upperbound approximate static range query

with respect to a query point q is the set Upperbound ASR(P′,q,e,+γ). To find

the Upperbound ASR, two parts of the result should be found:

1. The exact range search RS(P,q,e) = {(p1, p2, ..., pn)∈ Pn : pi ̸= p j ; i ̸= j

; 1 ≤ i, j ≤ n and

∀pi ∈ P−{p1, p2, ..., pn}, dist(p1,q)≤ dist(p2,q)≤ ...≤ dist(pn,q)≤ e ≤

dist(pi,q)}

2. The (1+ γ)approximate range AR+(P′′,q,e× (1+ γ)) = {(p′1, p′2, ..., p′z)

∈ Pz : p′i ̸= p′ j i ̸= j n ≤ i, j ≤ z and

∃p′i ∈ P−{p1, p2, ..., pn, p′1, p′2, ..., p′z}, e ≤ dist(p′1,q) ≤ dist(p′2,q) ≤

...≤ dist(p′z,q) ≤ e× (1+ γ)≤ dist(p′i,q)}

In other words, Upperbound ASR(P′,q,e,+γ) = RS(P,q,e) ∪ AR+(P′′,q,e,

1+ γ))

In Upperbound ASR, we use the R-tree to answer the query starting from the

root. Each MBR that intersects with the range query e is recursively searched

looking for the qualifying points, and non-intersecting MBRs are pruned. Up to

this stage, the R-tree just provides the filter step. The output from the filter step

has to pass the refinement step, which in turn examines the objects in order to

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 43

produce the result. Any object pi that passes the filter step and MinDist(pi,q)>

upperbound will be excluded from the result. Our Upperbound ASR approach

guarantees that any object pi that passes the formula (MinDist(pi,q)−e)/e ≤ γ

is included in the result. In this case, the algorithm discards all MBRs R when

MinDist(R,q) is larger than e, and the objects not within those MBRs and away

from q by distance upperbound are also discarded.

3.2.3 Approximate Static Range Query (ASR)

The ASR method combines Lowerbound ASR and Upperbound ASR approaches

to give the result in a short time, and also to give the user extra choices without

affecting the search time and to avoid another search.

ASR functions as follows: Given a tolerated positive real γ (0 ≤ γ ≤ 1) as

maximum distance relative error, the result of approximate static range query

ASR within distance e is (1±γ) approximate range. When the pruning heuristic

is applied in the ASR algorithm, the following occurs:

1. Filter step: MBR R is discarded if MinDist(R,q) > e × (1 − γ) ⇐⇒

MinDist (R,q)> lowerbound.

2. Refinement step: an object pi is discarded if MinDist(pi,q)> e× (1+ γ)

⇐⇒ MinDist(pi,q)> upperbound.

Let P be a point dataset (P ̸= ϕ) in Ed , e the radius of the query (e ∈ ℜ+) and

q ∈ Ed . Then, the result of the γ approximate method with respect to a query

point q is the set ASR(P,q,e,γ).

To find the approximate range query, two parts of the result should be found:

1. The exact range search for the lowerbound RS(P,q,e×(1−γ))={(p1, p2, ...,

pn) ∈ Pn : pi ̸= p j ; i ̸= j ; 1 ≤ i, j ≤ n and

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 44

∀pi ∈ P{p1, p2, ..., pn},dist(p1,q) ≤ dist(p2,q) ≤ ... ≤ dist(pn,q) ≤ e ×

(1− γ)≤ dist(pi,q)}

2. and the (1± γ)approximate range AR± between the lowerbound and the

upperbound (P′,q,e× (1+ γ),γ) = {(p′1, p′2, ..., p′z) ∈ Pz : p′i ̸= p′ j i ̸= j

n ≤ i, j ≤ z and

∃p′i ∈ P−{p1, p2, ..., pn, p′1, p′2, ..., p′z}, e× (1− γ) ≤ dist(p′1,q) ≤ dist

(p′2,q)≤ ...≤ dist(p′z,q)≤ e× (1+ γ))≤ dist(p′i,q)}

On the other hand, ASR(P,q,e,γ) = RS(P,q,e× (1− γ))∪ AR±(P′,q,e× (1+

γ),γ))

ASR guarantees that any object pi that passes the formula (MinDist(pi,q)−

e)/e ≤ −γ is included in the result. In this case, the algorithm discards all

MBRs R when MinDist(R,q) is larger than the lowerbound (e× (1− γ)) and

the objects that are not within those MBRs and away from q by distance

upperbound (e× (1+ γ)) are also discarded.

3.2.4 ASR Algorithm

R-tree (Guttman, 1984) is used to find objects of interest within the range query

e. The approximate techniques and branch-and-bound algorithm are applied to

prune unnecessary items. In addition, the straightforward search algorithm such

as Best-First search is also used to find the objects within a short time (Corral

et al., 2002; Corral & Vassilakopoulos, 2005).

The Algorithm 3.1 can find the approximate range based query after giving

q, e and γ . e×(1+γ) in the algorithm represents the upperbound of the search,

and MBRs or objects above this bound are pruned. The lowerbound of the

search e× (1− γ), and the range of the lowerbound represents the exact result

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 45

Figure 3.1: Approximate static range query on R-tree

of the search. The range query between the Lowerbound and the Upperbound

represents the approximate static range query, prunes the MBRs and retrieves

the objects.

To apply the approximate static range query ASR algorithm and compare it

with the exact range query consider Figure 3.1 and Table 3.1 (i.e., Table 3.1

represents the minimum distance from the query point q to each single node

in Figure 3.1). In Figure 3.1 there are twelve objects (p1, p2, ..., p12), seven

intermediate nodes (R1,R2, ...,R7), and a range query e which is equal to 2.5.

In the range query algorithm, the MinDist of R1 and R2 are calculated

and en-queued in Q-queue with their MinDist 1.5 and 0 respectively. Then

the queue will be sorted ascendingly and this will place R2 at the top of the

queue. In this algorithm, the top of the queue will continually be de-queued

and expanded if its MinDist ≤ e (i.e. e = 2.5). The result of R2 expansion

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 46

Table 3.1: The minimum distance between item X and the query point q

MinDist from q
R1 1.5 p1 4.6 p8 2.7
R2 0 p2 4.7 p9 2.5
R3 2.5 p3 2.7 p10 1.4
R4 2.5 p4 2.5 p11 1
R5 2 p5 4.1 p12 3
R6 1.4 p6 2.2
R7 0.7 p7 3.2

is (< R5,2 >, < R6,1.4 >, < R7,0.7 >) which will all be en-queued. Then,

R7 will be de-queued and the outcome of its expansion will be (< p11,1 >,

< p12,3 >). As a result, p11 will be chosen to join the objects of interest list

because its MinDist ≤ e.

All internal nodes within distance e from q will be checked looking for the

object(s) of interest. After checking all the nodes, the final interest objects list

will be (< p11,1 >, < p10,1.4 >, < p6,2.2 >, < p4,2.5 >, < p9,2.5 >). In

general, the range query algorithm checks all of the seven MBRs and exhausts

them to find the result; however, many false hits are generated.

Compared with the range query algorithm, our approximate static range

query algorithm operates in a different manner, whereby the numbers of the

visited MBRs are reduced; consequently, the number of false hits are reduced

too. The above example is used to obtain the approximate result, assuming that

the distance relative error is γ = 0.2.

In this example, the lowerbound is 2, e× (1− γ) = 2.5× (1− 0.2), and

the upperbound is 3. This means that all objects within Euclidean distance 2

from q should be retrieved, along with some of the objects within Euclidean

distance between 2 and 3. R1 and R2 are en-queued in Q-queue with their

MinDist 1.5 and 0 respectively. Providing that MBRs that have the smallest

distance to q should be visited first, then the result of expanding R2 would be

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 47

(< R5,2 >, < R6,1.4 >, < R7,0.7 >). Next, the result of expanding R7 would

be: (< p11,1>, < p12,3>), and here p11 and p12 will be added to the interest

objects list since their MinDist are less than the upperbound.

The algorithm will back recursively to expand what is left, and in this case,

R6 and then R5 will be expanded and the result is: (< p10,1.4 >, < p8,2.7 >,

< p9,2.5 >) and (< p6,2.2 >, < p7,3.2 >, < p5,4.1 >) respectively. After

that, all objects with MinDist less than the upperbound should be added to

the interest objects list; (p10, p8, p9 and p6). Then, going back recursively to

expand R1, the result is (< R3,2.5 >, < R4,2.5 >). However, the search is

terminated without expanding R3 and R4 because their MinDist are greater than

the lowerbound.

After executing the approximate static range query, the interest objects result

list is: (< p11,1 >, < p10,1.4 >, < p6,2.2 >, < p8,2.7 >, < p9,2.8 >, <

p12,3 >); (i.e., three objects within the exact range and three objects within the

approximate range). The application of this algorithm reduced the number of

the visited MBRs to five compared with seven visited MBRs when applying the

range query algorithm. On the other hand, the number of objects that have been

checked are eight (i.e., six interest objects and two false hits) compared with

twelve objects (i.e., five interest objects and seven false hits) when executing

the range query algorithm. Consequently, the execution time needed to obtain

the result is reduced with fewer false hits.

In another situation, assuming that we want to retrieve all objects of interest

within 1.5 Euclidean distances and 0.2 distance relative error, the result of the

exact range query will be null even if there is an object at a distance of just

1.5000001. Compared with the approximate static range query (ASR), p11 will

be found as an interest object even at a distance of 1.6 and without increasing

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 48

Algorithm 3.1. Approximate static range query ASR algorithm
1: /* q: query point, e: the Euclidean distance threshold and γ : the distance

relative error */
2: /* Find approximate objects around the query q */
3: Start from the root of the R-tree
4: The upperbound = e× (1+ γ), lowerbound = e× (1− γ)
5: LIST resultlist
6: if you access an internal node, then
7: calculate MinDist(Ri,q) between q and each possible MBR Ri. Insert into

the Q-queue and sort them in ascending order of MinDist. Following
this order, search downwards recursively only for those MBRs having
MinDist(Ri,q)≤ upperbound

8: end if
9: if you access a leaf node then

10: calculate MinDist(pi,q) between q and each possible point (pi) stored in
the node.

11: if MinDist(pi,q)≤ upperbound then
12: resultlist.add(pi), remove the root of the Q-queue, updating this data

structure
13: end if
14: end if
15: if the Q-queue is empty then
16: stop
17: end if
18: Get the item i on top of the Q-queue < MinDist(Ri),Addrp >
19: if this item has MinDist(Ri,q)≤ lowerbound then
20: repeat the algorithm from step 6 for this item
21: end if
22: if MinDist(Ri,q)≤ upperbound and resultlist.isempty() then
23: repeat the algorithm from step 6 for this item
24: else
25: stop
26: end if

the search time. This gives the user an alternative option without having to

conduct another search.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 49

3.3 Approximate Moving Range Query based on

Euclidean Distance

The main problem of the moving range query based on Euclidean distance is the

multiple number of communications between the mobile device and the database

server. Moreover, the users cannot make a decision due to the fast updating of

the search result in areas with a high density of objects. To solve such problems,

we considered the approximate concept and proposed two approximate moving

range query AMR techniques. With the first technique, we reduced the range

search to eliminate the number of the critical objects and also to minimise

the search time. With the second technique, we reduced the number of split

points, and this contributes in reducing both the number of times that results

are updated and the number of communications with the server, thereby giving

the user sufficient time to make a decision.

Full details of our proposed AMR approach and its algorithm are presented

below (Section 3.3.2 and 3.3.3) starting with a brief background of the moving

range query.

3.3.1 Moving Range Query

The idea of the moving range query is to divide the path into sub-segments

and then implement the range search at both ends of each segment, where each

retrieved object will have some corresponding split nodes which define the valid

interval for the objects of interest (Xuan, Zhao, Taniar, Rahayu, et al., 2011).

The following subsections explain in detail the steps involved in finding objects

of interest using the moving range query approach.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 50

p3
p1

p2
p4

p5

p6

S D

e
e

p7

p8

p9

p10

p11

p12

R1

R2

R3

R4

R5

R6

R7

p1 p7 p9 p10 p2 p8 p3 p6 p11 p4 p5 p12

R3 R4 R5 R6 R7

R1 R2

Line1

Line2

Figure 3.2: Filter step and refinement step in moving range query

Filter Step and Refinement Step

Generally, moving range query requires three steps to find the objects of interest:

filter step, refinement step and split step. The filter step and refinement step in

the moving range query is similar to the filter step and refinement step in static

range query (see Section 2.1.1 Static Range Query). However, in the static

range query, the query q is a point and when the search starts traversing the

R-tree, then a prune will occur to eliminate all MBRs with MinDist to the query

point q that are greater than e. Whereas, in the moving range query method the

query q is a path ([S,D]) where all MBRs with MinDist to q = [S,D] greater

than e will be pruned.

Figure 3.2 shows an example of moving range query in Euclidean distance

which clearly explains the filter step and refinement step. SD is a segment of

a road which represents the query path q = [S,D]; starting at S and ending at

D. Two lines within e distance from the query path are generated to be parallel

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 51

with q. With the filter step and refinement step, all objects that fall above line1

or under line2 are pruned and the result is (p1, p2, p3, p4, p5 and p6).

Split Step

The third step in the moving range query is the split step, which is used to

determine at which point the user will obtain a new result. This result either

has a new object of interest which enters the range search, or an object becomes

out-of-date (i.e., leaves the range search) and should be removed from the result.

All objects of interest that pass the refinement step should get through the

split step. In this step, two split points (si, di) are determined on the query path

for each interest object pi within the range search. The two split points (si,

di) create a segment on the query path, where (si, di) represent the start and

the end of the segment respectively. At each splitting point, the result should

be updated when an object enters or leaves the range. For each split point

si,di ∈ SP (1 ≤ i ≤ RL): si,di ∈ q, all points in segment (si, di) will consider

pi as one of the interest objects, where SP is the split points list and RL is the

result list which contains all interest objects within the range search from the

query path that passed the refinement step.

Figure 3.3 (i.e., derived from Figure 3.2) depicts how the split step works.

The split step determines two split points for each object of interest in RL

by drawing a circle with a radius e around each object pi, where pi is its

centre. Because the distance of the object pi to the query path is not greater

than e, the circle will then intersect the query path at two points (si ,di).

∀si,di ∈ SP{s1,s2, ...,sr,d1,d2, ...,dr}, dist(S,si)≤ dist(S,di): 1 ≤ i ≤ r , where

r represents the number of objects of interest in RL. si and di represent the

location where the object enters and leaves the range search respectively (i.e.,

(s1, d1) are the split points of p1, (s2, d2) are the split points of p2 and

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 52

p3
p1

p2
p4

p5

p6

s1 s2 s3 s4 s5 s6

d1 d2 d3 d4 d6 d5
S D

Figure 3.3: Split step in moving range query

so on). To avoid scanning the databases repeatedly, all split points with their

corresponding coverings are reported (Tao et al., 2002). The split point list SP

has the start point S if there is at least one object within its range.

According to Figure 3.3, the query path [S,D] is divided into a number of

segments. In this figure, there are two types of segments created on the query

path, namely object segment and result segment. The object segment is created

by an object of interest in the location where it enters and leaves the range

search. For each object segment si,di ∈ q, pi ∈ RL. For example, within the

object segment (s1,d1), p1 will remain in the result list from s1 to d1, even

when the moving query passes any number of split points. Hence, p1 will be

safe within this segment. On the other hand, the result segment which is created

by either intersection between two object segments (i.e., (s1,s2) or (s2,d1)), or

the gap between an object segment and its neighbour (i.e., d1,s3), will remain

unchanged while the moving query is within the result segment, because no

object is entering or leaving the range. Consequently, at each split point the

result can only be changed.

For example, in Figure 3.4, the segments ((s1,s2), (d2,d1) and (d1,s3))

represent the result segments, while the segments ((s1,d1), (s2,d2) and (s3,d3))

represent the object segments. p1 is the result in the result segment (s1,s2) and

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 53

p1

p2 p3

s1 s2 d2 d1 s3 d3

Figure 3.4: Object segment and result segment

will remain the same until the user enters the object segment (s2,d2), and then

the result will be (p1, p2). With the continuous movement of the user, reaching

the result segment (d2,d1) will make the result become (p1). It is very obvious

that the object p1 remains in the result list while the query is moving within

the object segment (s1,d1), and p2 remains in the result while the query is

in the object segment (s2,d2) and so on. Therefore, after finding out all split

points, the communication between the mobile device and the database server

will occur only when the query reaches a split point to update the result list.

Figure 3.5 shows how the moving user invokes a query on each split point

in order to be up-to-date. To distinguish between the object that comes within

the range and the one that goes beyond the range, we draw the query range in

green and red colours to indicate entering and leaving the range respectively.

Example

To better understand the function of the moving range query, simply consider

Figure 3.5 as an example of the moving range query on R-tree, where P is

a dataset of interest objects (P = {p1, p2, ..., p6}). The output of the range

query, for the specific path (line segment [S,D]) and the range query search

e, is {(p1,s1,d1), (p2,s2,d2), (p3,s3,d3), (p4,s4,d4), (p5,s5,d5), (p6,s6,d6)}.

That means the interest object p1 is one of the interest objects for interval

(s1,d1), and p2 is one of the interest objects for interval (s2,d2) and so on.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 54

Figure 3.5: Moving range query

In the moving range query the points on the query segment (i.e. s2,s4,d1)

represent a change in the result of the interest objects within the range query e

and these points are called split points.

3.3.2 Approximate Moving Range Query (AMR) Techniques

In our approximate moving range query AMR approach, we address the short-

comings of moving range query based on Euclidean distance by giving the users

sufficient time to make a decision that fulfils their needs and is therefore ap-

propriate. This is achieved by reducing the number of communications with the

server, i.e., reducing the number of times that results are updated. In the AMR,

we also reduce the number of split points by grouping and merging them with

their neighbours to obtain new split points. Our AMR reduces the number of

split points up to ten times less than moving range query.

Using the approximation concept, all objects whose distances are within

an approximate range e along the query path q = [S,D] are retrieved. This

requires some search time which is, in turn, affected by the number of object(s)

of interest that have been checked, the size of the range search e, and the

trajectory’s length of the query q. On the other hand, to avoid scanning the

databases many times, all split points with their corresponding coverage are

reported (Tao et al., 2002). Note that the split point list SP has the start point

S if there is at least one object within its range.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 55

Two models of AMR queries are proposed, Range Search Minimisation and

Split Points Minimisation to reduce the communications with the server and to

reduce the number of split points. The following subsections explain these two

methods in detail.

Range Search Minimisation

With this method, the boundary of the range query (range search) will be

variable but not fixed as the exact range search. The variable range gives the

search more flexibility in finding the object(s) of interest on R-tree. Therefore,

by reducing the area of the range search, objects of interest can be found within

a short time.

Here, we have used the Lowerbound ASR method (i.e., illustrated in Section

3.2.1) to reduce the search time by retrieving fewer results. This is achieved by

avoiding object of interest retrievals that fall away from the query q (especially

in a high density environment), consequently giving users the result in a short

time.

To find the objects of interest in this search, a filter step and refinement step

are required. Figure 3.6 shows the function of these two steps, where [S,D] is

the query path. The dark shaded area represents the lowerbound distance to the

query path and the light shaded area is the exact range search e. The internal

nodes (R3,R4 and R6) will be expanded looking for objects of interest, while

the internal node R5 will be ignored because its minimum distance to the query

path is greater than the lowerbound. When the intermediate nodes (R3,R4 and

R6) are expanded, any object within the range search e will be retrieved. The

result of this expansion will be represented by the objects (p2, p3, p5, p6 and

p10). This result will then enter the third step in this search, the split step,

which is used to determine at which point the user will obtain a new result.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 56

S

e
p7 p8

p9

p10

p1

p2

p3

p4

p5 p6

p11

p12

D

R1

R3

R4

R2
R5

R6

e
×
(1
-y
)

Figure 3.6: Approximate moving range query on R-tree

S

e

p10

p2 p3

p5
p6

D

e
×
(1
-y
)

s2

d2
s3

d3

s10

d10

s5
s6

d5
d6

Figure 3.7: Range Search Minimisation in approximate range query

Figure 3.7 depicts the split step, where the result of the query will be

produced as the following {(p2,s2,d2), (p3,s3,d3), (p10,s10,d10), (p5,s5,d5),

(p6,s6,d6)}. Consequently, interest object p2 is one of the interest objects for

interval (s2,d2), and p3 is one of the interest objects for interval (s3,d3) and

so on.

In AMR, the points on query segment (i.e. s2,d2,s3) represent the split

points. At each split point, the result will be updated and a communication

between the mobile user and the database server will occur. For example, at s3

object p3 will be in the result list while at d3 the result will be updated and

the object p3 will be removed from the result.

Approximate moving range queries have the same characteristics as moving

range queries, in addition to other characteristics that make AMR faster in

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 57

Q u e r y c e n t e r

Q u e r y p a t h

e × y

e×
(1-y)

e
e

Figure 3.8: The range area of approximate moving range query

terms of the process, whereby AMR also provides alternative solutions to let

the user make a decision without conducting another search. Also, the number

of communications with the server is very low when performing AMR.

This method is mainly intended to reduce the area of the search range which

will lead to exclusion of some objects from the result. That means that those

objects which fall far from the query path will be excluded. Consider Figure

3.8 as an example, where the dark shaded area represents the range search of

the moving query and gives the exact result, and the light area, e×γ , represents

the approximate result. Any object in the approximate area will be retrieved as

an object of interest, only if that object is located in the internal node (MBR)

and part of this internal node is within the dark shaded area.

Split Points Minimisation

With this method, the number of the split points is reduced. This will reduce

the number of calculations occurring at each split point and the number of

communications with the server. Some split points will be merged and clustered

with their neighbours in groups depending on their position. In each group, the

distance between the first point (the nearest one to the start point “S”) and the

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 58

Table 3.2: Euclidean distance between split points

Euclidean distance
S s1 s2 d1 s3 d2 s4 d3 s5 s6 d4 d6 d5 D
Sp2Sp 1 7.4 1.4 3.4 4.4 0.8 2 0.6 1 4 3.4 0.6 6
S 1 8.4 9.8 13.2 17.6 18.4 20.4 21 22 26 29.4 30 36

last point in the group (the furthest one to the start point “S”) should not be

greater than the distance ratio error ρ , ρ = (e× γ). The mean (average) method

will be used to cluster the split points.

Table 3.2 shows the Euclidean distance between each split point and the

other split points that are in Figure 3.3. The second row (Sp2Sp) shows the

distance between each split point and its neighbour. To give specific details,

number 1 in the second row and second column represents the distance between

S and s1 and in the third column, 7.4 represents the distance between s1 and

its neighbour s2 and so on. The third row represents the distance between each

split point and the start point (S) (i.e., number 13.2 represents the distance from

the S to the split point s3).

According to Figure 3.3 and Table 3.2, if the range search is e = 10 and

the distance relative error is γ = 0.2, then ρ = (10× 0.2) = 2. s2 and d1 will

be clustered together because the distance between s2 and d1 is less than ρ

(1.4< 2), and a new split point will be calculated. Figure 3.9 shows the location

of the new split point after the minimise split point method has been applied as

in Figure 3.3.

Heuristic1. Given more than one split point (e.g. spi, sp j, spx, ...) fall

within ρ distance, a mean (average) distance among them is calculated by the

following equation:

C(spi,sp j,spx, ...) = dis(S,spi)+(dis(spi,sp j)+dis(sp j,spx)+ ...)/ number

o f split point

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 59

Figure 3.9: Split Points Minimisation in approximate moving range query

When s2 and d1 are clustered, C(s2,s1), the result will be a new split point:

C(s2,d1) = dis(S,s2)+(dis(s2,d1))/2 = 8.4+(1.4)/2 = 9.1

The new split point s2&d1 will be located at 9.1 from the start point S.

That means at this new split point the object p2 will be within the range search,

while the object p1 will leave the range search.

Heuristic2. Clustering two split points spi, sp j together will shift spi by

ρ/2 and sp j by −ρ/2 as a maximum, where spi is the nearest to the start

point S from sp j, dis(S,spi)≤ dis(S,sp j).

Assume that dis(S,spi) = R and dis(S,sp j) = Q, with regard to Heuristic 1,

Q−R ≤ ρ , the distance among the objects to be clustered should not be greater

than ρ . C(spi,sp j) = dis(S,spi)+ (dis(spi,sp j))/2 if the distance between R

and Q is the maximum (ρ), then C(spi,sp j) = R+(Q−R)/2 =⇒ C(spi,sp j) =

R+(ρ)/2. The spi will be shifted by ρ/2, while sp j will be shifted by −ρ/2.

The main concept behind this method is that all objects within distance e

from the query path will be retrieved as a result. However, this result will be

updated approximately within a split point, and this will make some objects

of interest enter the range search earlier (i.e., MinDist(pi,q) > e) or later (i.e.,

MinDist(pi,q) < e) while other objects may leave the range search earlier or

later (i.e, before or after becoming out of date).

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 60

Algorithm 3.2. Range Search Minimisation algorithm based on Euclidean dis-
tance

1: /* SD: the segment query path (q), e: the range search and γ: the distance
relative error */

2: /* Find approximate objects around the query q and their split points */
3: Queue Result QR = ϕ
4: LIST SP
5: lowerbound = e× (1− γ)
6: start from the root of the R-tree
7: find all candidates MBR R, MinDist(R,q)≤ lowerbound
8: for each candidate MBR do
9: find an interest object pi, where MinDist(pi,q)≤ e

10: for each interest object pi do
11: find two split points, si and di, on the segment SD, where DE(si, pi) =

DE(di, pi) = e
12: SP.add(si), SP.add(di)
13: QR = QR∪ (pi, start split node si, end split node di)
14: end for
15: end for

3.3.3 AMR Algorithms

Two algorithms are described below, Range Search Minimisation and Split Points

Minimisation, based on two approaches introduced in the previous section.

These two algorithms use branch-and-bound techniques to prune unqualified

internal nodes (MBR) on the R-tree in order to reduce the search space.

Range Search Minimisation Algorithm

In this algorithm (Algorithm 3.2) we minimise the range search using the R-

tree to index the objects with high performance. A query segment (path) and

a range search e have been given to find all objects of interest, such as post

offices, within this range along the query segment. The distance relative error γ

is also given and represents the tolerance of the distance error that is acceptable

for the user. In this method the range search will be adjusted to be equal to

lowerbound = e× (1− γ) to reduce the search area.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 61

The algorithm of Range Search Minimisation works as follows: each inter-

mediate node, R, should be determined as a candidate and then be expanded if

MinDist(R,q) ≤ e× (1− γ). That means this internal node is within the range

search of e, in a specific segment of the query path. The algorithm determines

whether the qualified object from a candidate internal node that has a minimum

distance to query path q is less than or equal to e, and then places this node in

the queue result list QR.

For each qualified object, two split points will be determined: first si when

this object becomes within the range search e from q, and second the split point

di when this object leaves the range search. For each split point, in or out,

the result list should be updated, because there is at least one object that either

leaves or enters the range search.

Split Points Minimisation Algorithm

With the Split Points Minimisation algorithm (Algorithm 3.3) all of the internal

nodes within minimum distance from the query path q less than or equal to e

will be considered as candidates. All these candidates will be expanded looking

for objects of interest that have a maximum Euclidean distance e to the query

path. In this method the range search is fixed and equal to e.

After finding all split points for objects of interest, two or more split points

can be merged. If these points fall within distance ρ , ρ = e× γ then the mean

distance among them will be taken, to create a new split point. The mean

distance among them will be calculated.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 62

Algorithm 3.3. Split Points Minimisation algorithm based on Euclidean distance
1: /* SD: the segment query path (q), e: the range search and γ: the distance

relative error */
2: /* Find all objects around the query q and their approximate split points */
3: Queue Result QR = ϕ
4: LIST SP
5: ρ = e× γ
6: start from the root of the R-tree
7: find all candidates MBR R, MinDist(R,q)≤ e
8: for each candidate MBR do
9: find an interest object pi, where MinDist(pi,q)≤ e

10: for each interest object pi do
11: find two split points, si and di, on the segment SD, where DE(si,q) =

DE(di,q) = e
12: SP.add(si)
13: SP.add(di)
14: QR = QR∪ (pi, start split node si, end split node di)
15: end for
16: end for
17: for each split point in SP do
18: group split points within distance ρ
19: for each Groupi of split points do
20: new split point nspi = mean distance of Groupi
21: update QR, replace nspi with the Groupi
22: end for
23: end for

3.4 Approximate Static Range Query based on Road

Network Distance

In spatial network databases, research (Papadias et al., 2003; Safar, 2005; Taniar

et al., 2011; Tran et al., 2009; Zhao et al., 2013) has focussed on develop-

ing efficient algorithms that expand the spatial query processing methods by

integrating connectivity and location information. On this basis, two methods

were developed, Euclidean Restriction and Network Expansion, for processing

the most common spatial queries in spatial network databases, i.e., range query,

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 63

nearest neighbour, closest pairs, point location and distance joins (Bern, 1993;

Papadias et al., 2003).

Compared to Euclidean distance (DE), network distance (DN) computations

are significantly more expensive because they entail shortest path algorithms in

large graphs (Papadopoulos et al., 2011; Safar, 2008). Consequently, imple-

menting range queries in spatial network databases, namely Range Euclidean

Restriction RER and Range Network Expansion RNE, requires lengthy calcula-

tion times to obtain the essential results. Also, when the search is finalised with

a result of a massive number of objects or with absolutely no results, then users

need to submit another query which means that another search is performed.

Furthermore, repeated false hits (i.e., irrelevant objects as candidates) that occur

during the search should be considered since each false hit represents a waste

of search time. Therefore, an essential pre-request for solving these problems

is to refine the processing of spatial range queries in spatial network databases.

We have designed two new methods, called Approximate Range Euclidean

Restriction (ARER) and Approximate Range Network Expansion (ARNE) to elim-

inate the problems of the former methods, i.e., Range Euclidean Restriction RER

and Range Network Expansion RNE. In these two techniques, we use Lower-

bound ASR (presented in Section 3.2.1) which minimises the actual range search

to exclude the internal nodes that fall outside the lowerbound. We also improve

the selectivity of the filter step to reduce the number of the candidate objects,

and consequently, minimise the number of communications between the mobile

device and the database server. The resulting techniques achieve a better running

time and deliver a better performance, yet with low false hits and reasonable

false misses. To the best of our knowledge, this is the first work dealing with

the efficient processing of approximate spatial range search queries in spatial

network databases.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 64

5

4

3

2

1

0
0 1 2 3 4 5 6 7

p 5

p 1

p 2

p 3

p 4 p 6

p 7

p 8

p 9p 1 0

p 1 1 p 1 2

p 1 3

q

1

1

1 .5

1.5

1 .2
1

1.
5

1 .3

2

1.
8

1 .8

1.
5

1 .2

1

1

1 .8

1
1.

2

11

1 .5

1

0 .6

R 1

R 2

R 3

R 4

R 5 R 6

R 7

Figure 3.10: ARER in the road network

3.4.1 Approximate Range Euclidean Restriction (ARER)

The main characteristic of the ARER is the variability of its range which gives

the search more flexibility to find the interest object(s) on the R-tree. In this

method there are two boundaries to surround the search, the first one is the

exactbound range search e and the second one is the lowerbound (e× (1− γ)).

All objects that are retrieved as candidates should belong to MBRs which

overlap with the lowerbound.

The ARER method returns a set of candidate objects C within (Euclidean)

lowerbound distance from q. C probably misses a small number of objects,

which are called false misses (i.e., DE(pi,q) > e× (1− γ)⇐⇒ DN(pi,q)< e or

DN(pi,q)≥ e), and contains a small number of false hits.

Figure 3.10 represents an example of a spatial road network; Table 3.3 is

the road network distance of Figure 3.10. Consider them as an example. Where

P is a dataset of interest objects (P = {p1, p2, ..., p13}), q is a query point

and e = 3.5 is a range search. If the RER is applied the candidate objects

are: C = {p1, p2, ..., p13} (filter step) depending on Table 3.1, and the result

of the interest objects within network distance 3.5 from the query point is

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 65

Table 3.3: The network distance between objects and the query point q in
Figure 3.10

Network distance from q
object distance object distance

p1 4.8 p8 3.4
p2 6.9 p9 2.4
p3 4.8 p10 3.4
p4 4.4 p11 1.2
p5 5.4 p12 2.2
p6 3.8 p13 3.7
p7 5.2

(< p11,1.2 >, < p12,2.2 >, < p9,2.4 >, < p8,3.4 >, < p10,3.4 >) depending

on Table 3.3 (refinement step).

When ARER is applied the candidate objects are: C = {p6, p7, ..., p13},

which represents the filter step. These candidates will go though the refinement

step and the result will be (< p11,1.2 >, < p12,2.2 >, < p9,2.4 >, < p8,3.4 >,

< p10,3.4 >).

3.4.2 Approximate Range Network Expansion (ARNE)

The Approximate Range Network Expansion (ARNE) technique has two steps:

qualifying segments and retrieving entities. The first step, qualifying segments

QS, expands all nodes within lowerbound (e× (1− γ)) from query point q

searching for qualified segments. The qualified segments represent all or part of

the segments that are located within the network distance lowerbound from the

query point q. The second step, retrieving entities, evaluates the data entities

falling within these segments in QS to obtain the actual result. Only R-tree

nodes that overlap with qualifying segments will be visited. All MBRs that

intersect with QS will be retrieved when searching for objects within the range

search e from the query point q.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 66

Figure 3.11: ARNE in the road network

Table 3.4: The network distance between objects, nodes and the query point q
in Figure 3.11

Network distance from q to
node distance node distance object distance object distance

n1 1 n7 3 p1 5 p5 -
n2 1.5 n8 4.4 p2 5.4 p7 4.9
n3 2.3 n9 4.6 p3 5 p8 5.3
n4 2.9 n10 4.4 p4 5.2 p9 2.3
n5 3.3 n11 3.7 p5 - p10 3.5
n6 2.3

Consider Figure 3.11 and Table 3.4 as an example of ARNE. Where P is

a dataset of interest objects (P = {p1, p2, ..., p10}), N is a set of intersection

nodes (N = {n1,n2, ..., n11}), q is a query point, e = 3.5 is a range search and

γ = 0.2 is a distance relative error.

The qualifying segments of ARNE are (< n1,n5>, < n5,n11>, < n6,n11>,

< n5,n9 >) which overlap with MBRs, R4 and R5, and their network distance

from q is less than the lowerbound. All objects within the MBRs (R4 and R5)

will be examined to find the objects that are within network distance e from

the q. The result is p9 and p10.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 67

Algorithm 3.4. Approximate Range Euclidean Restriction ARER algorithm
1: /* q: query point, e: the Euclidean distance threshold and γ : the distance

relative error */
2: /* Find approximate objects around the query q */
3: LIST resultlist, cand
4: cand = call Lowerbound ASR algorithm (q, e, γ)
5: segment s(ni,n j) = find-segment(q)
6: Q =< (ni,DN(q,ni)),(n j,DN(q,n j))>
7: de-queue the node n in Q with the smallest DN(q,n)
8: while (DN(q,n)≤ e and cand.isempty()) do
9: for non-visited adjacent node nx of n do

10: for all points pi in cand do
11: if pi exists in segment (nx,n) and DN(q,n)+DN(n, pi)≤ e then
12: resultlist.add(pi)
13: cand.remove(pi)
14: en-queue (nx,DN(q,nx)) in Q
15: de-queue the next node n in Q
16: end if
17: end for
18: end for
19: end while

On the other hand when RNE is applied the qualifying segments are (<

n1,n5 >, < n5,n11 >, < n6,n11 >, < n5,n9 >, < n7,n8 >, < n4,n10 >). The

MBRs that will be visited are (R4,R5,R6 and R7) and the result is the same as

ARNE.

3.4.3 ASR Algorithms in the Road Network

Full details of the Approximate Range Euclidean Restriction (ARER) algorithm

and Approximate Range Network Expansion (ARNE) algorithm are presented

below.

ARER Algorithm

In the ARER algorithm (Algorithm 3.4), the list (cand) represents the candidate

objects when executing the Lowerbound ASR algorithm (i.e., filter step). To

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 68

Algorithm 3.5. Approximate Range Network Expansion ARNE algorithm
1: /* q: query point, e: the Euclidean distance threshold and γ : the distance

relative error */
2: /* Find approximate objects around the query q */
3: while DN(q,n)< e× (1− γ) do
4: Expand node n to all adjacent nodes (segments)
5: for each adjacent node nx do
6: if nx has not been visited then
7: DN(q,nx) = DN(q,n)+DN(n,nx)
8: end if
9: if DN(q,nx)≤ e then

10: QS = QS∪{(n,DN(q,n)),(nx,DN(q,nx))}
11: else
12: QS = QS∪{(n,DN(q,n)),(n′x,DN(q,n′x))}
13: at the position where DN(q,n′x) = e
14: end if
15: end for
16: end while

determine the actual result, the candidate objects that pass the filter step will be

compared with the road network representation of the segment (i.e., refinement

step). Each object which passes the filter step (candidate) will be tested against

its segment. Then, each segment containing a candidate object will be visited

when at least one of its ends will be within the distance of e from the query.

ARNE Algorithm

In the ARNE algorithm (Algorithm ARNE Algorithm), the search starts from

the root of the R-tree to visit all the nodes that intersect with the MBRs. In

this algorithm, the approximate static range query (ASR) method is used to find

the candidate objects (filter step), which means, only the segment with at least

one end point within distance (e− γ) from the q will be expanded. Expanding

this segment will continue, but no more expanding will occur if the second end

of the segment is larger than (e+ γ).

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 69

3.5 Approximate Moving Range Query based on

Road Network

The main problems of the moving range query, which is based on the spatial

road network, are: the high amount of network expansion, the continuous

query re-revaluation and the multiple number of communications between the

user, who invokes the query, and the database server. In this section, we will

introduce our proposed method which eliminates what the moving range query is

suffering from in the road network, but first we will start with some background

information.

3.5.1 Moving Range Query - Preliminaries

The moving range query, which is based on a spatial road network, can be

defined as: the retrieval of all objects of interest within a specific network

distance around the user, who invokes the query while he is moving. This

technique divides the complete query path into road segments. Each road seg-

ment connects two consecutive road intersections, and each single road segment

should be processed individually. Thus, processing the segments one by one,

looking for objects of interest starting from the query point, is the main idea of

accumulating the whole segments within the radius of the range search.

In the road network authors in (Xuan, Zhao, Taniar, Safar, & Srinivasan,

2011) introduce a continuous range query, which is an architecture that inte-

grates split points and Range Euclidean Restriction RER. Their technique is

based on creating a search region for the moving query which expands from

each intersection and is similar to Dijkstra’s algorithm (Dijkstra, 1959). The

advantage of this technique is to find the exact network distance in which the

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 70

moving query result will be updated. However, this technique indicates that for

each object of interest within a road segment there is only one contributing split

point, and there the object will either exit or enter the range. But, in the case

of an object that is located between two consecutive intersections within a dis-

tance of more than the radius of the query from each side, then this indication

will be false because the object will have two split points that connect the two

intersections on the segment. In this section we will introduce the technique of

the moving range query based on the road network with some modifications to

override this weakness.

Consider Figure 3.12(a) as an example of the query. It shows a part of a

big map or a longer query path. The query path goes first through the segment

AB and then goes through the segment BC with both segments being part of a

bigger path. Let’s use these segments to illustrate an example of a moving range

query. Assume there are six objects around the segments AB and BC, (p1, p2,

p3, p4, p5 , p6). The distance between the objects and the two sides of each

segments are given (e.g. DN(A, p1) = 3) beside the length of each segment.

The process of the moving range query based on a spatial road network is

similar to the moving range query based on Euclidean space, where each object

of interest needs to be rechecked continuously. Based on the distance between

the object of interest and the query point, there are two categories of objects of

interest that need to be processed:

1. objects of interest currently located within the boundary of the query, and

getting farther apart from the moving query, and after some distance they

will leave the boundary and become out of range.

2. objects of interest located outside the boundary, and getting closer to the

moving query, and will soon get inside the boundary of the query.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 71

A B

p1

p2

p3

p4

p5

p6

3

2

6 3

3

1

7

2

C

(a) Moving range query

A B

p1

p2

p3

p4

p5

p6

3

2

3

1

7

2

C

s3

1

d1

2

d2

3

s5

5

s4

7

s6, d3, d42

4 d5

(b) Split points for moving range query where
e = 5

Figure 3.12: Moving range query based on spatial road network

Let’s assume that the radius e of the moving range query is equal to 5, and

the query is located on A and moving toward B first, and then moves toward

C. For each of these objects, we need to calculate their split points. Let’s

start with the expired objects of interest that will be located behind the moving

query, these objects should be excluded from the result list of the query. At

some points the objects in the result list will expire because the query moves.

To distinguish between the spilt points of the objects that join the query or leave

it, we will refer to them by si and di. s means the split point of the object joins

the query, d means the split point of the object leaves the query, and i is the

object’s number/name (see Figure 3.12(b)). By assuming the query is located

on A, the objects p1 and p2 will expire at some points at e−DN(A, pi). So, p1

will expire at the distance of 5−3 = 2 (d1 = 2), away from A at the segment

AB, when the radius of the range query is e = 5. As the query moves away

from A, p1 is getting farther away. At distance 2 from A, p1 will be out of

the query boundary. The same principle is applied to p2, in this case, p2 will

expire at 5−2 = 3 (d2 = 3). As one object is leaving the query results, a split

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 72

point is identified. In this case, two split points are identified and they are at

position 2 and 3 from A.

Now, we should calculate the split points of the objects where the query is

moving toward, for example, p3, p4 and p5. At some points along segment AB

these objects will be included in the result list of the query and these points

represent the split points for these objects. Note, only objects located either

on this segment or within distance e from B will be considered here, (e.g., p6

farther than 5 from AB will be considered later). Because p3 is located on the

segment AB we need to calculate its split points from A, while for every other

object, we need to calculate their split points from B. The object p3 will join

the result list at |e−DN(A, p3)|= |5−6|= 1 (s3 = 1) distance from A. The rest

of the objects of interest, will be inside the boundary of the query precisely at

|e−DN(B, pi)| from B. Objects p4 and p5 will be within the query at |5−3|= 2

(s4 = 2) and |5−1|= 4 (s5 = 4) from B respectively at the segment AB. At the

same time objects p4 and p5 will expire at the same distance from B but they

will be at the segment BC, d4 = 4 and d5 = 4 respectively.

However, the split points (s4,s5) which are 2 and 4 distances away from B

need to be converted into a distance from A. In this case, the distance from A

is DN(A,B)− (|e−DN(B, pi)|) at segment AB. Object p4 will be in the result

list at the split point 9−2 = 7 and p5 will be at 9−4 = 5; both are from A.

Finally, when the query arrives at intersection B the same procedure above

will be applied on segment BC. Each object of interest will create two split

points, one split point when the object is joining the result list of the query,

and another split point when the object is leaving the result list of the query.

Furthermore, more than one object could share the same split point (e.g., p3

and p4 are leaving the result list at distance 2 from B and at the same time

location p6 is joining the result).

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 73

Figure 3.12(b) shows that there are seven split points at distances 1, 2, 3, 5

and 7 from A located at segment AB, and two split points at distances 2 and 4

from B located at segment BC. The query results for segment AB are:

A = {p1, p2}

A → s3 = {p1, p2, p3} p3 is entering at s3

s3 → d1 = {p2, p3} p1 is leaving at d1

d1 → d2 = {p3} p2 is leaving at d2

d2 → s5 = {p3, p5} p5 is entering at s5

s5 → s4 = {p3, p5, p4} p4 is entering at s4

s4 → B = {p3, p5, p4}

While the query results for segment BC are:

B = {p3, p5, p4}

B → s6 = {p5, p6} p6 is entering and p3, p4 are leav-

ing at s6

s6 → d5 = {p6} p5 is leaving at d5

d5 →C = {p6}

3.5.2 Approximate Moving Range (AMR) Techniques

In this section, we present a new technique to process the moving range query

in road networks based on the concept of approximation. Our technique will

reduce the range search to eliminate the number of critical objects and also to

minimise the search time. In addition, this technique will minimise the number

of split points in order to lower the communications rate and reduce the number

of times that results are updated.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 74

Range Search Minimisation (based on Road Network)

This method is similar to the Range Search Minimisation method which we

proposed in Section 3.3.2. Some modifications are applied to make this method

work with the road network:

1. Dividing the complete query path into road segments.

2. Expanding each segment to search for objects of interest using ARER

which we proposed in Section 3.4.1.

Split Point Minimisation (based on Road Network)

Reducing the number of split points is done by merging and clustering some split

points with their neighbours in groups. The distance among all the split points

in any group will not be greater than the distance ratio error ρ , ρ = (e× γ),

where e is the range of the query and γ is the error threshold. This method is

similar to the split point minimisation (i.e., based on Euclidean distance) which

we proposed in Section 3.3.2, however, the only difference is that we will use

the Range Euclidean Restriction (RER) method to find the objects of interest.

After finding the split points for the objects of interest, then we will group them

together and the mean distance among them will be calculated. A single point

(the mean’s result) will replace a group of split points.

3.5.3 AMR Algorithms (based on Road Network)

Two algorithms for approximate moving range query based on the road network

are described below, Range Search Minimisation and Split Points Minimisation,

derived from two approaches introduced earlier in Section 3.3.2. These two

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 75

algorithms use branch-and-bound techniques to prune unqualified internal nodes

(MBR) on the R-tree in order to reduce the search space.

Range Search Minimisation Algorithm (based on Road Network)

In this algorithm (Algorithm 3.6) we minimise the range search of the moving

query. A query path and a range query search e are given to find all objects of

interest, such as petrol stations, within this range along the path of the moving

query. The distance relative error γ is given too, which represents the tolerance

of the distance error acceptable from the user. R-tree is used to index the objects

with high performance. In this method, the range search will be adjusted to be

equal to lowerbound = e× (1− γ) to reduce the search area.

The algorithm of Range Search Minimisation works as follows: each inter-

mediate node, R, should be determined as a candidate and then to be expanded

if MinDist(R,q) ≤ e× (1− γ). That means that this internal node may have

object(s) of interest within the range search of e. The algorithm will include

each candidate internal node looking for candidate object(s). Then the entire

path will be divided into road segments; each road segment connects two con-

secutive road intersections. Each segment has a candidate object which will be

expanded (i.e., see Section 3.5.1) while searching for objects of interest.

For each object of interest pi, two split points will be determined; first si

when this object becomes within the range search DN(e) from q, and second

split point di when this object leaves the range search after DN(e) from the

query. For each split point, in or out, the result list should be updated, because

there is at least one object that either leaves or enters the range search.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 76

Algorithm 3.6. Range Search Minimisation algorithm based on road network
1: /* SD: the segment query path (q), e: the range search and γ: the distance

relative error */
2: /* Find approximate objects around the query q and their split points */
3: Queue Result QR = ϕ
4: LIST resultlist, SP, cand
5: lowerbound = e× (1− γ)
6: start from the root of the R-tree
7: find all candidates MBR R, MinDist(R,q)≤ lowerbound
8: for each candidate MBR do
9: find an candidate object pi

10: if DE(pi,q)< e then
11: cand.add(pi)
12: end if
13: end for
14: divide the query path [S,D] into segments
15: each segment has two ends (r j,r j+1)
16: for each segment in the query path do
17: expand r j,r j+1 in all directions for DN(e)
18: for each candidate object (pi) in cand do
19: if DN(pi,r j(r j+1))< e then
20: resultlist.add(pi)
21: end if
22: end for
23: end for
24: for each object of interest pi in resultlist do
25: find two split points, si and di, on the corresponding segment r j,r j+1,

where DN(si, pi) = DN(di, pi) = e
26: SP.add(si)
27: SP.add(di)
28: QR = QR∪ (pi, start split node si, end split node di)
29: end for

Split Points Minimisation Algorithm (based on Road Network)

With Split Points Minimisation algorithm (Algorithm 3.7) all the internal nodes

within a minimum distance from the query path q less than or equal to e, will

be considered as candidates. All these candidates will be expanded in order to

search for candidate objects with a maximum Euclidean distance e to the query

path. In this method, the range search is fixed and equal to e. After finding all

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 77

of the candidate objects, the entire query path will be segmented. Each segment

with a candidate object(s) will be expanded using the RER method looking for

objects of interest located within distance DN(e) from each intersection on the

query path. Then for each object of interest, two split points will be determined.

After finding all the split points, two or more split points can be merged. If

these points fall within the distance ρ , ρ = e×γ , then the mean distance among

them will be calculated and considered as a new split point.

3.6 Experimental Results

Several experiments are carried out to evaluate our proposed algorithms. To ad-

dress the limitation of Euclidean distance in the real world, a synthetic dataset is

used to test our proposed approximate static range query ASR, and approximate

moving range query AMR based on Euclidean distance, and approximate static

range query ARER, ARNE, and approximate moving range query AMR based

on network distance. We test 200 different queries using each approach.

In ASR we calculate the average number of false hits and interest objects

that have been retrieved, then compare each of them with the exact result. On

the other hand, in AMR we calculate the average number of split points and

compare this with the exact result. We conduct two performance measures of

ASR. First, the average number of interest objects returned as an answer are

compared with the exact result. Second, a comparison is made between the

average number of false hits in ASR and the exact range query (i.e., number of

false hits indicates extra I/O access). Furthermore, we conduct one performance

measure with AMR to minimise the number of split points. This is very

important because it indicates the number of communications with the database

server and the power consumption required by the user’s device to update the

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 78

Algorithm 3.7. Split Points Minimisation algorithm based on road network
1: /* SD: the segment query path (q), e: the range search and γ: the distance

relative error */
2: /* Find all objects around the query q and their approximate split points */
3: Queue Result QR = ϕ
4: LIST resultlist, SP, cand
5: ρ = e× γ
6: start from the root of the R-tree
7: find all candidates MBR R, MinDist(R,q)≤ e
8: for each candidate MBR do
9: find an candidate object pi

10: if DE(pi,q)< e then
11: cand.add(pi)
12: end if
13: end for
14: divide the query path [S,D] into segments
15: each segment has two ends (r j,r j+1)
16: for each segment in the query path do
17: expand r j,r j+1 in all directions for DN(e)
18: each candidate object (pi) in this segment,
19: if DN(pi,r j(r j+1))< e then
20: resultlist.add(pi)
21: end if
22: end for
23: for each object of interest pi in resultlist do
24: find two split points, si and di, on the corresponding segment r j,r j+1,

where DN(si, pi) = DN(di, pi) = e
25: SP.add(si)
26: SP.add(di)
27: QR = QR∪ (pi, start split node si, end split node di)
28: end for
29: for each split point in SP do
30: group split points within distance ρ
31: for each Groupi of split points do
32: new split point nspi = mean distance of Groupi
33: update QR, replace nspi with the Groupi
34: end for
35: end for

result. We select 500 random queries as facts and use them in high, medium,

and low density environments in our experiments (i.e., 500 objects, 300 objects

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 79

and 100 objects represent high, medium, and low density within 10000km2

respectively, assuming the distance relative error is γ = 0.2).

In Lowerbound approximate static range query (Lowerbound ASR) we cal-

culate the number of candidate objects that have been retrieved on average

together with the number of false hits on average, and compared each of them

with the exact result. To examine our approach ARER, the result that we

obtained from the Lowerbound ASR was applied on the Melbourne City road

network provided by Whereis (http: / / www .whereis .com/). The map of the

Melbourne City is also used to examine ARNE. We measure the performance of

Lowerbound ASR in respect to: i) the average number of candidate objects in

the answer, and their similarity to the exact result, and ii) a comparison between

the average number of false hits (i.e., extra I/O access) in Lowerbound ASR

and the exact range query. We select 200 random queries in various distributions

and range sizes. To create the average result, 100 objects, 300 objects and 500

objects represent the low, medium and high density environments respectively.

In addition, we use a range search from 0.5km to 3km within 10000km2. We

also assume the distance relative error γ = 0.2.

3.6.1 Query based on Euclidean Distance

Retrieved Objects and False Hits in ASR

Figure 3.13 depicts the performance of our algorithm ASR with a range varying

search from 0.5km to 3km. We find that the effect of the increasing range search

on the number of retrieved objects is similar between the range query and ASR.

Also, the retrieved objects in ASR are slightly more than the retrieved objects

in the range query, but false hits in the range query are two times the false

hits in ASR on average. Furthermore, the accuracy of the result using ASR

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 80

retrieved objects

e

(a) Low density 100 objects
retrieved objects

e

(b) Medium density 300 objects
retrieved objects

e

(c) High density 500 objects

Figure 3.13: Retrieving interest objects in ASR compared with range query (R)

compared with the exact result is equal to 85%, 88% and 94% in low, medium,

and high density respectively. Figure 3.14 depicts the percentage of false hits

is 52%, 26% and 23% in low, medium and high density respectively, compared

with the range query. It is obvious that our ASR approach is more effective in

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 81

false hits

e

(a) Low density 100 objects
false hits

e

(b) Medium density 300 objects
false hits

e

(c) High density 500 objects

Figure 3.14: Number of false hits in ASR compared with range query (R)

a high density rather than low density environment, and it is less affected by

the size of the range query.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 82

Split Points in AMR

Figure 3.15 compares the average number of split points between the moving

range query and our proposed Split Points Minimisation approach. The experi-

ment shows that when there are fewer objects (in a low density environment),

then the number of split points is levelled in our proposed approach and is less

than the number of split points in the moving range query approach. On the

other hand, in medium and high density environments, the number of split points

in our approach is completely different compared with the moving range query,

especially when the size of the range search is increased. In our approach, the

number of split points is decreased together with the increment of the interest

objects. This occurs because the distance between the split points decreases.

In addition, the number of split points is also decreased when the range search

and/or the distance relative error are increased, due to the increased distance

ratio error ρ . Figure 3.15(c) shows that in high density, when the range search

is 40km, we obtain the smallest number of split points which is 10 times less

than the moving range query. Overall, the Split Points Minimisation approach

achieved the following: i) the number of split points is reduced by 20% in a

low density environment, ii) the number of split points is reduced by 64% in a

medium density environment, and iii) the number of split points is reduced by

80% in a high density environment.

Figure 3.16 shows the average result of the experiments that examine the

number of split points in the Range Search Minimisation and compare it with the

moving range query. Similarly, we use 200 random queries on different object

densities (low, medium, and high) in ASR experiments. We find that, the size of

the query is not effect the number of split points in the low density environment.

Also, the number of the split points is almost same in all environment when

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 83

split point

e

(a) Low density 100 objects
split point

e

(b) Medium density 300 objects
split point

e

(c) High density 500 objects

Figure 3.15: Approximate splitting point in AMR based on Euclidean distance
compared with moving range query (MR)

the size of the query is small. Therefore, our approach of Range Search

Minimisation is affected more by a high density environment and a large range

size. On average, 23% of the critical objects are excluded and false hits are

half compared with the moving range query.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 84

split point

e

Figure 3.16: Number of split points in AMR and moving range query (MR)

Candidate Objects and False Hits in Lowerbound ASR

Figure 3.17 depicts the performance of our algorithm Lowerbound ASR with

a diverge range search from 5km to 30km. The effect of increasing the range

search e on the number of candidate objects is similar between the range query

and Lowerbound ASR. However, the candidate objects in Lowerbound ASR

are less than the candidate objects in the range query. Also, on average, the

false hits in the range query are approximately greater than the false hits in

Lowerbound ASR by a third. The false hits increase with the size of the range

search e, and also with the density environments.

Figure 3.18 depicts the percentage of false hits which are 17%, 35% and

38% in low, medium and high density respectively. This outcome is less com-

pared to the range query. In respect to these results, the performance of our

approach Lowerbound ASR is more efficient in high density environments than

low density, and it is slightly affected by the size of the range search.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 85

candidate

e

(a) Low density 100 objects
candidate

e

(b) Medium density 300 objects
candidate

e

(c) High density 500 objects

Figure 3.17: Filter step

3.6.2 Query based on Road Network Distance

Objects of Interest and False Hits in ARER

In RER, candidate objects within the Euclidean range e are retrieved first,

and then the network is expanded. While, in ARER candidate objects within

the approximate Euclidean range (e× (1− γ)) are retrieved first, and then the

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 86

false hits

e

(a) Low density 100 objects
false hits

e

(b) Medium density 300 objects
false hits

e

(c) High density 500 objects

Figure 3.18: False hits in Euclidean distance

network is expanded. Thus, the number of false hits in the ARER are less than

in RER; RER retrieves more false hits in Euclidean distance than in ARER, and

consequently leads to more R-tree searches.

Figure 3.19 shows a comparison of the accuracy, number of candidates, and

number of false hits between ARER and RER. The accuracy of the result in

ARER is more than 90%, with the knowledge that the retrieved candidates that

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 87

RER

e

Figure 3.19: Approximate Range Euclidean Restriction ARER

we examined are about 70%. Consequently, the false misses in ARER are

less than 10%, because most of the candidates that have been excluded are

located beyond (e× (1− γ)) of the query point. These false misses are not

very important to the user that invokes the query, because they are far from the

query point and they represent a quantity that can be neglected.

On the other hand, the search time of ARER is significantly less than the

search time of RER, since many MBRs have been excluded from the search

in the Euclidean range search and the number of candidates that have been

processed in the network refinement step is less in ARER.

Interest Objects and False Hits in ARNE

RNE, first, expands the network by distance e, and then performs the query

on R-tree data for the actual result. While ARNE, first, expands the network

distance to e distance if the start node of the current segment is less or equal to

e× (1− γ), otherwise the expansion will be between e× (1− γ) and e from the

query point q. Then, it performs the query on R-tree data for the actual result.

Both RNE and ARNE should find the qualified segment first. We find

out that the number of pre-computations to locate the qualifying segment has

dropped significantly when ARNE is used. This is because the segments that fall

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 88

RNE

e

Figure 3.20: Approximate Range Network Expansion ARNE

after e× (1− γ) are excluded from the expansion. ARNE is similar to ARER

were the false misses are far from the query point (i.e., e× (1− γ) network

distance is beyond the q) and they represent a quantity that can be neglected.

Figure 3.20 illustrates a comparison of the accuracy, number of candidates,

and number of false hits between ARNE and RNE.

Split Points in AMR

There are two main factors that are inversely proportional with the number of

split points: the density environment and the radius of the query. Figure 3.21

compares the average number of split points between the moving range query

based on road network and our proposed approximate moving range query (Split

Points Minimisation approach) based on road network. The experiment shows

that when the objects are not many (in a low density environment), then the

number of split points is levelled in our proposed approach and is less than

the number of split points in the moving range query approach. On the other

hand, in medium and high density environments, the number of split points in

our approach is completely different compared with the moving range query,

especially when the size of the range search is increased.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 89

In our approach, the number of split points decreases together with incre-

ments of the interest objects. This occurs because the distance between the

split points decreases. In addition, the number of split points also decreases

when the range search and/or the distance relative error are increased, due to

the increased distance ratio error ρ . Figure 3.21(c) shows that in high density,

when the range search is 40km, we obtain the smallest number of split points

which is 10 times less than the moving range query. Overall, the Split Points

Minimisation approach achieved the following: i) the number of split points is

reduced by up to 30% in a low density environment, ii) the number of split

points is reduced by up to 80% in a medium density environment, and iii) the

number of split points is reduced by up to 90% in a high density environment.

3.7 Summary

In this chapter, we propose four new approaches namely, approximate static

range query ASR and approximate moving range query AMR which are based

on Euclidean distance, and approximate static range query and approximate

moving range query AMR which are based on network distance. We summarise

our work as follows:

1. We propose a new query type, ASR, to determine the location of interest

objects around a static point. The aim of this query is to obtain results

quickly by reducing the number of false hits, thereby reducing the number

of input/output operations. Also, this query gives the users alternative

options which reduces the likelihood of making additional searches. Thus,

our approach provides the search result with a high quality guarantee, i.e.

all objects near the query will be included in the result.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 90

Split point

e

(a) low density 100 objects
Split point

e

(b) mid density 300 objects
Split point

e

(c) high density 500 objects

Figure 3.21: Approximate splitting point in AMR based on road network com-
pared with moving range query (MR)

2. We propose another query type, AMR based on Euclidean and network

distance, to determine the locations of interest objects while the query

moves on a pre-defined path. Two methods are proposed to obtain the

approximate optimal search result: Range Search Minimisation and Split

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 91

Points Minimisation. The aim of this new query is to reduce the number

of critical objects that enter the range search and leave it in a very short

time. This will give the user enough time to make a decision. Moreover,

this query reduces the number of split points, reducing the number of

false hits, and also reducing the number of communications between the

mobile device and the database server. The results of these experiments

show that our proposed algorithms are successful in term of reducing the

number of split points and false hits. Also, the approximate results were

of a high quality compared to the exact results.

3. We present two comprehensive approaches for the range query based on

road network, where the approximate model is used for its high quality

results compared to the exact one. Our approaches, Approximate Range

Euclidean Restriction (ARER) and Approximate Range Network Expan-

sion (ARNE), give a better performance in terms of search time and search

accuracy.

In ARER, we determine the location of interest objects around a static

point in the road network. ARER obtains the result in a short time by

reducing the number of pre-computations when some of the MBRs are

excluded from the search. Also, ARER reduces the number of false hits,

and thus the number of I/Os and communications between the mobile de-

vice and the database server are also reduced. In addition, this approach

neglects any false misses since they are located out of the approximate

range and considerably away from the query point. Therefore, the tech-

nique provides the answer with a guaranteed high quality, that is, all

objects near the query will be included in the result.

3. APPROXIMATE STATIC AND MOVING RANGE QUERY 92

Our second approach, ARNE, determines the locations of interest objects

in SNDB within a pre-defined path. The aim of this query is to reduce

the number of nodes that should be visited while searching for the qual-

ified segments. This reduces the number of computations. In ARNE,

we exclude any nodes that fall between the lowerbound and the range

search, thus, the results of our experiment show that ARNE is functioning

efficiently in term of reducing the number of pre-computations and false

hits.

In terms of accuracy, the main difference between ARER and ARNE is

that ARER accuracy increases when the range search expands, whereas the

accuracy of ARNE decreases. This is due to the nature of the search which is

restricted in ARER and expanded in ARNE. However, both ARER and ARNE

are guaranteed to include all objects within the network distance e× (1− γ))

from q.

Chapter 4
Safe Region in Moving Range

Query

4.1 Motivation . 95

4.2 Range Safe Region . 97

4.3 Calculating the Area of the Extended Safe Region 107

4.4 Algorithms of Safe Region . 112

4.5 Experimental Results . 114

4.6 Summary . 120

Publications and Submissions:

1. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2013), On finding safe

regions for moving range queries. In Mathematical and Computer Modelling.

Elsevier, 58(5-6), pp.1449-1458.

2. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2013), Dynamic safe

regions for moving range queries in mobile navigation. In International Journal

of Ad Hoc and Ubiquitous Computing. (Accepted)

93

4

Safe Region in Moving Range

Query

The moving range query represents one of the most important types of process-

ing for spatial and geographical information systems. The moving range query

can be defined as: given a set of special objects, a query point and a range

(radius), find all objects of interest within the radius of the query while the

query moves. In moving range query, the queries are assumed to be constantly

moving. Many user’s queries such as those related to traffic control, multimedia

search engines, on-line search engines, Geographic Information Systems (GIS)

and wireless sensor networks require an information system with an efficient im-

plementation of moving range queries (Lee et al., 2013; Price, 2012; Ahmed &

Kanhere, 2012). An example of moving queries using Location-Based Services

(LBS) is a car driver who wants to find all petrol stations within a radius of

ten kilometres from his/her location (Wu & Hsieh, 2012; Jayaputera & Taniar,

2005). Another example is a pedestrian searching for a takeaway food outlet

within a 500 metre range while walking in the city.

94

4. SAFE REGION IN MOVING RANGE QUERY 95

Minimising the frequent updates of the query location and keeping low costs

while monitoring the moving query are the two main challenges researchers

have to face. In this chapter, we will address these challenges and present new

efficient methods using the safe region concept, called Range Safe Region.

The rest of the chapter is organised as follows. Section 4.1 gives the

motivation of our proposal. Section 4.2 describes our proposed methods. Then,

Section 4.3 presents a calculation for the proposed safe range area. Section 4.4

presents the algorithms used. Performance experiments are covered in Section

4.5. Finally, Section 4.6 summaries the chapter.

4.1 Motivation

Mobile navigation is one of the most common applications of mobile information

services (Berg et al., 2008; Alamri, Taniar, & Safar, 2013). It is a technology

that helps users navigate crowded roads while moving, guiding them to the

best route, and answering their queries. There is also an increased demand for

this technology due to the proliferation of mobile mapping and Internet search-

capable devices. For mobile searches, different types of spatial moving queries

have been used; such as moving range query, moving nearest neighbour query

and moving joining query. The exponential nature of the problem search space

means that the search process is computationally intensive. Also, the continuous

updating of the query’s location can be prohibitively expensive, depending on

the nature of the query and the data properties (Alamri, Taniar, Safar, & Al-

Khalidi, 2013; Taniar et al., 2008). The relatively high complexity of query

processing has led researchers to attempt to solve the problem by introducing

the concept of the safe region (Cheema et al., 2011; Cho et al., 2013).

4. SAFE REGION IN MOVING RANGE QUERY 96

The safe region is an area where the set of objects of interest does not

change as long as the query remains inside it. The aim of the safe region

is to reduce the number of query location updates by reducing the number of

queries to the server. The main challenge is how to keep the query result

up-to-date while the user is moving and how to reduce to the minimum the

server’s monitoring for the user. The Voronoi diagram is the traditional method

of calculating safe regions (Okabe et al., 2000). Using the Voronoi diagram as

a safe region has some major limitations. For example, updating the Voronoi

diagram continuously is very expensive, in addition to the fact that the Voronoi

diagram cannot deal efficiently with the updating of objects in the underlying

dataset. Furthermore, the Voronoi diagram as a safe region suits only moving

nearest neighbour queries, not moving range queries. In a moving range query,

the result of objects of interest may change even if the query stays in the

same Voronoi cell. In response to the Voronoi cell-based limitations and the

limitations of other methods that generate safe regions, referred to in Section

2.4, we have introduced three new types of safe regions called: Basic, Enhanced,

and Extended. Monte-Carlo simulation is used to calculate the total area of the

Extended Safe Region due to its irregular shape.

Our approaches have the following specifications: First, we introduce an

effective approach to construct a safe region that deals efficiently with updating

query results, where the query contacts the server only if it leaves the safe

zone (safe region). Second, our approach supports the concept of random query

moves. Finally, we compare the initial Basic, Enhanced and Extended Safe

Regions together, then we introduce a comparison between continuous Basic,

Enhanced and Extended methods when the query is moving. The comparison

uses the total area of the safe region(s) as the performance measure. Our

4. SAFE REGION IN MOVING RANGE QUERY 97

research presented in this chapter was published in (Al-Khalidi et al., 2013b;

AL-Khalidi, Taniar, Betts, & Alamri, 2013).

4.2 Range Safe Region

The problem of when to update a query location is a major concern for all

mobile communication systems and location dependent applications (Ilarri et al.,

2012). Our proposed techniques are intended to minimise the costs associated

with the communication of moving range queries in mobile navigation and also

to support the concept of random query moves. To minimise the downlink

messages of location searches, which are caused by query movements, adaptive

safe regions can be utilised. Low communication costs and higher scalability,

which are the main advantages of the aforementioned solutions, are improved

with our technique. In this section, we construct a safe region formed by the

intersection of range objects which allows the query inside it to move freely. In

this safe region, the query needs to issue a location update only when it leaves

that safe region. With our methods, the server will send only the updated result

and the new safe region to the query.

In general, some types of safe regions need to report their query locations to

the server after every t time units or d distance units. Assuming that t or d units

are safe regions will lead to an incorrect result (Yung et al., 2012). In addition,

the main limitation regarding the search is that the existing approaches use

rectangular safe regions only (Zhang et al., 2003), and they are not applicable

to the moving circular range queries. A recent search (Cheema et al., 2011)

introduced a circular safe region for a moving query. This method did not

calculate the area, which means the server is always in a stand by situation,

expecting contact from the query. In our approach we use the Monte-Carlo

4. SAFE REGION IN MOVING RANGE QUERY 98

method to calculate the area of the safe region area due to its irregularity. The

following subsections will describe our approaches.

4.2.1 Basic Safe Region

Our monitoring framework will solve the problem of frequent updating of the

query location by taking a systematic approach. Whereby the server is aware

of the location of the moving query and location updates occur only when the

query passes out of its specified safe region.

The safe region of the query is computed at the server side based on the

closest point, inside/outside the range query, to the border. The computed safe

region is sent to the moving query by the server. The query then sends its

location to the server when its location is outside that safe region.

Consider that the first nearest object is outside the boundary of the moving

query and far away from the range query. The query has to move this distance

before the object becomes within the range search (boundary) of this query.

Figure 4.1 illustrates this: p4 is the nearest object to the range boundary which

falls outside it and Nd is the distance between p4 and the boundary of the

query. At this point, the query should move the Nd distance until p4 becomes

within the range query. Consider that p3 is the furthest object of interest of the

moving query within the boundary. In Figure 4.1, Fd is the distance between

p3 and the boundary of the moving query. In this case, the query also has to

move this far distance (Fd) before this object moves out of the range search of

this query.

Let Nd be the minimum distance between the closest object to the query

outside the range boundary: we call this object firstclose (pt), and the range

boundary itself (Nd =MinDist(pt,q)−e). Accordingly, the moving query should

4. SAFE REGION IN MOVING RANGE QUERY 99

move the distance of (Nd) in order for this object to come within the range

query. Let Fd be the minimum distance between the furthest object from the

query within the range boundary: we call this object farclose (pr), and the

range boundary itself (Fd = e−MinDist(pr,q)). Accordingly, the moving query

should move the distance (Fd) in order for this object to be outside the range

search query. The safe region will then be a circular area around the query, the

centre of which is the query’s initiated location and its radius is the smallest

distance between Nd and Fd notated by (SmDist(Nd , Fd)).

The server does not need to check the location of the query as long as it

does not move outside the safe region. This means that while the query does

not go further than the SmDist from its original location, there is no need to

check its location. Figure 4.1 shows examples of the Basic Safe Region, where

all objects are indexed in R-tree. P3 represents the furthest object of interest

within the range of the moving query q (farclose), and p4 represents the closest

object outside the boundary of the range query (firstclose). Let e′ represents the

radius of the safe region:

e′ = SmDist(Nd,Fd) =


Fd if Fd < Nd

Nd otherwise.
(4.1)

Using this scheme, q can move in any direction with a distance of e′ from

its original location without affecting its result; in other words, q does not need

to update its location while moving within radius e′ from its original location.

The current result of the query is guaranteed to remain valid as long as

the query remains inside its respective safe regions. The query will inform the

server of its new location when it leaves its safe region and the server will

4. SAFE REGION IN MOVING RANGE QUERY 100

e'Nd

Fd

q

Safe region

SmDist=Fd

e

p9 p8

p10 p5

p3

p4
p1

p2

p6

p7

p11

M1

M3

M4

M2M5

M6

Figure 4.1: Basic Safe Region

pre-compute a new safe region for the query and send this new region to the

moving query.

The query is aware of its safe region and issues location updates to the

server only when it moves out of the region (this is called a source-initiated

update) (Cheema et al., 2012). After the server receives this update, it finds and

incrementally re-evaluates the affected objects and computes a new safe region

for the moving query. The server will then send the new safe region to the

query together with the set of updated objects of interest.

4.2.2 Enhanced Safe Region

Enhanced Safe Region represents an intermediate case between the Basic and

the Extended Safe Regions. This method constructs the safe region more easily

by forming a large enough safe region within which the query can move freely.

The Basic Safe Region assumes that the query will be outside its safe region

when it moves by e′ from its initiated location. However, the fastest way that

the query will leave its safe region is when it moves to the exact direction of

4. SAFE REGION IN MOVING RANGE QUERY 101

Safe region
Original query boundary

New query boundary

q'e'Nd

Fd

p3

p1

p2

p4
q

e’=SmDist=Fd

Figure 4.2: Query moves in opposite direction

the closest object to the border (if the object is outside the boundary of the

query for example, toward p4 in Figure 4.2) or to the exact opposite direction

of the closest object to the border (if the object is inside the boundary of the

query for example, away from p3 in Figure 4.2, if we assume p3 is the closest

object to the boundary).

The Basic Safe Region can be enhanced by taking into account the closest

two objects to the boundary of the query. Let e be the radius of the range

query, din the distance between the query and p1, and dout the distance between

the query and p2. Figure 4.3 shows that p1 is the closest object and p2 is the

second closest object to the boundary of the query respectively. The shortest

path the query will only follow to change its objects of interest is when it

moves exactly to the opposite direction of p1, after moving the distance of

(d′
in). However, if the query moves to the exact direction of p2, which is the

second closest object to the range query’s border, then the query will change

its objects of interest when it moves by distance (d′
out).

4. SAFE REGION IN MOVING RANGE QUERY 102

closest object

Figure 4.3: Two closest objects to the border of the query

d′
in = e−din (4.2)

d′
out = dout − e (4.3)

As shown in Figure 4.3, the Basic Safe Region (1 and 2) can be merged

together to obtain a new safe region. The radius of the new safe region will be

the mean distance between the d′
in and d′

out ,

e′′ =
d′

in +d′
out

2
(4.4)

In the Basic Safe Region, the query represents the centre of the safe region,

but in the Enhanced Safe Region, the centre of the safe region is not the query.

The Enhanced Safe Region has a circular shape and by using Equation 4.4, we

can calculate its radius. However, the location of its centre is still unknown.

By observation, we find that when a line is drawn from the closest object to

the border through the query, the centre of the Enhanced Safe Region will be

4. SAFE REGION IN MOVING RANGE QUERY 103

(a) Closest object inside the range (b) Closest object outside the range

Figure 4.4: Enhanced Safe Region

allocated on that line. Also, the border of Enhanced Safe Region should go

through the intersection of the Basic Safe Region and the line.

Figure 4.4 shows two scenarios for constructing the Enhanced Safe Region.

Figure 4.4(a) shows when the closest object to the border is inside the range

query, while Figure 4.4(b) shows the closest object to the border is outside

the range query. In both scenarios, the radius of the Enhanced Safe Region is

calculated using the Equation 4.4. The centre of the safe region will be located

on the line that crosses the query, starting from the closest object to the border.

The centre of the Enhanced Safe Region will be on that line and the border of

the Enhanced Safe Region will intersect with the intersection point between the

Basic Safe Region 1 and the line.

4.2.3 Extended Safe Region

The approach presented in Section 4.2.1, assumes that the query will be outside

its safe region when it moves by SmDist from its initiated location. However,

4. SAFE REGION IN MOVING RANGE QUERY 104

the fastest way that the query will leave its safe region is when it moves to the

exact same/opposite direction of the firstclose/farclose object.

Lemma 4.1. The shortest path the query will follow in order to change its set

of interest objects is when it moves in exactly the same/opposite direction to the

firstclose/farclose.

Proof. (by inspection) Since the firstclose/farclose object is the closest to the

original query boundary then movement close/away to/from this object in a

straight line, in the direction of the original query (q), gives the shortest path

to exit the safe region.

Figure 4.2 shows that moving query q moves by Fd from its initial location

in the opposite direction of the object of interest p3. The new location of the

moving query is q′. The new boundary around q′ signifies that p3 will be

excluded from the set of the objects of interest with a guarantee that there will

be no excluded objects and no added new objects to the set of the objects of

interest.

Lemma 4.2. An object will be excluded from the result of the moving query iff

its distance to the query becomes greater than the radius of the query.

Proof. Assume that there is only one object in the dataset P = {p1}. Also,

assume that the minimum distance between this object p1 and the query q

(MinDist(p1,q)) is less than the radius e of the q.

A 2-dimensional circular range query asks for the points from the data set

(P) lying inside its range. Let (qx,qy) be the coordinates of the query q, e the

radius of the range query and (pix, piy) be the coordinates of object of interest

pi, then

4. SAFE REGION IN MOVING RANGE QUERY 105

MinDist(pi,q) =
√

(qx − pix)2 +(qy − piy)2 . (4.5)

The location of the object pi in terms of the range query will be determined

according to MinDist(pi,q) and the radius of the range. All the points on the

boundary (circumference) of the range are fixed from the query point q, due to

the circle definition,

MinDist(pi,q)− e


> 0 pi outside boundary

= 0 pi on boundary

< 0 pi inside boundary.

(4.6)

According to the definition of the range query, any object on the boundary

will be within the result of the range. There will be two configurations to

consider, depending on whether pi lies inside the range search (including points

on the boundary) or outside the range search. pi lies inside the range if and

only if:

(qx − pix)2 +(qy − piy)2 − e2 ≤ 0 , (4.7)

otherwise, pi will lie outside the range and will not be within the result list.

Figure 4.5(a) shows p1 is located inside the range of the moving query.

Whenever a query moves, p1 will stay within the range of the query q when

MinDist(p1,q) is not greater than e.

Treating the objects as a query, each object is surrounded by a circle equal

to the range search of the query, see Figure 4.5(b). By Lemma 4.2, p1 will be

in the result set since the query moves inside the range of the object p1. p1 will

be excluded from the result when q leaves the range of p1 (MinDist(p1,q)> e).

4. SAFE REGION IN MOVING RANGE QUERY 106

p1
q

e

MinDist(q,p1)

(a) object in the result set

p1
q

e

MinDist(q,p1)

(b) object treated as query

e

MINDIST(q,p1)

p1
q

Extended Safe Region

Basic Safe Region

(c) Extended Safe Region

Figure 4.5: Treating objects as query

Consequently, in this approach, the safe region will represent the whole range

of p1, while the safe region according to the previous approach (Basic Safe

Region) will be the small circle, as shown in Figure 4.5(c).

Our approach presented in Section 4.2.2 can be extended. Each object

(inside and outside the range boundary) will be surrounded by a boundary

(circle or a rectangle depending on which type of range is used) range equal

to the range search of the query, (see Figure 4.6). The intersection of these

circles (or rectangles) will generate a polygon containing the query point. This

polygon represents the Extended Safe Region.

Figure 4.6 shows an irregular/rectangle shape containing the query point q.

This shape represents the Extended Safe Region. This new region is larger than

4. SAFE REGION IN MOVING RANGE QUERY 107

(a) circular range query (b) rectangular range query

Figure 4.6: Extended Safe Region (formed by overlapping objects)

the Basic and the Enhanced Safe Regions, giving the moving query more space

in which to move without informing the server of its new location. By using

this technique, the number of communications between the query(s) and the

server(s) will be reduced as will be the number of location updates.

4.3 Calculating the Area of the Extended Safe Re-

gion

When the safe region is comprised of one or two objects, the calculation of

its area is a straightforward geometrical problem. However, for more than two

objects, the calculation of the safe region is complex as the overlapping regions

may have highly irregular forms. For this reason, we propose to calculate these

areas using Monte-Carlo simulation. Consider a set RP = {Rp1,Rp2, ...,Rpn}

of n circles, whose centres are {p1, p2, ..., pn} and radius is e. The circles in

RP may partially overlap.

Figure 4.7 shows a variety of safe regions formed by five objects, P =

{p1,p2,p3, p4,p5} within a space E and RP = {Rp1,Rp2,Rp3,Rp4,Rp5}. Each

4. SAFE REGION IN MOVING RANGE QUERY 108

Figure 4.7: Types of Extended Safe Regions

A represents a safe region, for example A1 represents one circular safe region

while the others (A2,A3, ...,A10) represent safe regions resulting from the over-

lap (intersection) of the range objects. Also, A11 represents a safe region but

without any object in the query result list (no-object safe region).

When the query is within a range of one object and this range does not

intersect with any other range, the whole range object will represent a safe

region to query q.

MinDist(pi,q)≤ e and Rpi
∩
x ̸=i

Rpx = /0. (4.8)

4. SAFE REGION IN MOVING RANGE QUERY 109

4.3.1 Calculating the Intersection of Two Circles

In many circumstances, the range of two objects may intersect and the query

falls either within the range of one object Rpi or within the intersection area of

two objects Rpi∩Rp j. In this situation

MinDist(pi,q)≤ e and Rpi
∩
x ̸=i

Rpx ̸= /0 (4.9)

or

MinDist(pi,q)≤ e and MinDist(p j,q)≤ e, i ̸= j . (4.10)

A2, A3 and A4, in Figure 4.7, represent the safe regions formed by the inter-

section of two circles (representing objects treated as queries). A3 is comprised

of two half regions A3′ and A3′′, because, in this case, the two circles are equal

A3′ = A3′′. Their calculation is given by the following formula, where 2d is the

distance between the objects and e is the radius of the query, as depicted in

Figure 4.8.

A3′ = A3′′ = e2arccos(
d
e
)−d

√
e2 −d2 . (4.11)

4.3.2 Using Monte-Carlo Simulation to Calculate Safe Region

Area

For more than two objects, the safe region formed is potentially an irregular

shape. As the area of these shapes cannot be calculated by a simple analytical

expression, Monte-Carlo simulation (Ripley, 1987) is used instead to calculate

their area. The area calculation requires that the queries be specified within a

4. SAFE REGION IN MOVING RANGE QUERY 110

p3

p5

Rp5

Rp3

A2

A4

A3'

A3''

A3

d

Figure 4.8: Area of intersection of two circles

bounding region of a known size. Multiple points within the bounding region

are then generated at random, with the number falling inside the safe region

being counted. The area of the safe region (SR) is then calculated as

sum of points in SR
total random points

× area of bounding region. (4.12)

For the experiments reported in Section 4.5, the bounding region is deter-

mined as 100× 100km2, with 100,000 random points being used to calculate

the area of the safe region. As a guide to the accuracy of the method at these

settings, a trial was conducted to calculate the area of the safe region for a

single query having radius of 10km. In this case, the expected area is 100πkm2.

1000 test problems are generated having an average area of 314.0km2 and stan-

dard deviation 0.54, or approximately 2% of the area. Thus, it can be seen that

even for a small safe region, the error of the method is quite small, diminishing

proportionally as the size of the safe region increases. To illustrate this, a safe

region of the size indicative of those reported in Section 4.5 is also calculated.

4. SAFE REGION IN MOVING RANGE QUERY 111

Basic Safe Region Enhanced Safe Region

Extended Safe Region

Figure 4.9: Demonstration software calculating the area of a safe region corre-
sponding to a static query

Using a query radius of 4kms, Monte-Carlo simulation estimated the area of

the region (16π km2) accurately to 3 decimal places as 50.274km2 having a

standard deviation of 0.155, representing 0.3% of the calculated area.

Regarding the computational complexity of the Monte-Carlo simulation al-

gorithm, running time is linear with respect to: i) the number of random points

used to evaluate areas; ii) the number of query objects over the data space;

and iii) the number of intervals at which a moving query is evaluated. Thus

it is possible for a user to choose a desired level of accuracy or computational

speed by varying these factors. The query radius has no effect on computational

performance.

Figure 4.9 shows a screen shot of the simulation software used to calculate

the area of the safe regions discussed in this paper. The region on the right

hand side shows a query within a region of 20 objects. The black and grey

areas correspond to the safe regions discussed later in the paper.

4. SAFE REGION IN MOVING RANGE QUERY 112

4.4 Algorithms of Safe Region

Full details of the Basic, Enhanced and Extended Safe Region algorithms are

presented below.

4.4.1 Basic Safe Region Algorithm

Algorithm 4.1 is to find the Basic Safe Region where the safe-object list SOL,

in the algorithm, is found first. This list would have all objects of interest and

some objects just outside the range query. The safe-object list should be sorted

in ascending order, and all objects within the distance e from the q will be

moved to the result list (RL). The closest object to the border of the query will

either be the last object in RL or the first object in what remains in SOL. Then,

the query (q) will be surrounded by a circle with a radius equal to the distance

between the border of the query and the closest object to this border. In this

algorithm the search will be up to 2e from the query q

4.4.2 Enhanced Safe Region Algorithm

Algorithm 4.2 is to find the Enhanced Safe Region for a moving range query.

In this algorithm all objects within 2e from the query q should be found first

(safe-object list SOL), then the safe region is calculated. After ordering SOL

in ascending order, the closest two objects to the border of the query should

be found. These two objects will be among a subset of SOL which has four

objects (the closest two objects to the border of the query which are inside the

range query and the closest two objects to the border of the query which are

outside the range query). The average distance between the closest two objects

to the border of the query will represent the radius of the enhanced safe region.

4. SAFE REGION IN MOVING RANGE QUERY 113

Algorithm 4.1. Basic Safe Region algorithm
1: /* q: query point and e: the Euclidean distance threshold */
2: /* Find objects of interest and a safe region q */
3: boundary = 2e
4: LIST RL, SOL
5: for each pi in data space do
6: if MinDist(pi,q)> boundary then
7: prune pi
8: else
9: if MinDist(pi,q)> e then

10: boundary = MinDist(pi,q)
11: SOL.add(pi)
12: else
13: RL.add(pi)
14: end if
15: end if
16: end for
17: sort(SOL), sort(RL)
18: Fd = e−MinDist(RL[length(RL)],q)
19: Nd = MinDist(SOL[1],q)− e
20: e′ = min(Fd,Nd)
21: Surround the query (q) by a circle with radius e′

22: The area formed by a circle with radius e′ is the Basic Safe Region of the
moving range query

4.4.3 Extended Safe Region Algorithm

Algorithm 4.3 calculates the Extended Safe Region for a moving range query.

The set of the objects of interest is found first, after which the safe region is

calculated. If pi is the closest object to the query q and MinDist(q, pi) ≤ e,

then any object p j will be excluded from the calculation of the safe region if

MinDist(pi, p j) > 2e (AL-Khalidi, Taniar, Betts, & Alamri, 2013). Any object

that falls above 2e from the closest object of interest (p1) to the query will not

affect the safe region and will be pruned. The objects within distance 2e from

p1 will be surrounded by the circular range of each object having radius e.

The region formed by the overlap of each of these circular regions containing

4. SAFE REGION IN MOVING RANGE QUERY 114

Algorithm 4.2. Enhanced Safe Region algorithm
1: /* q: query point and e: the Euclidean distance threshold */
2: /* Find objects of interest and a safe region q */
3: LIST RL, SOL, closest
4: for each pi in data space do
5: if MinDist(pi,q)> 2e then
6: prune pi
7: else
8: if MinDist(pi,q)> e then
9: SOL.add(pi)

10: else
11: RL.add(pi)
12: end if
13: end if
14: end for
15: sort(SOL), sort(RLt)
16: len = length(RL)
17: closest.add(e−RL[len−1])
18: closest.add(e−RL[len])
19: closest.add(SOL[1]− e)
20: closest.add(SOL[2])− e)
21: sort(closest)
22: e′′ = (MinDist(closest[1],q)+MinDist(closest[2],q))/2
23: Surround the query (q) by a circle with radius e′′

24: The area formed by a circle with radius e′′ is the Enhanced Safe Region of
the moving range query

q forms the safe region of q at this time. When the query moves outside the

safe region, a new safe region should be allocated to the query with the updated

result list. If there is no object within the range of the query, the search in this

algorithm might cover all objects in the data space.

4.5 Experimental Results

Several experiments were conducted to evaluate our proposed algorithms. A

synthetic dataset was used to represent the real world. We create three different

density environments (low = 100 objects, medium = 300 objects and high = 500

4. SAFE REGION IN MOVING RANGE QUERY 115

Algorithm 4.3. Extended Safe Region algorithm
1: /* q: query point and e: the Euclidean distance threshold */
2: /* Find objects of interest and a safe region q */
3: LIST RL, SOL
4: for each pi in data space do
5: if MinDist(pi,q)≤ e then
6: RL.add(pi)
7: end if
8: end for
9: sort(RL)

10: /* for the remain objects in the data space */
11: if RL.isempty() then
12: for each pi in data space do
13: if MinDist(pi,RL[1])> 2e then
14: prune pi
15: else
16: SOL.add(pi)
17: end if
18: end for
19: else
20: for each pi in data space do
21: SOL.add(pi)
22: end for
23: end if
24: sort(SOL)
25: for each pi in SOL do
26: Surround object (pi) by a circle with radius e
27: end for
28: The area formed by overlapping regions containing q is the Extended Safe

Region of the moving range query
29: Calculate the area of the safe region using Monte-Carlo Integration.

objects) in a data space measuring 100km×100km. Then, we compare the Basic,

Enhanced and Extended Safe Regions together for static and moving queries.

We give three performance measures: the area of the safe region constructed

using each technique, the number of objects needed to construct each safe region

and the average distance the query can move in different density environments

using the three safe regions. We randomly generate 1000 random queries in

low, medium, and high density environments, and calculate the area of the safe

4. SAFE REGION IN MOVING RANGE QUERY 116

region. We also calculate the current safe region of the query and also the

safe regions the query would pass through as it moves. The densities could be

considered as representing queries for different services in a city. For example:

hospitals (low), post offices (medium), and restaurants (high).

Because the number and size of safe regions resulting from a query are

dependent on the density of the objects (appearing in a map for example) and

the radius of the query, these factors were varied in the trials that follow. Two

performance measures were used to evaluate the extended safe region. First, a

comparison was made between the average size of the safe region and the whole

size of the data space. Secondly, we counted the number of safe regions that

are crossed when the query moves within the data space. The purpose of these

experiments is to show: i) the accuracy of our simulation method; ii) the size of

the safe region and the impact of different factors such as: object density; range

query distance; and whether the query is moving or static on the size of the safe

region; and iii) the number of objects needed to construct the Extended Safe

Region. Figure 4.10 shows an example of the different safe regions generated

by the simulation and the safe regions that the moving query will cross while

moving in this path. The source of our implementations can be downloaded

from the following URL: https://www.dropbox.com/sh/azy7xqjpcu2387t/

AAAceaGT10BPcQXQt86-hhl8a.

4.5.1 Accuracy when Using Monte-Carlo Simulation to Cal-

culate Safe Region Area

A safe region was constructed using two overlapping object ranges. The areas

were calculated using the exact method illustrated in Section 4.3.1, and Monte-

Carlo simulation method described in Section 4.3.2. We calculate this area using

4. SAFE REGION IN MOVING RANGE QUERY 117

Basic Safe Region

Enhanced Safe Region

Extended Safe Region

Figure 4.10: Example of safe regions (Basic, Enhanced and Extended)

5 6 7 8 9 10
0

60

120

180

240

300

11 12

Analytical model

S
iz

e
 o

f
o
v
e

rl
a

p
p

e
d

 a
re

a

Radius

Simulation model

Figure 4.11: Simulation model vs. analytical model

query radii 5, 6, ..., 12km. The distance between the objects was fixed at 9 km

to ensure that query ranges would not overlap. The safe regions were calculated

100 times using Monte-Carlo simulation for each query radius, and the average

of each radius was established and compared with the precise result to illustrate

the accuracy of our simulation method. Figure 4.11 shows that the safe region

area calculated using Monte-Carlo simulation is very close to the exact areas

obtained using Equation 4.11.

4. SAFE REGION IN MOVING RANGE QUERY 118

4.5.2 Initial Safe Region

Figure 4.12 shows a comparison of the three types of safe regions: Basic,

Enhanced and Extended, in three different environments (low (Figure 4.12(a)),

medium (Figure 4.12(b)) and high (Figure 4.12(c))), with a radius of range

search that varies from 15km to 60km and a static query. We found that, the

size of the Enhanced Safe Region is more than twice the size of the Basic

Safe Region in all of the environments, while it is four times smaller than the

Extended Safe Region. In all environments, regardless of density, when the

range search is small the majority of the safe region is composed of the area

containing no objects.

4.5.3 Continuous Safe Region

Figure 4.13 shows the total areas of a query moving 100km. The experiments

show that varying the number of objects in the data space has more impact than

varying the range search, especially in medium and high density environments.

The effects of varying the range can be noticed only when the radius is small

because this is the region with no nearby objects. When the query is moving,

the area of the Enhanced Safe Region is approximately twice the size of the

Basic Safe Region and less than three times the Extended Safe Region.

4.5.4 Constructing the Safe Region

The closest object and the closest two objects to the border of the moving range

query will be considered when constructing the Basic and the Enhanced Safe

Regions respectively. However, when constructing the Extended Safe Region,

many objects will be considered. Whenever the number of the objects increases

around the query, the number of objects needed to construct the safe region will

4. SAFE REGION IN MOVING RANGE QUERY 119

Query Radius Km

A
re

a
 o

f
s
a
fe

 r
e
g
io

n
s
 b

y
 K

m
2

(a) Low Density Environment

Query Radius Km

A
re

a
 o

f
s
a

fe
 r

e
g

io
n

s
 b

y
 K

m
2

(b) Medium Density Environment

Query Radius Km

A
re

a
 o

f
s
a

fe
 r

e
g

io
n

s
 b

y
 K

m
2

(c) High Density Environment

Figure 4.12: Initial safe regions in different environments

increase too. For example, Figure 4.14 shows when the range query is small,

almost all the objects in the data space will be used to create the Extended Safe

Region.

4. SAFE REGION IN MOVING RANGE QUERY 120

Query Radius Km

A
re

a
 o

f
s
a

fe
 r

e
g

io
n

s
 b

y
 K

m
2

(a) Low Density Environment

Query Radius Km

A
re

a
 o

f
s
a
fe

 r
e
g
io

n
s
 b

y
 K

m
2

(b) Medium Density Environment

Query Radius Km

A
re

a
 o

f
s
a
fe

 r
e
g
io

n
s
 b

y
 K

m
2

(c) High Density Environment

Figure 4.13: Total area of safe region crossed by moving query

4.6 Summary

In this chapter, we propose a continuous range safe region method for mobile

navigation with moving queries. Our contributions can be summarised as fol-

lows: First, we have proposed new techniques to construct a safe region, termed

4. SAFE REGION IN MOVING RANGE QUERY 121

N
u

m
b

e
r

o
f

O
b

je
c
ts

Query Radius Km

Figure 4.14: Number of objects needed to construct the Extended Safe Region

the range safe region. The aim of these techniques is to avoid any commu-

nication between query and server while the query moves within the specified

safe region. Second, we have extended the Basic and Enhanced Safe Regions

to reduce the amount of supplementary communication. Using these techniques

reduces the need for continuous monitoring of the query, and eliminates the

need for the user to follow a defined path. We use a discrete-event simulation

method with a high degree of accuracy to calculate the area of the safe regions

that have been formed by overlapping range objects. Finally, we compare the

Basic, Enhanced and Extended Safe Regions when the query is static and when

it is moving. The experimental results show that our method reduces the amount

of query monitoring by the server, and then are no communication costs, while

the query moves within its safe region. The new method also allows a user

to move within the safe region without revealing their location, thus preserving

their privacy.

4. SAFE REGION IN MOVING RANGE QUERY 122

Chapter 5
Monitoring Moving Range Query

5.1 Motivation . 125

5.2 Linear Motion Function to Monitor a Query inside Safe Region 126

5.3 Support Arbitrary Moving Query 134

5.4 Algorithm to Monitor Moving Query inside Extended Safe Region136

5.5 Experimental Results . 136

5.6 Summary . 141

Publications and Submissions:

1. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2013), Efficient

monitoring of moving mobile device range queries using dynamic safe regions.

In The 11th International Conference on Advances in Mobile Computing and

Multimedia. MoMM’13.

2. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2014), Monitoring

moving queries inside a safe region. In The Scientific World Journal. Hindawi.

123

5

Monitoring Moving Range Query

With the emergence of mobile computing, monitoring continuous spatial queries

over moving objects has become a requirement for many different daily applica-

tions, such as GPS, cargo tracking, traffic monitoring, location based networks

and traveller information systems. However, wireless communication costs for

location updates and query evaluation costs at the server end, represent the most

common costs that determine the monitoring system performance.

The safe region technique is one of many proposed techniques that have

been used to minimise the communication and computation costs of monitoring

the moving range query. In the previous chapter (Chapter 4), we explained the

safe region as an area where the set of objects of interest to the query does not

change as long as the query remains inside it. Thus, there is no need to update

the result of the query while it is roaming inside its safe region. However, when

the query leaves its safe region the mobile device has to reprocess the query,

thus communication with the server is needed and the query re-evaluation must

re-commence. But, knowing when and where the mobile device will leave its

safe region is widely known as a difficult challenge. In this chapter, we address

this challenge and propose a novel method to monitor the position of the query

124

5. MONITORING MOVING RANGE QUERY 125

over time using a linear function based on the direction of the query obtained

by periodic monitoring of its position.

The rest of the chapter is organised as follows. Section 5.1 gives our research

motivation. Sections 5.2 and 5.3 describe our proposed method. Section 5.4

presents the algorithms used. Performance experiments are covered in Section

5.5. Section 5.6 summaries the chapter.

5.1 Motivation

The moving range query requires constant reporting of its result from the regis-

tration of the query to its cancellation. This is called the effective period of the

query. Over this time, the query results must be continuously updated even if

the query conditions remain unaltered during the effective period (Shengsheng

& Chen, 2011). To reduce the updating costs while the query moves contin-

uously, the safe region concept has been proposed (AL-Khalidi, Taniar, Betts,

& Alamri, 2013; Cheema et al., 2011; Cho et al., 2013; Mokbel et al., 2004),

which allows the query to report its current location and to request a new result

only when it exits its current safe region. These two factors have the potential

to significantly reduce communication and computational overheads. Because

the query does not communicate with the server once it enters its safe region,

neither the query nor the server will be aware of when and from which direction

the query will leave its assigned safe region. Consequently, the server would

not be able to calculate a new safe region for the query to roam in or update

the result list without delay.

This chapter presents our technique for continuously monitoring a moving

range query inside the Extended Safe Region. A linear function is proposed

to monitor the moving query within its safe region. Since the Extended Safe

5. MONITORING MOVING RANGE QUERY 126

Region has an irregular shape, it is necessary to find a method to monitor the

query inside it. Our method reduces the costs associated with communications

in client-server architectures because an update of the location will be reported

only when the query leaves its assigned safe region or upon the server’s request.

Computational results show that our method is successful in handling moving

query patterns. We also present an analysis of the computation and communi-

cation costs of our algorithm which shows the advantages of our method. Our

research presented in this chapter was published in (Al-Khalidi et al., 2014,

2013a).

5.2 Linear Motion Function to Monitor a Query

inside Safe Region

This section presents our technique for continuously monitoring the moving

range query inside the Extended Safe Region. A linear function of time model

is proposed to monitor the moving query within its Extended Safe Region. In

this technique, we will model the query positions as functions of time. In

many circumstances, the area of the safe region is not of greatest significance,

however, the essential point is when the query enters and leaves the safe region.

At these events the server will be aware of the moving query location, allowing

location updates to occur only when the query passes beyond its assigned safe

region.

The safe region of the query is computed at the server side based on the

intersections of the range objects. The computed safe region will be sent to

the moving query from the server. Hence, the query will then send its location

to the server when it moves outside its safe region. The query is aware of its

5. MONITORING MOVING RANGE QUERY 127

current location and its velocity, and in this case the query can calculate its next

location(s).

x̄(t) = (x̄1(t), x̄2(t), ..., x̄d(t)) represents the query’s position at time t,

assuming that the time t is not before the current time. In order to model this

position, we have used a linear function, which is specified by two parameters.

The first parameter represents the position for the query at some specified time

told , x̄(told), termed the old position. The second parameter represents the

velocity vector for the query, v̄ = (v1 ,v2 , ..., v3). Thus, x̄(t) = x̄(told)+ v̄(t −

told). The new position of the moving query is:

x̄new = x̄old + v̄(t − told) (5.1)

According to Equation 5.1, the query knows its position and, hence, there

is no need to inform the server about its new location while moving within the

safe region. Also, there is no need for the query to inform the server about its

velocity when changing its speed and direction.

Generally, the query or the object positions are modelled as functions of

time in order to make tentative near-future predictions to alleviate the problem

of the frequent updates which will be required. Several studies (Jang et al.,

2007; Jeung et al., 2010) have used this function to predict the path that the

user will use; users may report these parameter values when their actual position

deviates from what was previously reported according to some threshold. The

prediction of the movement of the query’s position can be made from the

present into the far future. However, long-term prediction is not possible and

short-term prediction suffers from the fork dilemma. Also, it is not usual for

a query to exist for a long period of time within a useful threshold of its

predicted movement. Therefore, if this query does not report its new position

5. MONITORING MOVING RANGE QUERY 128

and velocity, after some time, its old positional information will be inaccurate

and not useful. Hence, this information will expire.

In our technique, the users do not need to report their parameter values when

their actual position deviates from what they have previously reported. Users

need to report their new position only when they leave the safe region. After

reporting their new position, the server should calculate the new safe region

depending on the current user’s location and send it to the user. To avoid

downlink in the communication and to insure that the server has received the

new user’s location, we allocate a time stamp parameter, tst p, whereby the user

should receive a new safe region within tst p. Our technique does not need any

prediction and it overcomes the problem of the fork dilemma. Monitoring of a

moving query inside an Extended Safe Region has four scenarios:

1. The query is inside a safe region of one object (the shape of the safe

region will be a circle).

2. The query is inside a safe region formed by two overlapping objects, both

objects within the result list, (the shape of the safe region has two convex

edges).

3. The query is inside a safe region formed by more than two overlapping

objects (n objects, n > 2), but all the objects are within the result list (the

shape of the safe region has n convex edges).

4. The query is inside a safe region formed by more than one overlapping

object (m objects, m > 1), but some of the objects are within the result

list (n objects, n ≥ 1), and the rest are not within the result list (r objects,

r = m−n ≥ 1) (the shape of the safe region has n convex edge(s) and r

concave edge(s)).

5. MONITORING MOVING RANGE QUERY 129

5.2.1 Query within One Object

In some cases, the Extended Safe Region has a circular shape with a range of

one object pi only. The location of the object pi will represent the centre of

the Extended Safe Region, and e will represent the radius. Note that the radius

e is the range of the query q. In Figure 5.1, the safe region of the query q

represents the whole range of the object p3, where e, MinDist(p3,q) and the

velocity of q are known in advance. Figure 5.1(a) shows that q can move from

its current location in any direction (d1,d2, ...,dn) depending on its velocity;

we will use the triangle solving method to calculate when q will leave its safe

region.

In Figure 5.1(b), we consider that q will follow the direction d1. Using

the triangle solving method, we calculate D1 (i.e., D1 is the distance between

the query and the border when the query follows the direction of d1) using

the triangle shown in this figure. This triangle has the side lengths (D1, e and

MinDist(p3,q)) and the internal angles (a, b and c). To find D1 (the distance

when the q will be outside its safe region) the angle, a, between two sides,

MinDist(p3,q) and D1 should be found first.

The formulas for solving the triangles are:

c = arcsin(MinDist(pi,q)× sin(a)
e

) (5.2)

The sum of the internal angles of the triangle is 180◦

a+b+ c = 180◦ −→ b = 180−a− c (5.3)

5. MONITORING MOVING RANGE QUERY 130

MinDist(q,p3)

unlimited possible directions

Range query

d1

d2

dn

Range object
(safe region)

q

p3e e

(a) Unlimited directions

Min
Dist

(q,p
3)

Range object
(safe region)

Range query

p3

q

d1

e

e

c

b
a

D1

(b) Solving the triangle method

Figure 5.1: Safe region using linear function

Now we can find D by:

D1 = e× sin(b)
sin(a)

(5.4)

Because the shape of the Basic and the Enhanced Safe Region are circular,

then this monitoring method can be used to monitor the query in the Basic Safe

Region either from the beginning when the query is in the centre of the safe

region or when the query changes its direction and it is no longer inside the

centre of the safe region. This monitoring method can also be used to monitor

the query in the Enhanced Safe Region.

5.2.2 Query within Two Objects

In the next scenario, the Extended Safe Region might be created by two objects,

both of which are within the result list (i.e., both of these two objects are within

the range of the query). The overlapping for the ranges of these two objects

will create an area which has two edges; both edges (curves) are convex. Figure

5.2, shows an example of two overlapping objects (p1, p2) within the range of

5. MONITORING MOVING RANGE QUERY 131

(a) Crossing board p1 (b) Crossing board p2

Figure 5.2: Monitoring q within range of two objects

the query. Each edge represents the border for the range of one object. The

edge within distance e from one object pi (pi ∈ {p1, p2}) will be the border of

that object.

The two convex edges (ed1 and ed2), which determine the Extended Safe

Region are part of the range of the objects (p1 and p2). The query q will

be outside the range of an object (pi) when it crosses the edge of that object

(edi). Crossing any edge of the Extended Safe Region by the query means

that the query is leaving its current safe region and entering a new one. If we

know in advance the direction of the query, then we can find which edge of

the Extended Safe Region the query will cross. To monitor any query in this

scenario, the intersection points between the range of the two objects (p1 and

p2) should be found first (see Figure 5.2). Each curve (edge ed1, ed2) has

a start and end angle. For example, the curve ed1 has (θ1&θ2) as start and

end angles respectively, while the curve ed2 has (θ2&θ1) as start and end angle

respectively.

If the query q is moving in a direction within the range of the angle (θ1 to

θ2), then it will cross the edge of the object p1 (ed1) (see Figure 5.2(a)). If

5. MONITORING MOVING RANGE QUERY 132

the query q is moving in the opposite direction, which is the direction within

the range of angle (θ2 to θ1), then q will cross the edge of the object p2 (ed2);

see Figure 5.2(b). Equation 5.2 can be used to calculate the angle c(c′). After

determining c(c′), the angle b(b′) can be found using Equation 5.3 (i.e., the

summation of the internal angles of the triangle, which is 180◦). The distance

D(D′) that q can move until it reaches the border of the Extended Safe Region

can be found using Equation 5.4.

5.2.3 Query within Multi Objects

Monitoring the query in this scenario is very similar to monitoring the query

which was presented in Section 5.2.2. However, we will add the start angle

(θsi) and the end angle (θei) to each object (pi) surrounding the query. These

angles are determined by the intersection of any object with any other one to

specify the Extended Safe Region. The start and the end, (θsi) and (θei), angles

respectively identify the corresponding edge of the range object bounding the

Extended Safe Region.

The Extended Safe Region will be crossed from a specific edge. It is possible

to know this edge based on the velocity of the query (speed and direction) and

the starting and ending angles of the object pi. Figure 5.3(a) shows which edge

is crossed by the query when it moves in a specific direction. Table 5.1 shows

the query will cross p1 if it moves at an angle between (110◦ - 200◦), and will

cross p2 if it moves at an angle between (200◦ - 300◦), to the rest of the table.

Because interior angles must always add up to 360◦, Equation 5.2 can be used

to find out the angle (c), depending on the starting and ending angles of the

corresponding edge.

5. MONITORING MOVING RANGE QUERY 133

(a) Safe region has only convex edges (b) Safe region has convex and concave
edges

Figure 5.3: Safe regions with different edges

Table 5.1: Start and end angles

Object MinDist(q, pi) θsi θei
p1 (ed1) 1.1 110◦ 200◦

p2 (ed2) 1.3 200◦ 300◦

p3 (ed3) 1.4 300◦ 350◦

p4 (ed4) 1.2 350◦ 110◦

5.2.4 Query within Multi Objects in/out the Result List

In some scenarios, the Extended Safe Region might be created from objects that

are inside the result list or outside the result list. Parts of the border for the

objects that are inside the result list will be the convex edges of the Extended

Safe Region and those objects outside the result list will give the concave edges.

Figure 5.3(b) shows the convex edge created by the borders of p1, p2, p3, and

the concave edge created by the borders p4, p5. Monitoring the query in this

case will occur through the following:

1. if the query is moving towards the convex edge, then Equation 5.2 is used

to find the angle c;

5. MONITORING MOVING RANGE QUERY 134

2. otherwise, the query will move toward the concave edge and then Equation

5.5 is used.

c = 180−arcsin(MinDist(pi,q)× sin(a)
e

) (5.5)

The inverse sine function usually returns angles less than 90◦. For example,

Equation 5.2 uses the smallest angle because the third side of the triangle will

always be inside the circle (safe region). However, when the third side of the

triangle lies outside the safe region the larger angle must be used, see Equation

5.5. The distance between the query and the object pi is used to decide which

of Equation 5.2 or 5.5 is used. Equation 5.2 is used when the objects within

the range search are within distance e from the query, while Equation 5.5 is

used when the objects outside the range of the query are not within the distance

e from the query.

5.3 Support Arbitrary Moving Query

In our moving range query technique, the query has the ability to evaluate its

location at all the times. The query will calculate its current location wherever

the velocity of the query changes. By knowing its current location, the query

will compute the distance or the time (i.e., when it will leave its safe region

and from which edge). The problem of fork dilemma does not occur when

the query is inside the safe region because a quick recalculation of the new

direction can be made by the query itself and the set of objects of interest does

not change.

5. MONITORING MOVING RANGE QUERY 135

p1

p3
p4

q

p2

L1

L2

L3
L4

L5

L6

L7

L8 L9

D1

D2

D3

D4

D5

D6

D7

D8

D9

c1

c2

c3

c4

c5

c6

c7

c8
c9

Figure 5.4: Arbitrary moving query inside safe region

Figure 5.4 shows that at each turn the query will calculate its distance to

the boundary. The shaded area represents the safe region of the query q and

the location L1 represents its current location. Whenever the query changes its

velocity, the query then will compute its new distance to the edge which will

be crossed later. This figure shows that the query changes its velocity eight

times in order to leave its safe region at the locations (L2, L3, L4, L5, L6, L7,

L8, L9). In each location a new distance from the edge and a new point on

the edge (which represents the place that the query will cross the edge) will be

calculated by the query. For example, as shown in Figure 5.4, (L1) represents

the current location of the query q and (D1) represents the distance that the

query needs to cross the edge of the safe region boundary in the point (c1)

if the query does not change its direction. (L2, D2, c2) represents the new

location of the query, the new distance and the new point on the boundary of

the safe region respectively and so on with (L3, etc.).

5. MONITORING MOVING RANGE QUERY 136

5.4 Algorithm to Monitor Moving Query inside Ex-

tended Safe Region

An algorithm to monitor a moving query inside an Extended Safe Region is

now presented (Algorithm 5.1). The safe-object list from Algorithm 4.3 is used

to determine the objects that form the boundary of the safe region. Each object

having a shared border with the Extended Safe Region will be registered in a

table with the start and end angle of that border. To fill the table with the start

and end angles, the safe-object list is constructed first. The list commences

with the start and the end angle of the closest border (edge) to the query. The

next edge, starting from the end of the previous edge is added to the list. This

is continued until the boundary arc terminating at 360◦ has been added to the

list. If the query changes its direction at anytime, then its location will be

considered. The new location of the query will be used to find out the distance

that the query needs in order to leave its safe region and the point on the

boundary at which the query will cross the safe region.

5.5 Experimental Results

Several experiments were conducted to evaluate our proposed algorithms. A

synthetic dataset was used to test the proposed linear function. Three different

density environments were created (low = 100 objects, medium = 300 objects

and high = 500 objects) to measure the performance of our monitoring method

in a data space of 100km×100km.

1000 queries were randomly generated in low, medium, and high density

environments. The average distance the query moves until leaving its safe

region was then recorded. The average distance from the current location of

5. MONITORING MOVING RANGE QUERY 137

Algorithm 5.1. Monitoring moving range query algorithm
1: /* q: query point, v: the velocity of q and e: the Euclidean distance

threshold */
2: /* Find when q will leave its safe region */
3: LIST SOL
4: Call Extended Safe Region algorithm to find safe-object list (SOL)
5: From SOL, find the closest border (Cedx) of px to q
6: Find the start and end angles of Cedx and add them to the table of start

and end angles
7: TCed =Cedx
8: for each pi in SOL do
9: if TCed intersects with the border of pi then

10: pi should share an angle with TCed
11: add edi and its angles to start and end angle table
12: TCed = edi
13: else
14: Ignore this pi
15: end if
16: Exit for, if the table completed 360◦ degree
17: end for
18: Monitoring q inside safe region
19: for each edi in the start and end angle table do
20: if MinDist(edi,q)< e then
21: the curve is convex
22: c = arcsin(MinDist(pi,q)× sin(a)

e)
23: else
24: the curve is concave
25: c = 180−arcsin(MinDist(p3,q)× sin(a)

e)
26: end if
27: b = 180−a− c
28: D = e× sin(b)

sin(a)
29: end for
30: if q changes its direction at anytime before it crosses any edi in the start

and end angle table then
31: goto 17 and use the new position of q
32: end if

the query to the border of the current safe region was also recorded in each

experiment.

Figure 5.5 is a screenshot of the software used to calculate the distance

that a moving range query can travel before it leaves its safe region when it

5. MONITORING MOVING RANGE QUERY 138

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

100

80

60

40

20

0

Figure 5.5: Distance that a query travels before leaving its safe region

moves in any direction. This figure shows the distance between the query and

the safe region border in all directions. The source of our implementations

can be downloaded from the following URL:https://www.dropbox.com/sh/

b0vuicc0t3ymhq4/AADxzv9UeuLsyzMrlfxSMj3ra.

5.5.1 Moving Query in Different Environments

Figure 5.6 shows a comparison of three different objects’ environments: low,

medium and high density, with a radius of range search that varies from 5km

to 30km.

We found that the average distance the query could roam until crossing

the border of the extended safe region is high when there are a few objects

surrounding it. The reason is that, in most cases, there is no object within the

range of the query and there is a long distance until one object becomes within

the range of the query. This gives the query a very good indication of the

distance it can travel before the query’s set of objects of interest will change,

or the time until the query will find the first new object when its current list of

objects of interest is empty. In the range query, when a user invokes a query

within a specific range and the result returned is null, the user needs to enlarge

5. MONITORING MOVING RANGE QUERY 139

Distance by km

Range by km

Figure 5.6: The average distance the query can move until its objects of interest
change in different density environments

the size of the range. However, in our method the user will have an indication

about how far away the nearest object to the query is, and in what direction

from the query.

5.5.2 Case Studies

In this section we present two case studies to explain our method for: i) finding

when the set of objects of interest will change (when there is already object(s)

in the set), and ii) finding the nearest object in any direction (when there is no

object in the result list).

Objects Surrounding the Query

This case study considers a query which has objects of interest in its range. Our

linear motion function can inform the query about the distance that the query

needs to pass in any direction before its set of objects of interest will change.

Figure 5.7 shows a case study of a query with objects surrounding it. In

this case the range query is 20km and the number of objects in the dataset

is 20. Figure 5.7(a) shows that there are six objects surrounding the query in

that specific moment (four objects in the set of objects of interest and two just

outside the range). Figure 5.7(b) shows the shortest distance (2.3km) the query

5. MONITORING MOVING RANGE QUERY 140

(a) Different directions the query
may follow

Distance by km

Angle

Distance
Distance by km

Angle

Distance

(b) The distance from the query to the
border of the safe region by any direc-
tion

Figure 5.7: Distance that query can travel before the objects of interest change

can move until the set of objects of interest will change and that occurs when

the query moves within an angle of (81◦-103◦). The longest distance the query

can move until the set of objects of interest change is (17.8km) at an angle of

(343◦).

No Object within the Range Query

This case study considers a query which has no object of interest in its range.

Our linear motion function can inform the query about the distance that the

query needs to pass in any direction before finding the first object.

Figure 5.8 shows the distance in any direction to the nearest objects from the

query. In this case study the range query is 8km and the number of objects in

the dataset is 35. Figure 5.8(a) shows that there is no object within the range of

the query at that specific moment. Figure 5.8(b) shows that the shortest distance

the query can travel to find an object of interest is in the direction (246◦-269◦)

in which case the object will be within 3.1km from the query. While the longest

distance to find an object of interest will be in the direction of the angle (67◦)

in which case the object will be 64.1km away from the query.

5. MONITORING MOVING RANGE QUERY 141

(a) Different directions the query
may follow

Distance by km

Angle

Distance

(b) The distance from the query to the
first object by any direction

Figure 5.8: Distance of the closest object in all directions from the query

5.6 Summary

In this chapter, we propose a linear model to monitor the moving range query

inside a safe region for mobile navigation. This approach predicts when the

query will leave the safe region based on its current location and velocity. The

aim of this technique is to i) reduce the need for continuous monitoring of

the query, and ii) to eliminate the need for the user to follow a defined path.

The method is used by the query whenever the server allocates it to a new

safe region. Our method does not suffer from the problem of fork dilemma

because it is not calculated as a linear function of time alone. By contrast, in

our method we use the time and the concept of the safe region together, hence,

if the query makes a sudden turn, the result will not be affected because the

query will still be located inside the safe region.

5. MONITORING MOVING RANGE QUERY 142

Chapter 6
Lookforward Moving Range Query

6.1 Motivation . 145

6.2 Approximate Trajectory Techniques - Preliminaries 146

6.3 Lookforward Moving Range Query 154

6.4 Simplifying the Query Path . 167

6.5 Experimental Results . 169

6.6 Summary . 173

Publications and Submissions:

1. AL-Khalidi, H. Taniar, D. Nguyen, K. Betts, J. and Alamri, S. (2014),

Lookforward moving range search query based on road network. In Computers

& Mathematics with Applications. Elsevier. (Under Review)

2. Alamri, S. Taniar, D. AL-Khalidi, H. and Nguyen, K. (2014), Density-

based for moving query in multi-floor indoor spaces. IEEE Transactions on

Knowledge and Data Engineering. IEEE. (Under Review).

143

6

Lookforward Moving Range Query

Moving range query is one of the most common queries in spatial databases,

where a user invokes a query to find all the surrounding objects of interest while

s/he is moving. Most studies of moving queries consider Euclidean distances

to retrieve the results with low cost, but with poor accuracy (i.e., Euclidean

distance is less than or equal to network distance). Thus, researchers show that

a moving query using network distance retrieves the results with high accuracy

but with a vast amount of network distance computations and very high amount

of communication between the query and the database server. However, both

of these techniques retrieve all objects in a given radius from the query centre.

In many situations, however, retrieving all objects is not necessary, especially

when some of these objects are not important to the users or because they may

force the users to deviate from their original route. As well, objects that appear

in the result list for a very short time should be eliminated because they do

not give the user enough time to react and make an appropriate decision. In

response, we propose a new query technique based on the spatial road network

called lookforward moving range query, which makes the user concentrate only

on objects of interest in the forward space of the query point.

144

6. LOOKFORWARD MOVING RANGE QUERY 145

The rest of the chapter is structured as follows. Section 6.1 illustrates

our motivation. Section 6.2 presents some preliminary concepts used in this

paper. This will be followed by Section 6.3, which will describe our proposed

technique, the lookforward moving range query. Section 6.4 explains our method

of simplifying the path query. The performance evaluation of the approaches is

given in Section 6.5. Section 6.6 concludes the chapter.

6.1 Motivation

In recent years, mobile technology has been advancing quickly and the demand

for mobile information services and mobile queries is growing. Many mobile

queries have been proposed and studied over the years; most of these studies

consider Euclidean spaces, where the distance between two objects is determined

by their relative position in space. However, in practice, the trajectory between

two objects is specified by the underlying network (such as roads and railways).

Thus, measuring the actual network distance between two objects (the length of

the shortest road connection between them) is more important than measuring

their Euclidean distance. Spatial network databases research, (Nguyen & Cao,

2012; Papadias et al., 2003; Safar, 2005; Taniar et al., 2011; Tran et al., 2009),

has focussed on developing efficient algorithms that expand the spatial query

processing methods by integrating connectivity and location information.

In this chapter, we focus on a special type of moving range query based

on road network. Our work is motivated by the following fact: all traditional

range queries try to find all objects of interest around the query point without

controlling the query direction. For example, the user may invoke a query to

find all “shopping centres” within 4km along his moving path from S to D,

ignoring any shopping centre that is left behind. In such a request, the query

6. LOOKFORWARD MOVING RANGE QUERY 146

path direction and the user’s location are two crucial conditions that need to be

considered. Therefore, we propose a novel query processing technique for the

moving range query in spatial network databases, called lookforward moving

range query (LMR).

In this technique, we introduce a new way to distinguish between the sig-

nificant important objects and the minor important objects inside the boundary

of the moving range query. Only objects that are located in the direction of the

user while he/she is moving are recorded, excluding that are behind the moving

user or will divert the user away from his/her trajectory. We also improve the

selectivity of the filter step to reduce the number of candidate objects, and con-

sequently, minimise the number of communications between the mobile device

and the database server. The resulting technique achieves a better running time

and delivers a better performance, yet with low split points. To the best of

our knowledge, this is the first work that excludes of some objects inside the

boundary of the range query, which are unimportant to the user, to achieve

processing effectively.

6.2 Approximate Trajectory Techniques - Prelimi-

naries

Our approach is based on moving range query processing in spatial road net-

works. We have employed the advantages of an approximate trajectory to

achieve a better result for forward objects of interest.

The moving query follows a path through space as a function of time. This

path is called a trajectory. To capture the accurate and complete trajectory of a

moving query a massive amount of data is needed. Therefore, there is a need

6. LOOKFORWARD MOVING RANGE QUERY 147

to reduce the size of the data required to store a trajectory in order to save

storage costs and reduce excessive data.

In previous research, trajectory data reduction techniques have been used

to reduce the data size of trajectory representation without greatly reducing

accuracy. With such techniques, if the inaccuracy of the user’s location is

beyond the application conditional threshold (error tolerance), then the location

of the user needs to be reported to the location server (database server).

There is a specific rate of allowable inaccuracy that is used to deal with the

positions of points in multidimensional space. Distance-based error measure has

been used to specify the allowable inaccuracy rate (Alavi & Pahlavan, 2003).

If we consider the error threshold used in online data reduction techniques,

we will find that measuring the error threshold can be done using the aggregation

distance between the approximated trajectory and the original trajectory. Hence,

the distance between a location on the original trajectory gained from the posi-

tioning mechanism is very close to an estimated location on the approximated

trajectory.

Therefore, measuring the error can be done by computing the average or the

total perpendicular Euclidean distances from each of the sampled location points

in the original trajectory to the approximated trajectory. Perpendicular Euclidean

distance is used in the Douglas Peucker algorithm as the error measure (Douglas

& Peucker, 1973; Hershberger & Snoeyink, 1992). This algorithm is one of the

main methods used to simplify the original trajectory (approximate trajectory),

such that the simplified trajectory has fewer points and deviates from the original

trajectory by at most γ (the error threshold) at any point.

There are two types of approximate trajectory algorithms, batch and online.

Batch algorithms require the availability of a full data series, while the online

algorithms do not. Online algorithms are used to approximate data streams in

6. LOOKFORWARD MOVING RANGE QUERY 148

real time. Batch algorithms always produce better quality results when compared

to online algorithms. Approximation algorithms can be grouped into one of the

following three categories (Meratnia & By, 2004); top-down, bottom-up and

sliding window. Top-down and bottom-up algorithms are classified as batch

algorithms while sliding window algorithms are classified as online algorithms.

We will review these algorithms below.

6.2.1 Top-Down Approximate Technique

In this algorithm, the main idea is to replace the original trajectory by an approx-

imate line segment. If the replacement does not meet the error requirement, then

a recursive process will partition the original problem into two sub-problems by

selecting the location point contributing the most errors as the division point.

This process will continue until the error between the approximate trajectory

and the original trajectory is below the specified error threshold.

The Douglas Peucker (DP) algorithm is one of the most popular top-down

methods and is often used, and was originally proposed for, line simplification.

This algorithm tries to keep the directional trends in the approximation line

using a distance threshold (error threshold), which may be changed according

to the required simplification amount.

The original trajectory can be represented as a polyline L = {r1,r2, ...,rn}

and the error tolerance can be represented as γ , where ri is the location of the

moving query at time ti. The Douglas Peucker algorithm is used to obtain a

simplified trajectory. Initially, the algorithm selects the first point and the last

point of the data series of the trajectory as the anchor point (ra) and the float

point (r f) respectively, and constructs a straight line between the anchor point

(ra) and the float point (r f) rar f . For all data points between the anchor and the

6. LOOKFORWARD MOVING RANGE QUERY 149

float, the perpendicular distance to the constructed line connecting anchor and

float points is defined, then the algorithm finds the point ri ∈ L farthest from

the line. If the Euclidean distance is DE(ri,rar f)≤ γ , then the segment rar f is

reported as the simplified trajectory. Otherwise, the line (rar f) is divided at the

data point that causes the farther distance (ri). This divided point (ri) becomes

the new anchor point for the second segment, and the float point for the first

segment. The algorithm recursively examines the new sub-trajectories {ra, ...,ri}

and {ri, ...,r f }, reporting the concatenation of their simplified trajectories as the

simplified trajectory (Zheng & Zhou, 2011).

The Douglas Peucker algorithm is illustrated in Figure 6.1 to find the ap-

proximate trajectory from r1 to r20. As shown, in step 1 (see Figure 6.1(a)), the

starting point r1 and end point r20 are selected as the anchor point and the float

point respectively, to generate an approximate line segment r1r20. We derive

the perpendicular Euclidean distance from each sampled location point on the

original trajectory to the approximate line segment r1r20. The sampled location

point deviating the most from r1r20, i.e. r11 in this example, is chosen as the

division point because some of the perpendicular error distances are greater than

the error tolerance. In the second step of the algorithm (see Figure 6.1(b)), the

trajectories r1r11 and r11r20 are used to approximate the original trajectory. In

this step, the original problem is divided into two sub-problems where the line

segment r1r11 is to approximate the sub-trajectory {r1, r2, ..., r11} and the line

segment r11r20 is to approximate the other sub-trajectory {r11, r12, ..., r20}.

As shown, in the first sub-problem, several sampled location points have

their perpendicular error distances to r1r11 greater than the error tolerance.

Therefore, r4, the sampled location point deviating the most from r1r11, is

chosen as the division point. Then, the line segment r1r4 is to approximate the

sub-trajectory {r1, r2, ..., r4} and the line segment r4r11 is to approximate the

6. LOOKFORWARD MOVING RANGE QUERY 150

r1

r2

r3 r4
r5

r11

r12

r13

r14

r6

r7

r8 r9

r10

r15

r16 r17
r18

r19

r20

(a) Step 1

r1

r2

r3 r4
r5

r11

r12

r13

r14

r6

r7

r8 r9

r10

r15

r16 r17

r18

r19

r20

(b) Step 2

r1

r2

r3 r4
r5

r11

r12

r13

r14

r6

r7

r8 r9

r10

r15

r16 r17

r18

r19

r20

(c) Step 3

Figure 6.1: Top-down algorithm using Douglas Peucker algorithm

other sub-trajectory {r4, r5, ..., r11}. As a result, the division sub-trajectories are

processed recursively until all the sampled location points have perpendicular

distances to their approximate line segments within the error threshold.

Returning to the second sub-problem, the perpendicular distances of all the

sample points to the line segment r11r20 are smaller than the error tolerance.

Therefore, further dividing is not required. Thus, the final approximated trajec-

tory is {r1,r4,r11,r20}.

The Douglas Peucker algorithm, thus, uses the points that deviate the most

to approximate the trajectory in order to reduce error. However, this algorithm

cannot guarantee that the selected division points are the best choices (Zheng

& Zhou, 2011).

6. LOOKFORWARD MOVING RANGE QUERY 151

6.2.2 Sliding Window Approximate Technique

The online approximate algorithms are not relevant and practical as batched

algorithms. It is true that batched approximate algorithms produce excellent

approximations due to the access of the whole trajectory, but this will not

prevent the fact that online algorithms are functional in realistic applications.

The sliding window algorithms are used for time series data mining, therefore, it

can be applied in trajectory approximation. The basic concept of this algorithm

is to fit the location points with a valid line segment in a growing sliding

window. Then, the algorithm proceeds in growing the sliding window and

its matching line segment until reaching an approximation error that exceeds

certain error limits. The algorithm starts by initialising the first data point of

the trajectory as the anchor point ra and the third data point in the trajectory

as the float point r f . As long as all perpendicular Euclidean distances of all

data points in the window (i.e., between the anchor and the float points) are

below the error threshold, the sliding window will continue to expand (i.e. by

including the next data point).

When a new data point ri is added to the sliding window, the line segment

rari is used to fit the sub-trajectory containing all the location points within the

sliding window. The sliding window expands by including the next location

point ri+1, as long as the distance errors for all the location points contained in

the sliding window, derived against the potential line segment rari, are smaller

than the error threshold γ . Otherwise, two strategies can be applied: either,

• Before Opening Window BOPW

• Normal Opening Window NOPW

which are introduced by Meratnia and de By (Meratnia & By, 2004).

6. LOOKFORWARD MOVING RANGE QUERY 152

In the BOPW strategy, the last valid line segment rari−1 is included as part

of the approximated trajectory, ri−1, ri+1 and {ri−1,ri,ri+1} are set as the new

anchor point, the new float point and the new sliding window, respectively. The

algorithm continues to visit all the location points in the original trajectory.

Figure 6.2 illustrates the Before Opening Window algorithm. First, r1, r3

and {r1,r3} are set as the anchor point, the float point and the initial sliding

window, respectively. The sliding window expands into {r1,r2,r3,r4} since

r1r3 fits {r1,r2,r3} very well. Once more, all the location points within the

sliding window {r1,r2,r3,r4} do not have a distance error greater than the

pre-defined error threshold, i.e. r1r4 fits {r1,r2,r3,r4} sufficiently well. Thus,

the algorithm continues to expand the sliding window into {r1,r2,r3,r4,r5}.

Since r1r5 fits {r1,r2,r3,r4,r5} very well, the sliding window expands into

{r1,r2,r3,r4,r5,r6}. At this time, the distance errors for some location points

in the sliding window are greater than the error threshold, i.e. r3 and r4,

(r1r6 does not fit {r1,r2,r3,r4,r5,r6}). As a result, the last valid line segment,

i.e. r1r5, is granted as a part of the approximated trajectory. Afterward, the

anchor point and the sliding window are reset as r5 and {r5,r7}, respectively,

by adding the next data point (r7) into the sliding window to be the float

point. The algorithm continues to process the rest of the trajectory and then

eventually chooses {r1,r5,r12,r20} as the approximated trajectory, where the

sub-trajectories {r1,r2,r3,r4,r5} to fit with r1r5, {r5,r6,r7,r8,r9,r10,r11,r12} to

fit with r5r12 and {r12,r13,r14,r15,r16,r17,r18,r19,r20} to fit with r12r20. Thus,

the final approximated trajectory is {r1,r5,r12,r20}.

The NOPW strategy chooses location points within its sliding window, which

have the highest distance error as the closing point of the approximating line

segment and at the same time as the new anchor point. NOPW applies the

Douglas Peucker algorithm on the data in the window. This trail and error

6. LOOKFORWARD MOVING RANGE QUERY 153

Figure 6.2: Sliding window algorithm using BOPW algorithm

works very well in reducing the approximation error. With the new anchor

point ra, the NOPW algorithm continues to process the rest of the trajectory.

Figure 6.3 illustrates the NOPW algorithm. First, r1, r3 and {r1,r2,r3} are

set as the anchor point, the float point and the initial open window, respectively.

Similar to the explanation in Figure 6.2, the segments r1r3, r1r4 and r1r5 re-

spectively fit the windows {r1,r2,r3}, {r1,r2,r3,r4} and {r1,r2,r3,r4,r5} very

well, because all the location points within these windows do not have distance

error greater than the pre-defined error threshold. When the sliding window

expands into {r1,r2,r3,r4,r5,r6}, the errors for r3 and r4 are greater than the

error threshold. Instead of choosing r5 as the closing point (i.e., BOPW algo-

rithm does), the NOPW algorithm chooses r3 as the closing point (i.e., similar

to DP algorithm) to include the line segment r1r3 as a part of the approxi-

mated trajectory (r3 is deviating the most from r1r6). Then, the anchor point

is reset as r3 and the sliding window is reset as {r3,r4,r5,r6}. The algorithm

continues to process the rest of the trajectory and then eventually chooses to fit

{r5,r6,r7,r8,r9,r10,r11} with r5r11 and {r11,r12,r13,r14,r15,r16,r17,r18,r19,r20}

with r11r20. Thus, the final approximated trajectory is {r1,r3,r11,r20}.

Top-down and sliding window algorithms are computationally expensive.

The time complexity of both algorithms is O(N2) with N being the number of

data points (Meratnia & By, 2004).

6. LOOKFORWARD MOVING RANGE QUERY 154

Figure 6.3: Sliding window algorithm using NOPW algorithm

6.3 Lookforward Moving Range Query

Lookforward moving range query is a conditional moving range query which

restricts the results (objects of interest) in the forward direction of the query

path. We design a new method, called lookforward moving range query LMR

which is based on the spatial road network to eliminate some objects of interest

within the range query which are less important to the moving user. This

elimination will reduce the number of the objects of interest in the result list,

leading to a reduction in the number of split points along the path of the

query. This reduction will positively affect the number of updates for the query

location.

The main problem with the moving range query based on the road network,

is the multiple number of communications between the mobile device and the

database server. Moreover, the users cannot make a decision due to the fast

updating of the search result in areas with a high density of objects. Also,

many users do not like to divert their route to heading back and away from

there original path. To solve such problems, we consider a new type of moving

query called lookforward moving range query (LMR) which is based on the

spatial road network. In this technique, we eliminate all objects of interest that

are less important to the user. The user will only focus on objects ahead of

them while they are moving on their path. Any object that will make the user

6. LOOKFORWARD MOVING RANGE QUERY 155

divert back from their original path will be excluded, at the same time critical

objects will also be excluded, to give the user sufficient time to make a decision.

The idea of LMR is to divide the entire query path into segments where

each segment represents a link between two consecutive road intersections, then

to implement the search at both ends of each segment to divide each segment

into sub-segments. Each sub-segment is a link between either consecutive two

split points or between a split point and an adjacent intersection.

Generally, our LMR technique has six steps to find the objects of interest:

filter step, refinement step, expansion step, half space step, split step and result

step. The half space step is particularly important for cleansing objects of

interest and give the moving query a perfect result. Full details of our proposed

approach LMR and its algorithm are presented below.

6.3.1 Filter Step and Refinement Step

The filter step and refinement step in the lookforward moving range query is

similar to the filter step and refinement step in the static range query (see Section

2.1.1 Static Range Query). However, in the static range query, the query q is a

point and when the search starts traversing the R-tree, then a prune will occur

to eliminate all MBRs with MinDist to the query point q that are greater than

e, whereas, in our technique the query q is a path ([S,D]) from a road network.

MBRs with Euclidean minimum distance MinDist to q = [S,D] greater than or

equal to e, will be pruned.

Figure 6.4 shows an example of the first two steps (filter and refinement)

of our proposed LMR technique which clearly explains the filter step and re-

finement step. SD is a path from the road network which represents the query

path q = [S,D]; starting at S and ending at D. If we assume the radius e of the

6. LOOKFORWARD MOVING RANGE QUERY 156

S

p1

p3

p4
p5

p6

p7

R1

R2

R3

R4

R5

R6

R7

D
p2

p8

p9

p10

p11
p12

p13

p14

p2 p10 p5 p6 p7 p4 p9 p14

R3 R4 R5 R6 R7

R1 R2

p11 p12 p13 p1 p3 p8

Figure 6.4: Filter step and refinement step

query is equal to 5, then in these steps (filter and refinement) all the MBRs,

objects and segments, that fall farther away than the Euclidean distance e(5)

from the query path (S,D) are pruned. In our technique we have added another

prune: each item (X) located Euclidean distance e from the query path will also

be pruned (e.g., the MBR R4 and the object p10), where X is either an object

or an MBR. As we know DN ≥ DE , which means there is a high probability

this object is located outside the network distance e. On the other hand, if

6. LOOKFORWARD MOVING RANGE QUERY 157

Table 6.1: Minimum distance between the object and the query path [S,D]

Object Euclidean Distance (DE) Network Distance (DN)
p1 3 3
p2 3 4
p3 3 3
p4 2 2
p5 2 2
p6 2 3
p7 3 3
p8 3.6 6
p9 3 8

p10 5 16
p11 5 5
p12 8 11
p13 9.2 11
p14 2 5

DN = DE of this object then this object will be a critical object. A critical

object is an object that enters the range search for a very short period and the

distance between its two split points is zero or almost zero. The result will be

{p1, p2, p3, p4, p5, p6, p7, p8, p9, p14} and the segments that go through these

objects. These objects will be in the filter list FL, ∀pi ∈ FL,(DE(pi,q) < e),

and they should pass the next three steps to enter the result list and become

objects of interest. Table 6.1 shows the Euclidean distance DE and network

distance DN between each object; and the query path [S,D] depends on Figure

6.4.

6.3.2 Expansion Step

The expansion step examines the query path [S,D] intersection-by-intersection.

A segment is an interrupted path from one intersection to another intersection.

The example in Figure 6.5 has only objects and segments that have passed

the previous steps. This figure is derived from Figure 6.4. Figure 6.5 shows

6. LOOKFORWARD MOVING RANGE QUERY 158

S

p1

p3

p4
p5

p6

p7

R1

R2

R3

R4

R5

R6

R7

D
p2

p8

p9

p10

p11
p12

p13

p14

S

p1

p3 p5

p6

p7

D
p2

p8

p9

p14

r1

r2 r3

r4 r5

r6

r7 r8
r9
r10

r11

r12

r13

r14

r15

p4

Figure 6.5: Expansion step

segments that start from point S to intersection A, from intersection A to in-

tersection B, and also from intersection B to intersection C, and so on until

destination point D.

The expansion step, in our technique, goes through two steps to achieve the

final result: i) segmenting the query path, and ii) processing the LMR query

for each intersection.

Segmenting the Query Path

Segmenting the query path means breaking the path [S,D] into segments as

follows: (S,r1,9), (r1,r2,4), (r2,r3,2), (r3,r4,6), (r4,r5,3), (r5,r6,4), (r6,r7,3),

(r7,r8,5), (r8,r9,3), (r9,r10,2), (r10,r11,2), (r11,r12,5), (r12,r13,2), (r13,r14,3),

(r14,r15,3) and (r14,D,2), where the separated number represents the length of

the segment.

6. LOOKFORWARD MOVING RANGE QUERY 159

Expansion Processing for Each Intersection

This step is based on the Range Network Expansion (RNE) technique. For each

segment on the path we do the following processing to calculate the network

distance between the objects and the intersections on the query path. We expand

both ends of the segment by applying RNE to retrieve all the interest entities

within a network distance less than e, and add them to the pre-result list PRL.

The objects (p8, p9 and p14) that passed the last steps will be excluded in

this step because their network distance to the query path is not less than e

(see Table 6.1), and in the same time their path will also be excluded. The

segments of the query path (S,D) will be adjusted, and any segment that does

not have any intersection will be merged with its neighbour. For example, after

removing the object p9 and p14, the segments (r6,r7,3), (r7,r8,5), (r8,r9,3) will

be combined together in one segment (r6,r9,11) (see Figure 6.5). Then, the pre-

result list will be PRL = {p1, p2, p3, p4, p5, p6, p7}, ∀pi ∈ PRL,(DN(pi,q)< e),

where q is the query path (S,D), and the network distance between the objects

and the ends of the segments will be added to the expansion list EL.

6.3.3 Half Space Step - on Original Path

The half space method will be applied on the query path to consider which

object represents the forward direction of the moving query. For each object in

the PRL, we will draw a perpendicular line to the path query that goes through

the intersection between the query path [S,D] and the path that will lead to

the object. Considering the perpendicular line as the y axis, forward half space

will include the first and fourth quadrants (the x axis is positive), while the

backward half space will include the second and third quadrants (the x axis

is negative). Each object is considered as backward will be eliminated from

6. LOOKFORWARD MOVING RANGE QUERY 160

S

p1

p3

p5
p6

p7

D
p2

r1

r2 r3

r4 r5

r6 r9

r10
r11

r12

r13

r14

r15
PL2

PL1

PL3

PL4
p4

PL5

PL6

PL7

Figure 6.6: Half space step

the PRL. Figure 6.6 shows the perpendicular lines that are drawn in a dished

line, where PLi represents the half space of object pi. In this figure, the objects

{p1, p2, p3, p4, p5, p7} and {p6} are forward and backward objects respectively.

The backward object(s) will be pruned from the PRL.

6.3.4 Split Step

The fifth step is the split step, which is used to determine at which point

the user will obtain a new result. This result either has a new interest object

that enters the range search, or an object becomes out-of-date (i.e., leaves

the range search) and should be removed from the result. In either way, the

communication between the user and the database server should be reestablished

at the split point.

All interest objects in the pre-result list that pass the last four steps should

get through the split step. In this step, two split points (si, di) are determined

on the query path for each object of interest pi within the range search. The

two split points (si, di) create a subsegment on the query path, where (si, di)

represent the start and the end of the subsegment respectively. At each splitting

6. LOOKFORWARD MOVING RANGE QUERY 161

point, the result should be updated when an object enters or leaves the range.

For each split point si,di ∈ SP (1 ≤ i ≤ n, where n represents the number of

interest objects in PRL): si,di ∈ path [S,D], all points in subsegment (si, di)

will consider pi as one of the interest objects, where SP is the split points list

and PRL is the pre-result list which contains all objects of interest within the

range search from the query path that passed the previous steps. The split step

determines two split points for each interest object in the PRL by drawing and

calculating the position of the split nodes using the formula of:

SP[pi] = e−DN(Y, pi) (6.1)

where Y is the end of the segment, pi is an object in the pre-result list and

e is the radius of the query. However, because we are only concerned with the

forward objects, then the split point when the object leaves the range search

(di) will be the intersection between the query path and the path that leads to

the object pi to prevent the query from diverting back to reach the query.

Figure 6.7 shows how the split point will be created on the query path. For

each object in the pre-result list, two split points will be located on the query

path at (si, di). ∀si,di ∈ SP{s1,s2, ...,sn,d1,d2, ...,dn}, DN(S,si) < DN(S,di):

1 ≤ i ≤ n , where n represents the number of interest objects in PRL, and si and

di represent the location where the object pi enters and leaves the range search,

respectively (i.e., (s1, d1) are the split points of p1, (s2, d2) are the split points

of p2 and so on). To avoid scanning the database repeatedly, all split points

with their corresponding coverings are reported. The split point list SP has the

start point S if there are no objects left in the range since the start.

Figure 6.7 shows overall there are fourteen split points: two split points at

distance 7 and 9 from S at segment Sr1, two split points at distance 3, and 4

6. LOOKFORWARD MOVING RANGE QUERY 162

from r1 at segment r1r2, two split points at distance 1 and 3 from r4 at segment

r4r5, three split points at distance 2, 4 and 5 from r11 at segment r11r12, one

split point at distance 2 from r12 at segment r12r13 and lastly, two split points

at distance 4 and 6 from r13 at segment r13r15. The query results for segment

Sr1 are:

S = {ϕ} no object within the range query at the be-

ginning

S → s1 = {p1} p1 is entering at s1

s1 → r1 = {ϕ} p1 is leaving at r1

While the query results for segment r1r2 are:

r1 = {ϕ}

r1 → s2 = {p2} p2 is entering at s2

s2 → r2 = {ϕ} p2 is leaving at r2

The query result will be the same along the segments r2r3 and r3r4 which

is {ϕ}. The query results for segment r4r5 are:

r4 = {ϕ}

r4 → s3 = {p3} p3 is entering at s3

r5 = {ϕ} p3 is leaving at r5

The query result will be the same along the segments r5r6, r6r9, r9r10 and

r10r11 which is {ϕ}. While the query results for segment r11r12 are:

6. LOOKFORWARD MOVING RANGE QUERY 163

r11 = {ϕ}

r11 → s4 = {p4} p4 is entering at s4

s4 → s5 = {p4, p5} p5 is entering at s5

s5 → r12 = {p5} p4 is leaving at r12

While the query results for segment r12r13 are:

r12 = {p5}

r12 → r13 = {ϕ} p5 is leaving at r13

While the query results for segment r13r15 are:

r13 = {ϕ}

r13 → s7 = {p7} p7 is entering at s7

s7 → r15 = {ϕ} p7 is leaving at r15

Finally, the query result will be the same along the segments r15D which is

{ϕ}.

According to Figure 6.7, the query path [S,D] is divided into a number of

segments; they are the link between consecutive intersections. In addition, there

are two types of subsegments created on the query path, namely, object segment

and result segment. The object segment is created by an interest object in the

location where it enters and leaves the range search. For each object segment,

si and di are the start and the end point of this segment respectively, where

si,di ∈ SP and pi ∈ PRL. For example, within the object segment (s1,r1), p1

will remain in the result list from s1 to r1, even when the moving query passes

any number of split points. Hence, p1 will be safe within this segment. On the

other hand, the result segment which is created by either intersection between

6. LOOKFORWARD MOVING RANGE QUERY 164

S

p1

p3 p5

p7

D
p2

d1, r1

r3

r4

r6 r9

r10

r11

p4
s1

s2

s3

s4

s5

s7

d2,r2

d3,r5

d4,r12

d5,r13

d7,r15

Figure 6.7: Split step

two object segments (i.e., (s4,s5)), or the gap between an object segment and

its neighbour (i.e., r13,s7), will remain unchanged while the moving query is

within the result segment, because no object is entering or leaving the range.

Consequently, at each split point the result can only be changed.

Let’s take Figure 6.8 to show the three types of segments in more de-

tail. There are four road segments (r11,r12), (r12,r13), (r13,r15) and (r15,D).

While the subsegments (r11,s4), (s4,s5), (s5,r12), (r12,r13), (r13,s7), (s7,r15)

and (r15,D) represent the result segments. On the other hand, the subsegments

(s4,r12), (s5,r13) and (s7,r15) represent the object segments. p4 is the only

result of the query while the query moves in the result segment (s4, s5). When

the query enters the result segment (s5,r12) then the result will be (p4, p5).

With the continuous movement of the user, reaching the result segment (r12,r13)

will make the result become (p5). It is very obvious that the object p4 remains

in the result list while the query is moving within the object segment (s4,r12),

and p5 remains in the result while the query is in the object segment (s5,r13)

6. LOOKFORWARD MOVING RANGE QUERY 165

p5

p7

Dr11

s4 s5 s7

r12 r13 r15

p4

road segment

result segment

object segment

Figure 6.8: Object segment and result segment

and so on. Therefore, after finding out all split points, the communication be-

tween the user and the database server will occur only when the user reaches a

split point to update the result list.

6.3.5 Result Step

Up to this step we have two lists, pre-result list and split points list. The

pre-result list will be given to the user step by step according to the split points

in the split points list.

6.3.6 LMR Algorithm

R-tree is used to index the objects with high performance. A query path [S,D]

and the radius of the query e are given to find all objects of interest, such as

post offices, within this radius along the query path. This method will consider

Euclidian and network distance to collect the objects of interest.

The algorithm of the lookforward moving range query based on the road

network works as follows: each intermediate node, R, should be determined as

a candidate and then to be expanded if MinDist(R,q) < e. That means, this

internal node which is within the range search of e should be expanded to

6. LOOKFORWARD MOVING RANGE QUERY 166

Algorithm 6.1. Lookforward moving range query algorithm

1: /* [S,D]: the query path (q) and e: the radius of the query */
2: /* Find all objects around the query q which are located in the forward

direction */
3: LIST RL, SP, FL, PRL
4: Start from the root of the R-tree
5: Find all candidates MBR R, MinDist(R,q)< e
6: for each candidate MBR do
7: if DE(pi,q)< e then
8: FL.add(pi)
9: end if

10: end for
11: divide the query path [S,D] to segments
12: each segment has two ends (r j,r j+1)
13: for each segments in the query path do
14: expand r j,r j+1 in all directions for DN(e)
15: each object (pi) in FL,
16: if DN(pi,r j(r j+1))< e then
17: PRL.add(pi)
18: end if
19: end for
20: for each intersection r j in [S,D] do
21: draw a perpendicular line at it
22: if pi is backward then
23: PRL.remove(pi)
24: end if
25: end for
26: for each object pi in PRL do
27: find two split points, si and di, on the query path q, where DN(pi,si) = e

and DN(pi,di) = DN(pi,q)
28: SP.add(si)
29: SP.add(di)
30: RL.add(pi)
31: RL.add(si)
32: RL.add(di)
33: end for

look for qualified object(s). The algorithm will determine whether the qualified

object pi from a candidate internal node has DE(pi,q)< e, and then will place

this object in the filter list FL.

6. LOOKFORWARD MOVING RANGE QUERY 167

All qualified objects in FL within Euclidean distance less than e from the

query path [S,D], should be tested against the network distance in order to

find the objects of interest. Each segment in the query path will be examined,

and the expansion from both ends of the segment will occur using the Range

Network Expansion (RNE) technique. Only the direction which has an object

in FL will be examined to find out which object falls within network distance

e from [S,D] and this object will added to PRL.

For each object in PRL, two split points will be determined: first si when

this object becomes within the range search e from [S,D] (joins the query),

and second is the split point di when this object becomes behind the query

(expires). For each split point, joining or expiring, the database server should

send up-to-date results to the user.

6.4 Simplifying the Query Path

The half space step (in Section 6.3.3) will be applied to the original path (path

query). Some objects may represent the forward objects according to the current

query location, but by taking the whole path they may not. When there is a

small bend, a u-turn or zig zag, in the road the result will not be accurate, this

happens when the half space depends on the original path. For example p1

in Figure 6.6 should not be considered as forward objects because the query

will change its direction. Also, finding the perpendicular line on a non straight

line is complicated (i.e., the data of the query path comes from raster datasets)

(ESRI, 2014). Therefore, we developed two other methods to find the forward

objects, named simple trajectory and approximate trajectory.

6. LOOKFORWARD MOVING RANGE QUERY 168

S

p1

p3

p5
p6

p7

D
p2

r1

r2
r3

r4 r5

r6 r9

r10 r11

r12

r13

r14

r15

PL2PL1 PL3
PL4

p4

PL5

PL6

PL7

Figure 6.9: Simple approximate trajectory

6.4.1 Simple Trajectory

In this method, a straight line (called simple trajectory) is drawn between the

start point S and the destination point D (SD) of the original path (the query

path). Then, a perpendicular line is drawn from each intersection located on

the original path to the simple trajectory SD. Figure 6.9 shows the simple

trajectory method. By applying this method, the objects {p2, p3, p5, p6} are

forward objects while {p1, p4, p7} are backward objects. This method solves

the problems that faced the original path, which were mentioned in the previous

section, but it fails to give accurate results. For example, it includes p6 as a

forward object.

6.4.2 Approximate Trajectory

We have adopted the Douglas Peucker (DP) algorithm to find more accurate

lookforward objects. The reason for choosing the batch algorithm (e.g., DP) is

that the location server is able to access the whole data series of the path query.

6. LOOKFORWARD MOVING RANGE QUERY 169

S

p1

p3

p5
p6

p7

D
p2

r1

r2
r3

r4 r5

r6 r9

r10 r11

r12

r13

r14

r15

PL2PL1

PL3

p4
PL4

PL5

PL6

PL7

Figure 6.10: Approximate trajectory using Douglas Peucker algorithm

DP considers the original path as time segments; in our work the path is the

intersection segments. After finding the approximate trajectory, a perpendicular

line between the intersection and the corresponding approximate segment will

be applied. Figure 6.10 shows our method on the approximate trajectory to find

the forward objects. The objects {p2, p3, p4, p5, p7} are forward objects while

{p1, p6} are backward objects. The result of this method is more genuine than

the other two methods.

6.5 Experimental Results

To examine our approach, the lookforward moving range query, we use the Mel-

bourne City road network provided by google maps https: / / maps .google

.com .au/ and ArcGIS maps http: / / www .arcgis .com/ home/ webmap/ viewer

.html .

6. LOOKFORWARD MOVING RANGE QUERY 170

6.5.1 Experiment

We measure the performance of our LMR technique with respect to the average

number of query location updates compared with the moving range query. Note

that, query location update means that at each split point the query will establish

a communication with the database server to send its new location, and at the

same time the server will send back an updated result list to the query. By

reducing the number of split points the query will get a better performance.

We select 200 random queries in various distributions and range sizes. To

create the average result, 100 objects, 300 objects and 500 objects represent the

low, medium and high density environments respectively. We consider the post

offices as low density objects, petrol stations as medium density objects and

restaurants (including takeaways) as high density objects. In addition, we use

different range searches, from 5km to 40km.

Figure 6.11 shows the average result of the experiments that examine the

number of split points in the lookforward moving range query approach and

compare it with the moving range query. The experiment shows, regardless of

the length of the query’s radius and the number of objects in the dataset, the

number of split points are within a linear growth in both of the techniques.

Considering the total number of split points (updating load), the total is

considerably large in the moving range query compared with LMR. In the low

(Figure 6.11(a)), medium (Figure 6.11(b)) and high (Figure 6.11(c)) density

figures the number of split points of our technique is approximately 30% fewer

than in the moving range query when the radius of the query is small (e.g,

5km). Whereas, the number of split points in the LMR query is quite less than

in the moving range query when the radius of the search becomes bigger (e.g,

when the radius is 40km, it is approximately a half). On the other hand, the

6. LOOKFORWARD MOVING RANGE QUERY 171

Split point

e

(a) low density 100 objects
Split point

e

(b) medium density 300 objects
Split point

e

(c) high density 500 objects

Figure 6.11: Number of split points in moving range query and LMR based on
road network

number of false hits in our technique is slightly less than in the moving range

query, because we eliminate some MBRs in the filter step.

6. LOOKFORWARD MOVING RANGE QUERY 172

(a) Using Original path

(b) Using simple trajectory

(c) Using approximate trajectory

Figure 6.12: Case study 1

6.5.2 Case Studies

In this section we present two case studies to explain our methods (original

path, simple trajectory and approximate trajectory) to find the forward objects.

6. LOOKFORWARD MOVING RANGE QUERY 173

Case 1

Figure 6.12 shows our three methods, original path (Figure 6.12(a)), simple tra-

jectory (Figure 6.12(b)) and approximate trajectory (Figure 6.12(c)). As shown

in these figures, p3 is considered as a backward object only in the approximate

trajectory method, which is correct. On the other hand, p4 is considered as a

backward object only in the simple trajectory method and that is correct, but at

the same time this method has failed to consider p5 as a forward object.

Case 2

Figure 6.13 shows our three methods, original path (Figure 6.13(a)), simple tra-

jectory (Figure 6.13(b)) and approximate trajectory (Figure 6.13(c)). As shown

in these figures, the simple trajectory method considers p4 as a forward object,

which is false. Moreover, this method considers p5 as a backward object which

is also false. On the other hand the results of the original path method and the

approximate trajectory method are matched.

6.6 Summary

In this chapter, we present the lookforward moving range query based on the

spatial road network. Our technique relates Euclidean and network distance

to retrieve related objects and to exclude unrelated ones. We have adapted

the Range Network Expansion (RNE) technique to expand the road network on

selected paths looking for objects of interest. When the server calculates objects

of interest, each object will be examined whether it is forward relate to the user

or not. For each object of interest that the user considers as a backward object,

the server will eliminate it and will not send it to the user. We introduce three

6. LOOKFORWARD MOVING RANGE QUERY 174

(a) Using Original path

(b) Using simple trajectory

(c) Using approximate trajectory

Figure 6.13: Case study 2

6. LOOKFORWARD MOVING RANGE QUERY 175

different methods to achieve this task. All three methods introduce some error.

However, the approximate trajectory method is the most accurate method. This

is an improvement on giving the user all results because: i) the user needs some

time in advance to plan and react to the result, ii) the high number of updates

between the user and database server, will increase the overall workload on the

server, and iii) the users may not be willing to divert from their route, when it

takes them far from their original path.

6. LOOKFORWARD MOVING RANGE QUERY 176

Chapter 7
Conclusion and Future Work

7.1 Overview . 178

7.2 Conclusion . 179

7.3 Future Work . 181

177

7

Conclusion and Future Work

7.1 Overview

In this thesis, we have presented efficient techniques to deal with the moving

range query based on Euclidean and network distances under different settings.

Chapter 3 presented some variants of approximate range queries in Section 3.2,

Section 3.3, Section 3.4 and Section 3.5 respectively. Chapter 4 presented the

novel types of dynamic safe regions for moving range queries. Three different

approaches were discussed in Section 4.2. In addition, a novel method of

calculating the area of safe regions was presented in Section 4.3. Chapter 5

introduced a novel method of monitoring queries that move arbitrarily. Chapter

6, presented three different methods of finding lookforward objects in Section

6.3 and Section 6.4. Finally, the contribution of the thesis and future work are

outlined in this chapter.

178

7. CONCLUSION AND FUTURE WORK 179

7.2 Conclusion

This thesis addresses the challenges of support for querying, updating and mon-

itoring in moving query environments. Various techniques to efficiently answer

different types of moving range query based on Euclidean and network distance

under different circumstances were presented. Chapter 3 outlined our research

on efficient approximate results of static and moving queries based on Euclidean

and road network databases. In Chapter 4 and Chapter 5, new types of dynamic

safe regions for the moving range query were presented. A unique technique to

monitor moving queries to minimise the computation and communication costs

was also introduced. In Chapter 6, our approach for monitoring a special type

of moving range query, which emphasises objects in the direction of the moving

query was illustrated. These achievements are detailed below.

In Chapter 3, we addressed the drawbacks of the moving range query under

different circumstances, and introduced different new approaches namely, (ASR

and AMR based on Euclidean distance) and (ARER, ARNE and AMR based

on a spatial road network) to obtain the query result effectively. The main

idea behind our approaches is to use the advantages of the approximation in

order to improve the performance of range queries. Therefore, our new queries

obtain results faster, with less computation costs. The new queries are aimed at

reducing the critical objects that enter and exit a range search over a short time

interval, thus giving a user time to make a decision. By reducing the number

of false hits and number of communications with the server, these queries

reduce the number of split points. Several experiments on each approach were

conducted. The results show that our proposed queries give a better performance

in terms of search time and search accuracy.

7. CONCLUSION AND FUTURE WORK 180

Chapter 4, we focussed on two main goals: first, minimising the frequent

updates of the query location; and second, keeping costs low while monitoring

the moving query. Consequently, we proposed a continuous range safe region

methods for mobile navigation with moving queries. We demonstrated that our

methods avoid supplementary communication between query and server while

the query is in the safe region which reduces the need for continuous query

monitoring and eliminate need for a user to follow a defined path, and allows

the user to avoid location disclosure while in the safe region thereby retaining

privacy. Evaluation of the performance of our methods shows that our method

reduces server query monitoring and reduces communication costs while the

query moves within its safe region.

In Chapter 5, we discussed the fact that predicting the direction of the

queries becomes a challenge to the research community because the movement

of the queries cause a query’s results to change continuously. We address this

challenge in this chapter and propose a novel method to monitor the position of

the query over time using a linear function based on the direction of the query

obtained by periodic monitoring of its position. Our method reduces the load

on the server by making the client monitor itself; on top of that, the client can

have more privacy while moving. We use the time and the concept of the safe

region together, hence, if the query makes a sudden turn, the result will not be

affected because the query will still be located inside the safe region. In our

method, the user will have an indication about how far away the nearest object

to the query is, and in what direction from the query.

Finally in Chapter 6, we proposed a novel query processing technique for

the moving range query, called lookforward moving range query. In spatial

databases, all traditional range queries try to find all objects of interest around

7. CONCLUSION AND FUTURE WORK 181

the query point without controlling the query direction. By contrast, we in-

troduce a new way of distinguishing between significant and minor important

objects within the boundary of the moving range query. We only attend to

objects located in the direction of the moving user and exclude objects behind

the moving user or those that will cause a change in trajectory. We also im-

prove the filter step to reduce the number of candidate objects and the number

of communications with the server. The resulting technique delivers a better

running time and performance compared with its competitors.

7.3 Future Work

There are several possible directions for future work in which our ideas can be

applied directly to other applications, or our research can be extended to cover

other areas.

Incomplete and uncertain data are a fundamental problem in spatio-temporal

databases. The reasons for making the data incomplete and uncertain are: i)

inaccurate prediction for moving objects, ii) the power outage of the mobile

device, and iii) the errors during communication between the moving objects

and the spatio-temporal database server; due to the wireless working nature

of the mobile device (Garcı́a-Laencina et al., 2009; W. Cheng et al., 2009).

Our approximate query can work efficiently with these types of data. Also, a

safe zone can be implemented to surround similar data to subsidise the missing

values.

Aggregation is another important area of study in today’s relational database

management systems. Much research has been conducted to improve the per-

formance of the aggregation operations in spatial databases. Some of them have

concentrated on improving the spatial indexing techniques, while others have

7. CONCLUSION AND FUTURE WORK 182

focussed on improving the computational algorithms of the aggregation queries.

Many delicate indexing techniques have been developed to answer range aggre-

gate queries efficiently; the most popular one is the aggregation R-tree (AR-tree)

(Yang et al., 2009). However, AR-tree suffers from some limitations: First, a lot

of information has to be read from the disk. In addition to reading a large deal

of irrelevant information to the query for partially-dimensional range queries

(Feng & Makinouchi, 2010). Second, when any object in the tree is deleted,

inserted or updated; the whole aggregate function on one or more subtree(s)

should be recalculated. Finally, since each intermediate node keeps the aggre-

gate information, the capacity of the nodes will decrease and disk access will

increase (i.e., extra bytes for aggregate information). Therefore, these problems

make obtaining the exact solutions time consuming and difficult to implement.

Consequently, we will consider these problems by developing an approximate

model to process aggregate queries using R-tree. We are expecting to overcome

the limitations of range aggregates that use AR-tree by providing acceptable

approximate answers within a short response time.

Regarding queries, we will consider more query examinations using various

features, such as different types of roads, different geometric areas, and different

underlying networks. We also intend to work on other spatial query types such

as (nearest neighbours query, join query, point query and reverse nearest neigh-

bours query). Each has a set of unique features. Moreover, we are interested

in including random moving query to the lookforward objects method, and us-

ing the sliding window algorithm (explained in Section 6.2) to approximate the

query path when the users move randomly or do not want to reveal their path

to the server.

7. CONCLUSION AND FUTURE WORK 183

Regarding the updating process, we can further consider the algorithms that

support moving queries inside different sizes and shapes of safe regions (i.e.,

buildings). The concept of a safe region can be applied on indoor spaces too.

Further research with respect to monitoring will generalise our method in

multi-environments. Prior (History) is also useful to predict the next query’s

move. Finally, non-linear functions (i.e., recursive motion function (Tao et al.,

2004)) may be used to find a curve that fits the last few reported locations of

a moving query.

Appendix A

Abbreviations

Table A.1: Symbols used throughout this thesis

Symbols Definition

d distance units

di split point when object pi expired

e radius of range query

e′ radius of basic safe region

e′′ radius of enhanced safe region

ε distance absolute error

lowerbound e× (1− γ)

n number of objects

ni intersection node

ρ distance ratio error (e× γ)

pi pi ∈ P

q query point

ra anchor point

r f float point

Continued on next page

184

APPENDIX A. ABBREVIATIONS 185

Table A.1 – Cont.

Symbols Definition

si split point when object pi joins the range

t time unit

upperbound e× (1+ γ)

v velocity of the query

γ distance relative error or error threshold

AMR approximate moving range query

ARER Approximate Range Euclidean Restriction

ARNE Approximate Range Network Expansion

ASR approximate static range query

BOPW Before Opening Window

C candidate objects

CPU central processing unit

DE Euclidean distance

DN network distance

DP Douglas Peucker algorithm

EL expansion list

Fd minimum distance between where the object falls just

inside the range and the boundary of the range

FL filter list

I/O input/output

GIS Geographic Information Systems

GPS Global Position System

HD high density (500 Objects)

Continued on next page

APPENDIX A. ABBREVIATIONS 186

Table A.1 – Cont.

Symbols Definition

LD low density (100 Objects)

LMR lookforward moving range query

MBR Minimum Boundary Rectangle

MD medium density (300 Objects)

MinDist(q,x) minimum distance between query q and x (x is either an

object or a minimum boundary rectangle)

N set of intersection nodes

Nd minimum distance between where the object falls just

outside the range and the boundary of the range

NOPW Normal Opening Window

P set of objects of interest

PLi perpendicular line on intersection which leads to object

pi

PRL pre-result list

QR queue result list

QS qualifying segments

R non leaf node

RL result list

RNE Range Network Expansion

RER Range Euclidean Restriction

RP set of range objects

Rpi range of pi

S,D start and destination points for a query path

Continued on next page

APPENDIX A. ABBREVIATIONS 187

Table A.1 – Cont.

Symbols Definition

SmDist(Nd ,Fd) smallest amount between Nd and Fd

SP split points list

SOL safe-object list

X R-tree node

APPENDIX A. ABBREVIATIONS 186

APPENDIX A. ABBREVIATIONS 187

Publications

Publications arising from this thesis include:

1. AL-Khalidi, H. Taniar, D. and Safar, M. (2011), Approximate static and
continuous range search in mobile navigation. In Proceedings of the
5th International Conference on Ubiquitous Information Management and
Communication. ICUIMC’11, ACM, pp.1-10.

2. AL-Khalidi, H. Taniar, D. and Safar, M. (2013), Approximate algorithms
for static and continuous range queries in mobile navigation. In Comput-
ing. Springer, 95(10-11), pp.949-976.

3. AL-Khalidi, H. Abbas, Z. and Safar, M. (2013), Approximate range query
processing in spatial network databases. In Multimedia Systems. Springer,
19(2), pp.151-161.

4. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2013), On finding
safe regions for moving range queries. In Mathematical and Computer
Modelling. Elsevier, 58(5-6), pp.1449-1458.

5. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2013), Dynamic safe
regions for moving range queries in mobile navigation. In International
Journal of Ad Hoc and Ubiquitous Computing. (Accepted)

6. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2013), Efficient
monitoring of moving mobile device range queries using dynamic safe
regions. In The 11th International Conference on Advances in Mobile
Computing and Multimedia. MoMM’13.

7. AL-Khalidi, H. Taniar, D. Betts, J. and Alamri, S. (2014), Monitoring
moving queries inside a safe region. In The Scientific World Journal.
Hindawi.

8. Alamri, S. Taniar, D. AL-Khalidi, H. and Nguyen, K. (2014), Density-
based for moving query in multi-floor indoor spaces. IEEE Transactions
on Knowledge and Data Engineering. (Under Review).

188

PUBLICATIONS 189

9. AL-Khalidi, H. Taniar, D. Nguyen, K. Betts, J. and Alamri, S. (2014),
Lookforward moving range search query based on road network. In Com-
puters & Mathematics with Applications. Elsevier. (Under Review)

Permanent Address: Clayton School of Information Technology

Monash University

Australia

This thesis was typeset with LATEX 2ε 1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a
trademark of the American Mathematical Society. The macros used in formatting this thesis
were written by Glenn Maughan and modified by Dean Thompson and David Squire of Monash
University.

References

Ahmed, S., & Kanhere, S. S. (2012). On the characterisation of vehicular

mobility in a large-scale public transport network. International Journal of

Ad Hoc and Ubiquitous Computing, 11(2/3), 68–81.

Alamri, S., Taniar, D., & Safar, M. (2013). Indexing moving objects for

directions and velocities queries. Information Systems Frontiers, 15(2), 235-

248.

Alamri, S., Taniar, D., Safar, M., & Al-Khalidi, H. (2013). Spatiotemporal

indexing for moving objects in an indoor cellular space. Neurocomputing,

122(0), 70 - 78.

Alavi, B., & Pahlavan, K. (2003). Bandwidth effect on distance error modeling

for indoor geolocation. In Personal, Indoor and Mobile Radio Communica-

tions (Vol. 3, pp. 2198–2202).

AL-Khalidi, H., Abbas, Z., & Safar, M. (2013). Approximate range query

processing in spatial network databases. Multimedia Systems, 19(2), 151-161.

Al-Khalidi, H., Taniar, D., Betts, J., & Alamri, S. (2013a). Efficient monitor-

ing of moving mobile device range queries using dynamic safe regions. In

Proceedings of International Conference on Advances in Mobile Computing;

Multimedia (pp. 351:351–351:360). New York, NY, USA: ACM.

190

REFERENCES 191

Al-Khalidi, H., Taniar, D., Betts, J., & Alamri, S. (2013b). Dynamic Safe

Regions for Moving Range Queries in Mobile Navigation. (Accepted in:

International Journal of Ad Hoc and Ubiquitous Computing)

AL-Khalidi, H., Taniar, D., Betts, J., & Alamri, S. (2013). On finding safe

regions for moving range queries. Mathematical and Computer Modelling,

58(56), 1449–1458.

Al-Khalidi, H., Taniar, D., Betts, J., & Alamri, S. (2014). Monitoring moving

queries inside a safe region. The Scientific World Journal, 2014. doi: 10.1155/

2014/630396

Al-Khalidi, H., Taniar, D., & Safar, M. (2011). Approximate static and continu-

ous range search in mobile navigation. In Proceedings of the 5th International

Conference on Ubiquitous Information Management and Communication (pp.

1–10). ACM.

AL-Khalidi, H., Taniar, D., & Safar, M. (2013). Approximate algorithms for

static and continuous range queries in mobile navigation. Computing, 95(10-

11), 949-976.

Arya, S., da Fonseca, G. D., & Mount, D. M. (2012). Optimal area-sensitive

bounds for polytope approximation. In Proceedings of the Twenty-Eighth

Annual Symposium on Computational Geometry (pp. 363–372). New York,

NY, USA: ACM.

Arya, S., Malamatos, T., & Mount, D. (2009). The effect of corners on

the complexity of approximate range searching. Discrete and Computational

Geometry, 41(3), 398-443.

REFERENCES 192

Arya, S., & Mount, D. M. (1993). Approximate nearest neighbor queries in

fixed dimensions. In SODA ’93: Proceedings of the Fourth Annual ACM-

SIAM Symposium on Discrete Algorithms (pp. 271–280). Society for Industrial

and Applied Mathematics.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y. (1998).

An optimal algorithm for approximate nearest neighbor searching fixed di-

mensions. The Journal of the ACM, 45(6), 891–923.

Berg, M. d., Cheong, O., Kreveld, M. v., & Overmars, M. (2008). Compu-

tational geometry: algorithms and applications (3rd ed.). Santa Clara, CA,

USA: Springer-Verlag TELOS.

Bern, M. (1993). Approximate closest-point queries in high dimensions. Infor-

mation Processing Letters, 45(2), 95–99.

Bustos, B., & Navarro, G. (2009). Improving the space cost of k-nn search in

metric spaces by using distance estimators. Multimedia Tools and Applica-

tions, 41(2), 215–233.

Cheema, M. A., Brankovic, L., Lin, X., Zhang, W., & Wang, W. (2011).

Continuous monitoring of distance-based range queries. IEEE Transactions

on Knowledge and Data Engineering, 23(8), 1182–1199.

Cheema, M. A., Lin, X., Zhang, W., & Zhang, Y. (2013). A safe zone based

approach for monitoring moving skyline queries. In Proceedings of the 16th

International Conference on Extending Database Technology (pp. 275–286).

New York, NY, USA: ACM.

REFERENCES 193

Cheema, M. A., Zhang, W., Lin, X., Zhang, Y., & Li, X. (2012). Continuous

reverse k nearest neighbors queries in euclidean space and in spatial networks.

The VLDB Journal, 21(1), 69–95.

Cheng, R., Lam, K.-Y., Prabhakar, S., & Liang, B. (2007). An efficient location

update mechanism for continuous queries over moving objects. Information

Systems, 32(4), 593–620.

Cheng, W., Jin, X., & Sun, J.-T. (2009). Probabilistic similarity query on dimen-

sion incomplete data. In Proceedings of the 2009 Ninth IEEE International

Conference on Data Mining (pp. 81–90). IEEE Computer Society.

Cho, H.-J., Kwon, S. J., & Chung, T.-S. (2013). A safe exit algorithm for

continuous nearest neighbor monitoring in road networks. Mobile Information

Systems, 9(1), 37-53.

Chow, C.-Y., Mokbel, M. F., Naps, J., & Nath, S. (2009). Approximate

evaluation of range nearest neighbor queries with quality guarantee. In SSTD

’09: Proceedings of the 11th International Symposium on Advances in Spatial

and Temporal Databases (pp. 283–301). Springer-Verlag.

Corral, A., Caadas, J., & Vassilakopoulos, M. (2002). Approximate algorithms

for distance-based queries in high-dimensional data spaces using R-trees. In

ADBIS ’02: Proceedings of the 6th East European Conference on Advances

in Databases and Information Systems (pp. 163–176). Springer-Verlag.

Corral, A., Manolopoulos, Y., Theodoridis, Y., & Vassilakopoulos, M. (2000).

Closest pair queries in spatial databases. In Proceeding SIGMOD ’00 Proceed-

ings of the 2000 ACM SIGMOD International Conference on Management of

Data (Vol. 29, pp. 189–200). ACM.

REFERENCES 194

Corral, A., & Vassilakopoulos, M. (2005). On approximate algorithms for

distance-based queries using r-trees. The Computer Journal, 48(2), 220–238.

da Fonseca, G. D., de Figueiredo, C. M. H., de Sá, V. G. P., & Machado,

R. (2013). Linear time approximation for dominating sets and independent

dominating sets in unit disk graphs. In Approximation and Online Algorithms

(Vol. 7846, p. 82-92). Springer Berlin Heidelberg.

da Fonseca, G. D., & Mount, D. M. (2010). Approximate range searching: The

absolute model. Computational Geometry, 43(4), 434–444.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1), 269–271.

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of

the number of points required to represent a digitized line or its caricature.

Cartographica: The International Journal for Geographic Information and

Geovisualization, 10(2), 112–122.

ESRI. (2014). (ArcGIS Desktop: Release 10.2.2, Redlands, CA: Environmental

Systems Research Institute, http://resources.arcgis.com/en/help/main/10.2/)

Feng, Y., & Makinouchi, A. (2010). Indexing for range-aggregation queries on

large relational datasets. In International Journal of Database Theory and

Application (Vol. 3, pp. 1–14).

Garcı́a-Laencina, P. J., Sancho-Gómez, J.-L., Figueiras-Vidal, A. R., & Verley-

sen, M. (2009). K nearest neighbours with mutual information for simulta-

neous classification and missing data imputation. Neurocomputing, 72(7-9),

1483–1493.

REFERENCES 195

Ghadiri, N., Baraani-Dastjerdi, A., Ghasem-Aghaee, N., & Nematbakhsh, M. A.

(2011). Optimizing the performance and robustness of type-2 fuzzy group

nearest-neighbor queries. Mobile Information Systems, 7(2), 123-145.

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. In

SIGMOD ’84: Proceedings of the International Conference on Management

of Data (pp. 47–57). ACM.

Hershberger, J., & Snoeyink, J. (1992). Speeding up the douglas-peucker line-

simplification algorithm. In Proceedings of the 5th Iternational Symposium

on Spatial Data Handling (pp. 134–143).

Hsueh, Y.-L., Zimmermann, R., & Ku, W.-S. (2009). Adaptive safe regions

for continuous spatial queries over moving objects. In Database Systems for

Advanced Applications (Vol. 5463, p. 71-76). Springer Berlin / Heidelberg.

Hu, H. (2005). A generic framework for monitoring continuous spatial queries

over moving objects. In Proceedings of the International Conference on

Management of Data (pp. 479–490). ACM.

Ilarri, S., Mena, E., Illarramendi, A., Yus, R., Laka, M., & Marcos, G. (2012).

A friendly location-aware system to facilitate the work of technical directors

when broadcasting sport events. Mobile Information Systems, 8(1), 17-43.

Jang, M.-H., Kim, S.-W., & Shin, M. (2007). Performance of tpr*-trees for

predicting future positions of moving objects in u-cities. In Proceedings of

the 1st KES International Symposium on Agent and Multi-Agent Systems:

Technologies and Applications (pp. 841–850). Springer-Verlag.

REFERENCES 196

Jayaputera, J., & Taniar, D. (2005). Data retrieval for location-dependent queries

in a multi-cell wireless environment. Mobile Information Systems, 1(2), 91–

108.

Jensen, C. S., Lin, D., & Ooi, B. C. (2004). Query and update efficient

b+-tree based indexing of moving objects. In Proceedings of the Thirtieth

International Conference on Very Large Databases (Vol. 4, pp. 768–779).

VLDB Endowment.

Jeung, H., Yiu, M. L., Zhou, X., & Jensen, C. S. (2010). Path prediction

and predictive range querying in road network databases. The VLDB Journal,

19(4), 585–602.

Lee, S., Chon, Y., & Cha, H. (2013). Smartphone-based indoor pedestrian

tracking using geo-magnetic observations. Mobile Information Systems, 9(2),

123-137.

Meratnia, N., & By, R. (2004). Spatiotemporal compression techniques for

moving point objects. In Advances in Database Technology (Vol. 2992, pp.

765–782). Springer Berlin Heidelberg.

Mokbel, M. F., Xiong, X., & Aref, W. G. (2004). SINA: Scalable incremental

processing of continuous queries in spatio-temporal databases. In Proceeding

SIGMOD ’04 Proceedings of the 2004 ACM SIGMOD International Confer-

ence on Management of Data (pp. 623–634). ACM.

Mokbel, M. F., Xiong, X., Hammad, M. A., & Aref, W. G. (2005). Continuous

query processing of spatio-temporal data streams in place. Geoinformatica,

9(4), 343–365.

REFERENCES 197

Nguyen, K., & Cao, J. (2012). Top-k data source selection for keyword queries

over multiple xml data sources. In Proceedings of the 22Nd International

Conference on Database and Expert Systems Applications (Vol. 38, pp. 156–

175). Sage Publications, Inc.

Ogiela, L., & Ogiela, M. R. (2009). Cognitive techniques in visual data

interpretation (Vol. 228). Springer.

Okabe, A., Boots, B., & Chiu, K. S. S. N. (2000). Spatial tessellations:

Concepts and applications of Voronoi diagrams (2nd ed.). New York, USA:

Wiley.

Papadias, D., Zhang, J., Mamoulis, N., & Tao, Y. (2003). Query processing in

spatial network databases. In Proceedings of the 29th International Conference

on Very Large Databases (pp. 802–813). VLDB Endowment.

Papadopoulos, S., Wang, L., Yang, Y., Papadias, D., & Karras, P. (2011).

Authenticated multistep nearest neighbor search. Knowledge and Data Engi-

neering, IEEE Transactions on, 23(5), 641-654.

Pesti, P., Liu, L., Bamba, B., Iyengar, A., & Weber, M. (2010). Roadtrack:

Scaling location updates for mobile clients on road networks with query

awareness. Proceedings of the VLDB Endowment, 3(1-2), 1493–1504.

Petkova, A., Hua, K. A., & Aved, A. (2009). Processing approximate moving

range queries in mobile sensor environments. In Proceedings of the 2009

International Conference on Computational Science and Engineering (Vol. 2,

pp. 452–457). IEEE Computer Society.

Philippe Rigaux, A. V., Michel O. Scholl. (2002). Spatial databases: With

application to GIS. Morgan Kaufmann.

REFERENCES 198

Price, M. (2012). Mastering ArcGIS (Fifth ed.). New York: McGraw-Hill

Science.

Ripley, B. D. (1987). Stochastic simulation. New York, USA: John Wiley &

Sons, Inc.

Roussopoulos, N., Kelley, S., & Vincent, F. (1995). Nearest neighbor queries.

In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD International Con-

ference on Management of Data (pp. 71–79). ACM.

Safar, M. (2005). K nearest neighbor search in navigation systems. Mobile

Information Systems, 1(3), 207–224.

Safar, M. (2008). Spatial queries in road networks based on PINE. Journal of

Universal Computer Science, 14(4), 590–611.

Safar, M., & Ebrahimi, D. (2006). eDAR algorithm for continuous knn queries

based on PINE. IJITWE, 1(4), 1-21.

Shengsheng, W., & Chen, Z. (2011). A dynamic interval based circular safe

region algorithm for continuous queries on moving objects. IJCNS, 4(5),

313-322.

Sistla, A. P., Wolfson, O., Chamberlain, S., & Dao, S. (1997). Modeling

and querying moving objects. In Proceedings of the Thirteenth International

Conference on Data Engineering (pp. 422–432). IEEE Computer Society.

Song, Z., & Roussopoulos, N. (2001). K-nearest neighbor search for moving

query point. In Proceedings of the 7th International Symposium on Advances

in Spatial and Temporal Databases (pp. 79–96). Springer-Verlag.

REFERENCES 199

Stojanovic, D., Papadopoulos, A. N., Predic, B., Djordjevic-Kajan, S., &

Nanopoulos, A. (2008). Continuous range monitoring of mobile objects

in road networks. Data and Knowledge Engineering, 64(1), 77–100.

Taniar, D., Leung, C. H. C., Rahayu, W., & Goel, S. (2008). High performance

parallel database processing and grid databases. Wiley Publishing.

Taniar, D., Safar, M., Tran, Q. T., Rahayu, W., & Park, J. H. (2011). Spatial

network RNN queries in GIS. The Computer Journal, 54(4), 617–627.

Tao, Y., Faloutsos, C., Papadias, D., & Liu, B. (2004). Prediction and indexing

of moving objects with unknown motion patterns. In Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data (pp.

611–622). ACM.

Tao, Y., Papadias, D., & Shen, Q. (2002). Continuous nearest neighbor search.

In Proceedings of the 28th International Conference on Very Large Databases

(pp. 287–298). VLDB Endowment.

Tran, Q., Taniar, D., & Safar, M. (2009). Reverse k nearest neighbor and reverse

farthest neighbor search on spatial networks. In Transactions on Large-Scale

Data- and Knowledge-Centered Systems I (Vol. 5740, p. 353-372). Springer

Berlin / Heidelberg.

Šaltenis, S., Jensen, C. S., Leutenegger, S. T., & Lopez, M. A. (2000). Indexing

the positions of continuously moving objects. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data (pp. 331–342).

ACM.

Waluyo, A. B., Srinivasan, B., & Taniar, D. (2004). A taxonomy of broadcast

indexing schemes for multi channel data dissemination in mobile databases.

REFERENCES 200

In Proceedings of the 18th International Conference on Advanced Information

Networking and Applications (Vol. 2, pp. 213–218). IEEE Computer Society.

Wang, H., & Zimmermann, R. (2011). Processing of continuous location-based

range queries on moving objects in road networks. Knowledge and Data

Engineering, IEEE Transactions on, 23(7), 1065-1078.

Wu, H., & Hsieh, W. (2012). Location-based vehicular moving predictions for

wireless communication. International Journal of Ad Hoc and Ubiquitous

Computing, 10(4), 197–206.

Xuan, K., Zhao, G., Taniar, D., Rahayu, W., Safar, M., & Srinivasan, B.

(2011). Voronoi-based range and continuous range query processing in mobile

databases. Journal of Computer and System Sciences, 77(4), 637–651.

Xuan, K., Zhao, G., Taniar, D., Safar, M., & Srinivasan, B. (2011). Con-

strained range search query processing on road networks. Concurrency and

Computation: Practice and Experience, 23(5), 491–504.

Yang, S., Zhang, W., Zhang, Y., & Lin, X. (2009). Probabilistic threshold range

aggregate query processing over uncertain data. In Proceedings of the Joint

International Conferences on Advances in Data and Web Management (pp.

51–62). Springer-Verlag.

Yung, D., Yiu, M. L., & Lo, E. (2012). A safe-exit approach for efficient

network-based moving range queries. Data and Knowledge Engineering, 72,

126–147.

Zhang, J., Zhu, M., Papadias, D., Tao, Y., & Lee, D. L. (2003). Location-based

spatial queries. In Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data (pp. 443–454). ACM.

REFERENCES 201

Zhao, G., Xuan, K., & Taniar, D. (2013). Path knn query processing in mobile

systems. IEEE Transactions on Industrial Electronics, 60(3), 1099–1107.

Zhao, G., Xuan, K., Taniar, D., Safar, M., & Srinivasan, B. (2014). Time con-

straint route search over multi-locations. The Knowledge Engineering Review,

29(2), 217–233.

Zheng, Y., & Zhou, X. (2011). Computing with spatial trajectories. Springer.

Last Thing

“I can’t go back to yesterday because I was a different
person then.”

− Lewis Carroll

202

