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Abstract

X-ray phase contrast imaging enables the visualization of an object’s features that otherwise
would be impossible to obtain with conventional absorption based X–ray imaging. The first
part of this thesis focuses specifically on propagation–based phase contrast imaging (PBI).
It has a particular emphasis on the quantitative image reconstruction under the assumption
that the source of illumination is fully coherent. It presents the existing methods of
extracting quantitative information as well as original ones developed in this thesis. The
second part of this thesis takes a purely theoretical route, which focuses on studying the
forward problem of aberrated optical systems under partially coherent illumination.

This thesis begins with a general overview and review of the relevant literature includ-
ing the theory of coherent X–ray wavefield diffraction, partial coherence, phase–contrast
X–ray imaging, and phase–contrast tomography. Particular emphasis is given to PBI.

We then move to the original work that involved developing a method to carry out
quantitative PBI based tomography on multi–material samples using only a single view per
tomographic projection. The samples considered here are those for which (i) the complex
refractive index of each component of the sample is known, and (ii) the component
materials are spatially quantized. The method was applied to tomographic data obtained
at the SPring–8 synchrotron facility in Japan. The sample used was a multi–material test
phantom. The refractive index distribution of the test phantom was recovered in three
dimensions with a single phase contrast image per projection. The method was applied
successfully and was very stable under the presence of noise, opening the possibility of
significant dose reduction incurred by samples.

The next step in this work sees the application of the aforementioned method to
complex biological organs. The chosen organs were the thorax of a rabbit pup and an
excised rat brain. Experimental data were also acquired at the SPring–8 synchrotron facility
in Japan. Tomographic slices containing the refractive index distribution for each organ
were reconstructed using a single phase contrast image per projection. Signal–to–noise
ratios for each reconstructions showed significant improvements of up 200 fold compared
to absorption contrast reconstructions of the same slices.

Finally, this thesis treats the problem of arbitrary aberrations in linear shift–invariant
optical systems. This involves mathematically establishing a series of expressions consid-
ering arbitrary forms of phase contrast modalities as well as taking into account partially
coherent illumination. Expressions are presented for the output cross spectral density
under the space–frequency formulation of statistically stationary partially coherent fields.
This could broaden the applicability of phase contrast to sources of lower quality.
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Thesis overview 1

Since Wilhelm Conrad Röntgen first discovered X–rays, a cornucopia of X–ray applications
have been cultivated. These applications range from biomedical sciences through to
materials engineering and they continue to expand their influence in many scientific areas.
With their high energy, X–rays can penetrate through matter such as light metals, biological
tissue and ceramics. This makes X–rays an excellent tool for probing matter. One of the
most impacting applications is their use in medicine as a non–invasive diagnostic imaging
tool.

The most commonly used X–ray imaging technique is two dimensional absorption–
based X–ray radiography. This technique involves illuminating an object with a beam
of X–rays and recording the intensity distribution of the transmitted beam by means of a
spatially resolved detector or film. The image contrast arises from the difference in the
transverse intensity resulting from the variation in the attenuation coefficient across the
object. The attenuation coefficient of a specific material within the object is dependent
on the imaginary part of its complex refractive index (Als–Nielsen and McMorrow [2]).
Absorption–based X–ray imaging works well when the density variations within the object
are relatively large. For example, a human chest radiograph reveals high contrast of
the ribs as result of the high difference in attenuation coefficient between bone and soft
tissue. Unfortunately, when the transverse differences in attenuation of the transmitted
intensity are small the internal features become difficult or impossible to visualize with this
technique. This has limited applications, especially when it comes to imaging to samples
such as biological specimens.

One way to improve visualization is with the use of Computed Tomography (CT)
scanners. The invention of CT scanners enabled the field of X–ray imaging to enter an
extra spatial dimension. With CT one can obtain a three–dimensional reconstruction of the
internal structure of an object, thus providing valuable morphological detail. X–ray CT is
based on the idea that X–rays will travel approximately along straight ray–paths through
the object (Kak and Slaney [43]). Under conventional CT the transmitted intensities
recorded at various projection angles provide knowledge of the line–integrals of the linear
attenuation coefficient distribution of the object (Kak and Slaney [43]). By acquiring a
sufficient number of projections these integrals can be inverted and one can recover the
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2 Thesis overview

three dimensional distribution of the object’s linear attenuation coefficient. However, in
cases where the object contains small features that have low absorption, conventional CT
provides very little contrast to resolve them. One way to overcome this is by taking longer
exposures for each acquisition. This, however will impose a higher radiation dose, which
can be detrimental to the sample. Dose consideration is particularly important for in vivo
studies, and thus methods requiring large numbers of projections are of limited use for
biomedical applications.

One of the ways to overcome the limitations set by conventional absorption contrast
imaging is to turn to the field of phase–contrast imaging. Phase–contrast exploits the wave
nature of light, where X–ray beams are described in terms of a complex wavefield that
carries phase and amplitude information (Zernike [93], Bonse and Hart [7], Teague [82]).
Here, the phase of the wavefield undergoes shifts as X–rays are transmitted through the
object. These phase–shifts are rendered visible in the detected intensity via the aid of
optical setups that are able to convert phase variations into intensity variations. The
induced phase–shifts are dependent on the real part of the object’s complex refractive
index n = 1 − δ + iβ. At typical X–ray energies (100 eV–100 keV) the real part (δ) is in
the order of ∼ 103 times larger than the imaginary part β. This yields the possibility of
achieving high contrast at potentially lower radiation doses. This promises to be incredibly
beneficial, particularly when it comes to CT. An important note is that the key ingredient to
carry out phase–contrast imaging experiments is the need for an X–ray beam that exhibits
some degree of coherence. All radiation sources can be characterized by their degree of
coherence (Born and Wolf [8]). In optical terms, a beam’s degree of coherence can be
loosely defined as a measure of the ability of the field to interfere. Chapter 3 covers all the
main concepts and quantities concerning coherence theory.

A number of phase–contrast methods exist, most of which are discussed in Chapter 3.
In terms of experimental applications the original results of this thesis focus exclusively
on propagation–based phase–contrast imaging (PBI). For PBI, images are collected at a
non–zero distance downstream of the object and the contrast arises as result of Fresnel
diffraction. The great advantage that PBI offers over alternative phase–contrast methods is
that it does not require any additional optical elements between the object and detector.
This simplicity makes it well suited for potential biomedical or industrial applications.

When propagation–based phase–contrast imaging is combined with CT, weakly ab-
sorbing features of an object can be more readily visualised in 3D. The setup is identical
to that of conventional CT with the exception that now the detector is positioned at some
increased propagation distance from the object’s exit plane and the X–ray source requires
a moderate degree of spatial coherence. Normally, propagation–based X–ray phase con-
trast tomography experiments are performed using highly coherent synchrotron beams
or microfocus laboratory sources. In most cases the end goal with PCT is to recover the
three dimensional complex refractive index distribution of an object. However, although
PBI can improve the visualization of weakly absorbing features in an object, quantitative
information (i.e. the complex refractive index) cannot be directly inferred from the raw
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phase contrast X–ray images (Cloetens et al. [16]). In order to obtain such information,
phase retrieval methods are required. Including phase retrieval in the reconstruction step
gives rise to ‘quantitative propagation–based phase–contrast tomography’ (see section 3.4
of chapter 3).

Phase retrieval is any process that involves finding the phase of a complex wavefield
given measurements of field moduli (Gerchberg and Saxton [29]). This is also known as
the phase problem. A cornucopia of phase retrieval methods for extracting quantitative
information from intensity measurements alone have been developed to obtain the projected
phase and absorption information of the object (Gerchberg and Saxton [29], Teague [82],
Gureyev and Nugent [37], Paganin and Nugent [66], Gureyev [35]). Notwithstanding their
successes, these methods often require multiple intensity measurements, impose strong
restrictions on the object under study, or apply iterative solution techniques. Acquiring
multiple images can prove problematic for correct alignment of images and induces a
higher radiation dose. Several phase retrieval methods require the object to be “weak” such
that they provide little to no absorption contrast with limited phase gradients introduced by
the sample. Since most inanimate materials and biological tissues cannot be considered
as weak objects, phase retrieval algorithms developed under these approximations have
only limited use for biomedical imaging or materials science applications. Iterative phase
retrieval algorithms can also be problematic as convergence to the correct solution cannot
be guaranteed and are computationally more intensive than analytic solutions.

Considering the above limitations, a great challenge exist to discover a means for
performing high contrast quantitative propagation-based phase–contrast tomography using
a single image per projection. For the case of a single–material object illuminated by
paraxial coherent X–rays, there have been a number of tomographic studies using a single
view per projection. These phase–contrast tomography investigations, which incorporate
the effects of both absorption and phase contrast, extend the seminal work for the phase–
contrast tomography of pure phase objects by Bronnikov [11]. The majority of this
literature is reviewed in chapter 3. Further advancements were made by Paganin et al. [65].
In their work a noise–robust deterministic phase retrieval algorithm to reconstruct the
projected linear attenuation coefficient of an object comprised of a single material using
a single PBI image was developed. This enables the performance of quantitative PBI
tomography with a single image per projection, as was performed by Mayo et al. [52]. In
spite of their achievement their method is still heavily restricted to sample being comprised
of a single material. The associated algorithm is extensively described in Chapter 4.

This thesis embarks on the task of developing a quantitative PBI tomographic method
that can be extended to samples composed of multiple materials under the strict condition
that only one image per projection is acquired. Also, the method should be analytic and
stable in the presence of noise. In chapter 4 a method is derived that enables analytic
propagation–based phase retrieval tomography to be performed on a multi–material object
in which the spatially–dependent complex refractive index is quantized (i.e. it takes one of
a series of distinct values). The algorithm makes use of a single PBI image per projection,
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separately and selectively reconstructing each interface between any given pair of distinct
materials. Having separately reconstructed the interfaces between different distinct pairs
of materials, a spliced three–dimensional image of all materials present in the sample can
then be computed.

In chapter 4 the phase retrieval method is successfully applied experimentally using
a test object. Chapter 5 takes the next step by showing that the method can be applied
to complex biological organs, without using any chemical contrast enhancements. Ex-
periments were performed specifically on the thorax of a newborn New Zealand white
rabbit pup and the excised brain of an adult Sprague Dawley rat. The aim was to determine
whether our method could be applied to complex structures without imposing additional
radiation dose than conventional CT and to measure a possible gain in signal–to–noise
ratio (SNR) of the reconstructed images.

Throughout the majority of this thesis the results are based on the key assumption that
the X–ray source is a well behaved, fully coherent field. Despite the great technological ad-
vances made in achieving X–ray sources of high coherence (i.e. synchrotron beams, lasers)
it is impossible to achieve perfect coherence in practice. In Chapter 6 this assumption is
dropped in order extend our applications to X–ray sources that exhibit partial coherence.
Work relating to a partially coherent treatment specifically for propagation-based phase
contrast imaging has been previously reported (Gureyev [34], Zysk et al. [94], Petruc-
celli et al. [69]). In most of these studies the space–frequency description of partially
coherent fields was utilised as the fundamental starting point (Wolf [88]). This thesis also
uses the space–frequency description for partially coherent fields.

From an optical perspective, phase contrast can be interpreted as a form of optical
aberration. In fact, PBI is directly linked to the “defocus” aberration. In this context, an
aberrated imaging system may be defined as one whose transverse spatial distribution of
output intensity is not equal to the transverse spatial distribution of the input intensity, up
to transverse and multiplicative scale factors, together with the smearing effects of finite
resolution. Almost all aberrated imaging systems exhibit phase contrast; that is, they have
a spatial distribution of the output intensity which is influenced by the functional form of
the input wavefronts (input phase distribution). Examples of aberrated imaging systems
yielding phase contrast include Zernike phase contrast (Zernike [93]), propagation–based
phase contrast (Wilkins et al. [85]), differential phase–contrast (Förster et al. [26]), inline
holography (Gabor [27]), etc.

In chapter 6 we consider the generalized differential phase contrast associated with
aberrated linear shift–invariant optical imaging systems employing statistically stationary
partially coherent scalar radiation, for which the output spatial distribution of spectral
density (i.e., the output image) can be modelled using the transfer function formalism.
Chapter 6 extends previously reported work by Paganin and Gureyev [64], which restricted
consideration to the generalized differential phase contrast of fully coherent scalar fields
imaged using aberrated linear shift–invariant optical systems. Establishing a mathematical
expression that integrates the theory of aberrations with the theory of partial coherence
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enables arbitrary phase–contrast imaging modes to be implemented on a wider range of
radiation sources.





Theory of X–ray wavefield
diffraction

2

2.1 Introduction

In this chapter we cover the fundamental background theory of optical wavefield diffraction,
which is of primary importance for this thesis. This background serves as a pre–requisite
for later discussions on phase–contrast X–ray imaging when considering cases where
optical elements are absent (i.e. PBI). We begin with a derivation of the electromagnetic
(EM) wave equations from Maxwell’s equations in section 2.2. The angular–spectrum
method for the spatial propagation of EM wavefields is discussed in section 2.3. This the
leads to the special cases of Fresnel and Fraunhofer diffraction which are described in
sections 2.4 and 2.5, respectively. Lastly, the theory concerning partially coherent fields
from a statistical stand point is covered in section 2.6.

2.2 Electromagnetic wave equations in free space

Since the discovery that light is electromagnetic radiation governed by Maxwell’s equa-
tions, which unite electric and magnetic phenomena, these equations have been the main
pillars in describing classical optical behaviour. This section reviews the derivation of the
electromagnetic wave equations in free space (vacuum). We begin by stating Maxwell’s
equations in a dielectric medium (Jackson [42]):

∇ · E(r, t) =
ρ(r, t)
ε0

, (2.1a)

∇ · B(r, t) =0, (2.1b)

∇ × E(r, t) = −
∂B(r, t)
∂t

, (2.1c)

∇ × B(r, t) =µ0J(r, t) + µ0ε0
∂E(r, t)
∂t

. (2.1d)

Here, E(r, t) is the electric field and B(r, t) is the magnetic field. r = (x, y, z) represents
the position vector in three–dimensional Cartesian coordinates. Time is denoted by t. The
symbols ∇· and ∇× are the three–dimensional gradient and curl operators, respectively. The

7



8 Theory of X–ray wavefield diffraction

charge density is denoted by ρ(r, t), and the current density by J(r, t). The constants µ0 and
ε0 are the permeability and permittivity of free space, respectively. Equation (2.1a) is the
differential form of Gauss’s law, which states that “the net electric flux through any enclosed
surface is proportional to the total charge enclosed within that surface”. Equation (2.1b) is
Gauss’s law for magnetism. Equation (2.1c) is Faraday’s law of induction and Eqn. (2.1d)
is Ampère’s law. In the absence of material media (free space) it can be assumed that
charge and current densities are zero, therefore Eqns. (2.1a) and (2.1d) simplify to:

∇ · E(r, t) =0, (2.2a)

∇ × B(r, t) =µ0ε0
∂E(r, t)
∂t

. (2.2b)

Taking the curl of Eqn. (2.1c) gives

∇ × ∇ × E(r, t) = −
∂

∂t
[∇ × B(r, t)]. (2.3)

Substituting Eqn. (2.2b) into Eqn. (2.3) and making use of the identity

∇ × ∇ × f = ∇(∇ · f) − ∇2f, (2.4)

arrives us at the following:

∇[∇ · E(r, t)] − ∇2E(r, t) = −µ0ε0
∂2E(r, t)
∂t2 . (2.5)

Using Eqn. (2.2a) brings us to the wave equation for electric fields in vacuum known as
the d’Alembert wave equation:

(
∇2 − µ0ε0

∂2

∂t2

)
E(r, t) = 0. (2.6)

With the application of similar logic one can also derive the wave equation for magnetic
fields in vacuum. This provides the following pair of equations:

(
∇2 − µ0ε0

∂2

∂t2

)
E(r, t) = 0, (2.7a)(

∇2 − µ0ε0
∂2

∂t2

)
B(r, t) = 0. (2.7b)

Given the d’Alembert wave Eqns. (2.7) one can deduce the speed at which the electric
and magnetic disturbances propagate though vacuum. Consider a plane wave propagating
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in the positive z–direction that is a solution to Eqn. (2.7). Such waves have the form
S sin(kz − ωt + φ). Here, S is the amplitude, φ is the relative phase, k = 2π/λ is the
wavenumber for a given wavelength λ, ω = 2πν is the angular frequency corresponding to
a particular frequency ν, and t is time. Substituting this plane wave into the d’Alembert
wave equations gives the following:

µ0ε0ω
2 − k2 = 0. (2.8)

Since c = νλ, where c is the speed at which the electric and magnetic disturbances
propagate in vacuum, Eqn. (2.8) gives the relation

c =
1
√
µ0ε0

. (2.9)

By using measured values of µ0 and ε0 it was found that the value of c coincides with
that of the speed of light in vacuum, which had already been experimentally reported. This
was the key link that led to the discovery that light was electromagnetic radiation.

The pair of Eqns. in (2.7) contain six spatial components for the free space electric
and magnetic disturbances. Each make up six decoupled scalar differential equations of
identical form. It is this decoupling that enables the electric and magnetic disturbances to
be described by a single complex scalar wave equation (Paganin [67]):

(
∇2 −

1
c2

∂2

∂t2

)
Ψ(r, t) = 0. (2.10)

Equation (2.10) is known as the d’Alembert wave equation for scalar fields. Here the
squared modulus |Ψ(r, t)|2 corresponds to the optical intensity. Note that when it comes to
incorporating optical polarization effects the scalar d’Alembert form becomes invalid1.

If we consider complex scalar wavefields that are strictly monochromatic, represented
as a function of space and time, such fields can be expressed as a product of spatial and
temporal components (Paganin [67], Born and Wolf [8]):

Ψ(r, t) = ψ(r) exp(−iωt), (2.11)

where ω denotes angular frequency. When substituting Eqn. (2.11) into the d’Alembert
wave equation (Eqn. (2.10)) the time component can be separated out as a common factor:

1The transition from vector to scalar electromagnetic optics is not immediately apparent and is somewhat
involved. Literature on this subject that covers the rigorous treatment on how to make such transition
can be found in Green and Wolf [32], Wolf [87], Marathay and Parrent [51], Nieto-Vesperinas [63],
Born and Wolf [8].
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[
∇2ψ(r) +

ω2

c2 ψ(r)
]

exp(−iωt) = 0. (2.12)

Since

exp(−iωt) , 0, (2.13)

this factor can be canceled in Eqn. (2.12) and hence we arrive at the time–independent
scalar wave equation:

(∇2 + k2)ψ(r) = 0, (2.14)

with k = ω
c . This equation is known as the ‘Helmholtz equation’, which governs the

spatial evolution of the function ψ(r) corresponding to a specific monochromatic angular
frequency. This equation is pivotal to the theory of diffraction, which essentially involves
constructing a solution to this equation, as we will show in the following section.

2.3 The angular spectrum representation of plane

waves

The angular spectrum method provides a formalism that enables the calculation of the
forward propagated wavefield over a specified plane perpendicular to the optic axis z,
given the boundary value of that disturbance over a parallel plane with a smaller z value
(see Fig. 2.1). This is achieved by finding a general solution to Helmholtz equation given
specific boundary values (Goodman [30], Mandel and Wolf [50], Paganin [67]). The
development shown in this section is based on that shown in Paganin [67].

We begin by considering the scenario in Fig. 2.1. Here an object is placed along the
optic axis ‘z’. The complex wavefield ψ(r⊥, z = 0) denotes the spatial part of the beam
at the plane z = 0, which correspond to the object’s exit plane. We wish to calculate the
wavefield at some forward distance ψ(r⊥, z ≥ 0), under the assumption that the half–space
z ≥ 0 corresponds to vacuum. For the scenario in Fig. 2.1 the source lies upstream of the
object.

It can be demonstrated by direct substitution that elementary plane waves are solutions
to the Helmholtz equation. Such waves have the form

ψPW(x, y, z) = exp[i(kxx + kyy + kzz)]. (2.15)

Note that this is only true if k2 = k2
x + k2

y + k2
z . Here (kx, ky, kz) are components of the

wave–vector k. The magnitude of this vector (|k|) equals k = 2π/λ, with λ being the
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Ψz=0 Ψz=d

dL

Object

z

Figure 2.1: Propagation of scalar wavefields.

X-ray wavelength. Since the z direction represents the direction of propagation, it proves
convenient to isolate the z component of the wave–vector as:

kz =

√
k2 − (k2

x + k2
y). (2.16)

Note that the positive branch of the square root has been chosen on account of the
assumption that the field is forward propagating. This enables the elementary plane wave
to be re–expressed as:

ψPW(x, y, z) = exp[i(kxx + kyy)] exp
[
iz

√
k2 − (k2

x + k2
y)
]
. (2.17)

Note that the z = 0 boundary value of the plane wave is

ψ(x, y, z = 0) = exp[i(kxx + kyy)], (2.18)

and

exp
[
iz

√
k2 − (k2

x + k2
y)
]

(2.19)

is the propagation factor termed the f ree space propagator. Now we express an arbitrary
unpropagated wavefield in terms of a Fourier integral

ψ(r⊥, z = 0) =
1

2π

" ∞

−∞

ψ̃(kx, ky, z = 0) exp[i(kxx + kyy)]dkxdky. (2.20)
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Here, ψ̃(kx, ky, z = 0) denotes the Fourier transform of ψ(x, y, z = 0 with respect to
r⊥ = (x, y), with k⊥ = (kx, ky) being Fourier–space coordinates dual to r⊥ = (x, y).
Note that from a physical point of view Eqn. (2.20) is a Fourier decomposition of the
unpropagated wavefield into a series of plane waves of the form exp[i(kxx + kyy)]. To
obtain the wavefield at z = d one need only to multiply the integrand Eqn. (2.20) by the
free space propagator in Eqn. (2.19) leading to:

ψ(r⊥, z = d) =
1

2π

" ∞

−∞

ψ̃(kx, ky, z = 0) exp
[
id

√
k2 − k2

x − k2
y

]
× exp[i(kxx + kyy)]dkxdky.

(2.21)

This expression is known as the angular–spectrum representation of the propagated wave-
field. It is an exact solution to the Helmholtz equation that solves the boundary value
problem of determining the propagated field ψ(r⊥, z = d) as a result of forward propagating
the field ψ(r⊥, z = 0) in free space by a distance z = d.

It is possible to make further simplification of the process which describes free space
diffraction. Basically, the aim is to express Eqn. (2.21) in terms of a diffraction operator,
which acts upon the unpropagated wavefield that in turn produces a propagated wavefield
at some forward distance d. This operator form can be written as:

ψ(r⊥, z = d) = Ddψ(r⊥, z = 0). (2.22)

The linear operator Dd takes the form:

Dd = F−1
k⊥ exp

[
id

√
k2 − |k⊥|2

]
Fr⊥ . (2.23)

Here, Fr⊥ represents the forward Fourier transform with respect to r⊥ and F−1
k⊥ represents

the corresponding inverse Fourier transform with respect to k⊥ = (kx, ky). k⊥ is dual to r⊥.
The forward and inverse Fourier transform conventions used in this thesis are:

G̃(k⊥) =
1

2π

" ∞

−∞

G(r⊥) exp[−i(r⊥ · k⊥)]dr⊥

G(r⊥) =
1

2π

" ∞

−∞

G̃(k⊥) exp[i(r⊥ · k⊥)]dk⊥ (2.24)

where, G̃(k⊥) is the Fourier transform of the function G(r⊥).
The operator form of the angular spectrum method implies the following procedure

to calculate the propagated wavefield: (i) Take the Fourier transform of the unpropagated
field with respect to r⊥; (ii) multiply the result by the free space propagator in Eqn. (2.19);
(iii) take the inverse Fourier transform with respect to k⊥ of this result, which yields the
desired propagated field ψ(r⊥, z = d).
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2.4 Fresnel diffraction

This section provides a derivation of the Fresnel diffraction integral. Fresnel diffraction is
seen as a limiting case of the angular–spectrum method. This limiting case corresponds to
the ‘Fresnel regime’, which essentially states that propagation distances should be small
enough such that most features of the diffracting object are still distinguishable within
the diffracted image. When propagation distances are sufficiently small relative to the
diffracting object the image is said to be in the Fresnel regime, which applies to both near
and intermediate fields. To this end it is useful to introduce the quantity known as the
Fresnel number that is defined by the formula (Goodman [30], Paganin [67]):

NF =
D2

λd
, (2.25)

where D is the characteristic length scale over which the object varies appreciably. As
we shall see below, the Fresnel number gives an approximate indication as to how far a
distance downstream of the direction of propagation is required to produce either a Fresnel
(near or intermediate field) or Fraunhofer (far field) image given a certain object size and
radiation wavelength.

We begin the derivation of the Fresnel diffraction integral by restating the angular
spectrum in operator form (Paganin [67]) as:

ψ(r⊥, z = d) = F−1
k⊥ exp

[
id

√
k2 − |k⊥|2

]
Fr⊥ψ(r⊥, z = 0). (2.26)

In the Fresnel regime the wavefields propagate paraxially. This implies that the vector’s
normal wavefronts make small angles with respect to the optic axis as they forward
propagate. Under this condition the binomial approximation is made to the free space
propagator in Eqn. (2.19):

√
k2 − |k⊥|2 ≈ k −

|k⊥|2

2k
. (2.27)

As a result the angular spectrum formalism under Fresnel diffraction becomes:

ψ(r⊥, z = d) = exp(ikd)F−1
k⊥ exp

[
−id |k⊥|2

2k

]
Fr⊥ψ(r⊥, z = 0). (2.28)

Here we see that the free space propagator now takes the form exp
[
−id|k⊥ |2

2k

]
. The term

exp(ikd) is a constant phase factor. In order to express Eqn. (2.28) as a diffraction integral,
use can be made of the Fourier convolution theorem (Winthrop and Worthington [86]). This
gives the real space form of the free space propagator, which sees the Fresnel diffraction
integral written as (Paganin [67]):
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ψ(r⊥, z = d) = −
ik exp(ikd)

2πd
exp

[
ik |r⊥|2

2d

] ∫ ∞

−∞

ψ(r′⊥, z = 0) exp

 ik
∣∣∣r′⊥∣∣∣2
2d


× exp

[
−ik
d

(r⊥ · r′⊥)
]

dr′⊥.

(2.29)

Here r′⊥ = (x′, y′). We close this section with reference to Fig. 2.2. Here we show forward
simulated diffraction intensity images of Fig. 2.2 (a) using a numerical implementation
of Eqn. (2.28). Both images display the squared modulus of the propagated wavefield.
The size of the image in Fig. 2.2 (a) is 225×225 pixels with a pixel size of 1 µm. The
unpropagated field was calculated using the equation ψ(r⊥, z = 0) =

√
IImageeiφimage . For

each simulation the intensity was set to IImage = 1 assuming a non–absorbing object2. Also,
the maximum phase shift was 4.6 radians for a wavelength of λ = 6.2 × 10−10 m as shown
in Fig. 2.2 (a). Fig. 2.2 (b) shows an image calculated at a propagation distance d = 0.01 m
(the near field NF = 5.8) and (c) shows an image calculated at d = 0.10 m (the intermediate
field NF = 0.6). Here, the characteristic length scale is D = 6 µm.

2.5 Fraunhofer diffraction

Fraunhofer diffraction is the case where propagation distances are relatively large. Fraun-
hofer diffraction patterns are also termed as ‘far field’ images. This section shows that
the expression in Eqn. (2.29) permits an easy transition to the far field. At very large
propagation distances (the far field) the Fresnel number is much less than unity:

NF � 1. (2.30)

Under this condition the first exponential term that appears inside the integral in Eqn. (2.29)
tends to unity and thus can be ignored (Paganin [67]). This in turn brings us to the
“Fraunhofer diffraction integral” (Goodman [30]):

ψ(r⊥, z = d)→ −
ik exp(ikd)

2πd
exp

[
ik |r⊥|2

2d

] ∫ ∞

−∞

ψ(r′⊥, z = 0) exp
[
−ik
2d

(r⊥ · r′⊥)
]

dr′⊥.

(2.31)

In a more compact form Eqn. (2.31) can be expressed as:

2This assumption is often known as the “pure phase object” assumption/approximation. This implies
that the wavefield is assumed to only undergoes phase variation and not intensity variations as it travels
through the object.
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(a) (b)

(c) (d)

Figure 2.2: Examples of Fresnel and Fraunhofer diffraction. (a) is the unpropagated
phase image used for forward simulations of Fresnel and Fraunhofer diffraction images.
(b) shows a Fresnel diffraction image in the near field, with NF = 5.8. (c) also shows a
Fresnel diffraction image in the intermediate field, with NF = 0.6. (d) shows a far field
Fraunhofer diffraction pattern in a logarithmic scale, with NF � 1.

ψ(r⊥, z = d)→ −
ik exp(ikd)

2πd
exp

[
ik |r⊥|2

2d

]
× ψ̃

(
k⊥ =

kr⊥
d
, z = 0

)
. (2.32)

Here, ψ̃
(
k⊥ = kr⊥

d , z = 0
)

is the two–dimensional Fourier transform of the unpropagated
wavefield with respect to r⊥. Note that Eqn. (2.32) tells us that the Frounhofer diffraction
pattern is the Fourier transform of the exit–surface (z = 0) wavefield uptream of the
diffracting object multiplied by a modulated “scale factor” given by the expanding spherical

wave term exp
[

ikr2
⊥

2d

]
. By taking the squared modulus of Eqn. (2.32) we find that:

I ∝

∣∣∣∣∣∣ψ̃
(
k⊥ =

kr⊥
d
, z = 0

)∣∣∣∣∣∣2 , (2.33)
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I ∝
1
d2 . (2.34)

From these relations we note that in the far field the intensity distribution obeys the inverse
square law. Like the operator form of the Fresnel diffraction this result can be very easily
numerically implemented. It has the advantage that the Fourier transform is only needed to
be applied once followed by the squared modulus. A far field (NF � 1) diffraction image
calculated by numerically applying Eqn. (2.33) to the phase map in Fig. 2.2 (a) is shown
in Fig. 2.2 (d).

2.6 Partially coherent wavefields

So far in this chapter we have considered optical fields that are monochromatic with a
well defined phase and amplitude as they propagate. However, this is not case in most
optical scenarios. In nature all optical fields experience random fluctuations (Wolf [90]).
The theory of partial coherence is concerned with the quantitative description of such
stochastically fluctuating optical fields (Wolf [90]). This section discusses the mathematical
tools and concepts used to treat partially coherent fields. The theory presented in this
section forms the fundamental basis for the results derived in chapter 6 where the theory
of optical aberrations and partially coherent fields is combined.

2.6.1 Theory of stochastic optical waves

Before proceeding into the description of partially coherent fields this section introduces
some elementary mathematical concepts necessary for understanding the partial coherence
description of stochastic optical waves.

We begin by considering the variable x(t), which represents a field at some point in
space at time t. Suppose that x(t) can be measured in a series of experiments. Also, let
1x(t),2 x(t),3 x(t), ...,k x(t) be the outcomes of such experiments. It can be said that one has
an ensemble o f realizations or an ensemble of sample f unctions of the random function
x(t). For all random processes the concept of an “average value” immediately comes to
mind. In this section, we focus on two types of averages. First, we consider the concept of
a time average that for a given realization of the ensemble is defined as (Wolf [90]):

〈
kx(t)

〉
t
= lim

T→∞

1
2T

∫ T

−T

kx(t)dt. (2.35)

Here the angular brackets with the subscript t denotes the time average taken over the time
interval −T ≤ t < T . The other kind of average we consider is the ensemble average or
the expectation value, given by:
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〈x(t)〉e = lim
N→∞

1
N

N∑
k=1

kx(t). (2.36)

Here the ensemble average is denoted by the angular brackets with the subscript e (ensem-
ble).

To end this section we give a brief discussion on Ergodicity. A statistically stationary
process3 is said to be ergodic when averages taken over the −∞ < t < ∞ interval of a
typical realization kx(t) of the random process is equal to the corresponding ensemble
average (Wolf [90]):

〈
kx(t)

〉
t
= 〈x(t)〉e . (2.37)

For the statistical description of partially coherent wavefields considered in this thesis the
processes are assumed to be statistically stationary and ergodic. Essentially, this means
that: 1) there is no need to distinguish between time averages and ensemble averages; 2)
the statistics of the experiment are independent of the origin of time (Wolf [90]).

2.6.2 Interference, visibility and time–average intensity

A basic feature of optical wavefields that are partially coherent is the ability to form
interference patterns. Interference occurs when two or more wavefields add to produce a
superposed wavefield. This is visualised in the measured intensity as interference fringes.
It is the contrast of the fringes that largely defines the degree of coherence. The notion of
the ‘quality’ of interference fringes can be evaluated using the Michelson fringe visibility,
defined as (Wolf [90]):

V =
Imax − Imin

Imax + Imin
. (2.38)

For a typical interference fringe we denote its maximum intensity as Imax and its minimum
intensity as Imin.

Another important quantity in the theory of partial coherence is the time–averaged
intensity. At optical and higher temporal frequency ranges the temporal fluctuations of
the field are very rapid, making instantaneous intensity measurements impractical. The
expression for the time–averaged intensity is obtained by simply adapting Eqn. (2.35)
(Wolf [90]) to give:

〈I〉t = lim
T→∞

1
2T

∫ T

−T
I(t)dt. (2.39)

3 Statistically stationary processes are those in which the statistics of the random variable are independent
of the origin of time.
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The time interval −T ≤ t < T , which in practice will always be non–infinite, must be large
in relation to the bandwidth ∆ω of light (i.e. T � 1/∆ω).

2.6.3 Temporal and spatial coherence

Temporal and spatial coherence are key concepts when it comes to understanding the
underlying theory of partially coherent fields.

++
M1

M2
Screen

Source

> >

>

>

>

Beam
Splitter

Figure 2.3: Diagram of a Mach–Zehnder interferometer as a means of illustrating and
understanding the concept of temporal coherence. M1 and M2 are mirrors.

To understand temporal coherence consider the Mach–Zehnder interferometry setup
presented in Fig. 2.3. Here we have a source emanating a quasi-monochromatic4 beam
of light with a frequency bandwidth ∆ω. When the beam reaches the beam splitter it
divides it into two separate beams. Each of the beams is reflected perpendicularly from
the mirrors M1 and M2 and eventually meet at the screen yielding interference fringes. It
is the forming of these fringes which is said to be a manifestation of temporal coherence
between the two beams. The contrast of the interference fringes depends on the time delay
∆t due to the difference in path length of the beams. It has been experimentally verified
that interference fringes are observed provided that (Wolf [90]):

∆t 6
2π
∆ω

. (2.40)

This defines the coherence time, which can be seen as an indicator of the duration in
which the phase and amplitude of a propagating wavefield is defined. Naturally, there is a

4Quasi–monochromatic light beams are partially coherent fields, which are characterised by the property
defined as the effective bandwidth ∆ω

ω̄
� 1, where ω̄ is the mean temporal frequency. Further, to be quasi–

monochromatic we also require ∆ω , 0.
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corresponding path length delay associated with the coherence time. This is referred to as
the coherence length (Wolf [90]):

∆l̄ =
2πc
∆ω

=
λ̄2

∆λ
. (2.41)

Here, λ̄ is the mean wavelength and ∆λ is the effective wavelength range.
We now turn to concepts regarding spatial coherence. The Young interferometer in

Fig. 2.4 aids us with an illustrative example. Like in the temporal coherence example
the light emitted from the extended incoherent source of length σ is also assumed to be
quasi-monochromatic. When the light rays emitted from an arbitrary point on the source
reach the pinholes Q1 and Q2 placed on the screen Y equidistantly from the optic axis, two
secondary wavefronts are produced at each pinhole. An interference pattern resulting from
the superposition of the two wavefronts is formed at the screen B. At the point P fringes
will be observed as long as the pinholes are situated within an area of

∆A ≈
L2

1λ̄
2

σ2 . (2.42)

This quantity is termed the coherence area. It can be appreciated that as the distance L1

becomes greater the coherence area increases quadratically. Equation (2.42) verifies a
well known fact whereby spatial coherence improves as light propagates further from the
source of emittance and reduces with larger source size σ (Wilkins et al. [85]).

++
σ

Q1Q1

Q2

P

L1 L2

Source
D/2

D/2

Y B

R1

R2

Figure 2.4: Diagram of Young’s interference experiment used for the conceptual under-
standing of spatial coherence. σ is the length of the line source. Q1 and Q2 are pinholes
on an opaque screen Y separated by distance D from one another. L1 is the distance from
the source to the screen Y and L2 is the distance from the screen Y to the screen B.
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2.6.4 The mutual coherence function

The mutual coherence function provides us with a more general treatment of partial
coherence theory. Instead of relying on the visibility of fringes as a method of quantification
of the degree of coherence, the mutual coherence function employs a direct application of
the theory of random variables presented in section 2.6.1 to describe partially coherent
optical fields (Born and Wolf [8], Wolf [90]).

Consider once again Young’s interference experiment in Fig. 2.4. Let Ψ(Q1, t) and
Ψ(Q2, t) be the complex wavefields incident at each pinhole at time t. The scattered
wavefields due to each pinhole will generate an interference pattern in the neighbourhood
surrounding point P located on the screen B. The field at point P, once Ψ(Q1, t) and
Ψ(Q2, t) have reached this point, will be given by the principle of superposition as:

Ψ(P, t) = K1Ψ(Q1, t − t1) + K2Ψ(Q2, t − t2). (2.43)

Here, t1 = R1
c and t2 = R2

c are the respective times it takes light to travel to P from Q1

and Q2. The factors K1 and K2 are complex numbers (propagators) that depend on the
shape of the pinholes. Taking the squared modulus of Eqn. (2.43), followed by the time
average of the result, brings us to the time-average intensity at point P (Born and Wolf [8],
Wolf [90]):

Ī(P) =
〈
|K1Ψ(Q1, t − t1) + K2Ψ(Q2, t − t2)|2

〉
=

〈
|K1Ψ(Q1, t − t1)|2

〉
+

〈
|K2Ψ(Q2, t − t2)|2

〉
+2

∣∣∣K1K∗2
∣∣∣ Re 〈Ψ(Q1, t − t1)Ψ∗(Q2, t − t2)〉 . (2.44)

Here, Re denotes the real component of the corresponding term. Also, note that here
the subscript on the angular brackets has been dropped denoting the assumption that
time–averages are equal to the ensemble average since we have assumed an ergodic
process.

Setting

Ī1(P) =
〈
|K1Ψ(Q1, t − t1)|2

〉
(2.45)

and

Ī2(P) =
〈
|K2Ψ(Q2, t − t2)|2

〉
(2.46)

allows Eqn. (2.44) to be re-written as:

Ī(P) = I1(P) + I2(P) + 2
∣∣∣K1K∗2

∣∣∣ Re 〈Ψ(Q1, t − t1)Ψ∗(Q2, t − t2)〉 . (2.47)



2.6 Partially coherent wavefields 21

Here, one can evidently see that the third term on the right–hand side of Eqn. 2.47 is an
interference term. Introduce the time lag τ, which denotes the relative time difference that
the photons have as they travel to the point P at speed c via either of the two pinholes at
Q1 and Q2:

τ =
R1 − R2

c
. (2.48)

This, together with the assumption of stationarity, enables the term inside the angular
brackets in Eqn. (2.47) to be written as:

〈Ψ(Q1, t + τ)Ψ∗(Q2, t)〉 ≡ Γ(Q1,Q2, τ). (2.49)

This is the mutual coherence function. Eqn. (2.49) can also be viewed as a measure of
the degree of correlation between Ψ(Q1, t) and Ψ(Q2, t) (Born and Wolf [8], Wolf [90]).
In this context, it can be said that if Ψ(Q1, t) and Ψ(Q2, t) are fully uncorrelated, then the
interference fringes will not be visible. In the opposite case if Ψ(Q1, t) and Ψ(Q2, t) are fully
correlated then the interference fringes will yield maximal visibility (Born and Wolf [8],
Wolf [90]). Therefore, a certain degree of correlation is needed between the wavefields at
Q1 and Q2 so that fringes can exist. A correlation that gives fringes between maximal and
minimal visibility is referred to as having an intermediate degree o f coherence, which
correspond to partially coherent fields (Born and Wolf [8], Wolf [90]).

The following normalized form of the mutual coherence function gives us the complex
degree o f coherence:

γ(Q1,Q2, τ) =
Γ(Q1,Q2, τ)

√
Γ(Q1,Q1, τ = 0)Γ(Q2,Q2, τ = 0)

. (2.50)

A quantitative relation between the complex degree of coherence and the visibility of
fringes is given via:

V = |γ(Q1,Q2, τ)| (2.51)

where, the modulus of the complex degree of coherence function gives a value that lies
between zero and unity:

0 6 |γ(Q1,Q2, τ)| 6 1. (2.52)

Here, a value of unity corresponds to complete coherence, conversely, a value of zero
corresponds to complete incoherence. All other values correspond to partial coherence.
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2.6.5 The cross–spectral density and spectral density

The cross–spectral density and the spectral–density are used as an alternative description
for partially coherent fields rather than a space–time correlation function (i.e. the mutual
coherence function Γ and the complex degree of coherence γ). The cross–spectral density
W was originally introduced as the Fourier transform of the mutual coherence function
with respect to the time lag τ (Wolf [88]):

W(r1, r2, ω) =
1

2π

∫ ∞

−∞

Γ(r1, r2, τ)eiωτdτ. (2.53)

However, it was later discovered to also be a correlation function itself, associated with an
ensembles of realizations that are functions of position and temporal frequency instead of
position and time. This is demonstrated by considering an optical field in a closed domain
D in free–space. Generally, it can be shown that the cross–spectral density of the field at
any pair of points r1 and r2 in D may be expressed in a series (Wolf [88, 90]):

W(r1, r2, ω) =
∑

n

λn(ω)ς∗n(r1, ω)ςn(r2, ω). (2.54)

The functions ςn are eigenfunctions and λn the eigenvalues of the integral equation
(Wolf [90]):

∫
D

W(r1, r2, ω)ςn(r1, ω)d3r1 = λn(ω)ςn(r2, ω), (2.55)

where d3r1 is the three–dimensional differential element of r1 and the quantities λn(ω) are
positive real eigenvalues (i.e. λn(ω) > 0, (n ≥ 0)). The eigenfunctions ςn may take the
form of an orthonormal set over the domain D:

∫
D
ς∗n(r, ω)ςm(r, ω)d3r = δ̂mn. (2.56)

Here, δ̂mn is the Kronecker delta symbol.
To show that the cross–spectral density can be expressed as a correlation function using

the expansion in Eqn. (2.54), first begin by considering the ensemble of sample functions
of the form (Wolf [88]):

ψ(r, ω) =
∑

n

an(ω)ςn(r, ω), (2.57)

where an(ω) are random coefficients such that
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〈
a∗n(ω)am(ω)

〉
ω = λn(ω)̂δmn. (2.58)

Here, λn(ω) are the same quantities that appear in integral Eqn. (2.55). Now constructing
the correlation function 〈ψ∗(r1, ω)ψ(r2, ω)〉ω one obtains

〈ψ∗(r1, ω)ψ(r2, ω)〉ω =
∑
n,m

〈
a∗n(ω)am(ω)

〉
ω ς
∗
n(r1, ω)ςm(r2, ω), (2.59)

where upon using the relation in Eqn. (2.58) we arrive at:

〈ψ∗(r1, ω)ψ(r2, ω)〉ω =
∑

n

λn(ω)ς∗n(r1, ω)ςn(r2, ω). (2.60)

Noting that the right hand side of Eqn. (2.60) equates to the right had side of Eqn. (2.55), we
have established the result that the cross–spectral density is indeed a correlation function,
as given by (Wolf [88]):

W(r1, r2, ω) = 〈ψ∗(r1, ω)ψ(r2, ω)〉ω . (2.61)

The essence of Eqn. (2.61) is that the cross–spectral density of a statistically stationary
fluctuating field in the domain D may be expressed, for all pairs of points in D, as a
cross–correlation of ensembles {ψ(r, ω)} of space–frequency realizations ψ(r, ω), all of
which have the same angular frequency ω (Wolf [88]).

The spectral–density5 is given by S (r, ω) ≡ W(r, r, ω) which is also expressed as:

S (r, ω) = 〈ψ∗(r, ω)ψ(r, ω)〉ω . (2.62)

Equation (2.62) may intuitively lead to the belief that it represents the average squared
modulus of the Fourier frequency components of the field Ψ(r, t). However, Eqn. (2.62)
should be viewed as the space–dependent part of a member of a statistical ensemble
of monochromatic realizations, all of frequency ω (Wolf [90]). This is also true for
Eqn. (2.61). Hence when it comes to the space–frequency description of partially coherent
fields it is crucial to differentiate between a monochromatic field of frequency ω and an
ensemble of monochromatic fields all which have the same frequency ω (Wolf [90]).

5Note that the spectral–density and the intensity of the spatial part of a monochromatic wavefield (i.e.
Ψ(r, t) = ψ(r, ω)e−iωt) are equivalent in the special case where the ensemble characterizing the stochastic
process contains only a single member.
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2.7 Concluding remarks

The material of the present chapter, which reviews the theory of X–ray diffraction together
with the theory of partially coherent fields, is supplemented in chapter 3 by a review of
phase–contrast X–ray imaging, phase retrieval and tomography. The background material
reviewed in both chapters 2 and 3 constitute the underpinning prior knowledge upon which
the original research of chapters 4, 5, and 6 is based.



Phase contrast X–ray
imaging, phase retrieval and
tomography

3

3.1 Introduction

This chapter presents an overview of phase–contrast imaging theory and methods. The
theory and methods covered are those that have the highest relevance in the development
of this thesis. We begin by briefly discussing the interaction of X-rays with matter in
section 3.2, mainly emphasizing the derivation of the pro jection approximation, which
plays a key role in the work presented in chapters 4 and 5. In section 3.3 the theory of
image formation (the forward problem) with conventional phase–contrast techniques is
covered. In section 3.4, analytic ways to perform phase retrieval (the inverse problem)
are discussed. Finally, we end this chapter by discussing tomographic principles and
phase–contrast tomography in section 3.5. This last–mentioned topic is also essential
background for chapters 4 and 5.

3.2 Interactions of X–rays with matter

At macroscopic scales, the interactions between X–rays and matter is quantified by the
complex refractive index1:

n(r) = 1 − δ(r) + iβ(r). (3.1)

The imaginary component β(r) is directly proportional to the linear attenuation coefficient
µ of the material via β = µλ/4π (Als–Nielsen and McMorrow [2]). The real component
δ(r) is the refractive index decrement from unity and is responsible for refraction effects
(Als–Nielsen and McMorrow [2]). Both quantities can be calculated given knowledge of
the properties of the material at the subatomic scale. For instance, one may calculate δ(r)
with the formula (Als–Nielsen and McMorrow [2]):

1Note, that a static scatterer has been assumed, since n = n(r) rather than n = n(r, t).

25
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δ =
reλ

2

2π

∑
j

N j f1 j. (3.2)

Similarly, the linear attenuation coefficient µ can be calculated with the formula (Als–
Nielsen and McMorrow [2]):

µ = reλ
∑

j

N j f2 j. (3.3)

The parameter N j denotes the concentration of atoms per unit of volume for a particular
type j of atoms. The classical electron radius is labelled as re. The quantities f1 and f2

in Eqns. (3.2) and (3.3) respectively represent the real and imaginary components of the
atomic scattering factor in the forward direction.

3.2.1 The projection approximation

Consider the scenario in Fig. 3.1. Here, we have the case where incoming X-rays (incident
wavefield) impinge on an object at its entrance plane z = zentry, travel through it, and
eventually exit the object at the plane z = zexit. The projection approximation links the
wavefield at the entrance plane z = zentry to the wavefield at the exit plane z = zexit using
knowledge of the object’s complex refractive index.

z z= entry

Incoming X-rays

x

y

z z= exit

z
Object

Figure 3.1: Schematic illustration of the projection approximation.

The projection approximation is derived from first principles using the “inhomogeneous
paraxial wave equation” as a starting point (Paganin [67]):

(
2ik

∂

∂z
+ ∇2

⊥ + k2[n2(r) − 1]
)
ψ(r) = 0. (3.4)
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The inhomogeneous paraxial wave equation can be viewed as the Helmholtz wave equation
(see Eqn. (2.14)) in the presence of material media instead of vacuum, under the paraxial
limit2. We remind the reader that in optics the term “paraxiality” implies that the propa-
gating wavefield travels in a direction almost parallel to the optic axis. Mathematically
this enables second order derivatives with respect to z to be ignored. n(r) is the refractive
index distribution function of the object defined by the Cartesian coordinates r = (x, y, z)
shown in Fig. 3.1. The essence of the projection approximation is that it assumes there is
a continuous accumulation of the phase and amplitude shifts along independent straight
line X–ray paths, which allows for the determination of the wavefield at the exit plane
z = zexit. Now, since the transverse Laplacian operator ∇2

⊥ ≡
∂2

∂x2 + ∂2

∂y2 couples adjacent ray
trajectories, under the projection approximation this operator can be ignored leading to the
following partial differential equation Paganin [67]:

∂

∂z
ψ(r) ≈

k
2i

[1 − n2(r)]ψ(r). (3.5)

As depicted in Fig. 3.1, the lower boundary is given by the plane z = zentry and the
upper boundary is given by the plane z = zexit. With these boundary values one can
obtain a solution of Eqn. (3.5) for the exit wavefield ψ(r⊥, z = zexit), which is of the form
(Paganin [67]):

ψ(r⊥, z = zexit) ≈ exp
{

k
2i

∫ z=zexit

z=zentry

[1 − n2(r)]dz
}
ψ(r⊥, z = zentry). (3.6)

At X–ray energies, the refractive index in Eqn. (3.1) is very close to unity. This allows us
to make the approximation (Paganin [67]):

1 − n2(r) ≈ 2[δ(r) − iβ(r)]. (3.7)

Substituting the approximation in Eqn. (3.7) into Eqn. (3.6) gives

ψ(r⊥, z = zexit) ≈ exp
{
−ik

∫ z=zexit

z=zentry

[δ(r) − iβ(r)]dz
}
ψ(r⊥, z = zentry)

= exp
[
−k

∫ z=zexit

z=zentry

β(r)dz
]

︷                  ︸︸                  ︷
Exponential decay

exp
[
−ik

∫ z=exit

z=entry
δ(r)dz

]
︷           ︸︸           ︷
Phase change

ψ(r⊥, z = zentry).

(3.8)

Separating the exponential terms in Eqn. (3.8) enables us to appreciate how the phase and
amplitude shifts imparted on the wavefield traversing the object are related to δ(r) and β(r).
Hence, under the projection approximation, the phase–shift from z = zentry to z = zexit is:

2A formal derivation of the inhomogeneous paraxial wave equation can be found in (Paganin [67]).
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∆φ(r⊥) = −k
∫ z=zexit

z=zentry

δ(r)dz. (3.9)

Taking the squared modulus of Eqn. (3.8) gives an expression for the intensity at z = zexit:

I(r⊥, z = zexit) = exp
[
−2k

∫ z=zexit

z=zentry

β(r)dz
]

I(r⊥, z = zentry). (3.10)

Eqn. (3.10) is the well–known Beer–Lambert law of attenuation for inhomogeneous objects
(Als-Nielsen and McMorrow [2], Paganin [67]).

3.3 Phase–contrast imaging techniques

When a semi-transparent object such as biological tissue is illuminated with X-rays the
intensity detected at the exit plane of the object will display little to no contrast. This can
be circumvented by implementing phase–contrast techniques. Phase–contrast imaging is
any optical technique where phase–shifts imparted on the wavefield are rendered visible in
the measured intensity. The phase–shifts result from the variations in the refractive index
in the object.

3.3.1 Zernike–type phase contrast imaging

Frits Zernike is considered to be the pioneer of phase-contrast microscopy and hence why
this technique it bears his name (Zernike [93]). Zernike–type phase-contrast imaging
makes use of optical lenses, exploiting the fact that their focal planes contain Fourier
transforms of the incident input wavefields. At this plane a filter is placed that acts as a
phase retarder that induces phase variations on the zero spatial frequency of the previously
mentioned Fourier transform. These changes become manifest in the intensity at the image
(detector) plane. Such a system is shown in Fig. 3.2. At the plane z = 0 in Fig. 3.2 a lens
(L1) is placed that focuses the rays at the plane z = f . At z = f a small transparent on-axis
filter produces a π/2 phase retardation on the light concentrated on this point. The lens
(L2) positioned at z = 2 f undoes the effect of (L1), effectively acting as inverse Fourier
transform and ultimately yielding a phase contrast image.

The beauty of utilising Zernike–type phase contrast imaging is that the detected
intensity is directly proportional to the input phase, thus allowing direct inference of this
quantity (Zernike [93]). Note that this statement is only valid provided the sample is fully
transparent and the transverse phase shifts are small. Mathematically, this is simple to
illustrate. Beginning with the weak–phase approximation (Zernike [93]), the wavefield in
the plane z = 0 can be written as:

exp[iφ(r⊥)] ≈ 1 + iφ(r⊥), |φ(r⊥)| � 1. (3.11)
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object
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f
z =0 z f= z f=2

Figure 3.2: Schematic diagram showing Zernike-type phase contrast imaging.

Under this approximation one may view the input wavefield as a superposition of an
unscattered function “1” plus a scattered complex function iφ. At the focal point z = f the
majority of the light concentrated will be that of the unscattered function. Here, the filter
acts as an eiπ/2 multiplier transforming “1” into a complex value eiπ/2 = i. Therefore, under
a Zernike–type system the input wavefield undergoes the following transformation:

ψin(r⊥) ≈ 1 + iφ(r⊥) −−−→ i + iφ(r⊥). (3.12)

Therefore, the intensity at the detector plane, given by the squared modulus, will yield
(Zernike [93]):

I(r⊥) = |ψ(r⊥)|2 ≈ 1 + 2φ(r⊥). (3.13)

Notice that since phase variations are small the second order term in φ(r⊥) has been
ignored.

An example of an X–ray Zernike phase–contrast image is shown in Fig. 3.3 where the
buried copper interconnects of a integrated circuit can be clearly seen. The set up used to
acquire this image is a more contemporary implementation of Zernike phase contrast that
can be found in (Neuhäusler et al. [62]).

3.3.2 Differential interference phase contrast imaging

In differential interference contrast (DIC) imaging systems the contrast is produced by
making the exit wavefield interfere with a transversely–shifted replica of itself. Consider a
thin transparent sample such that when illuminated by a coherent beam of X–rays with
a planar wavefront, the wavefield exiting the sample is given by exp[iφ(x, y)]. Suppose
the imaging system is able to create a replica of this wavefield transversely shifted by a
distance ε in the x–direction (i.e. exp[iφ(x + ε, y)]). By appropriate choice of Cartesian
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Figure 3.3: Zernike phase contrast micrograph image of an integrated circuit. The image
was acquired using a X–ray microscope. Image was taken from Neuhäusler et al. [62].

coordinates there is no loss of generality in assuming the previously mentioned transverse
shift to be in the x–direction. If the original and the transversely displaced fields are
then superposed, such an interaction can be viewed as mapping input to output fields as
(Paganin [67]):

exp[iφ(x, y)]→ exp[iφ(x, y)] + exp[iφ(x + ε, y)]. (3.14)

The output intensity of the interferogram will be the squared modulus of the right–hand–
side of Eqn. (3.14):

I(x, y) =
∣∣∣exp[iφ(x, y)] + exp[iφ(x + ε, y)]

∣∣∣2 . (3.15)

If ε is assumed to be sufficiently small, a first–order Taylor approximation can be made to
the phase φ(x + ε, y):

φ(x + ε, y) ≈ φ(x, y) + ε
∂φ(x, y)
∂x

. (3.16)

By substituting Eqn. (3.16) into Eqn. (3.15) the output intensity reduces to

I(x, y) = 2
(
1 + cos

[
ε
∂φ(x, y)
∂x

])
. (3.17)

Here, we see that the output image exhibits phase–contrast, given that the output intensity is
dependent on x–derivatives of the phase. Since the contrast of the intensity is dependent on
the derivative of the phase one may say that the system displays di f f erential inter f erence
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contrast (DIC). If one takes the Taylor–series expansion of the cosine term one may see
that this type of DIC is of second order in ε since (Paganin [67]):

cos
[
∂φ(x, y)
∂x

]
= 1 −

1
2

[
∂φ(x, y)
∂x

]2

+ ... (3.18)

Note that further improvements to DIC that makes the contrast proportional to first order
in ε can be made with the introduction of a phase bias φB into the shifted replica. However,
since this thesis does not make use of this method we find that illustrating this does not
add significant insight. The derivation of the intensity expression under DIC when a phase
bias is introduced can be found in (Paganin [67]). Literature regarding the experimental
implementation and demonstration of X–ray differential interference contrast is reported
by (Kaulich et al. [44]).

3.3.3 Interferometry

Interferometry is one of the most traditional methods for achieving phase–contrast. The
idea behind this method is rather simple. It involves dividing the incident beam by splitting
it into two separate beams then later recombining them in order to form an interference
pattern or interferogram. One of the beams is utilised as a reference wavefield with its
properties known a priori and another is used to probe a sample of interest. In the X–ray
regime interferometers require a high degree of spatial and temporal coherence. Ulrich
Bonse and Michael Hart designed the first X–ray interferometer known as the Bonse-Hart
interferometer (Bonse and Hart [7]). The schematic layout of the design is shown in
Fig. 3.4. Here, we see how an incident beam of X–rays is split into two by the beam splitter.
The beam that serves as a reference wavefield is labelled ψR. The other beam is used to
probe the sample and is labelled ψS . A transmission mirror is then used to recombine the
beams which allow interference of the beams by the analyser crystal, which subsequently
records the intensity (IM) measured by the detector. We can describe the wavefield that
exits the sample as ψS = exp(iφS ) and denote the reference wavefield as ψR = exp(iφR).
We can then simply say that the interference wavefield formed at the detector ψM will be
the superposition of ψS and ψR, yielding:

ψM = ψS + ψR. (3.19)

Taking the squared modulus yields the intensity IM:

IM = |ψS + ψR|
2

= 2 + 2Re(ψSψ
∗
R)

= 2
[
1 + cos(φS − φR)

]
.

(3.20)
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Figure 3.4: Schematic diagram illustrating the setup for a Bonse-Hart inferometer.

Note that the manipulations in Eqn. (3.20) assume that the normalised intensities IR = ψRψ
∗
R

and IS = ψSψ
∗
S both equal unity. Also, we see from Eqn. 3.20 that interferograms can

be interpreted as phase–contrast images whose measured intensity responds to transverse
phase variations. X–ray interferometry is known to be very sensitive. In fact, it said to
be the most sensitive of all the phase contrast techniques (Momose [54]). The contrast
is manifest as a series of interference fringes. Some of its drawbacks, in addition to the
high spatial and temporal coherence requirements, are that the optics need to be in an
environment of extremely high stability. This creates great challenges, particularly when
it comes to optical alignment (Momose [54]). Other interferometer designs exist, these
include: Michelson, Mach–Zehnder, Fabry-Perot and Twyman-Green interferometers
among others. However, like the Bonse–Hart interferometer they all require high spatial
and temporal coherence as well as stable optics.

3.3.4 Analyser–based phase contrast imaging

Another well–known method for rendering phase contrast is via the use of an analyser
crystal. This method is widely referred to as analyser–based phase contrast imaging
(ABI) and has been applied in many imaging studies. Much of the seminal work done
on ABI is found in Förster et al. [26], Somenkov [76], Ingal and Beliaevskaya [41],
Davis et al. [23, 22], Davis [21], Davis and Stevenson [24] , Chapman et al. [14]. A
schematic picture illustrating a conventional ABI setup is shown in Fig. 3.5. Essentially,
ABI is relies on Bragg diffraction phenomena to render phase variations visible. The
analyser crystal is positioned in such a way that its atomic planes satisfy the Bragg
condition for a given X-ray energy. This is determined by Bragg’s law:

nλ = 2ds sin(θB), (3.21)

where n is an integer, ds is the spacing between the atomic planes and θB is the Bragg
angle. Theoretically, under this condition the incident beam is mostly reflected. However,
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Figure 3.5: Schematic diagram illustrating the setup for analyser–based phase contrast
imaging.

reflection not takes place in the crystal exactly at θ = θB, but also for a narrow angular
range ∆θ. This is termed the Bragg reflection where its angular dependency of reflection is
called the “rocking curve”. In ABI the plane of diffraction is determined by the orientation
of the crystal Bragg planes with respect to the incoming beam, which in turn determines
the transverse direction in which the beam renders phase changes visible. Therefore ABI
is only sensitive to phase changes in only one transverse direction; namely those that are
parallel to the diffraction plane. The intensity at the detector is proportional to the gradient
of the rocking curve. If the analyser is aligned at the half intensity point of the rocking
curve then the intensity at the detector is approximately proportional to the first derivative
of the phase with respect to x. Examples of images of a PMMA rod acquired using ABI at
different orientations are shown in Fig. 3.6. Figure 3.6 (a) shows the image acquired with
the analyser crystal oriented at the Bragg peak θ = θB. Here, the outer and inner edges of
the rod are clearly seen. Figure 3.6 (b) shows the images acquired with the analyser crystal
oriented at an angle corresponding to the right side of the rocking curve’s half width at half
maximum (HWHM) point. Here, greater enhancement of the rod’s edges is seen. Note
that at this crystal orientation the contrast is proportional to the first derivative with respect
to x.

It has been shown that ABI produces high contrast images and it requires only a
single optical element which reduces alignment issues. However, such advantages are also
accompanied with some disadvantages. The most common of these is that it requires a
high degree of temporal coherence to satisfy the Bragg condition. This makes it harder to
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apply using laboratory sources, particularly for imaging large moving samples; thereby
making clinical applications difficult to implement.

(a)

(b)

2.5 mm

2.5 mm

Figure 3.6: X–ray analyser–based phase–contrast images of a PMMA rod using 20 keV
X–rays. (a) Imaged recorded at θ = θB. (b) Image recorded at the HWHM intensity point
of the rocking curve (right side). Images acquired from Lewis et al. [49].

3.3.5 Grating–based differential phase–contrast imaging

Gratings are optical elements composed of equally spaced grid lines that can also be used
to render phase variations visible. In the last decade the use of gratings in phase–contrast
imaging has been adapted to X–ray sources, where various methods have been developed
(Momose et al. [55], Weitkamp et al. [84], Takeda et al. [79], McDonald et al. [53]).
Grating–based differential phase–contrast relies on the Talbot self–imaging effect. This
effect arises as of result Fresnel diffraction from a periodic grating. It has been shown that
at regular propagation distances the image of the grating is repeated (Talbot [80]). The
distance where repeated images of the grating is formed is given by integer multiples of

dT =
2p2

0

λ
, (3.22)

where dT is the first Talbot distance of the grating G0 and p0 is its period (see Fig. 3.7).
In recent years grating–based X–ray differential phase–contrast imaging has attracted

significant attention (David et al. [20], Momose et al. [55], Takeda et al. [79]). It has
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Figure 3.7: Schematic diagram illustrating the setup to perform grating–based differential
phase–contrast imaging used by Pfeiffer et al. [71].

enabled the performance of high sensitivity phase–contrast imaging experiments with
low-brilliance incoherent sources (i.e. X–ray tubes Pfeiffer et al. [71]). Due to its in-
credibly high sensitivity it has been shown to have enormous potential in biomedical
imaging (Pfeiffer et al. [71], Herzen et al. [39], Stutman et al. [77], Donath et al. [25],
Zambelli et al. [92]). Its sensitivity can be so great that many samples have to be im-
mersed in water to reduce some of the high phase contrast signal produced in the intensity
image caused by the sharp variation in refractive index between certain interfaces (i.e
tissue/water). The elemental work in grating–based X–ray differential phase–contrast
with low–brilliance sources was pioneered by Pfeiffer et al. [71]. The basic setup used is
shown in Fig. 3.7. Here, grating G0, which acts as an absorbing mask with transmitting
slits, is placed close the X–ray tube anode that is used to created an array of individually
partially coherent sources. This provides a beam with sufficient spatial coherence for
differential phase–contrast image formation. A second and third grating G1 and G2 is
placed at distances dT and dT + D from G0, respectively. The sample is positioned just
before G1. The distance D corresponds to the first Talbot distance of the grating G1 which
is determined by the formula (Talbot [80]):

D =
2p2

1

λ
. (3.23)

Here p1 is the period of the grating G1. The gratings G1 and G2 are responsible for
producing differential phase–contrast where the image formed at the detector displays a
phase contrast similar to that of analyser–based phase contrast imaging (Pfeiffer et al. [71]).
Essentially, as the X–ray beam traverses the sample it undergoes a slight refraction causing
angular deviations of the X–ray beam. The central idea behind grating interferometry
depends on locally detecting these angular deviations. The angular deviations are directly
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proportional to local gradients of the phase shifts imparted by the sample and are quantified
by the following (Born and Wolf [8]):

α =
λ

2π
∂

∂x
φ(x, y), (3.24)

where, α denotes the refraction angle. Note that if the sample is weakly absorbing then the
detected intensity is a direct measure of the phase gradients ∂φ(x,y)

∂x . In this case the total
phase shifts of the sample can be recovered by simply integrating along the x–direction.

Further advancements have been made by Morgan et al. [58, 57, 56] where grid–
based differential phase–contrast is performed with only one two–dimensional grating
and can retrieve quantitative information using only a single exposure. Here, differential
phase contrast is achieved in both the x and y directions. An initial exposure of the grid
alone (no sample) is taken with a high spatial resolution detector positioned at the first
Talbot distance. The sample is then placed just after the grid. This causes distortions
to the image of the grid as a result of phase gradients induced by the sample. By using
correlation analysis, the intensity shifts in small regions of images taken of the grid alone
and of the grid plus sample allows the phase gradients in both the x and y–direction to be
simultaneously retrieved using simple geometric relations. Images obtained of an airway
interface of a mouse using only one two–dimensional grating with a single exposure are
shown in Fig. 3.8. A raw image (unprocessed) is shown in Fig. 3.8 (a) where the magnified
region displays the features of the two–dimensional grating pinholes. Figure 3.8 (b) shows
an image of the phase gradients in the x–direction

(
∂φ(x,y)
∂x

)
and (c) the phase gradients in

the y–direction
(
∂φ(x,y)
∂y

)
. Figure 3.8 (d) is the retrieved projected thickness calculated from

Figs. 3.8 (b) and (c).
The advancements made by Morgan et al. [58, 57, 56] avoid issues of optical alignment,

however it still has some limitations. One of these limitations is resolution, which is
restrained to the pinhole size of the grating. Another limitation is object size. When
imaging larger objects (i.e the lungs) the grating needs to be highly absorbing in order
to visualise the grid pattern, which is essential to carry out the correlation analysis. This
implies some of the radiation is lost in making the grid pattern visible.

3.3.6 Propagation–based phase contrast imaging

Phenomena such as light focused through a glass lens and ripples observed in the bottom of
a swimming pool are everyday examples of phase–contrast. These examples in particular
occur thanks to the propagation of light used to visualise phase changes inferred by an
object as intensity variations. This type of phase–contrast is widely known as “propagation–
based phase–contrast” (PBI) and, in a way, has already been introduced in chapter 2 where
Fresnel diffraction was discussed. Figure 3.9 shows a schematic depiction of a normal
PBI setup where a detector is positioned at a distance d from the object. One of the major
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(a) (b)

(d)(c).

70 μm70 μm

70 μm 70 μm

Figure 3.8: Images of an airway interface acquired using X–ray single–grating phase–
contrast imaging techniques. (a) Shows a raw image taken at the first Talbot distance. (b)
shows the phase gradients in the x-direction of (a). (c) shows the phase gradients in the
y-direction of (a). (d) shows the projected thickness of the airway interface seen in (a).
Images taken from Morgan et al. [57].

advantages PBI possesses is that it requires no optical elements between the object and
detector in order to render a phase–contrast image.

We recall the Fresnel diffraction integral in Fourier operator form to formulate the
theory of PBI (see Eqn. (2.28) of chapter 2):

ψ(r⊥, z = d) = exp(ikd)F−1
k⊥ exp

[
−id |k⊥|2

2k

]
Fr⊥ψ(r⊥, z = 0). (3.25)

Here, ψ(r⊥, z = d) denotes the complex wavefield formed at the detector plane, while
ψ(r⊥, z = 0) denotes the complex wavefield at the plane where X-rays just exit the object
(see Fig. 3.9). If we consider a small propagation distance d then one can make the
following approximation to the Fourier space propagator:

exp
[
−id |k⊥|2

2k

]
≈ 1 −

id |k⊥|2

2k
. (3.26)
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Figure 3.9: Schematic diagram illustrating propagation-based phase-contrast imaging.

Now, since we are interested in linking phase effects with the propagated intensity, for
convenience we assume the exit scalar wavefield at z = 0 has the form exp[iφ(r⊥, z = 0)].
This omits attenuation in the intensity at z = 0, implying the object is transparent. By
invoking the Fourier derivative theorem and making use of Eqn. (3.26), Eqn. (3.25)
becomes

ψ(r⊥, z = d) = exp(ikd)
[
1 +

id∇2
⊥

2k

]
exp[iφ(r⊥, z = 0)]. (3.27)

The intensity is obtained by taking the squared modulus, which gives:

I(r⊥, z = d) = 1 + 2Re
{

id
2k

exp[−iφ(r⊥, z = 0)]∇2
⊥ exp[iφ(r⊥, z = 0)]

}
. (3.28)

With further manipulation one can arrive at the following, to first order in d (Bremmer [10]):

I(r⊥, z = d) = 1 −
d
2k
∇2
⊥φ(r⊥, z = 0)]. (3.29)

Arriving at the result in Eqn. (3.29) helps appreciate the essence of all propagation-
based phase-contrast literature, in the regime of large Fresnel number (i.e. N f � 1; see
also section 2.4 of chapter 2). Here the forward propagation of the intensity is directly
proportional to the transverse Laplacian of the exit surface phase. This forms the most
fundamental concept for the majority of research studies done with PBI. It essentially
provides phase contrast at high spatial frequencies. Physically, this yields enhancement
of features where strong phase gradients occur, namely in boundaries between different
refracting media. These enhancements are displayed in the intensity image as phase
contrast fringes. An example of an X–ray PBI image is shown in Fig. 3.10, corresponding to
the inflated lungs of a newborn rabbit pup. Here phase–contrast fringes can be appreciated
throughout the images which enable enhancement of the features, particularly at their
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boundaries. The strong speckle pattern3 is seen as the result of the multiple refractions
incurred by the beam as it propagated through the air pockets (alveoli) in the lungs
(Kitchen et al. [46]).

2 mm

Figure 3.10: X–ray propagation-based phase–contrast images of the lungs of a newborn
rabbit pup. Image acquired using 25 keV X–rays and a propagation distance d = 2 m.

We close this section by making some remarks on the benefits of PBI. Aside from
its practical simplicity, it has also been successfully applied using polychromatic sources
(Wilkins et al. [85]). This was done by restricting the source size and having a long source–
to–object distance to meet the spatial coherence requirements. Moreover, the magnification
resulting from point source illumination can improve resolution (Wilkins et al. [85]). When
is comes to medical imaging applications, PBI has already found its way to the clinic. For
example, Konica Minolta Pty. Ltd. developed an X–ray mammography unit based on PBI
(Tanaka et al. [81]). The image contrast and quality shows significant improvement over
conventional attenuation based X–ray mammography. Due to these great advantages of
PBI we have chosen to focus on this technique for the bulk of the thesis, providing new
image reconstruction approaches and experimental data in chapter 4 and chapter 5. As
such, we focus exclusively on quantitative propagation–based phase–contrast methods for
the remainder of this chapter.

3Speckle patterns appear as a result of multiple wavefronts of the same frequency interfering with each
other. Each wavefront has a different amplitude such that when added together the intensity varies randomly
(Born and Wolf [8]).
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3.4 Phase retrieval methods

Up until now we have been discussing the various methods to render phase variations as
intensity variations as a result of the phase–contrast imaging system. These are examples
of what is referred to as the ‘forward problem’. In practice, detectors only measure the
intensity but not the phase distribution of a complex scalar wavefield (i.e. I = |ψ|2 = A2)
hence all phase (φ; complex) information is lost. In this section we discuss the associated
‘inverse problem’, which involves measuring or retrieving quantitative information about a
sample from either one or a series of phase-contrast images. Phase retrieval is an example
of the ‘inverse problem’ whereby either analytic or iterative methods can be used to
calculate phase distributions from intensity measurements. In recent years, problems of
phase retrieval have created their own area of study in the field of coherent X-ray optics
and have generated a vast amount of literature. Despite all the advances made in the area
of phase retrieval, it is still an ongoing problem. Difficulties associated with phase retrieval
arise due to practical limitations. This section discusses some of he successfully applied
phase retrieval algorithms that are valid within the Fresnel regime, that is, near (NF � 1)
and intermediate (NF ≈ 1) fields (see section 2.4 of chapter 2).

3.4.1 The transport–of–intensity equation

When we consider contrast formed as result of free–space propagation in the near Fresnel
regime, where N f � 1 (i.e. PBI), the paraxial approximation proves advantageous. Plenty
of the analytical phase retrieval methods in the literature are developed using the transport–
of–intensity equation (TIE) (Teague [82]). To derive the TIE, firstly we consider the
inhomogeneous paraxial wave Eqn. (3.4) in free-space (i.e. n(r) = 1). Considering this,
Eqn. (3.4) reduces to:

(
2ik

∂

∂z
+ ∇2

⊥

)
ψ(r) = 0.

(3.30)

Expressing the complex scalar wavefield in terms of its intensity and phase as4:

ψ =
√

I exp(iφ), (3.31)

and inserting Eqn. (3.31) into Eqn. (3.30), expanding all terms, cancelling similar ones
and factoring out exp(iφ) gives the following:

−ik
1
√

I

∂I
∂z
− 2
√

I
∂φ

∂z
+ ∇2

⊥

√
I − i

1
√

I
∇⊥I · ∇⊥φ − i

1
√

I
I∇2
⊥φ −

√
I(∇⊥φ)2 = 0. (3.32)

4Note, that the r dependence of the functions ψ, I and φ have been momentarily dropped for simplicity.
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Taking the imaginary part gives the resulting equation;

−k
1
√

I

∂I
∂z
−

1
√

I
∇⊥I · ∇⊥φ −

1
√

I
I∇2
⊥φ = 0. (3.33)

We factor out 1/
√

I and use the identity ∇· (A∇B) = ∇A ·∇B+A∇2B to give the following
continuity equation, commonly known as the transport-of-intensity equation (Teague [82]):

∇⊥ · [I(r)∇⊥φ(r)] = −k
∂I(r)
∂z

. (3.34)

This second order elliptic partial differential equation is as an expression that describes the
local conservation of optical energy as wavefields evolve from one plane z = z1 to another
infinitesimally separated parallel plane z = z2.

Numerous algorithms exist that numerically solve for the phase function φ using the
TIE as a basis, by treating I and ∂I/∂z in Eqn. (3.34) as measurable input data. One of
the commonly used algorithms of Paganin and Nugent [66] uses the TIE to recover phase
information via the following relation:

φ(r⊥) = −k∇−2
⊥

(
∇⊥ ·

{
1

I(r⊥)
∇⊥

[
∇−2
⊥

∂I(r⊥)
∂z

]})
. (3.35)

The intensity derivative ∂I/∂z can be approximated by taking the difference over two
images closely spaced together separated by |z2 − z1|, as shown Fig. 3.11. It is important to
note that Eqn. (3.35) calculates the phase φ(r⊥) at the plane distanced half-way between
z = z1 and z = z2 . Equation (3.35) can be easily numerically implemented by making use
of the discrete Fast Fourier transform as:

φ(r⊥) = kF−1
kx,ky

kx

k2
x + k2

y
Fx,y

{
1
I

F−1
kx,ky

kx

k2
x + k2

y
Fx,y

(
Iz2 − Iz1

|z2 − z1|

)}
. (3.36)

Here Fx,y denotes the forward Fourier transform with respect to (x, y) and F−1
kx,ky

denotes the
inverse Fourier transform with respect to (kx, ky). Note that implementation of Eqn. (3.36)
requires two intensity images collected at separate distances as inputs. This implies that
the imaged sample in theory incurs around twice the radiation dose than if only one image
was required, which limits its applicability in areas such as biological imaging. Also, in
cases where during experiments the images are collected at separate instances, issues of
alignment often arise. This also makes it more difficult to correct the non uniformities
across the beam. Another drawback of Eqn. (3.36) is its numerical instability under the
presence of low spatial frequency noise originating due to zeroes in the term kx/(k2

x + k2
y).
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Figure 3.11: Illustration of imaging setup in order to perform phase retrieval with two
parallel closely spaced intensity images.

3.4.2 The contrast–transfer function

Generally, diffraction effects due to free-space propagation can be quantified in terms
of a ‘transfer function’ acting upon an input wavefield that yields the output wavefield.
The free-space propagator function used in Eqn. (2.28) for Fresnel diffraction is such a
transfer function. The contrast–transfer function (CTF) method makes use of the Fourier
spectrum analysis of the intensity pattern under Fresnel diffraction and was first formulated
by Guigay et al. [33]. There, the author assumes the object satisfies the “weak phase–
amplitude approximation” and later takes the Fourier transform of the intensity distribution
created at a propagation distance z that lies within the Fresnel regime. The “weak phase–
amplitude approximation” is given by

exp[−µ(x, y) + iφ(x, y)] ≈ 1 − µ(x, y) + iφ(x, y). (3.37)

The functions µ(x, y) and φ(x, y) are the absorption and phase function at the contact plane
z = 0. They are defined as line integrals along the real and imaginary component of the
object’s complex refractive index. This approximation ultimately lead to the following
expression known as the contrast–transfer function formulation (Guigay et al. [33]):

Ĩ(kx, ky) = δ̂(kx, ky) − 2 cos
[
λz
4π

(k2
x + k2

y)
]
µ̃(kx, ky) + 2 sin

[
λz
4π

(k2
x + k2

y)
]
φ̃(kx, ky)

(3.38)

The Fourier transform of the intensity is denoted by Ĩ(kx, ky) with kx and ky being dual
to the coordinates x and y, respectively. The functions µ̃(kx, ky) and φ̃(kx, ky) are the Fourier
transforms of the functions µ(x, y) and φ(x, y), respectively. δ̂(kx, ky) is defined here as the
Dirac-delta function.

With the expression in Eqn. (3.38) a number of phase retrieval algorithms have been
developed. We state here the algorithm derived by Turner et al. [83] as it of one of the
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most relevant algorithms that competes with the key algorithms derived in this thesis (see
Eqn. (4.21)). The algorithm of Turner et al. [83] has a restriction that only allows it to
be applied to objects comprised of a single material, in addition to the approximation of
monochromatic scalar paraxial radiation. Under these restrictions the phase φ(r⊥, z = 0)
exiting the object is given by:

φ(r⊥, z = 0) = F−1
kx,ky

 δ

2
(
β cos

[
λz
4π (k2

x + k2
y)
]

+ δ sin
[
λz
4π (k2

x + k2
y)
])Fx,y

{
I(r⊥, z = d)

I0
− 1

} .
(3.39)

Note that to implement Eqn. (3.39) one requires a priori knowledge of the object’s
complex refractive index, namely δ and β. Also, it is key to notice that zeroes appear
in the denominator thus producing singularities in the solution that may cause an over
amplification of certain spatial frequencies. This represents a genuine loss of information
(Turner et al. [83]). The problem of singularities may be circumvented by taking additional
images at a range of propagation distances z.

3.5 Phase and amplitude computed tomography

Tomography is the science that involves the study of sections or slices of an object. The
problem of recovering a two–dimensional function (slice) from projections (line integrals)
over rotating angles is one that was brought to light and solved by Johan Radon [72].
Tomographic techniques have broad applications especially in areas such as diagnostic
medicine where apparati, known as Computed Tomography (CT) scanners, are used to
obtain three–dimensional images that enable visualisation of the internal structure of
organs in a non-invasive manner. The fundamental principles of tomography are covered
in section 3.5.1. Section 3.5.2 discuses the application of tomography to phase–contrast
X–ray imaging. Methods that combine the phase retrieval and tomographic process in
single–step approach are discussed in section 3.5.3.

3.5.1 Tomography principles and the Fourier slice theorem

This section describes the mathematical procedure that enables the reconstruction of a two–
dimensional slice from a series of projections. A two–dimensional slice can be described
by the complex function f (x1, x2). First, one needs to set up an appropriate coordinate
system that conveniently describes straight–line ray paths along a function f (x1, x2) for a
given angle Ω about the origin. Figure 3.12 shows a two–dimensional function f (x1, x2)
with a series of straight parallel lines used to define integrals along straight ray–paths that
comprise a projection of f (x1, x2) at a given angle Ω. The variable s is the distance from
the origin to an arbitrary line. Each line has a normal vector n̂ = (cos Ω, sin Ω) that can be
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Figure 3.12: Digram showing a series of parallel line integrals along the object function
f (x1, x2). s and Ω are polar coordinates. s is the radius from the origin which becomes
the independent variable in the projection space. Ω is the angle from the x axis which
rotates over π radians.

used to describe straight lines across the plane for any angle Ω with the equation (Kak and
Slaney [43]):

x1 cos Ω + x2 sin Ω = s. (3.40)

The range of values taken by s and Ω are 0 ≤ Ω < π and −∞ ≤ s < ∞ respectively. The
line integrals along f (x1, x2) defines the Radon transform:

R[ f ](s,Ω) =

∫ ∞

−∞

∫ ∞

−∞

f (x1, x2)̂δ(s − x1 cos Ω − x2 sin Ω)dx1dx2. (3.41)

Here, R is the symbol defining the Radon transform which maps f on to (s,Ω) space. The
Radon transform of a function is also known as a ‘sinogram’ since projections of a distinct
feature follows a sinusoidal path along varying angles (see Fig. 3.13 (b)). Equation 3.41
utilises the Dirac delta function labelled here as δ̂(x).

Before proceeding we recall the Fourier transform convention used in this thesis:

Fs {G} =
1
√

2π

∫ ∞

−∞

G(s) exp(−iνs)ds. (3.42)

Here, the variable ν is dual to s.
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The aim of tomography is to invert the Radon transform in Eqn. (3.41) in order to
recover the function f (x1, x2). This can be achieved by invoking the ‘Fourier slice theorem’
(Kak and Slaney [43]). The Fourier slice theorem states that the one–dimensional Fourier
transform of each one–dimensional projection with respect to s is directly related to the
two dimensional Fourier transform of f (x1, x2) with respect to (x1, x2). With the definition
in Eqn. (3.42) one may prove, by changing the order of integration and making the change
of variables ζ1 = ν cos Ω and ζ2 = ν sin Ω, that the continued one–dimensional Fourier
transform of all of the projections is equal to the two–dimensional Fourier transform of
the function f (x1, x2). This is demonstrated in Eqn. (3.43) (Kak and Slaney [43]):

Fs {R[ f ]} =
1
√

2π

∫ ∞

−∞

[∫ ∞

−∞

∫ ∞

−∞

f (x1, x2)̂δ(s − x1 cos Ω − x2 sin Ω)dx1dx2

]
exp(−iνs)ds

=
1
√

2π

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

exp(−iνs)̂δ(s − x1 cos Ω − x2 sin Ω)ds
]

f (x1, x2)dx1dx2

=
1
√

2π

∫ ∞

−∞

∫ ∞

−∞

exp[−i(νx1 cos Ω + νx2 sin Ω)] f (x1, x2)dx1dx2

=
√

2π ×
1

2π

∫ ∞

−∞

∫ ∞

−∞

exp[−i(x1ζ1 + x2ζ1] f (x1, x2)dx1dx2

=
√

2π × Fx1,x2[ f ](ζ1, ζ2). (3.43)

With the relation Fs {R[ f ]} =
√

2π × Fx1,x2[ f ](ζ1, ζ2) one is able to invert the Radon trans-
form and recover the function f (x1, x2). This process is known as filtered backprojection,
which is implemented as the following operation:

f (x1, x2) =
1
√

2π
F−1
ζ1,ζ2

[
Fs {R[ f ]}

]
=

1
√

2π
×

1
2π

∫ ∞

−∞

∫ ∞

−∞

Fs {R[ f ]} exp[i(x1ζ1 + x2ζ2)]dζ1dζ2. (3.44)

In words, the operation in Eqn. (3.44) describes the following procedure: (i) take
the one–dimensional Fourier transform of each row of the Radon transform (sinogram)
with respect to s; (ii) take the two–dimensional inverse Fourier transform of the result
with respect to (ζ1, ζ2) to recover the function f (x1, x2). Alternatively, Eqn. (3.44) can be
expressed in a more compact form which gives further physical insight. This can be shown
by changing the variables inside the integral into their corresponding polar coordinates
(ν,Ω). The polar form of the differential elements dζ1 and dζ2 can be calculated via the
Jacobian matrix:

dζ1dζ2 = d(ν cos Ω)d(ν sin Ω)

=

∣∣∣∣∣∣det
 ∂
∂ν

(ν cos Ω) ∂
∂Ω

(ν cos Ω)
∂
∂ν

(ν sin Ω) ∂
∂Ω

(ν sin Ω)

∣∣∣∣∣∣ dνdΩ.

= |ν| dνdΩ. (3.45)
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Figure 3.13: Figure showing a CT simulation of the image in (a). (b) is the sinogram
of (a) produced with 180 projections. (c) shows a reconstruction of the sinogram in (b)
without filtering before backprojecting. (d) also shows a reconstruction of the sinogram
in (b) but this time the sinogram is filtered with the function |ν| before backprojecting. (a)
has a size of 225×225 pixels.

Hence, Eqn. (3.44) becomes

f (x1, x2) =
1

2π

∫ π

0

[
1
√

2π

∫ ∞

−∞

Fs {R[ f ]} |ν| exp[iνs]dν
]

dΩ. (3.46)

It can be seen that the inner integral of Eqn. (3.46) displays the form of a Fourier convolu-
tion, which enables it to be re–written in the more abbreviated form:

f (x1, x2) =
1

2π

∫ π

0
F−1
ν |ν|Fs {R[ f ]} dΩ. (3.47)

This helps clarify why Eqn. (3.47) carries the name of filtered backprojection as a Fourier
filtering process naturally appears in the inversion. In this case the Radon transform
R[ f ](s,Ω) is Fourier filtered with the function |ν| known as the Ram–Lak filter (Ramachan-
dran and Lakshminarayanan [73]). The filtering process is essential when reconstructing
real tomographic data sets given that only a finite number of projections can be acquired.
Having a finite number of projections has consequences of under–sampling high spatial
frequency information of the function. To compensate for this drawback the sinogram
(Radon transform) is filtered with a high–pass Fourier filter before backprojecting into real
space (x1, x2). The effects of filtering the sinogram before backprojecting can be shown
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in Fig. 3.13. The Radon transform of Fig. 3.13 (a) in shown in Fig. 3.13 (b). The back-
projected reconstruction with and without filtering of Fig. 3.13 (b) is shown in Fig. 3.13
(d) and Fig. 3.13 (c), respectively, where the difference in backprojection reconstruction
quality is clearly evident.

Also important is the number of projections acquired in a tomographic data set. Nat-
urally, the higher the number of projections taken the better the object information is
sampled, therefore the higher the quality of the reconstructed image. This is demonstrated
in Fig. (3.14). Here tomographic simulations were performed with varying number of
projections. We see how increasing the number of projections improves the reconstruction
quality. Normally, when tomographic experiments are performed an optimal number of
projections is estimated. This estimation mainly depends on the number of pixels the
imaged object covers over the detector window (Kak and Slaney [43]).

(a) (b)

(f)(d) (e)

(  )c

Figure 3.14: CT simulations with varying number of projections. (a) is the original
image with size of 200×200 pixels. (b) CT reconstruction performed with 10 projec-
tions. (c) reconstruction with 30 projections. (d) reconstruction with 60 projections. (e)
reconstruction with 90 projections. (f) reconstruction with 180 projections.
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3.5.2 Theory of phase–contrast tomography

Phase contrast tomography allows visualisation of the internal structures of weakly ab-
sorbing objects. Also, it allows the quantitative reconstruction of the real part of the
three–dimensional complex refractive index distribution. In this case the real part is de-
noted as δ(x1, x2, x3). In simple terms the core idea of phase–contrast tomography is to
merge phase–retrieval methods with tomographic principles. In general this is done in a
two–step process. First, the phase φ0(s, u,Ω) of the exit wavefield is calculated at each
tomographic projection. Second, the phase–retrieved images are then backprojected, thus
obtaining δ(x1, x2, x3). This follows directly from the projection approximation where the
exit phase function can be expressed as a Radon transform (Bronnikov [11]):

φ0(s, u,Ω) = −k
∫ ∞

−∞

∫ ∞

−∞

δ(x1, x2, u)̂δ(s − x1 cos Ω − x2 sin Ω)dx1dx2

= −kR[δ](s, u,Ω). (3.48)

The introduced variable u is used to represent the vertical axis at the projected plane. Given
this relation, the real part of the complex refractive index distribution is calculated via:

δ(x1, x2, x3) = −
1

2πk

∫ π

0
F−1
ν,ξ |ν|Fs,u {φ0(s, u,Ω)} dΩ. (3.49)

The coordinate ξ is dual to u. Note, that the two dimensional forward and inverse Fourier
transforms in Eqn. (3.49) have been defined as:

Fs,u {G} =
1

2π

∫ ∞

−∞

G(s, u) exp[−i(νs + ξu)]dsdu,

F−1
ν,ξ

{
G̃
}

=
1

2π

∫ ∞

−∞

G̃(ν, ξ) exp[i(νs + ξu)]dνdξ. (3.50)

3.5.3 Single–step approach

In the context of X-ray phase contrast imaging, the seminal work was derived by Bron-
nikov [11, 12]. In this work, phase retrieval and tomography are combined into a single–
step approach. The omission of the phase retrieval process to each tomographic image
holds advantages in terms of computational efficiency. This derivation used Fresnel diffrac-
tion theory to relate the intensity downstream from the object to its projected exit phase in
the near Fresnel regime. This implies that the propagation distance should be small enough
such that only a single fringe is formed at the detector. Additionally, the imaged object is
considered to be a ‘pure phase object’, which is non–absorbing. To begin, the intensity of
the incoming wavefield is uniform (i.e. Iin = 1). The exit phase is then calculated via:

φ0(s, u,Ω) = kF−1
ν,ξ

{
1

d(ν2 + ξ2)
Fs,u [Id(s, u,Ω) − 1]

}
, (3.51)
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where Id(s, u,Ω) is the phase–contrast intensity formed at a distance d downstream from
the object for an arbitrary tomographic angle Ω. Substituting Eqn. (3.51) into the filtered
backprojection formula in Eqn. (3.49) allows the merger of functions in Fourier space,
which enables the complex refractive index δ(x1, x2, x3) to be calculated with the formula:

δ(x1, x2, x3) = −
1

2π

∫ π

0
F−1
ν,ξ

|ν|

d(ν2 + ξ2)
Fs,u {Id(s, u,Ω) − 1} dΩ. (3.52)

Further adjustments to this formulation were made by Gureyev et al. [38]. As opposed to
the non–absorbing and small d restrictions, the formulation of Gureyev et al. [38] combines
the CTF–based phase retrieval approach discussed in section 3.4.2 with Eqn. (3.49). This
way the object is now only restricted to the “single–material weak phase–amplitude
approximation”. Also, their method is valid at higher propagation distances within the
Fresnel regime. The formula is given by

δ(x1, x2, x3) = −
1

2π

∫ π

0
F−1
ν,ξ

[̃
g(ν, ξ)Fs,uId(s, u,Ω) − 1

]
dΩ

g̃(ν, ξ) =
|ν|

2
{
sin[λd

4π (ν2 + ξ2)] +
β

δ
cos[λd

4π (ν2 + ξ2)]
} . (3.53)

Note that this method inherits the same limitations that arise from the CTF based approach.
This is mainly the over amplification of certain spatial frequencies, thus suffering from
numerical instability at certain distances d.

3.6 Concluding remarks

Chapters 2 and 3 have reviewed the theoretical and experimental background that will be
employed throughout the remainder of this thesis. The remaining chapters of the thesis
comprise original research that builds upon this background.
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4.1 Introduction

In chapter 3 it was shown that phase–contrast X–ray imaging is a very powerful tool for
visualizing weakly absorbing features inside a sample as the changes in the phase of the
X–ray wavefield induced by variations in refractive index across the sample are rendered
visible in the measured intensity. Out of the various phase–contrast imaging modalities
discussed in chapter 3 we saw how propagation–based X–ray phase contrast imaging (PBI)
omits the need for any optical elements between the illuminating radiation and the detector,
thus making it one of the simplest phase–contrast X–ray imaging modalities in terms of
practicality. For this reason we focus on this modality in this chapter.

When PBI is combined with computed tomography (CT) the visualization of an
object’s internal structure is significantly improved over conventional absorption–based
CT (Cloetens et al. [18]). However, this only provides a better qualitative 3D image but
infers no quantitative information about the imaged object. The combinations of phase
retrieval methods with CT makes quantitative phase–contrast imaging in 3D possible. In
section 3.5.3 algorithms that perform phase and amplitude computed tomography were
discussed, namely those derived by Bronnikov [11, 12] and Gureyev et al. [38]. These
algorithms carry out the phase retrieval and tomography procedure in a single step, which
provides greater numerical efficiency. Also, they possess the advantage of only requiring a
single PBI image per projection. Nevertheless, they are still restricted to samples comprised
of a single–material and that are weakly absorbing. Also, these methods are unstable under
the presence of low spatial frequency noise.

Paganin et al. [65] developed a phase retrieval algorithm that is robust under the
presence of noise and also only requires a single phase-contrast image. This algorithms
includes the effects of absorption and phase contrast without making any weak–based
approximations. It has been successfully applied in subsequent tomographic investigations
Mayo et al. [52]. However, the the algorithm is still restricted to single–material objects
and only operates within the validity of the TIE.

51
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In this chapter1, the work of Paganin et al. [65] is extended by presenting a noise-robust
method to perform quantitative phase contrast tomography on a multi–material object
where its complex refractive index is spatially quantized. The algorithm uses a single
PBI image per tomographic projection. This allows the object under study to incur no
additional radiation dose compared to that imparted in conventional absorption contrast
tomography. The method involves separately reconstructing each interface between any
given pair of distinct materials. Once all interfaces are quantitatively reconstructed each
of these can used to produce a single spliced tomogram with all interfaces exhibiting the
correct refractive index distribution. Section 4.2.1 of the chapter reviews the phase retrieval
derived by Paganin et al. [65]. Section 4.2.2 shows the derivation of the extension to the
work of Paganin et al. [65], which constitutes the original work crucial to this chapter and
to chapter 5. An experimental implementation in shown in Section 4.3. Some concluding
remarks are given in section 4.4.

Incident X-rays

Contact Plane

Detector Plane

Object

p1

p2

p3

x

y

d

q

Figure 4.1: Experimental setup showing the imaging geometry and coordinate system
for propagation-based phase contrast tomography.

4.2 Theory

In this section we outline the theory for quantitative phase-amplitude tomography of a
multi-material object with a quantized distribution of complex refractive indices (i.e. a
“spatially quantized object”). Section 4.2.1 reviews an existing theory for two–dimensional
(2D) single-image propagation-based phase retrieval of a one–material object, with section
4.2.2 generalizing this to the case of 2D single–image phase retrieval of an object of a given
material which is embedded in a matrix of a second material. Section 4.2.3 generalizes this

1This chapter is based on the publication “2D and 3D X–ray phase retrieval of multi–material objects”,
M. A. Beltran, D. M. Paganin, M. J. Kitchen, Opt. Express. 18, 6423–6435(2010). See Appendix A.
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result to the case of three–dimensional (3D) propagation–based phase–contrast imaging of
spatially–quantized objects, given a single image per projection.

4.2.1 Two–dimensional phase retrieval for a binary object

In this derivation we consider a radiation source that is paraxial and monochromatic. For
such sources the phase and intensity of a wavefield downstream of the object under study
obeys the Transport–of–Intensity equation (TIE) (Teague et al. [82]). Therefore we begin
by restating the TIE (see also Eqn. (3.34)):

∇⊥ ·
[
I(r⊥, z)∇⊥φ(r⊥, z)

]
= −k

∂I(r⊥, z)
∂z

. (4.1)

We remind the reader that the intensity and phase of the scalar wavefield are denoted by
I(r⊥, z) and φ(r⊥, z), the position vector r⊥ = (x, y) is perpendicular to the optic axis z,
∇⊥ =

(
∂
∂x ,

∂
∂y

)
is the transverse gradient operator, and k = 2π

λ
is the wave number.

We then consider an object with complex refractive index distribution:

n(p) = 1 − δ(p) + iβ(p) (4.2)

where δ quantifies the refractive properties of the object, and

β =
λµ

4π
, (4.3)

quantifies absorptive properties of the object. λ is the radiation wavelength and µ is the
linear attenuation coefficient. The position vector p = (p1, p2, p3) represents the object’s
coordinate system as illustrated in Fig. 4.1. For an object composed of a single material
“1”(including voids; herein referred to as a binary object), n(p) takes only the values
1 − δ1 + iβ1 or unity. For normally incident plane-wave illumination of an optically thin
single–material object, the intensity and phase at the contact plane (z = 0) is given by the
projection approximation (see section 3.2.1 of chapter 3), such that

I(r⊥, z = 0) = I0 exp
[
−µ1T1(r⊥)

]
, (4.4)

and

φ(r⊥, z = 0) = −kδ1T1(r⊥), (4.5)

with Eqn. (4.4) being the Beer-Lambert law of absorption. T1(r⊥) is the projected thickness
of the object (projected in the z–direction) and I0 is the uniform incident intensity. By
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substituting I(r⊥, z = 0) and φ(r⊥, z = 0) into the TIE (Eqn. (4.1)) we obtain the following
expression:

δ1I0∇⊥ ·
{
exp

[
−µ1T1(r⊥)

]
∇⊥ · T1(r⊥)

}
=
∂I(r⊥, z)
∂z

. (4.6)

We make use of the identity

∇⊥ ·
{
exp

[
−µ1T1(r⊥)

]
∇⊥ · T1(r⊥)

}
= −

1
µ1
∇2
⊥ exp

[
−µ1T1(r⊥)

]
. (4.7)

One is then able to re-express Eqn. (4.6) as

−
I0δ1

µ1
∇2
⊥ exp

[
−µ1T1(r⊥)

]
=
∂I(r⊥, z)
∂z

. (4.8)

Now the derivative ∂I(r⊥,z)
∂z can be approximated by taking the intensity difference across

two closely spaced planes separated by a distance d. In this case we consider one of the
measured intensities to be at the contact plane z = 0 and the other at some close distance
z = d. That is,

∂I(r⊥, z)
∂z

≈
I(r⊥, z = d) − I(r⊥, z = 0)

d

=
I(r⊥, z = d) − I0 exp

[
−µ1T1(r⊥)

]
d

.

(4.9)

With this approximation one is able to rearrange Eqn. (4.8) in order to obtain the following

[
−

dδ1

µ1
∇2
⊥ + 1

]
exp

[
−µ1T1(r⊥)

]
=

I(r⊥, z = d)
I0

. (4.10)

By Fourier transforming both sides one can make use of the Fourier derivative theorem

Fr⊥

{
∇2
⊥G(r⊥)

}
= −k2

⊥G(r⊥), (4.11)

enabling the projected thickness T1(r⊥) to be calculated as (Paganin et al. [65]):

T1(r⊥) = −
1
µ1

ln
(
F−1

k⊥

{
1

dδ1
µ1

k2
⊥+1

Fr⊥

[
I(r⊥, z = d)

I0

]})
. (4.12)

Here Fk⊥ and F−1
r⊥ are respectively the two–dimensional forward and inverse Fourier

transforms with respect to r⊥, and k⊥ = (kx, ky) are the Fourier coordinates dual to r⊥ (see
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Fig. 4.1). This algorithm assumes the “near field approximation” that d be sufficiently
small that the Fresnel number be significantly larger than unity, that is

NF =
l2

λ(Dl + d)
� 1, (4.13)

where l is the characteristic transverse length scale associated with the wavefield at the
exit surface of the object and Dl is the distance from the smallest feature to the exit surface
(see e.g. Paganin et al. [67]). For a given wavelength and spatial resolution we can
therefore estimate the minimum feature size that can be imaged and still satisfy the near
field approximation.

A mathematically identical form of Eqn. (4.12), which allows for the recovery of
the projected electron density ρ(r⊥), has also been derived via a different approach by
Wu et al. [91]. In their derivation, the authors assumed the energies of the incident X–rays
must range from 60 to 500 keV. Their derivation is not restricted to a single material object,
but enables the same mathematical simplification as the single material assumption made
in deriving Eqn. (4.12) when lower energy X–rays are considered.

4.2.2 Two–dimensional phase retrieval of a ternary object

This section extends the phase retrieval algorithm in Eqn. (4.12) by generalizing to the
case of a ternary object (two materials including voids). To this end, consider an object
made of material “ j” with projected thickness T j(r⊥) embedded in another object made of
material “1” with projected thickness T1(r⊥). We seek to recover T j(r⊥) from a single PCI
image. Introduce the total projected thickness (Myers et al. [60]):

A(r⊥) = T j(r⊥) + T1(r⊥). (4.14)

Under the projection approximation the intensity and phase at the contact plane are given
by (see section 3.2.1 of chapter 3):

I(r⊥, z = 0) = I0 exp
[
−µ jT j(r⊥) − µ1T1(r⊥)

]
, (4.15)

and

φ(r⊥, z = 0) = −k
[
δ jT j(r⊥) + δ1T1(r⊥)

]
. (4.16)

By substituting Eqns. (4.14), (4.15) and (4.16) in the TIE (Eqn. (4.1)) we obtain the
following non–linear differential equation with respect to T j(r⊥):
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(
δ j − δ1

)
I0 exp

[
−µ1A(r⊥)

]
∇⊥ ·

{
exp

[
−(µ j − µ1)T j(r⊥)

]
∇⊥ · T j(r⊥)

}
+

δ1I0 exp
[
−µ1A(r⊥)

]
∇⊥ ·

{
exp

[
−(µ j − µ1)T j(r⊥)

]
∇⊥ · A(r⊥)

}
=
∂I(r⊥, z)
∂z

.

(4.17)

Assuming that the total projected thickness A(r⊥) varies slowly across the plane r⊥ = (x, y),
spatial derivatives of A(r⊥) can be neglected. As such, the second term on the left hand
side of Eqn. (4.17) can be ignored, thus the non–linear differential equation in Eqn. (4.17)
simplifies to:

(
δ j − δ1

)
I0 exp

[
−µ1A(r⊥)

]
∇⊥ ·

{
exp

[
−(µ j − µ1)T j(r⊥)

]
∇⊥ · T j(r⊥)

}
=
∂I(r⊥, z)
∂z

.

(4.18)

To proceed we follow the procedure used for the binary case by making use of the identity
in Eqn. (4.7) in a slightly modified form:

∇⊥ ·
{
exp

[
−(µ j − µ1)T j(r⊥)

]
∇⊥ · T j(r⊥)

}
= −

1
µ j − µ1

∇2
⊥ exp

[
−(µ j − µ1)T j(r⊥)

]
.

(4.19)

Subsequently, expressing the right hand side of Eqn. (4.18) as a first–order finite difference
approximation of two closely spaced measured intensities of the planes z = 0 and z = d,
yields:

[
−

d(δ j − δ1)
(µ j − µ1)

∇2
⊥ + 1

]
exp

[
−(µ j − µ1)T j(r⊥)

]
=

I(r⊥, z = 0)
I0 exp

[
−µ1A(r⊥)

] . (4.20)

Fourier transform both sides of Eqn. (4.20), use the Fourier derivative theorem, and inverse
transform to obtain the following expression for T j(r⊥) (Beltran et al. [6]):

T j(r⊥) =
1

µ j − µ1
ln

F−1
k⊥

 1
d(δ j−δ1)
(µ j−µ1) k2

⊥ + 1
Fr⊥

[
I(r⊥, z = d)

I0 exp[−µ1A(r⊥)]

]
 . (4.21)

To employ this algorithm one requires a priori knowledge of the total projected thickness
A(r⊥) in addition to the values δ j, δ1 and µ j, µ1 corresponding to the different materials in
the object. If an object is of complicated shape and is known to contain no internal voids,
then A(r⊥) can be found using techniques such as laser profilometry (Myers et al. [60]).
In the case of tomography, a more convenient and practical approach to obtain A(r⊥) for
each projection angle can be used. By utilizing Eqn. (4.12) the encasing material can first
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be correctly reconstructed tomographically. Internal and external voids can then be located
by computationally searching for a predefined threshold in each slice of the reconstructed
volume. A(r⊥) may then be calculated for each projection angle. On an additional note,
for point source illumination it is necessary to account for image magnification in both
Eqn. (4.12) and Eqn. (4.21). Both equations will be altered by identical factors (see
Kitchen et al. [45]).

4.2.3 Three–dimensional phase retrieval for spatially quantized

objects

This section combines the phase retrieval algorithms in Eqns. (4.12) and (4.21) with
tomography principles to enable interface–specific phase retrieval tomography, using a
single propagation-based X–ray phase contrast image per projection (see section 3.5.1).
For both absorption and phase contrast tomography we utilize a conventional filtered
backprojection (FBP) algorithm to reconstruct a two–dimensional slice of the imaged
object (Kak and Slaney [43]). Fourier–transform–based FBP utilizing projection phase–
contrast images processed using Eqn. (4.12), allows one to “focus in” on an interface
between air (cavities) and the encasing object “1”, enabling any voids within the encasing
material to be quantitatively reconstructed. Here δ1 and β1 take the values corresponding
to the encasing object “1”. For objects with spatially quantized refractive indices, such as
shown in Fig. 4.2, the “correct” interfaces will be sharply reconstructed.

PMMA

Air

Aluminium

PTFE

12.75 mm

1.00 mm

Figure 4.2: Top view of the test object used to demonstrate interface–specific phase
retrieval tomography using a single propagation–based X–ray phase contrast image per
projection.

Interfaces between embedded objects “ j” (where j = 2, 3, ... ) and the encasing object
“1”, will be incorrectly reconstructed using the aforementioned procedure. However, such
incorrectly reconstructed interfaces will bear a characteristic local signature of either (i)
residual phase–contrast fringes, or (ii) blurred interfaces. Moreover, such “incorrect” inter-
faces (e.g. between materials “ j” and “1”) may be quantitatively (sharply) reconstructed
by repeating the FBP analysis using inputs derived by inserting (∆δ) j1 ≡ δ j − δ1 and
(∆µ) j1 ≡ µ j − µ1 into Eqn. (4.21), provided the material of interest is not in contact with or
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in the immediate vicinity of either another embedded object or a cavity. From a series of
FBP reconstructions for each distinct pair of material interfaces present in the sample, one
can build up a quantitative 3D map of all materials. These can be spliced together into a
composite tomographic reconstruction, for which all interfaces between each distinct pair
of materials is sharply reconstructed. This is the core idea underpinning our procedure for
phas-e-amplitude tomography of a multi–material object with spatially quantized complex
refractive index distribution, given a single propagation–based phase contrast image per
projection.

Crucial to the success of the splicing procedure described above is the idea that
“incorrect” interfaces are only locally polluted (in three dimensions) by locally incorrect
choices for δ and µ (Mayo et al. [52]). How may one quantify the smoothing artefacts for
interfaces which are incurred as a result of a locally incorrect filtering parameter, α = dδ

µ
,

being utilized in Eqn. (4.12) at a given interface? In regions where over-smoothing occurs
(i.e. where α is overestimated), the amount of blurring (“bleed width”) of an “incorrect”
interface can be estimated by analysing the low-pass Fourier filter in Eqn. (4.12), which
has the form of a Lorentzian function. This Lorentzian can be rewritten as

1
αk2
⊥ + 1

=
1

εk2
⊥ + 1

×

(
εk2
⊥ + 1

αk2
⊥ + 1

)
. (4.22)

In the case of a medium “ j” embedded in an encasing medium “1”, ε =
d(δ j−δ1)
(µ j−µ1) is the

ratio in Eqn. (4.21) that will correctly reconstruct this particular interface. Equation (4.22)
allows us to approximately interpret the operation of Eqn. (4.12) (using α rather than ε)
on this interface as the correct Lorentzian function multiplied by the ratio of quadratic
functions on the right side of Eqn. (4.22). This quotient is a Fourier filter that locally causes
either an over- or under-smoothing artefact in the vicinity of the “incorrect” interface.
Incidentally, in the case of oversmoothing, when ε

α
< 1, this ratio of quadratic functions is

a Lorentzian function that has been vertically scaled by a factor α−ε
ε

and shifted positively
along the vertical axis by ε

α
, with a maximum value of unity (see Fig. 4.3 (a)). In the

opposite case, when ε
α
> 1, we have an inverted Lorentzian, giving rise to a high-pass

filter that leaves a characteristic fringe representing under-compensated phase contrast (see
Fig. 4.3 (b)). In either case, one has a clear signature associated with “incorrect” interfaces,
which allows them to be unambiguously identified and thereby enabling one to “focus in”
upon a particular material interface of interest.

Oversmoothing is a particular problem since it will cause an object to appear to “bleed”
beyond its physical boundaries, potentially encroaching the space of other features in the
object. This “bleed width” can be estimated via the optical uncertainty principle:

∆x∆k ≥ 1, (4.23)

where ∆x is the uncertainty in real space (i.e., the “bleed width”) and ∆k is the uncertainty
in reciprocal space. Take ∆k as the half–width at half–maximum (HWHM) of the second
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quotient on the right–hand side of Eqn. (4.22), relative to the asymptotic baseline of ε
α
, as

displayed in Fig. 4.3 (a). Subsequently, using Eqn. (4.23) we obtain a simple lower bound
for the associated bleed width that is, somewhat surprisingly, independent of ε:

∆x ≥
√
α (4.24)

We close this section by noting that this “bleed width”, associated with interfaces other than
those selected via a given choice for α , is constructive insofar as it “tags” particular over–
smoothed interfaces as not corresponding to the particular interface of interest, but rather
to an interface with ε < α . Under–smoothed interfaces are also tagged, as corresponding
to ε > α, via the signature of incompletely–compensated phase contrast fringes.

1/
√α

ε α/

ε α/1

1

HWHM

k
┴

k
┴

Figure 4.3: Graphs of the Fourier filter εk2
⊥+1

αk2
⊥+1

are shown. (a) shows the case when
ε/α < 1, leading to an over–smoothed reconstruction and (b) shows the case when
ε/α > 1, leading to an under–smoothed reconstruction.

4.3 Experimental results and discussion

Here we give an synchrotron–based experimental implementation of the theory devel-
oped above. Section 4.3.1 discusses the experimental setup. Section 4.3.2 reports 2D
phase–amplitude retrieval of multi–material spatially quantized objects with embedded
features that are non-overlapping in projection (cf. sections 4.2.1 and 4.2.2). This re-
quirement for non-overlap in projection is relaxed is section 4.3.3, which implements 3D
phase–amplitude retrieval of multi–material spatially quantized objects, given a single
propagation–based X–ray phase contrast image per projection (cf. section 4.2.3).
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4.3.1 Experimental setup

X–ray propagation–based phase–amplitude computed tomography experiments were per-
formed in Hutch 3 of beamline 20B2 at the SPring-8 synchrotron radiation source, Japan
(proposal 2009A1882). The beamline employs a bending magnet source with a Si(111)
double–crystal monochromator (Goto et al. [31]). A monochromatic X–ray beam of 24
keV provided acceptable phase and attenuation contrast for materials of relatively low
atomic number. This energy is also commensurate with the diagnostic X–ray energies
used in mammography (Abrami et al. [1]). Phase and absorption contrast images were
recorded with the detector positioned at distances of d = 1 m and d = 10 cm from the
object, as shown in Fig. 4.1. An optically coupled Hamamatsu CCD camera (C4880-41S)
with a 10 µm thick gadolinium oxysulfide (Gd2O2S) phosphor was used to acquire each
data set. The images had a window size of 3000 x 1500 pixels and an effective pixel size of
5.9 µm, which gave a region of interest (ROI) of 17.70 mm (H) × 8.85 mm (V). For each
tomographic data set, 1800 projections were collected over 180◦ of rotation, each acquired
with an exposure time of 2.5 s. Flat field images (no object in the beam) were recorded
every 43 projections. Frequent flat field recordings were required due to instabilities in
beam position with time. Dark field images also were acquired with the main beam shutter
closed at the beginning and end of each scan to correct for the detector dark current offset.
Prior to quantitative analysis, all phase–contrast images were flat–field and dark–field
corrected to compensate for both illumination non–uniformities and CCD dark current.
The flat and dark field correction method performed for each tomographic image is shown
in Eqn. (4.25) below:

Corrected Image =
IImage − IDark f ield

IFlat f ield − IDark f ield
. (4.25)

The imaged object was a PMMA (Polymethyl-methacrylate C5H8O2; commonly
known as Perspex) cylinder 10 mm in height and 12.75 ± 0.05 mm in diameter. This
contained four cavities each with diameter 1.02 ± 0.05 mm. An Aluminium (Al) and
PTFE (Polytetrafluoroethylene H2F4; commonly known as Teflon) pin of 1.00 ± 0.05 mm
diameter were inserted into two of the cavities to create a quaternary object (three materials
plus voids) with three distinct interfaces; these being air/PMMA, Aluminium/PMMA and
PTFE/PMMA (see Fig. 4.2). The δ and β values for the materials in the object, for 24 keV
X–rays, are listed in Table 4.1. The Aluminium/PMMA interface will be denoted as j = 2
and the PTFE/PMMA interface as j = 3.

4.3.2 Projection imaging

Here we use the theory of section 4.2.1 to implement 2D phase–amplitude retrieval of a
multi–material spatially quantized object with non–overlapping projections of embedded
features composed of different materials, noting that the assumption of non–overlapping
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Table 4.1: Values of δ and β at 24 keV for materials used to construct the test object in
Fig. 4.2.

Material δ × 10−7 µ (m−1)

PMMA (C5H8O2) 4.628 41.2

PTFE (H2F4) 7.789 119.8

Aluminium 9.396 502.6

embedded features will be dropped when moving to a tomographic analysis in section
4.3.3.

Absorption and phase contrast images of our test object (see Fig. 4.2) are shown in
Fig. 4.4(a) and (c) for an orientation in which all embedded features, corresponding to
different materials, are non–overlapping in projection. In the absorption contrast image,
all interfaces except Al/PMMA exhibit weak contrast, since Al is significantly more
attenuating than the other materials in the sample (see Table 4.1). Conversely, the phase
contrast image displays a significantly greater signal–to–noise ratio (SNR), dramatically
enhancing the PTFE/PMMA and air/PMMA interfaces and improving visualization of the
object overall (Wilkins et al. [85]). Line profiles from left–to–right of the centre of the
images in Fig. 4.4 (a) and (c) are shown in Fig. 4.4 (b) and (d), respectively. The profile
in Fig. 4.4 (d) clearly reveals strong propagation-based phase contrast fringes formed at
interface boundaries.

Figure 4.5 (a) shows an image of the projected thickness of the object computed via
Eqn. (4.12), under the assumption that the object was composed entirely of PMMA. Here
we have used the known values of δ1 and µ1 for PMMA listed in Table 4.1. The line
profile in Fig. 4.5 (b) shows the distribution of the recovered projected thickness from the
phase contrast image in Fig. 4.4 (c). From the profile it can be seen that the maximum
projected thickness of the PMMA is close to the expected values (12.75 mm) and the
boundaries of the air/PMMA interfaces are sharp (i.e. not blurred). Moreover, due to
reasons mentioned in section 4.2.3, the Al/PMMA and PTFE/PMMA interfaces suffer
from an “over–smoothing” and the associated projected thicknesses are also overestimated.

To recover the projected thicknesses of the Al and PTFE, that is T2(r⊥) and T3(r⊥),
we “focus” on each of these individually using Eqn. (4.21). Since implementation of this
algorithm requires knowledge of the total projected thickness, the function A(r⊥) was
generated with the assumption that the object was a cylinder with no internal voids, which
results in negative values arising in the projected thickness in the presence of internal voids
(see Fig. 4.5 (d) and (f)). To recover T2(r⊥), the values used for δ2 and µ2 correspond to
Aluminium and δ1 and µ1 to PMMA (see Table 1). To recover T3(r⊥), the values used
for δ3 and µ3 correspond to PTFE. The phase retrieved images are shown in Fig. 4.5
(c) and (e). The images show how the “selected” interfaces are sharply reconstructed
and how the attenuated intensity due to PMMA is effectively removed. Line profiles in



62 2D and 3D X–ray phase retrieval of multi–material objects

Fig. 4.5 (d) and (f) illustrate this more clearly and reveal that the recovered projected
thicknesses at the “selected” interfaces T2(r⊥) and T3(r⊥) are close to their expected
thickness (≈ 1 mm). Additionally, we see that the algorithm breaks down in regions where
the encasing material exhibits strong phase contrast; however, this occurs at the boundary
of the encasing material far from the interfaces of interest. These artefacts are expected
since Eqn. (4.21) assumes that phase gradients due to the encasing material are negligible.
Also, we now see that the interfaces where the density is less than that of Aluminium are
now under–smoothed and slight residual fringing is still visible (see for example Fig. 4.5
(d), interfaces 1, 3 and 4; cf. section 4.2.3). Note that the upper intensity threshold in
(e) has been reduced to enhance the PTFE as a linear palette obscures this feature, so the
Al/PMMA interface appears saturated as a consequence.
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Figure 4.4: Projection images of the multi–material test sample. (a) Absorption contrast
image acquired at d = 10 cm. The numbered regions correspond to the different interfaces
in the object (1Air/PMMA (Green), 2Al/PMMA (Red) and 3PTFE/PMMA (Blue)). (b)
Phase contrast image acquired at d = 1.0 m. Line profiles from the centre of the images
on the left column are shown in (b) and (d), respectively.
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Figure 4.5: Phase–retrieved projection images of the multi–material test sample. (a)
Phase retrieved image of Fig. 4.4 (c) using Eqn. (4.12) assuming the object was composed
of PMMA. (c) and (e) are phase retrieved images of Fig. 4.4 (c) using Eqn. (4.21) with
appropriate values of δ and µ for the Al/PMMA and PTFE/PMMA interfaces, respectively
(see Table 4.1). Line profiles from the centre of the images on the left column are shown
in (b), (d) and (f), respectively.

4.3.3 Interface–specific phase retrieval tomography

Here we present our results for interface-specific phase retrieval tomography, whereby a
single phase–contrast image per projection has been used to selectively reconstruct a given
interface between two given materials, in a spatially–quantized object.

For absorption-contrast FBP tomography, using the parameters described in sec-
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tion 4.3.1, the reconstruction of a single slice of the sample is shown in Fig. 4.6 (a).
Qualitatively the reconstruction shows good detail of the object features, particularly at
the Al/PMMA interface where there is a large difference in absorption. In Fig. 4.6 (b) line
profiles from left–to–right of the centre of each interface of Fig. 4.6 (a) are shown in a
single plot. This displays the distribution of the attenuation coefficient at each interface
where it can be seen that, on average, the attenuation coefficients are similar to the theoret-
ical values in Table 4.1. However, the reconstruction also contains a substantial amount of
high frequency noise making it difficult to define the boundaries at the interfaces where
absorption contrast is poor (air/PMMA and PTFE/PMMA). Such noise is typically reduced
in tomography by use of an additional low–pass filter during the filtered backprojection,
but must be traded against a reduction in spatial resolution (Kak and Slaney [43]).

Figure 4.6 (c) shows a slice of a tomographic reconstruction obtained by applying
FBP directly to the raw phase contrast images (cf. Cloetens et al. [18]), without any
phase–amplitude retrieval. Like the absorption contrast result it also reveals good detail
of the object features. The reconstruction allows us to see how the boundaries of each
interface are enhanced as a result of the high SNR provided by phase contrast. Although
phase contrast provides better feature visibility, the line profile in Fig. 4.6 (d) shows that
non–physical negative values and sharp spikes arise in the attenuation coefficient map
without the phase retrieval step.

Figure 4.7 (a) shows a slice of a tomographic reconstruction obtained using Eqn. (4.12)
to yield T1(r⊥, θ) for each projection angle, giving a series of two-dimensional projected-
thickness maps that were then tomographically reconstructed using FBP (Gureyev et
al. [38]). The reconstruction shows the distribution of δ1(p⊥) along the plane p⊥ = (p1, p3)
(see Fig. 4.1), which in this case is for PMMA ( j = 1). It can be seen that the noise has
been substantially suppressed whilst preserving the sharpness of the air/PMMA interface,
as the line profile in Fig. 4.7 (b) indicates. Conversely, over–smoothing (cf. Section
4.2.3) is clearly apparent at the remaining interfaces. Despite this localized blurring of
these regions the result shows that Eqn. (4.12) can be applied to multi–material objects
and accurately reconstruct the voids as long as they are not near the vicinity of the over-
smoothed interfaces. The line profile in Fig. 4.7 (b) shows that at the air/PMMA interface,
the distribution of δ1(p⊥) has an average value of 4.2 × 10−7, which is within 10% of the
theoretical value in Table 4.1. This is acceptable as it is known that attenuation coefficients
have discrepancies of up to 10% between theoretical values (Chantler et al. [13]).

Figure 4.7 (c) and (e) show reconstructions of the same slice from phase retrieved
images using Eqn. (4.21) to obtain T2(r⊥, θ) and T3(r⊥, θ) before using FBP to respec-
tively recover the distributions of δ2(p⊥) (Aluminium; j = 2) and δ3(p⊥) (PTFE; j = 3).
Figure 4.7 (c) focuses on the Al/PMMA interface and (e) focuses on the PTFE/PMMA
interface. Due to the rotational symmetry of the surface of the cylinder the same A(r⊥)
fitted function was used for every projection. The distributions of δ2(p⊥) and δ3(p⊥) are
shown in the line profiles in Fig. 4.7 (d) and (f). On average the values of δ2(p⊥) and
δ3(p⊥) are 7.9 × 10−7 and 6.6 × 10−7 respectively, and are within 15% of the theoretical
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values in Table 4.1.
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Figure 4.6: Tomographic reconstruction of the multi–material test sample using
(a) conventional absorption images reconstructed via FBP; (b) phase contrast images
reconstructed by applying FBP to raw PCI data. (b) and (d), respectively, show line
profiles from left–t-o-right across the centre of the images in (a) and (c), respectively.
Numbered regions correspond to different interfaces in the object (1Air/PMMA, (Green),
2Al/PMMA (Red) and 3PTFE/PMMA (Blue)).

4.3.4 Quantification of over-smoothing

By measuring the blurring at the Al/PMMA and PTFE/PMMA interfaces in Fig. 4.7 (b).
The blurring was just visible up to a distance of 443 µm from the Al/PMMA interface and
454 µm from the PTFE/PMMA interface with an uncertainty of ±30 µm. Evaluating

√
α



66 2D and 3D X–ray phase retrieval of multi–material objects

Length (mm)

Length (mm)

Length (mm)

d
x
 1

0
-7

d
x
 1

0
-7

d
x
 1

0
-7 [2] Aluminium/PMMA interface

[3] PTFE/PMMA interface

[1] & [4] Air/PMMA interface

[2] Aluminium/PMMA interface

[3] PTFE/PMMA interface

[1] & [4] Air/PMMA interface

[2] Aluminium/PMMA interface

[3] PTFE/PMMA interface

[1] & [4] Air/PMMA interface

1

2

3
4

1

2

3 4

1

2

3
4

1 2

3 4

1 2

3 4

1 2

3 4

2 mm

2 mm

2 mm

(c)

(e)

(b)

(f)

(a)

(d)

Figure 4.7: Interface-specific tomographic reconstruction of the multi–material test
sample using (a) phase contrast images reconstructed using Eqn. (4.12) to calculate
T1(r⊥, θ) for each projection j = 1, followed by FBP. (c) and (e) are reconstructions using
the same procedure as (c), after calculating T2(r⊥, θ) and T3(r⊥, θ) with Eqn. (4.21) for
both Al and PTFE for each projection ( j = 2 and j = 3). (b), (d) and (f) respectively,
show line profiles from left–to–right across the centre of the images in (a), (c) and (e).
Numbered regions correspond to different interfaces in the object (1Air/PMMA, (Green),
2Al/PMMA (Red) and 3PTFE/PMMA (Blue)).
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for PMMA gives a value of 106 µm. The measured bleed widths are thus 4.17×
√
α for

Al/PMMA and 4.28×
√
α for PTFE/PMMA. Experimentally, we find that the “bleed width”

blurring typically extends between 3 and 5 times the lower bound in Eqn. (4.24). Hence
the following rule–of–thumb is used to estimate the bleed width ∆x:

3
√
α ≥ ∆x ≥ 5

√
α. (4.26)

This formula gives a rough indication as to how far an over-smoothed interface will be
blurred by the phase retrieval (cf. section 4.2.3). We also note that the Al/PMMA and
PTFE/PMMA interfaces bleed almost the same amount. This provides empirical evidence
that the parameter α is the only contributor to the smoothing artefact.

4.3.5 Spliced tomographic reconstruction

Having quantitatively reconstructed all three interfaces and established a rule–of–thumb to
estimate the blurring widths (see Eqn. (4.26)), we can now combine these images to form
a single “spliced” image of our quaternary (or higher order) object (cf. section 4.2.3). The
image was constructed by digitally inserting the individually reconstructed interfaces in
Fig. 4.7 (c) and (e) into the appropriate regions of the encasing material in Fig. 4.7 (a). The
size of the region was chosen by considering the amount of blurring at these interfaces.
The refractive index distribution of these segments were offset so that the background
zeroes match that of the encasing material and the resulting amplitude was rescaled to
maintain the original value. The spliced image is shown in Fig. 4.8 (a). Line profiles of
the different interfaces of the image are shown in Fig. 4.8 (b). We now have a quantitative
tomographic reconstruction of a multi–material object, at each point of which the refractive
index takes one of N distinct values, using a single PCI image per projection.

To quantitatively compare our spliced reconstruction with the absorption–based recon-
struction, the SNR was calculated for each medium. The formula used to calculate the
SNR values was the following:

SNR =
µ̃

σ
, (4.27)

where, µ̃ is the mean signal and σ is the standard deviation of voxels in the subarray. The
Al, PTFE and PMMA gave SNRs of 312, 309 and 98.9, respectively, where the signal
is the average value inside the medium. This significantly improves the respective SNR
values of 18.7, 5.19 and 1.17, which were calculated at the same regions in the absorption
contrast reconstruction in Fig. 4.6 (a). The ordering of these SNRs is consistent with the
relative amount of smoothing associated with the filters in Eqn. (4.12) and (4.21). The
increase in SNR is largest (≈ 85×) for the encasing material as the Fourier-space damping
of high spatial frequencies is largest for the PMMA/air interface. Each of the SNRs were
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calculated over a 90 × 90 pixel region of interest. The mathematical origin of the stability
with respect to noise is due to the regularizing presence of a non–zero denominator in the
Fourier filter of Eqns. (4.12) and (4.21), as the ratio dδ

µ
is always greater than zero and

the ratio d(δ j−δ1)
µ j−µ1

is unlikely to be less than zero; also, since µ is never zero and (∆µ) j1 is
generally a non-zero quantity. This avoids instability problems of the “division by zero”
type that would arise if the denominator were zero (Paganin et al. [65]).
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Figure 4.8: (a) Spliced tomographic reconstruction. (b) Line profile of the different
interfaces in (a).

4.4 Concluding remarks

We have developed a numerically efficient phase retrieval algorithm to reconstruct the
complex refractive index distribution of known materials embedded in a second medium
from a single X–ray phase contrast image per projection. This interface–specific phase
retrieval tomography algorithm requires a priori knowledge of each material’s complex
refractive index and the total projected thickness of the sample at each orientation. The
algorithm was successfully applied to experimental data collected using X–ray synchrotron
radiation. We have used our method to quantitatively reconstruct a quaternary object by
reconstructing all interfaces separately. A complete tomographic reconstruction of all
interfaces in the object was produced by splicing the individual reconstructions together.
For the test sample used here, the improvement in the signal–to–noise ratio was between
17 and 85 fold over conventional absorption contrast CT.



Interface–specific X–ray
phase retrieval tomography
of complex biological organs

5

5.1 Introduction

This chapter1 is concerned with the application of the methods presented in chapter 4
to perform and demonstrate interface–specific phase retrieval tomography of complex
biological organs. No use is made of any chemical contrast enhancements and use is made
of only a single view per projection. The complex biological organs used are the thorax
of a newborn New Zealand white rabbit pup and the excised brain of an adult Sprague
Dawley rat. Our aim was to determine whether our single-image phase retrieval technique
could be applied to complex structures and to determine whether interface–specific phase
retrieval can be used to help lower the dose to the tissue in comparison to conventional CT.

To enable interface–specific phase retrieval tomography to be performed, the following
key assumptions were made: samples are composed of a finite number of materials which
are spatially quantized such that (i) each material type within the sample may be adequately
approximated by a single complex refractive index; (ii) the complex refractive index of
each distinct material has a unique value; (iii) no more than two interfaces can be in direct
contact at any given location. While any real sample will have variations in homogeneity
within each given material, this was seen to have a minimal effect on both the tomographic
reconstructions shown in chapter 4 and the reconstructions presented in this chapter. In
this context, note also that the previously mentioned variations in homogeneity are often
within the uncertainties of the real and imaginary parts of the complex refractive index for
biological samples at diagnostic X–ray energies. Importantly, this technique retains the
salient feature of requiring only a single phase-contrast image per projection.

The outline of the remainder of this chapter is as follows. Section 5.2 briefly reviews
the methods presented in chapter 4 for interface–specific phase retrieval X–ray tomography
of objects whose refractive indices take on one of a series of discrete values. Section 5.3
describes the setup and procedures used for the experimental implementation on two

1This chapter is based on the publication “Interface–specific X–ray phase retrieval tomography of
complex biological organs”, M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H.
Reser and M. J. Kitchen, Phys. Med. Biol. 50, 7353–7369 (2011). See Appendix B.
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complex biological samples, namely rabbit lung and rat brain tissue. Section 5.4 illustrates
the results achieved using interface-specific tomography. Concluding remarks are given in
section 5.5

Detector Plane

Incoming X-rays

Object

d

z

x

y

q

Figure 5.1: Experimental setup illustrating the geometry for propagation-based X–ray
phase retrieval tomography, using a single view per projection.

5.2 Image processing algorithms

Here the phase retrieval methods developed in chapter 4 are implemented for complex
biological organs (i.e. the lungs of preterm rabbit pup and excised rat brain). To three-
dimensionally “focus in” on a particular interface, say the encasing medium (with its
internal voids) which has complex refractive index n1 = 1 − δ1 + iβ1, one needs to apply
the algorithm below to each phase–contrast tomographic projection followed by filtered
backprojections (see Eqn. (4.12)):

T1(r⊥) = −
1
µ1

ln
(
F−1

k⊥

{
1

dδ1
µ1

k2
⊥+1

Fr⊥

[
I(r⊥, z = d)

I0

]})
. (5.1)

Here, Fr⊥ and F−1
k⊥ respectively denote forward and inverse Fourier transforms. Now to

three-dimensionally focus “in” on a medium “j” which is embedded in medium “1” once the
encasing medium “1” has been reconstructed one then needs to apply the algorithm below
to each phase–contrast tomographic projection also followed by filtered backprojections
(see Eqn. (4.21)):

T j(r⊥) =
1

µ j − µ1
ln

F−1
k⊥

 1
d(δ j−δ1)
(µ j−µ1) k2

⊥ + 1
Fr⊥

[
I(r⊥, z = d)

I0 exp[−µ1A(r⊥)]

]
 . (5.2)
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It is important to note that Eqns. (5.1) and (5.2) will not correctly reconstruct the projected
thickness at all tomographic projections. This is especially relevant for multi–material
samples in which distinct media overlap in projection. However, it will correctly recon-
struct the three-dimensional distribution of interfaces of a given pair of distinct materials
(see section 4.3.3).

5.3 Method

5.3.1 Image acquisition

High-resolution X–ray phase-contrast images were acquired in hutch 3 of beamline 20B2
at the SPring-8 synchrotron radiation source, Japan (Goto et al. [31]). The large source-
to-object distance (∼ 210 m) and the Si(1 1 1) double-crystal monochromator provided a
near planar X–ray beam. We used 24 keV X–rays to provide strong phase and attenuation
contrast of the biological specimens used here (see Kitchen et al. [45], Beltran et al. [6]),
which included the thorax of a newborn New Zealand white rabbit pup and the excised
brain of an adult Sprague Dawley rat. The beam size was collimated to be approximately
30 mm wide and 30 mm high, which was large enough to completely illuminate each
sample. A 4000 × 2672 pixel Hamamatsu CCD camera (C9300-124F) with a 1.8:1
ratio fibre optic taper, having an effective pixel size of 16.2 µm, was used to collect the
tomographic tilt series of propagation-based X–ray phase-contrast images (see Fig. 5.1).

For imaging the rabbit pup thorax, the detector was positioned a distance d = 50 cm
from the object. This relatively small sample-to-detector propagation distance was suffi-
cient to render visible strong phase-contrast fringes from the air-tissue interfaces within
the lung at this energy (see, e.g., Suzuki et al. [78] and Beltran et al. [6]). A total of 1500
projections were collected over 180◦ of rotation, with each having an exposure time of
250 ms. Flat field images (with no object in the beam) were recorded at the start and end
of each scan to normalize the image intensity. Dark field images were also collected to
correct for the detector‘s dark current offset.

The same setup was used for imaging the rat brain as for the rabbit pup thorax with the
exception of the object-to-detector distance, which was set to 5.0 m. A large propagation
distance was required to increase the phase contrast between the materials within the
sample due to the highly similar refractive indices of the materials (namely grey and white
brain matter) within the sample. A total of 1800 tomographic projections were acquired
with an exposure time of 2.5 s each. The exposure time for the thorax was kept short
relative to that of the brain in order to minimize potential motion artefacts introduced by
movement of the pliable lung tissue during the scan.

We note that the large number of projections used here is required for adequate sampling
of the tomographic reconstruction to adequately resolve the phase-contrast fringes, which
typically have maxima separated by 50 − 100 µm. Although a considerably lower dose
could be achieved using larger pixels with fewer projections, we chose to maximize the
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phase sensitivity of these applications to properly demonstrate the potential of phase
retrieval tomography.

5.3.2 Image processing

For the selected energy (24 keV), the δ and β values for lung tissue and cortical bone are
listed in Table 5.1. The δ and β values considered to be present in the agar-embedded
brain sample are listed in Table 5.2. According to the NIST2 database, grey and white
matter (the main tissue types present in the brain) are virtually identical in reference to
diagnostic energy X–ray interactions and are herein treated as identical. We justify this
statement by reference to Eqns (5.1) and (5.2) where we see that it is the ratio of the real
and imaginary components of the refractive indices, or the difference ratio (see Eqn (5.2)),
that is important for the Fourier filtering by the phase retrieval algorithms. Figure 5.2
illustrates this point by comparing the four Fourier-space filters used in this research.
Distinct differences can be seen for the lung tissue/air interface filter against those of the
brain tissue/agar and bone/lung tissue interfaces. Remarkably, the agar/air filter is almost
identical to the brain tissue/agar filter despite the interfaces having very different density
gradients, which arises because the ratio of δ to µ is nearly identical for brain tissue and
agar (see Table 5.2). Therefore, either filter (Eqns (5.1) or (5.2)) can be applied with
essentially the same results.

Table 5.1: Values of δ and µ at 24 keV X–rays for water (soft-tissue equivalent) and
cortical bone tissue. These were calculated from the NIST2 database.

Material δ × 10−7 µ (m−1)

Water (lung tissue equivalent) 3.992 54.9

Bone tissue 7.145 461.1

Table 5.2: Values of δ and µ at 24 keV X–rays for grey/white matter and agar. These
were calculated from the NIST2 database.

Material δ × 10−7 µ (m−1)

Grey/white matter 4.842 56.3

Agar 3.432 40.2

Since Eqns (5.1) and (5.2) involve ratios of δ and µ, concerns regarding sample
inhomogeneity can be partly allayed. Both δ and µ are proportional to the density of a
given material; hence, their ratio in Eqns (5.1) will be independent of changes in density
for a given material. The same holds true for Eqns (5.2) when the density of material ‘ j’

2The National Institute of Standards and Technology (NIST) internet website where X–ray/matter
interactions factors can be found is http://www.nist.gov/index.html.
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Figure 5.2: Fourier filters of the form 1/(αk2
⊥ + 1) for different ratios of α = dδ/µ

or α = d∆δ/∆µ (see Eqns (5.1) and (5.2)). The dashed line corresponds to the ratio
used for the air/lung tissue interface, α = dδwater/µwater with d = 50 cm. The dotted
line corresponds to the ratios used for the bone/lung tissue interface, α = d(δbone −

δwater)/(µbone − µwater) with d = 50 cm. The solid line corresponds to the ratio used
for the air/agar interface, α = dδagar/µagar with d = 5 m, and the dashed-dotted line
corresponds to the ratios used for the brain tissue (grey/white matter; denoted ‘gw’)/agar
interface, α = d(δgw − δagar)/(µgw − µagar) with d = 5 m. The magnified inset is
used to illustrate the minute difference between filters for brain tissue/agar and air/agar,
respectively.

and that of material ‘1’ are equal. Moreover, variations in density of a few per cent of
either material will typically have little effect on the shape of the filter in Eqn (5.2). It is
therefore a valid approximation to employ a single filter for a given interface despite small
density variations in inhomogeneous samples.

5.3.3 Animal procedures

All animal procedures were approved by the Monash University Animal Ethics Committee
and the SPring-8 Animal Care and Use Committee. A pregnant New Zealand white rabbit
at 31 days of gestation was anaesthetized by intravenous injection of propofol (Rapinovet;
12 mg kg−1 bolus, 40 mg h1 infusion). The pup was delivered by caesarean section and
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then humanely killed via anaesthetic overdose. Following death, an endotracheal tube
was inserted via a tracheotomy into the mid-cervical trachea and connected to a custom-
designed ventilator (Kitchen et al. [47]). The pup was placed in a water-filled cylindrical
plethysmograph made of PMMA. The head of the pup was located outside the chamber
and a thin rubber diaphragm formed a seal around its neck. Once correctly placed in
the plethysmograph, the lungs were inflated with air and inflation was maintained by
the application of a constant airway pressure of 25 cmH2O, as was required to keep the
terminal airways inflated.

The Sprague Dawley rat was humanely killed via an overdose of sodium pentothal
(100 mg/kg, i.p.) and then transcardially perfused with heparinized 0.1 M phosphate
buffered saline (PBS) followed by 4% paraformaldehyde (PFA) in 0.1 M PBS. The brain
was carefully removed from the skull and postfixed overnight in 4% PFA/0.1 M PBS. The
brain was then serially dehydrated in increasing concentrations of sucrose (up to 30%) in
4% PFA. The fixed brain was next suspended inside a 2.6 cm diameter plastic specimen
container containing warm 2% gel agar diluted with 4% PFA. After the agar hardened, the
container was refrigerated until imaging. After synchrotron imaging was complete, the
brain was extracted from the agar and sectioned in the coronal plane (50 µm thickness)
using a cryostat. Alternating brain sections were stained with Nissl substance, which
densely stains the rough endoplasmic reticulum in neuronal cell bodies, and used to locate
anatomical landmarks in the propagation-based X–ray phase-contrast images. Anatomical
localization was performed with the aid of the stereotaxic atlas of Pellegrino et al. [68].

5.4 Results and discussion

5.4.1 Chest imaging

A single PBI image of the tomographic data set is shown in Fig. 5.3 (a). Even with the
relatively small object-to-detector distance, the bulk of the lung tissue is rendered visible
as a speckled intensity pattern as a result of multiple refraction of the X–ray beam through
minor airways that overlap in projection (Kitchen et al. [46]).

By applying filtered backprojection (Kak and Slaney [43]) using a ramp (Ram-Lak)
filter directly to the phase-contrast images, without performing phase retrieval (Cloetens
et al. [17]), we obtain a qualitative reconstruction of the thorax as shown in Fig. 5.3
(b). Here, the phase–contrast fringes formed at the edges between the interfaces (i.e.
air/lung and bone/lung tissues) are seen in the reconstruction as residual phase-contrast
fringes in the tomogram. We note that slight motion artefacts are also evident due to
difficulties in keeping the object stationary for the ∼ 7 minutes of scan time. The phase
contrast can aid the visualization of features such as the major airways by highlighting
their boundaries. However, the edge enhancement can obscure finer features and restricts
quantitative analysis of the tissue morphology (Suzuki et al. [78]). To perform interface–
specific phase retrieval tomography, we apply Eqns (5.1) and (5.2) to each tomographic
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Figure 5.3: Propagation-based X–ray phase-contrast image of the lungs of a preterm
rabbit pup. X–ray energy of 24 keV, propagation distance=50 cm. (b) Tomographic
reconstruction of a single slice (see the dashed line in (a)) from the raw phase-contrast
images utilizing filtered backprojection.
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image followed by filtered backprojection. Depending on which interface one wishes to
focus on, the corresponding δ and µ or ∆δ = δ2 − δ1 and ∆µ = µ2 − µ1 are input into
Eqns (5.1) and (5.2), respectively. Here we denote j = 2 as the bone/lung tissue interface.

(a)

(b)

(  )c

1.5 mm
0.5 mm

1 mm

Figure 5.4: Interface–specific tomographic reconstruction of a newborn rabbit pup
thorax focusing on the air/lung interface. (b) shows a magnified section of (a) to aid
visibility of the terminal airways. (c) shows a magnified section of (a) in which the
bone/lung tissue interface appears blurred as a result of the chosen phase retrieval filter.
Note, this figure was republished in the review article by Bravin et al. [9].

In our analysis, we consider lung tissue to be the encasing material. Therefore, to
focus in on the air/lung tissue interface, we apply Eqns (5.1) to each tomographic image.
Here, the δ and µ values for water were inserted into Eqns (5.1) as soft tissues and water
have similar refractive and absorptive properties at the selected X–ray energy (Kitchen
et al. [45]). A tomographic reconstruction that focuses on the air/lung tissue interface is
shown in Fig. 5.4 (a) . This image illustrates that the phase-contrast fringes have been
removed, leaving the air/lung tissue interfaces sharply reconstructed, while we can also see
that the bone/lung tissue interface has been locally blurred as a result of incorrect choices
of δ and µ in the phase retrieval process, which contaminates the local vicinity surrounding
this interface (Beltran et al. [6]). Figure 5.4 (b) shows a zoomed-in region of Fig. 5.4 (a)
in which individual terminal airways (alveoli) are clearly visible.

An important benefit of the phase-retrieved reconstruction (Fig. 5.4) is the clearly
improved SNR over the raw tomographic dataset (Fig. 5.3 (b)). Using three 50 × 50 pixel
regions containing soft tissue only, an SNR of 30 ± 6 (mean ± standard deviation) was
calculated. By comparison, the same area in the raw reconstruction yielded just 1.8 ±
0.3. Note, these values were calculated using the formula in Eqn. 4.27 (see section 4.3.5).
However, since no pure absorption-contrast image could be collected due to the finite
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object-to-detector distance, the latter SNR value was calculated in a region of Fig. 5.3
where only absorption-contrast signal exists (i.e. away from residual phase-contrast
fringes). Thus, we found an improvement in the soft-tissue SNR of 16 ± 4 fold over
absorption contrast for our particular experimental setup. This same improvement in the
SNR was also observed (within uncertainties) in the large airspaces (bronchioles). It is
not surprising that the noise was so heavily reduced since the phase retrieval algorithms
naturally suppress high-frequency noise.

Employing phase contrast with an appropriate phase retrieval algorithm has enabled us
to clearly visualize the terminal airways. Whilst similar quality data may have been ob-
tained from absorption-contrast tomography, for instance by increasing the X–ray exposure,
the corresponding dose increase would be prohibitive. This has important implications for
studying the health of the lungs and other organs. Emphysema, for example, is a disease
of the distal airways that is characterized by the loss of alveolar structures. The ability
to clearly observe these fine structures could lead to improved diagnosis of early lung
disease. We have used this dataset to measure the range of alveolar dimensions found
within this animal. The diameters of the alveoli were measured to be between 109 and
162 µm, which is consistent with the previously measured values found in a rabbit pup
model (Hooper et al. [40]). We further demonstrate the fidelity of the reconstruction in
the online supplementary movie (available at stacks.iop.org/PMB/56/7353/mmedia) that
takes us into the airway tree of the pup, with remarkable clarity all the way to the terminal
airsacs (alveoli). This movie was made using commercial software (Amira v 5.2, Visage
Imaging, Inc.) upon thresholding the image stack such that the airways were transparent
and the tissues opaque.

To retrieve quantitative information from the in-focus interface, a line profile across a
major airway, shown in Fig. 5.5 (a), is plotted in Fig. 5.5 (b). Here the distribution of the
refractive index decrement averages around the expected value listed in Table 5.1. Also,
a line profile is plotted across the magnified (blurred) bone feature seen in Fig. 5.5 (c),
which helps us to observe the over-smoothing of the bone/soft-tissue interface and the
quantitatively incorrect reconstruction of δ (see Table 5.1).

Referring back to Fig. 5.4 (a) we note that other soft tissues can be seen as amorphous
shapes surrounding the chest wall in the phase retrieved reconstruction. These tissues are
more evident than in the raw reconstruction in Fig. 5.3 (b). We attribute this increased
clarity to the shape of the Fourier filter required for the lung tissue/air interface used in
Eqns (5.1) being likely very similar to that used in Eqns (5.2) that would be used to focus
on soft-tissue interfaces. This filter has suppressed the noise, making the other soft tissue
more readily visible.

To focus on the bone/lung tissue interface, we instead process every image with
Eqn. (5.2) before tomographically reconstructing each slice. To apply this equation, we
use the δ and µ values for bone as well as those for water together with a priori knowledge
of the total projected thickness A(r⊥). A(r⊥) is required to determine the attenuation that
the object would provide if it were made entirely of a single homogenous material, which is
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used in the normalization term I0 exp
[
−µ1A(r⊥)

]
of Eqn (5.2). Here we have approximated

the normalization term by fitting a parabolic curve to the intensity profile at each projection.
This only works well since the animal was inside a water-filled cylinder and because the
lungs are approximately circular in projection and were located near the centre of the tube.
Although this approximation will reduce the accuracy of the reconstruction, we see no
artefacts in the resulting reconstruction, justifying its use.

(a) (b)

(  )c (d)
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Figure 5.5: (a) Magnified region of Fig. 5.4 (a) showing a major airway. Its line profile
is plotted from left to right from the centre of the image and is shown in (b) displaying
the distribution of its refractive index decrement. (c) The same image as in Fig. 5.4 (c)
with its line profile shown in (d).

In Fig. 5.6 (a), a tomographic reconstruction of the same slice as in Fig. 5.3 (b) and
Fig. 5.4 (a) is shown, which now focuses on the bone/lung tissue interfaces. From this
image, we see that the interfaces of interest have now been correctly reconstructed, yielding
a sharp boundary between the media. This can be better appreciated in Fig. 5.6 (b), which
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shows the same zoomed-in region as in Fig. 5.4 (c), but now the boundaries and features are
highly visible. Additionally, the line profile in Fig. 5.6 (c) shows the quantitative measure
of the refractive index decrement, δ. The large fluctuations in δ arise from the porosity
of the bone. The maximum value underestimates the expected value from Table 5.1.
We believe that this discrepancy arises because the tabulated values are calculated for
mature, fully calcified bone, whilst the immature bones of the newborn rabbit will differ
considerably in their average density and composition (i.e. They are not fully calcified),
compared to those of an adult rabbit, thereby lowering the measured δ value.

To compare the improvement in the SNR before and after the phase retrieval for the
bone/tissue interface, we observed the cortical bone (outer edge) of the bone segment seen
in Fig. 5.6 (c). The cortical bone contains fewer pores than the internal trabecular bone and
enables comparison against the raw image far from phase-contrast fringes (i.e. a measure
of approximately pure attenuation by bone). We measured the mean signal within small
areas of cortical bone and measured the noise from the nearby soft tissue that was also
free of phase-contrast effects. For bone, the SNR in the raw “absorption-contrast” image
was only 5 ± 1 compared to the same area in the phase retrieved image with an SNR of 47
± 12. On average, we found an improvement in the SNR of 9 ± 3 times afforded by phase
retrieval. Whilst this is less than the improvement seen for the soft-tissue reconstruction,
this results from the reduced level of spatial filtering in Eqns (5.1) due to the reduced phase
gradients present at the bone/tissue interface compared to the air/tissue interface.

Finally, we draw attention to the air/lung tissue interfaces in Fig. 5.6 (a), which have
now been over-sharpened, or insufficiently filtered, by the phase retrieval process resulting
from under-compensation of the phase-contrast fringes. Therefore, the air/tissue interfaces
have been incorrectly reconstructed.

Upon reconstructing all interfaces of interest, we now combine the images in Fig. 5.4
(a) and Fig. 5.6 (a) to compose a spliced reconstruction shown in Fig. 5.7. To produce
the spliced image, one cannot simply manually insert the appropriate region into the
corresponding regions of another image. We began by using the soft-tissue image (Fig. 5.4)
and exploited the fact that the relatively highly attenuating bones appear blurred, realizing
that the true bone interfaces must lie within those blurred regions. The large contrast
enabled the image to be thresholded until the blurred bones were invisible, thereby creating
a binary “soft-tissue-only” mask. The inverse of this mask was then applied to the image
containing the correctly reconstructed bones (Fig. 5.6). By smoothing each binary mask,
and ensuring both masks summed to unity before multiplying with the relevant image, a
continuous and smooth spliced image was formed by adding the masked images together.
One additional step involved adjusting any offsets so that the background encasing material
had the same average value in each image before creating the spliced image.

The spliced image shows all interfaces both quantitatively and sharply reconstructed,
which demonstrates the key result that we are able to perform phase and amplitude
tomography of multi-material objects that are spatially quantized with only one PBI image
per tomographic orientation.
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Figure 5.6: (a) Interface–specific tomographic reconstruction of a preterm rabbit pup
thorax, focusing on the bone/lung tissue interface. (b) shows a magnified section of (a)
which now yields a sharp and quantitative reconstruction of the same images seen in
Fig. 5.4 (c) and Fig. 5.5 (c). (c) Line profile from left to right across the centre of (b)
showing the distribution of the refractive index decrement of the porous bone.

One drawback of our image splicing is that the objects in question should be spatially
separated by an amount equal to the bleeding (pollution length) associated with over-
smoothing the second interface. In section 4.3.4 it was shown that this bleed width (∆x)
depends only on the refractive index of the encasing material, where

∆x >
√

dδ1/µ1. (5.3)

It was experimentally verified that a distance of three to five times (∆x) was sufficient to
avoid locally polluting nearby objects of a different refractive index. For our experiment,
this distance should therefore be at least 180 µm, but no more than 300 µm. This reduces
the accuracy of the reconstruction where the bone encroaches on the airways. Interestingly,
we see very little evidence of the contamination between media in the spliced reconstruction
of Fig. 5.7 even though some of the bones were close to the lung tissue.

5.4.2 Brain imaging

Figure 5.8 (a) shows a single PBI image from the CT dataset of a rat brain prepared as
described in section 5.3.3. Due to the similar complex refractive indices of brain and agar
(Table 5.2), the brain is not visible in a single projection image even with the very long
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1.5 mm

Figure 5.7: Spliced tomographic reconstruction of preterm rabbit pup lungs, constructed
by splicing Fig. 5.4 (a) and Fig. 5.6 (a).

propagation distance of 5.0 m. However, if we apply filtered backprojection directly to the
set of raw PBI brain images (Fig. 5.8 (b)), a small amount of anatomical detail becomes
visible and structures are resolved relative to the gel agar matrix. This is principally due to
the averaging effect caused by acquiring images from multiple projections which improves
the SNR. Figure 5.8 (b) shows a single tomographic slice in a para-frontal orientation at
an approximate anterior-posterior distance of 9.4 mm caudal to bregma. The bright white
flares seen in the image are possibly caused by attenuation due to Bragg diffraction from
crystallite regions in the agar matrix.

Phase retrieval was then applied before performing the tomographic reconstruction. As
described above, all materials in the brain sample effectively refract and attenuate X–rays
to a similar degree; hence the sample behaves somewhat like a single-material object
and thus we need to utilize Eqn (5.1) only (see Fig. 5.2). We used the δ and µ values for
grey/white matter listed in Table 5.2. The same slice in Fig. 5.8 (b) is shown in Fig. 5.9,
now with the phase retrieval process included. Despite the subtle differences in complex
refractive index, the tomogram yields clearly demarcated tissue borders at the grey/white
matter boundaries. Considerable detail can be seen in the brainstem, including the ventral
cochlear nucleus (vCN), spinal tract of the trigeminal nerve (TST) and inferior cerebellar
peduncle (iCP).

SNR values were calculated for six 30 × 30 pixel regions of grey or white matter in both
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Figure 5.8: (a) PBI image of a excised rat brain submerged in an agar solution. X–ray
energy of 24 keV, propagation distance d = 5.0 m. (b) Tomographic reconstruction of a
single slice from the raw brain PBI images using filtered backprojection.
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Figure 5.9: Tomographic reconstruction of the same slice as shown in Fig. 5.8 (b).
Equation (5.1) was applied to each image before tomographically reconstructing.

Fig. 5.8 (b) and Fig. 5.9 yielding values of 2.1 ± 0.2 and 440 ± 120, respectively. Again
we note that the regions selected for the calculations did not contain any phase-contrast
signal. For brain imaging with this geometry, we found a net gain in the SNR of 200 ± 50
over absorption contrast. This exceptional improvement is a consequence of the relatively
large propagation distance of 5.0 m used to render the brain visible, which translates to
heavy spatial filtering (see Fig. 5.2) and associated strong noise suppression in the phase
retrieval step (Eqn (5.1)); this effect was also discussed by (Arhatari et al. [3]). Note that if
one were to use too large a propagation distance, the validity conditions of the underlying
transport-of-intensity equation would be violated.

Phase-contrast modalities that are more sensitive to weak phase gradients, such as
grating interferometry, can render visible the tissues of the brain with even higher contrast
than that presented above (Pfeiffer et al. [70]). However, the extra sensitivity of such
methods makes them less robust for imaging objects that simultaneously contain strong
phase gradients such as the air/soft-tissue boundaries within the lung. Moreover, phase
retrieval in that context requires multiple images to be acquired for every projection
(Pfeiffer et al. [70]), thereby significantly increasing the X–ray dose to the sample. The
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benefits of our approach include the simple imaging geometry, with no requirement for
post-sample optical elements, and only a single exposure per projection required for phase
retrieval.

5.5 Concluding remarks

We have demonstrated that interface–specific X–ray phase retrieval tomography, using
the method developed in chapter 4, can be performed on complex biological objects. The
method makes use of only a single PBI image per tomographic orientation and requires
a priori information of the sample’s total projected thickness at each orientation and
knowledge of each material’s complex refractive index present in the sample. Note that
for a sample containing no internal voids, the total projected thickness at each orientation
is completely determined by knowledge of the surface of the object. The method was
successfully implemented on experimental propagation-based phase-contrast tomographic
data of the thorax and brain of small animals collected using X–ray synchrotron radiation.
For the thorax data, quantitative reconstructions of air/lung tissue and bone/lung tissue
interfaces were performed separately and were then spliced together to yield a complete
reconstruction. A tomographic reconstruction of a rat brain was made under the assumption
that it comprised of a single material of variable density, which resulted in an image able
to clearly distinguish between grey and white matter. SNR calculations were carried out
and showed our technique to be superior to conventional absorption contrast by factors
ranging from 9 to 200 fold. This gain in SNR can potentially be used to lower the radiation
dose. This can be demonstrated in a simple calculation that considers Poisson statistics
using the following formula:

SNR =
√

N (5.4)

where, N represents the number of photons. From Eqn. (5.4), it can be seen that for the
SNR to increase 10× then N must be increased by 100×. If we assume that N is directly
proportional to dose then, according to this calculation one would require 100× the dose
with conventional absorption contrast CT to produce the image contrast achieved using our
method. In other words, the radiation dose could be reduced 100× compared to that used
with conventional CT to maintain the SNR. This is more significant for an SNR increase
of 200×, which would see a potential radiation dose reduction of 40, 000×. However, the
relation between SNR and dose still requires experimental investigation. This would be
advantageous given that estimated surface entrance doses were ∼69 Gy for the lungs of
the rabbit pup and ∼828 Gy for the excised rat brain, which are extremely high.
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6.1 Introduction

So far this thesis has dealt with a single X–ray phase contrast imaging modality (propagation-
based phase contrast (PBI)) and we have assumed that the radiation source is a well
behaved, fully coherent field. In this chapter we drop the assumptions of a single phase
contrast modality and full coherence and generalize to arbitrary differential phase contrast
modes utilizing partially coherent fields. To make such a generalization, phase contrast
effects are treated as a form of optical aberration that distorts an input image. The optical
system is assumed to be linear and shift–invariant such that it can be characterized by
a transfer function. To incorporate the effects of partial coherence the space–frequency
description formulated by Wolf [88] is utilized (see section 2.6.5). Including the effect of
partial coherence would add a greater degree of quantitativeness in the analysis of phase
contrast images that are acquired using more accessible X–ray sources (i.e. laboratory
sources). Also, establishing a mathematical expression that describes the forward problem
under the conditions of partial coherence naturally leads to the study of the inverse problem
under such effects. This could potentially reveal more information about a sample than
traditional phase retrieval methods.

This chapter1 generalizes the work of Paganin and Gureyev [64], Petrucelli et al. [69],
Gureyev [34], and Zysk et al. [94]. Paganin and Gureyev [64] generalised arbitrary phase
contrast linear shift-invariant imaging systems via the use of optical aberration theory,
but excluded the effects of partial coherence. On the other hand, Petrucelli et al. [69],

1This chapter is based on the manuscript “Aberrations in shift-invariant linear optical imaging systems
using partially coherent fields”, M. A. Beltran, M. J. Kitchen, and D. M. Paganin. This manuscript was
uploaded into the arXiv website and is currently in the process of publication. See Appendix C.
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Gureyev [34], and Zysk et al. [94] included the effects of partial coherence specifically for
propagation–based phase–contrast imaging based on the transport–of–intensity equation.

Some relevant background material on the theory of aberrated linear systems is re-
viewed in section 6.2. In section 6.3 we obtain an equation that describes the action of
shift–invariant linear systems, using partially coherent fields, under the assumption that
the object under study is a pure thin phase object. A two–dimensional transverse Cartesian
coordinate system is used in the derivation. In section 6.4 expressions for the spectral
density are derived, restricting consideration to only one transverse spatial variable for
simplicity. Three different types of sample are considered: Samples that satisfy; i) the
weak–phase object approximation; ii) the weak phase–amplitude approximation and; iii)
the single material weak phase–amplitude approximation. Section 6.5 studies in depth the
features of the transfer function used in this formalism.

6.2 Linear shift–invariant imaging systems and

optical aberrations

In this thesis we consider optical systems that; (i) satisfy the property of linearity and; (ii)
exhibit shift–invariance. For any optical system the output is related to the input wavefield
via the operation (Goodman [30]):

Ψout(x, y) = L {Ψin(x, y)} (6.1)

where L represents a mathematical operator acting on the input wavefield Ψin(x, y). A
system is said to be linear if for any input composed by a linear combination of separate
weighted wavefields then the output will also be the corresponding linear combination of
weighted wavefields. In mathematical terms this is implies the following:

L
{
aΨ

(1)
in (x, y) + bΨ

(2)
in (x, y)

}
= aL

{
Ψ

(1)
in (x, y)

}
+ bL

{
Ψ

(2)
in (x, y)

}
= aΨ

(1)
out(x, y) + bΨ

(2)
out(x, y). (6.2)

Here, a and b are arbitrary complex constants. In the case of shift–invariance, if the
input wavefield is shifted by a certain distance in the transverse direction then the output
wavefield will also be shifted by an equal distance in the same transverse direction. That
is;

Ψout(x − a, y − b) = L {Ψin(x − a, y − b)} . (6.3)

Optical aberrations for shift–invariant linear systems for fully coherent complex scalar
wavefields are described by the transfer function formalism. For such optical systems the
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Figure 6.1: Schematic illustration of the action of an aberrated shift–invariant linear
optical system for imaging fully coherent complex scalar wavefields under the transfer
function formalism. Input and output complex fields are related by the transfer function
formalism according to Eq. (6.4).

output field Ψout(x, y) is related to the input field Ψin(x, y) by a Fourier–space filtration that
can be written in operator form as (Paganin and Gureyev [64]):

Ψout(x, y) = F−1
kx,ky

T (kx, ky)Fx,y {Ψin(x, y)} . (6.4)

Here, T (kx, ky) is the transfer function characterizing the optical system, (kx, ky) are Fourier
conjugate coordinates dual to (x, y), F and F−1 respectively represent the forward and
inverse Fourier transform operations, and all operators are taken to act from right to
left. Thus, the above equation states that F is applied to the input field Ψin(x, y), before
multiplying by the transfer function T (kx, ky) and then applying the operator F−1, so as to
yield the output field Ψout(x, y) (see Fig. 6.1).

We recall the forward and inverse Fourier transform operation conventions used in this
thesis:

Ĝ(kx, ky) =
1

2π

" ∞

−∞

G(x, y)e−i(kx x+kyy)dxdy, (6.5a)

G(x, y) =
1

2π

" ∞

−∞

Ĝ(kx, ky)ei(kx x+kyy)dkxdky. (6.5b)

Here, Ĝ(kx, ky) ≡ F {G(x, y)}.
To proceed further, we follow Paganin and Gureyev [64] and make the restricting

assumption that the transfer function T (kx, ky) is sufficiently well behaved for its logarithm
to admit a Taylor–series representation. Note that a necessary condition for this assumption
to be valid is that the transfer function does not possess any zeros over the patch of Fourier
space for which the modulus of F {Ψin(x, y)} is non–negligible, a region which may be
termed the “essential spectral support” of the input field.
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While this key assumption will fail for imaging systems such as Schlieren optics, which
completely block certain spatial frequencies in the essential spectral support of the input
disturbance, the assumption will hold for a variety of important imaging systems such as
out–of–focus contrast (Wilkins et al. [85]), inline holography (Gabor [27]), interferometric
phase contrast (Bonse and Hart [7]), differential phase contrast (Pfeiffer et al. [71]), and
analyzer–based phase contrast of weakly scattering samples (Förster et al. [26]), etc. With
this in mind, our simplifying assumption allows us to express the transfer function in the
classic form that is standard, for example in transmission electron microscopy, namely
(Paganin and Gureyev [64], Paganin [67], Cowley [19]):

T
(
kx, ky

)
= exp

i ∞∑
m,n=0

α̃mnkm
x kn

y

 . (6.6)

Under this representation we denote the set of complex numbers {α̃mn} as the “aberration
coefficients” where m and n are non–negative integers that label the order of the aberration.
The real part of each such coefficient is termed a coherent aberration, with the correspond-
ing imaginary part being termed an incoherent aberration. The reader is encouraged to see
Paganin and Gureyev [64] for a direct link between these complex aberration coefficients
and the Seidel aberrations (e.g., piston, defocus, astigmatism, spherical aberration, chro-
matic aberration etc.) of classical aberration theory (Born and Wolf [8]). Optical devices in
the majority of cases are designed with cylindrical geometry (i.e. microscopes, telescopes).
Therefore it is often advantageous to describe optical aberration coefficients and transfer
functions in terms of Zernike polynomials for which the aberration function is expressed
as a series expansion in polar coordinates over the unit circle. However, this is not the
case in this thesis where Cartesian coordinates are used to suit a more arbitrary geometry.
Nevertheless this formalism can be related to Zernike coefficients and polynomials using
appropriate transformations (Lakshminarayanan and Fleck [48]).

Expanding the complex exponential in Eqn. (6.6) as a Taylor–series, we obtain:

T
(
kx, ky

)
≡ 1 + i

∞∑
m,n=0

αmnkm
x kn

y . (6.7)

The above expression serves to define the set of coefficients {αmn}. The set of coefficients
{αmn} is defined in terms of the set of aberration coefficients {α̃mn}. This form is particularly
useful for studying the effect of transfer functions that differ only slightly from unity,
namely for weakly aberrated shift–invariant imaging systems. We shall later pick up on
this point in section 6.5.
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6.3 Optical aberrations in shift–invariant linear

imaging systems using partially coherent fields

considering two transverse spatial coordinates

In this section we include the the effects of partial coherence for an aberrated shift–invariant
linear optical system. It proves convenient to express the output complex disturbances
which are related to the input complex disturbances in terms of the transfer function
formalism (i.e. Eqn. (6.4)) in terms of the Fourier space integral shown in Eqn. (6.5b) (b):

Ψout (x, y) =
1

2π

" ∞

−∞

T
(
kx, ky

)
ei(kx x+kyy)Ψ̂in(kx, ky)dkxdky,

(6.8)

where Ψ̂in(kx, ky) denotes the Fourier transform of Ψin(x, y) with respect to x and y. The
above integral–form expression describes the output wavefield for an optical system that is
linear and shift–invariant for incoming wavefields that are fully coherent.

W Wout

yT k  k( , )x

in

object

Source

Figure 6.2: Schematic illustration of the action of an aberrated shift–invariant linear
optical imaging system, for statistically stationary partially coherent complex scalar fields,
under the transfer function formalism. Input (Win) and output (Wout) cross–spectral densi-
ties are related by the generalized transfer function formalism according to Eqn. (6.11).

For the reasons outlined earlier, it is desirable to extend this theory to partially coherent
fields. This corresponds to the generalization shown in Fig. 6.2. Here, Win is the cross–
spectral density incident upon a linear shift–invariant aberrated optical system, yielding
the corresponding output cross–spectral density Wout.

Under the space–frequency description of partial coherence developed by (Wolf [8, 88]),
the output cross–spectral density at a specified angular frequency ω may be constructed
using an ensemble of strictly monochromatic fields all of the same angular frequency, via
(see chapter 2):



90
Aberration–induced phase contrast imaging in partially coherent fields transmitted through a

linear shift–invariant imaging system

Wout (x1, y1, x2, y2) =
〈
Ψ∗out(x1, y1)Ψout(x2, y2)

〉
ω . (6.9)

Here, angular brackets denote the ensemble average.

Putting this equation to one side for the moment, note that we can express Ψ∗out(x1, y1)
and Ψout(x2, y2) in terms of the Fourier transform of Ψ∗in(x1, y1) and Ψin(x2, y2), respectively,
using the conventions in Eqn. (6.5a) and (6.5b), which gives the following:

Ψ∗out (x1, y1) =
1

(2π)

" ∞

−∞

T
∗ (

kx1 , ky1

)
ei∗(kx1 x1+ky1 y1)Ψ̂∗in(kx1 , ky1)dkx1dky1 , (6.10a)

Ψout (x2, y2) =
1

(2π)

" ∞

−∞

T
(
kx2 , ky2

)
ei(kx2 x2+ky2 y2)Ψ̂in(kx2 , ky2)dkx2dky2 . (6.10b)

By substituting the above expressions into Eqn. (6.9), one can obtain the output cross–
spectral density in terms of the input cross–spectral density as (Gbur and Visser [28]):

Wout =
1

(2π)2

& ∞

−∞

T
∗ (

kx1 , ky1

)
T

(
kx2 , ky2

)
e[i∗(kx1 x1+ky1 y1)+i(kx2 x2+ky2 y2)]

×
〈
Ψ̂∗in(kx1 , ky1)Ψ̂in(kx2 , ky2)

〉
ω

dkx1dky1dkx2dky2 .

(6.11)

Equation (6.11) can be visualized pictorially in the diagram shown in Fig. 6.2. For
the present we restrict considerations to ensembles of input wavefields, each member of
which is described by the “phase object approximation” that, by definition, are wavefields
that only vary in phase but not in amplitude, that is Ψin(x, y) = eiφin(x,y). This way our final
expression will be a series of terms that have operations on the input phase φin(x, y), which
is a real function. Later in this chapter we generalize to include absorption. Expanding
the complex exponential in this expression as a Taylor series, which implies no loss of
generality on account of the infinite radius of convergence of this series, we obtain:

Ψin(x, y) = 1 +

∞∑
p=1

ip

p!
φ

p
in(x, y). (6.12)

Taking the Fourier transform of the above expression with respect to x and y, we can
then write down the following expressions for the terms Ψ̂∗in(kx1 , ky1) and Ψ̂in(kx2 , ky2) in
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Eqn. (6.11):

Ψ̂∗in(kx1 , ky1) = δ̂(kx1 , ky1) +

∞∑
p=1

(ip)∗

p!
φ̂

p
in

∗

(kx1 , ky1), (6.13a)

Ψ̂in(kx2 , ky2) = δ̂(kx2 , ky2) +

∞∑
q=1

iq

q!
φ̂

p
in(kx2 , ky2), (6.13b)

where δ̂(kx, ky) denotes the Dirac delta.
From Eqn. (6.7) we may also write:

T
∗ (

kx1 , ky1

)
= 1 + i∗

∞∑
m,n=0

α∗mnkm
x1

kn
y1
, (6.14a)

T
(
kx2 , ky2

)
= 1 + i

∞∑
γ,ν=0

αγνkγx2
kνy2
. (6.14b)

We now substitute Eqs. (6.13a), (6.13b), (6.14a) and (6.14a) into Eqn. (6.11) and ex-
pand. A total of sixteen terms appear in the expansion making it a very lengthy expression
to display; however, similar mathematical manipulation is performed in each term that can
be illustrated by using one term as an example. The longest term that appears is;

〈 ∞∑
p,q,m,n,γ,ν=1

(ip+1)∗iq+1α∗mnαγν

p!q!(im+n)∗(iγ+ν)
1

2π

" ∞

−∞

(i∗kx1)
m(i∗ky1)

ne[i∗(kx1 x1+ky1 y1)]φ̂
p
in

∗

(kx1 , ky1)dkx1dky1

×
1

2π

" ∞

−∞

(ikx2)
γ(iky2)

νe[i(kx2 x2+ky2 y2)]φ̂
q
in(kx2 , ky2)dkx2dky2

〉
ω

.

(6.15)

By the Fourier derivative theorem, the terms inside the double integrals can be expressed
as;

(i∗kx1)
m(i∗ky1)

ne[i∗(kx1 x1+ky1 y1)] =
∂m

∂xm
1

∂n

∂yn
1
e[i∗(kx1 x1+ky1 y1)], (6.16a)

(ikx2)
γ(iky2)

νe[i(kx2 x2+ky2 y2)] =
∂γ

∂xγ2

∂ν

∂yν2
e[i(kx2 x2+ky2 y2)]. (6.16b)

The indices m, n, γ and ν are positive integers that denote the order of differentiation. With
this re–expression we see that the integrals represent the inverse Fourier transforms of the
functions:

∂m

∂xm
1

∂n

∂yn
1
φ̂

p
in(kx1 , ky1), and (6.17a)

∂γ

∂xγ2

∂ν

∂yν2
φ̂

q
in(kx2 , ky2). (6.17b)
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Hence the entire term in Eqn. (6.15) simplifies to:

∞∑
p,q,m,n,γ,ν=1

(ip+1)∗iq+1α∗mnαγν

p!q!(im+n)∗(iγ+ν)

〈[
∂m

∂xm
1

∂n

∂yn
1
φ

p
in(x1, y1)

] [
∂γ

∂xγ2

∂ν

∂yν2
φ

q
in(x2, y2)

]〉
ω

.

(6.18)

Using similar mathematical manipulation and logic used to get from Eq. (6.15) to
(6.18) and applying it to all the terms which appear in the expansion of Eq. (6.11), one
finds that the cross–spectral density for a shift–invariant linear system whose transfer
function has infinitely many orders of aberrations is given by:

Wout = 1 +

∞∑
p=1

(ip)∗

p!

〈
φ

p
in(x1, y1)

〉
ω

+

∞∑
q=1

iq

q!

〈
φ

q
in(x2, y2)

〉
ω

+

∞∑
p,q=1

(ip)∗iq

p!q!

〈
φ

p
in(x1, y1)φq

in(x2, y2)
〉
ω

+

∞∑
p,m,n=1

α∗mn(ip+1)∗

p!(im+n)∗

〈
∂m

∂xm
1

∂n

∂yn
1
φ

p
in(x1, y1)

〉
ω

+

∞∑
q,γ,ν=1

αγν(iq+1)
q!(iγ+ν)

〈
∂γ

∂xγ2

∂ν

∂yν2
φ

q
in(x2, y2)

〉
ω

+

∞∑
p,q,m,n=1

α∗mn(ip+1)∗iq

p!q!(im+n)∗

〈[
∂m

∂xm
1

∂n

∂yn
1
φ

p
in(x1, y1)

]
φ

q
in(x2, y2)

〉
ω

+

∞∑
p,q,γ,ν=1

αγν(ip+1)(iq)∗

p!q!(iγ+ν)

〈
φ

p
in(x1, y1)

[
∂γ

∂xγ2

∂ν

∂yν2
φ

q
in(x2, y2)

]〉
ω

+

∞∑
p,q,m,n,γ,ν=1

(ip+1)∗iq+1α∗mnαγν

p!q!(im+n)∗(iγ+ν)

〈[
∂m

∂xm
1

∂n

∂yn
1
φ

p
in(x1, y1)

] [
∂γ

∂xγ2

∂ν

∂yν2
φ

q
in(x2, y2)

]〉
ω

.

(6.19)

Eqn. (6.19) is a key result of this chapter. We speak of Eqn. (6.19) as exhibiting a
generalized f orm o f di f f erential phase contrast, in the sense that it is a representation
in which the transverse derivatives of all orders of the phase distribution of each monochro-
matic field in the ensemble are statistically averaged and weighted in constructing the
output cross–spectral density. The weighting coefficients are proportional to the general-
ized aberration coefficients drawn from the complex set {αmn}, thereby demonstrating how
individual generalized aberration coefficients contribute to particular orders of transverse
derivative of the phase of each monochromatic component in the statistical ensemble.
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6.4 Optical aberrations in shift–invariant linear

imaging systems using partially coherent fields

considering different types of sample, using a

single transverse spatial coordinate

In this section we will apply the formalism of the preceding section to three different
types of sample, starting with samples that satisfy the weak–phase approximation (sec-
tion 6.4.1), followed by samples that satisfy the weak phase–amplitude approximation
(section 6.4.2) and finally samples made from a single–material that also satisfy the weak
phase–amplitude approximation (section 6.4.3). Such types of sample have already been
introduced in previous chapters; however, here we more thoroughly explore the underpin-
ning mathematical and physical arguments justifying these expressions. In the interests of
physical transparency of the resulting expressions, we will drop the number of transverse
dimensions from two down to one.

6.4.1 Samples that satisfy the weak–phase approximation

The weak–phase approximation implies that when an object is illuminated by a wavefield
the object itself causes very small changes in the phase of the incident field, as the scattering
effects are relatively weak. We saw how under the “phase object approximation” one may
express Ψin as a Taylor series (see Eq.(6.12)). In the one–dimensional perfectly coherent
case this is written as:

Ψin(x) = 1 +

∞∑
p=1

ip

p!
φ

p
in(x). (6.20)

For samples that satisfy the weak–phase approximation, we can ignore anything higher
than first–order terms in the phase, that is:

Ψin(x) ≈ 1 + iφin(x). (6.21)

Physically, this corresponds to each strictly monochromatic component of the input
statistical ensemble having a transverse phase variation whose magnitude is much smaller
than one radian. Such a strong limiting assumption of course implies significant loss of
generality, a drawback which may be counterpointed with the very widespread use of the
weak phase object approximation in visible–light imaging, X–ray imaging and electron
imaging (Cowley [19], Cloetens et al. [15]).

In most cases relating to weak phase objects, including such terms only up to first order
in φin(x) is acceptable. However, when we calculate the cross–spectral density Wout we take
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the product of two wave fields, which causes second–order terms in φ to appear that cannot
be ignored. This simply means expanding sums over p and q in Eq. (6.19) and retaining
terms that are no higher than second order in φ. By doing this the one–dimensional version
of the cross–spectral density (Wout) for samples that satisfy the weak–phase approximation
is:

Wout = 1 + i∗ 〈φin(x1)〉ω + i 〈φin(x2)〉ω −
1
2

〈
φ2

in(x1)
〉
ω
−

1
2

〈
φ2

in(x2)
〉
ω

+ 〈φin(x1)φin(x2)〉ω −
∞∑

m=1

(
αm

im

)∗ 〈 ∂m

∂xm
1
φin(x1)

〉
ω

−

∞∑
n=1

(
αn

in

) 〈
∂n

∂xn
2
φin(x2)

〉
ω

−

∞∑
m=1

(
αm

im−1

)∗ 〈 ∂m

∂xm
1
φ2

in(x1)
〉
ω

−

∞∑
n=1

(
αn

in−1

) 〈
∂n

∂xn
2
φ2

in(x2)
〉
ω

+

∞∑
m=1

(
αm

im−1

)∗ 〈[ ∂m

∂xm
1
φin(x1)

]
φin(x2)

〉
ω

+

∞∑
n=1

(
αn

in−1

) 〈
φin(x1)

[
∂n

∂xn
2
φin(x2)

]〉
ω

+

∞∑
m,n=1

(
αm

im

)∗ (αn

in

) 〈[
∂m

∂xm
1
φin(x1)

] [
∂n

∂xn
2
φin(x2)

]〉
ω

.

(6.22)

The associated spectral density S out(x, ω) ≡ Wout(x, x, ω) is:

S out = 1 − 2
∞∑

m=1

Re
(
αm

im

) 〈
∂m

∂xmφin(x)
〉
ω

− 2
∞∑

m=1

Re
(
αm

im−1

) 〈
∂m

∂xmφ
2
in(x)

〉
ω

+2
∞∑

m=1

Re
(
αm

im−1

) 〈[
∂m

∂xmφin(x)
]
φin(x)

〉
ω

+

∞∑
m,n=1

(
αm

im

)∗ (αn

in

) 〈[
∂m

∂xmφin(x)
] [

∂n

∂xnφin(x)
]〉
ω

.

(6.23)

Our earlier comments regarding generalized phase contrast are also applicable here.
Thus, for the case of weak phase objects imaged by an aberrated linear shift–invariant
optical system, the output spectral density consists of a weighted sum of various orders
of transverse derivative of the phases of each component of each strictly monochromatic
member of the statistical ensemble, quantifying the input stochastic process. The asso-
ciated weighting coefficients are again proportional to the real or imaginary parts of the
generalized aberration coefficients given by the complex set {αmn}.

It is important to realize that in equation (6.23) we can directly see that four terms have
no imaginary parts, which is expected since the spectral density is the monochromatic
spatial component of the square modulus of a wave-field (see section 2.6.5). Having
said this, the last term must also not have imaginary parts. If we analyse the last term
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more carefully it can be shown that no imaginary parts arise from
∑∞

m,n=1

(
αm
im

)∗ (αn
in

)
. To

demonstrate this we need to consider two separate cases. First, consider the case where
m = n. The expansion terms are:

|α1|
2 + |α2|

2 + |α3|
2 + ... (6.24)

Second, consider the case where m , n. The expansion terms are:

(
α1
i

)∗ (α2
i2

)
+

(
α2
i2

)∗ (α1
i

)
+

(
α1
i

)∗ (α3
i3

)
+

(
α3
i3

)∗ (α1
i

)
+

(
α1
i

)∗ (α4
i4

)
+

(
α4
i4

)∗ (α1
i

)
+ ...

(6.25)

By analysing the expansions in Eqns (6.24) and (6.25) for the two separate cases, one
can logically deduce that the last summation term in Eqn (6.23) can be re-expressed as
two separate summations:

∞∑
m=1

|αm|

〈[
∂m

∂xmφin(x)
] [

∂n

∂xnφin(x)
]〉
ω

+2
∞∑

m,n=1

Re
[(
αm

im

)∗ (αn

in

)]
[1 − δ̂mn]

〈[
∂m

∂xmφin(x)
] [

∂n

∂xnφin(x)
]〉
ω

.

(6.26)

This re-expression demonstrates that no complex components will appear in S out. The
symbol δ̂mn is the Kronecker delta. Although this re-expression firmly illustrates that there
are no imaginary components in S out, we find it more convenient to express the last term
of equation (6.23) as originally stated.

If we ignore terms in Eqn. (6.23) that are higher than first order in φ and assume a
perfectly coherent field (i.e. no ensemble average is required) then this equation reduces
to the one dimensional form of the expression derived in the paper by Paganin and
Gureyev [64] for linear shift–invariant imaging systems for fully coherent fields given by:

S out = 1 − 2
∞∑

m=1

Re
(
αm

im

)
∂m

∂xmφin(x). (6.27)

Some interesting effects result when terms higher than first order in φin(x) are retained.
For example, if we truncate Eqn. (6.23) up to m = 1 and n = 1 the spectral density
becomes:
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S out = 1 − 2Re
(
α1

i

) 〈
∂

∂x
φin(x)

〉
ω

− 2Re(α1)
〈
∂

∂x
φ2

in(x)
〉
ω

+2Re(α1)
〈[
∂

∂x
φin(x)

]
φin(x)

〉
ω

+ |α1|
2
〈[
∂

∂x
φin(x)

] [
∂

∂x
φin(x)

]〉
ω

.

(6.28)

Here we have explicitly chosen a system that only displays first derivative contrast in the
phase φ. Now notice how invoking the product rule one may rewrite certain terms such as:

∂φ2
in(x)
∂x

= 2
[
∂φin(x)
∂x

]
φin(x) (6.29)

and

[
∂φin(x)
∂x

] [
∂φin(x)
∂x

]
=

∂

∂x

([
∂

∂x
φin(x)

]
φin(x)

)
−

[
∂2

∂x2φin(x)
]
φin(x), (6.30)

So that Eqn. (6.28) can be written as:

S out = 1 − 2Re
(
α1

i

) 〈
∂

∂x
φin(x)

〉
ω

− 2Re(α1)
〈[
∂

∂x
φin(x)

]
φin(x)

〉
ω

+ |α1|
2
〈
∂

∂x

{[
∂

∂x
φin(x)

]
φin(x)

}〉
ω

− |α1|
2
〈[
∂2

xφin(x)
]
φin(x)

〉
ω
.

(6.31)

Notice how the final term yields a second derivative in the ensemble of phases. This is
popularly referred to in the imaging field as “Laplacian contrast” (Teague et al. [82]). It is
surprising that even though the system in Eqn. (6.31) has been restricted to tilt aberrations
α1 of first order, Laplacian contrast still arises.

6.4.2 Samples that satisfy the weak phase–amplitude

approximation

The next class of samples considered are those that satisfy the weak phase–amplitude ap-
proximation. This approximation takes into consideration the variations in both amplitude
and phase that the wavefield incurs as it travels though the sample. Again, since we are
working under the space–frequency description of partial coherence, these statements apply
to each strictly monochromatic component of the illuminating beam, which is elastically
scattered by the sample to yield the ensemble of monochromatic fields that is input into
the shift invariant linear imaging system.
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Bearing the above statements in mind, the weak phase–amplitude approximation
corresponds to the sample’s scattering and absorptive properties being weak in the sense
of the first Born approximation (Born and Wolf [8]). For samples that induce changes in
both phase and amplitude, the one dimensional wavefield exiting the object is expressed as
(Cowley [19]):

Ψin(x) = exp[iφin(x) − µin(x)]. (6.32)

The real function function µin(x) is related to the transverse variations in intensity and, like
φin(x), it is also a real function. It again proves convenient to express exponential functions
as a Taylor series. In this case Ψin(x) is given by:

Ψin(x) = 1 +

∞∑
p=1

[iφin(x) − µin(x)]p

p!
. (6.33)

Like the weak–phase object approximation the weak phase–amplitude approximation
also involves ignoring terms higher than first order, allowing the wavefield to be expressed
as:

Ψin(x) ≈ 1 + iφin(x) − µin(x). (6.34)

To obtain Wout one simply needs to replace the terms φin(x1) and φin(x2) with iφin(x1) −
µin(x1) and iφin(x2) − µin(x2) in Eqn. (6.22), respectively. Note that second–order terms
need to be included for the same reasons argued for the weak–phase approximation. Once
we have Wout, we then set x1 = x2 = x to obtain an expression for the spectral density
S out(x, ω) for samples that are weak in phase and amplitude variations. In this case the
spectral density is given by the following expression, which again demonstrates generalized
differential phase contrast in the sense defined earlier:
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S out = 1 − 2 〈µin(x)〉ω − 2
∞∑

m=1

Re
(
αm

im

) 〈
∂m

∂xmφin(x)
〉
ω

− 2
∞∑

m=1

Re
(
αm

im−1

) 〈
∂m

∂xmµin(x)
〉
ω

−2
∞∑

m=1

Re
(
αm

im−1

) 〈
∂m

∂xmφ
2
in(x)

〉
ω

+ 2
∞∑

m=1

Re
(
αm

im−1

) 〈
∂m

∂xmµ
2
in(x)

〉
ω

+6
∞∑

m=1

Re
(
αm

im−2

) 〈[
∂m

∂xmφin(x)
]
µin(x)

〉
ω

+ 2
∞∑

m=1

Re
(
αm

im−1

) 〈[
∂m

∂xmφin(x)
]
φin(x)

〉
ω

+2
∞∑

m=1

Re
(
αm

im−2

) 〈[
∂m

∂xmµin(x)
]
φin(x)

〉
ω

+ 2
∞∑

m=1

Re
(
αm

im−1

) 〈[
∂m

∂xmµin(x)
]
µin(x)

〉
ω

+

∞∑
m,n=1

(
αm

im

)∗ (αn

in

) 〈[
∂m

∂xmφin(x)
] [

∂n

∂xnφin(x)
]〉
ω

+

∞∑
m,n=1

(
αm

im

)∗ (αn

in

) 〈[
∂m

∂xmµin(x)
] [

∂n

∂xnµin(x)
]〉
ω

.

(6.35)

Similar to the previous case in section 6.4, if second order terms in φ and µ are
neglected and we remove the angular brackets, assuming a fully coherent wave, then
Eq. (6.35) reduces to the one derived by Paganin and Gureyev [64] when dealing with the
weak phase–amplitude approximation, namely:

S out = 1 − 2µin(x) − 2
∞∑

m=1

Re
(
αm

im

)
∂m

∂xmφin(x) − 2
∞∑

m=1

Re
(
αm

im−1

)
∂m

∂xmµin(x).

(6.36)

6.4.3 Single–material samples that satisfy the weak

phase–amplitude approximation

The final kind of sample that we consider is those that are comprised of a single material
and also have the transverse phase and intensity variations of the wavefield being small as
it travels though the sample. For single–material samples the complex refractive index is
constant throughout the volume of the sample (Paganin [67]):

n = 1 − δ + iβ. (6.37)

If the projected thickness along the orientation of a particular direction of propagation
for paraxial illumination is denoted as T(x), then using the real numbers δ and β we can
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relate the functions φin(x) and µin(x) to T(x) via (see section 4.2.1):

φin(x) = −kδT(x), (6.38a)

µin(x) = βkT(x). (6.38b)

Here, k is the radiation wavenumber corresponding to the wavelength λ. This permits us
to write the input wavefield as:

Ψin(x) = exp[k(β − iδ)T(x)]. (6.39)

Under the single–material weak phase–amplitude object approximation Ψin(x) is ap-
proximated as:

Ψin(x) = exp[k(β − iδ)T(x)]

≈ 1 − k(β − iδ)T(x). (6.40)

Here we see that the “single–material weak phase–amplitude object approximation”
is none other than the “weak phase–amplitude object approximation” that uses that fact
that when a weak object is made out of only one material the functions φin(x) and µin(x)
become proportional to each other. Bearing this in mind, to obtain an expression for the
spectral density S out(x) for systems that are linear and shift–invariant when the object
satisfies the “single–material weak phase–amplitude object approximation”, all that is
needed is to replace φin(x) and µin(x) in Eqn.(6.35) with −kδT(x) and βkT(x) respectively
to yield:

S out = 1 − 2βk 〈T(x)〉ω − 2
∞∑

m=1

Re
[
αmk(iβ + δ)

im

] 〈
∂m

∂xm T(x)
〉
ω

+2
∞∑

m=1

Re
[
αmk(δ + β)

im−1

] 〈
∂m

∂xm T2(x)
〉
ω

+2
∞∑

m=1

Re
[
αmk2(4δ − β2 + iδ2)

im

] 〈[
∂m

∂xm T(x)
]

T(x)
〉
ω

+

∞∑
m,n=1

σ
(
αm

im

)∗ (αn

in

) 〈[
∂m

∂xm T(x)
] [

∂n

∂xn T(x)
]〉
ω

,

(6.41)

where σ = k2(δ + β), and ensemble averages are taken over the sample projected thickness
(i.e. 〈T(x)〉ω). This implies taking the average sum of projected line-integrals along the
sample over a range of angular orientations for the case where the incident ensemble of
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monochromatic fields consists of a set of plane waves. We see that the single–material as-
sumption significantly simplifies the expression for the spectral density S out in Eqn. (6.35).
One of the advantages about making the “single–material weak phase–amplitude object
approximation” is that it allows one to relate the measured image directly to morphological
detail of the sample, bypassing the idea of ensembles of phase maps. For instance, take a
special case of Eqn. (6.41) where the system has a finite set of non–vanishing aberrations
(all of which are known a priori), and we take the spectral density S out to be the measured
quantity, leaving 〈T(x)〉ω as the unknown variable. This effectively brings about an inverse
problem, where from an aberrated image one seeks to infer information about the dimen-
sions of a sample. Usually this is done using some iterative or non–iterative algorithm and
in most cases a perfectly coherent monochromatic wavefield is assumed. In the context of
this paper we see that the idea of “phase retrieval” is somewhat redundant since we have
considered wavefields that are partially coherent and therefore do not have a characteristic
phase φ, but rather have a statistical signature

〈
∂m

∂xmφin

〉
ω

. This highlights the importance of
Eqn. (6.41) as it makes more sense to want to recover information about the morphology
of the imaged sample as opposed to the phase φ of a wavefield; since technically the latter
does not exist in the context of partial coherence (Wolf [89]).

6.5 The transfer function for shift–invariant linear

systems with infinitely many orders of aberration

The transfer function formalism to study image formation is widely used to describe
optical systems. This section discusses in detail the properties and characteristics of the
transfer function used in the development of this theory (see Eqn. (6.6)). The expressions
for spectral densities for all three types of sample described in section 6.4 are here derived
under the Taylor series form of the transfer function, which is written in terms of the
coefficients αm. For this reason it is important to state that the actual aberration coefficients,
namely those directly corresponding to the Seidel aberrations, are those denoted by α̃m.
For example, α̃2 is directly proportional to defocus “z” as is α̃4 to spherical aberration “Cs”
(Paganin and Gureyev [64]). The main goal of this section will be to illustrate how we are
able to express the transfer function as a Taylor–series expansion that eventually will lead
to another problem in finding a standard formula on how to relate the coefficients αm to
the aberration coefficients α̃m; a problem which is solved using a combinatorial approach.
Also, we will continue to use only one spatial dimension in order to keep all mathematical
manipulations simple.

We begin by re–stating the transfer function in one spatial dimension:

T (kx) = exp

i ∞∑
m=0

α̃mkm
x

 . (6.42)
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We remind the reader that the set of complex numbers {α̃m} are labelled here as
“aberration coefficients” whose objective is to characterise a particular state of the linear
imaging system. Each such coefficient can be expressed as:

α̃m ≡ α̃
(R)
m + iα̃(I)

m , (6.43)

where α̃(R)
m denotes the real part and α̃(I)

m denotes the imaginary part. It was assumed in
Paganin and Gureyev [64] that at the Fourier–space origin the transfer function must equal
unity; that is T (kx = 0) = 1. Such an assumption implies a trivial loss of generality for
all systems that posses a transfer function that does not vanish at the Fourier space origin.
Also under this assumption we may set α̃0 = 0.

Now we want to represent Eqn. (6.42) as a Taylor–series, something that in Pa-
ganin and Gureyev [64] was only stated but not shown. Here we provide a more detailed
explanation of how this is achieved. First, let the summation in Eqn. (6.42) be labelled
X ≡ i

∑∞
m=1 α̃mkm

x . Notice that we have now commenced the summation from m = 1. This
is due to assumption made earlier that T (kx = 0) = 1, which in turn allowed us to set
α̃0 = 0. The Taylor–series of an exponential function is given by:

eX = 1 +

∞∑
l=1

Xl

l!
, (6.44)

where, l = 1, 2, ... is also a non–negative integer. If we now substitute X ≡ i
∑∞

m=1 α̃mkm
x

then Eqn. (6.42) becomes:

T (kx) = 1 + i
∞∑

l=1

il−1

l!

 ∞∑
m=1

α̃mkm
x

l

. (6.45)

Writing the summation
∑∞

m=1 α̃mkm
x explicitly we get:

T (kx) = 1 + i
∞∑

l=1

il−1

l!

(
α̃1kx + α̃2k2

x + α̃3k3
x + α̃4k4

x + · · ·
)l
.

(6.46)

We now turn our focus to the summation in Eqn. (6.46). If one writes down the first
few l terms, say l = 1, 2, 3, 4, it can be seen that all the common powers of kx can be
collected. For example:
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l = 1,
(
α̃1kx + α̃2k2

x + α̃3k3
x + α̃4k4

x + · · ·
)1

l = 2, + i
2!

(
α̃1kx + α̃2k2

x + α̃3k3
x + α̃4k4

x + · · ·
)2

l = 3, − 1
3!

(
α̃1kx + α̃2k2

x + α̃3k3
x + α̃4k4

x + · · ·
)3

l = 4, − i
4!

(
α̃1kx + α̃2k2

x + α̃3k3
x + α̃4k4

x + · · ·
)4
.

(6.47)

Once we collect all the common powers of kx we see that the entire summation in
Eqn. (6.46) can be expressed in the alternative form:

α1︷︸︸︷
(α̃1) kx +

α2︷       ︸︸       ︷
(α̃2 +

i
2
α̃2

1)k2
x +

α3︷                  ︸︸                  ︷
(α̃3 + iα̃1α̃2 −

1
6
α̃3

1)k3
x +

α4︷                                          ︸︸                                          ︷
(α̃4 + iα̃1α̃3 +

i
2
α̃2

2 −
1
2
α̃2

1α̃2 −
i

24
α̃4

1)k4
x + · · · =

∞∑
l=1

αlkl
x.

(6.48)

These mathematical manipulations reveal that we are able to represent the transfer
function as the following Taylor–series:

T (kx) = 1 + i
∞∑

m=1

αmkm
x . (6.49)

We have re–labelled the non–negative integer l with m in order to remain consistent
with our original notation. Also, notice that each αm term is composed of a finite series of
α̃m terms where the higher the order of m the higher number the of terms that will appear.
The fact that the series are finite turns out to be advantageous. On this note we see that
another problem arises, that is, if one is dealing with aberrations that are higher in order
than say α5, we saw from the above examples that computing all its terms in the series this
can be tedious. This motivates us to seek a Standard Series Formula that can allow us to
calculate any αm for this problem by simply substituting fixed parameters to avoid such
lengthy and tedious computations. This can be achieved if one visualises the problem as a
combinatorial one. The first indication that tells us that this can be solved combinatorially
is when the term

(
α̃1kx + α̃2k2

x + · · ·
)l

arises where we see that this is none other than a
multinomial expansion which reveals its combinatorial nature. The multinomial expansion
formula has the form:

(c1 + c2 + ... + cm)l =
∑

m1+m2+...+m j=l

(
l

m1,m2, · · · ,m j

)
cm1

1 cm2
2 ...cm j

j

(6.50)
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where c1, c2, ..., cm are variables and l,m, j,m j are integers. From this we can deduce that
the terms in the series will have coefficients which can be calculated with the multinomial
coefficients formula:

(
l

m1,m2, · · · ,m j

)
=

l!
m1!m2! · · ·m j!

. (6.51)

Notice that for any αm we find that the sum of the exponent times its subscript in each
of its corresponding α̃ terms will always be equal. For instance take α3 = α̃3 + iα̃1α̃2−

1
6 α̃

3
1;

each of its α̃ terms in the expansion can be written as α̃1
3, α̃1

1α̃
1
2 and α̃3

1. Now notice how
the sum of the product of the exponents times its subscript for each term all equate to 3;
we have α̃1

3 (1 × 3 = 3), α̃1
1α̃

1
2 (1 × 1 + 1 × 2 = 3) and α̃1

3 (3 × 1 = 3). If we do this for any
αm this condition will still hold.

Our next step is to try to decode a particular pattern for any αm series. Let’s focus on
α2 = α̃2 + i

2 α̃
2
1. Here we see that the highest power is 2 and therefore one can also deduce

that the highest power for any α̃ is never greater than m. We know that each expansion has
a combinatorial nature so let’s consider the terms that compose α2 are elements from the
set {α̃1, α̃2} and its corresponding exponents are combinations from the set {0, 1, 2}. We
also see that the coefficients will be given by the multinomial coefficients formula. If we
write down all possible combinations with their corresponding multinomial coefficients
(including the factor il−1/l!, starting with m = 0 for completeness) it displays as:

0(1)+0(2)=0

i−1

0!

(
0

0, 0

)
α̃0

1α̃
0
2 +

0(1)+1(2)=2

i0

1!

(
1

0, 1

)
α̃0

1α̃
1
2 +

1(1)+0(2)=1

i0

1!

(
1

1, 0

)
α̃1

1α̃
0
2

+

0(1)+2(2)=4

i
2!

(
2

0, 2

)
α̃0

1α̃
2
2 +

2(1)+0(2)=2

i
2!

(
2

2, 0

)
α̃2

1α̃
0
2 +

1(1)+1(2)=3

i
2!

(
2

1, 1

)
α̃1

1α̃
1
2.

(6.52)

As a convenient notation, notice that the sum of the product of the exponents times
their corresponding subscripts have been deliberately placed above each combinatorial
term. This helps us to see that if we only allow the terms in which the product of the
exponents times their corresponding subscripts equals the order of the coefficient αm, in
this case m = 2 and neglect those that do not fulfil this condition, then the surviving terms
in the expansion will be the following:

α2 =
i0

1!

(
1

0, 1

)
α̃0

1α̃
1
2 +

i
2!

(
2

2, 0

)
α̃2

1α̃
0
2

= α̃2 +
i
2
α̃2

1. (6.53)

Notice how applying this fusion of combinatorics and pattern decoding has arrived at
the same answer for the α2 terms in Eqn. (6.48). Now we can employ the same strategy
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for α3 = α̃3 + iα̃1α̃2 −
1
6 α̃

3
1 where now all the terms are elements from the set {α̃1, α̃2, α̃3}

and its exponents are combinations from the set {0, 1, 2, 3}. Writing down the possible
combinations will give:

0(1)+0(2)+0(3)=0
i−1

0!

(
0

0,0,0

)
α̃0

1α̃
0
2α̃

0
3 +

1(1)+0(2)+0(3)=1
i0
1!

(
1

1,0,0

)
α̃1

1α̃
0
2α̃

0
3 +

0(1)+1(2)+0(3)=2
i0
1!

(
1

0,1,0

)
α̃0

1α̃
1
2α̃

0
3

+

0(1)+0(2)+1(3)=3
i0
1!

(
1

0,0,1

)
α̃0

1α̃
0
2α̃

1
3 +

2(1)+0(2)+0(3)=2
i1
2!

(
2

2,0,0

)
α̃2

1α̃
0
2α̃

0
3 +

0(1)+2(2)+0(3)=4
i1
2!

(
2

0,2,0

)
α̃0

1α̃
2
2α̃

0
3

+

0(1)+0(2)+2(3)=6
i1
2!

(
2

0,0,2

)
α̃0

1α̃
0
2α̃

2
3 +

1(1)+1(2)+0(3)=3
i1
2!

(
2

1,1,0

)
α̃1

1α̃
1
2α̃

0
3 +

1(1)+0(2)+1(3)=4
i1
2!

(
2

1,0,1

)
α̃1

1α̃
0
2α̃

1
3

+

0(1)+1(2)+1(3)=5
i1
2!

(
2

0,1,1

)
α̃0

1α̃
1
2α̃

1
3 +

3(1)+0(2)+0(3)=3
i2
3!

(
3

3,0,0

)
α̃3

1α̃
0
2α̃

0
3 +

0(1)+3(2)+0(3)=6
i2
3!

(
3

0,3,0

)
α̃0

1α̃
3
2α̃

0
3

+

0(1)+0(2)+3(3)=9
i2
3!

(
3

0,0,3

)
α̃0

1α̃
0
2α̃

3
3 +

1(1)+1(2)+1(3)=6
i2
3!

(
3

1,1,1

)
α̃1

1α̃
1
2α̃

1
3 +

2(1)+1(2)+0(3)=4
i2
3!

(
3

2,1,0

)
α̃2

1α̃
1
2α̃

0
3

+

2(1)+0(2)+1(3)=5
i2
3!

(
3

2,0,1

)
α̃2

1α̃
0
2α̃

1
3 +

1(1)+2(2)+0(3)=5
i2
3!

(
3

1,2,0

)
α̃1

1α̃
2
2α̃

0
3 +

1(1)+0(2)+2(3)=7
i2
3!

(
3

1,0,2

)
α̃1

1α̃
0
2α̃

2
3

+

0(1)+1(2)+2(3)=8
i2
3!

(
3

0,1,2

)
α̃0

1α̃
1
2α̃

2
3.

(6.54)

Like the case for α2, if we only consider the terms where the sum of the exponents
times their corresponding subscript equal m = 3 and neglect the rest then the only terms
which survive are:

α3 =

0(1)+0(2)+0(3)=3

i0

1!

(
0

0, 0, 1

)
α̃0

1α̃
0
2α̃

1
3 +

1(1)+1(2)+0(3)=3

i1

2!

(
2

1, 1, 0

)
α̃1

1α̃
1
2α̃

0
3 +

3(1)+0(2)+0(3)=3

i2

3!

(
3

3, 0, 0

)
α̃3

1α̃
0
2α̃

0
3

= α̃3 + iα̃1α̃2 −
1
6
α̃3

1.

(6.55)

By extending the above logic one is able deduce the following standard formula to
compute any αm:

αm =

m∑
v

∑
m1+m2+...+m j=v

iv−1

v!

(
v

m1,m2, · · · ,m j

)
α̃m1

1 α̃m2
2 ...α̃

m j

j

where,
∑

j

m j × j = m.

(6.56)

Here, v = 0, 1, 2, ...,m, j = 1, 2, ...,m and m j = 0, 1, 2, ...,m. To verify this standard
formula we calculate another αm and see if we arrive at the same result to that obtained by
collecting terms, as done previously in Eqn. (6.48). We do this by calculating α4 where
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according to the set condition one only needs to consider the terms that satisfy
∑

j m j× j = 4.
Below we display all the relevant terms:

α4 =

0(1)+0(2)+0(3)+1(4)=4

i0

1!

(
1

0, 0, 0, 1

)
α̃0

1α̃
0
2α̃

0
3α̃

1
4 +

1(1)+0(2)+1(3)+0(4)=4

i
2!

(
2

1, 0, 1, 0

)
α̃1

1α̃
0
2α̃

1
3α̃

0
4

+

0(1)+2(2)+0(3)+0(4)=4

i
2!

(
2

0, 2, 0, 0

)
α̃0

1α̃
2
2α̃

0
3α̃

0
4 +

2(1)+1(2)+0(3)+0(4)=4

i2

3!

(
3

2, 1, 0, 0

)
α̃2

1α̃
1
2α̃

0
3α̃

0
4

+

4(1)+0(2)+0(3)+0(4)=4

i3

4!

(
4

4, 0, 0, 0

)
α̃4

1α̃
0
2α̃

0
3α̃

0
4

= α̃4 + iα̃1α̃3 +
i
2
α̃2

2 −
1
2
α̃2

1α̃2 −
i

24
α̃4

1. (6.57)

The computation above is in agreement with calculating α4 via the standard formula
and the more lengthy method that involves collecting term of k4

x powers, as was done in
Eqn. (6.48).

To end this section we return to the case where the transfer function contains two spatial
dimensions transverse to the imaging direction. For such cases the combinatorial analysis
is more complex. Nevertheless, using a similar strategy to the one used to formulate the
standard formula for the one–dimensional case, one is also able to deduce a formula for
the more common imaging scenario with two spatial dimensions. Setting α̃00 = 0 yields a
“two spatial dimensions standard formula” of the form:

αmn =

m+n∑
v

∑
m01+m10+...+m jν=v

iv−1

v!

(
v

m01,m10, · · · ,m jν

)
α̃m01

01 α̃
m10
10 ...α̃

m jν

jν

where,
∑

j,ν

m jν × ( j + ν) = m + n,

(6.58)

where v = 0, 1, 2, ...,m + n, j = 0, 1, 2, ...,m, ν = 0, 1, 2, ..., n and m jν = 0, 1, 2, ...,m + n.
Since we have set α̃00 = 0 we must impose the condition that when j = 0 then ν , 0
and vice versa. It is possible to make further simplification of the formula if rotational
symmetry is also assumed (i.e. α̃10 = α̃01).

6.6 Concluding remarks

In this chapter we have treated the general problem of phase contrast in terms of optical
aberrations for partially coherent complex scalar wavefields imaged by optical systems
characterized by a transfer function that is both linear and shift–invariant. We have
derived expressions for the output cross–spectral density Wout using only one spatial
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variable for samples that satisfy the “phase object approximation”, the “weak–phase
object approximation”, the “weak phase–amplitude approximation” and finally the “single–
material weak phase–amplitude approximation”. Also, for the three classes of samples
mentioned, an expression for the spectral density S out was calculated for which we saw how,
under restrictions, the equations reduced to those derived by Paganin and Gureyev [64]
where partial coherence was not considered. The transfer function was studied where we
emphasized how one obtains the coefficients of the Taylor–series representation of the
transfer function. This lead to a different problem involved with finding a standard formula
that can allow the calculation of any coefficient αm in terms of its corresponding aberration
coefficients α̃m for an infinite number of aberration orders.



Summary, future work and
conclusion

7

This chapter summarises the original research results that form the core of this thesis,
namely chapters 4, 5 and 6. Augmenting this summary is a series of questions which open
possible avenues where this research may lead. We then finalise with an overall conclusion
of this thesis.

In chapter 4 a method of tomographic phase retrieval was developed for multi–material
objects whose components each have a distinct complex refractive index. The phase re-
trieval algorithm, based on the Transport–of–Intensity equation, utilizes propagation–based
X–ray phase contrast images acquired at a single defocus distance for each tomographic
projection. The method requires a priori knowledge of the complex refractive index
for each material present in the sample, together with the total projected thickness of
the object at each orientation. The requirement of only a single defocus distance per
projection simplifies the experimental setup and imposed no additional dose compared
to conventional tomography. The method was implemented using phase contrast data
acquired at the SPring–8 synchrotron radiation facility in Japan. The three–dimensional
(3D) complex refractive index distribution of a multi–material test object was quantitatively
reconstructed using a single X–ray phase–contrast image per projection. The technique
was found to be highly robust in the presence of noise compared to conventional absorption
based tomography. When it comes to imaging multi–material objects, our technique proves
superior to conventional absorption contrast in terms of the signal–to–noise ratio (SNR).
For the test sample used here, the improvement in the SNR was between 17 and 85 fold.

Chapter 5 applies the method developed in chapter 4 to complex biological organs.
Specifically, chapter 5 performs interface–specific propagation-based X–ray phase retrieval
tomography of the thorax and brain of small animals. For the biological samples used here,
there was a 9–200 fold improvement in the signal–to–noise ratio of the phase–retrieved
tomograms over the conventional attenuation-contrast signal. This gain depended on the
material in question and the experimental setup, but can potentially be traded against
a reduction in X–ray dose. For the values reported here, this could potentially reduce
the dose 100–40,000×. This enhances the dose reduction already made over alternative
implementations of phase retrieval since only a single image per projection is required.
However, this huge potential reduction in dose remains to be verified experimentally by
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reducing the dose by these factors and seeing SNR can be maintained by using phase
retrieval. Given these results, combined with the simplicity of our technique, we anticipate
that it will potentially be a useful tool in the field of biomedical X–ray imaging.

A key finding of chapter 5 was that the single–material phase retrieval algorithm
(Eqn. (5.1)) was suitable for the sample containing brain tissue (containing both grey
and white matter) in agar. This considerably simplified and sped up the analysis as
only a single tomographic reconstruction was required. It remains to be seen whether
other material combinations, including soft tissues, can be analysed in the same way.
For example, it may be valid to make the single–material approximation in a sample
exclusively comprised of soft tissues. It also remains to be seen whether a clear image of
the brain can be reconstructed when the brain is in situ, inside the skull, using either phase
retrieval algorithm.

With a view to ultimately applying the method presented in chapter 4 to laboratory–
based PBI using polychromatic radiation (e.g., Wilkins et al. [85]), it would be very useful
to generalize it to a polychromatic spectrum. This will be a stepping stone allowing the
technique to be used for routine biomedical imaging, with potential clinical implications,
since PBI is already being used in the clinic for breast imaging (Tanaka et al. [81]). We
note that several groups have made inroads into the problem of phase retrieval using
polychromatic radiation in the contexts of both two- and three–dimensional imaging
(Arhatari et al. [4], Myers et al. [61]).

Finally, we note that spatially quantized objects are in some sense sparse, insofar
as the interfaces between the various volumetric regions of the object are intrinsically
two–dimensional surfaces. No attempt has been made to utilize this sparseness in this
analysis of the present thesis. Progress has been made in using the intrinsically sparse
nature of spatially quantized objects in the context of phase retrieval in the work of
Myers et al. [60, 61, 59] and the work on gradient–sparse objects by Sidky et al. [75]).
Furthermore, the burgeoning field of compressive sensing (Baraniuk [5]) has also made
inroads into the tomography of sparse objects, albeit via a different form of sparsity in
which the majority of features in the object are confined to a small fraction of the volume
occupied by the object. It might be interesting to investigate whether these methods of
compressive sensing may be adapted to spatially quantized objects, in which the volume
occupied by interfaces is sparse (cf. Sidky et al. [75]). In this context, the concept of a
quasi–one–dimensional object, developed by Gureyev and Evans [36], might also prove
useful. A particular driver is the quest to reduce the number of required projections, and
therefore the dose to the sample by making use of the sparseness of interface–occupying
voxels in a typical spatially quantized object.

In chapter 6 the role and influence of aberrations in optical imaging systems employing
partially coherent complex scalar fields was studied. All phase contrast imaging systems
require aberrations to yield contrast in the output image. These linear optical aberrated
systems were characterised in terms of a transfer function. For linear shift–invariant
optical systems, an expression was derived for the output cross–spectral density under the
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space–frequency formulation of statistically stationary partially coherent fields. We also
derived expressions for the output cross–spectral density and associated spectral density
for weak–phase, weak–phase–amplitude, and single–material objects in one transverse
spatial dimension. For the single material case the possibility of phase retrieval was briefly
explored, giving rise to the idea of carrying out morphological studies of imaged samples
utilizing partially coherent light and aberrated imaging systems. This idea may have
several applications in many areas such as geology, microbiology, materials science, etc.

Chapter 6 was finalised with an analysis of the generalized Fourier space transfer
function. Here a standard formula was developed that related the coefficients αm to the
aberration coefficients α̃m. This standard formula brings many advantages not only in
the sense that it is not limited to a finite order of aberrations, but also allows for broader
considerations in “aberration balancing”. Aberration balancing is the act of seeking certain
conditions for which the aberrations present in an optical system are negated by the
system itself. To be more concise, one seeks to balance out the aberrations in an optical
system against one another. This is somewhat similar to the notion of Scherzer defocus,
where defocus is tuned to balance out spherical aberration (Scherzer [74]). For example,
consider the spectral density in Eqn. (6.36) for the “weak–phase object approximation”
case. Suppose one aimed to find the conditions for which all aberrations present balanced
out one another such that the output image displayed only first order differential contrast,
that is;

S out = 1 − 2
〈
∂

∂x
φin(x)

〉
ω

. (7.1)

This would require the following balancing conditions in order to achieve such an output
image:

α(I)
1 = 1,

m,0

Re
(
αm

im

)
= 0,Re

(
αm

im−1

)
= 0,

(
αm

im

)∗ (αn

in

)
= 0.

(7.2)

For systems with infinitely many aberrations, the above balancing equation could in
principle be solved with the help of the standard formula (Eqn. (6.56)) without the need
for truncating the system.

Quantitative X–ray phase contrast imaging using fully and partially coherent fields
is an area of study that leaves numerous open avenues for new research developments
and potential applications. The benefits of the original methods presented in chapter 4, 5
and 6 of this thesis include being able to perform high quality quantitative phase contrast
imaging of objects applying easily numerically implemented algorithms as well a laying the
mathematical foundations of generalised differential phase contrast systems using partially
coherent radiation. Considering the latter, we can forecast a number of experimental



110 Summary, future work and conclusion

applications that are based on the mathematical foundations set in this thesis. For example,
the idea of investigating interface–specific X–ray phase retrieval tomography methods for
spatially quantized objects given an arbitrary phase contrast modality is an interesting one.
This can be taken further by incorporating the effects of partial coherence as it would see a
far greater applicability for use with conventional radiation sources that can only provide
partial coherence. To finalise, we hope that the original work in this thesis inspires future
researchers to take these ideas further.
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Abstract: A method of tomographic phase retrieval is developed for multi-

material objects whose components each have a distinct complex refractive 

index. The phase-retrieval algorithm, based on the Transport-of-Intensity 

equation, utilizes propagation-based X-ray phase contrast images acquired 

at a single defocus distance for each tomographic projection. The method 

requires a priori knowledge of the complex refractive index for each 

material present in the sample, together with the total projected thickness of 

the object at each orientation. The requirement of only a single defocus 

distance per projection simplifies the experimental setup and imposes no 

additional dose compared to conventional tomography. The algorithm was 

implemented using phase contrast data acquired at the SPring-8 

Synchrotron facility in Japan. The three-dimensional (3D) complex 

refractive index distribution of a multi-material test object was 

quantitatively reconstructed using a single X-ray phase-contrast image per 

projection. The technique is robust in the presence of noise, compared to 

conventional absorption based tomography. 
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1. Introduction 

X-ray absorption is a powerful tool for imaging objects comprised of multiple materials. In 

this absorptive imaging regime, the logarithm of the intensity image formed over the detector 

is proportional to the projection of the object‘s X-ray linear attenuation coefficient along a 

series of straight-line raypaths [1]. However, features that exhibit poor absorption contrast, 

such as biological soft tissues, can be difficult to resolve with this method. 

Numerous techniques have been developed to successfully overcome this difficulty, 

including K-edge subtraction imaging [2, 3], magnetic resonance imaging [4, 5], positron 
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emission tomography [5], X-ray interferometry [6], analyzer-based phase contrast [7], and X-

ray grating methods [8]. 

The technique utilized in the present paper, which differs from the abovementioned 

techniques insofar as it employs no optical elements between the illuminating radiation and 

the detector, is propagation-based X-ray phase contrast imaging (PBI) [9–11]. In this imaging 

modality, the act of free-space propagation—from the exit surface of a sample illuminated by 

a spatially coherent source, to the surface of a two-dimensional position-sensitive detector—

renders visible the transverse phase shifts imparted by the sample upon the illuminating 

radiation (see Fig. 1). 

Although PBI can improve the visualization of weakly absorbing features in a sample, 

quantitative information cannot be directly obtained from the raw phase contrast X-ray 

images. Phase-retrieval methods for extracting quantitative information from intensity 

measurements alone have been developed (see e.g. [12–21]) to obtain the projected phase and 

absorption information of the object. Notwithstanding their successes, these methods often 

require multiple intensity measurements, impose strong restrictions on the object under study 

or apply iterative solution techniques. Acquiring multiple images can prove problematic for 

correct alignment of images and induces a higher radiation dose, which is important for 

biomedical applications. Several phase retrieval methods require the object to be ‗weak‘ such 

that they provide little to no absorption contrast with limited phase gradients introduced by 

the sample [18, 20, 21]. Since most inanimate materials and biological tissues cannot be 

considered as ‗weak objects‘, phase retrieval algorithms developed under these 

approximations have only limited use for biomedical imaging or materials science 

applications. Iterative phase retrieval algorithms can also be problematic as convergence to 

the correct solution cannot be guaranteed and are computationally more intensive than 

analytic solutions. 

 

Fig. 1. Experimental setup showing the imaging geometry and coordinate system, for 
propagation-based phase contrast tomography of a multi-material object from a single 

propagation-based phase contrast image per projection. 

For the case of a single-material object illuminated by paraxial coherent X-rays, Paganin 

et al. [22] developed a noise-robust deterministic phase-retrieval algorithm to reconstruct the 

projected linear attenuation coefficient from a single PBI image, which has been subsequently 

utilized in a number of tomographic studies [23–25]. These phase-contrast tomography 

investigations, which incorporate the effects of both absorption and phase contrast, generalize 

the seminal work for the phase-contrast tomography of pure phase objects by Bronnikov 

[26,27]. 

In this paper, we extend the work of Paganin et al. [22] and Mayo et al. [23] to enable 

analytic propagation-based phase-retrieval tomography to be performed on a multi-material 
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object in which the spatially-dependent complex refractive index is quantized, i.e. it takes one 

of a series of distinct values. The algorithm makes use of a single PBI image per projection, 

separately and selectively reconstructing each interface between any given pair of distinct 

materials. Having separately reconstructed the interfaces between different distinct pairs of 

materials, a ―spliced‖ image of all materials present in the sample can then be computed. 

Section 2 of the paper develops the underlying theory for our method, with an experimental 

implementation in Section. 3. 

2. Theory 

Here we outline the theory for quantitative phase–amplitude tomography of a multi-material 

object with a quantized distribution of complex refractive indices (―spatially-quantized 

object‖). Section 2.1 reviews an existing theory for two-dimensional (2D) single-image 

propagation-based phase-retrieval of a one-material object, with Section 2.2 generalizing this 

to the case of 2D single-image phase retrieval of an object of a given material which is 

embedded in a matrix of a second material. Section 2.3 generalizes this result to the case of 

three-dimensional (3D) propagation-based phase-contrast imaging of spatially-quantized 

objects, given a single image per projection. 

2.1 Two-dimensional phase retrieval for a binary object 

Consider an object with complex refractive index distribution ( ) =1- ( ) + ( )n δ iβp p p , where δ 

and / 4β λμ π  respectively quantify the refractive and absorptive properties of the object, λ 

is the radiation wavelength and μ is the linear attenuation coefficient [28]. The position vector 

= ( , , )1 2 3p p pp  represents the object‘s coordinate system as illustrated in Fig. 1. For an 

object composed of a single material ―1‖ (including voids; herein referred to as a binary 

object), ( )n p  takes only the values 
1 11 δ iβ   or unity. For such objects, and under the 

assumptions of paraxial monochromatic scalar electromagnetic-wave illumination and optical 

thinness, the intensity and phase of the wavefield downstream of the object obey the 

Transport-of-Intensity equation (TIE) [12]: 

  ( , ) ( , ) ( , ).zI k I         r r r  (1) 

Here, the intensity and phase of the wavefield are denoted by ( , )I r  and ( , ) r , 

( , )x y r  is the position vector perpendicular to the optic axis z, ( , )x y     is the 

transverse gradient operator, 2k π λ  is the wave number and 
m  denotes differentiation 

with respect to , ,m x y . For normally incident plane-wave illumination of an optically-

thin object, the intensity and phase at the contact plane ( 0)  is given by the projection 

approximation (see e.g. [29]), such that 
0 1 1( , 0) exp[ ( )]I I μT   r r  and 

1 1( , 0) ( )φ kδT   r r . The former expression is the Beer–Lambert law of absorption, 

1( )T r  is the projected thickness of the object (projected in the z direction) and I0 is the 

uniform incident intensity. By substituting ( , 0)I  r and ( , 0)φ  r  into Eq. (1) one can 

solve for the projected thickness as [22]: 

 1

1 2

1 01 1

( , )1 1
( ) log .

( ) 1
e

I d
T

μ Idδ 

 





    
          

r
r F F

k
 (2) 

Here, F and 1
F are the two-dimensional forward and inverse Fourier transforms with 

respect to r , ( , )x yk k k  are the Fourier coordinates corresponding to r , and d is the 

propagation distance between the exit-surface of the object and the surface of the detector 
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(see Fig. 1). This algorithm assumes the ―near field approximation‖ that d be sufficiently 

small that the Fresnel number 2 [ ( )]FN λ D d   be significantly larger than unity, where  

is the characteristic transverse length scale associated with the wavefield at the exit surface of 

the object and D is the distance from the smallest feature to the exit surface (see e.g. [29]). 

For a given wavelength and spatial resolution we can therefore estimate the minimum feature 

size that can be imaged and still satisfy the near field approximation. 

A mathematically identical form of Eq. (2) that allows for the recovery of the projected 

electron density ( ) r , has also been derived via a different approach by Wu et al. [30]. In 

their derivation, the authors make explicit use of the Klein-Nishina formula and assume the 

energies of the incident X-rays must range from 60 to 500 keV. Their derivation is not 

restricted to a single material object, but enables the same mathematical simplification as the 

single material assumption made in deriving Eq. (2) when lower energy X-rays are 

considered. 

2.2 Two-dimensional phase retrieval for a ternary object 

Here, the phase-retrieval algorithm in Eq. (2) is generalized to the case of a ternary object 

(two materials including voids). To this end, consider an object made of material ―j‖ with 

projected thickness ( )jT r , embedded in another object made of material ―1‖ with projected 

thickness 
1( )T r . We seek to recover ( )jT r  from a single PCI image. Introduce the total 

projected thickness [25]: 

 
1( ) ( ) ( ).jA T T   r r r  (3) 

Under the projection approximation the intensity and phase at the contact plane are given 

by 

 0 1 1( , 0) exp ( ) ( ) ,j jI I μ T μT  
     r r r  (4) 

 1 1( , 0) ( ) ( ) .j jφ k δ T δT  
     r r r  (5) 

We can solve for ( )jT r  upon substitution of Eqs. (3), (4) and (5) into the TIE (Eq. (1)) 

and making the assumption that the projected thickness of the encasing material, 
1( )T r , 

varies slowly across the plane ( , )x y r . Under this approximation, spatial derivatives of the 

encasing material are neglected. As such, the term 

1 0 1 1exp[ ( )] {exp[ ( ) ( )] ( )}j jI A T A            r r r  appearing in the derivation is 

ignored, which leads to the following non-linear differential equation: 

    1 0 1 1( ) exp ( ) exp ( ) ( ) ( ) ( , ).j j j j zδ δ I μ A μ μ T T I     
          r r r r  (6) 

Making use of the identity 

   2

1 1
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and expressing the right hand side of Eq. (6) as a first-order difference approximation of two 

closely spaced measured intensities corresponding to the planes 0  and d , yields: 
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Fourier transform both sides of Eq. (8), use the Fourier derivative theorem, and inverse 

transform to obtain the following expression for ( )jT r : 
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To employ this algorithm one requires a priori knowledge of the total projected thickness 

( )A r  in addition to the values δj, δ1 and μj, μ1 corresponding to the different materials in the 

object. If an object is of complicated shape and is known to contain no internal voids, then 

( )A r  can be found using techniques such as laser profilometry [25]. In the case of 

tomography, a more convenient and practical approach to obtain ( )A r  for each projection 

angle can be used. By utilizing Eq. (2) the encasing material can first be correctly 

reconstructed tomographically. Internal and external voids can then be located by 

computationally searching for a predefined threshold in each slice of the reconstructed 

volume. ( )A r  may then be calculated for each projection angle. On an additional note, for 

point source illumination it is necessary to account for image magnification in both Eq. (2) 

and Eq. (9). Both equations will be altered by identical factors [31]. 

2.3 Three-dimensional phase retrieval: Quantitative phase–amplitude tomography of multi-

material objects with quantized refractive-index distribution, from a single phase-contrast 

image per projection 

For both absorption and phase contrast tomography we utilize a conventional filtered 

backprojection (FBP) algorithm to reconstruct a two-dimensional slice of the imaged object 

[1, 24]. Fourier-transform-based FBP utilizing projection phase-contrast images processed 

using Eq. (2), allows one to ―focus in‖ on an interface between air (cavities) and the encasing 

object ―1‖, enabling any voids within the encasing material to be quantitatively reconstructed. 

Here δ1 and μ1 take the values corresponding to the encasing object ―1‖. For objects with 

spatially quantized refractive indices, such as shown in Fig. 2, the ―correct‖ interfaces will be 

sharply reconstructed. 

 

Fig. 2. Top view of the object, used as a test object to demonstrate interface-specific phase-

retrieval tomography, using a single propagation-based X-ray phase contrast image per 
projection. 

Interfaces between embedded objects ―j‖ (where 2,3,...j  ) and the encasing object ―1‖, 

will be incorrectly reconstructed using this procedure. However, such incorrectly 

reconstructed interfaces will bear a characteristic local signature of either (i) residual phase-

contrast fringes, or (ii) blurred interfaces. Moreover, such ―incorrect‖ interfaces (e.g. between 

materials ―j‖ and ―1‖) may be quantitatively (sharply) reconstructed by repeating the FBP 

analysis using inputs derived by inserting j1 j 1(Δ ) -δ δ δ  and j1 j 1(Δ ) -μ μ μ  into Eq. (9), 

provided the material of interest is not in contact with or in the immediate vicinity of either 

another embedded object or a cavity. From a series of FBP analyses for each distinct pair of 

material interfaces present in the sample, one can build up a quantitative 3D map of all 
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materials. These can be spliced together into a composite tomographic reconstruction, in 

which all interfaces between each distinct pair of materials is sharply reconstructed. This is 

the core idea underpinning our procedure for phase–amplitude tomography of a multi-

material object with spatially quantized complex refractive index distribution, given a single 

propagation-based phase contrast image per projection. 

Crucial to the success of the splicing procedure described above is the idea that 

―incorrect‖ interfaces are only locally polluted (in three dimensions) by locally incorrect 

choices for δ  and μ  [23]. How may one quantify the smoothing artefacts for interfaces 

which are incurred as a result of a locally incorrect filtering parameter, α dδ μ , being 

utilized in Eq. (2) at a given interface? In regions where over-smoothing occurs (i.e. where α  

is underestimated), the amount of blurring (―bleed width‖) of an ―incorrect‖ interface can be 

estimated by analyzing the low-pass Fourier filter in Eq. (2), which has the form of a 

Lorentzian function. This Lorentzian can be rewritten as 

 
2

2 2 2

11 1
.

1 1 1

ε

α ε α



  


 

  

k

k k k
 (10) 

In the case of a medium ―j‖ embedded in an encasing medium ―1‖, 
j 1 j 1= ( - ) ( - )ε d δ δ μ μ  

is the ratio that will correctly reconstruct this particular interface. Equation (10) allows us to 

approximately interpret the operation of Eq. (2) (using α  rather than ε ) on this interface as 

the correct Lorentzian function multiplied by the ratio of quadratic functions on the right side 

of Eq. (10). This quotient is a Fourier filter that locally causes either an over- or under-

smoothing artefact in the vicinity of the ―incorrect‖ interface. Incidentally, in the case of over-

smoothing, when < 1ε α , this ratio of quadratic functions is a Lorentzian function that has 

been vertically scaled by a factor ( - )α ε ε  and shifted positively along the vertical axis by 

( )ε α , with a maximum value of unity. In the opposite case, when > 1ε α , we have an 

inverted Lorentzian, giving rise to a high-pass filter that leaves a characteristic fringe 

representing under-compensated phase contrast. In either case, one has a clear signature 

associated with ―incorrect‖ interfaces, which allows them to be unambiguously identified and 

thereby enabling one to ―focus in‖ upon a particular material interface of interest. 

The ―bleed width‖ for over-smoothing can be estimated via the optical uncertainty 

principle: 

 1,  x k  (11) 

where Δx is the uncertainty in real space (i.e., the ―bleed width‖) and Δk is the uncertainty in 

reciprocal space. Take Δk as the half-width at half-maximum (HWHM) of the second 

quotient on the right-hand side of Eq. (10); this HWHM is taken relative to the asymptotic 

baseline of ε α . Subsequently, using Eq. (11) we obtain a simple lower bound for the 

associated bleed width that is independent of ε : 

 .α x  (12) 

We close this section by noting that this ―bleed width‖, associated with interfaces other 

than those selected via a given choice for α , is constructive insofar as it ―tags‖ particular 

over-smoothed interfaces as not corresponding to the particular interface of interest, but rather 

to an interface with <ε α . Under-smoothed interfaces are also tagged, as corresponding to 

>ε α , via the signature of incompletely-compensated phase contrast fringes. 

3. Experimental results and discussion 

Here we give an X-ray synchrotron-based experimental implementation of the theory 

developed above. Section 3.1 discusses the experimental setup. Section 3.2 reports 2D phase–

#120608 - $15.00 USD Received 30 Nov 2009; revised 14 Jan 2010; accepted 5 Feb 2010; published 15 Mar 2010
(C) 2010 OSA 29 March 2010 / Vol. 18,  No. 7 / OPTICS EXPRESS 6429

128 Appendix A



   

amplitude retrieval of multi-material spatially quantized objects with embedded features that 

are non-overlapping in projection (cf. Sections 2.1 and 2.2). This requirement for non-overlap 

in projection is relaxed is Section 3.3, which implements 3D phase–amplitude retrieval of 

multi-material spatially quantized objects, given a single propagation-based X-ray phase 

contrast image per projection (cf. Section 2.3). 

3.1 Experimental setup for X-ray phase–amplitude imaging of spatially quantized objects 

X-ray propagation-based phase–amplitude computed tomography experiments were 

performed in Hutch 3 of beamline 20B2 at the SPring-8 synchrotron radiation source, Japan 

(proposal 2009A1882). The beamline employs a bending magnet source with a Si(111) 

double-crystal monochromator [32]. An X-ray energy of 24 keV provided acceptable phase 

and attenuation contrast for materials of relatively low atomic number. This energy is also 

commensurate with the diagnostic X-ray energies used in mammography [33]. Phase and 

absorption contrast images were recorded with the detector positioned at distances of 1 md   

and 3 cmd   from the object, respectively, as shown in Fig. 1. An optically coupled 

Hamamatsu CCD camera (C4880-41S) with a 10 μm thick gadolinium oxysulfide (Gd2O2S) 

scintillator was used to acquire each data set. The images had a window size of 3000 x 1500 

pixels and an effective pixel size of 5.9 μm, which gave a region of interest (ROI) of 17.70 

mm (H) × 8.85 mm (V). For each tomographic data set, 1800 projections were collected over 

180° of rotation, each acquired with an exposure time of 2.5 s. Flat field images (no object in 

the beam) were recorded every 43 projections. Frequent flat field recordings were required 

due to instabilities in beam position with time. Dark field images also were acquired with the 

main beam shutter closed at the beginning and end of each scan to correct for the detector 

dark current offset. Prior to quantitative analysis, all phase-contrast images were flat-field and 

dark-field corrected, to compensate for both illumination non-uniformities and CCD dark 

current. 

The imaged object was a PMMA (Polymethyl-methacrylate (C5H8O2); commonly known 

as Perspex) cylinder 10 mm in height and 12.75 ± 0.05 mm in diameter. This contained four 

cavities each with diameter 1.02 ± 0.05 mm. An Aluminium (Al) and PTFE 

(Polytetrafluoroethylene (H2F4); commonly known as Teflon) pin of 1.00 ± 0.05 mm diameter 

were inserted into two of the cavities to create a quaternary object (three materials plus voids) 

with three distinct interfaces, these being air/PMMA, Aluminium/PMMA and PTFE/PMMA 

(see Fig. 2). The δ and μ values for the materials in the object, for 24 keV X-rays, are listed in 

Table 1. The Aluminium/PMMA interface will be denoted as 2j   and the PTFE/PMMA 

interface as 3j  . 

Table 1. Values of δ and µ at 24 keV for materials used to construct the test object in 

Fig. 2. Values obtained from http://henke.lbl.gov/optical_constants/ (accessed Nov. 4, 

2009). 

Material δ (×107) μ (m1) 

PMMA (C5H8O2) 4.628 41.2 

PTFE (H2F4) 7.789 119.8 

Aluminium 9.396 502.6 

3.2 Projection imaging 

Here we use the theory of Section 2.2 to implement 2D phase–amplitude retrieval of a multi-

material spatially quantized object with non-overlapping projections of embedded features 

composed of different materials, noting that the assumption of non-overlapping embedded 

features will be dropped when moving to a tomographic analysis in Section. 3.3. 
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Absorption and phase contrast images of our test object (see Fig. 2) are shown in Fig. 3(a) 

and (b), for an orientation in which all embedded features (corresponding to different 

materials) are non-overlapping in projection. In the absorption contrast image, all interfaces 

except Al/PMMA exhibit weak contrast, since Al is significantly more attenuating than the 

other materials in the sample (see Table 1). Conversely, the phase contrast image displays a 

significantly greater signal-to-noise ratio (SNR), dramatically enhancing the PTFE/PMMA 

and air/PMMA interfaces and improving visualization of the object overall [10]. Line profiles 

from left-to-right of the centre of the images in Fig. 3(a) and (b) are shown in Fig. 3(f) and 

(g), respectively. The profile in Fig. 3(g) clearly reveals strong propagation-based phase 

contrast fringes formed at interface boundaries [10]. 

Figure 3(c) shows an image of the projected thickness of the object computed via Eq. (2), 

under the assumption that the object was composed entirely of PMMA. Here we have used 

the known values of δ1 and μ1 for PMMA listed in Table 1. The line profile in Fig. 3(h) shows 

the distribution of the recovered projected thickness from the phase contrast image in Fig. 

3(b). From the profile it can be seen that the maximum projected thickness of the PMMA is 

close to the expected values (12.75 mm) and the boundaries of the air/PMMA interfaces are 

sharp. Moreover, due to reasons mentioned in section 2.3, the Al/PMMA and PTFE/PMMA 

interfaces suffer from an ―over smoothing‖ and the associated projected thicknesses are also 

overestimated. 

To recover the projected thicknesses of the Al and PTFE, that is 
2 ( )T r  and 

3 ( )T r , we 

―focus‖ on each of these individually using Eq. (9). Since implementation of this algorithm 

requires knowledge of the total projected thickness, the function ( )A r  was generated with 

the assumption that the object was a cylinder with no internal voids, which results in negative 

values arising in the projected thickness in the presence of internal voids (see Fig. 3(i) and 

(j)). To recover 
2 ( )T r , the values used for δ2 and μ2 correspond to Aluminium and δ1 and μ1 

to PMMA (see Table 1). To recover 
3 ( )T r , the values used for δ3 and μ3 correspond to 

PTFE. The phase-retrieved images are shown in Fig. 3(d) and (e). The images show how the 

―selected‖ interfaces are sharpened and how the attenuated intensity due to PMMA is 

effectively removed. Line profiles in Fig. 3(i) and (j) illustrate this more clearly and reveal 

that the recovered projected thicknesses at the ―selected‖ interfaces 
2 ( )T r  and 

3 ( )T r  are 

close to their expected thickness (~1 mm). Additionally, we see that the algorithm breaks 

down in regions where the encasing material exhibits strong phase contrast; however, this 

occurs at the boundary of the encasing material far from the interfaces of interest. These 

artefacts are expected since Eq. (9) assumes that phase gradients due to the encasing material 

are negligible. Also, we now see that the interfaces where the density is less than that of 

Aluminium are now under-smoothed and slight residual fringing is still visible (see for 

example Fig. 3(i), interfaces 1, 3 and 4; cf. Section. 2.3). Note that the upper threshold in (e) 

has been reduced to enhance the PTFE, as a linear palette obscures this feature and the 

Al/PMMA interface appears saturated as a consequence. 
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Fig. 3. Projection images of the multi-material test sample. (a) Absorption contrast image. The 
numbered regions correspond to the different interfaces in the object (Air/PMMA (Green), 

Al/PMMA (Red) and PTFE/PMMA (Blue)). (b) Phase contrast image acquired at d=1 m. (c) 

Phase retrieved image of (b) using Eq. (2). (d) and (e) Phase retrieved images of (b) using Eq. 
(9) with appropriate values of δ and µ for the Al/PMMA and PTFE/PMMA interface, 

respectively (see Table 1). Line profiles from the centre of the images on the left column are 

shown in (f), (g), (h), (i) and (j), respectively. 
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3.3 Tomography of spatially quantized objects, from a single phase-contrast image per 

projection 

Section 3.3.1 presents our results for interface-specific phase-retrieval tomography, whereby 

a single phase-contrast image per projection may be used to selectively reconstruct a given 

interface between two given materials, in a spatially-quantized object. In Section 3.3.2, we 

experimentally test our uncertainty-principle estimate (see Eqs. (11) and (12)) for the ―bleed 

width‖ associated with material interfaces other than that which is selectively reconstructed. 

In Section 3.3.3 we show how a complete set of material interfaces in a given spatially-

quantized object may be spliced together, into a composite tomogram, given a single phase-

contrast view per projection. 

3.3.1 Interface-specific phase-retrieval tomography 

For absorption-contrast FBP tomography, using the parameters described in Section 3.1, the 

reconstruction of a single slice of the sample is shown in Fig. 4(a). Qualitatively the 

reconstruction shows good detail of the object features, particularly at the Al/PMMA 

interface where there is a large difference in absorption. In Fig. 4(f) line profiles from left-to-

right of the centre of each interface of Fig. 4(a) are shown in a single plot. This displays the 

distribution of the attenuation coefficient at each interface where it can be seen that, on 

average, the attenuation coefficients are similar to the theoretical values in Table 1. However, 

the reconstruction also contains a substantial amount of high frequency noise making it 

difficult to define the boundaries at the interfaces where absorption contrast is poor 

(air/PMMA and PTFE/PMMA). Such noise is typically reduced in tomography by use of an 

additional low-pass filter during the filtered backprojection, but must be traded against a 

reduction in spatial resolution [1]. 

Figure 4(b) shows a slice of a tomographic reconstruction obtained by applying FBP 

directly to the raw phase contrast images (cf. [34]), without any phase–amplitude retrieval. 

Like the absorption contrast result it also reveals good detail of the object features. The 

reconstruction allows us to see how the boundaries of each interface are enhanced as a result 

of the high SNR provided by phase contrast. Although phase contrast provides better feature 

visibility, the line profile in Fig. 4(g) shows that non-physical negative values and sharp 

spikes arise in the attenuation coefficient map without the phase retrieval step. 

Figure 4(c) shows a slice of a tomographic reconstruction obtained using Eq. (2) to yield 

1( , )T θr  for each projection angle, giving a series of two-dimensional projected-thickness 

maps that were then tomographically reconstructed using FBP [24]. The reconstruction shows 

the distribution of 1( )δ p  along the plane 1 3( , )p p p  (see Fig. 1), which in this case is 

PMMA ( 1)j  . It can be seen that the noise has been substantially suppressed while 

preserving the sharpness of the air/PMMA interface, as the line profile in Fig. 4(h) indicates. 

Conversely, over-smoothing (cf. Section 2.3) is clearly apparent at the remaining interfaces. 

Despite this localized blurring of these regions the result shows that Eq. (2) can be applied to 

multi-material objects and accurately reconstruct the voids as long as they are not near the 

vicinity of the over-smoothed interfaces. The line profile in Fig. 4(h) shows that at the 

air/PMMA interface, the distribution of 1( )δ p  has an average value of 4.2 × 10
7

, which is 

within 10% of the theoretical value in Table 1. This is acceptable as it is known that 

attenuation coefficients have discrepancies of up to 10% between theoretical values [35]. 

Figure 4(d) and (e) show reconstructions of the same slice from phase retrieved images 

using Eq. (9) to obtain 2 ( , )T θr  and 3( , )T θr  before using FBP to respectively recover the 

distributions of 2 ( )δ p  (Aluminium; 2j  ) and 3 ( ) p  (PTFE; 3j  ). Figure 4(d) focuses 

on the Al/PMMA interface and (e) focuses on the PTFE/PMMA interface. Due to the 

rotational symmetry of the surface of the cylinder the same ( )A r  fitted function was used for  
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Fig. 4. Tomographic reconstruction of the multi-material test sample using (a) conventional 

absorption contrast images reconstructed via FBP; (b) phase contrast images reconstructed by 

applying FBP to raw PCI data. (c) Phase contrast images reconstructed using Eq. (2) to 

calculate 
1
( , )T 


r for each projection ( 1j  ), followed by FBP. (d) and (e) are 

reconstructions using same procedure as (c), after calculating 
2
( , )T 


r  and 

3
( , )T 


r  with Eq. 

(9) for both Al and PTFE for each projection ( 2j   and 3j  ). (f), (g), (h), (i) and (j) 

respectively, show line profiles from left-to-right across the centre of the images in (a), (b), (c), 

(d) and (e). Numbered regions correspond to different interfaces in the object (Air/PMMA 

(Green), Al/PMMA (Red) and PTFE/PMMA (Blue)). 
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every projection. The distribution of 
2 ( )δ p and 

3 ( ) p are shown in the line profiles in Fig. 

4(i) and (j). On average the values of 
2 ( )δ p  and 

3 ( ) p  are 7.9 × 10
7

 and 6.6 × 10
7

 

respectively, and are within 15% of the theoretical values in Table 1. 

3.3.2 Quantification of over-smoothing 

Experimentally, we find that the ―bleed width‖ blurring typically extends between 3 and 5 

times the lower bound in Eq. (12). Hence the following rule-of-thumb is used to estimate the 

bleed width Δx : 

 3 5 .α α  x  (13) 

This formula gives a rough indication as to how far an over-smoothed interface will be 

blurred by the phase retrieval (cf. Section 2.3). We tested this rule by measuring the blurring 

at the Al/PMMA and PTFE/PMMA interfaces in Fig. 4 (h). The blurring was just visible up 

to a distance of 443 μm from the Al/PMMA interface and 454 μm from the PTFE/PMMA 

interface with an uncertainty of ±30 μm. Evaluating α  for PMMA gives a value of 106 μm. 

The measured bleed widths are thus 4.17× α  for Al/PMMA and 4.28× α  for 

PTFE/PMMA, which agrees with the inequality in Eq. (13). We also note that both interfaces 

bleed almost the same amount, providing empirical evidence that the parameter α is the only 

contributor to the smoothing artefact. 

3.3.3 Spliced tomographic reconstruction 

Having quantitatively reconstructed all three interfaces and established a rule-of-thumb to 

estimate the blurring widths (see Eq. (13)), we can now combine these images to form a 

single ―spliced‖ image of our quaternary (or higher order) object (cf. Section. 2.3). The image 

was constructed by digitally inserting the individually reconstructed interfaces in Fig. 4(d) 

and (e) into the appropriate regions of the encasing material in Fig. 4(c). The size of the 

region was chosen by considering the amount of blurring at these interfaces. The refractive 

index of these segments were offset so that the background zeroes match that of the encasing 

material and the resulting amplitude was rescaled to maintain the original value. The spliced 

image is shown in Fig. 5(a). Line profiles of the different interfaces of the image are shown in 

Fig. 5(b). We now have a quantitative tomographic reconstruction of a multi-material object, 

at each point of which the refractive index takes one of N distinct values, using a single PCI 

image per projection. 

To quantitatively compare our spliced reconstruction with the absorption-based 

reconstruction, the SNR was calculated for each medium. The Al, PTFE and PMMA gave 

SNRs of 312, 309 and 98.9, respectively, where the signal is the average value inside the 

medium. This significantly improves the respective SNR values of 18.7, 5.19 and 1.17, which 

were calculated at the same regions in the absorption contrast reconstruction in Fig. 4(a). The 

ordering of these SNRs is consistent with the relative amount of smoothing associated with 

the filters in Eqs. (2) and (9). The increase in SNR is largest (~85×) for the encasing material 

as the Fourier-space damping of high spatial frequencies is largest for the PMMA/air 

interface. Each of the SNRs were calculated over a 90×90 pixel region of interest. The 

mathematical origin of the stability with respect to noise is due to the regularizing presence of 

a non-zero denominator in the Fourier filter of Eqs. (2) and (9), as the ratio dδ μ  is always 

greater than zero and the ratio j 1 j 1( - ) ( - )d δ δ μ μ  is unlikely to be less than zero; also, since 

μ is never zero and j1(Δ )μ  is generally a non-zero quantity. This avoids instability problems 

of the ‗division by zero‘ type that would arise if the denominator were zero [22]. 
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Fig. 5. (a) Spliced tomographic reconstruction. (b) Line profile of the different interfaces in (a). 

4. Conclusion 

We have developed a numerically efficient phase retrieval algorithm to reconstruct the 

complex refractive index distribution of known materials embedded in a second medium from 

a single X-ray phase contrast image per projection. This interface-specific phase-retrieval 

tomography algorithm requires a priori knowledge of each material‘s complex refractive 

index and the total projected thickness of the sample at each orientation. The algorithm was 

successfully applied to experimental data collected using X-ray synchrotron radiation. We 

have used our method to quantitatively reconstruct a quaternary object by reconstructing all 

interfaces separately. A complete tomographic reconstruction of all interfaces in the object 

was produced by splicing the individual reconstructions together. When it comes to imaging 

multi-material objects, our technique proves superior to conventional absorption contrast in 

terms of the signal-to-noise ratio (SNR). For the test sample used here, the improvement in 

the SNR was between 17 and 85 fold. 

Given the success of our results, combined with the practicality of the technique, we 

anticipate that it will have applications in a number of different fields including medicine, 

biomedical science, geology and materials science. Our methodology may also be adapted to 

electron and visible light microscopy. 
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Abstract
We demonstrate interface-specific propagation-based x-ray phase retrieval
tomography of the thorax and brain of small animals. Our method utilizes
a single propagation-based x-ray phase-contrast image per projection, under
the assumptions of (i) partially coherent paraxial radiation, (ii) a static object
whose refractive indices take on one of a series of distinct values at each point
in space and (iii) the projection approximation. For the biological samples used
here, there was a 9–200 fold improvement in the signal-to-noise ratio of the
phase-retrieved tomograms over the conventional attenuation-contrast signal.
The ability to ‘digitally dissect’ a biological specimen, using only a single
phase-contrast image per projection, will be useful for low-dose high-spatial-
resolution biomedical imaging of form and biological function in both healthy
and diseased tissue.

S Online supplementary data available from stacks.iop.org/PMB/56/7353/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phase-contrast imaging is any optical technique whereby phase changes imparted by an
object to the incident coherent, or partially coherent, radiation are rendered visible in the
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Figure 1. Experimental setup illustrating the geometry for propagation-based x-ray phase retrieval
tomography, using a single view per projection.

measured intensity. Phase-contrast x-ray computed tomography (CT) can provide images with
better signal-to-noise ratio (SNR) than conventional x-ray absorption-contrast CT for imaging
samples in three dimensions that exhibit weak absorption, such as biological specimens
(Mayo et al 2003, Arhatari et al 2010, Beltran et al 2010). The most common phase-contrast
techniques are x-ray interferometry (Momose et al 1996), x-ray diffraction grating methods
(Pfeiffer et al 2007), analyser-based phase-contrast imaging (ABI) (Förster et al 1980) and
propagation-based phase-contrast imaging (PBI) (Snigirev et al 1995).

The technique used in the present paper is PBI. Unlike the other methods mentioned
above, PBI does not require any additional optical elements between the sample and detector.
In PBI, the act of free-space propagation—from the exit surface of a sample illuminated by
a spatially coherent source to the surface of a two-dimensional position-sensitive detector—
renders visible the transverse phase shifts imparted by the sample upon the illuminating
radiation (Snigirev et al 1995, Wilkins et al 1996, Cloetens et al 1996, 1999, Pogany et al
1997) (see figure 1).

With PBI, visualization of poorly absorbing features in a sample can significantly improve
in comparison to absorption-contrast alone. However, quantitative information about the phase
cannot be directly inferred from the raw PBI images. In order to extract phase information,
phase retrieval methods may be employed. Numerous phase retrieval algorithms that require
intensity-only measurements have been developed to yield the projected phase and absorption
information of an object (Teague 1983, Gureyev and Nugent 1996, 1997, Paganin and Nugent
1998, Cloetens et al 1999, Guigay et al 2007). Despite their success, many of these algorithms
require the acquisition of multiple images per tomographic projection, or impose significant
restrictions on the object under study (e.g., it must provide weak or no attenuation contrast).
When it comes to using ionizing radiation to image biological specimens, taking more than
one image per projection will induce a higher radiation dose, which can be detrimental. Dose
consideration is particularly important for in vivo studies, and thus methods requiring large
numbers of projections are of limited use for biomedical applications.

A significant amount of work has been done on the question of tomographic reconstruction
using x-ray PBI. Key works include, but are not limited to, (i) Cloetens et al (1997), who
reconstructed raw x-ray propagation-based phase-contrast data using filtered backprojection
to give an edge-enhanced three-dimensional representation of the object; (ii) Cloetens
et al (1999) on ‘holotomography’, which utilized through-focal-series phase retrieval methods
originally developed in the field of electron microscopy, in the context of quantitative
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x-ray phase-contrast tomography; (iii) x-ray phase-contrast tomography which incorporated
the transport-of-intensity equation (Teague 1983) for the phase retrieval analysis of each
projection prior to three-dimensional reconstruction (Mayo et al 2003, McMahon et al 2003);
(iv) Bronnikov’s merging of the phase retrieval and tomography steps into a single algorithm
for the case of a transparent object (Bronnikov 2002), together with the generalization of
this work by Gureyev et al (2006); (v) extension of Wolf’s work on diffraction tomography
(Wolf 1969), in the context of x-ray phase contrast, by Anastasio and Pan (2000); (vi) Myers
et al (2010) on phase retrieval tomography of few-material objects using a limited number of
views, together with work on gradient-sparse objects by Sidky et al (2010); and (vii) local
phase-contrast tomography (Anastasio et al 2004, Shi et al 2005, Gureyev et al 2007). For a
balanced overview of the contemporary state of the art in x-ray phase-contrast tomography,
we refer to the proceedings of the Conference on Developments in X-Ray Tomography VII,
edited by Stock (2010).

As a key ingredient of the work presented here, Paganin et al (2002) developed a phase
retrieval algorithm that only requires a single PBI image per projection. Their algorithm was
derived under the strong assumption that the sample be comprised of a single homogeneous
material that is imaged under paraxial coherent x-ray illumination. It has proven to be very
robust under the influence of noise and has also been utilized in a number of PBI tomographic
studies (Mayo et al 2003, Gureyev et al 2006, Arhatari et al 2010). The work of Paganin
et al (2002) was extended by Beltran et al (2010) to enable interface-specific phase retrieval
tomography to be performed on samples composed of a finite number of materials which are
spatially quantized, under the assumptions that (i) each material type within the sample may be
adequately approximated by a single complex refractive index; (ii) the complex refractive index
of each distinct material has a distinct value; (iii) no more than two interfaces can be in direct
contact at any given location. While any real sample will have variations in homogeneity within
each given material, this was seen to have a minimal effect on the tomographic reconstruction,
both in the previously reported work by Beltran et al (2010) and in the new work reported
in the present paper. In this context, note also that the previously mentioned variations
in homogeneity are often within the uncertainties of the real and imaginary parts of the
complex refractive index, for biological samples at diagnostic x-ray energies. Importantly,
this technique retains the salient feature of requiring only a single phase-contrast image per
projection. As a proof of principle, the authors tested their technique on PBI tomographic
experimental data taken of a simple test phantom which contained three different materials.
Each material was quantitatively reconstructed separately and spliced together into a complete
reconstruction (Beltran et al 2010).

In this investigation, we apply the technique developed by Beltran et al (2010) to
carry out interface-specific phase retrieval tomography, without using any chemical contrast
enhancements, on complex biological organs including the thorax of a newborn New
Zealand white rabbit pup and the excised brain of an adult Sprague Dawley rat. Our aim
was to determine whether our single-image phase retrieval technique could be applied to
complex structures and to measure the gain in the SNR of the reconstructed images over
conventional CT.

The outline of our paper is as follows. Section 2 reviews the underlying theory of
the method developed by Beltran et al (2010), for interface-specific phase retrieval x-ray
tomography of objects whose refractive indices take on one of a series of discrete values.
Section 3 describes the setup and procedures used for the experimental implementation on two
complex biological samples, namely rabbit lung and rat brain tissue. Section 4 illustrates the
results achieved using interface-specific tomography. We provide discussion for future work
in section 5 and conclude with section 6.
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2. Theory: phase retrieval for a single- and two-material sample

Underpinning our phase retrieval method is the algorithm developed by Paganin et al (2002),
which requires only a single two-dimensional PBI image per tomographic projection. Its
derivation was based on the transport of intensity equation (Teague 1983) for a paraxial
monochromatic wavefield together with the assumption that the imaged object is comprised
of a single homogeneous material. The algorithm has proven to be computationally efficient
and robust under the presence of noise in a number of subsequent studies (e.g., Mayo et al
2003, Paganin et al 2004, Turner et al 2004, Kitchen et al 2008, Irvine et al 2008, Beltran et al
2010, Stevenson et al 2010).

For an object that is composed of material ‘1’ which has complex refractive index
n = 1 − δ1 + iβ1, an argument combining Teague’s transport of intensity equation (Teague
1983) and Beer’s law of attenuation implies that the projected thickness can be calculated
from the measured intensity using (Paganin et al 2002):

T1(r⊥) = − 1

μ1
loge

(
F−1

{
1

(dδ1/μ1)k2
⊥ + 1

F
{

I (r⊥, z = d)

I0

}})
. (1)

Here, F and F−1 respectively represent the forward and inverse Fourier transforms with respect
to r⊥ = (x, y), k⊥ = (kx, ky) are the Fourier coordinates dual to r⊥, λ is the wavelength
of the radiation, μ1 is the linear coefficient related to the imaginary part of the complex
refractive index via μ1 = 4πβ1/λ, I (r⊥, z = d) is the intensity of the PBI image measured
at a propagation distance d along the z-direction from the sample’s exit surface plane to the
detector plane and I0 is the incident intensity. Equation (1) is only valid for the near-field
approximation, that is, the propagation distance d is small enough such that the Fresnel number
NF = �2

/
λd (where � is the characteristic transverse length scale of the object’s exit surface

wave-field) is much larger than unity (Saleh and Teich 1991). Further assumptions, required
for the validity of the above equation, include (i) the projection approximation, (ii) normally
incident coherent plane-wave illumination and (iii) paraxiality of the exit-surface wavefield.

When applied to spatially quantized objects, whose three-dimensional complex refractive
index takes on one of a series of distinct values, equation (1) will of course not correctly
reconstruct the projected thickness of a given specific material. However, this problem can
be alleviated when relative differences for μ and δ, corresponding to any pair of materials
(i.e. a material–material interface), are incorporated into the equation. Thus, when a tilt series
(i.e. a tomographic dataset of sample angular orientations) of the resulting retrieved ‘projected
thickness’ maps are tomographically reconstructed, the reconstruction corresponding to the
specified interface will be accurately obtained, superposed with a three-dimensional signal
corresponding to the ‘other’ material interfaces that only locally pollute the boundary of the
region containing the pair of materials of interest. This method was implemented for quantized
ternary samples (containing two homogeneous materials plus voids) by Beltran et al (2010),
for which we provide a brief review of the relevant theory and approximations.

If a medium of interest denoted by ‘j ’ is embedded within a medium denoted as ‘1’,
their respective projected thicknesses are given by Tj (r⊥) and T1(r⊥). Tj (r⊥) can then be
calculated using (Beltran et al 2010):

Tj (r⊥) = − 1

μj − μ1
loge

(
F−1

{
1

[d(δj − δ1)
/
(μj − μ1)]k2

⊥ + 1
F

{
I (r⊥, z = d)

I0 exp[−μ1A(r⊥)]

}})

(2)

for each projection; one can then run the resulting thickness maps through a conventional
tomographic reconstruction algorithm, such as filtered backprojection. For the same reasons as
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mentioned in the previous paragraph, equation (2) will not reconstruct the projected thickness
of each member of the tilt series, but it will correctly reconstruct the three-dimensional
distribution of interfaces between a given pair of distinct materials, with only local pollution of
the nature previously described. Note also that equation (2) was derived under the assumption
that the phase gradients imparted on the incident wavefield due to the object’s total projected
thickness, A(r⊥), are slowly varying. Utilizing equation (2) requires a priori knowledge of
A(r⊥) in addition to the values δj, δ1 and μj, μ1 corresponding to the different materials in
the object. In practice, to generate the function A(r⊥) to reconstruct an object of a high
degree of complexity, and which contains no internal voids, one can use techniques such as
laser profilometry (Myers et al 2008a). In the case of tomographic studies, a more practical
approach to obtain A(r⊥) for each projection angle can be used. By applying equation (1)
to each PBI image, the encasing material can first be tomographically reconstructed. Then,
both internal and external voids can be located by computationally searching for a predefined
threshold in each slice of the reconstructed volume, and thus A(r⊥) may then be calculated for
each projection angle. We also mention that for point source illumination, image magnification
in equations (1) and (2) needs to be accounted for (see e.g., Kitchen et al 2008).

A benefit of equations (1) and (2) is their high degree of numerical stability, due to the fact
that the images are smoothed by a low-pass Fourier space filter during the initial part of the
phase retrieval process. This smoothing, via the phase-retrieval integral transform represented
by equations (1) and (2), leads to a concomitant reduction in high-frequency noise in the
images, thereby improving the SNR without blurring the boundaries between interfaces. This
gain in the SNR can potentially be traded against an equivalent x-ray dose reduction.

3. Method

3.1. Image acquisition

High-resolution x-ray phase-contrast images were acquired in hutch 3 of beamline 20B2 at the
SPring-8 synchrotron radiation source, Japan (Goto et al 2001). The large source-to-object
distance (∼210 m) and the Si(1 1 1) double-crystal monochromator provided a near planar
x-ray beam. We used 24 keV x-rays to provide strong phase and attenuation contrast of the
biological specimens used here (see Kitchen et al 2008, Beltran et al 2010), which included the
thorax of a newborn New Zealand white rabbit pup and the excised brain of an adult Sprague
Dawley rat. The beam size was collimated to be approximately 30 mm wide and 30 mm high,
which was large enough to illuminate each sample. A 4000 × 2672 pixel Hamamatsu CCD
camera (C9300-124F) with a 1.8:1 ratio fibre optic taper, having an effective pixel size of 16.2
μm, was used to collect the tomographic tilt series of propagation-based x-ray phase-contrast
images (see figure 1).

For imaging the rabbit pup thorax, the detector was positioned a distance d = 50 cm
from the object. This relatively small sample-to-detector propagation distance was sufficient
to render visible strong phase-contrast fringes from the air–tissue interfaces within the lung at
this energy (see, e.g., Suzuki et al 2002, Beltran et al 2010). A total of 1500 projections were
collected over 180◦ of rotation, with each having an exposure time of 250 ms. Flat field images
(with no object in the beam) were recorded at the start and end of each scan to normalize
the image intensity. Dark field images were also collected to correct for the detector’s dark
current offset.

The same setup was used for imaging the rat brain as for the rabbit pup thorax with the
exception of the object-to-detector distance, which was set to 5.0 m. A large propagation
distance was required to increase the phase contrast between the materials within the sample
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Table 1. Values of δ and μ at 24 keV x-rays for water (soft-tissue equivalent) and cortical bone
tissue. These were calculated using the NIST database7.

Material δ (×10−7) μ (m−1)

Water (lung tissue equivalent) 3.992 54.9
Bone tissue 7.145 461.1

Table 2. Values of δ and μ at 24 keV x-rays for grey/white matter and agar. These were calculated
using the NIST database7.

Material δ (×10−7) μ (m−1)

Grey/white matter 4.842 56.3
Agar 3.432 40.2

due to the highly similar refractive indices of the materials (namely grey and white brain
matter) within the sample. A total of 1800 tomographic projections were acquired with an
exposure time of 2.5 s each.

We note that the large number of projections used here is required for adequate sampling
of the tomographic reconstruction, to adequately resolve the phase-contrast fringes which
typically have maxima separated by 50–100 μm. Although a considerably lower dose could
be achieved using larger pixels with fewer projections, we chose to maximize the phase
sensitivity of these applications to take advantage of the high resolution of the camera. The
exposure time for the thorax was kept short relative to that of the brain in order to minimize
potential motion artefacts introduced by movement of the tissues during the scan.

3.2. Image processing

For the selected energy (24 keV), the δ and μ values for lung tissue and cortical bone are listed
in table 1. The δ and μ values considered to be present in the agar-embedded brain sample
are listed in table 2. According to the NIST database (http://www.nist.gov/index.html), grey
and white matter (the main tissue types present in the brain) are virtually identical in reference
to diagnostic energy x-ray interactions and are herein treated as identical. We justify this
statement by reference to equations (1) and (2) where we see that it is the ratio of the real and
imaginary components of the refractive indices, or the difference ratio (see equation (2)), that
is important for the Fourier filtering by the phase retrieval algorithms. Figure 2 illustrates this
point by comparing the four Fourier-space filters used in this research. Distinct differences
can be seen for the lung tissue/air interface filter against those of the brain tissue/agar and
bone/lung tissue interfaces. Remarkably, the agar/air filter is almost identical to the brain
tissue/agar filter despite the interfaces having very different density gradients, which arises
because the ratio of δ to μ is nearly identical for brain tissue and agar (see table 2). Therefore,
either filter (equation (1) or (2)) can be applied with essentially the same results.

Since equations (1) and (2) involve ratios of δ and μ, concerns regarding sample
inhomogeneity can be partly allayed. Both δ and μ are proportional to the density of a
given material; hence, their ratio in equation (1) will be independent of changes in density for
a given material. The same holds true for equation (2) when the density of material ‘j ’ and that

7 http://www.nist.gov/index.html (accessed 4 April and 10 November 2010).
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Figure 2. Fourier filters of the form 1/(αk2
⊥ + 1) for different ratios of α = dδ/μ or α = d�δ/�μ

(see equations (1) and (2)). The dashed line corresponds to the ratio used for the air/lung tissue
interface, α = dδwater/μwater with d = 50 cm. The dotted line corresponds to the ratio used
for the bone/lung tissue interface, α = d(δbone − δwater)/(μbone − μwater) with d = 50 cm. The
solid line corresponds to the ratio used for the air/agar interface, α = dδagar/μagar, with d = 5 m,
and the dashed-dotted line corresponds to the ratio used for the brain tissue (grey/white matter;
denoted ‘gw’)/agar interface, α = d(δgw − δagar)/(μgw − μagar) with d = 5 m. The magnified
inset is used to illustrate the minute difference between filters for brain tissue/agar and air/agar,
respectively.

of material ‘1’ are equal. Moreover, variations in density of a few per cent of either material
will typically have little effect on the shape of the filter in equation (2). It is therefore a valid
approximation to employ a single filter for a given interface despite small density variations
in inhomogeneous samples.

3.3. Animal procedures

All animal procedures were approved by the Monash University Animal Ethics Committee
and the SPring-8 Animal Care and Use Committee. A pregnant New Zealand white rabbit
at 31 days of gestation was anaesthetized by intravenous injection of propofol (Rapinovet;
12 mg kg−1 bolus, 40 mg h−1 infusion). The pup was delivered by caesarean section and then
humanely killed via anaesthetic overdose. Following death, an endotracheal tube was inserted
via a tracheotomy into the mid-cervical trachea and connected to a custom-designed ventilator
(Kitchen et al 2010). The pup was placed in a water-filled cylindrical plethysmograph made
of Perspex. The head of the pup was located outside the chamber and a thin rubber diaphragm
formed a seal around its neck. Once correctly placed in the plethysmograph, the lungs were
inflated with air and inflation was maintained by the application of a constant airway pressure
of 25 cmH2O, as was required to keep the terminal airways inflated.

The rat was humanely killed via an overdose of sodium pentothal (100 mg/kg, i.p.) and
then transcardially perfused with heparinized 0.1 M phosphate buffered saline (PBS) followed
by 4% paraformaldehyde (PFA) in 0.1 M PBS. The brain was carefully removed from the
skull and postfixed overnight in 4% PFA/0.1M PBS. The brain was then serially dehydrated
in increasing concentrations of sucrose (up to 30%) in 4% PFA. The fixed brain was next
suspended inside a 2.6 cm diameter plastic specimen container containing warm 2% gel agar
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(a) (b)

Figure 3. (a) Propagation-based x-ray phase-contrast image of the lungs of a preterm rabbit
pup. X-ray energy = 24 keV, propagation distance = 50 cm. (b) Tomographic reconstruction
of a single slice (see the dashed line in (a)) from the raw phase-contrast images utilizing filtered
backprojection.

diluted with 4% PFA. After the agar hardened, the container was refrigerated until imaging.
After synchrotron imaging was complete, the brain was extracted from the agar and sectioned
in the coronal plane (50 μm thickness) using a cryostat. Alternating brain sections were
stained for Nissl substance (which densely stains the rough endoplasmic reticulum in neuronal
cell bodies) and used to locate anatomical landmarks in the propagation-based x-ray phase-
contrast images. Anatomical localization was performed with the aid of the stereotaxic atlas
of Pellegrino et al (1979).

4. Results and discussion

4.1. Chest imaging

A single PBI image of the tomographic data set is shown in figure 3(a). Even with the relatively
small object-to-detector distance, the bulk of the lung tissue is rendered visible as a speckled
intensity pattern as a result of multiple refraction of the x-ray beam through minor airways
that overlap in projection (Kitchen et al 2004).

By applying filtered backprojection (Kak and Slaney 1988) using a ramp (Ram-Lak) filter
directly to the phase-contrast images, without performing phase retrieval (Cloetens et al 1997),
we obtain a qualitative reconstruction of the thorax as shown in figure 3(b). Here, the phase-
contrast fringes formed at the edges between the interfaces (i.e. air/lung and bone/lung tissues)
are seen in the reconstruction as residual phase-contrast fringes in the tomogram. We note
that slight motion artefacts are also evident due to difficulties in keeping the object stationary
for the ∼7 min of scan time. The phase contrast can aid the visualization of features such
as the major airways by highlighting their boundaries. However, the edge enhancement
can obscure finer features and restricts quantitative analysis of the tissue morphology
(Suzuki et al 2002). To perform interface-specific phase retrieval tomography, we apply
equations (1) and (2) to each tomographic image followed by filtered backprojection.
Depending on which interface one wishes to focus on, the corresponding δ and μ or
�δ = δ2 − δ1 and �μ = μ2 − μ1 are input into equations (1) and (2), respectively. Here we
denote j = 2 as the bone/lung tissue interface.
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(a)

(b)

(c)

Figure 4. (a) Interface-specific tomographic reconstruction of a preterm rabbit pup thorax, focusing
on the air/lung tissue interface. (b) Magnified section of (a) to aid visibility of the terminal airways.
(c) Magnified section of (a) in which the bone/lung tissue interface appears blurred as a result of
the chosen phase retrieval filter.

In our analysis, we consider lung tissue to be the encasing material. Therefore, to
focus in on the air/lung tissue interface, we apply equation (1) to each tomographic image.
Here, the δ and μ values for water were inserted into equation (1) as soft tissues and water
have similar refractive and absorptive properties at the selected x-ray energy (Kitchen et al
2008). A tomographic reconstruction that focuses on the air/lung tissue interface is shown in
figure 4(a). This image illustrates that the phase-contrast fringes have been removed, leaving
the air/lung tissue interfaces sharply reconstructed, while we can also see that the bone/lung
tissue interface has been locally blurred as a result of incorrect choices of δ and μ in the phase
retrieval process, which contaminates the local vicinity surrounding this interface (Beltran
et al 2010). Figure 4(b) shows a zoomed-in region of figure 4(a) in which individual terminal
airways (alveoli) are clearly visible.

An important benefit of the phase-retrieved reconstruction (figure 4) is the dramatically
improved SNR over the raw tomographic dataset (figure 3(b)). Using three 50 × 50 pixel
regions containing soft tissue only, an SNR of 30 ± 6 (mean ± standard deviation) was
calculated. By comparison, the same area in the raw reconstruction yielded just 1.8 ± 0.3.
Here, we used the formula SNR = μ̃/σ , where μ̃ is the mean signal and σ is the standard
deviation of voxels in the subarray. However, since no pure absorption-contrast image could
be collected due to the finite object-to-detector distance, the latter SNR value was calculated
in a region of figure 3 where only absorption-contrast signal exists (i.e. away from residual
phase-contrast fringes). Thus, we found an improvement in the soft-tissue SNR of 16 ± 4 fold
over absorption contrast for our particular experimental setup. This same improvement in the
SNR was also observed (within uncertainties) in the large airspaces (bronchioles). It is not
surprising that the noise was so heavily reduced since the phase retrieval algorithms naturally
suppress the high-frequency noise.
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Employing phase contrast with an appropriate phase retrieval algorithm has enabled us
to clearly visualize the terminal airways. Whilst similar data may have been obtained from
absorption-contrast tomography, for instance by decreasing the average energy to increase the
soft-tissue absorption contrast, the corresponding dose increase would be prohibitive. This has
important implications for studying the health of the lungs and other organs. Emphysema, for
example, is a disease of the distal airways that is characterized by the loss of alveolar structures.
The ability to clearly observe these fine structures could lead to improved diagnosis of early
lung disease. We have used this dataset to measure the range of alveolar dimensions found
within this animal. The diameters of the alveoli were measured to be between 109 and
162 μm, which is consistent with the previously measured values found in a rabbit pup model
(Hooper et al 2007). We further demonstrate the fidelity of the reconstruction in the online
supplementary movie (available at stacks.iop.org/PMB/56/7353/mmedia) that takes us into
the airway tree of the pup, with remarkable clarity all the way to the terminal airsacs (alveoli).
This movie was made using commercial software (Amira v 5.2, Visage Imaging, Inc.) upon
thresholding the image stack such that the airways were transparent and the tissues opaque.

To retrieve quantitative information from the in-focus interface, a line profile across a
major airway shown in figure 5(a) is plotted in figure 5(b). Here the distribution of the
refractive index decrement averages around the expected value listed in table 1. Also, a line
profile is plotted across the magnified (blurred) bone feature seen in figure 5(c), which helps us
to observe the over-smoothing of the bone/soft-tissue interface and the quantitatively incorrect
reconstruction of δ (see table 1).

We note here that other soft tissues can be seen as amorphous shapes surrounding the
chest wall in the phase retrieved reconstruction in figure 4(a). These tissues are more evident
than in the raw reconstruction in figure 3(b). We attribute this increased clarity to the shape
of the Fourier filter required for the lung tissue/air interface used in equation (1) being likely
very similar to that used in equation (2) that would be used to focus on soft-tissue interfaces.

To focus on the bone/lung tissue interface, we instead process every image with
equation (2) before tomographically reconstructing each slice. To apply this equation, we
use the δ and μ values for bone as well as those for water together with a priori knowledge
of the total projected thickness A(r⊥). A(r⊥) is required to determine the attenuation that the
object would provide if it were made entirely of a single homogenous material, which is used
in the normalization term I0 exp[−μ1A(r⊥)] of equation (2). Here we have approximated the
normalization term by fitting a parabolic curve to the intensity profile at each projection. This
only works well since the animal was inside a water-filled cylinder and because the lungs are
approximately circular in projection and were located near the centre of the tube. Although
this approximation will reduce the accuracy of the reconstruction, we see no artefacts in the
resulting reconstruction, justifying its use.

In figure 6(a), a tomographic reconstruction of the same slice as in figures 3(b) and 4(a)
is shown, which now focuses on the bone/lung tissue interfaces. From this image, we see that
the interfaces of interest have now been correctly reconstructed, yielding a sharp boundary
between the media. This can be better appreciated in figure 6(b), which shows the same
zoomed-in region as in figure 4(c) but now the boundaries and features are highly visible.
Additionally, the line profile in figure 6(c) shows the quantitative measure of the refractive
index decrement, δ. The large fluctuations in δ arise from the porosity of the bone, but
the maximum value underestimates the expected value from table 1. We believe that this
discrepancy arises because the tabulated values are calculated for mature, fully calcified bone,
whilst the immature bones of the newborn rabbit will differ considerably in their average
density and composition (i.e. not be fully calcified), compared to those of an adult rabbit,
thereby lowering the measured δ value.
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(b)(a)

(d)(c)

Figure 5. (a) Magnified region of figure 4(a) showing a major airway. Its line profile is plotted
from left to right from the centre of the image and is shown in (b) displaying the distribution of its
refractive index decrement. (c) The same image as in figure 4(c) with its line profile shown in (d).

To compare the improvement in the SNR before and after the phase retrieval for the
bone/tissue interface, we observed the cortical bone (outer edge) of the bone segment seen
in figure 6(c). The cortical bone contains fewer pores than the internal trabecular bone and
enables comparison against the raw image far from phase-contrast fringes (i.e. a measure of
approximately pure attenuation by bone). We measured the mean signal within small areas
of cortical bone and measured the noise from the nearby soft tissue that was also free of
phase-contrast effects. For bone, the SNR in the raw ‘absorption-contrast’ image was only
5 ± 1 compared to the same area in the phase retrieved image with an SNR of 47 ± 12. On
average, we found an improvement in the SNR of 9 ± 3 times afforded by phase retrieval.
Whilst this is less than the improvement seen for the soft-tissue reconstruction, this results
from the reduced level of spatial filtering in equation (2) due to the reduced phase gradients
present at the bone/tissue interface compared to the air/tissue interface.

Finally, we draw attention to the air/lung tissue interfaces in figure 6(a), which have now
been over-sharpened, or insufficiently filtered, by the phase retrieval process resulting from
under-compensation of the phase-contrast fringes. Therefore, the air/tissue interfaces have
been incorrectly reconstructed.

Upon reconstructing all interfaces of interest, we now combine the images in
figures 4(a) and 6(a) to compose a spliced reconstruction (figure 7). To produce the spliced
image, one cannot simply manually insert the appropriate region into the corresponding regions
of another image. We began by using the soft-tissue image (figure 4) and exploited the fact that
the relatively highly attenuating bones appear blurred, realizing that the true bone interfaces
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(c)

(a)

(b)

Figure 6. (a) Interface-specific tomographic reconstruction of a preterm rabbit pup thorax, focusing
on the bone/lung tissue interface. (b) Magnified section of (a) which now shows a sharp and
quantitative reconstruction of the same images seen in figures 4(c) and 5(c). (c) Line profile from
left-to-right across the centre of (b) showing the distribution of the refractive index decrement of
the porous bone.

must lie within those blurred regions. The large contrast enabled the image to be thresholded
until the blurred bones were invisible, thereby creating a binary ‘soft-tissue-only’ mask. The
inverse of this mask was then applied to the image containing the correctly reconstructed bones
(figure 6). By smoothing each binary mask, and ensuring both masks summed to unity before
multiplying with the relevant image, a continuous and smooth spliced image was formed by
adding the masked images together. One additional step involved adjusting any offsets so that
the background encasing material had the same average value in each image before creating
the spliced image.

The spliced image shows all interfaces both quantitatively and sharply reconstructed,
which demonstrates the key result that we are able to perform phase and amplitude tomography
of multi-material objects that are spatially quantized with only one PBI image per tomographic
orientation.

One drawback of our image splicing is that the objects in question should be spatially
separated by an amount equal to the bleeding (pollution length) associated with over-smoothing
the second interface. In Beltran et al (2010), it was shown that this bleed width (�x)
depends only on the refractive index of the encasing material, where �x �

√
dδ1/μ1. It was

experimentally verified that a distance of three to five times �x was sufficient to avoid locally
polluting nearby objects of a different refractive index. For our experiment, this distance
should therefore be at least 180 μm, but no more than 300 μm. This reduces the accuracy of
the reconstruction where the bone encroaches on the airways. Fortunately, we see very little
evidence of the contamination between media in the spliced reconstruction of figure 7.

4.2. Brain imaging

Figure 8(a) shows a single PBI image from the CT dataset of a rat brain prepared as described
in section 3.3. Due to the similar complex refractive indices of brain and agar (table 2), the

150 Appendix B



Interface-specific x-ray phase retrieval tomography of complex biological organs 7365

Figure 7. Spliced tomographic reconstruction of preterm rabbit pup lungs, constructed by splicing
figures 4(a) and 6(a).

brain is not visible in a single projection image even with the very long propagation distance
of 5.0 m. However, if we apply filtered backprojection directly to the set of raw PBI brain
images (figure 8(b)), a small amount of anatomical detail becomes visible and structures are
resolved relative to the gel agar matrix. This is principally due to the averaging effect caused
by acquiring images from multiple projections which improves the SNR. Figure 8(b) shows
a single tomographic slice in a para-frontal orientation at an approximate anterior–posterior
distance of 9.4 mm caudal to bregma. The bright white flares seen in the image are possibly
caused by attenuation due to Bragg diffraction from crystallite regions in the agar matrix.

Phase retrieval was then applied before performing the tomographic reconstruction. As
described above, all materials in the brain sample effectively refract and attenuate x-rays to
a similar degree; hence, the sample behaves somewhat like a single-material object and thus
we need to utilize equation (1) only (see figure 2). We used the δ and μ values for grey/white
matter listed in table 2. The same slice in figure 8(b) is shown in figure 9, now with the
phase retrieval process included. Despite the subtle differences in complex refractive index,
the tomogram yields clearly demarcated tissue borders at the grey/white matter boundaries.
Considerable detail can be seen in the brainstem, including the ventral cochlear nucleus (vCN),
spinal tract of the trigeminal nerve (TST) and inferior cerebellar peduncle (iCP).

SNR values were calculated for six 30 × 30 pixel regions of grey or white matter in both
figures 8(b) and 9 yielding values of 2.1 ± 0.2 and 440 ± 120, respectively. Again we note
that the regions selected for the calculations did not contain any phase-contrast signal. For
brain imaging with this geometry, we found a net gain in the SNR of 200 ± 50 over absorption
contrast. This exceptional improvement is a consequence of the relatively large propagation
distance of 5.0 m used to render the brain visible, which translates to heavy spatial filtering
(see figure 2) and associated strong noise suppression in the phase retrieval step (equation (1));
this effect was also discussed by Arhatari et al (2010). Note that if one were to use too large a
propagation distance, the validity conditions of the underlying transport-of-intensity equation
would be violated.
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(a) (b)

Figure 8. (a) PBI image of an excised rat brain submerged in an agar solution. X-ray energy = 24
keV, propagation distance = 5.0 m. (b) Tomographic reconstruction of a single slice from the raw
brain PBI images using filtered backprojection.

Figure 9. Tomographic reconstruction of the same slice as shown in figure 8(b). Equation (1) was
applied to each image before tomographically reconstructing.

Phase-contrast modalities that are more sensitive to weak phase gradients, such as grating
interferometry, can render visible the tissues of the brain with even higher contrast than that
presented above (Pfeiffer et al 2007). However, the extra sensitivity of such methods makes
them less robust for imaging objects that also contain strong phase gradients such as the
air/soft-tissue boundaries within the lung. Moreover, phase retrieval in that context requires
multiple images to be acquired for every projection (Pfeiffer et al 2007), thereby significantly
increasing the x-ray dose to the sample. The benefits of our approach include the simple
imaging geometry, with no requirement for post-sample optical elements, and only a single
exposure per projection required for phase retrieval.
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5. Future work

A key finding of this study was that the single-material phase retrieval algorithm (equation
(1)) was sufficiently suitable for the sample containing brain tissue (containing both grey
and white matter) in agar. This considerably simplified and sped up the analysis as only a
single tomographic reconstruction was required. It remains to be seen whether other material
combinations, including soft tissues, can be analysed in the same way. For example, it may
be valid to make the single-material approximation in a sample exclusively comprised of soft
tissues. It also remains to be seen whether a clear image of the brain can be reconstructed
when the brain is in situ, inside the skull, using either phase retrieval algorithm.

With a view to ultimately applying our method to laboratory-based PBI using
polychromatic radiation (e.g., Wilkins et al 1996), it would be very useful to generalize it
to a polychromatic spectrum. This will be a stepping stone allowing the technique to be used
for routine biomedical imaging, with potential clinical implications since PBI is already being
used in the clinic for breast imaging (Tanaka et al 2005). We note that several groups have
made inroads into the problem of phase retrieval using polychromatic radiation in the contexts
of both two- and three-dimensional imaging (Arhatari et al 2005, Myers et al 2007).

Also, we note that spatially quantized objects are in some sense sparse, insofar as
the interfaces between the various volumetric regions of the object are intrinsically two-
dimensional surfaces. No attempt has been made to utilize this sparseness in this paper.
Progress has been made in using the intrinsically sparse nature of spatially quantized objects
in the context of phase retrieval in the work of Myers et al (2008a, 2008b, 2010) and the
work on gradient-sparse objects by Sidky et al (2010). Furthermore, the burgeoning field of
compressive sensing (Baraniuk 2007) has also made inroads into the tomography of sparse
objects, albeit via a different form of sparsity in which the majority of features in the object
are confined to a small fraction of the volume occupied by the object. It might be interesting
to investigate whether these methods of compressive sensing may be adapted to spatially
quantized objects, in which the volume occupied by interfaces is sparse (cf Sidky et al 2010).
In this context, the concept of a quasi-one-dimensional object, developed by Gureyev and
Evans (1998), might also prove useful. A particular driver is the quest to reduce the number
of required projections (and therefore the dose to the sample) by making use of the sparseness
of interface-occupying voxels in a typical spatially quantized object.

6. Conclusions

We have demonstrated that interface-specific x-ray phase retrieval tomography, using the
method developed by Beltran et al (2010), can be performed on complex biological objects.
The method makes use of only a single PBI image per tomographic orientation and requires a
priori information of the sample’s total projected thickness at each orientation and knowledge
of each material’s complex refractive index present in the sample. Note that for a sample
containing no internal voids, the total projected thickness at each orientation is completely
determined by knowledge of the surface of the object. The method was successfully
implemented on experimental propagation-based phase-contrast tomographic data of the
thorax and brain of small animals collected using x-ray synchrotron radiation. For the
thorax data, quantitative reconstructions of air/lung tissue and bone/lung tissue interfaces
were performed separately and were then spliced together to yield a complete reconstruction.
A tomographic reconstruction of a rat brain was made under the assumption that it comprised
of a single material of variable density, which resulted in an image able to clearly distinguish
between grey and white matter. SNR calculations were carried out and showed our technique

153



7368 M A Beltran et al

to be superior to conventional absorption contrast by factors ranging from 9 to 200 fold. This
gain depended on the material in question and the experimental setup, but can potentially be
traded against a reduction in x-ray dose. This enhances the dose reduction already made over
other implementations of phase retrieval since only a single image per projection is required.
Given these results, combined with the simplicity of our technique, we anticipate that it will
potentially be a useful tool in the field of biomedical x-ray imaging.
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Aberrations in shift-invariant linear optical imaging systems using partially coherent
fields

Mario A. Beltran,1, ∗ Marcus J. Kitchen,1 and David M. Paganin1

1School of Physics, Monash University, Victoria 3800, Australia

Here the role and influence of aberrations in optical imaging systems employing partially coherent
complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output
image. For linear shift–invariant optical systems, we develop an expression for the output cross–
spectral density under the space–frequency formulation of statistically stationary partially coherent
fields. We also develop expressions for the output cross–spectral density and associated spectral
density for weak–phase, weak–phase–amplitude, and single–material objects in one transverse spatial
dimension.

I. INTRODUCTION

When imaging transparent samples in an in-focus op-
tical system such as a visible–light or x–ray microscope,
the detected output image appears almost featureless if
the system yields a reproduction of the input image that
is incident upon the system [1]. This is what in optics
is commonly defined as a perfect or near perfect imaging
system in which there are no transverse spatial varia-
tions within the incident spectral density distribution as
it propagates to the output detection plane. Note that
the term “spectral density” is here used in the sense of op-
tical partial coherence. As perfect systems are unable to
visualize the refraction effects (phase contrast) caused by
transparent samples, the presence of aberrations is a nec-
essary condition for non–negligible contrast in the output
spectral density to be attained [2]. In this context, an
aberrated imaging system may be defined as one whose
output transverse spatial distribution of spectral density
is not equal to the input transverse spatial distribution of
spectral density, up to transverse and multiplicative scale
factors together with the smearing effects of finite resolu-
tion. Almost all aberrated imaging systems exhibit phase
contrast, i.e. have an output spatial distribution of spec-
tral density which is influenced by the functional form of
the input wavefronts (input phase distribution). Exam-
ples of aberrated imaging systems yielding phase contrast
include Zernike phase contrast, propagation–based phase
contrast, differential phase contrast, inline holography,
etc. [1, 3–5]
Work relating to a partially coherent treatment specif-

ically for propagation–based phase contrast imaging
based on the Transport–of–Intensity equation has been
reported [6–8]. In this paper we consider the general-
ized differential phase contrast associated with aberrated
linear shift–invariant optical imaging systems employing
statistically stationary partially coherent scalar radia-
tion, for which the output spatial distribution of spectral
density (i.e., the output image) can be modelled using the
transfer function formalism. This extends previously re-
ported work by Paganin and Gureyev [2] which restricted

∗ Corresponding author:

consideration to the generalized differential phase con-
trast of fully coherent scalar fields imaged using aber-
rated linear shift–invariant optical systems.
In Sec. II we obtain an equation that describes the ac-

tion of shift–invariant linear systems using partially co-
herent fields, under the imaging assumption that the ob-
ject under study is a pure thin phase object. A two–
dimensional transverse Cartesian coordinate system is
used in the derivation. In Sec. III expressions for the
spectral density are derived, restricting consideration to
only one transverse spatial variable for simplicity. Three
different types of sample are considered: Samples that
satisfy, i) the weak–phase object approximation, ii) the
weak phase–amplitude approximation and; iii) the single
material weak phase–amplitude approximation. Sec. IV
studies in depth the features of the transfer function used
in this formalism.

II. SHIFT–INVARIANT, LINEAR SYSTEMS
FOR PARTIALLY COHERENT FIELDS USING
TWO TRANSVERSE SPATIAL COORDINATES

In this section we derive an expression for partially co-
herent complex scalar fields imaged by an optical system
that is shift–invariant and satisfies the property of linear-
ity [10]. For such a system, the output complex distur-
bance is related to the input complex disturbance by the
transfer function formalism [10]. Since most image col-
lecting is normally done using two dimensional Cartesian
grids it is natural to utilize a two–dimensional Cartesian
system (x, y) in all calculations.
Before incorporating the effects of partial coherence

in our derivations, we recall first a description of shift–
invariant linear systems for fully coherent complex scalar
wave–fields which are governed by the transfer function
formalism. For such optical systems the output field
Ψout(x, y) is related to the input field Ψin(x, y) by a
Fourier–space filtration that can be written in operator
form as [2]:

Ψout(x, y) = F−1T (kx, ky)F {Ψin(x, y)} . (1)

Here, T (kx, ky) is the transfer function characterizing the
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optical system, (kx, ky) are Fourier conjugate coordinates
dual to (x, y), F and F−1 respectively represent the for-
ward and inverse Fourier transform operations, and all
operators are taken to act from right to left. Thus,
the above equation states that F is applied to the input
field Ψin(x, y), before multiplying by the transfer func-
tion T (kx, ky) and then applying the operator F−1, so as
to yield the output field Ψout(x, y) (see Fig. 1).

Ψin Ψout

T k   k( , )x y

object

Source

FIG. 1. Schematic illustration of the action of an aberrated
shift–invariant linear optical system for imaging fully coher-
ent complex scalar wave–fields, under the transfer function
formalism. Input and output complex fields are related by
the transfer function formalism according to Eq.(1).

In our derivation the forward and inverse Fourier trans-
form operation conventions used are the following:

Ĝ(kx, ky) =
1

2π

∫∫ ∞

−∞
dxdy G(x, y)e−i(kxx+kyy), (2a)

G(x, y) =
1

2π

∫∫ ∞

−∞
dkxdkyĜ(kx, ky)e

i(kxx+kyy). (2b)

Here, Ĝ(kx, ky) ≡ F {G(x, y)}.
To proceed further, we follow Paganin and Gureyev

[2] and make the restricting assumption that the trans-
fer function T (kx, ky) is sufficiently well behaved for its
logarithm to admit a Taylor–series representation. Note
that a necessary condition for this assumption to be valid
is that the transfer function does not possess any zeros
over the patch of Fourier space for which the modulus
of F {Ψin(x, y)} is non–negligible, a region which may
be termed the “essential spectral support” of the input
field.

While this key assumption will fail for imaging systems
such as Schlieren optics which completely block certain
spatial frequencies in the essential spectral support of the
input disturbance, the assumption will hold for a variety
of important imaging systems such as out–of–focus con-
trast [3], inline holography [5], interferometric phase con-
trast [11], differential phase contrast [12], and analyzer–
based phase contrast of weakly scattering samples [4] etc.

With the above in mind, our simplifying assumption
allows us to express the transfer function in the classic
form that is standard e.g. in transmission electron mi-
croscopy, namely [2, 13, 14]:

T (kx, ky) = exp

(
i

∞∑

m,n=0

α̃mnk
m
x kny

)
. (3)

Under this representation we denote the set of complex
numbers {α̃mn} as the “aberration coefficients” where
m and n are non–negative integers and label the or-
der of the aberration. The real part of each such co-
efficient is termed a coherent aberration, with the cor-
responding imaginary part being termed an incoherent
aberration. See Paganin and Gureyev [2] for a direct
link between these complex aberration coefficients, and
the Siedel aberrations [15] (e.g., piston, defocus, astig-
matism, spherical aberration, chromatic aberration etc.)
of classical aberration theory.
Expanding the complex exponential in Eq. (3) as a

Taylor–series, we obtain:

T (kx, ky) = 1 + i

∞∑

m,n=0

αmnk
m
x kny . (4)

The above expression serves to define the set of coef-
ficients {αmn} . The set of coefficients {αmn} is defined
in terms of the set of aberration coefficients {α̃mn}. We
note that like Eq. (3), Eq. (4) disallows the presence of
any zeros in the transfer function T (kx, ky). This form is
particularly useful for studying the effect of transfer func-
tions which differ only slightly from unity, namely for
weakly aberrated shift–invariant imaging systems. We
shall pick up on this point later in the paper.
It is useful to write the operator form of Eq. (1) in

terms of the following integral:

Ψout (x, y) =
1

2π

∫∫ ∞

−∞
dkxdkyT (kx, ky) e

i(kxx+kyy)

×Ψ̂in(kx, ky),

(5)

where Ψ̂in(kx, ky) denotes the Fourier transform of
Ψin(x, y) with respect to x and y. The above integral–
form expression describes the output wave–field for an
optical system that is linear and shift–invariant for in-
coming wave–fields that are fully coherent.
We now turn to the extension of this theory of fully

coherent fields to partially coherent fields. This corre-
sponds to the generalization shown in Fig. 2. Here, Win

is the cross–spectral density incident upon a linear shift–
invariant aberrated optical system, yielding the corre-
sponding output cross–spectral density Wout.
Under the space–frequency description of partial co-

herence developed by Wolf [15, 16], the output cross–
spectral density at a specified angular frequency ω may
be constructed using an ensemble of strictly monochro-
matic fields all of the same angular frequency, via:
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W Wout

yT k  k( , )x

in

object

Source

FIG. 2. Schematic illustration of the action of an aberrated
shift–invariant linear optical imaging system, for statistically
stationary partially coherent complex scalar fields, under the
transfer function formalism. Input and output cross–spectral
densities, Win and Wout respectively, are related by the gen-
eralized transfer function formalism according to Eq. (8).

Wout (x1, y1, x2, y2) = 〈Ψ∗
out(x1, y1)Ψout(x2, y2)〉ω .(6)

Here, angular brackets denote the ensemble average.
Putting this equation to one side for the moment,

note that we can express Ψ∗
out(x1, y1) and Ψout(x2, y2)

in terms of the Fourier transform of Ψ∗
in(x1, y1) and

Ψin(x2, y2) respectively using the conventions in Eq. (2a)
and (2b) which give the following:

Ψ∗
out (x1, y1) =

1

(2π)

∫∫ ∞

−∞
dkx1dky1T

∗ (kx1 , ky1)

×ei
∗(kx1x1+ky1y1)Ψ̂∗

in(kx1 , ky1), (7a)

Ψout (x2, y2) =
1

(2π)

∫∫ ∞

−∞
dkx2dky2T (kx2 , ky2)

×ei(kx2x2+ky2y2)Ψ̂in(kx2 , ky2). (7b)

By substituting the above expressions into Eq. (6), one
can obtain the cross–spectral density in terms of the in-
put cross–spectral density as [17]:

Wout =
1

(2π)2

∫∫∫∫ ∞

−∞
dkx1dky1dkx2dky2T

∗ (kx1 , ky1)

×T (kx2 , ky2) e
[i∗(kx1x1+ky1y1)+i(kx2x2+ky2y2)]

×
〈
Ψ̂∗

in(kx1 , ky1)Ψ̂in(kx2 , ky2)
〉
ω
.

(8)

Eq. (8) can be visualized pictorially in the diagram
shown in Fig. 2. In the present we consider input wave–
fields that are described by the “phase object approxima-
tion” which by definition are wave–fields that only vary in
phase but not in amplitude, that is Ψin(x, y) = eiφin(x,y),
this way our final expression will be a series of terms
which have operations on the input phase φin(x, y) which

is a real function. Later in the paper we generalize to in-
clude absorption. Expanding the complex exponential in
this expression as a Taylor series, which implies no loss of
generality on account of the infinite radius of convergence
of this series, we obtain:

Ψin(x, y) = 1 +

∞∑

p=1

ip

p!
φp
in(x, y). (9)

Taking the Fourier transform of the above expres-
sion with respect to x and y, we can then write down

the following expressions for the terms Ψ̂∗
in(kx1 , ky1) and

Ψ̂in(kx2 , ky2) in Eq. (8):

Ψ̂∗
in(kx1 , ky1) = δ(kx1 , ky1) +

∞∑

p=1

(ip)∗

p!
φ̂p
in

∗
(kx1 , ky1),

(10a)

Ψ̂in(kx2 , ky2) = δ(kx2 , ky2) +
∞∑

q=1

iq

q!
φ̂p
in(kx2 , ky2),

(10b)

where δ(kx, ky) denotes the Dirac delta.
We may also write:

T ∗ (kx1 , ky1) = 1 + i∗
∞∑

m,n=0

α∗
mnk

m
x1
kny1

, (11a)

T (kx2 , ky2) = 1 + i
∞∑

γ,ν=0

αγνk
γ
x2
kνy2

. (11b)

We now substitute Eqs. (10a), (10b), (11a) and (11a)
into Eq. (8) and expand. A total of sixteen terms appear
in the expansion making it a very lengthy expression to
display, however similar mathematical manipulation is
performed in each term which can be illustrated by using
one term as an example. The longest term that appears
is

〈 ∞∑

p,q,m,n,γ,ν=1

(ip+1)∗iq+1α∗
mnαγν

p!q!(im+n)∗(iγ+ν)

1

2π

∫∫ ∞

−∞
dkx1dky1(i

∗kx1)
m(i∗ky1)

ne[i
∗(kx1x1+ky1y1)]

×φ̂p
in

∗
(kx1 , ky1)

1

2π

∫∫ ∞

−∞
dkx2dky2(ikx2)

γ(iky2)
νe[i(kx2x2+ky2y2)]

×φ̂q
in(kx2 , ky2)

〉

ω

.

(12)

By the Fourier derivative theorem [14], the
terms (i∗kx1)

m(i∗ky1)
ne[i

∗(kx1x1+ky1y1)] and
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(ikx2)
γ(iky2)

νe[i(kx2x2+ky2y2)] inside the double inte-

grals can be expressed as ∂m
x1
∂n
y1
e[i

∗(kx1x1+ky1y1)] and

∂γ
x2
∂ν
y2
e[i(kx2x2+ky2y2)] respectively. The symbols ∂m

x1
,

∂n
y1
, ∂γ

x2
and ∂ν

y2
denote partial derivatives with respect

to the variables x1, y1, x2 and y2 and the indices m,
n, γ and ν are positive integers that denote the order
of differentiation. With this re–expression we see that
the integrals represent the inverse Fourier transforms of

the functions ∂m
x1
∂n
y1
φ̂p
in(kx1 , ky1) and ∂γ

x2
∂ν
y2
φ̂q
in(kx2 , ky2)

and hence the entire term in Eq. (12) simplifies to

∞∑

p,q,m,n,γ,ν=1

(ip+1)∗iq+1α∗
mnαγν

p!q!(im+n)∗(iγ+ν)

×
〈
[∂m

x1
∂n
y1
φp
in(x1, y1)][∂

γ
x2
∂ν
y2
φq
in(x2, y2)]

〉
ω
.

(13)

Using similar mathematical manipulation and logic
used to get from Eq. (12) to (13) and applying it to all
the terms which appear in the expansion of Eq. (8), one
finds that the cross–spectral density for a shift–invariant
linear system whose transfer function has infinitely many
orders of aberrations is:

Wout = 1 +
∞∑

p=1

(ip)∗

p!
〈φp

in(x1, y1)〉ω +
∞∑

q=1

iq

q!
〈φq

in(x2, y2)〉ω

+

∞∑

p,q=1

(ip)∗iq

p!q!
〈φp

in(x1, y1)φ
q
in(x2, y2)〉ω

+

∞∑

p,m,n=1

α∗
mn(i

p+1)∗

p!(im+n)∗
〈
∂m
x1
∂n
y1
φp
in(x1, y1)

〉
ω

+

∞∑

q,γ,ν=1

αγν(i
q+1)

q!(iγ+ν)

×
〈
∂γ
x2
∂ν
y2
φq
in(x2, y2)

〉
ω

+

∞∑

p,q,m,n=1

α∗
mn(i

p+1)∗iq

p!q!(im+n)∗

×
〈
[∂m

x1
∂n
y1
φp
in(x1, y1)]φ

q
in(x2, y2)

〉
ω

+

∞∑

p,q,γ,ν=1

αγν(i
p+1)(iq)∗

p!q!(iγ+ν)

×
〈
φp
in(x1, y1)[∂

γ
x2
∂ν
y2
φq
in(x2, y2)]

〉
ω

+

∞∑

p,q,m,n,γ,ν=1

(ip+1)∗iq+1α∗
mnαγν

p!q!(im+n)∗(iγ+ν)

×
〈
[∂m

x1
∂n
y1
φp
in(x1, y1)][∂

γ
x2
∂ν
y2
φq
in(x2, y2)]

〉
ω
.

(14)

This is a key result of the present paper. We speak
of it as exhibiting a generalized form of differential
phase contrast, in the sense that it is a representation
in which the transverse derivatives of all orders of the

phase distribution of each monochromatic field in the
statistical ensemble, which are statistically averaged and
weighted in constructing the output cross–spectral den-
sity. The weighting coefficients are proportional to the
generalized aberration coefficients drawn from the com-
plex set {αmn}, thereby demonstrating how individual
generalized aberration coefficients contribute to particu-
lar orders of transverse derivative, of the phase of each
monochromatic component in the statistical ensemble.

III. SHIFT–INVARIANT, LINEAR SYSTEMS
FOR PARTIALLY COHERENT FIELDS
CONSIDERING DIFFERENT TYPES OF

SAMPLES USING ONE TRANSVERSE SPATIAL
COORDINATE

In this section we will apply the formalism of the pre-
ceding section to three different types of sample, start-
ing with samples which satisfy the weak–phase approx-
imation (Sec. III A), followed by samples that satisfy
the weak phase–amplitude approximation (Sec. III B)
and finally samples made from a single–material which
also satisfy the weak phase–amplitude approximation
(Sec. III C). In the interests of physical transparency of
the resulting expressions, we will drop the number of
transverse dimensions from two down to one.

A. Samples that satisfy the weak–phase
approximation

The weak–phase approximation implies that when an
object is illuminated by a wave–field the object itself
causes very small changes in the phase of the incident
field, as the scattering effects are relatively weak. We
saw how under the “phase object approximation” one
may express Ψin as a Taylor series (see Eq.(9)). In the
one–dimensional perfectly coherent case this is written
as

Ψin(x) = 1 +
∞∑

p=1

ip

p!
φp
in(x) (15)

For samples which satisfy the weak–phase approxi-
mation, we can ignore anything higher than first–order
terms in the phase, that is:

Ψin(x) ≈ 1 + iφin(x). (16)

Physically, this corresponds to each strictly monochro-
matic component of the input statistical ensemble having
a transverse phase variation whose magnitude is much
smaller than one radian. Such a strong limiting as-
sumption of course implies significant loss of general-
ity, a drawback which may be counterpointed with the
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very widespread use of the weak phase object approxima-
tion in visible–light imaging, x–ray imaging and electron
imaging [13, 18].

In most cases relating to weak phase objects including
such terms only up to first order in φin(x) is accept-
able, however when we calculate the cross–spectral den-
sity Wout we take the product of two wave fields which
cause second–order terms in φ to appear which cannot be
ignored. This simply means expanding sums over p and q
in Eq. (14) up until terms that are no higher than second
order in φ. By doing this the one–dimensional version of
the cross–spectral density Wout for samples that satisfy
the weak–phase approximation is

Wout = 1 + i∗ 〈φin(x1)〉ω + i 〈φin(x2)〉ω
−1

2

〈
φ2
in(x1)

〉
ω
− 1

2

〈
φ2
in(x2)

〉
ω

+ 〈φin(x1)φin(x2)〉ω

−
∞∑

m=1

(αm

im

)∗ 〈
∂m
x1
φin(x1)

〉
ω

−
∞∑

n=1

(αn

in

) 〈
∂n
x2
φin(x2)

〉
ω

−
∞∑

m=1

( αm

im−1

)∗ 〈
∂m
x1
φ2
in(x1)

〉
ω

−
∞∑

n=1

( αn

in−1

) 〈
∂n
x2
φ2
in(x2)

〉
ω

+

∞∑

m=1

( αm

im−1

)∗ 〈
[∂m

x1
φin(x1)]φin(x2)

〉
ω

+

∞∑

n=1

( αn

in−1

) 〈
φin(x1)[∂

n
x2
φin(x2)]

〉
ω

+

∞∑

m,n=1

(αm

im

)∗ (αn

in

)

×
〈
[∂m

x1
φin(x1)][∂

n
x2
φin(x2)]

〉
ω
.

(17)

The associated spectral density Sout(x, ω) ≡
Wout(x, x, ω) is

Sout = 1− 2

∞∑

m=1

Re
(αm

im

)
〈∂m

x φin(x)〉ω

−2

∞∑

m=1

Re
( αm

im−1

) 〈
∂m
x φ2

in(x)
〉
ω

+2

∞∑

m=1

Re
( αm

im−1

)
〈[∂m

x φin(x)]φin(x)〉ω

+
∞∑

m,n=1

(αm

im

)∗ (αn

in

)

×〈[∂m
x φin(x)][∂

n
xφin(x)]〉ω .

(18)

Our earlier comments regarding generalized phase con-
trast are also applicable here. Thus, for the case of
weak phase objects imaged by an aberrated linear shift–
invariant optical system, the output spectral density
consists of a weighted sum of various orders of trans-
verse derivative of the phases of each component of each
strictly monochromatic member of the statistical ensem-
ble quantifying the input stochastic process. The associ-
ated weighting coefficients are again proportional to the
real or imaginary parts of the generalized aberration co-
efficients given by the complex set {αmn}.
If we ignore terms in Eq. (18) that are higher than first

order in φ and assume a perfectly coherent field (i.e. no
ensemble average is required) then this equation reduces
to the one dimensional form of the expression derived in
the paper by Paganin and Gureyev [2] for linear shift–
invariant imaging systems for fully coherent fields given
by:

Sout = 1− 2

∞∑

m=1

Re
(αm

im

)
∂m
x φin(x). (19)

Some interesting effects result when terms higher than
first order in φin(x) are retained. For example, if we
truncate Eq. (18) up to m = 1 and n = 1 the spectral
density becomes

Sout = 1− 2Re
(α1

i

)
〈∂xφin(x)〉ω − 2Re(α1)

〈
∂xφ

2
in(x)

〉
ω

+2Re(α1) 〈[∂xφin(x)]φin(x)〉ω
+ |α1|2 〈[∂xφin(x)][∂xφin(x)]〉ω .

(20)

Here we have explicitly chosen a system that only dis-
plays first derivative contrast in the phase φ. Now notice
how invoking the product rule one may rewrite certain
terms such as ∂xφ

2
in = 2[∂xφin]φin and [∂xφin][∂xφin] =

∂x([∂xφin]φin)− [∂2
xφ]φ which makes Eq. (20) appear as
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Sout = 1− 2Re
(α1

i

)
〈∂xφin(x)〉ω

−2Re(α1) 〈[∂xφin(x)]φin(x)〉ω
+ |α1|2 〈∂x {[∂xφin(x)]φin(x)}〉ω
− |α1|2

〈
[∂2

xφin(x)]φin(x)
〉
ω
.

(21)

Notice how the final term yields a second derivative
in the ensemble of phases. This is popularly referred to
in the imaging field as “Laplacian contrast” [9]. It is
surprising that even though the system in Eq. (21) has
been restricted to tilt aberrations α1 of first order that
Laplacian contrast still arises.

B. Samples that satisfy the weak phase–amplitude
approximation

The next class of samples considered are those which
satisfy the weak phase–amplitude approximation. This
approximation takes into consideration the variations in
both amplitude and phase that the wave–field incurs as it
travels though the sample. Again, since we are working
under the space–frequency description of partial coher-
ence, these statements apply to each strictly monochro-
matic component of the illuminating beam which is elas-
tically scattered by the sample to yield the ensemble of
monochromatic fields which is input into the shift invari-
ant linear imaging system.
Bearing the above in mind, the weak phase–amplitude

approximation corresponds to the sample’s scattering
and absorptive properties being weak in the sense of
the first Born approximation. For samples that induce
changes in both phase and amplitude the one dimensional
wave–field exiting is expressed as [13]:

Ψin(x) ≡ exp[iφin(x) − µin(x)]. (22)

The real function function µin(x) is related to the
transverse variations in intensity and like φin(x) it is also
a real function. It again proves convenient to express ex-
ponential functions as a Taylor series. In this case Ψin(x)
is given by

Ψin(x) = 1 +

∞∑

p=1

[iφin(x) − µin(x)]
p

p!
. (23)

Like the weak–phase object approximation the weak
phase–amplitude approximation also involves ignoring
higher than first order terms allowing the wave–field to
be expressed as

Ψin(x) ≈ 1 + iφin(x) − µin(x). (24)

Now, to obtain Wout one simply needs to replace the
terms φin(x1) and φin(x2) with iφin(x1) − µin(x1) and
iφin(x2) − µin(x2) in Eq. (17), respectively. Note that
second–order terms need to be included for the same rea-
sons argued for the weak–phase approximation. Once we
have Wout then set x1 = x2 = x to obtain an expres-
sion for the spectral density Sout(x, ω) for samples that
are weak in phase and amplitude variations. In this case
the spectral density is given by the following expression
which again demonstrates generalized differential phase
contrast in the sense defined earlier:

Sout = 1− 2 〈µin(x)〉ω − 2

∞∑

m=1

Re
(αm

im

)
〈∂m

x φin(x)〉ω

−2
∞∑

m=1

Re
( αm

im−1

)
〈∂m

x µin(x)〉ω

−2

∞∑

m=1

Re
( αm

im−1

) 〈
∂m
x φ2

in(x)
〉
ω

+2

∞∑

m=1

Re
( αm

im−1

) 〈
∂m
x µ2

in(x)
〉
ω

+6

∞∑

m=1

Re
( αm

im−2

)
〈[∂m

x φin(x)]µin(x)〉ω

+2

∞∑

m=1

Re
( αm

im−1

)
〈[∂m

x φin(x)]φin(x)〉ω

+2

∞∑

m=1

Re
( αm

im−2

)
〈[∂m

x µin(x)]φin(x)〉ω

+2

∞∑

m=1

Re
( αm

im−1

)
〈[∂m

x µin(x)]µin(x)〉ω

+
∞∑

m,n=1

(αm

im

)∗ (αn

in

)
〈[∂m

x φin(x)][∂
n
xφin(x)]〉ω

+

∞∑

m,n=1

(αm

im

)∗ (αn

in

)
〈[∂m

x µin(x)][∂
n
xµin(x)]〉ω .

(25)

Similar to the previous case if second order terms in φ
and µ are neglected and we remove the angular brackets
assuming a fully coherent wave then Eq. (25) reduces to
the one derived in Paganin and Gureyev [2] when dealing
with the weak phase–amplitude approximation, namely:

Sout = 1− 2µin(x)− 2

∞∑

m=1

Re
(αm

im

)
∂m
x φin(x)

−2

∞∑

m=1

Re
( αm

im−1

)
∂m
x µin(x).

(26)
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C. Single–material samples that satisfy the weak
phase–amplitude approximation

The final kind of sample that we consider is those that
are comprised of a single material and also have the trans-
verse phase and intensity variations of the wave–field be-
ing small as it travels though the sample. Utilizing termi-
nology commonly used by the x–ray optics community,
assume that the single–material sample has a constant
complex refractive index [14]:

n = 1− δ + iβ. (27)

If the projected thickness along the orientation of a
particular direction of propagation for paraxial illumina-
tion is denoted as Tproj(x), then the real numbers δ and
β are related to functions φin(x) and µin(x) via [14]:

φin(x) = −kδTproj(x), (28a)

µin(x) = βkTproj(x). (28b)

Here, k is the radiation wavenumber corresponding to
the wavelength λ. This permits us to write the input
wave–field as

Ψin(x) = exp[k(β − iδ)Tproj(x)], (29)

Under the single–material weak phase–amplitude ob-
ject approximation Ψin(x) is approximated as

Ψin(x) = exp[k(β − iδ)Tproj(x)]

≈ 1− k(β − iδ)Tproj(x). (30)

Here we see that the “single–material weak phase–
amplitude object approximation” is none other than the
“weak phase–amplitude object approximation” that uses
that fact that when a weak object is made out of only
one material the functions φin(x) and µin(x) become pro-
portional to each other. Bearing this in mind, to obtain
an expression for the spectral density Sout(x) for sys-
tems that are linear and shift–invariant when the object
under study satisfies the “single–material weak phase–
amplitude object approximation” all that is needed is to
replace φin(x) and µin(x) in Eq.(25) with −kδTproj(x)
and βkTproj(x) respectively to yield

Sout = 1− 2βk 〈Tproj(x)〉ω

−2

∞∑

m=1

Re

[
αmk(iβ + δ)

im

]
〈∂m

x Tproj(x)〉ω

+2

∞∑

m=1

Re

[
αmk(δ + β)

im−1

] 〈
∂m
x T 2

proj(x)
〉
ω

+2

∞∑

m=1

Re

[
αmk2(4δ − β2 + iδ2)

im

]

×〈[∂m
x Tproj(x)]Tproj(x)〉ω

+

∞∑

m,n=1

σ
(αm

im

)∗ (αn

in

)

×〈[∂m
x Tproj(x)][∂

n
xTproj(x)]〉ω ,

(31)

where σ = k2(δ + β), and ensemble averages are take
over the sample projected thickness (i.e. 〈Tproj(x)〉ω).
This implies taking the average sum of projected path
integrals along the sample over a range of angular ori-
entations, for the case where the incident ensemble of
monochromatic fields consist of a set of plane waves. We
see that the single–material assumption significantly sim-
plifies the expression for the spectral density Sout. One of
the advantages about making the “single–material weak
phase–amplitude object approximation” is that it allows
one to relate the measured image directly to morphologi-
cal detail of the sample bypassing the idea of ensembles of
phase maps. For instance take a special case of Eq. (31)
where the system has a finite set of non–vanishing aber-
rations (all of which are known ‘a priori’), and we take
the spectral density Sout to be the measured quantity,
leaving 〈Tproj(x)〉ω as the unknown variable. This effec-
tively brings about an inverse problem, where from an
aberrated image one seeks to infer information about the
size of sample. This is very common in the imaging world
and can be related to the technique known as “phase re-
trieval”, which as the name says involves retrieving the
phase φ of the wave–field Ψ once the field has travelled
through the sample from either one or multiple intensity
measurements. Usually this is done using some iterative
or non–iterative algorithm and in most cases a perfectly
coherent monochromatic wave–field is assumed. In the
context of this paper we see that the idea of “phase re-
trieval” is somewhat redundant since we have considered
wave–fields that are partially coherent and that therefore
do not have a characteristic phase φ but rather have a
statistical signature 〈∂m

x φin〉ω . This, highlights the im-
portance of Eq. (31) as it makes more sense to want to
recover information about the morphology of the imaged
sample as opposed to phase φ of a wave–field technically
the latter does not exist in the context of partial coher-
ence [19].
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IV. THE TRANSFER FUNCTION FOR
SHIFT–INVARIANT LINEAR SYSTEMS WITH

INFINITELY MANY ORDERS OF
ABERRATIONS

The transfer function formalism to study image for-
mation is widely used to describe optical systems. This
section discusses in detail the properties and character-
istics of the transfer function used in the development of
this theory (see Eq. (3)). The expressions for spectral
densities for all three types of sample are derived under
the Taylor series form of the transfer function which is
written in terms of the coefficients αm. For this reason, it
is important to state that actual aberration coefficients,
namely those directly corresponding to the seidel aber-
rations, are those denoted by α̃m. For example, α̃2 is
directly proportional to defocus “z” as is α̃4 to spheri-
cal aberration [2] “Cs”. The main goal of this section
will be to illustrate to the reader how we are able to ex-
press the transfer function as a Taylor–series expansion,
which, eventually will lead us to another problem in find-
ing a standard formula on how to relate the coefficients
αm to the aberration coefficients α̃m, a problem which
is solved using a combinatorial approach. Also, we will
continue to use only one spatial dimension as in Sec. III
in order to keep all mathematical manipulations simple.
We begin by re–stating the transfer function in one

spatial dimension

T (kx) = exp

(
i

∞∑

m=0

α̃mkmx

)
(32)

We remind the reader that the set of complex numbers
{α̃m} are labelled here as “aberration coefficients” whose
object is to characterise a particular state of the linear
imaging system. Each such coefficient is denoted

α̃m ≡ α̃(R)
m + iα̃(I)

m , (33)

where α̃
(R)
m denotes the real part and α̃

(I)
m denotes the

imaginary part. It was assumed in Paganin and Gureyev
[2] that at the Fourier–space origin the transfer function
must equal unity, that is T (kx = 0) = 1. Such an as-
sumption implies a trivial loss of generality for all sys-
tems that posses a transfer function that does not vanish
at the Fourier space origin. Also under this assumption
we may set α̃0 = 0.
Now, we want to represent Eq. (32) as a Taylor–series,

something that in Paganin and Gureyev [2] was only
stated but not shown. Here, we provide a more detailed
explanation of how this is achieved. Firstly, let the en-
tire sum in Eq. (32) be labelled X ≡ i

∑∞
m=1 α̃mkmx . The

Taylor–series of an exponential function is given by

eX = 1 +

∞∑

l=1

X l

l!
, (34)

where, l is also a non–negative integer l = 1, 2, .... If
we now substitute X ≡ i

∑∞
m=1 α̃mkmx then Eq. (32) be-

comes

T (kx) = 1 + i

∞∑

l=1

il−1

l!

( ∞∑

m=1

α̃mkmx

)l

. (35)

Notice how now we have commenced the summation
from m = 1. This is due to assumption made earlier
that T (kx = 0) = 1 which in turn allowed to set α̃0 = 0.
Writing the summation

∑∞
m=1 α̃mkmx explicitly we get

T (kx) = 1 + i

∞∑

l=1

il−1

l!

(
α̃1kx + α̃2k

2
x + α̃3k

3
x + α̃4k

4
x + · · ·

)l

(36)

We now turn our focus to the summation in Eq. (36).
If one writes down the first few l terms, say l = 1, 2, 3, 4,
it can be seen that all the common powers of kx can be
collected. For example:

l = 1,
(
α̃1kx + α̃2k

2
x + α̃3k

3
x + α̃4k

4
x + · · ·

)1

l = 2, + i
2!

(
α̃1kx + α̃2k

2
x + α̃3k

3
x + α̃4k

4
x + · · ·

)2

l = 3, − 1
3!

(
α̃1kx + α̃2k

2
x + α̃3k

3
x + α̃4k

4
x + · · ·

)3

l = 4, − −i
4!

(
α̃1kx + α̃2k

2
x + α̃3k

3
x + α̃4k

4
x + · · ·

)4
.

(37)

Once we collect all the common powers of kx we see
that the entire summation in Eq. (36) can be expressed
in the alternative form

α1︷︸︸︷
(α̃1)kx +

α2︷ ︸︸ ︷
(α̃2 +

i

2
α̃2
1)k

2
x +

α3︷ ︸︸ ︷
(α̃3 + iα̃1α̃2 −

1

6
α̃3
1)k

3
x +

α4︷ ︸︸ ︷
(α̃4 + iα̃1α̃3 +

i

2
α̃2
2 −

1

2
α̃2
1α̃2 −

i

24
α̃4
1)k

4
x + · · · =

∞∑

l=1

αlk
l
x.

(38)

These mathematical manipulations reveal that we are
able to represent the transfer function as the following
Taylor–series.

T (kx) = 1 + i

∞∑

m=1

αmkmx (39)

We have re–labelled the non–negative integer l with m
in order to remain consistent with our original notation.
Also, notice that each αm term is composed of a finite
series of α̃m terms where the higher the order of m the
higher number the of terms that will appear. The fact
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that the series are finite turns out to be advantageous.
On this note we see that another problem arises, that is,
if one is dealing with aberrations that are higher in order
than say α5, we saw from the above examples that com-
puting all its terms in the series this can be tedious. This
motivates us to seek a Standard Series Formula which can
allow us to calculate any αm for this problem by simply
substituting fixed parameters to avoid such lengthy and
tedious computations. This can be achieved if one vi-
sualises the problem as a combinatorial one. The first
indication that tells us that this is solved combinatori-
ally is when the term

(
α̃1kx + α̃2k

2
x + α̃3k

3
x + · · ·

)l
arises

where we see that this is none other than a multinomial
expansion which reveals its combinatorial nature. From
this we can deduce that the terms in the series will have
coefficients which can be calculated with the multinomial
coefficients formula

(
v

m1,m2, · · · ,mj

)
=

v!

m1!m2! · · ·mj !
. (40)

Notice that for any αm we find that the sum of the
exponent times its subscript in each of its corresponding
α̃ terms will always be equal. For instance take α3 =
α̃3 + iα̃1α̃2 − 1

6 α̃
3
1; each of its α̃ terms in the expansion

can be written as α̃1
3, α̃

1
1α̃

1
2 and α̃3

1. Now notice how the
sum of the product of the exponents times its subscript
for each term all equate to 3, we have α̃1

3 (1 × 3 = 3),
α̃1
1α̃

1
2 (1 × 1 + 1 × 2 = 3) and α̃1

3 (3 × 1 = 3). If we do
this for any αm this condition will still hold.
Now our next step is to try to decode a particular

pattern for any αm series. Let’s focus on α2 = α̃2+
i
2 α̃

2
1.

Here we see that the highest power is 2 and therefore
one can also deduce that the highest power for any α̃
is never greater than m. We know that each expansion
has a combinatorial nature so let’s consider the terms
that compose α2 are elements from the set {α̃1, α̃2} and
its corresponding exponents are combinations from the
set {0, 1, 2}. We also see that the coefficients will be
given by the multinomial coefficients formula. If we write
down all possible combinations with their corresponding
coefficients it displays as

0(1)+0(2)=0

i−1

0!

(
0

0, 0

)
α̃0
1α̃

0
2 +

0(1)+1(2)=2

i0

1!

(
1

0, 1

)
α̃0
1α̃

1
2 +

1(1)+0(2)=1

i0

1!

(
1

1, 0

)
α̃1
1α̃

0
2

+

0(1)+2(2)=4

i

2!

(
2

0, 2

)
α̃0
1α̃

2
2 +

2(1)+0(2)=2

i

2!

(
2

2, 0

)
α̃2
1α̃

0
2 +

1(1)+1(2)=3

i

2!

(
2

1, 1

)
α̃1
1α̃

1
2

(41)

As a convenient notation, notice that the sum of the
product of the exponents times their corresponding sub-
scripts have been deliberately placed above each combi-
natorial term. This helps us to see that if we only allow
the terms in which the product of the exponents times

their corresponding subscripts equals the order of the co-
efficient αm, in this case m = 2 and neglect those which
do not fulfill this condition then the surviving terms in
the expansion will be the following

α2 =
i0

1!

(
1

0, 1

)
α̃0
1α̃

1
2 +

i

2!

(
2

2, 0

)
α̃2
1α̃

0
2

= α̃2 +
i

2
α̃2
1. (42)

Notice how applying this fusion of combinatorics and
pattern decoding has arrived at the same answer for the
α2 terms in Eq. (38). Now, we can employ the same strat-
egy for α3 = α̃3 + iα̃1α̃2 − 1

6 α̃
3
1 where now all the terms

are elements from the set {α̃1, α̃2, α̃3} and its exponents
are combinations from the set {0, 1, 2, 3}. Writing down
the possible combinations will give

0(1)+0(2)+0(3)=0

i−1

0!

(
0

0,0,0

)
α̃0
1α̃

0
2α̃

0
3 +

1(1)+0(2)+0(3)=1

i0

1!

(
1

1,0,0

)
α̃1
1α̃

0
2α̃

0
3 +

0(1)+1(2)+0(3)=2

i0

1!

(
1

0,1,0

)
α̃0
1α̃

1
2α̃

0
3

+

0(1)+0(2)+1(3)=3

i0

1!

(
1

0,0,1

)
α̃0
1α̃

0
2α̃

1
3 +

2(1)+0(2)+0(3)=2

i1

2!

(
2

2,0,0

)
α̃2
1α̃

0
2α̃

0
3 +

0(1)+2(2)+0(3)=4

i1

2!

(
2

0,2,0

)
α̃0
1α̃

2
2α̃

0
3

+

0(1)+0(2)+2(3)=6

i1

2!

(
2

0,0,2

)
α̃0
1α̃

0
2α̃

2
3 +

1(1)+1(2)+0(3)=3

i1

2!

(
2

1,1,0

)
α̃1
1α̃

1
2α̃

0
3 +

1(1)+0(2)+1(3)=4

i1

2!

(
2

1,0,1

)
α̃1
1α̃

0
2α̃

1
3

+

0(1)+1(2)+1(3)=5

i1

2!

(
2

0,1,1

)
α̃0
1α̃

1
2α̃

1
3 +

3(1)+0(2)+0(3)=3

i2

3!

(
3

3,0,0

)
α̃3
1α̃

0
2α̃

0
3 +

0(1)+3(2)+0(3)=6

i2

3!

(
3

0,3,0

)
α̃0
1α̃

3
2α̃

0
3

+

0(1)+0(2)+3(3)=9

i2

3!

(
3

0,0,3

)
α̃0
1α̃

0
2α̃

3
3 +

1(1)+1(2)+1(3)=6

i2

3!

(
3

1,1,1

)
α̃1
1α̃

1
2α̃

1
3 +

2(1)+1(2)+0(3)=4

i2

3!

(
3

2,1,0

)
α̃2
1α̃

1
2α̃

0
3

+

2(1)+0(2)+1(3)=5

i2

3!

(
3

2,0,1

)
α̃2
1α̃

0
2α̃

1
3 +

1(1)+2(2)+0(3)=5

i2

3!

(
3

1,2,0

)
α̃1
1α̃

2
2α̃

0
3 +

1(1)+0(2)+2(3)=7

i2

3!

(
3

1,0,2

)
α̃1
1α̃

0
2α̃

2
3

+

0(1)+1(2)+2(3)=8

i2

3!

(
3

0,1,2

)
α̃0
1α̃

1
2α̃

2
3

(43)

Like the case for α2, if we only consider the terms
where the sum of the exponents times their corresponding
subscript equal m = 3 and neglect the rest then the only
terms which survive are

α3 =

0(1)+0(2)+1(3)=3

i0

1!

(
0

0, 0, 1

)
α̃0
1α̃

0
2α̃

1
3 +

1(1)+1(2)+0(3)=3

i1

2!

(
2

1, 1, 0

)
α̃1
1α̃

1
2α̃

0
3

+

3(1)+0(2)+0(3)=3

i2

3!

(
3

3, 0, 0

)
α̃3
1α̃

0
2α̃

0
3

= α̃3 + iα̃1α̃2 −
1

6
α̃3
1

(44)

By extending the above logic one is able deduce the
following standard formula to compute any αm:
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αm =

m∑

v

∑

m1+m2+...+mj=v

iv−1

v!

(
v

m1,m2, · · · ,mj

)

α̃m1
1 α̃m2

2 ...α̃
mj

j

where,
∑

j

mj × j = m.

(45)

Here, v = 0, 1, 2, ...,m, j = 1, 2, ...,m and mj =
0, 1, 2, ...,m. To verify this standard formula, we calcu-
late another αm and see if we arrive at the same result to
that obtained by collecting terms as done previously in
Eq. (38). We do this by calculating α4 where according
to the set condition one only needs to consider the terms
which satisfy

∑
j mj × j = 4. Below we display all the

relevant terms

α4 =

0(1)+0(2)+0(3)+1(4)=4

i0

1!

(
1

0, 0, 0, 1

)
α̃0
1α̃

0
2α̃

0
3α̃

1
4 +

1(1)+0(2)+1(3)+0(4)=4

i

2!

(
2

1, 0, 1, 0

)
α̃1
1α̃

0
2α̃

1
3α̃

0
4

+

0(1)+2(2)+0(3)+0(4)=4

i

2!

(
2

0, 2, 0, 0

)
α̃0
1α̃

2
2α̃

0
3α̃

0
4 +

2(1)+1(2)+0(3)+0(4)=4

i2

3!

(
3

2, 1, 0, 0

)
α̃2
1α̃

1
2α̃

0
3α̃

0
4

+

4(1)+0(2)+0(3)+0(4)=4

i3

4!

(
4

4, 0, 0, 0

)
α̃4
1α̃

0
2α̃

0
3α̃

0
4

= α̃4 + iα̃1α̃3 +
i

2
α̃2
2 −

1

2
α̃2
1α̃2 −

i

24
α̃4
1 (46)

The computation above is in agreement with calculat-
ing α4 via the standard formula and the more lengthy
method which involves collecting term of k4x powers as
was done in Eq. (38).
To end this section we return to the case where the

transfer function contains two spatial dimensions trans-
verse to the imaging direction. For such cases the com-
binatorial analysis is more complex. Nevertheless, using
a similar strategy to the one used to formulate the stan-
dard formula for the one–dimensional case one is also
able to deduce a formula for the more common imaging
scenario with two spatial dimensions. Setting α̃00 = 0
yield a “two spatial dimensions standard formula” of the
form

αmn =

m+n∑

v

∑

m01+m10+...+mjν=v

iv−1

v!

(
v

m01,m10, · · · ,mjν

)

α̃m01
01 α̃m10

10 ...α̃
mjν

jν

where,
∑

j,ν

mjν × (j + ν) = m+ n

(47)

where v = 0, 1, 2, ...,m + n, j = 0, 1, 2, ...,m ν =
0, 1, 2, ..., n and mjν = 0, 1, 2, ...,m+n. Since we have set

α̃00 = 0 we must impose the condition that when j = 0
then ν 6= 0 and vice versa. It is possible to make fur-
ther simplification of the formula if rotational symmetry
is also assumed (i.e. α̃10 = α̃01).

V. DISCUSSION AND SUMMARY

In this work we have treated the problem of aberrations
for partially coherent complex scalar wave–fields imaged
by optical systems characterized by a transfer function
which is both linear and shift–invariant. We have derived
expressions for the output cross–spectral density Wout

using only one spatial variable for samples that satisfy
the “phase object approximation”, the “weak–phase ob-
ject approximation”, the “weak phase–amplitude approx-
imation” and finally the “single–material weak phase–
amplitude approximation”. Also, for the three classes of
samples mentioned, an expression for the spectral density
Sout was calculated in which we saw how under certain
restrictions the equations reduced to those derived in Pa-
ganin and Gureyev [2] where partial coherence is not con-
sidered. For the single material case the idea of “phase
retrieval” was mentioned, however in the context of par-
tial coherence this was rather redundant but nonethe-
less gave rise to the idea of carrying out morphological
studies of imaged samples partially coherent light and
aberrated imaging systems. This idea may have several
applications in many areas such as geology, microbiology,
material science, etc.
The transfer function was studied where we empha-

sized how one obtains the coefficients of Taylor–series
representation of the transfer function. This lead to a dif-
ferent problem involved finding a standard formula which
can allow the calculation of any coefficient αm in terms
of its corresponding aberration coefficients α̃m for an in-
finite number of aberration orders. This standard for-
mula brings many advantages not only in the sense that
it is not limited to a finite order of aberrations but also
allows for broader considerations in “aberration balanc-
ing”. Aberration balancing is the act of seeking certain
conditions in which the aberrations present in an opti-
cal system are negated by the system itself. To be more
concise, one seeks to balance out the aberrations in an
optical system against one another. This is somewhat
similar to the notion of Scherzer defocus, where defocus
is tuned to balance out spherical aberration [20]. For ex-
ample, consider the spectral density in Eq. (26) for the
“weak–phase object approximation” case. Suppose one
aimed to find the conditions for which all aberrations
present balanced out one another such that the output
image displayed only first order differential contrast, that
is,

Sout = 1− 2 〈∂xφin(x)〉ω . (48)

This would require the following balancing conditions
in order to achieve such an output image:
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α
(I)
1 = 1,

m 6=0

Re
(αm

im

)
= 0,Re

( αm

im−1

)
= 0,

(αm

im

)∗ (αn

in

)
= 0.

(49)

For systems with infinitely many aberrations (Eq. (45))
the above balancing equation could be in principle solved
with the help of the standard formula without the need

for truncating the system.
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