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Abstract

To address the semantic gap, state-of-the-art automatic image annotation frameworks

concatenate the low-level image features (such as color, texture, etc.) in high-

dimensional spaces to learn a set of high-level semantic categories.

This research work investigates a multimedia indexing framework establishing a

correspondence between visual conceptual information representing image regions

and a set of high-level semantic concepts. The computational models for extracting

the visual color, texture, and shape concepts utilized in this thesis aim to capture

aspects related to human perception and understanding of the color, texture, and

shape features of image regions.

Through the development of models that map the low-level features into a set of high-

level symbolic descriptors, image regions are described in transparent and readable

form. These symbolic descriptors, named in this thesis as the visual concepts, are

then used to learn a set of high-level semantic categories to classify un-annotated

image regions. A main contribution here is presenting a framework for characterizing

visual shape concepts to describe the shapes of image regions.

The efficiency of using the visual conceptual information is demonstrated by conduct-

ing a comparison with a baseline framework operating on a set of low-level image

features to learn the same set of semantic categories.

Using the visual concepts to describe image regions is shown to achieve promising

results and outperform the baseline model.

xi



Abstract

The experimental results show that using the visual conceptual information to

describe image contents achieves the goal of this thesis of narrowing the semantic

gap between the low-level image features and high-level semantic categories.

xii
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Key terms and definitions

Visual conceptual information1: a set of high-level symbolic descriptors that are

used to describe the visual properties of images/image regions. It can be viewed as a

natural way to represent image features that is derived from the human understanding

of the visual properties of image objects.

Image region2: clusters of pixels in images that form entities that can be described

or interpreted in terms.

Content-based image retrieval: a class of early image retrieval systems that rely

on retrieving images from an image database using the image content (i.e., low-level

image features) without using textual annotations to describe the content of images.

Low-level image features: the features that are extracted directly from digital

representations of images and described in numeric representations without charac-

terizing their semantic meaning.

Concept-based retrieval3: a class of image retrieval systems that aim at narrow-

ing the semantic gap by capturing the semantic meanings conveyed in images to

describe their contents using high-level descriptors based on the human perception.

1Visual conceptual information, Symbolic perceptual descriptors, and Visual concepts are used
interchangeably in this thesis

2Image region and image object are used interchangeably in this thesis
3Concept-based retrieval and Semantic-based retrieval are used interchangeably in this thesis

xviii



Key terms and definitions

Image retrieval systems in this class aim to annotate images with high-level descrip-

tors. Images are then classified into semantic categories based on their associated

annotations.

Semantic concepts: a set of text-based descriptors describing objects in an image

or describing the entire scene. These descriptors, also known as image annotations,

are assigned to images to facilitate further search for images from image database

using natural language interaction rather than using the abstract low-level image

features. The annotation might be at the region level of image objects or a set of

keywords that describe the entire semantic scene of an image.

Semantic gap: the gap between the low-level features composing images and how

human users understand the image contents. Images are indeed composed and

matrices of numbers that represent the color of image pixels. These numbers reflect

how images are stored in image datasets. Nonetheless, these representations do not

reflect how human users comprehend image content. For example, human users

translate image content into words that represent their contents such as an image of

a beach, images of red flowers, etc.

xix



Chapter 1

Introduction

Advances in technology such as digital cameras, camera-phones, webcams, scanners,

storage media, and large online picture archives have led to a huge amount of

professional and personal collections of digital images. Moreover, the advances on

the web and photo sharing websites, such as Picasa1 and Flickr2, has significantly

contributed to this leap. There is a need for effective and robust methods to index

and categorize the huge amount of available visual data to facilitate and ease retrieval.

To this end, many general-purpose image indexing and retrieval systems have been

developed under two main categories: text-based and visual-based image retrieval

systems.

Text-based image retrieval requires manual annotation of images by textual descrip-

tors (Rui et al.; 1999). The associated textual annotations of images are used by

the traditional database management systems to store image labels and facilitate

later retrieval (Chang and Fu; 1980; Chang et al.; 1988). Inconsistency based on the

variation of human interpretation among annotators and the time it consumes to

annotate are the main disadvantages related to text-based image indexing.

1http://picasa.google.com/
2http://www.flickr.com/

1

http://picasa.google.com/
http://www.flickr.com/


The inherited problems of the text-based approach are addressed by introducing

content-based image retrieval. Content-based indexing and retrieval of images

refers to utilizing the visual contents of images to find similarities in patterns to

classify/retrieve images. Advantages of the content-based approaches are being

automated and generally fast. However, these approaches are still not able to

characterize the semantic meanings conveyed in images. This problem is referred to

as the ‘semantic gap’ (Smeulders et al.; 2000).

The semantic-based indexing and retrieval, also referred to as automatic image

annotation, was introduced to tackle this issue by indexing and retrieving images

with semantic concepts which characterize the image semantic meaning (e.g., an

image composed of “houses”, “trees”, . . . ). This approach makes it possible for

human users to use text-based queries to retrieve images based on their visual content.

One of the issues related to automatic image annotation approaches is that they

do not take into account the visual conceptual information of image content as

humans comprehend and understand it. This is related to the fact that these systems

tend to extract low-level image features to describe images for further classification.

The extracted low-level features are far from the human understanding as they are

represented in non-perceptual numeric values.

This thesis aims at addressing the semantic gap between the low-level image features

and the humans’ understanding of their visual properties by describing image regions

using the visual conceptual information. The visual conceptual information refers to

human readable symbolic descriptors that reflect the perceptual meaning of image

objects. In this research work, the visual color, texture, and shape concepts are

being used to describe image regions for the task of region-based classification. This

method aims to map the low-level image features from their numeric representations

to predefined sets of high-level color, texture, and shape categories that conform to

the human perception. It can also be considered a quantization technique to quantize

the low-level image features into a set of predefined categories.

2



In this thesis, a framework for the characterization and extraction of the visual

shape concepts, where the shapes of image regions are described with high-level

perceptual descriptors is presented. This framework is then integrated with models

characterizing the visual color and texture concepts to describe and represent image

regions. A set of machine learning algorithms is then evaluated on the visual concepts

feature space to learn a set of high-level semantic categories to annotate un-labeled

image regions. Experimentally, the theoretical proposition is evaluated on 15, 000

image regions from the IAPR TC-12 benchmark with an empirical comparison of six

supervised machine learning algorithms.

This thesis answers the following research questions:

1. Can shapes of segmented image regions be represented using high-level per-

ceptual descriptors rather than low-level shape features for the task of image

description and classification?

2. Would describing image regions using the visual color, texture, and shape

concepts outperform using a set of low-level image features and thus narrow

the semantic gap?

This thesis presents the following contributions in the domain of region-based image

indexing and automatic image annotation:

• Addressing the semantic gap between the low-level image features and the

high-level human interpretation of their visual properties in describing image

regions (Chapters 3 and 4 and evaluated in Chapter 6);

• Presenting a framework for the extraction and characterization of visual shape

concepts (Chapter 4 with its evaluation in Chapter 6); and

• Proposing an automatic indexing framework that is based on the visual con-

ceptual information to learn a set of high-level semantic categories to classify

image regions (Chapters 3 and 5 and evaluated in Chapter 6).

3



1.1 Thesis structure

1.1 Thesis structure

The rest of this thesis is organized as follows:

Chapter 2 - Literature review. This chapter reviews and presents previous work

and research aspects in the areas of content-based image retrieval, computer vision,

and automatic image annotation. It also reviews the main problem in content-based

image retrieval and automatic image annotation,‘the semantic gap,’ and reviews

several approaches to address this gap. The work presented in this thesis utilizes

some techniques from this literature. This chapter gives the reader an overview of

this field so as to highlight the main context of this thesis.

Chapter 3 - The visual conceptual information illustrates a main contribution

of this thesis, which is using the visual conceptual information to describe and classify

image regions. This chapter also reviews the frameworks adopted from the literature

to characterize the visual color and texture concepts extracted from image regions.

Chapter 4 - A framework for the extraction and characterization of the

conceptual information of shapes. This chapter presents another main contri-

bution of this thesis, which is a framework for the characterization and extraction of

visual shape concepts of image regions. Characterizing visual shape concepts has not

been widely studied as has visual color and texture concepts. A framework for the

extraction of visual shape concepts is detailed in this chapter.

Chapter 5 - Supervised learning algorithms for learning semantic cate-

gories. This chapter presents a theoretical overview of supervised machine learning

algorithms that will be used in this thesis to learn image semantics using the visual

conceptual information extracted from image regions. It also presents a notation and

problem formulation necessary for the task of classifying image regions into high-level

semantic categories using the visual conceptual information.

4



1.1 Thesis structure

Chapter 6 - Experimental validation. This chapter presents all experiments

carried out to illustrate the concepts and prove the assertions presented in the

earlier chapters of this thesis. It starts with an overview of the implementation and

experimental validation of the visual color and texture concepts’ characterization

framework. It then details the implementation of the framework for extracting the

visual shape concepts of image regions. The semantic-based region classification using

the visual conceptual information is then presented. It entails conducting empirical

comparison between the supervised learning algorithms presented in Chapter 5 to

classify image regions. Comparison with a baseline method is also presented for

each learner. Lastly, an experiment on retrieval using visual concepts to reflect the

perceptual properties of image regions is demonstrated.

Chapter 7 - Conclusion and future directions discusses the main findings of

this thesis. It summarizes the main research contributions presented in this thesis

and some suggestions for potential research work that could be carried out to expand

this research work.
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Chapter 2

Literature Review

This chapter reviews approaches, systems, and techniques in image indexing and

retrieval. State-of-the-art research on image retrieval frameworks is discussed starting

from the first class of image retrieval frameworks using manual text annotation,

moving to semantic-based image indexing. The main obstacle for image retrieval

systems, known as “the semantic gap,” is illustrated and research work that aims to

narrow this gap is reviewed.

2.1 Text-based image retrieval

The first class of image retrieval approaches is based on textual annotation of images.

The textual annotations are keywords provided by human users to describe the

image content. The annotations provided with images are then used by database

management systems to allow text-based retrieval of images (Chang and Fu; 1980;

Chang et al.; 1988).

This class of systems relies fully on human understanding of image content. De-

scriptions of image content (scenes, objects, etc.) may vary from one annotator to

another, and this inconsistency among human annotators is the first drawback of
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this class of systems. Another key issue related to this class of systems is the labor

factor and the time it consumes to annotate images. Annotating images manually is

a cumbersome and expensive task especially for large-scale image collections (Siu

and Zhang; 2003).

From the user side, these systems have been labelled Query-By-Keywords (QBK).

QBK users use high-level semantic concepts to query images from the database. The

queries are represented using textual keywords and terms. Again, the time consumed

by manual annotation and subjectivity in choosing a set of “meaningful” keywords

to be used for retrieval are limitations. Despite the fact that this method lacks an

effective, consistent, and scalable indexing scheme, it remains in use because it is a

relatively easy way to add image search to relational database management systems

that were designed solely to handle text, and retrieval systems that are primarily

document-based.

Current Web-based image retrieval systems using text-based search for multimedia

data (such as Google1 and Bing2) use the surrounding text extracted from HTML

pages to index and retrieve images. The surrounding text includes the URL of the

image, the image file name, the ALT tag of the image, the title of the webpage, and

the text contextual to the image. While this technique addresses cost and scalability

to some extent, the surrounding text does not necessarily provide relevant information

about the visual content of the image, so depending on it solely is insufficient for

successful indexing and retrieval.

2.2 Content-based image retrieval

At the most elemental level, a digital image can be described by the color and location

of the pixels it is composed of. Text annotation relies on the human eye to detect

patterns of color and contrast to make sense of an image, and natural language to

1http://image.google.com
2http://image.bing.com
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describe these patterns along with whatever additional contextual information is

available to the annotator.

Content-based image retrieval systems were introduced in the mid 1990s to overcome

the problems associated with the text-based image retrieval mentioned above. In the

last decade, a number of content-based image retrieval systems have been proposed

such as IBMs QBIC (Flickner et al.; 1995), Visualseek (Smith and Chang; 1997),

Photobook (Pentland et al.; 1996), FourEyes (Picard et al.; 1995), Chabot (Ogle and

Stonebraker; 1995), MARS (Mehrotra et al.; 1997), Blobworld (Carson et al.; 2002),

and Virage (Bach et al.; 1996). Extensive surveys for content-based image retrieval

systems can be found in Lew et al. (2006); Veltkamp and Tanase (2002); Smeulders

et al. (2000).

The indexing in content-based approaches relies on extracting a set of appropriate

features describing the low-level content of images. These features are called low-level

since they are extracted directly from digital representations of images and described

in numeric representations without characterizing their semantic meaning. Feature

extraction is a necessary pre-processing step for image retrieval. A more detailed

discussion of the extraction process is deferred to Section 2.3 of this chapter and

Chapter 3; for now it is sufficient to think of low-level features as typified by color,

texture, and shape.

Content-based image retrieval approaches do not rely on symbolic representation or

textual annotation of images. A human user can query through query-by-example

(QBE) in which the user provides an image as a query to retrieve similar images, and

query-by-canvas (QBC) in which the user draws an example that approximates the

image he/she would like to retrieve.

In QBE approaches, users use images as queries so that the retrieval framework

finds similarities with the images in the database. Approaches using the QBE

technique include QBIC (Flickner et al.; 1995), Photobook (Pentland et al.; 1996),
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2.3 Visual descriptors and feature extraction

and PicToSeek (Gevers and Smeulders; 2000). And in the QBC technique, users

draw a visual query using color, texture, and shape to approximate their queries.

Image retrieval frameworks then find similarity between the image drawn and images

in the database.

2.3 Visual descriptors and feature extraction

QBE and QBC depend solely on comparing low-level image features of the query

image provided (or drawn) by users and the images in the database. The selection

of image features and a measure of similarity is crucial in these approaches, since

these will determine the query results.

Feature extraction and application of a vocabulary of visual descriptors is a pre-

processing step for image retrieval. Image features aim to capture and describe

the visual properties of images either globally for the entire image (such as color

histogram) or locally for a small cluster of pixels (such as extracting color, texture,

or shape features from image regions) (Datta; 2010).

2.3.1 Similarity measures

The images in the database are indexed as feature vectors in an N dimensional

Euclidean space. To retrieve images from the indexed set, the retrieval system

computes the distance between a feature vector of a query image and the feature

vectors in the feature space. The smaller the distance, the higher the similarity to

the query image.

The Euclidean distance is one of the most commonly used measures to calculate the

distance between feature vectors. Minkowski distance is considered a generalization

of the Euclidean, Manhattan, and Chebyshev distances (Hu et al.; 2008).
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The Minkowski distance between two vectors q = (x1, x2, ..., xn) ∈ Rn and f =

(y1, y2, ..., yn) ∈ Rn is defined as

d =

(
n∑
i=1

|xi − yi|p
)1/p

(2.3.1)

The Manhattan distance is defined when p = 1 while the Euclidean distance is when

p = 2. Chebyshev distance is obtained when p is approaching infinity.

Other distance measures that have been used to measure the distance between

images in content-based image retrieval include Chi-square (χ2), Earth Mover’s

Distance (EMD) (Rubner et al.; 2000), and cosine distance. Zhang and Lu (2003b),

Eidenberger (2006), and Hu et al. (2008) review and present experimental evaluation

of the most common distance measures used in image retrieval frameworks.

2.3.2 Color

Color is an important feature in image presentation and description. Color repre-

sentation has been studied in many areas such as psychology, arts, and science. In

computer vision and image retrieval, colors are used to describe image content by

assigning the image pixels on a color space. Using the extracted color features, a

query image can be then retrieved based on similar compositions of the color space.

A number of color spaces exist in the literature such as such RGB (Red, Green,

Blue), HSV (Hue, Saturation, Value), CMYK (Cyan, Magenta, Yellow, Black), and

YCbCr. Other color spaces that are close to human perception include HSV (Hue,

Saturation, Value) and HMMD (González and Woods; 2008; Manjunath et al.; 2001).

The color descriptors are used to extract colors from images and represent them

in their corresponding color spaces. A number of color features have been used

to represent the low-level color features such color histogram (Swain and Ballard;

1991; Gong et al.; 1996), color correlogram (Huang et al.; 1997), color moments
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(Stricker and Orengo; 1995), and the MPEG-7 standards color descriptors such as

the dominant color descriptors, color layout descriptors, scalable color descriptors,

and color structure descriptors (Manjunath et al.; 2002).

A color histogram is a simple and efficient way to represent the distribution of colors

in an image region. It represents the number of pixels having colors in each fixed

list of color ranges of a color space. The color correlogram was presented to tackle

the issue of discarding the spatial information of color location and pixel relation

to the pixels as in color histogram and color moments. Color correlogram records

the distances of each pair of colors in an image to represent their spatial correlation

(Huang et al.; 1997). It is represented as a table of color pairs where the n−th entry

for a color pair (x, y) specifies the probabilistic estimation of having a pixel of color

x at a distance n form a pixel y as specified by Huang et al. (1997).

These color descriptors represent the mechanics of colors rather than representing

them in a conceptual manner as the human users comprehend and understand.

2.3.3 Texture

Another important feature to describe image content is the texture features. Texture

can be viewed as capturing and describing the repeating patterns in images (Petrou

and Sevilla; 2006). The study of texture in the field of computer vision has led to

the identification of several descriptors (Nixon and Aguado; 2008).

Texture features can be broadly classified into statistical and spectral approaches.

Statistical approaches aim at characterizing the local statistical properties to describe

textures such as the Co-occurrences matrix (Haralick et al.; 1973) and Tamura

features (Tamura et al.; 1978). The statistical approaches are considered to be

compact and robust to describe texture features. For example, Tamura features are

scale and orientation invariant.
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The other category, spectral feature extraction techniques, involves transforming

images into frequency domain and then calculating the features from the transformed

images. These include Fourier transform (Petrou and Sevilla; 2006), Gabor filters

(Manjunath and Ma; 1996), and Wavelet transform (Wang et al.; 2001).

Texture descriptors such as Gabor and Wavelet are widely used in image retrieval

systems. Experiments studying human vision have shown that these descriptors match

with human vision and capture aspects related to human perception (Manjunath

et al.; 2002; Wang et al.; 2001; Manjunath and Ma; 1996; Liu, Zhang, Lu and

Ma; 2007). Moreover, Manjunath and Ma (1996) have shown that Gabor filters

outperform other texture feature extraction techniques such as the wavelet transform.

Gabor filters have the advantage that texture features are captured in multiple

orientations and scales.

The MPEG-7 adopted three texture descriptors, namely: homogeneous texture

descriptor (HTD), texture browsing descriptors (TBD), and edge histogram descriptor

(EHD) (Manjunath et al.; 2002).

Representing images using only texture features is not discriminative enough since

texture descriptors are computed over gray-scaled images and visual color information

is not taken into account. Thus, images of similar textures but different colors,

which properly belong to different semantic classes, would be considered similar

by considering the texture descriptors alone. Furthermore, these texture feature

extraction techniques concentrate at the low-level texture feature computation and

extraction from images and do not consider the symbolic representation and the

human understanding of the texture features.
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2.3.4 Shape

Various low-level shape feature extraction techniques exist in the literature (Nixon

and Aguado; 2008). Basically, they are classified under two main categories: contour-

based and region-based shape descriptors.

Dealing with shapes of image objects is not a straightforward task. To identify

shapes of objects that reside in images, region identification processes are required.

This includes applying edge detection tools or segmentation algorithms to extract

the regions of interest in images. Having segmented an image, shape features can be

extracted from segmented regions. However, the task of detecting shapes is difficult

to completely automate.

Shape descriptors aim to extract and describe shapes in a way that is consistent with

human perception. For this, human intervention to accurately characterize shapes

in images is required, in particular, in fields where accurate detection of shapes is

critical such as medical imaging.

Shape feature extraction techniques are typically divided into two categories; contour-

based and region-based shape descriptors. The contour-based shape descriptors use

only the boundary information to represent shapes and ignore the shape interior

content. Examples of contour-based shape descriptors include Fourier descriptors

(Zahn and Roskies; 1972), Polygonal approximation (Gu; 1995), and Curvature scale

space descriptors (Abbasi et al.; 1999). On the other hand, region-based shape

descriptors exploit both boundary and interior information of the shape. All pixels

within the region are taken into account to obtain a shape representation. They

are robust to noise and shape distortion. Common region-based descriptors exist in

the literature such as Zernike moments (Teague; 1980), Generic Fourier Descriptors

(Zhang and Lu; 2002b), and Grid representation (Lu and Sajjanhar; 1999). Zhang

and Lu (2004, 2001); Yang et al. (2008) provide recent in-depth reviews for low-level

shape feature extraction algorithms and techniques.
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2.4 Image segmentation

2.4 Image segmentation

Image segmentation aims to extract image regions of objects that reside in images. It

is an important pre-processing step for image content analysis, object detection, and

object tracking systems. The main aim of image segmentation is to allow access at

the region level to extract local image features rather than extracting global features

from the whole image. It can be considered the first pre-processing step towards

extracting image features in region-based image retrieval systems.

Having an accurate and semantically meaningful image segmentation is still a

challenging task. There is a gap between how humans characterize objects in images

and how segmentation algorithms characterize and extract them from images.

A number of segmentation techniques exist in the literature that can be roughly

categorized as clustering based techniques (Yang et al.; 2009), grid based techniques

(Lim et al.; 2003), edge detection techniques (Chan and Vese; 2001), graph based

techniques (Felzenszwalb and Huttenlocher; 2004), and region based techniques such

region shrinking, growing, splitting, and merging (Tremeau and Borel; 1997; Deng

and Manjunath; 2001).

The grid based technique is considered a simple method that divides images into

blocks for image feature extraction (Zhang et al.; 2012). Vailaya et al. (2001);

Lim et al. (2003); Qi and Han (2007) are examples of systems that use grid based

segmentation.

Clustering based technique can be considered a relatively simple segmentation

technique. The main idea of clustering based segmentation is to cluster image pixels

into separate groups. The simplest implementation of clustering based segmentation

is to cluster image pixels using their extracted color values in some color space. This

works well on homogeneous color images, which is not the case of natural images that

are rich in colors and texture patterns (Deng and Manjunath; 2001). A segmentation
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technique to address this problem is presented in Deng and Manjunath (2001).

This segmentation algorithm aims to segment images and videos into homogeneous

color-texture regions. They separate the segmentation process into two independent

process: color quantization and spatial segmentation of images.

Graph-based segmentation represents the segmentation problem in terms of a graph

in which the image pixels are nodes of a graph and the segmentation algorithm is

to find the most accurate edges between nodes in the graph. Weights on edges are

computed based on some property of the pixels it connects such as their intensities

(Felzenszwalb and Huttenlocher; 2004).

Region-based techniques aim to find homogeneous characteristics of pixels in images

(Zhang et al.; 2008). Pixels with similar patterns are then grouped to from regions

in images. Region-based segmentation algorithms are broadly categorized as region

growing/shrinking methods and split-and-merge methods (Zhang et al.; 2008). While

region-based methods depend on the similarities between neighbor pixels, edge-based

methods, also known as boundary-based methods, are based on some discontinuity

property of pixel values (Freixenet et al.; 2002). This category is based on boundary

detection algorithms, such as Canny edge detection (González and Woods; 2008),

to characterize boundaries of objects which can be viewed as boundaries of image

regions. A detailed review and experimental comparison on region and edge-based

segmentation techniques can be found in Freixenet et al. (2002).

Some of the prominent segmentation algorithms in the literature include the normal-

ized cuts (Shi and Malik; 2000), statistical region merging (Nock and Nielsen; 2004),

local variation algorithm (Felzenszwalb and Huttenlocher; 1998), JSEG (Deng and

Manjunath; 2001), Blobworld (Carson et al.; 2002), and the mean-shift algorithm

(Comaniciu and Meer; 2002).

Evaluating image segmentation algorithms has attracted a considerable amount of

research effort in the recent years due to the importance of image segmentation.
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Estrada and Jepson (2009) conduct experimental comparison between four edge-

based segmentation algorithms. They use human segmentations from the Berkeley

segmentation database (Martin et al.; 2001) as ground truth to evaluate the seg-

mentation quality of the compared algorithms. They have shown that the Spectral

Embedding MinCut (Estrada and Jepson; 2005) outperforms other segmentation

algorithms such as mean-shift (Comaniciu and Meer; 2002), normalized-cut (Shi and

Malik; 2000), and local variation algorithms (Felzenszwalb and Huttenlocher; 1998).

Ge et al. (2006) present a benchmark for evaluating image segmentation. They define

image segmentation as the process of extracting the single most perceptually salient

structure from an image. This benchmark is experimentally evaluated on six image

segmentation methods. Their study concludes by stating that there is no particular

good segmentation algorithm to segment individual objects from images.

Detailed reviews on image segmentation and its evaluation can be found in Zhang

et al. (2008); Estrada and Jepson (2009); Ge et al. (2006); Freixenet et al. (2002);

Unnikrishnan et al. (2007).

In the context of this thesis, a region-based image indexing framework is presented

using the visual conceptual information. The problem of image segmentation and

the impact of segmentation accuracy on the performance of image retrieval are out

of the scope of this work. The benchmark used to evaluate this framework, which

is the segmented and annotated IAPR TC-12 (Escalante et al.; 2010), provides all

images with their regions segmented manually rather than using state-of-the-art

image segmentation techniques. Since the main contribution of this thesis is to

use the visual conceptual information to describe and classify image regions, this

dataset was selected as images are segmented manually by human users. The manual

segmentation of image regions reflects the understanding of the human user of the

boundaries of image objects (regions) reside in images. Accordingly, this dataset

was selected to be used in the experiments conducted in this thesis especially a
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framework for characterizing the visual shape concepts of the segmented image

regions is presented in this thesis.

2.5 The semantic gap

Retrieving images based on their image features has indeed overcome the problems

of the manual annotation of images in the early text-based approaches. Nonetheless,

content-based image retrieval systems that utilize low-level features for retrieval

do not take into account the semantic characteristics of an image region or the

semantic scene conveyed in the image. Evaluation of systems using techniques such

as confusion matrix, precision and recall, and F-scores (cf. Section 6.1.1) have

shown that there is a significant difference between the high-level concepts that users

normally use for their query through natural language interaction and the image

content described by the low-level features. In other words, there is a gap between

content description based on low-level features and the human understanding of

image content. This gap is known as the semantic gap.

Smeulders et al. (2000) describe the semantic gap as follows:

The semantic gap is the lack of coincidence between the information that

one can extract from the visual data and the interpretation that the same

data have for a user in a given situation

This gap describes the lack of correspondence between the low-level features extracted

from images and the semantics conveyed in images. The semantic gap implies that

it is difficult to automatically characterize semantic content of an image through the

extracted low-level features. For example, if the similarity between two images is

measured based on their color distributions, then entities such as an orange and a

basketball could be considered the same since they have a similar color distribution.

This explains the unsatisfactory results between human users expectations from
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an image retrieval systems and the results returned. There is a huge gap between

the image description techniques and the richness of human interpretation of image

content (Zhang et al.; 2001).

The semantic gap is one of the biggest hurdles faced by the content-based retrieval

and computer vision research communities. A tremendous amount of research has

been carried out to narrow this gap but the issue is still far from being resolved.

2.6 Semantic-based image retrieval

In order to address the semantic gap, and overcome the aforementioned problems

associated with the manual annotation, a new class of image retrieval systems has

been introduced. Semantic-based retrieval, also called concept-based retrieval, aims

to capture the semantic meanings conveyed in images and describe them using

high-level descriptors based on human perception (e.g., describing an image with

“sky”, “trees”, . . . ).

The goal of these systems is to automatically annotate image(s) with high-level

semantic concepts, and classify images into semantic classes (Smeulders et al.; 2000).

It is also referred as Automatic Image Annotation (AIA), in which text-based

descriptors characterizing objects in an image are assigned to that image to facilitate

further search for images from the image database. The annotation might be at the

region level of image objects or a set of keywords that describe the semantic scene of

the whole image.

The aim of automatic image annotation is to find a correlation between the pixels

creating an image with a relevant set of keywords reflecting the semantic meaning

of objects/images as humans comprehend and understand them. Thus, the process

of annotating an image can be seen as a process of translating image content from

a numerical representation into high-level descriptors reflecting its visual content
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(Duygulu et al.; 2002). As a result of the annotation, users can query images using

the symbolic descriptors.

Semantic-based indexing approaches entail analyzing the image/region content to

find the most accurate high-level descriptor to describe the image or image region. In

this manner, the low-level image contents in their numeric representation are mapped

to symbolic descriptions understood by users. Human users can then use symbolic

concepts to query images. In this manner, the gap between human understanding

of images and their representation is narrowed. As mentioned previously, feature

extraction is a backbone and the main pre-processing step of any image retrieval

system. Selecting an adequate set of image features is as necessary as selecting

appropriate machine learning algorithm that fits well with a certain problem. Section

2.3 of this chapter has presented low-level color, texture, and shape features used in

image classification and retrieval.

Semantic-based retrieval is still a challenging task, which has been approached using

a number of methods and techniques. Liu, Zhang, Lu and Ma (2007) present in their

extensive survey five main methods used in semantic-based retrieval to overcome the

semantic gap: (1) using relevance feedback in which users are involved in deciding the

relevant/irrelevant images in the retrieval process; (2) using some domain knowledge

to define ontologies of high-level concepts for image annotation; (3) making use

of machine learning tools to correlate a set of extracted features with high-level

descriptors; (4) using semantic templates to support high-level image retrieval; and

(5) using surrounding text extracted from web-pages as well as the visual content of

images on the web for retrieval. The following sections provide an overview of each

of these methods.

2.6.1 Relevance feedback

Relevance feedback has been widely studied to narrow down the semantic gap in

image retrieval frameworks (Zhou and Huang; 2003). It is an on-line process that
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aims to learn the intention of users by taking into account their feedback on the

results returned by the retrieval framework. It was first introduced in text document

retrieval frameworks (Zhou and Huang; 2003). This idea then attracted researchers

to apply it to image retrieval, in particular early content-based retrieval approaches

in the 1990s.

The main idea is to narrow the semantic gap between the query image and the

images retrieved by taking into account the users thinking and understanding. In the

relevance feedback scheme, users annotate images retrieved as relevant or irrelevant to

their query. Accordingly, retrieval precision is refined based on the human perception.

The aggregated information from end-users is used for continuous learning to enhance

the results for following queries. It was shown that incorporating relevance feedback

in image retrieval helps to dramatically boost retrieval performance (Zhou and Huang;

2003).

Zhou and Huang (2003) provide a typical scenario for relevance feedback in content-

based image retrieval systems:

1. The initial retrieved images are shown by the system in response to a user’s
query using query-by-example, query-by-sketch, keyword, . . . , etc.;

2. User annotate retrieved images as relevant or irrelevant (positive or negative)
to their queries; and

3. Machine learning algorithm learns the feedback provided by users. Return
to step 2. The system keeps repeating steps 2 and 3 to enhance the retrieval
results of the framework.

Various machine learning algorithms have been employed for learning users feedback

such as support vector machines (Zhang et al.; 2001; Tong and Chang; 2001; Jing et al.;

2004), decision trees (MacArthur et al.; 2000), and Bayesian learning (Vasconcelos

and Lippman; 2000a; Su et al.; 2003).

To illustrate the research interest, Rui et al. (1997) convert the image feature vectors

into weighted term vectors so that they can apply the relevance feedback technique.

Zhang et al. (2001) use support vector machines classifier to learn from training data
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of relevant/irrelevant images marked by users. Han et al. (2004) present a framework

in which they learn explicit and implicit semantics through a feedback log that

records users feedback information over time. Chatzichristofis et al. (2010) improve

the retrieval scores by presenting an automatic relevance feedback method. Zhou

and Huang (2003); Crucianu et al. (2004) present extensive reviews for relevance

feedback and its use in content-based image retrieval.

Though relevance feedback has proven to narrow the semantic gap by taking into

account the human users’ opinion of the retrieved documents, the processes of

relevance feedback itself is considered to be time consuming as human users have to

annotate the set of returned images as relevant/irrelevant overtime.

2.6.2 Incorporating semantic hierarchies of concepts organized

in ontological knowledge base

The use of ontologies comprising semantic hierarchies of objects has been used to

improve the image annotation process (Hyvönen et al.; 2003; Mezaris et al.; 2003;

Styrman; 2005; Liu, Zhang, Lu and Ma; 2007).

Developers of many frameworks have studied the effectiveness of incorporating

ontologies as explicit representations of background knowledge. These frameworks

aim at modeling the contextual knowledge for image understanding and analysis.

The contextual knowledge helps, in particular, in the task of object recognition

within scenes by providing predictions about objects that are most likely to appear

in a specific context (Bannour and Hudelot; 2011), such as object co-occurrences

(i.e., topological information) and the spatial information of object locations in an

image.

Ontologies take advantage of the maturity and advances in text retrieval such as

query expansion, index access, etc. to enhance the retrieval accuracy. Bannour and
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Hudelot (2011) list the targets of using ontologies within image retrieval frameworks

as:

1. A standardized unified description of the low-level image features;

2. Visual description ontology to represent the relations among image features;

3. Knowledge-base to represent the relations between high-level semantic concepts;
and

4. Semantic mapping between the visual level and the high-level semantic level.

2.6.3 Using machine learning tools to infer semantics

Machine learning techniques have proven powerful when employed to help improve

the performance of various multimedia applications (Liu, Zhang, Lu and Ma; 2007;

Datta et al.; 2008; Zhang et al.; 2012).

Machine learning algorithms such as support vector machines, decision tree, nearest

neighbor, etc. have been widely used for classifying images into semantic categories.

The main task of the learner is to establish correspondence between the image

features and the high-level semantic categories.

Machine learning tools used might be supervised such as support vector machines

or unsupervised such as clustering techniques. Comprehensive surveys in this field

can be found in Liu, Zhang, Lu and Ma (2007); Datta et al. (2008); Zhang et al.

(2012). Moreover, experimental comparison of various machine learning algorithms

on classifying image regions is carried out in (Escalante et al.; 2010). Chapter 5

details the theoretical formalism of the machine learning algorithms used in the

experimental chapter (i.e., Chapter 6) as well as review of semantic-based frameworks

and image classification systems that use these algorithms.
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2.6.4 Semantic template

Semantic template is another approach to narrow the semantic gap be defining

representative features for semantic categories. The representative features are

defined by calculating them from sets of images in each semantic category (Liu,

Zhang, Lu and Ma; 2007). Each semantic category is then represented by its semantic

template, and classification models are built using the obtained semantic templates

to classify new input images into high-level semantic categories.

Liu et al. (2008) discretize color and texture features from decision trees by convert-

ing their low-level features into semantic templates. The semantic templates are

constructed by computing the mean of the color and texture features extracted from

sample image regions for each semantic category. The semantic templates are then

used to construct the decision tree to classify new input image regions.

In Zhuang et al. (1999) a relevance feedback process is used to generate semantic

templates. A user submits a query image associated with a keyword describing

that image. The system returns the most relevant images and asks for the user’s

feedback. After some iterations, the centroid of the most relevant images is computed

to represent the class associated with the keyword the user queried.

The issue with semantic templates is that they are not perceptually indicative as

they do not record the perceptual features of image content as they are computed

from the low-level features, such as the centroid of features, to establish template

features of semantic categories.

2.6.5 Surrounding text for web-based image retrieval

Using the contextual information associated with images is mainly used in web-based

image retrieval. As mentioned in Section 2.1, web-based image search engines such
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as Google3 and Bing4 use the surrounding contextual information extracted from

web pages such as image file names and image captions to retrieve images in response

to a user’s query.

The research area of using the surrounding text to enhance retrieval of images

has attracted many researchers to enhance the web-retrieval by extracting a rich

semantic representation from the surrounding text and incorporating text-based and

visual-based techniques to empower the classification and retrieval of images from the

web. Shen et al. (2000) use a set of basic information associated with images: image

file name, image caption, the HTML ALT tag, and the page title. They classify

images into semantic categories using the surrounding text and a relevance feedback

process.

Kherfi et al. (2004) survey techniques and methods used in web-based image retrieval

systems. They state that the presence of noisy information in web-pages is a major

obstacle in using the surrounding contextual information. Zhou and Dai (2007)

present a web-based image search engine that makes use of the surrounding text.

First, candidate images are returned based on their associated text information.

Images relevant to the user query are then identified by analyzing the visual contents

of the returned images. The final search result is generated by combining an image-

based rank of the web pages with a keyword-based rank of the web pages. A model

for integrating surrounding text information with the visual features of images is

presented in Chen et al. (2001).

Clinchant et al. (2011) present a new information fusion technique, namely semantic

combination, for efficiently fusing text and visual image information. More recently,

Fauzi (2012) presents a multifaceted concept-based indexing framework that extracts

the surrounding image information, analyzes its semantics, and classifies it into five

facets. The relationships between the faceted concepts are modeled. This faceted

3http://image.google.com
4http://image.bing.com
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2.7 Visual conceptual information

indexing model relates to the users’ levels of image descriptions and meets user needs

for specific/compound queries. Further reading on this subject can be found in

Kherfi et al. (2004) and Datta et al. (2008).

2.6.6 Summary of semantic-based image retrieval

While the categorization of methods used to address the semantic gap presented by

Liu, Zhang, Lu and Ma (2007) is broad and covers many approaches and techniques

in semantic-based image retrieval, there is an extremely important generation of

methods that aim to address the semantic gap, which they did not consider in their

categorization: the conceptual information of image features. This thesis argues

that visual conceptual information is an important method to narrow the semantic

gap by describing image content using perceptual descriptors that are derived from

human perception. The following section reviews existing systems that characterize

the visual conceptual information of image features.

2.7 Visual conceptual information

Semantic-based image retrieval systems, that operate on conceptual information, are

an important subset of the general semantic-based image retrieval systems. These

systems utilize the perceptual information extracted from images to facilitate indexing

and retrieval. The perceptual properties of image objects as humans understand and

interpret them can be described as the visual conceptual information. The visual

conceptual information can be viewed as a natural way to represent image features

that is derived from the human understanding of the visual properties of image

objects.

These descriptors involve vocabulary to describe the visual features extracted from

images. It is important to distinguish between the vocabulary used in the context

of the visual conceptual information and the vocabulary used in the bag-of-words
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(BOW) representation. In the bag-of-words representation, the term ‘vocabulary’

refers to the clusters generated by clustering the extracted features (typically Scale-

invariant feature transform (SIFT) features: an algorithm that extracts local features

that are invariant to changes in illumination, rotation, scaling, and slight changes in

viewpoint (Lowe; 1999)). As a result, this vocabulary is not derived in accordance

with the human perception as it merely represents the results of a clustering algorithm.

However, in the context of visual conceptual information, the obtained ‘vocabulary’

represents a set of high-level concepts abstracting the image features from their

numerical representation into a set of transparent symbolic descriptors readable

by human users. For example, the conceptual information of the color features

differentiate ‘a red apple’ and ‘a green apple’.

Few studies have considered the conceptual features of image objects. Nakagawa

et al. (2004) suggest mapping image segments to words describing the color, texture,

and shape features as a first step in an image classification framework. Their

implementation of the color names is inspired by the work presented in Mojsilovic

(2002). As for the texture features, they assigned texture-related adjectives adapted

from human perception-based clustering scheme described in Rao and Lohse (1993);

Bhushan et al. (1997). However, the taxonomy used for the shape features is not

explicit. As presented in their work, there is no pre-defined set of shapes used: they

present simple shape-related words like rectangular, circular, angular, flat, jaggy,

protruded, elongated, etc. Even though they utilize the conceptual information to

narrow the semantic gap, they do not use it to query image objects such that the

query reflects the human understanding of these features.

Using visual conceptual information has not gained as much interest as the relevance

feedback method. Most of the solutions to address the conceptualization of the

low-level image features have been mainly proposed for color features, neglecting

shapes and textures.
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2.7 Visual conceptual information

The following sections review frameworks dealing with the conceptualization of the

low-level visual features, which is the foundation for a major contribution of this

work.

2.7.1 Conceptualizing the low-level color features

The extraction of the conceptual color information is guided by the research carried

out in color naming and categorization by establishing a correspondence between

color stimuli and ‘basic color terms’ (Berlin and Kay; 1991). Further work by Gong

et al. (1996) presents a framework for characterizing eleven visual color concepts

in the Munsell HVC (Hue, Value, Chroma) perceptive color space. Conway (1992)

presents a color naming model in which particular points in HSL (Hue, Saturation,

Lightness) color space correspond to 179 predefined color names.

Berk et al. (1982) propose a semantic color classification system named CNS (Color

Naming System) in which the HSL (Hue, Saturation, Lightness) space is quantized

into 627 predefined colors.

Belpaeme (2001) presents a color categorization system through the highlighting of a

multi-agent framework. Agents perceive and categorize color stimuli and communicate

among each other to learn color names.

Liu et al. (2004) introduce a region-based image retrieval system with high-level

semantic color names in which the user is able to query with keywords specifying the

semantic color names with the semantic concepts. Query by regions is supported as

well. The low-level features of colors are extracted in the HSV space and mapped to

one of 35 semantic color names defined in this framework. Liu et al. (2005) introduce

a region-based image retrieval system with 93 high-level semantic color names.

Continuing the evolution of research work that proposes to use color names for the

purpose of image description is van de Weijer and Schmid (2007). Their color naming

is based on the ‘basic color terms’ of Berlin and Kay (1991). Using Bayes law, eleven
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color categories are learned from manually segmented and labelled regions from a

dataset containing images from the E-bay auction website5. Experimentally, they

combined the color names with shape features using SIFT-descriptors in a bag-of-

words representation. Linear SVM classifiers are then trained using the obtained

frequency histograms of the visual words. Their experiments involve measuring the

classification accuracy without including the retrieval. Accordingly, the color names

are not utilized in the retrieval phase.

van de Weijer et al. (2009) use a probabilistic latent semantic analysis (pLSA) model

to learn the eleven color categories of Berlin and Kay (1991). Color categories are

learned on a set of images collected from Google6. This implementation has been also

used by Rusinol et al. (2010) in a framework that combines shape context descriptors

with the visual color concepts to classify image objects.

Hou and Zhang (2007) propose a color conceptualization method that represents

the expectations of the distributions of certain semantic themes. Their method does

not involve mapping the colors in an image into a set of basic color terms; rather it

concerns describing the high-level semantic theme of the image such as “warm” or

“cold” without characterizing the perceptual nature of image features.

2.7.2 Conceptualizing the low-level texture and shape features

Although several computational models and techniques have been proposed for

texture analysis and understanding used in content-based image retrieval systems,

they often fail to capture aspects related to human perception. Belkhatir (2005)

proposes to use a lexicon consisting of eleven texture clusters highlighted in Bhushan

et al. (1997) as a basis for mapping low-level texture features to symbolic categories.

The latter are described by text-based descriptors: bumpy, cracked, disordered,

interlaced, lined, marbled, netlike, smeared, spotted, uniform, and whirly. Nakagawa

5http://www.ebay.com
6http://www.google.com
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et al. (2004) also use this categorization as the basis to represent texture categories

in an image classification system.

As for shape features, many studies involving their extraction and representation

of their low-level features have been proposed (cf. Section 2.3.4). The aim of these

methods and techniques is to capture the low-level shape features of objects depicted

in images (Zhang and Lu; 2004).

For the symbolic shape characterization, two categories of shape taxonomies exist

in the literature. The first proposes to classify shapes according to an application

domain (such as archaeology) and the second describes shapes according to their

geometrical features for the aim of generic shape categorization.

In the first category, most of the work considers proposing domain specific shape

taxonomies and ontologies. For example, Liu, Zhang, Tjondronegoro and Geve

(2007) present a framework for classifying birds based on their shape features. They

introduce an ontology of bird names as the basis of their framework. Another specific

field of study which has developed vocabularies for categorizing and naming shapes is

the archaeology. Black and Weer (1936) use a set of main shape categories describing

well-known archaeological artifact objects.

As far as the generic characterization of shape concepts is concerned, a framework that

involves mapping the image segments to words as the first step of image classification

is proposed in Nakagawa et al. (2004). They presented simple shape-related words

like rectangular, circular, angular, flat, jaggy, protruded, etc. without showing a finite

set of shape names used in their framework. More recently, Jarrar and Belkhatir

(2010) propose a framework for the mapping and symbolic extraction of the shape

features which is discussed further in this thesis in Chapter 4.

Chapter 3 presents the approach of describing images using the visual conceptual

information as well as the theoretical foundation of the state-of-the-art methods

adopted in this thesis to map the low-level color and texture features into visual
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concepts. Subsequently, Chapter 4 presents a main contribution of this thesis: a

framework for characterizing the visual concepts of the shapes of image regions.

2.8 Summary

This chapter has presented the foundation related to the research area of this thesis.

The evolution of image retrieval starting with the manual annotation of images

using text descriptors, then utilizing the visual features from images to overcome

the manual annotation of images forming the content-based image retrieval, then

using the visual image features to infer textual annotations describing the semantic

meanings conveyed in images have been presented. The semantic gap, which is the

main bottleneck in the semantic-based image retrieval has been illustrated along

with a review of approaches and techniques used in the literature to overcome this

gap.

One of the methods to narrow the semantic gap is using the conceptual information of

the visual image features to enrich the description of images in accordance to human

perception. This is the main interest of the work presented in this thesis, which

aims to describe image regions using the visual conceptual information of the color,

texture, and shape descriptors to classify them into high-level semantic categories.

This approach has been presented in Section 2.7 and is explained in Chapter 3.

Chapter 4 also presents a framework for the extraction and characterization of the

visual shape concepts of image regions.
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Chapter 3

The Visual Conceptual Information

3.1 Introduction

Chapter 2 has shown that existing image indexing and retrieval frameworks tend to

use the low-level visual features such as color, texture, shapes, spatial information,

etc. to represent and index image content. However, these features are not descriptive

in the way humans perceive and understand the visual properties of objects depicted

in images. Moreover, these extracted features ignore the conceptual properties of

the object or the scene they represent. There is still a, ‘semantic gap,’ between the

low-level visual features and the richness of the human interpretation of their visual

properties.

This chapter aims to address the semantic gap by using the visual conceptual

information for the task of image description and indexing. In doing so, human

users can use these visual conceptual features to specify the perceptual properties of

the semantic objects in their queries. For example, instead of direct involvement of

users in the time-consuming relevance feedback process, users can specify the visual

properties of image objects in their queries. The results are then filtered according

to the visual properties of color, texture or shape they provided.
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To illustrate this, an example using the query “apple” on the Google image search

engine1 is shown in Figure 3.1. We can see that the result contains images of red

colored apples, some of green colored apples, and some image of the Apple Inc. logo.

The user, however, might be interested in retrieving only red colored apples. We can

see that among the top 10 images retrieved, 5 of them contain the logo of Apple

Inc. which is irrelevant to what the user is looking for. However, after modifying the

query to include a simple conceptual visual property, e.g., “red apple”, it can be seen

that the results obtained are different as shown in Figure 3.2. Clearly, all the results

obtained represent “red apple” since the images are filtered to those of a red color.

The same applies for Figure 3.3 which shows results for the query “green apple”.

Figure 3.1: The results of the Google image search for the word “apple”

Figure 3.2: The results of the Google image search for the query “red apple” speci-
fying the color term red

1http://image.google.com
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Figure 3.3: The results of the Google image search for the query “green apple”
specifying the color term green

This clearly has an impact on the precision of the results obtained. Querying using

one keyword (such as apple) will retrieve all objects annotated with the term “apple”

in the dataset. As far as the semantic-based image retrieval is concerned, the system

will retrieve a set that maximizes the probability of the queried object based on the

examples used in training the system.

The previous example is based on Google’s image search approach in which the

surrounding text, image caption, page title, etc. are used to do the retrieval (cf.

Chapter 2, Section 2.6.5). The aim of this thesis is to use the visual information

extracted from images to classify classify them into semantic categories. This is

achieved using supervised machine learning algorithms that learn semantic categories

using the visual features extracted from image regions. Each image region is labeled

with a class label and the supervised learning algorithm establishes correspondence

between image regions and their class labels.

Classifying images from the web using image captions and the surrounding contextual

information (cf. Section 2.6.5) is out of the scope of this project.

Let us consider the “red apple” and “green apple” examples. If the indexing

framework is trained with the semantic concept “apple”, then there might be red as

well as green images labelled with the semantic concept “apple” in the training set.

Retrieval is based on finding the result that maximizes the probability. To solve such
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a problem, the easiest and simplest implementation is to filter the training examples

of the category apple into two separate categories: red apple and green apple. Then

for a new input instance it will be annotated with “red apple” or “green apple”.

However, this solution is not practical since both green apples and red apples are

apples. Moreover, this solution will require human subjects to manually label and

categorize the images of each class into subclasses which consumes substantial time

and effort. Besides that, for some other semantic categories, such as “sky”, there

is a diversity of sub-classes, for example, red sky, light-blue sky, dark sky, blue sky,

night-view sky, etc. In this case, the annotation and categorization will consume

even more time and effort.

Motivated by this problem, this thesis considers the “visual conceptual information”

of the image objects and scenes as a robust method that is based on the human

interpretation of the visual properties of the image features. In doing so, images

and image objects are automatically indexed using their visual conceptual properties

instead of low-level features that are represented by numbers.

The visual conceptual information involves representing the low-level visual features

using concepts that conform with human perception. It can be viewed as a natural

way, based on the human understanding of the image visual features, to represent

the image features. The visual conceptual information is also referred to as visual

concepts in the context of this work.

The visual concepts can also be seen as a method to quantize the low-level image

features into human-derived representations that will be used with some learning

algorithms, especially those that are close to the way humans think, namely rule-based

classifiers which are most commonly represented in decision trees.

Advantages of using the visual conceptual information include

• Addressing the semantic gap by allowing human users to leverage these visual

concepts in refining the queries as opposed to relevance feedback systems.
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3.2 Theoretical models to characterize the color and texture concepts

• Tackling issues related to indexing images in high dimensional spaces, as these

high-level concepts are a compact representation that is mapped from the

low-level features which are usually of high-dimensions (102 and 103).

• Tackling the issue of the wide ranges in the feature spaces for a given semantic

category such as “sky” which might be light-blue sky, cloudy sky, dark sky, or

red sky (at sunset or sunrise) as illustrated previously. This is addressed by

indexing the semantic concepts taking into account the semantic categories

and distribution of the conceptual information of the image features.

This thesis aims to characterize the conceptual features in accordance to the human

understanding. Thus, the color, texture, and shape features are used as human

users can describe them using words contrarily to using other set of features such as

Scale invariant feature transform (SIFT) (Lowe; 1999) or Speeded up robust features

(SURF) (Bay et al.; 2008) that are extracted from interest points in images.

The following section reviews frameworks for mapping the low-level color and texture

features into their corresponding visual conceptual information. Then the theoretical

formation of the framework to characterize the visual color and texture concepts

adopted in this thesis are presented in detail. Chapter 4 introduces a framework for

the extraction and characterization of the visual shape concepts.

3.2 Theoretical models to characterize the color and

texture concepts

To use the conceptual information of the visual properties of images, we must describe

images using a pre-defined set of visual concepts. These categories describe the

nature of the color, texture, and shape information extracted from image objects.

The main aim is to use the visual concepts to describe and index image regions. This

involves describing image objects in symbolic words reflecting the perceptual nature
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3.2 Theoretical models to characterize the color and texture concepts

of image objects as humans perceive and understand them. The main idea is to use

the perceptual visual information of the image properties (such as color, texture,

and shape features) to describe images rather than using the low-level features in

their numeric representation. Each image region is rather described using symbolic

perceptual descriptors that conform to the human understanding and interpretation

of their visual properties. The set of characterized symbolic descriptors are then

used to establish correspondence with a set of high-level semantic categories that

describe the nature of image objects. These symbolic descriptors can be viewed as

mid-level features between the low-level image features and the high-level semantic

categories. For example, a football would be described as circular in shape, white

and black in color, with a netlike texture. These visual conceptual properties of

the ‘football’ object are utilized to represent image objects rather than the numeric

low-level image features.

The representation of image regions consists of a histogram describing the probability

distributions of the predefined symbolic color, texture, and shape categories. The

obtained histograms comprise perceptual information and are derived from the human

perception and understanding of the visual properties of image objects. So, users can

use the set of characterized symbolic descriptors to specify the properties of objects

they would like to retrieve. For example, users can specify the perceptual color

information of objects to retrieve such as “people wearing red clothes” or “people

wearing purple clothes”. Figure 3.4 shows an example of using the visual concept

representation to describe image regions. The low-level color, texture, and shape

features are mapped to a set of perceptual categories. The first step is to extract

the low-level color, texture, and shape features to extract the visual concepts. These

are characterized by models mapping their low-level features into symbolic visual

concepts. The output of each model is a histogram of the corresponding visual

concepts over an image region as illustrated in Figure 3.4. The set of characterized
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visual concepts are concatenated in a unified representation that is used by a machine

learning algorithm to learn semantic meanings of image regions.

Characterizing 
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Figure 3.4: An example of describing an image region using the visual conceptual
information

3.2.1 Characterizing conceptual color information

Research following Berlin and Kay (1991) have revolved around stressing a step of

correspondence between color stimuli and “basic color terms” which they characterize

by the following properties: (a) their application is not restricted to a given object

class, for example, the color characterized by the term “olive color” is not valid; (b)

they cannot be interpreted conjointly with object parts, e.g., “maple leaf color” is

not a valid color; (c) their interpretation does not overlap with the interpretation of

other color terms; and finally (d) they are psychologically meaningful.

Further work proposed in Gong et al. (1996) involves characterizing perceptual colors

in the HVC (Hue, Value, Chroma) perceptive color space. The latter belongs to

the category of user-oriented color spaces, as opposed to hardware-oriented spaces
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3.2 Theoretical models to characterize the color and texture concepts

such as RGB (Red, Green, Blue). User-oriented color spaces define color as being

perceived by a human through tonality (describing the color wavelength), saturation

(characterizing the quantity of white light in the color spectral composition) and

brightness (related to color intensity).

The model of characterizing the conceptual color information adopted in this thesis is

based on the model proposed by Gong et al. (1996). Eleven perceptual color concepts

are defined that are: green (c1=Gn); cyan (c2=C); skin (c2=Sk); gray (c4=G); Red

(c4=R); orange (c4=O); yellow (c4=Y); purple (c4=P); black (c4=Bl); white

(c4=W); and blue (c2=Bu). A color descriptor C that contains the probability

distribution of each of the eleven color concepts in a an image region r is obtained as

C = {p(c1|r), p(c2|r), . . . , p(c11|r)} (3.2.1)

where p(ci|r) is the i -th color concept of the 11 aforementioned color concepts.

The process of characterizing these conceptual color categories involves algorithmically

transforming the extracted low-level color features in the RGB color space to tonality,

brightness, and saturation values in the perceptually uniform HVC color space. The

mapping between the low-level features and the color categories is detailed in Chapter

6, Section 6.2.1.

3.2.2 Characterizing visual texture concepts

Several studies have proposed algorithms and techniques concerning the low-level

texture features computation and extraction from images (cf. Section 2.3.3). As far

as the symbolic representation and the human understanding of the texture features

is concerned, few attempts have been made to propose ontologies and taxonomies

for symbolic texture characterization and naming. Bhushan et al. (1997) conduct

a psychological study of human perception of textures. They present a texture

lexicon consisting of eleven texture categories. The computational model for the
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characterization of the symbolic texture features presented in this thesis involves

mapping the low-level texture features into the eleven texture concepts presented in

their study.

The computational model for texture extraction adopted in this thesis captures

aspects related to human perception. Therefore, it is inspired by the work presented

in Leow and Lai (1999) where a computational framework for texture extraction,

which is the closest approximation of the human visual system, is proposed. The

action of the visual cortex, where an object is decomposed into several primitives

by the filtering of cortical neurons sensitive to several frequencies and orientations

of the stimuli, is simulated by a bank of Gabor filters (cf. Section 2.3.3). However,

as opposed to Leow and Lai (1999) which operates at the global level of an image,

this work focuses on computational texture extraction at the image region level.

Therefore, each region is characterized by its Gabor energy distribution within five

spatial frequencies covering the whole spectral domain and six angular orientations.

The values of these parameters are not reported in the original work in Belkhatir

(2005).

Table 3.1 shows the eleven texture categories and their descriptions.

The process of mapping the low-level texture features into texture concepts is detailed

in Section 6.2.2 in Chapter 6. Again, this framework is adopted from the literature

to be integrated with the visual color and shape concepts to index and represent

image regions.

These eleven textures define a feature vector T which contains the probabilistic

estimation of the aforementioned texture categories over an image region r such that

T = {p(t1|r), p(t2|r), . . . , p(t11|r)} (3.2.2)

where p(ti|r) is the i -th texture concept in the set of defined 11 texture concepts.
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Texture category Description
Bumpy this texture cluster gathers textures with random 3-dimensional

imperfections

Cracked comprises textures exhibiting random linear orientation

Disordered gathers textures that do not present any structure nor
any dominant orientation

Interlaced gathers structured textures with a weave-like structure

Lined consists of linearly oriented textures (the orientation is along
a straight line)

Marbled consists of veined or striated textures

Netlike consists of texture with two-directional characteristic
features combined to form a weave. Textures in the
category ‘disordered’ differ from textures in this category
as they present a certain amount of variation and randomness

Smeared groups textures presenting some disfigurement. It denotes
negative aesthetics

Spotted consists of textures with representative features being
small, blob-like, and scattered over a plane

Uniform refers to uniform textures in which the nature of the repetition
is not specified

Whirly consists of circularly oriented textures

Table 3.1: The eleven texture categories and their descriptions

3.3 Summary

This chapter has presented an approach to describe image content using the visual

conceptual information that aims to address the semantic gap between the numerical

representation of the low-level image descriptors and the richness of human inter-

pretation of their content. The frameworks for characterizing the visual color and

texture concepts adopted in the body of this thesis have been presented in detail

and their implementation detail is further demonstrated in Chapter 6, Section 6.2.
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In Chapter 4 a framework for the characterization and the extraction of the visual

shape concepts is presented in detail. The processes of extracting the visual color

and texture concepts used in the body of this framework and the integration of

the visual color, texture, and shape concepts for the task of image description and

indexing are presented in Section 6.4 of Chapter 6.
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Chapter 4

A Framework for the Extraction and

Characterization of the Conceptual

Information of Shapes

4.1 Introduction

Section 2.7 in the literature review showed that solutions aiming at conceptualizing

the low-level visual features have been proposed for color information (Conway; 1992;

Gong et al.; 1996; Belpaeme; 2001; Liu et al.; 2005; van de Weijer et al.; 2009),

texture information (Belkhatir; 2005), and spatial information (Belkhatir; 2009).

As for shape features, many studies exist in the literature concerning the extraction

and representation of the low-level features of shapes (Zhang and Lu; 2004; Yang

et al.; 2008). However, few studies and taxonomies aiming at the generic naming and

symbolic description of shapes exist. Black and Weer (1936) propose a set of main

shape categories describing archaeological artifact objects. They classify the shapes

of the archaeological artifacts into the following categories: rectanguloid, trianguloid,

elliptical, oval, ovate, pentagonal, panduriform, miscellaneous, and compound shapes.
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4.2 Fundamental shape concepts

Inspired by this taxonomy and as an extension to the research aiming at the concep-

tualization of the low-level signal features, this chapter illustrates a framework that

aims to bridge the gap between the extracted shape features and their conceptual

characterization. The conceptual shape knowledge base is represented by a lattice

structure organizing these shape concepts through a partial order. This shape frame-

work is then used to map the low-level features to high-level shape concepts using

a support vector machine. It automatically maps extracted 64-dimensional Fourier

descriptors characterizing the low-level shape features to shape concepts, with an

implementation discussed in detail in Section 6.3 of Chapter 6.

This framework is a component of the whole system presented in the body of this

thesis. This module is integrated with the frameworks to characterize the visual color

and texture concepts adopted from the literature for the task of image description

and semantic image annotation.

The remainder of this chapter is organized as follows. Section 4.2 presents the funda-

mental shape concepts which are the basis of the shape lattice. The transformation

processes which develop new shapes are presented in Section 4.3, and the organization

of shapes within a lattice-based structure is discussed in Section 4.4.

4.2 Fundamental shape concepts

Starting from seven basic shapes characterizing geometrical properties of shapes, a

set of transformation functions is used to derive new shapes. The latter inherit the

attributes of the basic shapes, which highlights an organization within a hierarchical

structure defined by a partial order called the shape lattice. The seven basic shapes

which form the foundation of the shape lattice are characterized by the shape

concepts circular, rectangular, triangular, pandurate, elliptical, pentagonal,

and oval.
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4.3 Transformations to develop new shapes

         

Pandurate Rectangular Oval Elliptical Pentagonal Triangular Circle

Figure 4.1: The fundamental shapes

It is taken as an axiom that shapes are characterized by geometric attributes rather

than the semantics of the corresponding object. For example, traffic signs could

be categorized based on their conceptual shape characteristics. Thus, “no parking”

and “no entry” signs would be classified as circular, “T-junction” and “give way”

would be classified as triangular, “parking” and “hospital” traffic signs would be

characterized as rectangular and so on. Then, objects with similar shapes might be

further classified by integrating additional features such as colors and textures.

This framework aims at the generic naming of extracted image regions using their

geometrical properties not their semantic nature.

A decision was made to bound this framework with seven fundamental shapes,

adopted from the Black and Weer (1936) taxonomy, because including more shapes

results in a larger, wider, and more complex shape lattice. The experiments in

Chapter 6 show that bounding this module with seven fundamental shapes provides

sufficient coverage of variable shapes for the experiments conducted. From the

aforementioned fundamental shapes, a number of new shapes are derived by applying

a set of transformations as discussed in the following section.

4.3 Transformations to develop new shapes

A set of geometrical transformation processes are applied on the basic geometrical

shapes in order to obtain novel shapes derived from the basic shapes and therefore

inheriting their properties.
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4.3 Transformations to develop new shapes

The transformation processes are applied successively on shapes to derive new shapes

at lower levels in the shape lattice. By applying a single transformation process on a

shape, a new level in the hierarchy is generated. So the first level comprises shapes

that are modified by a single transformation process, shapes on the second level are

modified with two transformation processes and so on until reaching the leaf-node

level, in which, all the possible combinations of transformation processes have been

applied on shapes.

The transformation processes are divided into two categories: edge transformations

and head/base transformations as shown in Figure 4.2.

Four edge transformations can be applied to modify the edges of shapes: excurvation,

incurvation, edge sharpening, and constriction. Excurvation curves the side of a

geometrical shape outward, where incurvation is the inverse operation. Constriction

takes an excurvated or incurvated side and curves into two lines connected by a wide

angle (illustrated by shape (a) in Figure 4.3, which is a rectangle modified by two

constrictions-outward and one constriction-inward). Edge sharpening adds a nail-like

shape to the edge inward and outward.

Base/head transformations are three: sharpening, widening, and truncation. Sharp-

ening is the process of narrowing the base/head of a shape, widening is the inverse

operation. Truncation is the process of cutting the shape at the level of the base or

the head.

The transformation processes that are applied in specific order are the constriction

inward and constriction outward as they are subsequent to the incurvation and

excurvation processes. Constriction outward is applied on an excurvated side, hence

it is applied to an edge after applying the excurvation process; similarly constriction

inward succeeds the incurvation process on an edge.

Order is not important for the other transformation processes shown in Figure 4.2.
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4.4 Lattice-based organization

The degree to which shape edges are modified are the same as Black and Weer (1936),

the mathematical variation of the transformation and graphical modifications are

out of the scope of this work.

B. Base and head transformations: 
Truncation

 

Sharpening

 

A. Edge transformations: 

Edge sharpening 

Excurvation 
Constriction 

outward 

Incurvation 
Constriction 

inward 

Figure 4.2: The transformation processes used to develop new shapes in the shape
lattice

4.4 Lattice-based organization

The shape lattice consists of seven sub-lattice structures originating at each of

the basic shapes. All possible compositions of shape transformation processes are

considered to generate the lattice structure, yielding a total of 898 shapes in the

shape lattice.

To generate the first level in each sub-lattice, a single transformation process is applied

on a side, base or head. For example, the first level in the rectangle sub-lattice

will comprise rectangle with an incurvated edge, rectangle with an excurvated edge,

rectangle with a sharpened-inward edge, and rectangle with a sharpened-outward

edge. The order of applying transformations is not important except for constrictions

as noted. Another transformation is applied on the shapes at the first level to

generate the second level and so forth. In other words, by applying a transformation

on a shape, a new level of descendants is obtained, the height of the sub-lattice is
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4.4 Lattice-based organization

increased by one, and the width of the lattice increases by the number of the new

added shapes.

The transformation processes are applied to every generated shape at every level

of descendants in the lattice until the leaf level is reached. The leaf level contains

shapes with all the possible combinations of transformation after which no novel

shapes can be generated.

The symbolic text-based descriptor (i.e., the visual shape concept) of a generated

shape is constructed by using the basic geometrical name along with the name of the

transformations applied. For a given shape, the equivalent shape concept is obtained

by naming the corresponding basic geometrical form and successively concatenating

the applied geometrical transformations which generate the shape. For example,

“rectangular with three constricted-inward sides” or “triangular with two incurvated

and one sharpened-inward sides”.

Figure 4.3 shows three shapes generated by the geometrical transformations in the

shape lattice.

The shape 4.3(b) in Figure 4.3, corresponds to the oval shape modified by one

transformation, which is “head sharpening”. This shape is located at the first level

of descendants since only one transformation process is applied. The shape 4.3(c)

represents a shape derived from the basic pandurate shape located at the second level

of the lattice in the pandurate sub-lattice. This shape is generated by modifying the

basic pandurate shape with a head truncation transformation resulting in a shape

described by the concept “pandurate with truncated head”. This shape is further

modified by truncating its base resulting in the shape described by the shape concept

“pandurate with truncated head and truncated base”.

The shape 4.3(a) in Figure 4.3 is described by the shape concept “rectangular with

two constricted-outward and one constricted-inward sides” at the sixth level of

descendants in the rectangular sub-lattice. It is generated as follows
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4.4 Lattice-based organization

(a) (b) (c)

Figure 4.3: Three shapes from the shape lattice: (a) Rectangular with two
constricted-outward and one constricted-inward sides; (b) Oval with
sharpened head; and, (c) Pandurate with truncated head and truncated
base

• first, one incurvation is applied on a single side of the basic rectangular shape

resulting in a shape described by the concept “rectangle with one incurvated

side” and located at the first level of descendants in the rectangular sub-lattice;

• then, the inward constriction transformation is applied on the incurvated

edge generating the shape described by the shape concept “rectangle with a

constricted-inward side” at the second level of the lattice;

• two excurvations are applied on two sides successively; and

• two outward constrictions are then applied on the two excurvated sides gener-

ated in the previous step, generating the final shape.

The following section illustrates the general organization of the seven sub-lattices in

the main shape lattice. Further details of the organization of the oval sub-lattice

highlighting the transformation processes applied to generate new shapes inheriting

the basic oval shape are presented in Section 4.4.1.6 and illustrated in Figures 4.4

and 4.5.

It might be argued that the elliptical and oval shapes could be derived from the

circular shape by modifying it with the transformation process. However, merging

these shapes with the circular sub-lattice results in adding levels to the hierarchy,

causing that sub-lattice to be very large, wide, and complex. Thus, the elliptical and

oval shapes are considered fundamental shapes with their own sub-lattice hierarchies.
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4.4 Lattice-based organization

4.4.1 Sub-lattice organization

This section explains the transformation processes applied on each basic shape to

generate its sub-lattice structure, its corresponding height, and the number of shapes

generated in each sub-lattice. Figure 4.4 (I) shows the general organization of the

shape lattice highlighting the first level of descendants in the lattice, which comprises

the seven fundamental geometric shapes.

4.4.1.1 The circular sub-lattice

The set of successive transformations applied to create the circular sub-lattice are

as follows. First, the truncation transformation process is applied to obtain the

half-circular shape. Further transformations are applied to the base of the half circle

which are the edge transformations incurvation, excurvation, inward and outward

constriction, and inward and outward edge sharpening. As a result, the circular

sub-lattice consists of four levels of descendants and contains a total of 8 shapes.

It can be noticed that only a few shapes exist in the circular sub-lattice. As illustrated,

the first transformation applied was the truncation to transform the circular shape

into half-circular. Accordingly, the subsequent transformations are constricted by the

allowed transformations on edges as mentioned in Section 4.3. Moreover, adding more

transformations results in repeating shapes from other sub-lattices. For example,

if the half circle is truncated again, it will repeat the shape triangular with an

excurvated edge that appears in the triangular sub-lattice.

4.4.1.2 The elliptical sub-lattice

The transformations applied to the elliptical shapes are head and base truncation, and

the edge transformations incurvation, inward/outward edge sharpening, and inward

constriction. The excurvation process is excluded since applying it on a truncated

base or head of the elliptical shape will re-create the basic elliptical shape. The
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4.4 Lattice-based organization

outward constriction is therefore not considered as it is applied after the excurvation

transformation. In this sub-lattice there are seven levels of descendants and a total

of 36 shapes.

4.4.1.3 The triangular and rectangular sub-lattices

The transformations allowed on the triangular and rectangular shapes are excurvation,

incurvation, inward/outward constriction, and inward/outward edge sharpening.

These transformations are applied to each side of the triangle and the rectangle

by starting with one transformation process on one side until the leaf level of the

structure is reached. The leaf level consists of shapes generated by all compositions

of the transformation processes allowed on the triangular and rectangular shapes.

The sub-lattice originating at the triangular shape has four levels of descendants and

contains a total of 48 shapes.

The difference between the triangular and rectangular sub-lattices is the height and

the number of elements in each one, as the transformations are applied to the four

sides of the rectangular shape. In the sub-lattice of the rectangular shapes, there are

five levels of descendants with a total of 419 shapes.

4.4.1.4 The pentagonal sub-lattice

The transformations applied to the pentagonal shapes are incurvation, inward con-

striction and inward/outward edge sharpening. All edges of the basic pentagonal

shape are of the same length. The excurvation transformation process is excluded be-

cause applying the excurvation transformation on the edges of the pentagonal shape

will re-create a circular shape. Accordingly, the outward constriction is therefore

not considered as it is applied after the excurvation transformation. The pentagonal

shapes sub-lattice consists of six levels of descendants with a total of 300 shapes.
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4.4 Lattice-based organization

4.4.1.5 The pandurate sub-lattice

The pandurate sub-lattice is itself complex even though it can be treated as a

derivative of the elliptical shape with two-sides incurvated. Thus, the pandurate

shape is considered a fundamental shape with its own sub-lattice hierarchy.

The transformations applied to the edges of pandurate shapes are inward and outward

constrictions, since each side of a pandurate shape consists of two excurvations and

one incurvation. Then, the truncation process is applied to the base and/or head

of each of the transformed shapes, and consequently, further processes are eligible

to apply to the truncated sides which are: incurvation, inward constriction, and

both inward and outward edge sharpening. Again, the excurvation process is applied

neither on the truncated head nor the base, since it will reconstruct the original

pandurate shape. In this sub-lattice structure, eleven levels of descendants are

generated with a total of 412 shapes.

4.4.1.6 The oval sub-lattice

To generate the oval sub-lattice, the allowed transformations are head sharpening,

head and base truncation and edge transformations such as incurvation, inward

constriction and inward/outward edge-sharpening. The excurvation transformation

is excluded since applying it on a truncated base or head of the oval shape will

re-create the basic oval shape. Therefore, the outward constriction is not considered

either as it is a subsequent process of the excurvation as described in Section 4.3.

The detail of the oval sub-lattice is presented in Figures 4.4 and 4.5.

At the first level of the oval sub-lattice, the transformation processes head sharpening,

head truncation, and base truncation are applied on the basic oval shape producing

three shapes: “oval with truncated head”, “oval with truncated base” and “oval with

sharpened head” as shown in Figure 4.4.
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4.5 Conclusion

From the shape described by the concept “oval with sharpened head” (Figure 4.4,

(A)), a new shape is generated at the second level of descendants named “oval

with sharpened head and truncated base” (Figure 4.4, (B)) on which the edge

transformations are applied. These shapes constitute the third level of the lattice.

The shape “oval with sharpened head and incurvated base” (Figure 4.4, (C)) is

extended with the inward constriction at the fourth level of the sub-lattice structure.

Second, for the two shapes conceptually described as “oval with a truncated head

(and base)” at the first level of descendants (shapes (D) & (E) in Figure 4.4), the

allowed edge transformations on the head or base are applied. Then each of the

generated shapes can be modified through truncation of the head or base.

The shape named “oval with incurvated head” is further modified by truncating

its base (as shown in Figure 4.4,(F)), and the shape named “oval with sharpened

outward base” (shape (G) in Figure 4.4) is modified by truncating its head and so

on.

Then on the new truncated side, the allowed transformations are applied successively

until no novel shapes can be generated, which corresponds to reaching the leaf level of

the sub-lattice structure. The oval sub-lattice has a height of 7 levels and comprises

a total of 41 shapes.

Figure 4.4 (II) shows the oval sub-lattice highlighting all the generated shapes at

each level of descendants in the lattice, and Figure 4.5 shows a part of the oval

sub-lattice, highlighting only one path originating from the basic oval shape with

the concepts corresponding to each shape and the transformations applied until the

leaf level is reached.

4.5 Conclusion

This chapter has presented the framework for the mapping and characterization of the

conceptual shape information. The fundamental geometric shapes, the transformation
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processes applied on shapes to derive new novel shapes, and the final organization

of the shape concepts within a lattice based organization from which the learning

framework is constructed have been illustrated.

This framework is one component of the complete semantic-based image indexing

framework presented in this thesis. Dealing with shape modelling is not an easy task

especially when dealing with a generic description of the shape nature of image objects

rather than their high-level semantic description. Thus, the presented framework has

been bounded to describe the geometrical nature of the shape of extracted image

regions using a set of fundamental shape concepts. Again, high-level semantically

driven shape descriptors have been excluded as there will be a very large number of

concepts describing shapes of natural objects.

This presented framework is integrated with the frameworks to characterize the

visual color and texture concepts (cf. Chapter 3) adopted from the literature for the

task of image description and semantic classification of image regions as illustrated

in Section 6.4 of Chapter 6.

The implementation and experimental validation of this framework are presented in

Chapter 6, Section 6.3. The experimental validation includes presenting the dataset

containing all shapes within the shape lattice, which constitutes the knowledge base

for the learning framework to map the low-level shape features to high-level shape

concepts.
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Figure 4.4: (I) The main shape lattice; and (II) The oval shape sub-lattice origi-
nating at the basic oval shape
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Figure 4.5: Part of the Oval sub-lattice
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Chapter 5

Supervised Learning Algorithms for

Learning Semantic Categories

5.1 Introduction

The goal of automatic image annotation systems is to find a correlation between the

pixels creating an image and a set of keywords reflecting the semantic meaning of

image objects, regions or semantic scenes as humans comprehend and understand

them. Thus, the process of annotating images can be seen as a process of translating

image content from a numerical representation into high-level semantic descriptors

reflecting their visual content (Duygulu et al.; 2002). As a result of the annotation,

users can query the database using symbolic descriptors to describe the perceptual

content of images.

Several machine learning algorithms have been used for the task of establishing the

aforementioned correlation using different low-level image features (Smeulders et al.;

2000; Zhang et al.; 2012). Which machine learning technique to use with which set

of image features is still an open issue.
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This thesis uses the visual conceptual information to describe and classify image

regions into high-level semantic categories. This means a new set of features is being

used for the learning and classification processes. Accordingly, it is unknown which

supervised learner results in the highest classification accuracy. Thus, empirical

comparison between several machine learning algorithms using the visual concepts

is conducted to discover which learning algorithm performs better than the others

using the visual concepts’ feature space.

This chapter reviews the machine learning algorithms used to establish correspondence

between image features and high-level semantic categories in the literature. The

reviewed supervised learning algorithms are the algorithms that are subsequently

used in the experiments to learn high-level semantic categories from the visual

conceptual information.

This chapter is organized as follows. First, the notation and problem formulation

that will be used in the rest of this chapter and in the experiments in Chapter

6 is presented. A brief theoretical introduction of each algorithm is presented in

the following sections. A review of systems and frameworks utilizing each of the

supervised learning algorithms is also included within each section.

5.2 Definitions and notations

This section aims to provide a unified notation and problem formulation that will be

used in the rest of this chapter as well as in Chapter 6.

Let ri ∈ <I be an image region in the set of all image regions in <I extracted from

images in the dataset D. The dataset D is split into disjoint training Dtrain and test

Dtest subsets. Each image region is annotated with a semantic class label yi ∈ S that

belongs to the set of semantic concepts S in the knowledge base K. This knowledge

base contains annotated training image regions (i.e., they correspond to a unique

semantic concept with probability 1).
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The visual shape concepts are characterized from the global shape of an image

region and represented by the feature vector sr = {p(s1|r), . . . , p(sl|r)} (where l ≤ 7)

comprising the probabilistic estimation of the seven fundamental shapes.

An image region ri is then divided into a set of image patches bk ∈ B where B is

the set of all image patches extracted from image regions in <I . The visual color

and texture concepts are characterized from image patches by the feature vectors

cbk = {p(c1|bk), . . . , p(ci|bk)} and tbk = {p(t1|bk), . . . , p(tj|bk)} (where i, j ≤ 11)

containing the distribution of each of the eleven color concepts and the probabilistic

estimation of the eleven texture categories.

Each image region is then represented by a set of feature vectors characterizing its

visual conceptual information. The set of extracted feature vectors from an image

region are concatenated in a late fusion fashion (Snoek et al.; 2005). In late fusion

the scores of the visual color, texture, and shape concepts are concatenated to learn

high-level semantic categories in contrast to early fusion scheme (Snoek et al.; 2005)

in which the low-level features are concatenated before any learning process.

These feature vectors are concatenated such that for each image patch bk of an image

region ri, its corresponding visual color and texture concepts’ feature vectors and the

global shape of the image region ri are concatenated generating the feature vector

fbk as

fbk =


cbk

tbk

sr


fbk ∈ F where F is the set of all feature vectors extracted from all image regions in <I

that will be used as the input feature vectors to the supervised learning algorithm.
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5.3 Machine learning techniques to address the se-

mantic gap

In any classification problem, instances are represented as vectors of features describ-

ing classes in a dataset. The task of a classifier is to learn the correlation between the

input features and classes so that to classify new input instances to one of the learned

classes. The classification decision can be made based on a proximity measure such

as k-Nearest Neighbor, the optimum separation hyperplane as in Support Vector

Machine classification, or a classification rule-set using a rule based classifiers such

as Decision tree learning algorithms.

Machine learning techniques have been widely used to learn semantic categories

from a set of extracted low-level image features (Zhang et al.; 2012). Generally, each

feature vector of a multimedia object is associated with a class label indicating the

semantic meaning of that object. Machine learning algorithms use these feature

vectors to find the correlation between the feature vectors in the feature spaces and

their associated class labels. The process of learning the correlation results in a

model responsible for classifying un-annotated new input instances.

A number of supervised learning methods have been introduced in the last decade.

Which classifier fits best to a problem is an important aspect to consider before

starting to generate classifiers for any classification problem. Some classification

methods generalize well for a given problem and some, on the other hand, do not.

The main aim of this thesis is to use the visual conceptual information to describe

image content and to learn high-level semantic categories. In doing so, the super-

vised machine learning algorithms will use the visual conceptual information as the

input features. Which supervised learning algorithm to consider on this new set of

features is crucial. Accordingly, an empirical comparison between a set of supervised
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learning algorithms is conducted to find which learning algorithm results in a higher

classification accuracy in the conceptual feature space.

The following supervised learning algorithms are considered: Support Vector Machines

(with different kernels); Decision Trees; Random Forests; Nearest Neighbor; Naive

Bayes; and Logistic Regression classifiers. The following sections briefly introduce

these learning algorithms and reviews frameworks from the literature using each

technique for image annotation and semantic inference of image contents.

5.3.1 Support Vector Machines

Support Vector Machine (SVM) is currently one of the most promising machine

learning algorithms. SVM is a strong discriminative classifier that was originally used

for binary classification problems (Vapnik; 1998). However, many works have emerged

recently proposing methods and techniques to solve the multiclass classification

problem such as one-against-one and one-against-all techniques (Hsu and Lin; 2002).

Support vector machines can be considered the most widely used learning algorithm

for the task of scene categorization, image and object classification (Csurka et al.;

2004; Zhang, Marszalek, Lazebnik and Schmid; 2006; van de Weijer and Schmid;

2007; Yang et al.; 2007; van de Sande, Gevers and Snoek; 2010; Albatal et al.; 2010;

van Gemert et al.; 2010; van de Sande, Gevers and Smeulders; 2010; Escalante et al.;

2010; Sande and Gevers; 2010; Papadopoulos et al.; 2010)

A support vector machine classifier determines which class label is associated with a

given N -dimensional feature vector in the feature space.

Given a set of training data Dtrain = {(f1, y1), (f2, y2), . . . , (fi, yi))} where fi ∈ Rn is

an n-dimensional input feature vector and yi ∈ {−1, 1} is the associated class label

with each input feature vector.

The support vector machine classifier constructs a separation hyperplane as the

separation surface that maximizes the margin between the positive and negative
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examples. The margin denotes the distance between the data points belonging to

the classes at each side of the separating hyperplane. The data points at the optimal

sides of the margin are called support vectors. The maximum margin is called the

optimal separating hyperplane and the generalization ability of the SVM classifier

depends on the separating hyperplane (Abe; 2005).

In other words, SVM represents the input feature vectors as points in a feature space

and it divides the points of different classes with the widest gap possible. New input

instances are then mapped to the same feature space and predicted to belong to one

of the learned categories.

The original form of support vector machine classification was developed to solve the

binary classification problems, in which a linear optimal hyperplane suffices (Vapnik;

1998). However, for a non-linear classification problems, the support vector machine

projects the original training data into a higher dimensional feature space using

kernel functions to find the maximum-margin hyperplane.

In the case of non-linearly separable problems, projection kernels are used and support

vector machines are then based on the resolution of the following optimization problem

min
w,b,ϕ

1

2
wTw + C

l∑
i=1

φI subject to yi
(
wTψ (fi) + b

)
≥ 1− φi and φi ≥ 0 (5.3.1)

Here, the training vector fi is set to be in a space of higher dimension (sometimes

infinite) through the function ψ. The support vector machine then determines a

separating linear hyperplane in this space. K(fi, fj) = ψ(fi)
Tψ(fj) is the projection

kernel and C is the penalty parameter of the error term.

SVM has been extensively used in image retrieval and annotation frameworks. An

early use of SVM for semantic classification of images appeared in Chapelle et al.

(1999). The authors classify images into 14 semantic categories at the global image
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level. A classifier is generated for each semantic concept using the one-against-all

technique. They use HSV (Hue, Saturation, Value) color histogram as input features

to SVM classifiers and a new image is classified by using its feature vector as an input

to each of the 14 classifiers. The classifier with the highest probability confidence is

selected as the concept to describe the image.

Shi et al. (2004) introduce a region-based classification of image regions into semantic

categories using 23 SVM classifiers. An SVM classifier was generated for each

semantic class. Csurka et al. (2004) generate SVM classifiers using a bags-of-keypoints

representation for the task of image categorization. They point out that the linear

kernel gives better results in comparison to quadratic and cubic kernels. Moreover,

the overall performance of SVM outperforms naive Bayes classifier using the same

features and dataset.

In van de Weijer and Schmid (2007) linear SVM classifiers are trained using the

frequency histograms of the visual words of bags-of-words representation using

color names and SIFT-descriptors. Zhang, Marszalek, Lazebnik and Schmid (2006)

incorporate the Earth Mover’s Distance (EMD) and the Chi-square (χ2) distance

into an SVM framework. The generated kernels (i.e., EMD and χ2 kernels) are used

in their evaluation of using the bags-of-features approach with different keypoint

detectors and descriptors for the tasks of texture and object categorization. van

Gemert et al. (2010) use a non-linear χ2 kernel for a codebook-based categorization

framework. In (van de Sande, Gevers and Smeulders; 2010; Sande and Gevers; 2010)

SVM classifiers were utilized for the tasks of visual concepts and annotation. Using

Chi-square (χ2) kernel and the bags-of-words (BOW) representation, they could

achieve top ranking for the large-scale visual concept detection tasks.

Escalante et al. (2010) conduct experimental comparison between different learning

algorithms to classify image regions into semantic categories. Support vector machine

classifier with Polynomial kernel was included. Their results reveal that SVM
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classifier was outperformed by other classifiers such as Random Forest, Kernel

logistic regression, and Naive Bayes.

In the experiments in Chapter 6, different kernels are used and evaluated on the task

of classifying image regions using the visual conceptual information. These include

Linear, RBF, Polynomials of 2 and 3 degrees, and Sigmoid kernels.

5.3.2 Decision tree learning

Decision tree learning is a rule based learning technique in which a learning system

selects only a subset of the instance attributes when forming the classification

hypothesis. It is a method for approximating discrete-valued functions. The main

advantages of decision tree classifiers are the hierarchical clarity, implementation

simplicity, robustness to incomplete and noisy data, and that it can learn from a

small number of training examples (Quinlan; 1986). The tree inference is close to

the way humans think as the tree is mapped into a set of if-else rules understood by

humans (Mitchell; 1997).

Decision trees use a set of labelled training instances to form the classification

hypothesis. The learned rules are then formed in a tree structure starting with a

single root node to some leaf nodes, each of which represents a classification result

of an input instance. To classify new input instances, the instances are sorted down

the tree from the root node to the leaf nodes in the generated tree. Each non-leaf

node in the tree specifies a test of some attributes of the input instances, and each

leaf node specifies a target class for the input instance. Based on the value of the

attribute, the instance is classified down to the corresponding branch descending

from that node.

Generally, the training instances are represented by many features; and each feature

will be tested individually in the tree in the non-leaf nodes. The set of features form

the hypothesis by which the tree classifies the input instances. However, an important
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question to ask here is which attribute should be tested first? The attribute selected

first at the root node should be the most significant and discriminant for classifying

the input instances. Selecting the most suitable attribute is achieved by statistical

methods such as information gain and gain ratio (Han et al.; 2011). These methods

measure how well a given attribute separates the training examples according to

their target classification. Attributes are then sorted according to their values based

on the measure selected.

ID3 (Quinlan; 1986) and C4.5 (Quinlan; 1993) are the most widely used algorithms

to construct decision trees. The ID3 algorithm works only with discrete attributes.

C4.5 works well with both discrete and continuous attributes. Another possibility is

CART (Breiman; 1984) which is used for constructing classification and regression

trees. It deals with both discrete and continuous attributes.

The task of the decision tree classifier is to sort the set of all feature vectors in F to

establish the classification rules. Given a labelled training set Dtrain that contains the

feature vectors of the high-level conceptual information of all image regions r ∈ <,

the decision tree should establish the classification rules based on the values of the

given attributes. Constructing a decision tree can be viewed as recursive process

that starts by placing an attribute at the root node of the tree and then making a

branch for each possible value. The split is made by testing the attribute at the root

node against some constant. The construction proceeds recursively on each of the

child nodes. A test for an attribute is made at each of the child nodes. These nodes

are called the ‘partitioning nodes’ as they are simply testing the attributes and are

responsible for splitting. The test and split is performed recursively until the node is

reached and the input instance is classified.

As stated earlier in this section, statistical tests are used to select the most significant

attributes in the dataset to generate the classification tree. The information gain

measures the effectiveness of an attribute to classify data. It is based on the entropy

measure which quantifies the impurity of a training subset. It is calculated as
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E (Dtrain) = −
c∑
i=1

pi log2 (pi) (5.3.2)

where pi is the proportion of Dtrain belonging to class i of all possible classes c. Thus,

the information gain is calculated as

Gain (Dtrain, fk) = E (Dtrain) −
n∑
j=1

∣∣∣Dtrain(j)

∣∣∣
|Dtrain|

E
(
Dtrain(j)

)
(5.3.3)

where j ∈ values(fk) is a value of attribute fk, and |Dtrain(j)
| is a subset of Dtrain

for which fk has the value j, and |Dtrain| is the total number of instances in Dtrain.

In the learning algorithm C4.5, the gain ratio is also used to select the attributes.

The gain ratio divides the information gain by the information provided by the test

outcomes. It takes into account the number and the size of the generated sub-trees

into which an attribute partitions the dataset. It is measured by incorporating the

split information which is actually the entropy of Dtrain with respect to the values of

fk but disregarding all information about the target class. It is calculated as

SplitInfo (Dtrain, fk) = −
n∑
j=1

∣∣∣Dtrain(j)

∣∣∣
|Dtrain|

log2

∣∣∣Dtrain(j)

∣∣∣
|Dtrain|

(5.3.4)

and the gain ratio is defined in terms of the information gain (Eq. 5.3.3) and the

split information (Eq. 5.3.4) as follows

GainRatio (Dtrain, fk) =
Gain (Dtrain, fk)

SplitInfo (Dtrain, fk)
(5.3.5)

In image retrieval, many works have explored the decision tree classification algo-

rithms to classify images and infer their semantics. Huang et al. (1998) construct a

classification tree for a hierarchical 11-category classification. They demonstrated

that their approach outperforms the traditional nearest neighbor classifier. Sethi
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et al. (2001) classify outdoor images into four semantic classes using the CART

algorithm. A semantic scene classification framework for web-images using the C4.5

decision tree algorithm was introduced by Wong and Leung (2008).

Another system that uses decision tree learning for classifying image regions is the

Decision Tree-Semantic Template (DT-ST) (Liu et al.; 2008). This technique avoids

complex discretization of attributes - as required for the ID3 decision tree - as it

uses predefined values representing the centroid of both color and texture low-level

features extracted from sets of regions representing each concept in the training

set which they call Semantic Templates. These semantic templates are used by the

tree as the decision criteria. Zhang et al. (2009) use the semantic template decision

tree introduced by Liu et al. (2008). In this work, they use vector quantization to

discretize the image features instead of the semantic template decision tree.

In the experiments in Chapter 6, the C4.5 decision tree algorithm is used since the

features used are continuous valued features (i.e., the probabilistic estimations of the

visual concepts). This has shown to achieve better results in comparison with other

decision tree algorithms such as ID3 (Liu et al.; 2008). The experiments using the

decision trees for the task of semantic-based inference of image regions are explained

in Section 6.4.4.

5.3.3 Random Forest

A Random forest is an ensemble of random decision trees. The decision trees are

generated by randomly selecting subsets of features. The final classification output of

the random forest is done by voting for the most popular class among the generated

decision trees (Breiman; 2001).

As in decision trees, the internal nodes of the randomly generated trees contain

some test on the input data to split the data to be classified. An image region is

classified by passing through all internal test nodes to some leaf nodes that contain
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the probabilistic estimation over image classes. The class with most votes is selected

as the final classification.

The training set Dtrain is randomly split into smaller subsets. Each subset is used to

train a new random tree. The learning in random forests is recursive in which each

node splits the subset D into left and right partitions (two partitions) according to a

given test.

The split criterion is evaluated by optimizing the information gain

4G = −|Dl|
|D|

E (Dl)
|Dr|
|D|

E (Dr) (5.3.6)

in which Dl is the left partition and Dr is the right partition, the number of samples

in a set is denoted by |.|, and E (D) is the entropy measure (cf. Eq. 5.3.2).

The subset with the highest information gain is then used first to perform the split.

This process is repeated using the features in the subset from that node. The process

stops when the number of features is very small and cannot be further split or when

it reaches a given depth (Bosch et al.; 2007).

Sharp (2008) present an implementation of decision trees and random forests on a

GPU (Graphics Processing Unit). Their implementation is evaluated on the task

of object recognition. A random forest is used to classify color features in a skin

segmentation and detection framework in Khan et al. (2010). Uijlings et al. (2009)

use random forests in a bags-of-words approach to project the image descriptors into

visual vocabulary rather than k-means clustering to generate the codebook frequency

histogram. k-means algorithm classifies the input data into a user specified number

of k clusters (Wu et al.; 2008). Each cluster is identified by its centroid and new

data points are then classified to the nearest centroid. The centroid of each k cluster

is re-calculated as the mean of data points belonging to that cluster.
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Bosch et al. (2007) classify images into object categories using random forests. In

Moosmann et al. (2008), the authors introduce ‘Extremely Randomized Clustering

Forests’ (ERC-Forests) which are ensembles of clustering trees generated at random

to cluster image descriptors for the bags-of-words representation. They show that

their method obtains better results than the k-means clustering algorithm. Shotton

et al. (2008) introduce the Semantic texton forests, which are randomized decision

forests, for the task of image categorization and semantic segmentation. Leistner

et al. (2010) present a multiple-instance learning method based on randomized trees.

The efficiency of this model is demonstrated on Corel Image Datasets for region-based

image classification and also for the task of visual object tracking.

In (Escalante et al.; 2010) experimental comparison between different learning

algorithms was conducted to classify image regions into semantic categories. The

results show that Random Forest classifier has achieved the highest scores in means

of correct classification in comparison to other classifiers such as Support vector

machine, Kernel logistic regression, and Naive Bayes.

Forests of different sizes are generated to classify image regions using the visual

concepts as presented in Chapter 6, Section 6.4.4. Experimental settings of the

Random Forest classifiers are presented in Section 6.4.3.

5.3.4 Nearest Neighbor

Nearest Neighbor is one of the early classification solutions and can be considered

the easiest to implement. It is a non-parametric supervised learning technique in

which the classification decision is made based on the data itself without the need

of a training stage, as in Support Vector Machines or Neural Networks. Nearest

Neighbor classifies a feature vector f to the most common class in the set of k

training feature vectors that are the nearest to f . This classification technique relies

on the nearest neighbor distance estimation and it uses all the training data as
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templates for classification, hence it is also known as instance-based learning or “lazy

learners” (Mitchell; 1997).

For a given new input vector, the nearest neighbor classifier searches for the nearest

template in the feature space that minimizes the distance to the new input vector as

y∗ = arg min
j
d
(
fnew, f trainj

)
(5.3.7)

where the distance d(, ) is computed by similarity/dissimilarity measures such as χ2,

L2, and Minkowski derivatives (cf. Eq. 2.3.1) (e.g., Euclidean distance, Manhattan,

fractional, etc.) (Hu et al.; 2008; Zhang and Lu; 2003b).

Equation 5.3.7 represents the simplest implementation in which a new instance is

classified to the nearest template in the training dataset. A more complicated form

considers k nearest neighbors. For a given input vector, the k-Nearest neighbor

classifier searches for k templates in the training instances and classifies the input

vector into the class with the maximum number of occurrences.

Ladret and Guérin-Dugué (2001) apply kNN for image classification by using DCT

(Discrete Cosinus Transform) as the distance measure. Another use of the kNN was

proposed by Wu and Manjunath (2001). They present an adaptive search scheme for

computing nearest neighbors of a given query in the context of relevance feedback.

Iqbal and Aggarwal (2002) use kNN to identify images that contain man-made

objects such as buildings, bridges, and other architectural objects. In Cheng and

Chen (2003), images are segmented based on color and texture features and the kNN

classifier is used for classifying image regions into 20 categories.

In Zhang, Berg, Maire and Malik (2006) a hybrid method combining both Support

Vector Machines and nearest neighbor classifiers to deal with multiclass classification

problems is presented. This method computes the distances of a query image to all

training examples, and picks the nearest k neighbors. If all the k neighbors have
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the same label, the query image is given that label; if not, the pairwise distances

between k neighbors are computed and the distance matrix is converted to a kernel

matrix and multiclass SVM is applied. Xiao et al. (2006) use kNN in a two-stage

classification approach using features extracted globally from an image and then

features extracted from image regions within that image. kNN classifiers are used at

both stages and final annotations are obtained by fusing both the region and image

level annotations.

k-Nearest Neighbor classifiers are widely used in image classification and object

recognition systems. Nonetheless, it has been argued that its performance is not com-

petitive with parametric techniques such as Support Vector Machines and Artificial

Neural Networks. Boiman et al. (2008) argue that the capabilities of non-parametric

image classification methods, in particular the nearest neighbor classifier, have been

undervalued. They argue that two practices have contributed to the degradation of

the performance of this non-parametric image classifier, which are:

• descriptor quantization (i.e., reducing the dimensionality of vectors to produce

compact image presentation). Even though this process is essential for some

classifiers, it is harmful for the non-parametric classifications as there is a

training phase that may compensate for the loss of data due to the quantization

process; and

• the use of image-to-image distance instead of image-to-class distance. Basically,

nearest neighbor classifiers employ the descriptor distribution of each individual

image separately. In their implementation they compute the distance between

the query image and the entire class C (using all images). They claim in doing

so, they get better generalization capabilities than employing the individual

“image-to-image” measurements.

In Nilsback and Zisserman (2006) a nearest neighbor classifier is employed for the

task of flower classification using bags-of-visual-words descriptors. In Battiato et al.
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(2008), a nearest neighbor classifier is used on the task of image categorization using

the bags-of-words representation.

In Chapter 6, kNN classifiers are generated with various numbers of the nearest

neighbors k. The Euclidean and Manhattan distances are used to generate the kNN

classifiers. Experimental setting are detailed in Section 6.4.3.

5.3.5 Naive Bayes

Among the machine learning algorithms used on the task of image indexing and

annotation, Bayesian methodologies have been widely used and shown good results

in comparison to other machine learning algorithms. A number of approaches to

classify images use probabilistic Bayesian classifiers (Cox et al.; 2000; Vasconcelos

and Lippman; 2000b; Vailaya et al.; 2001; Luo and Savakis; 2001; Fergus et al.; 2003;

Csurka et al.; 2004; Jin et al.; 2004; Lim and Jin; 2005; Fei-Fei et al.; 2007; Behmo

et al.; 2010; Liu et al.; 2010; Papadopoulos et al.; 2010).

Luo and Savakis (2001) classify images into indoor/outdoor using Bayesian networks.

In Vailaya et al. (2001), images are classified as broad indoor/outdoor. The outdoor

images are further classified into landscape, city, etc. Csurka et al. (2004) use a

naive Bayes classifier using a bags-of-keypoints representation for the task of image

categorization.

Naive Bayes classifiers are simple, efficient, and robust to noise and irrelevant

attributes (Yang and Webb; 2001). In some classification problems this technique

has outperformed other more complex classifiers such as decision trees (Domingos

and Pazzani; 1997; Kononenko; 1990).

This classification algorithm is based on Bayes’ rule that assumes that all features

are conditionally independent of one another given the class. Also, the naive Bayes

classifier assumes that all assumptions are explicitly built using a set of input feature

vectors.

71



5.3 Machine learning techniques to address the semantic gap

The naive Bayes classifier is constructed using Bayes’ theorem which calculates the

probability of each semantic concept y ∈ S given an instance (i.e., a feature vector)

f ∈ F:

p(y|f) =
p(y) p(f |y)

p(f)
(5.3.8)

where the class prior p(y) is estimated from the training set and p(y|f) is the unknown

probability estimation of the joint distribution of features f and the semantic classes

y.

p(f |y) is estimated by following Bayes theorem, which assumes that the attributes

are independent given the class label

p (f1, f2, · · · , fn | y ) = p (f1|y) p (f2|y) . . . p (fn|y) (5.3.9)

where fd is the dth dimension of the feature vector containing the probabilistic

estimations of the color, texture, and shape concepts in f . Even though this is a

naive independence assumption, naive Bayes has shown comparable results with

other classifiers (Domingos and Pazzani; 1997; Kononenko; 1990). Moreover, this

assumption is feasible with the feature set used for the experiments as each attribute

describes a specific distribution of a color, texture, or shape concept. Thus, the naive

Bayes classifier can be written as

p (y | f) = p (y)
N∏
m=1

p (fm | y) (5.3.10)

and the classification rule of a new input instance fnew becomes

y∗ = arg max
y∈S

p (y)
N∏
m=1

p (fnewm | y) (5.3.11)
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By using this classifier, the image classification task can be stated as: given a set

of visual concepts of an image region r, classify (i.e., annotate) r with the semantic

class of the highest probability.

The classification task at hand involves quantitative (i.e., continuous) attributes,

which are the distribution of the color concepts, the probability estimation of the

texture concepts, and the probability distributions of the fundamental shape concepts

of an input image object. In naive Bayes classifiers, quantitative attributes should

be discretized so that the Bayesian classifier can calculate the prior-probability of

classes (Yang and Webb; 2009).

A number of discretization methods have been proposed in the literature (Yang and

Webb; 2002; Kotsiantis and Kanellopoulos; 2006; Liu et al.; 2002). In the experiments

in Chapter 6, the entropy minimization discretization (EMD) algorithm (Fayyad

and Irani; 1993) is used to discretize the continuous attributes as it has shown good

results in comparison to other discretization methods (Liu et al.; 2002).

5.3.6 Logistic Regression

Logistic regression is a well-known classifier and widely used for binary classification

problems. Logistic regression is a linear classifier and has been used in image

classification and annotation problems such as in Magalhães and Rüger (2006); Hoi

et al. (2009); He and Jia (2010). It is used for predicting the probability that a

feature vector f belongs to class yi.

Given a new image feature vector f from the test set Dtest, logistic regression models

the conditional probability that feature vector f belongs to class y as

p(y|f) =
1

1 + e−yθT f
(5.3.12)
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where y ∈ {−1, 1} is the class label, θ = (θ1, θ2, . . . , θn) are the classifiers weights

assigned to input features.

Magalhães and Rüger (2006) learn image semantics from codebooks and keywords

using a logistic regression classifier. They generate a hierarchy of cluster models

corresponding to a hierarchy of vocabularies by clustering the dataset using a

hierarchical expectation maximization (EM) algorithm based on a Gaussian mixture

model. A batch mode active learning algorithm based on kernel based logistic

regression is proposed in Hoi et al. (2009). In He and Jia (2010), a regularized logistic

regression, using the L1 norm regularization, is used to learn the correlation between

image features and high-level semantic concepts. The L1 norm is applied to allow

conducting feature selection and classification simultaneously.

Regularized logistic regression classifiers are generated with several ridge values as

presented in Section 6.4.3. Experimental results are reported in Section 6.4.4 of

Chapter 6.

5.4 Summary

This Chapter has presented the theoretical formalization and background of the

supervised learning algorithms used in the body of this thesis to classify image

regions into high-level semantic categories. Section 6.4 of Chapter 6 presents the

experiments conducted to compare these machine learning algorithms and it shows

the performance of these learning algorithms.
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Chapter 6

Experimental Validation

6.1 Introduction

This chapter presents the experiments carried out in validating the work presented

in the preceding chapters of this thesis. First, Section 6.2 presents and reviews the

implementation and experimental validation of frameworks aiming at conceptualizing

the low-level color and texture features into visual concepts presented in Chapter

3. Section 6.3 presents the implementation and the experiments performed on the

framework for characterizing and extracting the visual shape concepts presented in

Chapter 4. Integration of the visual color, texture, and shape concepts to describe

and classify image regions into high-level semantic categories is presented in Section

6.4. Finally, experiments on retrieval of image regions incorporating their perceptual

properties is demonstrated in Section 6.4.6

6.1.1 Performance evaluation policy

There are several common approaches to measuring the relative effectiveness of query

strategies based on a priori knowledge of the content of the database and the user’s

intent; these metrics are useful for evaluating experimental scenarios and refining
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the process of selecting query parameters. This section summarizes the performance

metrics used in the experimental evaluation in this chapter. The evaluation metrics

used are: precision, recall, and F-score measures. This section starts by illustrating

the confusion matrix from which these measures are derived.

Confusion Matrix

The confusion matrix is a well-known method for classification systems. It contains all

the information about the actual (the original class label) and predicted classification

assigned by the classification method. Each column of the matrix represents the

instances in a predicted class, while each row represents the instances in an actual class.

The performance of a classification system is then evaluated using the information

obtained by the confusion matrix. Table 6.1 shows an example of a two-class

classification problem.

The predicted class
C1 C2

The actual class
C1

tp fp
(true positive) (false positive)

C2
fn tn

(false negative) (true negative)

Table 6.1: An example of confusion matrix of a two-class classification problem

The contents of the confusion matrix are interpreted as follows

• tp (true positive) is the number of correct predictions that an instance is

positive;

• fp (false positive) is the number of incorrect predictions that an instance is

negative;

• fn (false negative) is the number of incorrect predictions that an instance

is positive; and

• tn (true negative) is the number of correct predictions that an instance is

negative.
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The confusion matrix is used to derive up to six standard performance metrics. The

most straight forward metric is the accuracy, which measures the proportion of the

total number of predictions that were correctly classified. It is measured as follows

Accuracy =
tp+ fp

tp+ fp+ fn+ tn
(6.1.1)

Precision and Recall

The precision and recall metrics are widely used evaluation metrics in information

retrieval. They have been applied to the content-based image retrieval to measure

the retrieval accuracy as well.

In the classification context, the precision and recall are measured using the confusion

matrix (cf. Table 6.1). In classification, precision measures the accuracy such that a

class has been predicted correctly. It is measured as

Precision =
tp

(tp+ fp)
(6.1.2)

where tp and fp are true positive and the false positive predictions for a specific

class. These are extracted from the confusion matrix presented in Table 6.1.

The recall measures the ability of a classifier to select instances of a specific class from

a dataset. It is commonly referred as the sensitivity of a classifier and corresponds

to the true positive rate. It is measured as

Recall =
tp

(tp+ fn)
(6.1.3)

where tp and fn are the true positive and false negative predictions for a specific

class. The denominator, tp+ fn is the total number of the test instances of a specific

class.
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F-score

The F-score measure is a harmonic mean of the precision and recall metrics, and

is a popular evaluation measure in the research area of information retrieval. The

advantage of the F-score is that it combines the precision and recall scores in a

single value, and hence it helps in conducting statistical tests by considering a single

F-score value rather than processing two values.

Formally, given the count of the true positives (tp), true negatives (tn), false positives

(fp), and false negatives (fn), F-score is computed as follows:

F − score =
2× tp

2× tp+ fp+ fn
(6.1.4)

6.2 Automatic characterization of the visual concep-

tual information

This section presents the processes of extracting the visual color and texture concepts.

The implementations of the adopted frameworks are illustrated in detail in Sections

6.2.1 and 6.2.2.

6.2.1 Extracting the visual color concepts

The model for characterizing the conceptual color information is based on the

work presented in (Gong et al.; 1996). Given a series of perceptive evaluations and

observations, eleven color categories are defined, each described by a tonality (angular

orientation in the HVC color space), a brightness value (in the [1, 10] interval) and a

decimal saturation value (in the [0, 30] interval).

For example, the color green is represented by an angular orientation in the interval

[112, 196], a brightness value in the interval [4, 10], and a decimal saturation value
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in the intervals [1.5, 30]. The color cyan takes an orientation value in [196, 256], a

brightness value in [6, 8], and a decimal saturation value in [1.5, 30]. The color gray is

defined either by a brightness value in the [3, 4] interval, or a decimal saturation value

strictly lower than 1.5 and a brightness value in the [4, 8] interval. Red, orange,

skin, yellow, purple, black, white, and blue are the other color categories.

The ranges of each color zone are listed in table 6.2

Color name Hue (degree) Value Chroma
Red 0− 36 4− 9 1.5− 30

36− 64 4− 9 15− 30

Orange 64− 112 4− 8 9− 30

Yellow 80− 112 9− 10 1.5− 30

Skin color 36− 64 4− 9 1.5− 15

64− 112 4− 8 1.5− 9

Green 112− 196 4− 10 1.5− 30

Cyan 196− 256 6− 8 1.5− 30

Blue 256− 312 4− 8 1.5− 30

Purple 312− 359 4− 8 1.5− 30

Black — < 3 —

Gray — 4− 8 < 1.5

— 3− 8 —

White — < 9 < 1.5

Table 6.2: Ranges of each color zone

The interest of characterizing color in a human perceptual space is justified by the

fact that efficient human interaction when specifying image retrieval frameworks

is crucial and therefore aspects related to human perception are to be taken into

account.

Characterizing the aforementioned visual color concepts (i.e., symbolic color cate-

gories) involves transforming the extracted low-level color features specified in the

RGB space (primary step for low-level color extraction) to tonality, brightness, and

saturation values in the perceptually uniform HVC space.

79



6.2 Automatic characterization of the visual conceptual information

The first step in characterizing the visual color concepts involves transforming the

RGB values extracted from an image region into the HVC (Hue, Value, Chroma)

color space. The transformation process from the RGB triples to coordinates in the

HVC space is adapted from the algorithm described in Gong et al. (1996):

1. The first step involves transforming the coordinates in the RGB color space into

(X, Y, Z) components such that:

X = 0.607R + 0.174G+ 0.201B (6.2.1)

Y = 0.299R + 0.587G+ 0.114B (6.2.2)

Z = 0.066G+ 1.117B (6.2.3)

2. The second step transforms the (X, Y, Z) to (M1, M2, M3) such that:

M1 = 11.6

[(
X

X0

) 1
3

−
(
Y

Y0

) 1
3

]
(6.2.4)

M2 = 0.4× 11.6

[((
Y

Y0

) 1
3

)
−

((
Z

Z0

) 1
3

)]
(6.2.5)

M3 = 0.23

[(
11.6

(
Y

Y0

) 1
3

)
− 1.6

]
(6.2.6)

where X0, Y0, and Z0 represent the values of X, Y, and Z for the color reference

white.

3. The components in the (H,V,C) space are then determined from (M1, M2, M3)
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H
′
= arctan

(
M2

M1

)
(6.2.7)

S1 = M1

(
8.88 + 0.966× cos(H

′
)
)

(6.2.8)

S2 = M2

(
8.025 + 2.558× sin(H

′
)
)

(6.2.9)

H = arctan

(
S2

S1

)
(6.2.10)

V = 11.6

[(
Y

Y0

) 1
3

]
− 1.6 (6.2.11)

C =
√
S2
1 + S2

2 (6.2.12)

Components H,V, and C correspond to the values of tonality, luminosity, and

saturation. They are then mapped to the eleven color concepts introduced in Section

3.2.1. This process is iterated over all pixels in an image region to obtain the pixel

percentage of each color concept, which constitutes the 11-dimensional feature vectors

representing the distributions of the visual color concepts.

6.2.2 Characterizing the visual texture concepts

Texture analysis has been widely studied in the fields of computer vision and image

processing. This has resulted in the identification of several algorithms aiming at

extracting the low-level texture features in several content-based image retrieval

architectures. However, these texture extraction algorithms do not capture aspects

related to human perception.
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The visual texture concepts are characterized from image regions using the work

presented in Belkhatir (2005). This work aims at capturing aspects related to human

perception of texture patterns and is inspired by Leow and Lai (1999), in which a

computational model that is the closest approximation to human visual systems is

presented.

The first step in characterizing the visual texture concepts involves extracting the

low-level texture features. Here, Gabor features are extracted at different scales and

orientations. Each image region is characterized by its Gabor energy distribution

within five scales covering the whole spectral domain and six orientations.

Gabor texture features are extracted from image regions by applying Gabor filters

such that

g(x, y) =
1

2πλσ2
exp

[
−

(x
′

λ
)2 + y

′2

2σ2
exp

(
2πfjx

′
)]

(6.2.13)

where (x
′
, y
′
) = (x cos θ + y sin θ,−x sin θ + y cos θ) are rotated coordinates at the

angle θ from the x-axis, λ is the aspect ratio, and σ is the scale parameter.

Gabor filters are applied on an image region I(x, y) with different frequencies f and

orientations θ

ec,fθ(x, y) = I(x, y) ∗ gc,fθ(x, y) (6.2.14)

es,fθ(x, y) = I(x, y) ∗ gs,fθ(x, y) (6.2.15)

where gc,fθ(x, y) and gs,fθ(x, y) are the real and imaginary components of Gabor

filters (Leow and Lai; 1999). Gabor channels output energy is computed as

Efθ(x, y) = e2c,fθ(x, y) + e2s,fθ(x, y) (6.2.16)
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Gaussian filters are then used to smooth the channels’ output to remove the local

variation created by the sinusoidal terms in the Gabor functions after applying Gabor

filters. Further normalization is achieved by dividing the energy value of each channel

by the largest value at that location (i.e., the channels’ output at each pixel location)

Gfθ (x, y) =
Efθ(x, y)

max
f,θ

Efθ(x, y)
(6.2.17)

The normalized Gabor outputs form the a multi-dimensional texture feature vectors.

The eleven visual texture concepts presented in Section 3.2.2 are characterized

through a learning framework that is based on Support Vector Machine (SVM)

classification (described in Section 5.3.1) mapping Gabor feature vectors to visual

texture concepts. Eleven SVM classifiers were generated using the one-against-all

technique to solve the multi-class classification problem. The SVM classifiers were

generated using the Radial Basis Function (RBF) kernel. A posterior recognition

probability for the classification is assigned by applying a Sigmoid function to the

output of SVM classifiers as Platt (1999) suggested.

A dataset of 10, 000 texture images used in Leow and Lai (1999) was used to train the

classifiers. As demonstrate in Belkhatir (2005), each of the eleven texture categories

was trained with a distribution of 900 – 1000 texture images. The performance of

the classifiers is measured by using cross validation technique in which the dataset is

split into n subsets of equal size. The number of folds (n) used in the experiment

is not reported in the original work (Belkhatir; 2005). An SVM classifier is trained

with n− 1 subsets and tested with the remaining one. Thus, each instance in the

training set is predicted once so that the cross-validation accuracy is the percentage

of instances that are correctly classified. Table 6.3 lists the cross-validation accuracies

of the generated classifier for each of the 11 texture concepts.
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Finally, a grid-search is applied to find the optimal parameters (i.e., the cost C and

γ) to train the SVM classifiers. The parameters achieving the best cross-validation

accuracy were used to generate the classification models.

The framework for characterizing the visual texture concepts was trained using a

texture-based dataset (Leow and Lai; 1999) and not using a set of images from the

dataset used in context of this thesis (i.e., SAIAPR TC-12 dataset). A comparison

between using texture-based dataset and a natural images dataset to characterize

the visual texture concepts is out of the scope of this work.

Texture category Cross-Validation (%)
Bumpy 83.7

Cracked 85.2

Disordered 88.9

Interlaced 91.9

Lined 94.5

Marbled 98

Netlike 86.8

Smeared 83.4

Spotted 90

Uniform 97.3

Whirly 81.4

Table 6.3: SVM cross-validation rates of the models for characterizing the visual
texture concepts
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6.3 Experimental validation of the framework for the

extraction and characterization of the conceptual

shape information

6.3.1 Overview

This section presents the experimental validation of the framework for the extraction

and characterization of the conceptual shape information presented in Chapter 4.

The experiments presented in this section answers the first research question of this

thesis that is Can shapes of segmented image regions be represented using high-level

perceptual descriptors rather than low-level shape features for the task of image

description and classification?.

The accuracy of the conceptual shape characterization is computed through 5-fold

cross validation using the SVM generated classifiers as explained in Section 6.3.3.

Then, the effectiveness of the proposed framework is demonstrated by instantiating

the shape concepts within a conceptual image retrieval architecture. This architecture

is compared to a content-based image retrieval architecture based on a query-by-

example process operating on the low-level shape features. Subsequently precision

and recall evaluation metrics are presented that show just how much this approach

outperforms the query-by-example architecture.

The rest of this section is organized as follows. Section 6.3.4.1 presents the accuracy

of mapping the low-level shape features to shape concepts. The process of expanding

the dataset of all shapes in the shape lattice to increase the generalization ability

of the classifiers is illustrated. Then, the cross-validation rates of the generated

classifiers trained with the expanded dataset are presented. Section 6.3.4.2 illustrates

the framework for symbolic shape retrieval that allows users to retrieve shapes using

shape concepts. Experiments show that the precision and recall values obtained from
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the symbolic shape retrieval framework outperform those from the content-based

image retrieval architecture.

6.3.2 Low-level shape features extraction

To characterize shapes and to map them to the corresponding shape concepts, the

contour information is needed. In this framework, Fourier descriptors are utilized to

extract the low-level shape features. Fourier descriptors exploit the region boundary

information.

Fourier descriptors were selected as it is used to describe the boundary information

(i.e., contours) of image regions (Nixon and Aguado; 2008). There are other algorithms

that have proven to be strong in characterizing shapes (as well as texture features)

in images. For example, Scale invariant feature transform (SIFT) (Lowe; 1999) and

Speeded up robust features (SURF) (Bay et al.; 2008). However, SIFT and SURF

would be more useful to be used in image classification systems in which entire

non-segmented images are processed and SIFT or SURF are characterized over a set

of interest points extracted from images. These approaches are mainly utilized in

image classification systems and for detection of visual concepts in images and videos.

Since the aim of this work is to conceptually describe the contours of segmented

image regions, then using boundary-based shape algorithms is more suitable.

The main idea of Fourier descriptors is to characterize a contour by a set of numbers

that represent the frequency content of the whole shape (Nixon and Aguado; 2008).

Fourier descriptors have many advantages over other contour descriptors such as

their simple derivation and normalization, straightforward matching and robustness

to noise. They are, moreover, compact and perceptually meaningful descriptors.

These properties make it a popular shape descriptor which, furthermore, outperforms

other contour shape descriptors (Zhang and Lu; 2004).
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The Fourier descriptors method provides the image region representation in the

frequency domain by applying a discrete Fourier transform on its shape signature

function as given in equation 6.3.1

F (d) =
1

N

N−1∑
k=0

f(k) exp(−jπ dkN ) d = 0, 1, 2, . . . , N − 1 (6.3.1)

where f(k) is the shape signature function, and N is the number of samples of

signature function f(k).

In general, the shape signature is any 1-dimensional function that represents 2-

dimensional areas or boundaries to uniquely describe shape. Many shape signature

functions exist in the literature such as the complex coordinates function, centroid

distance function, chord length signature, cumulative angular function, and curvature

signature (Zhang and Lu; 2002a). Here, the centroid distance function is used to

extract the shape signatures as it has been shown to achieve the best and the most

accurate results among other shape signatures in terms of computational complexity,

robustness, convergence speed of its Fourier series, and the retrieval performance of

its Fourier descriptors (Zhang and Lu; 2002a).

The Centroid distance function computes the distance between the boundary points,

(b0, b1, . . . , bi) and the centroid of shape as illustrated in equation 6.3.2.

f(bi) =

√
[x(bi)− xc]2 + [y(bi)− yc]2, bi = 0, 1, 2, . . . , N − 1 (6.3.2)

Here, (xc, yc) are the coordinates of the centroid of the image region. They are

computed as the average of the shape boundary coordinates as equations 6.3.3 and

6.3.4 show

xc =
1

N

N−1∑
bi=0

x(bi) (6.3.3)
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yc =
1

N

N−1∑
bi=0

y(bi) (6.3.4)

where N is the number of boundary points.

An example of the applications of the centroid distance function is shown in Figure

6.1. Figure 6.1-(a) shows the centroid and the sampled boundary points of the

given shape, and Figure 6.1-(b) illustrates the distance between the centroid and the

sampled boundary points of the shape.

(a) Shape with 9 sample points on the 

boundary.

Centroid

(b) The centroid distance function of this 

shape. 

d2

d3
d4d6

d7

d8 d0

d1

d5

 8,7,6,5,4,3,2,1,0)( dddddddddbf 

Figure 6.1: Centroid distance function

In practice, the same object may have different sizes which means that the number

of boundary points of the object may differ from one size to another. For matching

purposes, the shape boundary or the shape signature of both the queried objects and

models in the database should be sampled so that they have the same number of data

points (Zhang and Lu; 2003a). To reach this objective, shapes should be sampled

in a manner that yields a fixed number of boundary points. In this framework, the

equal point sampling method is used to sample the data points of shapes.

The equal point sampling method selects candidate points spaced at an equal number

of boundary points along the shape boundary. The space between two consecutive

candidate points is given by L
N

, where L is the boundary length and N is the total

number of candidate points to be sampled. Here, shapes are sampled to 64 candidate
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points since it is a power-of-two integer which facilitates the use of the fast Fourier

transform (FFT).

The extracted Fourier descriptors are shift and translation invariant since the signa-

tures of shapes are captured using the centroid distance function that is translation

invariant. Indeed, the centroid distance function is translation invariant as it does

not record the exact coordinates of the boundary points but rather it records the

distances between the center and the boundary points of a shape (Zhang and Lu;

2003a).

However, further normalization procedures are required to normalize the object so

that it becomes rotation and scaling invariant. In other words, to achieve rotation and

scaling invariance, normalization procedures are required to normalize the object such

that its boundary has a standard size and orientation. Here, rotation normalization

is achieved by taking only the magnitudes of the Fourier coefficients (i.e., |F (d)|)

and ignoring the phase information. Furthermore, |F (0)| reflects the energy of the

centroid function. Thus the scaling normalization of the object’s Fourier descriptors

is achieved by dividing the magnitude of all F (d)s by the magnitude of F (0).

6.3.3 Mapping the low-level shape features to shape concepts

In order to determine which shape concept is associated with a given image re-

gion represented in a 64-dimensional Fourier descriptor, there exist a set of points

{x1, . . . , x64} in the 64-dimensional input space of shape concepts and a set of labels

{y1, . . . , yi, . . . , y898} such that the yi value equals 1 if xi corresponds to shape concept

cshape[i] and −1 otherwise. The goal is to determine a function f : SN → {±1} that

associates each point with its corresponding label. This function shall provide good

results on the training set and be capable of generalizing on shapes which are not

characterized with shape concepts.
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Support Vector Machines learning is adopted for this framework to classify image

regions into visual shape concepts. An overview of the theoretical foundation of

SVM learning is presented in Section 5.3.1.

Among the possible kernels (linear, polynomial, radial basis function, sigmoid, . . . ),

the radial basis function (RBF) is chosen:

K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0

where γ is a kernel parameter. It is traditionally used in the case of non-linearity

between the class labels and the input attributes. It holds several advantages

with respect to other kernels, in particular it does not require fine-tuning of hyper-

parameters and its computational complexity is reduced (Platt; 1999).

Support vector machines in their initial formulation are used in discrimination

problems involving two classes. To solve the multi-class learning problem in this

framework, the “one-against-rest” approach is implemented to generate the classifiers

for reasons of optimized inter-class separation (Rifkin and Klautau; 2004).

However, this approach results in the specification of classifiers which generate

a binary output. The aim is to associate a confidence value for the proposed

classification. For this, the probabilistic estimation of the generated classifiers is

considered (Platt; 1999). It uses a logistic function of the form P (yi = 1|f) =

1
1+exp(Af+B)

where f is the support vector machines for input xi and yi = ±1

represents the class label. This doubly parametric function allows linking outputs

of support vector machines to corresponding posterior probabilities. This method

implies solving a non-linear optimization problem involving the pair of parameters

(A,B) such that
∑
i

ti log(pi)+(1−ti)log(1−pi) is minimized; where pi = 1
1+exp(Afi+B)

is the inferred posterior probability and ti = yi+1
2

is the target binary coding for the

pair (xi, yi)
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6.3.4 Framework evaluation

6.3.4.1 Accuracy of mapping the low-level shape features to shape concepts

In order to maximize the accuracy and generalization ability of the generated

classifiers, a considerable amount of training data is needed. To have such a dataset,

the shape lattice is expanded by applying a set of affine transformations to all the

shapes in the lattice generating a total of 145,466 shapes. The affine transformations

applied to the shapes are rotation, scaling, horizontal and vertical flipping with

different parameters and scales. The resulting experimental dataset is a publicly

available contribution of the work since there is no equivalent collection in the

literature.

The dataset is split with 20% (35,151 shapes) randomly selected for testing and

the remainder (110,315 shapes) for training the framework of shape-based image

retrieval. Figure 6.2 shows some transformed shapes generated by applying affine

transformations to the shape “rectangular with three constricted inward and one

sharpened inward edges”.

 

   
Figure 6.2: The shape “rectangular with three constricted inward edges and one

sharpened inward edge” modified with different rotation, scaling, and
flipping transformations

To determine the performance and generalization ability of the mapping between

low-level features and shape concepts through support vector machines, n-fold (here

n = 5) cross validation is applied to the testing set. In cross validation the training

set is divided into n subsets of equal size. Out of these, one subset is tested using the

classifier trained by the remaining n− 1 subsets. Accordingly, each instance in the

training set is predicted once, and consequently the cross validation accuracy is the
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percentage of the correctly classified data. The cross validation procedure prevents

the overfitting problem by evaluating the fitting provided by each parameter value

set in the search process for the parameters C and γ. The best parameters are

achieved with the best cross-validation accuracy. Table 6.4 lists the cross validation

rates for the shapes generated from each of the basic shape concepts. The obtained

values are all higher than 94%.

Shape category Cross-Validation (%)
Circular 98.4

Oval 97.9

Elliptical 98.9

Pandurate 95.1

Rectangular 97

Pentagonal 94.4

Triangular 98.9

Table 6.4: SVM cross-validation rates of the models for characterizing the visual
shape concepts

6.3.4.2 Shape-based symbolic image retrieval

To carry out this experiment, the shape concepts are instantiated within a conceptual

image retrieval architecture. Its evaluation is based on the notion of image relevance,

which consists of quantifying the correspondence between index and query shape

image representations.

For comparison purposes, a content-based image retrieval architecture using query-

by-example scheme was developed (cf. Section 2.2). This framework operates on the

low-level shape features. Index and query representations are compared based on

the Squared Chord distance which has shown competitive performance over other

distance measure techniques (Hu et al.; 2008).

This experiment is evaluated using 35 queries, selected randomly at equal distribution

between shape categories, which correspond to shapes from the shape lattice. As far
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as the conceptual image retrieval framework is concerned, these are translated as

text-based descriptors based on the highlighted shape concepts such as “circle”, “oval

with sharpened head and truncated base”, “rectangle with incurvated sides”. For

the baseline QBE architecture, three example shape images were selected randomly

for each query as an input to the query-by-example module.

The precision and recall indicators are used to evaluate the performance of the

compared architectures (cf. Section 6.1.1).

However, in order to measure the overall performance of the system, the precision

and recall values are averaged for queries corresponding to shapes inheriting from

the same basic shape. Here the macro averaged precision and recall are used. These

indicators are computed by calculating the precision and recall values for each shape

concept and then taking their average based on the corresponding basic shape. The

macro-averaged precision (Eq. 6.3.5) and recall (Eq. 6.3.6) are computed as

Pmacro =

M∑
i=1

Pi

M
(6.3.5)

Rmacro =

M∑
i=1

Ri

M
(6.3.6)

where M is the number of sub-classes in each of the seven fundamental categories.

Figures 6.3 and 6.4 respectively show the macro averaged precision and macro aver-

aged recall for all of the 35 shape queries, grouped with respect to the corresponding

fundamental shape. The results of the conceptual image retrieval architecture

outperform the results of the QBE architecture for all shape queries.
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Figure 6.3: The macro-averaged precision
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Figure 6.4: The macro-averaged recall

6.3.5 Characterizing visual shape concepts: summary

This section presented the experimental evaluation of the conceptual shape charac-

terization framework. The effectiveness of using shape concepts was demonstrated by

instantiating shape concepts within a conceptual image retrieval architecture. The

latter outperforms a content-based retrieval architecture using query-by-example in

a precision and recall based evaluation setting using a novel shape dataset consisting

of more than 145, 000 shapes by a factor of 4.5 better for precision and a factor of 3

for recall.
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6.4 Experimental validation of the semantic-based re-

gion indexing

This section demonstrates the experimental validation of classifying image regions

using the visual conceptual information. It is compared to a baseline model operating

at the low-level image features. This section answers the second research question in

Chapter 1 that is: would describing image regions using the visual color, texture, and

shape concepts outperform using a set of low-level image features and thus narrow

the semantic gap?

6.4.1 Dataset

The semantic-based region classification is performed using the segmented and

annotated IAPR TC-12 benchmark1 (Escalante et al.; 2010). This benchmark,

referred to as SAIAPR TC-12, is an extension of the large scale image collection

IAPR TC-122 that was introduced for the evaluation of automatic image annotation

methods and for studying their impact on multimedia information retrieval (Grubinger

et al.; 2006). The IAPR TC-12 collection consists of 20, 000 still natural images

taken from locations around the world and includes pictures of different sports and

actions, photographs of people, animals, cities, landscapes, and many other aspects

of contemporary life. Annotations of these images are provided in English, German,

and Spanish.

The extended version, SAIAPR TC-12, is introduced as a benchmark for evaluating

image classification and retrieval at the image region level. It consists of all images

in the IAPR TC-12 dataset segmented manually and annotated according to a

predefined set of labels.

1http://imageclef.org/SIAPRdata
2http://imageclef.org/photodata
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The experiments in this section are carried out on a subset of the SAIAPR TC-12

dataset. This subset consists of 5, 000 randomly selected images. Fifty semantic

categories from this benchmark are considered in the classification process. Out of

these semantic concepts, 45 categories fall within the 50 most common categories

in the whole dataset. WordNet3 (Miller; 1995) is used to re-organize the selected

categories in an ontology of semantic concepts highlighting the hypernymy (i.e., Is-A)

relations among these concepts. In doing so, the semantic concepts are organized

within a multi-layered ontology ordered by specific/partial order as shown in Figure

6.5. The total number of concepts included in the semantics ontology is 77 high-level

semantic categories. Figure 6.5 shows the visual ontology organizing the semantic

concepts. In the context of this work, the classification models are trained using the

semantic concepts at the leaf level. However, the semantic categories are organized in

a visual ontology to facilitate future expansion to add new semantic concepts and for

easier readability of the semantic concepts used in this experiments. Incorporating

semantic similarity measures between the semantic concepts in the visual ontology is

outside the scope of this research work.
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Figure 6.5: The ontology organizing the high-level semantic categories

Regions annotated with the semantic categories included in the semantic ontology

are extracted. This has resulted in a total number of 15, 304 regions used for training

and testing the semantic-based region classification. The regions in each category

3http://wordnet.princeton.edu/
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are randomly split into disjoint training (80%) and testing (20%) subsets. The total

number of the training regions is 12, 276 with 3, 028 regions for testing.

In (Escalante et al.; 2010) an experimental comparison between different machine

learning algorithms on classifying image regions was presented. Their methodology

is based on conducting a set of comparisons between subsets of their dataset. The

subsets were selected based on the top common categories in the entire dataset. For

example, top 2, top 3, top 4, ..., and top 100 categories. In this work, 50 categories

were selected based on the devised semantic hierarchy depicted in Figure 6.5. This

has resulted in not having a one to one match with the most common semantic

categories in (Escalante et al.; 2010). Accordingly, a fair comparison with their

work would require generating all classification models using the machine learning

algorithms presented in Chapter 5 using their features. This experiment is not

conducted in this thesis as the main aim of the experiments presented in this chapter

is to compare the classification performance of classifying image regions, using a set

of low-level image features and their corresponding visual concepts, into semantic

categories.

6.4.2 Feature extraction

As discussed in Chapter 3, the visual color, texture, and shape concepts are used

to represent and describe image regions in this framework. Each of these features

is extracted through a model mapping its low-level features to the corresponding

high-level features (i.e., visual concepts) implementing the theoretical frameworks

described in Chapter 3 for the visual color and texture concepts and Chapter 4 for

the visual shape concepts.

There is no need to apply a global segmentation algorithm on the images to extract

image regions since the SAIAPR TC-12 benchmark provides the segmentation

masks with their images (cf. Section 6.4.1) along with their high-level annotations.
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Accordingly, the first step towards extracting the visual concepts from image regions

is extracting their low-level features.

First, the low-level shape features are extracted from image regions characterizing

their global boundaries. The global shape of the image region, represented by 64-

dimensional Fourier descriptors, is mapped to its corresponding high-level shape

concept through the framework for characterizing the visual shape concepts as

explained in Section 6.3.

Having extracted the visual shape concepts, each image region is then divided into

a set of overlapping image patches of a fixed size (35 × 35) pixels. The low-level

color features in the HVC space and texture features represented as Gabor filters are

extracted from the image patches to be further processed by the visual color and

texture concepts characterization frameworks.

In this framework, a subset of shapes from the shape lattice; i.e., the seven basic

shapes at the first level of descendants, is considered to describe image regions (cf.

Section 4.2). Basically, an average user is interested in specifying the shape properties

of objects using the basic shape characteristics. For example, users can differentiate

between rectangular or square table and circular or oval one. This is an analogy

to the use of basic color terms (Berlin and Kay; 1991). A basic color term of a

language is defined as being not subsumable to other basic color terms. For example,

the “teal” color is described as a medium blue-green, hence it is not considered as a

basic color term. Similarly, normal non-expert users can differentiate between an

oval and a rectangular table rather than describing a table as being “triangular with

one constricted inward and one excurvated edges” table. Accordingly, the seven

fundamental shape concepts of the shape lattice shown in Chapter 4 are utilized for

describing image regions for the region-based semantic classification.

The characterized visual color, texture, and shape concepts are then combined

together in a “late fusion” fashion (Snoek et al.; 2005) in which the distribution of
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each color concept and the confidence scores of the texture and shape concepts (cf.

Section 5.2) are integrated to form the feature vectors that will be used to learn the

set of high-level semantic categories. The concatenation of these vectors results in a

redundancy of the shape concepts in the set of vectors extracted from an image, as

the shape of an image region is represented in a single vector describing the global

shape of a region while the color and texture features are extracted from multiple

image patches extracted from the same image region. The reason for this redundancy

is that a semantic object (i.e., an image object) may have many different shapes

and might be somewhat occluded or deformed due to different viewpoints. This is

mainly when images are captured by non-expert users as in personal photo collections.

Moreover, the shape of one object may differ through time, such as the moon, which

starts in a “crescent” shape, then it becomes “half circular”, then “circular”, and then

it returns back as crescent and so on. In deference to this, the shape representation

is implemented to be redundant in which the global shape of an image region is

concatenated with each vector containing the color and texture representations

extracted from each image patch in that image region. This representation aims to

have training vectors with many possible combinations of color, texture, and shape

features for the same object as it may appear with different visual properties in

different images. This is similar to the approach presented in Nilsback and Zisserman

(2006) in which shape features are redundant to give immunity to occluded flowers

in a flower classification system.

To deal with the issue of imbalanced data between different classes, the training and

test sets were sampled at random into three different sets to generate and test the

classification models. The training/test sets were generated with different sizes. The

ratio between the training/test sets is kept for sampled sets so that for each training

set there exist a corresponding test set.

The final performance scores reported in Section 6.4.4 are computed as the mean

classification value per class. The classification process is repeated three times
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with each of the training/test sets, and final average scores are reported. The

detailed classification scores in precision, recall, and F-score measures are reported

in Appendix A.

6.4.3 Experimental settings of the supervised learning algo-

rithms

This section summarizes the parameter settings and variations for the learning

algorithms used in the semantic-based region classification.

Support Vector Machines (cf. Section 5.3.1) Several kernels are used and tested:

the linear, sigmoid, polynomial of 2 and 3 degrees, and Radial Basis Function (RBF)

kernels. The LibSVM4 library (Chang and Lin; 2011) is used in this experiment.

The cost and gamma parameters are estimated through cross validation. The cross

validation uses grid search to find the best values of C and γ. The grid search was

modified to run on 4-core machines in parallel environment. The search for C is

varied in {10−3, 10−1, 101, 103, 105, 107} and γ in {10−7, 10−5, 10−3, 10−1, 101}.

The multiclass classification problem is solved using one-against-one (OAO) technique.

The OAO technique has shown to yield better results than the one-against-all (OAA)

when the number of classes is relatively high (Rifkin and Klautau; 2004; Hsu and Lin;

2002), which is the case of the number of semantic categories in this experiments.

Decision Tree (cf. Section 5.3.2) The C4.5 and Naive Bayesian learning algorithms

are used. For the C4.5 algorithm, different splitting criterion and pruning options are

used in the training process: the splitting criterion is varied {1, 2} and the pruning

confidence factors applied are {0.15, 0.1, 0.05, 0.25, 0.5}.

Random Forests (cf. Section 5.3.3) Forests are grown with sizes of 50, 100, 500,

and 1000 trees. The size of the feature set at each split is as suggested by Breiman

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(2001): n/2, n, 2n, 4n, and 8n where n is the square root of the number of features.

The Weka5 (Hall et al.; 2009) implementation is used for Random Forest algorithm.

Nearest Neighbor (cf. Section 5.3.4) The Nearest Neighbor (kNN) classifiers are

generated with the Euclidean and Manhattan distances. The features are sorted

in KD-Tree (Friedman et al.; 1977) and Cover Tree (Beygelzimer et al.; 2006) to

conduct the search. Their implementations in Weka are used. The search was also

conducted linearly using all features. The number of the nearest neighbors k is varied

to {1, 2, 4, 8, 16, 32, 64} neighbors.

Naive Bayes (cf. Section 5.3.5) The continuous features for both the visual con-

ceptual information and the baseline model are handled using Entropy Minimization

Discretization (EMD), kernel estimation, and using features as single normal. The

implementation of Weka is used as well as the options to handle the continuous

attributes.

Logistic Regression (cf. Section 5.3.6) Logistic regression classifiers are generated

using L2 regularization. The LibLinear6 library (Fan et al.; 2008) is used to generate

the logistic regression classifiers.

Regularized models are trained varying the ridge parameter by factor of ten from

10−8 to 105 following the approach of Caruana and Niculescu-Mizil (2006).

6.4.4 Performance evaluation

This section presents the performance evaluation of the region-based image description

and classification using the visual conceptual information. The accuracy is measured

by how well the classification models perform on a set of un-annotated image regions.

The classification process results in annotating image regions as belonging to high-

level semantic categories as given in the ground truth set.

5http://www.cs.waikato.ac.nz/ml/weka/
6http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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The annotation accuracy of image regions, described by the visual conceptual in-

formation as their features, is compared with a baseline framework that operates

at the low-level image features to infer the semantics conveyed in image regions.

The low-level features used in the baseline model are the average color in the HVC

color space, Gabor filters with 5 scales and 6 orientations representing the texture

features, and Fourier descriptors to represent the shape features of the extracted

image region. Indeed, these are the low-level visual features extracted from images

before the mapping to the high-level visual color, texture, and shape concepts. This

experiment is conducted so that to compare semantic-based classification of image

regions using low-level image features and classifying image regions after mapping

the low-level features to their corresponding visual concepts.

The experiments in this section are performed as follows. First, the machine learning

algorithms presented in Chapter 5 are used to establish correspondence between the

visual conceptual information and the set of high-level semantic categories (cf. Section

6.4.1) and their performances are empirically compared. The evaluation metrics

used are the precision, recall, and the F-score measures. Further, the difference in

the classification performance between the visual concepts and the baseline method

using each learner is shown in precision/recall figures. The experimental findings are

supported with statistical tests.

The aim of these experiments is to measure the classification performance of using the

visual color, texture, and shape concepts to describe and classify image regions. The

classifier with the highest classification score is selected to conduct the experiments

on region-based image retrieval incorporating visual conceptual characteristics of

image objects in Section 6.4.6.

Several models are generated for each learning algorithm depending on the number

of parameter settings. For example, different kernels are used for support vector

machines and different discretization methods are used to discretize the continuous

features for naive Bayes classification as shown in Section 6.4.3. Each learner is also

102



6.4 Experimental validation of the semantic-based region indexing

used to generate a baseline model to be compared with the model generated using

the visual concepts.

Result Discussion

Table 6.5 shows the mean normalized performance scores of each learning algorithm.

Each score shown in the table represents the average of that performance metric

over all its generated models. For example, the precision score of the decision tree

represents all precision scores of all the models generated using the decision tree

algorithms with all possible parameter variations as shown in Section 6.4.3. This is

also applied to the other learning algorithms. The detailed classification scores for

classifier are reported in Appendix A.

Classification algorithm
NB kNN LR DTree RF SVM

VC BL VC BL VC BL VC BL VC BL VC BL

Average
27.7 17.6 38.7 26.8 39.7 20.7 35.6 19.6 54.8 32.9 47.6 32.1

Precision (%)

CI (17.3– (-1.9– (37.6– (26.4– (36.6– (12.8– (33.3– (18.7– (53.7– (31.6– (45– (30.9–
38) 37.1) 39.9) 27.3) 42.7) 31.6) 37.9) 22) 55.9) 34.2) 50.2) 33.3)

Average
18.9 9 27.5 30.9 29.8 23.7 23.5 15.7 43.6 38 35 27

Recall (%)

CI (11.4– (-7– (26.6– (29.8– (27.7– (19.3– (21.3– (15.2– (41.8– (36.3– (32.3– (20.9–
26.5) 25.8) 28.4) 31.9) 32) 29.8) 25.8) 16.6) 45.4) 39.7) 37.7) 33.2)

Average
17.4 8.8 29.7 26.0 28.6 16.6 26.7 16.4 46.7 30.6 37.8 24

F-score (%)

CI (8.5– (-9.8– (28.7– (25.5– (25.7– (11.1– (24– (15.9– (45– (28.8– (34.8– (18.8–
26.3) 27.5) 30.6) 26.5) 31.4) 24.1) 29.4) 17.3) 48.5) 32.5) 40.7 29.1)

Table 6.5: The classification performance of using the visual conceptual information
against using the baseline model. The classification scores (precision,
recall, and F-score) are averaged using all models generated by classifiers
with the possible parameter settings. CI indicates the 95% confidence
interval of the obtained results

Random Forest classification results

It can be seen that the classification accuracy using the visual conceptual information

(VC), in all performance metrics, outperforms the baseline model (BL). Random

forest learning algorithm (RF) has the highest scores among the other classifiers.

The high accuracy of Random Forest is consistent using both the visual concepts
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and the baseline model operating at the low-level image features. This is in line with

the studies in Caruana and Niculescu-Mizil (2006) and Escalante et al. (2010) in

which Random Forest classifier showed high classification accuracy in comparison to

other classifiers. This is because aggregating the results of many decision trees for

the final classification decision. Nonetheless, the classification difference between the

visual concepts and the baseline using the Random Forest classifier is found to be

statistically significant based in Mann-Whitney U test (p < 0.05). Mann-Whitney U

test is used to find statistical significance between two groups. It is used instead of

student’s t-test when the assumption of data normality is violated. The data was

found to be not normally distributed and Mann-Whitney U test is used to test any

statistical significance between the two groups of results.

Appendix A shows the detailed precision, recall, and F-score values of the Random

Forest classifiers.

Nearest Neighbor classification results

In the case of nearest neighbor classifiers (kNN), it can be observed that the classifi-

cation difference is minimal but in favor of the visual concepts. The difference is not

statistically significant based on Mann-Whitney U test (p < 0.05). Interestingly, this

also is in line with one of the reasons Boiman et al. (2008) highlight that causes the

degradation in nearest neighbor classification: feature quantization. However, using

the visual concepts still outperforms the baseline method. It is also noteworthy that

the difference in using KDTree or Cover Tree to sort the data instances is minimal.

They have very similar classification accuracy, but there is a trade-off in the average

training time as KDTree algorithm was found to be faster than the Cover Tree as

shown in Section 6.4.5.

Increasing the number of nearest neighbors (i.e., 32 and 64) results in higher classifi-

cation accuracy. Regarding the distance function used, Manhattan distance slightly

outperforms the Euclidean distance. The difference between them was found to
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be minimal. The detailed classification scores of the kNN classifiers are listed in

Appendix A.

Naive Bayes classification results

Naive Bayes (NB) does not perform well in comparison to other classifiers. The

classifiers generated with continuous features discretized using Entropy Minimization

Discretization (EMD) perform much better than the classifiers generated with the

features discretized using kernel estimation or even using features as single normal.

The single normal in fact performs quite poorly. This explains the wide CI error bar

of the averaged F-score metrics as shown in Figure 6.6 and Figure 6.7. The difference

is not statistically significant based on Mann-Whitney U test (p < 0.05). Appendix

A shows the classification scores of all Naive Bayes classifiers. Figure 6.6 depicts

the average F-score measures of the visual concepts and the baseline model of all

learning algorithms.
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Figure 6.6: The mean F-score metric of the classification results using the visual
conceptual information in comparison with the baseline method with
95% Confidence Interval (CI) error bars
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Support Vector Machines classification results

As expected, Support Vector Machine (SVM) learning performs well. As far as the

classification accuracy at hand is concerned, the performance of SVM classifiers is

consistent on both the visual concepts and the baseline model. It is noteworthy that

the Polynomial of 3 degrees kernel outperforms the other kernel methods; very close

to it is the Polynomial of 2 degrees, then the linear kernel, the Sigmoid kernel is also

very close; lastly the RBF kernel. However, the range of average score of all of these

kernels is tight. The difference in the classification accuracies between the visual

concepts and the baseline method using Support Vector Machine classifiers was found

to be statistically significant according to Mann-Whitney U test (p < 0.05). The

classification scores of all SVM classifiers are shown in Appendix A.

In comparison to other classifiers, SVM performs better except for Random Forests.

Figures 6.6 and 6.7 show that SVM is in the second rank after RF for the visual

concepts. However, its baseline is in the third rank after RF and kNN baseline

models.

Decision Tree classification results

The performance of the Decision Tree learners is poor in comparison to the other

classifiers. In the baseline models it performs even poorer. The Naive Bayes Decision

Tree (NBDT) performs poorer than the C4.5 algorithm. The difference in the

classification accuracies between the visual concepts and the baseline method using

the decision tree was found to be statistically significant according to Mann-Whitney

U test (p < 0.05). The detailed classification scores of Decision Tree classifiers are

listed in Appendix A.

Logistic Regression classification results

As far as the Logistic Regression (LR) is concerned, it was noticed that classifiers

generated with higher ridge value have achieved higher precision, recall, and F-score
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scores (cf. Appendix A). This is mainly the case with the visual concepts in which the

classifiers generated with higher ridge values have resulted in the higher performance

metric values. In the baseline, the classifier with the ridge value 100 yielded the

highest scores.

The overall performance of LR using the visual concept is higher than the baseline

method (classification scores are shown in Appendix A). Its performance was found

to be statistically significant using Mann-Whitney U test (p < 0.05).

Performance comparison of learning algorithms

It can be seen that the F-score values of the classification using the visual concepts

consistently outperforms the classification scores using the low-level features in the

baseline method for each learner. Figure 6.7 shows the same results as Figure 6.6 but

the F-score bars are grouped by the classifiers generated using visual concepts and

the ones generated using the baseline method. It can be noticed that the performance

of the classifiers is relatively consistent. For example, the Random Forest learner

outperforms all the other classifiers. Naive Bayes classifier has the lowest classification

accuracy in comparison to the other classifiers. Decision tree is also consistent in the

fifth rank. The second most accurate classifier is the SVM. Nearest neighbor and

logistic regression are ranked in the third and the fourth places.

Moreover, the behavior of the different parameter settings is to some extent consistent.

In Random Forest, increasing the number of trees at each split results in a higher

performance for both experiments as well. In naive Bayes, models generated using

features discretized with EMD have achieved higher classification performance values

than the kernel estimation for both the visual concepts and the baseline. In nearest

neighbor, the linear search strategy for the nearest neighbor was also consistent in

comparison to KDTree and Cover Tree algorithms. The overall difference in the

F-score values is minimal. However, it was noticed that the number of nearest

neighbors that yielded the highest F-score value using the visual concepts was with
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Figure 6.7: The mean F-score metric of the classification results grouped by the
visual conceptual information and the baseline method with 95% Confi-
dence Interval (CI) error bars

32 neighbors, whereas 8 neighbors in the case of the baseline. In Decision Tree

learning, on average the splitting criterion value of 2 has achieved slightly higher

F-score than the value 1. The pruning confidence factors of lower values (i.e., 0.15

and 0.1) has also slightly resulted in higher F-score values.

We can see that the difference in classification performance between the visual

concepts and the baseline has noticeably improved with the Decision Tree, Naive

Bayes, and Random Forest classifiers. This is related to how these algorithms work.

As mentioned in Chapter 3, the visual concepts can be viewed as a perceptual-based

quantization technique of the image features. Having the image features quantized,

it plays an important role in generating the decision trees’ splitting criterion. The

impact of having the features quantized into a smaller number of features results in

reducing the number of split nodes and a less scattered and more concise decision
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tree and thus, better classification accuracy. Moreover, having more features may

cause the decision tree to over-fit.

The same applies to Random Forest classifiers since it is an ensemble classifier and

consists of many generated decision trees.

The performance of the Bayesian learner using the visual concepts is much higher

than using the low-level features as the class-density estimations are computed

using the visual concepts. Again, this results in using quantized feature vectors of

dimensionality less than low-level visual features in the baseline method. Jakulin

(2005) has shown that increasing the number of features usually decreases the classifi-

cation accuracy. He explains that Naive Bayes classifiers always benefit from feature

selection which reduces the number of features used in the classification process;

in other words, having more uninformative features will cause the classification

accuracy to degrade. In the case of the baseline method, as it uses low-level visual

features without applying feature selection algorithms, the baseline is prone to having

uninformative features which will cause the classification accuracy to further degrade.

The difference in the classification performance between the visual concepts and the

baseline model for each learner is shown in precision/recall figures in Figure 6.8. It

can be seen that the classification for each classifier has been enhanced by using the

visual concepts over using the low-level image features.

Statistical validation

Using all F-score measures of all classifiers using the visual concepts and the baseline

method, a statistical test is conducted to show that the improvement in classification

accuracy using the visual conceptual information is statistically significant compared

to using the low-level visual features.

The statistical test of choice is the “Kruskal-Wallis H test” as the test aims at

reporting more than two sets of results. Kruskal-Wallis test is a nonparametric test
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: The precision and recall figures of: (a) naive Bayes; (b) nearest neigh-
bor; (c) logistic regression; (d) decision tree; (e) random forests; and
(f) support vector machine
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that is used to compare means of more than two groups. It is equivalent to one-way

ANOVA and an extension to Mann-Whitney test. It is used when the assumption

of data normality is violated unlike the one-way ANOVA that assumes the data is

normally distributed. This test is performed on the “F-score” values presented in

Figures 6.6 and 6.7 and it was selected as it was found that the F-score values are

not normally distributed.

Kruskal-Wallis test show that there is a significant difference in the medians

χ2(11, N = 345) = 182.34 , p < 0.05. Because of this test significance, a post-

hoc test to conduct pairwise comparisons among all groups should be considered.

The post-hoc test, Dunn’s analysis, has revealed that out of all classifiers, Random

Forest using visual concepts has achieved the highest statistical significance. However,

it was found that Random Forest using visual concepts is statistically significant

against all classifiers except Support Vector Machines using visual concepts and the

baseline model using Random Forest classifiers. As for the SVM classifiers it still

has achieved higher classification accuracies as shown in Table 6.5. And as far as the

baseline model using Random Forests is concerned, it is noticed that Mann-Whitney’s

test has shown that Random Forest using visual concepts is statistically significant

over its baseline model. The difference here is that Dunn’s analysis uses Bonferroni

correction procedure to adjust the p values (i.e., the critical value for significance

alpha) (Olejnik et al.; 1997). So the p-value is adjusted for each pairwise comparison

and that caused the pairwise comparison of Dunn’s post-hoc test to differ than

Mann-Whitney’s result when comparing the Random Forest’s classification accuracy

using the visual concepts and the baseline model.

In general, the overall statistical tests (i.e., the Kruskal-Wallis and the classifiers’

individual Mann-Whitney tests) show that using the visual concepts to describe and

classify image regions outperform using the low-level image features.
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6.4.5 Computational time and cost

This section reviews some of the computational cost aspects used in performing the

experiments.

Due to the high computational requirements needed to accomplish the training and

testing for the machine learning algorithms, the experiments presented in Section

6.4 are performed on the Monash High Performance Computing (HPC) facilities7.

The high computation requirements are mainly the memory and storage. Where

applicable, some of the processes such as SVM grid search were also run on multi-core

machines.

In Random Forest training, the main drawback found, especially when growing

large number of trees, is the memory requirements. For generating Random Forest

classifiers this is, on average, of 40 GB on Monash HPC. The average training time

is 868.5 minutes.

In kNN classification, the difference in classification scores using KDTree or Cover

Tree to sort the data instances was minimal. They have resulted in very similar

classification accuracy. However, there is a trade-off in the average training time of

5.5 minutes for KDTree to 31.2 minutes for Cover Tree for the same model.

Linear search for the nearest neighbors has, on one hand, the highest scores in

comparison to using KDTree and Cover Tree algorithms to search for the nearest

neighbors. On the other hand, the training time for the linear search models was the

highest of all nearest neighbor models with an average of 138.6 minutes.

Naive Bayes learning is considered to be a fast learner with an average training time

of 112 minutes.

One of the problems encountered while generating the SVM models is the computation

resources needed, especially during running the cross validation to get the best C

7http://www.monash.edu/eresearch/services/mcg/

112

http://www.monash.edu/eresearch/services/mcg/


6.4 Experimental validation of the semantic-based region indexing

and γ parameters. The search for the parameters is performed using the grid search

provided with the LibSVM library. The code was modified to run the search in

a parallel environment using 4-core machines. The longest average time was for

linear kernel with 6, 510.5 minutes. The shortest time was for the sigmoid kernel

with 258 minutes. The parameter search for the RBF kernel was 1, 349.7 minutes,

Polynomial with 2 degrees was 1, 425.3 minutes, and Polynomial with 3 degrees took

916.6 minutes to find the best parameters.

Training SVM models is less expensive than the grid search. The best parameters

found using the grid search through cross validation are used to generate the final

SVM models. On average, the shortest training time was for the sigmoid kernel

with 245 minutes, then the RBF with 266 and very close the linear kernel with

275 minutes, next to it polynomial of 2 degrees with 284 minutes, and finally the

polynomial of 3 degrees with 388 minutes.

In Logistic Regression, the training time was noticed to be longer when the ridge

value becomes higher. The average shortest training time was for the ridge value

10−8 with 1.5 minutes and the longest training time was 172 minutes when the ridge

value was 105.

6.4.6 Retrieval using high-level concepts

This section represents an experimental application of using the visual concepts that

is retrieval of image regions. This experiment is a prototype that simulates a region-

based image retrieval framework within a conceptual image retrieval architecture

coupling both the semantic categories and the visual conceptual information of image

region. Its evaluation is based on the notion of image relevance which consists in

quantifying the correspondence between index and query image representations. It

should be noticed that this experiment is conducted on the feature level of image

regions and the final score metrics are computed on the correct classification of image

regions. This simulates a retrieval of image regions.
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The classifier used for the semantic-based retrieval is a Random Forest classifier of 100

trees and each tree is constructed while considering 5 random features. The retrieval

of semantic image regions is compared to a content-based image retrieval architecture

based on a query-by-example process operating on low-level color texture, and shape

features. Index and query representations are compared based on the Euclidean

distance.

A set of 23 non-trivial textual queries of different semantic concepts were selected

for the experiment. These queries were selected with the criterion of having rich

perceptual representation of the high-level semantic categories they represent rather

than selecting queries with the high-level semantic categories solely. Each query

contains perceptual characteristics that reflect some visual properties of the image

region, corresponding to the visual color, texture, and shape concepts. Examples

of such queries are “whirly water”, “sunset”, “clear blue sky”, and “cracked wall”.

Each query is mapped to relevant query terms that match the semantic color, texture

or shape concepts of the original query. For instance, “triangle-like mountain” is

mapped to “mountain with the probability of the triangular shape as being the

highest”. This is achieved by filtering the specified semantic category based on

the specified visual property. Table 6.6 shows the mapping of queries into query

terms that match the semantic color, texture or shape concepts of the original query.

These queries represent the semantic categories (simulating a user given query) (user

gives) to the system in addition to some perceptual visual properties of the queried

categories. In this way, the user’s interpretation of the visual properties is represented

by using the visual conceptual information that reduced the semantic gap between

the low-level representation and the humans’ interpretation of those features. For

the baseline architecture, three image regions were randomly selected for each query

as an input to the query-by-example module. (Three image regions represent a good

threshold without further degrading the classification accuracy of the QBE model.)
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Out of 3000 image regions used in this experiment, Figure 6.9 shows 100 randomly

selected image regions.

The F-score indicator is used to evaluate the performance of the compared models.

Figure 6.10 shows the F-score values of all the 23 non-trivial semantic queries. By

analyzing the obtained results in Figure 6.10 , it is seen that the results of simulating

textual queries containing the semantic concepts and their visual concepts in the

simulation of the semantic-based region retrieval outperforms the content-based

image retrieval model for most queries.

A statistical test is performed using the F-score values of both the semantic-based

region retrieval using the visual concepts and the content-based retrieval. The

statistical test is the Wilcoxon Signed Rank test. The Wilcoxon Signed test is

a nonparametric statistical test and is alternative of the paired t-test. It is used

instead of paired t-test when the normality assumption of the data is violated, which

is the case with the F-score of both the retrieval using the visual concepts and

the QBE module. This statistical test is applied to make statistical decision as to

whether or not using the visual concepts in the retrieval process outperforms using

the query-by-example model. A Wilcoxon Signed Rank test showed that there is a

significant difference between using the visual concepts and the QBE, z = −3.74,

p < 0.05. By conventional criteria, this difference is considered to be statistically

significant.

6.5 Summary

This chapter has presented the experiments carried out in validating the work

presented in this thesis. This chapter has given answers in the affirmative to the

research questions of this thesis presented in Chapter 1: can shapes of segmented

image regions be represented using high-level perceptual descriptors rather than

low-level shape features for the task of image description and classification? and
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Figure 6.9: Examples of image regions used in the retrieval experiment
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Query Query mapping into semantics and visual concepts
Whirly ocean ocean with the probability of the texture whirly as

being the highest
Triangle-like mountain with the probability of the triangular shape

mountain as being the highest
Trees with tree image regions with the color green having the

green leaves highest distribution
Lined trees tree image regions with the texture lined as being the

highest
Sunset sun with color orange as being the highest

Rocky mountain mountain with the colors black and gray (dark colors)
have high distributions

Rectangle-like mountain with the probability of the rectangle
mountain shape as being the highest

People wearing people image regions with the color purple as being
purple clothes the highest

People in people image regions with the color red having the
red clothes highest distribution

Lined people people image regions with the texture lined as being
the highest

Lined wall wall with the texture lined having the highest
probabilistic estimation

Lined vegetations vegetations with a high score of the texture lined
Interlaced vegetations vegetations with a high score of the texture interlaced

Lined door door image region with the texture lined as
being the highest

Gray wall wall image regions with the color gray as being
the highest

Dark-green vegetations image regions with a high distribution
vegetations of the black color

Dark skin face face with the color black as being the highest
Circular face face image regions with the shape circular

as being the highest
Cracked wall wall image regions with the a high probabilistic

estimation of the texture cracked
Clear blue sky sky image regions with the colors white and gray

are very low and the color blue or cyan as being
the highest

Green grass grass image regions with the color green as being the
highest

A night view sky image regions with the color black has the highest
distribution

A bed with a red cover bed with a high distribution of the color red

Table 6.6: The proposed queries and their mapping into semantic concepts and
visual concepts describing their properties
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Figure 6.10: The retrieval accuracy using the F-score metric between queries in-
corporating the visual concepts and the baseline method using query-
by-example

would describing image regions using the visual color, texture, and shape concepts

outperform using a set of low-level image features and thus narrow the semantic

gap?.

At first, an overview of the implementation of the frameworks for extracting the visual

color and texture concepts was presented. Then the implementation detail of the

framework for characterizing the visual shape concepts has been presented and has

answered the first research question of this thesis. The integration of the visual color,

texture, and shape concepts for the task of image description of image regions was

then illustrated. This was tested against a baseline method operating at the low-level

image features to classify image regions. Statistical tests supported the findings of the

experiments. Lastly, a preliminary retrieval experiment that incorporate using the

visual concepts to retrieve high-level semantic categories was presented and showed
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that using the visual concepts outperforms using a query-by-example architecture

operating at the low-level image features.
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Chapter 7

Conclusion and Future Directions

7.1 Summary of thesis contributions

Aiming at narrowing the semantic gap between the low-level image features and

the humans’ rich understanding of their visual properties, this thesis presented

an approach to describe and classify image regions using their visual conceptual

information. Through the development of models that map the low-level features

into a set of high-level symbolic descriptors, such as red or green for color features;

lined or marbled for texture features; and elliptical or rectangular for shape features,

image regions are described in transparent and readable descriptors rather than their

low-level image features. These symbolic descriptors, named in this thesis as the

visual concepts, are then used to learn a set of high-level semantic categories to

classify un-annotated image regions. These aims and motivations were discussed in

Chapter 1.

The literature review in Chapter 2 highlighted approaches, systems, and techniques

in image indexing and retrieval. The state-of-the-art research of image retrieval

frameworks was discussed starting from the first class of image retrieval frameworks
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using manual text annotation to semantic-based image indexing. Methods and

techniques used to address the semantic gap were also presented.

The theoretical formalization of using the visual concepts to represent image regions

was presented in Chapter 3. Frameworks used to extract the visual color and texture

concepts were demonstrated. In particular, the framework for characterizing the

visual color concepts transforms the pixel values from their representation in the

RGB color space to the HVC color space and then characterizes the image colors

using a set of visual color concepts presented in Section 3.2.1. Section 3.2.2 described

the framework for characterizing the visual texture concepts that maps the extracted

Gabor features into a set of pre-defined texture concepts through Support Vector

Machine classifiers.

Chapter 4 presented a framework that aims to describe image regions using generic

visual shape concepts that describe their boundary information. A set of shape

concepts were introduced to describe image regions. The development of shapes

from the fundamental shape concepts and the transformations applied to derive

new novel shapes were illustrated. All the shapes were organized in a shape lattice

that consists of seven sub-lattices originated from the each of the seven fundamental

shape concepts.

Chapter 5 reviewed the theoretical foundations of the supervised machine learning

algorithms used in the experiments to learn a set of high-level semantic categories

using the visual conceptual information. First, problem formulation and notations

were introduced. Then a brief theoretical description of each learner is presented

including an overview of automatic image annotation and image classification systems

use each learning algorithm.

The experimental validation presented in Chapter 6 started by briefly describing the

implementations and experimental validation of the frameworks characterizing the

visual color and texture concepts in Section 6.2. The experiments of the framework for
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extracting the visual shape concepts from image regions were described in Section 6.3

and answered the first research question of this thesis that is if shapes of segmented

image regions be represented using high-level perceptual descriptors rather than

low-level shape features for the task of image description and classification.

The visual color, texture, and shape concepts are then used for the task of image

description and classification in Section 6.4. The dataset used in this experiments,

feature extraction, and pre-processing steps were described in Sections 6.4.1 and

6.4.2. Applying the supervised machine learning algorithms for classifying image

regions using the visual conceptual information was presented in Section 6.4.4. The

efficiency of using the visual conceptual information was demonstrated by conducting

a comparison with a baseline framework operating at a set of low-level image features

to learn the same set of semantic categories. The baseline model operates at the

low-level image features extracted from image regions before the mapping to their

corresponding visual concepts. This is conducted to show enhancements in the

performance of classifying image regions using the visual conceptual information.

The results of this section have answered the second research question of this thesis

that is if describing image regions using the visual color, texture, and shape concepts

outperforms using a set of low-level image features to annotate image regions with

semantic categories and thus narrow the semantic gap. Statistical tests were also

used to support the findings of these experiments.

7.2 Concluding remarks

This thesis presented an approach to describe and classify image contents using

their visual conceptual information. This entails describing image regions using

their visual color, texture, and shape concepts. The problem of image segmentation

and the effects of image segmentation accuracy on the performance of classifying

and retrieving image regions is out of the scope of this study. One of the main
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contributions is presenting a framework for characterizing visual shape concepts to

describe the shapes of image regions. The main aim of this thesis has shown to

achieve promising results and outperformed the baseline model.

Experiments on shape based conceptual characterization demonstrated that the

visual shape concepts outperformed the low-level shape features in classifying shape

objects.

As far as the semantic-based classification of image regions is concerned, using the

visual concepts to describe image regions has shown to outperform using a set of

low-level image features in the same task. Statistical tests were used to support these

findings. Mann-Whitney U test was used to find statistical significance between

models generated using the visual concepts for each classifier and their counterparts

generated for the baseline model. This statistical significance between the pairs of

models generated for each classification algorithm were also depicted by the confidence

interval error bars on the mean F-score metrics in Figure 6.6 and Figure 6.7. In

addition, Kruksal-Wallis H test on all the average F-score values was conducted

to find the overall statistical significance of all classifiers. It was shown that the

Random Forest classifier outperformed all the generated classifiers using the visual

conceptual information and the baseline models. Random Forest has shown to be

a strong classifier when dealing with image contents. The overall discussion of the

results obtained was presented in Section 6.4.4.

As for retrieval, Section 6.4.6 demonstrated the effectiveness of using the visual

concepts in the retrieval process. This has allowed users to specify the visual

perceptual cues of the semantic categories they are looking for. Statistical tests also

support the findings when comparing to retrieval of semantic categories operating

on the low-level image features.

The experimental results showed that using the visual conceptual information to

describe image contents achieved the goal of this thesis of narrowing the semantic gap
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between the low-level image features and high-level semantic categories. However,

this approach still merits further exploration.

7.3 Future work

Future directions include

1. Expanding the framework for the extraction and characterization of the visual

shape concepts. This may include expanding the shape lattice by adding

additional shapes. It can be also further developed and expanded to accom-

modate some domain specific fields in computer vision and object recognition.

Moreover, domain specific fields can utilize specific shape sub-lattice(s) from

the presented shape lattice for specific tasks related to describing the detailed

shapes of objects.

2. Extending the work on shapes for more complicated retrieval schemes. For

example, a query expansion framework that maps the terms in queries into

their perceptual properties for retrieval. For example, “a photo of a sun”, could

be mapped to the corresponding visual concepts such as circular, along with

perceptual color and texture descriptors, to facilitate the retrieval process.

3. Investigating more multimedia features that can be mapped to high-level

perceptual features. For example, describing the spatial relations between

image objects using adequate perceptual descriptors and motion features

representation for video classification and retrieval.

4. Tousch et al. (2012) have shown that using semantic ontologies and hierarchies

achieves better results than using a set of keywords to label images. Section

6.4.1 of Chapter 6 showed that the semantic categories were re-organized in a

visual ontology. The classification models were trained using only the semantic

concepts at the leaf level. Future work may include incorporating a technique to
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measure the semantic similarities in the concepts in ontologies to be integrated

with semantic-based image retrieval which may enhance the retrieval results.

With such a system, all semantic concepts in the lattice might be incorporated

in the retrieval process.

5. Integrating the presentation of the visual conceptual information in other

multimedia representations that have proven to be strong in representing mul-

timedia contents should be investigated. This includes presenting a perceptual

representation of the bags-of-visual-words (BOW) representation to describe

multimedia content. The BOW representation has been widely used and has

been shown to be a strong technique for representing multimedia content for

several tasks such as image classification, object classification, image and video

retrieval, etc. (Csurka et al.; 2004; Yang et al.; 2007; Deselaers; 2008; Uijlings

et al.; 2009). However, several researchers have pointed out that the main

issue with the BOW representation is that it does not take into account the

spatial information of image content (Lazebnik et al.; 2006; Yang et al.; 2007;

Ozdemir and Aksoy; 2010). As far as the perceptual meaning of image features

is concerned, the BOW representation does not take it into account which

might be worth further investigation.

6. Investigating the integration of the visual conceptual information with powerful

local features detection algorithms such as Scale-invariant feature transform

(SIFT) (Lowe; 1999) and Speeded up robust features (SURF) (Bay et al.; 2008).

Moreover, possible conceptual representation of SIFT and SURF is worth more

exploration.

7. Employing the visual conceptual information for the task of semantic scene

analysis rather than region-based classification only. This requires obtaining

more visual features in order to be able to capture more information from images.

In such a case, the visual shape concepts might be eliminated as the semantic

scene analysis involves analyzing images without applying segmentation to
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images. However, incorporating shape features might be still included in

such a way that different image regions in images are extracted and analysed

individually. Then the classified image regions in the same image contribute

through another framework to infer the semantic meaning of the image scenery.

8. The experimental chapter presented an empirical comparison between six

learning algorithms. The experiments presented can be extended to include

more learning algorithms to classify images, possibly using different sets of image

features on different learning algorithms and compare their performances using

different evaluation metrics. For example, several texture feature extraction

algorithms as well as several color features in different color spaces could be

compared. Using different image datasets and a wider set of accuracy measures

might be considered as well. It was noticed that there is a lack of a formal

work comparing multiclass classification using supervised machine learning

algorithms to classify image datasets. Caruana and Niculescu-Mizil (2006)

present a large scale empirical comparison using binary datasets. However, this

study does not concentrate on multimedia related datasets. Recently, Zhang

et al. (2012) present an extensive review of supervised learning algorithms used

for the task of automatic image annotation. No experimental comparisons are

conducted to compare the reviewed learning algorithms. Deselaers et al. (2008)

present a comparison on a wide variety of image features. Similarity distance

between query and database images was utilized only to classify/retrieve images.

A large scale comprehensive study on of classifying multimedia contents using

a wide set of multimedia features with different learning algorithms, a different

dataset, and different classification metrics that stresses the point of classifying

multimedia visual contents might be an interesting study.
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7.4 Summary

The fields of image classification, automatic image annotation, and image retrieval are

expanding research areas. A significant effort and a very strong research community

all over the world have been developing methods and techniques to improve these fields.

As these research areas develop constantly, the ideas and techniques presented in this

thesis can be deployed in areas of computer vision and multimedia content retrieval.

In particular, having answered the research questions of this thesis affirmatively,

this approach is worth more investigation and expansion to potentially improve

the accuracy of multimedia content classification or retrieval. The future directions

presented in Section 7.3 aim to provide some potential ideas for further investigation

that build on the work presented in this thesis.
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Appendix A

Detailed results of the semantic-based

region classification

This appendix presents the detailed classification scores of the semantic-based region

classification presented in Section 6.4.

Table A.1: Naive Bayes - Visual concepts

Subset Discretization method Precision Recall F-score

subset1 kernel estimation 13.5 10.8 7.6

— single normal 19.9 11.8 9.1

— EMD 41.6 0.21 21.4

subset2 kernel estimation 22.4 20.2 13.9

— single normal 20.3 13.4 11.7

— EMD 44.6 34.4 35.9

subset3 kernel estimation 20.8 11.7 10.3

— single normal 17.2 12.1 10

— EMD 49.1 35.5 37.4

149



Table A.2: Support Vector Machines - Visual concepts

Subset Kernel Precision Recall F-score

subset1 Linear 47.9 31.1 33.6

— Polynomial 2 degrees 46.9 32.8 35.5

— Polynomial 3 degrees 46.7 32.8 35.6

— RBF 38.9 28.7 31

— Sigmoid 45.3 30 32.3

subset2 Linear 44.3 35.8 36.7

— Polynomial 2 degrees 51.9 41.3 44.7

— Polynomial 3 degrees 52.7 41.9 45.6

— RBF 40.5 28.9 32.5

— Sigmoid 48 35.9 37.7

subset3 Linear 47.8 34 34.8

— Polynomial 2 degrees 54.7 41.7 46

— Polynomial 3 degrees 55.3 42.4 46.8

— RBF 44.8 30.9 35.3

— Sigmoid 48.7 37.3 39

Table A.3: Decision tree - Visual concepts

Subset Algorithm Split criterion Pruning factor Precision Recall F-score

subset1 C4.5 1 0.05 23.2 12.7 13.8

— — — 0.10 21.1 12.5 13

— — — 0.15 30.4 12.2 13.3

— — — 0.25 30.4 13.2 14.7

— — — 0.5 30.4 13.2 14.7

— — 2 0.05 35 24.1 25.2

— — — 0.10 33.4 23.8 24.6

— — — 0.15 33.6 23.7 24.7

— — — 0.25 33.3 23.5 24.6

— — — 0.5 33.2 22.9 24.3

— NBDT 18.4 11.1 12.4

subset2 C4.5 1 0.05 42.1 31 35

— — — 0.10 41.1 29.8 34
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Table A.3 – continued from previous page

Subset Algorithm Split criterion Pruning factor Precision Recall F-score

— — — 0.15 41.6 28.8 33.5

— — — 0.25 41.4 28.7 33.4

— — — 0.5 41.5 28.7 33.4

— — 2 0.05 42.3 30.8 34.8

— — — 0.10 41.3 29 33.5

— — — 0.15 41.4 29 33.6

— — — 0.25 41.5 29 33.6

— — — 0.5 41.4 28.9 33.5

— NBDT 24.7 14.5 17.5

subset3 C4.5 1 0.05 37.2 25.9 29.6

— — — 0.10 38.2 25.5 29.6

— — — 0.15 38.1 25.1 29.2

— — — 0.25 38 24.9 29

— — — 0.5 37.7 24.5 28.7

— — 2 0.05 38.1 26.1 30

— — — 0.10 38.1 26 29.9

— — — 0.15 38 25.7 29.7

— — — 0.25 37.3 25.2 29.2

— — — 0.5 37.2 25.1 29.1

Table A.4: Nearest Neighbor - Visual concepts

Subset Search technique Distance measure k Precision Recall F-score

subset1 Cover tree Euclidean 1 29.3 20.5 23.3

— — — 2 30.3 21.1 22.9

— — — 4 29.3 21.4 23.5

— — — 8 32.5 24.4 25.7

— — — 16 32.4 24.6 24.6

— — — 32 41.8 25.4 25.2

— — — 64 35.3 24.3 22.4

— KDTree Euclidean 1 29.3 20.5 23.3

— — — 2 30.3 21.1 22.9

— — — 4 29.3 21.4 23.5
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Subset Search technique Distance measure k Precision Recall F-score

— — — 8 32.5 24.4 25.7

— — — 16 32.4 24.6 24.6

— — — 32 41.8 25.4 25.2

— — — 64 35.3 24.3 22.4

— Linear Euclidean 1 29.3 20.5 23.3

— — — 2 30.3 21.1 22.9

— — — 4 29.3 21.4 23.5

— — — 8 32.5 24.4 25.7

— — — 16 32.4 24.6 24.6

— — — 32 41.8 25.4 25.2

— — — 64 35.3 24.3 22.4

— — Manhattan 1 32.6 22.3 25

— — — 2 33.1 23.1 24.9

— — — 4 34.7 25.7 27.4

— — — 8 37.3 27.1 28.3

— — — 16 39.5 28 28.6

— — — 32 36 26.5 25.9

— — — 64 41.1 25.4 23.5

subset2 Cover tree Euclidean 1 35.8 24 28.2

— — — 2 34.6 23.6 27.1

— — — 4 36.8 26.6 30

— — — 8 39.3 29 31.9

— — — 16 41.5 30.3 32.6

— — — 32 41.8 30.6 31.9

— — — 64 42.5 30.2 31

— KDTree Euclidean 1 35.8 24 28.2

— — — 2 34.6 23.6 27.1

— — — 4 36.8 26.6 30

— — — 8 39.4 29 31.9

— — — 16 41.5 30.3 32.6

— — — 32 41.8 30.6 31.9

— — — 64 42.5 30.2 31

— Linear Euclidean 1 35.8 24 28.2

— — — 2 34.6 23.6 27.1

— — — 4 36.8 26.6 30

— — — 8 39.4 29 31.9

— — — 16 41.5 30.3 32.6

— — — 32 41.8 30.6 31.9
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Subset Search technique Distance measure k Precision Recall F-score

— — — 64 42.5 30.2 31

— — Manhattan 1 38.1 26 30.2

— — — 2 38.4 26.8 30.3

— — — 4 39.6 29.3 32.6

— — — 8 41.1 30.9 33.5

— — — 16 43.7 32.8 34.5

— — — 32 45.7 33.4 34.5

— — — 64 46.5 32.7 33.2

subset3 Cover tree Euclidean 1 38.1 25.3 29.9

— — — 2 38.1 26.6 30.6

— — — 4 40.8 29.6 33.5

— — — 8 42.5 30.7 34.2

— — — 16 44.9 32.4 35.4

— — — 32 46 32.5 34.9

— — — 64 45.5 32.7 33.9

— KDTree Euclidean 1 38.1 25.3 29.9

— — — 2 38.1 26.6 30.6

— — — 4 40.9 29.6 33.6

— — — 8 42.5 30.7 34.2

— — — 16 44.9 32.4 35.4

— — — 32 46 32.5 34.9

— — — 64 45.5 32.7 33.9

— Linear Euclidean 1 38.1 25.3 29.9

— — — 2 38.1 26.6 30.6

— — — 4 40.9 29.6 33.6

— — — 8 42.5 30.7 34.2

— — — 16 44.9 32.4 35.4

— — — 32 46 32.5 34.9

— — — 64 45.5 32.7 33.9

— — Manhattan 1 40.3 27.9 32.2

— — — 2 40.6 29.2 33

— — — 4 42.6 31.6 35.2

— — — 8 44.9 33.4 36.6

— — — 16 46.3 34.6 37.2

— — — 32 48.6 35.8 37.6

— — — 64 49.1 35.2 36.3
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Table A.5: Logistic Regression - Visual concepts

Subset Ridge Precision Recall F-score

subset1 10−8 19.9 19.5 15.7

— 10−7 19.9 19.5 15.7

— 10−6 19.9 19.5 15.7

— 10−5 19.6 19.8 15.8

— 10−4 23.8 22.1 17.2

— 10−3 21 22.8 16.7

— 10−2 36.2 23.6 19.2

— 10−1 43.4 27.2 27

— 100 49.5 30 31.7

— 101 46.9 31.1 33

— 102 48.5 32 34.1

— 103 47.6 32.1 34.1

— 104 47.2 32.8 34.6

— 105 46.7 32 33.7

subset2 10−8 33.6 21.9 18.9

— 10−7 33.6 21.9 18.9

— 10−6 36.8 22.2 19.1

— 10−5 36.3 24.2 20.6

— 10−4 33.2 25.6 20.8

— 10−3 35.8 26.9 22.2

— 10−2 44 31.1 29.9

— 10−1 46.6 33.3 34.6

— 100 48.3 35 37.1

— 101 47.8 36.6 38.8

— 102 47.5 38.2 39.3

— 103 47.5 38 39.3

— 104 48.2 38.7 39.8

— 105 48 38.6 39.4

subset3 10−8 32.9 23.3 20.1

— 10−7 33 23.4 20.2

— 10−6 31.8 23.9 20.5

— 10−5 35.1 25.9 21.5

— 10−4 36.8 27 21.9
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Subset Ridge Precision Recall F-score

— 10−3 38.4 29.3 25.1

— 10−2 43.6 33.5 32.5

— 10−1 46.8 35.8 36.5

— 100 48 37.3 38.4

— 101 48.7 39.5 39.9

— 102 48.8 39.9 40.4

— 103 49 40.1 40.7

— 104 48.8 40 40.5

— 105 48.9 40.1 40.6

Table A.6: Random Forest - Visual concepts

Subset Size of Forest Size of features Precision Recall F-score

at each split

subset1 50 3 47.1 36.4 38.8

— — 5 49.7 39 41.9

— — 10 54 41.7 45.3

— — 20 51.7 38.8 42.4

— — 40 52.2 38.1 42.2

— 100 3 52.2 39 42.3

— — 5 54.6 41.8 45.2

— — 10 52 41.2 44.1

— — 20 50.9 39.1 42.3

— — 40 52.2 38 41.7

— 500 3 57.6 43.5 45.9

— — 5 56.7 43 46.2

— — 10 55.9 43.2 46.5

— — 20 54.1 40.8 44.5

— — 40 52.9 39 42.6

— 1000 3 55.8 42.5 45.2

— — 5 58.3 44.7 47.5

— — 10 55.8 43.5 46.7

— — 20 54.3 41.7 44.9
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Table A.6 – continued from previous page

Subset Size of Forest Size of features Precision Recall F-score

at each split

— — 40 54.8 39.8 43.5

subset2 50 3 56.3 48.8 51.5

— — 5 56.9 49.6 52.3

— — 10 58.2 50.8 53.7

— — 20 56.3 48.3 51.6

— — 40 54.3 44.9 48.6

— 100 3 58.7 51.5 54

— — 5 59.9 52.7 55.2

— — 10 59.4 52.2 55

— — 20 57.2 49.3 52.5

— — 40 55.4 46.1 49.8

Table A.7: Naive Bayes - Baseline

Discretization method Precision Recall F-score

kernel estimation 13.4 4.4 4.9

single normal 12.7 6.9 4.1

EMD 26.7 16.9 17.5

Table A.8: Support Vector Machines - Baseline

Kernel Precision Recall F-score

Linear 32.8 27.2 23.4

Polynomial 2 degrees 32.4 22.3 19.8

Polynomial 3 degrees 32.5 22.8 20.7

RBF 32.7 28.5 26.3

Sigmoid 30.5 34.5 29.8
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Table A.9: Decision tree - Baseline

Algorithm Split criterion Pruning factor Precision Recall F-score

C4.5 1 0.05 20.2 17.3 17.5

— — 0.10 19.2 15.4 16.1

— — 0.15 19.3 15.1 16

— — 0.25 19.3 15.1 16

— — 0.5 19.3 15.1 16

— 2 0.05 19.9 16.3 16.8

— — 0.10 20.2 16.1 16.7

— — 0.15 20 16 16.6

— — 0.25 19.5 15.4 16

— — 0.5 19.5 15.3 16

NBDT 27.8 18.4 19.5

Table A.10: Nearest Neighbor - Baseline

Search technique Distance measure k Precision Recall F-score

Cover tree Euclidean 1 26.2 26.4 25.5

— — 2 25.7 27.3 24

— — 4 27.7 30.1 26.1

— — 8 27.6 32.5 27.5

— — 16 27.1 32.7 26.5

— — 32 26.1 32.8 25.6

— — 64 25.7 32.2 24.8

KDTree Euclidean 1 26.2 26.4 25.5

— — 2 25.7 27.3 24

— — 4 27.7 30.1 26.1

— — 8 27.6 32.5 27.5

— — 16 27.1 32.7 26.5
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Table A.10 – continued from previous page

Search technique Distance measure k Precision Recall F-score

— — 32 26.1 32.8 25.6

— — 64 25.7 32.2 24.8

Linear Euclidean 1 26.2 26.4 25.5

— — 2 25.7 27.3 24

— — 4 27.7 30.1 26.1

— — 8 27.6 32.5 27.5

— — 16 27.1 32.7 26.5

— — 32 26.1 32.8 25.6

— — 64 25.7 32.2 24.8

— Manhattan 1 26.9 28.5 27.1

— — 2 25.6 28.1 24.5

— — 4 27.5 30.9 26.6

— — 8 30.2 34 29.1

— — 16 28.8 34.3 28.1

— — 32 27.8 33.9 27.2

— — 64 27.5 34.1 26.9

Table A.11: Logistic Regression - Baseline

Ridge value Precision Recall F-score

10−8 1.7 12.9 3

10−7 1.7 12.9 3

10−6 1.7 12.9 3

10−5 1.7 12.9 3

10−4 6.7 16.6 7.4

10−3 9 22.9 10

10−2 22.7 30.6 20.2

10−1 29.3 36.1 29.2

100 32.9 37.2 30.6

101 37 34.6 28.5

102 40.5 27.5 24.9
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Table A.11 – continued from previous page

Ridge value Precision Recall F-score

103 36.3 25.3 23.5

104 35.9 25.1 23.1

105 34 25.1 23.5

Table A.12: Random Forest - Baseline

Size of Forest Size of features Precision Recall F-score

at each split

100 6 30.6 33.8 26.6

— 11 31.2 36.3 28.7

— 22 33.5 39 31.6

— 44 34.5 40.1 32.9

— 88 33.2 38.7 32.2

500 6 31.3 35.2 27.2

— 11 30.7 36.9 29

— 22 33.8 40 32.4

— 44 34.9 40.7 33.3

— 88 35.5 40 32.9
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