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Abstract

The analytic solutions of simple optimal control problems may be
found using the classical tools such as the calculus of variations, dy-
namic programming, or the minimum principle. However, in practice,
a closed form expression of the optimal control is difficult or even im-
possible to determine for general nonlinear optimal control problems.
Therefore such intricate optimal control problems must be solved nu-
merically.

The numerical solution of optimal control problems has been the sub-
ject of a significant amount of study since the last century; yet deter-
mining the optimal control within high precision remains very chal-
lenging in many optimal control applications. The classes of direct
orthogonal collocation methods and direct pseudospectral methods
are some of the most elegant numerical methods for solving nonlin-
ear optimal control problems nowadays. These methods offer sev-
eral advantages over many other popular discretization methods in
the literature. The key idea of these methods is to transcribe the
infinite-dimensional continuous-time optimal control problem into a
finite-dimensional nonlinear programming problem. These methods
are based on spectral collocation methods, which have been exten-
sively applied and actively used in many areas.

Many polynomials approximations and various discretization points
have been introduced and studied in the literature for the solution
of optimal control problems using control and/or state parameter-
izations. The commonly used basis polynomials in direct orthogo-
nal collocation methods and direct pseudospectral methods are the
Chebyshev and Legendre polynomials, and the collocation points are
typically chosen to be of the Gauss or Gauss-Lobatto type of points.
The integral operation in the cost functional of an optimal control
problem is usually approximated by the well-known Gauss quadra-
ture rules. The differentiation operations are frequently calculated by
multiplying a constant differentiation matrix known as the spectral
differentiation matrix by the matrix of the function values at a cer-
tain discretization/collocation nodes. Thus, the cost functional, the



dynamics, and the constraints of the optimal control problem are ap-
proximated by a set of algebraic equations. Unfortunately, there are
two salient limitations associated with the applications of typical di-
rect orthogonal collocation methods and direct pseudospectral meth-
ods: (i) The spectral differentiation matrix, especially those of higher-
orders, are widely known to be ill-conditioned; therefore, the numer-
ical computations may be very sensitive to round-off errors. In fact,
for a higher-order spectral differentiation matrix, the ill-conditioning
becomes very extreme to the extent that the development of efficient
preconditioners is a necessity. (ii) The popular spectral differentia-
tion matrix employed frequently in the literature of direct orthogonal
collocation methods and direct pseudospectral methods is a square
and dense matrix. Therefore, to determine approximations of higher-
orders, one usually has to increase the number of collocation points in
a direct pseudospectral method, which in turn increases the number
of constraints and the dimensionality of the resulting nonlinear pro-
gramming problem. Also increasing the number of collocation points
in a direct orthogonal collocation method increases the number of con-
straints of the reduced nonlinear programming problem. Eventually,
the increase in the size of the spectral differentiation matrix leads to
larger nonlinear programming problems, which may be computation-
ally expensive to solve and time-consuming.

The research goals of this dissertation are to furnish an efficient, accu-
rate, rapid and robust optimal control solver, and to produce a signifi-
cantly small-scale nonlinear programming problem using considerably
few collocation points. To this end, we introduce a direct optimization
method based on a novel Gegenbauer collocation integration scheme
which draws upon the power of the well-developed nonlinear program-
ming techniques and computer codes, and the well-conditioning of the
numerical integration operators. This modern technique adopts two
principle elements to achieve the research goals: (i) The discretization
of the optimal control problem is carried out within the framework of
a complete integration environment to take full advantage of the well-
conditioned numerical integral operators. (ii) The integral operations
included in the components of the optimal control problem are approx-
imated through a novel optimal numerical quadrature in a certain op-
timality measure. The introduced numerical quadrature outperforms
classical spectral quadratures in accuracy, and can be established effi-
ciently through the Hadamard multiplication of a constant rectangu-
lar spectral integration matrix by the vector of the integrand function



values at some optimal Gegenbauer-Gauss interpolation nodes, which
usually differ from the employed integration/collocation nodes. The
work presented in this dissertation shows clearly that the rectangular
form of the developed numerical integration matrix is substantial for
the achievement of very precise solutions without affecting the size of
the reduced nonlinear programming problem.

Chapter 1 is an introductory chapter highlighting the strengths and
the weaknesses of various solution methods for optimal control prob-
lems, and provides the motivation for the present work. The chapter
concludes with a general framework for using Gegenbauer expansions
to solve optimal control problems and an overview for the remainder
of the dissertation.

Chapter 2 presents some preliminary mathematical background and
basic concepts relevant to the solution of optimal control problems. In
particular, the chapter introduces some key concepts of the calculus
of variations, optimal control theory, direct optimization methods,
Gegenbauer polynomials, Gegenbauer collocation, in addition to some
other essential topics.

Chapter 3 presents a published article in Journal of Computational
and Applied Mathematics titled “Optimal Gegenbauer quadrature
over arbitrary integration nodes.” In this chapter, we introduce a
novel optimal Gegenbauer quadrature to efficiently approximate defi-
nite integrations numerically. The novel numerical scheme introduces
the idea of exploiting the strengths of the Chebyshev, Legendre, and
Gegenbauer polynomials through a unified approach, and using a
unique numerical quadrature. In particular, the numerical scheme de-
veloped employs the Gegenbauer polynomials to achieve rapid rates
of convergence of the quadrature for the small range of the spectral
expansion terms. For a large-scale number of expansion terms, the
numerical quadrature has the advantage of converging to the opti-
mal Chebyshev and Legendre quadratures in the L∞-norm and L2-
norm, respectively. The developed Gegenbauer quadrature can be
applied for approximating integrals with any arbitrary sets of integra-
tion nodes. Moreover, exact integrations are obtained for polynomials
of any arbitrary degree n if the number of columns in the developed
Gegenbauer integration matrix is greater than or equal to n. The
error formula for the Gegenbauer quadrature is derived. Moreover,
a study on the error bounds and the convergence rate shows that
the optimal Gegenbauer quadrature exhibits very rapid convergence
rates faster than any finite power of the number of Gegenbauer ex-



pansion terms. Two efficient computational algorithms are presented
for optimally constructing the Gegenbauer quadrature, and to ideally
maintain the robustness and the rapid convergence of the discrete
approximations. We illustrate the high-order approximations of the
optimal Gegenbauer quadrature through extensive numerical experi-
ments including comparisons with conventional Chebyshev, Legendre,
and Gegenbauer polynomial expansion methods. The present method
is broadly applicable and represents a strong addition to the arsenal
of numerical quadrature methods.

Chapter 4 presents a published article in Advances in Computational
Mathematics titled “On the optimization of Gegenbauer operational
matrix of integration.” The chapter is focused on the intriguing ques-
tion of “which value of the Gegenbauer parameter α is optimal for
a Gegenbauer integration matrix to best approximate the solution
of various dynamical systems and optimal control problems?” The
chapter highlights those methods presented in the literature which
recast the aforementioned problems into unconstrained/constrained
optimization problems, and then add the Gegenbauer parameter α
associated with the Gegenbauer polynomials as an extra unknown
variable to be optimized. The theoretical arguments presented in this
chapter prove that this naive policy is invalid since it violates the dis-
crete Gegenbauer orthonormality relation, and may in turn produce
false optimization problems analogs to the original problems with poor
solution approximations.

Chapter 5 presents a published article in Journal of Computational
and Applied Mathematics titled “Solving boundary value problems,
integral, and integro-differential equations using Gegenbauer integra-
tion matrices.” The chapter resolves the issues raised in the previ-
ous chapter through the introduction of a hybrid Gegenbauer colloca-
tion integration method for solving various dynamical systems such as
boundary value problems, integral and integro-differential equations.
The proposed method recasts the original problems into their inte-
gral formulations, which are then discretized into linear systems of
algebraic equations using a hybridization of the Gegenbauer integra-
tion matrices developed in Chapter 3. The resulting linear systems
are generally well-conditioned and can be easily solved using standard
linear system solvers. A study on the error bounds of the proposed
method is presented, and the spectral convergence is proven for two-
point boundary-value problems. Comparisons with other competitive
methods in the recent literature are included. The proposed method



results in an efficient algorithm, and spectral accuracy is verified using
eight test examples addressing the aforementioned classes of problems.
The developed numerical scheme provides a viable alternative to other
solution methods when high-order approximations are required using
only a relatively small number of solution nodes.

Chapter 6 presents a published article in The Proceedings of 2012
Australian Control Conference, AUCC 2012, titled “Solving optimal
control problems using a Gegenbauer transcription method.” The
chapter presents a novel direct orthogonal collocation method us-
ing Gegenbauer-Gauss collocation for solving continuous-time opti-
mal control problems with nonlinear dynamics, state and control con-
straints, where the admissible controls are continuous functions. The
framework of the novel method involves the mapping of the time do-
main onto the interval [0, 1], and transforming the dynamical system
given as a system of ordinary differential equations into its integral
formulation through direct integration. In this manner, the proposed
Gegenbauer transcription method unifies the process of the discretiza-
tion of the dynamics and the integral cost function. The state and the
control variables are then fully parameterized using Gegenbauer ex-
pansion series with some unknown Gegenbauer spectral coefficients.
The proposed Gegenbauer transcription method recasts the perfor-
mance index, the reduced dynamical system, and the constraints into
systems of algebraic equations using the optimal Gegenbauer quadra-
ture introduced in Chapter 3. Finally, the Gegenbauer transcription
method transcribes the infinite-dimensional optimal control problem
into a finite-dimensional nonlinear programming problem, which can
be solved in the spectral space; thus approximating the state and the
control variables along the entire time horizon. The high precision and
the spectral convergence of the discrete solutions are verified through
two optimal control test problems with nonlinear dynamics and some
inequality constraints. In particular, we investigate the application of
the proposed method for finding the best path in 2D of an unmanned
aerial vehicle moving in a stationary risk environment. Moreover, we
compare the performance of the proposed Gegenbauer transcription
method with another classical variational technique to demonstrate
the efficiency and the accuracy of the proposed method.

Chapter 7 presents a published article in Journal of Computational
and Applied Mathematics titled “Fast, accurate, and small-scale di-
rect trajectory optimization using a Gegenbauer transcription method.”
This chapter extends the Gegenbauer transcription method intro-



duced in the preceding chapter to deal further with continuous-time
optimal control problems including different orders time derivatives
of the states by solving the continuous-time optimal control prob-
lem directly for the control u(t) and the highest-order time deriva-
tive x(N)(t), N ∈ Z+. The state vector and its derivatives up to the
(N − 1)th-order derivative can then be stably recovered by successive
integration. Moreover, we present our solution method for solving
linear quadratic regulator problems as we aim to cover a wider col-
lection of continuous-time optimal control problems with the concrete
aim of comparing the efficiency of the current work with other classical
discretization methods in the literature. The advantages of the pro-
posed direct Gegenbauer transcription method over other traditional
discretization methods are shown through four well-studied optimal
control test examples. The present work is a major breakthrough in
the area of computational optimal control theory as it delivers sig-
nificantly accurate solutions using considerably small numbers of col-
location points, states and controls expansions terms. Moreover, the
Gegenbauer transcription method produces very small-scale nonlinear
programming problems, which can be solved very quickly using mod-
ern nonlinear programming software. The Gegenbauer collocation in-
tegration scheme adopted in this dissertation allows for the solution of
continuous-time optimal control problems governed by various types
of dynamical systems; thus encompassing a wider collection of prob-
lems than standard optimal control solvers. Moreover, the method is
simple and very suitable for digital computations.

Chapter 8 presents some concluding remarks on the works developed
in this dissertation including some suggestions for future research.
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Chapter 1

Introduction

1.1 Optimal Control (OC)

1.1.1 Historical Background and Applications

OC theory is one of several applications and extensions of the calculus of vari-
ations (CV). The main concerns of OC theory are the analysis and the design
of control systems (Bryson, 1996). Developed by outstanding scholars like Jo-
hann Bernoulli (1667–1748), Isaac Newton (1642–1727), Leonhard Euler (1707–
1793), Ludovico Lagrange (1736–1813), Andrien Legendre (1752–1833), Carl Ja-
cobi (1804–1851), William Hamilton (1805–1865), Karl Weierstrass (1815–1897),
Adolph Mayer (1839–1907), and Oskar Bolza (1857–1942) in the 17th - 20th
centuries, OC theory started its progress, and arose as a distinguished branch of
mathematics with a strong base. The significant milestones in the development of
the theory were pioneered by Richard Bellman (1920–1984) in 1953, who invented
a new view of the Hamilton-Jacobi theory well-known as dynamic programming
(DP)–a major breakthrough in the theory of multistage decision processes– and
by Lev Pontryagin (1908–1988) and his students in 1956 who enunciated the el-
egant maximum principle (or minimum principle (MP)); cf. (Boltyanskii et al.,
1956), which is considered a centerpiece of OC theory, and extends the CV to
handle control/input variable inequality constraints. Therefore, one can mark
the 1950s as the decade in which the discipline of OC theory reached its ma-
turity. No doubt that the arrival of the digital computer in the 1950s is the
cornerstone in the development of OC theory providing the impetus for the ap-
plications of OC theory to many complicated problems. Before that only fairly
simple OC problems could be solved. The breadth and the range of the appli-
cations of OC theory are certainly part of the establishment of OC theory as an
important and rich area of applied mathematics. That is part of why OC the-
ory is considered an “application-oriented” mathematics. Nowadays OC theory
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is strongly utilized in many areas such as biology, medicine, economics, finance,
management sciences, aerospace, physics, engineering, bioengineering, agricul-
ture, process control, robotics, armed forces, astronautics, vibration damping,
magnetic control, ascent guidance, oil recovery, collision avoidance maneuvers,
sewage pumping stations, water flood control, improving the caliber of the crys-
tal products, smoke control in a traffic link tunnel, and a host of other areas;
cf. (Apreutesei, 2012; Bassey and Chigbu, 2012; Chakraborty et al., 2011; Deis-
senberg and Hartl, 2005; Ding and Wang, 2012; Engelhart et al., 2011; Hua et al.,
2011; Kang and Bedrossian, 2007; Lashari and Zaman, 2012; Lenhart and Work-
man, 2007; Okosun et al., 2011; Paengjuntuek et al., 2012; Picart et al., 2011;
Salmani and Büskens, 2011; Smith, 2008; Verhelst et al., 2012; Wei et al., 2012;
Yang et al., 2012; Zhang and Swinton, 2012; Zheng et al., 2012). OC theory has
received considerable attention by researchers and it continues to be an active
research area within control theory with broad attention from industry.

1.1.2 Elements of OC Problems

OC theory considers the problem of how to control a given system so that it has
an optimal behavior in a certain optimality sense. In other words, the principle
goal of OC theory is to determine the control which causes a system to meet
a set of physical constraints while optimizing some performance criterion (cost
function). The dynamical system (plant) describes the evolution of the system’s
state and how the controls affect it. Dynamical systems can be engineering sys-
tems, economic systems, biological systems, and so on. The cost function is a
functional of the state and the control, and describes the cost to be minimized
or the utility to be maximized. It represents a desired metric such as time, en-
ergy costs, fuel consumption, productivity, or any other parameter of interest
in a given application. The control which optimizes the cost functional while
satisfying a certain set of physical constraints is called the OC. The OC can be
described as an optimization device or instrument which influences the system
to reach a desired state in minimum-time, or with minimal energy costs, or to
achieve maximal productivity in a certain time, etc.

1.1.3 Analytical Methods and Classes of Numerical Meth-
ods

Theoretically, the OC may be derived using the necessary conditions provided
by the CV and the MP, or by solving the sufficient condition described by the
Hamilton-Jacobi-Bellman (HJB) equation. However, except for special cases,
most OC problems cannot be solved analytically, and a closed form expression
for the OC is usually out of reach. In fact, determining the OC is more difficult
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in the presence of state and/or control constraints; therefore numerical methods
must be employed.

During our study of computational OC theory, we have surveyed many prac-
tical computing methods which have been developed for solving OC problems
since the last century. It can be acknowledged that the majority of the presented
methods in the literature successfully solve the unconstrained problems, but the
presence of the state/control variables inequality constraints usually lead to both
analytical and computational difficulties. Most of the numerical methods pre-
sented for solving OC problems generally fall into three classes: Numerical DP,
direct optimization methods (DOMs) and indirect optimization methods (IOMs).
The latter two classes of methods were originally labeled by von Stryk and Bu-
lirsch in 1992. The recent computational advances in the solution of OC problems
evident in numerous research papers and textbooks favor DOMs over the other
two approaches. Indeed, despite the advances in computational power and digital
computers, numerical DP and IOMs continue to suffer from fundamental prob-
lems which limit their applications for solving general nonlinear OC problems. In
particular, numerical DP attempts to solve OC problems by numerical backward
induction suited for the treatment of integer variables, but suffers in general from
the numerical difficulties related to the “curse of dimensionality,” which renders
the HJB equation “impossible to solve in most cases of interest” (Polak, 1973).
Therefore it is not the method of choice for generic large-scale OC problems with
underlying nonlinear dynamical system of equations. In fact, this class of compu-
tational methods had no significant echo in the community of computational OC
theory in the recent decades, and did not attract much attention to the extent
that many authors like Elnagar and Kazemi (1998a); Fahroo and Ross (2000);
Gong et al. (2006a); Sager et al. (2009); von Stryk and Bulirsch (1992) have over-
looked its existence, and considered DOMs and IOMs as the two most general
numerical approaches for solving OC problems.

The IOMs are known as “first optimize, then discretize approaches,” since the
optimality conditions are found first before the application of the numerical tech-
niques. These methods were applied in the early years of solving OC problems
numerically. In these methods, CV and the MP are applied to determine the
first-order necessary conditions for an optimal solution (Bryson and Ho, 1975;
Kirk, 2004). In this manner, the OC problem is transformed into a two-point
boundary-value problem (TPBVP). The IOMs then endeavor to find an approx-
imate solution to the generally nonlinear TPBVP by iterating on it to seek its
satisfaction. The term “indirect” is coined with this class of methods since the
OC is determined by solving the auxiliary TPBVP rather than directly focus-
ing on the original problem (Subchan and Zbikowski, 2009). Although IOMs
may produce a highly accurate approximation to the OC, they are generally
impractical. In fact, finding numerical solutions to the nonlinear TPBVP is ex-
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tremely difficult, and the IOMs suffer from numerical difficulties associated with
the stiffness of the augmented system of differential equations. Moreover, since
the solution of the TPBVP entails the integration of the state differential equa-
tions forward in time, followed by the integration of the corresponding costate
differential equations backward in time, the solution of the augmented system
is carried out in opposite directions; thus it is very hard to implement an adap-
tive integration scheme, since it is almost impossible to ensure that the state and
costate discretization points sets coincide. Hence the solution scheme must invoke
an appropriate interpolation method, since the solution of the costate system is
dependent on the solution of the state system. The matter which compromises
the accuracy of the numerical scheme (Liu, 2011). Furthermore, more difficulties
are conspicuous particularly for problems with interior point constraints (Ghosh
et al., 2011). From another viewpoint, IOMs require the derivation of the com-
plicated first-order necessary optimality conditions, which include the adjoint
equations, the control equations, and all of the transversality conditions. These
necessary conditions of optimality are difficult to formulate for problems of even
simple to moderate complexity (Darby, 2011), and are quite daunting for intri-
cate OC problems. Moreover, modifying a component of the OC problem such as
adding or removing a constraint entails the reformulation of the necessary con-
ditions. Another difficulty arises for problems whose solutions have active path
constraints. In these cases, a priori knowledge of the switching structure of the
path constraints must be known (Darby, 2011; Garg, 2011). In fact, the priori es-
timate of the constrained-arc sequence may be quite difficult to determine, which
makes it extremely difficult to impose the correct junction conditions and define
the arc boundaries (Betts, 2001). Betts (1998) pointed out that in the cases
where inequality constraints are imposed, additional jump conditions imposed at
the junction points must be satisfied extending the TPBVP into a multi-point
boundary value problem (BVP). Moreover, one must model the IOMs in multiple-
phases, since the optimality conditions are different on the constrained and the
unconstrained arcs (Betts, 2009). Furthermore, these methods are known to be
quite unstable (hyper-sensitive), since they suffer from their inherent small radii
of convergence as the necessary conditions of optimality usually lead to a stiff TP-
BVP, which must be solved to obtain the approximate solutions (Rao, 2003). To
make things worse, a serious drawback is that the user must guess values for the
adjoint variables (unreasonably good initial guesses in many cases), which is very
non-intuitive as they are not physical quantities (Betts, 2009; Darby, 2011; Gao
and Li, 2010; Lin et al., 2004; Padhi et al., 2006; Yang, 2007), and the MP gives no
information on the initial value of the costates (Liu, 2011). Hence providing such
a guess is difficult. Even with a reasonable guess for the adjoint variables, the
numerical solution of the adjoint equations can be very ill-conditioned; thereby
the Hamiltonian generates a numerically sensitive BVP that may produce wild
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trajectories which exceed the numerical range of the computer (Bryson and Ho,
1975; Ross and Fahroo, 2003). Besides all of these concerns, a solution of an IOM
may not be a local minimum or a global minimum, since the MP provides the
necessary conditions of optimality, which are not sufficient in general for nonlin-
ear OC problems. This indicates that once all the extrema of a given OC problem
are found, one may search among them to locate the OC law.

The DOM as a third generic approach views the continuous-time optimal
control problem (CTOCP) as an infinite-dimensional optimization problem, such
that the optimization solver searches for the control function which optimizes
the objective functional while satisfying certain equality/inequality constraints.
Since the optimization routines do not operate on infinite-dimensional spaces, the
control and the state variables are approximated/parameterized first before the
outset of the optimization process. Therefore, the terms “first discretize, then
optimize approach,” or “all-at-once approach” are usually coined with a DOM.
The transcription of the infinite-dimensional CTOCP into a finite-dimensional
nonlinear programming (NLP) problem is carried out through discretization of
the original problem in time and performing some parameterization of the control
and/or state vectors. The resulting static NLP problem is then solved using some
well-developed optimization methods and software. The convergence to a solution
of the CTOCP is usually accomplished by taking a finer mesh in the discretization
scheme, and the optimal values of the states and controls are typically obtained
at the discrete time points.

1.1.4 Advantages of DOMs

The verification of optimality in the DOMs may not be an easy task. Nonetheless,
there are a number of advantages associated with the implementation of DOMs
which render them more practical than IOMs. Firstly, an important benefit of
recasting the problem as a NLP problem is that it eliminates the requirement of
solving a stiff TPBVP, and finding a closed-form expression for the necessary and
sufficient conditions of optimality, which are calculated off-line in the MP and DP
methods, respectively. Therefore DOMs can be quickly used to solve many prac-
tical trajectory optimization problems in a short time (Fahroo and Ross, 2002).
Secondly, it is easy to represent the state and the control dependent constraints;
thus the OC problem can be modified easily. Moreover, DOMs tend to have bet-
ter convergence properties with no requirements to guess the costate variables. In
contrast, the IOMs exhibit small radius of convergence requiring sufficiently close
initial guesses (Fahroo and Ross, 2002). Additionally, DOMs can be formulated
using a single phase, while IOMs are modeled using multiple phases, whereas
the optimality conditions are different on the constrained and the unconstrained
arcs (Betts, 2009). These features together with the simplicity of the discretiza-
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tion procedure, the high accuracy, and the fast convergence of the solutions of
the discretized OC problem to the solution of the underlying infinite-dimensional
OC problem have made the DOMs the ideal methods of choice nowadays (Gong
et al., 2006a, 2008; Hesthaven et al., 2007), and well-suited for solving OC prob-
lems; cf. (Benson, 2004; Benson et al., 2006; Betts, 1998, 2009; Chen et al., 2011;
El-Gindy et al., 1995; El-Hawary et al., 2003; Elnagar et al., 1995; Elnagar and
Zafiris, 2005; Elnagar, 1997; Elnagar and Kazemi, 1995, 1998a,b; Elnagar and
Razzaghi, 1997; Fahroo and Ross, 2002, 2008; Garg et al., 2011a,b, 2010; Gong
et al., 2006a; Hargraves and Paris, 1987; Hull, 1997; Huntington, 2007; Jaddu,
2002; Kang and Bedrossian, 2007; Kang et al., 2007, 2008; Razzaghi and Elnagar,
1993, 1994; Stryk, 1993; Vlassenbroeck and Dooren, 1988; Williams, 2004), and
the references therein.

1.1.5 Elements of DOMs and the Shooting Methods

In a DOM, three elements need to be considered, viz. (Kaya, 2010) (i) the choice
of the discretization scheme, (ii) the convergence of the optimization technique
employed, and (iii) the convergence to a solution of the OC problem as one takes
a finer mesh in the discretization scheme. Fortunately, there are many DOMs in
the literature which can be applied for the solution of the OC problems. The di-
rect single-shooting methods and the direct multiple-shooting methods are two of
the earliest DOMs for solving OC problems (Betts, 2009; Bock and Plitt, 1984).
In both DOMs, the control variables are parameterized using some functional
form, and the dynamical system is solved for the state variables using some time-
marching scheme, for instance. In fact, the shooting methods have been originally
used extensively for the solution of TPBVPs (Betts, 2009; Burden and Faires,
2000; Cheney and Kincaid, 2012; Süli and Mayers, 2003). In the single-shooting
method, an initial value problem (IVP) corresponding to the TPBVP is solved
instead. The initial data of the IVP is adjusted in a certain way so that the
solution of the IVP finally satisfies the TPBVP. In fact, a direct single-shooting
method may be useful for OC problems approximated using relatively small num-
ber of variables; however, the success of the direct single-shooting methods can
be degraded significantly for increasing numbers of the variables (Pytlak, 1999).
Moreover, due to the instabilities of the IVP solution over longer time intervals,
single-shooting methods may “blow up” before the IVP can be completely in-
tegrated. In fact, this can appear even with extremely accurate guesses for the
initial values. Hence direct single-shooting methods are rather impractical for
solving a wide variety of OC problems. In an attempt to resolve these difficulties,
multiple-shooting methods for the solution of TPBVPs were proposed by Morri-
son et al. (1962), while direct multiple-shooting methods were introduced by Bock
and Plitt (1984) for the solution of OC problems. The key idea of these meth-
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ods is to break up the TPBVP into a system of coupled TPBVPs over smaller
time subintervals whose endpoints are called nodes. In this manner, the single-
shooting method can be applied over each subinterval through the use of some
state continuity conditions (matching conditions) enforced between consecutive
subintervals rather than just at the boundary points of the solution interval. The
divisions of the TPBVP solution domain into several subintervals decrease the
sensitivity of the multiple-shooting methods to the initial guess. Therefore the
direct multiple-shooting methods are more stable and offer improvements over
the standard direct single-shooting methods. Yet, both direct shooting methods
are computationally expensive due to the numerical integration operations and
the requirement of a priori knowledge of the switching structure of inactive and
active path constraints. The reader may consult (Betts, 1998, 2009; Bock and
Plitt, 1984; Pytlak, 1999; von Stryk and Bulirsch, 1992) for an overview of the
direct shooting methods.

1.1.6 Typical Discretization Methods for Dynamical Sys-
tems

The discretization of the dynamics in a DOM can be carried out using vari-
ous numerical methods. The common numerical schemes are the finite differ-
ence methods, such as Euler’s method and Runge-Kutta methods, finite element
methods, piecewise-continuous polynomials such as linear splines, cubic splines,
or B-spline methods, interpolating scaling functions, wavelets methods such as
Walsh-wavelets and Haar wavelets approximations, block pulse function meth-
ods, etc.; cf. (Ait and Mackenroth, 1989; Becker and Vexler, 2007; Bonnans and
Laurent-Varin, 2006; Chen and Lu, 2010; Dontchev and Hager, 1997; Dontchev
et al., 2000; Foroozandeh and Shamsi, 2012; Glabisz, 2004; Hargraves and Paris,
1987; Hsiao, 1997; Hwang et al., 1986; Kadalbajoo and Yadaw, 2008; Kaya and
Mart́ınez, 2007; Kiparissides and Georgiou, 1987; Lang and Xu, 2012; Liu et al.,
2004; Liu and Yan, 2001; Pytlak, 1998; Schwartz and Polak, 1996; Stryk, 1993;
Xing et al., 2010). However, a common feature in these approximation methods
is that they usually experience an explosion in the number of variables if high
orders of accuracy are sought, except for very specialized cases where the con-
trol is of a bang-bang control type (Kaya, 2010). This is due to the finite-order
convergence rates associated with these methods (Weideman and Reddy, 2000).

1.2 Spectral Methods

Spectral methods, amongst the available discretization methods in the literature,
offer useful alternatives to the aforementioned methods for solving differential
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equations, eigenvalue problems, optimization problems, OC problems, and in
many other applications; cf. (Benson et al., 2006; Boyd, 2001; Elgindy, 2009; El-
gindy and Hedar, 2008; Elnagar et al., 1995; Fahroo and Ross, 2002; Gong et al.,
2006a; Kang and Bedrossian, 2007; Mason and Handscomb, 2003; Quarteroni
and Valli, 1994; Ross and Fahroo, 2003). The number of advantages of spectral
methods which can be found in numerous textbooks, monographs, and research
papers are extensive, yet we shall mention some few benefits of applying spectral
methods which are quite useful for the work conducted in this dissertation: (i)
One conspicuous advantage of spectral methods is that they are memory mini-
mizing as they achieve high precision accurate results using substantially fewer
grid points than required by typical finite difference schemes and other methods
(Zang et al., 1982). (ii) The previous elegant task is accomplished while providing
Eulerian-like simplicity (Gong et al., 2007); therefore the spectral computations
can be considerably more effective (Barranco and Marcus, 2006). (iii) Another
significant advantage of spectral methods is that the boundary conditions imposed
on the spectral approximations are normally the same as those imposed on the
differential equation. On the other hand, finite-difference methods of higher order
than the differential equation require additional “boundary conditions” (Gottlieb
and Orszag, 1977). (iv) Besides these desirable features, spectral methods pro-
duce global solutions, rapid convergence, and most of all, they are highly accurate
for problems exhibiting smooth solutions to the extent that they are often used
in cases when “nearly exact numerical solutions are sought” (Cushman-Roisin
and Beckers, 2011; Gardner et al., 1989). Hence spectral methods are able to
approximate the cost function, the dynamical system, the states and the con-
trols constraints functions very precisely when the solutions are smooth, which
is absolutely vital for the successful approximation of OC problems. These ad-
vantages place spectral methods at the front of the available numerical methods
for solving CTOCPs exhibiting sufficiently differentiable solutions. The class of
discontinuous/nonsmooth OC problems can be treated by spectral methods as
well through some special techniques, which are highlighted in Chapters 6 and 8.

1.2.1 Orthogonal Collocation/Pseudospectral (PS) Meth-
ods

Among the available spectral methods in the literature, orthogonal collocation/PS
methods, which use orthogonal global polynomials, have emerged as important
and popular computational methods for the numerical solution of OC problems
in the last two decades, and their advantageous properties are highlighted by
many authors; cf. (Benson, 2004; Benson et al., 2006; Elnagar et al., 1995; El-
nagar, 1997; Elnagar and Razzaghi, 1997; Fahroo and Ross, 2008; Garg et al.,
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2011b, 2010; Huntington, 2007; Rao et al., 2010; Williams, 2004). They have
been universally applied in many applications because of their greater simplic-
ity and the computational efficiency compared to the other spectral methods,
viz. Galerkin and Lanczos tau methods (Gottlieb and Orszag, 1977). In fact,
the popularity of the orthogonal collocation methods is largely due to their abil-
ity to offer an exponential convergence rate for the approximation of analytic
functions while providing an Eulerian-like simplicity. Consequently, these meth-
ods can generate significantly smaller-scale optimization problems compared to
traditional discretization methods.

1.2.2 Direct Orthogonal Collocation Methods (DOCMs)
and Direct PS Methods

The application of the orthogonal collocation/PS methods for the solution of OC
problems gives rise to the efficient class of methods known as the DOCMs, direct
PS methods, or direct transcription methods. In the DOCMs, both the state
and the control are parameterized using a set of global orthogonal trial (basis)
functions. The cost function is approximated in an algebraic form, and the dy-
namical system given in the form of differential-algebraic constraints is enforced
at a finite number of points called the collocation points. The dynamics is im-
posed at the collocation points by ways of numerical differentiation/integration
operators usually referred to by the differentiation/integration matrices. In this
manner, the OC problem is transformed into a constrained NLP problem, which
can be solved using the powerful optimization methods. Convergence to the exact
solution is achieved by increasing the degree of the polynomial approximation of
the state and the control variables. It is worthy to mention that in the recent
years, DOCMs have emerged as demonstrable candidates for real-time computa-
tion. Before that, the computational methods were widely considered as being
too slow for real-time applications of highly nonlinear problems (Kang et al.,
2008). Moreover, DOCM/PS methods are very useful in estimating highly ac-
curate costate/adjoint variables approximations of the indirect problem. In fact,
this intriguing result has been investigated by Benson et al. (2006); Fahroo and
Ross (2001); Garg et al. (2011b) by determining the relationship between the
costates associated with the TPBVP of the indirect problem and the Lagrange
(Karush-Kuhn-Tucker) multipliers of the direct problem. Recently, Gong et al.
(2008); Kang et al. (2008) have also provided the results on the existence and the
convergence of the solution of the discretized OC problem to that of the original
OC problem using Legendre-Gauss-Lobatto (LGL) PS methods.
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1.2.3 DOCMs Versus Shooting Methods and IOMs

DOCMs present more computational efficiency and robustness over the shooting
methods and IOMs for solving OC problems. In fact, in a DOCM, one usually
establishes a well-behaved numerical scheme by parameterizing both the state
and the control variables, while the shooting methods are dubbed as control pa-
rameterization approaches, since the control variables are only parameterized.
The state variables are then obtained by solving the dynamical system using the
available ordinary differential equation (ODE) solvers. This numerical scheme
is usually intensive computationally and sensitive to numerical errors (Yen and
Nagurka, 1992). Moreover, in contrast to IOMs and direct shooting methods,
DOCMs do not require a priori knowledge of the active and inactive arcs for
problems with inequality path constraints (Darby, 2011; Garg, 2011), and the
user does not have to be concerned with the adjoint variables or the switching
structures to determine the OC (von Stryk and Bulirsch, 1992). Furthermore,
DOCMs show much bigger convergence radii than either the indirect methods
or direct shooting methods as they are much less sensitive to the initial guesses.
The memory minimizing feature of the orthogonal collocation approximations is
highly relevant in a direct optimization scheme as it results in a finite-dimensional
NLP with considerably lower dimension compared to other competitive methods
in the literature. Moreover, to quote Polak (2011, pg. 251): ‘current nonlinear op-
timization algorithms ... usually solve the problems discretized using collocation
techniques much more rapidly than when applied to “classical” discretizations.’
One of the significant applications of spectral collocation methods which has re-
ceived wide publicity recently was in generating real time trajectories for a NASA
spacecraft maneuver (Kang and Bedrossian, 2007).

1.2.4 DOCMs Versus Standard Direct Local Collocation
Methods (DLCMs)

DOCMs are different from the conventional DLCMs in the sense that global
orthogonal basis functions are employed, while the latter use fixed low-degree
approximations after dividing the solution interval into many subintervals. In
fact, DLCMs are typically developed as local methods, where second-order poly-
nomials and piecewise-continuous polynomials such as linear or cubic splines over
each time segment are some of the interpolating polynomials used (Hargraves
and Paris, 1987; Stryk, 1993; Tsang et al., 1975). Yet the class of Runge-Kutta
methods was most often used (Betts, 1998, 2009; Hager, 2000). An interpolation
scheme is used to obtain the time histories of both the control and the state vari-
ables. Moreover, the convergence of the numerical discretization is achieved by
increasing the number of subintervals (Betts, 2009). Although standard DLCMs

11



Chapter 1

result in sparse NLP problems, the convergence is at a polynomial rate. There-
fore an excessively large number of subintervals may be required to accurately
approximate the solution. In contrast, the convergence to the exact solution in
a DOCM is achieved by increasing the degree of the polynomial approximation
usually in a single time interval. Once the approximate state and control variables
are approximated at a given collocation nodes set, the time histories of both the
state and the control variables can be easily determined directly without invoking
any interpolation methods. Moreover, for problems whose solutions are smooth
and well-behaved, DOCMs converge at an exponential rate (Benson, 2005; Garg
et al., 2010; Gong et al., 2006a). Consequently, they usually approximate the
solutions of the OC problem using a few number of NLP variables.

1.2.5 Orthogonal Functions

Orthogonal functions have been used abundantly in the literature as the expan-
sion basis for the solution of OC problems. The main feature of the methods
based on orthogonal series expansions is that they reduce the differential equa-
tions constraints of the OC problem into algebraic or transcendental equations in
terms of the expansion coefficients of the unknown state/control functions, often
through the operational matrices of differentiation/integration. This attractive
property found much appealing by many authors, since it greatly simplifies the
OC problem, and ultimately renders the solution within an easy reach of advanced
linear/nonlinear algebra and optimization tools. Typical examples of the orthog-
onal functions which have been applied in the literature of computational OC
theory are the Walsh functions (Aoki, 1960; Chen and Hsiao, 1975; Palanisamy
and Prasada, 1983), the block pulse functions (Hsu and Cheng, 1981; Hwang
et al., 1986; Rao and Rao, 1979), Laguerre polynomials (Horng and Ho, 1985;
Hwang and Shih, 1983), Chebyshev polynomials (El-Gindy et al., 1995; Elna-
gar and Kazemi, 1998a; Liu and Shih, 1983; Paraskevopoulos, 1983), Hermite
polynomials (Coverstone-Carroll and Wilkey, 1995; Kekkeris and Paraskevopou-
los, 1988), Fourier series (Endow, 1989; Nagurka and Yen, 1990; Razzaghi, 1990;
Yang and Chen, 1994), Legendre polynomials (Elnagar et al., 1995; Razzaghi and
Elnagar, 1993; Ross and Fahroo, 2003; Shyu and Hwang, 1988; Yan et al., 2001),
shifted Legendre polynomials (Hwang and Chen, 1985; Shih and Kung, 1986),
shifted Chebyshev polynomials (Chou and Horng, 1985a,b; Razzaghi and Razza-
ghi, 1990), Gegenbauer (ultraspherical) polynomials (El-Hawary et al., 2003; Lee
and Tsay, 1989; Tsay and Lee, 1987), and Jacobi polynomials (Lee and Tsay,
1989; Tsay and Lee, 1987; Williams, 2004).
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1.2.6 Jacobi Polynomials

For smooth periodic problems, Fourier spectral methods, which employ the peri-
odic basis einx, have been demonstrated to perform well and achieve very precise
approximations. However, the exponential accuracy of these methods is only
guaranteed when the solution and all of its derivatives are periodic functions.
The lack of such globally periodicity conditions significantly reduce the conver-
gence rate of the Fourier series. In fact, it is well-known that the truncated
Fourier series of a nonperiodic function having a discontinuous periodic exten-
sion at the boundaries, converges very slowly, like O(1/N), inside the region, and
produce O(1) spurious oscillations near the boundaries– a phenomenon known
as the Gibbs phenomenon (Vozovoi et al., 1996). Since satisfying the periodic-
ity constraints of the solution function and its derivatives are rather very tight,
and not valid in many applications, it is naturally intuitive to consider spectral
expansions based on non-periodic bases, such as the polynomial bases. The con-
vergence properties of the discrete solutions of OC problems discernible in many
research works in the literature of computational OC theory clearly favor the
Jacobi class of polynomials over the other classes of orthogonal functions. This
family of polynomials has been extensively studied and exhibits very nice con-
vergence properties. In fact, for nonperiodic problems, Jacobi polynomials have
been the most successful orthogonal basis polynomials by far (Fornberg, 1996),
and the expansion in the Jacobi polynomials is accurate independent of the spe-
cific boundary conditions of the solution function (Hesthaven et al., 2007). The

Jacobi family of polynomials P
(α,β)
n (x) of degree n and associated with the real

parameters α; β include the Gegenbauer polynomial C
(λ)
n (x) of degree n and asso-

ciated with the real parameter λ for values of α = β = λ. The latter include the
Chebyshev polynomial of the first kind Tn(x), and Legendre polynomial Ln(x)
for λ = 0; 0.5, respectively (Boyd, 2006).

1.3 Motivation of the Present Work

Although DOCMs and direct PS methods have been applied successfully in many
OC applications, these methods typically employ the square and dense spectral
differentiation matrices (SDMs) to approximate the derivatives arising in the OC
problem. Therefore, there are two clear limitations associated with these meth-
ods: (i) SDMs are known to be ill-conditioned (Funaro, 1987), and suffer from
many drawbacks; cf. Figure 1.1; therefore, the approximate solutions obtained
by these methods may be sensitive to the round-off errors encountered during the
discretization procedure. (ii) To determine approximations of higher-orders, one
usually has to increase the number of collocation points in a direct PS method,
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which in turn increases the number of constraints and the dimensionality of the
resulting NLP problem; cf. Figure 1.2. Also increasing the number of collocation
points in a DOCM increases the number of constraints of the reduced NLP prob-
lem. Eventually, the increase in the size of the SDM leads to larger NLP problems,
which may be computationally expensive to solve and time-consuming.

Figure 1.1: SDMs are known to be severely ill-conditioned, and their implemen-
tation causes degradation of the observed precision. Moreover, it has been shown
that the time step restrictions can be more severe than those predicted by the
standard stability theory (Trefethen, 1988; Trefethen and Trummer, 1987). For
higher-order SDMs, the development of efficient preconditioners is extremely cru-
cial (Elbarbary, 2006; Hesthaven, 1998).

The research work presented in this dissertation is prompted by the need to
generate robust solutions to complex OC problems quickly and accurately, with
limited memory storage requirements, and without increasing the size of the re-
sulting NLP problem. We shall demonstrate later in this dissertation that a well-
behaved numerical scheme enjoying these useful features can be established by
recasting the dynamics into its integral formulation and working under complete
integration framework. Moreover, the choice of the orthogonal basis polynomi-
als employed in a DOCM is another crucial element in the path of planting a
strong and practical OC solver. In fact, the choice of the optimal orthogonal
basis polynomials among the Jacobi polynomials employed for solving CTOCPs
remains the subject of intense debate. Chebyshev and Legendre polynomials
have been frequently applied as the bases functions for DOCMs since they were
originally proposed by Vlassenbroeck and Dooren in 1988 and Elnagar et al. in
1995, respectively. Part of the reason is due to their fast convergence behaviors
exhibited in many applications. Moreover, these two bases polynomials remain
well-conditioned for expansions using hundreds or thousands of the spectral ex-
pansion terms. The work established in this dissertation confirms these argu-
ments if Chebyshev and Legendre polynomial expansions were to be compared
with other members of the Jacobi family of polynomials for large numbers of the
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Figure 1.2: Any increase in the size of the square SDM in a direct PS method
requires the same increase in the number of collocation points, which leads to an
increase in the dimension of the NLP problem, and the number of constraints.
Eventually, these elements accumulate to yield a larger NLP problem.

spectral expansion terms. But “what about short/medium-range expansions of
the Chebyshev and Legendre polynomials compared to the Gegenbauer polyno-
mials or other members of the Jacobi polynomials?” This important question, to
the best of our knowledge, has not been highlighted thoroughly in the literature
of spectral methods. This question is quite substantial in many applications in-
cluding OC theory, since a few numbers of parameters are always highly desirable
for parameterizing the controls and/or the states in a DOCM, and to establish a
small-scale NLP problem accurately representing the original OC problem. More-
over, the small number of spectral expansion terms used in the approximation
has been always a strong measure for the quality of the discretization and the ef-
ficiency of DOCMs/PS methods; cf. (El-Gindy et al., 1995; Elnagar and Kazemi,
1995; Garg et al., 2010; Huntington, 2007; Ma et al., 2011; Razzaghi and Elnagar,
1993; Vlassenbroeck and Dooren, 1988), etc.

In this dissertation, we shall investigate the application of the more general
family of polynomials, the Gegenbauer polynomials. These polynomials have re-
ceived much attention in the literature, especially in applied mathematics for their
fundamental properties and versatile applications (Keiner, 2009). In fact, there
are a number of reasonable arguments drawn from the rich literature of spectral
methods which have motivated us to apply the more general Gegenbauer family of
polynomials, at least for short-range expansions of the spectral basis polynomials
employed in the approximations. In the following, we shall briefly mention a few
reasons considerably important for our focus on the Gegenbauer polynomials as
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an apt choice of orthogonal basis polynomials used for the solution of CTOCPs:
(i) Light (1978) computed the norms of a number of Gegenbauer projection opera-
tors finding that they all increased monotonically with the Gegenbauer parameter
λ so that the Chebyshev projection cannot be minimal (Mason and Handscomb,
2003). In particular, the reported results show that the norm of the Chebyshev
projection is not the smallest for Chebyshev series expansions truncated after n
terms in the range 1 < n < 10. (ii) The Gegenbauer expansion method presented
by Doha (1990) to numerically approximate the solution of BVPs of linear partial
differential equations (PDEs) in one dimension shows that more accurate results
are obtained by taking λ small and negative. Moreover, the precision of the
Gegenbauer polynomials approximations exceeded those obtained by the Cheby-
shev and Legendre polynomials. (iii) Expansions in Chebyshev polynomials are
better suited to the solution of hydrodynamic stability problems than expan-
sions in other sets of orthogonal functions (Orszag, 1971). On the other hand,
in the resolution of thin boundary layer applications, Legendre polynomials ex-
pansion gives an exceedingly good representation of functions that undergo rapid
changes in narrow boundary layers. Hence, it is convenient to apply a unified
approach using the Gegenbauer polynomials, which include Chebyshev and Leg-
endre polynomials as special cases, rather than applying a particular polynomial
for various approximation problems. Moreover, the theoretical and experimental
results derived in a Gegenbauer solution method apply directly to Chebyshev and
Legendre polynomial approximation methods as special cases. (iv) The numerical
treatment of definite integrations applied by El-Hawary et al. (2000) using Gegen-
bauer integration matrices (GIMs) followed by their application for the numerical
solution of OC problems (El-Hawary et al., 2003) revealed many useful advan-
tages over the standard choices of Chebyshev and Legendre polynomial expansion
methods. (v) Finally, the recent work of Imani et al. (2011) on the solution of
nonlinear BVPs shows that the Jacobi polynomials generally produce better re-
sults compared to Chebyshev and Legendre polynomials for various values of the
parameters α; β.

It is noteworthy to mention that the work of Williams (2004) showed that the
Jacobi polynomials can be very efficient in the solution of OC problems. Nonethe-
less, his numerical example of the orbit transfer problem showed that a wide gap
in the calculation time occurs as the parameters of the Jacobi polynomial change,
and it is recommended to opt for the values of α; β which give the most efficient
computation time for a specific application. Williams though did not provide
any clue or perhaps a rule of thumb for choosing optimal (or loosely speaking,
appropriate) choices of the Jacobi parameters to establish an efficient solution
method. On the other hand, the El-Hawary et al. (2003) work in the solution
of OC problems using Gegenbauer polynomials seems to offer a suitable method
for optimally choosing the Gegenbauer parameter λ in a certain application. The
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latter article as well as the absence of a valid numerical method for determining
suitable Jacobi parameters have motivated us further to pursue the solution of
CTOCPs using Gegenbauer expansion series.

1.3.1 Collocation Points

The choice of the discretization/collocation points plays an important role in the
solution of OC problems as well. In fact, it can be easily demonstrated that
an arbitrary choice of the collocation nodes can deliver very poor approxima-
tions. This may cause severe problems such as the Runge phenomenon1, which
is known as the divergence of the interpolants constructed using equispaced-
interpolation-points at the endpoints of the interpolation domain. Therefore, the
impact of the collocation points choice on the performance and the efficiency of
the DOCMs is parallel to the effect of the orthogonal basis polynomials used
in the approximation. Several results in approximation theory have shown that
different collocation points sets of the Gauss type yield superior interpolation
approximations of functions to the ones obtained from equidistant points. These
points sets have the distribution property of clustering around the endpoints of
the interval, which results in the avoidance of the Runge phenomenon (Trefethen,
2000). In fact, it can be shown that the interpolation errors decrease exponen-
tially for interpolation based on Gauss points. The derivatives/integrations of the
interpolating polynomials at these points sets can be obtained exactly through
differentiation/integration matrices. The choice of the orthogonal basis functions
and the Gauss collocation points separate the orthogonal collocation/PS methods
from the other collocation methods in the literature.

The most well-developed DOCMs classified according to the choice of the
collocation nodes are the Gauss, Gauss-Radau, and Gauss-Lobatto DOCMs; cf.
(Benson, 2004; Benson et al., 2006; Elnagar et al., 1995; Fahroo and Ross, 2001;
Garg et al., 2011a,b, 2010; Gong et al., 2006a, 2009; Rao et al., 2010; Williams,
2006). The collocation points sets in these methods are the Gauss, Gauss-Radau,
and the Gauss-Lobatto points, respectively. These points sets are defined on the
interval [−1, 1], and they chiefly differ in how the end points are incorporated. The
Gauss points set does not include both endpoints. The Gauss-Radau points set
include one endpoint only, while the Gauss-Lobatto points set include both end-
points. The latter appears to be the most intuitive points set to be incorporated,
since OC problems generally have boundary conditions at both the initial and
terminal times. However, many recent research articles show that they may not
be the most appropriate. Garg et al. (2010) showed that the differentiation matri-
ces of the Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) schemes, for

1This phenomenon was originally discovered by Carl David Tolmé Runge (1856–1927).
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instance, are rectangular and full rank, whereas the LGL differentiation matrix
is square and singular. Consequently the LG and LGR methods can be written
equivalently in either differential or implicit integral form, while the LGL method
does not have an equivalent implicit integral form. Moreover, the LG and LGR
transformed adjoint systems are full rank while the LGL transformed adjoint
system is rank-deficient. Consequently, the LG and LGR costate approximations
converge exponentially while the LGL costate is potentially non-convergent. Also
it was shown that the costate estimate using LGL points set tends to be noisy
due to the oscillations about the exact solution, and these oscillations have the
same behavior as the null space of the LGL approximation (Darby, 2011). Benson
(2004); Garg et al. (2010) showed further that the LG and LGR methods produce
highly accurate discrete approximations to the solutions of the OC problem.

1.3.2 Choice of the NLP Solver

The above arguments sustain the application of the Gegenbauer orthogonal col-
location method together with the Gauss/Gauss-Radau collocation nodes as a
suitable numerical scheme competent to efficiently discretize CTOCPs. Since the
solution of OC problems using DOCMs is established through two key stages:
The numerical discretization scheme and the optimization method employed for
solving the resulting constrained NLP problem, it is substantial to consider an
efficient optimization method for solving the reduced optimization problem. In
this dissertation, we shall apply the interior-point method provided with MAT-
LAB software. This popular optimization method reduces the original inequality-
constrained problem into a sequence of equality constrained problems, which are
easier to solve. Moreover, the interior-point method is well-known for its sim-
plicity and its ability to generally solve a large optimization problem in a small
number of iterations (Li and Santosa, 1996). Furthermore, the interior-point
method converges in polynomial time, and provides scaling to handle the nu-
merical ill-conditioning arising during the numerical computations (Ahmadi and
Green, 2009; Singh et al., 2008).

1.3.3 Significance of the Operational Matrix of Integra-
tion

In addition to the spectral orthogonal basis polynomials used in the approxima-
tion, the collocation points type of sets used for the discretization of the OC
problem, and the optimization solver employed for the solution of the reduced
NLP problem, one must acknowledge that the precision and the stability of the
numerical differentiation/integration operators applied for approximating the cost
function, the dynamical system, and the state/control constraints are extremely

18



Chapter 1

substantial ingredients for the establishment of an efficient DOCM. In fact, these
two properties, namely the precision and the stability, are crucial factors in deter-
mining the dimension of the resulting NLP problem. For instance, a poor spectral
differentiation/integration operator may require many spectral expansion terms
and collocation points to accurately represent the differentiation/integration op-
erators involved in the OC problem. This matter poses a problem when the
memory storage is limited, since the spectral solution of a large-dimensional NLP
problem often requires the storage of large and dense matrices. In contrast, pre-
cise and well-conditioned spectral operators can deliver a significantly small-scale
optimization problem. This feature is very important as it facilitates the task
of the optimization solver, and significantly reduces the required computational
time. Due to the lack of stability in the SDMs, especially those of high-orders as
evident in many research works of this area; cf. (Boyd, 2001; Elbarbary, 2006;
Greengard, 1991; Tang and Trummer, 1996; Trefethen, 1996), we shall recast the
OC problem into its integral form, and consider the application of the Gegen-
bauer integration matrices for approximating the integration operators involved
in the OC problem.

It is noteworthy to mention that despite the fact that spectral methods are
represented by dense/full matrices, ‘explicit time-stepping algorithms can be im-
plemented nearly as efficiently for them as for finite difference methods on a
comparable grid’ (Zang et al., 1982).

1.4 Framework

In this dissertation, we present a fast and efficient Gegenbauer transcription
method (GTM) for solving CTOCPs based on Gegenbauer-Gauss (GG) collo-
cation. The proposed method is a DOCM which parameterizes the state and the
control variables using global Gegenbauer polynomial expansions, and solves the
OC problem directly for the states and controls. For problems with various orders
time derivatives of the states arising in the cost function, dynamics, or constraints,
the GTM solves the CTOCP directly for the control u(t) and the highest-order
time derivative x(N)(t), N ∈ Z+. The state vector and its derivatives up to the
(N−1)th-order derivative can then be stably recovered by successive integration.
To take full advantage of the useful Gegenbauer integration matrices operators,
we shall transform the dynamical system of differential equations into its integral
formulation. In this manner, a Bolza CTOCP is transformed into an integral
Bolza CTOCP. The transformed dynamical system can be imposed by discretiza-
tion at the GG points using an optimal GIM which exploits the strengths of the
Chebyshev, Legendre, and Gegenbauer polynomials, and possesses many advan-
tages; cf. Figure 1.3. The novel optimal GIM introduced in this dissertation is
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constructed through interpolations at some optimal set of GG points adjoining
the solution points so that the Gegenbauer quadrature error is minimized in a cer-
tain optimality measure. This technique entails the calculation of some locally
optimal Gegenbauer parameter values {αi}Nαi=0, Nα ∈ Z+, rather than choosing
any arbitrary α value. In this manner, we can improve the quality of the dis-
crete Gegenbauer approximations, and significantly reduce the dimension of the
resulting NLP problem. The integral cost function can be discretized also by the
optimal GIM, which provides highly accurate results for approximating definite
integrals. Hence the present method unifies the process of the discretization of the
differential equations and the integral cost function; cf. Figure 1.4. We restrict
ourselves to CTOCPs whose dynamics are described by ODEs, and/or provided
with state/control constraints. CTOCPs governed by integro-differential equa-
tions are solved similarly by recasting the dynamics into its integral formulation,
while CTOCPs with integral equation constraints are solved straightforwardly.

Figure 1.3: The optimal GIM captures the most suitable properties of the Cheby-
shev, Legendre, and Gegenbauer polynomials required for a given problem. It is
a well-conditioned operator, and its well-conditioning is essentially unaffected for
increasing number of grid points. The use of integration for constructing the
spectral approximations improves the rate of convergence of the spectral inter-
polants, and allows the multiple boundary conditions to be incorporated more
efficiently.

1.4.1 Advantages of the GTM

The GTM derived in this dissertation has many advantages over other DOCMs/PS
methods for solving OC problems. (i) The presented GTM can be easily pro-
grammed, consistently preserves the type of the constraints, and encompasses a
wider range of OC problems than the usual DOMs. The GTM produces a NLP
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Figure 1.4: The GTM for a continuous-time Bolza OC problem.

problem with considerably lower-dimension than those obtained by other con-
ventional methods. Indeed, this feature is genuinely established using an optimal
Gegenbauer quadrature which combines the strengths of the Chebyshev, Leg-
endre, and Gegenbauer polynomials in one unique numerical quadrature using a
unified approach. The precise approximations established by the novel quadrature
significantly reduces the number of solution points and the Gegenbauer expan-
sion terms needed to accurately represent the state and the control variables. (ii)
The GTM discretizes the dynamical system of differential equations using well-
conditioned Gegenbauer integration matrices. In contrast, many DOCMs/PS
methods presented in the literature apply SDMs known for their ill-conditioning.
(iii) An accurate solution can be found using well-developed NLP solvers with no
need for an initial guess on the costate or derivation of the necessary conditions.
(iv) The GTM takes advantage of the fast exponential convergence typical of
spectral methods. (v) The GTM can smoothly represent the state and control
dependent constraints. (vi) The GTM offers better convergence behavior than
the indirect methods. (vii) The GTM can be quickly used to solve a number of
practical trajectory optimization problems since it does not require the derivation
of the necessary conditions of optimality. (viii) The GTM solves the CTOCP in
the spectral space, which means that once the Gegenbauer spectral coefficients
are determined through the NLP solver, the approximation of the state and the
control variables can be obtained at any point in the interval of interest. On the
other hand, other numerical schemes such as the finite-difference scheme require
a further step of interpolation. (ix) One notable advantage of applying the GTM
over other DOMs is the high degree of precision offered by the GTM. The rapid
convergence rate of the GTM is shown empirically on a wide variety of CTOCPs
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presented later in Chapters 6 and 7 including comparisons with many DOMs pre-
sented in the literature. (x) The rapid solution of the CTOCPs enables real-time
OC of nonlinear dynamical systems. (xi) Many useful benefits of the GTM are
inherited from the application of a DOM endowed with a spectral collocation
integration method.

1.5 Thesis Overview

This dissertation is divided into eight chapters with five chapters devoted for
published articles produced during the Ph.D. candidature. Following this in-
troductory chapter, this dissertation proceeds in the following order: The next
chapter presents some mathematical background and basic concepts related to
OC theory. In particular, Section 2.1 introduces the CV as the primal basis of
OC theory, highlighting the necessary and sufficient conditions required for ex-
tremizing functionals subject to boundary conditions. In Section 2.2, we give a
fundamental introduction on OC theory. Section 2.2.1 presents some of the popu-
lar formulations of CTOCPs, and the necessary conditions of optimality required
in these cases. The interesting result of the MP occurs for CTOCPs with input
constraints in Section 2.2.1.4. In Section 2.2.2 we review the sufficient conditions
of optimality, accentuating on the strengths and weaknesses of DP. Section 2.2.3
introduces the class of DOMs, with a special attention devoted for direct colloca-
tion methods (DCMs) in Section 2.2.3.1. In Section 2.3 we present a background
on the Gegenbauer polynomials, highlighting some of their useful relations and
properties, and introducing some exact formulas for the evaluation of the suc-
cessive integrations of the Gegenbauer polynomials in terms of themselves. The
principles of functions approximations by the Gegenbauer polynomials are briefly
highlighted in Section 2.4. The convergence rate of the Gegenbauer collocation
methods is discussed in Section 2.5. The concept of the operational matrix of
integration is conveniently introduced in Section 2.6. Finally, the idea of solv-
ing various mathematical problems such as dynamical systems and OC problems
through the optimization of the GIM is briefly presented in Section 2.7.

Chapter 3 presents a published article in Journal of Computational and Ap-
plied Mathematics titled “Optimal Gegenbauer quadrature over arbitrary inte-
gration nodes.” In this chapter, the definite integrations are treated numerically
using Gegenbauer quadratures. The presented novel numerical scheme intro-
duces the idea of combining the strengths of the versatile Chebyshev, Legendre,
and Gegenbauer polynomials through a unified approach, and using a unique
numerical quadrature. In particular, our new vision for constructing the Gegen-
bauer quadrature efficiently rests upon two fundamental elements: (i) The Gegen-
bauer polynomial expansions can produce faster convergence rates than both
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the Chebyshev and Legendre polynomials expansions for small/medium range of
the spectral expansion terms; (ii) the elegant Chebyshev and Legendre polyno-
mials expansions are optimal in the L∞-norm and L2-norm approximations of
the smooth functions, respectively, for large-scale number of expansion terms.
Therefore, our adopted numerical scheme employs the Gegenbauer polynomials
to achieve rapid rates of convergence of the quadrature for the small range of the
spectral expansion terms. Moreover, for a large-scale number of the expansion
terms, the numerical quadrature possesses the luxury of converging to the opti-
mal Chebyshev and Legendre quadratures in the L∞-norm and L2-norm, respec-
tively. The key idea to establish these useful features for a numerical quadrature
is to construct the Gegenbauer quadrature through discretizations at some opti-
mal sets of points of the GG type in a certain optimality sense. We show that
the Gegenbauer polynomial expansions can produce higher-order approximations
to the definite integrals

∫ xi
−1
f(x)dx of a smooth function f(x) ∈ C∞[−1, 1] for

the small range by minimizing the quadrature error at each integration point xi
through a pointwise approach. The developed Gegenbauer quadrature allows for
approximating integrals for any arbitrary sets of integration nodes. Moreover,
exact integrations are obtained for polynomials of any arbitrary degree n if the
number of columns in the developed GIM is greater than or equal to n. We
provide an error formula for the Gegenbauer quadrature, and we address the er-
ror bounds and the convergence rates associated with it. Our study manifests
that the optimal Gegenbauer quadrature exhibits very rapid convergence rates
faster than any finite power of the number of Gegenbauer expansion terms. Our
study also demonstrates that there are certain important elements which must
be addressed carefully during the construction of the numerical quadrature to
establish an efficient and robust numerical scheme. Therefore, we furnished two
efficient computational algorithms for optimally constructing a stable and well-
behaved Gegenbauer quadrature. We illustrate the high-order approximations
of the optimal Gegenbauer quadrature through extensive numerical experiments
including comparisons with conventional Chebyshev, Legendre, and Gegenbauer
polynomial expansion methods. The theoretical arguments and the experimental
results presented in this chapter illustrate the broad applicability of the Gegen-
bauer quadrature scheme, and its strong addition to the arsenal of numerical
quadrature methods.

Chapter 4 presents a published article in Advances in Computational Mathe-
matics titled “On the optimization of Gegenbauer operational matrix of integra-
tion.” In this chapter we discuss the idea of solving various dynamical systems and
OC problems using the GIM by tuning the Gegenbauer parameter α to achieve
better solution approximations. The chapter highlights those methods presented
in the literature which apply the Gegenbauer operational matrix of integration
for approximating the integral operations, and then recasting the mathematical
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problems into unconstrained/constrained optimization problems. The Gegen-
bauer parameter α associated with the Gegenbauer polynomials is then added as
an extra unknown variable to be optimized in the resulting optimization problem
as an attempt to optimize its value rather than choosing a random value. The
chapter focuses exactly on this important topic, and provides a theoretical proof
that this operation is indisputably invalid. In particular, we provide a solid math-
ematical proof demonstrating that optimizing the Gegenbauer operational matrix
of integration for the solution of mathematical problems by recasting them into
equivalent optimization problems with α added as an extra optimization vari-
able “violates the discrete Gegenbauer orthonormality relation,” and may in turn
produce false solution approximations.

Since an essential stage in the solution of the CTOCPs lies in the efficient
discretization of the dynamical system and successfully imposing the boundary
conditions, our research work in Chapter 5 is devoted for a comprehensive study
on the Gegenbauer spectral solution of general dynamical systems given in many
forms, such as differential equations, integral equations, and integro-differential
equations. In particular, Chapter 5 presents a published article in Journal of Com-
putational and Applied Mathematics titled “Solving boundary value problems,
integral, and integro-differential equations using Gegenbauer integration matri-
ces.” In this chapter we introduce a hybrid Gegenbauer integration method for
solving BVPs, integral and integro-differential equations. The proposed approach
recasts the original problems into their integral formulations, which are then dis-
cretized into linear systems of algebraic equations using a hybridization of the
GIMs presented in Chapter 3. The resulting linear systems are well-conditioned
and can be easily solved using standard linear system solvers. We presented a
study on the error bounds of the hybrid technique, and proved the spectral con-
vergence for TPBVPs. We carried out many comparisons with other competitive
methods in the recent literature. The hybrid Gegenbauer integration method
results in an efficient algorithm, and the spectral accuracy is verified using eight
test examples addressing the aforementioned classes of problems. The developed
numerical scheme provides a viable alternative to other solution methods when
high-order approximations are required using only a relatively small number of
solution nodes.

Chapter 6 presents a published article in The Proceedings of 2012 Australian
Control Conference, AUCC 2012, titled “Solving optimal control problems using
a Gegenbauer transcription method.” In this chapter we describe a novel DOCM
using GG collocation for solving CTOCPs with nonlinear dynamics, state and
control constraints, where the admissible controls are continuous functions. The
time domain is mapped onto the interval [0, 1], and the dynamical system formu-
lated as a system of ODEs is transformed into its integral formulation through
direct integration. The state and the control variables are fully parameterized
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using Gegenbauer expansion series with some unknown Gegenbauer spectral co-
efficients. The proposed GTM then recasts the performance index, the reduced
dynamical system, and the constraints into systems of algebraic equations using
the optimal Gegenbauer quadrature developed in Chapter 3. Finally, the GTM
transcribes the infinite-dimensional OC problem into a parameter NLP problem
which can be solved in the spectral space; thus approximating the state and the
control variables along the entire time horizon. In this manner, the GTM re-
tains the structure of the original CTOCP, and solves the problem directly for
the states and the controls variables. The high precision and the spectral con-
vergence of the discrete solutions are verified through two OC test problems with
nonlinear dynamics and some inequality constraints. In particular, the numeri-
cal test problems address the problem of finding the best path for an unmanned
aerial vehicle mobilizing in a stationary risk environment. We compared the de-
veloped method with the variational technique of Miller et al. (2011)1, and we
found that the proposed method outperforms the classical variational methods
in many aspects such as robustness, simplicity, and accuracy. The results show
that the present GTM offers many useful properties and a viable alternative over
the available DOMs.

Chapter 7 presents a published article in Journal of Computational and Ap-
plied Mathematics titled “Fast, accurate, and small-scale direct trajectory opti-
mization using a Gegenbauer transcription method.” This chapter extends the
method introduced in Chapter 6 to deal further with problems including differ-
ent orders time derivatives of the states by solving the CTOCP directly for the
control u(t) and the highest-order time derivative x(N)(t), N ∈ Z+. The state
vector and its derivatives up to the (N −1)th-order derivative can then be stably
recovered by successive integration. Moreover, we present our solution method
for solving linear-quadratic regulator (LQR) problems as we aim to cover a wider
collection of CTOCPs with the concrete aim of comparing the efficiency of the
current work with its rivals in the class of direct orthogonal collocation/PS meth-
ods. The chapter shows the degree of robustness, simplicity, accuracy, economy
in calculations, and speed compared to other conventional methods in the area
of computational OC theory. Moreover, the chapter signifies the very important
advantage of producing very small-scale dimensional NLP problems, which sig-
nals the great gap between the present method and other traditional methods.
The advantages of the proposed direct GTM over other traditional discretization
methods are shown through four well-studied OC test examples. The present work
is a major breakthrough in the area of computational OC theory as it delivers
significantly accurate solutions using considerably small numbers of collocation

1The conference article (Miller et al., 2011) was later updated and published in Journal of
Computer and Systems Sciences International as (Andreev et al., 2012).

25



Chapter 1

points, states and controls expansion terms.
Finally, Chapter 8 presents some concluding remarks on the works achieved

in this dissertation including a discussion of promising future research directions.
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Preliminary Mathematical
Background

The foundations of OC theory are grounded on many mathematical subjects such
as optimization, standard and variational calculus, linear and nonlinear algebra,
approximation theory, numerical analysis, functional analysis, and so on. Clearly,
one can discuss only a small fraction of the theory within the scope of a Ph.D.
dissertation. However, in this chapter, we shall try to grasp the basic principles
and concepts which are useful to our research work.

2.1 CV

In this section we briefly discuss the CV as the original foundation of OC theory,
and highlight its fundamental theorems. CV is a classical branch of mathematics
which dates back to the ancient Greeks, and originated with the works of the
great mathematicians of the 17th and 18th centuries. The birth of CV can be
directly linked to the Brachistochrone problem (the curve of the shortest descent
problem) posed by Galileo Galilei in 1638, and solved later, anonymously, by
Johann Bernoulli, Leibniz, Newton, Jacob Bernoulli, Tschirnhaus and L’Hopital
(Pytlak, 1999). Although the main concern of the subject is to deal with the
optimization of integral functionals, the rigorous developments in this area pre-
ceded the development of NLP by many years. CV generalizes ordinary calculus,
since its principle objective is to find curves, possibly multidimensional, which
optimize certain functionals.

Let x be a vector function whose components are continuously differentiable on
[t0, tf ], for some fixed real numbers t0, tf with t0 < tf . Also let L(x(t), ẋ(t), t) be
some functional which is twice differentiable with respect to all of its arguments.
One of the simplest variational problems in CV is to find the vector function x∗
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for which the functional

J(x) =

∫ tf

t0

L(x(t), ẋ(t), t)dt, (2.1)

subject to x(t0) = x0 and x(tf ) = xf , (2.2)

has a relative extremum. The vector function x∗ which optimizes the functional
J(x) is said to be an extremal. The fundamental theorem of CV states that if x∗

is an extremal, then the variation of J must vanish on x∗; i.e.

δJ(x∗, δx) = 0 for all admissible δx. (2.3)

The Fundamental theorem plays an essential role in CV, and its application leads
to the necessary condition for x∗ to be an extremal given by

∂L

∂x
(x∗(t), ẋ∗(t), t)− d

dt

[
∂L

∂ẋ
(x∗(t), ẋ∗(t), t)

]
= 0 ∀t ∈ [t0, tf ], (2.4)

together with the boundary conditions x(t0) = x0; x(tf ) = xf . The necessary
optimality condition (2.4) is known as the “Euler-Lagrange” equation, and it
provides a way to solve for functions which extremize a given cost functional.
Therefore, it can be considered as the generalization of the condition f ′(x) = 0,
for a local extremum of a real variable function f(x) in standard calculus to the
problems of functional analysis, where f ′(x) is the derivative function of f(x).
Euler-Lagrange equation is generally a nonlinear TPBVP, which gives the condi-
tion for a stationarity of a given cost functional. However, this TPBVP usually
presents a formidable challenge to be solved both analytically and numerically. It
is interesting to know that Legendre (1752–1833) found the additional necessary
condition for a minimum by looking at the second variation of J . His sufficient
condition for a minimum asserts that the Hessian matrix must be nonnegative
definite, i.e.

∇2
ẋ,ẋL(x(t), ẋ(t), t) > 0, (2.5)

where

∇2
ẋ,ẋL(x(t), ẋ(t), t) =

(
∂2L

∂ẋi∂ẋj
(x(t), ẋ(t), t)

)
1≤i,j≤n

. (2.6)

If the Hessian matrix is strictly positive definite, then the condition is said to be
a strong Legendre condition.

2.2 OC Theory

The distinctive feature of CV is that the optimization of the integral functionals
takes place in the space of “all curves.” In contrast, OC problems involve the
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optimization of functionals over a set S of curves characterized by some dynamical
constraints. Therefore OC theory is considered the natural extension of CV to
the problems governed by dynamical system constraints. Historically, this natural
extension of OC theory to the CV for systems characterized by ODEs emerged
from the aspiration to take various constraints into account (Butkovsky et al.,
1968).

OC theory provides the mathematical tool for the construction of efficient con-
trol strategies for real life systems. In this framework, one considers a dynamical
model evolving over time from one initial state into another, a description of the
control mechanism, and a performance criterion defining the objective and the
cost of the control action. An OC problem is then formulated as the optimiza-
tion of the objective function subject to the constraints of the modeling equations
(Borz̀ı and Von Winckel, 2009). Hence in its basic form, an OC problem is a set
of differential equations describing the paths of the control variables which opti-
mize the cost functional. The main analytical methods for solving OC problems
are based upon the MP, and upon the principle of optimality due to Bellman.
The computational methods for solving this class of problems have gone through
a revolution in the last 25 years, since the introduction of DOCMs in 1988 by
Vlassenbroeck and Dooren, and the direct PS methods in 1995 by Elnagar et al.,
respectively.

According to the type of the system states and controls, the dynamical sys-
tems can be conveniently divided into two categories: (i) Continuous dynamical
systems, where the control and state variables are functions of a continuous inde-
pendent variable, usually time or distance; (ii) discrete dynamical systems, where
the independent variable changes in discrete increments. An OC problem charac-
terized by continuous components in time such as continuous dynamical system,
cost functional, and constraints is called a CTOCP. In the following, we shall
describe the mathematical formulation of CTOCPs.

2.2.1 Formulation of CTOCPs

There are various formulations for CTOCPs, but generally, a CTOCP requires
five essential elements to be well-formulated. These ingredients are: (i) A math-
ematical model of the system to be controlled, (ii) a specification of the cost
function, (iii) a specification of all boundary conditions on the states, (iv) a spec-
ification of all the constraints to be satisfied by the states and the controls; (v)
a statement of what variables are free; cf. Figure 2.1. In the following, we shall
describe some important cases for the mathematical formulations of CTOCPs:
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Figure 2.1: The elements of CTOCPs

2.2.1.1 Case with Fixed Final Time and No Terminal or Path Con-
straints

A simple CTOCP is a one with fixed final time and no path or terminal constraints
on the states or the control variables. Mathematically this problem can be stated
as follows: Find the control vector trajectory u : [t0, tf ] 7→ Rm which minimizes
the performance index

J(u(t)) = Φ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt, (2.7a)

subject to ẋ(t) = f(x(t),u(t), t), (2.7b)

x(t0) = x0, (2.7c)

where [t0, tf ] is the time interval of interest, tf is the final/terminal time, x :
[t0, tf ] 7→ Rn is the state vector, ẋ : [t0, tf ] 7→ Rn is the vector of first order
time derivatives of the states, Φ : Rn × R 7→ R is the terminal cost function,
L : Rn × Rm × R 7→ R is the Lagrangian function, f : Rn × Rm × R 7→ Rn is a
vector field where each component fi is continuously differentiable with respect
to x and is continuous with respect to u (Bertsekas, 2005). The functions Φ
and L are also continuously differentiable with respect to x and L is continuous
with respect to u. Equations (2.7b) and (2.7c) represent the dynamics of the
system and its initial state condition. Here we assume that for any admissible
control trajectory u(t), the system of differential equations (2.7b) provided with
the initial condition (2.7c) has a unique solution denoted by x(t), and is called
the corresponding state trajectory. A solution u∗(t) of this problem is called an
OC. The corresponding curve x∗(t) is called the optimal state trajectory; the pair
(x∗(t),u∗(t)) is usually referred to as the optimal pair. With this notation, the
CTOCP (2.7) can be defined as the problem of determining the input u∗(t) on
the time interval [t0, tf ] which drives the plant (2.7b) provided with the initial
condition (2.7c) along a trajectory x∗(t) such that the cost function (2.7a) is
minimized (Lewis and Syrmos, 1995). The problem as defined above is known
as the Bolza problem if both Φ and L are non-zeros. The problem is called the
Mayer problem if L = 0, and it is known as the Lagrange problem if Φ = 0.
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2.2.1.2 The Necessary Optimality Conditions Using the Variational
Approach

CV is a fundamental technique for defining the extremal solutions to OC prob-
lems, and provides the first-order necessary conditions for the optimal solution of
the CTOCP (2.7). The idea here is to adjoin the constraints to the performance
index using a time-varying Lagrange multiplier vector function λ : [t0, tf ] 7→ Rn

to construct the augmented performance index Ja:

Ja = Φ(x(tf ), tf ) +

∫ tf

to

(
L(x(t),u(t), t) + λT (t)(f(x(t),u(t), t)− ẋ)

)
dt. (2.8)

The elements of the vector function λ are also known as the costate/adjoint
variables. These variables can be interpreted as the Lagrange multipliers asso-
ciated with the state equations. To simplify the notation, let us introduce the
Hamiltonian function H as follows:

H(x(t),u(t),λ(t), t) = L(x(t),u(t), t) + λT (t)f(x(t),u(t), t), (2.9)

such that Ja can be rewritten as:

Ja = Φ(x(tf ), tf ) +

∫ tf

to

(
H(x(t),u(t),λ(t), t)− λT (t)ẋ

)
dt. (2.10)

An infinitesimal variation δu(t) in the control history produces variations in the
state history denoted by δx(t), and a variation in the performance index denoted
by δJa such that

δJa =

[(
∂Φ

∂x
− λT

)
δx

]
t=tf

+
[
λT δx

]
t=t0

+

∫ tf

to

((
∂H

∂x
+ λ̇

T
)
δx +

(
∂H

∂u

)
δu

)
dt.

(2.11)
Since the Lagrange multipliers are arbitrary, their values can be chosen so that
the coefficients of δx(t) and δx(tf ) are equal to zero. That is, we can set

λ̇T (t) = −∂H
∂x

; (2.12)

λT (tf ) =
∂Φ

∂x

∣∣∣∣
t=tf

. (2.13)

Hence the variation in the augmented performance index is given by:

δJa =

∫ tf

to

(
∂H

∂u

)
δu dt, (2.14)
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assuming that the initial state is fixed. For u(t) to be an extremal, it is necessary
that δJa = 0. This gives the stationarity condition

∂H

∂u
= 0. (2.15)

Equations (2.7b), (2.7c), (2.12), (2.13), and (2.15) are the first-order necessary
conditions for a minimum of J . Equation (2.12) is known as the costate differen-
tial equation. Equations (2.7c) and (2.13) represent the boundary/transversality
conditions. These necessary optimality conditions define a TPBVP, which may be
solved for the analytical solutions of special types of OC problems. However, ob-
taining closed form solutions is generally out of reach; therefore, these equations
are frequently used in defining numerical algorithms and methods known as the
IOMs to search for the sought solutions. In these methods, the state equations
are solved forwards in time, while the costate equations are solved backwards in
time, since the boundary conditions are split.

2.2.1.3 Case with Terminal Constraints

Consider the CTOCP (2.7) subject to an additional set of terminal constraints
of the form:

ψ(x(tf ), tf ) = 0, (2.16)

where ψ : Rn×R 7→ Rnψ is a vector function. It can be shown through variational
analysis (Lewis and Syrmos, 1995) that the necessary conditions for a minimum
of J are (2.7b), (2.7c), (2.12), (2.15) and the following terminal condition:(

∂Φ

∂x

T

+
∂ψ

∂x

T

ν − λ
)T ∣∣∣∣∣

tf

δx(tf ) +

(
∂Φ

∂t
+
∂ψ

∂t

T

ν +H

)∣∣∣∣
tf

δtf = 0, (2.17)

where ν ∈ Rnψ is the Lagrange multiplier associated with the terminal constraint,
δtf is the variation of the final time; δx(tf ) is the variation of the final state. Note
here that if the final time is fixed, then δtf = 0 and the second term vanishes.
Also, if the terminal constraint is such that the jth element of x is fixed at the
final time, then the jth element of δx(tf ) vanishes.

2.2.1.4 Case with Input Constraints– The MP

Physically realizable controls generally have magnitude limitations. Moreover,
admissible states are constrained by certain boundaries due to certain measures
such as safety, structural restrictions, etc. Therefore, state and control con-
straints commonly occur in realistic dynamical systems. Pontryagin and cowork-
ers (Boltyanskii et al., 1956; Pontryagin et al., 1962) established the MP, which
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provides the necessary conditions of optimality in the presence of constraints
on the states or input controls. The MP is one of the most important results
in OC theory. Its main idea is to transfer the problem of finding the input
u(t) which minimizes the cost function subject to the given constraints, to the
problem of minimizing the Hamiltonian function with respect to it (Grigorenko,
2006). Historically, the principle was first applied to the minimum-time prob-
lems (Φ = 0;L = 1) where the input control is constrained. Moreover, it can
be considered an extension of Weierstrass necessary condition to cases where the
control functions are bounded.

Let the input vector u ∈ U, where U is the set of all permissible controls.
It was shown by Pontryagin and co-workers (Boltyanskii et al., 1956; Pontryagin
et al., 1962) that in this case, the necessary conditions (2.7b), (2.7c), (2.12), and
(2.13) still hold, but the stationarity condition (2.15) has to be replaced by:

H(x∗(t),u∗(t),λ∗(t), t) ≤ H(x∗(t),u(t),λ∗(t), t) ∀u ∈ U, t ∈ [t0, tf ], (2.18)

where λ∗ is the optimal costate trajectory. Hence for a minimum of the cost
function in the case of input constraints, the Hamiltonian must be minimized over
all admissible u for optimal values of the state and costate variables. The OC
obtained through the MP is called an “open-loop control,” since it is a function
of the time t only, and one applies this control function thereafter with no further
observation of the state of the system. It is important to note that the MP
provides the necessary conditions of optimality, but it is generally not sufficient
for any control trajectory satisfying these conditions to be truly optimal. That is,
using the MP alone, one is often not able to conclude that a trajectory is optimal.
The MP is deemed sufficient in the trivial cases when there exists only one control
trajectory satisfying the MP conditions, or when all control trajectories satisfying
these conditions have equal cost.

The formidable necessary conditions of optimality (2.7b), (2.7c), (2.12), (2.13),
and (2.18) lead to a generally nonlinear TPBVP with a mixed initial/terminal
boundary conditions for the system state and its conjugate costate. This reduced
TPBVP must be solved to obtain the OC law u. Generally, this is a very difficult
task both analytically and computationally, since the TPBVP is known to be
very unstable, and the MP does not give any information on the initial values of
the costates (Liu, 2011). Due to the instability of the TPBVP, determining an
OC law is possible only for systems with a “perfect” model, and at the cost of
losing beneficial properties such as robustness with respect to disturbances and
modeling uncertainties (Lin, 2011).

A special case where the solution can be obtained in closed loop form is the
LQR, where the plant is linear and the performance index is a quadratic form.
However, in general, the necessary conditions of optimality provided by the MP
are intractable for analytical or closed form expressions of the control law. Even
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in the mild case of a LQR, the OC law is usually determined by solving a matrix
differential equation of the fierce Riccati type. In fact, except for very special
cases, it is well-known that obtaining analytical solutions of Riccati differential
equations is usually out of reach, and their numerical solution is still undoubtedly
a “daunting” task (Anderson and Moore, 2007; Deshpande and Agashe, 2011;
Reid, 1972).

2.2.1.5 Special Cases– Some Results Due to the MP

In this section, we briefly state, without proof, some results due to the MP for
various OC problems:

• The MP can still be applied if the control u is not bounded within a certain
constraint region. In this case, for u∗(t) to minimize the Hamiltonian,
Equation (2.15) must hold and the matrix

∂2H

∂u2
(x∗(t),u∗(t),λ∗(t), t), (2.19)

must be positive definite.

• If tf is fixed, and the Hamiltonian does not depend explicitly on time,
then the Hamiltonian must be constant when evaluated on an extremal
trajectory, i.e. H(x∗(t),u∗(t),λ∗(t)) = constant ∀t ∈ [t0, tf ].

• If tf is free, and the Hamiltonian does not explicitly depend on time, then
the Hamiltonian must be identically zero when evaluated on an extremal
trajectory, i.e. H(x∗(t),u∗(t),λ∗(t)) = 0 ∀t ∈ [t0, tf ].

• If x(t0) is free, then λ(t0) = 0 holds and represents an extra boundary
condition for the adjoint equation (Bertsekas, 2005).

• If L(x(t0)) represents a cost on x(t0), then the boundary condition becomes
λ(t0) = −∇L(x∗(t0)).

Other cases may occur due to the existence of some path constraints of the form
c(x(t),u(t), t) ≤ 0, such that c : Rn×Rm× [t0, tf ] 7→ Rnc , or equality constraints
at some intermediate points in time, or some singular arcs in the solutions of
the OC problems, etc.; cf. (Bertsekas, 2005; Betts, 2009; Bryson and Ho, 1975;
Subchan and Zbikowski, 2009).
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2.2.1.6 General Mathematical Formulation of CTOCPs

One of the most general mathematical formulations of CTOCPs is the one which
includes the five essential elements described in Figure 2.1. In particular, a com-
mon general CTOCP formulation has free final time tf , nonlinear dynamics with
mixed boundary conditions, mixed path and terminal constraints, and it can be
described as follows: Find the control vector trajectory u : [t0, tf ] ⊂ R → Rm

which minimizes the general cost function:

J(u(t)) = Φ(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt, (2.20a)

subject to the nonlinear plant (2.7b), and the following constraints:

φ(x(t0), t0,x(tf ), tf ) = 0, (2.20b)

ψ(x(t),u(t), t) ≤ 0, t ∈ [t0, tf ], (2.20c)

h(x(tf ),u(tf ), tf ) ≤ 0, (2.20d)

where φ : Rn × R × Rn × R → Rnφ , for some nφ ∈ Z+, represents the state
boundary conditions in their most general form, ψ : Rn × Rm × R → Rnψ is a
vector field, where each component ψi : Rn×Rm×R→ R represents a state and
control inequality constraint for each i = 1, . . . , nψ;nψ ∈ Z+; h : Rn×Rm×R→ R
is a vector field representing a state and control terminal inequality constraint.
The first-order necessary conditions for the optimal solution of similar CTOCPs
derived through the variational techniques can be found in (Benson, 2004; Darby,
2011; Garg, 2011).

2.2.2 DP– Sufficient Conditions of Optimality

DP constitutes the first extension of the CV to problems with inputs (Polak,
1973). The subject is considered an alternative to the variational approach in
OC theory, and is a means by which candidate OCs can be verified optimal. DP
was proposed by Bellman in 1953, and represents an extension to the Hamilton-
Jacobi theory. It is concerned mainly with the families of extremal paths which
meet specified terminal conditions (Bryson, 1996). Bellman realized that ‘an
optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision’ (Kirk, 2004). In this manner, DP makes the
direct search feasible by considering only the controls which satisfy the principle
of optimality rather than searching among the set of all admissible controls which
yield admissible trajectories. Hence the main idea of the optimality principle is to
determine the OC by limiting the number of potential OC strategies which must
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be investigated. Moreover, the optimal strategy must be developed backward in
time, i.e. determined by working backward from the final time.

Bellman translated the principle of optimality into a conceptual method for
solving dynamic optimization problems. The framework of the method can be
outlined by introducing the optimal cost-to-go function (value function) J∗(x(t), t),
as follows:

J∗(x(t), t) = min
u(.)

{
Φ(x(tf ), tf ) +

∫ tf

t

L(x(t),u(t), t)dt

∣∣∣∣ x(t) = x

}
. (2.21)

Equation (2.21) gives the optimal remaining cost when the dynamical system is in
state x at time t. It can be shown that Bellman’s principle of optimality applied
to the CTOCP (2.7) leads to the HJB equation, which can be written in terms
of the optimal cost-to-go function J∗(x(t), t) in the following form:

− ∂J∗

∂t
(x(t), t) = min

u(t)

(
L(x(t),u(t), t) +

∂J∗

∂x
(x(t), t)f(x(t),u(t), t)

)
∀t,x,

(2.22)
with the boundary condition J∗(x(tf ), tf ) = Φ(x(tf ), tf ), assuming that J∗ is
continuously differentiable in its arguments. Equation (2.22) is a PDE which
must be satisfied for all time-state pairs (t,x) by the optimal cost-to-go function
J∗(x(t), t). If we can solve for J∗, then the OC u∗ which achieves the minimum
cost can be found from it.

It is noteworthy to mention that the HJB Equation (2.22) is a necessary and
sufficient condition for an optimum if it is solved over the whole state space. More-
over, the OC u∗(x, t) associated with the optimal cost-to-go function J∗(x(t), t)
is known as the “closed-loop control,” since it is a feedback on the current state x
and the time t. This is why DP may be called “nonlinear optimal feedback con-
trol” (Bryson, 1996). Hence a distinctive feature between the MP and DP is that
the former produces an open-loop control, while the latter yields a closed-loop
control. Moreover, the co-states of the MP are valid only for a particular initial
state, while the value function of DP covers the whole state space (Rungger and
Stursberg, 2011). Furthermore, DP provides the sufficient and necessary condi-
tions for optimality while the MP offers only the set of necessary conditions of
optimality. In other words, while the OC obtained through CV and the MP is a
local OC in general, DP ensures that the OC obtained through the HJB equation
is actually the global OC law by directly comparing the performance index values
associated with all of the OC law candidates. The solution obtained through DP
is more attractive indeed, whereas in real systems, there will usually be random
perturbations which are not accounted for in the mathematical model. These ran-
dom disturbances can be automatically corrected using a feedback law. Besides
this useful feature, the existence of the state and control constraints simplifies the
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application of DP, since they reduce the range of the values to be searched and
thereby simplify the solution. In contrast, the presence of the state and control
constraints generally complicates the application of the variational techniques.

2.2.2.1 The Curse of Dimensionality– A Fatal Drawback Associated
with the DP Solution Method

It is well-known that the HJB equation is hard to solve, and rarely admits analyt-
ical solutions to OC problems, especially for nonlinear systems. In fact, explicit
solution exists in cases like the LQR, but in general, numerical methods must be
employed. Finding the value function from the HJB PDE is usually carried out
backwards in time, starting from t = tf and ending at t = t0.

The aforementioned features of DP described in Section 2.2.2 seem to suggest
that it is the method of choice for solving OC problems. In fact, despite all of
the useful advantages of DP, there is a fatal drawback which greatly limits its
application, especially for high-dimensional systems: All numerical methods for
solving the HJB equation are computationally intense, and subject to the so-called
“curse of dimensionality” (Lawton et al., 1999; Murray et al., 2002). In particular,
for high-dimensional systems, the solution of the HJB equation demands a huge
number of computations and storage space to the extent that the number of high-
speed storage locations becomes prohibitive (Kirk, 2004; Lin, 2011). To make
matters worse, most of the numerical methods for solving the HJB equation are
usually incapable of producing stable and robust OC solutions. These limitations
are also true for Bellman’s equation, which is a functional recurrence relation
representing the discrete analogy of the HJB equation. The interested reader
may consult (Bellman, 2003; Bertsekas, 2007; Kirk, 2004) for further information
about DP.

2.2.3 DOMs

The topic of DOMs is very large, and various methods have been presented in the
literature and have been actively used. DOMs retain the structure of the original
infinite-dimensional CTOCP and transcribe it directly into a finite-dimensional
parameter NLP problem through the discretization of the original problem in time
and performing some parameterization of the control and/or state vectors. There
are three main types of DOMs, namely: (i) DOMs based on parameterizing the
controls only (partial parameterization), (ii) DOMs based on parameterizing the
states only (partial parameterization), and (iii) DOMs based on parameterizing
both the states and the controls (full parameterization).

In the first type of DOMs, the parameterization of the control profile simply
means specifying the control input function through some parameters which are
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allowed to take on values in a given specified range. The parameterization of the
control can take many forms. Generally, one can choose u = u(α, t), for some
parameter vector α ∈ Rl; l ∈ Z+. The most successful parameterization strategies
for the control in the literature are based on the trial function expansions, which
are widely used in solving OC problems as well as in many other areas. In fact,
the parameterization of the control profile

u(t) =
N∑
i=0

aiφi(t), (2.23)

by expanding in functions of time has been originally introduced by Rosenbrock
and Storey (1966), where ai are some finitely many unknown coefficients, and
φi(t) are some arbitrary functions, which depend on the underlying problem. In
this manner, the OC problem is transformed into a static optimization problem
in the coefficients ai. The direct single-shooting method is one of the earliest
methods which belong to the first type of DOMs. In a typical direct single-
shooting method, only the controls are to be parameterized, and the differential
constraints must then be integrated over the entire time domain using a numer-
ical integration scheme such as Euler’s method, Heun method, or Runge-Kutta
method, etc., where the states are obtained recursively; cf. (Betts, 2009). One
major drawback of this class of methods is their severe instability in many cases,
which limit their applications.

In the second type of DOMs, only the state variables are parameterized. The
control vector is then obtained from the system state equations as a function of
the approximated state vector. The OC problem in this manner is transformed
into a parameter optimization problem; cf. (Nagurka and Wang, 1993; Sirisena
and Chou, 1981).

In the third type of DOMs, both the states and the controls are fully param-
eterized as follows:

x = F1(α, t), (2.24a)

u = F2(β, t), (2.24b)

respectively, for some prescribed vector functions F1;F2, and parameter vectors
α ∈ Rnα ;β ∈ Rnβ . In this manner, the OC problem can be easily transformed into
a parameter NLP problem with the unknown optimization vectors α;β through
the discretization of the cost function, the dynamics, and the constraints. Di-
rect multiple-shooting methods are examples of DOMs of the third type. These
methods are typically carried out by dividing the solution domain into several
subintervals as an attempt to reduce the instability effect encountered during
the implementation of the direct single-shooting method by shooting over shorter
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steps; cf. (Betts, 2009; Bock and Plitt, 1984; Fraser-Andrews, 1999; Schwartz,
1996). Although direct multiple-shooting methods are considered more stable
than direct single-shooting methods, the expensive calculations required by the
numerical integrator in these methods is a major drawback in their applications.
DCMs are other examples of DOMs of the third type. These methods usually
present more efficiency and robustness over direct shooting methods. In fact,
whereas shooting methods rely on a separate integrator to solve the dynamical
system, DCMs include the integration in the resulting optimization problem as
constraints. That is, the dynamical system is converted into a system of algebraic
equations relating the consecutive states and controls as constraints. Therefore,
implicit integration is efficiently carried out as the set of state equations is solved
as a part of the optimization problem. It has been proven that the use of implicit
integration combined with modern NLP packages is an effective technique for
trajectory optimization (Paris et al., 2006).

In DCMs, where implicit integration is efficiently applied, a general OC prob-
lem is discretized at a certain points set {ti}Ni=0 and transformed into a con-
strained NLP problem, which can be stated as follows: Find a decision vector
y = (α,β)T ∈ Rnα+nβ which minimizes

J(y), (2.25a)

subject to

h(y) = 0, (2.25b)

g(y) ≤ 0, (2.25c)

where J : Rnα+nβ → R is a differentiable scalar function, h : Rnα+nβ → Rnh , nh ∈
Z+; g : Rnα+nβ → Rng , ng ∈ Z+ are differentiable vector functions. The NLP
problem (2.25) can then be solved for y using well-developed optimization soft-
ware. Once the decision vector y is found, the states and the controls can be
evaluated directly at any time history in the solution domain using Equations
(2.24).

Another approach for implementing DCMs is to formulate the NLP in terms
of the state vectors xi = x(ti) and the control vectors ui = u(ti) instead of
the parameter vectors α;β. In this manner, the NLP problem can be solved in
the physical space instead of the parameter space (the space of the parameter
vectors). The sought decision vector in this case is y = (X,U)T , where

X = (x0,x1, . . . ,xN)T ; (2.26)

U = (u0,u1, . . . ,uN)T . (2.27)

Theoretically, it can be shown that the above two approaches are equivalent,
i.e. one can determine the physical values of the states and the controls if the
parameter vectors are known, and vice-versa.
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Many DOMs and IOMs in the literature are based on the control and/or state
parameterizations (or their physical discretizations) techniques; cf. (Betts, 2001;
Elnagar et al., 1995; Enright and Conway, 1992; Fahroo and Ross, 2001, 2002;
Garg et al., 2011b; Goh and Teo, 1988; Hager, 2000; Hargraves and Paris, 1987;
Hicks and Ray, 1971; Huntington, 2007; Sirisena, 1973; Sirisena and Tan, 1974;
Sirisena and Chou, 1981; Stryk, 1993; Teo and Womersley, 1983; Teo and Wong,
1992; Vlassenbroeck and Dooren, 1988; Williams, 2004; Wong et al., 1985). The
size of the resulting NLP problem depends on the parameterization method. Al-
though partial parameterization (parameterizing only the controls or the states)
results in a smaller optimization problem than full parameterization (parameter-
izing both the controls and the states), the latter schemes are generally more
stable and their resulting optimization problems are usually well-conditioned.

2.2.3.1 DCMs

DCMs are based on the direct application of the standard collocation methods
for the solution of OC problems. Collocation methods form one of the three main
classes of the popular spectral methods, namely, the Galerkin methods, the Lanc-
zos tau-methods, and the collocation/PS methods. Spectral methods were largely
developed in the 1970s for solving PDEs arising in fluid dynamics and meteorol-
ogy (Canuto et al., 1988), and entered the mainstream of scientific computation
in the 1990s (Canuto et al., 2006). These methods gained much attention from
the researchers that they became ‘one of the “big three” technologies for the
numerical solution of PDEs’ (Trefethen, 2000). Over the last 25 years, spectral
methods have emerged as important computational methods for solving complex
nonlinear OC problems; cf. (Elnagar et al., 1995; Elnagar and Kazemi, 1998a;
Gong et al., 2006a; Jaddu, 2002; Jaddu and Shimemura, 1999; Vlassenbroeck,
1988; Vlassenbroeck and Dooren, 1988; Williams, 2004), and many other articles
in the literature of OC theory.

In a typical spectral collocation method, the function f(x) is approximated
by a finite expansion such as

fn(x) =
n∑
k=0

ckφk(x), (2.28)

where {φk}nk=0 is a chosen sequence of prescribed globally smooth basis functions.
One then proceeds to estimate the coefficients {ck}nk=0; thus approximating f(x)
by a finite sum. When the series (2.28) is substituted into the differential/integral
equation

Lf(x) = g(x), (2.29)
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where L is the operator of the differential or the integral equation, the result is
the so-called “residual function” defined by

R(x, c0, c1 . . . , cn) = Lfn − g. (2.30)

The goal is to choose the series coefficients {ck}nk=0 so that the residual function
R is minimized. The collocation method demands that the differential/integral
equation (2.29) be exactly satisfied at a set of points {xi}Ni=0 within the physical
domain known as the “collocation” points. The consequence of this condition is
that Equation (2.29) is fulfilled exactly at the collocation points, i.e. Lfn(xi) =
g(xi), i = 0, . . . , N . One can also derive condition (2.30) using the well-known
method of weighted residuals, which requires that the residual R multiplied with
(N + 1) test functions {ωi(x)}Ni=0, and integrated over the solution domain D

must vanish (Elgindy, 2008), i.e.

(R, ωi) =

∫
D

ωi(x)R(x, c0, . . . , cn)dx = 0, i = 0, . . . , N,

where “(., .)” is the inner product defined by

(f, g) =

∫
D

f(x)g(x)dx,

for any two functions f(x); g(x). In collocation methods, the test functions are

ωi(x) = δ(x− xi), i = 0, . . . , N,

with δ being the Dirac delta function

δ(x) =

{
1, for x = 0,

0, otherwise.

The collocation method is known as an orthogonal collocation method if the
chosen basis functions are orthogonal. The gained popularity of these methods
compared to Galerkin methods and Lanczos tau-methods is largely due to their
greater simplicity and computational efficiency. In fact, the collocation meth-
ods can solve nonlinear and variable coefficient problems more efficiently than
Galerkin, or Lanczos tau approximations (Gottlieb and Orszag, 1977). A thor-
ough discussion on the collocation methods, and spectral methods in general can
be found in many useful textbooks and monographs; cf. (Boyd, 2001; Fornberg,
1996; Gottlieb and Orszag, 1977; Trefethen, 2000) for instances, and the refer-
ences therein.
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2.2.3.2 DLCMs

DCMs are conveniently divided into two categories: DLCMs and direct global
collocation methods (DGCMs). In the former, either the controls or both the
controls and the states are parameterized using piecewise polynomials. Typically
fixed low-degree polynomials for the approximation of the state and the con-
trol variables are used. The duration time of the optimal trajectory is divided
into several subintervals using the collocation points {ti}Ni=0. The dynamics and
the constraints are then imposed at the collocation points in the solution do-
main (Reeger, 2009). The convergence of the numerical scheme is achieved by
increasing the number of segments. To obtain specified solution accuracy, some
grid refinement methods increase the number of mesh intervals in regions of the
trajectory where the errors are largest (Darby et al., 2011). Examples of DL-
CMs are the Euler method (Dontchev and Hager, 1997), and the second-order
Runge-Kutta method (Dontchev et al., 2000) for the solution of state and control
constrained OC problems, respectively. A main drawback in such finite-difference
schemes is their algebraic convergence rates in N , which are typically of O(N−2)
or O(N−4) (Weideman and Reddy, 2000).

2.2.3.3 DGCMs

In DGCMs, the controls and/or the states are parameterized using global trial
functions defined across the entire time interval. The values of the state and
control variables are then sought at a certain set of collocation points. The time
derivatives of the states in the dynamic equations are approximated by evaluat-
ing the derivatives of the global interpolating polynomials. These approximate
derivatives are then constrained to be equal to the vector field of the dynamic
equations at the set of collocation points. The most successful methods in this
area employ global orthogonal polynomials as the trial basis polynomials, in par-
ticular, those which belong to the Jacobi family of polynomials; cf. (Benson, 2004;
Benson et al., 2006; Darby, 2011; Elnagar et al., 1995; Elnagar, 1997; Fahroo and
Ross, 2002, 2008; Garg, 2011; Garg et al., 2011a; Gong et al., 2006a; Williams,
2004). These methods are called DOCMs or direct PS methods, and are consid-
ered the biggest technology in the area of OC theory in the last quarter century.
Many complex OC problems have been exclusively solved by the direct PS meth-
ods using the OTIS FORTRAN software package (Paris and Hargraves, 1996) and
the DIDO MATLAB software codes (Ross, 2004). As a result of the considerable
success of these methods, NASA applied the Legendre PS method as a problem
solving option for their OTIS software package (Gong et al., 2008). Furthermore,
the current PSOPT OC C++ software package (Becerra, 2011) uses direct PS
methods as a problem solving option, which has been applied recently to help

43



Chapter 2

design optimal trajectories for the first Brazilian deep space mission to the triple
asteroid system 2001 SN263, which is due to be launched in 2016. One sub-
stantial advantage of the DOCMs and direct PS methods over other traditional
discretization methods is their promise of exponential convergence for smooth
problems. This rapid convergence is faster than any polynomial convergence rate
(Canuto et al., 1988), exhibiting the so called “spectral accuracy” while providing
Eulerian-like simplicity. That is, these methods converge to the solutions faster
than O(N−m), where N is the number of collocation points, and m is any finite
power value (Rao et al., 2010). Another advantage of DOCMs employing the Ja-
cobi family of polynomials as the basis polynomials appears in the orthogonality
properties of these complete and easily evaluated type of polynomials, which pro-
vide the fast conversion between the spectral coefficients {ai}Ni=0 and the function
values at the set of collocation nodes {ti}Ni=0. In contrast, unless the states and
the controls in (2.24) are well represented in suitable parametric representations,
determining the parameter vectors α;β from the physical values of the states
and the controls may not be an easy task. In fact, the values of the states and
the controls at an intermediate point t̄ /∈ {ti}Ni=0 in this case may not be readily
determined, since obtaining the solution vectors x(t̄); u(t̄) may require solving a
highly nonlinear algebraic (or transcendental) system of equations, and one may
invoke an interpolation method in such cases.

2.2.3.4 Choice of the Collocation Points in a DOCM/PS Method

While any set of collocation points can be used in a DOCM or a direct PS
method, many theoretical and experimental results found in the literature favor
the orthogonal collocation set of points over other choices of collocation points
sets such as the equidistant grid. That is, the collocation points are preferably
chosen to be the zeros of the orthogonal basis polynomials employed in the series
expansion approximations, or the zeros of linear combinations of such polynomials
and their derivatives (Huntington, 2007). One major reason for this particular
choice of nodal points is to avoid the Runge phenomenon and the divergence of
the approximating interpolating polynomial in the interpolation of nonperiodic
functions on finite intervals (Fornberg, 1996; Isaacson and Keller, 1994). In fact,
it is well-known that one must abandon the equidistant grid, and choose a grid
which clusters quadratically as

xj ∼ −1 + c(j/N)2, (2.31)

close to the endpoints. In other words, a suitable grid of points must have an
asymptotic distribution with a density ρ such that

ρ ∼ N

π
√

1− x2
, (2.32)
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per unit length, as N → ∞ (Trefethen, 2000). In fact, all the zeros of classi-
cal orthogonal polynomials and their derivatives satisfy this important condition
(Gottlieb and Hesthaven, 2001). Moreover, the best well-known and accurate
quadrature rules use these types of collocation points as the quadrature points.

It is noteworthy to mention that depending on the form of the coefficients
ai in the parameter expansion series (2.23), a DOM using global orthogonal ba-
sis/interpolating polynomials is termed a DOCM or a direct PS method. In
particular, while the expansion coefficients in a DOCM may assume any value,
they are the function values at the collocation points in a direct PS method; cf.
(Fahroo and Ross, 2002) for instance. Therefore direct PS methods are consid-
ered a subclass of DOCMs. Some other researchers deem the terms “PS” and
“orthogonal collocation” identical, and have the same meaning; cf. (Garg et al.,
2011b) for instance. In both cases, the expansion series are called the spectral
expansion series, and the coefficients are called the spectral coefficients. In this
dissertation, we shall follow the former definition.

2.2.3.5 The Framework of Solving OC Problems Using DOCMs/PS
Methods

In a typical DOCM, the control and/or the state variables are approximated by
orthogonal polynomials series expansions over the whole time horizon. The in-
tegrals are approximated by quadratures (truncated sums) over a certain set of
quadrature points usually of the Gauss type, while the derivatives are approx-
imated by discrete differential operators known as the SDMs. In this manner,
the performance index, the system dynamics, the boundary conditions, the state
and/or control constraints are all converted into algebraic expressions. Eventu-
ally, the original OC problem is discretized and converted into a constrained NLP
problem of the form (2.25), where the sought decision vector y is a vector of the
state and the control variables’ coefficients in the spectral space, or a vector of the
state and the control variables’ values at the time collocation nodes in the phys-
ical space. The convergence of DOCMs is achieved by increasing the number of
collocation points and spectral expansion terms, and the degree of the polynomial
approximation (Darby et al., 2011). There are two common traits between the
DGCMs and DLCMs in the framework of solving OC problems: (i) The system
dynamics and the constraints are enforced/fulfilled pointwise only (locally at the
collocation points); (ii) no integration of differential equations is to be carried
out, which is very attractive (Pesch, 1994).
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2.2.3.6 DGCMs Versus DLCMs

While DLCMs have been applied frequently for solving OC problems, the compu-
tational efficiency and the accuracy achieved by these methods are much less than
those accomplished by DOCMs for sufficiently differentiable solutions. There are
many reasons why DOCMs/PS methods are more competitive than other DL-
CMs for solving OC problems with smooth solutions. The most two significant
features are the simplicity of the discretization procedure and the very precise
accuracy (spectral accuracy) of the method. In fact, it has been demonstrated in
the literature that the approximated states and controls using DLCMs converge
at a much slower rate than the observed convergence rates of global methods.
For a desired accuracy, DLCMs require significantly more computational effort
as compared to the global methods both in terms of the calculated time and the
number of iterations of the NLP solver (Huntington, 2007). Gong et al. (2006a)
specifically compared the efficiency of direct global PS methods versus some other
DLCMs for solving nonlinear OC problems with smooth solutions. In particu-
lar, Table I in (Gong et al., 2006a) shows a comparison between the efficiencies of
three discretization methods implementing Euler’s method, the Hermite-Simpson
method, and a PS method. The comparison includes the difference between the
number of required nodes to achieve threshold accuracy for each method, and the
calculation time required by each method to obtain the solutions. The results
of the table clearly show the superiority of the PS methods over the DLCMs
for solving nonlinear OC problems with smooth solutions. For example, the PS
method requires 18 collocation nodes to achieve an error of O(10−08) in 0.326
seconds, while the Hermite-Simpson method requires 70 collocation nodes to ob-
tain an error of O(10−04) in 1.465 seconds. The results further show that Euler’s
method requires 500 collocation points to produce an error of O(10−03) in 37.451
seconds! Indeed, DOCMs and direct PS methods do not require extremely large
number of variables in their approximations as needed in an Eulerian discretiza-
tion to obtain “comparable” precisions of solutions (Polak, 2011). Moreover,
DOCMs/PS methods can produce significantly small-scale NLP problems, which
can be solved quickly, and result in very precise approximations. This property is
extremely attractive for control applications as ‘it places real-time computation
within easy reach of modern computational power’ (Gong et al., 2007). On the
other hand, typical DLCMs applying finite-difference schemes such as Euler or
Runge-Kutta methods lead to enormous optimization problems in the number of
decision variables and constraints to obtain higher-order approximations, which
is very expensive and time-consuming. Hence, it can be clearly seen that the
contest between DGCMs and DLCMs for OC problems with smooth solutions is
not an even battle, but rather a rout. DGCMs win hands down. Here it is note-
worthy to mention that some fundamental results on the feasibility, consistency,
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and convergence of direct PS methods for solving OC problems have been shown
in a number of articles; cf. (Gong et al., 2006a, 2009, 2008; Kang et al., 2007,
2008; Ruths et al., 2011). The rate of convergence of direct PS methods has been
proven recently by Kang (2009).

2.3 Gegenbauer Polynomials

The theory of Gegenbauer polynomial approximation has received considerable
attention in recent decades (Archibald et al., 2003; Area et al., 2004; Ben-yu,
1998; Doha, 1990, 2002; Doha and Abd-Elhameed, 2009; El-Hawary et al., 2000,
2003; Elbarbary, 2006; Gelb, 2004; Gelb and Jackiewicz, 2005; Gottlieb and Shu,
1995b; Jackiewicz, 2003; Jackiewicz and Park, 2009; Keiner, 2009; Lurati, 2007;
Phillips and Karageorghis, 1990; Vozovoi et al., 1996, 1997; Watanabe, 1990;
Yilmazer and Kocar, 2008). To facilitate the presentation of the material that
follows, we present in this section some useful background on the Gegenbauer
polynomials using several results from approximation theory.

The Gegenbauer polynomial C
(α)
n (x) of degree n ∈ Z+ and associated with the

parameter α > −1/2 is a real-valued function, and appears as an eigensolution
to the following singular Sturm-Liouville problem in the finite domain [−1, 1]
(Szegö, 1975):

d

dx
(1− x2)α+

1
2
dC

(α)
n (x)

dx
+ n(n+ 2α)(1− x2)α−

1
2C(α)

n (x) = 0. (2.33)

The Gegenbauer polynomials C
(α)
n (x), n = 0, 1, 2, . . . are defined as the coefficients

in the following power series expansion of the generating function (1−2xt+ t2)−α

(Horadam, 1985):

(1− 2xt+ t2)−α =
∞∑
n=0

C(α)
n (x)tn, |t| < 1.

They can also be generated through the following useful recursion formula:

(n+ 1)C
(α)
n+1(x) = 2(n+ α)xC(α)

n (x)− (n+ 2α− 1)C
(α)
n−1(x), (2.34)

with the first two being C
(α)
0 (x) = 1;C

(α)
1 (x) = 2αx. The roots/zeros {xj}nj=0 of

the Gegenbauer polynomial C
(α)
n+1(x) are called the GG points, and the set

S(α)
n = {xj|C(α)

n+1(xj) = 0, j = 0, . . . , n}, (2.35)

is called the set of GG points. The study of these GG points has been of quite in-
terest because of their effect in many applications. For instance, the GG points of
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the Gegenbauer polynomial C
(α)
n (x) can be thought of as the positions of equilib-

rium of n ≥ 2 unit electrical charges in the interval (−1, 1) in the field generated
by two identical charges of magnitude α/2+1/4 placed at 1 and −1 (Ahmed et al.,
1986). The weight function for the Gegenbauer polynomials is the even function
w(α)(x) = (1− x2)α−1/2. The Gegenbauer polynomials form complete orthogonal
basis polynomials in L2

w(α) [−1, 1]. Their orthogonality relation is given by∫ 1

−1

w(α)(x)C(α)
m (x)C(α)

n (x)dx = h(α)
n δmn, (2.36)

where

h(α)
n =

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
, (2.37)

is the normalization factor; δmn is the Kronecker delta function. The symmetry
of the Gegenbauer polynomials is emphasized by the relation (Hesthaven et al.,
2007)

C(α)
n (x) = (−1)nC(α)

n (−x). (2.38)

Another suitable standardization of the Gegenbauer polynomials dates back to
Doha (1990), where the Gegenbauer polynomials can be represented by

C(α)
n (x) =

n!Γ(α + 1
2
)

Γ(n+ α + 1
2
)
P

(α−1
2
,α−1

2
)

n (x), n = 0, 1, 2, . . . , (2.39)

or equivalently
C(α)
n (1) = 1, n = 0, 1, 2, . . . , (2.40)

where P
(α−1

2
,α−1

2
)

n (x) is the Jacobi polynomial of degree n and associated with the
parameters α− 1

2
;α− 1

2
. This standardization establishes the useful relations that

C
(0)
n (x) becomes identical with the Chebyshev polynomial of the first kind Tn(x),

C
(1/2)
n (x) is the Legendre polynomial Ln(x); C

(1)
n (x) is equal to (1/(n+ 1))Un(x),

where Un(x) is the Chebyshev polynomial of the second type. Throughout the
remaining of the dissertation, by the Gegenbauer polynomials we refer to those
standardized by Equation (2.39) or Equation (2.40). Moreover, by the Chebyshev
polynomials we refer to the Chebyshev polynomials of the first kind. Using the
above standardization, the Gegenbauer polynomials are generated by Rodrigues’
formula in the following form:

C(α)
n (x) = (−1

2
)n

Γ(α + 1
2
)

Γ(n+ α + 1
2
)
(1− x2)

1
2
−α d

n

dxn

(
(1− x2)n+α−1

2

)
, (2.41)

or starting with the following two equations:

C
(α)
0 (x) = 1, (2.42a)
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C
(α)
1 (x) = x, (2.42b)

the Gegenbauer polynomials can be generated directly by the following three-term
recurrence equation:

(j + 2α)C
(α)
j+1(x) = 2(j + α)xC

(α)
j (x)− jC(α)

j−1(x), j ≥ 1. (2.42c)

Using Standardization (2.39) and Equation (4.7.1) in (Szegö, 1975), one can read-

ily show that the Gegenbauer polynomials C
(α)
n (x) and the Gegenbauer polyno-

mials Ĉ
(α)
n (x) standardized by Szegö (1975) are related by

C(α)
n (x) =

Ĉ
(α)
n (x)

Ĉ
(α)
n (1)

∀x ∈ [−1, 1], α > −1

2
;n ≥ 0. (2.43)

Hence the Gegenbauer polynomials C
(α)
n (x) satisfy the orthogonality relation∫ 1

−1

w(α)(x)C(α)
m (x)C(α)

n (x)dx = λ(α)
n δmn, (2.44)

where

λ(α)
n =

22α−1n!Γ2(α + 1
2
)

(n+ α)Γ(n+ 2α)
, (2.45)

is the normalization factor. Moreover, the leading coefficients K
(α)
j of the Gegen-

bauer polynomials C
(α)
j (x) are

K
(α)
j = 2j−1 Γ(j + α)Γ(2α + 1)

Γ(j + 2α)Γ(α + 1)
, (2.46)

for each j. The orthonormal Gegenbauer basis polynomials are defined by

φ
(α)
j (x) = (λ

(α)
j )−

1
2C

(α)
j (x), j = 0, . . . , n, (2.47)

and they satisfy the following discrete orthonormality relation:

n∑
j=0

ω
(α)
j φ(α)

s (xj)φ
(α)
k (xj) = δsk, (2.48)

where

(ω
(α)
j )−1 =

n∑
l=0

(λ
(α)
l )

−1
(C

(α)
l (xj))

2
; xj ∈ S(α)

n . (2.49)
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The integrations of the Gegenbauer polynomials C
(α)
j (x) can be calculated exactly

in terms of the Gegenbauer polynomials using Equations (2.42) as follows (El-
Hawary et al., 2000):∫ x

−1

C
(α)
0 (x)dx = C

(α)
0 (x) + C

(α)
1 (x), (2.50a)∫ x

−1

C
(α)
1 (x)dx = a1(C

(α)
2 (x)− C(α)

0 (x)), (2.50b)∫ x

−1

C
(α)
j (x)dx =

1

2(j + α)
(a2C

(α)
j+1(x) + a3C

(α)
j−1(x) + (−1)j(a2 + a3)), j ≥ 2,

(2.50c)

where

a1 =
1 + 2α

4(1 + α)
, a2 =

j + 2α

(j + 1)
; a3 = − j

(j + 2α− 1)
.

For further information about the Gegenbauer polynomials, the interested reader
may consult (Abramowitz and Stegun, 1965; Bayin, 2006; Szegö, 1975).

2.4 The Gegenbauer Approximation of Functions

The approximation of a function by a truncated series of basis functions is the
fundamental idea in spectral methods, and the choice of the expansion basis func-
tions largely influences the superior approximation properties of spectral methods
relative to other methods such as the finite difference schemes and the finite el-
ement methods. The expansion functions must conveniently have three basic
properties: (i) Ease of evaluation, (ii) completeness; (iii) orthogonality. Property
(i) is quite essential, and is the main reason behind the application of the trigono-
metric functions and polynomials in the discretization process. Property (ii) is
also necessary so that each function of a given space can be conveniently repre-
sented as a limit of a linear combination of such basis functions. Property (iii)
is extremely important to establish the fast conversion between the coefficients
of the spectral expansion series and the values of the function at some certain
nodes {xi}Ni=0 (Fornberg, 1996). This last property is the key for the study of
many properties of the classical orthogonal basis polynomials and their intensive
applications.

The Gegenbauer polynomials satisfy all of the above three properties. Indeed,
they can be directly generated through the three-term recurrence relations (2.42).
They form a complete orthogonal basis system in L2([−1, 1], w(α)(x)), so that a
function y(x) ∈ C0[−1, 1] can be expanded as an infinite series of the infinitely
differentiable global Gegenbauer basis polynomials. In particular, a natural ap-
proximation in a classical Gegenbauer expansion method is sought in the form of
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the truncated series

y(x) ≈
N∑
k=0

akC
(α)
k (x), (2.51)

where ak are the Gegenbauer spectral expansion coefficients of the solution typ-
ically determined by variational principles or by the weighted-residual methods
(Villadsen and Stewart, 1995). The truncation error produced by the Gegenbauer
expansion series (2.51) for a smooth function y(x) defined on [−1, 1] is given by
the following theorem:

Theorem 2.4.1 (Truncation error (El-Hawary et al., 2000)). Let y(x) ∈ C∞[−1, 1]
be approximated by the Gegenbauer expansion series (2.51), then for each x ∈
[−1, 1], a number ξ(x) ∈ [−1, 1] exists such that the truncation error ET (x, ξ,N, α)
is given by

ET (x, ξ,N, α) =
y(N+1)(ξ)

(N + 1)!K
(α)
N+1

C
(α)
N+1(x). (2.52)

Theorem 2.4.1 shows that the error term is the monic polynomial φ
(α)
N =

(y(N+1)(ξ)C
(α)
N+1(x))/((N + 1)!K

(α)
N+1), which can be derived from the standard

Cauchy remainder term in the error formula of polynomial interpolation. The
following section highlights the convergence rate of the Gegenbauer collocation
methods.

2.5 Gegenbauer Collocation Methods: Conver-

gence Rate

In a Gegenbauer collocation method, the Gegenbauer collocation coefficients ak
are evaluated by requiring that the approximation must match the function values
y(xi) for a certain collocation points set {xi}Ni=0, i.e. to obtain the discrete values
of the Gegenbauer coefficients, the following interpolation conditions are imposed:

y(xi) =
N∑
k=0

akC
(α)
k (xi), i = 0, . . . , N. (2.53)

Since the zeros of the appropriate orthogonal polynomials yield better accuracy
than the uniformly distributed collocation points (Gottlieb and Hesthaven, 2001;
Oh and Luus, 1977), the (N + 1) collocation points are frequently chosen to be

the interior GG points xi ∈ S(α)
N as they satisfy the attractive density distribution

(2.32), and cluster quadratically near the endpoints of the solution domain [−1, 1].
In this case, the convergence rate of the Gegenbauer expansion series (2.51) can
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be described by the following theorem, which dates back to the seminal work of
Gottlieb and Shu (1995a):

Theorem 2.5.1 (Gegenbauer collocation convergence rate (Gottlieb and Shu,
1995a)). Let

ỹN(x) =
N∑
k=0

akC
(α)
k (x), (2.54)

be the Gegenbauer collocation approximation of the function y(x) with the weight
w(α)(x) = (1− x2)α−1/2, where the Gegenbauer collocation coefficients are com-
puted by interpolating the function y(x) at the GG points. If the function y(x) ∈
CK [−1, 1], then the Gegenbauer collocation approximation converges exponen-
tially in the sense that

‖y − ỹ‖L2

w(α)
6

A

NK

∥∥y(K)
∥∥
L∞
, (2.55)

where the weighted L2-norm is defined by

‖y‖2
L2

w(α)
=

∫ 1

−1

w(α)(x)|y(x)|2dx, (2.56)

and A is a constant independent of N and K.

Theorem 2.5.1 shows that the rate of convergence of the error to zero is con-
tingent on the regularity of the function y(x). A discontinuity in the solution
function y(x), or in any of its derivatives results in a reduced order of convergence.
Typically, for a solution function y(x) ∈ CK [−1, 1], K ∈ Z+, the truncated se-
ries (2.51) convergences algebraically with O(N−K)-convergence (Gottlieb et al.,
2011). For analytic functions, the produced approximation error of the weighted
sum of the smooth Gegenbauer basis polynomials (2.51) approaches zero with an
exponential rate of O(N−N) when N tends to infinity, which is faster than any
polynomial rate for smooth functions. This rapid convergence characteristic of
the Gegenbauer expansion methods is broadly-known as the spectral accuracy. In
contrast, the global error for a finite-difference method with N grid points scales
as N−p, where p is the fixed order of the method (Barranco and Marcus, 2006).
The fast convergence property of the Gegenbauer expansion method, as inherited
from spectral methods, compared to finite difference schemes is largely due to the
global nature of the Gegenbauer approximation in the sense that a computation
at any point in the solution domain depends on the information from the whole
domain of computation, not only on information at neighboring points. Hence
the chief advantage of the Gegenbauer approximation methods over other classical
approximation schemes such as the finite-difference methods lies in the achieved
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accuracy per degrees of freedom (i.e. the number of Gegenbauer modes, or the
number of collocation points), where it is possible to attain very good accuracy
with relatively coarse grids. Indeed, as we shall demonstrate later in Chapters 5
and 7, to get the same level of accuracy using classical discretization methods, a
Gegenbauer collocation method generally requires far fewer degrees of freedom.

2.6 The Gegenbauer Operational Matrix of In-

tegration

The concept of the operational matrix of integration was originally invented by
the Egyptian scientist El-Gendi in the year 1969. El-Gendi (1969) noticed that the
definite integrals

∫ xi
−1
fN(x)dx of a truncated Chebyshev expansion series fN(x)

approximating a well-behaved function f(x) in [−1, 1] can be easily represented
by a square matrix, for a certain set of grid points {xi}Ni=0. The idea emerged after
Clenshaw and Curtis (1960) presented their popular procedure for the numerical
integration of a continuous and of bounded variation function f(x) defined on
a finite range −1 ≤ x ≤ 1, by expanding the spectral interpolant fN(x) in a
truncated Chebyshev polynomials series as follows:

fN(x) =
N∑
k=0

′′
akTk(x), (2.57)

where

ak =
2

N

N∑
j=0

′′
f(xj)Tk(xj), (2.58)

xj = cos(
jπ

N
), j = 0, 1, . . . , N, (2.59)

and the summation symbol with double primes denotes a sum with both the first
and last terms halved. Here the points xj, j = 0, 1, . . . , N , are the Chebyshev-
Gauss-Lobatto (CGL) grid points. The indefinite integral of the function f(x) can
be approximated in the spectral space by integrating the truncated Chebyshev
expansion series (2.57) term by term.

El-Gendi (1969) proposed to approximate the definite integrals of the func-
tion f(x) in the physical space instead by multiplying a constant matrix with
the vector F = (f(x0), f(x1), . . ., f(xN))T of the function values calculated at
the CGL points. This idea can be carried out by first expressing the indefinite
integrals in terms of the Chebyshev polynomials themselves as follows:∫ x

−1

fN(t)dt =
N∑
j=0

′′
aj

∫ x

−1

Tj(t)dt =
N+1∑
j=0

ĉjTj(x), (2.60)
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where

ĉ0 =
N∑

j=0,j 6=1

(−1)j+1aj
j2 − 1

− 1

4
a1, (2.61a)

ĉk =
ak−1 − ak+1

2k
, k = 1, 2, . . . , N − 2, (2.61b)

ĉN−1 =
aN−2 − 0.5aN

2(N − 1)
, (2.61c)

ĉN =
aN−1

2N
; (2.61d)

ĉN+1 =
aN

4(N + 1)
. (2.61e)

Through Equations (2.58) and (2.61), one can derive the following equation:(∫ x0

−1

fN(x)dx,

∫ x1

−1

fN(x)dx, . . . ,

∫ xN

−1

fN(x)dx

)T
= B(1)F, (2.62)

where B(1) = (b
(1)
i,j ) is the first-order Chebyshev square integration matrix of size

(N+1); b
(1)
i,j , 0 ≤ i, j ≤ N , are the elements of the integration matrix B(1). Hence,

in general, an integration matrix is simply a linear map which takes a vector of
N function values f(xi) to a vector of N integral values

∫ xi
a
f(x)dx, for some

real number a ∈ R. The introduction of the numerical integration matrix has
provided the key to apply the rich and powerful matrix linear algebra in many
areas (Babolian and Fattahzadeh, 2007; Danfu and Xufeng, 2007; Elgindy, 2009;
Elgindy and Hedar, 2008; Endow, 1989; Guf and Jiang, 1996; Paraskevopoulos
et al., 1985; Razzaghi et al., 1990; Razzaghi and Yousefi, 2001; Williams, 2006;
Wu, 2009).

Similarly, in a Gegenbauer collocation method based on the Gauss points
xi ∈ S

(α)
N , one can define the definite integrals of the Gegenbauer collocation

approximation ỹN(x) of the function y(x) through a matrix-vector multiplication
in the following form:(∫ x0

−1

ỹN(x)dx,

∫ x1

−1

ỹN(x)dx, . . . ,

∫ xN

−1

ỹN(x)dx

)T
= Q(1)Y, (2.63)

where Q(1) = (q
(1)
ij ), 0 ≤ i, j ≤ N , is the first-order GIM; Y = (ỹN(x0), ỹN(x1), . . .,

ỹN(xN))T .
The GIM was first developed by El-Hawary et al. in the year 2000. Their

approach for constructing the elements of the GIM was originally outlined in the
following theorem:
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Theorem 2.6.1 ((El-Hawary et al., 2000)). Let f(x) be approximated by the

Gegenbauer polynomials; xk ∈ S(α)
N , then there exist a matrix Q(1) = (q

(1)
ij ), i, j =

0, . . . , N ; and a number ξ = ξ(x) ∈ [−1, 1] satisfying∫ xi

−1

f(x)dx =
N∑
k=0

q
(1)
ik (α)f(xk) + E

(α)
N (xi, ξ), (2.64a)

where

q
(1)
ik (α) =

N∑
j=0

(λ̃
(α)
j )

−1
ω

(α)
k C

(α)
j (xk)

∫ xi

−1

C
(α)
j (x)dx, (2.64b)

(ω
(α)
k )−1 =

N∑
j=0

(λ̃
(α)
j )

−1
(C

(α)
j (xk))

2
, (2.64c)

λ̃
(α)
j = 2j+2α+τj!

Γ(α + 1
2
)Γ(j + α + 1

2
)

Γ(2j + 2α + 1)
K̃

(α)
j , (2.64d)

τ =

{
1, if α = j = 0,
0, otherwise,

(2.64e)

K̃
(α)
j = 2j

Γ(j + α)Γ(2α + 1)

Γ(j + 2α)Γ(α + 1)
; (2.64f)

E
(α)
N (x, ξ) =

f (N+1)(ξ)

(N + 1)!K̃
(α)
N+1

∫ x

−1

C
(α)
N+1(x)dx. (2.64g)

Equation (2.64a) provides the Gegenbauer quadrature approximation, Equa-
tion (2.64b) defines the elements of the first-order Q-matrix, Q(1), calculated at

S
(α)
N . Equations (2.64c)–(2.64f) define the required parameters for the construc-

tion of Q(1); Equation (2.64g) defines the error term. To achieve the best possible
approximation using the Q-matrix, El-Hawary et al. (2000) further provided a
means to optimize the selection procedure of the Gegenbauer parameter α under
a certain optimality measure. In the next chapter, we shall explore this optimality
measure, and discover that their presented numerical scheme is associated with
many drawbacks which limit its application in practice. We shall also provide a
strong and practical numerical method for the construction of an optimal Gegen-
bauer quadrature built upon the strengths of the popular Chebyshev, Legendre,
and Gegenbauer polynomials.
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2.7 Solving Various Dynamical Systems and OC

Problems by Optimizing the GIM

The Gegenbauer polynomials are very versatile and have been applied exten-
sively in many research areas such as studying annihilation processes, improving
tissue segmentation of human brain magnetic resonance imaging, queuing the-
ory, resolution of the Gibbs phenomenon by reconstructing piecewise smooth
functions in smooth intervals with exponential accuracy up to the edges of the
interval, analysis of light scattering from homogeneous dielectric spheres, calcu-
lation of complicated Feynman integrals, numerical quadratures, flutter analysis
of an airfoil with bounded random parameters in incompressible flow, studying
third-order nonlinear systems, solving ODEs and PDEs, solving OC problems,
etc.; cf. (Archibald et al., 2003; Bavinck et al., 1993; Ben-yu, 1998; Doha and
Abd-Elhameed, 2002; Doha, 1990; El-Hawary et al., 2000, 2003; Gelb, 2004; Gelb
and Gottlieb, 2007; Gottlieb and Shu, 1995b; Kotikov, 2001; Lampe and Kramer,
1983; Ludlow and Everitt, 1995; Srirangarajan et al., 1975; Vozovoi et al., 1996;
Wu et al., 2007). In a standard Gegenbauer polynomial approximation method,
the unknown solution is expanded by the Gegenbauer expansion series (2.51)
using a predefined Gegenbauer parameter value α. To achieve better solution
approximations, some methods presented in the literature apply the GIM for ap-
proximating the integral operations, and recast various mathematical problems
such as ODEs, integral and integro-differential equations, and OC problems into
unconstrained/constrained optimization problems. The Gegenbauer parameter α
associated with the Gegenbauer polynomials is then added as an extra unknown
variable to be optimized in the resulting optimization problem as an attempt to
optimize its value rather than choosing a random value. Although this idea of
optimizing the GIM to gain more accuracy in the approximations is tempting,
later in Chapter 4 we shall prove theoretically that this optimization procedure is
not possible as it violates the discrete Gegenbauer orthonormality relation, and
may in turn produce false solution approximations. In Chapters 5-7, we shall
discover that more practical and robust Gegenbauer collocation schemes can be
established using the GIMs developed in the next chapter.
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Chapter 3

Optimal Gegenbauer
Quadrature Over Arbitrary

Integration Nodes



Chapter 3 is based on the published article Elgindy, K. T., Smith-
Miles, K. A., April 2013. Optimal Gegenbauer quadrature over ar-
bitrary integration nodes. Journal of Computational and Applied
Mathematics 242 (0), 82–106.

Abstract. This chapter treats definite integrations numerically using Gegenbauer
quadratures. The novel numerical scheme introduces the idea of exploiting the
strengths of the Chebyshev, Legendre, and Gegenbauer polynomials through a uni-
fied approach, and using a unique numerical quadrature. In particular, the numer-
ical scheme developed employs the Gegenbauer polynomials to achieve rapid rates
of convergence of the quadrature for the small range of the spectral expansion
terms. For a large-scale number of expansion terms, the numerical quadrature
has the advantage of converging to the optimal Chebyshev and Legendre quadra-
tures in the L∞-norm and L2-norm, respectively. The key idea is to construct
the Gegenbauer quadrature through discretizations at some optimal sets of points
of the Gegenbauer-Gauss (GG) type in a certain optimality sense. We show that
the Gegenbauer polynomial expansions can produce higher-order approximations
to the definite integrals

∫ xi
−1
f(x)dx of a smooth function f(x) ∈ C∞[−1, 1] for

the small range by minimizing the quadrature error at each integration point xi
through a pointwise approach. The developed Gegenbauer quadrature can be ap-
plied for approximating integrals with any arbitrary sets of integration nodes. Ex-
act integrations are obtained for polynomials of any arbitrary degree n if the num-
ber of columns in the developed Gegenbauer integration matrix (GIM) is greater
than or equal to n. The error formula for the Gegenbauer quadrature is derived.
Moreover, a study on the error bounds and the convergence rate shows that the op-
timal Gegenbauer quadrature exhibits very rapid convergence rates faster than any
finite power of the number of Gegenbauer expansion terms. Two efficient com-
putational algorithms are presented for optimally constructing the Gegenbauer
quadrature. We illustrate the high-order approximations of the optimal Gegen-
bauer quadrature through extensive numerical experiments including comparisons
with conventional Chebyshev, Legendre, and Gegenbauer polynomial expansion
methods. The present method is broadly applicable and represents a strong addi-
tion to the arsenal of numerical quadrature methods.

Keyword. Gegenbauer-Gauss points; Gegenbauer integration matrix; Gegenbauer
polynomials; Gegenbauer quadrature; Numerical integration; Spectral methods.

References are considered at the end of the thesis.



Chapter 3

Optimal Gegenbauer Quadrature
Over Arbitrary Integration
Nodes

3.1 Introduction

Numerical integrations have found numerous applications in many scientific areas;
cf. (El-Gendi, 1969; Elbarbary, 2006, 2007; Elgindy, 2009; Elgindy and Smith-
Miles, 2013c; Elgindy et al., 2012; Ghoreishi and Hosseini, 2008; Greengard, 1991;
Lee and Tsay, 1989; Mai-Duy and Tanner, 2007; Marzban and Razzaghi, 2003;
Mihaila and Mihaila, 2002; Paraskevopoulos, 1983; Tian, 1989). In particular,
they frequently arise in the solution of ordinary differential equations, partial
differential equations, integral equations, integro-differential equations, optimal
control problems, etc. The increasing range and significance of their applica-
tions manifest the demand for achieving higher-order quadrature approximations
using robust and efficient numerical algorithms. The most straightforward nu-
merical integration technique uses the Newton-Cotes formulas; however, Gaus-
sian quadratures are known to produce the most accurate approximations possible
through choosing the zeros of the orthogonal polynomials and their corresponding
weighting functions (Weisstein, 2003). Among the classical orthogonal polynomi-
als commonly used are the Jacobi polynomials, which appear as eigenfunctions
of singular Sturm-Liouville problems. Their applications give rise to the elegant
class of methods known as the spectral methods. The growing interest in these
methods is largely due to their promise of “spectral accuracy” if the function be-
ing represented is infinitely smooth, and their superior approximation properties
compared with other methods of discretization (Gottlieb and Orszag, 1977). In
particular, for sufficiently smooth functions, the kth coefficient of the spectral
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expansion decays faster than any inverse power of k. Consequently very good
approximations to the function are obtained with relatively few terms (Breuer
and Everson, 1992).

In a classical spectral method, the function f(x) ∈ C∞[−1, 1] is expanded
in terms of trial functions {φk(x)}nk=0 as a finite series of the form f(x) ≈∑n

k=0 f̂kφk(x), where {f̂k}nk=0 are the spectral coefficients. The trial functions
are globally smooth functions, and their choice usually depends on the type of
the underlying problem. It is widely known that the trigonometric polynomi-
als (Fourier series) are favored for periodic problems, while Jacobi polynomials
are considered excellent basis polynomials for non-periodic problems (Fornberg,
1996). Jacobi polynomials include the Gegenbauer (ultraspherical) polynomials

C
(α)
n (x) (see Appendix 3.A), the Chebyshev polynomials Tn(x), and Legendre

polynomials Ln(x). The latter two are special cases of the Gegenbauer polyno-
mials for the Gegenbauer parameter values α = 0; 0.5, respectively (Boyd, 2006).
For decades, Chebyshev and Legendre polynomials have attracted much attention
due to their fast convergence properties. However, we find some special results
and clear reasons in the literature which motivate us to apply a unified approach
using the Gegenbauer polynomials rather than applying the standard Chebyshev
and Legendre polynomial approximations. For instance, (i) it is well-known that
expansions in Chebyshev polynomials are better suited to the solution of hydro-
dynamic stability problems than expansions in other sets of orthogonal functions
(Orszag, 1971). On the other hand, in the resolution of thin boundary layer appli-
cations, Legendre polynomial expansions give exceedingly good representations
of functions that undergo rapid changes in narrow boundary layers (Gottlieb
and Orszag, 1977). Hence, it is convenient to apply a unified approach using
the Gegenbauer polynomials, which include the Legendre and the Chebyshev
polynomials as special cases, to capture the most suitable property requirements
for a given problem, rather than applying the particular choices of the Cheby-
shev and Legendre polynomials for various approximation problems. Moreover,
the theoretical and experimental results derived in a Gegenbauer polynomial ap-
proximation method apply directly to Chebyshev and Legendre approximation
methods as special cases. (ii) Light’s work (Light, 1978) on the computed norms
of some Gegenbauer projection operators confirms that the Chebyshev and Leg-
endre projections cannot be minimal as they all increase monotonically with α
(Mason and Handscomb, 2003). In particular, the reported results show that
the norm of the Chebyshev projection is not the smallest for Chebyshev series
expansions truncated after n terms in the range 1 < n < 10. (iii) The work of
Doha (1990) in approximating the solution of boundary value problems (BVPs)
for linear partial differential equations in one dimension shows that higher-order
approximations better than those obtained from Chebyshev and Legendre poly-
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nomials can be obtained from Gegenbauer polynomial expansions for small and
negative values of α. (iv) The work of El-Hawary et al. (2000) on the numeri-
cal approximation of definite integrations using Gegenbauer integration matrices
(GIMs) shows an advantage of the Gegenbauer polynomials over the Chebyshev
and Legendre polynomials. (v) The recent works of Elgindy and Smith-Miles
(2013c) and Elgindy et al. (2012) show that the Gegenbauer polynomial methods
are very effective in the solutions of BVPs, integral equations, integro-differential
equations; and optimal control problems. Moreover, the reported results illus-
trate that some members of the Gegenbauer family of polynomials converge to
the solutions of the problems faster than Chebyshev and Legendre polynomials
for the small/medium range of the number of spectral expansion terms.

The Gegenbauer polynomials have already been applied extensively in many
research areas, and have been demonstrated to provide excellent approximations
of analytic functions; cf. (Archibald et al., 2003; Barrio, 1999; Doha and Abd-
Elhameed, 2009; Gelb, 2004; Gottlieb and Shu, 1995b; Lurati, 2007; Malek and
Phillips, 1995; Phillips and Karageorghis, 1990; Vozovoi et al., 1996, 1997; Yil-
mazer and Kocar, 2008). The present work in this chapter introduces a strong and
practical numerical method for the construction of optimal GIMs to efficiently
approximate definite integrations. The proposed quadrature method outperforms
the numerical method presented earlier by El-Hawary et al. (2000), which suffers
from several major drawbacks raised in Section 3.2. The significant contribution
of this chapter is in the introduction of a novel Gegenbauer quadrature method
which takes advantage of the major strengths of the three orthogonal polynomials,
namely the Chebyshev, Legendre, and Gegenbauer polynomials. In particular,
the novel quadrature exploits the rapid convergence properties of the Gegenbauer
polynomials for the small/medium range of the number of spectral expansion
terms, and converges to the optimal Chebyshev quadrature in the L∞-norm for
a large-scale number of expansion terms. The proposed quadrature can also be
manipulated easily to converge to the Legendre quadrature in the L2-norm, for a
large-scale number of expansion terms. The proposed method treats the definite
integrals

∫ xi
−1
f(x)dx, for some given function f(x), separately for each integra-

tion point xi using distinct optimal sets of interpolation/discretization points
in the sense of solving Problem (3.13); cf. Section 3.2.1. We show that faster
convergence rates of the Gegenbauer expansion series can be achieved for the
small/medium range of the expansion terms using some optimal values of the
Gegenbauer parameter α, which damp the quadrature error at each integration
point through a pointwise approach. The framework for constructing the Gegen-
bauer quadrature is based on the integration points set, regardless of the inte-
grand function. Moreover, the proposed technique allows for the approximation
of definite integrals for any arbitrary sets of integration points. The efficiency
of the proposed numerical quadrature increases for symmetric sets of integration
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points, where most of the calculations in the algorithms developed are halved;
cf. Section 3.2.9. The extensive numerical experiments conducted in Section
3.3 show an advantage of the optimal Gegenbauer quadrature over the standard
Chebyshev, Legendre, and Gegenbauer quadratures.

The remainder of this chapter is organized as follows: In the following section
we introduce the GIMs, and the El-Hawary et al. (2000) approach for optimizing
them in the sense of solving Problem (3.8) to produce higher-order approxima-
tions to the definite integrals. Moreover, we highlight some of the main issues
associated with their method. In section 3.2.1, we propose our optimal Gegen-
bauer quadrature method for approximating definite integrals in the sense of
solving Problem (3.13). We describe the procedure for constructing the novel op-
timal GIM, and derive an error formula for the truncation error of the Gegenbauer
quadrature in Section 3.2.2. We briefly highlight the error in the polynomial inte-
gration in Section 3.2.3. In Section 3.2.4, we study the bounds on the Gegenbauer
quadrature error and the convergence rate. In Section 3.2.5, we prove the con-
vergence of the Gegenbauer quadrature to the Chebyshev quadrature in the L∞-
norm. In Section 3.2.6, we determine the suitable interval of uncertainty for the
optimal Gegenbauer parameters of the GIM for small/medium range expansions.
In Section 3.2.7, we highlight some substantial advantages of the Gegenbauer col-
location methods endowed with the optimal GIM for the discretization of various
continuous mathematical models. In Section 3.2.8, we establish the Gegenbauer
approximations of definite integrals in matrix form. In Section 3.2.9, we develop
two efficient computational algorithms for ideally constructing the optimal GIM.
In Section 3.3, we report some extensive numerical results demonstrating the ef-
ficiency and accuracy of our proposed Gegenbauer quadrature method through
comparisons with standard Chebyshev and Gegenbauer quadratures. Some fur-
ther applications of the proposed Gegenbauer quadrature method are highlighted
in Section 3.4. Section 3.5 opens the door for future directions on the proposed
Gegenbauer quadrature, and is followed by some concluding remarks in Section
3.6. We briefly present some useful properties of the Gegenbauer polynomials
in 3.A. The computational algorithms and the proofs of various theorems and
lemmas are included in Appendices 3.B–3.H.

3.2 Generation of Optimal GIMs

In a typical spectral method approximating a function f(x) ∈ C∞[−1, 1] us-
ing Gegenbauer polynomials, the function f(x) is approximated by a truncated
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Gegenbauer expansion series as follows:

f(x) ≈
N∑
k=0

akC
(α)
k (x), (3.1)

where ak are the Gegenbauer coefficients. The integration of the function f(x)
is approximated by integrating the finite Gegenbauer expansion series, and the
sought definite integration approximations for a certain set of integration nodes
{xi}Ni=0 can be expressed in a matrix-vector multiplication form as follows:

I =


∫ x0

−1
f(x)dx∫ x1

−1
f(x)dx
...∫ xN

−1
f(x)dx

 =

 p̂00 . . . p̂0N
...

. . .
...

p̂N0 · · · p̂NN



f(x0)
f(x1)

...
f(xN)

 = P̂F, (3.2)

where the matrix P̂ = (p̂i,j), 0 ≤ i, j ≤ N , is the Gegenbauer operational matrix
of integration, and is usually referred to as the GIM. Using Equations (3.A.7) &
(3.A.8), and following the method presented by El-Hawary et al. (2000), one can
readily construct the elements of the P̂-matrix through the following theorem:

Theorem 3.2.1. Let

S
(α)
N = {xk|C(α)

N+1(xk) = 0, k = 0, . . . , N}, (3.3)

be the set of Gegenbauer-Gauss (GG) points. Moreover, let f(x) ∈ C∞[−1, 1] be
approximated by the Gegenbauer expansion series (3.1); then there exist a matrix
P̂ = (p̂ij), 0 ≤ i, j ≤ N ; and some numbers ξi ∈ [−1, 1] satisfying∫ xi

−1

f(x)dx =
N∑
k=0

p̂ik(α)f(xk) + E
(α)
N (xi, ξi), (3.4)

where

p̂ik(α) =
N∑
j=0

(λ
(α)
j )

−1
ω

(α)
k C

(α)
j (xk)

∫ xi

−1

C
(α)
j (x)dx, (3.5)

(ω
(α)
k )−1 =

N∑
j=0

(λ
(α)
j )

−1
(C

(α)
j (xk))

2
, xk ∈ S(α)

N , (3.6)

E
(α)
N (xi, ξi) =

f (N+1)(ξi)

(N + 1)!K
(α)
N+1

∫ xi

−1

C
(α)
N+1(x)dx, (3.7)

and λ
(α)
j ;K

(α)
N+1 are as defined by Equations (3.A.7) & (3.A.8), respectively.
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The P̂-matrix is a square GIM with a fixed α > −1/2 value, which is iden-
tical to the Chebyshev and Legendre matrices on setting α = 0; 0.5, respec-
tively. Here E

(α)
N (xi, ξi) represents the error term produced by the P̂-matrix

quadrature for each xi. This error term is the integral of the monic polynomial
(f (N+1)(ξi)C

(α)
N+1(x))/((N + 1)!K

(α)
N+1), which can be derived from the standard

Cauchy remainder term in the error formula of polynomial interpolation. Since
the error term depends on the Gegenbauer parameter α, a natural idea for damp-
ing the quadrature error is to optimally control the value of α in the P̂-matrix
quadrature (3.4) rather than choosing any random α value. This approach pro-
duces an optimal GIM in the sense of minimizing the Gegenbauer quadrature
truncation error, and avoids the degradation of precision produced by choosing
random α values. Perhaps one of the earliest methods for optimizing the value
of α and constructing an optimal GIM was that proposed by El-Hawary et al. in
2000 through the solution of the following constrained optimization problem:

Find α = α∗ which minimizes J = (

∫ 1

−1

∣∣∣E(α)
N (x, ξ)

∣∣∣pdξ)1/p, α > −1/2; p→∞.

(3.8)
This constrained optimization problem can be transformed into an unconstrained
optimization problem through the change of variable

α = e(t2+ε) − 3

2
, 0 < ε� 1. (3.9)

The numerical quadrature then approximates the definite integrals of the function
f(x) by interpolating the function at the GG points S

(α∗)
N , and integrating the

Gegenbauer interpolant term by term. In fact, this method successfully achieves
higher-order approximations which exceed the precision of the Chebyshev and
Legendre polynomial expansion methods on some test problems as shown in (El-
Hawary et al., 2000). However, there are several drawbacks associated with this
numerical scheme: (i) For increasing values of the exponent p, the values of∣∣∣E(α)

N (x, ξ)
∣∣∣p may grow so large that they become computationally prohibitive.

(ii) Solving the one-dimensional optimization problem (3.8) entails the evaluation
of the (N + 1)th derivative of f at each iteration for increasing values of p until
the reduced optimization problem approximates the minimax problem:

Find α∗ = argmin
α>−1/2

max
−1<ξ<1

∣∣∣E(α)
N (x, ξ)

∣∣∣ . (3.10)

This reduces the efficiency of the quadrature method if the function f is so
complicated that the evaluations of its derivatives are very expensive and time-
consuming. (iii) The numerical approximation of the (N + 1)th derivative of f is
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prone to large round-off errors for increasing values of N , since numerical differ-
entiation is in principle an ill-posed problem (Liu et al., 2011). (iv) The method
does not provide useful means for performing numerical integrations for general
arbitrary sets of integration nodes. On the contrary, the method seems to work
well only at the GG points xi ∈ S(α∗)

N . (v) Higher-order approximations cannot
be achieved unless the number of integration nodes (N + 1) is increased, since
the P̂-matrix is a square matrix of size (N + 1). (vi) The method of construction
of the Gegenbauer quadrature is principally contingent on the form of the inte-
grand function f(x), which prevents the automatic construction of the numerical
quadrature. All of these problems show the need for developing a new approach
able to sustain higher-order approximations for general sets of integration nodes,
and avoids the aforementioned problems.

Remark 3.2.2. The P̂-matrix presented in this section is a modified version
of the Q-matrix, which was originally outlined by El-Hawary et al. (2000). In
the remainder of this article, when we refer to the P̂-matrix or Q-matrix we
shall mean the standard P̂-matrix or Q-matrix constructed using any arbitrary
choice of the Gegenbauer parameter α; the acronyms P̂MQ and QMQ refer to
their associated quadratures, respectively. Moreover, in referring to the optimal
Q-matrix, we shall mean the Q-matrix constructed by solving Problem (3.8).

3.2.1 The Proposed Method

We propose to construct an optimal Gegenbauer quadrature by minimizing the
magnitude of the quadrature error E

(α)
N (x, ξ) at each integration node xi. The

key idea is to break up the minimax problem (3.10) into (N + 1) subproblems
(3.11), each at every integration node xi. The sought optimality measure for each
integration node xi can be stated as follows:

Find α∗i = argmin
α>−1/2

∣∣∣E(α)
N (xi, ξi)

∣∣∣ , −1 < ξi < 1; 0 ≤ i ≤ N. (3.11)

Here α∗i is the optimal Gegenbauer parameter which minimizes the magnitude of
the quadrature error at the integration node xi, regardless of the magnitude of the
(N + 1)th derivative of the integrand function f . Therefore, the construction of
the numerical quadrature takes on a pointwise approach, where the correspond-
ing unknown variables ξi = ξi(xi) of the integration nodes xi are treated as scalar
numbers −1 < ξi < 1. In contrast, the previous approach seeks a sole optimal
value α∗, which minimizes the maximum of the magnitude of the quadrature error
over ξ ∈ (−1, 1). This in turn implies that the unknown variable ξ = ξ(x) is al-
lowed to vary over the entire integration domain, and the function

∣∣f (N+1)(ξ(x))
∣∣p

must be integrated throughout the whole interval [−1, 1].
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Let E
(α)
N (xi, ξi) = ψ(ξi)ηi,N(α), where ψ(ξi) = f (N+1)(ξi)/(N + 1)!, ηi,N(α) =∫ xi

−1
C

(α)
N+1(x)dx/K

(α)
N+1; i = 0, . . . , N . Then∣∣∣E(α)

N (xi, ξi)
∣∣∣ = |ψ(ξi)| |ηi,N(α)| ∀ 0 ≤ i ≤ N.

Using the identity min cf(x) = cmin f(x) ∀c > 0, Problem (3.11) can be reduced
to the following simple problem:

Find α∗i = argmin
α>−1/2

|ηi,N(α)| ∀ 0 ≤ i ≤ N. (3.12)

It can be easily shown that ηi,N(α) is a smooth function; therefore, one can
exploit a second-order line search method to solve the problem, and obtain a rapid
convergence to the optimal α∗i values. Since |ηi,N(α)| is a nonsmooth function for
each 0 ≤ i ≤ N , one can readily recast Problem (3.12) as the following equivalent
constrained minimization problem:

Find α∗i = argmin
α>−1/2

η2
i,N(α), 0 ≤ i ≤ N, (3.13)

where the cost function is a smooth function. Problem (3.13) can be further con-
verted into an unconstrained one-dimensional minimization problem using the
change of variable (3.9). We notice here that the numerical scheme automatically
constructs the optimal Gegenbauer quadrature using information only from the
set of integration nodes {xi}Ni=0. In contrast, the construction of the optimal
Gegenbauer quadrature presented in (El-Hawary et al., 2000) is function prob-
lematic, i.e., the quadrature construction method alters with the change of the
underlying integrand function. We shall refer to the optimal GIM and the opti-
mal Gegenbauer quadrature established through the solution of Problem (3.13)
as the P-matrix and the P-matrix quadrature (PMQ), respectively.

In the standard method for constructing the P̂ -matrix, the integrand f(x)

is interpolated at the same set of GG integration nodes S
(α)
N , and the definite

integrations I = (
∫ x0

−1
f(x), . . . ,

∫ xN
−1

f(x))T are typically carried out by multiplying

the constant P̂ -matrix with the column vector F of the integrand values at the GG
points xi ∈ S(α)

N as given by Equation (3.2). On the other hand, the design of the
P-matrix is established by taking into account the effect of each integration node
xi separately on the truncation error, and minimizes the error optimally in the
sense of solving Problem (3.13). As a result, this novel pointwise approach takes
a different path for evaluating the required definite integrations. In particular,
for each integration node xi, an optimal Gegenbauer parameter α∗i is determined,
and instead of interpolating the integrand f(x) at the set of interpolation points

S
(α)
N , the PMQ seeks a new GG points set as the optimal GG interpolation points
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set corresponding to the integration node xi. We shall denote these optimal
GG interpolation nodes by zi,k, k = 0, . . . ,M, for some M ∈ Z+, and we shall
call them the generalized/adjoint GG points, since they generally differ from the
particular choice of the GG integration nodes {xi}Ni=0, and adjoin each integration
node xi in the construction of the PMQ.

The free choice of the number M of adjoint GG nodes zi,j renders the P-matrix
a rectangular matrix of size (N + 1) × (M + 1) rather than a square matrix of
size (N + 1), as is typically the case with a conventional spectral integration
matrix. Hence the optimal first-order P-matrix can be conveniently written as
P (1) = (p

(1)
ik (α∗i )), i = 0, . . . , N ; k = 0, . . . ,M , where p

(1)
ik (α∗i ) are the matrix

elements of the ith row obtained using the optimal value of α∗i . The definite
integral

∫ xi
−1
f(x)dx is then approximated by the optimal Gegenbauer quadrature

as follows: ∫ xi

−1

f(x)dx ≈
M∑
k=0

p
(1)
ik (α∗i )f(zik) ∀ i = 0, . . . , N. (3.14)

It can be shown that the Gegenbauer approximation of the definite integrals I

using the PMQ can be described in matrix form through the Hadamard prod-
uct (entrywise product) instead of the usual matrix-vector multiplication, as we
shall discuss later in Section 3.2.8. In the following section, we shall describe
the method of constituting the elements of the P-matrix, and analyze the PMQ
truncation error.

3.2.2 Generation of the P-matrix and Error Analysis

The following theorem describes the construction of the P-matrix elements, and
highlights the truncation error of the resulting PMQ:

Theorem 3.2.3. Let

SN,M = {zi,k|C
(α∗i )
M+1(zi,k) = 0, i = 0, . . . , N ; k = 0, . . . ,M}, (3.15)

be the generalized/adjoint set of GG points, where α∗i are the optimal Gegenbauer
parameters in the sense that

α∗i = argmin
α>−1/2

η2
i,M(α), (3.16)

ηi,M(α∗i ) =

∫ xi

−1

C
(α∗i )
M+1(x)dx/K

(α∗i )
M+1; (3.17)

K
(α∗i )
M+1 = 2M

Γ(M + α∗i + 1)Γ(2α∗i + 1)

Γ(M + 2α∗i + 1)Γ(α∗i + 1)
. (3.18)
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Moreover, let f(x) ∈ C∞[−1, 1] be approximated by the Gegenbauer polynomials
expansion series such that the Gegenbauer coefficients are computed by interpo-
lating the function f(x) at the adjoint GG points zi,k ∈ SN,M . Then there exist a

matrix P (1) = (p
(1)
ij ), i = 0, . . . , N ; j = 0, . . . ,M ; and some numbers ξi ∈ [−1, 1]

satisfying ∫ xi

−1

f(x)dx =
M∑
k=0

p
(1)
ik (α∗i )f(zi,k) + E

(α∗i )
M (xi, ξi), (3.19)

where

p
(1)
ik (α∗i ) =

M∑
j=0

(λ
(α∗i )
j )

−1
ω

(α∗i )

k C
(α∗i )
j (zi,k)

∫ xi

−1

C
(α∗i )
j (x)dx, (3.20)

(ω
(α∗i )

k )−1 =
M∑
j=0

(λ
(α∗i )
j )

−1
(C

(α∗i )
j (zi,k))

2
, (3.21)

λ
(α∗i )
j =

22α∗i−1j!Γ2(α∗i + 1
2
)

(j + α∗i )Γ(j + 2α∗i )
, (3.22)

E
(α∗i )
M (xi, ξi) =

f (M+1)(ξi)

(M + 1)!
ηi,M(α∗i ). (3.23)

Proof. See Appendix 3.B.

Theorem 3.2.3 shows that the PMQ adapts to deal with any arbitrary sets
of integration nodes. In particular, for a certain integration node xi, the novel
approach of the PMQ method determines an optimal Gegenbauer parameter α∗i ,
which optimally breaks down the quadrature error in the sense of solving Problem
(3.13). The construction of the PMQ is then carried out through interpolation
at the optimal set of adjoint GG points zi,k ∈ SN,M corresponding to the inte-
gration node xi. Hence the approximation of the definite integrations

∫ xi
−1
f(x)dx

of a smooth function f(x) is carried out through expansions in distinct Gegen-
bauer polynomials associated with finitely many optimal Gegenbauer parameters
α∗i corresponding to the integration nodes xi. In contrast, typical Gegenbauer
quadrature methods employ a unique Gegenbauer expansion series with a fixed α
parameter. This feature distinguishes the PMQ from other spectral quadrature
methods in the literature. The necessary steps for constructing the PMQ are
conveniently described in Figure 3.1. One of the main contributions of the novel
PMQ lies in the achievement of approximations of higher-order than those ob-
tained by the standard Chebyshev, Legendre, and Gegenbauer expansion methods
at least for a small range of the number of spectral expansion terms, as we shall
demonstrate later via an extensive set of test problems worked through in Section
3.3. Moreover, this numerical technique establishes high-precision approximations
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for any arbitrary sets of integration nodes xi, where the Gegenbauer quadrature
scheme no longer depends on the specific type of the integration nodes.

Figure 3.1: The steps for evaluating the definite integral
∫ xi
−1
f(x)dx of a given

function f(x) ∈ C∞[−1, 1] by using Theorem 3.2.3. The figure shows that instead

of strictly using the set of integration nodes {xi}Ni=0 = S
(α)
N that is the same as

the set of interpolation points required for constructing the Gegenbauer quadra-
ture, one chooses any arbitrary set of integration nodes {xi}Ni=0. For a particular
integration node xi, the PMQ determines the optimal Gegenbauer parameter α∗i
in the sense of minimizing the square of the η-function, η2

i,M(α). The PMQ then
employs the adjoint GG nodes zi,k corresponding to the integration node xi as
the optimal set of interpolation points, and evaluates the integrand f(x) at these
optimal points. The Gegenbauer quadrature method proceeds by constructing
the ith row of the P-matrix, (p

(1)
i,0 (α∗i ), p

(1)
i,1 (α∗i ), . . . , p

(1)
i,M(α∗i )), and evaluates the

definite integral
∫ xi
−1
f(x)dx as stated by Formula (3.14).

3.2.3 Polynomial Integration

Since integration of polynomials appears frequently in many scientific areas, it
is important to analyze the PMQ error for general polynomials. The following
corollary highlights the PMQ truncation error for polynomials of any arbitrary
degree n:

Corollary 3.2.4 (Polynomial integration). The PMQ (3.14) is exact for all poly-
nomials hn(x) of arbitrary degree n for any set of integration nodes {xi}Ni=0 ⊂
[−1, 1]; M ≥ n.

Proof. The truncation error of the PMQ as stated by Equation (3.23) is given by

E
(α∗i )
M (xi, ξi) =

h
(M+1)
n (ξi)

(M + 1)!
ηi,M(α∗i ), (3.24)

which is identically zero for all M ≥ n.

Corollary 3.2.4 shows that the round-off error is the only source of error arising
from the calculation of the PMQ for polynomials of any arbitrary degree n if
M ≥ n. In contrast, the optimal QMQ is not exact for polynomials of degree
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n unless the number of integration/interpolation nodes N ≥ n. In the following
section we shall investigate the convergence rate of the PMQ for smooth functions,
and the bounds on its truncation error.

3.2.4 Error Bounds and Convergence Rate

To determine an error bound for the truncation error of the PMQ for the asymp-
tote M →∞, and to analyze the convergence rate of the quadrature, we require
the following two lemmas:

Lemma 3.2.5. The maximum value of the Gegenbauer polynomials C
(α)
M (x) gen-

erated by Equations (3.A.4) is less than or equal to 1 for all α ≥ 0;M ≥ 0, and
of order M−α for all −1/2 < α < 0;M � 1.

Proof. See (Elgindy and Smith-Miles, 2013c).

Lemma 3.2.6. For a fixed α > −1/2, the factor 1/((M + 1)!K
(α)
M+1) is of order

1/(M
1
2
−α(2M/e)M) for large values of M , where e is the base of the natural

logarithm.

Proof. See (Elgindy and Smith-Miles, 2013c).

Lemma 3.2.5 highlights the magnitude of the Gegenbauer polynomials of in-
creasing orders, while Lemma 3.2.6 is significant for analyzing the convergence
rate of the PMQ. In fact, Lemma 3.2.6 illustrates that for a fixed α > −1/2,

the factor 1/((M + 1)!K
(α)
M+1) decays exponentially faster than any finite power

of 1/M . This error factor is the major element in damping the PMQ truncation
error as the value of M increases. The following theorem estimates the bound on
the truncation error for increasing values of M :

Theorem 3.2.7 (Error bounds). Assume that f(x) ∈ C∞[−1, 1], and
max|x|≤1

∣∣f (M+1)(x)
∣∣ ≤ A ∈ R+, for some number M ∈ Z+. Moreover, let∫ xi

−1
f(x)dx be approximated by the PMQ (3.14) up to the (M + 1)th Gegenbauer

expansion term, for each integration node xi, i = 0, . . . , N . Then there exist some

positive constants D
(α∗i )
1 ;D

(α∗i )
2 independent of M such that the magnitude of the

PMQ truncation error E
(α∗i )
M is bounded by the following inequality:

∣∣∣E(α∗i )
M

∣∣∣ ≤

B

(α∗i )
1 (

e

2
)M

1 + xi
MM+1/2−α∗i

, α∗i ≥ 0,

B
(α∗i )
2 (

e

2
)M

1 + xi
MM+1/2

, α∗i < 0,

(3.25)

for all 0 ≤ i ≤ N , as M →∞, where B
(α∗i )
1 = AD

(α∗i )
1 ;B

(α∗i )
2 = B

(α∗i )
1 D

(α∗i )
2 .
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Proof. See Appendix 3.C.

Theorem 3.2.7 shows that the error bound decays exponentially faster than
any finite power of 1/M , and the PMQ exhibits rapid spectral convergence for
increasing values of M regardless of the number of integration nodes N . In fact, a
similar analysis carried on the standard QMQ shows that for a certain integration
node xi ∈ S(α)

N with α ≥ 0, the bound on the PMQ truncation error decays faster
than that of the QMQ by a factor R1:

R1 =


B̂

(α,α∗i )
1 (

e

2
)M−N

NN+
1
2
−α

MM+
1
2
−α∗i

, α∗i ≥ 0,

B̂
(α,α∗i )
2 (

e

2
)M−N

NN+
1
2
−α

MM+
1
2

, α∗i < 0,

(3.26)

for some constants B̂
(α,α∗i )
1 ; B̂

(α,α∗i )
2 , independent of the numbers N ;M , assuming

M > N . One can show further that for a certain integration node xi ∈ S
(α∗)
N

with α∗ ≥ 0, and under the same assumption M > N , there exist some constants

B̄
(α∗,α∗i )
1 ; B̄

(α∗,α∗i )
2 , independent of the numbers N ;M , such that the bound on the

PMQ truncation error decays faster than that of the optimal QMQ by a factor
R2:

R2 =


B̄

(α∗,α∗i )
1 (

e

2
)M−N

NN+
1
2
−α∗

MM+
1
2
−α∗i

, α∗i ≥ 0,

B̄
(α∗,α∗i )
2 (

e

2
)M−N

NN+
1
2
−α∗

MM+
1
2

, α∗i < 0.

(3.27)

Hence the rectangular form of the P-matrix allows for faster convergence rates
by increasing the number of columns (M + 1) without increasing the number
of integration nodes (N + 1); cf. Table 3.4 in Section 3.3. In contrast, the
accuracy of the QMQ cannot be improved unless we increase the number of
integration/interpolation points (N + 1), since the Q-matrix is a square matrix
of size (N + 1).

3.2.5 Convergence of the PMQ to the Chebyshev Quadra-
ture in the L∞-norm

A well-known result in approximation theory states that for sufficiently large
spectral expansion terms, the truncated expansions in Chebyshev polynomials
are optimal for the L∞-norm approximations of smooth functions (Balachan-
dran et al., 2009), while the truncated expansions in Legendre polynomials are
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optimal for the L2-norm approximations of smooth functions (Fornberg, 1996).
Therefore, it is natural to acknowledge that the Chebyshev quadrature is optimal
for the L∞-norm approximations of the definite integrals of smooth functions,
while the Legendre quadrature is optimal for the L2-norm approximations of the
definite integrals of smooth functions. The following theorem shows that the
PMQ constructed by solving Problem (3.13) converges to the optimal Chebyshev
quadrature in the L∞-norm, for a large-scale number of expansion terms.

Theorem 3.2.8 (Convergence of the PMQ). Assume that f(x) ∈ C∞[−1, 1], and
max|x|≤1

∣∣f (M+1)(x)
∣∣ ≤ A ∈ R+, for some number M ∈ Z+. Moreover, let∫ xi

−1
f(x)dx be approximated by the PMQ (3.14) up to the (M + 1)th Gegenbauer

expansion term, for each integration node xi, i = 0, . . . , N . Then the PMQ con-
verges to the optimal Chebyshev quadrature in the L∞-norm as M →∞.

Proof. See Appendix 3.D.

Theorem 3.2.8 shows that the PMQ is the ideal Gegenbauer quadrature from
three perspectives: (i) The PMQ takes full advantage of the parent family of
the Gegenbauer polynomials in the approximation of the definite integrals of
smooth functions for the small range of the spectral expansion terms, where the
precision of the optimal Gegenbauer quadrature can exceed those obtained by the
standard Chebyshev, Legendre, and Gegenbauer quadratures; cf. (Elgindy and
Smith-Miles, 2013c) and Section 3.3 in this chapter. In fact, in this case, it can be
demonstrated that the PMQ constructed using negative and nonnegative optimal
Gegenbauer parameters α∗i may produce parallel higher-order approximations,
and the Gegenbauer polynomials are generally more effective than the standard
Chebyshev and Legendre polynomials; cf. Section 3.3. (ii) The PMQ takes full
advantage of the optimal Chebyshev polynomials in the L∞-norm approximation
of definite integrals of smooth functions for a sufficiently large range of the spectral
expansion terms. (iii) The previous two attractive features of the PMQ can be
accomplished regardless of the number of integration nodes N .

3.2.6 Determining the Interval of Uncertainty for the Op-
timal Gegenbauer Parameters of the P-matrix for
Small/Medium Range Expansions

In the previous section, we proved that the PMQ converges to the optimal Cheby-
shev quadrature in the L∞-norm for large-scale number of Gegenbauer expansion
terms. In this section, we attempt to determine the interval of uncertainty where
the optimal Gegenbauer parameters α∗i can be found. This matter is crucial for
the line search method, since a tight search interval embedding the optimal values
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of α∗i can reduce the required computations, and the calculation time. A straight-
forward analysis on the behavior of the Gegenbauer polynomials shows that the
values of α∗i ≈ −0.5 may break the numerical stability of the PMQ scheme, since
the Gegenbauer polynomials of increasing orders grow rapidly as α∗i → −0.5, as
is evident from Equation (3.A.3), and only suitable negative values of α∗i are to
be employed to produce better approximations. Hence the left endpoint of the
search interval must not be too close to the value −0.5. Now we investigate the
potential search interval along the positive values of α. The following lemma is
crucial in determining the candidate interval of uncertainty:

Lemma 3.2.9. For a fixed number j ∈ Z+∪{0}, the normalization factor λ
(α)
j →

0 as α→∞.

Proof. See Appendix 3.E.

Hence the magnitude of the normalization factor λ
(α)
j , for each j, diminishes

for increasing values of α. In fact, this behavior is foreseen in view of the nature
of the Gegenbauer weight function w(α)(x), which narrows for increasing values
of α; cf. Figure 3.2. Since the Gegenbauer polynomials are level functions for
α ≥ 0, as is evident from Lemma 3.2.5, i.e. they oscillate smoothly between +1
and −1 in the interval [−1, 1], then the maximum value of the definite integral
(3.A.6) is utterly dominated by the value of the weight function, which collapses
for α � 1. This behavior of the Gegenbauer weight function gives rise to the
following important theorem:
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Figure 3.2: The profile of the Gegenbauer weight function w(α)(x) for α =
−0.4, 0, 0.5, 1, 2; 100. Clearly the weight function dies out near the boundaries
x = ±1, and the function becomes nonzero only on a small subdomain centered
at the middle of the interval x = 0 for increasing values of α.

Theorem 3.2.10. For a fixed number (M + 1) of Gegenbauer expansion terms,
the elements of the ith row of the P-matrix vanish very rapidly as α∗i → ∞, for
each i.

Proof. See Appendix 3.F.

Theorem 3.2.10 shows the significant effect of applying the PMQ using large
and positive values of α∗i . In particular, we notice two major results: (i) Firstly,
although the elements of the P-matrix converge to zero for increasing values of α∗i
theoretically for a fixed M , in practice, the operation of multiplication of the very

large number (λ
(α∗i )
s )−1 with the very small number Ki,s for increasing values of α∗i

is prone to large round-off error, causing degradation in the observed precision.
(ii) Secondly, and most importantly, the PMQ may become sensitive to round-off
errors for positive and large values of the parameter α due to the narrowing effect
of the Gegenbauer weight function w(α)(x), forcing the PMQ to become more
extrapolatory, i.e., the PMQ may rely heavily on the behavior of the integrand
function central to the sampled interval for anticipating its behavior closer to the
boundaries x = ±1. The narrowing behavior of the weight function commences
closely from the values of α = 1; 2, as shown by Figure 3.2. This analysis sug-
gests choosing the uncertainty interval (−0.5 + ε, r), to maintain higher-order
approximations, and to obtain satisfactory results, where ε is a relatively small
and positive parameter; r ∈ [1, 2]. The left limit acts as a barrier preventing
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the numerical instability caused by the growth of the Gegenbauer polynomials of
increasing orders for α ≈ −0.5, while the right limit acts as another barricade
hampering the extrapolatory effect of the PMQ caused by the narrowing behavior
of the Gegenbauer weight function for increasing values of α.

3.2.7 Substantial Advantages of the Gegenbauer Colloca-
tion Methods Endowed with the PMQ

It can be shown that the integration nodes {xi}Ni=0 are typically the same as the
collocation points in a Gegenbauer collocation integration method discretizing
various continuous mathematical models. To illustrate this point, consider for
simplicity, and without loss of generality, the following linear TPBVP:

y′′(x) = f(x)y′(x) + g(x)y(x) + r(x), 0 ≤ x ≤ 1, (3.28a)

with the Dirichlet boundary conditions

y(0) = β; y(1) = γ. (3.28b)

Direct integration converts the problem into the following integral counterpart:

y(x) =

∫ x

0

∫ t2

0

((g(t1)− F (t1))y(t1) + r(t1))dt1dt2+

∫ x

0

f(t)y(t)dt+(c1−βf0)x+c2,

(3.29)
where F ≡ f ′; f0 = f(0). The constants c1 and c2 are the integration constants
determined through the boundary conditions (3.28b). Hence the TPBVP can be
written at the collocation points {xi}Ni=0 as

y(xi)−
∫ xi

0

∫ t2

0

((g(t1)− F (t1))y(t1) + r(t1))dt1dt2 −
∫ xi

0

f(t)y(t)dt+ (βf0 − c1)xi

− c2 = 0, (3.30)

where the set of integration nodes {xi}Ni=0 is the same as the collocation points
set. To convert the integral equation into an algebraic equation, one needs some
expressions for approximating the integral operators involved in the integral equa-
tion. In a spectral collocation method, this operation is conveniently carried out
through the spectral integration matrices. While traditional spectral methods
demand that the number of spectral expansion terms (N + 1) required for the
construction of the spectral differentiation/integration matrix be exactly the same
as the number of collocation points; cf. (El-Gendi, 1969; Elbarbary, 2007; Forn-
berg, 1990; Ghoreishi and Hosseini, 2004; Gong et al., 2009; Paraskevopoulos,
1983; Ross and Fahroo, 2002; Weideman and Reddy, 2000), Theorem 3.2.3 shows
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that the choice of the number of Gegenbauer expansion terms (M + 1) is com-
pletely free. Consequently, two substantial advantages can be drawn from the
application of the PMQ in a Gegenbauer collocation integration method:

(i) For any small number of collocation points (N + 1), the Gegenbauer col-
location method can boost the precision of the approximate solutions by
increasing the number of the PMQ expansion terms (M + 1) without in-
creasing the value of N . Consequently, one can obtain higher-order ap-
proximations of the solutions of complex mathematical problems without
increasing the number of collocation points. The reader may consult the
recent paper of Elgindy and Smith-Miles (2013c) for clear examples on this
important result.

(ii) For any large number of collocation points (N + 1), the Gegenbauer col-
location method can produce very precise approximations to the smooth
solutions of the mathematical model in a very short time by restricting
the value of M to accepting only small values– typically a value of M in
the range 14 ≤ M ≤ 16 is usually satisfactory and sufficient for produc-
ing higher-order approximations for many problems and applications; cf.
(Elgindy and Smith-Miles, 2013c; Elgindy et al., 2012).

3.2.8 The Matrix Form Gegenbauer Approximation of Def-
inite Integrations

To describe the approximations of the definite integrals
∫ xi
−1
f(x)dx, i = 0, . . . , N ,

of a function f(x) ∈ C∞[−1, 1] in matrix form using the P-matrix, let P (1) be the
first-order rectangular P-matrix of size (N + 1)× (M + 1), where M denotes the
highest degree of the Gegenbauer polynomial employed in the PMQ, and set P (1)

in the block matrix form P (1) = (P
(1)
0 P

(1)
1 . . . P

(1)
N )T , P

(1)
i = (p

(1)
i,0 , p

(1)
i,1 , . . . , p

(1)
i,M); i =

0, . . . , N . Also let V be a rectangular matrix of size (M + 1)× (N + 1) such that
V = (V0V1 . . . VN), Vi = (f(zi,0), f(zi,1), . . . , f(zi,M))T , i = 0, . . . , N ; f(zij) is the
function f calculated at the adjoint GG points zi,j ∈ SN,M . Then the approxi-
mations of the required definite integrations of f(x) using the P-matrix are given
by (∫ x0

−1

f(x)dx,

∫ x1

−1

f(x)dx, . . . ,

∫ xN

−1

f(x)dx

)T
≈ P (1) ◦ V T , (3.31)

where ◦ is the Hadamard product with the elements of P (1) ◦ V T given by

(P (1) ◦ V T )i = P
(1)
i · Vi =

M∑
j=0

p
(1)
i,j f(zi,j), i = 0, . . . , N. (3.32)
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To calculate the n-fold definite integrals I
(n)
i of the function f defined by

I
(n)
i =

∫ xi

−1

∫ tn−1

−1

. . .

∫ t2

−1

∫ t1

−1

f(t0)dt0dt1 . . . dtn−2dtn−1 ∀ 0 ≤ i ≤ N,

we can use Cauchy’s formula which reduces certain iterated integrals to a single
integral as follows:∫ xi

−1

∫ tn−1

−1

. . .

∫ t2

−1

∫ t1

−1

f(t0)dt0dt1 . . . dtn−2dtn−1 =
1

(n− 1)!

∫ xi

−1

(xi − t)n−1f(t)dt.

Hence
(I

(n)
0 , I

(n)
1 , . . . , I

(n)
N )T ≈ P (n) ◦ V T , (3.33)

where P (n) = (p
(n)
i,j ) is the nth-order P-matrix with the elements

p
(n)
i,j =

(xi − zi,j)n−1

(n− 1)!
p

(1)
i,j , i = 0, . . . , N ; j = 0, . . . ,M ∀x ∈ [−1, 1]. (3.34)

For the integration over the interval [0, 1], Equation (3.34) is replaced with

p
(n)
i,j =

(xi − zi,j)n−1

2n(n− 1)!
p

(1)
i,j , i = 0, . . . , N ; j = 0, . . . ,M. (3.35)

Hence the P-matrices of higher-orders can be quickly generated from the first-
order P-matrix. In the next section, we present some efficient computational
algorithms for the construction of the P-matrix.

3.2.9 Computational Algorithms

In this section, we turn our attention to the development of two efficient algo-
rithms for constructing the P-matrix. The proposed algorithms take into account
the following important elements: (i) The approximations of the definite inte-
grals of smooth functions are required to be in the L2-norm. (ii) For the small
range number of the number of Gegenbauer expansion terms (M + 1), the opti-
mal Gegenbauer quadrature can produce higher-order approximations than the
standard Chebyshev, Legendre, and Gegenbauer polynomials quadratures, as we
shall demonstrate later in Section 3.3. (iii) The PMQ may become sensitive
to round-off errors for positive and large values of the parameter α due to the
narrowing nature of the Gegenbauer weight function w(α)(x). (iv) The values
of α∗i ≈ −0.5 may break the numerical stability of the PMQ scheme, since the
Gegenbauer polynomials of increasing orders grow rapidly as α∗i → −0.5. (v) For
large values of M , the truncated expansions in Legendre polynomials are optimal
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for the L2-norm approximations of smooth functions. That is, for a large value
of M , there exists an integer number Mmax ∈ Z+ such that the Legendre polyno-
mial LM(x) is the best possible polynomial approximant in the L2-norm for all
M ≥Mmax. (vi) For large values of M , the PMQ automatically converges to the
Chebyshev quadrature. Therefore, we need a convenient method for forcing the
computational algorithm to construct the rectangular/square Legendre matrix,
and obtain the Legendre quadrature instead. (vii) For large values of M , the
Legendre polynomials LM(x) are less sensitive to the small perturbations in the

argument x than the Gegenbauer polynomials C
(α)
M (x) associated with negative

Gegenbauer parameters α. To clarify this last item, consider the Gegenbauer
polynomial C

(−1/4)
150 (x) of degree 150, and associated with the Gegenbauer param-

eter α = −1/4. Evaluating this Gegenbauer polynomial at x = 1/2 in exact
arithmetic using MATHEMATICA 8 software Version 8.0.4.0 yields the exact
value 5.754509478448837 accurate to 16 decimal digits. In practice, and working
in a floating-point arithmetic environment, one should expect a perturbation in
the value of the argument x. Evaluating the same polynomial at x = 0.5001
with a small perturbation of 10−4 in the value of its argument x gives the exact
value 5.766713747271598 accurate to 16 decimal digits, with an absolute error of
approximately 0.0122. Hence a slight change in the argument of the Gegenbauer
polynomials of higher orders, and associated with negative α values, may ruin the
spectral convergence properties of the Gegenbauer quadrature method. It can be
noticed however that this sensitivity is not of great concern for the Chebyshev
and Legendre polynomials. For instance, for the same practical example, the ab-
solute errors associated with the Chebyshev and Legendre polynomials of orders
150 are approximately 1.5001×10−4; 3.2286×10−4, respectively. This shows that
the Chebyshev and Legendre polynomials are very attractive for large expansions
of the spectral expansion terms. In the argument above, we highlighted only
the ill-conditioning of the Gegenbauer polynomials of higher orders and associ-
ated with negative Gegenbauer parameters, since the Gegenbauer polynomials of
higher orders and associated with positive Gegenbauer parameters are generally
well-conditioned, and their well-conditioning increases for increasing values of α.
For instance, for the same example above and using α = 1/4; 3/4 instead of −1/4,
we obtain the absolute errors of 5.8508× 10−4; 1.5056× 10−4, respectively.

These influential factors suggest that the PMQ constructed naively by solving
Problem (3.13) without taking into consideration the aforementioned elements is
practically not optimal. These important elements have motivated us to develop
two efficient and robust algorithms for the construction of the P-matrix for gen-
eral symmetric/nonsymmetric sets of integration nodes, where the strengths of
the Chebyshev, Legendre, and Gegenbauer polynomials are exploited. In the
following section, we describe our first construction algorithm for general non-
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symmetric integration points.

3.2.9.1 The Nonsymmetric Integration Points Case

To maintain consistency with the aforementioned factors, Algorithm 2.1 (see Ap-
pendix 3.G) implements the Gegenbauer polynomial expansion over a small/medium
scale of M , and implements the Legendre polynomial expansion for increasing val-
ues of M . Here the user inputs three integer numbers N,M ;Mmax. The former
two define the size of the P-matrix, P (1) ∈ R(N+1)×(M+1), while the last, Mmax,
defines the maximum number of M at which the algorithm transits into the imple-
mentation of the Legendre polynomial expansion. The user also inputs the right
endpoint r of the search interval for the optimal Gegenbauer parameters, the set
of integration points {xi}Ni=0, and a relatively small positive number ε. Typically
r ∈ [1, 2] is a suitable choice as discussed before in Section 3.2.6. In Step 1, the
algorithm checks whether the number M is greater than the prescribed number
Mmax. If the condition is satisfied and M = N , then the algorithm constructs the
square Legendre matrix P̂ (with α = 0.5). Otherwise the algorithm constructs
a modified Legendre matrix of rectangular form. If M ≤ Mmax, the algorithm
constructs the ith row of the P-matrix, for each 0 ≤ i ≤ N in Steps 2-7. Here we
would like to stress the importance of Step 5 of the algorithm. In practice, and
as we have discussed before, it is seldom advantageous to choose the values of

α∗i ∈ (−0.5,−0.5 + ε), as the Gegenbauer polynomial C
(α∗i )
M (x) of fixed degree M

grows rapidly as α∗i → −0.5, and the round-off error dominates the calculations.
Therefore Step 5 is necessary for improving the values of the critical α values ob-
tained from Step 4 in the cases where α∗i ∈ (−0.5,−0.5 + ε). Here the algorithm
technique is to choose the value of α∗i at the right limit of the critical interval
(−0.5,−0.5 + ε). The reason of this choice is to prevent any potential escalation
in the PMQ truncation error for an arbitrary value of α∗i distant from this critical
interval. The choice of α∗i = 0.5 is another natural choice suitable as a viable
alternative if the calculations are sensitive to the value of ε. To illustrate further,
Step 5 of the algorithm works as a safeguard step in the cases where the solution
of Problem (3.13) at a certain integration point xi falls in the neighborhood of
the boundary value α = −0.5, and forces the algorithm to either choose α∗i at
the right limit of this critical interval or apply Legendre polynomials to construct
the corresponding ith row of the P-matrix. Finally, Step 8 of the algorithm out-
puts the constructed P-matrix and terminates the code. Notice here that the
contribution of Step 1 of the algorithm is important, since the PMQ automat-
ically converges to the Chebyshev quadrature for large values of M as proven
by Theorem 3.2.8, which is not optimal in the sense of the L2-norm. For this
particular reason, Step 1 drives the algorithm to construct the optimal Legendre
quadrature. Moreover, Step 1 provides the user with the convenience of applying

81



Chapter 3

the Legendre polynomial expansions as soon as M exceeds the maximum value
Mmax. Hence the convergence properties of the PMQ are the same as those of
the Legendre polynomial quadratures for the values of M > Mmax.

3.2.9.2 The Symmetric Integration Points Case: A More Computa-
tionally Efficient Algorithm

For practical considerations, if the set of integration nodes {xi}Ni=0 is symmetric,
then the efficiency of Algorithm 2.1 can be improved to almost double for an even
number N . The following theorem is necessary for constructing a more practical
algorithm:

Theorem 3.2.11. Let the Gegenbauer polynomials be standardized by Equation
(3.A.2). Then for even values of N , we have∫ a

−1

C
(α)
N+1(x)dx =

∫ −a
−1

C
(α)
N+1(x)dx ∀α > −1

2
; a ∈ [−1, 1]. (3.36)

Proof. The proof can be easily verified using the symmetry property (3.A.1), and
the Gegenbauer integration formulas (3.A.11).

The symmetry of the numerator
∫ xi
−1
C

(α∗i )
M+1(x)dx in ηi,M(α∗i ) permits the reduc-

tion of most of the calculations encountered in Steps 4-6 in Algorithm 2.1 by half.
In fact, since we have α∗i = α∗N−i∀i = 0, . . . , N/2− 1, then the adjoint GG points
zi,j ∈ SN,M can be stored for the first N/2− 1 iterations, and invoked later in the
next iterations. The same can be carried out for the values of the Gegenbauer

polynomials C
(α∗i )
j (zi,m), and the parameters λ

(α∗i )
j ;ω

(α∗i )
j ∀ 0 ≤ j,m ≤ M . Hence

for symmetric sets of integration points {xi}Ni=0, Algorithm 2.1 can be reduced to
a more cost-effective algorithm, Algorithm 2.2 (see Appendix 3.H).

The reader should notice that Algorithm 2.1 is suitable for general sets of
integration nodes distributed arbitrarily along the interval [−1, 1], while Algo-
rithm 2.2 is valid only for arbitrary symmetric sets of integration nodes along
the interval [−1, 1]. We notice that Algorithms 2.1 & 2.2 are flexible enough
to construct the suitable quadrature in the sought error norm. For instance, if
the approximations are sought in the L∞-norm, then Chebyshev polynomial ex-
pansions are preferable to Legendre polynomial expansions as discussed before.
Therefore Step 1 in both algorithms can be implemented using the Chebyshev
matrix. Moreover, Steps 5 & 6 in Algorithms 2.1 & 2.2, respectively, can be
implemented by choosing α∗i ∈ {−0.5+ε, 0}. Although the PMQ converges auto-
matically to the Chebyshev quadrature for large values of M , omitting Step 1 in
both algorithms (implemented using the Chebyshev matrix) is not recommended,
as we already know the exact optimal value of α∗i for large values of M in this
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case; moreover, the line search method may not determine the exact value α∗i = 0
of the optimal Gegenbauer parameter, due to the round-off errors encountered
during the calculations. In the following section we shall demonstrate the robust-
ness and the advantages of the developed PMQ, via some extensive numerical
experiments.

3.3 Numerical Results

In this section, we conduct many test experiments to show the higher accuracy
and the faster convergence rates achieved by the PMQ over the optimal QMQ,
and the Clenshaw-Curtis (CC) method. The numerical results of the optimal
QMQ are as quoted from Ref. (El-Hawary et al., 2000). The numerical results
of the P-matrix were obtained via Algorithm 2.2 with Mmax = 12. All numer-
ical experiments were conducted on a personal laptop with a 2.53 GHz Intel
Core i5 CPU and 4G memory running on a Windows 7 operating system using
a FORTRAN compiler in double-precision real arithmetic. The domain of the
integration points {xi}Ni=0 considered in this section is transformed into the in-
terval [0, 1] using the change of variable t = (1 + x)/2, x ∈ [−1, 1], unless stated
otherwise. The Elgindy and Hedar (2008) line search method was implemented
to determine the locally optimal Gegenbauer parameters {α∗i }Ni=0. The interval
[−0.5 + 2ε̃, 2] was chosen as the initial uncertainty interval in the line search
method, where ε̃ = 2.22× 10−16 is the machine epsilon, and the right endpoint 2
is the maximum plausible Gegenbauer parameter as discussed earlier in Section
3.2.6. The line search method was stopped if the approximate solution satisfied
the following stopping criteria:∣∣∣∣ ddα(η2

i,M(α))

∣∣∣∣ < 10−16 ∧ d2

dα2
(η2
i,M(α)) > 0 ∀ 0 ≤ i ≤ N.

3.3.1 Comparisons with the Optimal QMQ

In this section we are interested in comparing the accuracy of the PMQ versus
the optimal QMQ. Three test problems with reported data and results have been
quoted from Ref. (El-Hawary et al., 2000). The numerical test functions are
generally smooth functions studied earlier by Don and Solomonoff (1997) and
Gustafson and Silva (1998). The integrations of the following three test functions
over the interval [0, 1] are considered:

f1(x) = e2x, f2(x) = sin(2x); f3(x) =
1√

1 + x
.
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The numerical experiments conducted in (El-Hawary et al., 2000) show that the
optimal QMQ obtained through the solution of Problem (3.8) produces higher-
order approximations better than those obtained by the Chebyshev and Legendre
quadratures for some examples. Hence it is sufficient to show that the PMQ
outperforms the optimal QMQ in accuracy through the same test functions to
demonstrate that the PMQ can produce better approximations than both the
standard Chebyshev and Legendre quadratures for small-scale number of spectral
expansion terms. Tables 3.1-3.3 show the maximum absolute errors (MAEs) for
the three test functions {fi}3

i=1 obtained using a square P-matrix of size (N + 1)
for N = 4, 6, 8, 10; 12, and different sets of integration nodes. Notice here that
Algorithm 2.2 skips its first step, and seeks to establish an optimal Gegenbauer
quadrature for each integration point {xi}Ni=0. The results in the tables are listed
as follows: The first column N denotes the highest degree of the Gegenbauer
polynomial approximation of the definite integrals of the test functions {fi}3

i=1.
The second column gives the results obtained by El-Hawary et al. (2000) in the
form α∗/MAE, where α∗ denotes the optimal Gegenbauer parameter obtained by
solving Problem (3.8). The last four columns show the MAE obtained using the

PMQ for the following four sets of integration points: The sets S
(0)
N , S

(α∗)
N , the set

S3,N of Chebyshev-Gauss-Lobatto (CGL) points xi = − cos(iπ/N), i = 0, . . . , N ;
the set S4,N of equispaced points xi = −1 + 2i/N, i = 0, . . . , N . The experiments
in Tables 3.1-3.3 were implemented using the values of ε = 0.016, 0.028; 0.01,
respectively.

Table 3.1: The PMQ versus the optimal QMQ in approximating the definite
integrals of f1(x) for the set of integration nodes S

(α∗)
N .

Optimal QMQ (El-Hawary et al., 2000) Present PMQ

N α∗/MAE S
(0)
N S

(α∗)
N S3,N S4,N

4 0.5080/1.842× 10−04 9.212× 10−05 9.212× 10−05 9.212× 10−05 9.212× 10−05

6 0.4982/8.100× 10−07 3.950× 10−07 4.064× 10−07 2.851× 10−07 3.240× 10−07

8 0.5278/2.196× 10−09 1.099× 10−09 1.099× 10−09 1.099× 10−09 1.099× 10−09

10 0.5323/4.091× 10−12 2.045× 10−12 2.069× 10−12 1.836× 10−12 1.359× 10−12

12 3.2000/1.055× 10−13 2.442× 10−15 9.104× 10−15 2.220× 10−15 2.331× 10−15

Table 3.2: The PMQ versus the optimal QMQ in approximating the definite
integrals of f2(x) for the set of integration nodes S

(α∗)
N .

Optimal QMQ (El-Hawary et al., 2000) Present PMQ

N α∗/MAE S
(0)
N S

(α∗)
N S3,N S4,N

4 0.5191/1.758× 10−05 1.695× 10−05 1.695× 10−05 1.695× 10−05 1.695× 10−05

6 0.4854/7.854× 10−08 7.611× 10−08 7.756× 10−08 5.553× 10−08 5.941× 10−08

8 0.5110/2.110× 10−10 2.098× 10−10 2.098× 10−10 2.098× 10−10 2.098× 10−10

10 0.4800/4.021× 10−13 3.983× 10−13 4.004× 10−13 3.583× 10−13 2.572× 10−13

12 3.2000/8.326× 10−15 5.274× 10−16 4.441× 10−16 4.718× 10−16 4.718× 10−16
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Table 3.3: The PMQ versus the optimal QMQ in approximating the definite
integrals of f3(x) for the set of integration nodes S

(α∗)
N .

Optimal QMQ (El-Hawary et al., 2000) Present PMQ

N α∗/MAE S
(0)
N S

(α∗)
N S3,N S4,N

4 0.5350/3.729× 10−06 3.637× 10−06 3.451× 10−06 3.451× 10−06 3.451× 10−06

6 0.4918/7.344× 10−08 7.174× 10−08 7.146× 10−08 5.082× 10−08 5.363× 10−08

8 0.4910/1.525× 10−09 1.435× 10−09 1.462× 10−09 1.357× 10−09 1.357× 10−09

10 0.5110/3.327× 10−11 3.241× 10−11 3.252× 10−11 2.903× 10−11 2.025× 10−11

12 0.5118/7.765× 10−13 7.562× 10−13 7.749× 10−13 7.042× 10−13 7.042× 10−13

Tables 3.1-3.3 show that the PMQ outperforms the optimal QMQ for all three
test functions {fi}3

i=1, and all sets of integration points {xi}Ni=0 considered. In
Table 3.1, the comparison between the PMQ and the optimal QMQ shows an ad-
vantage of the PMQ of one decimal figure of accuracy at N = 4. The difference
then reaches two decimal figures of accuracy at N = 12. In Table 3.2, the two
quadratures start with the same order of accuracy with slight improvements in
precision in favor of the PMQ. The PMQ then achieves almost full machine preci-
sion at N = 12 for all four sets of integration points, with faster convergence rate
than the optimal QMQ. The two quadratures achieve almost the same conver-
gence rates for the rational function f3(x), with slight improvements in accuracy
in favor of the PMQ. Figure 3.3 shows the values of α∗i versus the four sets of

integration points S
(0)
12 , S

(α∗)
12 , S3,12;S4,12. It can be clearly seen from the figure

that Algorithm 2.2 can employ some better choices of the Gegenbauer polynomi-

als C
(α∗i )
M (x) than Chebyshev and Legendre polynomials, mitigating the effect of

the quadrature error throughout the range of the integration.
We notice that faster rates of convergence of the PMQ are achieved for the

exponential and the trigonometric test functions f1(x); f2(x), respectively, while
slower convergence rates are observed for the rational test function f3(x). In
fact, the construction of the PMQ via the pointwise approach presented in Sec-
tion 3.2 is induced by the type of the integration points set {xi}Ni=0 regard-
less of the integrand function f . Nonetheless, the magnitude of the quadra-
ture error depends on the magnitude of the (N + 1)th derivative of f . In fact,
max0≤x≤1

∣∣f (N+1)(x)
∣∣ for the three functions {fi}3

i=0 is a monotonically increasing
function for increasing values of N , which exhibits its slowest and fastest increase
rates for the trigonometric function f2(x) and the rational function f3(x), respec-

tively. In particular, at the value N = 12, max0≤x≤1

∣∣∣f2
(N+1)(x)

∣∣∣ = 8192, while

max0≤x≤1

∣∣∣f3
(N+1)(x)

∣∣∣ ≈ 9.65× 108, which explains the clear discrepancies in the

convergence rates of the PMQ for the three test functions. Moreover, we notice
that the rational test function f3(x) is analytic in the neighborhood of [−1, 1], but
not throughout the complex plane; thus we see that the convergence rates of the
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Figure 3.3: The values of α∗i versus the four sets of integration points S
(0)
12 , S

(α∗)
12 ,

S3,12;S4,12 using ε = 0.016, 0.028; 0.01.

two quadrature methods are quite close to each other for the last test example.
The results in Tables 3.1-3.3 seem to suggest that the equispaced nodes

xi ∈ S4,N are just about as good as point sets typical of Gaussian quadrature
algorithms in terms of carrying out the numerical quadrature. This in turn seems
to contradict the fact that numerical quadratures using polynomial interpolants
of high degrees, such as the global Newton-Cotes methods of increasing orders, go
exponentially unstable except for special cases as N is increased for interpolation
based on equally spaced nodes (a problem widely known as the “Runge Phe-
nomenon”). In fact, although the PMQ (3.14) can use the equally spaced points
as the integration points set, the construction of the numerical quadrature scheme
is always carried out through interpolations at the adjoint GG points zi,j ∈ SN,M ,
which minimize the quadrature truncation error in the sense of solving Problem
(3.13). This efficient numerical scheme is established for any arbitrary sets of

86



Chapter 3

integration points. Hence the PMQ can stabilize the calculations for any arbi-
trary sets of integration points, while avoiding the Runge Phenomenon. Notice
that the GG points are exactly those which minimize the maximum value of the
polynomial factor of the interpolation error (Kopriva, 2009), and the convergence
is guaranteed if the function is analytic on [−1, 1] (Trefethen, 1996). On the other
hand, the optimal QMQ approximations are only obtained for the GG integration
points set S

(α∗)
N , since the discretizations are carried out using the same set of

GG points S
(α∗)
N .

The numerical results of Tables 3.1-3.3 clearly refute the general claim that the
optimal QMQ ‘gives an optimal approximation of the integrals’ (El-Hawary et al.,
2000). Moreover, Tables 3.1-3.3 show that better integration approximations
can be sought for arbitrary sets of integration points {xi}Ni=0 rather than the

limited choice of the GG integration points set S
(α)
N . These numerical experiments

support the theoretical arguments presented in Section 3.2, which demonstrate
that breaking up the minimax problem (3.10) into several subproblems via a
pointwise approach can produce higher-order approximations of integrals.

Perhaps one of the most important features of the P-matrix appears in its
rectangular form, which permits faster convergence rates by increasing the num-
ber (M + 1) of the P-matrix columns. We stress here that the number M is
independent of the number of integration points (N + 1), and its value controls
the number of function/quadrature evaluations. Table 3.4 shows the MAE ob-
tained by the PMQ versus the optimal QMQ for the same number (N + 1) of
integration nodes, and increasing values of M . The results of the PMQ are re-
ported for the test function f1(x) and the integration points set S

(α∗)
N obtained

in (El-Hawary et al., 2000). The first column of the table lists the values of N .
The second column lists the values of α∗ and the MAE in the form α∗/MAE. The
remaining columns list the values of M and the MAE in the form M/MAE. The
table shows that the order of the PMQ is not coupled with the value of N , where
we can clearly see that increasing the number (M + 1) of the P-matrix columns
increases the order of the approximation, for each value of N . This key result is a
major element in increasing the order of the Gegenbauer collocation integration
schemes without the requirement of increasing the number of collocation points;
cf. (Elgindy and Smith-Miles, 2013c).
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Table 3.4: The PMQ versus the optimal QMQ in approximating the definite
integrals of f1(x) for the set of integration nodes S

(α∗)
N . The results of the PMQ

are reported for increasing values of M .
Optimal QMQ (El-Hawary et al., 2000) Present PMQ

N α∗/MAE M/MAE M/MAE M/MAE M/MAE M/MAE
4 0.5080/1.842× 10−04 4/9.212× 10−05 6/3.029× 10−08 8/1.099× 10−09 10/1.089× 10−13 12/2.220× 10−15

6 0.4982/8.100× 10−07 6/3.950× 10−07 8/1.099× 10−09 10/1.130× 10−12 12/7.994× 10−15

8 0.5278/2.196× 10−09 8/1.099× 10−09 10/1.328× 10−12 12/2.220× 10−15

10 0.5323/4.091× 10−12 10/2.045× 10−12 12/2.331× 10−15

In fact, the rectangular form of the P-matrix is not only useful for increasing
the order of the approximation if the number of integration points is relatively
small, but also can be very effective in limiting the effect of the round-off errors
associated with the approximation of the definite integrals by a square spectral
integration matrix of a large-scale size (N + 1). In particular, although spectral
integration matrices are much more stable operators than spectral differentiation
matrices, the effect of the round-off error may arise from the large number of
matrix-vector operations required by a typical square spectral integration matrix
of a large-scale size. For instance, consider the problem of approximating the def-
inite integrals

∫ xi
−1
f(x)dx of the function f(x) = (1 − x2)ex, for the CGL points

{xi}256
i=0. This problem was studied by Elgindy (2009) using a square Chebyshev

pseudospectral integration matrix. The MAEs reported using Equations (4.6)
& (4.7) in (Elgindy, 2009) were 1.99840 × 10−15; 2.22045 × 10−15, respectively.
Approximating the same integrals using the PMQ with M = 16 (without trans-
forming the integration domain into [0, 1]) establishes a more stable numerical
scheme with the MAE of 6.66134× 10−16. Hence the rectangular form of the P-
matrix allows one to seek high-order approximations for a large number (N+1) of
integration points using a relatively small number (M + 1) of Gegenbauer expan-
sion terms. In contrast, the size of the conventional spectral integration matrices
based on discretizations at the very same integration points set (usually of the
Gauss, or Gauss-Lobatto points type) must be the same as the value of (N + 1).

3.3.2 Comparisons with the CC Method

In this section we conduct further numerical experiments on the PMQ to test its
accuracy versus the popular CC method originally developed by Clenshaw and
Curtis in 1960; cf. (Clenshaw and Curtis, 1960). The latter method is based on
the expansion of the integrand functions in terms of the Chebyshev polynomials.
Here we applied the CC method using Algorithms CHEBFT, CHINT; CHEBEV
given in (Press et al., 1992). The numerical experiments were conducted on the
three test functions {fi}3

i=1 presented in the previous section. Moreover, we have
extended the numerical experiments to include the following more challenging
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test functions:

f4(x) = x20, f5(x) = e−x
2

, f6(x) =
1

1 + 25x2
; f7(x) = e−1/x2

.

The test function f4(x) is a monic polynomial. The test function f5(x) is entire,
i.e., analytic throughout the complex plane. Both functions f4; f5 exhibit strong
growths O(|x|20);O(e|x|

2

) as x → ∞ in the complex plane. The test function
f6(x) is analytic in a neighborhood of [−1, 1], but not throughout the complex
plane. This test function is known to be a troublesome for high-degree polynomial
interpolants at equally spaced nodes (Kopriva, 2009; Mason and Handscomb,
2003). The last test function f7(x) is a smooth function throughout the complex
plane. The reported results of the CC method are all obtained at the zeros of
the Chebyshev polynomials xi ∈ S(0)

N . The results of the PMQ were obtained for

the three sets of integration points S
(0)
N , S3,N ;S4,N using a square P-matrix of size

(N + 1). Moreover, the results of the PMQ for the test functions {fi(x)}7
i=4 were

obtained by setting α∗i = 0.5, i = 0, . . . , N , for all critical α-values determined
from Step 5 in Algorithm 2.2.

Figure 4 shows the logarithm of the Euclidean error (EE) of the PMQ and the
CC quadrature (CCQ) versus N = 2, 4, . . . , 20, for the seven test functions {fi}7

i=1

on [0, 1]. Figs. 3.4(a) and 3.4(b) show the numerical experiments conducted on
the first two test functions f1(x) = e2x; f2(x) = sin(2x). It can be clearly seen
from the figures that the PMQ manifests faster convergence rates than CCQ for
a small scale of the number of spectral expansion terms N , in particular, in the
range 1 ≤ N ≤ 12. After this stage the two methods share almost the same
convergence rates, as the precisions of the resulting approximations nearly reach
full machine precision. We notice that this convergence behavior is practically
the same for all sets of integration points. Figure 3.4(c) shows the numerical
results obtained for the third test function f3(x) = 1/

√
1 + x2, where the rapid

convergence of the PMQ is clearly observed in the range 1 ≤ N ≤ 16. The two
methods then tend to produce nearly the same orders of accuracy for increasing
values of N . Figure 3.4(d) reports the numerical results for the fourth test func-
tion f4(x) = x20. Here we notice that the PMQ converges much faster than the
CCQ over the whole range 1 ≤ N ≤ 20. This suggests that the PMQ is very
effective for problems with strongly growing solutions. Figure 3.4(e) shows the
numerical results obtained for the fifth test function f5(x) = e−x

2
. The rapid

convergence rate of the PMQ is conspicuous for the values of 1 ≤ N ≤ 16, where
a 14th-order Legendre polynomial expansion is sufficient to achieve nearly full
machine precision. The two methods then share similar convergence rates. We
notice that the behavior of the PMQ is almost the same for all sets of integration
points. Figs. 3.4(f) and 3.4(g) report the numerical results for the sixth and
the seventh test functions f6(x) = 1/(1 + 25x2); f7(x) = e−1/x2

. Here we notice
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that the convergence rates of the PMQ for both test functions exceed that of the
CCQ over the whole range 1 ≤ N ≤ 20. We notice also that for these two test
functions, the behaviors of the PMQ can be distinguished for the three sets of
integration points, where the choice of S3,N produces the best approximations for
most values of N . All of the above results confirm, without doubt, that other
members of the parent family of Gegenbauer polynomials converge faster than
the Chebyshev polynomials for the small range of the spectral expansion series;
moreover, the PMQ provides a means for determining these effective members.

Remark 3.3.1. The optimal Gegenbauer parameters obtained in Section 3.3 were
determined locally using the Elgindy and Hedar (2008) line search method. How-
ever, any global line search method can be applied to determine the global optimal
Gegenbauer parameters.

3.4 Further Applications

Spectral methods are now a popular tool for the solution of ordinary and partial
differential equations, integral and integro-differential equations, etc.; cf. (Canuto
et al., 2006, 2007; Driscoll, 2010; Elgindy, 2009; Elgindy and Smith-Miles, 2013c;
Hesthaven et al., 2007; Kopriva, 2009; Tang et al., 2008). In (Elgindy and Smith-
Miles, 2013c), we applied the PMQ together with the standard P̂MQ for solving
BVPs, integral, and integro-differential equations in the physical space. Our work
in these areas established an efficient Gegenbauer collocation numerical method,
which generally leads to well-conditioned linear systems, and avoids the degrada-
tion of precision caused by severely ill-conditioned spectral differentiation matri-
ces. Perhaps one of the most significant contributions of this recent work is the
ability of the Gegenbauer collocation integration method to achieve spectral accu-
racy using a very small number of solution points– almost full machine precision
in some cases, which is highly desirable in these areas. The numerical exper-
iments conducted show that the Gegenbauer polynomial expansions associated
with their optimal integration matrices can produce very accurate approxima-
tions, which have precision exceeding that obtained by the standard Chebyshev,
Legendre, and Gegenbauer polynomial expansions for the small/medium range
of the number of spectral expansion terms.

Optimal control theory represents another vital area in mathematics where
numerical integration can play a great role. Indeed, a closed form expression
for the optimal control is usually out of reach, and classical solution tools such
as the calculus of variations, dynamic programming, and Pontryagin’s maxi-
mum/minimum principle can only provide the analytical optimal control in very
special cases. Therefore, numerical methods for solving optimal control problems
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are extremely important. There are several classes of methods for solving opti-
mal control problems, but one of the most promising numerical methods which
came into prominence in the past three decades is the class of direct orthogo-
nal collocation methods (Benson, 2004; Benson et al., 2006; Elgindy et al., 2012;
Elnagar, 1997; Elnagar and Kazemi, 1995; Elnagar and Razzaghi, 1997; Fahroo
and Ross, 2008; Garg et al., 2011b; Vlassenbroeck and Dooren, 1988). The aim
of these methods is to transcribe the infinite-dimensional continuous-time opti-
mal control problem into a finite-dimensional parameter nonlinear programming
problem via discretization of the original problem in time, and performing some
parameterizations of the control and/or state vectors. A full parameterization
is typically carried out by expanding the states and the controls by using the
spectral expansion series in terms of some prescribed global basis polynomials,
frequently chosen as the Chebyshev and Legendre polynomials. For problems with
sufficiently differentiable states and controls, the PMQ can produce very precise
approximations to the integrals involved in the components of the optimal control
problem. Our work in (Elgindy et al., 2012) shows that the higher-order approx-
imations produced by the PMQ can significantly reduce the number of terms
in the Gegenbauer expansion series approximating the states and the controls;
consequently, the dimension of the resulting nonlinear programming problem is
significantly reduced, and it can be solved readily using standard nonlinear pro-
gramming software. Moreover, since the P-matrix is independent of the integrand
function, it is a constant matrix for a particular set of integration nodes, and can
be used to solve practical trajectory optimization problems quickly.

3.5 Future Work

Most of the interesting questions concerning the application of the PMQ in solving
general mathematical problems remain open. Perhaps one of the main topics to
be pursued later occurs in the development of high-order numerical quadratures
for approximating the integrals of general nonsmooth functions. In fact, it is
well-known that the local discontinuities of a function ruin the convergence of the
global spectral approximations ‘even in regions for which the underlying function
is analytic’ (Gottlieb et al., 2011). One approach for overcoming this problem is to
apply the Gegenbauer reconstruction method to eliminate the Gibbs phenomenon
from the spectral approximation while maintaining its exponential convergence
properties, even up to the discontinuities of the function (Gelb and Jackiewicz,
2005). The interested readers may consult Refs. (Gelb and Gottlieb, 2007; Gelb
and Jackiewicz, 2005; Gottlieb et al., 2011; Gustafsson, 2011; Jackiewicz and
Park, 2009; Jung et al., 2010) for an overview on this significant contribution,
and some of the developments achieved in this trend.
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3.6 Conclusion

This chapter reports a novel optimal Gegenbauer quadrature method for approx-
imating definite integrations. The proposed method gathers the useful proper-
ties and the main strengths of the Chebyshev, Legendre, and Gegenbauer poly-
nomials in one optimal numerical quadrature. The unified numerical scheme
developed in this chapter shows that the Gegenbauer polynomial expansion se-
ries

∑N
k=0 akC

(α)
k (x) can produce higher-order approximations to the integrals∫ xi

−1
f(x)dx of some given function f(x) ∈ C∞[−1, 1] for the small range of the

expansion terms by minimizing the quadrature error at each integration point
xi. This technique entails the calculation of some optimal Gegenbauer parameter
values α∗i rather than choosing any arbitrary α value. For a large-scale number of
expansion terms, the PMQ provides the advantage of convergence to the optimal
Chebyshev and Legendre quadratures in the L∞-norm and L2-norm, respectively.
The developed computational Algorithms 2.1 & 2.2 construct the PMQ through
interpolations at an optimal set of adjoint GG points in the sense of solving Prob-
lem (3.13). Algorithm 2.2 is a more cost-effective algorithm suitable for similar
sets of integration points, where most of the calculations carried out for the con-
struction of the P-matrix are halved; thus the Gegenbauer spectral computations
can be considerably more effective. The construction of the developed PMQ is
induced by the set of integration points regardless of the integrand function. The
proposed method establishes a high-order numerical quadrature for any arbitrary
sets of integration points, and avoids the Runge Phenomenon through discretiza-
tions at the adjoint GG points. The rectangular form of the developed P-matrix
permits rapid convergence rates without the need to increase the number of inte-
gration nodes. The PMQ is exact for polynomials of any arbitrary degree n if the
number of columns of the P-matrix is greater than or equal to n. Our proposed
method is strong enough to stabilize the calculations, and sufficient to retain
the spectral accuracy. The numerical experiments reported in this chapter show
that the PMQ can achieve very rapid convergence rates, and higher-order preci-
sions, which can exceed those obtained by the standard Chebyshev and Legendre
polynomial methods. Moreover, the PMQ outperforms conventional Gegenbauer
quadrature methods. The present method can be applied for solving mathemat-
ical problems of several types including integral equations, integro-differential
equations, BVPs, and optimal control problems.
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3.A Some Properties of the Gegenbauer Poly-

nomials

The Gegenbauer polynomial C
(α)
n (x) of degree n and associated with the param-

eter α > −1/2 is a real-valued function. It appears as an eigensolution to the
following singular Sturm-Liouville problem in the finite domain [−1, 1] (Szegö,
1975):

d

dx
(1− x2)α+

1
2
dC

(α)
n (x)

dx
+ n(n+ 2α)(1− x2)α−

1
2C(α)

n (x) = 0.

The weight function for the Gegenbauer polynomials is the even function w(α)(x) =
(1− x2)α−1/2, and the orthogonality relation of the Gegenbauer polynomials stan-
dardized by Szegö (1975) is given by∫ 1

−1

(1− x2)
α−1

2C(α)
m (x)C(α)

n (x)dx = h(α)
n δmn,

where

h(α)
n =

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
,

is the normalization factor; δmn is the Kronecker delta function. The symmetry
of the Gegenbauer polynomials is emphasized by the relation (Hesthaven et al.,
2007)

C(α)
n (x) = (−1)nC(α)

n (−x). (3.A.1)

Doha (1990) standardized the Gegenbauer polynomials so that

C(α)
n (1) = 1, n = 0, 1, 2, . . . . (3.A.2)

This standardization establishes the useful relations that C
(0)
n (x) becomes iden-

tical with the Chebyshev polynomial of the first kind Tn(x), C
(1/2)
n (x) is the Leg-

endre polynomial Ln(x); and C
(1)
n (x) is equal to (1/(n+ 1))Un(x), where Un(x) is

the Chebyshev polynomial of the second type. Throughout the chapter, when we
refer to the Gegenbauer polynomials, we mean those standardized by Equation
(3.A.2). Also when we refer to the Chebyshev polynomials, we mean the Cheby-
shev polynomials of the first kind. Using Standardization (3.A.2), the Gegenbauer
polynomials are generated by using Rodrigues’ formula in the following form:

C(α)
n (x) = (−1

2
)n

Γ(α + 1
2
)

Γ(n+ α + 1
2
)
(1− x2)

1
2
−α d

n

dxn
((1− x2)n+α−1

2 ), (3.A.3)
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or starting with the following two equations:

C
(α)
0 (x) = 1, (3.A.4a)

C
(α)
1 (x) = x, (3.A.4b)

the Gegenbauer polynomials can be generated directly by using the following
three-term recurrence equation:

(j + 2α)C
(α)
j+1(x) = 2(j + α)xC

(α)
j (x)− jC(α)

j−1(x), j ≥ 1. (3.A.4c)

Using Standardization (3.A.2) and Equation (4.7.1) in (Szegö, 1975), one can

readily show that the Gegenbauer polynomials C
(α)
n (x) and the Gegenbauer poly-

nomials Ĉ
(α)
n (x) standardized by Szegö (1975) are related by

C(α)
n (x) =

Ĉ
(α)
n (x)

Ĉ
(α)
n (1)

∀x ∈ [−1, 1], α > −1

2
;n ≥ 0. (3.A.5)

Hence the Gegenbauer polynomials C
(α)
n (x) satisfy the orthogonality relation∫ 1

−1

(1− x2)
α− 1

2C(α)
m (x)C(α)

n (x)dx = λ(α)
n δmn, (3.A.6)

where

λ(α)
n =

22α−1n!Γ2(α + 1
2
)

(n+ α)Γ(n+ 2α)
, (3.A.7)

is the normalization factor; δmn is the Kronecker delta function. Moreover, the
leading coefficients K

(α)
j of the Gegenbauer polynomials C

(α)
j (x) are

K
(α)
j = 2j−1 Γ(j + α)Γ(2α + 1)

Γ(j + 2α)Γ(α + 1)
, (3.A.8)

for each j. The orthonormal Gegenbauer basis polynomials are defined by

φ
(α)
j (x) = (λ

(α)
j )−

1
2C

(α)
j (x), j = 0, . . . , n, (3.A.9)

and they satisfy the discrete orthonormality relation

n∑
j=0

ω
(α)
j φ(α)

s (xj)φ
(α)
k (xj) = δsk, (3.A.10)
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where the xj ∈ S(α)
n ;ω

(α)
j are as defined by Equations (3.3) & (3.6), respectively.

The integrations of the Gegenbauer polynomials C
(α)
j (x) can be obtained through

Equations (3.A.4) as follows (El-Hawary et al., 2000):∫ x

−1

C
(α)
0 (x)dx = C

(α)
0 (x) + C

(α)
1 (x), (3.A.11a)∫ x

−1

C
(α)
1 (x)dx = a1(C

(α)
2 (x)− C(α)

0 (x)), (3.A.11b)∫ x

−1

C
(α)
j (x)dx =

1

2(j + α)
(a2C

(α)
j+1(x) + a3C

(α)
j−1(x) + (−1)j(a2 + a3)), j ≥ 2,

(3.A.11c)

where

a1 =
1 + 2α

4(1 + α)
, a2 =

j + 2α

(j + 1)
; a3 = − j

(j + 2α− 1)
.

For further information about the Gegenbauer polynomials, the interested reader
may consult (Abramowitz and Stegun, 1965; Bayin, 2006; Szegö, 1975).

3.B Proof of Theorem 3.2.3

Since f(zi,j) =
∑M

k=0 ai,kC
(α∗i )

k (zi,j), i = 0, . . . , N ; j = 0, . . . ,M , for some Gegen-
bauer coefficients ai,k, then

ω
(α∗i )
j C

(α∗i )
s (zi,j)f(zi,j) =

M∑
k=0

ai,kω
(α∗i )
j C

(α∗i )
s (zi,j)C

(α∗i )

k (zi,j).

⇒
M∑
j=0

ω
(α∗i )
j C

(α∗i )
s (zi,j)f(zi,j) =

M∑
k=0

ai,k

M∑
j=0

ω
(α∗i )
j (λ

(α∗i )
s λ

(α∗i )

k )
1
2φ

(α∗i )
s (zi,j)φ

(α∗i )

k (zi,j)

=
M∑
k=0

ai,k

M∑
j=0

ω
(α∗i )
j (λ

(α∗i )
s λ

(α∗i )

k )
1
2 δsk = ai,sλ

(α∗i )
s ,
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where {φ(α)
j (x)}Mj=0 are the orthonormal Gegenbauer basis polynomials as defined

by Equation (3.A.9). Therefore

ai,s = (λ
(α∗i )
s )−1

M∑
j=0

ω
(α∗i )
j C

(α∗i )
s (zi,j)f(zi,j). (3.B.12)

⇒ f(x) ≈
M∑
k=0

(λ
(α∗i )

k )
−1

M∑
j=0

ω
(α∗i )
j C

(α∗i )

k (zi,j)C
(α∗i )

k (x)f(zi,j)

=
M∑
k=0

M∑
j=0

(λ
(α∗i )
j )

−1
ω

(α∗i )

k C
(α∗i )
j (zi,k)C

(α∗i )
j (x)f(zi,k).

Hence
∫ xi
−1
f(x)dx ≈

∑M
k=0 p

(1)
ik (α∗i )f(zi,k), with p

(1)
ik (α∗i ) as defined by Equation

(3.20). The quadrature error term (3.23) follows directly from Theorem 3.2.1 on
substituting the value of α with α∗i , and expanding the Gegenbauer expansion
series up to the (M + 1)th term.

3.C Proof of Theorem 3.2.7

Using Lemma 3.2.6 and the error formula (3.23), we can easily derive the following
inequality:∣∣∣E(α∗i )

M

∣∣∣ ≤ AD
(α∗i )
1

M1/2−α∗i (2M/e)M

∣∣∣∣∫ xi

−1

C
(α∗i )
M+1(x)dx

∣∣∣∣
≤ AD

(α∗i )
1 (1 + xi)

M1/2−α∗i (2M/e)M
max
|x|≤1

∣∣∣C(α∗i )
M+1(x)

∣∣∣ as M →∞. (3.C.13)

Lemma 3.2.5 yields the asymptotic formula:

max
|x|≤1

∣∣∣C(α∗i )
M+1(x)

∣∣∣ ≈ D
(α∗i )
2 (M + 1)−α

∗
i ∀α∗i < 0 as M →∞. (3.C.14)

The proof is established by applying Lemma 3.2.5 for α ≥ 0, and the asymptotic
Formula (3.C.14) on the error bound (3.C.13).

3.D Proof of Theorem 3.2.8

The proof is divided into two parts: In the first part (I), we show that the
Chebyshev quadrature is optimal in the L∞-norm, while in the second part (II),
we show that the PMQ converges to the optimal Chebyshev quadrature under
the same norm.
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(I) Denote the bound on the PMQ truncation error for a certain integration node
xi by E− ∀α∗i < 0, and by E+∀α∗i ≥ 0. Also let α−;α+ be the values of α∗i
associated with the error bounds E−;E+, respectively. Then Theorem 3.2.7
clearly manifests that the ratio between the PMQ error bounds E− and E+

is equal to a factor of order O(M−α+), i.e.

E−
E+

= O(M−α+) as M →∞. (3.D.15)

Hence the PMQ for negative values of α∗i converges faster to the values of the
definite integrals than for the positive α∗i values. It can be noticed however
that for α∗i = 0, which corresponds to the Chebyshev quadrature, the error
bounds become proportional to each other, so it is essential to determine

the relation between the error constants B
(α∗i )
1 ;B

(α∗i )
2 . Through Equation

(4.7.31) in (Abramowitz and Stegun, 1965) and the Standardization (3.A.2),
we can show that

C
(α)
M+1(x) =

[(M+1)/2]∑
m=0

(−1)m(M + 1)!Γ(2α)Γ(M −m+ α + 1)

m!(M − 2m+ 1)!Γ(α)Γ(M + 2α + 1)
(2x)M−2m+1

=
Γ(2α)

Γ(α)
GM(x) ∀α < 0, as M →∞, (3.D.16)

where

GM(x) =

[(M+1)/2]∑
m=0

(−1)m(M + 1)!O(Γ(M −m+ 1))

m!(M − 2m+ 1)!O(Γ(M + 1))
(2x)M−2m+1. (3.D.17)

Therefore C
(α)
M+1(x), for a certain value of −1 ≤ x ≤ 1, monotonically

decreases for increasing values of α in the range −1/2 < α < 0, as M →∞.
Hence the ratio

D
(α∗i )
2 ≈ max|x|≤1

∣∣∣C(α∗i )
M+1(x)

∣∣∣ /(M + 1)−α
∗
i ∀α∗i < 0,

is also monotonically decreasing for increasing values of α∗i . Since

limα∗i→0D
(α∗i )
2 = 1, then D

(α∗i )
2 > 1 ∀α∗i < 0;B

(α∗i )
2 > B

(α∗i )
1 . Hence∣∣∣E(0)

M

∣∣∣ < ∣∣∣E(α∗i )
M

∣∣∣ ∀α∗i < 0, as M →∞. (3.D.18)

Relations (3.D.15) & (3.D.18) imply that∣∣∣E(0)
M

∣∣∣ < ∣∣∣E(α∗i )
M

∣∣∣ ∀α∗i 6= 0, as M →∞. (3.D.19)
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Inequality (3.D.19) is true for any arbitrary set of integration nodes {xi}Ni=0.
Hence we must have

0 = argmin
α>−1/2

max
−1≤x≤1

∥∥∥E(α)
M (x, ξ)

∥∥∥ , as M →∞, (3.D.20)

and the Chebyshev quadrature is optimal in the L∞-norm, for large values
of M . This completes the proof of the first part.

(II) By Definition (3.16), and Inequality (3.D.19), we have

α∗i = argmin
α>−1/2

η2
i,M(α) = argmin

α>−1/2

|ηi,M(α)| = argmin
α>−1/2

∣∣∣E(α)
M (xi, ξi)

∣∣∣ = 0 ∀i,

(3.D.21)
as M →∞. Hence the PMQ converges to the optimal Chebyshev quadra-
ture for each integration node xi, as M →∞, which completes the proof of
the second part.

3.E Proof of Lemma 3.2.9

The proof is conveniently divided into three cases: (I) j = 0, (II) j = 1; (III)
j > 1. We shall require the following three well-known properties of the Gamma
function:

Γ(x)Γ(x+
1

2
) = 21−2x

√
πΓ(2x), (the duplication formula) (3.E.22a)

Γ(x) ≤ xxe1−x ∀x ≥ 1; (3.E.22b)

Γ(x) ≥ (
x

e
)x−1 ∀x ≥ 2. (3.E.22c)

Case (I) For j = 0: Since

λ
(α)
0 =

22α−1Γ2(α + 1
2
)

αΓ(2α)
=

√
πΓ(α + 1

2
)

αΓ(α)
=

√
π(α− 1

2
)Γ(α− 1

2
)

αΓ(α)
,

using Property (3.E.22a), then

lim
α→∞

λ
(α)
0 =

√
π lim
α→∞

Γ(α− 1
2
)

Γ(α)
= 0.

Case (II) For j = 1: Here the proof is straightforward since

λ
(α)
1 =

22α−1Γ2(α + 1
2
)

(1 + α)Γ(1 + 2α)
=

α

1 + α
λ

(α)
0 → 0 as α→∞.
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Case (III) For j > 1: Since

Γ(α +
1

2
) ≤ (α +

1

2
)α+

1
2 e

1
2
−α ∀α >

1

2
, (3.E.23)

Γ(j + 2α) ≥ (
j + 2α

e
)j+2α−1 ∀α > 1− j

2
, (3.E.24)

then
Γ2(α + 1

2
)

Γ(j + 2α)
≤ ej(2α + 1)2α+1

22α+1(j + 2α)j+2α−1 ∀α ≥ 1

2
.

Hence

λ
(α)
j ≤

j!ej(2α + 1)

4(j + α)(j + 2α)j−1 (
2α + 1

2α + j
)2α → 0 as α→∞.

3.F Proof of Theorem 3.2.10

Assume that M is a fixed number, α∗i → ∞; |f(x)| ≤ A ∈ R+, for some

smooth integrand function f(x). Since (λ
(α∗i )

k )−1 � 1 as proven by Lemma 3.2.9;

C
(α∗i )

k (zi,j) < 1 for all i, j; k, then (λ
(α∗i )

k )−1(C
(α∗i )

k (zi,j))
2 = O

(
(λ

(α∗i )

k )−1
)

. From

Equations (3.21); (3.B.12), we have

Ki,s =

∣∣∣∣∣
M∑
j=0

ω
(α∗i )
j C

(α∗i )
s (zij)f(zij)

∣∣∣∣∣ < A
M∑
j=0

∣∣∣ω(α∗i )
j

∣∣∣

⇒ Sup
s

Ki,s = A

M∑
j=0

 1
M∑
k=0

O
(

(λ
(α∗i )

k )
−1)

 =
(M + 1)A

M∑
k=0

O
(

(λ
(α∗i )

k )
−1) ,

which decays exponentially fast. Since SupsKi,s converges rapidly to zero faster

than the growth rate of (λ
(α∗i )
s )−1, for increasing values of α∗i , the magnitudes of

the Gegenbauer coefficients ai,s vanish very quickly as α∗i → ∞. This completes
the proof of the theory.
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Figure 4: Log(EE) in floating-point arithmetic for the PMQ and the CC quadra-
ture versus N = 2, 4, . . . , 20, for the seven test functions {fi}7

i=1 on [0, 1]. The

results of the CC method are reported at S
(0)
N . The results of the PMQ are

reported at S
(0)
N , S3,N ;S4,N . 100
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3.G Algorithm 2.1

Algorithm 2.1 Construction of the P-matrix for any general set of integration
points
Input Integer numbers N,M,Mmax; positive real number r; the set of the integration nodes
{xi}Ni=0; relatively small positive number ε.

Output The P-matrix P = (pij), i = 0, . . . , N ; j = 0, . . . ,M.
Step 1 If M > Mmax then

If M = N then set P = P̂ with α = 0.5;
Output P ; Stop.

Else calculate the Legendre-Gauss points x̂j ∈ S(0.5)
M+1;

Calculate Lj(x̂m);λ
(0.5)
j ;ω

(0.5)
j ∀ 0 ≤ j,m ≤M ;

Calculate
∫ xi

−1
Lj(x)dx ∀ j = 0, . . . ,M ;

Calculate pij =
∑M
k=0 (λ

(0.5)
k )

−1
ω
(0.5)
j Lk(x̂j)

∫ xi

−1
Lk(x)dx ∀i = 0, . . . , N ; j =

0, . . . ,M ;
Output P ; Stop.

Step 2 Set the counter i = 0.
Step 3 While i ≤ N do Steps 4-7:
Step 4 Solve α∗

i = argmin
−1/2<α≤r

η2i,M (α).

Step 5 If α∗
i ∈ (−0.5,−0.5 + ε) choose α∗

i ∈ {−0.5 + ε, 0.5}.
Step 6 Calculate the zeros points zi,j , j = 0, . . . ,M , of the Gegenbauer polynomial C

(α∗
i )

M+1(x);

Calculate C
(α∗

i )
j (zi,m);λ

(α∗
i )

j ;ω
(α∗

i )
j ∀ 0 ≤ j,m ≤M ;

Calculate
∫ xi

−1
C

(α∗
i )

j (x)dx ∀ j = 0, . . . ,M ;

Calculate pij ∀ 0 ≤ j ≤M as defined by Equation (3.20).
Step 7 Set i = i+ 1; go to Step 3.
Step 8 Output P ; Stop.
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3.H Algorithm 2.2

Algorithm 2.2 Reduced construction of the P-matrix for any symmetric set of
integration points
Input Integer numbers N,M,Mmax where N is even; positive real number r; the set of the

integration nodes {xi}Ni=0; relatively small positive number ε.
Output The P-matrix P = (pij), i = 0, . . . , N ; j = 0, . . . ,M.
Step 1 Apply Step 1 in Algorithm 2.1.
Step 2 Set the counter i = 0.
Step 3 While i ≤ N do Steps 4-9:
Step 4 If i ≤ N/2 do Steps 5-7:
Step 5 Solve α∗

i = argmin
−1/2<α≤r

η2i,M (α).

Step 6 If α∗
i ∈ (−0.5,−0.5 + ε) choose α∗

i ∈ {−0.5 + ε, 0.5}.
Step 7 Calculate the zeros points zi,j , j = 0, . . . ,M , of the Gegenbauer polynomial C

(α∗
i )

M+1(x);

Calculate β1,i = C
(α∗

i )
j (zi,m);β2,i = λ

(α∗
i )

j ;β3,i = ω
(α∗

i )
j ∀ 0 ≤ j,m ≤M ;

Set α∗
N−i = α∗

i ; zN−i,j = zi,j ;β1,N−i = β1,i;β2,N−i = β2,i;β3,N−i = β3,i ∀j = 0, . . . ,M .

Step 8 Calculate
∫ xi

−1
C

(α∗
i )

j (x)dx ∀ j = 0, . . . ,M ;

Calculate pij ∀ 0 ≤ j ≤M as defined by Equation (3.20).
Step 9 Set i = i+ 1; go to Step 3.
Step 10 Output P ; Stop.
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Chapter 4

On the Optimization of
Gegenbauer Operational Matrix

of Integration



Chapter 4 is based on the published article Elgindy, K. T., Smith-
Miles, K. A., 1 December 2012. On the optimization of Gegenbauer
operational matrix of integration. Advances in Computational Math-
ematics, Springer US, 1–14. DOI 10.1007/s10444-012-9289-5.

Abstract. The theory of Gegenbauer (ultraspherical) polynomial approximation
has received considerable attention in recent decades. In particular, the Gegen-
bauer polynomials have been applied extensively in the resolution of the Gibbs
phenomenon, construction of numerical quadratures, solution of ordinary and
partial differential equations, integral and integro-differential equations, optimal
control problems, etc. To achieve better solution approximations, some methods
presented in the literature apply the Gegenbauer operational matrix of integration
for approximating the integral operations, and recast many of the aforementioned
problems into unconstrained/constrained optimization problems. The Gegenbauer
parameter α associated with the Gegenbauer polynomials is then added as an ex-
tra unknown variable to be optimized in the resulting optimization problem as an
attempt to optimize its value rather than choosing a random value. This issue is
addressed in this chapter as we prove theoretically that it is invalid. In particular,
we provide a solid mathematical proof demonstrating that optimizing the Gegen-
bauer operational matrix of integration for the solution of various mathematical
problems by recasting them into equivalent optimization problems with α added
as an extra optimization variable violates the discrete Gegenbauer orthonormality
relation, and may in turn produce false solution approximations.

Keyword. Gegenbauer integration matrix, Gegenbauer operational matrix of in-
tegration, Gegenbauer polynomials, Spectral methods.

References are considered at the end of the thesis.



Chapter 4

On the Optimization of
Gegenbauer Operational Matrix
of Integration

4.1 Introduction

ODEs, integral equations, integro-differential equations, and optimal control prob-
lems are encountered in the modeling of many real life problems. Most of these
problems are usually nonlinear, and finding analytical solutions is almost impos-
sible in many cases. The elegant class of methods known as the spectral methods
can provide excellent approximations for problems exhibiting smooth solutions;
cf. (Boyd, 2000; Canuto et al., 1988, 2006; Elbarbary, 2007; Elgindy, 2009; Forn-
berg, 1996; Gottlieb and Orszag, 1977; Guo, 1998; Hesthaven et al., 2007; Mercier,
1989; Tian, 1989; Trefethen, 2000). Moreover, this class of spatial discretizations
is more favorable than the finite element and the finite difference methods for
several reasons such as their promise of exponential convergence yielding an error
of order O(1/NN) for expansions up to the N th term (Gottlieb and Orszag, 1977);
they require less memory storage than alternative methods (Boyd, 2000), etc.

In a typical spectral method for solving ODEs, the unknown solutions are
approximated by truncated spectral expansion series, and the derivatives of the
unknown solutions are approximated by the spectral differentiation matrices. Al-
though linear ODEs are ultimately transformed into linear systems of algebraic
equations, which can be solved by efficient linear system solvers, spectral differ-
entiation matrices are known to be severely ill-conditioned (Funaro, 1987), and
are prone to large round-off errors. Consequently, these effects cause degradation
of the observed precision (Greengard, 1991; Tang and Trummer, 1996), and ren-
der the development of efficient preconditioners crucial and a necessity in many
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cases, as the procedure involves the solution of very ill-conditioned linear system
of equations (Elbarbary, 2006; Hesthaven, 1998). Alternatively, other spectral
methods presented in the literature transform the linear mathematical problems
into algebraic linear systems of equations through spectral integration matrices ;
cf. (El-Gendi, 1969; Elbarbary, 2006, 2007; Elgindy, 2009; Elgindy and Smith-
Miles, 2013c; Ghoreishi and Hosseini, 2008; Mai-Duy and Tanner, 2007; Mihaila
and Mihaila, 2002; Tian, 1989). The resulting algebraic equations systems can
then be solved using efficient and well-known linear system solvers. This approach
overcomes the drawbacks of applying the spectral differentiation matrices as spec-
tral integration matrices are known to be well-conditioned operators (Greengard,
1991; Lundbladh et al., 1992); their well-conditioning is essentially unaffected
for increasing number of grid points (Elgindy, 2009; Elgindy and Smith-Miles,
2013c).

Since the Gegenbauer polynomials form a complete basis system in L2([−1, 1],
(1− x2)α−1/2), in a classical Gegenbauer spectral method for solving an ODE,
the unknown solution y(x) is expanded in a finite series of the smooth basis

polynomials C
(α)
j (x) in the form

y(x) ≈
N∑
j=0

ajC
(α)
j (x), (4.1)

where C
(α)
j (x) is the Gegenbauer polynomial of degree j and associated with

the parameter α; cf. Section 4.2; {aj}Nj=0 are the Gegenbauer coefficients of the
solution function y(x). The solution/collocation nodes set is frequently chosen to
be the set of Gegenbauer-Gauss nodes (the zeros of the Gegenbauer polynomial

C
(α)
N+1(x)) defined by:

S
(α)
N = {xk|C(α)

N+1(xk) = 0, k = 0, . . . , N},

for reasons that can be probed from the area of approximation theory (Trefethen,
2000). The integral operations can be approximated using the Gegenbauer op-
erational matrices of integration (Gegenbauer integration matrices); cf. Section
4.2, after recasting the ODE into its integral formulation. Since the construc-
tion of the Gegenbauer integration matrix, as we shall describe later, depends
primarily on the choice of the Gegenbauer parameter α, an intuitive idea is to
optimize the value of α rather than opting for a random choice in the interval
(−1/2,∞). This raises the intriguing question of “which value of the Gegenbauer
parameter α is optimal for a Gegenbauer integration matrix to best approximate
the solution of the problem?” There have been some attempts in the literature to
optimize the Gegenbauer integration matrix by transforming various mathemat-
ical problems into unconstrained/constrained optimization problems, which are
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then solved using some of the standard optimization methods. This technique
has been applied by El-Hawary et al. (2003) in the solution of optimal con-
trol problems by transforming the latter into constrained nonlinear programming
problems. Later El-Kady et al. (2009) applied a similar method for the solution
of linear integro-differential equations by transforming them into unconstrained
optimization problems. The reason behind these transformations was essentially
to add the Gegenbauer parameter α as an extra variable to be optimized to seek
better approximations rather than applying the Gegenbauer integration matrices
with a preselected α value. However our theoretical analysis presented in Sec-
tion 4.4 shows a deficiency arising during the optimization procedure. In fact,
it can be shown that it is mathematically erroneous to optimize the Gegenbauer
parameter α after transforming the original mathematical problem into an uncon-
strained/constrained optimization problem, as it violates the discrete Gegenbauer
orthonormality relation; hence may produce false solution approximations. We
highlight how this tempting approach to optimize the Gegenbauer integration
matrix is deceptive. This chapter is important as it rebuts the aforementioned
solution methods. Moreover, the chapter represents a barrier against any at-
tempts in the future to optimize the Jacobi integration matrix or other class of
functions integration matrices based on similar ideas. The remaining part of the
chapter is organized as follows: In the following section we shall briefly discuss
some properties of the Gegenbauer polynomials and their associated integration
matrices. In Section 4.3 we shall describe the procedure of adding the Gegenbauer
parameter α as an extra variable to be optimized through two simple examples. A
solid mathematical proof which outlines the pitfalls of optimizing the Gegenbauer
integration matrix by transforming the mathematical problem into an equivalent
optimization problem is presented in Section 4.4. Finally, some concluding re-
marks on the optimization of the Gegenbauer integration matrix and a viable
alternative method are presented in Section 4.5.

4.2 Preliminary Definitions and Properties

The Gegenbauer polynomials associated with the parameter α > −1/2 appear
as eigensolutions to the following singular Sturm-Liouville problem in the finite
domain [−1, 1] (Szegö, 1975):

d

dx
(1− x2)α+

1
2
dC

(α)
n (x)

dx
+ n(n+ 2α)(1− x2)α−

1
2C(α)

n (x) = 0,

with the first two being

C
(α)
0 (x) = 1, C

(α)
1 (x) = 2αx,
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while the remaining polynomials are given through the three-term recursion for-
mula

(n+ 1)C
(α)
n+1(x) = 2(n+ α)xC(α)

n (x)− (n+ 2α− 1)C
(α)
n−1(x), n = 1, 2, . . . .

The zeros of the Gegenbauer polynomials are obtained numerically, and their be-
havior has been of interest because of their nice electrostatic interpretation (Hen-
driksen and van Rossum, 1988), and of their important role as nodes of Gaussian
quadrature formulae (Area et al., 2004). The weight function for the Gegenbauer
polynomials is the even function (1− x2)α−1/2 (Abramowitz and Stegun, 1965);
the orthogonality relation of the Gegenbauer polynomials is given by∫ 1

−1

(1− x2)
α− 1

2C(α)
m (x)C(α)

n (x)dx = h(α)
n δmn, (4.2)

where

h(α)
n =

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
; (4.3)

δmn is the Kronecker delta function. It is important to note that the form of
the Gegenbauer polynomials is in fact not unique, and depends on how they are
standardized. Doha (1990) standardized the Gegenbauer polynomials so that

C(α)
n (1) = 1, n = 0, 1, 2, . . . . (4.4)

This standardization establishes the useful relations that C
(0)
n (x) becomes iden-

tical with the Chebyshev polynomial of the first kind Tn(x), C
(1/2)
n (x) is the

Legendre polynomial Ln(x); C
(1)
n (x) is equal to (1/(n + 1))Un(x), where Un(x)

is the Chebyshev polynomial of the second type. Consequently, the Gegenbauer
polynomials can be generated by Rodrigues’ formula in the following form:

C(α)
n (x) = (−1

2
)n

Γ(α + 1
2
)

Γ(n+ α + 1
2
)
(1− x2)

1
2
−α d

n

dxn
(1− x2)n+α−1

2 ; (4.5)

they satisfy the orthogonality relation (Elgindy and Smith-Miles, 2013b)∫ 1

−1

(1− x2)
α− 1

2C(α)
m (x)C(α)

n (x)dx = λ(α)
n δmn, (4.6)

where

λ(α)
n =

22α−1n!Γ2(α + 1
2
)

(n+ α)Γ(n+ 2α)
. (4.7)

For the rest of the chapter, when we refer to the Gegenbauer polynomials, we
shall mean the Gegenbauer polynomials standardized so that equation (4.4) is
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satisfied. The definite integration of a function f ∈ C[−1, 1] is approximated
by performing integration on the finite Gegenbauer expansion series, and the
resulting integration approximations for the Gegenbauer-Gauss integration nodes
xi ∈ S(α)

N can be expressed in a matrix-vector multiplication form I = QF , where

I =

[∫ x0

−1

f(x)dx,

∫ x1

−1

f(x)dx, . . . ,

∫ xN

−1

f(x)dx

]T
, Q = (qij), 0 ≤ i, j ≤ N ;

F = [f(x0), f(x1), . . . , f(xN)]T .

The operational matrix Q is referred to as the Gegenbauer integration matrix.
One approach for constructing the Q-matrix can be described by the following
theorem (El-Hawary et al., 2000):

Theorem 4.2.1. Let f(x) be approximated by the Gegenbauer polynomials; xk ∈
S

(α)
N , then there exist a matrix Q = (qij), i, j = 0, . . . , N ; and a number ξ =
ξ(x) ∈ [−1, 1] satisfying∫ xi

−1

f(x)dx =
N∑
k=0

qik(α)f(xk) + E
(α)
N (xi, ξ), (4.8)

where

qik(α) =
N∑
j=0

(λ
(α)
j )

−1
ω

(α)
k C

(α)
j (xk)

∫ xi

−1

C
(α)
j (x)dx, (4.9)

(ω
(α)
k )−1 =

N∑
j=0

(λ
(α)
j )

−1
(C

(α)
j (xk))

2
, (4.10a)

λ
(α)
j = 2j+2α+τj!

Γ(α + 1
2
)Γ(j + α + 1

2
)

Γ(2j + 2α + 1)
K

(α)
j , (4.10b)

τ =

{
1, if α = j = 0,
0, otherwise,

(4.10c)

K
(α)
j = 2j

Γ(j + α)Γ(2α + 1)

Γ(j + 2α)Γ(α + 1)
; (4.10d)

E
(α)
N (x, ξ) =

f (N+1)(ξ)

(N + 1)!K
(α)
N+1

∫ x

−1

C
(α)
N+1(x)dx. (4.11)

Proof. See (El-Hawary et al., 2000).
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Equation (4.9) defines the elements of the Q-matrix calculated at S
(α)
N , Equa-

tions (4.10a)-(4.10d) define the required parameters; Equation (4.11) defines the
error term. For further properties of the Gegenbauer polynomials, the reader
may consult (Abramowitz and Stegun, 1965; Andrews et al., 1999; Bayin, 2006;
Szegö, 1975), and the literature quoted there. In the following section, we shall
discuss the issue of achieving higher-order approximations to the solutions of di-
verse mathematical problems by optimizing the Gegenbauer parameter α; thus
optimizing the Q-matrix.

4.3 Solving Various Mathematical Problems by

Optimizing the Gegenbauer Integration Ma-

trix

Suppose that y(x) ∈ C∞[−1, 1] is the unknown solution of a certain mathematical
problem, generally an ODE, integro-differential equation, or an integral equation.
We seek the values of this solution at the Gegenbauer-Gauss nodes xi ∈ S

(α)
N .

ODEs and integro-differential equations can be recast into integral equations by
direct integration, or by substituting the highest order derivative, say y(N)(x),
with some unknown function, say φ(x), and solving the problem for the unknown
function φ(x). The unknown solution y(x) and its derivatives up to the (N−1)th-
order derivative can then be obtained by successive integrations of the function
φ(x). We shall discuss the issue of achieving higher-order approximations by
optimizing the Gegenbauer integration matrix for integral equations only. For
simplicity, and without loss of generality, consider the following integral equation:

y(x) +

∫ x

−1

f(x)y(x)dx = g(x), (4.12)

for some continuous functions f(x) and g(x) on [−1, 1]. Expanding the solution
y(x) by the Gegenbauer expansion series (4.1), and substituting into the integral
equation (4.12) transform the latter into a system of linear algebraic equations
of the following form:

Ii(w) = wi − gi +
N∑
j=0

q
(1)
ij fjwj = 0, i = 0, . . . , N, (4.13)

where w = [w0, w1, . . . , wN ]T , wi ≈ y(xi), gi = g(xi), fi = f(xi), q
(1)
ij ; 0 ≤ i, j ≤ N

are the elements of the first-order Q-matrix. Since the form of the Q-matrix
depends on the value of the Gegenbauer parameter α, the latter may be added
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as an extra unknown; consequently, Equations (4.13) may be reformulated as
follows:

Ii(w, α) = wi − gi +
N∑
j=0

q
(1)
ij (α)fjwj = 0, i = 0, . . . , N. (4.14)

The solution of the linear system (4.14) is equivalent to the solution of the fol-
lowing constrained optimization problem:

min
w,α

J(w, α) =
N∑
i=0

I2
i (w, α), (4.15a)

subject to α > −1/2, (4.15b)

where the objective function J is a multivariate function of (N+2) unknowns. To
satisfy the constraint α > −1/2, the following change of variable can be employed:

α = e(t2+ε) − 3

2
, 0 < ε� 1, (4.16)

transforming the constrained optimization problem (4.15) into an unconstrained
optimization problem in the unknown parameter t. Considering the unknown
solution vector w and α as the free variables, one may think that he can apply
any standard optimization method to determine the optimal α∗ value such that
the corresponding solution approximation w∗ is the most accurate approxima-
tion to the unknown solution y(x) of the original problem (4.12). However, the
literature is lacking examples where this has been conveniently done. Instead,
we find studies where the authors have acknowledged that the accuracy of the
results is quite sensitive, and depends on the right choice of the initial guess of
the Gegenbauer parameter α. For instance, the authors in (El-Kady et al., 2009)
undertook lots of trial and error studies, and started with arbitrary choices of
α = 0.503, 0.345,−0.311;−0.322 for solving some linear integro-differential equa-
tions test problems. When we analyze the resulting optimization problem, we
can find a clear explanation for the sensitivity in the initial guesses of the Gegen-
bauer parameter α. In particular, it can be shown that there is a coupling of
the solution nodes {xk}Nk=0 and the value of α, which means that we are not
completely free to choose any arbitrary α independently in the search space. We
need to maintain that coupling in order to obtain accurate approximations for the
Gegenbauer coefficients {aj}Nj=0 in the Gegenbauer expansion series (4.1); conse-
quently obtain correct formulation for the Q-matrix entries (4.9). The previous
studies found that the accuracy of the results is so sensitive to the initial value
of α, because any attempt to search for the optimal α∗ value may break that
coupling, and “violates the discrete Gegenbauer orthonormality relation.” As a
result, the obtained optimization problem is in fact a false optimization problem
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that is a poor approximation to the original problem. Hence, although on the
surface it may sound reasonable to optimize the Gegenbauer integration matrix
by optimizing the Gegenbauer parameter α through an equivalent unconstrained
optimization problem, the addition of the Gegenbauer parameter α as an extra
variable to be optimized is indisputably incorrect.

In the above argument, we described the addition of the Gegenbauer param-
eter α as an extra unknown variable to be optimized to best approximate the
solution of an integral equation problem. In general, this method may be mis-
used in many applications as there are many mathematical problems which can
be recast as nonlinear optimization problems. In optimal control theory, for in-
stance, it is known that a class of methods called the direct methods converts
the continuous optimal control problem into a finite dimensional constrained op-
timization problem. Approximating the state and the control variables by the
Gegenbauer expansion series transforms the optimal control problem into a con-
strained optimization problem of the form:

minimize J(a, b) (4.17a)

subject to hi(a, b) = 0, (4.17b)

gj(a, b) ≤ 0, (4.17c)

for some numbers i; j ∈ Z+, where J is the cost function, hi; gj are some equality
and inequality constraints functions, and a; b are the Gegenbauer coefficients of
the state and the control variables. If we add the Gegenbauer parameter α as an
extra unknown variable to be optimized, the constrained optimization problem
(4.17) may then be reformulated in the following form:

minimize J(a, b, α) (4.18a)

subject to hi(a, b, α) = 0, (4.18b)

gj(a, b, α) ≤ 0, (4.18c)

α > −1/2, (4.18d)

cf. (El-Hawary et al., 2003), where the change of variable (4.16) is again applied
to satisfy constraint (4.18d). To conclude, we can demonstrate theoretically that
these presented methods are not possible, and this gives a clarification for the
extreme sensitivity in the initial guesses of the parameter α. We shall present the
mathematical proof in the following section.

4.4 The Mathematical Proof

Suppose that the unknown solution y(x) is approximated by the Gegenbauer

expansion series (4.1); x
(α)
k ∈ S(α)

N ∀k. Following the approach presented by El-
Hawary et al. (2000), the discrete representation of the Gegenbauer coefficients
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{aj}Nj=0 can be obtained via a discrete least squares fitting at the elements of S
(α)
N

in the form:

aj = (λ
(α)
j )−1

N∑
k=0

ω
(α)
k C

(α)
j (x

(α)
k )y(x

(α)
k ), j = 0, . . . , N. (4.19)

Hence Equation (4.1) can be reformulated as follows:

y(x) ≈
N∑
j=0

N∑
k=0

(λ
(α)
j )

−1
ω

(α)
k C

(α)
j (x

(α)
k )C

(α)
j (x)y(x

(α)
k ). (4.20)

Therefore∫ x
(α)
i

−1

y(x)dx ≈
N∑
k=0

N∑
j=0

(λ
(α)
j )

−1
ω

(α)
k C

(α)
j (x

(α)
k )y(x

(α)
k )

∫ x
(α)
i

−1

C
(α)
j (x)dx

=
N∑
k=0

q
(1)
ik (α)y(x

(α)
k ), (4.21)

where

q
(1)
ik (α) =

N∑
j=0

(λ
(α)
j )

−1
ω

(α)
k C

(α)
j (x

(α)
k )

∫ x
(α)
i

−1

C
(α)
j (x)dx, 0 ≤ i, k ≤ N, (4.22)

are the elements of the Q-matrix. Now suppose that α is added as an extra
unknown variable in the optimization problem as in Problems (4.15) and (4.18),
and say that α0 is the initial guess of the optimal α∗, and the solution points
x

(α)
k ∈ S

(α0)
N for each k. In this case Equation (4.19) can be written as

aj = (λ
(α0)
j )−1

N∑
k=0

ω
(α0)
k C

(α0)
j (x

(α0)
k )y(x

(α0)
k ), j = 0, . . . , N ; (4.23)

Equations (4.21) and (4.22) become∫ x
(α0)
i

−1

y(x)dx ≈
N∑
k=0

q
(1)
ik (α0)y(x

(α0)
k ); (4.24)

q
(1)
ik (α0) =

N∑
j=0

(λ
(α0)
j )

−1
ω

(α0)
k C

(α0)
j (x

(α0)
k )

∫ x
(α0)
i

−1

C
(α0)
j (x)dx, 0 ≤ i, k ≤ N.

(4.25)
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The value of α = α0 is then modified in every iteration until it converges to the
optimal value α∗. Suppose that in iteration m, the value of α0 changed to αm
such that αm 6= α0, then Equations (4.24) and (4.25) become∫ x

(α0)
i

−1

y(x)dx ≈
N∑
k=0

q
(1)
ik (αm)y(x

(α0)
k ); (4.26)

q
(1)
ik (αm) =

N∑
j=0

(λ
(αm)
j )

−1
ω

(αm)
k C

(αm)
j (x

(α0)
k )

∫ x
(α0)
i

−1

C
(αm)
j (x)dx, 0 ≤ i, k ≤ N.

(4.27)

Let x
(α0)
i = x ∈ [−1, 1], then Equation (4.26) can be written as∫ x

−1

y(x)dx ≈
N∑
k=0

N∑
j=0

(λ
(αm)
j )

−1
ω

(αm)
k C

(αm)
j (x

(α0)
k )y(x

(α0)
k )

∫ x

−1

C
(αm)
j (x)dx.

(4.28)
Differentiating both sides with respect to x yields

y(x) ≈
N∑
k=0

N∑
j=0

(λ
(αm)
j )

−1
ω

(αm)
k C

(αm)
j (x

(α0)
k )y(x

(α0)
k )C

(αm)
j (x). (4.29)

⇒ aj = (λ
(αm)
j )−1

N∑
k=0

ω
(αm)
k C

(αm)
j (x

(α0)
k )y(x

(α0)
k ), j = 0, . . . , N. (4.30)

Hence Equation (4.30) gives the Gegenbauer coefficients aj at iteration m, which
produce the Gegenbauer integration entries (4.27). Our concern now is to prove
that Equation (4.30) is false; consequently, Equation (4.27) is erroneous. To

prove our claim, let us introduce the orthonormal Gegenbauer polynomial φ
(α)
j (x)

of degree j and associated with the Gegenbauer parameter α by the following
relation:

φ
(α)
j (x) = (λ

(α)
j )−

1
2C

(α)
j (x). (4.31)

The orthonormal Gegenbauer polynomials φ
(α)
j (x) satisfy the following discrete

orthonormality relation:

N∑
k=0

ω
(α)
k φ

(α)
i (x

(α)
k )φ

(α)
j (x

(α)
k ) = δij, (4.32)

where x
(α)
k ∈ S

(α)
N . Assume that in iteration m, the solution function y(x) is

approximated by

y(x) ≈
N∑
i=0

aiC
(αm)
i (x). (4.33)
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The Gegenbauer collocation coefficients {ai}Ni=0 are computed by interpolating

the solution function y(x) at the elements of S
(α0)
N such that

y(x
(α0)
k ) =

N∑
i=0

aiC
(αm)
i (x

(α0)
k ). (4.34)

Multiplying both sides by ω
(αm)
k C

(αm)
j (x

(α0)
k ), and summing over k yields

N∑
k=0

ω
(αm)
k C

(αm)
j (x

(α0)
k )y(x

(α0)
k ) =

N∑
i=0

ai

N∑
k=0

ω
(αm)
k C

(αm)
j (x

(α0)
k )C

(αm)
i (x

(α0)
k ) (4.35)

=
N∑
i=0

ai(λ
(αm)
j λ

(αm)
i )

1
2

N∑
k=0

ω
(αm)
k φ

(αm)
j (x

(α0)
k )φ

(αm)
i (x

(α0)
k )

(4.36)

6=
N∑
i=0

ai(λ
(αm)
j λ

(αm)
i )

1
2 δji = ajλ

(αm)
j , (4.37)

since the discrete orthonormality relation (4.32) is not satisfied. Hence

aj 6= (λ
(αm)
j )−1

N∑
k=0

ω
(αm)
k C

(αm)
j (x

(α0)
k )y(x

(α0)
k ) ∀j, (4.38)

and Equation (4.30) is false. In fact, the coefficients {aj}Nj=0 cannot be obtained

by Equation (4.30) via interpolation at the elements of S
(α0)
N for any value of α0,

since the interpolation/collocation nodes x
(α0)
k ∈ S(α0)

N used in the approximation

are the zeros of the Gegenbauer polynomial C
(α0)
N+1(x), while we can clearly see that

the Gegenbauer polynomials occurring in Equation (4.30) are associated with a
different Gegenbauer parameter αm. Hence, the form of the Gegenbauer integra-
tion matrix elements defined by Equation (4.27) is inconsistent to approximate

the integral operations of the unknown solution y(x) at the elements of S
(α0)
N .

Therefore optimizing the Gegenbauer integration matrix through an equivalent
unconstrained optimization problem with α added as an extra optimization vari-
able violates the discrete Gegenbauer orthonormality relation; consequently, the
numerical scheme may produce false solution approximations.

4.5 Concluding Remarks and a Practical Alter-

native Method

The discrete orthonormality relation (4.32) is valid with respect to the measure
(1− x2)α−1/2 in the space L2([−1, 1]), and as the parameter α changes, the pro-
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jection space L2([−1, 1]) changes. Since the eigenfunctions in spectral theory are
held fixed to define the projection space, and the approximation is carried out
with respect to that space, the approximation procedure must start anew as the
space is refined. Hence one cannot change the projection space while performing
the approximation; consequently, one cannot solve a mathematical problem cor-
rectly by optimizing the Gegenbauer integration matrix through the addition of
the Gegenbauer parameter α in the equivalent unconstrained/constrained opti-
mization problem.

To avoid the violation of the discrete Gegenbauer orthonormality relation,
the collocation nodes {x(α0)

k }Nk=0 must be replaced with the elements of S
(αm)
N ,

which is impossible since the x′s represent the solution nodes of the problem, and
they must be fixed during the whole optimization procedure. A different path to
overcome the problem is to fix the values of the integration nodes {x(α0)

i }Ni=0 rep-
resenting the upper limit of the integration in Equation (4.27) while varying the

values of the other discretization nodes {x(α0)
k }Nk=0 in the equation into {x(αm)

k }Nk=0

to be consistent with the corresponding value of αm. Yet, we still have the prob-
lem of evaluating the unknown solution function y(x) at the nodes {x(αm)

k }Nk=0

in order to perform the integration given by Equation (4.26). The latter cannot
be established without another means of approximation such as interpolation af-
ter obtaining some certain values of the unknown solution function y(x) using
any integral equation solvers, questioning the accuracy and the efficiency of the
Gegenbauer collocation method. Notice here that the sought accuracy obtained
using the Gegenbauer collocation method cannot exceed the precision of the ap-
proximated values {y(x

(αm)
k )}Nk=0 obtained from the interpolation method. Hence

optimizing the Gegenbauer integration matrix by adding the Gegenbauer param-
eter α as an extra unknown variable in the resulting optimization problem, and
then optimizing α via an algorithmic procedure starting with an arbitrary choice
α0 is deceptive. This method cannot work properly unless the value of αm is
very close from the initial value α0 at each iteration, so that the values of the
discretization nodes {x(αm)

k }Nk=0 and the solution nodes {x(α0)
i }Ni=0 become very

close, and Equations (4.26) and (4.27) may still provide reasonable approxima-
tions to the integrations of the unknown solution function y(x) at the solution

nodes {x(α0)
i }Ni=0.

We draw the attention of the reader that in (Elgindy and Smith-Miles, 2013b)
we have presented a practical alternative method for optimizing the Gegenbauer
integration matrix. In particular, we have introduced the idea of optimally con-
structing the Gegenbauer quadrature through discretizations at some optimal sets
of Gegenbauer-Gauss points in a certain optimality sense. We showed that the
Gegenbauer polynomial expansions can produce higher-order approximations to
the definite integrals

∫ xi
−1
f(x)dx, i = 0, . . . , N of some function f(x) ∈ C∞[−1, 1]
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for the small/medium range of the number of Gegenbauer expansion terms by
minimizing the quadrature error at each integration point xi through a pointwise
approach. This technique entails the calculation of some optimal Gegenbauer
parameter values {α(i)}Ni=0 rather than choosing any arbitrary α value. This key
idea has been applied later in (Elgindy and Smith-Miles, 2013a,c; Elgindy et al.,
2012) for the solutions of boundary-value problems, integral equations, integro-
differential equations, and optimal control problems. The presented methods
allow for optimizing the Gegenbauer parameter α internally during the construc-
tion of the Gegenbauer integration matrix to achieve higher-order approximations
without adding it as an extra unknown variable after converting the problem into
an optimization one. The results clearly showed that determining an optimal set
of the Gegenbauer parameters {α(i)}Ni=0 in a certain optimality sense allow the
Gegenbauer integration matrices to produce higher-order approximations which
can exceed those obtained by the standard Chebyshev, Legendre, and Gegen-
bauer integration matrices at each solution node {xi}Ni=0 at least for a small
number of spectral expansion terms. The interested reader may consult (Elgindy
and Smith-Miles, 2013a,b,c; Elgindy et al., 2012) for more information on the
developed numerical methods.
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Chapter 5

Solving Boundary Value
Problems, Integral, and

Integro-Differential Equations
Using Gegenbauer Integration

Matrices



Chapter 5 is based on the published article Elgindy, K. T., Smith-
Miles, K. A., 1 January 2013. Solving boundary value problems, inte-
gral, and integro-differential equations using Gegenbauer integration
matrices. Journal of Computational and Applied Mathematics 237
(1), 307–325.

Abstract. We introduce a hybrid Gegenbauer (ultraspherical) integration method
(HGIM) for solving boundary value problems (BVPs), integral and integro-differential
equations. The proposed approach recasts the original problems into their integral
formulations, which are then discretized into linear systems of algebraic equations
using Gegenbauer integration matrices (GIMs). The resulting linear systems are
well-conditioned and can be easily solved using standard linear system solvers. A
study on the error bounds of the proposed method is presented, and the spectral
convergence is proven for two-point BVPs (TPBVPs). Comparisons with other
competitive methods in the recent literature are included. The proposed method
results in an efficient algorithm, and spectral accuracy is verified using eight test
examples addressing the aforementioned classes of problems. The proposed method
can be applied on a broad range of mathematical problems while producing highly
accurate results. The developed numerical scheme provides a viable alternative to
other solution methods when high-order approximations are required using only a
relatively small number of solution nodes.

Keyword. Collocation points; Gegenbauer-Gauss points; Gegenbauer integration
matrix; Gegenbauer integration method; Gegenbauer polynomials; Spectral meth-
ods.

References are considered at the end of the thesis.



Chapter 5

Solving Boundary Value
Problems, Integral, and
Integro-Differential Equations
Using Gegenbauer Integration
Matrices

5.1 Introduction

A number of physical phenomena can be modeled as ODEs, integral equations,
or integro-differential equations. Spectral methods have been one of the most
elegant methods by far for solving these problems. They provide a computational
approach which has achieved substantial popularity over the past three decades,
and has been widely used for the numerical solutions of various differential and
integral equations; see (Bernardi and Maday, 1997; Boyd, 1989; Canuto et al.,
1988, 2006; Delves and Mohamed, 1985; Funaro, 1992; Gottlieb and Orszag, 1977;
Guo, 1998; Tian, 1989). In this class of methods, the approximation of functions
in C∞[a, b] can be performed using truncated series of the eigenfunctions of certain
singular Sturm-Liouville problems. It is well-known that the truncation error
approaches zero faster than any negative power of the number of basis functions
used in the approximation, as that number (order of truncation N) tends to
infinity (Hosseini, 2006). The latter phenomenon is usually referred to as the
“spectral accuracy” (Gottlieb and Orszag, 1977). The principal advantage of
spectral methods lies in their ability to achieve accurate results with substantially
fewer degrees of freedom.

For differential equations, spectral methods transform the problems into al-
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gebraic linear systems of equations via approximating the unknown solution by
a truncated spectral expansion series and its derivatives by spectral differenti-
ation matrices (SDMs). The latter are linear maps which take a vector of N
function values f(xi) to a vector of N derivative values f ′(xi). This is extraor-
dinarily accurate in exact arithmetic; however there are a number of difficulties
associated with the practical implementation as SDMs are known to be severely
ill-conditioned (Funaro, 1987); the condition number of the N th-order differen-
tiation matrix scales best as O(N2k), where k is the order of the derivative of
the solution function (Hesthaven, 2000). Consequently the ill-conditioning of
SDMs with increasing order frequently causes degradation of the observed preci-
sion (Greengard, 1991; Tang and Trummer, 1996) as the procedure involves the
solution of very ill-conditioned linear system of equations, and the need for de-
veloping efficient preconditioners becomes crucial (Elbarbary, 2006; Hesthaven,
1998). Trefethen (1988); Trefethen and Trummer (1987) showed that the time
step restrictions due to this ill-conditioning can be more severe than those pre-
dicted by the standard stability theory.

Another approach for solving differential equations is to recast the governing
differential equation as an integral equation, and then discretize the latter using
spectral integration matrices (SIMs) into an algebraic linear system of equations,
which is then solved with spectral accuracy. A SIM can be defined similarly to a
SDM as a linear map which takes a vector of N function values f(xi) to a vector
of N integral values

∫ xi
a
f(x)dx, for some real number a ∈ R. This strategy eludes

the drawbacks of applying SDMs as SIMs are known to be well-conditioned oper-
ators (Elbarbary, 2006, 2007; Elgindy, 2009; Greengard, 1991; Lundbladh et al.,
1992); their well-conditioning is essentially unaffected for increasing number of
points (Elgindy, 2009). Moreover, the use of integration operations for construct-
ing spectral approximations improves their rate of convergence, and allows the
multiple boundary conditions to be incorporated more efficiently (Elgindy, 2009;
Mai-Duy and Tanner, 2007). In fact, the application of integration operators for
the treatment of differential equations by orthogonal polynomials, in particular,
Chebyshev polynomials, dates back to Clenshaw (1957) in the late 1950’s. The
spectral approximation of the integration form of differential equations was put
forward later in the 1960’s by Clenshaw and Curtis in the spectral space and
by El-Gendi (1969) in the physical space. For an N th-order differential equa-
tion, the approximate solutions are obtained by either recasting the N th-order
differential equation directly into its integral form for the solution function, or by
using the indefinite integral and spectral quadratures to transform the differential
equation into its integral form for the N th-order derivative. The solution and its
derivatives up to the (N − 1)th-order derivative may then be stably recovered by
integration. The latter idea was brought forward by Greengard in 1991, and was
applied successfully on TPBVPs using Clenshaw-Curtis quadrature (Clenshaw
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and Curtis, 1960). This strategy developed by Greengard (1991) was described
later by Driscoll et al. (2008) as a “powerful idea,” since it avoids the matter of
loss of digits in spectral methods related to the ill-conditioning of the associated
matrices.

The reason for the success of the spectral integration approaches is basically
because differentiation is inherently sensitive, as small perturbations in data can
cause large changes in result, while integration is inherently stable. Moreover,
the integral equation formulation, when applied to TPBVPs for instance, is in-
sensitive to boundary layers, insensitive to end-point singularities, and leads to
small condition numbers while achieving high computational efficiency (Green-
gard and Rokhlin, 1991). The aforementioned spectral integration methods were
widely accepted and applied by many authors. Coutsias et al. (1996a,b) ex-
tended Greengard’s technique to more general problems, and proved the bound-
edness of the condition numbers as the discretization is refined (Driscoll, 2010).
Mihaila and Mihaila (2002) presented a Chebyshev numerical scheme based on
El-Gendi’s method (El-Gendi, 1969) for solving initial value problems and second-
order BVPs defined on finite domains. Their method recasts the differential
equation into an algebraic equations system which is then solved directly for the
values of the solution function at the zeros/extrema of the N th-degree Chebyshev
polynomial. Elbarbary (2007) extended El-Gendi’s method (El-Gendi, 1969) and
developed a spectral successive integration matrix based on Chebyshev expansions
for the solution of BVPs after recasting the latter into integral equations. Mai-
Duy et al. (2008) reported a global fictitious-domain/integral-collocation method
for the numerical solution of second-order elliptic PDEs in irregularly shaped
domains, where the construction of the Chebyshev approximations representing
the dependent variable and its derivatives are based on integration rather than
conventional differentiation. Later, Elgindy (2009) extended El-Gendi’s method
(El-Gendi, 1969) and developed some higher order pseudospectral integration ma-
trices based on Chebyshev polynomials, and applied the method on some initial
value problems, BVPs, linear integral and integro-differential equations. Driscoll
(2010) generalized Greengard’s method (Greengard, 1991) to mth-order bound-
ary value and generalized eigenvalue problems, where large condition numbers
associated with differentiation matrices in high-order problems are avoided. The
area of integro-differential equations can be treated using similar ideas applied to
differential equations. It is noteworthy to mention that the solution of integral
equations may be obtained analytically using the theory developed by Muskhel-
ishvili (1953), and many different methods for solving integral equations analyt-
ically are described in several books; see (Dzhuraev, 1992; Green, 1969; Kanwal,
1997). Furthermore, there are extensive works in the literature for solving integral
equations using well-developed numerical integration tools; see (Atkinson, 1997;
Delves and Mohamed, 1985; Golberg, 1990). However, if the solutions of the
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integral equations are sufficiently smooth, then it is necessary to consider “very
high-order numerical methods” such as spectral methods for approximating the
solutions (Tang et al., 2008).

To solve integral equations numerically using spectral methods, definite inte-
grations involved in the equations are approximated using SIMs. The construction
of the latter depends on the choice of the nodes {xi}Ni=0 and the basis functions of
the approximating series. Recently, in (Elgindy and Smith-Miles, 2013b), we have
developed an optimal GIM quadrature (P-matrix quadrature) for approximating
definite integrations using Gegenbauer polynomials. The numerical experiments
shown in (Elgindy and Smith-Miles, 2013b) suggest that the Gegenbauer poly-
nomials as basis polynomials can perform better than their popular subclasses,
Chebyshev and Legendre polynomials, for approximating definite integrations at
least for a small number of the spectral expansion terms. The developed P-matrix
possesses several advantages such as it can be applied for approximating integrals
at any arbitrary sets of integration nodes, while maintaining higher-order approx-
imations. Also, higher-order approximations can be achieved by increasing the
number of its columns without the need to increase the number of the integration
nodes. Moreover, the construction of the developed integration matrix is induced
by the set of the integration nodes regardless of the integrand function. Gegen-
bauer polynomials have been applied extensively in many research areas, and
have been demonstrated to provide excellent approximations to analytic func-
tions; see (Archibald et al., 2003; Barrio, 1999; Doha and Abd-Elhameed, 2009;
Elgindy and Smith-Miles, 2013b; Gelb, 2004; Gottlieb and Shu, 1995b; Lurati,
2007; Malek and Phillips, 1995; Phillips and Karageorghis, 1990; Vozovoi et al.,
1996, 1997; Yilmazer and Kocar, 2008).

In this chapter, we shall generalize the path paved by Clenshaw and Cur-
tis (1960), El-Gendi (1969), and Greengard (1991) by recasting the governing
differential/integro-differential equations into their integral reformulations, and
investigate the application of the recently developed P-matrix quadrature for the
solution of the problem. Our focus will be on developing an efficient Gegen-
bauer integration method, with the concrete aim of comparing it with other
available numerical methods in the literature for solving BVPs, integral and
integro-differential equations. The proposed approach involves using the P-matrix
quadrature together with the P̂-matrix quadrature (Elgindy and Smith-Miles,
2013b)– a modified form of the GIM quadrature developed earlier by El-Hawary
et al. (2000)– for recasting the integral equations into a system of linear equations.
MATLAB 7 linear system solver is then implemented for solving the resulting
algebraic linear system, where accurate results can be obtained. We provide a
rigorous error analysis of the proposed method for TPBVPs, which indicates that
the numerical errors decay exponentially provided that the unknown and variable
coefficient functions are sufficiently smooth. The remaining part of this chapter
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is organized as follows: In section 2 we introduce the Gegenbauer polynomials
and some of their properties, with a special attention being given to the con-
struction of the GIMs. In the following section, a discussion on the solution of a
linear TPBVP is presented using GIMs. Section 5.2.2 is devoted to a study on
the convergence rate and error estimation of the proposed method. The perfor-
mance of the proposed method is illustrated in Section 5.3, with several practical
examples on BVPs, integral and integro-differential equations demonstrating the
efficiency and accuracy of our proposed method as well as its generality. Finally,
in Section 5.4, we provide some concluding remarks summarizing the advantages
of the proposed approach.

5.2 The GIMs

We shall require several results from approximation theory before presenting the
proposed method in Section 5.2.1. The Gegenbauer polynomials C

(α)
n (x), n ∈ Z+,

associated with the real parameter α > −1/2, appear as eigensolutions to the
singular Sturm-Liouville problem in the finite domain [−1, 1], with the first two
being

C
(α)
0 (x) = 1, C

(α)
1 (x) = 2αx,

while the remaining polynomials are given through the recursion formula

(n+ 1)C
(α)
n+1(x) = 2(n+ α)xC(α)

n (x)− (n+ 2α− 1)C
(α)
n−1(x).

The weight function for the Gegenbauer polynomials is the even function (1− x2)α−1/2.
The Gegenbauer polynomials satisfy the orthogonality relation (Szegö, 1975)∫ 1

−1

(1− x2)
α− 1

2C(α)
m (x)C(α)

n (x)dx = h(α)
n δmn, (5.1)

where

h(α)
n =

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
; (5.2)

δmn is the Kronecker delta function. In a typical Gegenbauer spectral method,
the unknown solution y is expanded as a finite series of the Gegenbauer basis
polynomials C

(α)
k (x) in the form

y(x) ≈
N∑
k=0

akC
(α)
k (x), (5.3)

where ak are the Gegenbauer spectral expansion coefficients of the solution. For
infinitely differentiable solution functions, the produced approximation error,
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when N tends to infinity, approaches zero with exponential rate. Doha (1991)
standardized the Gegenbauer polynomials so that

C(α)
n (1) = 1, n = 0, 1, 2, . . . . (5.4)

As a result of this standardization, C
(0)
n (x) becomes identical with the Chebyshev

polynomials of the first kind Tn(x), C
(1/2)
n (x) is the Legendre polynomial Ln(x);

C
(1)
n (x) is equal to (1/(n + 1))Un(x), where Un(x) is the Chebyshev polynomial

of the second type (Doha, 1991). Moreover, the Gegenbauer polynomials can be
generated by Rodrigues’ formula in the following form:

C(α)
n (x) = (−1

2
)n

Γ(α + 1
2
)

Γ(n+ α + 1
2
)
(1− x2)

1
2
−α d

n

dxn
(1− x2)n+α−1

2 , (5.5)

or starting from
C

(α)
0 (x) = 1, (5.6a)

C
(α)
1 (x) = x, (5.6b)

the Gegenbauer polynomials can be generated using the following useful recurrence
equation:

(j + 2α)C
(α)
j+1(x) = 2(j + α)xC

(α)
j (x)− jC(α)

j−1(x), j ≥ 1. (5.6c)

The Gegenbauer polynomials satisfy the orthogonality relation (Elgindy and
Smith-Miles, 2013b)∫ 1

−1

(1− x2)
α− 1

2C(α)
m (x)C(α)

n (x)dx = λ(α)
n δmn, (5.7)

where

λ(α)
n =

22α−1n!Γ2(α + 1
2
)

(n+ α)Γ(n+ 2α)
. (5.8)

For the rest of the chapter, by the Gegenbauer polynomials, we shall refer to the
Gegenbauer polynomials standardized so that Eq. (5.4) is satisfied. Moreover,
by the Chebyshev polynomials, we shall refer to the Chebyshev polynomials of
the first kind Tn(x). The following theorem gives the truncation error of approx-
imating a smooth function using the Gegenbauer expansion series:

Theorem 5.2.1 (Truncation error). Let y(x) ∈ C∞[−1, 1] be approximated by
the Gegenbauer expansion series (5.3), then for each x ∈ [−1, 1], a number ξ(x) ∈
[−1, 1] exists such that the truncation error ET (x, ξ,N, α) is given by

ET (x, ξ,N, α) =
y(N+1)(ξ)

(N + 1)!K
(α)
N+1

C
(α)
N+1(x), (5.9)
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where

K
(α)
N+1 = 2N

Γ(N + α + 1)Γ(2α + 1)

Γ(N + 2α + 1)Γ(α + 1)
. (5.10)

Proof. See (El-Hawary et al., 2000).

One approach for constructing the entries of the GIM was introduced by El-
Hawary et al. (2000), and modified later by Elgindy and Smith-Miles (2013b) in
the following theorem:

Theorem 5.2.2. Let

S
(α)
N = {xk|C(α)

N+1(xk) = 0, k = 0, . . . , N}, (5.11)

be the set of the Gegenbauer-Gauss (GG) nodes; f(x) ∈ C∞[−1, 1] be approxi-

mated by the Gegenbauer polynomials, then there exists a matrix P̂ (1) = (p̂
(1)
ij ), i, j =

0, . . . , N ; some numbers ξi ∈ [−1, 1] satisfying∫ xi

−1

f(x)dx =
N∑
k=0

p̂
(1)
ik (α)f(xk) + E

(α)
N (xi, ξi), (5.12)

where

p̂
(1)
ik (α) =

N∑
j=0

(λ
(α)
j )

−1
ω

(α)
k C

(α)
j (xk)

∫ xi

−1

C
(α)
j (x)dx, (5.13)

(ω
(α)
k )−1 =

N∑
j=0

(λ
(α)
j )

−1
(C

(α)
j (xk))

2
, xk ∈ S(α)

N , (5.14)

λ
(α)
j =

22α−1j!Γ2(α + 1
2
)

(j + α)Γ(j + 2α)
; (5.15)

E
(α)
N (xi, ξi) =

f (N+1)(ξi)

(N + 1)!K
(α)
N+1

∫ xi

−1

C
(α)
N+1(x)dx. (5.16)

Proof. See (Elgindy and Smith-Miles, 2013b).

The entries of the P̂-matrix of order n are given by

p̂
(n)
ij =

(xi − xj)n−1

(n− 1)!
p̂

(1)
ij , i, j = 0, . . . , N ∀x ∈ [−1, 1]. (5.17)

Moreover

p̂
(n)
ij =

(xi − xj)n−1

2n(n− 1)!
p̂

(1)
ij , i, j = 0, . . . , N ∀x ∈ [0, 1]. (5.18)
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A different approach for constructing the entries of the GIM was introduced by
Elgindy and Smith-Miles (2013b). The developed GIM is referred to as the P-
matrix; it has been demonstrated to produce higher-order approximations than
the P̂-matrix, especially by increasing the number of its columns. Our approach
for constructing the entries of the P-matrix can be described in the following
theorem:

Theorem 5.2.3. Let

SN,M = {zi,k|C
(α∗i )
M+1(zi,k) = 0, i = 0, . . . , N ; k = 0, . . . ,M}, (5.19)

be the generalized set of the GG nodes, where

α∗i = argmin
α>−1/2

η2
i,M(α), (5.20)

ηi,M(α) =

∫ xi

−1

C
(α)
M+1(x)dx/K

(α)
M+1; (5.21)

K
(α)
M+1 = 2M

Γ(M + α + 1)Γ(2α + 1)

Γ(M + 2α + 1)Γ(α + 1)
. (5.22)

Moreover, let f(x) ∈ C∞[−1, 1] be approximated by the Gegenbauer polynomials,
then there exists a matrix
P (1) = (p

(1)
ij ), i = 0, . . . , N ; j = 0, . . . ,M ; some numbers ξi ∈ [−1, 1] satisfying

∫ xi

−1

f(x)dx =
M∑
k=0

p
(1)
ik (α∗i )f(zi,k) + E

(α∗i )
M (xi, ξi), (5.23)

where

p
(1)
ik (α∗i ) =

M∑
j=0

(λ
(α∗i )
j )

−1
ω

(α∗i )

k C
(α∗i )
j (zi,k)

∫ xi

−1

C
(α∗i )
j (x)dx, (5.24)

(ω
(α∗i )

k )−1 =
M∑
j=0

(λ
(α∗i )
j )

−1
(C

(α∗i )
j (zi,k))

2
, zi,k ∈ SN,M , (5.25)

λ
(α∗i )
j =

22α∗i−1j!Γ2(α∗i + 1
2
)

(j + α∗i )Γ(j + 2α∗i )
; (5.26)

E
(α∗i )
M (xi, ξi) =

f (M+1)(ξi)

(M + 1)!
ηi,M(α∗i ). (5.27)

Proof. See (Elgindy and Smith-Miles, 2013b).
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Notice here that the P-matrix quadrature has the ability to approximate definite
integrals at any arbitrary sets of integration nodes using some suitable choices of
the Gegenbauer parameter α for minimizing the quadrature error at each node.
Moreover, the P-matrix is a rectangular matrix of size (N + 1)× (M + 1), where
M denotes the highest degree of the Gegenbauer polynomial employed in the
computation of the integration of the function f . To describe the approximation
of the definite integration of the function f in matrix form using the P-matrix,
let P (1) = (P

(1)
0 P

(1)
1 . . . P

(1)
N )T , P

(1)
i = (p

(1)
i,0 , p

(1)
i,1 , . . . p

(1)
i,M); i = 0, . . . , N. Let also

V be a matrix of size (M + 1) × (N + 1) defined as V = (V0V1 . . . VN), Vi =
(f(zi,0), f(zi,1), . . . , f(zi,M))T , i = 0, . . . , N ; f(zij) is the function f calculated at
the GG nodes zij ∈ SN,M . Then the approximations of the definite integrals∫ xi
−1
f(x)dx of f using the P-matrix are given by(∫ x0

−1

f(x)dx,

∫ x1

−1

f(x)dx, . . . ,

∫ xN

−1

f(x)dx

)T
≈ P (1) ◦ V T , (5.28)

where ◦ is the Hadamard product with the elements of P (1) ◦ V T given by

(P (1) ◦ V T )i = P
(1)
i · Vi =

M∑
j=0

p
(1)
i,j f(zi,j), i = 0, . . . , N. (5.29)

To calculate the operational matrix of the successive integration of the function
f , let

I
(n)
i =

∫ xi

−1

∫ tn−1

−1

. . .

∫ t2

−1

∫ t1

−1

f(t0)dt0dt1 . . . dtn−2dtn−1 ∀ 0 ≤ i ≤ N,

be the n-fold definite integral of the function f . Then

(I
(n)
0 , I

(n)
1 , . . . , I

(n)
N )T ≈ P (n) ◦ V T , (5.30)

where P (n) = (p
(n)
i,j ) is the P-matrix of order n with the entries

p
(n)
i,j =

(xi − zi,j)n−1

(n− 1)!
p

(1)
i,j , i = 0, 1, . . . , N ; j = 0, 1, . . . ,M ∀x ∈ [−1, 1]. (5.31)

For the integration over the interval [0, 1], Eq. (5.31) is replaced with

p
(n)
i,j =

(xi − zi,j)n−1

2n(n− 1)!
p

(1)
i,j , i = 0, 1, . . . , N ; j = 0, 1, . . . ,M. (5.32)

For further information on the implementation of the P̂-matrix quadrature and
the P-matrix quadrature, we refer the interested reader to Ref. (Elgindy and
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Smith-Miles, 2013b). Also further properties of the family of Gegenbauer poly-
nomials can be found in (Abramowitz and Stegun, 1965; Andrews et al., 1999;
Bayin, 2006). In the following section, we shall discuss the solution of a linear
TPBVP, which arise frequently in engineering and scientific applications using
the developed GIMs.

5.2.1 The Proposed HGIM

Suppose for simplicity, and without loss of generality, that we have the following
linear TPBVP:

y′′(x) = f(x)y′(x) + g(x)y(x) + r(x), 0 ≤ x ≤ 1, (5.33a)

with the Dirichlet boundary conditions

y(0) = β, y(1) = γ. (5.33b)

To ensure that the problem has a unique solution, suppose also that f(x), g(x);
r(x) are continuous on [0, 1]; g(x) > 0 on [0, 1] (Burden and Faires, 2000). We

seek the solution of this problem at the GG nodes xi ∈ S(α)
N , i = 0, . . . , N, since

they are quadratically clustered at the ends of the domain and well suited for
high-order polynomial approximation (Hesthaven et al., 2007). Direct integration
converts the problem into the following integral counterpart:

y(x) =

∫ x

0

∫ x

0

((g(t)− F (t))y(t) + r(t))dtdx+

∫ x

0

f(x)y(x)dx+ (c1−βf0)x+ c2,

(5.34)
where F ≡ f ′; f0 = f(0). The constants c1 and c2 are chosen to satisfy the
boundary conditions such that

c1 = γ + β(f0 − 1)−
∫ 1

0

f(x)y(x)dx−
∫ 1

0

∫ x

0

((g(t)− F (t))y(t) + r(t))dtdx);

(5.35)

c2 = β. (5.36)

Let xN+1 = 1, then applying the P-matrix quadratures recasts the integral equa-
tion (5.34) into the following algebraic linear system of equations:

wi−
M∑
j=0

(p
(2)
ij ((gij − Fij)wij + rij)− p(1)

ij fijwij)+(βf0−c1)xi−β = 0, i = 0, . . . , N ;

(5.37)
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the constant c1 can be approximated as

c1 ≈ γ+β(f0−1)−
M∑
j=0

(p
(1)
N+1,jfN+1,jwN+1,j + p

(2)
N+1,j((gN+1,j − FN+1,j)wN+1,j + rN+1,j)),

(5.38)
where w = [w0, w1, . . . , wN ]T , wi ≈ y(xi), w̄ = (wlj), wlj ≈ y(zlj), glj = g(zlj), Flj =
F (zlj), rlj = r(zlj), zlj ∈ SN+1,M , i = 0, . . . , N ; l = 0, . . . , N + 1; j = 0, . . . ,M .
Hence we have (N + 2) equations in M(N + 2) + 2N + 3 unknowns. Since the set
of solution nodes {xi}Ni=0 is symmetric, and assuming that the number N is even,
we have zij = zN−i,j∀0 ≤ i ≤ N, 0 ≤ j ≤ M, and the linear system is in fact a
system of N(M + 3)/2 + 2M + 3 unknowns. Although the P-matrix quadrature
presented in (Elgindy and Smith-Miles, 2013b) has been demonstrated to produce
high-order approximations, the pure implementation of the P-matrix quadrature
for approximating the TPBVP leads to an under-determined linear system of
equations. To obtain a square system of equations with a unique solution, we
propose to apply a hybrid technique using the P-matrix quadrature and the P̂-
matrix quadrature for the solution of the TPBVP (5.33). The term r(x) which
does not include the unknown function y(x) will be integrated using the P-matrix
quadrature, while the rest of the integrations will be approximated using the P̂-
matrix quadrature. Hence Eqs. (5.37) and (5.38) are replaced with the following
two equations:

wi−
N∑
j=0

(p̂
(2)
ij (gj − Fj) + p̂

(1)
ij fj)wj−

M∑
j=0

p
(2)
ij rij+(βf0−c1)xi−β = 0, i = 0, . . . , N,

(5.39)

c1 ≈ γ+β(f0−1)−
N∑
j=0

(p̂
(1)
N+1,jfj + p̂

(2)
N+1,j(gj − Fj))wj−

M∑
j=0

p
(2)
N+1,jrN+1,j; (5.40)

the TPBVP (5.33) is transformed into (N+2) linear system of algebraic equations
in (N + 2) unknowns, which can be written further in the matrix form Aw = b,
where the entries of the coefficient matrix A = (aij), and the column vector
b = (bi) are given by

aij = δij − (p̂
(1)
ij − p̂

(1)
N+1,jxi)fj + (p̂

(2)
ij − p̂

(2)
N+1,jxi)(Fj − gj), (5.41a)

bi =
M∑
j=0

p
(2)
ij rij − xi(

M∑
j=0

p
(2)
N+1,jrN+1,j + β − γ) + β; i, j = 0, . . . , N. (5.41b)

The approximate solutions are then obtained using efficient linear system solvers.
One of the advantages of this formulation is that the linear system which arises
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from the discretization is generally well-conditioned (Elbarbary, 2006, 2007; El-
gindy, 2009; Greengard and Rokhlin, 1991; Lundbladh et al., 1992). The area
of integral equations can be approached directly by the GIMs without any ad-
ditional reformulations, while similar ideas to the present method can be easily
generalized for solving general linear BVPs and integro-differential equations by
recasting the original problem into its integral form. The latter can be written
generally as

Ly = (
s∑
j=0

fj(x)Ij)y = g(x), x ∈ [0, 1], s ∈ Z+, (5.42)

where L =
∑s

j=0 fj(x)Ij is a linear integral operator, {fj}sj=0; g are some known
real functions of x, Ij denotes the j-fold integral of y with respect to x; y(x) ∈
C∞[0, 1] is the unknown solution of the problem approximated using the Gegen-
bauer expansion series (5.3). Hence the proposed HGIM can be broadly applied
on a wide range of mathematical problems. The following section addresses the
convergence rate of the proposed method on the TPBVP (5.33).

5.2.2 Convergence Analysis and Error Bounds

Our goal in this section is to show that the rate of convergence is exponential
through a convergence analysis of the proposed numerical scheme. We shall pro-
vide two lemmas of particular interest for the analysis of the error bounds before
presenting the main theorem in this section. The following Lemma highlights the
bounds on the Gegenbauer polynomials generated by Eqs. (5.6):

Lemma 5.2.4. The maximum value of the Gegenbauer polynomials C
(α)
N (x) gen-

erated by Eqs. (5.6) is less than or equal to 1 for all α ≥ 0;N ≥ 0, and of order
N−α for all −1/2 < α < 0;N � 1.

Proof. We demonstrate two different approaches for proving the first part of the
lemma. Firstly, using mathematical induction, it is clear that the lemma is true
for C

(α)
0 (x) and C

(α)
1 (x). Now assume that the lemma is true for N = K ∈ Z+,

and let βK,α = 2(K + α)/(K + 2α). For N = K + 1, we have

C
(α)
K+1 = βK,αxC

(α)
K (x) + (1− βK,α)C

(α)
K−1(x)

⇒
∣∣∣C(α)

K+1

∣∣∣ ≤ |βK,α|+ |1− βK,α| = 1 ∀α ≥ 0. (5.43)

A second approach to prove this result can be derived through the relation be-
tween the Gegenbauer polynomials C

(α)
N (x) standardized by (5.4), and the Gegen-

bauer polynomials Ĉ
(α)
N (x) standardized by Szegö (1975). Indeed, using Eq.
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(4.7.1) in (Szegö, 1975), and Eq. (1) in (Doha, 2002), we can show that

C
(α)
N (x) =

Ĉ
(α)
N (x)

Ĉ
(α)
N (1)

∀x ∈ [−1, 1], α > −1

2
;N ≥ 0. (5.44)

From Eq. (7.33.1) in (Szegö, 1975), we have

max
|x|≤1
|Ĉ(α)

N (x)| = Ĉ
(α)
N (1), (5.45)

from which Inequality (5.43) results. To prove the second part of the lemma, we
have through Eqs. (7.33.2) and (7.33.3) in (Szegö, 1975) that

max
|x|≤1
|Ĉ(α)

N (x)| ≈ 21−α|Γ(α)|−1Nα−1 ∀ − 1

2
< α < 0;N � 1. (5.46)

Since
1

Ĉ
(α)
N (1)

=
N !Γ(2α)

Γ(N + 2α)
≈ Γ(2α)

N2α−1
(asymptotically), (5.47)

then
max
|x|≤1
|C(α)

N (x)| ≈ DαN
−α = O(N−α) as N →∞, (5.48)

where Dα is a positive constant independent of N . This completes the proof of
the second part of the lemma.

The following lemma is substantial for the analysis of the convergence rate of the
HGIM:

Lemma 5.2.5. For a fixed α > −1/2, the factor 1/((N + 1)!K
(α)
N+1) is of order

1/(N
1
2
−α(2N/e)N), for large values of N .

Proof. Using Stirling’s formula for the factorial function

x! =
√

2πxx+
1
2 exp(−x+

θ

12x
), x > 0, 0 < θ < 1, (5.49)

we have
√

2πxx+1/2e−x < Γ(x+ 1) <
√

2πxx+1/2e−xe
1

12x ∀x ≥ 1.

Hence

Γ(N + 2α + 1)

Γ(N + α + 1)
=

N + α + 1

N + 2α + 1

Γ(N + 2α + 2)

Γ(N + α + 2)

<
N + α + 1

N + 2α + 1
(N + 2α + 1)α(1 +

α

N + α + 1
)N+α+

3
2 e

1
12(N+2α+1)

−α

∼ Nαas N →∞.
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From Definition (5.10), taking the limit when N →∞ yields

1/K
(α)
N+1 ∼ 2−NNα.

The proof is established by applying the asymptotic Stirling’s approximation
formula for the factorial function

N ! ≈
√

2πN(
N

e
)Nas N →∞.

Now, let ψ(x) = (g(x) − F (x))y(x), ρ(x) = f(x)y(x), then Eq. (5.34) can be
written at the GG collocation points as

Ii(y) = y(xi)−
∫ xi

0

∫ x

0

(ψ(t) + r(t))dtdx−
∫ xi

0

ρ(x)dx+(βf0−c1)xi−β, i = 0, . . . , N,

(5.50)
with

c1 = γ + β(f0 − 1)−
∫ xN+1

0

ρ(x)dx−
∫ xN+1

0

∫ x

0

(ψ(t) + r(t))dtdx). (5.51)

The following theorem highlights the truncation error in approximating the TP-
BVP (5.33) using the HGIM:

Theorem 5.2.6. Let the unknown solution y(x) ∈ C∞[0, 1] of the TPBVP (5.33)
be approximated by the Gegenbauer expansion series (5.3), where the Gegenbauer
spectral coefficients ak

′s are calculated by discrete least squares fitting at the GG
nodes xi ∈ S(α)

N given by Eq. (5.11). Let Ĩi(w) denote the approximation of Ii(y)
using the HGIM for each i. Also, assume that the functions ψ(x), r(x), and ρ(x)
are bounded on the interval [0, 1] with bounds M1,M2;M3, respectively. Then

for any xi ∈ S(α)
N , there exist some numbers ξ

(j)
i ∈ (0, xi), i = 0, . . . , N + 1; j =

1, 2, 3; ζl ∈ (0, xl), l = 0, . . . , N , such that

ET (xi, ξ
(j)
i , α) = Ii(y)− Ĩi(w) =

y(N+2)(ζi)

(N + 2)!K
(α)
N+2

C
(α)
N+2(xi) + EN+1(xN+1, ξ

(j)
N+1, α)

− Ei(xi, ξ(j)
i , α), i = 0, . . . , N, (5.52)

with

∣∣∣ET (xi, ξ
(j)
i , α)

∣∣∣ ≤


D̂i(d
(α)
N+1

∣∣y(N+2)(ζi)
∣∣ (N + 2)−α + (M1(1 + xi) + 2M3)d

(α)
N (N + 1)−α

+M2d
(α∗i )
M xi(M + 1)−α

∗
i +M2d

(α∗N+1)

M (M + 1)−α
∗
N+1),

−1/2 < α < 0, N � 1,

d
(α)
N+1

∣∣y(N+2)(ζi)
∣∣+M1d

(α)
N (1 + xi) +M2(d

(α∗N+1)

M + d
(α∗i )
M xi)

+2M3d
(α)
N , α ≥ 0,

(5.53)
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where

Ei(xi, ξ
(j)
i , α) =

1

(N + 1)!K
(α)
N+1

(
ψ(N+1)(ξ

(1)
i )

∫ xi

0

∫ x

0

C
(α)
N+1(t)dtdx

+ρ(N+1)(ξ
(3)
i )

∫ xi

0

C
(α)
N+1(x)dx

)
+

r(M+1)(ξ
(2)
i )

(M + 1)!K
(α∗i )

M+1

∫ xi

0

∫ x

0

C
(α∗i )
M+1(t)dtdx,

(5.54)

d
(α)
N =

1

(N + 1)!
∣∣∣K(α)

N+1

∣∣∣ , α∗i = argmin
α>−1/2

η2
i,M(α),

ηi,M(α) =

∫ xi

−1

C
(α)
M+1(x)dx/K

(α)
M+1, i = 0, . . . , N + 1,

D̂i = max{Dα, Dα∗i
, Dα∗N+1

}, i = 0, . . . , N,

Dα, Dα∗i
;Dα∗N+1

are positive constants independent of N .

Proof. The proof can be readily verified. We have∫ xi

0

∫ x

0

(ψ(t) + r(t))dtdx+

∫ xi

0

ρ(x)dx = χ(xi, α) + Ei(xi, ξ
(j)
i , α), (5.55)

where

χ(xi, α) =
N∑
j=0

(p̂
(2)
ij ψj + p̂

(1)
ij ρj) +

M∑
j=0

p
(2)
ij rij, i = 0, . . . , N + 1;

Eq. (5.54) is obtained using formulas (5.16) & (5.27). Hence the approximation
to the integral equation (5.50) can be written as

Ĩi(w) = w(xi) + χ(xN+1, α)− χ(xi, α)− γ, i = 0, . . . , N. (5.56)

Eq. (5.52) results directly by subtracting Eq. (5.56) from Eq. (5.50), and the
truncation error is bounded by∣∣∣ET (xi, ξ

(j)
i , α)

∣∣∣ ≤ d
(α)
N+1

∣∣∣y(N+2)(ζi)C
(α)
N+2(xi)

∣∣∣+∣∣∣Ei(xi, ξ(j)
i , α)

∣∣∣+∣∣∣EN+1(xN+1, ξ
(j)
N+1, α)

∣∣∣ ,
where the bounds (5.53) result directly from applying Lemma 5.2.4 and Theorem
5.2.1.
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The convergence of the HGIM is illustrated by the decay of the error bounds
(5.53), which are mainly affected by the error factor d

(α)
N . While the error bounds

might suggest, at the first sight, that the error is smaller for α ≥ 0, Lemma 5.2.5
shows that the error factor d

(α)
N attains its minimum values at the boundary value

α = −0.5. Moreover, Lemma 5.2.5 shows that d
(α)
N is monotonically increasing

for increasing values of α. Consequently applying the HGIM at the GG nodes
xi ∈ S

(α)
N for negative values of α seems to be recommended as the truncation

error is expected to be smaller, and faster convergence rate is achieved for increas-
ing values of N . On the other hand, the Gegenbauer polynomials grow rapidly
for increasing values of N as α→ −0.5, and only suitable negative values of α are
to be chosen to produce better approximations to the TPBVP (5.33). This error
analysis seems to support the numerical experiments conducted by Doha (1990)
on the numerical solution of parabolic PDEs, which showed that higher accuracy
may be obtained by choosing α to be “small and negative.” However, our nu-
merical experiments conducted on many test examples in Section 5.3 show that
excellent numerical approximations may be obtained through Gegenbauer dis-
cretizations for both positive and negative values of α. Theoretically, the HGIM
and Doha (1990)’s Gegenbauer method are different predominantly in the role
of the Gegenbauer parameter α in both methods. Indeed, the HGIM relies on
the P-matrix quadrature as part of its numerical integration tools. This in turn
indicates that the HGIM produces a truncation error which involves some already
determined α values during the construction of the P-matrix as clearly observed
from the error bounds formula (5.53). Consequently, these automatically deter-
mined Gegenbauer parameters can greatly affect the magnitude of the truncation
error, and excellent numerical approximations may be achieved for Gegenbauer
discretizations at both positive and negative values of α. On the other hand,
Doha (1990)’s Gegenbauer method employs Gegenbauer expansion series with a
fixed α value, which favors the negative and small values of α over the other
cases in order to achieve higher precision approximations. The significant result
of Lemma 5.2.5 and Theorem 5.2.6 is that the application of the present HGIM for
solving a TPBVP, where the unknown solution is assumed to be infinitely differ-
entiable, leads to a spectrally convergent solution. Indeed, the factor d

(α)
N , which

appears in each term in the error bounds (5.53), decays exponentially faster than
any finite power of 1/N . Figure 5.2.2 confirms this fact, as it shows the logarithm

of d
(−0.5+ε)
N versus different values of N , where ε = 2.22 × 10−16 is the machine

epsilon. Another useful result of Lemma 5.2.5 is that increasing the number of the
columns of the P-matrix decreases the value of the error factor d

(α)
M , for any choice

of α > −1/2. Hence, the rate of the convergence of the HGIM increases without
the need to increase the number of the solution nodes. We have implemented this
useful trick on some numerical test examples in Section 5.3, and accomplished
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higher-order approximations (almost full machine precision in some cases) using
a relatively small number of solution nodes.

200 400 600 800 1000
N

-6000

-5000

-4000

-3000

-2000

-1000

LogHdN
@-0.5+¶D

L

Figure 5.1: The error factor d
(α)
N decays exponentially fast for increasing values

of N .

As a special case, if the terms f(x)y′(x) and g(x)y(x) are dropped from the
TPBVP (5.33a), then the problem can be solved by a straightforward integration
using the P-matrix quadrature at any arbitrary sets of solution nodes.

5.3 Numerical Results

In this section eight test examples are solved using the HGIM. The first three
test examples are TPBVPs studied by Greengard (1991). The first example was
later studied by Greengard and Rokhlin (1991). The fourth and fifth test exam-
ples are BVPs studied by Elbarbary (2007) and Zahra (2011), respectively. The
sixth test example is a Fredholm integral equation studied by Long et al. (2009).
The seventh and eighth test examples are integro-differential equations studied
by Maleknejad and Attary (2011) and El-Kady et al. (2009), respectively. All
calculations were performed on a personal laptop with a 2.53 GHz Intel Core
i5 CPU and 4G memory running MATLAB 7 software in double precision real
arithmetic. The solution nodes are the GG nodes xi ∈ S(α)

N defined by Eq. (5.11)
for α = −0.4 : 0.1 : 1; different values of N . These choices of the solution nodes
are of particular interest since they permit the comparison of the performance
of Gegenbauer polynomials with Chebyshev and Legendre polynomials for exam-
ples where the P̂-matrices of different orders are only involved. The P-matrix is
constructed via Algorithm 2.2 given in (Elgindy and Smith-Miles, 2013b), with
Mmax = 128, and different values of M . Elgindy and Hedar’s line search method
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(Elgindy and Hedar, 2008) is used for determining α∗i defined by Eq. (5.20). Here
we choose the initial search interval [−0.5+2ε, 1] based on numerical testing. The
line search technique is stopped whenever∣∣∣∣ ddαη2

i,M

∣∣∣∣ < 10−16 ∧ d2

dα2
η2
i,M > 0,

is satisfied, where ηi,M is the same as defined in Eq. (5.21) for each i. Hereafter,
“MSEs,” and “MAEs,” refer to the observed mean square errors and maximum
absolute errors of the present method between the approximations and the exact
solutions. The results shown between two round parentheses “(.)” are the value(s)
of α at which the best results are obtained by the present method.

Example 5.3.1. Consider the following linear TPBVP:

− y′′ + 400y = −400cos2(πx)− 2π2 cos(2πx), y(0) = y(1) = 0, (5.57)

with the exact solution

y(x) =
e−20

1 + e−20
e20x +

1

1 + e−20
e−20x − cos2(πx).

Applying the HGIM recasts the problem into the following algebraic system
of linear equations:

wi+400(
N∑
j=0

p̂
(2)
N+1,jxi− p̂

(2)
ij )wj+

M∑
j=0

(p
(2)
N+1,jxirN+1,j − p(2)

ij rij) = 0, i = 0, . . . , N,

(5.58)
where r(x) = 400cos2(πx) + 2π2 cos(2πx). This problem as reported by Stoer and
Bulirsch (1980) suffers from the presence of rapidly growing solutions of the corre-
sponding homogeneous equation. In fact, the homogeneous differential equation
has solutions of the form y(x) = ce±20x, which can grow at a rapid exponential
rate. Moreover, the derivatives of the exact solution are very large for x ≈ 0 and
x ≈ 1. The problem was solved by Greengard (1991) using a Chebyshev spectral
method (integral equation approach), and Greengard and Rokhlin (1991) by ap-
plying a high order Nystrom scheme based on a p-point Chebyshev quadrature
after reducing the differential equation to a second kind integral equation. Com-
parisons with Greengard and Rokhlin’s method (Greengard and Rokhlin, 1991)
are shown in Table 5.1, while comparisons with Greengard’s method (Greengard,
1991) are shown in Table 5.2. Both tables show the greater accuracy obtained
by the present HGIM. Moreover, the tables manifest that the Gegenbauer poly-
nomial approximations are very effective in solving TPBVPs for many suitable
values of α. Figure 5.2 shows the numerical behavior of the HGIM, where Figure
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5.2(b) shows the “MSEs” of the present method for N = 16, 64;M = N . Higher-
order approximations are obtained via discretizations at positive values of α for
both values of N . Figure 5.2(c) shows the “MAEs” of the present method for
N = 7, 15, 23; 31. Here again we find that the Gegenbauer discretizations at the
positive values of α are favorable in all four cases.
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Figure 5.2: The numerical experiments of the HGIM on Example 5.3.1. Figure
(a) shows the graph of y(x) on [0, 1]. Figure (b) shows the MSEs of the HGIM
for N = 16; 64. Figure (c) shows the MAEs of the HGIM for N = 7, 15, 23; 31.

Example 5.3.2. Consider the following singular perturbation TPBVP:

εy′′ − y = 0, y(−1) = 1, y(1) = 2, (5.59)

with ε = 10−5.

Setting z = (1 + x)/2 transforms the problem into the following form:

4ε
d2y

dz2
− y = 0, y(0) = 1, y(1) = 2, (5.60)
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with the exact solution

y(z) =
e−50

√
10z(−2e50

√
10 + e100

√
10 − e100

√
10z + 2e50

√
10(2z+1))

−1 + e100
√

10
.

The HGIM transforms the problem into the following linear system of equations:

4ε(wi − zi − 1) +
N∑
j=0

(p̂
(2)
N+1,jzi − p̂

(2)
ij )wj = 0, i = 0, . . . , N. (5.61)

This example represents a clear contest between Legendre, Chebyshev, and Gegen-
bauer polynomials. It is well-known that Legendre and Chebyshev polynomial
expansions give an exceedingly good representation of functions which rapidly
change in narrow boundary layers (Gottlieb and Orszag, 1977). Here we show
that the Gegenbauer family of polynomials can perform better for several values
of α. Figure 5.3(b) shows the “MSEs” of the present method for N = 16, 64; 128.
The figure shows that the Gegenbauer collocations at the positive values of α
are in favor of the negative values for several values of N . For large values of
N , collocations at both positive and negative values of α produce excellent con-
vergence properties. Comparisons between the present method and Greengard’s
Chebyshev spectral method (Greengard, 1991) are shown in Table 5.2. The re-
sults confirm the spectral decay of the error for increasing values of N , and
the performance of the present method clearly outperforms Greengard’s method
(Greengard, 1991). Moreover, the table reveals that the Gegenbauer polynomial
approximations are better than those obtained by the Chebyshev and Legendre
polynomials for both values of N = 16; 64.
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Figure 5.3: The numerical experiments of the HGIM on Example 5.3.2. Figure (a)
shows the graph of y(z) on [0, 1]. Figure (b) shows the MSEs for N = 16, 64; 128.
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Example 5.3.3. Consider the following linear TPBVP:

y′′ + 5y′ + 10000y = −500 cos(100x)e−5x, y(0) = 0, y(1) = sin(100)e−5, (5.62)

with the very oscillatory solution y(x) = sin(100x)e−5x.

The HGIM transforms the problem into the following linear system of equa-
tions:

wi +
N∑
j=0

(10000(p̂
(2)
ij − p̂

(2)
N+1,jxi) + 5(p̂

(1)
ij − p̂

(1)
N+1,jxi))wj +

M∑
j=0

(p
(2)
N+1,jrN+1,jxi − p(2)

ij rij)

− sin(100)e−5xi = 0, i = 0, . . . , N. (5.63)

Since the solution exhibits oscillatory behavior with ever increasing frequency
near the boundary, convergence can only be achieved if sufficient modes are in-
cluded to resolve the most rapid oscillations present (Coutsias et al., 1996b).
Figure 5.4(b) shows that Gegenbauer discretizations at the negative values of
α are generally in favor of the positive values for N = 16, while discretiza-
tions at both positive and negative values of α share excellent approximation
results for N = 64. Comparisons between the present method and Greengard’s
method (Greengard, 1991) are shown in Table 5.2. The table suggests that the
Gegenbauer polynomials can produce better approximations than Chebyshev and
Legendre polynomials.
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Figure 5.4: The numerical experiments of the HGIM on Example 5.3.3. Figure
(a) shows the graph of y(x) on [0, 1]. Figure (b) shows the MSEs for N = 16; 64.

Example 5.3.4. Consider the following BVP:

y′′(x) + xe−xy(x) = ex + x, −1 ≤ x ≤ 1, (5.64)
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with the Robin boundary conditions

y′(−1) + 2y(−1) = 3e−1, y′(1)− y(1) = 0. (5.65)

The problem has the exact solution y(x) = ex.

Applying the HGIM yields the following algebraic system of equations:

wi +
N∑
j=0

(p̂
(2)
i,j + (1 + 2xi)(p̂

(1)
N+1,j − p̂

(2)
N+1,j))xje

−xjwj

−
M∑
j=0

(p
(2)
ij rij + (p

(2)
N+1,j − p

(1)
N+1,j)(1 + 2xi)rN+1,j) + 3e−1xi = 0, i = 0, . . . , N,

(5.66)

where r(x) = ex + x. Figure 5.5 shows the numerical behavior of the HGIM
using M = 16 for N = 8; 10. The best approximations for both cases are re-
ported at α = 0.6; 1. This problem was solved by Elbarbary (2007) using Cheby-
shev pseudospectral integration matrices after recasting the BVP into its integral
form. Comparisons between the HGIM using M = 16 and Elbarbary’s method
(Elbarbary, 2007) are shown in Table 5.3 for N = 8; 10. Notice here the rapid
convergence accomplished by the present method by increasing the number of the
columns of the P-matrix without the need to increase the number of the solution
points. Indeed, the table shows that a small number of solution points as N = 8
is sufficient to achieve almost full machine precision. This highly desirable feature
is a conspicuous contribution of the HGIM over the standard spectral numerical
schemes, and a clear evident on the effectiveness of the Gegenbauer approximation
methods over the conventional Chebyshev and Legendre methods.
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Figure 5.5: The numerical experiments of the HGIM on Example 5.3.4. Figure
(a) shows the graph of y(x) on [−1, 1]. Figure (b) shows the MAEs for N = 8; 10.
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Example 5.3.4
xi Elbarbary’s Chebyshev pseudospectral Present HGIM Elbarbary’s Chebyshev pseudospectral Present HGIM

integration method (Elbarbary, 2007) integration method (Elbarbary, 2007)

N = 8 N = 10

x0 4.0× 10−10 2.8× 10−16 4.2× 10−13 3.9× 10−16

x1 3.5× 10−10 1.1× 10−16 3.9× 10−13 1.7× 10−16

x2 4.1× 10−10 1.1× 10−16 4.5× 10−13 2.8× 10−16

x3 1.2× 10−10 2.2× 10−16 1.8× 10−13 0
x4 5.0× 10−11 0 2.6× 10−13 0
x5 9.6× 10−12 2.2× 10−16 7.9× 10−14 1.1× 10−16

x6 2.8× 10−10 2.2× 10−16 1.3× 10−13 4.4× 10−16

x7 2.8× 10−10 4.4× 10−16 5.9× 10−13 0
x8 3.3× 10−10 0 3.3× 10−13 8.9× 10−16

x9 3.1× 10−13 4.4× 10−17

x10 3.5× 10−13 0

MAE 4.1× 10−10 4.4× 10−16 5.9× 10−13 8.9× 10−16

Table 5.3: Comparison of the present method with Elbarbary’s Chebyshev pseu-
dospectral integration method (Elbarbary, 2007). The results are the observed
MAEs at each collocation node xi. The results of the present method are reported
at α = 0.6; 1 for N = 8; 10, respectively.

Example 5.3.5. Consider the following linear fourth-order BVP:

y(4) + xy = −(8 + 7x+ x3)ex, (5.67)

with the boundary conditions

y(0) = 0, y′(0) = 1, y′′(1) = −4e, y′′′(1) = −9e. (5.68)

The exact solution is y(x) = x(1− x)ex.

Let r(x) = −(8 + 7x + x3)ex, then the HGIM transforms the problem into a
linear system of equations of the form Aw = b, where the entries of the coefficient
matrix A = (aij) and the column vector b = (bi) are given by

aij = δij +
1

6
xj(6p̂

(4)
ij − x2

i ((xi − 3)p̂
(1)
N+1,j + 3p̂

(2)
N+1,j)), (5.69)

bi = −1

6
x3
i (

M∑
j=0

p
(1)
N+1,jrN+1,j + 9e) +

1

2
x2
i (

M∑
j=0

p
(1)
N+1,jrN+1,j −

M∑
j=0

p
(2)
N+1,jrN+1,j + 5e)

+
M∑
j=0

p
(4)
ij rij + xi, i, j = 0, . . . , N. (5.70)

This problem was recently solved by Zahra (2011) using a spline method based
on an exponential spline function. Comparisons between the present HGIM and
Zahra’s sixth-order spline method (Zahra, 2011) are shown in Table 5.4. The
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latter reports the MAEs obtained in both methods for N = 8, 16, 32;M = N .
The results confirm that the Gegenbauer polynomials achieve higher-order ap-
proximations than the standard Chebyshev and Legendre polynomials for many
suitable values of α. Figure 5.6 shows the numerical behavior of the HGIM. In
particular, Figure 5.6(b) shows the MAEs of the present method at the same
values of N . The figure suggests that higher precision approximations are ex-
pected via discretizations at the positive values of α for small values of N , while
Gegenbauer discretizations at the negative and some positive values of α share
excellent results for large values of N .
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Figure 5.6: The numerical experiments of the HGIM on Example 5.3.5. Figure
(a) shows the graph of y(x) on [0, 1]. Figure (b) shows the MAEs of the HGIM
for N = 8, 16; 32.

Example 5.3.5

N Zahra’s 6th-order spline method (Zahra, 2011) Present HGIM

8 2.5316× 10−07 7.6537× 10−09

(0.9)
16 2.4800× 10−09 6.6613× 10−16

(0.3)
32 2.0891× 10−11 6.8001× 10−16

(0.6)

Table 5.4: Comparison of the present method with Zahra’s sixth-order spline
method (Zahra, 2011).

Example 5.3.6. Consider the following Fredholm integral equation of the second
kind:

y(x)−
∫ 1

−1

K(x, t)y(t)dt = f(x), x ∈ [−1, 1], (5.71)
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with the kernel function K(x, t) = (x− t)3/(x2(1 + t2));

f(x) =
√

1 + x2 − 3(
√

2− arcsinh(1))

x
− 2x arcsinh(1).

The exact solution is y(x) =
√

1 + x2.

Applying the HGIM leads to the following algebraic system of equations:

wi −
N∑
j=0

p̂
(1)
N+1,jK(xi, xj)wj − fi = 0, i = 0, . . . , N, (5.72)

where fi = f(xi)∀i. Long et al. (2009) solved this problem with a multi-projection
and iterated multi-projection methods using global polynomial bases– typically,
Legendre polynomials were used as the orthonormal basis. The M-Galerkin and
M-collocation methods employed lead to iterative solutions approximating the
exact solution y with n−4k-order of convergence in the supremum norm. Com-
parisons with Long et al. (2009) are shown in Table 5.5 for N = 3, 5, 7; 9. The re-
sults show that the present HGIM outperforms the M-Galerkin and M-collocation
methods. Moreover, the present method enjoys the luxury of spectral convergence
using a relatively small number of solution nodes. Figure 5.7(b) shows that high-
precision approximations are obtained for Gegenbauer collocations at the negative
values of α, while degradation of precision can be observed for increasing values of
α. Furthermore, the figure manifests that the Gegenbauer polynomials generally
perform better than the Chebyshev and Legendre polynomials. Nonetheless, it
is interesting to note that the best approximations of the present method in the
cases N = 5; 9 are reported at α = 0.5 corresponding to the zeros of the Legendre
polynomials. Also, the second better approximation for N = 7 is reported at
α = 0.5 (the best result is reported at α = −0.4). This suggests that Legendre
polynomials can usually perform well for similar problems.

Example 5.3.7. Consider the following Fredholm integro-differential equation:

y′(x)− y(x)−
∫ 1

0

esxy(s)ds =
1− ex+1

x+ 1
, y(0) = 1, (5.73)

with the exact solution y(x) = ex.

Applying the HGIM results in the following algebraic system of linear equa-
tions:

wi −
N∑
j=0

(p̂
(1)
ij +

N∑
k=0

p̂
(1)
N+1,j p̂

(1)
ik e

xkxj)wj −
M∑
j=0

p
(1)
ij rij − 1 = 0, i = 0, . . . , N,

(5.74)
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Figure 5.7: The numerical experiments of the HGIM on Example 5.3.6. Figure
(a) shows the graph of y(x) on [−1, 1]. Figure (b) shows the MAEs of the HGIM
for N = 3, 5, 7; 9.

where r(x) = (1− ex+1)/(x+ 1). Figure 5.8(b) shows the MAEs of the HGIM for
M = 14;N = 3, 4, 6, 7, 9; 10. The best possible approximations obtained in the
first five cases are reported at α = 0.5, while the best approximation in the last
case is reported at α = 0.7. This problem was solved by Maleknejad and Attary
(2011) using Shannon wavelets approximation based on Cattani’s connection co-
efficients (Cattani, 2008). The Shannon wavelets expansions result in a linear
system of dimension (N1 +2)(2M1 +1), with (N1 +2)(2M1 +1) unknowns, where
N1;M1 are some parameters referring to the numbers of the terms in the Shan-
non scaling functions and mother wavelets expansions. Comparisons between the
HGIM using M = 14 and Maleknejad and Attary’s method (Maleknejad and
Attary, 2011) are shown in Table 5.6. The table demonstrates that the present
method produces linear systems of lower dimensions than Maleknejad and At-
tary’s method (Maleknejad and Attary, 2011), while achieving higher-order ap-
proximations. Hence the present HGIM may require less memory than alternative
methods.

Example 5.3.8. Consider the following third-order integro-differential equation:

y′′′(s) +

∫ π
2

0

sτy′(τ)dτ = sin(s)− s, (5.75)

with the initial conditions

y(0) = 1, y′(0) = 0, y′′(0) = −1.

The exact solution is y(s) = cos(s).

Setting s = π(x + 1)/4, τ = π(t + 1)/4 transforms the problem into a third-
order integro-differential equation defined on the domain [−1, 1], and has the
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Figure 5.8: The numerical experiments of the HGIM on Example 5.3.7. Figure
(a) shows the graph of y(x) on [0, 1]. Figure (b) shows the MAEs of the HGIM
for M = 14;N = 3, 4, 6, 7, 9; 10.

form

(
4

π
)3y′′′(x) + (

π

4
)2

∫ 1

−1

(x+ 1)(t+ 1)y′(t)dt = sin(
π

4
(x+ 1))− π

4
(x+ 1), (5.76)

with the conditions

y(−1) = 1, y′(−1) = 0, 16y′′(−1) = −π2.

The exact solution becomes y(x) = cos(π(x + 1)/4). The HGIM results in a
(N + 2)× (N + 2) algebraic linear system of the form Aw = b, where the entries
of the coefficient matrix A = (aij), and the column vector b = (bi) are given by

aij =


(
4

π
)3δij + (

π

4
)2

M∑
l=0

p
(3)
il (1 + zil)(2δN+1,j − p̂(1)

N+1,j), 0 ≤ j ≤ N,

(
4

π
)3δij +

π2

8

M∑
l=0

p
(3)
il (1 + zil)δN+1,j, j = N + 1,

(5.77)
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Example 5.3.7
Maleknejad and Attary’s method (Maleknejad and Attary, 2011) Present HGIM
N1 M1 MAE N MAE
2 2 1.23× 10−04 3 5.88× 10−05

(0.5)
2 3 2.95× 10−06 4 2.35× 10−06

(0.5)
4 3 4.98× 10−09 6 2.41× 10−09

(0.5)
5 2 4.30× 10−10 7 6.48× 10−11

(0.5)
8 3 9.28× 10−13 9 4.24× 10−14

(0.5)
9 3 1.77× 10−14 10 4.44× 10−15

(0.7)

Table 5.6: Comparison of the present method with Maleknejad and Attary’s
method (Maleknejad and Attary, 2011). The results are the observed MAEs in
both methods.

bi =
M∑
j=0

p
(3)
ij rij −

2

π
(1 + xi)

2 + (
4

π
)3, i = 0, . . . , N + 1, (5.78)

where r(x) = sin(π(x + 1)/4) − π(x + 1)/4; zil ∈ SN+1,M defined by Eq. (5.19).
The P-matrix introduced recently by Elgindy and Smith-Miles (2013b) has been
demonstrated to produce higher-order approximations by simply increasing the
number of its columns without the need to increase the number of the solution
nodes. This useful trick is illustrated in Figure 5.9(b), which shows the rapid
convergence of the HGIM for M = 16;N = 3, 7, 11; 15. This problem was solved
by El-Kady et al. (2009) using a Gegenbauer spectral method. The method
performs approximations to the highest order derivative in the linear integro-
differential equations and generates approximations to the lower order derivatives
through integration of the highest-order derivative. The resulting linear system is
then modeled as a mathematical programming problem solved using the partial
quadratic interpolation method (El-Gindy and Salim, 1990). Comparisons with
El-Kady et al.’s Gegenbauer integration method (El-Kady et al., 2009) are shown
in Table 5.7. The higher-order approximations obtained through the HGIM are
clearly evident from the table even for a relatively small number of solution
points. In fact, for a total number of solution points NT = 8, for instance,
the HGIM produces approximations of order O(16) twice the value of NT , i.e.
the approximations are accurate to almost full machine precision. Therefore
the precision of the Gegenbauer polynomial approximations as clearly seen from
the table can considerably exceed those obtained from both the Chebyshev and
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Legendre polynomials. Moreover, the table shows for many different values of N
that the Gegenbauer polynomials are very effective in the solution of high-order
integro-differential equations.
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Figure 5.9: The numerical experiments of the HGIM on Example 5.3.8. Figure (a)
shows the graph of y(x) on [−1, 1]. Figure (b) shows the MAE of the Gegenbauer
spectral method for M = 16, and N = 3, 7, 11; 15.

Example 5.3.8

NT El-Kady et al.’s Gegenbauer Present HGIM
integration method (El-Kady et al., 2009)

4 3.10421× 10−04 4.38620× 10−09

(0.5)
8 4.23487× 10−09 2.49800× 10−16

(0.5)
12 1.06581× 10−14 2.22045× 10−16

(-0.1)
16 1.11022× 10−15 3.33067× 10−16

(0.1, 0.2, 0.4; 0.9)

Table 5.7: Comparison of the present method with El-Kady et al.’s Gegenbauer
integration method (El-Kady et al., 2009). NT denotes the total number of nodes.
The results are the observed MAEs in both methods.

5.4 Concluding Remarks

This chapter reports an efficient numerical method for solving BVPs, integral
and integro-differential equations using GIMs. The key idea is to transform the
general BVPs and integro-differential equations into their integral reformulations,
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and then discretize using GIMs. The resulting algebraic linear system of equa-
tions can be solved for the solution values in the physical space using efficient
linear system solvers. The proposed HGIM applies GIMs which generally lead
to well-conditioned linear systems, and avoid the degradation of precision caused
by severely ill-conditioned SDMs. The algorithm presented is numerically sta-
ble, and spectral accuracy is achieved using a relatively small number of solution
points, which is a desired feature for a spectral method. The proposed HGIM has
the ability to obtain higher-order approximations without the need to increase the
number of the solution points. The applicability of the proposed method is illus-
trated via eight test examples. The obtained results are very consistent, with the
performance of the proposed method superior to other competitive techniques in
the recent literature regarding accuracy and convergence rate. Moreover, the de-
veloped Gegenbauer integration scheme is memory-minimizing and can be easily
programmed. Furthermore, the chapter suggests that the Gegenbauer polyno-
mials can generally perform better than their subclasses including Chebyshev
and Legendre polynomials on a wide variety of problems. The present HGIM is
broadly applicable and can be applied for solving many problems such as BVPs,
integral and integro-differential equations, optimization problems, optimal control
problems, etc.
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Chapter 6

Solving Optimal Control
Problems Using a Gegenbauer

Transcription Method



Chapter 6 is based on the article Elgindy, K. T., Smith-Miles, K. A.,
and Miller, B., 15–16 November 2012. Solving optimal control prob-
lems using a Gegenbauer transcription method. In: The Proceedings
of 2012 Australian Control Conference, AUCC 2012. Engineers Aus-
tralia, University of New South Wales, Sydney, Australia.

Abstract. In this chapter we describe a novel direct optimization method using
Gegenbauer-Gauss (GG) collocation for solving continuous-time optimal control
(OC) problems (CTOCPs) with nonlinear dynamics, state and control constraints.
The time domain is mapped onto the interval [0, 1], and the dynamical system for-
mulated as a system of ordinary differential equations is transformed into its in-
tegral formulation through direct integration. The state and the control variables
are fully parameterized using Gegenbauer expansion series with some unknown
Gegenbauer spectral coefficients. The proposed Gegenbauer transcription method
(GTM) then recasts the performance index, the reduced dynamical system, and the
constraints into systems of algebraic equations using optimal Gegenbauer quadra-
tures. Finally, the GTM transcribes the infinite-dimensional OC problem into
a parameter nonlinear programming (NLP) problem which can be solved in the
spectral space; thus approximating the state and the control variables along the
entire time horizon. The high precision and the spectral convergence of the dis-
crete solutions are verified through two OC test problems with nonlinear dynamics
and some inequality constraints. The present GTM offers many useful properties
and a viable alternative over the available direct optimization methods.

References are considered at the end of the thesis.



Chapter 6

Solving Optimal Control
Problems Using a Gegenbauer
Transcription Method

6.1 Introduction

Optimal control (OC) theory is an elegant mathematical tool for making optimal
decision policies pertained to complex dynamical systems. The theory plays an
increasingly important role in the design and modelling of modern systems with
broad attention from industry. The main goal of OC theory is to determine the
input OC signals which influence a certain process to satisfy some physical con-
straints while optimizing some performance criterion. Although extensive studies
have been conducted on OC problems governed by nonlinear dynamical systems,
determining the OC within high-precision is still challenging for many problems.
Classical solution methods such as the calculus of variations, dynamic program-
ming and Pontryagin’s maximum/minimum principle can provide the OC only
in very special cases, but in general, a closed form expression of the OC is usu-
ally out of reach and not even practical to obtain (Bertsekas, 2005; Gong et al.,
2006a). These difficulties drove the researchers and scholars, since last century, to
search for viable alternative computational techniques to the aforementioned clas-
sical methods, taking advantage of the giant evolution in the areas of numerical
analysis and approximation theory, and the advent of rapid and powerful digital
computers. Among the available computational methods for solving continuous-
time OC problems (CTOCPs), direct optimization methods convert the CTOCP
into a finite-dimensional nonlinear programming (NLP) problem through control
and/or state parameterization. The reduced NLP problem can be solved using
the available robust optimization solvers. The simplicity of the discretization
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procedure, the high accuracy, and the fast convergence of the solutions of the
discretized OC problem have made the direct optimization methods the ideal
methods of choice (Gong et al., 2008; Hesthaven et al., 2007), and well suited for
solving OC problems, cf. (Betts, 2009; Elnagar and Kazemi, 1995; Fahroo and
Ross, 2008; Garg et al., 2011a; Kang et al., 2008), and the references therein.

Our goal in this chapter is to develop an efficient direct optimization method
for solving CTOCPs. Moreover, we aim to establish a high-order numerical
scheme which results in a NLP problem with considerably low-dimension space
to facilitate the application of the NLP solvers, and accelerate the solution proce-
dure. The proposed method converts the CTOCP into a NLP problem through
the application of a spectral collocation scheme based on Gegenbauer polyno-
mials. To overcome the ill-conditioning of the spectral differentiation matrices
(SDMs), the underlying dynamical system of the differential equations is trans-
formed into its integral formulation through direct integration. Both the state and
the control variables are parameterized and approximated by truncated Gegen-
bauer expansion series with unknown Gegenbauer spectral coefficients. The time
domain is discretized at the Gegenbauer-Gauss (GG) points. The integral oper-
ations are approximated using the optimal Gegenbauer operational matrices of
integration known as the optimal P-matrices (see the appendix). The developed
technique reduces the cost function, the dynamics, and the constraints into sys-
tems of algebraic equations; thus greatly simplifying the problem. In this manner,
the infinite-dimensional OC problem is transcribed into a finite-dimensional NLP
problem, which can be solved in the Gegenbauer spectral space using the well-
developed NLP techniques and computer codes. The remaining of the chapter is
organized as follows: In Section 6.2 we present the CTOCP statement. In Section
6.3 we introduce the Gegenbauer transcription method (GTM) for the solution
of CTOCPs. Two numerical experiments are presented in Section 6.4 to demon-
strate the efficiency and the spectral accuracy of the proposed method followed
by a discussion and some concluding remarks in Section 6.5. A brief background
on the Gegenbauer polynomials and their associated quadratures is provided in
the appendix.
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6.2 The OC Problem Statement

Consider, without loss of generality, the following nonlinear CTOCP (P1) with
fixed final time, mixed state-control path and terminal inequality constraints:

minimize J(u(t)) = Φ(x(1)) +

∫ 1

0

L(x(τ), u(τ), τ)dτ , (6.1a)

subject to ẋ(t) = f(x(t), u(t), t), (6.1b)

x(0) = x0, (6.1c)

ψi(x(t), u(t), t) ≤ 0, i = 0, . . . , `; (6.1d)

φ(x(1), u(1)) ≤ 0. (6.1e)

Problem (P1) is known as the Bolza problem, where [0, 1] is the time interval
of interest, x : [0, 1] → Rn is the state vector, ẋ : [0, 1] → Rn is the vector of
first-order time derivatives of the states, u : [0, 1] → Rm is the control vector,
Φ : Rn → R is the terminal cost function, L : Rn×Rm×R→ R is the Lagrangian
function, f : Rn × Rm × R → Rn is a vector field, where each system function
fi is continuously differentiable with respect to x, and is continuous with respect
to u. Both functions Φ and L are continuously differentiable with respect to
x; L is continuous with respect to u. J is the cost function to be minimized.
Equations (6.1b) & (6.1c) represent the dynamics of the system and its initial
state condition. ψi : Rn×Rm×R→ R is an inequality constraint on the state and
the control vectors for each i. φ : Rn×Rm → R is a terminal inequality constraint
on the state and the control vectors. We shall assume that for any admissible
control trajectory u(t), the dynamical system has a unique state trajectory x(t).
The goal of Problem (P1) is to determine the optimal admissible control policy
u(t) in the time horizon [0, 1] such that J is minimized. In general, a CTOCP
defined over the physical time domain [t0, tf ] can be reformulated into the Bolza
Problem (P1) using the strict change of variable t = (τ − t0)/(tf − t0), where
τ ∈ [t0, tf ]; t0 and tf are the initial and final times, respectively.

6.3 The GTM

In this section we shall describe a novel method for the numerical solution of
nonlinear CTOCPs formulated in the preceding section based on GG collocation.
The numerical scheme involves the approximation of the system dynamics, where
it is necessary to approximate the derivatives of the state variables at the GG
points. This can be accomplished through SDMs. Nevertheless, SDMs are known
to be severely ill-conditioned (Elbarbary, 2006, 2007; Funaro, 1987), and their im-
plementation causes degradation of the observed precision (Tang and Trummer,
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1996). Moreover, it has been shown that the time step restrictions can be more
severe than those predicted by the standard stability theory (Trefethen, 1988; Tre-
fethen and Trummer, 1987). For higher-order SDMs, the ill-conditioning becomes
very critical to the extent that developing efficient preconditioners is extremely
crucial (Elbarbary, 2006; Hesthaven, 1998). Another approach is to transform
the dynamical system into its integral formulation, where the state and the con-
trol variables are approximated by truncated spectral expansion series, while the
integral operations are approximated by spectral integration matrices (SIMs).
This numerical scheme is generally well-behaved and associated with many ad-
vantages: (i) SIMs are known to be well-conditioned operators (Elbarbary, 2006,
2007; Elgindy, 2009; Elgindy and Smith-Miles, 2013b,c; Greengard, 1991; Lund-
bladh et al., 1992). (ii) The well-conditioning of SIMs is essentially unaffected for
increasing number of grid points (Elgindy, 2009; Elgindy and Smith-Miles, 2013c).
(iii) Greengard and Rokhlin (1991) showed that the integral equation formulation,
when applied to two-point boundary value problems (TPBVPs) for instance, is
insensitive to boundary layers, insensitive to end-point singularities, and leads
to small condition numbers while achieving high computational efficiency. (iv)
The use of integration for constructing the spectral approximations improves the
rate of convergence of the spectral interpolants, and allows the multiple boundary
conditions to be incorporated more efficiently (Elgindy, 2009; Elgindy and Smith-
Miles, 2013b,c; Mai-Duy and Tanner, 2007). These useful features in addition to
the promising results obtained by Elgindy and Smith-Miles (2013b,c) motivate
us to apply the Gegenbauer integration scheme for approximating the underlying
dynamical system of the CTOCP.

Integrating Equation (6.1b) and using the initial condition (6.1c) recasts the
dynamical system into its integral formulation given by

x(t) =

∫ t

0

f(x(τ), u(τ), τ)dτ + x0. (6.2)

Equation (6.2) together with Equations (6.1a), (6.1d); (6.1e) represent the in-
tegral Bolza problem (P2). To approximate the CTOCP, we seek Gegenbauer
polynomial expansions of the state and the control variables in the form

xr(t) ≈
L∑
k=0

arkC
(α)
k (t), r = 1, . . . , n, (6.3a)

us(t) ≈
M∑
k=0

bskC
(α)
k (t), s = 1, . . . ,m, (6.3b)

and collocate at the GG points ti ∈ S
(α)
N = {ti|C(α)

N+1(ti) = 0, i = 0, . . . , N}.
Let tN+1 = 1, êl ∈ Rl+1 : (êl)k = 1, zi′j ∈ SN+1,MP

, a = (a1, . . . , an)T , b =
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(b1, . . . , bm)T , ar = (ar0, . . . , arL)T , bs = (bs0, . . . , bsM)T , ξ
(α)
l ∈ R(N+1)×(l+1) :

(ξ
(α)
l )ik = (C

(α)
k (ti)), ξ̂

(α)
li

T
∈ Rl+1 : (ξ̂

(α)
li )k = (ξ

(α)
l )ik, ζ

(α)
l ∈ R(N+2)×(Mp+1)×(l+1) :

(ζ
(α)
l )i′jk = (C

(α)
k (zi′j)), ζ̂

(α)
li′j

T
∈ Rl+1 : (ζ̂

(α)
li′j )k = (ζ

(α)
l )i′jk, r = 1, . . . , n; s =

1, . . . ,m; i = 0, . . ., N ; i′ = 0, . . . , N + 1; j = 0, . . . ,MP ; k = 0, . . . , l;MP , l ∈ Z+.
Hence the state and the control vectors at the GG solution points can be written
as

x(ti) ≈ (In ⊗ ξ̂(α)
Li )a, (6.4a)

u(ti) ≈ (Im ⊗ ξ̂(α)
Mi)b, (6.4b)

where Il is the identity matrix of order l; ⊗ is the Kronecker product of matrices.
Using Equation (6.21), we can show that x(1) = (In ⊗ êTL)a;u(1) = (Im ⊗ êTM)b.
Hence the discrete approximation of the cost function can be represented by

J ≈ J̃(a, b) = Φ((In ⊗ êTL)a) + P
(1)
N+1L̂, (6.5)

where L̂ ∈ RMP+1 : (L̂)j = L((In ⊗ ζ̂
(α)
L,N+1,j)a, (Im ⊗ ζ̂

(α)
M,N+1,j)b, zN+1,j); j =

0, . . . ,MP . The discrete dynamical system at the GG grid points is given by

Hi(a, b) = (In ⊗ ξ̂(α)
Li )a− (In ⊗ P (1)

i )Fi − x0 ≈ 0, i = 0, . . . , N, (6.6)

where Fi = (F1i, . . . , Fni)
T , Fri = (fri0, . . . , friMP

)T , frij = fr((In ⊗ ζ̂(α)
Lij)a, (Im ⊗

ζ̂
(α)
Mij)b, zij), r = 1, . . . , n; i = 0, . . . , N ; j = 0, . . . ,MP . The discrete approxi-

mations of the inequality constraints (6.1d) and the terminal constraint (6.1e)
become

cij(a, b) = ψj((In ⊗ ξ̂(α)
Li )a, (Im ⊗ ξ̂(α)

Mi)b, ti) ≤ 0, i = 0, . . . , N ; j = 0, . . . , `;
(6.7)

ct(a, b) = φ((In ⊗ êTL)a, (Im ⊗ êTM)b) ≤ 0, (6.8)

respectively. Hence the CTOCP (P1) is reduced to the following parameter NLP
(P3):

minimize J̃(a, b), (6.9a)

subject to Hi(a, b) = 0, (6.9b)

cij(a, b) ≤ 0, i = 0, . . . , N ; j = 0, . . . , `; (6.9c)

ct(a, b) ≤ 0. (6.9d)

Problem (P3) can be solved using well-developed optimization software for the
Gegenbauer coefficients a; b. The state and the control variables can then be eval-
uated at the GG nodes using Equations (6.4a) & (6.4b). In fact, since the GTM
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solves the CTOCP (P1) in the spectral space, the approximation can immediately
be evaluated at any time history of both the control and the state variables once
the approximate spectral coefficients are found without invoking any interpola-
tion method. This is a clear advantage over the “classical” discretization methods
such as the finite difference schemes, which require a further step of interpola-
tion to evaluate an approximation at an intermediate point. This useful feature
establishes the power of the proposed GTM for solving CTOCPs as the optimal
state and control profiles are readily determined.

6.4 Illustrative Numerical Examples

Example 6.4.1 (The path planning in a threat environment). Consider the
problem of determining the OC γ(t) ∈ C[0, T ] which minimizes the performance
index

J =

∫ T

0

f(x(t), y(t))dt, (6.10a)

subject to ẋ(t) = V cos(γ(t)), (6.10b)

ẏ(t) = V sin(γ(t)), (6.10c)

|γ(t)| ≤ π, (6.10d)

V ∈ [V1, V2], (6.10e)

T ∈ [T1, T2], (6.10f)

(x(0), y(0)) = (−3,−4), (6.10g)

(x(T ), y(T )) = (3, 3), (6.10h)

where

f(x, y) = 4/((x+ 1.3)2 + (y + 1.3)2 + 1) + 2/((x− 1.9)2 + (y − 1.6)2 + 1)

+ 1/((x− 0.4)2 + (y − 0.1)2 + 1) + 1/((x− 0.6)2 + (y − 0.1)2 + 0.5),
(6.10i)

V1, V2, T1;T2 are some real parameters such that V1 < V2;T1 < T2.

Example 6.4.1 was studied by Miller et al. (2011), and serves as a model
case for a CTOCP governed by a nonlinear dynamical system with boundary
conditions and control constraints. The OC model asks for the optimal path
planning in 2D for an unmanned aerial vehicle (UAV) mobilizing in a stationary
risk environment. The control γ(t) is the yaw angle constrained by Inequality
(6.10d). The running cost f represents the hazard rate along the path (the
stationary threats relief). T is a free variable and represents the flight time; V
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is a constant linear velocity satisfying Equation (6.10e). A = (−3,−4);B =
(3, 3) are the initial and terminal conditions, respectively. The nonlinearity of
the dynamical system, the boundary conditions and the control path constraint
represent a very challenging task and add more complexity both analytically
and computationally. Therefore the implementation of efficient and advanced
numerical discretization schemes is of utmost importance.

Through the change of variable s = t/T , the CTOCP can be restated as
follows:

minimize J = T

∫ 1

0

f(x̃(s), ỹ(s))ds, (6.11a)

subject to ˙̃x(s) = TV cos(γ(sT )) = Ṽ cos(γ̃(s)), (6.11b)

˙̃y(s) = TV sin(γ(sT )) = Ṽ sin(γ̃(s)), (6.11c)

|γ̃(s)| ≤ π, (6.11d)

Ṽ ∈ [V1T, V2T ], (6.11e)

(x̃(0), ỹ(0)) = (−3,−4), (6.11f)

(x̃(1), ỹ(1)) = (3, 3), (6.11g)

where x̃(s) = x(sT ); ỹ(s) = y(sT ). Hence if we consider the auxiliary cost func-
tion

Jaux = J/T =

∫ 1

0

f(x̃(s), ỹ(s))ds, (6.12)

and the dynamical system equations (6.11b) and (6.11c) together with Conditions
(6.11d)-(6.11g), then the cost function J and the auxiliary cost function Jaux are
related by (Miller et al., 2011)

min
V,T,γ

J(V, T, γ) = min
V

(
1

V
min
Ṽ

(Ṽ min
γ̃
Jaux(Ṽ , γ̃))

)
. (6.13)

Equations (6.12), (6.11b)-(6.11g) represent the auxiliary 2D path planning prob-
lem (P4). Notice here that the velocity V may be viewed as an added control
parameter influencing the values of the angular velocities in reasonable limits.
The best path corresponding to the minimum risk value is the path correspond-
ing to the minimum value of the product Ṽ Jaux. The optimal paths of the original
problem are then obtained from the relations x(t) = x̃(t/T ), y(t) = ỹ(t/T ), γ(t) =
γ̃(t/T ), with T = Ṽ /V ; min J = Tmin Jaux. Using a penalization approach,
Miller et al. (2011) were able to recast the CTOCP into a TPBVP, which was
solved numerically using MATLAB software. The reported risk integral value
was found to be J = TJaux ≈ 3.1.

The implementation of the GTM presented in Section 6.3 involves three main
stages:
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(i) Recasting the dynamical system into its integral formulation given by

x̃(s) = Ṽ

∫ s

0

cos(γ̃(τ))dτ − 3; (6.14a)

ỹ(s) = Ṽ

∫ s

0

sin(γ̃(τ))dτ − 4. (6.14b)

(ii) The approximation of the state and the control variables by the Gegenbauer
expansion series

x̃(s) ≈
L∑
k=0

a1,kC
(α)
k (s), (6.15a)

ỹ(s) ≈
L∑
k=0

a2,kC
(α)
k (s); (6.15b)

γ̃(s) ≈
M∑
k=0

bkC
(α)
k (s). (6.15c)

(iii) The discretization of the time domain at the GG points si ∈ S(α)
N .

The GTM then transcribes the CTOCP (P4) into the following parameter finite-
dimensional NLP problem (P5):

minimize Jaux ≈ P
(1)
N+1f̂ , (6.16a)

subject to (I2 ⊗ ξ̂(α)
Li )a = Ṽ (I2 ⊗ P (1)

i )=i − (3, 4)T , (6.16b)

(I2 ⊗ êTL)a = 3ê1, (6.16c)

Ṽ (I2 ⊗ P (1)
N+1)=N+1 = (6, 7)T , (6.16d)∣∣∣ξ̂(α)
Mib
∣∣∣ ≤ π, (6.16e)

where =i′ = (cos(χ
(α)
Mi′b), sin(χ

(α)
Mi′b))

T , χ
(α)
Mi′ ∈ R(MP+1)×(M+1) : (χ

(α)
Mi′)jk = (ζ

(α)
M )i′jk,

(f̂)j = f(ζ̂
(α)
L,N+1,ja1, ζ̂

(α)
L,N+1,ja2), i′ = 0, . . . , N+1; i = 0, . . . , N ; j = 0, . . . ,MP ; k =

0, . . . ,M . The reduced NLP (P5) can be solved for the Gegenbauer coefficients
a1 = (a1,0, . . . , a1,L)T , a2 = (a2,0, . . . , a2,L)T ; b = (b0, . . . , bM)T using the available
powerful optimization methods. Our numerical results for V = 2 are shown in
Table 6.1, where all calculations were performed on a personal laptop with a 2.53
GHz Intel Core i5 CPU and 4G memory running MATLAB 7.10.0.499 (R2010a)
software in double precision real arithmetic. The numerical experiments were
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implemented using MATLAB “fmincon” interior-point algorithm optimization
solver with the solutions termination tolerance “TolX” = 10−15. The P-matrix
was constructed via Algorithm 2.2 given in (Elgindy and Smith-Miles, 2013b)
with MP = Mmax = 20. The average CPU time in 100 runs taken by the GTM
using α = 0.2;N = L = M = 8 was found to be 2.09 seconds. The (MAE)BC
was found to be 7.1054 × 10−15, and the risk integral value J ≈ 2.96. The risk
integral value J then decreases for increasing values of the parameters N,L,M ,
and some suitable values of α. For α = −0.4, N = 9;L = M = 12, the calculated
risk integral value was found to be J ≈ 2.89. We notice that the approximate
cost function values J obtained by the GTM are lower than the approximate
value obtained in (Miller et al., 2011) for several values of α,N, L;M with very
accurate constraints satisfaction. This shows the greater accuracy and efficiency
of the proposed GTM developed in our research work. The OC plot is shown
in Figure 6.1(a), and the optimal state trajectory is shown in Figure 6.1(b) and
Figure 6.2. The latter manifests that the best path for the UAV through the risk
environment is to move around the threats’ centers and mountain terrain.

Example 6.4.1

Present GTM

Ṽ Jaux Ṽ Jaux (MAE)BC T J = TJaux

L = M = 8 at S
(0.2)
8 14.3768 0.4115 5.9164 7.1054× 10−15 7.1884 2.9582

L = M = 9 at S
(−0.2)
9 14.3768 0.4042 5.8108 4.4409× 10−16 7.1884 2.9054

L = M = 10 at S
(−0.1)
8 14.5610 0.3972 5.7839 4.4409× 10−16 7.2805 2.8919

L = M = 12 at S
(−0.4)
9 14.3768 0.4017 5.7750 8.88178× 10−16 7.1884 2.8875

Table 6.1: The results of the present GTM for V = 2, and different values of
α,N, L;M . (MAE)BC denotes the MAE at the boundary condition (6.10h).

Example 6.4.2. Consider Example 6.4.1 with the following hazard relief func-
tion:

f(x, y) = 1/(x2 + y2 + 0.5) + 1/(x2 + (y − 4)2 + 1) + 2/((x− 2)2 + (y + 4)2 + 1).
(6.17)

This example is similar to Example 6.4.1 with a change in the mountains ter-
rain localization and their slopes, where the new threats’ centers are (0, 0)T , (0, 4)T ;
(2,−4)T . The application of the GTM leads to the reduced NLP (P5). Table 6.2
shows the GTM results for different values of α,N, L;M . We notice here that
the best results are reported at the GG discretization points set S

(α)
N for α < 0.
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(a) (b)

Figure 6.1: The numerical experiments of the GTM on Example 6.4.1. Figure
(a) shows the profile of the control history on the calculated flight time domain
[0, 7.188]. Figure (b) shows the 2D state trajectory in the hazard relief contour.

The results are obtained at S
(0.2)
8 using L = M = 8.

The average CPU time in 100 runs using α = −0.1;N = L = M = 5 was found
to be 0.7956 seconds. The (MAE)BC was found to be 4.885× 10−15, and the risk
integral value J ≈ 1.44. Hence the adapted GTM for the solution of intricate
CTOCPs reduces the required calculation time significantly while achieving very
precise constraints satisfaction. The convergence of the GTM increases rapidly
to the risk integral value J ≈ 1.42 for increasing number of the collocation points
and the Gegenbauer expansion terms. The OC plot is shown in Figure 6.3(a),
and the optimal state trajectory is shown in Figure 6.3(b) and Figure 6.4. In
this example, the best path for the UAV through the risk environment is to move
across the hazard mountains.

Example 6.4.2

Present GTM

Ṽ Jaux Ṽ Jaux (MAE)BC T J = TJaux

L = M = 5 at S
(−0.1)
5 12.5351 0.2296 2.8782 4.8850× 10−15 6.2676 1.4391

L = M = 6 at S
(−0.4)
6 13.2718 0.2146 2.8482 2.0872× 10−14 6.6359 1.4241

L = M = 8 at S
(−0.3)
8 12.7193 0.2239 2.8476 4.4409× 10−16 6.3596 1.4238

L = M = 10 at S
(−0.4)
10 11.9826 0.2375 2.8455 8.8818× 10−16 5.9913 1.4227

Table 6.2: The results of the present GTM for V = 2, and different values of
α,N, L;M .

172



Chapter 6

Figure 6.2: The figure shows the projected state trajectory in a black solid
line along the 3D hazard relief. A′;B′ denote the points (−3,−4, f(−3,−4));

(3, 3, f(3, 3)), respectively. The results are obtained at S
(0.2)
8 using L = M = 8.

6.5 Discussion and Conclusion

The implementation of the GTM reveals many fruitful outcomes over the standard
variational methods and direct collocation methods. The proposed GTM neither
requires the explicit derivation and construction of the necessary conditions nor
the calculation of the gradients ∇xL of the Lagrangian function L(x(t), u(t), t)
w.r.t. the state variables, yet it is able to produce rapid convergence and achieve
high precision approximations. In contrast, the indirect method applied by Miller
et al. (2011) requires the explicit derivation of the adjoint equations, the control
equations, and all of the transversality conditions. Moreover, the user must calcu-
late the gradients ∇xL for the solution of the necessary conditions of optimality.
This useful feature of the GTM inherited from the direct optimization meth-
ods represents a significant contribution over the standard variational methods.
From another standpoint, since the optimal P-matrix is constant for a particular
GG solution points set, the GTM can be quickly used to solve many practical
trajectory optimization problems. Moreover, decreasing the values of the pa-
rameters MP ;Mmax required for the construction of the P-matrix via Algorithm
2.2 given in (Elgindy and Smith-Miles, 2013b) can reduce the calculations time
taken by the GTM for solving CTOCPs with a slight reduction in accuracy. For
instance, in Example 6.4.1, the GTM implemented using MP = Mmax = 14, for
α = −0.2;N = L = M = 8, produces the risk integral value J ≈ 3, which is close
to the value of J obtained in the first row of Table 6.1. The recorded average
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(a) (b)

Figure 6.3: The numerical experiments of the GTM on Example 6.4.2. Figure
(a) shows the profile of the control history on the calculated flight time domain
[0, 6.268]. Figure (b) shows the 2D state trajectory in the hazard relief contour.

The results are obtained at S
(−0.1)
5 using L = M = 5.

CPU time in 100 runs in this case was found to be 1.4976 seconds. Another
notable advantage of the GTM is that the successive integrals of the Gegenbauer
basis polynomials can be calculated exactly at the GG points through the optimal
P-matrix; thus the numerical error arises due to the round-off errors and the fact
that a finite number of the Gegenbauer basis polynomials are used to represent
the state and the control variables. The GTM handles the system dynamics using
SIMs celebrated for their stability and well-conditioning rather than SDMs which
suffer from severe ill-conditioning, and are prone to large round-off errors. The
GTM deals with the state and the control constraints smoothly; on the contrary,
the presence of such constraints often presents a difficulty in front of the pop-
ular classical theoretical tools such as Pontryagin’s minimum principle and the
Hamilton-Jacobi-Bellman equation.

The GTM is significantly more accurate than other conventional direct local
methods for smooth OC problems, enjoying the so called “spectral accuracy.”
For the class of discontinuous/nonsmooth OC problems, the existence and con-
vergence results of the similar approaches of direct pseudospectral methods have
been investigated and proved in a number of articles, cf. (Kang et al., 2005, 2007,
2008), for instances, for studies on OC problems with discontinuous controller
using Legendre polynomials. Here it is essential to acknowledge that the con-
vergence rate of standard direct orthogonal collocation/pseudospectral methods
applied for discontinuous/nonsmooth OC problems is not imposing as clearly ob-
served for OC problems with smooth solutions. In fact, the superior accuracy of
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Figure 6.4: The figure shows the projected state trajectory in a black solid
line along the 3D hazard relief. A′;B′ denote the points (−3,−4, f(−3,−4));

(3, 3, f(3, 3)), respectively. The results are obtained at S
(−0.1)
5 using L = M = 5.

the GTM cannot be realized in the presence of discontinuities and/or nonsmooth-
ness in the OC problem, or in its solutions, as the convergence rate grows slower in
this case for increasing number of the GG collocation points and the Gegenbauer
expansion terms. Some research studies in this area manifest that the accuracies
of direct global collocation methods and direct local collocation methods become
comparable for nonsmooth OC problems, cf. (Huntington, 2007). To recover the
exponential convergence property of the GTM in the latter case, the GTM can be
applied within the framework of a semi-global approach. Here the OC problems
can be divided into multiple-phases, which can be linked together via continuity
conditions (linkage constraints) on the independent variable, the state, and the
control. The GTM can then be applied globally within each phase. The reader
may consult Ref. (Rao, 2003), for instance, for a similar practical implementation
of this solution method. Another possible approach to accelerate the convergence
rate of the GTM, and to recover the spectral accuracy, is to treat the GTM with
an appropriate smoothing filter, cf. (Elnagar and Kazemi, 1998b), for instance,
for a parallel approach using a pseudospectral Legendre method. Other methods
include the knotting techniques developed in (Ross and Fahroo, 2002, 2004) for
solving nonsmooth OC problems, where the dynamics are governed by controlled
differential inclusions.

The work introduced in this chapter represents a major advancement in the
area of direct orthogonal collocation methods using Gegenbauer polynomials. The
simplicity and efficiency of the GTM allow for the implementation of a rapid and
accurate trajectory optimization. The developed GTM can be easily extended
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to higher dimensional OC problems under the same level of complexity, whereas
the application of the variational methods leads to a TPBVP, which is rather
unstable and hard to solve. Similar ideas to the one described in this chapter
can be applied on CTOCPs governed by integral equations or integro-differential
equations; therefore, the GTM encompasses a wider range of OC problems over
the standard direct optimization methods.

In the numerical examples presented in this chapter, the results clearly show
that the Gegenbauer polynomials are very effective in direct optimization tech-
niques for solving hard OC problems. The reported results seem to favour the
discretization of CTOCPs at the GG points for negative values of the Gegen-
bauer parameter α; however, better approximations using the GTM are possible
for different choices of the GG discretization points. Further tests and analysis
are necessary to investigate the stability, the accuracy, and the convergence of the
method to the solution of CTOCPs. Finally, the present GTM offers many useful
properties, and provides a strong addition to the arsenal of direct optimization
methods.

APPENDIX

6.5.1 Elementary Properties and Definitions

The Gegenbauer polynomial C
(α)
n (x), n ∈ Z+ of degree n and associated with

the real parameter α > −1/2 is a real-valued function, which appears as an
eigensolution to the singular Sturm-Liouville problem in the finite domain [−1, 1]
(Szegö, 1975):

d

dx
(1− x2)α+

1
2
dC

(α)
n (x)

dx
+ n(n+ 2α)(1− x2)α−

1
2C(α)

n (x) = 0. (6.18)

The weight function for the Gegenbauer polynomials is the even function (1− x2)α−1/2.
The form of the Gegenbauer polynomials is not unique, and depends on a certain
standardization. The Gegenbauer polynomials standardized by Doha (1990) so
that

C(α)
n (x) =

n!Γ(α + 1
2
)

Γ(n+ α + 1
2
)
P

(α−1
2
,α−1

2
)

n (x), n = 0, 1, 2, . . . , (6.19)

establish the following useful relations: C
(0)
n (x) = Tn(x), C

(1/2)
n (x) = Ln(x);C

(1)
n (x) =

(1/(n+ 1))Un(x), where P
(α−1

2
,α−1

2
)

n (x) is the Jacobi polynomial of degree n and
associated with the parameters α − 1

2
, α − 1

2
; Ln(x) is the nth-degree Legendre

polynomial, Tn(x) and Un(x) are the nth-degrees Chebyshev polynomials of the
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first and second kinds, respectively. The Gegenbauer polynomials constrained by
standardization (6.19) are generated using the three-term recurrence relation

(j + 2α)C
(α)
j+1(x) = 2(j + α)xC

(α)
j (x)− jC(α)

j−1(x), j ≥ 1, (6.20)

starting from C
(α)
0 (x) = 1; C

(α)
1 (x) = x. At the special values ±1, the Gegenbauer

polynomials satisfy the relation

C(α)
n (±1) = (±1)n. (6.21)

The Gegenbauer polynomials satisfy the orthogonality relation (Elgindy and
Smith-Miles, 2013b)∫ 1

−1

(1− x2)
α− 1

2C(α)
m (x)C(α)

n (x)dx = λ(α)
n δmn, (6.22)

where

λ(α)
n =

22α−1n!Γ2(α + 1
2
)

(n+ α)Γ(n+ 2α)
; (6.23)

δmn is the Kronecker delta function. The interested reader may further pursue
more information about the class of the Gegenbauer polynomials in many useful
textbooks and monographs, cf. (Abramowitz and Stegun, 1965; Szegö, 1975), for
instances.

6.5.2 The Optimal Gegenbauer Quadrature and Definite
Integrals Approximations

The method of establishing an optimal Gegenbauer quadrature was recently out-
lined by Elgindy and Smith-Miles (2013b) in the following theorem:

Theorem 6.5.1 (The optimal Gegenbauer quadrature). Let

SN,M = {zi,k|C
(α∗i )
M+1(zi,k) = 0, i = 0, . . . , N ; k = 0, . . . ,M}, (6.24)

be the generalized/adjoint GG points set, where α∗i are the optimal Gegenbauer
parameters in the sense that

α∗i = argmin
α>−1/2

η2
i,M(α), (6.25)

ηi,M(α) =

∫ xi

−1

C
(α)
M+1(x)dx/K

(α)
M+1; (6.26)

K
(α)
M+1 = 2M

Γ(M + α + 1)Γ(2α + 1)

Γ(M + 2α + 1)Γ(α + 1)
. (6.27)
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Moreover, let f(x) ∈ C∞[−1, 1] be approximated by the Gegenbauer polynomials
expansion series such that the Gegenbauer coefficients are computed by interpo-
lating the function f(x) at the adjoint GG points zi,k ∈ SN,M . Then there exist

a matrix P (1) = (p
(1)
ij ), i = 0, . . . , N ; j = 0, . . . ,M ; some numbers ξi ∈ [−1, 1]

satisfying ∫ xi

−1

f(x)dx =
M∑
k=0

p
(1)
ik (α∗i )f(zi,k) + E

(α∗i )
M (xi, ξi), (6.28)

where

p
(1)
ik (α∗i ) =

M∑
j=0

(λ
(α∗i )
j )

−1
ω

(α∗i )

k C
(α∗i )
j (zi,k)

∫ xi

−1

C
(α∗i )
j (x)dx, (6.29)

(ω
(α∗i )

k )−1 =
M∑
j=0

(λ
(α∗i )
j )

−1
(C

(α∗i )
j (zi,k))

2
, (6.30)

λ
(α∗i )
j =

22α∗i−1j!Γ2(α∗i + 1
2
)

(j + α∗i )Γ(j + 2α∗i )
; (6.31)

E
(α∗i )
M (xi, ξi) =

f (M+1)(ξi)

(M + 1)!
ηi,M(α∗i ). (6.32)

Proof. See (Elgindy and Smith-Miles, 2013b).

The matrix P (1) is the 1st-order optimal Gegenbauer integration matrix,
and is referred to by the optimal P-matrix. To describe the approximations
of the definite integrals

∫ xi
−1
f(x)dx of f(x) in matrix form using the P-matrix,

let P (1) = (P
(1)
0 P

(1)
1 . . . P

(1)
N )T , P

(1)
i = (p

(1)
i,0 , p

(1)
i,1 , . . . p

(1)
i,M); i = 0, . . . , N. Let also

V be a matrix of size (M + 1) × (N + 1) defined as V = (V0V1 . . . VN), Vi =
(f(zi,0), f(zi,1), . . .,f(zi,M))T , i = 0, . . . , N ; f(zij) is the function f calculated at
the adjoint GG nodes zi,j ∈ SN,M . Then the approximations of the definite
integrals

∫ xi
−1
f(x)dx of f(x) using the P-matrix are given by(∫ x0

−1

f(x)dx,

∫ x1

−1

f(x)dx, . . . ,

∫ xN

−1

f(x)dx

)T
≈ P (1) ◦ V T , (6.33)

where ◦ is the Hadamard product, with the elements of P (1) ◦ V T given by

(P (1) ◦ V T )i = P
(1)
i · Vi =

M∑
j=0

p
(1)
i,j f(zi,j), i = 0, . . . , N. (6.34)

The reader may consult (Elgindy and Smith-Miles, 2013b,c) for further informa-
tion on the developed Gegenbauer quadrature and its applications.
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Chapter 7

Fast, Accurate, and Small-Scale
Direct Trajectory Optimization

Using a Gegenbauer
Transcription Method



Chapter 7 is based on the published article Elgindy, K. T., Smith-
Miles, K. A., 15 October 2013. Fast, accurate, and small-scale direct
trajectory optimization using a Gegenbauer transcription method.
Journal of Computational and Applied Mathematics 251 (0), 93–116.

Abstract. This chapter reports a novel direct Gegenbauer (ultraspherical) tran-
scription method (GTM) for solving continuous-time optimal control (OC) prob-
lems (CTOCPs) with linear/nonlinear dynamics and path constraints. In (El-
gindy et al., 2012), we presented a GTM for solving nonlinear CTOCPs directly
for the state and the control variables, and the method was tailored to find the best
path for an unmanned aerial vehicle mobilizing in a stationary risk environment.
This chapter extends the GTM to deal further with problems including higher-
order time derivatives of the states by solving the CTOCP directly for the control
u(t) and the highest-order time derivative x(N)(t), N ∈ Z+. The state vector and
its derivatives up to the (N − 1)th-order derivative can then be stably recovered
by successive integration. Moreover, we present our solution method for solving
linear–quadratic regulator (LQR) problems as we aim to cover a wider collection
of CTOCPs with the concrete aim of comparing the efficiency of the current work
with other classical discretization methods in the literature. The proposed numer-
ical scheme fully parameterizes the state and the control variables using Gegen-
bauer expansion series. For problems with various order time derivatives of the
state variables arising in the cost function, dynamical system, or path/terminal
constraints, the GTM seeks to fully parameterize the control variables and the
highest-order time derivatives of the state variables. The time horizon is mapped
onto the closed interval [0, 1]. The dynamical system characterized by differential
equations is transformed into its integral formulation through direct integration.
The resulting problem on the finite interval is then transcribed into a nonlin-
ear programming (NLP) problem through collocation at the Gegenbauer-Gauss
(GG) points. The integral operations are approximated by optimal Gegenbauer
quadratures in a certain optimality sense. The reduced NLP problem is solved
in the Gegenbauer spectral space, and the state and the control variables are ap-
proximated on the entire finite horizon. The proposed method achieves discrete
solutions exhibiting exponential convergence using relatively small-scale number
of collocation points. The advantages of the proposed direct GTM over other
traditional discretization methods are shown through four well-studied OC test
examples. The present work is a major breakthrough in the area of computational
OC theory as it delivers significantly more accurate solutions using considerably
smaller numbers of collocation points, states and controls expansion terms. More-
over, the GTM produces very small-scale NLP problems, which can be solved very



quickly using the modern NLP software.

Keyword. Direct optimization methods; Gegenbauer collocation; Gegenbauer in-
tegration matrix; Gegenbauer polynomials; Optimal control; Spectral methods.

References are considered at the end of the thesis.



Chapter 7

Fast, Accurate, and Small-Scale
Direct Trajectory Optimization
Using a Gegenbauer
Transcription Method

7.1 Introduction

The principle goal of optimal control (OC) theory is to determine the control
which causes a system to meet a set of physical constraints while optimizing
some performance criterion. A closed form expression of the OC is usually out of
reach, and classical solution methods such as the calculus of variations, dynamic
programming, and Pontryagin’s maximum/minimum principle can only provide
the analytical OC in very special cases. Fortunately, the immense evolution today
in the fields of numerical analysis and approximation theory, and the increasing
developments in digital computers, have allowed the treatment of complex OC
problems by sophisticated numerical methods (Elgindy et al., 2012). Among
the available numerical schemes, direct optimization methods, which transcribe
the infinite-dimensional continuous-time OC problem (CTOCP) into a finite-
dimensional parameter nonlinear programming (NLP) problem, have become the
ideal methods of choice nowadays (Gong et al., 2006a, 2008; Hesthaven et al.,
2007), and are well-suited for solving intricate OC problems; cf. (Benson et al.,
2006; Betts, 2009; Chen et al., 2011; Elnagar et al., 1995; Elnagar and Razzaghi,
1997; Fahroo and Ross, 2002, 2008; Garg et al., 2011a,b; Gong et al., 2006a;
Hull, 1997; Jaddu, 2002; Kang et al., 2007, 2008; Razzaghi and Elnagar, 1993;
Stryk, 1993; Vlassenbroeck and Dooren, 1988; Williams, 2004) and the references
therein.
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A critical stage in the transcription of a CTOCP by a direct optimization
method manifests in the discretization of the dynamics. This can be carried
out using finite difference schemes, such as Euler’s method and Runge-Kutta
methods, finite element methods, piecewise-continuous polynomials such as linear
splines, cubic splines, and B-spline methods, wavelets methods such as Walsh-
wavelets and Haar wavelets methods, block pulse function methods, etc.; cf.
(Becker and Vexler, 2007; Chen and Lu, 2010; Dontchev and Hager, 1997; Dontchev
et al., 2000; Glabisz, 2004; Hargraves and Paris, 1987; Hsiao, 1997; Hwang et al.,
1986; Kadalbajoo and Yadaw, 2008; Kaya and Mart́ınez, 2007; Kiparissides and
Georgiou, 1987; Lang and Xu, 2012; Liu et al., 2004; Liu and Yan, 2001; Pyt-
lak, 1998; Schwartz and Polak, 1996; Stryk, 1993; Xing et al., 2010). However,
a common feature in all of these numerical methods is that they usually ex-
perience an explosion in the number of variables if high orders of accuracy are
sought except for very special cases, where the control is of a bang-bang control
type (Kaya, 2010). This is due to the finite-order convergence rates associated
with these methods (Weideman and Reddy, 2000). Spectral methods, among
the available discretization methods in the literature, are memory minimizing,
provide Eulerian-like simplicity, produce global solutions and rapid convergence,
and are so accurate for problems exhibiting smooth solutions to the extent that
they are often used in cases when “nearly exact numerical solutions are sought”
(Barranco and Marcus, 2006; Cushman-Roisin and Beckers, 2011; Gardner et al.,
1989; Gong et al., 2007; Gottlieb and Orszag, 1977; Zang et al., 1982). All of
these advantages place the spectral methods at the front of the available numer-
ical methods for solving ordinary and partial differential equations, eigenvalue
problems, OC problems, and in many other applications exhibiting sufficiently
differentiable solutions; cf. (Boyd, 2001; Elgindy, 2009; Elgindy and Hedar, 2008;
Elnagar et al., 1995; Fahroo and Ross, 2002; Gong et al., 2006a; Mason and
Handscomb, 2003; Quarteroni and Valli, 1994; Ross and Fahroo, 2003). Colloca-
tion/pseudospectral methods is a distinguished class of spectral methods, which
have emerged as important and popular computational methods for the numeri-
cal solution of OC problems in the last two decades; cf. (Benson, 2004; Benson
et al., 2006; Elnagar et al., 1995; Elnagar, 1997; Elnagar and Razzaghi, 1997;
Fahroo and Ross, 2008; Garg et al., 2011b, 2010; Huntington, 2007; Rao et al.,
2010; Williams, 2004). They are already well established in the works of Canuto
et al. (1988, 2006, 2007); Gottlieb and Orszag (1977); Trefethen (2000), and in
many other works in the literature. Their universal application in many areas is
largely due to their greater simplicity and computational efficiency compared to
other spectral methods, namely, Galerkin and tau methods (Gottlieb and Orszag,
1977). Perhaps one of the significant applications of spectral collocation methods
that has received wide publicity recently was in generating real time trajectories
for a NASA spacecraft maneuver (Kang and Bedrossian, 2007).
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Another central element in the numerical discretization of a CTOCP lies in
the accurate translation of the integral operations into precise algebraic expres-
sions to produce an accurate discrete analog of the original CTOCP. The inte-
gral operations may occur in the cost function, the dynamical system, or in the
path/terminal constraints. Even for dynamical systems characterized by a set of
differential equations, it has been shown by El-Gendi (1969); Elbarbary (2007);
Elgindy (2009); Elgindy and Smith-Miles (2013c); Elgindy et al. (2012); Gonzales
et al. (1997); Greengard (1991); Greengard and Rokhlin (1991) that a more prac-
tical and robust numerical scheme can be established by recasting the dynamical
system into its integral formulation. In the latter case, the integration points
{xi}Ni=0 of the definite integrals

∫ xi
−1
fj(x)dx, j ∈ Z+, of some integrand functions

fj(x), arise naturally as the very same collocation points employed in the spec-
tral integration method; cf. (Elgindy and Smith-Miles, 2013b,c; Elgindy et al.,
2012), for instance. While traditional spectral methods demand that the number
of spectral expansion terms (N + 1) required for the construction of the spectral
operational matrix of differentiation/integration be exactly the same as the num-
ber of collocation points; cf. (El-Gendi, 1969; Elbarbary, 2007; Elnagar, 1997;
Fornberg, 1990; Ghoreishi and Hosseini, 2004; Gong et al., 2009; Paraskevopou-
los, 1983; Ross and Fahroo, 2002; Weideman and Reddy, 2000), we broke the
parity restriction on the number of expansion terms and the number of integra-
tion/collocation points, and established an optimal rectangular Gegenbauer (ul-
traspherical) integration matrix, where the choice of the number of Gegenbauer
expansion terms (M+1) is completely free; cf. (Elgindy and Smith-Miles, 2013b,
Theorem 2.2 in pg. 86). This novel approach in the constitution of the operational
matrix of integration and its associated numerical quadrature gives preference to
the direct Gegenbauer collocation method endowed with the optimal Gegenbauer
quadrature over traditional spectral collocation methods from two perspectives
(Elgindy and Smith-Miles, 2013b): (i) For any small number of collocation points
(N + 1), the Gegenbauer collocation method can boost the precision of the ap-
proximate solutions by increasing the number of optimal Gegenbauer quadrature
expansion terms (M + 1) without increasing the value of N . Consequently, one
can achieve higher-order approximations to the solutions of complex CTOCPs
without increasing the number of collocation points. The reader may consult our
recent chapter (Elgindy and Smith-Miles, 2013c) for clear examples highlighting
the significance of this result. (ii) For any large number of collocation points
(N + 1), the Gegenbauer collocation method can produce very precise approxi-
mations to the smooth solutions of the CTOCP in a short time by restricting the
value of M to accept only small values, and deterring it from growing up linearly
with the number N .

In (Elgindy et al., 2012), we presented a Gegenbauer transcription method
(GTM) for solving nonlinear CTOCPs directly for the states and the controls.
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We focused our attention on the application of the optimal Gegenbauer quadra-
ture to find the best path for an unmanned aerial vehicle mobilizing in a stationary
risk environment. Our comparisons with the variational technique of Miller et al.
(2011) showed the advantages of the GTM over classical variational methods in
many aspects. Our goal in this chapter is to extend the method presented in
(Elgindy et al., 2012) to handle CTOCPs including higher-order time derivatives
of the states by solving the CTOCP directly for the control u(t) and the highest-
order time derivative of the state, x(N)(t), N ∈ Z+. To this end, we introduce a
substitution for the highest-order time derivative x(N)(t), and recover the state
vector and its derivatives up to the (N−1)th-order derivative stably by successive
integration. This key idea provides the luxury of working in a full integration en-
vironment, enjoying the well-stability of the integral operators. We shall consider
also the solution of the linear–quadratic regulator (LQR) problem characterized
by a linear time-invariant dynamical system as we intend to cover a wider col-
lection of problems with the concrete aim of comparing the performance of the
GTM with its rivals in the class of direct orthogonal collocation/pseudospectral
methods. We highlight the degree of robustness, simplicity, accuracy, economy in
calculations, and speed of the GTM compared to other conventional methods in
the area of computational OC theory. Furthermore, we endeavor to establish a
high-order numerical scheme which results in a NLP problem with considerably
lower-dimensional space to facilitate the task of the NLP solver and reduce the
calculation time.

The proposed method converts the CTOCP into a NLP problem through
a Gegenbauer collocation scheme based on GG points. The solution technique
converts the dynamical system of the differential equations form into integral
equations through direct integration. The state and the control variables are
fully parameterized and approximated by truncated Gegenbauer expansion series
with unknown Gegenbauer collocation coefficients. The integral operations are
approximated by the optimal Gegenbauer quadratures developed in (Elgindy and
Smith-Miles, 2013b). The proposed technique reduces the cost function, the dy-
namics, and the constraints into systems of algebraic equations, and thus greatly
simplifies the problem. In this manner, the infinite-dimensional CTOCP is tran-
scribed into a finite-dimensional parameter NLP problem, which can be solved
for the Gegenbauer collocation coefficients using the powerful and well-developed
NLP software and computer codes. For problems with higher-order time deriva-
tives of the states arising in the performance index, dynamics, or path/terminal
constraints, we parameterize the control and the highest-order time derivative of
the state. We restrict ourselves to developing algorithms for solving CTOCPs
governed by ordinary differential equations. The CTOCPs governed by integro-
differential equations can be solved similarly by recasting the dynamics into its
integral formulation. Moreover, the CTOCPs governed by integral equations can
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be discretized directly by the Gegenbauer quadratures to approximate the integral
operators and transform the integral equations into algebraic equations.

The remaining of the chapter is organized as follows: In Section 7.2 we present
the CTOCP statements considered in this chapter. The proposed GTM for the
solution of the considered CTOCPs is introduced in Section 7.3. We highlight
the convergence and some advantages of the GTM in Section 7.4. Four numer-
ical experiments well-studied in the literature are presented in Section 7.5 to
demonstrate the efficiency, robustness, and the spectral accuracy of the proposed
method. Section 7.6 is devoted to a discussion on the proposed GTM showing its
strengths over the traditional discretization methods followed by some conclud-
ing remarks and future works associated with the current GTM. Further brief
information on the Gegenbauer polynomials is provided in the appendix.

7.2 The CTOCPs statements

In the following, we present the CTOCP statements considered in this chapter:

(I) Consider the following LQR problem P1:

minimize J(u(t)) =
1

2
(x(1)TSx(1)) +

1

2

∫ 1

0

(x(t)TAx(t) + u(t)TBu(t))dt,

(7.1a)

subject to ẋ(t) = Dx(t) + Eu(t), (7.1b)

x(0) = x0, (7.1c)

where [0, 1] is the time interval of interest, x ∈ Rn is the state vector, ẋ ∈ Rn

is the vector of first-order time derivatives of the states, u ∈ Rm is the
control vector, J is the cost function to be minimized, S and A are constant
positive semidefinite matrices, B is a constant positive definite matrix; D
and E are constant matrices. Here the LQR problem is characterized by the
linear time-invariant dynamical system (7.1b) and the initial state condition
(7.1c). The optimal LQR problem is to determine the OC policy u∗(t)
on the time horizon [0, 1] which meets Constraints (7.1b) & (7.1c) while
minimizing the quadratic cost functional (7.1a). The corresponding optimal
state trajectory is denoted by x∗(t).

(II) The second CTOCP we are concerned with arises due to the presence of
some high-order derivatives of the state variables in the dynamical system,
the cost function, the path constraints, or the terminal constraints. For
instance, consider the following nonlinear CTOCP with fixed final time,
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some mixed path and terminal inequality constraints P2:

minimize J(u(t)) = Φ(x(1)) +

∫ 1

0

L(x(t), ẋ(t), . . . , x(m′)(t), u(t), t)dt,

(7.2a)

subject to x(m′)(t) = f(x(t), ẋ(t), . . . , x(m′−1)(t), u(t), t), (7.2b)

x(0) = K0, ẋ(0) = K1, . . . , x
(m′−1)(0) = Km′−1, (7.2c)

ψi(x(t), ẋ(t), . . . , x(m′−1)(t), x(m′)(t), u(t), t) ≤ 0, i = 0, . . . , `,
(7.2d)

φ(x(1), ẋ(1), . . . , x(m′−1)(1), x(m′)(1), u(1)) ≤ 0, m′ ∈ Z+.
(7.2e)

This problem is a Bolza problem, where x(k) ∈ Rn is the vector of kth-order
time derivatives of the states for each k = 1, . . . ,m′; Φ : Rn → R is the
terminal cost function, L : Rn × . . .×Rn ×Rm ×R→ R is the Lagrangian
function, f : Rn × . . . × Rn × Rm × R → Rn is a nonlinear vector field,
ψi : Rn × . . . × Rn × Rm × R → R is a mixed inequality constraint on the
states, their derivatives, and the controls for each i, φ : Rn×. . .×Rn×Rm →
R is a mixed terminal inequality constraint; K0, . . . ,Km′−1 are the initial
conditions of the nonlinear system dynamics (7.2b). Here it is assumed
that Φ, L, and each system function fi are continuously differentiable with
respect to x; L and fi are continuous with respect to u.

For both problems P1 & P2, we shall assume that the dynamical system has a
unique state trajectory x(t) for any admissible control trajectory u(t). Notice that
a CTOCP defined over the physical time domain [t0, tf ] can be reformulated into
the form of Problems P1 & P2 using the strict change of variable t = (τ−t0)/(tf−
t0), where τ ∈ [t0, tf ], t0 and tf are the initial and final times, respectively. In the
next section, we shall describe the GTM for the numerical solution of Problems
P1 & P2 based on GG collocation.

7.3 The GTM

To approximate the system dynamics in Problems P1 & P2, it is necessary to find
expressions for the derivatives of the state variables at the collocation points. This
can be accomplished through spectral differentiation matrices (SDMs). Nonethe-
less, numerical differentiation is in principle an ill-posed problem (Liu et al.,
2011), and SDMs are known to be severely ill-conditioned (Driscoll, 2010; Elbar-
bary, 2006, 2007; Funaro, 1987). Therefore the implementation of SDMs causes
degradation in the observed precision (Driscoll, 2010; Tang and Trummer, 1996).
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In fact, the condition number of the N th-order SDM is typically of order O(N2k),
where k is the order of the derivative of the solution function (Hesthaven, 2000).
This fact casts its shadow on imposing strict stability requirements when the
SDM is associated with a numerical ODE solver to solve a time-dependent PDE,
for instance (Kong and Rokhlin, 2012). Moreover, the time step restrictions
can be more severe than those predicted by the standard stability theory (Tre-
fethen, 1988; Trefethen and Trummer, 1987). To quote (Elgindy et al., 2012)
‘for higher-order SDMs, the ill-conditioning becomes very critical to the extent
that developing efficient preconditioners is extremely crucial.’ Another useful ap-
proach is to transform the dynamical system into its integral formulation, where
the state and the control variables are approximated by truncated spectral ex-
pansion series while the integral operations are approximated by spectral inte-
gration matrices (SIMs). This numerical technique is generally well-behaved as
the SIMs are known to be well-conditioned operators (Elbarbary, 2006, 2007;
Elgindy, 2009; Elgindy et al., 2012; Greengard, 1991; Lundbladh et al., 1992),
and their well-conditioning is essentially unaffected for increasing number of grid
points (Elgindy, 2009). For two-point boundary value problems, for instance,
Greengard and Rokhlin (1991) showed that the integral equation formulation is
insensitive to boundary layers, insensitive to end-point singularities, and leads to
small condition numbers while achieving high computational efficiency. Further-
more, to quote (Elgindy et al., 2012) ‘the use of integration for constructing the
spectral approximations improves the rate of convergence of the spectral inter-
polants, and allows the multiple boundary conditions to be incorporated more
efficiently.’ These useful features, in addition to the promising results obtained
by Elgindy and Smith-Miles (2013b,c); Elgindy et al. (2012), motivate us to ap-
ply a Gegenbauer collocation integration scheme for discretizing the dynamical
systems of the underlying CTOCPs.

To efficiently implement the Gegenbauer collocation integration method, one
needs an accurate and robust numerical quadrature to perfectly translate the in-
tegral operations into their algebraic expressions analog. In (Elgindy and Smith-
Miles, 2013b), we showed that an optimal Gegenbauer quadrature can be consti-
tuted by combining the strengths of the Chebyshev, Legendre, and Gegenbauer
polynomials in a unique numerical quadrature through a unified approach. In
particular, the developed optimal quadrature employs the Gegenbauer polyno-
mials to achieve rapid convergence rates of the quadrature in the small/medium
range of the spectral expansion terms. For a large-scale number of expansion
terms, the numerical quadrature possesses the luxury of converging to the op-
timal Chebyshev and Legendre quadratures in the L∞-norm and L2-norm, re-
spectively. The key idea in our work is to approximate the definite integrals∫ xi
−1
f(x)dx, 0 ≤ i ≤ N , of a given smooth function f(x) by constructing the

Gegenbauer quadrature through discretizations/interpolations at some optimal
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sets of the Gegenbauer-Gauss (GG) points {zi,j}Mj=0,M ∈ Z+, which are deter-
mined by satisfying a certain optimality measure to minimize the quadrature error
and produce faster convergence rates. These optimal GG interpolation points are
called the adjoint GG points, and they usually differ than the given integration
points {xi}Ni=0. In the following two sections, we shall describe how to imple-
ment the optimal Gegenbauer quadrature within the framework of a Gegenbauer
collocation integration scheme for the solution of Problems P1 & P2.

7.3.1 Solving Problem P1 using the GTM

Integrating Equation (7.1b) and using the initial condition (7.1c) recast the dy-
namical system into its integral formulation given by

x(t) = D

∫ t

0

x(τ)dτ + E

∫ t

0

u(τ)dτ + x0. (7.3)

To transcribe the CTOCP P1, we expand the state and the control variables by
the Gegenbauer expansion series

xr(t) ≈
L∑
k=0

arkC
(α)
k (t), r = 1, . . . , n, (7.4)

us(t) ≈
M∑
k=0

bskC
(α)
k (t), s = 1, . . . ,m, (7.5)

and collocate at the GG nodes ti ∈ S(α)
N defined by Equation (7.A.4), since they

have the desirable distribution property of clustering around the endpoints of the
interval; thus avoiding the Runge phenomenon (Hesthaven et al., 2007; Trefethen,
2000). Following the mathematical convention introduced in (Elgindy and Smith-
Miles, 2013b), let

SN,MP
= {zi,k|C

(α∗i )
MP+1(zi,k) = 0, i = 0, . . . , N ; k = 0, . . . ,MP}, MP ∈ Z+, (7.6)

be the adjoint set of the GG points, where

α∗i = argmin
α>−1/2

η2
i,MP

(α), (7.7)

ηi,MP
(α) =

∫ xi

−1

C
(α)
MP+1(x)dx/K

(α)
MP+1; (7.8)

K
(α)
MP+1 = 2MP

Γ(MP + α + 1)Γ(2α + 1)

Γ(MP + 2α + 1)Γ(α + 1)
. (7.9)
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Let also P (1) = (P
(1)
0 P

(1)
1 . . . P

(1)
N )T be the 1st-order optimal Gegenbauer opera-

tional matrix of integration referred to by the optimal P-matrix, where P
(1)
i =

(p
(1)
i,0 , p

(1)
i,1 , . . . p

(1)
i,MP

), 0 ≤ i ≤ N , and p
(1)
ik , 0 ≤ i ≤ N, 0 ≤ k ≤ MP , are the el-

ements of the optimal P-matrix as defined by Equation (2.20) in (Elgindy and
Smith-Miles, 2013b). To simplify the calculations, we shall introduce the follow-
ing mathematical notations: tN+1 = 1, êl ∈ Rl+1 : (êl)k = 1, zi′j ∈ SN+1,MP

, a =

(a1, . . . , an)T , b = (b1, . . . , bm)T , ar = (ar0, . . . , arL)T , bs = (bs0, . . . , bsM)T , ξ
(α)
l ∈

R(N+1)×(l+1) : (ξ
(α)
l )ik = (C

(α)
k (ti)), ξ̂

(α)
li

T
∈ Rl+1 : (ξ̂

(α)
li )k = (ξ

(α)
l )ik, ζ

(α)
l ∈

R(N+2)×(Mp+1)×(l+1) : (ζ
(α)
l )i′jk = (C

(α)
k (zi′j)), ζ̂

(α)
li′j

T
∈ Rl+1 : (ζ̂

(α)
li′j )k = (ζ

(α)
l )i′jk, ζ̄

(α)
li′k ∈

RMP+1 : (ζ̄
(α)
li′k)j = (ζ

(α)
l )i′jk, χ

(α)
li′ ∈ R(MP+1)×(l+1) : (χ

(α)
li′ )jk = (ζ

(α)
l )i′jk, ℘

(α)
lq ∈

R(N+1)×(l+1) : (℘
(α)
lq )ik = P

(q)
i ζ̄

(α)
lik , ℘̂

(α)
lqi

T
∈ Rl+1 : (℘̂

(α)
lqi )k = (℘

(α)
lq )ik, (℘̂

(α)
l,q,N+1)k =

P
(q)
N+1ζ̄

(α)
l,N+1,k, r = 1, . . . , n; s = 1, . . . ,m; i = 0, . . . , N ; i′ = 0, . . . , N + 1; j =

0, . . . ,MP ; k = 0, . . . , l; l ∈ Z+. The q-fold integral of the Gegenbauer poly-
nomials I

(α)
q,k (ti), for the integration points set S

(α)
N , can be approximated by the

P-matrix as follows:

I
(α)
q,k (ti) =

∫ ti

0

. . .

∫ τ2

0

C
(α)
k (τ1)dτ1 . . . dτq ≈ P

(q)
i ζ̄

(α)
lik . (7.10)

The relation between the matrix (I
(α)
q,k (ti)) ∈ R(N+1)×(l+1) and the qth-order P-

matrix is given by
(I

(α)
q,k (ti)) ≈ ℘

(α)
lq . (7.11)

Using these notations, the state and the control vectors at the GG collocation
points can be written as

x(ti) ≈ (In ⊗ ξ̂(α)
Li )a, (7.12)

u(ti) ≈ (Im ⊗ ξ̂(α)
Mi)b, (7.13)

where Il is the identity matrix of order l; ⊗ is the Kronecker product of matrices.
Using Equation (7.A.5), we can show that x(1) = (In ⊗ êTL)a. Hence the discrete
cost function can be represented by

J ≈ J̃(a, b) =
1

2

(
aT (S ⊗ IL+1)a+ P

(1)
N+1L̂

)
, (7.14)

where

(L̂)j = aT
(
A⊗ ζ̂(α)T

L,N+1,j ζ̂
(α)
L,N+1,j

)
a+ bT

(
B ⊗ ζ̂(α)T

M,N+1,j ζ̂
(α)
M,N+1,j

)
b; (7.15)

IL+1 is the ones matrix of order (L+ 1). The discrete dynamical system becomes

Hi(a, b) =
(

(In ⊗ ξ̂(α)
Li )−D(In ⊗ P (1)

i χ
(α)
Li )
)
a− E(Im ⊗ P (1)

i χ
(α)
Mi)b− x

0 ≈ 0,

i = 0, . . . , N, (7.16)
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which can be simplified further to

Hi(a, b) =
(

(In ⊗ ξ̂(α)
Li )−D(In ⊗ ℘̂(α)

L1i)
)
a−E(Im⊗℘̂(α)

M1i)b−x
0 ≈ 0, i = 0, . . . , N.

(7.17)
Hence the GTM transforms the CTOCP P1 into a constrained NLP problem of
the form:

minimize J̃(a, b) (7.18a)

subject to Hi(a, b) ≈ 0, i = 0, . . . , N, (7.18b)

which can be solved using standard optimization software. Notice here that the
dynamical system is enforced by the GTM as equality constraints at the internal
GG collocation points. Moreover, the GTM solves the CTOCP P1 in the spectral
space; therefore, once the approximate Gegenbauer coefficients are found, the
approximation can immediately be evaluated at any time history of both the
control and the state variables without invoking any interpolation method. This
feature establishes the power of the proposed GTM for solving CTOCPs as the
optimal state and control profiles are readily determined; moreover, it represents
a clear advantage over the “classical” discretization methods such as the finite
difference schemes which require a further step of interpolation to evaluate an
approximation at an intermediate point.

7.3.2 Solving Problem P2 using the GTM

The nonlinearity of Problem P2, and the existence of higher-order derivatives of
the state vector in the cost function, the dynamics, and the path and terminal
constraints add more complexity over Problem P1 both analytically and compu-
tationally. To overcome this difficulty, we introduce the following substitution:

x(m′)(t) = µ(t), (7.19)

for some unknown continuous vector function µ(t) ∈ Rn. We also define

νq(t) =

q∑
k=1

Km′−q+k−1

(k − 1)!
tk−1, (7.20)

and denote νq(ti); νq(zij) by νqi; νqij, respectively. Then the state vector and its
derivatives up to the (m′− 1)th-derivative can be obtained by successive integra-
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tions as follows:

x(m′−1)(t) =

∫ t

0

µ(τ)dτ + ν1(t)ên−1, (7.21a)

x(m′−2)(t) =

∫ t

0

∫ τ2

0

µ(τ1)dτ1dτ2 + ν2(t)ên−1, (7.21b)

...

x(t) =

∫ t

0

. . .

∫ τ2

0

µ(τ1)dτ1 . . . dτm′ + νm′(t)ên−1. (7.21c)

Expand the unknown variables µr(t) by Gegenbauer expansion series as follows:

µr(t) ≈
L∑
k=0

arkC
(α)
k (t), r = 1, . . . , n, (7.22)

and expand the control variables by the Gegenbauer expansion series (7.5). The
control vector at the solution nodes {ti}Ni=0 is approximated by (7.13) while the
state vector and its derivatives are approximated by the optimal P-matrices as
follows:

x(ti) ≈ (In ⊗ ℘̂(α)
Lm′i)a+ νm′iên−1, (7.23a)

ẋ(ti) ≈ (In ⊗ ℘̂(α)
L,m′−1,i)a+ νm′−1,iên−1, (7.23b)

... (7.23c)

x(m′−1)(ti) ≈ (In ⊗ ℘̂(α)
L,1,i)a+ ν1,iên−1; (7.23d)

x(m′)(ti) ≈ (In ⊗ ξ̂(α)
Li )a. (7.23e)

Hence the discrete dynamical system at the solution nodes {ti}Ni=0 is given by

Hi(a, b) = (In ⊗ ξ̂(α)
Li )a− f

(
(In ⊗ ℘̂(α)

Lm′i)a+ νm′iên−1, (In ⊗ ℘̂(α)
L,m′−1,i)a+ νm′−1,iên−1,

. . . , (In ⊗ ℘̂(α)
L,1,i)a+ ν1,iên−1, (Im ⊗ ξ̂(α)

Mi)b, ti

)
≈ 0, i = 0, . . . , N.

(7.24)

The discrete path and terminal inequality constraints are given by

cij(a, b) = ψj

(
(In ⊗ ℘̂(α)

Lm′i)a+ νm′iên−1, (In ⊗ ℘̂(α)
L,m′−1,i)a+ νm′−1,iên−1, . . . ,

(In ⊗ ℘̂(α)
L,1,i)a+ ν1,iên−1, (In ⊗ ξ̂(α)

Li )a, (Im ⊗ ξ̂(α)
Mi)b, ti

)
≤ 0, i = 0, . . . , N ;

j = 0, . . . , `, (7.25)

ct(a, b) = φ
(

(In ⊗ ℘̂(α)
L,m′,N+1)a+ νm′,N+1ên−1, (In ⊗ ℘̂(α)

L,m′−1,N+1)a+ νm′−1,N+1ên−1,

. . . , (In ⊗ ℘̂(α)
L,1,N+1)a+ ν1,N+1ên−1, (In ⊗ êTL)a, (Im ⊗ êTM)b

)
≤ 0, (7.26)
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respectively. To approximate the cost function, let

SMP ,MP̄
= {z̄jl : C

(ᾱ∗j )

MP̄+1(z̄jl) = 0, j = 0, . . . ,MP ; l = 0, . . . ,MP̄}, (7.27)

be the adjoint GG points set, for some MP̄ ∈ Z+. Furthermore, let P̄ (q) = (p̄
(q)
jl )

be the qth-order P-matrix required for the evaluation of the q-fold integral of the
Gegenbauer polynomials, for the integration points set S = {zN+1,j}MP

j=0. Define

P̄
(q)
j = (p̄

(q)
j0 , . . . , p̄

(q)
jMP̄

),Λ
(α)
l ∈ R(MP+1)×(MP̄+1)×(l+1) : (Λ

(α)
l )jsk = (C

(α)
k (z̄js)); Λ̄

(α)
ljk ∈

RMP̄+1 : (Λ̄
(α)
ljk )s = (Λ

(α)
l )jsk, then

I
(α)
q,k (zN+1,j) =

∫ zN+1,j

0

. . .

∫ τ2

0

C
(α)
k (τ1)dτ1 . . . τq ≈ P̄

(q)
j Λ̄

(α)
ljk . (7.28)

Define θ
(α)
lq ∈ R(MP+1)×(l+1) : (θ

(α)
lq )jk = P̄

(q)
j Λ̄

(α)
ljk ; θ̄

(α)T

lqj ∈ Rl+1 : (θ̄
(α)
lqj )k = (θ

(α)
lq )jk,

then
(I

(α)
q,k (zN+1,j)) ≈ θ

(α)
lq , (7.29)

where (I
(α)
q,k (zN+1,j)) ∈ R(MP+1)×(l+1) is the matrix of the q-fold integral of the

Gegenbauer polynomials for the integration points set S. Equation (7.29) gives

the relation between (I
(α)
q,k (zN+1,j)) and the qth-order P-matrix, P̄ (q). Hence the

discrete cost function can be approximated by:

J ≈ J̃(a, b) = Φ
(

(In ⊗ ℘̂(α)
L,m′,N+1)a+ νm′,N+1ên−1

)
+ P

(1)
N+1L̂, (7.30a)

where

(L̂)j = L
(

(In ⊗ θ̄(α)
L,m′,j)a+ νm′,N+1,j ên−1, (In ⊗ θ̄(α)

L,m′−1,j)a+ νm′−1,N+1,j ên−1, . . . ,

(In ⊗ θ̄(α)
L,1,j)a+ ν1,N+1,j ên−1, (In ⊗ ζ̂(α)

L,N+1,j)a, (Im ⊗ ζ̂
(α)
M,N+1,j)b, zN+1,j

)
.

(7.30b)

Eventually, the CTOCP P2 is transformed into a parameter NLP problem of the
following form:

minimize J̃(a, b), (7.31a)

subject to Hi(a, b) ≈ 0, (7.31b)

cij(a, b) ≤ 0, i = 0, . . . , N ; j = 0, . . . , `; (7.31c)

ct(a, b) ≤ 0, (7.31d)

which can be solved in the spectral space using the powerful optimization methods
and computer codes.
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7.4 Properties of the GTM

Corollary 2.1 in (Elgindy and Smith-Miles, 2013b) shows that the optimal P-
matrix employed in the GTM evaluates the successive integrations of the Gegen-
bauer polynomial of any arbitrary degree n exactly for any arbitrary sets of
collocation points {ti}Ni=0 if MP ≥ n. Therefore, the discrete dynamical system
(7.17) is exact for all MP ≥ max{L,M}, since the integral form of the dynamics
(7.3) is linear in the states and the controls. Hence the error in the approximation
of the dynamics arises only due to the round-off errors encountered during the
calculations. Moreover, since the optimal P-matrix is a rectangular matrix, one
can freely increase the number of its columns (MP + 1) while keeping the number
of its rows (N + 1) fixed. Notice here that each row of the optimal P-matrix

corresponds to each of the GG collocation points ti ∈ S(α)
N while the parameter

MP is the parameter governing the number of expansion terms in the optimal
Gegenbauer quadrature. This distinctive feature of the P-matrix is extremely
advantageous, since it allows for higher-order discretizations of linear/nonlinear
CTOCPs without increasing the number of collocation points. Therefore, the
GTM endowed with the optimal P-matrix can achieve precise approximations
to the solutions of the CTOCP in short time without increasing the dimensions
of the NLP problems (7.18) & (7.31). In contrast, the accuracy of typical di-
rect pseudospectral methods is contingent upon the number of collocation points
(N+1), which is the same as the number of spectral coefficients in the expansions
of the states and the controls. Since typical spectral differentiation matrices em-
ployed in conventional direct pseudospectral methods are constructed using the
collocation points employed in the discretization, the size of these square matrices
must also be (N+1), and one usually cannot obtain higher-order approximations
without increasing the size of each of these three key elements, namely, “the size
of the spectral differentiation matrix, the number of collocation points, and the
number of state and control expansion terms.” Eventually, to obtain comparable
results to that of the present GTM, typical direct pseudospectral methods imple-
menting full parameterization of the states and the controls require the solution
of larger-scale NLP problems. We shall demonstrate these substantial results
later in Section 7.5.

To analyze the convergence of the GTM, it is essential to observe the con-
vergence of the optimal Gegenbauer quadrature associated with the P-matrix for
a large number of Gegenbauer expansion terms. Theorem 2.4 in (Elgindy and
Smith-Miles, 2013b) shows that the optimal Gegenbauer quadrature converges
to the optimal Chebyshev quadrature in the L∞-norm approximation of definite
integrals of smooth functions, for sufficiently large-scale number of Gegenbauer
expansion terms. This attractive feature of the optimal Gegenbauer quadrature
can be accomplished irrespective of the number of collocation points (N + 1).
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Moreover, the optimal Gegenbauer quadrature constructed via Algorithms 2.1 &
2.2 in (Elgindy and Smith-Miles, 2013b) is identical with the Legendre quadrature
for large values of MP if the approximations are sought in the L2-norm. Hence for
collocations of CTOCPs at the Chebyshev-Gauss points set S

(0)
N or the Legendre-

Gauss points set S
(0.5)
N , the convergence properties of the GTM are exactly the

same as those of the Chebyshev and Legendre direct orthogonal collocation meth-
ods, for large numbers of Gegenbauer expansion terms. Hence the GTM combines
the strengths of the versatile Chebyshev, Legendre, and Gegenbauer polynomials
in one OC solver to perform rapid and precise trajectory optimization in the sense
that: (i) the Gegenbauer polynomial expansions are applied for the small/medium
range of the number of spectral expansion terms to produce higher-order approx-
imations; cf. (Elgindy and Smith-Miles, 2013b,c; Elgindy et al., 2012), and the
numerical results reported in Section 7.5; (ii) the Chebyshev and Legendre poly-
nomial expansions are applied for a large number of spectral expansion terms
to produce well-conditioned and accurate approximations to the solutions of the
underlying CTOCP; cf. (Gong et al., 2006a,b; Kameswaran and Biegler, 2008;
Kang et al., 2005), and Example 7.5.4 in Section 7.5. The Chebyshev, Legendre,
and Gegenbauer polynomials have been some of the most successful orthogonal
basis polynomials by far in many applications (Fornberg, 1996), and their expan-
sions are accurate independent of the specific boundary conditions of the solution
function (Hesthaven et al., 2007).

To the best of our knowledge, the superconvergence rate of a discretization
method based on collocations at Gauss points has been proven for unconstrained
OC problems by Reddien (1979). Cuthrell and Biegler (1989) followed the ap-
proach of Reddien (1979), and showed equivalence between the variational opti-
mality conditions and the Karush-Kuhn-Tucker conditions of the discretized OC
problem based on Gauss collocation. Moreover, the convergence theorems and
rates of the Legendre direct pseudospectral methods have been investigated in a
number of articles at the Legendre-Gauss-Radau and the Legendre-Gauss-Lobatto
type of collocation points; cf. (Gong et al., 2008; Kameswaran and Biegler, 2008;
Kang, 2008, 2009, 2010; Kang et al., 2007; Ruths et al., 2011). However, further
analysis is required to investigate the convergence of the approximate solutions
obtained by general direct orthogonal collocation methods based on Gauss collo-
cations to the solutions of the unconstrained/constrained CTOCPs.

7.5 Illustrative Numerical Examples

In this section we report the numerical results of the GTM for the solution of
four CTOCPs well-studied in the literature. Moreover, we conducted comparisons
with some other competitive OC solvers to assess the accuracy and the efficiency
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of the present GTM. The first test example is a linear–quadratic CTOCP known
as the Feldbaum problem, and represents a test model in the form of Problem P1.
The second and third test examples are CTOCPs with path inequality constraints.
The fourth test example is a CTOCP with a quartic Lagrangian function in
the states and the control. Examples 2-4 are restated as test models in the
form of Problem P2. The numerical experiments of the GTM were conducted
on a personal computer having an Intel(R) Core(TM) i5 CPU with 2.53GHz
speed running on a Windows 7 64-bit operating system. The reported results
were obtained using the “fmincon” interior-point algorithm optimization solver
provided with MATLAB V. 7.14.0.739 (R2012a). The function value termination
tolerance “TolFun,” and the tolerance on the constraint violation “TolCon” were
set at 10−15. The P-matrix was constructed using Algorithm 2.2 in (Elgindy and
Smith-Miles, 2013b) with Mmax = 20. The reported values of α were chosen
among the candidate values −0.4 : 0.1 : 1.

Example 7.5.1 (The Feldbaum problem). Find the OC u∗(t) which minimizes

J =
1

2

∫ 1

0

(x2(t) + u2(t))dt, (7.32a)

subject to ẋ(t) = −x(t) + u(t); (7.32b)

x(0) = 1. (7.32c)

Example 7.5.1 has been frequently considered in the literature as a benchmark for
testing distinct computational methods. The admissible time varying OC u∗(t),
optimal state x∗(t), and the optimal cost function J∗ can be obtained via the
necessary conditions of optimality in the following form:

u∗(t) =
sinh(

√
2(t− 1))√

2 cosh(
√

2) + sinh(
√

2)
, (7.33)

x∗(t) = cosh(
√

2t)− sinh(
√

2t)(
√

2 tanh(
√

2) + 1)

tanh(
√

2) +
√

2
; (7.34)

J∗ =
sinh(

√
2)

2(sinh(
√

2) +
√

2 cosh(
√

2))
. (7.35)

To apply the GTM for solving the problem, let a = (a1, . . . , an)T ; b = (b1, . . . , bm)T ,
and expand the state and the control variables by the Gegenbauer expansion se-
ries as follows:

x(t) ≈
L∑
k=0

akC
(α)
k (t); (7.36)

u(t) ≈
M∑
k=0

bkC
(α)
k (t). (7.37)
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Let v(k) denotes the k-times multiple Hadamard product for any vector v, i.e.

v(k) = v ◦ v ◦ . . . ◦ v︸ ︷︷ ︸
k−times

,

then the GTM presented in Section 7.3.1 transcribes the CTOCP into the fol-
lowing parameter NLP problem:

minimize J ≈ 1

2
P

(1)
N+1

(
(χ

(α)
L,N+1a)(2) + (χ

(α)
M,N+1b)(2)

)
, (7.38a)

subject to
[
ξ

(α)
L + ℘

(α)
L1 ,−℘

(α)
M1

]
(a, b)T ≈ êN , (7.38b)

where “[., .]” is the usual horizontal matrix concatenation notation. The NLP
Problem (7.38) can be solved readily in the spectral space using MATLAB Opti-
mization Toolbox. The state vector X = [x0, x1, . . . , xN ]T and the control vector

U = [u0, u1, . . . , uN ]T can then be approximated at the GG points ti ∈ S
(α)
N

through the relations:

X ≈ ξ
(α)
L a, (7.39)

U ≈ ξ
(α)
M b, (7.40)

where xi = x(ti);ui = u(ti)∀i. Table 7.1 shows a comparison between the present

GTM at S
(0.5)
5 and some other direct optimization methods quoted from the litera-

ture. A comparison between the exact cost function value J∗ ≈ 0.192909298093169
accurate to 15 decimal digits, and the approximate cost function value J obtained
by the GTM with 5th-order Gegenbauer expansions of the state and the control
variables, and a P-matrix constructed using MP = 5, shows an agreement of
9 decimal figures. This is accomplished by recasting the CTOCP (7.32) into a
12-dimensional NLP problem using only 6 collocation points. The average CPU
time in 100 runs taken by the GTM was found to be 0.367 seconds. Figure 7.1
shows the profiles of the exact control and state variables on [0, 1] versus the
approximate control and the state variables. The dash-dotted lines represent the
exact state and control solutions while the dotted lines represent the approximate
state and control histories along the time horizon. Here the graph clearly demon-
strates the high accuracy achieved by the GTM as we cannot distinguish between
the exact and the approximate solutions by visual inspection. This demonstrates
numerically the feasibility and the accuracy of the discrete optimal solutions
obtained by the GTM. On the contrary, the same reported approximate cost
function value was obtained by El-Gindy et al. (1995); Elnagar (1997); Razzaghi
and Elnagar (1993); Vlassenbroeck and Dooren (1988) using larger numbers of
spectral expansion terms, which lead to higher-dimensional NLP problems. For
instance, the classical Chebyshev expansion method of Vlassenbroeck and Dooren
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(1988) and the Shifted Legendre method of Razzaghi and Elnagar (1993) recast
the CTOCP into a NLP problem of dimension 20 to obtain an approximate cost
function value accurate to the same number of decimal digits. The El-Gindy et al.
(1995) Chebyshev method leads to an 18 dimensional NLP problem while the cell
averaging Chebyshev method of Elnagar (1997) produces a 16 dimensional NLP
problem. We notice here that the Gegenbauer method of El-Hawary et al. (2003)
produces an approximate cost function value which agrees with the exact cost
function value only up to 7 decimal figures.

Example 7.5.1

Methods DIM J

Classical Chebyshev method (Vlassenbroeck and Dooren, 1988)
m = 5, N = 8;K = 16 12 0.1929094
m = 7, N = 10;K = 20 16 0.1929030
m = 9, N = 15;K = 30 20 0.1929092981

Shifted Legendre method (Razzaghi and Elnagar, 1993)
m = 5 12 0.1929092980
m = 9 20 0.1929092981

Chebyshev method (El-Gindy et al., 1995)
m = 5;N = 5 12 0.192881804
m = 7;N = 7 16 0.192906918
m = 9;N = 9 20 0.192909306
m = 5;N = 11 18 0.192909298

Cell averaging Chebyshev method (Elnagar, 1997)
m = 4 10 0.19290924
m = 5 12 0.192909288
m = 7 16 0.1929092981

Gegenbauer method (El-Hawary et al., 2003)
M = N = 4;α∗ = 0.421 11 0.192909281

Present GTM
L = M = MP = 5 12 0.1929092981277

L = M = 5;MP = 20 12 0.1929092980933

The optimal cost function value J∗ ≈ 0.192909298093169

Table 7.1: The numerical results obtained by different methods for solving Ex-
ample 7.5.1. DIM refers to the dimension of the NLP problem. The results of
the present GTM are obtained at S

(0.5)
5 .

Table 7.1 shows also that using a rectangular P-matrix with MP = 20 boosts
the obtained accuracy of the GTM further to reach an agreement of 12 decimal
figures while preserving the same dimension of the resulting NLP problem. The
average CPU time taken by the GTM in this case was found to be 0.3045 seconds,
which is shorter than the calculation time elapsed for MP = 5. This suggests that
the GTM can be implemented using the P-matrix with larger values of MP than
N to produce higher-order approximations in a short time without increasing
the dimension of the NLP problem or adding any further constraints. Moreover,
increasing the value of MP support the rapid convergence of the GTM through
the correct translation of the involved integral operations into more precise al-
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Figure 7.1: The numerical experiments of the GTM on Example 7.5.1. The figure
shows the profiles of the exact control and state variables on [0, 1] together with
the approximate optimal state and control variables obtained by the GTM. The
results are reported at S

(0.5)
5 using L = M = MP = 5.

gebraic expressions. Hence the key element for these substantial results lies in
the accurate approximations of the integral operators encountered during the dis-
cretization of the CTOCP without enlarging the dimension of the reduced NLP
problem or escalating the required number of collocation points. These useful
features of the GTM are vital to allow real-time decision making, and highlight
the power of the proposed method. Moreover, the ability of the GTM to produce
higher-order approximations quickly without affecting the dimensionality of the
NLP problem or the number of included constraints are distinctive features of the
GTM, which separate it from the rest of the available direct orthogonal collocation
methods and direct pseudospectral methods in the literature. Notice here that al-
though the GTM is carried out through collocation at the Legendre-Gauss points
ti ∈ S

(0.5)
5 , the optimal P-matrix is not constructed using Legendre polynomial

expansions. Instead, the developed optimal P-matrix takes on a pointwise ap-
proach by employing a distinct member of the Gegenbauer family of polynomials
to optimally approximate the definite integral

∫ ti
0
f(t)dt, for any smooth function

f(t) and a certain collocation point ti; cf. (Elgindy and Smith-Miles, 2013b). For
MP > Mmax, the Gegenbauer quadrature associated with the optimal P-matrix
becomes identical with the optimal Chebyshev and Legendre quadratures in the
L∞-norm and L2-norm, respectively.

The approximate optimal states and control variables obtained by the GTM
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at S
(0.5)
5 using L = M = 5;MP = 20 are given by:

x∗(t) = − 3

80000000000000000
(−26666502823355615 + 36947921533280322t

−26591472235910150t2 + 12003897953974440t3 − 3813539900277835t4

+600671546504358t5
)
, (7.41a)

u∗(t) =
1

80000000000000000
(−30864900386971099 + 49117953959590954t

−30737975741949462t2 + 15944062101269320t3 − 4382058372586615t4

+923027310810486t5
)
, (7.41b)

respectively. A sketch showing the profiles of the absolute errors Ex;Eu between
the exact state and control variables and their approximations on the time horizon
[0, 1] is shown in Figure 7.2. It can be clearly seen from the figure that the absolute
errors Ex;Eu are small over the time horizon [0, 1], and they reach their maximum
values of 6.14412×10−6; 7.34135×10−6 at t = 0, respectively. Hence the optimal
trajectories generated by the GTM are feasible and accurate.

Example 7.5.2.

minimize J =

∫ 1

0

(x2
1(t) + x2

2(t) + 0.005u2(t))dt, (7.42a)

subject to ẋ1(t) = x2(t), (7.42b)

ẋ2(t) = −x2(t) + u(t), (7.42c)

x1(0) = 0, (7.42d)

x2(0) = −1; (7.42e)

x2(t)− 8(t− 0.5)2 + 0.5 ≤ 0. (7.42f)

Example 7.5.2 is a case model of a CTOCP with an inequality path constraint.
The dynamics is a system of two linear differential equations provided with the
initial conditions (7.42d) & (7.42e). The main goal is to find the OC u∗(t) which
satisfies the dynamical system and Constraints (7.42d)-(7.42f) while minimiz-
ing the quadratic performance index (7.42a). Example 7.5.2 has no analytical
solution, and the presence of the path inequality constraint (7.42f) adds more
complexity over Example 7.5.1. Through the change of variable x = x1, the
CTOCP can be restated as follows:

minimize J =

∫ 1

0

(x2(t) + ẋ2(t) + 0.005u2(t))dt, (7.43a)

subject to ẍ(t) + ẋ(t)− u(t) = 0, (7.43b)
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Figure 7.2: The sketch of the absolute errors Ex(t);Eu(t) obtained using Gegen-

bauer collocation at S
(0.5)
5 with L = M = 5;MP = 20. Figures (a) & (b) show the

values of the absolute errors Ex;Eu at the GG collocation nodes while Figures (c)
& (d) show the profiles of the absolute errors on the time interval [0, 1]. It can be
clearly seen from the former two figures that the absolute errors are small at the
GG points as expected. The latter two figures show that the absolute errors of
the state and the control variables are also small over the whole time horizon with
maxt∈[0,1]Ex(t) ≈ 6.14412× 10−6; maxt∈[0,1]Eu(t) ≈ 7.34135× 10−6, respectively.

x(0) = 0, (7.43c)

ẋ(0) = −1; (7.43d)

ẋ(t)− 8(t− 0.5)2 + 0.5 ≤ 0. (7.43e)

Following the GTM presented in Section 7.3.2, let ẍ(t) = µ(t), for some unknown
continuous function µ(t), and expand µ(t) by a Gegenbauer expansion series in
the following form:

µ(t) ≈
L∑
k=0

akC
(α)
k (t). (7.44)

Also we expand the control variable u(t) by Equation (7.37). The GTM then
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transcribes the CTOCP into the following finite-dimensional parameter NLP:

minimize J ≈ P
(1)
N+1

(
(θ

(α)
L,2a− σN+1)(2) + (θ

(α)
L,1a− êMP

)(2) + 0.005(χ
(α)
M,N+1b)(2)

)
,

(7.45a)

subject to
[
ξ

(α)
L + ℘

(α)
L,1,−ξ

(α)
M

]
(a, b)T ≈ êN , (7.45b)[

℘
(α)
L,1, O

]
(a, b)T ≤ 8(t̄− 0.5êN)(2) + 0.5êN , (7.45c)

where σN+1 = (zN+1,0, . . . , zN+1,MP
)T , O ∈ R(N+1)×(M+1) is the (N + 1)× (M + 1)

zero matrix; t̄ = (t0, . . . , tN)T is the solution nodes vector. The NLP problem
(7.45) can be solved in the spectral space, and the state vector X, its derivative
Ẋ together with the control vector U at the GG collocation points {ti}Ni=0 can be
approximated by the following relations:

X ≈ ℘
(α)
L,2a− t̄, (7.46)

Ẋ ≈ ℘
(α)
L,1a− êN ; (7.47)

U ≈ ξ
(α)
M b. (7.48)

The state vectors Xr = (xr(t0), . . . , xr(tN))T ; r = 1, 2 of the original CTOCP
(7.42) are then obtained by setting

X1 = X, (7.49a)

X2 = Ẋ, (7.49b)

respectively. Moreover, the optimal state variables x∗1(t);x∗2(t) can be directly
recovered over the entire time interval [0, 1] by successive integrations through
Equations (7.21) as follows:

x∗1(t) =

∫ t

0

∫ τ2

0

µ(τ1)dτ1dτ2 − t =
L∑
k=0

ak

∫ t

0

∫ τ2

0

C
(α)
k (τ1)dτ1dτ2 − t; (7.50a)

x∗2(t) =

∫ t

0

µ(τ1)dτ1 − 1 =
L∑
k=0

ak

∫ t

0

C
(α)
k (τ1)dτ1 − 1. (7.50b)

The OC variable u∗(t) can be evaluated directly via Equation (7.37). Figure
7.3 shows the approximate optimal state and control variables profiles on [0, 1]

obtained by the GTM at S
(0.2)
8 using L = M = 6. It can be clearly seen from

the figure that the x2-trajectory starts off away from the boundary constraint
r(t) = 8(t− 0.5)2−0.5, and then approaches it very quickly. The trajectory then
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matches the constraint boundary along the mid time interval [0, 1] for about 0.4
seconds. Eventually, the trajectory leaves the constraint boundary, and becomes
stable at about zero value.

Table 7.2 shows a comparison between the present GTM using the P-matrix
with MP = 20 and some other numerical methods quoted from the literature.
Here we notice from the table that the GTM converges rapidly to the approx-
imate cost function value J∗ ≈ 0.17 for increasing numbers of Gegenbauer ex-
pansion terms and collocation nodes while maintaining significantly small-scale
NLP problems. Moreover, the reported optimal cost function value J∗ of the
GTM is lower than those obtained by Elnagar (1997); Jaddu (2002); Marzban
and Razzaghi (2003, 2010); Mashayekhi et al. (2012); Vlassenbroeck (1988); Yen
and Nagurka (1991) as evident from Table 7.2 with a high degree of constraint
satisfaction. Furthermore, for the best results obtained in all methods, the di-
mension of the resulting NLP problem produced by the GTM is about half that
of Jaddu (2002); Vlassenbroeck (1988); Yen and Nagurka (1991), one-third that
of Marzban and Razzaghi (2003), two-fifths that of Mashayekhi et al. (2012); 6%
that of Marzban and Razzaghi (2010). The table shows also that the 6th-order
Gegenbauer expansions of the states and the control is sufficient to retain the
first 4 decimal figures of the approximate optimal cost function value J∗. Notice
here that the GTM discretizes the CTOCP using only 9 collocation points, and
produces a significantly small-scale NLP problem of dimension 14. The reported
average CPU time taken by the GTM was found to be 0.2978 seconds. Hence the
GTM converges quickly using relatively small number of collocation points and
expansion terms.

The approximate optimal states and the control variables obtained by the
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(a) (b)

Figure 7.3: The numerical experiments of the GTM on Example 7.5.2. Figures (a)
and (b) show the graphs of the approximate optimal state and control variables

on [0, 1]. The results of the GTM are obtained at S
(0.2)
8 using L = M = 6. The

solid, dotted, and dash-dotted lines are generated using 100 nodes.

GTM through collocation at S
(0.3)
8 with L = M = 8 are given by:

x∗1(t) = − 1

107251200000000000000000
t (107251200000000000000000

−749670613091978780125875t+ 2317581710580779575023000t2

−3100276209501909528937000t3 + 2203431341043705119379900t4

−1287743709209664232402450t5 + 288863004777584209303800t6

+858523307501187124024650t7 − 793212720489943685375150t8

+179753341502203543032861t9
)
, (7.51a)

x∗2(t) =
1

10725120000000000000000
(−10725120000000000000000

+149934122618395756025175t− 695274513174233872506900t2

+1240110483800763811574800t3 − 1101715670521852559689950t4

+772646225525798539441470t5 − 202204103344308946512660t6

−686818646000949699219720t7 + 713891448440949316837635t8

−179753341502203543032861t9
)

; (7.51b)

u∗(t) =
1

127680000000000000000
(1657218378200811721595− 14765806523585040468720t

+35932057440845058264040t2 − 36921021079930681285200t3

+29003619222672898873150t4 + 5724452685786000717600t5

−78050553605280800587000t6 + 77912337906040804081440t7

−20390222164737752460777t8
)
. (7.51c)
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Example 7.5.2

Methods DIM J

Classical Chebyshev method (Vlassenbroeck, 1988)
m = 11, K = 24 36 0.17784
m = 12, K = 26 39 0.17358
m = 13;K = 28 42 0.17185

Fourier-based state parameterization (Yen and Nagurka, 1991)
K = 5 28 0.17115
K = 7 36 0.17069
K = 9 44 0.17013

Cell averaging Chebyshev method (Elnagar, 1997)
m = 5 12 0.17350546
m = 7 16 0.17185501
m = 9 20 0.17184981

Chebyshev method (Jaddu, 2002)
N = 13 42 0.17078488

Hybrid block-pulse and Legendre method (Marzban and Razzaghi, 2003)
N = 4,M = 3;w = 15 60 0.17013645
N = 4,M = 4;w = 15 80 0.17013640

Rationalized Haar method (Marzban and Razzaghi, 2010)
K = 16;w = 100 49 0.171973
K = 32;w = 100 97 0.170185
K = 64;w = 100 193 0.170115
K = 128;w = 100 385 0.170103

Hybrid block-pulse functions and Bernoulli polynomials method (Mashayekhi et al., 2012)
N = 4;M = 2 36 0.1700316
N = 4;M = 3 48 0.1700305
N = 4;M = 4 60 0.1700301

Present GTM
α = 0;N = L = M = 5 12 0.170593

α = 0.2, N = 8;L = M = 6 14 0.17008
α = 0.3;N = L = M = 8 18 0.170052
α = 0.2, N = 9;L = M = 8 18 0.16998
α = 0.9, N = 11;L = M = 10 22 0.170039
α = 0.9;N = L = M = 11 24 0.17

Table 7.2: The approximate cost function value J of Example 7.5.2 obtained
by different methods. The results of the present GTM are obtained at the GG
collocation set S

(α)
N , for the shown values of α;N using different values of L;M .

The average elapsed CPU time in this case was found to be 0.622 seconds. Eval-
uating the optimal state variables x1(t);x2(t) at t = 0, respectively, using exact
arithmetic in MATHEMATICA 8 software Version 8.0.4.0 show that our optimal
state solutions perfectly match the initial conditions with zero error. To check
the satisfaction of the dynamical system equations (7.42b) & (7.42c), and the
inequality constraint (7.42f), let

E1(t) = ẋ1(t)− x2(t), (7.52a)

E2(t) = ẋ2(t) + x2(t)− u(t); (7.52b)

E3(t) = x2(t)− 8(t− 0.5)2 + 0.5. (7.52c)

Then we can clearly verify that E1(t) = 0∀t ∈ [0, 1], and Equation (7.42b) is
perfectly satisfied over the whole time interval. The sketches of the error func-
tion E2(t) and the inequality constraint function E3(t) are shown in Figure 7.4.
Figure 7.4(a) shows the magnitude of the error function E2(t) at the collocation
nodes {ti}8

i=0, where the optimal solutions achieve highly constraint satisfaction
as expected. Figure 7.4(b) shows the profile of the error function over the time
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horizon [0, 1], where we can clearly see that the magnitude of the error is small,
and reaches its maximum value of approximately 2.479 × 10−4 at t = 0. Figure
7.4(c) confirms the satisfaction of the inequality constraint (7.42f) on the entire
time horizon [0, 1], where the optimal x2-trajectory never violate the boundary
constraint r(t). Hence the optimal trajectories obtained by the GTM are feasible.
Moreover, the GTM converges to a lower cost function value than the other tra-
ditional methods of Elnagar (1997); Jaddu (2002); Marzban and Razzaghi (2003,
2010); Mashayekhi et al. (2012); Vlassenbroeck (1988); Yen and Nagurka (1991).
These results show that the GTM offers many useful advantages over the avail-
able discretization methods, and the power of the proposed GTM is conspicuous
in the achievement of higher-order approximations using relatively small number
of Gegenbauer expansion terms and collocation nodes. The simplicity, rapid con-
vergence, and the precise approximations of the GTM make its application for
the solution of a wide variety of CTOCPs quite attractive and beneficial.

Example 7.5.3. Consider the problem of finding the OC u∗(t) which minimizes
the performance index (7.42a) subject to Constraints (7.42b)-(7.42e), and the
following state inequality constraint:

x1(t)− 8(t− 0.5)2 + 0.5 ≤ 0. (7.53)

Here the GTM produces the following NLP problem:

minimize J ≈ P
(1)
N+1

(
(θ

(α)
L,2a− σN+1)(2) + (θ

(α)
L,1a− êMP

)(2) + 0.005(χ
(α)
M,N+1b)(2)

)
,

(7.54a)

subject to
[
ξ

(α)
L + ℘

(α)
L,1,−ξ

(α)
M

]
(a, b)T ≈ êN ; (7.54b)[

℘
(α)
L,2, O

]
(a, b)T ≤ 8(t̄− 0.5êN)(2) + t̄− 0.5êN . (7.54c)

The control vector U and the state vectors X1;X2 are approximated through
Equations (7.48) & (7.49) as described before in Example 7.5.2. The GTM con-
verges to the approximate optimal cost function value J∗ ≈ 0.71865. The av-
erage elapsed CPU time taken by the GTM through collocation at S

(−0.4)
8 with

L = M = 12 was found to be 0.65 seconds. Figure 7.5 shows the correspond-
ing state and control profiles on the time horizon [0, 1]. It can be seen from
the figure that the x1-trajectory decreases linearly during the first half of the
time domain till it touches the constraint boundary along the neighborhood of
t = 0.5. The trajectory then becomes identical with the tangent of the con-
straint boundary at t = 0.5, and remains constant about the value −0.5. Table
7.3 shows a comparison between the present GTM and the methods of Elnagar
(1997); Foroozandeh and Shamsi (2012); Vlassenbroeck (1988). The numerical
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Figure 7.4: The plots of the error function E2(t) and the inequality constraint
function E3(t) produced by the present GTM through Gegenbauer collocation at

S
(0.3)
8 with L = M = 8. Figure (a) shows the magnitude of the error function

E2(t) at the GG collocation nodes ti ∈ S(0.3)
8 . Figure (b) shows the propagation

of the error function E2(t) on the time interval [0, 1], where it can be clearly
seen that the error function is an oscillatory function of small magnitude over
the whole time horizon with maxt∈[0,1] |E2(t)| ≈ 2.479 × 10−4. Figure (c) shows
the profile of the nonnegative inequality constraint function E3(t) on the time
interval [0, 1], where it can be verified that the optimal x2-trajectory never cross
the boundary constraint r(t).

results suggest that the GTM performs better than the conventional discretiza-
tion methods, and produces a significantly smaller-scale NLP problem for many
suitable choices of the parameters α,N, L;M .

Example 7.5.4.

minimize J =

∫ 1

0

(x4
1(t) + x4

2(t) + u4(t))dt, (7.55a)

subject to ẋ1(t) = x2(t), (7.55b)

ẋ2(t) = −0.032x2(t)− 0.16x1(t) + 1.6u(t); (7.55c)

(ẋ1(0), x1(1)) = (1, 0). (7.55d)
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(a) (b)

Figure 7.5: The numerical experiments of the GTM on Example 7.5.3. Figures
(a) and (b) show the graphs of the approximate state variables and the control

variable on [0, 1]. The results are obtained at S
(−0.4)
8 using L = M = 12. The

solid, dotted, and dash-dotted lines are generated using 100 nodes.

Example 7.5.4 is a further challenging CTOCP which has no analytical solu-
tion. Here the Lagrangian function is a quartic function in the states and the
control. To solve the CTOCP numerically using the GTM, we introduce the
change of variable x = x1, and restate the problem as follows:

minimize J =

∫ 1

0

(x4(t) + ẋ4(t) + u4(t))dt, (7.56a)

subject to ẍ(t) + 0.032ẋ(t) + 0.16x(t)− 1.6u(t) = 0; (7.56b)

(ẋ(0), x(1)) = (1, 0). (7.56c)

Problem (7.56) can be transformed by the GTM into the following constrained
NLP problem:

minimize J ≈ P
(1)
N+1

(
((θ

(α)
L2 − êMP

℘̄
(α)
L2 )a+ σN+1 − êMP

)(4) + (θ
(α)
L1 a+ êMP

)(4)

+(χ
(α)
M,N+1b)(4)

)
, (7.57a)

subject to
[
ξ

(α)
L + 0.16(℘

(α)
L2 − êN ℘̄

(α)
L2 ) + 0.032℘

(α)
L1 ,−1.6ξ

(α)
M

]
(a, b)T ≈ 0.128êN − 0.16t̄,

(7.57b)

where

℘̄
(α)
Lq = (P

(q)
N+1ζ̄

(α)
L,N+1,0, . . . , P

(q)
N+1ζ̄

(α)
L,N+1,L) ≈ (I

(α)
q,0 (tN+1), . . . , I

(α)
q,L(tN+1)).
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Example 7.5.3

Methods DIM J

Classical Chebyshev method (Vlassenbroeck, 1988)
m = 5;K = 12 18 0.76600000
m = 9;K = 20 30 0.74830000
m = 11;K = 24 36 0.74522000
m = 13;K = 28 42 0.74096000

Cell averaging Chebyshev method (Elnagar, 1997)
m = 5 12 0.74032810
m = 7 16 0.74088140
m = 9 20 0.74096103

Interpolating scaling functions method (Foroozandeh and Shamsi, 2012)
n = 1; r = 4 24 0.74605803
n = 3; r = 4 96 0.73861271
n = 3; r = 5 120 0.73740941
n = 4; r = 5 240 0.73744874
n = 5; r = 5 480 0.73743852

Present GTM
α = 1;N = L = M = 4 10 0.731002
α = 1;N = L = M = 6 14 0.728105
α = 0.9;N = L = M = 8 18 0.723743
α = 0, N = 8;L = M = 10 22 0.720437
α = 0.8, N = 8;L = M = 11 24 0.719507
α = −0.4, N = 8;L = M = 12 26 0.718658
α = 0, N = 10;L = M = 13 28 0.718653

α = −0.4, N = 14;L = M = 15 32 0.718654
α = 0.8;N = L = M = 16 34 0.71865

Table 7.3: The approximate cost function of Example 7.5.3 obtained by different
methods.

The constrained NLP problem (7.57) can be easily solved in the spectral space
using MATLAB Optimization Toolbox. The values of the states x1(t);x2(t), and

the control variable u(t) can be obtained at the GG solution points ti ∈ S
(α)
N

through the following equations:

X1 = X ≈ (℘
(α)
L2 − êN ℘̄

(α)
L2 )a+ t̄− êN , (7.58a)

X2 = Ẋ ≈ ℘
(α)
L1 a+ êN ; (7.58b)

U ≈ ξ
(α)
M b. (7.58c)

Moreover, the optimal paths of the states and the control variables can be ob-
tained at any intermediate point in the time horizon [0, 1] using the following
equations:

x∗1(t) ≈
L∑
k=0

ak(I
(α)
2,k (t)− P (2)

N+1ζ̄
(α)
L,N+1,k) + t− 1, (7.59a)

x∗2(t) ≈
L∑
k=0

akI
(α)
1,k (t) + 1, (7.59b)
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and Equation (7.37) without invoking any interpolation method. Comparisons
between the present GTM and the piecewise polynomial control parameterization
method of Sirisena and Tan (1974), Legendre pseudospectral method of Elnagar
et al. (1995), Chebyshev pseudospectral method of Fahroo and Ross (2002), and
the Chebyshev orthogonal collocation method of Ma et al. (2011) are shown in
Table 7.4. The first column shows the optimal cost function value obtained by
Sirisena and Tan (1974). The next three columns show the results of the Elnagar
et al. (1995); Fahroo and Ross (2002), and Ma et al. (2011) methods listed in the
form N/J , where (N + 1) is the number of collocation points, or the number of
spectral expansion terms in the parameterization of the states and the control.
The last column shows our numerical results listed in the form N/(L = M)/α/J .
To present the strength of the attractive rectangular form of the P-matrix, our
results are conveniently divided further into two sub-columns: (i) The first sub-
column shows the results of the GTM using a square P-matrix with MP = N ,
for some values of N in the range [2, 256]. The second sub-column shows the
results of the GTM using a rectangular P-matrix with the number of its columns
(MP + 1) fixed, while the number N is allowed to increase; in particular, we set
MP = 20.

Example 7.5.4
Piecewise polynomial Legendre pseudospectral Chebyshev pseudospectral Chebyshev orthogonal Present GTM

method method method collocation method
(Sirisena and Tan, 1974) (Elnagar et al., 1995) (Fahroo and Ross, 2002) (Ma et al., 2011)

J N/J N/J N/J N/(L = M)/α/J
MP = N MP = 20

1.1975 - - 10/1.1974 2/2/1/0.30897 2/2/1/0.298102
64/1.197180 64/1.197397 64/1.197396 3/3/1/0.0.298565 3/3/− 0.2/0.29809

128/1.1971808 128/1.1973969 128/1.1973965 4/4/1/0.297796 4/4/1/0.298081
256/1.19718137 256/1.19739754 256/1.19739648 5/5/− 0.2/0.298079 5/5/0/0.298079

6/6/1/0.298076 6/6/1/0.298078
10/10/0.9/0.298078 10/10/0.8/0.298078
64/10/0.5/0.2982 64/10/0.5/0.298078

64/20/0.5/0.298263 64/20/0.3/0.298078
128/10/0.5/0.298078 128/10/0.6/0.298078
128/20/0.5/0.298099 128/20/− 0.3/0.298078
256/10/0.5/0.298081 256/10/0.3/0.298078
256/20/0.5/0.298078 256/20/− 0.3/0.298078

Table 7.4: Comparisons between the present GTM using the P-matrix and the
methods of Elnagar et al. (1995); Fahroo and Ross (2002); Ma et al. (2011);
Sirisena and Tan (1974). The reported results of the Elnagar et al. (1995); Fahroo
and Ross (2002); Ma et al. (2011) methods were obtained using SNOPT (Gill
et al., 2005), and are exactly as quoted from Ref. (Ma et al., 2011).

Table 7.4 shows that the present GTM converges rapidly to local optimal
solutions associated with a much lower value of the performance index J than
the reported values in (Elnagar et al., 1995; Fahroo and Ross, 2002; Ma et al.,
2011; Sirisena and Tan, 1974) for both cases of MP = N ; 20. This is due to
the efficient discretization of the CTOCP (7.55) using the GTM into a signifi-
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CPU time (Seconds)
N Legendre pseudospectral Chebyshev pseudospectral Chebyshev orthogonal Present GTM

method method collocation method
(Elnagar et al., 1995) (Fahroo and Ross, 2002) (Ma et al., 2011) MP = 16 MP = 20

64 144.63 164.88 29.66 0.366 0.454
128 523.78 201.09 157.75 3.519 2.593
256 1144.49 1087.55 615.14 4.808 14.024

Table 7.5: The CPU time of the present method using the P-matrix with MP =
16, 20;L = M = 10, versus the methods of Elnagar et al. (1995); Fahroo and Ross
(2002); Ma et al. (2011). The results of the present method for N = 64, 128; 256

were obtained by collocations at the GG sets S
(−0.1)
64 , S

(0.5)
128 ;S

(0.3)
256 using MP =

16 and by collocations at the GG sets S
(0.5)
64 , S

(0.6)
128 ;S

(0.3)
256 using MP = 20. The

reported CPU times of the Elnagar et al. (1995); Fahroo and Ross (2002); Ma
et al. (2011) methods are exactly as quoted from Ref. (Ma et al., 2011).

cantly small-scale NLP problem, where a standard optimization solver such as
the “fmincon” MATLAB optimization solver was able to determine better local
optimal solutions than the other discretization methods. Moreover, the proposed
numerical scheme remains stable in both cases MP = N ; 20, for large-scale num-
ber of collocation nodes. It can be noticed from the table that for as small as 3
collocation nodes, the present method produces plausible approximate solutions
using 2nd-order Gegenbauer polynomial expansions, especially for MP = 20. For
MP = N , the GTM converges to the approximate minimum cost function value
J ≈ 0.298078 using 11 collocation nodes, and 10th-order Gegenbauer polynomial
expansions. On the other hand, the GTM carried out using a P-matrix with
MP = 20 shows a faster convergence rate as evidently seen from the table, where
it converges to the same optimal cost function value using 7 collocation nodes,
and 6th-order Gegenbauer polynomial expansions. The corresponding optimal
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(a) (b)

Figure 7.6: The numerical experiments of the GTM on Example 7.5.4. Figures
(a) and (b) show the profiles of the states and the control variables on [0, 1],

respectively. The results are reported at S
(1)
6 using MP = 20;L = M = 6.

states and control variables obtained by the GTM in this case are:

x∗1(t) =
1

441× 1017

(
−25208106218129031404 + 441× 1017t− 26235554693334864255t2

+8890691198465937735t3 + 238515955440244860t4 − 8673372878502419304t5

+15234497607142308768t6 − 12308404906746959920t7 + 3961733935664783520t8
)
,

(7.60a)

x∗2(t) =
1

441× 1017

(
441× 1017 − 52471109386669728510t+ 26672073595397813205t2

+954063821760979440t3 − 43366864392512096520t4 + 91406985642853852608t5

−86158834347228719440t6 + 31693871485318268160t7
)
, (7.60b)

u∗(t) =
1

15× 1016

(
−117118600068747207 + 124777787017762440t− 391301269799916t2

−368807534085601010t3 + 976214465291699328t4 − 1104158142660680080t5

+473786969000696640t6
)
, (7.60c)

and a sketch showing the paths of the optimal solutions on the time horizon [0, 1]
is shown in Figure 7.6. The state variable x1(t), and its derivative ẋ1(t) utterly
match the boundary conditions with zero error. To check the satisfaction of the
dynamical system, let

E1(t) = ẋ1(t)− x2(t); (7.61a)

E2(t) = ẋ2(t) + 0.032x2(t) + 0.16x1(t)− 1.6u(t). (7.61b)

214



Chapter 7

Then we can clearly verify that E1(t) = 0∀t ∈ [0, 1], and Equation (7.55b) is
satisfied over the entire time interval. A sketch of the error function E2(t) is
shown in Figure 7.7. Figure 7.7(a) shows the magnitude of the error function
E2(t) at the collocation nodes {ti}6

i=0, where the optimal solutions achieve highly
constraint satisfaction as expected. Figure 7.7(b) shows the profile of the error
function over the time horizon [0, 1], where we can clearly see that the magnitude
of the error is small, and reaches its maximum value of 2.1 × 10−5 at t = 1.
Hence the optimal trajectories obtained by the GTM are feasible, and produce
a significantly lower cost function value than the other traditional methods of
Elnagar et al. (1995); Fahroo and Ross (2002); Ma et al. (2011); Sirisena and Tan
(1974).

0.2 0.4 0.6 0.8
t

1.´ 10-16

2.´ 10-16

3.´ 10-16

4.´ 10-16

5.´ 10-16

ÈE2HtLÈ

(a)

0.2 0.4 0.6 0.8 1.0
t

-5.´ 10-6

5.´ 10-6

E2Ht L

(b)

Figure 7.7: The sketch of the error function E2(t) built using Gegenbauer collo-

cation at S
(1)
6 with MP = 20;L = M = 6. Figure (a) shows the magnitude of

the error at the GG collocation nodes. Figure (b) shows the profile of the error
function E2(t) on the time interval [0, 1], where it can be clearly seen that the
error function is an oscillatory function of small magnitude over the whole time
horizon with maxt∈[0,1] |E2(t)| ≈ 2.1× 10−5.

Using the square P-matrix with MP > Mmax = 20, the GTM collocates the
OC problem at the Legendre-Gauss points S

(0.5)
N . The states and the control vari-

ables are expanded by Legendre expansion series, and the P-matrix is constructed
by Algorithm 2.2 in (Elgindy and Smith-Miles, 2013b) via Legendre polynomial
expansions to maintain robustness. On the other hand, using the rectangular
P-matrix with MP = 20 yields a very stable numerical scheme for an increasing
number of collocation points as clearly seen from Table 7.4, where the effect of
the round-off error becomes very limited. Therefore the rectangular form of the
P-matrix is extremely useful in the sense that: “For a small/large-scale number
of collocation points, the robust GTM can converge rapidly to the local optimal
solutions by choosing a suitable value of MP without affecting the dimensionality
of the resulting NLP problem.” Here it is noteworthy to mention that many of the
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reported results in Table 7.4 maybe achieved using smaller values of MP as well.
For instance, our numerical experiments report that the same value of the ap-
proximate optimal cost function J ≈ 0.298078 is achievable for N = 64, 128; 256
using L = M = 10;MP = 16 through collocations at S

(−0.1)
64 , S

(0.5)
128 ;S

(0.3)
256 . Table

7.5 shows a comparison between the elapsed CPU time of the present method
versus that of the methods of Elnagar et al. (1995); Fahroo and Ross (2002); Ma
et al. (2011). The reported CPU times suggest that the present GTM endowed
with the optimal P-matrix can significantly reduce the required calculation time
typically required by standard direct optimization methods. We notice here that
the GTM carried out using MP = 20 required longer execution times compared
to the lower value of MP = 16, except for N = 128, where it converged faster.

The above experimental analysis shows that the GTM, as inherited from the
application of the P-matrix, has the ability to produce higher-order approxi-
mations and faster convergence rates without the requirement of increasing the
number of collocation nodes and the number of spectral expansion terms. In con-
trast, the traditional methods of Elnagar et al. (1995); Fahroo and Ross (2002);
Ma et al. (2011) can only produce higher-order approximations by increasing the
order of the Chebyshev and Legendre polynomials expansions in the approxi-
mations of the states and the control, in addition to the number of collocation
nodes, which must be equal to that of the spectral expansion terms. For in-
stance, collocating the CTOCP (7.55) using N = 256 via the methods of Elnagar
et al. (1995); Fahroo and Ross (2002); Ma et al. (2011) leads to an enormous
NLP of dimension 771, which requires an efficient NLP solver tailored particu-
larly for large-scale optimization problems. Moreover, the order of the traditional
square spectral matrices employed in the approximations in (Elnagar et al., 1995;
Fahroo and Ross, 2002) becomes large, O(257), affecting the storage require-
ments, and intensifying the matrix algebra computations necessary. In contrast,
the present method breaks the long standing bond between the number of col-
location nodes, the number of spectral expansion terms, and the order of the
employed spectral matrix, as the user has the freedom to choose any suitable val-
ues of L,M ;MP , for the same number of collocation nodes (N +1). For instance,
for N = 256;MP = 16, the order of the P-matrix becomes O(257× 17), which is
approximately 0.066 smaller than the number of storage requirements typically
used by a traditional spectral matrix.

Another essential element in reducing the dimension of the resulting NLP,
in addition to the rectangular form of the P-matrix integrated with the present
GTM, lies in the substitution of the highest-order derivative occurring in the OC
problem with some unknown function µ(t). This key idea does not only provide
the luxury of working in a full integration environment, but rather significantly
limits the number of optimization variables in the reduced NLP. To illustrate
further, consider the very same CTOCP (7.55) discussed thoroughly above. A
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typical direct orthogonal/pseudospectral method attempts to parameterize both
the states x1(t);x2(t), in addition to the control variable u(t). For instance, if
we assume equal number of states expansion terms L, then the states and the
controls are typically expanded as follows:

xr(t) ≈
L∑
k=0

ar,kφ
(α)
k (t), r = 1, 2, (7.62a)

u(t) ≈
M∑
k=0

bkφ
(α)
k (t), (7.62b)

for some prescribed set of global orthogonal basis polynomials {φ(α)
k (t)}, fre-

quently chosen as the Chebyshev or Legendre polynomials. In this case, it is not
hard to realize that the reduced NLP problem is of dimension (2L+M+3) opposed
to only (L + M + 2) as described in the present method. This advantage of the
GTM becomes clearer for dynamical systems characterized by a high-order differ-
ential equations system, say of order q, where one usually attempts to convert the
dynamics into a system of first-order differential equations in some q unknown
variables. Following conventional OC solvers based on spectral methods, and ap-
plying full parameterization of the states and the controls, one faces the problem
of solving a formidable NLP problem of dimension (q(L+ 1) +M + 1), assuming
that the control variable is a scalar. Otherwise, the dynamics must be discretized
into a system of algebraic equations using higher-order SDMs up to the qth-order,
where severe ill-conditioning rears its ugly head. Notice here that the GTM still
preserves the same dimension (L + M + 2) of the resulting NLP problem. In-
deed, many of the complications involved in traditional discretization methods
are overcome by the application of the GTM endowed with the P-matrix within
the framework of a complete integration numerical scheme, where a significantly
small-scale NLP problem and precise solutions can be readily accomplished.

7.6 Conclusion and Future Research

This chapter covers a wide collection of CTOCPs with the concrete aim of compar-
ing the efficiency of the current work with other classical discretization methods
in the literature. The GTM presented in this chapter is a novel direct optimiza-
tion method based on Gegenbauer collocation. The method is inspired by our
recent achievement in (Elgindy and Smith-Miles, 2013b) in the development of
very high-order numerical quadratures based on Gegenbauer polynomials, and
represents an extension to the work of Elgindy et al. (2012) to deal with prob-
lems where high-order time derivatives of the states arise in the cost function,
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dynamical system, and the path/terminal constraints. To this end, we introduced
a substitution µ(t) for the highest-order time derivative of the state, x(N)(t), and
solved the CTOCP directly for µ(t) and the control u(t). The state vector and
its derivatives up to the (N−1)th-order derivative can be accurately evaluated by
successive integration. The GTM recasts the dynamical system into its integral
form to apply the well-conditioned and stable SIMs, and avoid the ill-conditioning
associated with the SDMs. The dynamical system, path and terminal constraints
are imposed at the GG points. The integral operations are approximated by op-
timal Gegenbauer quadratures in the sense of satisfying the optimality constraint
(7.7). The successive integrals of the Gegenbauer basis polynomials can be calcu-
lated exactly for the GG nodes through the optimal P-matrix. Since the optimal
P-matrix is a constant matrix for a particular GG solution points, the GTM can
be quickly used to solve many practical trajectory optimization problems, and
the Gegenbauer spectral computations can be considerably more effective. It is
essential here to acknowledge that the rectangular form of the optimal P-matrix is
a useful feature, which allows the GTM to produce higher-order approximations
without increasing the dimension of the NLP problem or increasing the number
of collocation points. In contrast, traditional spectral methods usually demand
that the number of spectral expansion terms (N+1) required for the construction
of the spectral differentiation/integration matrix be exactly the same as the num-
ber of collocation points; cf. (El-Gendi, 1969; Elbarbary, 2007; Fornberg, 1990;
Ghoreishi and Hosseini, 2004; Gong et al., 2009; Paraskevopoulos, 1983; Ross
and Fahroo, 2002; Weideman and Reddy, 2000). Therefore, to obtain higher-
order approximations, one has to increase the size of the spectral matrix, which
in turn requires the increase in the number of collocation points. This increase in
the number of collocation points is a crucial element in reducing the efficiency of
the traditional direct pseudospectral methods and direct orthogonal collocation
methods in the sense that:

(i) the increase of the number of collocation points in a direct pseudospectral
method increases the number of unknown spectral coefficients in the state
and control expansion series. This fact can be easily derived, since the
spectral coefficients in direct pseudospectral methods are exactly the states
and controls values at the collocation points, which represent the optimiza-
tion variables after discretizing the CTOCP into a parameter NLP problem.
Hence to achieve higher-order approximations, popular direct pseudospec-
tral methods demand the increase in the dimension of the NLP problem.

(ii) Although the spectral coefficients of the states and/or controls in direct
orthogonal collocation methods may assume any values, and they are not
necessarily the same as the states/controls values at the collocation points;
cf. (El-Gindy et al., 1995; El-Hawary et al., 2003; Elnagar, 1997; Razzaghi
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and Elnagar, 1993; Vlassenbroeck and Dooren, 1988), the increase in the
number of collocation points increases the number of constraints in the
resulting NLP problem, since the dynamics and all of the constraints are
discretized at the collocation points, and the spectral collocation methods
aim for their satisfaction at these particular points.

For a large number (MP + 1) of the Gegenbauer expansion terms, the opti-
mal Gegenbauer quadrature converges to the optimal Chebyshev quadrature in
the L∞-norm. Moreover, the optimal Gegenbauer quadrature constructed via
Algorithm 2.2 in (Elgindy and Smith-Miles, 2013b) is identical with the Legen-
dre quadrature for large values of MP if the approximations are sought in the
L2-norm. Therefore for collocations of CTOCPs at the Chebyshev-Gauss points,
the GTM becomes a direct Chebyshev transcription method, for large numbers of
Gegenbauer expansion terms, if the solutions are sought in the L∞-norm. Further-
more, the GTM becomes a direct Legendre transcription method for collocations
at the Legendre-Gauss points, for large numbers of the Gegenbauer expansion
terms, if the solutions are sought in the L2-norm. In fact, due to the precise
approximations of the optimal Gegenbauer quadratures adapted in the present
GTM, we observed from the extensive numerical experiments that small numbers
of collocation points and the states and controls expansion terms are generally
sufficient to generate accurate trajectories; cf. Section 7.5. The GTM handles the
state and the control constraints smoothly. On the contrary, the presence of such
constraints often presents a difficulty in front of the available popular theoretical
tools such as Pontryagin’s minimum principle and the Hamilton-Jacobi-Bellman
optimality equation. Moreover, the GTM approximations converge to the solu-
tion of the OC problem much more rapidly than Eulerian approximations. In
contrast, Eulerian discretizations require large number of variables, or even ex-
perience an explosion in the number of variables to achieve comparable precision
of solutions. The significantly small-scale NLP established by the GTM is im-
portant to allow real-time decision making as the OC can be readily determined
using modern NLP software and computer packages. Moreover, since the GTM
solves the CTOCP in the spectral space, the state and control variables can im-
mediately be evaluated at any point in the domain of the solutions. Similar
ideas to the ones presented in this chapter can be applied on CTOCPs governed
by dynamical systems characterized by integral equations or integro-differential
equations; thus the GTM is broadly applicable and encompasses a wider range
of problems over the standard direct collocation methods. The robustness and
the efficiency of the GTM are verified through four CTOCPs well-studied in the
literature. The numerical comparisons conducted in this chapter reveal that the
GTM integrated with the optimal Gegenbauer quadrature offers many advan-
tages. Moreover, the results clearly show that the Gegenbauer polynomials are
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effective in direct optimization methods.
One of the useful contributions of this chapter is the establishment of a com-

putationally efficient framework for CTOCPs exhibiting sufficiently differential
solutions. Moreover, the current chapter signifies the important advantage of
producing very small-scale dimensional NLP problems, which signals the gap be-
tween the present method and other traditional methods. The GTM combines
the strengths of the versatile Chebyshev, Legendre, and Gegenbauer polynomi-
als in one OC solver, and provides a strong addition to the arsenal of direct
optimization methods.

There are many important topics related to the present work, which can be
pursued later in the future. In the following, we highlight two important subjects
highly relevant to the present work:

(i) Direct optimization methods based on spectral methods can solve CTOCPs
exhibiting nonsmooth/discontinuous solutions with slower convergence
rates than those obtained for problems with smooth solutions; cf. (Gong
et al., 2006a, Example 5 in pg. 1127) and (Yen and Nagurka, 1991, Ex-
ample 3 in pg. 212), for instance, for examples on CTOCPs with contin-
uous and discontinuous controllers, respectively. However, the exponential
convergence of the present GTM can be easily recovered for CTOCPs with
discontinuous/nonsmooth solutions through a “semi-global” approach. The
idea is to divide the OC problem into multiple-phases, which can be linked
together via continuity conditions (linkage constraints) on the independent
variable, the state, and the control. The GTM can then be applied globally
within each phase; cf. (Rao, 2003).

(ii) Further analysis is required to investigate the convergence of the approximate
solutions of the GTM based on Gauss collocations to the solutions of the
CTOCPs.

7.A Elementary Properties and Definitions

In this section we briefly introduce the Gegenbauer polynomials and present some
of their useful properties. The Gegenbauer polynomial C

(α)
n (x), n ∈ Z+, of degree

n and associated with the real parameter α > −1/2 is a real-valued function,
which appears as an eigensolution to the following singular Sturm-Liouville prob-
lem in the finite domain [−1, 1] (Szegö, 1975):

d

dx
(1− x2)α+

1
2
dC

(α)
n (x)

dx
+ n(n+ 2α)(1− x2)α−

1
2C(α)

n (x) = 0.
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The weight function for the Gegenbauer polynomials is the even function (1− x2)α−1/2.
The form of the Gegenbauer polynomials is not unique and depends on a certain
standardization. The Gegenbauer polynomials standardized by Doha (1990) so
that

C(α)
n (x) =

n!Γ(α + 1
2
)

Γ(n+ α + 1
2
)
P

(α−1
2
,α−1

2
)

n (x), n = 0, 1, 2, . . . , (7.A.1)

establish the following useful relations:

C(0)
n (x) = Tn(x),

C
( 1

2
)

n (x) = Ln(x),

C(1)
n (x) = (1/(n+ 1))Un(x),

where P
(α−1

2
,α−1

2
)

n (x) is the Jacobi polynomial of degree n and associated with
the parameters α− 1

2
, α− 1

2
;Tn(x) is the nth-degree Chebyshev polynomial of the

first kind, Ln(x) is the nth-degree Legendre polynomial; Un(x) is the nth-degree
Chebyshev polynomial of the second type. Throughout the chapter, we shall refer
to the Gegenbauer polynomials by those constrained by standardization (7.A.1).
The Gegenbauer polynomials are generated by the following Rodrigues’ formula:

C(α)
n (x) = (−1

2
)n

Γ(α + 1
2
)

Γ(n+ α + 1
2
)
(1− x2)

1
2
−α d

n

dxn
(1− x2)n+α−1

2 , (7.A.2)

or using the three-term recurrence relation

(j + 2α)C
(α)
j+1(x) = 2(j + α)xC

(α)
j (x)− jC(α)

j−1(x), j ≥ 1, (7.A.3)

starting from C
(α)
0 (x) = 1; C

(α)
1 (x) = x. The set

S(α)
n = {xj|C(α)

n+1(xj) = 0, j = 0, . . . , n}, (7.A.4)

is the set of the roots/zeros {xj}nj=0 of the Gegenbauer polynomial C
(α)
n+1(x), which

are usually called the GG points. At the special values x = ±1, the Gegenbauer
polynomials satisfy the relation

C(α)
n (±1) = (±1)n ∀n. (7.A.5)

The interested reader may further pursue more information about the family of
Gegenbauer polynomials in many useful textbooks and monographs; cf. (Abramowitz
and Stegun, 1965; Andrews et al., 1999; Bayin, 2006; Hesthaven et al., 2007) for
instance.
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Conclusion and Future Research

8.1 Summary of Contributions

The numerical methods for solving CTOCPs are conveniently divided into two
main categories: IOMs and DOMs. The former class of methods attempts to
iterate on the necessary conditions of optimality provided by the CV and the MP
to seek their satisfaction while the latter class of methods endeavor to retain the
structure of the CTOCPs by discretizing the infinite-dimensional continuous-time
problem into a finite dimensional parameter NLP problem, which can be solved by
standard optimization software. Although the former class may produce accurate
solutions to the CTOCPs, the solution of the resulting TPBVP, as a reformulation
of the CTOCP, is usually at least as involved as solving the system equations
themselves. The many drawbacks associated with these methods can largely
limit their applications on complex OC problems; therefore they are not practical
in any but the simplest cases; cf. Chapter 1. In contrast, the theoretical and
experimental results of the DOMs presented in this dissertation, in addition to
those found in many textbooks, articles, and monographs in the literature favor
this class of methods over the former from many perspectives.

The novel DOCM introduced in this dissertation adopts a new vision for the
solution of complex CTOCPs based on the simplicity, fast convergence, econ-
omy in calculations, and the stability of the Gegenbauer collocation integration
schemes. Moreover, one of the major contributions of the presented techniques
is the establishment of very small-scale NLP problems analogs to the original
CTOCPs, which can deliver very precise solutions for problems with sufficiently
differentiable solutions. The foundation for the success of the developed methods
largely lies in the precise translation of the integral operations included in the
CTOCP without the requirements of either increasing the number of collocation
points employed in the discretization of the problem or increasing the dimen-

224



Chapter 8

sion of the resulting NLP problem. To this end, we have designed an optimal
Gegenbauer quadrature which has been thoroughly investigated in Chapter 3.
The proposed numerical quadrature is novel in many aspects: (i) The quadra-
ture is established using a rectangular GIM so that the choice of the number of
Gegenbauer expansion terms (M + 1) required for its construction is completely
free, and independent of the number of integration nodes. (ii) The quadrature
scheme is optimal in the sense that it combines the very useful characteristics of
the Chebyshev, Legendre, and Gegenbauer polynomials in one unique quadrature
through a unified approach. In particular, the Gegenbauer polynomial expansions
are applied in the small/medium range of the spectral expansion terms to produce
rapid convergence rates faster than both the Chebyshev and Legendre polynomial
expansions. This technique entails the calculation of some optimal Gegenbauer
parameter values α∗i rather than choosing any arbitrary α value. For large-scale
number of expansion terms, the quadrature is constructed through the elegant
Chebyshev and Legendre polynomial expansions, which are optimal in the L∞-
norm and L2-norm approximations of the smooth functions, respectively. The
essential elements discussed in Section 3.2.9 motivated us to develop two efficient
computational algorithms, namely Algorithms 2.1 and 2.2, for constructing the
novel and optimal P-matrix through interpolations at the optimal set of adjoint
GG points (3.15) in the sense of solving Problem (3.13). Algorithm 2.2 is a more
cost-effective algorithm suitable for similar sets of integration points, where most
of the calculations carried out for the construction of the P-matrix are halved;
thus the Gegenbauer spectral computations can be considerably more effective.
The construction of the optimal Gegenbauer quadrature is induced by the set of
integration points regardless of the integrand function. Moreover, the proposed
method establishes a high-order numerical quadrature for any arbitrary sets of
integration points, and avoids the Runge Phenomenon through discretizations at
the adjoint GG points. The rectangular form of the developed P-matrix is an ex-
tremely indispensable element in achieving approximations of higher-orders, and
permitting rapid convergence rates without the need to increase the number of
integration nodes. The optimal Gegenbauer quadrature is exact for polynomials
of any arbitrary degree n if the number of columns of the P-matrix is greater
than or equal to n. The optimality measure adopted by the present quadrature
method, and the applications of the Chebyshev and Legendre polynomial expan-
sions for large-scale number of expansion terms render the optimal Gegenbauer
quadrature strong enough to stabilize the calculations, and sufficient to retain the
spectral accuracy. The numerical experiments reported in Section 3.3 show that
the optimal Gegenbauer quadrature can achieve very rapid convergence rates
and higher-order precisions, which can exceed those obtained by the standard
Chebyshev and Legendre polynomial methods. Moreover, the optimal Gegen-
bauer quadrature outperforms conventional Gegenbauer quadrature methods.
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A critical stage in the transcription of a CTOCP by a DOM manifests in the
discretization of the dynamics. The caliber of the discrete representation of the
dynamical system, and the discrete OC problem in general is crucial for deter-
mining the approximate solutions within high accuracy. Chapter 4 highlights the
tempting idea of optimizing the GIM to achieve better solution approximations
through the transformation of the dynamical system or the OC problem into an
unconstrained or constrained optimization problem, respectively. The Gegen-
bauer parameter α associated with the Gegenbauer polynomials and employed
in the construction of the GIM is then added as an extra unknown variable to
be optimized in the resulting optimization problem as an attempt to optimize
its value rather than choosing a random value. Although this tempting idea has
been applied in a number of articles, Chapter 4 provides a clear and indisputable
mathematical proof which rebuffs these approaches in view of the violation of
the discrete Gegenbauer orthonormality relation, and the establishment of false
optimization problems analogs, which may lead to fallacious solution approxi-
mations. The mathematical proof rests upon the fact that the eigenfunctions
in spectral theory must be held fixed for defining the projection space, and the
approximation procedure must start anew as the space is refined.

Chapter 5 presents an efficient numerical method for discretizing various dy-
namical systems such as BVPs, integral and integro-differential equations using
GIMs. The proposed numerical method avoids the pitfalls of the techniques pre-
sented in the preceding chapter, and introduces a strong and practical method for
the establishment of approximations of higher-orders to the solutions of continu-
ous dynamical systems. The principle idea is to transform the general BVPs and
integro-differential equations into their integral reformulations, which can be dis-
cretized efficiently using a hybridization of the GIMs presented in Chapter 3. The
resulting algebraic linear system of equations can be solved for the solution values
in the physical space using efficient linear system solvers. The proposed hybrid
Gegenbauer collocation integration method generally leads to well-conditioned
linear systems, and avoid the degradation of precision caused by the severely ill-
conditioned SDMs. The theoretical and extensive empirical results presented in
this chapter demonstrate the robustness and the spectral accuracy achieved by
the proposed method using a relatively small number of solution points. These
useful and desirable features are largely due to the rectangular property and the
optimality measure adopted by the P-matrix. It has been shown through eight
diverse test examples that the performance of the proposed method is superior
to other competitive techniques in the recent literature regarding accuracy and
convergence rate. Moreover, the developed Gegenbauer collocation integration
scheme is memory-minimizing and can be easily programmed.

Chapter 6 presents a novel DOCM using GG collocation for solving CTOCPs
with nonlinear dynamics, state and control constraints. The work introduced in
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this chapter represents a major advancement in the area of DOCMs using Gegen-
bauer polynomials. The proposed GTM transcribes the infinite-dimensional OC
problem into a finite-dimensional NLP problem which can be solved in the spec-
tral space; thus approximating the state and the control variables along the entire
time horizon. The method was applied on two numerical examples to find the best
path in 2D for an unmanned aerial vehicle mobilizing in a stationary risk environ-
ment. The implementation of the GTM reveals many fruitful outcomes over the
standard variational methods in the sense that: (i) The proposed GTM neither
requires the explicit derivation and construction of the necessary conditions nor
the calculation of the gradients ∇xL of the Lagrangian function L(x(t), u(t), t)
with respect to the state variables, yet it is able to produce rapid convergence and
achieve high precision approximations. In contrast, the indirect method applied
by Miller et al. (2011) requires the explicit derivation of the adjoint equations,
the control equations, and all of the transversality conditions. (ii) To implement
a variational method, the user must calculate the gradients ∇xL for the solu-
tion of the necessary conditions of optimality. This property is not a must for a
DOM in general. (iii) Since the optimal P-matrix is constant for a particular GG
solution points set, the GTM can be quickly used to solve many practical tra-
jectory optimization problems. We observed also that decreasing the number of
columns M of the P-matrix and the parameter Mmax required for the construc-
tion of the P-matrix via Algorithm 2.2 presented in Chapter 3 can reduce the
calculations time taken by the GTM for solving CTOCPs with a slight reduction
in accuracy. For instance, in Example 6.4.1, the drop in the values of M = Mmax

by 6 units, and under similar parameter settings, results in a slight change of
0.0418 in the computed risk integral value J . The recorded average CPU time
in 100 runs taken by the GTM in this case was shorter by 0.5924 seconds. On
the other hand, to carry out a variational method, one usually bears the labor of
constructing the necessary conditions of optimality offline before the start of the
optimization process on the digital computer. Even if the user managed to deter-
mine the necessary conditions of optimality online using symbolic arithmetic, the
latter can be too slow in practice (Keyser et al., 1998; Krishnan and Manocha,
1995). (iv) The GTM is in principle robust, and tends to have better convergence
than the variational methods, which lead to unstable TPBVPs with very small
radii of convergence. Another notable advantage of the GTM is that the succes-
sive integrals of the Gegenbauer basis polynomials can be calculated exactly at
the GG points through the optimal P-matrix; thus the numerical error arises due
to the round-off errors and the fact that a finite number of the Gegenbauer basis
polynomials are used to represent the state and the control variables. (v) The
GTM handles the system dynamics using spectral integration matrices (SIMs)
celebrated for their stability and well-conditioning rather than the SDMs which
suffer from severe ill-conditioning, and are prone to large round-off errors. In con-
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trast, typical variational techniques carried out using spectral methods discretize
the linear TPBVP into a system of algebraic equations by way of a differentia-
tion matrix; cf. (Yan et al., 2001) for instance. (vi) The GTM deals with the
state and the control constraints smoothly; on the contrary, the presence of such
constraints often presents a difficulty in front of the popular classical theoretical
tools such as the MP and the HJB equation. (vii) The developed GTM can be
easily extended to higher dimensional OC problems under the same level of com-
plexity, whereas the difficulty of establishing the necessary conditions stands as a
coarse barrier against the extension of the variational methods to more complex
OC problems.

Chapter 7 covers a wider collection of CTOCPs with the concrete aim of
comparing the efficiency of the GTM with other classical discretization methods
in the literature. The GTM presented in this chapter extends the work intro-
duced in the previous chapter to deal with problems where different orders time
derivatives of the states arise in the cost function, dynamical system, and the
path/terminal constraints. To this end, we introduced a substitution µ(t) for
the highest-order time derivative of the state, x(N)(t), N ∈ Z+, and solved the
CTOCP directly for µ(t) and the control u(t). The state vector and its derivatives
up to the (N − 1)th-order derivative can be accurately evaluated by successive
integration. This key idea provides the luxury of working in a full integration
environment, taking full advantage of the well-stability of the integral operators.
Moreover, we investigated the solution of LQR problems characterized by linear
time-invariant dynamical systems. The GTM outperforms DLCMs in many as-
pects, but mainly: (i) The exponential convergence of the GTM clearly observed
through Tables 7.1–7.4 shows an advantage over classical direct local collocation
schemes based on Eulerian like discretizations, which require large number of
variables, or even experience an explosion in the number of variables to achieve
comparable precision of solutions. (ii) Since the GTM solves the CTOCP in
the spectral space, the state and control variables can immediately be evalu-
ated at any point in the domain of the solutions. In contrast, typical DLCMs
based on finite-difference schemes, for instance, invoke an interpolation method
to evaluate the state and control histories at an intermediate solution point. On
the other hand, the extensive numerical comparisons conducted in this chapter
signifies the superiority of the proposed GTM over traditional DOCMs and di-
rect PS methods regarding robustness, accuracy, economy in calculations, rates
of convergence, and the production of significantly small-scale NLP problems.
The wide gap between the proposed GTM and other discretization methods is
largely due to the following key elements: (i) The rectangular form of the opti-
mal P-matrix allows the GTM to produce higher-order approximations without
increasing the dimension of the NLP problem or increasing the number of collo-
cation points. In contrast, the popular direct PS methods demand the increase
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in the size of the SDM to achieve higher-order approximations, which in turn
requires the increase in the number of collocation points and the dimension of
the NLP problem. In particular, one usually cannot obtain higher-order approx-
imations in a PS method without increasing the size of each of these three key
elements, namely, (a) the size of the SDM, (b) the number of collocation points,
and (c) the number of state and control expansion terms. (ii) The GTM works
under a complete integration environment through the recast of the dynamics
into its integral formulation. The integral form dynamics is then discretized us-
ing the well-conditioned SIMs. In this manner, the proposed GTM unifies the
process of the discretization of the dynamics and the integral cost function. On
the contrary, classical DOCMs and direct PS methods discretize the dynamical
system using standard square SDMs, which are associated with many drawbacks.
(iii) The GTM employs Gegenbauer polynomial expansions for the small/medium
range of the number of spectral expansion terms to produce higher-order approx-
imations. For a large number of the Gegenbauer expansion terms (M + 1), the
optimal Gegenbauer quadrature converges to the optimal Chebyshev quadrature
in the L∞-norm. Moreover, the optimal Gegenbauer quadrature constructed via
Algorithm 2.2 in Chapter 3 is identical with the Legendre quadrature for large
values of M > Mmax if the approximations are sought in the L2-norm. Therefore
for collocations of CTOCPs at the Chebyshev-Gauss points, the GTM becomes
a direct Chebyshev transcription method, for large numbers of the Gegenbauer
expansion terms, if the solutions are sought in the L∞-norm. Furthermore, the
GTM becomes a direct Legendre transcription method for collocations at the LG
points, for large numbers of the Gegenbauer expansion terms, if the solutions are
sought in the L2-norm. In fact, due to the precise approximations of the optimal
Gegenbauer quadratures adapted in the present GTM, we observed from the ex-
tensive numerical experiments conducted in Chapters 6 and 7 that small numbers
of the collocation points and the states and controls expansion terms are generally
sufficient to generate very accurate trajectories. Hence the GTM combines the
strengths of the versatile Chebyshev, Legendre, and Gegenbauer polynomials in
one OC solver, and provides a strong addition to the arsenal of DOMs. On the
contrary, typical DOCMs and direct PS methods apply Chebyshev polynomial
expansions or Legendre polynomial expansions blindly for all types of expansions
and any type of OC problems.

The significantly smaller-scale NLP problem established by the GTM intro-
duced in this dissertation is of importance to allow real-time decision making as
the OC can be readily determined using modern NLP software and computer
packages; cf. Table 7.5 for instance. The robustness and the efficiency of the
GTM are verified through extensive well-studied CTOCPs in the literature. The
numerical comparisons conducted in this dissertation reveal that the Gegenbauer
collocation integration schemes integrated with the optimal Gegenbauer quadra-

229



Chapter 8

ture offer many advantages, and yield a better control performance compared
to other conventional computational OC methods. Moreover, the results clearly
show that the Gegenbauer polynomials are very effective in DOMs.

One of the paramount contributions of this dissertation is the establishment
of computationally very efficient frameworks for solving dynamical systems and
CTOCPs exhibiting sufficiently differential solutions. The introduced ideas present
major breakthroughs in the areas of dynamical systems and computational OC
theory as they deliver significantly accurate solutions using considerably small
numbers of collocation points. Moreover, the dissertation signifies the very im-
portant advantage of producing very small-scale dimensional NLP problems, and
highlights the gap between the present GTM and other traditional methods. Since
the Gegenbauer collocation method can provide excellent approximations to the
integration in the cost function (as extensively studied in Chapter 3), the differen-
tial/integral equations of the dynamical system (as comprehensively investigated
in Chapter 5), and the state-control constraints (as evident from Chapters 6 and
7), it is the method of choice for many types of mathematical problems, and well
suited for digital computations.

8.2 Future Research Directions

Numerical strategies and optimization techniques yielding fast and accurate ap-
proximations to the solutions are highly desirable to allow real-time decision
making. In fact, there is a number of intriguing research points which may be
pursued later. In the following, we mention some of them:

(i) A nonlinear OC problem may admit multiple solutions; cf. (Ghosh et al.,
2011; Kogut and Leugering, 2011; Singh, 2010). Therefore, one may ap-
ply global optimization solvers such as the genetic algorithms, evolution
strategies, particle swarm optimization, ant colony optimization, etc. for
the minimization of the resulting NLP problems instead of the “fmincon”
MATLAB local optimization solver applied in this dissertation.

(ii) Similar ideas to the methods described in this dissertation can be easily ex-
tended to solve CTOCPs governed by integral equations or integro-differential
equations; therefore, the GTM encompasses a wider range of OC problems
over the standard DOMs.

(iii) The mathematical convergence proof of the Gegenbauer collocation inte-
gration method for solving TPBVPs is provided in Chapter 5. Moreover,
we notice from our empirical experience in solving several problems with
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analytic solutions in this dissertation using the proposed algorithms that
the presented Gegenbauer collocation integration methods converge very
rapidly to the sought solutions as the number of collocation points, state
and control expansion terms increase. However, at this stage, we do not
have mathematical convergence proofs for the proposed algorithms for the
solution of general dynamical systems and CTOCPs. Therefore, further
tests and analysis are necessary to investigate the stability, the accuracy,
and the convergence of the Gegenbauer collocation integration methods
presented in this dissertation.

(iv) The GTM is significantly more accurate than other conventional direct local
methods for smooth OC problems, enjoying the so called “spectral accu-
racy.” Moreover, Chapter 7 highlights the significant advantages of the
GTM over the DOCMs and direct PS methods. For the class of discontinu-
ous/nonsmooth OC problems, the existence and convergence results of the
similar approaches of direct PS methods have been investigated and proved
in a number of articles; cf. (Kang et al., 2005, 2007, 2008), for instances,
for studies on OC problems with discontinuous controller using Legendre
polynomials. Here it is essential to acknowledge that the convergence rate
of standard DOCMs/PS methods applied for discontinuous/nonsmooth OC
problems is not imposing as clearly observed for OC problems with smooth
solutions. In fact, the superior accuracy of the GTM cannot be realized
in the presence of discontinuities and/or nonsmoothness in the OC prob-
lem, or in its solutions, as the convergence rate grows slower in this case
for increasing number of GG collocation points and Gegenbauer expansion
terms. Some research studies in this area manifest that the accuracies of
DGCMs and DLCMs become comparable for nonsmooth OC problems; cf.
(Huntington, 2007). To recover the exponential convergence property of the
GTM in the latter case, the GTM can be applied within the framework of a
semi-global approach. Here the OC problems can be divided into multiple-
phases, which can be linked together via continuity conditions (linkage con-
straints) on the independent variable, the state, and the control. The GTM
can then be applied globally within each phase. The reader may consult
Ref. (Rao, 2003), for instance, for a similar practical implementation of this
solution method. Another possible approach to accelerate the convergence
rate of the GTM, and to recover the spectral accuracy, is to treat the GTM
with an appropriate smoothing filter; cf. (Elnagar and Kazemi, 1998b),
for instance, for a parallel approach using a PS Legendre method. Other
methods include the knotting techniques developed in (Ross and Fahroo,
2002, 2004) for solving nonsmooth OC problems, where the dynamics are
governed by controlled differential inclusions. Moreover, the Gegenbauer
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reconstruction method invented by Gottlieb et al. in 1992 is another po-
tential method which may be extended for solving OC problems exhibiting
nonsmooth/discontinuous solutions.

(v) The numerical methods developed in this dissertation assume global smooth-
ness, and generally use a single grid for discretization. An interesting direc-
tion for future work could involve a study of composite Gegenbauer grids
and adaptivity to improve the convergence behavior of the solvers for com-
plex problems.
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Süli, E., Mayers, D. F., 2003. An Introduction to Numerical Analysis. Cambridge
University Press.
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