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Addendum

Page 34: Replace “In comparison, Mosqueira & Estrada (2003a,b) propose
a two-component disk model with a dense inner sub-disk extending out to
the centrifugal radius surrounded by a less dense outer disk.”, with “In
comparison, Mosqueira & Estrada (2003a,b} propose a two-component disk
model with a dense inner sub-disk surrounded by a less dense outer disk.
The edge of this inner disk was set at the centrifugal radius, R,, the radius
of the orbit of a gas parcel around the planet, such that the gravitational
force from the planet and centrifugal force on that parcel balance, defined
as

R.= 21— (3.1)

where j is the angular momemtum of the gas parcel, (7 is the universal grav-
itational constant and M, is the mass of the planet.”.

Page 136: Replace “As a result of these, and other effects,” with “For the
case where a,(t;) is large and negative, these effects are reversed. As a
result of these behaviours,”.

Page 210: Replace “For the case of COROT, a sixteen minute exposure
time is used for its catalogue of approximately 12000 targets”, with “For
the case of COROT, a 512 second exposure time is used for its catalogue of
approximately 12000 targets”.
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Abstract

The detectability of moons of extra-solar planets is investigated, focussing
on the time-of-arrival perturbation technique, a method for detecting moons
of pulsar planets, and the photometric transit timing technique, a method
for detecting moons of transiting planets. Realistic thresholds are derived
and analysed in the in the context of the types of moons that are likely to
form and be orbitally stable for the lifetime of the system.

For the case of the time-of-arrival perturbation technique, the analysis
is conducted in two stages. First, a preliminary investigation is conducted
assuming that planet and moon’s orbit are circular and coplanar. This
analysis is then applied to the case of the pulsar planet PSR B1620-26 b,
and used to conclude that a stable moon orbiting this pulsar planet could
be detected, if its mass was > 5% of its planet’s mass (2.5 M), and if the
planet-moon distance was ~ 2% of the planet-pulsar separation (23 AU).
Time-of-arrival expressions are then derived for mutually inclined as well as
non-circular orbits.

For the case of the photometric transit timing technique, a different ap-
proach is adopted. First, analytic expressions for the timing perturbation
due to the moon are derived for the case where the orbit of the moon is
circular and coplanar with that of the planet and where the planet’s or-
bit is circular and aligned to the line-of-sight, circular and inclined with
respect to the line-of-sight or eccentric and aligned to the line-of-sight. It
is found that when the velocity of the moon is small with respect to the
velocity at which the planet-moon barycenter transits the star, that the
timing perturbation could be well approximated by a sinusoid. Second, the
timing noise is investigated analytically, for the case of white photometric
noise, and numerically, using SOHO lightcurves, for the case of realistic
and filtered realistic photometric noise. It is found the timing noise is nor-
mally distributed and uncorrelated for planets likely to host large moons.
In addition it is found that realistic stellar photometric noise results in a
dramatic increase in the standard deviation of the timing noise, which is
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not entirely reversed by filtering. Finally, using the method of generalised
likelihood ratio testing, the work on the form of the timing perturbation due
to a moon, and the behaviour of the timing noise are combined to derive
both approximate analytic, and exact numerical thresholds. In particular, a
Monte Carlo simulation is run which investigates thresholds for the cases of
aligned, inclined and eccentric planet orbits for white, filtered and realistic
photometric noise for a range of planet masses (10M jy,, 1M jyp, 1Mprq and
1Mgy) and semi-major axes (0.2AU, 0.4AU and 0.6AU). Assuming Kepler
quality data, it is found that for the case where the photometric noise is
white, physically realistic moons could be detected for gas giant host plan-
ets, while for the case where the photometric noise is dominated by intrinsic
stellar noise, filtering allows the detection of physically realistic moons for
planets with mass 10M ;.
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Chapter 1

Introduction

1.1 Introduction

Since the announcement of the first two extra-solar planets orbiting the pul-
sar PSR B12574+12 (Wolszczan & Frail, 1992), over 500 extra-solar planets
have been discovered.! These discoveries have been made using a variety
of methods including the transit, radial velocity, microlensing and pulsar
time-of-arrival techniques, and have consequently resulted in a broad vari-
ety of detected planets. This wealth of data allows tests to be conducted on
individual and ensemble groups of planets to investigate such things as the
mode by which gas giant planets formed (e.g. Batygin et al., 2009; Mardling,
2010), the conditions under which they formed and their subsequent orbital
evolution (e.g. Fabrycky & Winn, 2009; Triaud et al., 2010). This is done
through measurement and analysis of planetary properties such as mass,
radius, orbital eccentricity and spin orbit misalignment, and by comparing
limits on the size of extant moons with limits such as those proposed by
Canup & Ward (2006). It is this last issue, in particular, the detection
of extrasolar-moons, or moons of extra-solar planets to which this thesis
addresses itself.

1.2 Structure of this thesis

In this thesis the detection of extra-solar moons, in particular, using the
methods of pulse time-of-arrival perturbation and photometric transit tim-
ing is investigated in the context of stability and formation models, as well as

1See e.g http://exoplanet.cu/catalogue.php
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other moon detection methods presented in the literature. As such, this the-
sis is divided into three main sections. The first section introduces the pre-
liminary material required to understand this thesis, namely the notation,
and literature results on formation, stability and detection of extra-solar
moons. From this context, the second and third parts move on to analyse
moon detection using the pulse time-of-arrival perturbation and photometric
transit timing methods respectively. These parts are discussed in turn.

1.2.1 Preliminaries and literature review

We begin in chapter 2 with the task of discussing and defining the nota-
tion used in this thesis. Then, the type of moons that extra-solar planets
are expected to have is then summarised in chapter 3. In particular, work
presented in the literature on moon formation mechanisms and subsequent
moon orbital evolution is collated to give a set of likely constraints on the
physical and orbital properties of moons of extra-solar planets. Then, in
chapter 4, the set of methods proposed in the literature for detecting moons
of extra-solar planets is summarised, along with the types of moon each
method is optimised to detect. This is done in two main stages. First,
the methods for detecting extra-solar planets are briefly summarised. Then,
within this context, each of the moon detection methods presented in the
literature is summarised with particular reference to the two methods inves-
tigated in this thesis.

1.2.2 Detection of moons of pulsar planets

We begin our investigation of moon detection in Part II by focussing on
the pulse time-of-arrival perturbation technique. This investigation is con-
ducted in two stages. First, a preliminary investigation is conducted into the
detectability of moons of pulsar planets. This work is presented in chapter
5 and is published as Lewis et al. (2008). In this analysis, an expression for
the timing perturbation due to planet-moon binarity is derived for the case
where the orbit of the planet and the orbit of the moon are both circular,
and in the same plane. This analysis is then used to constrain orbitally
stable moons of the pulsar planet PSR B1620-26 b. Second, as an extension
to this analysis, the effect of mutual inclination and mild eccentricity in the
orbit of the planet or the moon is investigated in chapter 6. In particular,
this investigation is conducted using a three-body formalism developed by
my PhD supervisor, Dr. Rosemary Mardling, as it allows easy description
of hierarchical three-body systems with arbitrary values of inclination and
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eccentricity. It was found that mutual inclination or eccentricity introduced
additional harmonics into the perturbation, which are summarised in fig-
ure 6.8.

1.2.3 Detection of moons of transiting planets

In Part III, the detectability of moons of transiting planets using the method
of photometric transit timing is addressed. In chapter 7 the transit technique
is reintroduced and expressions for the transit duration and shape of the
transit light curve are derived as they are required later in the thesis. Then,
in this context the photometric transit timing statistic 7 is introduced and
defined, noting that for this thesis, a slightly more general definition of this
statistic is used than that used by Szabé et al. (2006). Then, by algebraically
manipulating this definition, expressions for A7, the timing perturbation
due to the moon, and ¢; the timing perturbation due to photometric noise,
are derived. In particular, this formulation allows the effect of the moon
and the noise to be investigated separately and then combined to yield
thresholds.

Following on from this, the form of At is investigated in chapter 8. In
particular, it is investigated for the case where the moon’s orbit is circular
and in the same plane as the planet’s orbit and the planet’s orbit is circular
and aligned to the line-of-sight (section 8.4), is circular and slightly inclined
with respect to the line-of-sight (section 8.5) and eccentric and aligned to
the line-of-sight (section 8.6). In addition, the case where the moon’s orbit
is slightly eccentric is also investigated (appendix I). For the case where the
moon’s orbit is circular, the motion of the moon is roughly uniform during
transit and the velocity of the moon on its orbit is substantially less than
the velocity of the planet-moon pair across the face of the star, A7 is given
by a sinusoid with coefficients given in table 8.4.

In chapter 9, the quantity ¢;, the timing noise on 7, is examined for three
realistic photometric noise sources, white noise, intrinsic stellar photometric
noise and filtered intrinsic stellar photometric noise. First, the case of white
noise is investigated analytically and compared with the qualitative results
given in Szab¢ et al. (2006). Using this approach it is found that the size of
€; does not necessarily decrease with decreasing exposure time as suggested
by Szabé et al. (2006), but also depends on the origin of the photometric
noise, for example, whether the dominant noise source is shot noise or read
noise. Following on from this, using a method developed in this thesis for
deriving the distribution of €; using out-of-transit data, the cases of realistic
stellar noise and filtered stellar noise are investigated using SOHO light



curves. It is found that €; is approximately normal and uncorrelated for
all planets likely to host large moons. In addition, it is found that for
the case where the photometric noise is dominated solar-like photometric
variability, the amplitude of the timing noise is much larger than that for
the equivalent amplitude white noise, and that this effect is only partially
negated by filtering.

Finally in chapter 10, the work on the form of A7 and behaviour of
the timing noise is combined to produce preliminary detection thresholds.
In particular, this is done using the method of generalised likelihood ratio
testing, which involves comparing the probability that an observed sequence
of 7 values was produced by a system containing a planet and a moon as
opposed to a system containing only a planet. Using this method, analytic
expressions for thresholds were generated for the case where the number of
transits is large. It is found that the thresholds have a lopsided U-shape with
minima defined by the type of photometric noise and inclination, and depth
defined by the type of photometric noise and the eccentricity. In addition
to this general trend, the threshold also shows a number of non-detection
spikes corresponding to the cases where the moon orbits its host an integer
number of times per planetary year, and consequently produces no transit
to transit timing variations. To investigate the more realistic case where the
number of observed transits is small, a Monte Carlo simulation is also run.
The thresholds produced showed the same general behaviour as predicted
by the analytic analysis. In addition, it is shown that it may be possible
to place limits on physically realistic moons for gas giants hosts using this
technique, for planets in the Kepler data set.

We begin this process by discussing and selecting notation to be used
for this thesis.



Chapter 2

Notation used in this thesis

2.1 Introduction

Before moon detection methods can be investigated, or even literature re-
sults summarised, a notation set must be defined and described. As notation
used varies across the literature, the selection of notation is not necessar-
ily straight-forward (for an extreme example of this please see section 2.4).
Consequently, this chapter is dedicated to discussing and motivating the se-
lection of the notation used in this thesis in three particular contexts. First,
general notation describing the physical properties of the star, planet and
moon will be discussed. Then, the notation required to describe the orbital
properties of the star, planet and moon will be motivated and discussed in
the context of two-body and three-body theory. Finally, the discussion will
move to the notation required to describe transit light curves. For reference,
the notation selected is presented and summarised in appendix A. We begin
with a discussion of general notation, in particular, describing the physical
properties of the star, planet and moon.

2.2 Notation used for the physical properties of
the star, planet and moon

For both of the two detection methods investigated in this thesis, there are
three bodies which need to be described, namely, the star, the planet and
the moon. These three bodies have a number of inherent physical properties
which can effect moon detection, in particular, their mass and radius. For
this thesis, the notation M, M, and M,, will be used for the masses where
it is noted that the subscripts s, p and m denote properties of the star,
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Figure 2.1: Schematic diagram of two masses (grey circles) along with the
position vectors to these masses from the origin (O). The vector from M;
to Moy, r, is also shown.

planet and moon respectively. In addition, the radii of the three bodies will
be written as Ry, R, and R,, (please see section 2.4 for additional discussion
about this choice).

2.3 Notation used for the orbital properties of the
star, planet and moon

The selection of notation for the orbital parameters of the star, planet and
moon is a little more involved as they are part of a three-body system. Con-
sequently, to provide a context for this discussion, the motion of two bodies
in their mutual gravitational field will be discussed, followed by a general
discussion of the motion of three bodies. Then, the understandings devel-
oped from this discussion will then will be applied to the specific case of a
star-planet-moon system, and used to define and select intuitively reasonable
notation. We begin with a discussion of general two body motion.

2.3.1 General two-body motion

Consider the motion of two bodies, of mass M; and Ms, moving under
their mutual gravitational field (see figure refTwoBodySchematic). Using
Newton’s force law, the forces acting on each of the bodies shown in figure 2.1

8
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Figure 2.2: Schematic diagram showing the relationship between an elliptical

orbit (dashed line), its normal (n), the reference direction and reference
plane, and the angles I, w and €.

can be expressed as

M = ro —ry), 2.1
1 dtz ’rz—rl‘g( 2 1) ( )
d21‘2 GM2M1

M. = ry —ro), 2.2
2 ) (22)

where G is the universal gravitational constant.
Putting r = ro — ry, these two equations combine to give

d2r G (M 1+ Mg)

P R —
where r is also shown in figure 2.1, T is a unit vector in the direction of
r, and one of the equations has dropped out as a result of conservation of
momentum.

Equation (2.3) can be directly solved to give the canonical conic section
solutions for two-body motion (see e.g. Murray & Dermott, 1999). In par-
ticular, the orbit is described by six parameters which correspond to the six
integration constants from the above second order vector differential equa-
tion. Following the notation of Murray & Dermott (1999), the six orbital
elements which uniquely define the ellipse of a two body orbit are a, the

£=0, (2.3)
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Figure 2.3: Schematic diagram of three masses (grey circles) along with the
position vectors to these masses from the origin (O). In addition, the two
Jacobian coordinates r and R are shown.

semi-major axis, e, the eccentricity, I, the inclination, w, the argument of
pericenter, (2, the longitude of the ascending node, and f(0),! the value of
the true anomaly at t = 0 (see figure 2.2).

Now that two body motion has been introduced, we are in a position to
discuss motion of three bodies in their mutual gravitational field, again from
a general perspective. Consequently, we will repeat the above procedure for
the case where an additional body has been added.

2.3.2 General three-body motion

We begin by deriving the equations of motion for three massive bodies.
Consider three bodes of mass M;, Ms and M3 moving under the action
of their mutual gravitational fields (see figure 2.3). Again, using Newton’s
force law, the forces acting on each of the bodies shown in figure 2.3 can be

n order to determine where the body is along its orbit, an initial condition is required.
Murray & Dermott (1999) use 7, the time of pericenter passage to link ¢ and f. However,
as 7 will be used for the photometric transit timing statistic in this thesis, we use f(0)
instead.
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expressed as

d21‘1 GM1M2 GMlMg

My = (1‘2—1‘1)+ (1‘3—1‘1), (2 4)
dt? |y — 1 vy — 1y’
d21‘2 GM2M1 GM2M3

My = (r1 —r2) + ————(rs —r2), (2.5)
dt?  |rp — 1y Ir3 — 1o
d21‘3 GMng GM3M2

Mg a2~ lr; — rgl?’(rl mre) lro — 1['3\3(][‘2 ~s) (26)

Equations (2.4) to (2.6) can be rewritten in terms of Jacobian coordi-
nates, that is, r, the vector from M; to Ms, and R, the vector from the
center of mass of M7 and My to Mg, defined as

r=ry—ry, (2.7)
M . M,
M+ M, ! My + M,y

where r and R are shown in figure 2.3.
Rewriting equations (2.4) to (2.6) in terms of r and R gives

ro +r3, (2.8)

d2I' GM12 GMg M2
R POV <R+M—J>
‘ T st
M M
R .

d’R GMos - GM123R_ G M3 R+ &r
az " RS RS M, M
‘R-i- M—ir 12
M M
~ GMgs . <R— Ml r> . (2.10)
‘R— z\%r 12

where Mo is defined as My + My, Mjog is defined as My + My + Mz and
where, again, one of the equations has dropped out as a consequence of
conservation of momentum.

Equations (2.9) and (2.10) can be simplified further by writing the right
hand sides in terms of a function known as the disturbing function. Following
Mardling (2008b) we define the disturbing function, R, to be

GM12M3 GM2M3 GMlMg

M M:
R R —qtrl R+ 721

R=-—

(2.11)
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where we note that this definition of the disturbing function has units of
energy. Simplifying equations (2.9) and (2.10) using equation (2.11) gives

MMy v GM My, OR

—r=— 2.12
M12 dt2 7‘2 g aI' ’ ( )
Mo M5 d°R G(Ml + My) M3 A OR
= 2.1
Moz dt? * R? R OR’ (2.13)

where 7 = |r| and R = |R|, where & and R are unit vectors in the directions
of r and R respectively.

In addition, r = r(z,y, z) where the xyz coordinate system has its origin
at M; and R = R(X,Y, Z) where the XY Z coordinate system has its origin
at the center of mass of M; and My, and thus

g .0 .0 K 0
or or oy o
g .0 . 0 K 0
ﬁ _la—X +J8_Y + 8_Z

For the case where the three-body system is hierarchical, that is, the or-
bit of My and My about their common barycenter and the orbit of M3 and
the M;-M, barycenter about the system barycenter are described by per-
turbed two-body motion, these equations have physical meaning. This can
be seen in the structure of the equations. Conceptually, equations (2.12) and
(2.13) have two components. The first component consists of the left hand
sides of equations (2.12) and (2.13). If the right hand side of the equations
were neglected, then both equations would be mathematically equivalent to
equation (2.3), the equation for two-body motion. Consequently, for this
case, the motion of My and M, around the My-Msy barycenter, the “inner”
orbit, would be described by conic sections. In addition, the motion of Mg
and the M;-M, barycenter around the system barycenter, the “outer” or-
bit, would be described by different conic sections. The second component
consists of the terms on the right hand sides of equations (2.12) and (2.13).
These terms allow the “inner” and “outer” orbits to interact.

Now that general-three body theory has been introduced, we are finally
in a position to apply it to the case of a star-planet-moon system.

2.3.3 Three-body motion for the case of a star, planet and
moon

For the case of a planet-moon pair in orbit around a star, we can associate
M, with the planet, Ms with the moon and Mg with the star. For this
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Figure 2.4: Schematic diagram of a star-planet-moon three-body system. As
in figures 2.1 and 2.3, the masses are shown as grey circles and labeled by
subscripts. In addition, the two Jacobian coordinates are shown and written
as I, and r, (see text).

case, the “inner orbit” would describe the elliptical orbit of the planet and
moon about their common barycenter while the “outer orbit” would describe
the elliptical orbit of the planet-moon pair, and the star, about the system
barycenter. While the terms “inner” and “outer” are general, they are not
very intuitive, and it is not immediately obvious how the orbital elements of
these orbits should be labeled. Consequently, for this thesis we will call the
“inner” orbit, the “moon’s” orbit and label the vector and orbital elements
associated with it with a subscripted m, and call the “outer” orbit, the
“planet’s” orbit and label the vector and the orbital elements associated
with it with a subscripted p. Consequently, using this notation, the two
governing equations are given by

M,M, d*r, GM,M,. — OR

M, + M,, di? 2 T o, (2.14)
M, + M,,)M, d? M, + M,,) My

(M) + ) rp+G( pt ) f_p:a_R7 (2.15)

Mg + M, + M, dt? 2 or,

where r,, and r, are shown in figure 2.4 and where

G(M, + M,,) M, G M, M G M, M;

r— G+ Mn)M, - 2 (2.16)
v LR TS T Ul s il

While this notation is being used, it should be pointed out that the re-
sults of this work are still entirely general, in that the ratio of the moon’s
mass to the planet’s mass can freely range from zero to one. For exam-
ple, if the semi-major axis of the orbit of the moon about the planet-moon
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Figure 2.5: Diagram showing the different portions of the transit light curve.
The four shaded circles show the planet’s position across the face of the star
at the beginning and end of ingress, and the beginning and end of egress.
As the position of the planet along the chord of the star is a linear function
of time, it can be used as a proxy for time. Consequently the position of

the planet and the value of the light curve resulting from that position are
linked by dashed lines.

barycenter is required, it will be written as (M,/(M, + My,))a,,. Simi-
larly, the semi-major axis of the orbit of the planet about the planet-moon
barycenter is given by (M,,/(M, + M,,))an,. Recalling that the six orbital
elements which uniquely define the ellipse of a two body orbit are a, e, I,
w, ©, and f(0), we have that, the orbital elements of the planet’s orbit are
given by a,, ey, I, wp, p and f,(0), while the orbital elements of the moon’s
orbit are given by an,, €m, I, Wm, Qm and f,,(0).

In addition to general notation defining the physical and orbital proper-
ties of the star, planet and moon, there is one addition situation where ad-
ditional notation is required, namely, the description of transit light curves.

14



qI1

Transit Light Curve Parameters Geometric Parameters

A AN AN VANV @ ) @
Tia - - I . —

Paper

Deeg et al. (2001) Ti2?  Thy? T. Ry

Mandel & Agol (2002) - - - - - 1-F(t) T Tp - d(t)
Seager & Mallén-Ornelas (2003)  tr - tr - - AF R, - b -
Tingley & Sackett (2005) D - - — - - Ry Rs - —
Giménez (2006) - - - - - a(t) Ts Tp - 5(t)
Carter et al. (2008) - T — T te ) R. R, - —
Sartoretti & Schneider (1999) - - - - - AF;, T 0 - r(t)
Deeg (2002) tir - - - to AL R* R, R*cosé —
Szabd et al. (2006) - — — - 70 Am(t;) — - - —
Kipping et al. (2009) tr - - - Twumip - R, R, - p(t)
This work - Tira - T; tmid a(t) Ry R, Omin  0(t)

Table 2.1: Table showing the range of transit light curve notation in use for a representative selection of works.
As parameters, for example, the transit duration, have different definitions in different works, their definition is
indicated by a cartoon schematic of the light curve, for the case of light curve parameters, or of the star and
planet, for the case of geometric parameters. If a quantity is not explicitly defined in a given work, this is shown
in two different ways. For the case where the notation is sufficiently logical such that the variable that would have
been used to represent this quantity can be guessed, the notation is given, followed by a question mark. For the
case where no such guess can be made, the lack is indicated by a dash.



2.4 Notation specific to transit light curves

A planetary transit occurs when a planet passes between the observer and
the face of its host star, and consequently blocks some of that star’s light,
and a transit light curve is the measured luminosity of a star undergoing a
planetary transit. A schematic of a sample transit light curve is shown in
figure 2.5. As can be seen in figure 2.5, the transit itself consists of three
main stages, first the ingress, where the disk of the planet is passing onto
the face of the star, second, the main part of the transit, where disk of the
planet fully overlaps with the disk of the star, and third, the egress, where
the disk of the planet is passing off the face of the star.

In particular, the shape of the light curve contains information about the
planet and its orbit, for example, the duration of ingress and egress contains
information about the size of the planet and the inclination of the orbit, and
the dip depth tells us about the relative size of the planet compared to the
star. In addition to information about the planet, the shape of this light
curve also determines the effectiveness of detection of moons using both the
method analysed in this thesis, as well as other methods in the literature.
So, in order to investigate these methods, we need to be able to describe the
shape of the transit light curve.

Consequently, the question arises of what notation to use to describe
this transit light curve. In particular, we would like a notation set which is
in general use, self-consistent and optimised for describing moon detection.
These issues will be addressed in turn, and then used to decide on a notation
system.

From a practical perspective we would like a notation set which is easy
to understand. This can be partially ensured if it is already currently in
general use in the transiting planet literature. When considering this goal,
two questions naturally arise, “What notation is currently in general use in
the transiting planet community?” and “What do we mean by transiting
planet community?”. To address the first question, a literature review was
conducted, focussing on notation styles. For reference, table 2.1 shows a
representative, but by no means a complete list of notation styles in use. As
can be seen from table 2.1, while there are some trends, for example, transit
duration is generally represented by a t or a T' while radii are represented by
a R or r with a subscript,? there is no universally accepted notation style.
The origin of this broad range of notation styles, can partially be understood

2Recall that for this thesis it was decided to use Rs, R, and R,, for the radius of the
star, planet and moon respectively.
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in terms of the answer to the second question. Within the transiting planet
community (and the list of works in table 2.1), there are authors who are in-
terested in the shape of transit light curves, to help streamline the detection
process (e.g. Tingley & Sackett, 2005), to determine properties of the planet
and star (e.g. Seager & Mallén-Ornelas, 2003) or because they are related
to eclipsing binary light curves (e.g. Giménez, 2006). In addition, a number
of authors are not interested in the shape of the light curve per se, but more
in perturbations in the mid-time or duration of transits as they can be used
to detect additional bodies such as planets (e.g. Holman & Murray, 2005)
or even moons (e.g. Kipping et al., 2009). From within these groups, nota-
tion clusters start to emerge, for example, Kipping et al. (2009) and Carter
et al. (2008) use the similar notation because Kipping et al. (2009) adopted
some of their notation from Carter et al. (2008). In addition, work from
researchers from other fields carries with it the notation used in those fields,
for example, the notation of Giménez (2006) is inherited from the work of
Kopal (1979) on binary star eclipse light curves.

In addition to selecting notation which is generally understood, it must
also be self-consistent and also consistent with the notation already in use
for this thesis. We will consider the issues of self-consistency and being
consistent with the notation already in use, in turn. As none of the notation
sets contain all the variables required for this work, a hybrid, self-consistent
notation, combining two or more of these sets must be constructed. As can
be seen from table 2.1, if some sets of notation were combined, it would
lead to confusion. For example, consider a combination of the light curve
notation of Carter et al. (2008) with the geometric notation of Giménez
(2006). As Carter et al. (2008) use § for the depth of the dip and Giménez
(2006) use 0(t) for the distance between the planet and the star on the plane
of the sky, the variable § is not uniquely defined. In addition to selecting
a self-consistent set of notation, we would also like a notation set which
is compatible with the notation discussed in the previous section and with
that used in the literature with respect to photometric transit timing. For
example, the notation used by Carter et al. (2008) cannot be used in this
work as the symbol they selected for the duration of transit ingress, 7, is the
same symbol used by Szabd et al. (2006) to describe their timing statistic.

In addition to selecting comprehensible self-consistent notation, the nota-
tion selected should be able to easily describe the transiting moon detection
method we are focussing on in this thesis, photometric transit timing, but
also be able to describe moon detection methods in general for comparison
purposes. The first issue to address is the different ways that different works
define light curve parameters, for example Seager & Mallén-Ornelas (2003)
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define the transit depth to be constant, while Mandel & Agol (2002) allow it
to be a function of time, and Carter et al. (2008) define the transit duration
as lasting from middle of ingress to the middle of egress, while Tingley &
Sackett (2005) define the transit duration as lasting from the beginning of
ingress to the end of egress. Consequently, we need to select the set of light
curve parameter definitions which most easily describe the quantities that
we want.

For the case of photometric transit timing we will need to sum over the
transit depth for each exposure in the transit, as well as other exposures
outside the planetary transit (see equation (7.46)). As we will see in sec-
tion 4.3.2, moons lead to additional dips in the transit light curve, with the
dips caused by the moons stretched or compressed and translated from that
of their host planet. To describe these lumpy light curves we need a notation
which allows the transit depth to be a function of time. In particular it was
decided to describe the geometry of the transit and the transit depth using
the notation of Giménez (2006), partially as it is one of the notation styles
to describe the dip depth as a function of time, and partially as it allows
easy access to a range of mathematical methods, for example, describing dip
depth as a surface integral. Consequently for this thesis, the transit depth
is given by «(t), with «,(t) and o, (t) representing the portion of the dip
resulting from the transit of the planet and moon respectively. In addition
dp(t) and 6,,(t) represent the projected distance between the center of the
star and the planet and moon respectively, while 0,,,;, represents the impact
parameter for the transit of both the planet and the moon, as both values
are approximately the same for all cases considered in this thesis (see sec-
tion 8.2.1). In addition to describing the transit depth, the duration of the
transit of the planet and moon must also be described.

Recalling the range of definitions of transit duration given in table 2.1, it
can be seen that in order to describe this quantity, both a definition and ap-
propriate notation must be selected. For this thesis it was decided to define
the transit as beginning and ending when the center of the body passes onto
and off the stellar limb, and the transit duration as the difference between
these two times, that is, the definition shown in column 2 of table 2.1. This
particular definition was selected to reduce the algebraic complexity of the
expressions derived in chapter 8, by ensuring that transit duration did not
depend on the radius of the transiting body. Informed by the notation styles
presented in table 2.1, it was decided to represent the transit duration by
Tira, With Ty, describing the transit duration of a planet with no moon,
and with T}, and T},.q , denoting the duration of the planet’s and moon’s
transit for the case of a planet with a moon.
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In addition, for the case of moon detection using other methods, other
light curve parameters also need to be described. In addition to being able
to describe the dip due to the moon and the transit duration, quantities for
which notation has already been selected, it would also be useful to be able to
describe the duration of ingress and the transit mid-time. Unfortunately, the
only work which explicitly describes the duration of ingress and egress, uses
the notation 7, which we cannot use as it is the test statistic for photometric
transit timing. Consequently, the notation selected above was extended
such that Tj, describes the duration of ingress. Again Tj, is understood
to describe the duration of ingress for the case of a planet with no moon,
and with 73, , and T}, ,, denote the duration of ingress for the case of the
transit of the planet and moon the case of a planet with a moon. Finally,
the mid-time of the transit is given by t,,;4, Where again t,,;,q represents
the transit mid-time for the case of a planet with no moon, while ¢,,;4, and
tmid,m represent the transit mid-times for the transit of the planet and moon
respectively for the case of a planet and a moon. In addition, for the 0"
transit, ¢,,;,q may also be written as tg. For reference each of these decisions
is summarised in table 2.1 and also given in appendix A.

2.5 Conclusion

The notation that will be used for this thesis has been discussed in the
context of three broad areas. First notation for the physical properties of
the star, planet and moon was discussed. Second, the notation required
to describe the orbital motion of the star, planet and moon was discussed
in the context of three-body theory. Finally, the notation required for the
description of the transit light curve was selected. In addition, for reference,
the notation selected is summarised in appendix A. Now that the issue of
notation has been discussed and a framework decided, we can move on to
start to discuss the literature, in particular, the types of moons that are
likely to exist.
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Chapter 3

Constraints on extra-solar
moons

3.1 Introduction

Before considering the types of moons able to be detected, and the mechanics
of moon detection, it would be useful to have an understanding of the types
of moons extra-solar planets are likely to possess, and in particular, the
properties of any large (and consequently detectable moons). First, we will
begin this investigation by looking at the census of moons present in the
Solar System. Second, guided by these results, the characteristics of moons
predicted to form will be summarised. Third, the ways in which tidal and
three body effects can modify moon orbits will be discussed. Finally, these
sources of information will be combined to provide an indication of the types
of moons that extra-solar planets are likely to possess.

3.2 Characteristics of moons in the Solar System

We begin our discussion of likely moon properties by summarising the prop-
erties of the moons that we know about, the moons in the Solar System. As
planets in the Solar System are divided into two distinct types, terrestrial
and gas giant, according to their planet-Sun distance, composition and for-
mation history, the properties of moons of terrestrial planets and gas giants
will be discussed separately. We begin with a discussion of the moons of
terrestrial planets.
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“Planet” “Moon” R, M,, am em I
(km) (10* kg) (M) (10° km) (°)

Earth  Moon 1738 734.9 0.0123 384.4  0.0554 5.16
Mars Phobos 11* 1.1x107%* 1.7x107% 9.376 0.0151 1.08
Deimos 6* 1.8 %107 2.8 x 1072 23.458 0.0002 1.79

Pluto Charon 593 15 0.118 17.536 0.0022 0.001
Nix ~ 58 x 1073 4.6 x 107° 48.708 0.0030 0.20
Hydra — 3.2x1073 25x107° 64.749 0.0051 0.21

Table 3.1: Physical and orbital properties of the satellites of the Earth,
Mars and Pluto. “Large” satellites are shaded grey. Radii and masses for
the Moon, Phobos, Deimos and Charon are taken from (Murray & Der-
mott, 1999), while the masses for Nix and Hydra were taken from (Tholen
et al., 2008). Orbital parameters were taken from the JPL website.! The
inclinations are measured relative to the local Laplace plane.

3.2.1 Moons of terrestrial planets

Of the four terrestrial planets in our Solar System, only the two most distant
planets, Earth and Mars, host moons, and out of these two planets only the
Earth hosts a relatively large moon. In addition, a number of planet-like
objects, in particular Pluto, also host “moons”. For the case of Pluto, this
includes its large moon Charon, and its two much smaller moons, Nix and
Hydra. For reference and comparison, the satellite systems of Earth, Mars
and Pluto are shown in figure 3.1, and their properties are summarised in
table 3.1. As we are discussing moon properties within the context of moon
detection, we will focus our attention on large (and consequently detectable)
satellites such as the Moon and Charon, and neglect the irregular moons of
Mars and Pluto’s small moons Nix and Hydra.

Focussing our attention on the Earth-Moon system and the Pluto-Charon
system, it can be seen that they share a number of properties. First, in both
of these cases there is only one large moon per satellite system. Second, this
single large moon contains a fair percentage of the mass in the planet-moon
system, ~1% for the case of the Moon and ~10% for the case of Charon.

http://ssd.jpl.nasa.gov/?sat_elem.
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Figure 3.1: Schematics of the satellite systems of the Earth, Mars and Pluto.
Large satellites, in particular, the Moon and Charon, are shown as large filled
dark grey circles with radii proportional to the radius of the corresponding
satellite. For reference, the Moon, has a radius of 1737km. Satellites too
small to have a spherical shape, are shown as small dots. The dashed line
on the right denotes half a planetary Hill radius.
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Third, the orbit of this moon about their host planet is relatively close and
relatively circular. Finally, in both cases, the moon’s orbit is approximately
aligned with the planet’s equator e.g. the Moon’s orbit is tilted by only 5
degrees. These shared properties suggest a common formation mechanism
for these large moons, an issue that will be discussed in section 3.3.1.

3.2.2 Moons of gas giant planets

Unlike the terrestrial planets, each of the four gas giant planets in our Solar
System has a plethora of attendant moons with a grand total of 62, 59, 27
and 13 moons for Jupiter, Saturn, Uranus and Neptune respectively, as of
the 12" of February 2010. For reference, the satellite systems of Jupiter,
Saturn, Uranus and Neptune are shown in figure 3.2, while their properties
are summarised in tables 3.2, 3.3, 3.4 and 3.5. What is immediately obvious
from figure 3.2 is that there are three main classes of moon. First, there
are small inner moons with orbits very closely aligned to their host planet’s
equator. These moons seem to be generally associated with, or help shape
the ring systems of their host planet. Second, outside this set of inner moons
each of the gas giant planets has a number of larger, regular moons. Finally,
further away still, are irregular moons with orbits which become increasingly
retrograde the further they are from their host planet. Again noting that
the aim of this investigation is gain an intuitive understanding of the the
types of satellites that are likely to exist (and consequently be detected), we
will focus this discussion on the regular satellites, as they are the largest,
and most detectable.

From figure 3.2 it can be seen that the regular satellites of the gas giant
planets all share a number of features, with one main exception, Triton,
Neptune’s only large moon. Consequently, the satellites of Jupiter, Saturn
and Uranus will first be discussed, followed by a separate discussion of the
properties and peculiarities of Triton.

The regular satellites of Jupiter, Saturn and Uranus share a number of
features. First, these large moons only occur within a minimum distance
from their planet, compared to the irregular moons for example, which oc-
cupy orbits reaching to the edge of the stability region, estimated by half a
Hill radius. Second, a planet can have multiple large moons e.g. the four
Galilean satellites of Jupiter. This is in stark comparison with case for ter-
restrial planets where one large moon (if any) per planet seems to be the
norm. Third, while the mass of these satellites is comparable to that of the
Moon, it is small in comparison to the mass of the host planet, in particular,
the proportion of the planet-moon system’s mass that is in regular satellites
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Figure 3.2: Schematics of the satellite systems of the four gas giants in
the Solar System. The regular satellites are shown as large filled dark grey
circles with radii proportional to the radius of the corresponding satellite.
For reference, Titan, the largest satellite of Saturn, has a radius of 2575km.
Satellites too small to have a spherical shape, that is, inner satellites and
irregular satellites, are shown as small dots while planetary rings are denoted
by a thick light grey line. The surface of the planet is represented by a thick
vertical line on the left, while on the right a dashed line denotes half a
planetary Hill radius.
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is 2.1 x 107%, 2.5 x 107* and 1.1 x 10~ for Jupiter, Saturn and Uranus
respectively. Finally, the orbits of these moons are circular and aligned with
the equator of their host planet.? A number of processes proposed which
will produce such systems will be explained in section 3.3.2.

Compared to the satellite systems of Jupiter, Saturn and Uranus, Nep-
tune’s satellite system is distinctly odd. First, it only has one large moon,
Triton, and second, this moon’s orbit is inclined and retrograde. However,
similar to the moons of Jupiter, Saturn and Uranus, Triton is also relatively
close to its host planet and not very massive compared to it. As a result of
these properties it has been proposed that it probably did not form in situ,
but was captured. This process will be discussed further in section 3.3.3.

Moon R,, M,, am, em I,
(km) (10*°kg) (107'M,) (10° km) (R.) )
Metis 20 — — 128 0.116 0.001 0.019
Adrastea 10 - - 129 0.116 0.002 0.054
Amalthea  86* - — 181.4 0.164 0.003 0.380
Thebe 50 - — 221.9 0.200 0.018 1.080
To 1821 893.3 0.4705 421.8 0.381 0.004 0.036
Europa 1565  479.7 0.2527 671.1 0.606 0.009 0.466
Ganymede 2634 1482 0.7806 1070.4 0.966 0.001 0.177
Callisto 2403 1076 0.5667 1882.7 1.699 0.007 0.192
Themisto  — — — 7507 6.775 0.242 43.07
Leda 5 - — 11165 10.08 0.164 27.46
Himalia 85 - — 11461 10.34 0.162 1.438
Lysithea 12 — — 11717 10.57 0.112 28.30
Elara 40 - — 11741 10.60 0.217 143.6
Carpo — — — 17078 15.41 0.444 51.16
S/2003J12 - - - 17835 16.10 0.488 150.8
Euporie — — - 19339 17.45 0.144 1455
S/2003J3 - - - 20230 18.26 0.203 147.8

Continued on next page ...

2Uranus has an orbital obliquity of approximately 98 °, and consequently its equatorial
and orbital planes are very different. The inclinations shown in figure 3.2 and presented in
table 3.4 are measured relative to the local Laplace plane, the plane which defines the axis
about which the moon’s orbit normal precesses. This plane is approximately parallel with
the equatorial plane of the planet for close in satellites, e.g. the regular satellites, and is
approximately aligned with the orbital plane of the planet for more distant satellites, e.g.
the irregular satellites.
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Table 3.2 — Continued

Moon R, M,, Am em I,
(km) (10* kg) (107*M,) (10° km) (R.) )

S/2003J18 - - - 20494 18.50 0.102 146.0
S/2003J16 — - - 20948 18.91 0.231 148.6
Mneme - - - 21036 18.99 0.227 148.6
FEuanthe - - - 21038 18.99 0.231 149.0
Helike - - - 21064 19.01 0.147 154.6
Harpalyke - - - 21104 19.05 0.226 148.6
Praxidike - - - 21148 19.09 0.230 149.0
Orthosie - - - 21164 19.10 0.278 145.9
Thelxinoe - - - 21165 19.10 0.219 151.3
Thyone - - - 21192 19.13 0.238 148.8
Tocaste - - - 21272 19.20 0.215 1494
Ananke 10 - - 21276 19.20 0.244 148.9
Hermippe - - - 21300 19.22  0.212 150.9
S/2003J15 — - - 22622 20.42 0.187 146.4
S/2003J10 — - - 23042 20.80 0.428 165.2
Pasithee - - - 23090 20.84 0.267 165.0
Eurydome - — — 23148 20.89 0.276 150.2
Chaldene - - - 23179 20.92 0.251 165.2
Isonoe - - - 23231 20.97 0.247 165.3
Kallichore — - - 23273 21.00 0.242 165.1
Erinome — — — 23283 21.01 0.266 164.9
Kale — — — 23302 21.03 0.252 165.1
Aitne - - - 23315 21.04 0.266 165.1
Eukelade - - - 23322 21.05 0.267 165.2
Arche - - - 23355 21.08 0.256 164.9
Taygete - - - 23363 21.09 0.252 165.2
S/2003J9 - - - 23385 21.11 0.264 165.2
Carme 15 — — 23404 21.12  0.253 164.9
Herse - - - 23405 21.12  0.249 164.8
S/2003J5 - - - 23493 21.20 0.246 165.3
S/2003J19 - - - 23532 21.24 0.262 165.2
S/2003J23 - - - 23549 21.25  0.270 146.3
Kalyke - - - 23564 21.27 0.246 165.2
Hegemone — - - 23566 21.27 0.344 154.0
Pasiphae 18 - - 23624 21.32  0.409 170.5

Continued on next page ...
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Table 3.2 — Continued

Moon R, M,, am em I,
(km) (10* kg) (10~*M,) (10° km) (R.) )
Cyllene - - 23787 21.47 0.418 150.2
Sponde — — 23790 21.47 0.313 151.2
Magaclite  — - 23808 21.49 0.421 152.8
S/2003J4 - - 23928 21.60 0.356 149.3
Sinope 14 - 23939 21.61 0.250 158.1
Aoede — — 23969 21.63 0.432 158.3
Autonoe — — 24033 21.69 0.317 152.3
Callirrhoe  — - 24102 21.75 0.283 147.2
Kore - - 24486 22.10 0.332 145.0
S/2003J2 - - 28332 25.57 0.411 157.1
Table 3.2: Physical and orbital properties of the satellites of Jupiter. The

regular satellites are highlighted in grey. Radii and mass measurements are
taken from (Murray & Dermott, 1999), while orbital parameters are taken
from the JPL website. The inclinations are measured relative to the local
Laplace plane.

Moon Ry M, am em Iy
(km) (10 kg) (10~*M,) (10°km) (R.) ()
Pan 10 - - 133.58 0.098 0.000 0.001
Daphnis - - - 136.5 0.100  0.000 0.000
Atlas 16* - - 137.67 0.101 0.001 0.003
Prometheus 50*  0.0014 2.5 x 1076 139.38 0.103 0.002 0.008
Pandora 42*  0.0013 2.3 x 1076 141.72 0.104 0.004 0.050
Epimetheus 59* 0.0055 9.7x107° 151.41 0.111 0.010 0.351
Janus 89*%  0.0198 3.5 x107° 151.46 0.111 0.007 0.163
Mimas 199  0.385 6.8 x 107° 185.54 0.137 0.020 1.574
Methone - - - 194.44 0.143 0.000 0.007
Pallene - - - 212.28 0.156 0.004 0.181
Enceladus 249  0.73 0.0013 238.04 0.175 0.005 0.009
Tethys 530  6.22 0.0109 294.67 0.217 0.000 1.091
Telesto 11* - - 294.71 0.217 0.000 1.180
Calypso 10— - 294.71 0.217 0.001 1.499
Polydeuces  — - - 377.2 0.278 0.019 0.177

Continued on next page ...

28



Table 3.3 — Continued

Moon R,, M,, A, em, I,
(km) (10*° kg) (107*M,) (10° km) (R.) )

Helene 16* - - 377.42 0.278 0.007 0.213
Dione 560 10.52 0.0185 377.42 0.278 0.002 0.028
Rhea 764  23.1 0.0406 527.07 0.388 0.001 0.333
Titan 2575  1345.5 2.3669 1221.9 0.899 0.029 0.312
Hyperion 143* -~ - 1500.9 1.104 0.023 0.615
Tapetus 718 15.9 0.0280 3560.9 2.620 0.029 8.313
Kiviuq - - - 11311 8.323 0.164 48.53
Tjiraq — — — 11367 8.365 0.458 47.12
Phoebe 110 - - 12947 9.528 0.163 175.2
Paaliaq - - - 15024 11.06 0.540 41.77
Skathi - - - 15614 11.49 0.294 150.8
Albiorix - - - 16401 12.07 0.484 35.51
S/2007_S2 - - - 16723 12.31 0.178 175.6
Bebhionn - - - 17117 12.60 0.484 34.56
Erriapus - - - 17611 12.96 0.468 38.65
Skoll - - - 17663 13.00 0.470 160.2
Tarqeq - - - 17909 13.18 0.119 49.57
Siarnaq - - - 18015 13.26  0.405 44.51
Tarvos - - - 18263 13.44 0.531 35.95
S/2004_.S13 - - - 18408 13.55  0.260 169.1
Hyrokkin - - - 18437 13.57 0.329 151.2
Greip - - - 18442 13.57 0.316 173.3
Mundilfari - - - 18667 13.74 0.205 169.2
S/2006_S1 - - - 18797 13.83 0.118 155.0
S/2007_S3 - - - 18981 13.97 0.185 175.7
Bergelmir - - - 19338 14.23 0.142 158.9
Jarnsaxa - - - 19356 14.24 0.217 163.3
Narvi — — — 19417 14.29 0.426 143.2
S/2004_S17 - - - 19449 14.31 0.181 168.0
Suttungr - - - 19476 14.33 0.114 173.9
Hati - - - 19775 14.55 0.373 165.0
S/2004.S12 — — — 19867 14.62 0.323 163.3
Bestla - - - 20278 14.92  0.474 141.7
Farbaut - - - 20387 15.00 0.245 158.0
Thrymr - - - 20439 15.04 0.466 173.7

Continued on next page ...

29



Table 3.3 — Continued

Moon R, M,, Am em I,
(km) (10* kg) (107*M,) (10° km) (R.) )
Aegir - - - 20749 15.27 0.252 167.1
S/2004_S7 - - - 21005 15.46 0.530 164.9
Kari - - - 22077 16.25 0.484 155.9
S/2006_S3 - - - 22100 16.26 0.404 158.9
Fenrir — — — 22454 16.52 0.133 164.4
Surtur — — — 22920 16.87 0.447 169.1
Loge — — — 23065 16.97 0.188 167.2
Ymir - - - 23140 17.03 0.334 171.7
Fornjot - - - 25151 18.51 0.210 169.7

Table 3.3: Physical and orbital properties of the satellites of Saturn. The
regular satellites are highlighted in grey. Radii and mass measurements are
taken from (Murray & Dermott, 1999), while orbital parameters are taken
from the JPL website. The inclinations are measured relative to the local
Laplace plane.

Moon R, M,, am, em I,
(km) (10* kg) (107*M,) (10° km) (R.) )
Cordelia 13 - - 49.8 0.034 0.000 0.085
Ophelia 16 - - 53.8 0.037 0.010 0.104
Bianca 22 — - 59.2 0.041 0.001 0.193
Cressida 33 — - 61.8 0.042 0.000 0.006
Desdemona 29 — — 62.7 0.043 0.000 0.113
Juliet 42 - - 64.4 0.044 0.001 0.065
Portia 55 - - 66.1 0.045 0.000 0.059
Rosalind 29 - - 69.9 0.048 0.000 0.279
Cupid — — — 74.392 0.051 0.001 0.099
Belinda 34 — — 75.3 0.052 0.000 0.031
Perdita - - - 76.417 0.052 0.012 0.470
Puck 77 - - 86 0.059 0.000 0.319
Mab — — — 97.736 0.067 0.003 0.134
Miranda 761 30.14 0.3471 129.9 0.089 0.001 4.338

Continued on next page ...



Table 3.4 — Continued

Moon R, M,, m em I
(km) (10* kg) (107*M,) (10° km) (R.) )
Ariel 235*  0.659 0.00759 190.9 0.131 0.001 0.041
Umbriel 579%  13.53 0.1558 266 0.182 0.004 0.128
Titania 585 11.72 0.1350 436.3 0.299 0.001 0.079
Oberon 789  35.27 0.4062 583.5 0.399 0.001 0.068
Francisco - - - 4282.9 2.932 0.132 147.3
Caliban - - - 7231.1 4.949 0.181 141.5
Stephano - - - 8007.4 5.481 0.225 143.8
Trinculo - - - 8505.2 5.822  0.219 167.0
Sycorax - - - 12179 8.336  0.522 159.4
Margaret - - - 14146 9.683 0.677 57.37
Prospero - - - 16276 11.14 0.445 151.8
Setebos - - - 17420 11.92 0.591 158.2
Ferdinand  — - - 20430 13.98 0.399 169.8
Table 3.4: Physical and orbital properties of the satellites of Uranus. The

regular satellites are highlighted in grey. Radii and mass measurements are
taken from (Murray & Dermott, 1999), while orbital parameters are taken
from the JPL website. The inclinations are measured relative to the local

Laplace plane.

Moon Ry, M, am, em I
(km) (10 kg) (10~*M,) (10° km) (R.) ()
Naiad 29 - - 48.227 0.004 0.000 4.691
Thalassa 40 - - 50.074 0.004 0.000 0.135
Despina 74 - - 52.526 0.005 0.000 0.068
Galatea 79 - - 61.953 0.005 0.000 0.034
Larissa 94* - - 73.548 0.006 0.001 0.205
Proteus 209*% -~ - 117.65 0.010 0.000 0.075
Triton 1353 215 2.10 354.76 0.031 0.000 156.9
Nereid 170 - - 5513.8 0.475 0.751  7.090
Halimede — — - - 16611 1.430 0.265 112.7
Sao - - - 22228 1.914 0.137 53.48

Continued on next page ...
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Table 3.5 — Continued

Moon R, M,, am, em I,
(km) (10* kg) (107*M,) (10° km) (R.) ©)
Laomedeia — — — 23567 2.029 0.397 37.87
Psamathe — — — 48096 4.141 0.381 126.3
Neso — — — 49285 4.244 0.571 136.4

Table 3.5: Physical and orbital properties of the satellites of Neptune. The
regular satellites are highlighted in grey. Radii and mass measurements are
taken from (Murray & Dermott, 1999), while orbital parameters are taken
from the JPL website. The inclinations are measured relative to the local
Laplace plane.

3.3 Formation models

Planetary formation is currently a vigorous area of research due partially
to the exponential increase in computing power with time and partially to
the high rate of discovery of extra-solar planets. Recent simulations suggest
that formation mechanisms can place physical limits on the mass, number
and orbital parameters of moons. As theories of moon formation are built
on underlying theories of planet formation the limits on moon mass and
orbital parameters will be discussed within the context of the method by
which the host planet formed.

According to current theories, planets generally produce/acquire large
moons in the final stages of planet building. For the case of terrestrial
planets, it is proposed that moon formation occurs during the chaotic growth
phase of planetary formation. During this phase, it is believed that moon-
sized embryos on eccentric orbits perturb and impact with each other. For
the case of gas giants, it is believed that moon formation occurs during
runaway growth, that is, when the proto gas giant becomes large enough to
accrete gas directly from the protoplanetary nebula. The resulting moons
are believed to form within the resulting circumplanetary accretion disk.
Finally, for the case of captured moons, the eventual moon properties depend
less on the mechanics of planetary formation and more on the population of
objects capable of being tidally captured.
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3.3.1 Impact generated moons

Simulations of the period of chaotic growth, the phase when it is thought
that large impact-generated moons formed, shows that giant impacts which
are able to produce moons are common (e.g. Agnor et al., 1999). Simulations
of the impact process indicate that impacts between terrestrial mass proto-
planets (M, < 2.5Mg,) produce a disk of orbiting debris (Wada et al., 2006)
which can coalesce into a moon a couple of planetary radii from its host an
orbit which can have any value of inclination. In addition, for standard sized
terrestrial planets (0.5 - 1Mg;), the dynamics of the impact and interactions
between the debris during post impact evolution generally result in a single
(Canup et al., 1999), large moon containing up to 4% of the planets mass
(e.g. Canup et al., 2001). As a result of the random nature of the impact, this
moon can have any initial orbital inclination. However, depending on this
inclination, the dynamical evolution of the planet-moon system can result in
re-impact, a moon on a close, inclined orbit, or a moon on a distant coplanar
orbit (Atobe & Ida, 2007).

While only one of the four terrestrial planets in our Solar System has
an impact generated moon, giant impacts have been invoked to explain
Mercury’s high density (Benz et al., 1988) and Venus’ retrograde rotation
(Alemi & Stevenson, 2006). In addition, giant impacts have been proposed
to explain the satellite system of Pluto (McKinnon, 1989; Stern et al., 2006)
and the high obliquity and satellite system of Uranus (Korycansky et al.,
1990; Slattery et al., 1992).

3.3.2 Disk generated moons

It is believed that the regular satellites of Jupiter, Saturn and Uranus formed
within a circumplanetary disk. This disk may have been the accretion disk of
its host planet as it accreted gas and solids from the protoplanetary nebula
or, for the case of Uranus, the disk could possibly have been one that was
stochastically generated, by a giant impact (Korycansky et al., 1990; Slattery
et al., 1992). Independent of the source of the disk, satellite growth within
a disk explains the circular orbits of the regular satellites and their low
inclination with respect to planetary rotation. However, the specifics of the
method by which a disk of gas and solids is processed into a small number of
large satellites is not fully understood. In addition to the moon properties
naturally resulting from accretion from a disk, any proposed model must
also be able to explain the masses, distribution of semi-major axes and
formation timescales of each of the three sets of regular satellites. Currently
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there are two main models for this process, that of Canup & Ward (2006)
and Mosqueira & Estrada (2003a,b), presented in the literature. These two
models, along withe their associated moon formation predictions will be
discussed in turn.

Canup & Ward (2006) use a time-dependant, single component circum-
planetary disk model to investigate regular satellite formation. They suggest
that the properties, in particular, the mass, of regular satellites within this
disk is determined by the balance between the rate of accretion of material
onto the protomoons, and orbital decay of these protomoons within the ac-
cretion disk onto the growing gas giant. This process results in an ordered
set of approximately 4 large moons within 60 planetary radii of the planet,
with total mass approximately one ten thousandth of their host planet. This
model addresses the issue of formation timescales by proposing that undif-
ferentiated moons e.g. Callisto, started forming later than their comrades,
and remained undifferentiated as a result of cooler disk conditions (Barr &
Canup, 2008).

In comparison, Mosqueira & Estrada (2003a,b) propose a two-component
disk model with a dense inner sub-disk surrounded by a less dense outer disk.
The edge of this inner disk was set at the centrifugal radius, R., the radius
of the orbit of a gas parcel around the planet, such that the gravitational
force from the planet and centrifugal force on that parcel balance, defined
as

(3.1)

where j is the angular momemtum of the gas parcel, G is the universal
gravitational constant and M), is the mass of the planet. This model was
in part proposed to explain the much longer formation timescale measured
for Callisto (Anderson et al., 1998) than its neighbour Ganymede (Schubert
et al., 1996). Unlike the model of Canup & Ward (2006), this model predicts
that the migration timescale of moons is much longer than their formation
timescale, mainly as a result of gap opening. While the model qualitatively
describes the ratio of moon mass to planet mass, it does not provide a firm
limit, however it does predicts that at most one large satellite should be able
to form outside the centrifugal radius.?

3Mosqueira & Estrada (2003a) use an analytic approximation for the centrifugal radius
(Re =~ Rpu/48), which was derived for the case of distant gas giants. More accurate
approximations based on simulations are also available (Machida et al., 2008; Machida,
2009), which are also derived for the case of distant gas giants. However, for the case
of planets which are close to their parent star, where the planet may take up a non-
negligible fraction of the centrifugal radius, it is unclear whether these expressions are
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3.3.3 Captured moons

Planets can also obtain large satellites through tidal capture, e.g. Neptune’s
moon Triton. Currently,* the only model that can reliably produce large
captured moons is the tidal capture model of Agnor & Hamilton (2006).
Consequently we will discuss this model in the context of producing large
moons of extrasolar planets.

Agnor & Hamilton (2006) suggest that if a binary system (similar to
Pluto-Charon) passed sufficiently close to a host planet, the orbits of the
binary pair could be perturbed enough such that one member of the binary
gained energy and was ejected while the other lost energy and remained
orbiting the planet. In particular, the binary is likely to be disrupted if ay,
the semi-major axis of the binary is approximately equal to its Hill radius,

that is,
My + My \ '3
— T2 3.2
ap rtd< S0, > , (3.2)

where 744 is distance of closest approach and where M; and My are the
masses of the two components in the binary respectively. Also, while Agnor
& Hamilton (2006) found that it was possible for either component to be
captured, they found that there was a preference for capturing the lowest
mass component, and for this captured moon to be in a retrograde orbit.

Once this capture has taken place, the new moon will be on a highly
elliptical, probably retrograde orbit, with pericenter distance approximately
equal to ryg. As this moon crosses the region where regular satellites are
likely to have formed, either they, or the new moon are likely to be destroyed
or ejected. Consequently, if a planet has a large captured moon, it should
be the only large moon. The new moon’s orbit will then tidally circularise,
such that a,, ~ 2r;y. We can use this to work out the orbital elements of
the new moon in terms of the orbital elements of the original binary. To
maximise captured moon mass, we assume that the primordial binary had
two equal mass components (M,, = M; = M,). Using equation (3.2) to

still valid. Consequently, for the case of close in gas giant planets, the location of large
moons may still be determined by the centrifugal radius, except that the position of R,
for such planets is currently unknown. For this thesis we use the approximate formula,
Rc ~ Ry /48 (Cassen & Pettibone, 1976; Stevenson et al., 1986), as this gives the largest
centrifugal radius for close in planets.

“During the final stages of preparation of this thesis Podsiadlowski et al. (2010) pro-
posed a new tidal capture model. This model is capable of producing gas giant-gas giant
binary planets separated from each other by a couple of solar radii.
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substitute for ryy gives

3M, 0\ Y3
=2 P .
om =20, () (3.9
or
ap
M,, = 12Mpa. (3.4)

As can be seen from equation (3.4), the maximum mass of a tidally captured
moon is inversely proportional to the cube of the final semi-major axis of
that moon. Also, if the rotation of the planet is prograde (a likely con-
sequence of planet formation) and the captured moon’s orbit is retrograde
(a likely consequence of the capture process), the moon will tidally evolve
inwards towards its host planet, reducing its semi-major axis still further.
Consequently this formation mechanism is only capable of producing large
moons close to their host planet.

In addition, the efficacy of this moon formation channel also depends
on the population of objects, particularly binary objects, available to be
captured. As the formation models proposed for binary trans-neptunian
objects require that both objects have large Hill spheres, that is, they are
distant from their host star (e.g. Goldreich et al., 2002), it follows that a
sufficiently large population of large binary objects can only form far from
their host star. Consequently, the only planets capable of capturing such
moons must also be distant (so, it is no coincidence that Neptune, the most
distant of the gas giants is the only gas giant to host a large captured moon).

As the two detection methods investigated in this thesis require that the
moon be distant from its host planet and massive (pulsar timing) or orbit a
planet close to its host star and be large (transit technique), this formation
method does not seem a promising way of producing large detectable moons.
Consequently, within the context of this thesis, the issue of captured moons
will not be focussed on.

3.4 Stability constraints

The properties, most particularly the orbital properties of the moons of a
given planet depend not only on how and where they formed, but also on
their subsequent evolution. As first pointed out by Barnes & O’Brien (2002),
this evolution is governed by two main factors, the slow secular change of the
moon’s orbital parameters resulting from orbital perturbation, and the more
rapid irreversible loss of moons due to tidal disruption, planetary impact or
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three body instability. These factors will be discussed in turn and then
combined to produce a summary of the mass and distance limits presented
in the literature.

3.4.1 Moon orbital evolution

The main method presented in the literature by which a moon’s orbit slowly
evolves is though the perturbation on the moon’s orbit caused by the tidal
bulge raised on the planet by the moon. For the case where angular veloc-
ity associated with the planet’s rotation and the angular velocity associated
with the moon’s orbit are equal, the tidal bulge induced on the planet by the
moon is symmetric across the line joining the planet and moon, and no angu-
lar momentum is exchanged between the rotation of the planet and the orbit
of the moon. However, for the case where the planet rotates faster/slower
than the moon orbits it (i.e. the planet is not tidally locked to the moon),
the planet’s tidal bulge is “dragged” ahead of/behind the line joining the
planet and moon by an angle ¢, which is defined in terms of the tidal dis-
sipation parameter @), via tan(2d) = 1/Q,. The gravitational interaction
between this asymmetric bulge and the moon allows an exchange of angular
momentum between the planet’s rotation and the moon’s orbit, leading to a
concomitant increase or decrease in semi-major axis depending on whether
the planet is rotating faster or slower than the moon. In particular, from
Murray & Dermott (1999, p. 164), we have that the torque on the moon
due to the tidal bulge of the planet is given by

ko, GM2 RD
Tp—m = gngn(npvmt — M) (3.5)
where G is the universal gravitational constant, ko), is the tidal Love number
of the planet, and ny . and n,, are the angular velocities associated with
the planet’s rotation and the moon’s orbit respectively. In addition, we note
that that sgn, the signum function returns 1 if its argument is positive, 0 if
its argument is zero, and -1 if its argument is negative.

Following Barnes & O’Brien (2002), an equation for the evolution of a,,
can be determined as a function of the physical parameters of the planet
and moon by noting that the torque on the moon is equal to the change in
angular momentum, that is

d
Tp-m = = (aanmnm) ) (3.6)
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From Kepler’s law we have that n2 a2, = GM,. Combining this expression
with equations (3.5) and (3.6) and simplifying gives

dam k‘ngM R
= SgN(Np rot — M- (3.7)
dt \/—Q 11/2 ;
pQ

Assuming that n, ..t — n,, does not change sign over the course of the
evolution,® this equation can be integrated to give an explicit form for a,, as
a function of time. For outward migrating moons (1, ot > 1), We obtain

2/13
33 kopGMpy R
 (8) = [ am(to) /2 + (t — tg) =2 , (3.8)
2 \/GML,Q,
while for inward migrating moons (1, ot < 1) We obtain
2/13
33 kopGM,, RS
am(t) = [ am(t) % = (t — 1o)== (3.9)

2 \/GMLQ, |

where ¢ is the current time and ¢y is the time at which the moon formed.
This equation governs the evolution of the moon’s semi-major axis up until
the moment it is destroyed or lost to the planet.

3.4.2 Processes resulting in moon loss

Planets can loose moons through two main processes. First, if moons are
too close to their host planet, they will be destroyed, either through tidal
disruption or by impacting with the planet’s surface. Second, if the moon is
too distant, it’s orbit may become unbound from the planet as a result of the
effect of the periodic perturbation on the moon’s orbit by the gravitational
field of the host star. These two processes will be discussed in more detail
in turn.

5This is a reasonable assumption assuming that the rotation rate of the planet does not
change over the lifetime of the system. If a moon is migrating outward, it is because the
rotational period of the planet is shorter than the orbital period of the moon. As outward
migration only increases the orbital period of the moon, the moon will continue to migrate
outwards. Conversely, if a moon is migrating inward, it is because the rotational period
of the planet is longer than the orbital period of the moon. Again, as inward migration
results in a decrease in the orbital period of the moon, the moon will continue to migrate
inward. However, the rotation rate of the planet may change if the moon is large enough
to modify it, or if the rotation of the planet is influenced by an external factor, for example
torque from the host star on the tidal bulges raised on the planet by the host star. We do
not deal with this case in this thesis.
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The most dramatic way in which moons can be lost to a host planet
is through tidal disruption or impact with that host planet. To begin, we
consider the distance from a planet at which a body held together by self
gravity (i.e. a rubble pile) will disrupt due to tidal forces resulting from the
planet’s non-uniform gravitational field. This distance is called the Roche
limit and is given by

P 1/3
Rr =R, <2p—p> , (3.10)

where R, is the radius of the planet and p, and p,, are the densities of the
planet and moon respectively. Depending on the ratio of densities of the
planet and moon, this radius can range from a couple of planetary radii to
within the planet. In addition, the moon will impact with the planet when
the moon’s orbit intersects with the surface of the planet. For the case of
circular orbits,% this corresponds to a,, ~ R,.

In addition to moon destruction, moons can also be lost from a planet
via three-body instability if the semi-major axis of the moon becomes too
large. The motion of three bodies under their mutual gravitational fields is
not a simple issue and can result in a range of complex behaviour. In partic-
ular, the boundary between stable and unstable orbits is complicated, and
most likely fractal. Fortunately, simple analytic (e.g. Mardling, 2008b) and
numerical (e.g. Barnes & O’Brien, 2002; Domingos et al., 2006) approxima-
tions for this boundary are available. These approximations can generally
be expressed in terms of the Ry, planetary Hill radius, the distance from
the planet where the planet’s gravitational force and the tidal force from the
star are equal, which is given by

M 1/3
Ry = ay (31\;) , (3.11)

where a, is the semi-major axis of the planet’s orbit, M, is the mass of the
planet and M is the mass of the star.” In particular, the approximations
used by Barnes & O’Brien (2002) and Domingos et al. (2006) in their studies
of moon stability were

am,maz = 0.36Rp, (3.12)

SThere are dynamical reasons why close in moons should be in circular orbits around
their host. To see why, note that the timescale for the decay of the moon’s orbital ec-
centricity, e, is proportional to a,, resulting in a very rapid decay in orbital eccentricity
for moons with small semi-major axes. In addition, as the timescale for the decay of the
semi-major axis is equal to 7. /e2,, the semi-major axis always decays on a timescale longer
than that of the eccentricity, giving moons a chance to circularise their orbits.

"See Murray & Dermott (1999, p. 116) for a derivation.
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and
Am,maz = 0.4895 R (1.0000 — 1.0305e, — 0.2738e,,), (3.13)

for the case of prograde satellites, and
A maz = 0.50RH, (3.14)

and
A, maz = 0.9309R 7 (1.0000 — 1.0764e, — 0.9812¢,,), (3.15)

for the case of retrograde satellites respectively, where @, ymq. is the limiting
semi-major axis of the moon’s orbit and where e, and e,, are the eccen-
tricities of the orbit of the planet and moon respectively. As the effect of
planetary eccentricity on moon detection will be investigated in chapter 10,
the approximation of Domingos et al. (2006) will be used in this thesis.

3.4.3 Limits on moon mass

The information presented in section 3.4.1, on semi-major axis evolution,
and the information presented in section 3.4.2 on the region of parameter
space where moons are retained can now be combined to provide a lower
mass limit on moons as a function of its initial semi-major axis using the
method pioneered by Barnes & O’Brien (2002). Again, as the properties,
most particularly the mass and the @), value, of terrestrial planets and gas
giants differ by a number of orders of magnitude, mass limits for these two
cases will be discussed separately.

3.4.3.1 Mass limits for moons of terrestrial planets

As described in section 3.3.1, impact generated moons of terrestrial planets
form a few planetary radii from their host, on a circular orbit which may
be arbitrarily inclined with respect to the plane of the planetary orbit. In
addition, they may contain a sizable fraction of their host planet’s mass.
While the moon is formed at this position, it will not remain there long.
If the moon’s orbit is highly inclined, simulations (Atobe & Ida, 2007) show
that while the moon’s orbit initially evolves outward, the direction of evolu-
tion will reverse, resulting in either the moon being deposited a few planetary
radii from the planet or the moon reimpacting with the planet. In addition,
if the spin axis of the planet is anti-aligned with that of the orbit of the moon,
the moon’s orbit will shrink, again leading to re-impact. Alternatively, if the
moon’s orbit is aligned with the planet’s orbit, it will survive and rapidly
migrate outwards as a result of the low @, value (and consequent high rate
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of tidal energy dissipation) of terrestrial planets. Thus, large, distant, moons
of terrestrial planets, will have orbits which are roughly coplanar with the
orbit of their host planet.

For the case where the rotational evolution of the planet is not domi-
nated by the moon (that is, the moon is small or the rotational evolution
of the planet is dominated by stellar tides) we can use equation (3.8) to
describe semi-major axis evolution as the sign of the (np ot — 1) term in
equation (3.7) will remain constant. From equation (3.8) we have that the
location of the moon after a period of time, 7', is given by

2/13
iop G My, RY
= <R§/2+T33 2 p) . (3.16)

2 /GM,Q,

However, as impact generated moons can contain a sizable fraction of
their host planet’s mass, they can, and do noticeably modify their host
planet’s rotation rate as they evolve. For the case where the rotational
evolution of the planet is dominated by the moon, the planet and moon
may tidally lock to the planet (that is, the moon completes one full orbit
per planetary revolution). In this case the sgn term in equation (3.7) is equal
to zero, and consequently, the semi-major axis of the moon’s orbit will no
longer evolve as a result of this mechanism. Consequently, distant terrestrial
planets may retain large moons that they otherwise would have lost. For
example, a system in which tidal locking has occurred is the Pluto-Charon
System.

3.4.3.2 Mass limits for moons of gas giants

In contrast to the satellites of terrestrial planets, regular satellites of gas
giants do not form at a location, they form within a region. In addition,
compared to the mass of their host planets, the regular satellites of gas
giants are very small, and consequently unable to modify their host’s rota-
tion. Consequently, we can use equations (3.8) and (3.9), but, as a result of
the range of initial formation locations, need to consider both inward and
outward orbital evolution.

For the case of terrestrial planets, we were able to predict the location of
an impact-generated satellite after a given period of time, as a function of
its mass. However, as moons of gas giants form within a region, we cannot
perform a similar extrapolation for the case of moons of gas giants. However,
we can ask what satellites (in particular what mass satellites) will still be
extant, albeit in a different position, after a given period of time.
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To answer this question we consider equations (3.8) and (3.9) the equa-
tions governing a,, for the case of outwardly and inwardly evolving moons.
For the outward evolution case, the moon is lost to the system when its orbit
becomes three body unstable, that is when a,, > am mae. Setting ap,(t) to
Am,mar and rearranging equation (3.8) to get M, gives

M, < 2 < 13/2 am(t0)13/2> VEM,Qp (3.17)
— 33\ "vmaw TkngRg ’

for the case of outwardly evolving moons. For the inward evolution case,
the moon is lost to the system when in impacts with the planet or when it
is tidally disrupted. And as tidal evolution occurs rapidly for a,, ~ R, (T
(Rp/am)?), Rg and R, can be considered equivalent with respect to deriving
moon mass limits. Setting a,,(t) to R, and rearranging to equation (3.9) to
get M, gives

2 13/2 132\ VGEMpQp
< — — - .
Mm = 33 (am(t()) Rp ) TkQPGRg ) (3 18)

for the case of inwardly evolving moons.

Physically, equations (3.17) and (3.18) place limits on the maximum
mass moon that can exist around a given gas giant. For example, using the
stability criterion of Barnes & O’Brien (2002) for a Jupiter-like planet® on a
circular orbit with a, = 0.2AU, we have that extant moons must have mass
less than 0.88Mgy. This limit rises to 6.6Mg for the case where the more
generous stability criterion of Domingos et al. (2006) is used.

3.5 Summary of literature moon limits

Informed by the census of the large moons present in the solar system, the
formation mechanisms and stability properties of large moons have been dis-
cussed. As discussed at the beginning of this chapter the aim of this analysis
is to provide a context in which to view moon detection thresholds. Conse-
quently, the limits for terrestrial and gas giant planets will be summarised
with this in mind.

3.5.1 Limits for moons of terrestrial planets

Constraints can be placed on the physical and orbital characteristics of
impact-generated moons as a result of limits imposed by the physics of

8M, = 1.8986 x 10°7kg, R, = 71398km, ks, = 0.51 and Q, = 10°.
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the formation process, moon orbital evolution and stability. As discussed in
section 3.3.1, impact generated moons form from the disk of debris resulting
from a collision between an planet-sized impactor and a planet. For Earth-
like terrestrial planets, the impact process is capable of lifting a maximum
of 4% of the total mass contained within of the planet and impactor into
orbit, while for larger mass planets, shocks may form in the debris field, re-
sulting in most of the mass being ejected. Consequently, the mass available
to form a moon is limited to at most 4% of the total mass contained within
the two bodies for Earth-sized terrestrial planets, and substantially less for
larger planets. As a result of post-impact interactions, this disk coalesces
into a single moon. While this moon can be formed with any initial orbit
orientation, only moons with orbits that are approximately aligned with
the planetary orbit will survive and undergo outward orbital evolution. In
particular, the semi-major axis of the moon will evolve in accordance with
equation (3.16). To summarise these results, these limits on moon mass
and semi-major axis are shown in figure 3.3 for the case of a Earth-like host
planet.

3.5.2 Limits for moons of gas giants

Similarly, an understanding of the processes related to moon formation and
stability can constrain the set of moons of gas giants that are predicted to
form. As discussed in section 3.3.2, it is believed that the regular satellites of
gas giants formed within a circumplanetary disk, resulting in a set of moons
with orbits which are nearly exactly aligned with the equatorial plane of
their host planet. As the equator of a gas giant should show a tendency to
be aligned with the orbital plane, this corresponds to a tendency for the orbit
of moons of gas giants to also be aligned with the orbit of their host planet.
In addition, models for this process suggest that the total mass contained
within large moons of a gas giant should be approximately 2.5 x 10~% of
that gas giant’s mass, and the majority of large moons of gas giants should
form within a certain distance (be it 60 R, or R.) of their host planet. Once
formed, the moons will migrate according to equation (3.8) or (3.9), and
consequently, the maximum mass of a moon formed at a semi-major axis of
am(to) and still retained within the system is given by equations (3.17) and
(3.18) for the case of outward and intward migration respectively. These
limits are summarised for the case of a Jupiter-like? planet in figure 3.4.

9The term Jupiter-like is a little misleading as some of the properties of Jupiter, in
particular, its Q-value, are not well constrained. Recent result suggest that the Q-value of a
gas giant may depend on the forcing frequency, in this case, on the orbital frequency of the
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Figure 3.3: Plot showing the constraints placed on moons of an Earth-
analog terrestrial planet (M, = 5.9736 x 10%*kg, R, = 6378km, kg, = 0.299,
@p = 12) as a result of their formation and consequent orbital evolution.
The regions where the moons can never exist (inside the planet and outside
the stability region) are cross hatched. The upper mass limit is denoted by
a dashed line. Finally, for comparison, the semi-major axis an outwardly
migrating moon of given mass would evolve to is shown by a blue line, for
the case of a system age, T, of 5 Gyr.
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Figure 3.4: Plot showing the constraints placed on moons of a Jupiter-analog
gas giant as a result of their formation and consequent orbital evolution. The
regions where the moons can never exist (inside the planet and outside the
stability region) are cross hatched. The mass limit proposed by Canup &
Ward (2006) and the radius limit proposed by Mosqueira & Estrada (2003a)
are denoted by dashed lines, and labeled. Finally, for comparison, the set of
moons that, once formed would survive inward and outward migration are

denoted by blue and red regions respectively, for the case of a system age,
T, of 5 Gyr.
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3.6 Conclusion

By considering the census of moons within the Solar System along with the
current understandings of moon formation and orbital evolution, we have
summarised the types of large moons that we expect extra solar planets to
host. Terrestrial planets are expected to host a single large moon (if any)
containing up to 4% of the planet’s mass. In addition, the semi-major axis
of this moon will be defined by the system lifetime and the orbital evolution
timescale of the moon. In comparison, gas giant planets are expected each
to possess a small number of large moons, where the total mass contained
within these moons is approximately equal to 2.5 x 10_4Mp. In addition,
these moons should form relatively close to the planet (either R. or 60R,)
and then slowly evolve inward or outward depending on whether the rota-
tional period of the planet is longer or shorter than the orbital period of the
moon. From this context we can start to look at the set of proposed moon
detection mechanisms.

moon. While Jupiter’s Q-value has been measured to be 10° — 10° by (Goldreich & Soter,
1966), and (3.56 4+ 0.66) x 10* by (Lainey et al., 2009), there are good theoretical reasons
for it to be as high as 10*2 (Goldreich & Nicholson, 1977; Wu, 2005). Recent theoretical
work (Ogilvie & Lin, 2004; Wu, 2005) suggests that the naturally high (10'?) Q-value of
gas giants could be suppressed (105 — 109) for the case where the forcing frequency is less
than twice the spin frequency of the planet, neatly explaining both results. For this work
we use a constant Q-value of 10°, but note that the adoption of a Q-value of 10*2 allows
moons of even hot Jupiters to be dynamically stable (Cassidy et al., 2009).
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Chapter 4

Review of planet and moon
detection techniques

4.1 Introduction

To provide a context for the two moon detection methods analysed in this
thesis, it would be instructive to review the set of moon detection meth-
ods presented in the literature, and the types of moons they are capable
of detecting. As moon detection techniques are in part inspired by planet
detection techniques, and a planet must be detected using one of these tech-
niques before a moon of that planet can be detected, we will begin our
discussion with a brief overview of planet detection. In particular, we will
look at planet detection techniques in terms of the physics they are based
on, how effective they are at finding planets, and the types of planets likely
to be discovered using them. Building on this framework, moon detection
will then be discussed. In particular it will be discussed with respect to
physics of the detection method, the type of host planet required, and the
types of moons that can be discovered.

4.2 Planet detection techniques

Currently, over 500 extrasolar planets have been discovered.! These dis-
coveries have been made using a variety of methods, including, the radial
velocity, transit, microlensing, timing and direct imaging techniques. In ad-
dition, other techniques, such as astrometry, have been proposed, but have

1See e.g http://exoplanet.cu/catalogue.php
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Figure 4.1: Plot of all known extrasolar planets (small dots) as of the 5" of
April 2010, colour-coded by detection method. For the cases where M, sin [,
is known, while M, is not, for example, the planets detected by radial ve-
locity, M, sin I, has been used in place of M, as it indicates the lowest
possible value of M. For comparison, the planets of our Solar System are
also shown.

yet resulted in no successful detections of planets. To provide a context
for the upcoming discussion on moon detection, these techniques will be
described in terms of the physical basis for the detection technique, and
the type and number of planets detected. For reference and comparison, a
diagram showing all the planets as of 5" of April 2010 is given in figure 4.1.
We will begin with the radial velocity technique, the most successful planet
detection technique to date.
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4.2.1 The radial velocity technique

The radial velocity technique is a planetary detection technique which in-
volves measuring the reflex “wobble” of the planet’s parent star due to the
planet’s motion. Practically, this is done by measuring the periodic shift of
the absorption lines in the star’s spectrum and converting this to a line-of-
sight velocity. The amplitude of this velocity for a planet on a circular orbit
is given by

M, [GM,

maz(vp jos) = sin I, (4.1)
p Ms a, p
M,sinI, [ Mxo\"? (14U /?
=284~ L P (U - 4.2
M; <M8> ( ap > e (42)

where M, and M, are the mass of the planet and star respectively, and, a,
and [, are the semi-major axis and line-of-sight inclination of the planet’s
orbit. As can be seen in equation (4.2) and figure 4.1, this technique is more
sensitive to planets in close orbits, but is still capable of detecting more
distant planets. While this technique is capable of detecting planets with
any orbital inclination, it does have the drawback of only yielding M, sin I,
where M, is the true mass of the planet and I, is the inclination of the
orbit. Despite requiring high resolution, high signal-to-noise spectra that
are expensive in terms of telescope time, it is currently the most successful
planetary detection technique, with nearly 500 planets detected.

4.2.2 The transit technique

For the case where a planet’s orbit is aligned such that it transits across the
face of its host star as viewed from the Earth, the presence of the planet can
be inferred by the corresponding dip of the intensity of its host star during
this passage. Such a transit will have a depth of approximately (R127 /R?)Lg,?
where R, and R, are the radius of the planet and star respectively, and Lg
is the unoccluded luminosity, and for a planet on a circular orbit, can last

2Note that Rﬁ/R? is equal to the ratio of the projected area of the planet to that of
the star.
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up to approximately

2R, M, 2
Type = 225 _op, <G ) (4.3)
Vtr ap
Ry \ (Mo\'? / a, \1/2
=13 (@) <M> (1a7) s (44)

depending on the planet’s orbital inclination. As planets can only be de-
tected if they transit (probability of transiting is o a, 1) and during transit
(time between transits is proportional to a, 3/ 2), this technique is strongly
biased toward detecting short period planets (see figure 4.1). While not all
planets will be detected, this technique is photometric as opposed to spec-
troscopic, which means that each star in a crowded field can be monitored
simultaneously, so many more stars (and many fainter stars) can be inves-
tigated for planets. So far, 115 transiting planets are known.®> This method
is discussed in greater detail in section 7.2.

4.2.3 Microlensing

Planets can also be detected by the perturbations caused by their gravi-
tational field. To see how, consider a relatively nearby star (the lens star)
moving against a background of more distant stars. If the projected distance
on the sky between this lens star and a background star (the source star)
becomes small enough, the gravitational field of the lens star can perturb
the path of photons leading to image the image of the source star being mag-
nified or demagnified. In addition, if this lens star has a planet, the planet
can lead to additional spikes in the light curve of the source star. This tech-
nique is sensitive to planets with a projected distance from their host star of
approximately one stellar Einstein radius, where the stellar Einstein radius
is defined as

Rp =D10g, (4.5)
el AN A T I

_ DL< a > <D_L_D_S> | (4.6)

_pay (22 (Me) (Bwe)VE(Ds NP

6kpC M@ DS DL ’ '

3The number of planets discovered using the transit technique is not an easily definable
quantity. This is partially because, in order to be confirmed, a planet detected via the
transit technique must also be detected using radial velocity. In addition, planets initially
detected using radial velocity may later be discovered to transit.
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where 6g is the angular einstein radius, G is the universal gravitational
constant, and Dy and Dg are the distances between the observer and the
lens and the observer and the source respectively, and where the scale dis-
tance for Dg of 8kpc (the Milky Way bulge) could just have equally been
50kpc (Large Magellanic Cloud), or 60kpc (Small Magellanic Cloud). This
distance ranges from 1AU to 5AU for typical microlensing systems, which
corresponds well with the 1AU to 5AU band in which microlensing planets
have been discovered (see figure 4.1). Currently, twelve planets, in eleven
systems have been detected using this technique.

4.2.4 Timing

The timing technique involves measuring perturbations in the arrival time of
periodic events associated with a host star, resulting from the reflex motion
caused by orbiting planets. Example periodic events include radio pulses
associated with millisecond pulsars, pulsations associated with giant stars
or with white dwarf stars and eclipses of binary stars. The timing amplitude
for a planet in a circular orbit about a host with mass M, is given by

1M
max(tpert) = - La,sin 1, (4.8)
S

Mysinl, a, Mg
S
M; 1AU M,

=0.5 (4.9)

where M, and M, are the mass of the planet and host, a), is the semi-major
axis of the planet’s orbit and c is the speed of light. Similar to the case for
the radial velocity technique, the planetary mass appears only in the term
M, sin I,,. Consequently, only M, sin I,, can be directly measured. However,
for the case of millisecond pulsar host stars, this technique is so sensitive,
that second order effects, such as resonance effects, can be used to define
limits to the orbital inclination and consequently provide an estimate of the
planet’s mass (Konacki & Wolszczan, 2003). Currently ten planets have
been discovered using this technique, four in two millisecond pulsar systems
(Wolszczan & Frail, 1992; Wolszczan, 1994; Backer et al., 1993), one around
a pulsating horizontal branch star (Silvotti et al., 2007) and and five planets
in three circumbinary systems (Lee et al., 2009; Qian et al., 2009, 2010).
This technique is discussed further with respect to millisecond pulsars, in
Part II.
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4.2.5 Direct imaging

As its name suggests, the technique of direct imaging involves detecting
planets through an image. Unfortunately, making an image of an extra-
solar planet is challenging for two main reasons. First, host stars are many
orders of magnitude brighter than their attendant planets (10° for the case of
a Jupiter analog around a Sun-like star). Second, the planets are very close,
generally in the wings of the stellar point-spread function. Consequently,
special techniques such as coronography or adaptive optics need to be em-
ployed to implement this method, and even then, it is most sensitive to hot
distant planets. While distant hot planets are uncommon (Nielsen et al.,
2008), they do exist. Currently, using this technique, seven planets have
been detected around four stars.* Despite the technical challenges imposed
by this method, it can potentially offer high returns in terms of planetary
followup, for example, detection of the planetary spectrum. As a result, the
capability to directly detect extra-solar planets is a strong science goal in a
number of proposals for the next generation of telescopes, for example, the
Terrestrial Planet Finder (TPF) and the Giant Magellan Telescope (GMT).

4.2.6 Astrometry

Astrometry is a planet detection technique that involves measuring the mo-
tion of a star about the planet moon barycenter via the perturbation of the
star’s position on the plane of the sky. Unlike the radial velocity technique,
this technique can reveal a planet’s true orbital inclination and, combined
with an estimate of the star’s mass, the planet’s true mass. For circular
orbits, «, the maximum amplitude of such an angular displacement is given
by
o Mp%:():;M@% ap 1pc
My D M, Mg 1AU D

pas, (4.10)

where M, is the mass of the planet, Mj is the mass of the star, a,, is the semi-
major axis of the planet’s orbit and D is the distance between the host star
and the Earth. As the amplitude of the signal is inversely proportional to D,
and proportional to a,, this method is optimised to detect distant planets
of nearby low-mass stars. As of the 24" of March 2010, no known extra-
solar planets has also been successfully detected astrometrically (Pravdo &
Shaklan, 2009; Bean et al., 2010). However, future space missions, most

4While other candidate planets have been detected, the errors in their masses are so
large that their planetary status is uncertain, or they are orbiting brown dwarfs.
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notably SIM,? are planned to use this technique to find low mass distant
planets.

4.3 Moon detection techniques

To date, no extra-solar moons have been discovered, with only upper limits
placed on moon radii and mass of the planets orbiting HD 209458 (Brown
et al., 2001) and OGLE-TR-113b (Gillon et al., 2006). Despite this, a num-
ber of investigations have been conducted into possible methods for detect-
ing extrasolar moons. As most of these methods are extensions of planet
detection techniques, the corresponding moon detection techniques will be
summarised in the same order used in the preceding section. In addition,
the properties of these detectable extra-solar moons are summarised in fig-
ure 4.2, according to the type of host planet, that is, the type of method
used to detect the host, and the moon detection technique used.

4.3.1 Radial velocity perturbation

As the majority of planets have been discovered using the radial velocity
technique and approximately half of these planets are distant enough from
their stars to host sizable moons (see section 3.4.3), it seems intuitively
sensible to try and extend the radial velocity technique to search for moons
of these radial velocity planets. While the possibility of using this technique
has been suggested in the literature (e.g. Szabé et al., 2006), it was qualified
by the statement that success would be “unlikely” due to the small signals
produced.

Currently, no analysis of the radial velocity perturbation specific to
planet-moon systems has been performed. However, analogous systems have
been studied. Schneider & Cabrera (2006) studied the radial velocity per-
turbation caused by a pair of equal mass binary stars on a companion and
found the amplitude of the perturbation to be

GMy4 a?
maz(Vpert) = —3—43, (4.11)
aa Qp

where G is the universal gravitational constant, M4 is the mass of the com-
panion star, a4 is the distance between the companion star and the center
of mass of the binary, and ap is the distance between one of the binary stars

®See for example, http://sim.jpl.nasa.gov/keyPubPapers/SIMLiteBook/SIM-Book-
Full-Book-LR.pdf.
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Figure 4.2: A diagram using the same scale and colour scheme as figure 4.1,
summarising the types of moons which can be detected as a function of
planetary detection method. Information on the type of moons which can be
detected, is provided inside the cartoon representation of the region in which
planets have currently been discovered using a given method. For the case of
planets detected by timing, no cartoon was included as the detectability of
a given planet depends more on the properties of its host that its properties.
Again, for comparison, the Solar System planets are overlaid.

and the center of mass of the binary pair. Designating one of the binary
pair to be the “planet”, and the other the “moon”, and setting a,, = 2A45.,°
then setting the mass of the companion to the mass of the host star and

6Schneider & Cabrera (2006) defined ap to be the distance between the center of mass
of the binary pair and one of the components. For this thesis a,, was defined to be the
semi-major axis of the orbit of the moon relative to the planet. From the perspective of
the “planet” star, the “moon” star orbits at a distance of 2ar (ap to get from the “planet”
star to the center of mass, and ap to get tot he “moon” star). Consequently a., = 2ap.
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ap = ay, equation (4.11) becomes

9 |GM,a®
max(Vpert) = 13 5 a—’Z, (4.12)
V % 9

12 /N T/6 5/3 5
:0.013<1AU> ( ®> <%> (“—m> ms~!. (4.13)
a M, M; Ry

From equation (4.13) we have that the perturbation is maximised for
planet moon pairs that are massive, distant from each other, but close to
their host star. For such large moons, the minimum size of a,, is limited by
the timescale for orbital decay to approximately 0.6AU (Barnes & O’Brien,
2002), and the maximum size of a,, is limited by three body stability to ~
0.5Rp for prograde orbits and ~ Ry for retrograde orbits (see section 3.4.2).
Setting the mass of the host star to 0.1Mg), setting a, = 0.6AU, setting
am = Rp and setting the mass of the planet and moon to 5M; gives a
perturbation signal of amplitude 3.7ms™!. As that these are very extreme
conditions, and radial velocity measurements are currently limited to a little
below 1ms™! due to stellar surface motion, detection is indeed “unlikely”.
Consequently, this method is unlikely to be of practical use.

4.3.2 Perturbation to transit light curve

Moons of a transiting planet can alter the light curve in a number of ways,
each corresponding to different physical processes. Consequently a number
of different methods, and corresponding test statistics have been proposed
and investigated in the literature. These include:

e Direct Detection: Detecting the extra dip in the light curve due to the
moon.

e Barycentric Transit Timing: Detecting motion of the planet around
the planet-moon barycenter through the possible lead or lag in the
planetary transit mid-time.

e Transit Duration Variation: Detecting motion of the planet about the
planet-moon barycenter through variations in planet transit duration.

e Photometric Transit Timing: A hybrid test statistic which measures
the distortion of the light curve due to the transit of the moon.

To highlight the physics underlying each of the methods, formulae will be
derived, and the corresponding moon detection thresholds for each method
compared.
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Figure 4.3: Diagram showing the different portions of the transit light curve
for the case where both a planet and moon transit. Four silhouettes of the
planet and moon are shown, corresponding to the the beginning and end of
planetary ingress, and the beginning and end of planetary egress. Planet-
moon pairs which correspond to a single silhouette are joined by a solid line,
while the location of the planet-moon barycenter is indicated by cross. As
the position of the planet-moon barycenter is a linear function of time it can
be used as a proxy for time. Consequently the position of the barycenter

and the value of the light curve resulting from that position are linked by
dashed lines.

Unfortunately, as different authors use different underlying assumptions,
the thresholds cannot simply be copied from the respective papers. In partic-
ular, the issues of the size and orbital parameters of the moon, the number of
observed transits, the detection threshold and the type of photometric noise
will be discussed. For simplicity and ease of comparison it was decided to
investigate moons on circular orbits which are aligned to the line-of-sight.”
In addition, guided by the properties of Solar System moons, it was decided
to investigate the case where the moon is small compared to the planet (i.e.

"For a discussion of why moon orbits which are coplanar to the orbits of their host plan-
ets and moon orbits which are aligned to the line-of-sight are equivalent, see section 8.2.1.
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Figure 4.4: Approximate moon detection thresholds for the direct detection,
barycentric transit timing and transit duration variation methods calculated
using equations (4.18), (4.25) and (4.28). It is assumed that the length of
time over which observations were recorded was four years, corresponding
to N = 4 for the case of a, = 1AU and N = 44 for the case of a, =
0.2AU. For the case of the barycentric transit timing and transit duration
variation methods, the thresholds for rocky (p, = 5515kgm™3) and icy
(pm = 916.7kgm~3) moons are shown in brown and blue respectively. These
thresholds are shown for four different cases, for a standard (a), and three
comparison cases (b) - (d). The comparison between (a) and (b) shows
the effect of changing from a Jupiter-like host planet to an Earth-like host
planet. The comparison between (a) and (c) shows the effect of reducing the
semi-major axis of the host planet from 1AU to 0.2AU (and consequently
reducing the transit duration, but increasing the number of transits). The
comparison between (a) and (d) shows the effect of decreasing the length of
the chord the planet makes across the face star (and consequently increasing
the duration of ingress while decreasing the transit duration).
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R, < R, and M,, < M,). To simplify the mathematics, it was decided
to consider the case where N, the number of transits is large (i.e > 4). As
a detection threshold needs to be selected, it was decided to use the three
sigma (99.7%) detection threshold as this is the threshold that will be used
in chapter 10. Finally, while correlated noise can strongly affect planet de-
tection (Pont et al., 2006), any correlated noise encountered will be specific
to that system (combination of star, telescope, and observing conditions).
Consequently, for ease of comparison, the formulae were derived under the
assumption of normal uncorrelated noise. Within this context, each of the
four methods introduced, will be discussed and analysed, in turn.

4.3.2.1 Direct detection of the moon’s transit

Similar to the case for transiting planets, the passage of a moon across
the face of the star can also block some of the star’s light, resulting in an
additional dip in the light curve. For the case of the planet-moon pair shown
in figure 4.3, the additional dip due to the moon is translated to the right of
the dip due to the planet. This effect has been investigated in the literature
in terms of the probability that a given moon will transit (Sartoretti &
Schneider, 1999), the depth of the dip produced (Sartoretti & Schneider,
1999) and the effect of mutual events, such as the moon eclipsing or being
eclipsed by the planet (Sartoretti & Schneider, 1999; Cabrera & Schneider,
2007) on the shape of this dip. In addition to theoretical investigations, this
method has been used to place a limit of 1.2 Earth radii on the radius of
moons orbiting HD 209458 (Brown et al., 2001).%

By analogy with the planetary detection case, directly detecting a moon
in a transit light curve involves comparing the average photon deficit due to
the moon with the error in the average photon deficit due to the photometric
noise. The degree to which the deficit due to the moon is larger than the
error due to photometric noise determines whether or not a moon could be
detected. From geometry we have that the average depth of the dip caused
by the moon is given by

am ~ (R2,/R?) Ly, (4.14)

where R,, is the radius of the moon, Lg is the unoccluded luminosity of the
star, and where the effect of mutual events has been ignored.

Following Pont et al. (2006), we can estimate the error in the deficit due
to photometric noise (o7, per exposure) over the Nz, exposures found in the

8Unfortunately, such large moons are not tidally stable (see section 3.4.3) so this limit
is more a statement on the quality of the data than on the size of moons of HD 209458.
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region of the light curve where the moon is transiting.” Assuming that the
noise in one exposure is normally distributed and independent, the Central

Limit Theorem gives
oL

vV ]\fe:vp7

where o, is the standard deviation of the error in the measured depth and
oy, is the absolute photometric noise.

To evaluate this expression, we require information about Neg,. Con-
sider, that as a result of orbital motion about the planet moon barycenter,
the duration of the transit of the planet (e.g. Kipping, 2008) and the moon
will vary from transit to transit. However, as the time-averaged velocity of
a moon about its host planet is equal to zero (if it wasn’t, then it would
drift away from its host planet), we can approximate the duration of a typ-
ical moon transit with that of a typical planetary transit. Consequently
we can approximate Negp as NTi,/At, where T}, is the duration of the
planetary transit for the case of no moon, At is the exposure time, and N
is the number of transits. Thus

(4.15)

Oq =

S — (4.16)

Oa .
V4 Nﬂra/At
Recalling that we are using an three sigma detection threshold, we have
that, in order to be detected, the average depth of the dip due to the moon
must be three times the average error in this depth, that is

2
B g oL (4.17)

—MJa = ,
Rg ’ V NTtra/At

or

1/2 1/4
B 1 o1/ Lo At \'? 13hrs
B = 0.0065s 75 [3.95 x 10—4 <1min> Tira - (418)

While equation (4.18) indicates the detection threshold for the case of
direct detection, it is not necessarily indicative of the true detection thresh-
old for moons. For example, equation (4.18) neglects effects due to fitting
the planetary light curve and the effects of correlated noise. In particular,
Pont et al. (2006) showed that for planet detection, equation (4.18) became
increasingly inaccurate as the transit duration and proportion of low fre-
quency red noise increased. However, as Kepler is billed as being able to

9The question of how we know which sections of light curve correspond to when the
moon is transiting is one that will not be addressed in this work.
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detect Earth-like planets at 1AU in the presence of realistic photometric
noise, it seems reasonable that it should be able to detect Earth-like moons
of planets at 1 AU.

4.3.2.2 Barycentric transit timing

Moons of transiting planets can also be detected through the motion of
their host planet about the planet-moon barycenter (Sartoretti & Schnei-
der, 1999). The technique of barycentric transit timing (TTV}) aims to
detect this motion through deviations in the transit mid-time from strict
periodicity (caused by the planet’s physical displacement from the planet-
moon barycenter). For example, in figure 4.3 the transit of the planet occurs
earlier than would have happened had there been no moon. Using this tech-
nique, Brown et al. (2001) and Gillon et al. (2006) placed upper limits on
the masses of moons orbiting HD 209458 and OGLE-TR-113b of 3 Earth
masses and 7 Earth masses respectively.

As will be derived in section 10.4, the three sigma detection threshold
for a sinusoidal signal for the case where IV, the number of samples is large,
is given by

A2
13.95 = 252 (4.19)
where A is the amplitude of the signal and o is the standard deviation of
the noise.

From (Sartoretti & Schneider, 1999) we that the amplitude of the timing

signal caused by the moon is given by

M,, T,

TTV, = 4.20

b Qm Mp 27Tap7 ( )
M,, ap

= i 4.21

“mar, \ G, (4.21)

where T}, is the period of the planetary orbit, and where we note that Kipping
(2009a) investigated and extended this expression for the case of eccentric
moon orbits.

From Deeg (2002) we have that o, , the standard deviation of the
timing error on this transit mid-time for a single transit is given by

~1/2

Ttiay = OL [Z <M>1 (4.22)

atmid,p
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where the sum runs over the length of the planetary transit, where L(t;, tpidp)
is the expression for a transit light curve centered at t,,;4, at time ¢;, and
where it is assumed that only the transit mid-time varies from transit to
transit. Noticing that the sum is dominated by the regions of the tran-
sit light curve with the largest gradient, that is, the ingress and egress,
equation (4.22) can be simplified. Following Carter et al. (2008) we approx-
imate the transit light curve by three straight line segments, one each for
the ingress, flat bottom and egress of the transit.' We also assume that
the transit has depth «;, and T}, is the duration of both the ingress and
egress. Consequently, for both the ingress and egress the square of the par-
tial derivative in equation (4.22) is given by (ay,/Tin)?. Noting that there
are Tj, /At exposures during both the ingress and egress, and substituting
the above approximation into equation (4.22) gives

T; o, \ 2 e
o in P
Otrmid,p oL 2?15 <f> ’ (4'23)
VAT
= J_Lﬂ‘ (4.24)

V2 o

Substituting these expressions into equation (4.19) and simplifying gives
1/3
R — 0.0168R 1 or/Lo At \ 12 / 13hrs /6
" *N1/6 |3.95 x 104 \ 1min Tira

(BN () (B NP (4.25)
Gm Pm 0.1R; ' ‘

where we have used equation (E.17) for Tj, and the expressions o, =
LoR2/R2, My, = ppmd/37R}, and M, = py4/37R5, where py, and p, are
the densities of the moon and planet respectively. As can be seen by the
dependence of R, on a,, and p,,, this statistic is good for detecting massive,
distant moons (see figure 4.4).

Unfortunately, other physical systems can also cause periodicities in tran-
sit timing e.g. the presence of additional planet (Miralda-Escudé, 2002; Stef-
fen & Agol, 2005; Agol et al., 2005). In addition, as yet, no analysis has been
performed on the effect of realistic stellar noise on this statistic. However,
as the ingress and egress of the transit are relatively short compared to the
transit duration, it seems intuitively reasonable that this technique would
be more robust to the effects of red photometric noise than direct detection.

For a discussion of the effect of neglecting limb darkening, see Carter et al. (2008).
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4.3.2.3 Transit duration variation

The transit duration variation technique (TDV) is an alternative way to de-
tect motion of the planet about the planet-moon barycenter. This involves
detecting transit to transit variation of the planetary transit duration to
measure any perturbation in the velocity of the transiting planet as it moves
around the planet-moon barycenter (Kipping, 2009a). For example in fig-
ure 4.3, the motion of the planet around the planet-moon barycenter is in
the opposite direction as the bulk motion of the planet-moon pair, result-
ing in a longer planetary transit duration than if there had been no moon.
This method was introduced by Kipping (2009a), and extended by Kipping
(2009b) to include inclined moon orbits. While it has not been used to set
limits on moons of currently known planets, it is predicted to be able to
detect moons as small as 0.2M g, in Kepler data (Kipping et al., 2009).

From Kipping (2009a) we have that the amplitude of the timing per-
turbation in the transit duration caused by a planet and moon on circular
coplanar orbits is given by

a M?2
TDVyps = 4| -2 LI 4.26
Vo | MM, (4.26)

Where we have transformed from the root mean squared amplitude pre-
sented in Kipping (2009a) to an amplitude by multiplying by v/2 and where
it is assumed that M, < M;. In addition, from Carter et al. (2008) we have
that the expression for the error in transit duration due to photometric noise
can be approximated by

At Tin
UTt'ra = U_L\/ Ttra \/2 (427)

« Tira Tira

Using the method described in the previous section, equation (4.26) and
(4.27) can be combined to give the to give the three sigma detection thresh-
old, which is

1/271/3 1/2
Rm _ 0.0197R5 1 O'L/LQ At 13hrs
N1/6 13.95 x 10=4 \ 1min Tira

1/6 1/6 1/3
am, Pp Pice
x [ &m Pr Pice )\ ™ (4.98
<Rs> <pice> <pm ) ( )

where pjc., the density of ice is taken to be 916.7kgm 2, and only the highest
order terms in R, /R have been retained. As R,, decreases as a,, decreases,
this statistic is optimised for detecting close-in moons (see figure 4.4).
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From the work of Kipping et al. (2009) it seems that this technique is
relatively robust in terms of correlated stellar noise and instrumental vari-
ability. They investigated the shape of the distribution of errors in transit
duration for the case of white and synthetic red noise and found that the
distributions agreed and were both normal. This result could be again due
to the fact that the size of the timing error is dominated by the ingress and
egress, and is not strongly affected by red noise as a result of the short time
over which red noise has to act.

4.3.2.4 Photometric transit timing

The photometric transit timing technique (77'V},) also uses the timing of
transits to search for moons, but in this case, the time used is not the
midpoint of the transit, but 7, the first moment of the photon deficit caused
by the planet-moon pair. Qualitatively, this statistic measures the position
of the center of the transit, which is altered both by bulk motion of the
transit signal and asymmetry of the transit light curve. The method was
proposed by Szabé et al. (2006) as being equivalent to that of barycentric
transit timing, but in a later paper (Simon et al., 2007) the differences
between these two methods were discussed. Again, while this method has
not been used to place limits on moons of known planets, Szabd et al. (2006)
used this updated method to investigate the number of moons expected to be
detected by missions such as COROT and Kepler. They investigated this in
terms of both giant and terrestrial planets, and suggested that Earth-Moon
type systems could be detected.

While photometric transit timing has been investigated using a Monte
Carlo simulation (Szabé et al., 2006) and from a more theoretical standpoint
(Simon et al., 2007), it is not possible to derive the signal form using liter-
ature results. In particular, the only literature result relating to the signal
is given in Simon et al. (2007), which states that the maximum size of this

perturbation is given by
B\’ Mn
Ry M, |

As we do not have a signal form,'' this cannot be converted into a
threshold similar to those given. In addition, there is no expression given in

max (TTV,) = dm
Utr

(4.29)

"The form of the TTV, signal can be guessed using equation (15) and Fig. 2 of
Simon et al. (2007). Assuming that the silhouette of the planet and moon shown in this
correspond to a planet and moon not at maximum separation, equation (15) can be used
to show that the TTV, signal should be approximately a sinusoidal function of time.
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the literature for the error in 7 assuming any type of noise, uncorrelated or
otherwise.

Consequently, in Part III of this thesis, these gaps will be addressed.
First, in chapter 8, the form of 7 as a function of time will be derived for
the case of circular and coplanar planet and moon orbits. This analysis will
then be extended to the case of eccentric planet orbits. Then, in chapter 9,
the functional form and standard deviation of the probability distribution of
the error in 7 caused by photometric noise will be derived and investigated
for the of white noise and more realistic correlated photometric noise. These
results will then be combined in chapter 10, with the aim of first, deriving
a simplified equation for the detection threshold similar to equations (4.18),
(4.25) and (4.28), so that the four methods can be compared on an equal
footing, and second, generating realistic moon detection threshold maps for
the case of photometric transit timing.

4.3.3 Microlensing

The possibility of detecting moons of planets detected by microlensing through
their perturbations on the microlensing light curve has started to be explored
in the literature. An initial investigation into whether or not moons of plan-
ets detected by microlensing could be detected suggested that detection was
unlikely due to the finite source effect (Han & Han, 2002). However, a more
in depth investigation found that Earth-sized moons may be detectable if
the distance from their host planet is similar to or greater than its Einstein
radius (Han, 2008).

4.3.4 Timing

For the case of planets detected by timing, the possibility exists to detect the
additional timing perturbation due to planet-moon binarity, given sufficient
timing sensitivity of the host. Currently the only host stars to display the
required timing sensitivity are the millisecond pulsar hosts. Unfortunately,
pulsar planets are rare, with only four discovered to date. Prior to this
thesis, no analysis has been conducted on time-of-arrival perturbation due
to planet-moon pairs. However, many other second order signals, such as
the effect of the 2:3 resonance in the PSR B1257412 system (Wolszczan,

However, equation (15) was derived assuming that there is no transverse motion of the
planet and moon, which is nearly true at maximum separation, but may not be true at
other times, especially if the planet and moon are close. Consequently, it is not apparent
how this effect will modify the sinusoidal signal.
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1994), free precession (Link, 2003) and Shapiro delay (Ord et al., 2006) have
been detected. Consequently, moon detection using this technique may be
possible. This technique will be analysed in detail in Part II of this thesis,
with the aim of determining which moons (if any) of the four pulsar planets
may be detectable.

4.3.5 Detecting moons of imaged planets

For planets which have been directly imaged we have a a dot, attributed to
the “planet”, which is physically separated from a majority of the light from
the star. However, as we do not yet have the technical capability to spatially
separate this dot into an image of a planet and a moon for the case of Solar
System planet-moon analogs, this dot is really a combination of light from
a planet, and light from any moons of that planet. While moons cannot
be directly detected, a number of techniques have been proposed that use
light from this “planetary” dot to search for companion moons. These pro-
posed techniques include using photometry (Moskovitz et al., 2009; Cabrera
& Schneider, 2007) astrometry (Cabrera & Schneider, 2007) or spectral in-
formation (Williams & Knacke, 2004; Cabrera & Schneider, 2007) to infer
the presence of moons.

The photometric effect of a moon on the light curve from a directly
detected planet has been investigated in two different ways. First, the effect
of moon-like satellites on the infra-red light curve of Earth-like planets was
investigated by Moskovitz et al. (2009). They found that, as a result of
a degeneracy between the effect of a moon and the effect of an inclined
planetary spin axis, a TPF-like mission could only detect large (Mars-sized)
satellites of terrestrial planets. In addition to the effect of the bulk motion
of the planet-moon system about the star on the light curve, Cabrera &
Schneider (2007) have also investigated the effect on both optical and infra-
red light curves of discrete mutual events such as the moon eclipsing or
casting a shadow on the planet and visa versa. They suggest that such
events could allow for the detection of lunar-sized moons of Earth-analogs
by missions similar to TPF-C.

In addition to using “planet” light curves to detect moons, moons may
also be detectable from perturbations in the position of the photocenter
of the dot attributed to the planet. This method was also investigated
by Cabrera & Schneider (2007), and the possibility of detecting Earth-like
moons of gas giant planets using this method was addressed in the science
case for the ELT (Hook, 2005).

Finally, moons of directly detected planets may also be detected us-
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ing spectra. This can involve measuring the Doppler shift of the planet’s
spectrum due to its motion about the planet-moon barycenter (Cabrera &
Schneider, 2007) or by noticing that Earth-like moons are much brighter in
the 1-4um CHy hole, than host gas giants in the habitable zone (Williams
& Knacke, 2004).

As yet, none of these techniques have been used to place limits on moon
sizes for any of the seven directly detected planets. However, (Kalas et al.,
2008) report that the optical emission from the planet Fomalhaut b is consis-
tent with an extended circum-planetary disk, the size of the Galilean satellite
system. This lends support to the idea that moon systems may exist about
such planets, and may, in future, be detectable.

4.4 Conclusion

To provide a context for extra-solar moon detection, the techniques of extra-
solar planet detection were discussed in terms of the physics behind the tech-
nique, their effectiveness, and the types of planets discovered using them.
This discussion was then extended to include moon detection, with particu-
lar emphasis on moons that can be detected through the pulsar timing and
transit techniques. From this position we can now begin to discuss the first
of the two moon detection techniques that will be investigated in this thesis,
pulsar timing.
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Part 11

Detecting Moons of Pulsar
Planets
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Chapter 5

Possibility of detecting

moons of pulsar planets
through time-of-arrival

analysis

Authored by: Karen M. Lewis, Penny D. Sackett
and Rosemary A. Mardling

This chapter is a reformatted and expanded version of the paper:

K. M. Lewis, P. D. Sackett, R. A. Mardling, 2008, “Possibility of Detecting
Moons of Pulsar Planets Through Time-of-Arrival Analysis”, Astrophysical
Journal Letters, 685, L153-L156.

5.1 Abstract

The perturbation caused by planet-moon binarity on the time-of-arrival sig-
nal of a pulsar with an orbiting planet is derived for the case in which the or-
bits of the moon and the planet-moon barycenter are both circular and copla-
nar. The signal consists of two sinusoids with frequency (2n,, — 3n,) and
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(2n,, —np), where n,, and n, are the mean motions of the planet and moon
around their barycenter, and the planet-moon system around the host, re-
spectively. The amplitude of the signal is the fraction sin I,,[9(M, M,,)/16(M,+
M) [rm /1) of the system crossing time r,/c, where M, and M,, are the
the masses of the planet and moon, 7, is their orbital separation, 7, is
the distance between the host pulsar and planet-moon barycenter, I, is the
inclination of the orbital plane of the planet, and ¢ is the speed of light.
The analysis is applied to the case of PSR B1620-26 b, a pulsar planet, to
constrain the orbital separation and mass of any possible moons. We find
that a stable moon orbiting this pulsar planet could be detected, if its mass
was >5% of its planet’s mass, and if the planet-moon distance was ~2% of
the planet-pulsar separation.

5.2 Introduction to extra-solar moons

In the past decade and a half, over three hundred extra-solar planets have
been discovered.! With the data expected to be produced by satellites such
as COROT (Auvergne et al., 2003) and Kepler (Basri, Borucki, & Kock,
2005), it will not only be possible to find smaller planets, but moons of
those planets as well (Szabd et al., 2006). As a result, the detectability
of extra-solar moons is starting to be explored in terms of their effect on
planetary microlensing (Han & Han, 2002) and transit lightcurves (Sartoretti
& Schneider, 1999; Szabé et al., 2006; Simon et al., 2007). Upper limits have
already been placed on the mass and radius of putative moons of the planets
HD 209458 b (Brown et al., 2001), OGLE-TR-~113 b (Gillon et al., 2006) and
HD 189733 b (Pont et al., 2007).

While the limitations of microlensing and the transit technique for de-
tecting moons have been discussed and used in the literature, the limitations
of other techniques such as the time-of-arrival (TOA) technique have not.
This technique involves determining the variations in line-of-sight position
to the host star, usually a pulsar, using the observed time of periodic events
associated with that host. The aim of this analysis is to explore what the
TOA signal of a planet-moon pair is, and relate it to the planetary systems
that can give the most precise timing information, those around millisecond
pulsars.

!See, for example, http://exoplanet.cu/catalogue.php

70



5.3 Review of planetary detection around millisec-
ond pulsars

The first planetary system outside the Solar System was detected around the
millisecond pulsar PSR 1257412 (Wolszczan & Frail, 1992). This detection
was made by investigating periodic variations in the time of arrival of its
radio pulses using a timing model. An example timing model for the case
in which the planet’s orbit around the pulsar is circular is

(tny —to) = (Tn — Tp) + ATe + ATr + Re.n /e + ATs + AT,
+TOAPSTLP(M&MINTP?Ipvfp(o))7 (51)

(for example, Backer, 1993) where ¢y and ¢y are the times the initial and
N pulses are emitted in the pulsar’s frame, Ty and T are the times the
initial and N** pulses are received in the observatory’s frame, and where
the terms AT¢o, ATg, Re.i/c, ATs and AT,, act to change the frame of
reference from the observatory on Earth to the barycenter of the pulsar
system. The terms AT¢ and ATg are clock correction terms. AT converts
the time recorded by the observatory atomic clock to terrestrial proper time
while ATg contains time dilation corrections due to the transverse doppler
effect and gravitational red-shift due to the Earth’s motion through the
gravitational potential of the Solar System. The term Re.fi/c, corrects for
the annual motion of the earth. ATg and AT, correct for propagation
effects, namely, variations in the amount of ray bending due to gravitational
fields both inside and outside our solar system, and varying electron density
along the line of sight to the pulsar respectively. The final term represents
the effect of a planet on the motion of the pulsar, where r, is the planet-
pulsar distance, I, is the angle between the normal of the planet-pulsar orbit
and the line-of-sight, M, and M,, are the mass of the pulsar and the planet
respectively, and f,,(0) is the initial angular position of the planet measured
from the z-axis, about the system barycenter.

Currently, four planets around two millisecond pulsars have been dis-
covered, three around PSR 1257+12 (Wolszczan & Frail, 1992; Wolszczan,
1994) and one around PSR B1620-26 (Backer, Foster, & Sallmen, 1993).
These four planets include one with mass 0.02 Earth masses, the lowest
mass extra-solar planet known. This high timing precision of millisecond
pulsars indicates that they are optimal targets for planet, and consequent
moon searches.
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Pulsar

Figure 5.1: Coordinate system used in the analysis of the TOA perturbation
caused by a moon. The left diagram shows the quantities used to describe
the position of the three bodies in their mutual orbital plane, while the right
diagram shows the relationship between this orbital plane and the observer.

5.4 What is the TOA perturbation caused by a
moon?

In order to investigate the perturbation caused by planet-moon binarity,
the timing model presented in equation (5.1) must be updated to include
effects due to the presence of the moon. For simplicity, we consider here
only systems in which both the orbit of the planet and moon around their
common barycenter, and the orbit of the planet-moon barycenter around
the pulsar, are circular and lie in the same plane. The resulting updated
model is

(tN — to) = (TN — T(]) + ATe + ATg + Re.fl/c + ATg + AT,
+ TOApeTt,p(Msa M;m Tp> IIN fp(o))
+ TOApert,pm(M37 M;lh Mm> T;Dv T'm, Ipv fp(0)7 fm(O)) (52)

We have explicitly modified TOA,¢,, to indicate that it depends on the
combined planet-moon mass, and included another term, T'OApert pm, to
account for planet-moon binarity. Here M, is the mass of the moon, 7,,
is the distance between the planet and the moon, and f,,(0) is the initial
angular position of the moon measured from the x-axis, about the planet-
moon barycenter (see figure 5.1). TOApert pm can be derived from Ry, the
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vector between the system barycenter and the pulsar, using

1 t t .

E / RS . ndt”dt' = TOApert,p + TOApert,pma (53)
0 Jo

where c is the speed of light and n is a unit vector pointing along the line

of sight. From figure 5.1 we have that

n = sin Ii + cos Ik, (5.4)

where the vectors i, j and k are defined in figure 5.1.

The governing equation for Rg can be written as the sum of the zeroth
order term, which describes TOApe,t, and the tidal terms, which describe
TOApert,pma

d*Rs  G(M, + Mm)r N My, + My, + M
ez r P My, + M,

Ve, R|,  (5.5)

where the second term is the tidal perturbation to the orbit due to the
presence of the moon, which has been written in terms of the disturbing
function R (for example Murray & Dermott, 1999, p. 226), where r, =
Xi+Yj+ Zk,

.0 .0 0
Vrp = la—X +J8—Y + ka—Z, (56)
and where
R M., + M, G (M + M) GM,
My, + My + M Tp M,

GM,,
_‘err#%rm‘ - (5.7)

The disturbing function can be expanded using multipole analysis (for ex-
ample Jackson, 1975, p. 92) in terms of Legendre polynomials. Assuming
Tm < Tp, the expansion can be truncated to order r2,/ rg giving

M,, + M, GM,, M, r2 1
R = P P _m ~ (3 cos? —£)—=1). 5.8
My, + M, + M, My, + M, rg»2( c0s” (fm = fp) = 1) (5-8)

As the orbits are both circular and coplanar, r,, and r, are both constant,
Ip(t) = npt + fp(0), and fn,,(t) = npt + f,(0) where n, and n,, are the
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mean motions of the two respective orbits and are both constants, and the
inclination, I, describes the planes of both orbits. Using polar coordinates
in the plane of the orbit to evaluate V, R we have,

PRy G(M,+ M,) . GM,M,, 2
dt2 'n —SlnIpTTpCOSfp‘i_Sln[pmg
6 . . 3 9
<7 sin(2(fp — fm))sin fp + <Z + 1 cos(2(fp — fm))> Cos fp} . (5.9)

So that from equation (5.3),

—sin [,GM,M,, r2, [ 3
TOApert pm = pP— P Tom |
pert:p (M, + M,) 1, [47112) cos Jy
—i—Lcos(f —2f )—l—Lcos@f —2fm) (5.10)
8(npy — 2ny,)2 P " 8(3ny — 2nm )2 P i

The cos f;, term in equation (5.10) has the same frequency as the signal of a
lone planet and it acts to increase the measured value of M, + M,, derived
from TOApertp by (3/4)(rf,1/r12,)(MpMm/(Mp + M,,)). Consequently, this
term can be neglected as it will be undetectable as a separate signal. Also,
the stability region for a prograde satellite of the low-mass component of
a high-mass ratio binary extends from rg, the Roche radius, to 0.36ry for
the case of circular orbits, where rg =), [(M;,,)/(3MS)]1/3 is the secondary’s
Hill radius (Holman & Wiegert, 1999). As moon detectability increases as
r2., and rg is equal to only a few planetary radii, this limit can be safely
ignored. When 7, is equal to 0.367x, ny, ~ 8ny. As ny < ny, is likely,
we have that the denominators of the cos(f, — 2fp) and cos(3f, — 2fm)
terms will never approach zero. This, in addition to the assumption of zero
eccentricities, means that resonance effects can be neglected. Consequently,
equation (5.10) can be simplified by neglecting n, in the denominators,
giving

— sin I, G M, M,,, 2 3
PP _m 5= cos(fp — 2fm)

TOA =
pert,pm C(Mm—l—Mp) Tﬁ 32nm

15
— —2fm)| - A1
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Writing n,, in terms of r,,, using Kepler’s law, gives

, M,M,, 7 (rm\°[3
TOApert pm = — sin Ipmf (r_m> [— cos(fp — 2fm)
m P p

15
+§ cos(3fp — 2fm)} , (5.12)

where we are making no assumptions about the size of M,,/M,.

A similar study was conducted by Schneider & Cabrera (2006), investi-
gating the radial velocity perturbation due to an equal-mass pair of binary
stars on a distant companion. Converting their radial velocity perturbation
to a timing perturbation, setting M, = M,,, and noting that their a4 is
equivalent to r,,/2, our results agree.

5.5 Is it possible to detect moons of planets orbit-
ing millisecond pulsars?

To investigate whether or not it is possible to detect moons of pulsar planets,
we simplify equation (5.12) by summing the amplitudes of the sinusoids,
giving the maximum possible amplitude

max (TOApert pm) = p

. 5
9sinl, M, M, T'm . (5.13)
16 (M, + M,)? ¢

Tp

Thus, the size of the perturbation varies as [M, M,/ (My, + M,)?][rm /)
times the system crossing time, r,/c. So, the best hope of a detectable
signal occurs when the planet-moon pair widely are separated from each
other, both quite massive, and very accurate timing data is available. For
example, a stable system such as a 0.1AU Jupiter-Jupiter binary located
5.2AU from a host pulsar would produce a TOApert pm of amplitude 960ns,
which compares well with the 130ns residuals obtained from one of the most
stable millisecond pulsars, PSR J0437-4715 (van Straten et al., 2001).

To demonstrate this method, the expected maximum signals from a
moon orbiting each of the four known pulsar planets were explored. It
was found that in the case of PSR B1620-26 b, signals that are in principle
detectable could confirm or rule out certain configurations of moon mass
and orbital parameters (see figure 5.2).

In the particular case of PSR B1620-26 b, the perturbation signal will
not match the signal shown in equation (5.12) due to the effect of its white
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Figure 5.2: The regions of parameter space containing detectable (shaded)
and stable (cross-hatched) moons of the planet PSR B1620-26 b are shown
as a function of planet-moon separation and moon mass. The total mass and
the distance of the planet-moon pair from the parent pulsar were assumed to
be 2.5 Jupiter masses and 23AU respectively (Siggurdsson et al., 2003), while
it was assumed that sinf, = 1. The mass of the host was set at 1.7 solar
masses (the sum of the mass of the pulsar and its white dwarf companion).
The 30 detection threshold was calculated assuming the ~ 40us timing
residuals given in Thorsett et al. (1999) are uncorrelated and that similar
accuracy TOA measurements of PSR B1620-26 continue to the present day.
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dwarf companion. As a side project, this companion’s effect was investi-
gated and found to be the introduction of additional perturbations on top
of the TOApertp and TOApert pm calculated. Consequently, the detection
threshold represents an upper limit to the minimum detectable signal and
the analysis is still valid.

Unfortunately, there are practical limits to the applicability of this method.
They include discounting other systems that could produce similar signals,
sensitivity limits due to intrinsic pulsar timing noise, and limits imposed by
moon formation and stability.

First, other systems that could produce similar signals need to be inves-
tigated. Possible processes include pulsar precession (e.g., Akgiin, Link, &
Wasserman, 2006), periodic variation in the ISM (Scherer et al., 1997), grav-
itational waves (Detweiler, 1979), unmodelled interactions between planets
(Laughlin & Chambers, 2001) and other small planets. To help investi-
gate the last two options, we plan on completing a more in-depth analysis
of the perturbation signal of an extra-solar moon, including the effects of
inclination and eccentricity.?

Second, the noise floor of the system needs to be examined. The suit-
ability of pulsars for signal detection is limited by two main noise sources,
phase jitter and red timing noise (e.g., Cordes, 1993). Phase jitter is error
due to pulse-to-pulse variations and leads to statistically independent errors
for each TOA measurement. Phase jitter decreases with increasing rotation
rate (decreasing P) due to the increase in the number of pulses sampled each
integration. Red timing noise refers to noise for which neighouring TOA
residuals are correlated. Red timing noise has been historically modeled as
a random walk in phase, frequency or frequency derivative (e.g., Boynton
et al., 1972; Cordes, 1980; Kopeikin, 1997). Red noise is strongly depen-
dent on P. Tt has been proposed that red noise is due to non-homogeneous
angular momentum transport either between components within the pulsar
(e.g. Jones, 1990) or between it and its environment (e.g. Cheng, 1987). To
illustrate the effect of these two noise sources, an estimate of the resulting
TOA residuals as a function of P and P is shown in figure 5.3. For compar-
ison, the values of P and P of every pulsar listed in the The ATNF Pulsar
Catalogue® (Manchester et al., 2005) are also included.

Third, whether or not moons will be discovered depends on whether or
not they exist in certain configurations, which depends on their formation
history and orbital stability. Recent research suggests that there are physical

2See chapter 6.
*http://www.atnf.csiro.au/research /pulsar/psrcat/.
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Figure 5.3: Contour plot of predicted timing noise as a function of pulsar
rotation period and period derivative. This plot is based on figure 9 from
Cordes (1993). The functions and assumptions used to generate the contours
are the same as given in Cordes (1993), noting that the TOA integrations are
1000 seconds long. Note that correlated timing noise measured for individual
pulsars can vary from the predicted values by two orders of magnitude (e.g.,
Arzoumanian et al., 1994).
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mass limits for satellites of both gas giants (Canup & Ward, 2006) and
terrestrial planets (Wada et al., 2006). Also, tidal and three-body effects can
strongly affect the longevity of moons (Barnes & O’Brien, 2002; Domingos,
Winter, & Yokohama, 2006; Atobe & Ida, 2007).

Finally, while this method was investigated for the specific case of a
pulsar host, this technique could also be applied to planets orbiting other
clock-like hosts such as pulsating giant stars (Silvotti et al., 2007) and white
dwarfs (Mullally, Winget, & Kepler, 2006).
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Chapter 6

Effect of mutual inclination
and eccentricity on the
time-of-arrival perturbation

6.1 Introduction

As mentioned in Lewis et al. (2008), in addition to considering the case
where the planet and moon’s orbits were circular and coplanar, it would be
of use to determine the effect of mutual inclination and eccentricity in the
orbit of the planet and moon, on the time-of-arrival perturbation due to
planet-moon binarity. As the method used in chapter 5 to investigate the
time-of-arrival perturbation for the case of circular coplanar orbits cannot
be easily extended to deal with these cases, a more general method will
be used. To begin, a set of expansions developed by my PhD supervisor,
Dr. Rosemary Mardling, will be introduced, which allow the disturbing
function to be written in terms of the semi-major axis, eccentricity, inclina-
tion, longitude of the ascending node, argument of periastron and the mean
anomaly corresponding to the planet and moon orbits. Then, the selection
of reference plane and direction required for the definition of Euler angles is
motivated and discussed. Using this coordinate system, the equations defin-
ing this perturbation are then reformatted such that the expansions can be
easily applied on a case by case basis. First, the case of circular coplanar
orbits will be re-investigated, to demonstrate the use of the method and to
show that the expressions produced in chapter 5 and using this method are
equivalent. Then, building on this foundation, the effect of mutual inclina-
tion, low eccentricity in the moon’s orbit and low eccentricity in the planet’s
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orbit on the time of arrival perturbation due to planet-moon binarity will
be investigated in turn. We begin by introducing the expansions that will
be used to write the disturbing function in terms of the orbital elements of
the planet and moon’s orbits.

6.2 Writing the disturbing function in terms of the
orbital elements of the planet and moon

As can be seen from equations (5.3) and (5.5), the form of the time-of-
arrival perturbation due to planet-moon binarity is entirely specified by R,
the disturbing function, and modified by n, the unit vector directed along
the line-of-sight. Consequently, the ability to write the disturbing function
in terms of time and the orbital elements of the planet’s and moon’s orbits,
corresponds to the ability to determine the time-of-arrival perturbation due
to planet-moon binarity for any orbital configuration as a function of time.
For this work I will be using a method pioneered by my PhD supervisor,
Dr. Rosemary Mardling, which allows the disturbing function to be written
in terms of these orbital elements and is valid for all values of eccentricity
and inclination. While aspects of this method are presented in the liter-
ature (Mardling, 2008b,a), for completeness the fundamental mathematics
required for this chapter will be summarised.
To begin, recall that, for this work, the disturbing function is given by

i Ity = a0 A

While this function can be expanded in terms of Legendre polynomials as
was done in chapter 5, it can also be expanded in terms of spherical har-
monics. To do this we use the identity

00 l I
1 T a

- Yme‘“ aYtrL07 ) 2
b — al ;mzz:_lm""lblﬂ tm (0> Va)Yim (05, 1b) (6.2)

where |a| < |b|, a = |a] and b = |b|, and where 0, and ,, and 6, and v
represent the orientation of a and b expressed in spherical polar coordinates.
In addition, we have that

l | — ! :
Vin(00) = || 2 G A s 0)e™, (63
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Figure 6.1: Coordinate system used to describe r, and r,, in terms of the
spherical polar angles 0, ¥, 0,, and ,.

where P/ (cos §) is the associated Legendre polynomial of degree [ and order
m given by

. —1)m - dl+m
@) = S a2y

(2 — 1)}, (6.4)

where
(Il —m)!

(I 4+m)!

P (@) = (=)™
Using this expansion on R gives

G My, M, M,

0 l 1

47 T
R=———"+= ——— M"Y (O Y)Yy, (0, ), (6.6
M, + M, ;gl21+1 lr}ﬁ'l 1m (Om, Y)Y (6p, ¥p), - (6.6)

where
Myt — (=) !
(My, + M)
and where 0,,, ¥, 0, and 1, describe the angular orientation of r,, and
r, in spherical polar coordinates (see figure 6.1), and where the monopole
(I =0) and dipole (I = 1) terms are exactly zero.

M,

9
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Writing the disturbing function in this way, it can be seen that it consists
of a sum of terms, each comprised of five factors, which are, a constant, the
distance between the planet and moon raised to the power [, the distance
between the star and the planet-moon barycenter raised to the power — (I +
1), a spherical harmonic depending on the orientation of r,,, and a spherical
harmonic depending on the orientation of r,. Consequently, we need a way
to express each of these factors in terms of time and the orbital parameters
of the system. We begin with the spherical harmonics.

6.2.1 Writing Y,,(0,7) in terms of I, w, 2 and f

Following Mardling (private communication), Y,,,(0,v) can be written in
terms of the orbital elements I, w, €2 and f, such that,

l
Z Dlmm’ (Iawa Q) eim’f’ (67)

where I, w and €2 are the Euler angles specifying the orientation of the orbit
and where Dy (I, w, Q) are Wigner D-functions, such that

Dlmm’ (I7w7 Q) = (_Z‘)2l+m+le2m (g:
where, for completeness, the inclination functions .,/ (I) are tabulated
in Appendix C. Applying this expansion to both spherical harmonics in
equation (6.6) and rearranging gives

P WITNED)

=2 m=—Ilm'=—I —1,2

Vimm/ ([m) Vimm!! ([p) €

l I+1

T -1 a il

X |:—a;n et fm:| [—ﬁ_le wm fp] . (6.9)
m Tp

O> NVirmm? (I) ei(m/o.;-i—ﬁlﬂ)7 (68)

« (_Z)Zm—l—m +m” i(m/ W +mQpm —m" wp—m8y)

As can be seen, using this transformation functionally replaces each term
with a set of new terms each consisting of three factors, which are a constant
which depends on ay,, Ip,, wm, m, ap, Iy, wp and €, a term which depends
on 7y, and f,, and a term which depends on 7, and f,. These last two terms
can also be described in terms of an,, ep, My (t), ap, €, and My (t) using a
different expansion, where we note that the time dependance differentiates
between the mean anomalies M,,(t) and M,(t), and the masses M,, and
M,,.
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6.2.2 Writing terms of the form (r/a)'e’™/ in terms of a, e
and M (t)

To begin, we take a closer look at the quantities in square brackets in equa-
tion (6.9). While these terms are not simple functions of time, they are
approximately periodic, which means that they can be described as Fourier
series, that is

am

l [e'e)
<7‘_m> gimfm — Z s (e, ) Mm (®) (6.10)

and
I+1 o0
p —imfp _ E FUm) inMy(t) 11
<7‘p> e e n (ep)e (6 )

where the coefficients sgm)(em) and F\™ (ep) are functions of the eccentric-

ity and are defined by

(1m) L (%7 o imfon—inMon(0)
m m) = m _imfm —inMm i t 192
sn " (€m) 27T/0 e dMm (t) (6.12)
and
Im) 1 o aé—i_l —imfp inM,(t)
Flm (e,) = 27T/O el p M) g0 (1) (6.13)

The properties of these coefficients were investigated in Mardling (2008b)
and are summarised in appendix D. Also, the dependence of the coefficients
sgm)(em) and F,(le)(ep) on e, and e, to third order is presented in tables

D.1 and D.2.

6.3 Selection of the reference plane and direction

In order to derive expressions for the time-of-arrival perturbation due to
planet-moon binarity, a reference plane and direction required for the defi-
nition of the Euler angles I, w and €2, needs to be selected.

To simplify the expression for R we choose the coordinate system such
that the z-y plane coincides with the planet’s orbit. For this choice we do not
need to expand the spherical harmonic corresponding to the planet’s orbit as
0, = 7/2 and 1, is equal to the sum of f,, wy, 2, and an additive constant
which depends on the reference direction. Unfortunately, an unwanted side
effect of this choice is that the coordinate system is no longer inertial, and
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(a) Coordinate system for planet’s orbit.  (b) Coordinate system for moon’s orbit.

Figure 6.2: Diagram showing the definition of the Euler angles I,,, Q,, wp,
I, €, and wy, used in this chapter, where we define w, = w, +€,. In
particular note that n,, is the orbit normal to the moon’s orbit while n is
directed along the line of sight

any process which acts to alter the orientation of the planet’s orbit acts
to alter the orientation of the coordinate system. This issue is beyond the
scope of this thesis, but will be briefly discussed in chapter 11 in context of
directions for future research. We now move onto the selection of reference
direction.

For this work, the z-axis was selected as the reference direction, such
that, for our choice of reference plane v, = f, + w, + Q,. In addition, we
choose the z-axis to correspond with the projection of the line between the
observer and the system barycenter onto the plane of the planet’s orbit.
This decision was made to reduce the number of non-zero components in n.
For reference, these definitions are summarised in figure 6.2.

These two decisions have a number of ramifications, especially for the
definition of the inclinations I,, and I,. These will be briefly highlighted.
First, as the reference plane is the planet’s orbit, the Euler angles for the
moon’s orbit are measured relative to the planet’s orbit (see figure 6.2(b)).
In particular I,,, represents the mutual inclination between the orbit of the
planet and that of the moon, such that I,,, = 0 implies that the orbits are
coplanar and I, # 0 implies that they are not. Second, for the planet’s
orbit, the situation is a little more involved. As the orbital plane of the
planet is the reference plane, using the standard definition of inclination,
the planet’s orbit would have zero inclination by definition. Consequently,
following Lewis et al. (2008), for this chapter we define I, to be the angle
between n, the vector along the line of sight and the normal to the planet’s
orbital plane (see figure 6.2(a)). Now that a coordinate system has been
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selected and discussed, we can use the methods introduced in section 6.2
to produce a more useful form for the expression for the time-of-arrival
perturbation.

6.4 Derivation of the general equation

We begin by deriving a general expression for the time-of-arrival perturba-
tion, to which the expansions described in section 6.2 can be applied where
appropriate. To start consider equation (5.3),

t ot
% / Ry -ndt"dt' = TOApertp + TO Apert pm

0 Jo
where we recall that TOApe,¢, is the time-of-arrival perturbation due to
orbit of the the planet-moon system about the pulsar, TOAy,crt pm is the
timing perturbation due to planet-moon binarity, and Ry is the vector from
the system barycenter to the star. From chapter 2, we have that r, is
the vector from the planet-moon barycenter to the star, and thus Ry =
(M, + M,y,) /(M + My, + My)]r,. Using this expression and equation (2.15)
we then have that

t t’
TOApert,pm = _%L / / g—;}‘i . ndt'dt, (614)

where we note that a different definition of R is used in Lewis et al. (2008)
than used in this chapter. Expanding the disturbing function using equa-
tion (6.6) gives

11 "0 [ GMu MM, S <
TOApert,pm—_zﬁs/o /0 a—l‘p< M,, —I—M z; Z
l
x%nm(em,qﬁm)m(em,wm)) -ndt'dt, (6.15)
p

[e.e]

1 GM,,, M, ¢
- M, +M// <Zz2l+1 ll+2

8Y'2*m(9p’ ¢p)

m(erm T;Z)m) 89})

— (I + 1)}/121(91977;%)973, +

—imYs,, (6, wp)ewp] ) - ndt'dt, (6.16)
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where we note that the expression ¢, = /2 has been used. Using the fact
that 7,,/r, < 1, we retain the [ = 2 terms only,! equation (6.16) simplifies
to

2
1 GM,, M, 47r r2,
TOApert,pm - c M n M / / ( Tp lem( m> rlzz)m)

5Y2%(9p= ¥p)

- 3Y2>:n (0p7 wp)erp + aep

egp

_ T
Op=%5

—imYQ%(Hp,Q/)p)ewp]) -ndt'dt. (6.17)

where we note that My = 1. We now consider the definition of n. As
the direction of the unit vectors in spherical polar coordinates depends on
position, it would be useful to convert n into Cartesian coordinates. Using
the fact that 6, = 7/2 we have that

€, = CosYpe,, —siny,ey (6.18)
ey, = siniype,, + cosypey,, (6.19)
e, = —€g,. (6.20)

We now write the three components of n, n;,, n,, and n.,, in terms of the
quantities of the system. Comparing with figure 6.2(a) and noting that n
lies in the z-z plane gives

Ny, = sin I, (6.21)
ny, =0, (6.22)
Ny, = cos I, (6.23)

where I, is the angle between the line-of-sight and the vector normal to the
planet’s orbit.
So, using this notation we have that

n= [cos Vpe;, — sin Q,Z)pewp] sinl, + 0 + [—egp] cos I, (6.24)

'For the case of the four known pulsar planets PSR 1257+12 b, PSR 1257+12 c,
PSR 1257412 d and PSR B1620-26 b, the highest values of r,,/r, allowed by orbital
stability are 0.0012, 0.0034, 0.0033, and 0.039, where we note that the ratio for PSR B1620-
26 b was calculated under the unrealistic (Ford et al., 2000; Siggurdsson & Thorsett, 2005)
assumption that its orbit is not eccentric. Consequently, for these four cases the | = 3
terms will be at least 0.0012, 0.0034, 0.0033, and 0.039 times smaller than the [ = 2 terms
respectively, and can thus be neglected.

88



which is equivalent to
n = sin [, cos Yy, — cos [peg, — sin [ sinpey, . (6.25)

The two equations we will require are equations (6.17) and (6.25). These
equations will form the basis for the following analyses into the perturbation
in the case of circular coplanar, inclined and eccentric orbits.

6.5 Circular coplanar orbits

To begin the investigation into the form of the time-of-arrival perturbation
due to a moon, we revisit the case of circular and coplanar planet and moon
orbits. First, we must write the spherical polar angles representing the
position of the planet (¢, and ) and the moon (6,, and 1,) in terms of
the angles f,, w, and €, and f,, wy,, and €2,,,. As mentioned in section 6.3,
the orbit of the planet is defined to lie in the horizontal plane defined by
0, = m/2. As the orbit of the moon is coplanar with that of the planet, we
also have that 6,, = 7/2. Finally, recalling that the z-axis is the reference
direction for both the spherical polar coordinate system and the definition
of longitudes, we have that ¢, = f, + w, + Q, and ¥, = fr, + wm + Qi
Substituting these values into equation (6.17) and noting that P/™(0) = 0
for m+1 odd and 0P/ (cos 6),)/06,| = 0 for m+1 even, this simplifies
to

M,, M, v !
TOApert,pm = 1 ¢ / / )

¢ My, + M, + M, m__22 2+ )'

cos 0p=0

2
oy
Tp
x (PJ(0))? emFmtm—fp=mp) [—3e,, — z’me%]) -ndt'dt, (6.26)
where the expressions w, = wy, + ), and w,, = w,, + (), have been used.

Expanding the sum and rewriting the complex exponentials in terms of
sinusoids then gives

1 GM,, M, v
TOA;Dert,pm = _C M T M / / <_

X <[T9(:os(2fm+wm fp—@p) — %] er,

+g sin(2fy, + wm — fp — wp)e¢p>> -ndt'dt. (6.27)
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Writing n out in full using equation (6.25) and combining like terms gives

1 GM,, M, sin I, ¢ 7’%1 3
TOApert,pm:_E M, + I, / / - <—ZCOS (fp+ @p)

15
3 cos(2fm + 2wy — 3fp — 3wy)
—g cos(2fm + 2wm — fp — wp)> dt'dt. (6.28)

As both the planet and moon orbits are circular, r,, = a,, and 7, = a,, and
thus these terms can be moved outside the integral as they are constant.
Also, we have that, Cg—f = n, and df 7 = Ny, where n, and n,, are the mean
motions of the planet and moon respectively, are also constant. Taking

advantage of these simplifications and performing the two integrals gives

1 GM,, M, sin I, r2 3
TOApert pm = I R Im (T
OApertp M,, + M, 7‘;1 <4n12) cos (fp + @p)
15
T 8@ — a2 (SR m + 27w = 3fy = 3)
3
+m COS(Qfm + 2Wm - fp - wp)> . (6.29)
m P

Noting that f, + @, and f,, + @,, in this work is equivalent to f, and f,,
in chapter 5, this is exactly the same expression as given in equation (5.10).
Also, as pointed out in chapter 5, the first term of equation (6.29) cannot
be distinguished from T'OApe, s p, the the time-of-arrival signal due to the
orbit of the the planet-moon system about the pulsar, as they have the same
angular frequency, and consequently it can be neglected.

For reference, a realisation of T'OApeqt pm calculated for an example
planet-moon pair corresponding to PSR B1620-26 b is presented in figure 6.3.
While data corresponding to a full orbit of PSR B1620-26 b is not available
as the pulsar has only been observed for a little over 20 years, and the orbital
period is of the order of a century, the orbital elements can be constrained
by measuring the period derivatives and measuring perturbations on the
orbit of the white dwarf companion (e.g. Joshi & Rasio, 1997). Conversely,
the perturbation due to planet-moon binarity causes timing variations over
much shorter timescales, and recalling from chapter 5 that the timing errors
are of the order of 40us, this perturbation is potentially detectable.

In particular, as can be seen in figure 6.3, for the case of circular and
coplanar planet and moon orbits, T'OApert pm looks like a high frequency
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Figure 6.3: Functional form and frequency composition of the time-of-arrival
perturbation due to planet-moon binarity for the case where the planet
and moon’s orbits are circular and coplanar. This curve was calculated for
the case of a PSR B1620-26 b analog, in particular, it was assumed that
M, =2.3Mj, a, = 23AU, M,, = 0.2M; and a,, = 0.8AU.

sinusoid which has been multiplied by an envelope function. While this is not
strictly mathematically the case, in that T'O Ajert pm is given by the sum of a
sinusoid and a beat function, this analogy is intuitively useful. Noting that
the sinusoids with frequency fi = 2n,, —n, and fo = 2n,, — 3n,, are causing
the beating in TOAert pm, and recalling that the frequency of the envelope
function for a beat is given by (fi — f2)/2 = n, while the frequency of the
high frequency sinusoid that it modifies is given by (f1 + f2)/2 = ny, — ny,
it can be surmised that the envelope function is defined by the effect of the
planet’s orbit and the high frequency sinusoid defines the effect of the moon’s
orbit. We now move to the first of the more complex cases analysed in this
chapter, the case where the orbits of the planet and moon are mutually
inclined.
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6.6 Mutually inclined orbits

As discussed in chapter 3, moons are more likely to form or be captured into
orbits which are roughly coplanar with that of their host planet. However,
highly inclined moon systems do form, for example, the satellite system of
Uranus. Consequently, it is of scientific interest to investigate the effect of
mutual inclination in two regimes. First, the effect of slight orbital misalign-
ment will be investigated by deriving an expression for the time-of-arrival
perturbation correct to order sin /. Then the case of arbitrary orbital mis-
alignment will be considered. However, before either of these cases can be
investigated, equation (6.17) must be written in terms of the orbital ele-
ments.

As in the previous case, we begin by writing the angles 6,,, 1, 8,,, and ¥,
in terms of the orbital elements f,, wy, €, fim, Wy and Q,,. As for the case
where the orbits were coplanar, we have that 6, = 7/2 and ¢, = fp+wp+Qp,
however, as the moon’s orbit is now inclined, writing #,,, and ,, in terms
of fin, wm and €2, is a little more challenging. This leads to two issues that
must be resolved before analytic progress can be made:

1. The inclusion of terms of the form 0Y},, (6, 1)/ 89p\9p:7r /o in the sum.

2. The time-of-arrival perturbation is no longer independent of 6,,.

The solution to both of these issues is to expand the term in question,
however, the way this is done is slightly different for each of the two cases.

8}/ln’b (Gp 7¢P)

6.6.1 Recasting terms of the form 5

Op=m/2

To begin, we note that there are a number of recurrence identities which

relate Legendre polynomials of different orders. One such identity is

dP/" (cos b))
dao,

This identity is valid for both positive and negative m. Substituting in

6, = /2, gives

= lcos 0, (cos 0,) — (I + m)P™ (cosb)). (6.30)

sin 0,

dP™(cos b))
do,

= (I +m)P",(0). (6.31)
Op=m/2

Comparing this with equation (6.3), it can be seen that

8Ylm(9p, ¢p) - (2[ + 1)(l _ m) -
G P _\/m“ +m)Yu—1ym (E,wp) . (6.32)
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Substituting equation (6.32) into equation (6.17) and noting that [ = 2 gives

1 GM,, M, i 2 47Tr
TOApert,pm = M T M / / < Y2m( mnwm)
p

5(2—m) o (T
m@ +m)Yy, (57 ¢p> €y,

—imYy,, (g,zpp) ewpD -ndt'dt. (6.33)

—3Ys3,, <g7¢p> €rp, —

6.6.2 Describing a rotated moon orbit

As the moon’s orbit no longer lies in the same plane as the planet’s orbit,
its orbital plane is no longer given by 6,, = 7/2. To deal with this in-
clined orbit, the expansion described in section 6.2 will be employed. Using
equations (6.7) and (6.8) to expand equation (6.33) gives

1 GM,, M, ¢ r2
TOA ert,pm — / / ( _m - m+m
pert,p M +M Z Z ;‘;

m=—2 m’:—2 2

/)'P2m’(0) i(m/ fr4m wm—mfp— mwp)eimﬂm
= (2+m)P"(0)ey,

, )-ndt’dt. (6.34)

where, for easy reference, a table of 7, (I;,) functions is given in ap-
pendix C. Armed with equation (6.34), we are now in a position to calculate
the form of the perturbation for the cases of small and arbitrary amounts
of misalignment.

6.6.3 Solution in the case of circular orbits and small mutual
inclination

For the case where sin I,,,, the sine of the relative inclination is near zero,
we have that

1
cos I, =~ 1— 3 sin? I,,,. (6.35)
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Figure 6.4: Schematic diagram of the orbital orientations of the moon and
planet orbits at four stages of the “year”.

As a result of the prediction that low inclinations should be common, it
would be interesting to only include the terms of order sin I,,, and investigate
the signal form. As 7pnm (L) are the terms which contain I,,, a quick
investigation of the table in Appendix C shows that only 721,/ (1) and
Yo—1m/ (I;m) have terms that are first order in sin I,,,. Also, to first order in
sin I,,,, all other terms are exactly equal to the values found in the circular
coplanar case, which allows us to write

1t GM,M, 22
TOApert,pm = TOApert,cc - E/O /0 m Z Z F

g <Im>¢ R 2 4 m) Py O) P (0)

% (_Z’)m'f‘m/ei(m/(fm+wm)_m(fp+wp))eimﬂmeep -ndt'dt. (6.36)

where T'OApert,cc is the perturbation TOApert pm for the case of circular
coplanar orbits. Expanding the sum, substituting in the values of Yo,/ (1)
to order sin I, from Appendix C, the expression for n from equation (6.25)
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and combining the complex exponentials into sinusoids gives

1t ot GM,, M, cos I, r2
TOApert,pm = TOApert,cc - E /0 /0 m—%r—rg

X <z sin Iy, sin(2 fr, + 2wp — fp — @p + Q)
+Z sin Iy, sin(2 fr, + 2w, + fp + @p — Q)
—g sin Iy, sin(fp, + wp — Qm)> dt"dt’.  (6.37)

Noting that as the orbits are circular, r, = ap, 7, = am, Cg—f = n, and

% = n,,, the integration can be performed to give

1 GM,, M, sin I, cos I, a>
TOApert,pm = TOApert,cc - E mM:L T ]\Z) L a_yg

X <m Sln(2fm + 2wm - fp - wl) + Qm)

3

_m sin(2fr, + 2w, + fp + @wp — )
m P

3 .
+2—n% sin(f, + wp — Qm)> . (6.38)

As can be seen above, low inclination results in the inclusion of one? addi-
tional frequency in the solution. It is interesting to note that this additional
signal looks like a beat function.

To see why, consider how the position of the planet and moon relative
to the pulsar changes over a moon orbit as a function of the position of the
planet-moon pair about the planet’s orbit (see figure 6.4). During the two
sections of the planet’s year when the moon’s orbital plane is aligned with the
vector pointing to the pulsar (stage 1 and 3 in figure 6.4), the moon moves
from being a, + (M,/(M,, + M,))a,, away from the pulsar to being a, —
(M /(M ~+M,))an, away from the pulsar, while the planet moves from being
ap + (M, / (M, + Mp))ay, away from the pulsar to being a, — (M, / (M, +
My))a,, away from the pulsar during a single moon orbit. As these are
the same values as for circular coplanar orbits it should be unsurprising

2Terms with frequency 2nm, — n, and n, are already present in the expression corre-
sponding to the circular coplanar case. Consequently, the term with frequency 2n,, + n,
corresponds to the only “new” frequency.
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that these two times correspond to the zero of the envelope function of
the beat. Conversely, when the moon orbit is more face on to the pulsar
(stage 2 and 4 in figure 6.4), the moon moves from being (a2 + (M, /(M,, +
M,))%a2, +2a,(M, (M, + M,))ay, cos I,,,)'/? away from the pulsar to being
(a2 + (Mp/(My, + My))2a2, — 2a,(My/ (M, + Mp))an, cos I,,)Y/? away from
the pulsar while the planet moves from being (a2 + (M, / (M, + M,))?az, +
20, (M /(My, + M,))ay, cos I,)'/? away from the pulsar to being (a2 +
(My,/ (M, + Mp))2a2, — 2a,(My,/(My, + Mp))ay, cos I,,)Y/? away from the
pulsar during one moon orbit. As these values are the most different from
those for circular coplanar orbits, it should be unsurprising that it is at these
times that the perturbation to the circular coplanar signal is greatest. We
now explore the effect of arbitrary mutual inclination.

6.6.4 Solution in the case of circular orbits and arbitrary
mutual inclination

For the case of arbitrary mutual inclination we no longer neglect the higher
order terms in sin I,,,. Taking equation (6.34), expanding the sum, collecting
the complex exponentials into sine and cosine functions and substituting
in the expressions for 7y, (1), where we note that that v (In) =
(=1t 5 (I) (see Appendix C), gives

1 GM,, M,
TOApertpm = —— TS TA M, // r4 <—— 3cos L, —1)e,,

_%(1 + c08 1) cos(2fm + 2w — 2fp — 2wp)e;,
_g(l + 08 1) ? sin(2 i + 200 — 2, — 20p)ey,
+Z sin I, (1 + cos Iy) sin(2 fin, + 2wi, — fp — @p + ey,
+Z sin I, (1 — cos Ipy,) sin(2 frn + 2w + fp + @p — Qi )eg,,
—g sin? I,,, cos(2f, + 2w, — 20, )er,

3
+§ sin? I,,, sin(2f, + 2w, — 2Qm)ey,
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9
—1—6(1 — cos Iy)? cos(2fm + 2w + 2fp + 2w, — 2Q,,)e,,

9
~3 sin? I, cos(2fm + 2wm)er,

3
—i—g(l — c08 I ) Sin (2 + 2w + 2, + 20, — 200 )ey,

3
+Z sin(21,,) sin(fp + wp, — Qm)egp> -ndt"dt’.  (6.39)

Substituting in equation (6.25) and collecting like coefficients gives

1 GM, M, oy
TOApert,pm = M T M / / T4

% <_§(3 cos? I, — 1)sin I, cos(f, + @p)

332(1 + 08 Iy)? sin I, cos (2 fm + 2wy, — 3£, — 3wp)

21
—3—2(1 + cos I,)? sin I, cos(2fm + 200m — fp — @p)

3
~1 sin I, (1 — cos Ipy,) cos I, sin(2fp, + 2wy — fp — wp + Q)
3
~1 sin I, (1 — cos Ipy,) cos I, sin(2 fr, + 2wy, + fp + wp — Q)
15 . 4 .
— g Sin Iy, sin I, cos(fp + wp — 28y,)
3
16 sin? I, sin I, cos(3f, + 3w, — 2Q)
9
—— sin? I,,, sin I, cos(2fm + 2w + fp + wp)

16

9
16 sin? Iy, sin I, cos(2fn + 2w — fp — @p)
15

_ﬁ(l — 08 Iy,)? sin Iy cos(2fm + 2wim + fp + @p — 2Q)
3
—3—2(1 — c08 I )? sin I, cos(2 f + 2wy + 3, + 3w, — 20,)

—Z sin(21,,,) cos I, sin( fp + wp — Qm)> dt'dt. (6.40)

As both orbits are circular, r,, = ap, rp = ap, frn = Nt + fn(0) and
fp = npt+ f,(0). Using these simplifications and performing the integrations
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gives

1 GM,,M,, a2,
TOApertom = = 3T M, ab
3(3cos? Iy, — 1) sm[
X <§ 2 cos(fp + wp)
3 (14 cosly)?sinl,
32 (20, — 3ny)?

21 (1 + cos I,,)? sm]
- s(2 2 _

L cos(2fm + 2w — 3fp — 3,)

3 sin I,,(1 — cos I,,,) cos I,
E s 02+ 2 fy =~y )
m P
3sinl,,(1 — cos I,, cosI
m p
15 sin Imsinlp
SRS — — 20
T ng cos(fp + wp m)
3 sin? I, sin I,
+— 16 W COS(3fp + 3wp Qm)

9 sin’ 1, sin [,
16 (2nm )2 ¢
9 sin’ 1, smI
16 @nyy — )2 €
+§ (1 —cosI,)?sin 1,
32 (2ng, +np)?
3 (1 —cosly)?sinl,

08(2fm + 2wm + fp + wp)

08(2 frm + 2w, — fp — @p)

co8(2fm + 2w + fp + w@p — 2Qm)

— 2fm + 2w, + 3 3w, — 20
+32 @ + 31,2 L cos(2fm + 2wm + 3f, + 3, m)
3sin(21,,) cos I, .
—1—171—12)7’ sin(fp + wp — Qm)> . (6.41)

Consequently, higher values of inclination modify the amplitude of the sinu-
soids with frequency 2n,,, —n, and 2n,, —3n,, (the frequencies corresponding
to the circular coplanar case), with frequency 2n,,, +n, (the frequency corre-
sponding to the slightly inclined case) and introduce sinusoids of frequency
3n, and 2n,, + 3n,.

In addition to adding new frequencies to the perturbation, high mu-
tual inclination can also change the form of the perturbation (compare fig-
ures 6.3 and 6.5). In particular, mutual inclination is capable of changing
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Figure 6.5: Functional form and frequency composition of the time-of-arrival
perturbation due to planet-moon binarity for the case where the planet and
moon’s orbits are circular and the orbital planes of the planet and moon are
perpendicular (I,,, = 7/2). These curves were calculated for the case of a
PSR B1620-26 b analog, in particular, it was assumed that M, = 2.3M,
ap = 23AU, M,, = 0.2M; and a,, = 0.8AU.

TOApert,pm from something that looks like a sinusoid to something that
looks like a beat (see figure 6.5). As can be seen, while mutual inclination
does not substantially alter the maximum amplitude of the perturbation
over a full planetary orbital period, it can reduce the amplitude for lengths
of time much smaller than an orbital period, where we recall that the period
of the envelope function is half a planetary orbital period. Consequently,
taking mutual inclination into account is very important for placing limits
on moons of pulsar planets such PSR B1620-26 b which have orbital periods
much longer than length of time over which they have been observed. Now
that the effect of mutual inclination on the time-of-arrival perturbation has
been investigated, we move on to investigate the effect of eccentricity, in
particular, the effect of eccentricity in the moon’s orbit.
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6.7 Slightly eccentric moon orbits

While most moons are expected to form on circular orbits (see chapter 3),
captured moons begin with very elliptical orbits. In addition, even for the
case of a moon on an initially circular orbit, subsequent orbital evolution
can increase the orbit’s eccentricity (e.g. Hut, 1981). Consequently, it is
of interest to investigate the case where the moon’s orbit is eccentric. In
this section the case of slightly eccentric moon orbits will be investigated
by considering the expression for the time-of-arrival perturbation correct
to first order in e,,. This case was selected as first, it indicates the types
of effects eccentricity in the moon orbit can have on the perturbation and
second as it is substantially simpler than the general case.

For the case where the planet and moon’s orbits are coplanar, but the
moon’s orbit is eccentric, 8, = 7/2, ¥, = f, + wp + Qp, 0, = 7/2 and
U = fm + wm + Q. However, as the moon’s orbit is eccentric, terms
involving r,, and f,, are no longer simple functions of time. Using these
expressions, equation (6.17) becomes

1 GM,, M, v (2-m)! r2, .
TOA — _m imfm
pertpm ¢ M, + M, / / m__22 2+m)! [a?ne }

eitman—imby—me) B (pp0))2 [ 3erp—zmewp]) ndi"di', (6.42)
p

where the terms corresponding to the moon’s orbit have been grouped into
one factor using square brackets. Applying the expansion presented in equa-
tion (6.10) to the term in square brackets, where we note that the Fourier

(2

coefficients s, m)(em) are given to order €2, in appendix D, gives

1 GMy M, v —m) 2a2
TOApert,pm = - M —|—M / / Z Z 2 _|_m (0) 7‘%

m=—2 2n——oo

52m) (e,,) e Mm(®) o gilm@m=mfy—mzwy) [—3ey, — imewp]) -ndt'dt. (6.43)

This equation describes the time-of-arrival perturbation for the case of ec-
centric moon orbits.

In the case of low eccentricity, the terms of order €2, and above can be
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neglected. Truncating the expansions in table D.1 to order e, gives

s (em) =1, (6.44)
582 (em) = —3em, (6.45)
s (em) = em, (6.46)
s () = 1, (6.47)
3320)(6771) = —€m. (6.48)

Only including the above terms in equation (6.43), noting that sﬁfm) =

S(l—m)*

Y, ,and combining the complex exponentials into sinusoids gives

1 GM,, M,
TOApert,pm = CM —|—M / / 7"4 <_ erp

—Z cos(2My (t) + 2w — 2f, — 2w, )er,
—g Sin(2Mp, (t) + 2wy, — 2fp — 2wy )ey,

9
—% cos(3My, (t) + 2w — 2fp — 2wy )e;,

6

—% SIN(3My (£) + 200 — 21, — 27, )€y,
27e

+ 5" cos(My (t) + 200, — 2f, — 2wp)ey,
18e,, .

+ sin(Mp, (t) + 2wm — 2fp — 2w, )ey,

+367m cos(Mm(t))erp> -ndt'dt. (6.49)

Substituting in equation (6.25) and expanding the trigonometric products
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gives

1 GM M v a2 3
TOApertpm = — ¢ My + M, — - sinl, / / —7;4: <_Z cos(fp + @p)

1
—; cos(2M,, (t) + 2wy, — fp — wp)

3
3 cos(2M,, (t) + 2wy, — 3fp — 3wp)

15
_2m cos(3My, (t) + 2w — fp — @p)
3
—% cos(3 My, (t) + 2w — 3fp — 3wp)
45e
+——" cos(Mp (t) + 2wm — fp — @p)

em .
+% sin(M,y, (t) + 2wy, — 3fp — 3wp)
3em
+ = cos (M (t) = f — )

+36Tm cos(Min () + f, + w,,)> dt'dt.  (6.50)

de ®

Noting that r, = a, ‘gt = n, and = n,,, performing the integrals

and simplifying then gives

1 GM,, M a? 3
TOApertpm = ———P ogin [, -1 | —
Pt = My + My, P a <4ng cos(fp =+ )
15
—I—m cos(2M, (t) + 2wy, — fp — wp)
m P
3
+m COS(2Mm(t) + 2wm — 3fp — 3wp)
m P
15e,,
m COS(3Mm(t) + 2wm — fp — wp)
m P
3em
+m COS(SMm(t) + 2wm — 3fp — 3wp)
m P
45e,,
REICIET cos(Mp, (t) + 2wy, — fp — wp)
m P
9em .
RO e sin(Mp, (t) + 2wy, — 3f, — 3wyp)
m 1%
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3em
o om M, () — f, —
Tom — )7 cos(My,(t) — fp — wp)
3em

"Lt cos(My, () + fp + wp)> . (6.51)

As seen by comparing equation (6.51) with equation (6.29), the pertur-
bation in the case of circular coplanar orbits, the effect of a small amount
of eccentricity in the moon’s orbit, is to split each of the frequencies corre-
sponding to the circular coplanar case into three frequencies (see figure 6.8).
The origin of this splitting can be seen by considering that the only non-zero
coeflicients to appear in the low eccentricity case correspond to terms with
n =m+ 1, m or m — 1. For orbits which are eccentric enough such that
the assumption of low eccentricity is no longer valid, more coefficients will
be relevant, and thus more than three frequencies will be produced by the
splitting.

As for the case of mutually inclined orbits these additional frequencies
act to modify the form of TOApertpm (see figure 6.6). Again considering
the beat analogy and attributing the envelope function to the motion of the
planet-moon pair about the pulsar and the high frequency “sinusoid” which
the envelope function modifies to the motion of the planet and moon about
their common barycenter, we expect that eccentricity in the moon’s orbit
would modify this “sinusoid”. From figure 6.6 we can see that this is truly
the case. We now move on to investigating the effect of eccentricity in the
planet’s orbit.

6.7.1 Slightly eccentric planet orbits

An investigation of the effect of eccentricity in the planet’s orbit is scien-
tifically interesting for two main reasons. First, while planets in the Solar
System have orbits that are well approximated by circles, many extra-solar
planets do not, for example, nearly half of the planets presented in the
extrasolar planet encyclopedia have eccentricities larger than 0.1. In addi-
tion, for the particular case of pulsar planets, the two outer planets in the
PSR B1257+12 system have orbits with low, but non-zero eccentricities of
0.0186 and 0.0252, and it is thought that the orbit of PSR B1620-26 b is ec-
centric (Ford et al., 2000; Siggurdsson & Thorsett, 2005). Second, recall from
section 5.1, that for the case of circular coplanar orbits, the amplitude of
TO Apert pm is approximately sin I,[9(M, M, ) /16(M, + M) 2] 1 /7p)° times
the system crossing time r,/c. As a result of the dependance on 7, it can
be intuitively seen that variation in 7, over a full planetary orbit is likely
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Figure 6.6: Functional form and frequency composition of the time-of-arrival
perturbation due to planet-moon binarity for the case where the planet and
moon’s orbits are coplanar, the planet’s orbit is circular, and the moon’s
orbit is eccentric (e, = 0.05). These curves were calculated for the case of
a PSR B1620-26 b analog, in particular, it was assumed that M, = 2.3M,
a, = 23AU, M,, = 0.2M; and a,, = 0.8AU.

to have a marked effect on the size and structure of the perturbing signal.
As for the case of moon eccentricity, we investigate the effect of planetary
eccentricity in the low eccentricity regime by deriving an expression for the
time-of-arrival perturbation due to planet-moon binarity correct to first or-
der in ep.

Assuming the moon’s orbit is circular and coplanar with that of the
planet, equation (6.17) becomes

1 GM,, M, v 2-m)! :
TOA ert,pm — el
OAperts ¢ My, + M, // e 22 2+m) | ]
Xel(mfm'f‘mwm mwp) i (P2 (0)) [ 3erp Zmed}p]) -ndt”dt', (652)
p
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where
n = sin I, cos(fp + wp)e,, — cos Ipep, — sin I, sin(f, + wp)eg,.  (6.53)

It can be seen that in the case of eccentric planet orbits some extra work
must be done before progress can be made. This is because f;, is no longer
a linear function of time. Consequently, the cos(f, + w,) and sin(f, + wp)
terms within n must also be included in the Fourier expansion. For the
cos(fp + wp) term we have

a, —imf, iy 1 9 —i(m=1), ey 1 0 —i(m+1),
_;4)6 rcos(fp+wp) =e p§%e Pte ”5%6 ?, (6.54)

which can be written as

4 00

Ay _im it 1 m— —in
ée Fr cos(fp +wp) =e pgnzg_oo Fr(Lg’ 1)(617)6 Mo (t)
N Q.- ;
e Y FET (e )en M. (6.55)

Similarly for the sin(f, + @) term we have that

4 o0

a —im, : fov) 1 m— —in
ée o sin(f, + w,) = e 5 nEZO EGm=Y (g Yo nMp(t)
1 .
L iw (3,m+1) —inMp(t)
e ngzo Fy (ep)e P (6.56)

where it is now written in terms of F(37m=1 and FGm+1) 3
Using equations (6.55) and (6.56), equation (6.52) can now be written

3Both FG =1 and FG™HD can correspond to parent spherical harmonics where the
absolute value of “m” is larger than . As Y, = 0 for |m| > [ (see equation (6.4)) the term
Y F4™ in equation (6.17) is equal to zero independent of the value of Fm) o Ag ptm)
are Fourier coefficients of functions of the form (ai,+1 /réﬂ)e*imfp, there is no physical
limit on the values of [ and m. So, while coefficients of the form FGY and F&=Y have
meaning, they are not naturally occurring in the expansion of the disturbing function as
usually they would be premultiplied by zero.
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as

1 GM,, M, ¢ 2-m)!
TOA ert,pm — T I
OApert.p ¢ M, +Msn // m_222+m)!
2 S
—imwoy, Tm _i(m mAmwm m 2 —-3+m i m— —in
e pa_ge( fm+ ) (Py(0)) ¢ pn;ooFés, 1)(ep)e Mp(t)

3 —;me_iwp Z Ff(L?”erl)(ep)e_mMp(t)]) dt'dt. (6.57)

n=—oo

This is the governing equation for eccentric planet orbits. In the limit of low
eccentricity, terms of order 612, and above can be safely neglected. The only
terms in table D.2 which are non-zero once the 612) terms have been neglected

are:

F* (ep) = —e, (6.58)
Fi*¥(e,) =1, (6.59)
F*¥(e,) = bey, (6.60)
Fi¥(e,) =1, (6.61)
F* (e) = de,, (6.62)
FD (ep) = e, (6.63)
F¥(e,) =1, (6.64)
F*(e,) = 2e,, (6.65)
Fi¥e,) =1, (6.66)
F(e,) = 2, (6.67)

Expanding equation (6.57), only retaining these terms and combining
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them into sinusoids gives

1 GM,, M sin I,
TOApert,pm = _E M, + M / / CL4 <__ COS(MP(t) + wp)

—g cos(2fm + 2wy — Mp(t) — wp) — 8 cos(Qfm + 2wy, — 3M,(t) — 3wp)
3ep 9ey
3 cos(2fm + 2wy, — wp) — 5 cos(2fm + 2wy, — 2Mp(t) — wp)
1
+% cos(2fm + wpm — 2Mp,(t) — 3w,) — % cos(2M,(t) + wp)

75 3
—% coS(2fm + 2wy, — AMp(t) — 3wy) — % cos(wp)> dt'dt. (6.68)

Noting that r,, = a,, and that f,, = npt+ f,(0) and M, (t) = nyt + M,(0),
and performing the double integration gives

1 GM,, Mysinl,r2 (3
TOApert,pm = __]\47:1—_;0]\41)— (m COS(Mp(t) + wp)
15
+8(27’Lm——3np)2 COS(Qfm + 2wm — 3Mp(t) — 3wp)
3
+8(2T—7’Lp)2 COS(Qfm + 2wm — Mp(t) — wp)
9e,
+8(2nm——2np)2 COS(Qfm + 2wm — 2Mp(t) — wp)
15¢p (2fm + 2M,(t) — 3,)
——————5 COS TWm, — — oW
8(2n, — 2ny)? e P P
75ep
+ cos(2fm + 2wy, — AMp(t) — 3wp)

8(2n,, — 4n,)?

+4(SZZ)2 cos(2Mp(t) + wp) + % cos(2fm + 2w, — wp)> , (6.69)
where the constant term has been neglected. As can be seen from equa-
tion (6.69), eccentricity in the planet’s orbit leads to the inclusion of terms
with frequency 2n,,, 2n,, — 2n, and 2n,, — 4n, in the perturbation.*

The effect of these extra frequencies is to modify the shape of the per-
turbation. In particular eccentricity in the planet’s orbit modulates the

4Eccentricity in the planet’s orbit also leads to the inclusion terms with frequency n,
and 2n, in the perturbation. However, as the planet is on an eccentric orbit, TOApert,p
already contains terms with these frequencies. Consequently these terms will be unde-
tectable as a separate signal.
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Figure 6.7: Functional form and frequency composition of the time-of-arrival
perturbation due to planet-moon binarity for the case where the planet and
moon’s orbits are coplanar, the moon’s orbit is circular, and the planet’s
orbit is eccentric (e, = 0.1). These curves were calculated for the case of a
PSR B1620-26 b analog, in particular, it was assumed that M, = 2.3M,
a, = 23AU, M,, = 0.2M; and a,, = 0.8AU.

envelope function over a planetary period (see figure 6.7). This result is
physically sensible in that r, is periodic over a planetary orbital period. Re-
calling that for the circular-coplanar case, the timing perturbation due to
planet-moon binarity was proportional to 1/ 7";4,, we would expect TOApert pm
to be large at periastron (when r, is small), and small at apastron (when
rp is large). Noticing that the orbit shown in figure 6.7 is at periastron at
t = 0, this is exactly what is obtained. Such an understanding is practically
useful as it indicates that for the case of a pulsar planet on an eccentric orbit,
observations aimed at detecting if it has a moon should be scheduled during
or near periastron where it is expected that the perturbation is largest.
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Figure 6.8: Diagram showing the effect on the time-of-arrival perturbation
frequencies due to constant viewing angle and symmetry breaking processes
such as mutual inclination and eccentricity for a) circular coplanar orbits b)
orbits with low mutual inclination ¢) moon orbits with low eccentricity and
d) planet orbits with low eccentricity. The splitting induced by inclination
or eccentricity is shown in the gray box, while the splitting due to constant
viewing angle is shown in the dashed box. In the case of an elliptical planet
orbit, the splitting from both of these sources are inseparable and are conse-
quently shown in a grey box with a dashed border. The initial and resulting
frequencies are labeled, except in the case where neighbouring frequencies
differ by n,. In this case, the lower and upper limits are given, separated
by a vertical line. Finally, the fundamental frequency of the zeroth order
time-of-arrival signal is denoted by a bold line.
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6.8 Conclusion

Expressions for the timing perturbation due to planet-moon binarity have
been derived using a three-body formalism developed by my PhD supervi-
sor, Dr. Rosemary Mardling. Using this formalism, the cases where the
planet and moon’s orbit were circular and coplanar, circular and mutually
inclined, coplanar with an eccentric moon orbit and coplanar with an eccen-
tric planet orbit were investigated. For the case of circular coplanar orbits,
the expressions derived using this more general method exactly matched
those produced in chapter 5. Then, building on this analysis, the cases of
mutually inclined planet and moon orbits and slightly eccentric planet and
moon orbits were investigated. For the case of mutually inclined orbits, it
was found that slight misalignment resulted in additional terms with fre-
quency 2n,, — n, and 2n,, + n,, and with amplitude proportional to the
degree of the misalignment being added to the base circular coplanar sig-
nal form, while larger values of mutual inclination altered the perturbation
from something which looked like a sinusoid to something that looked like
a beat function (compare figures 6.3 and 6.5). In addition, for the case of
slightly eccentric orbits, it was found that, as for the case of slight mutual
inclination, the expression for the perturbation was given by the sum of
the perturbation for the case of circular coplanar orbits and a perturbation
term proportional to the relevant eccentricity. In particular, for the case of
slightly eccentric moon orbits the perturbation term contained sinusoids of
frequency 31, — 1y, 3, — 3np, 20y — Np, 2Ny — 3Ny, Ny + Ny Ny, — Ny
and n,, — 3n,, while for the case of slightly eccentric planet orbits the per-
turbation term contained sinusoids of frequency 2n,,, 21, —ny, 21, — 20,
2ny, — 3np and 2n,, — 4n,. From a more qualitative perspective these ad-
ditional frequencies resulted in a change in the shape of the high frequency
oscillations in T'OApert pm for the case of eccentricity in the moon’s orbit,
and a modulation of the envelope function of T'OAyers pm Over an plane-
tary orbital period for the case of eccentricity in the planet’s orbit. These
results are summarised in figure 6.8. In line with the motivation of this
chapter, these expressions, along with the transparent way in which they
were derived, allow an understanding of the physical origin of form of the
perturbation signal as a function of the orbital elements of the moon’s orbit
and allow this method to be extended to include pulsar planets on inclined
or eccentric orbits. Now that moon detection around pulsar planets has been
investigated, used to place limits on moons of a real pulsar planet and ex-
tended, we shift our focus to the second moon detection technique analysed
in this thesis, photometric transit timing.
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Chapter 7

Introduction

7.1 Introduction

Before investigating which moons of transiting planets are detectable using
the photometric transit timing technique (TTV,), it would be instructive
to summarize the mathematics and main results associated with the transit
technique, detection of moons of transiting planets in general, and the TTV,,
technique in particular. This will be done in three main stages. First,
pertinent results from the transiting planet literature will be summarised,
in particular, the way in which the transit duration and the shape of the
transit light curve depend on the system parameters will be discussed and
the corresponding formulae for these quantities introduced. Second, the set
of methods proposed in the literature to find moons of transiting planets
using the transit light curves will be reviewed. Finally, the TTV,, technique
will be focussed on, with the aim of summarising the results presented in
previously published work, defining where my work fits in that context, and
also providing a more mathematically useful description of A7, the TTV,,
test statistic. We begin with a discussion of the transit technique.

7.2 Description of the transit technique

The transit technique is a planetary detection technique where the presence
of the planet is deduced by the dip in received intensity of its host star
as the planet passes in front of it. This technique was first proposed by
Struve (1952), who used images taken using photographic plates to search
for transiting planets. While the technique was periodically revisited (e.g.
Rosenblatt, 1971; Borucki & Summers, 1984; Borucki et al., 1985), it wasn’t
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Time

Figure 7.1: Diagram showing the different portions of the transit light curve.
The four shaded circles show the planet’s position across the face of the star
at the beginning and end of ingress, and the beginning and end of egress.
As the position of the planet along the chord of the star is a linear function
of time, it can be used as a proxy for time. Consequently the position of
the planet and the value of the light curve resulting from that position are
linked by dashed lines.

until the advent of CCD technology which made wide-field surveys plausible,
that the disadvantages of this technique started to be outweighed by its
advantages (Kjeldsen & Frandsen, 1992), and could start to produce results.

This method’s main disadvantage is that in order to be detected, the
orbit of the planet must be such that it passes in front of its parent star. As
the probability of a given planet transiting is o< a, L (Borucki & Summers,
1984; Barnes, 2007), where a, is the semi-major axis of the planet’s orbit,
it can be seen that a given planet is more likely to transit, and thus to be
discovered, if its semi-major axis is small than if its semi-major is large.
However, as the transit technique uses the star’s total intensity, as opposed
to the radial velocity technique, where the light must be split up to give
high resolution, high signal-to-noise spectra, it can be seen that fainter stars
can be targeted. Consequently, the disadvantages of this technique as a
result of selection effects can be partially rectified as many hundreds or even
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thousands of stars can be monitored at once.

With the advent of wide field CCD surveys, this planet detection tech-
nique has come of age with over 100 planets discovered using this technique.
Not only does the transit technique allow for planetary detection, it also al-
lows for the measurement of planetary radius, orbital inclination as well as
observables such as orbital orientation relative to the star’s spin axis (e.g.
Queloz et al., 2000; Narita et al., 2007), planetary oblateness (Hui & Seager,
2002; Barnes & Fortney, 2003), atmospheric composition (e.g. Charbonneau
et al., 2002; Vidal-Madjar et al., 2004; Richardson et al., 2007; Tinetti et al.,
2007) and even the presence or absence of moons (Sartoretti & Schneider,
1999).

As with the concept, the mathematical techniques required to analyse
these light curves are well established in the literature (Giménez, 2006).
This is because the light curves from transiting planets are related to the
light curves of eclipsing binary stars, which have been extensively studied
(e.g. Kopal, 1979). An example transit light curve is shown in figure 7.1.
The duration and the shape of this light curve depend on the shape and
inclination of the planet’s orbit, the relative sizes of the planet and the star
and the degree of limb darkening exhibited by the star. To aide in further
derivations, the effect of these variables on the duration and shape of a
transit will be summarised.

To begin the investigation on transit duration, we recall from chapter 2,
that for this thesis, the transit duration is defined as the time between the
center of ingress (i, ) and the center of egress (tq,). That is,

Tira = tegp — tinp- (7.1)

As the position of a given planet is generally written in terms of the true
anomaly, fp, as opposed to the time, ¢, an expression will be constructed
for the transit duration in terms of f,. Following Kipping (2008) and using
Kepler’s second law (see equations (2.10) and (2.26) of Murray & Dermott
(1999)), we have that

dt = ——L2——df,, (7.2)

where ¢ is time, 7, is the distance between the planet and the star, a, is the
semi-major axis of the orbit, e, is the eccentricity of the orbit and f, is the

!See, for example, http://exoplanet.cu/catalogue.php.
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true anomaly. When integrated between ¢;, , and t.4 p, this equation gives

1n,p

teg,p Jeg.p 7‘}2)
/ dt — / T (7.3)
ti finp npal%1 /1 — e%

feg.p r%
tegp = tinp = / —dfpa (7-4)
finop npal%1 /1 — 6123
thus
[ S (7.5)
Tira = / 5 7. o Yp- .
fin,p npa]%\/(]‘ - 612))

So, in order to determine the transit duration, f;,, and fe,p, the values of
fp corresponding to the middle of ingress and middle of egress, are required.
To obtain these values we begin by considering a keplerian planet orbit
given by
o ap(l— eg)
rp(t) = B
+ e, cos fp(t)
where 7, is the distance between the planet and the star, a, is the semi-
major axis of the orbit, e, is the eccentricity of the orbit, and f, is the
true anomaly. Rewriting this expression using Cartesian coordinates and
rotating this orbit by the three Euler angles (see figure 7.2) gives

(7.6)

xp = 1y cos y cos(fp + wp) — 1psin €2, cos I sin( fp + wy), (7.7)

Yp = 1rpsin €y, cos(fp + wp) + 1 cos ), cos I, sin( fp, + wp), (7.8)

where the three Euler angles, €2,, w), and I,,, represent the longitude of the
ascending node, the argument of periastron and the inclination, respectively.
Now, the center of transit ingress and the center of transit egress occur
when the center of the silhouette of the planet and just touches the limb of

the star, that is, when the center of the planet is R4 from the center of the
star, where Ry is the radius of the star. Mathematically this occurs when

2 2, .2
RS =z, +y,. (7.9)
Substituting in equation (7.7) and (7.8) for x, and y, and simplifying gives
R} = r2[cos’(f, + wp) + cos® I, sin®(f, + wy)]. (7.10)

This equation describes the values of f;, corresponding to the beginning and
end of the primary transit.? In addition, we have that fp depends on R,

2This equation may also describe the beginning and end of the secondary transit as
well.
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Figure 7.2: Schematic diagram of the method used to describe an orbit of
arbitrary orientation. The ", y"”, 2’ coordinate frame is fixed to the orbit,
such that the pericenter points along the positive 2’ axis, and the orbit
lies in the 2”-y"”" plane. This orbit is then rotated sequentially through the
three Euler angles, w, I and €2 to give a description of the orbit in the x, y, z
coordinate frame. This unprimed coordinate system describes the orbit with
respect to an inertial reference frame. In particular, for this application, the
x and y coordinate axes lie in the plane of the sky, while the z-axis point

along the line-of-sight.

Tp, wp and Ip, but not on 2, as it does not appear in this equation. This
is reasonable as altering €2, only alters the orientation of the path taken by
the planet on the face of the star, and not the intensity along it.

Continuing, to determine the transit duration, equation (7.10) needs to
be solved in terms of f, for the times of ingress and egress. As this is a high
order equation in f,, this is not trivial (see Kipping (2008) for a derivation
of general expressions for T},,). For this thesis, the full general expression
is not required, so, we will look at three specific cases, partially to highlight
the physics and partially as expressions for these quantities will be required
in later chapters. These cases correspond to cases where the planet’s orbit
is circular and aligned to the line-of-sight, is circular, but slightly inclined to
the line-of-sight and eccentric and aligned to the line-of-sight. Expressions
for finp and feq, and thus T, will be derived in turn for these three cases.

For the case where the planet’s orbit is circular and aligned to the line-
of-sight, we have that r, = a, and I, = 7/2. Consequently, equation (7.10)
becomes

R = a;%[COSz(fp + wp)], (7.11)

and thus
Ry = +ay, cos(fp + wp). (7.12)

where, assuming n,, the mean motion, is positive, the plus and minus rep-
resent the egress and ingress respectively. Rearranging equation (7.12) to
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give an explicit expression for f, gives

R
fp = cos™? <ia—> — W, (7.13)
P
- g + (sin™? (%) — Wy, (7.14)
P

where we have used the identity that sin(A 4+ 7/2) = + cos(A) and we have
kept the solutions relevant to the primary transit.

For the case of the planets of interest, we have that R,/a, < 1 as only
distant planets are likely to keep their moons (Barnes & O’Brien, 2002). To
first order in R,/a,, equation (7.14) becomes

T R
=—+— —w,. 7.15
fp P ap p ( )

Substituting this expression into equation (7.5), setting r, = a, and
ep = 0, we have that

E—i—&—w 2
2 a r Q,
Tira :/ ! —p2dfp7 (716)
%_J_wp npap
7w | Rs
1 [5+a,—wr
== [ g, (7.17)
Ny %_f_;_wp
2R
== (7.18)
ApTip

This is exactly the result that one would expect. Consider the numerator and
the denominator of equation (7.18). The numerator is exactly the distance
that the planet must travel to cross from one side of the star to the other,
while the denominator is the velocity of a planet on a circular orbit.

For the case where the planet’s orbit is still circular, but slightly inclined,
we have that r, = ap, I, # 7/2 and e, = 0. Thus equation (7.10) becomes

R? = af,[cos2(fp + wp) + cos® I, sin?(f, + wp)]. (7.19)
Using the identity that sin? A + cos? A = 1 we have that
R? — a?, cos® I, = a?, sin? I, cos?(f, + wp), (7.20)

which simplifies to

\/ B2 — a2 cos? I, = £aysin I cos(fp + wp). (7.21)
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Following the same method as used above, this can be written as

2 _ 42 cos2
R; — a; cos® I

fp=cos™t |+ T — Wy, (7.22)
p p
\/R? — a2 cos? I,
R B — wp. (7.23)
2 apsin I,

Noting that cos I, is of order R/ ap,3 and again only retaining terms up to
first order in R;/a,, we have that

™

fp= 5 + \/(Rs/ap)2 — cos? I, — wp. (7.24)

Again conducting the integral we obtain

Tho = —— . (7.25)
ApThp

2 _ g2 cos2
2,/ R; — agcos” I

Again, this is what we would expect. The distance travelled by the planet
is exactly given by the numerator while the velocity is given by the denom-
inator. In addition, from equation (7.25) we can see that the reduction in
the transit duration with the increase in |, — 7/2|, results from the shorter
length chord over which the planet transits, and not a change in velocity.

Finally, for the case where the orbit is aligned to the line-of-sight, but
eccentric, we have that I, = m/2 but that r, is given by equation (7.6).
Consequently equation (7.10) becomes

2
ay(1 —e2)
RI=|—"——P | cos® 7.26
s 1+ ey cos fp(t)] cos”(fp +wp), (7.26)
which simplifies to
a,(1 — é?
Ry =+ o ») cos(fp + wp). (7.27)

1 + ey, cos fi(t)

As in the previous sections, we would like an expression for f, correct to
first order in Rg/a,, but in this case we will use a perturbation expansion

3Recall that cosI, = dmin/ap where Smin is the impact parameter. In addition, in
order for the planet to transit, we must have that dmin < Rs + Rp ~ Rs. Thus cos I, is of
order Rs/ap.
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to obtain it. To simplify the expression we multiply both sides by (1 +
epcos fp(t)), and to ensure that the small term, Rs/a,, is clearly identified
we divide by a,, giving

R

P

(14 epcos fp(t)) = (1 — 612,) cos(fp + wp). (7.28)

We begin by writing f,, as a perturbation expansion

fp = fpo+efpr+ .. (7.29)

where the small parameter € is equal to Rg/a,. Substituting into equa-
tion (7.28) and grouping terms of like orders we find that the zeroth and
first order equations are

0==4(1- 612)) cos(fpo + wp), (7.30)
and
1+ epcos fpo= (1 — ez)(—f%l sin(fp.0 + wp))- (7.31)
The zeroth order equation can be solved to give
0
foo =5 —wp. (7.32)

This result is unsurprising as it agrees with the expressions for f,, for the two
previous cases to zeroth order (see equations (7.15) and (7.24)). Substituting
this into equation (7.31) gives

1+e,sinw
ﬁJ:i—Tﬁﬁ—- (7.33)
— €2
Thus,
™ Rsl+epsinw
=+ — 7.34
To 2 a, 1-¢2 “p (7:34)

to first order in Rg/ay,.
Consider the equation for the transit duration,

2
Tia= | 2 =) |y (7.35)
tra — D )
Ipo—€fp1 npag /1 — e% 1+ e, cos fi(t)
Jpotefp 1— 612)

2
TIEEEEE# df,,. (7.36)

—
np 1—6% Jp,0—€fp1
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Following Kipping (2008) (see equation (A36)), we have that

2
1—é2 1—
/ — P dfp:21/1—e§,tan_1 —eptan&
1+ e, cos fp(t) 1+e, 2

B ep(l — eg) sin f,
1+epcosfp

(7.37)

Converting equation (7.37) into a definite integral with integration limits
fp,o—€fp1 and f, 0+ €fp 1, taking the Taylor expansion about f, = f, 0 and
retaining terms of order € gives

/fp,0+5fp,1
fpo—€fp1

P

1- 612,
— | df, =
1+ e, cos fi(t)

cos? <tan_1 < i;:g tan %))

(1—ep)

2 Jp,0
COS =5

ep(l — eg)(cos fpo+e€p)
(1+epcos fpo)?

2¢fp1. (7.38)

Comparing this with equation (7.36), and substituting in the expressions
for fpo, fp1 and € gives
2R,

T;tra = —T (739)
npay (F(ep,wp)) !

where F'(ep,w)) is given by

2 —1 1—ep
: cos” | tan tan
P
(1 + epsin w) ( < T+e (

(1+ep)y/1—e2 cos? ( — %)

ep(sinw, + €p)

/1 —e2(1+4epsinw,)

Again, we have from equation (7.39) that the transit duration is dictated to
by two factors. Again the numerator represents the distance travelled by the
planet while the denominator (along with F'(e,,w),)) represents the velocity
of the planet. Consequently eccentricity modifies the transit duration by
modifying the velocity of the host planet during transit.

B
|
wol§
SN—
N——
N———

F(ep,wp) =

(7.40)
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Figure 7.3: Schematic diagram of the coordinates used to determine the
shape of the transit light curve. The path of the center of the planet across
the star’s face is indicated with a dashed line. Also, one of the previous
locations of the planet is shown using a dotted line.

So, as discussed, the transit duration is determined by two factors, the
distance travelled across the face of the star (which is modified by the in-
clination) and the velocity at which it is travelled (which is modified by the
eccentricity). To give a feel for these values some example transit durations
and transit velocities are shown in table 7.1. In addition to determining the
transit duration, the shape of the transit light curve is determined by the
orbital and physical properties of the planet and star.

To determine the shape of a transit light curve produced by a given
planet as it travels across a given star we consider the method of (Giménez,
2006). We can write the luminosity of the star, L(t) as

L(t) = Lo — ap(8(1)), (7.41)

where Ly is the luminosity of the star out-of-transit and o, is the amount of
light occulted by the planet. In addition, we note that o, depends on ¢, the
distance between the centers of the planet and star, but does not depend on

122



ap ep Orbit Tira Vg

(AU) Orientation (hr)  (kms™!)
0.2 0 - 5.83  66.31
0.5 P 3.36 114.85
0.5 A 10.09 38.28
0.3 0 - 714 54.15
0.5 P 412 93.79
0.5 A 12.36  31.26
0.4 0 - 8.24  46.89
0.5 P 4.76  81.21
0.5 A 14.27  27.07
0.7 0 - 10.90 35.45
0.5 P 6.29  61.40
0.5 A 18.88  20.47
1 0 - 13.03  29.66
0.5 P 7.52  51.37
0.5 A 22.56 17.12

Table 7.1: Example transit durations (7},,) and mid-transit planetary ve-
locities (vy.) for a planet which transits the central chord of its Sun-like star,
for a range of different values of a,, e, and orbital orientation. Note that the
letters P and A correspond to a transit occurring at periastron and apastron
respectively and the symbol “~”, corresponds to the case for a circular orbit.

¢, the angular position of the planet on the face of the star (see figure 7.3
for definitions of 6 and ¢). Continuing, we have that «,, is defined as

op(6(t) = [ TGnyud (7.42)

where S is the region of the star which is occulted by the planet, p is
the cosine of #, the angle between the surface normal and the line-of-sight
(see figure 7.4), dA is an infinitesimally small area element and I(u) is the
intensity. While both theoretical (e.g. Claret, 2000) and observational (e.g.
Sing, 2010) constraints on I(u) exist, as will be shown in chapter 8, the size
and form of the TT'V,, signal does not strongly depend on the form of ().

Assuming that the velocity of the planet during transit can be considered
to be constant, d(¢) can be written as

8(t) = /0% + (¢ — to)orr)2. (7.43)
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Figure 7.4: Diagram showing the relationship between § the distance be-
tween the center of the star’s face and the position of interest and the angle
0, the angle between the surface normal and the line-of-sight. The surface
of the star is shown using a thick line, the direction along the line-of-sight

is shown using a dotted line, while lines showing the surface normal are
dashed.

Consequently, the transit light curve is given by

L(t) =Ly—« < (5727“” + ((t — tmid)vtw)2> s (744)

where 0,,;, is the distance of closest approach between the center of the
star and the planet, t,,;4 is the time at which this closest approach occurs
and vy, is the projected velocity of the planet across the star’s face during
transit. While equation (7.44) can be written explicitly in terms of Jacobi
polynomials (Giménez, 2006), that level of detail will not be required for
this analysis.

As can be deduced from equation (7.44), and figure 7.3, the light curve
L has a number of properties. The first property, symmetry about %4,
can be seen by noting that replacing ¢ — t,,,;4 by tmiq — t does not alter the
equation. This symmetry is a direct consequence of the intensity I, being a
function of the angle between the line-of-sight and the surface normal only,
and that the velocity of the planet during transit remains constant. The
second property is that the exact shape of the light curve depends on the
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chord it makes across the star and how fast it travels along the chord, which
is determined by the planet’s orbit, the relative sizes of the planet and star,
and the mid-time of the transit.* As a result, formally L should be written
as

L(t) = L(Rs, Ry, ap, €p, wp, Ip, Ny, timia; t), (7.45)

where R, and R, are the radius of the star and planet, a, ep, wp, I, and
n, are the semi-major axis, eccentricity, argument of periastron, inclination
of the planet’s orbit around the star and the mean motion, and t,,;4 is the
time at which the projected distance between the center of the planet and
that of the star is smallest.

7.3 Extending the transit technique to find moons
of transiting planets

As discussed in chapter 4, there are many ways to extend the transit tech-
nique to look for moons of transiting planets. While this chapter focusses on
the photometric transit timing technique, four methods have been proposed
to extend the the transit technique to search for moons. These methods
are direct detection, barycentric transit timing, photometric transit timing
and transit duration variation. Consequently, to provide a context for the
following investigation, the rationale for each of these four methods will be
briefly summarised using the transit light curve shown in figure 7.5, before
concentrating our investigation on the photometric transit timing technique.

7.3.1 Direct detection

The process of direct detection involves searching the region of the light
curve near the planetary transit for any extra dips due to putative moons.
For example, for the case of the light curve shown in figure 7.5, the additional
dip caused by the moon can be seen translated to the right of the dip caused
by the planetary transit.

7.3.2 Barycentric transit timing

The barycentric transit timing technique (TTV}) involves searching for tran-
sit timing variations (TTV) where the time of transit is defined by the cen-
ter of the planetary transit (¢,,i4,). Departures of consecutive transit times

4See appendix G for a proof that the shape of the light curve does not depend on €.
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Figure 7.5: Diagram showing the different portions of the transit light curve
for the case where both a planet and moon transit. Four silhouettes of the
planet and moon are shown, corresponding to the the beginning and end of
planetary ingress, and the beginning and end of planetary egress. Planet-
moon pairs which correspond to a single silhouette are joined by a solid line,
while the location of the planet-moon barycenter is indicated by cross. As
the position of the planet-moon barycenter is a linear function of time it can
be used as a proxy for time. Consequently the position of the barycenter
and the value of the light curve resulting from that position are linked by
dashed lines.

from strict periodicity, a result of motion of the planet around the planet-
moon barycenter, could indicate the presence of a moon. For example, for
the case shown in figure 7.5, the mid-time of the planetary transit occurs
earlier than would be expected due to the presence of the moon.

7.3.3 Photometric transit timing

The photometric transit timing (TTV,) also involves searching for aperi-
odicity in transit times. However in this case the times used are no longer
the center of each planetary transit, but the mean time during the transit,
weighted by the photon deficit (see equation (7.46) for a definition). This
particular formulation is interesting as it is affected both by the extra dip

126



due to the moon as well as by any lead or lag in the planet transit time
caused by the presence of the moon.

7.3.4 Transit duration variation

Finally transit duration variation (TDV) a technique proposed by Kipping
(2009a,b) also uses timing to search for moons of a given planet, but instead
of measuring the “mid-time” of the transits, the duration of the transit is
used. Instead of focussing on timing deviations due to the changing posi-
tion of the planet about the planet-moon barycenter as the barycentric and
photometric transit timing methods do, this method endeavours to measure
perturbations to the planet’s velocity across the face of the star due to the
moon. For the case shown in figure 7.5, the motion of the planet and moon
about their common barycenter during transit result in a longer planetary
transit duration than would have occurred had there been no moon.

As this chapter concentrates on the photometric transit timing method,
it would be useful to expand upon the short description given above. Con-
sequently, the published results and limitations of this method will be dis-
cussed in greater detail.

7.4 The TTV, method

7.4.1 Introduction

To provide a context for the work presented in this thesis, we begin by
summarising the current state of the field with respect to T7'V},. In particu-
lar, this will involve a statement of the definition of the TT'V), test statistic
followed by a summary of all previous work currently presented in the lit-
erature, with particular emphasis on the results and the gaps. Informed
by this summary, a more general definition of the TT'V), test statistic will
be proposed. Using this definition, expressions for the timing perturbation
caused by the moon (named A7) and the error on this time (named ¢;) are
constructed. We begin with the definition of the TT'V), test statistic 7.

7.4.2 Literature definition of 7, the 7'V, test statistic

The photometric transit timing method (TTV,) was proposed by Szabé
et al. (2006), and involves the statistic 7, the first moment of the dip in
the light curve, to search for timing perturbations due to moons. Following
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Figure 7.6: Schematic of the transit light curve. The experimental data
points are represented by dots and the theoretical light curve is represented
by a thick line.

(Szabd et al., 2006), 7 is defined as

= 722 taOZit)) (7.46)

where t; and «(t;) are the times and observed absolute photon deficits for
the " exposure, and where the sum is carried out only over the region
marked “transit” in figure 7.6.

7.4.3 Summary and discussion of previously published 77V,
results

While some work has been presented on whether or not moons could be
detected (Szabd et al., 2006) and which physical properties of these moons
could be determined (Simon et al., 2007), these analyses are by no means a
complete description of the capabilities of this technique. In particular, the
work presented in this chapter extends these analyses in three important
ways.

First, the analysis of Szabd et al. (2006) used two unrealistic assump-
tions. The first assumption was that the ingress and egress times of the
moon’s transit is known, so that the sum could be carried out only over the
planet and moon transits. The second assumption was that the total unoc-
cluded luminosity of the star was known for the in-transit period so that the
difference between this unoccluded luminosity and the measured luminosity,
could be used to calculate «(t;). Unfortunately, both these quantities will
not be known for real transiting systems. Consequently, the effect of relax-
ing these assumptions will be investigated within the context of the physical
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limits inherent to the system, for example, constraints to the time between
planet and moon transit resulting from the requirement that the system is
three-body stable.

Second, the way that the moon detectability depended on the physical
parameters of the system is unknown. The Monte Carlo analysis used by
Szabé et al. (2006) involved producing 500 realisations for a range of ran-
domly selected planet moon systems including both terrestrial and gas giant
planet-moon pairs. In addition to determining that realistic moons could
be detected, Szabd et al. (2006) also used the results of their simulations
to propose a number of factors which increased moon detectability. These
were:

e Shorter exposure time

e Increased planet semi-major axis

e Increased moon semi-major axis

e Decreased relative photometric noise.

While this approach indicated that, realistic moons could be detected using
this technique, and identified a number of factors which increased moon
detectability, they did not give the functional dependence on these factors.
Consequently, for the case where these factors may be related, for example,
for the case where the photometric noise is shot noise dominated, decreasing
the exposure time increases the relative photometric noise, the result of
altering a variable such as the exposure time is unknown. Consequently, in
this Part, approximate analytic relationships will be derived which relate
the detectability of a given moon to physical parameters of the star, host
planet and moon.

Finally, the approach adopted by Szabé et al. (2006) is of limited use to
observers as it does not provide a simple way to determine the statistical
significance of a detection or calculate a TTV,, detection threshold. To do
this using the Monte Carlo method of Szabé et al. (2006) would involve
constructing many realisations of the light curves and determining the per-
centage of these virtual moons which would have been detected. As this
would involve creating a set of models spanning the range of possible physi-
cal (R,, and M,,) and orbital parameters (a,,, €m, Im, Wm, Qm and f,(0))
of the putative moon, and requires a large number of realistic realisations
of the photometric noise, this is not a trivial procedure. Alternatively, in
this Part, the issue of determining statistical significance, and generating
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Figure 7.7: Updated schematic of the transit light curve. The experimen-
tal data points are represented by dots and the theoretical light curve is
represented by a thick line. A possible “transit” region is also indicated.

thresholds, is addressed in three main ways. First a method for determin-
ing the significance level of a detection in terms of measured variables will
be presented. Second, using this method along with analytic expressions
describing the timing perturbation and the behaviour timing noise, expres-
sions which approximately describe the detection threshold will be derived.
Third, as will be seen, for the cases where a Monte Carlo simulation must
be run, the insight gained from the derivation of these approximate detec-
tion thresholds can be used to determine which variables are important and
which variables are not. By concentrating on these physically important
variables, the computational load of calculating a threshold is dramatically
reduced.

With these three aims it mind, it can be seen that the definition of 7
needs to be investigated in two important ways before analytic expressions
for moon detectability can be derived. First, the definition of 7 needs to be
expanded such that knowledge of of the moon’s position during transit and
the unoccluded intensity of the star is not required. Second, expressions for
the mean value and error in 7 for a given transit need to be determined in
terms of the parameters of the system.

7.4.4 Generalising the definition of 7

In order to generalise the definition of 7, the assumptions made by Szabd
et al. (2006) need to be relaxed. In both cases, this process can be informed
by the physics of the system.

In order to relax the assumption that the unoccluded luminosity of the
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star is known, we are confronted with two main issues. First, the unoccluded
luminosity of the star is not necessarily constant across the length of the
transit, for example, the luminosity of the star may drop as a starspot
passes onto its face. Second, the out-of-transit portions of the light curve
cannot be used to form an estimated unoccluded luminosity as these portions
may be contaminated by the transit of the moon. Consequently it was
decided to treat the unoccluded intensity of the star as if it were constant and
absorb the variability of the stellar intensity into the photometric variability.
Fortunately, it can be shown that a small amount of error in the exact value
of the unoccluded luminosity selected has little to no effect on the value or
variability of any given 7 value (see appendix F). Thus, the practical effect
of this error can be ignored.

The definition of 7 given by equation (7.46) assumes that the position
of the moon during each planetary transit, and consequently the location of
the dip caused by the moon in the light curve, are known before the moon
is detected. Unfortunately, this information is not known a priori, and thus
the definition of 7 must be modified. Consequently, it was decided that
instead of evaluating the sum over an a priori unknown interval, the sum
would be evaluated over a region of length T, centered on the planetary
transit. For simplicity, the region selected for this thesis was the smallest
region always ensured to include the moon’s transit (see figure 7.7). In
particular, this region includes the planetary transit, along with a margin of
length a,,(1+e,,) /vy either side of the planetary transit, where we note that
am (1 + e,,) is the distance between the planet and moon at apocenter and
that vy is the velocity at which the planet-moon barycenter transits the
star. While this assumption does require that something must be known
about the moon before it is detected, it is useful for two reasons. First, it is
an improvement, in that this work only assumes knowledge of one variable,
am (14€5,), as opposed to three, an,, €, and fp,(0)+w,,. Second, it results in
a significant reduction in complexity when determining detection thresholds
(this issue is further discussed in section 10.3.1). Finally, limits on the size
of this margin (in particular limits relating to a,,) can be constrained using
limits from our understanding of moon formation and orbital evolution.

As discussed in chapter 3, limits can be placed on the properties of moons
of extra-solar planets as a result of their formation and consequent evolution.
In particular, limits on their semi-major axis (and consequently the time
delay between their transit and that of their host planet). These limits come
in two main varieties. First, an educated guess on where moons are likely
to be (based on the current understanding of moon formation). Second, a
more broad description of where moons could possibly exist without being
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rapidly destroyed or lost from the planet. These two cases will be discussed
in turn.

We begin by considering the places where moons are likely to be found.
As formation processes and evolution timescales differ for terrestrial and gas
giant planets, these cases will be discussed separately.

For the case of terrestrial planets, impact generated moons form very
close to their host planet, and then, their orbits evolve outward. Conse-
quently, the mass of these moons is determined by the impact process and
their final semi-major axis depends on the orbital evolution of the moon,
with the orbit of more massive moons evolving more quickly than that of less
massive moons (see section 3.4.1). Consequently, given an upper mass limit
(0.04M,,), a model of the evolution process, an estimate of the Love number
(k2p), the Q-value (Qp) and the age of the system, the semi-major axis of
such a moon should be able to be predicted (e.g. using equation (3.16)).
Assuming that the physics used to calculate the orbital evolution is correct,
this semi-major axis can be treated as an outer limit as other processes, such
as tidal locking can halt orbital evolution. For the case of an Earth-like® host
planet at 0.2AU and 1AU, the largest region allowed by the equation (3.16)
constraint will begin and end 3.4 hours and 7.7 hours, before and after the
planetary transit respectively.

For the case of gas giant planets, large moons generally form in an ex-
tended region which is relatively close to their host planet. Unfortunately,
as the way in which the size of this region in which regular satellites form
scales with planetary parameters is not fully understood.® it is difficult to
use it to place firm limits on the location of regular satellites. However, using
Solar System data we can suggest qualitative limits on where large moons
of gas giant planets are likely to be found. From table 7.2, we have that all
the large regular satellites of gas giants lie within three solar radii of their
host. Assuming that the host-star is Sun-like, for the case of a host planet
at 0.2AU and 1AU, the largest region allowed by this constraint will begin
and end 8.7 hours and 19.5 hours, before and after the planetary transit
respectively.

In addition to the window in which moons are likely to be found, there is
also the window in which moons can possibly exist, that is, not be instantly
destroyed or lost by tidal disruption, impact with the host planet or, by
three body instability. In particular, moons are destroyed if their orbits are

Pkap = 0.299, Qp = 12, T = 5Gyr, M, = Mg, and R, = Rg,.
SFor example, Mosqueira & Estrada (2003a,b) suggest that the size of this region scales
with Ry while Canup & Ward (2006) suggest that it scales with R,.
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Planet Moon R, Am Umn, em I, T
(10?Rp) (Re) (kms™') (days)
Earth Moon 0.250 0.552  1.02 0.0554 5.16 27.32
Jupiter  To 0.262 0.606 17.33 0.0041 0.036 1.77
Europa 0.225 0.964 13.74 0.0094 0.466 3.55
Ganymede 0.378 1.538 10.88 0.001  0.177 7.15
Callisto 0.345 2.705 8.21 0.0074 0.192 16.69
Saturn Mimas 0.029 0.267 14.32 0.0196 1.574 0.94
Enceladus  0.036 0.342 12.63 0.0047 0.009 1.37
Tethys 0.076 0.423 11.35 0.0001 1.091 1.89
Dione 0.081 0.542 10.03 0.0022 0.028 2.74
Rhea 0.110 0.757 8.48 0.0010 0.333 4.52
Titan 0.370 1.756  5.57 0.0288 0.312 15.95
Tapetus 0.103 5.116  3.26 0.0293 8.313 79.32
Uranus Miranda 0.109 0.187 6.68 0.0013 4.338 1.41
Ariel 0.034 0.274 5.52 0.0012 0.041 2.52
Umbriel 0.083 0.382 4.67 0.0039 0.128 4.14
Titania 0.084 0.627 3.64 0.0011  0.079 8.71
Oberon 0.113 0.838 3.15 0.0014 0.068 13.46
Neptune Triton 0.194 0.510 4.39 0.0000 156.865 5.88

Table 7.2: Physical and orbital data for the regular satellites presented in tables 3.1, 3.2, 3.3, 3.4 and 3.5. v,,,
the orbital velocity was calculated assuming that the moon’s orbit was circular. In addition, note that 10_2R® is
approximately an Earth radius.



too close to their host planet, and are three-body unstable if their orbits
are too distant. As we would like an upper limit to the size of the window
that we need to search, we will consider three-body instability only. From
equation (3.13) we have that, for a prograde moon to be orbitally stable,
the semi-major axis of the moon must be less than approximately 0.5 Hill
Radi, where Ry, the Hill radius is defined as

L\ 13
Ry = ayp <3]\j> .

This corresponds to a constraint that the moon can lead or lag the planetary
transit by a factor of 0.5Rp /2ma, times the orbital period of the planet.
For example, using this approximation, for the case of a Earth-like planet
orbiting a Sun-like star at 0.2AU and 1AU, this requirement means that the
transit of a moon can only lead or lag the planetary transit at most by 0.6
hours and 7.0 hours respectively. Similarly, for the case of a Jupiter-like
planet orbiting a Sun-like star at 0.2AU and 1AU, this requirement means
that the transit of a moon can only lead or lag the planetary transit at most
by 3.4 hours and 48.3 hours respectively.

7.4.5 Analytic groundwork

Now that 7 has been redefined, the mechanics required for searching for a
signal must be constructed. In order to search the sequence of T values,
we need to be able to write 7 as a function of transit number, moon and
planet orbital parameters as well as the influence of any photometric noise.
Assuming that the planet has only one moon,” 7j, the 7 value calculated
from the j** transit where the numbering begins at zero, can be written as

Tj = t(] +]Tp
+ AT(j7 Am s Emys fm(tO)a Wi, IM7 Ip7 ep7wp7 Qm - Qp7 Tp7 Tm) + Eja (747)

where AT is a function representing the effect of the presence of the moon
on 7, €; represents the timing error due to photometric noise, to would have
been the mid-time of the zeroth transit for the case where the planet did not
have a moon, and where 7, and T;,, are the orbital periods of the planet and
moon orbits respectively. In addition, A7 is a function of a,,, €m, fm(to), Im
and w,,, which are the semi-major axis, eccentricity, true anomaly at time

"For the case where additional moons are suspected, equation (7.47) can be modified
by including additional A7 terms.

134



to, the inclination and argument of pericenter of the moon’s orbit, I, e,
and wy,, which are the inclination, eccentricity and argument of periastron
of the planet’s orbit, and 2, — €),,, the difference between the longitudes of
the ascending node for the planet and moon’s orbit.® We begin by writing

Oé(ti) = Oép(ti) + Oém(ti) + Oén(ti), (7.48)

where o, is the absolute dip due to the transit of the planet, o, is the
absolute dip due to the transit of the moon? and v, is the noise on the light
curve due to photometric variability. Note that «,, is defined such that it
has a mean of zero and consequently it can have positive or negative values.
In particular, using equation (7.42), we can write o, and oy, as

0G0 = [ T (7.49)
an(On(®) = [ Lm)pimdA, (7.50)

m

where S, and S,, represent the region of stellar surface occulted by the
planet and moon respectively and p, and p,, are the p values, again corre-
sponding to the position of the planet and moon respectively. Also, as we
will investigate the effects of different types of photometric noise on 7, we
will keep the definition of «a;, as general as possible.

Substituting equation (7.48) into equation (7.46) gives

__ 2itilap(ti) + an(ti) + an(t:))
doiap(ts) + am(ts) + an(ts)

As «a, is present in both the numerator and the denominator, the numerator
and denominator are correlated.

To see how this correlation manifests practically, we consider an example.
First, for clarity, equation (7.51) is reformatted by writing t; = ¢; — tynid,p +
tmid,p, Where t,,;4 , is the mid-time of the window, and simplifying, giving

>_i(ti — tmidp) (ap(ti) + am(ti) + an(ti))
> ap(ti) + am(ti) + an(t;) '

(7.51)

= iy + (7.52)

8See section 8.2.3.

9For the case where the moon is eclipsed by or eclipses its host planet, the moon will
not cause an additional dip, i.e. a,, = 0. However, for both these cases AT = 0, that is,
the true value of At is approximately equal to the value of A7 if there were no moon.
Consequently the situation where a.,, = 0, when the moon is in front of or behind the
planet, will be neglected in this thesis.
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Now, consider the case where one value of a,, lets say o, (tx), is large (and
positive) and where t;, > t,,,i4, (i.e a data point near the egress of the tran-
sit). As (ty — tmidp) is positive, o, (tx) acts to make both the denominator
and numerator of the fraction more positive. These two effects partially
cancel, thus, the error in 7 resulting from the effect of ay,(tx) will be small.
Conversely, for the case where o, (ty) is still large and positive, but where
tr < tmidp (i.e a data point near the ingress of the transit) this is no longer
the case. As (t; — tmidp) is now negative o, (t;) now acts to make the nu-
merator smaller but the denominator larger. Consequently, for this case the
error in 7 resulting from the effect of ay,(tx) will be amplified. For the case
where a, (i) is large and negative, these effects are reversed. As a result of
these behaviours, we cannot investigate the denominator and numerator of
equation (7.51) in isolation, and then combine the results.

Consequently, to make analytic progress, equation (7.51) must be refor-
matted to remove this correlation. Assuming that Y, a, (t;) < >, (o (8:) +
am(t;)), the binomial expansion can be used to expand the denominator of
equation (7.51), giving

n(tz)
+ (6775 (tz)

= D itilap(ti) + am(ti) + an(t)) Do
)

T S op(ts) + o (t) (1 TS ot > . (7.53)

Expanding equation (7.53), neglecting terms of order (3 a/ Y- (v + i) )?

and gathering terms linear in «,, under the same sum sign gives

Z ti(ap(ti) + am(ti))
Z p(ti) + am(t)

! St +anlt)] .
+Z ap(ti) + aum(t Z)Ei:[tz S0 (t2) + o (t1) n(ti). (7.54)

Note that as this first term does not contain «,, it is exact and consequently
only contributes to j7T, +to + A7. Expanding and then contracting the first
term of equation (7.54) gives

> op(ti) > tiap(ti) 4 > am(ti) > ticum ()
doiap(ti) +am(ti) X2, ap(ti) i ap(ti) +am(ti) X2 am(ti)

!  Xatilop(t) tom®E)]
+Ziap(ti)+am(ti)2[tz o t) + am(t) n(ti), (7.55)

T =

i
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or
ApTp + AT
Ap+ A,

1 ditilap(ti) + am(ti)

" doiop(ti) + am(ti) ZZ: [tz > op(ti) + am(ti) an(ti), (7:56)
where A, = > . op, Ay = >, am, the area of the dips caused by the
planet and moon respectively and where 7, and 7, are defined by 7, =
(225 tiap(ti))/ (32 ap(ti)) and 7o = (32 tiam(ti))/ (32; cm(ti)). Am and A,
can be written explicitly in terms of the position of the planet and the moon
respectively using equations (7.49) and (7.50). Noting that [ adt = At) a,

we have that
1
A, = —/apdt: // I(pp) ppdAdt, (7.57)
At s,

Amzé amdt:// I () prm dAdt. (7.58)

where At is the exposure time and the integrals are conducted over the
same time period as the sum (see figure 7.7). Similar expressions could be
presented for 7, and 7,. However, these will not be required as we will be
assuming that the planet and moon move with a constant velocity during
transit. For this case the transit light curves become symmetric and 7, and
Tm are given by the mid-times of their respective transits.

Returning to the derivation of expressions for A7 and ¢;, and examining
the second term of equation (7.54), it can be seen that it consists of a
sum of random variables with zero mean. Consequently, the second term of
equation (7.54) can only contribute to €;. As the first term of equation (7.54)
contributes only to j7T, + to + A7 and the second term of equation (7.54)
only contributes to €;, we have that

ApTp + AT
A +A,

JT, +to + AT = (7.59)

G AT +A Z — (§Tp + to + AT)] an(t;),  (7.60)

where the definitions of A,, A,, and equation (7.59) have been used to sim-
plify the coefficient of «,. Thus, the process of determining if a given moon
is detectable is the process of comparing equation (7.59), the ‘signal’, and
equation (7.60), the ‘noise’, for the set of available transits. Consequently,
these two equations will each be investigated in turn in chapters 8 and 9
and combined to produce detection thresholds in chapter 10.
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7.5 Conclusion

A general introduction to transiting planets and the detection of moons
of transiting planets has been presented, with the aim of introducing the
material required for the work conducted in this Part. This was done in three
broad stages. First the transit technique was discussed, and mathematically
investigated, with particular emphasis on deriving expressions for the transit
duration, and the shape of the transit light curve. Then the literature
relating to the detection of moons of transiting planets was summarised.
Finally, the TTV, technique was focussed on in terms of describing the
work previously presented in the literature, discussing how my work fits
within that context and using the definition of 7 to derive equations for the
the timing perturbation due to the moon A7 and the timing noise €;. Now
that the background work has been summarised and the equations defining
the problem have been introduced, the form of A7, the TTV, signal, can
be investigated.
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Chapter 8

17TV, Signal caused by an
Extra-solar Moon

8.1 Introduction

The first step in determining the attributes of detectable moons using the
photometric transit timing method is to investigate the timing signal, AT,
defined in section 7.4. As observing time is limited, it would be of use to
know the way in which the detectability of a given moon depends on the
properties of its host planet, and thus be able to focus follow-up on the
set of planets most likely to have detectable moons. Consequently, in this
chapter, this signal is investigated in terms of the physical parameters of
the system, that is, the masses and radii of the host star, planet and moon
and the orbital elements of both the planet and moon orbits,! but with
particular emphasis on the physical and orbital properties of the planet. As
a result of processes such as motion of the planet and moon about their
common barycenter during transit, analytically deriving the general form of
AT in terms of these elements is not a trivial problem. Consequently, three
representative cases, which highlight the types of planet orbits likely to be
encountered, were selected. These are:

1. A circular planet orbit aligned to the line-of-sight,
2. A circular planet orbit slightly inclined to the line-of-sight and

3. An eccentric planet orbit aligned to the line-of-sight.

'Recall that “planet orbit” refers to the orbit of the planet-moon barycenter about the
star and the “moon orbit” refers to the orbit of the moon about the planet.
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In addition, for simplicity, it is assumed that the moon’s orbit is circular?
and coplanar with the planet’s orbit. These cases will be investigated in
turn, in terms of the form and associated properties of A7 resulting from
these configurations. However, in order to perform this investigation, an
appropriate coordinate system and method needs to be selected.

8.2 Definition of the coordinate system

In order to calculate A7, the positions of both the planet and moon on
the face of the star need to be known as a function of time. Consequently,
to provide a framework for this description, a coordinate system must be
selected. It would be optimal if this coordinate system could be used to
simply describe the systems most likely to form, easily provide pertinent
information, such as, the position of the planet and moon on the face of
the star, while also relating to coordinate systems used in the literature.
To select a coordinate system with these properties, two issues must be ad-
dressed. First, the orientation of the coordinate system needs to be decided,
with respect to “natural” standards such as the plane of the sky and the
line-of-sight. Second, using this coordinate system, two reference directions,
required for the definition of the Euler angles (which define the orientation
of the planet and moon orbits), need to be selected. For example, two of
the coordinate axes could be selected for use as the reference directions. As
the orientation of the coordinate axes informs the choice of the reference
directions, the choice of coordinate axes will be discussed first.

8.2.1 Orientation of coordinate system

The selection of the orientation of the Cartesian coordinate system to be used
in this analysis should be informed by both the physics and mathematics of
the system. However, there are two main choices for the orientation of the
three axes.

First, one of the axes could be chosen such that it is parallel to the
projection of the line-of-sight onto the plane of the planet’s orbit (see fig-
ure 8.1(a)). This coordinate system is physically motivated in that it has
the advantage that it can easily describe the case where the planet’s and
moon’s orbits are coplanar. As a majority of formation mechanism relevant
to large moons, have a preference for producing moons in circular copla-

2The effect of a small amount of eccentricity in the moon orbit will be investigated in
appendix I.
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(a) Moon orbit coplanar with planet orbit. (b) Moon orbit aligned to the line-of-sight.

Figure 8.1: Schematic diagram of the two proposed coordinate systems over-
laid by the planet-moon systems they are optimised to describe (see text).
For each diagram, the star (S), planet (P), moon (M) and observer (rep-
resented by an eye) are arranged from left to right. In addition, in both
diagrams, a dashed line and a dotted line is used to show the alignment of
the moon’s orbital plane with respect to the planet’s orbital plane and the
observer respectively.

nar orbits (see section 3.3), a simple description of these cases is clearly an
advantage. Unfortunately, as this coordinate system is tied to the planet’s
orbit, it is non-inertial, that is, if processes such as orbital precession act
on the planet’s orbit, they will also act to change the orientation of the
coordinate system.

Second, the coordinate system could be defined such that one axis of the
coordinate system is oriented along the line-of-sight (see figure 8.1(b)). This
choice of coordinate system allows easy description of the most mathemati-
cally simple configuration, the case where the planet and moon traverse the
same chord of the star when they transit. In order for this to occur, the
moon’s orbit would have to be slightly inclined with respect to the planet’s
orbit. While this configuration is the most simple, there is no good physical
reason why the moon orbital plane would have exactly the right inclination
and orientation such that it would be specifically aligned with our line-of-
sight. Despite this, this coordinate system has the added advantages of
being inertial and that its two remaining axes lie on the plane of the sky.

Fortunately, to the accuracy required for this work, these two coordinate
systems are essentially equivalent, in that the error incurred by approximat-
ing the planet-moon system shown in figure 8.1(a) with the one shown in
figure 8.1(b) is not measurable. This is demonstrated below.

To see this equivalence, consider a planet-moon pair with circular copla-
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Figure 8.2: An enlarged version of figure 8.1(a) showing the orbital elements
I, a, and a,,. The star, planet and moon are assumed to be collinear, as
this is the configuration which leads to the maximum vertical displacement
between the planet and the moon on the face of the star.

nar orbits.®> As can be seen from figure 8.2, AJ, the maximum distance
between the planet and moon chord across the face of the star is

A = ay, cos I, (8.1)

Using the most extreme value of I, such that the planet still transits, that
is,

cos I, = &, (8.2)
ap
we have that u
AS = R, (8.3)
ap

Taking a,, to be that of the most distant stable moon orbit, and taking this
to be 0.5 Hill radii, gives

M 1/3
Aé:Rxo.E)(BAj) . (8.4)

Consequently, the maximum deviation possible for the cases where M, /M,
is equal to 1072, 1072 and 1074, is equal to 7.5%, 3.5% and 1.6% of a stellar
radius respectively. As moons are likely to form close to their host planet

3The increase in Ad corresponding to a small rotation, is maximised for orbits initially
aligned to the line-of-sight.
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and not near the boundary for orbital stability (see section 3.3), the devia-
tions observed for real moons are likely to be much smaller. Consequently
a moon which is on a circular coplanar orbit can be treated as if its orbit is
aligned to the line-of-sight and visa versa. Thus, formally, we can select one
of these coordinate systems while still retaining the benefits of the other. To
allow ease of mathematical description, it was decided to select a Cartesian
coordinate system with one axis pointed along the line-of-sight and the two
remaining axes in the plane of the sky. In addition, in order to take advan-
tage of the mathematical intuition associated with the Cartesian coordinate
system, it was decided to define the x and y-axes to be in the plane of the
sky, aligned such that the y-axis points north, such that the position of the
planet and moon on the face of the star are given by their respective x and
y-coordinates, and the z-axis to lie along the line-of-sight.

8.2.2 Selection of reference directions

In order to describe the orientation of the moon’s and planet’s orbits, a
reference direction, required for the definition of the inclinations, I, and I,
and a second reference direction required for the definition of w,, and w,,, the
periapse arguments, and €2, and €, the longitudes of the ascending node,
needs to be selected. With this in mind, the selection of the two reference
directions will be discussed in turn.

The selection of the reference direction for the definition of inclinations
was informed by the conventions present in the literature. In the transiting
planet literature, the line-of-sight is generally used as the reference direction,
for example, planetary orbital inclinations are given as the angle between the
planetary orbit normal, and the line-of-sight. Consequently, for this work,
the line-of-sight was used as the reference direction for both the planet and
moon orbits.

For this work, the z-axis is selected as the reference direction for lon-
gitudes (recall that the y-axis is defined to be north). While this selection
was informed by the coordinate systems used in the literature (e.g. Murray
& Dermott, 1999, p. 48), the choice is slightly arbitrary as the coordinate
system will be rotated about the 2z axis by —(2, in section 8.2.3 for mathe-
matical convenience.

These two choices and the consequent definitions of I, I, wp, wm,
and €, are summarised in figure 8.3. Now that the coordinate system has
been defined, it can be used to describe the path of the planet and moon
across the face of the star during transit.
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Figure 8.3: Schematic diagram of the coordinate system. The diagram on
the left shows the position of the planet (large circle) and moon (small circle)
on the face of the star during transit. The dashed line indicates the path
of the planet-moon barycenter across the face of the star. The diagram on
the right shows how the orientation of a general orbit is related to its three
Euler angles (I, ©Q and w), noting that n is a unit vector normal to the
plane of the orbit. This is the system used to describe the orientation of the
planet’s orbit in terms of the Euler angles I, €, and w,, and the orientation
of moons orbit in terms of the Euler angles I,,, €2, and w,,.

8.2.3 Position of the planet and moon on the face of the star

Now that a coordinate system has been selected, the positions of the planet
and moon on the face of the star can be specified as a function of time.
Using the coordinate system shown in figure 8.3, rotating the planet and
moon orbits by their associated Euler angles gives

xp = 1p €08 Ay, cos(fp + wp) — rpsinQy, cos I sin( fp, + wp)
My,

A m [cos Q. OS(frn + win) — sin Qyy, cos Iy, sin( fr, + wim)], (8.5)
pm

Ty, = 1 €08 2, cos( fp + wp) — 1 sin Q,, cos I, sin( fp + wp)

M,
Py [cos Qy, cos(fin + wim) — sin Qy, cos Iy, sin( fr, + wm)],  (8.6)

+
My,

144



Yp = Tpsin, cos(fp + wp) + rp cos Q, cos I, sin( f, + wyp)
M,
My,

T [$10 Qyy, cOS(frn + win) + €0s Qyy, cos Iy, sin( fr, + wim)],  (8.7)

Ym = rpsin €y, cos(fp, + wp) + 1, cos Q, cos I, sin( f), + wp)

M,
+ 7 Py, [sin Qyy cos(frn + wim) + €08 Qo8 Iy sin(fo, +wm)],  (8.8)

pm

where M, = M, + M,,. In addition, for these equations 7, and r,, are
given by

- ap(1— 612))
T epCos fp’ (89)
am (1 —e2)
= T Cm) 8.10
1+ e, cos fin ( )

and e, and e,, are the eccentricities of the planet’s and moon’s orbit respec-
tively. The true anomalies of the planet and moon orbits, f, and f,,, are
related to time through

cos B, — e,

=P P A1
cos fy 1—epcos B’ (8.11)

cos B, —em
= 12
€08 fm 1 —ey,cos By’ (8.12)

and

ny(t —to) = E, — epsin Ey, (8.13)
nm(t —to) = E — ey sin By, (8.14)

where n,, and n,, are the mean motions of the planet’s and moon’s orbit
respectively.

Equations (8.5) to (8.8) can be simplified further. These equations de-
scribe a transit where the path of the planet-moon barycenter across the star
makes an angle of (2, with the z-axis. For purely mathematical reasons, it
would be useful if this path was parallel to either the x or y-axes. As the
shape of the transit light curve does not depend on €2, (see appendix G),
the coordinate system can by rotated about the z-axis by —(2,, effectively
setting €2, to zero and making the path of the planet-moon barycenter across
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Figure 8.4: Schematic diagram of the positions of the planet and moon
during transit, after rotation of the coordinate system by —€2,. Note that
the z-axis is now parallel to the chord made by the planet-moon barycenter
and the positive y-axis now bisects this chord.

the face of the star horizontal. Performing this rotation (see figure 8.4), and
simplifying gives

M.,
xp =rpcos(fp +wp) — T m [cos(Qy, — ) coS(frm + win)
pm

+sin(Qy, — Q) cos I, sin(fr, + wpm)],  (8.15)

Ty, = 1pcos(fp + wp) + ]\Jyp T [€08(Qyy — Qp) cos(frm + wm)
pm

+sin(Qy,, — Q) cos Ly, sin(fr, +wm)], (8.16)

M,
Yp = 1p c0s (1, cos I, sin( f, + wp) — 2 Tm [sin(Q, — Q) cos(frm + wim)
pm

+ cos(Qy, — Q) cos Ly, sin( fr, +wp)], (8.17)

Py, [sin(€,, — Q) cos(frm + wim)

pm

+ cos(Q, — Qp) cos Iy sin( fr, + wpm)] . (8.18)

Ym = 1p 08 1y, cos I sin(fp + wp) +
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Now that equations describing the position of the planet and moon on
the face of the star have been derived, we can begin to investigate what
method would be most useful to determine A7 using these equations in
terms of the three special cases under consideration.

8.3 Discussion of method

8.3.1 Introduction

Now that we have expressions for the location of the planet and moon on
the face of the star as a function of their orbital elements and time (equa-
tions (8.15) to (8.18)), we can combine these with expressions for the amount
of light blocked by these objects, a;, and a,, as a function of their position
(equations (7.49) and (7.50)) and consequently calculate At via 7, 7o, A4,
and A,, using equation (7.59).

Unfortunately, the case where o, and o, are dominated by non-uniform
motion across a limb darkened star is not mathematically simple. For ex-
ample, consider the calculation of A, via oy,. As can be seen from equa-
tion (7.49), a, is defined in terms of a surface integral with domain S,
where the domain represents the region of the face of the star physically
occluded by the planet. Consequently, the shape of this domain S, depends
on whether the planet is on the face of the star (S, is circular) whether the
planet is in ingress or egress (S, is lens-shaped) or whether the planet is
off the face of the star (S, is non-existent). In order to perform the time
integral required to evaluate equation (7.49), the equation which defines A,
in terms of «y, the shape and location of S, a function of planet position,
needs to be determined as a function of time. As equations (8.15) to (8.18),
the equations which relate planetary position to time, are transcendental
equations in time, this is not a trivial problem. So, while expressions for
A, and similarly A,,, can be derived, they are so complex that they do not
give much physical insight into this system. Consequently, we need to use
physically appropriate approximations to simplify the equations, especially
equations (7.49) and (7.50), in order to highlight the underlying physics.

As a result, it was assumed that the planet and moon move across the
face of the star with constant, but not necessarily equal, velocities. This
approximation was selected as first, the characteristic timescale over which
the orbital velocity of the moon changes, e.g. its orbital period, is generally
much larger than a transit duration, (see tables 7.1 and 7.2) and second, it
results in substantial mathematical simplification. Recall from section 7.2,
that for the case of uniform motion, transit light curves become symmetric
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about their midpoint. This simplification results in two important proper-
ties, which will be stated here, but derived in section 8.3.2. First, 7, and 7,
become the time-coordinates of the lines of symmetry of o, (t) and (%)
respectively. Second, the equations for A, and A,, reduce to the product of
the transit duration with a geometric term, which depends on the transit
geometry, planetary and stellar radii and stellar limb darkening parameters.
To take advantage of these properties, a practical method for implementing
this assumption needs to be investigated.

8.3.2 Implementation of method

The simplest way of implementing this approximation is to determine t;, ,,
teg.p> tin,m and teg m, the time of ingress and egress of the planet and moon
respectively, and use them to calculate 7,, 7,,, A, and A,, and thus A7.

8.3.2.1 Evaluating 7, and 7, in terms of t;, ,, tegps tinm and tegm,

For the case of 7, and 7,,, writing these quantities in terms of ¢;, ;, tegp.
tinm and teg, is simple as a,(t) and a,(t) are symmetric, as a result of
the physics and geometry of the system (see section 7.2). Thus, 7, and 7,
should correspond to the geometric mean of the time of egress and ingress
of the planet and moon respectively. Consequently

t t;

T, = 7694’; inp (8.19)
t t;

S W (8.20)

8.3.2.2 Evaluating A, and A,, in terms of ¢;,, ;, tcg pys tin,m and tegm
For the case of A, and A,, we have that

1 teg,p+1/2Tin

Ay = — o (t)dt (8.21)
A
1 teg,p+1/2Tin
Ay = —/ am (t)dt 8.22
R e (t) (8.22)

As can be seen, finding a simple way of writing A4, and A, in terms of of ¢;, ,
teg.ps tin,m and teg m,, will take a little more work. Consider equation (8.21).
Ap is defined as the integral of a complicated function of ¢, with the limits
on the integral being given by a function of the variables of interest, t,,
and teg)p ...not an optimal format! To separate the dependance of A, on
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the times t;, , and t.g,, from its dependance on the brightness profile of the
star, equation (8.21) was rewritten using J,, the projected distance between
the planet and the center of the star, given by

\/ min — Tp)Vtrp)?, (8.23)

2¢/R2— 62 .
- - (8.24)

teg,p — tinyp

where
Utrp =

where 6§, is the smallest projected distance between the center of the
planet and the star during transit and where §, which for this application is
0p, and O,y are both shown in figure 7.3.

Dividing the integral into two halves to account for the different be-
haviour of §, for the cases t < 7, and ¢t > 7,, using equation (8.23) to
substitute for ¢, and using J, as the integration variable, equation (8.21)
becomes

1 (5m1n dt 1 R.s"l‘Rp dt
PUAt Rot R, ap( p)d(S p 1 AL /mm ap( ») do, P (8.25)

:AL /émm O‘P(‘Sp) X _517 d5p
t IR+ Ry vy, 02 — 62,

1 Rs+Rp 5 X6
+E/ (%) L s, (8.26)
men Vtr+p 5127 - 5mm
Rs+R
:LQL/ ! Md(g (8.27)
Vtr+p At min 62 62

min

Now, consider the case where the planet has no moon. In this case the
transit velocity will be given by vy, so, from equation (8.27) we have that

L / a8y s (8.28)
p A Smin 62 v

min

where the hat has been added to show that this is a comparison case. As-
suming that d,,;, is the same for both cases (true for the three special cases
investigated in this chapter), we can write A, in terms of A, using equa-
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tion (8.28), and thus equation (8.27) can be written as

Ay = A (8.29)
Utr+p
_ tegp — tingp A
= —vtTAp. (8.30)

2/ RS = 0

Note that the necessity of performing the surface integral in equation (7.49)
is now entirely avoided. Similarly, we have that

te m tin m N
Ay = 2y, Ay, (8.31)
where RoiR
. 1 1 s m 6777, m 5777,
Ay = _ZE/ OmOm(Om) g5 (8.32)
Vir Omin \/ 572)1 - 572nm

To demonstrate that the expressions derived for 7,, 7,,, A, and A,, are
valid for the systems of interest, the quantities given by equations (8.19),
(8.20), (8.30) and (8.31) were compared to the full expressions using a sim-
ulation.

8.3.3 Validation of approximation of uniform velocities

To investigate the validity of the assumption that the planet and moon
move with uniform velocity during transit, a set of simulated light curves
were constructed with the aim of comparing the values of 7,,, and A,, calcu-
lated directly from the light curve, with the approximate values of 7, and
Ay, calculated using equations (8.20) and (8.31). This simulation focussed
specifically on the dip caused by the moon for a range of reasons which will
be described in the next paragraph. The set of conditions under which the
assumption of uniform velocity during transit breaks down was investigated
by considering an approximate expression for the maximum change in the
velocity of a moon during transit. In particular it was found that high values
of vy /vy or Rg/ay, could result in non-uniform moon (or planet) motion.
Consequently four simulations were run looking at the transit of the moon
for a range of different values of vy, /vy, and Rs/a,,. These issues, and the
results of the simulations will be discussed in turn.

The dip due to the moon was chosen as the target for these simulations
for three main reasons. First, as was shown by (Szabé et al., 2006) and as
will be shown in section 8.4.1, the value of A7 is dominated by the effect of
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Figure 8.5: Diagram showing the shape of the transit light curve of the
moon (black line) as a function of orbital phase f,,,(0) for four different
combinations of moon orbital radius and velocity ratio. The time axis is
defined such that the planet-moon barycenter takes two time units to cross
the face of the star, consequently on average the dip caused by the moon
should be two time units long. In addition, the depth of the dip is scaled
such that the area of dip caused by a moon moving at the same velocity as
the planet-moon barycenter would be equal to one. The true and predicted
values of 7,,, are shown as blue and red bars on the transit light curves, while
the true and predicted areas of the transit light curves are displayed to the

right of each light curve, again in blue and red.
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the moon. Second, the orbital motion of the moon around the planet-moon
barycenter is much more pronounced than the orbital motion of the planet
around the planet-moon barycenter, and consequently any asymmetry in the
transit light curve caused by this motion will also be more pronounced for
the light curve corresponding to the moon as opposed to that corresponding
to the planet. Third, for the case where the moon is small with respect to
the star (R,, < Rs) and the planet (M,, < M,), the orbit of the moon
becomes independent of it’s mass* and the shape of the light curve becomes
independent of the radius while its depth becomes proportional to the cross-
sectional area of the moon.® In addition, for simplicity, it was decided to
simulate the case of circular coplanar orbits. Also, it was assumed that the
planet and moon transited the central chord of the star as these systems
suffer from the most extreme transit distortions, for example, due to the
associated longer transit durations. The light curve caused by a moon was
modeled by using equations (8.16) and (8.18) to determine the position
of the moon as a function of time, and equation (7.50) to determine the
corresponding value of a,.

In order to focus our investigation on the region of parameter space
where the assumption of uniform velocities breaks down, and consequently
select representative scenarios for the numerical simulations, we begin by
estimating the degree to which velocity of the moon across the plane of the
sky changes during transit. In particular, the maximum change in velocity
which can occur during transit is equal to

max(Av) & Tirq X max(vy,), (8.33)

where T}, is the transit duration, and max(?,,) is the maximum acceleration
along the plane of the sky. For an moon on a circular orbit, the maximum
acceleration, and thus the maximum possible acceleration along the plane
of the sky is given by

v

2
max(0y,) < a—m. (8.34)

“Recall that the orbital mean motion of the moon is given by (G(M, + M,,)/a3,)"/?.
Thus for My, < My, nm ~ (GM,/a3,)*/?.

5To see this, consider a generic transit light curve consisting of ingress, eclipse and
egress. The duration of ingress and egress is proportional to the radius of the moon (see
appendix E), while the duration of the transit is of the order of R, (see section 7.2).
Consequently, in the limit that the moon is small, the transit light curve is dominated by
the eclipse portion and the ingress and egress can be neglected. In addition, as the moon
becomes smaller, the region of star that it is blocking becomes more homogeneous. As a
result, in this regime changing the size of the moon does not affect the shape of the light
curve, only the relative depth.
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In addition, the maximum value of T}., can be approximated using equa-
tion (7.18). Consequently,

2R, v,
—
am Uty

max(Av) < (8.35)

Noting that vy, is proportional to (Rs/am)"/? we have that for a given star
(constant Ry)
3/2
max(Awv) o <&> Um (8.36)
am Uty

Consequently, the change in velocity for a given star depends on two ratios,
Um /v and Rg/a,,. As a result of this dependance, moon light curves were
simulated for a range of values of v, /vy, and Rs/a,,. As the analysis in
this chapter is limited to v, /vy, < 0.66 as a result of the expansion that
will be used to derive ingress and egress times, it was decided to investigate
moon light curves using two different values of vy, /vy.. First, the case of
Um /v = 0.66 was investigated as it corresponds to the worst case scenario
that can be described by this analysis. Second, the case of v, /vy, = 0.33
was investigated as a comparison case. The selection of appropriate values
of a,, was informed by the regular satellites in the Solar System. As these
satellites are found between 0.27 (Ariel) and 2.7 (Callisto) solar radii from
their hosts (see table 7.2 ) it was decided to investigate the cases where a,,
is equal to 0.5R, Rs and 2R,. These simulations were performed, and the
resulting light curves are shown in figure 8.5.

While distortion of the light curves is evident (see figure 8.5), the posi-
tion of the true first moment, compared to the value calculated from equa-
tion (8.20), agree well for the majority of the orbital period of the moon
for vy, /vy up to 0.66 and a,,/Rs > 1. For moons with a,,/Rs; < 1, there
is some disagreement. However, for a,,/Rs < 1 the signal caused by the
moon is small and so it is likely that moons for which the assumption of
uniform motion does not apply, will also not be detectable. In addition, as
can be seen from figure 8.5, for the case of a,, = 0.5R,, the magnitude of the
predicted value of 7,,, is always less than the magnitude of the true value.
Consequently, using these assumptions, we will still be able to place limits,
albeit generous, on the population of these inner moons. Finally, values of
A, were calculated using equation (8.31) and all agree well with the values
predicted for A,, given by the simulation. Consequently the effect of the
non-uniform motion of the moon on the value of 7 can be safely neglected,
and equations (8.19), (8.20), (8.30) and (8.31) used.
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Figure 8.6: Schematic diagram of the same form as figure 8.4 of the coor-
dinate system for the case of circular coplanar orbits. In particular, it is
assumed that I, = 7/2, I, = 7/2 and Q,, = Q,.

8.4 Circular planet orbit aligned to the line-of-
sight

Now that the preliminary work in describing a coordinate system and de-
termining a method for deriving A7 is complete, we can concentrate on
determining the effect of the physical parameters of a given planet-moon
system on A7. We begin with the first, and simplest, of our three special
cases, the case where both orbits are circular and coplanar, and both the
planet and moon transit the central chord of the star. These assumptions
result in substantial simplification. As both orbits are circular (e,, = 0 and
ep, = 0), equations (8.9) and (8.10) simplify to r,, = a,, and r, = a,, that is,
both r,, and 7, are constant. Similarly, equations (8.12) and (8.14) also sim-
plify to f, = nmt + fim(0), that is, the planet-moon pair progresses around
its orbit with constant angular velocity. Also, we assume that the planet
and the moon’s orbit are aligned with the line-of-sight, that is, I, = /2,
I, = 7/2 and €, = Q, (see figure 8.6). Now we are in a position to use
the coordinate system discussed in section 8.2 and the method described in
section 8.3 to investigate At for this special case.

The first stage in deriving A7 is to determine 4, , tinm, tegp and tegm,
the times of ingress and egress for the transit of the planet and moon. We
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begin with the equations describing z,, =, ¥y, and y,, equations (8.15)
to (8.18). Using the simplifications described above, and ignoring the y
components as they are identically zero, the position of the planet and moon
along the chord on which they are transiting is given by

Tp = apcos(fp + wp) A cOs(Nmt + frn(0) + wpm), (8.37)

. m
My, + M,

T, = ap cos(fp + wp) A, €OS(Nmt + frn(0) +wp),  (8.38)

P
+ M, + M,
where z,, x,,, w, and w,, are defined in figure 8.6 and where the first term
represents the motion across the face of the star due to the motion of the
planet-moon barycenter, and the second term represents the motion of the
planet and moon about the planet-moon barycenter. For the case where the
orbital period of the planet is much longer than the transit, the motion of the
planet can be accurately approximated by uniform motion. Recalling that
we do not expect short period planets to host large moons and expanding
the first term of equations (8.37) and (8.38) about ¢t = jT), + to, the central
time the j' planetary transit would have occurred if there were no moon,
gives

xp = v (t — (JTp + to)) — [T —:LM A, €OS(Nmt + [ (0) + wp),  (8.39)
m P
M
T, = Vg (t — (JTp + o)) + Mam cos(Mmt + fimn(0) +wp), (8.40)

where v = apn, is the velocity of the planet-moon barycenter across the
face of the star.

An alternative way of viewing equations (8.39) and (8.40) is that they
implicitly define ¢ for a given x, or x,,. In particular, this equation defines
the ingress and egress times of the planet and moon when the values of x,,
and x,, on the left hand side of equations (8.39) and (8.40), correspond to
the limb of the star.

The position of the limb of the star for this transit geometry is given by

z, = £R,, (8.41)
T = £ R, (8.42)

Consequently, the equations describing the ingress and egress times of the
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planet and moon’s transit can be defined implicitly through

— Ry = vy (tin,p - ]Tp - tO)
amMp,

"M, + M, cos(Mmtinp + fm(0) +wp), (8.43)

- Rs = Utr (tin,m - ]Tp - tO)

amM.
S AT O Mtinn + fm(0) +wm), (344
Rs = Utr (teg,p - ij — to)
amM,
_ ﬁ cos(nmteg,p + fm(0) + w), (8.45)
Rs = Ut?”(teg,m - ij - to)
amM.
]\4:7% cos(nmtegm + fm(0) +wm), (8.46)

where t;,, and t;,,, are the ingress times for the planet and moon and
where t.4,, and t.4,, are the corresponding egress times.

The argument of the cosine function in equations (8.43), (8.44), (8.45)
and (8.46) is a measure of the position of the moon around its orbit during
planetary ingress, moon ingress, planetary egress and moon egress respec-
tively. Setting 6 = fp,+wm+m/2, we have that 0;, , = nptinp+ fm (0)+wp,+
/2, Ocgp = Nmtegp+ fm(0) +wm +7/2, Oinm = Nntinm + fm(0) +wp, +7/2
and Ocgm = Nmtegm + fm(0) + wpy + 7/2. Substituting these expressions
into the above equations and rearranging gives

T . N R (I
fm(0) + W + 5 + (T + to) — ——= = Oinp — 2 sin(0inyp),  (8.47)
Vtr Uty

. mRs m .
fm(0) + wp + g + 1 (5T, + to) — nvt = Oinm + ZT sin(@inm), (8.48)

T . Ny, R (N
Ffm(0) + wm + 5+ N (5T + t0) + ——— = Oegp — —=sin(0egp),  (8.49)
Vtr Uty

. mRS m .
Fm(0) + wim + g + (T + to) + "Ut = Oegm + ZT $in(0egm), (8.50)
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where v, and v,,, the velocity of the planet and moon about the planet-moon
barycenter are defined as

My,
Up = Nyl My (8.51)
M
Vi = NG M;;’ (8.52)
where M, = M, + M,y,.
Equations (8.47), (8.49), (8.48), and (8.50) can be written as
® = 0. + Bsin(f..), (8.53)

where the subscript “cc” implies that the orbits are circular and coplanar,

where ® and B are known constants, and where B is the ratio of the ve-
locity of the planet or moon around their barycenter to the velocity of the
barycenter around the star. For reference, the ® and B corresponding to
each of the four equations are given in table 8.1.

Now is a good time to pause and take stock. Equation (8.53) exactly
describes 6. in terms of ® and B for all values of ® and B. While we could
solve equation (8.53) numerically for a grid of ® and B values represent-
ing all the values of Rg, Ny, fm(0) + wp, and vy, of interest, this approach
is not optimal for three reasons. First, a numerical approach may lead to
canceling errors which would not occur if a more analytic approach were
employed. For example, consider the dependance of the detection threshold
on flp—kflm, a quantity dominated by the size of the planet. As will be found
in sections 8.4.1.1 and 9.2.1 both A7 and ¢; are inversely proportional to
flp + A, Consequently, when the ratio of the amplitude of A7 and ¢; is
formed to determine the detection threshold, as will be done in chapter 10,
it should be independent of Ap + flm, and thus planetary radius. However,
if a numerical approach was employed, we would find that A7 was approx-
imately proportional to flp + A, and consequently that the ratio between
At and €¢; may not be independent of flp + A,,. As the difference between
a slight dependance of A7 on flp + A,, and no dependance is scientifically
interesting, the analytic approach is preferred. Second, the expressions de-
rived to evaluate A7 assume that either v,, /vy is small, or Rg/a,, is small.
There is little point obtaining precise numerical values for 0.. if they are to
be used in an approximate expression, and consequently will not yield more
precise values of A7. Third, for the case where the moon orbit is no longer
circular and coplanar, the form of equation (8.53) and the form of ® and B
will change. Consequently a new numerical grid will have to be evaluated
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X (I)X BX
in,p | fm(0) +wm + 5 + 1 (T + to) — % =
in,m fm(o)‘i‘wm‘i‘%—i-nm(ij—i—to)—%ﬁs ZT?;
eg:p | fn(0) + wi + 5+ np (T, +to) + Tl |
eg:m | fm(0) +wm + 5+ nm(GTy + to) + 2 |

Table 8.1: The values of ® and B corresponding to equations (8.47) to
(8.50).

for each new moon orbit. Alternatively, as demonstrated in appendix I, an
analytic method can be extended to investigate different types of moon or-
bits without evaluating numerical grids of ® and B values. As a result of
these reasons, the approach that is used, is to approximate the solution of
equation (8.53) using an analytic expansion. In particular, the expansion
that was been selected is most accurate for small values of B, and can be
extended to other types of moon orbits.
We begin by noting that equation (8.53) is mathematically equivalent to
Kepler’s equation
M =FE+esinE, (8.54)

where M, the mean anomaly, is equivalent to ®, and F, the eccentric
anomaly, is equivalent to #.. and e, the orbital eccentricity, is equivalent
to B. As equation (8.54) can be expanded to give an explicit expression
for £ in terms of M and e, equation (8.53) can be expanded to give an
expression for .. in terms of ® and B.

Following Murray & Dermott (1999, p39) and writing sin E' as a Fourier
series in M, equation (8.54) can be written in terms of Bessel functions, as
follows

=2
E=M+)Y_ + Ik (ke) sin(n M), (8.55)
k=1

where Ji(x) is a Bessel function of the first kind (e.g. Spiegel & Liu, 1999,
p. 150), defined as

o . .
(=1 (z/2)"+%
Jip(z) = - - , 8.56
k(@) ]EZ:O JIT(k+j+1) (8:56)
where I' is the gamma function. For reference, expansions to order z° for
Bessel functions with & = 1...5 are presented in table 8.2. While the

solution of equation (8.54) is true for all values of M and e, the expansion
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Bessel Function Expansion to O(z”)

Ji(x) 3T — 1685 + 5727 + O(a")
Jo(x) t2? — Lot + O(af)
J3(x) o’ — 2oa® + O0(27)
Jy(z) 2t + O(25)

Js(x) wmope +O0(z")

Table 8.2: List of the Taylor expansion of the first five Bessel functions up
to order x°.

given by equation (8.55) only converges for e < 0.6627 (Hagihara, 1970, p.
510) and can consequently only be used when e < 0.6627. By analogy, we
also have that

=2
Ooc =D+ = Ji(kB) sin(k®), (8.57)
k=1

for cases where |B| < 0.6627.

There are two possible issues with using equation (8.57) in its present
form to derive ty, p, tegps tinm and tegm and thus A7. The first issue is
that the expansion may fail, that is, that |B| > 0.6627. The second issue is
that the expression, in particular, the infinite sum, is functionally complex.
Fortunately, both these problems are simply resolved as, first, excluding
the region in which the expansion fails does not exclude many physically
realistic moons, and second that most of the terms in the infinite sum can
(and will) be neglected as they do not substantially increase the accuracy of
the calculated value of A7. These issues will be discussed in turn.

As |B| can correspond to both v, /vy, and v,/vy., and vy, > v, (as
M,, < M,), the requirement that |B| < 0.6627 corresponds to the limit
of vy, /vy < 0.6627. Fortunately, this limit does not strongly restrict the
range of detectable moons, for example, for the Jupiter-Callisto moon system
were at 1AU and transiting a Sun-like star, the velocity ratio would be
approximately 0.28. The regions where this expansion fails are shown in
figure 8.7 for the cases where M, /M = 1072, M,/Ms = 1073 and M,,/M; =
107%. As can be seen, the motion of the moon is well described by this
expansion for most of the range of planet masses and radii which are likely
to be detected.

In addition to the region where the expansion fails, there is also the
region where the assumption that the planet and moon have constant veloc-
ities during transit leads to substantial inaccuracies in the calculated value
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Figure 8.7: Diagram showing the position of the three body instability
boundary (dashed line) and the boundary of the region where the ex-
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of A7. As mentioned in section 8.3.3, the assumption of constant velocities
is most accurate for planet moon pairs with small values of vy, /vy, (that is,
B) or a,,/Rs. In addition, as also mentioned in section 8.3.3, as it is difficult
to detect moons with small values of a,,/Rs, B is a good indicator of when
the assumption of uniform velocities is likely to fail. So for the case where B
is small, only the lowest order terms in B are required (as B is small), and
for the case where B is not small, additional terms do not substantially in-
crease the accuracy in the final calculated value of A7 as the approximation
of constant velocities becomes increasingly inaccurate (see figure 8.8 in sec-
tion 8.4.1.2). As a result, the infinite sum can be approximated by the first
couple of terms, and the Bessel functions can be approximated by the first
couple of terms in their Tailor expansion.® In particular, in section 8.4.1,
the section where expressions for A7 are calculated, A7 will be calculated
to first order (section 8.4.1.1) and second order (section 8.4.1.2) in B.

Continuing, in order to derive expressions for ti, ;, tegp, tin,m and tegm,
and consequently A7, equation (8.57), the expression for 6., in terms of
® and B must be reformatted to give expressions for t;, ,, tegp, tinm and
tegm- Using equation (8.57), and the values in table 8.1, the ingress and
egress times of the moon can be written in terms of the planet and moon
masses and orbital parameters. This gives

. Ry, 1 X2 ,
tinp = 3T +to — = > = I (kBin,p) sin(k®inp), (8.58)
T m kzl
Ry 1 X2 .
tinm = jTp +10 = =+ — > =k (EBinm) Sin(k®inm), (8.59)
tr m 1
, Ry 1 <=2 ,
tegp = JT)p + to + i ]; EJk(k;Beg,p) sin(k®eg.,), (8.60)
togm = 5T, + t +&+iigj(k3 Vsin(k®og ), (8.61)
egom — Jdp 0 Vi N £ L k eg,m) S eg,m)» .

where we have left the ® and B terms in the sum for readability. The form of
equations (8.58) to (8.61) is reassuring in that it is exactly what we would
expect. For example, equation (8.60) indicates that the planet’s time of
egress is the sum of the the time we would expect the planet to reach the
middle of the stellar disk (j7,, + o), the time it would take a lone planet

SFor example, to first order in B, only the k = 1 term in equation (8.57) contributes,
so only it has be be retained. For the case where equation (8.57) is taken to order B2 only
the k =1 and k = 2 terms contribute.
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to travel from the center to the limb of the star (Rs/v4), and an additional
modifying term (the infinite sum), indicating the effect of the moon.

Now that expressions for i, ,, teg.ps tin,m and teg m have been determined,
equations (8.19), (8.20), (8.30) and (8.31) from section 8.3.2 can be used to
write expressions for 7,, 7,,, A4, and A,,, and consequently derive A7. For
simplicity, these expressions will be calculated in the following section, after
the equations have been reduced to the appropriate order.

8.4.1 Form of ATt

Now that expressions for 7,, 7, A, and A,, can be derived, A7 will be
investigated. As equations (8.58) to (8.61) are quite complex, in order to
build mathematical intuition, A7 will be investigated for two cases. First,
A7 will be investigated for the case where motion during transit is negligible.
Second, A7 will be investigated for the case where motion during transit is
non-negligible, but where the largest ratio of the velocities, v, /vy is less
that 0.66. These results will then be combined to provide a qualitative
description of the behaviour produced.

8.4.1.1 Case where v,,/vy < 1

Expanding equations (8.58), (8.59), (8.60) and (8.61) to first order in v, /vy,
Or Uy /Uy gives

. R
ting = 3T, +to — —
Uty

N s

Vtr

1 v, . T .
— — Pgin (fm(O) + Wi + =+ (JIp + to) —
Nm Utr 2

> . (8.62)

N s

Vtr

> . (8.63)

. . nm R
___Sln<fm(0)+wm+%+nm(]Tp+t0)+ n 8)7

Utr

(8.64)
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. R
teg,m = ]Tp +to + —=
Uty
N R

1 vy . ™ .
+av—trs1n<fm(0)+wm+§+nm(JTp+t0)+ o > (8.65)

Then, substituting equations (8.58) to (8.61) into equations (8.19), (8.20),
(8.30) and (8.31) and retaining terms to order vy /vy O Uy, /vy gives

1 R
Tp = J1p + 1o — — P cos <"m 8) x ¢os (fim(to) +wm +nmjTp), (8.66)
Nim Vtr Utr

1 R
T = 5Ty + to + — — cos (nm > cos (fm(to) + wm + nmjTp), (8.67)
Ny, Vtr Vtr

. 1 - R
A, = A, — = Y Uir psin <nm 8> sin (f(to) + wm + nmiT,), (8.68)
N Vg L1 Vtr
- 1 vpvy » . [(nRs\ . .
Ay =Ap +———A4,,sin sin (fm (to) + wm + nmjIy), (8.69)
Nm Vi L0g Vtr

where we have used the identity that f,,(t0) = fin(0) + npto.
Substituting this into equation (7.59) and neglecting all terms of order
V2 [V}, UmUp VR, Or V2, [vF. and above gives

AT

_ AnMy — AyMy am s (nmR5>
ApmMpm Vtr Utr

X ¢08 (fm (to) + wm + nmiTy), (8.70)

where we define M,,,, = M, + M,, and Apm = Ap + Ay,

Consequently, for the case of negligible motion of the planet and moon
during the transit, A7 is given by equation (8.70). This equation can be
further simplified by investigating the quantity (flpMm — flmMp) / flpmMpm.
We begin by noting that A,,/A, ~ RZ/R2, M, = 4m/3R3p, and M, =
47 /3R3 prm. Consequently the ratio of the size of the first term in the nu-
merator to the second is equal to

A My ~ B o
A,M,, B pm

(8.71)

For the case where the planet is dominated by solids, for example the terres-
trial planets, the ratio p,/pp, is likely to be close to one and the ratio R,/ R,
is likely to be large. Consequently the term A,, M, will be much larger than
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ApMm. For the case where the planet is dominated by gas, for example,
the gas giants, the ratio R, /R, will be very large, so while the ratio of the
densities could be less than one, AmMp will again dominate ApMm.

As a result, the term ApMm can be neglected in the numerator, to give
the approximation

A~

A, M, a N R
AT ~ Am—p—mcos< n S>cos m(to) + wm + inmTy)). 8.72
Ao (T ) conlflto) e + dnn ). (872

As an aside, for the case where flpm ~ flp the neglected term corresponds
to At,, the barycentric transit timing perturbation. Consequently, we have
that AT > At),.

8.4.1.2 Case where v, /vy < 0.66

The expressions for A7 derived above are only correct to first order in vy, /vy,
and vp/vy.. To explore and quantify the error caused by truncating to this
order, A7 will be calculated to second order in v, /vy and v, /vy, and com-
pared to a full simulation.

Expanding equations (8.58), (8.59), constructing expressions for 7,, 7,
A, and A, and consequently A7, and only retaining terms of order (v, / V)2,
VUmvp V2. and (v, /vy)? gives

AT

A M, — A M, ap, <nmRs
= - — cos
ApmMpm Uty
Angn + AmMg A Mm, G, < N R
— - —cos | 2
ApmMgm Utr  Vtr
1 flmflp G, Gy < N s
—-— — —sin ( 2
4 A;%m Vg R

> cos (fm(to) + wm + jnmTy)

Uty

2T s 2 (flte) +m + 1)

) sin (2(fm (to) + wm + jnmTp)) . (8.73)

Vtr

As can be seen, the addition of the higher order terms results in higher
order harmonics being included in the expression for A7. Physically these
additional terms make A7 asymmetric (see figure 8.8).

To determine the increase in accuracy in A7, equations (8.70) and (8.73)
were compared to A7 values directly calculated from a set of simulated light
curves. For comparison purposes, it was decided to select scenarios which
included those shown in figure 8.5. Consequently the cases where vy, /vy, was
equal to 0.16, 0.33, 0.49 and 0.66 and a,, was equal to 0.5Rs, Rs and 2R
were selected. These curves were calculated assuming that 2, = 0.1R, and
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R,, = 0.01R, and are shown in figure 8.8. This figure shows the degree of
agreement between the two analytic approximations for A7 (blue and red)
and the true value (black) as a function of the angle (fy,(to) + wm + jnmT)).
As can be seen, equation (8.70), the first order approximation, reproduces
the broad behaviour of Ar, in particular its amplitude, while equation (8.73),
the second order equation is more successful at reproducing the finer detail
(see in particular figure 8.8(h)). Reassuringly, for the regions where the
assumption of uniform velocities is an acceptable one (figures 8.8(a), 8.8(b)
and 8.8(h)), both approximations perform well, and for the scenario where
the assumption of uniform velocities is not as effective (see figures 8.8(c) and
8.5(c)) the two expressions do not agree very well with the exact waveform.
Consequently, for the cases where the assumptions that the planet and moon
travel with constant velocity during transit and that vy, /vy, < 0.66 hold,
equation (8.70), the first order equation, gives a good qualitative description
of A7 and equation (8.73) gives a more accurate description.

Now that we have two physically realistic approximations for A7, the
properties of A7 can now be investigated. In particular, we can begin to
consider how the form of these equations (and the physics of the system) can
affect the amount of perturbation timing signal a given moon can produce
and the amount of this signal which can be detected.

8.4.2 Properties of At

Now that we have expressions for Ar, it is a good time to take a step back
and consider what these expressions tell us about the system. Recall from
section 7.4.5 that that an observer cannot measure A7 directly, and can only
measure a sequence of T values

T1y T2 e ooy TN, (8.74)

corresponding to the N measured transits. Consequently we will discuss
the form of A7 for the case of circular coplanar orbits in two different con-
texts. First we will look at the properties of A7 in isolation, with particular
reference to how the amplitude depends on the physical parameters of the
system, and how the form of A7 does not allow differentiation between pro-
grade and retrograde orbits. Then we will discuss A7 within the context of
being part of a signal train such as the one given by equation (8.74).

8.4.2.1 Properties of the amplitude of At

Intuitively it can be seen that the larger the amplitude of A7, the more
detectable the perturbation in a sequence of 7 values. As we now have
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Figure 8.8: Comparison of the value of At calculated directly from simulated
transit light curves (black), with that of equations (8.70) and (8.73), the
analytic approximations to A7 accurate to first (blue) and second (red)
order in velocity ratio. As the degree of agreement of the curves is more
important then their exact value, and to reduce the number of independent
variables, ATn,, is plotted against the angle (fy,(to) + wm + jnmTp). These
plots were constructed for the case of a large gas giant moon, in particular,
it was assumed that R, = 0.1R, and R,, = 0.01R,.
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a number of approximations to A7 given by equations (8.70), (8.72) and
(8.73), we consequently can start to look at the relationship between this
amplitude, and the size, mass and semi-major axis of the moon. To pro-
vide the maximum mathematical intuition with the least amount of math-
ematical complexity, equation (8.72), the simplest equation for A7, will be
investigated.

Recasting this equation into physical variables and grouping like terms
in square brackets gives

Ar ~ 001 [2RS} [am} 100A4,,

A, + A,

Vtr 2Rs

M,
X |——"P
[Mp + M,

} [cos <”—m’i>] co8(f(to) + wm + jamTy)). (8.75)

Vtr Am,

There are three terms in this equation which substantially affect the ampli-
tude of A7 (on the first line) and two that don’t as they are approximately
unity (on the second line). These five terms in the amplitude will be dis-
cussed in turn.

The first term in square brackets is the length of the transit duration
(see equation (7.18)). This indicates that the longer the transit duration
(i.e. the more distant the planet-moon pair is from the star), the larger
the amplitude of A7. Also, as all other terms in the amplitude are either
fractions of like quantities, or functions of fractions of like quantities, it is
this term that give A7 the units of time.

The second term in the square brackets is the ratio between the size of
the moon’s orbital semi-major axis and a characteristic scale size of the star,
in this case, the diameter of the star. As can be seen, A7 scales with a,,
and consequently more distant (a,, > Rs) moons have larger A7 amplitudes
than similar moons with a smaller semi-major axis.

The third term is a ratio between the area of the dip caused by a moon
and the total dip area corresponding to both planet and moon, and has
been scaled such that a Earth-like moon of a Jupiter-like planet would ren-
der this term approximately equal to one. As dip depth is approximately
proportional to radius of the body squared, and as planets are generally
much larger than moons, this term can be though of a comparison between
R? and Rf,.

As mentioned previously, the remaining two terms do not substantially
effect A7 as they are both approximately equal to one. However, they will
be discussed for completeness.
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The fraction M),/(My,+ M,,) describes the proportion of the mass in the
planet-moon system that is taken up by the planet. As this proportion will
differ from unity by at most 0.01% and 4% for the case of disk generated
and impact generated moons respectively (see section 3.3) it can be safely
neglected.

The final amplitude term is approximately equal to one for the case where
moons are detectable, and the expansion is accurate. To see this, recall from
section 8.3.3, that in order for the assumption of uniform velocities to be
accurate, either vy, /vy or Rg/a,;, must be small. In addition, the amplitude
of AT is proportional to a,,/Rs, so detectable moons should have appreciable
values of a,,/Rs (and thus small values of Rs/ay,). As a result of these two
two factors, the argument of the cosine function is likely to be small. Thus,
as cos 0 = 1 for 6 small, this term is approximately 1.

As discussed, the amplitude of A7 depends linearly on the transit du-
ration and the semi-major axis of the moon, suggesting that more distant
planets with more distant moons have higher A7 amplitudes. In addition
AT is also proportional to flm/(flp + Ap) ~ an/R?,, but not M,, or M,.
This suggests that it is the physical size of the planet and the moon which
affects the amplitude of A7, and not their masses. Now that the properties
of the amplitude of A7 signal have been discussed some more properties of
the signal will be described, in particular the degeneracy in AT with respect
to prograde and retrograde orbits.

8.4.2.2 Properties of the form of At

A7 is a function of the projected position of the planet and moon on the
plane of the sky, and to a lesser extent their velocities in that plane. How-
ever, there are two orbits with the same positions and velocities across the
plane of the sky as a function of time (see figure 8.9). One corresponds to
a prograde orbit with an initial position angle of f,,(¢9) and argument of
perihelion of w,,, while the second corresponds to a retrograde orbit with ini-
tial position angle — f,,(tp) and argument of perihelion of —w,. To see this
mathematically, replace f,(to) with — f,,(t0), wp with —w,, and n,, with
—ny, in any of equations (8.70), (8.72) and (8.73) and note that the form
of A7 remains the same. Consequently A7 cannot be used to distinguish
between prograde and retrograde orbits. This is unfortunate as different
formation mechanisms predict different types of orbital structures, e.g. cap-
tured moons are likely to be retrograde, while regular moons are likely to be
prograde (see section 3.3). Thus TTV, (and all other transit-based moon
detection techniques) cannot be used to investigate moon properties with
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Figure 8.9: An example of a prograde (left) and retrograde (right) system
that will show the same silhouette (middle) during transit, and thus have
the same A7 values. The two systems are shown from above, such that
the yellow hemisphere and the eye represent the star and the observer, and
the vertical sequence of diagrams show the relative planet-moon orientation
corresponding to a sequence of four consecutive transits. The silhouettes
are shown from the point of view of the observer, where the large and small
black dots mark the mid-transit position of the planet and moon respectively
and an arrow is used to show the direction and magnitude of the transverse
orbital velocity of the moon in its orbit about the planet.

respect to whether orbits are prograde or retrograde.

This result is very robust in that inclined or eccentric orbits suffer from
the same issue’ and that mutual events (moon passing in front or behind
planet) do not help differentiate between the cases. Only a direct mea-
sure the effect of the moon on the planet’s light curve or spectra (see sec-
tion 4.3.5), can break the symmetry and differentiate between prograde and
retrograde orbits.

This symmetry leads to one more interesting property, A7 depends on
am, alone, and not the sign of n,,. Consequently any detection plot produced

"In these cases prograde orbits pair up with the retrograde orbits which have been
reflected across the plane of the sky.
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with a,,, as one of the axes can represent both prograde and retrograde orbits.

8.4.2.3 Properties of the signal containing A7

Now that the properties of A7 have been discussed, we can look at the
“size” of the detectable component of A7 within the context of a signal,
such as the one given by equation (8.74). As the T'T'V, detection process
involves fitting a linear (tg + j7},) and a quasi-sinusoidal function (A7) of j,
the transit number, to the 7 values, the pertinent amplitude is not actually
the amplitude of A7, but the amplitude of A7 once linear trends have been
removed, that is, the amplitude of the perturbation that would be seen in the
corresponding O-C diagram. This process leads to a number of behaviours,
and in particular, we will concentrate on two of these. First, as A7 is aliased,
moons with the same aliased orbital frequency will display similar behaviour
in terms of the size of the detectable component of A7 in their corresponding
sequence of 7 values. Second, moons which complete an integer number of
orbits each planetary year will not be detectable. These “non-detection
spikes” are due to the fact that the position of the moon relative to the
planet during transit will be the same for every transit, consequently A7
will be the same for each transit, and thus be absorbed into the fitting
parameter ty. These aspects will be discussed in turn.

As a result of stability constraints,® moons complete many orbits of their
host planet during a single planetary year (Kipping, 2009a). Consequently,
AT also goes through many cycles between one transit and the next, in other
words it is aliased, and thus there are a quantised set of angular frequencies
which will produce the same series of snapshots and consequently produce
similar values of A7. To see this, consider the parameter that defines the
angle that a moon has progressed around its orbit from one transit to the
next, the number of months per planetary year, n,,/n,, and in particular,
the fractional part of this quantity. Consequently, if n,, were increased by
ny, such that the fraction n,,/n, increased by one, then the snapshot of the
position of the planet and moon observed at each transit would still be the
same. Mathematically, this can be seen by replacing n,, with n,, + kn,,
where k is an integer, in equation (8.70), the equation for the case where
Um /g is small, and noting that the equation remains unchanged.’

8For the case where am = 0.5Rmu, an estimate for the orbit with the lowest value of n,,
it can be shown that n,, = \/ﬂnp. Consequently, n,, > n,, and T}, the orbital period of
the moon is always smaller than 7},, the orbital period of the planet.

9For larger values of vy, /vsr, where motion of the planet and moon during transit is
non-negligible, such as the situations described by equation (8.73), A7t will change when
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As we will investigate how moon detectability changes with semi-major
axis a,, in sections 10.4 and 10.6, it would be useful to recast this result in
terms of a,, as opposed to n,,. The angular frequency n,, is related to the
semi-major axis through

G(M,, + M,
= M‘ (8.76)

n
3
Um

2
m

Using implicit differentiation to take the derivative of this equation with
respect to n,, gives

G(M,, + M,) day,

4

2, = =3
fim ar, dnmg,

(8.77)

Now, consider Aa,,, the change in moon semi-major axis, which occurs

when n,, is increased by n,. As the relative change in a,, and n,, moving

from an orbit with mean motion n,, to one with mean motion n,, + n, is

small (i.e np, < n,, and Aa,, < a,), we can replace the derivatives with As.

Doing this, noting that An,,, the change in mean motion between similar

orbits is given by n,, and rearranging to give Aa,, as a function of n,, and
n, gives

2
Ay, = —npmat ny——————.
" TP 3G( My, + M)

/

(8.78)

2, Combining this with equa-
tion (8.78) and noting that n, is constant, we have that Aa,, o apl®. Now
that the general case has been discussed, we will look at a special set of
orbits which result in undetectable moons even though At # 0.

For the case where n,, = k2n/T,, where k is an integer, that is, the
moon completes an integer number of orbits each planetary year, the moon
will not be detectable. This is because the same segment of the moon’s orbit
will be sampled each transit, and consequently no periodic perturbation in
7 will be observed. The resulting structure on a plot of the amplitude of the
detectable portion of A7 vs. a,, is a non-detection spike, i.e. the function
will go to zero for these particular orbits. In particular, the relative width
of these dips can be estimated.

To do this, consider the case where a moon has initial position angle
fm(to), and orbital angular frequency n,, = k27 /T, + An,,, where An,,
is very much smaller than 27. The moon will progresses around its orbit
by an angle of An,, from transit to transit and the corresponding orbit is

From equation (8.76) we have that n,, an’

nm is incremented by n,, but only slightly.

171



— WU v W

1 ] ] | L o
[ ] [ J [ J [ J [ ]
2 [ ] [ [ J L [ J
[ ]
Y Y [ J [ ]

[9%)
[
e ®
[
o

I
[
LN
[
[ J

-

-

>
Lo

Dip Width o Na%’

litude of
1 Part of At

b

Detecta
o

Am

Figure 8.10: Schematic diagram showing four transits for five planet-moon
systems with slightly different moon semi-major axes. The different planet-
moon systems are arranged from left to right. For each planet moon system
the relative orientation of the planet and moon during transit is shown in
the vertical column at the top of the diagram with the first transit being at
the top and the last transit at the bottom, where the position of the star
and the observer is given by the grey semi-circle and the eye respectively.
The corresponding phase-wrapped sequence of A7 values (crosses) is then
shown in the small plot below. Finally, the amplitude of A7 (once linear
trends have been removed) is shown in the lower plot by a thick black line,
while the values for each of the five systems are shown by grey dots.
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An,, away from the center of a spike. If the in-transit position angle of the
moon only samples a region of A7 which is well approximated by a straight
line, it doesn’t matter how many measurements are taken, or the accuracy
of these measurements, the moon will not be detectable, and the orbit will
correspond to a position inside the spike (see figure 8.10).

For the inner three systems shown in figure 8.10, the region of A7 sam-
pled by the four observed transits can either be well described by a straight
line or a by point, resulting in the perturbation A7 being undetectable for
this small, but non-zero, range of a,,. To begin, let the angle over which
AT is well approximated by a straight line near the angle f,,(t9) be Af,
where we note that Af,, is a function of f,,(¢g). If the difference between
the position angle of the moon during the first transit and the position angle
of the moon during the last transit is larger than this threshold value, then
the moon will be detectable, while if it is smaller than the threshold value,
then the moon will be undetectable and lie in the spike.

Mathematically, the An, value which corresponds to the edge of the
spike is given by

(fm(to) + (N — 1)Anp,T,) — fm(to) = (N — 1) Any, T, = Af,. (8.79)
Rearranging equation (8.79), in terms of An,, gives

A fm

e

(8.80)

It can be seen that the width of these regions depends on f,,(ty) through the
A fy, term, and that it is inversely proportional to (/N — 1) and independent
of n,,. As discussed in the previous section, small intervals with width
that are independent of n,, have width proportional to a2 when written in
terms of a,,. Consequently, for large IV, the core of these dips have width
proportional to N ~!a25.

8.4.2.4 Summary of properties

Bringing all this work together, we can now summarise the expected proper-
ties of the detectable portion of A7 as a function of a,,. From section 8.4.2.1
we have that gross behaviour of this function is linear in a,,, however from
section 8.4.2.3 we know that fine level structure is also present in this func-
tion. Due to aliasing the function is comprised of discrete, repeating blocks,
with length proportional to a2®. Also, at the start and end of these blocks

are non-detection spikes with width proportional to N~'a%°, where the

m
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Figure 8.11: Sketch of the size of A7, once linear trends have been removed,

as a function of moon semi-major axis. For reference, a dashed line propor-
tional to a,, is also shown.

proportionality constant depends on f,(tp). To represent this behaviour, a
model diagram was constructed showing the “amount” of A7 that could be
detected, for the case of a moon with known (and constant) mass and size
but with varying semi-major axis (see figure 8.11). Now that the case of
circular coplanar orbits has been fully explored, let us expand our analysis
to the case of inclined orbits.

8.5 Circular planet orbit inclined to the line-of-
sight

For the case where the orbit of the planet is still circular, but slightly inclined
with respect to the line-of-sight, the planet and moon no longer transit the
central chord of their host star (see figure 8.12). As for the case of circular
and coplanar orbits, we begin the process of deriving A7 by considering and
simplifying the equations of motion of the planet and moon. For the case
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Figure 8.12: Schematic diagram of the same form as figure 8.4 of the coor-
dinate system for the case of a circular but slightly inclined planet orbit. In
particular, it is assumed that I,,, = 7/2 and €2,,, = Q,,.

of a circular, slightly inclined planet orbit we have that e, = 0 and 7, = a,.
Similarly, for a circular moon orbit aligned to the line-of-sight'® we have
that Iy, = 7/2, Qp, = Qp, e, = 0, 7, = @y, and fr, = Nyt + f1,(0). Using
the expressions given above, equations (8.15) to (8.18) simplify to

Ty = ap cos(fp + wp) — ——=am cos(nmt + fm(0) + wm), (8.81)
pm
M,

T, = ap cos(fp +wp) + am co8(mt + fm(0) + wi), (8.82)
pm

Yp = ap cos Q, cos I, sin(fp + wp), (8.83)

Ym = ay, cos Sy, cos I sin( fp, + wp), (8.84)

where we note that the y-components are constant to order Rg/a, and can
be safely subsequently neglected.!

10Recall from section 8.2.1 that the case where the orbit of the moon is aligned with
the line-of-sight is indistinguishable from the case of circular coplanar orbits.

HRecall from section 7.2 that the value of f, corresponding to the planetary transit mid-
time is approximately given by m/2—w,. Performing a Taylor expansion of equations (8.83)
and (8.84) about f, = 7/2—wy, gives yYp = Ym = ap cos Qp cos Ip(1—1/2(fp— (7/2—wp))?).
Again recalling from section (7.2) that the change in f, during transit is of order Rs/ay,
we have that yp = ym = ap cos Qp cos I, to first order in Rs/ayp.
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Again performing a Taylor expansion of the first terms in equations (8.81)
and (8.82) about the time that the j™ transit would have occurred if there
had been no moon, gi