T T ———=

Hagl[s672

L e e L

MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ONuvevrreerescnereens 28 JMM..... revesranees

BN AR AR NIRRT e

Sec. Research Graduate School Committee

Under the Copyright Act 1968, this thesis must be used oily und~r the
normal conditions of schofarly fair dealing for ne purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author, Proper written acknowledgement shonld be made for any
assistance obtained from this thesis.

Supervisor's signature:

- %t‘:@f&ﬂ? aan)

{please print name) Ahthony W.C. Kun




e R

Errata

p 7 point I “¢¥¥, “for «®¥, »
p 7 point 2: "4y For “L,,", "D for “B,"

P 7 “jn (].4)' " D;wjt = al'w;k - (3)]"::“)4‘" + O)I‘{"Wmi * for
“ DaWF, = a,W¥, -~ mr:wwﬂ‘_ + a)rﬁrw"v "

p 16 para 2: “[Misner et.al., 1973]" for “{Bemstein, 1993]"

p I8 eqn (2.29). “ir(K)" for K™

p 23 para 3, sentence 3: “have shown certain promise, in ferms of siability, but work in this area is ongoing und
the full advantages are yet to be understood completely” for “have not shown themselves to have sigmficant
aumerical stability advantages over the standard equations.”

p 30 para 2, sentence 2: “For our analysis we consider the case where the charge and current densities arise
fron a system of poiat pasticles and the fields™ for “The evolution of these fields in a vacuum”

p 50 eqn (3.82): “i(X)" for K"

P 56 eqn (3.100): Add “)” to end of equation

p 58 para 2 (definition of g% “B," for“g'™; “f;y" for “g2", "g,” for g~

p 64 para 1, last sentence: “and oot necessarily interested in chasing™ for “nol necessarily chasing”

p 65, para 1, last sentence: remove “and for this reason is not ofiea used for 3-D, large-scale simulations in
geacnl relativity”

p 68, pata 2, first sentence: “shift” for “lapse™

p70,eqn (5.7 “ L . {Ej_;f( W for  JEza (W
p 81 para 1, second sentence: “than” for “thea™
p 86 para 1, first sentence: “gauge condition” for “counstraint equation™

p 96 para 2 first sentence: “The line-element that describes a siatic black bole may be given by™ for “Historically,
the first line-element to describe a black hole is given in”

p 98, para 1 last sentence; “isometry surface” for “event borizon”

p 99, para 4, first sentence: “pon-Diricklet” for “free evolution”

p 116 figure 6.8, both plots: “t" for “eia”

p 120 pam 1: replace sentence 2 with “Although harmanic slicing is singularity avoiding, the inoer poiat of the

gnd (7 = 0) comes arbitrarily close to the singularity {r = 0), making this slicing poor choice for numerical
simuiations, unless adaptive mesh refinement techniques are employed”




Addendum

p 7, add at the end of point 2: “"This particular definition of stability is appropriate in this work as we are not
concerned with spacetimes where the solution itself bobaves exponentinlly. Fusthermore, as we are interested
in fong-term evolutions, having exponentially growing errors would render a simufation of little use, even if the
solution i3 ‘stable’ in the rigorous mathematical scnse.”

p 8, parr 1, comment: The 3+1 formalism was originally publisked {using a restrictive gauge) by Choquél—
Brubat, in "Thépréme d existence pour cerlains sysiems d'equations ars dbriveés particiles nonlindaires” in
Acta Mathematica, 88, 141-225, 1952.

p 21, add after equ (2.42): “whete T =Ty = 7%,

p 23, Remove seatence 2, para 2 and add at end of para 2: " 1t is trve that the constraint cqualions are compatible
with the evolution equations in the ADM formnlism, as the Bianchi identities enforce that if the constrainis are
satisfied on the initial hypersurface, they will be sotisfied on future hypersurfaces also, However, this apalytical
result does not necessarily ensure stable numerical solutions, especially considering that the ADM eqguations do
not conform to the standard classification of partial differential cquations, byperbolic, pambolic or eHiptic.”

p 50, para 1, comment: "This decomposition of K, was introduced by Yoik, in “Conformally invariant orthog-
onal decomposition of symmeiric tensors on Remannisn manifolds and the initial value problem of geseral
relativity ™ in Journal of Mathernatical Physics, 14(4), 456464, 1973

p 60, add after equation (4. 15); "Note the decomposition given in equation (4.1 1) differs from the more standard
form given by York, 1979, namely A; = W04, Whilst our cheice simplifies the form of the evolution
equations, it also leads to a more complicated form of the momentum constsaint. We ase justified in this as the
momentum constraint is not used (o specify initial conditions in this work. However, for more general systems
1his complication will need to be taken into account.”

p 64, para 1, comment: “Flack hole excision technigues were introduced over a decade ago. For an example
of the development of this technigue, see Thomburg. J. “Coordinates and boundary conditions for the geperal
relativistic initial data problem”, Classical Quantum Gravify, 4, 1119, 1987

P 69 add 10 the end of para 2: "1t is true that this siatic boundary condition will introduce civors inlo the
derivative vatues on the boundary, resuliing in small reficctions. It was foand that these errors remained less
than the errors applied fo the grid for the life of the simulation. Therefore it was not deemed necessary fo utifise
more careful boundary conditions, in this particulat case.”

p125 add at the end of para i: "One note of coacemn, however, for the GEM equations is the fact fr(X) does not
remain monolonic across the grid. This behaviour was fouad 1o persist when different time-stepping, boundary
couditions apd spatind derivatives were tested, This could indicats some deeper pathology of the GEM equa-
tions. This behaviour is also found to be a factor ia the following chapter, where we consider non-zero shift
vector spacetimes.”
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‘When you are courting a nice girl an hour seems like a second. When

you sit on a red-hot cinder a second seems like an hour. That’s relativ-

ity.” - Albert Einstein

‘People have stars, but they aren’t the same. For travellers, the stars are
guides. For other people, they're nothing but tiny lights. And for still
others, for scholars, they are problems. For my businessman, they were
gold. But all those stais are silent stars. You, though, will have stars
like nobody else ... You’ll have stars that can laugh.’

- Antoine De Saint-Exupéry, from The Little Prince

‘Marge, I agree with you - in theory. In thecry, Communism works. In

theory.” - Homer J. Simpson




Abstract

In recent years the advent of gravitational wave detectors and ever-growing compater
power have made the field of numerical general relativity increasingly relevant and
more accessible. At the same time the need for stable and accurate numerical models
of strong-field gravitational phenomena has raised many questions. The difficulties
of separating physical and coordinate results, and the problem of formulating the
Einstein equations in a way that produces numerically stable, results have resulted in

a wide body of tesearch,

This thesis concerns itself mainly with the question of numerical stabtlity. We modify
the standard numerical formulation of the Einstein equations [Arnowitt et al., 1962]
in an attempt 10 produce a formalism that is better suited to numerical modelling,
We use the fact that the radiative part of spacetime. represented by the Wey! tensor,
may be expressed using the gravito-electric and gravito-magnetic field tensors. These
tensors represent a purely gravitational field, but are mathematically analogous to the

electric and magnetic fields of classical electromagnetism.

We decompose the Bianchi identities into 3+1 form which results in a system of




evolution and constraint equations for the gravito-clectric and gravito-magnetic tield
(the gravitoelectromagnetic equations) that are analogous to the Maxwell equations in
electrodynamic theory. This system of equations is then used to augment the standard
equations. This removes the 3-Ricci tensor as an evolution variable, thereby making
the system first order in both space and time. This property is found to result in

improved convergeace properties in spacetime where gauge shocks develop.

In order to test the modified formalism, we construct a one-dimensionai test code. Our
aim is to compare the modified and standard formulations in a range of spacetimes.
As we are trying to gauge the effect of modifying the continuum equations, we use a

range of standard testbed spacetimes and standard numerical techniques.

We compare and contrast the two formulations uader a range of gauge conditions
in both Minkowski and Schwarzschild spacetime. We find that the modified equa-
tions produce accurate, convergent and stable simulations in most of the spacetimes
considered. The results here suggest that further investigation into the use of the

gravitoelectromugnetism in numerical gencral relativity is justified.
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Foreword

The modified numerical formalism published in this work was first presented at the
GR16 conference, along with preliminary numerical resuits, hased on a Schwarzschild
spacetime. While the theory presented here is the same as that presented previously,
the numerical results are not. This is due to the fact that further testing of the algo-
rithmt post GR16 revealed results that were less encouraging than initially thought.
The initial numerical results in a maximally sliced spacetime appeared stable. How-
ever, further convergence testing revealed a coding error that leud t0 increased diffu-
ston in the time-stepping algorithm. This lead to a ‘smeanng-out’ of the coordinate

shocks that usually form in this case.

The results presented herein have had this rectified, and ali the test cases are designed

to be as transparent and as free of additional numerical effects as is possible.




Acknowledgements

First and foremost, thank you, Stu, for everything.

Thanks and acknowledgement must go to my supervisor, Tony Lun, for the help and
advice he has offercd me throughout my candidature. Thanks also to all at C.S.PA..
and to all the MONash General RELatlivistS. Particular thanks must be given to Leo
Brewin, for help and advice, to John Lattanzio for much support and encouragement,
and to ‘the Old Dude' for an ever friendly ear. Especial gratitude is due to Ray
Burston, for never Kicking nte out of the office, for much fun, much beer and some of

the strangest conversations I have ever taken part in.

Thanks to all tihe Starks, big and small, for much love, for always believing in me
more than [ did and for teaching me to question and argue with the best of them. To
Claire and Steph, thanks for being ihere even you are so far away. Thanks also to the

Muirs for your acceptance and support and for giving me a Melbourne family.

This thesis is sponsored by the finer things in life: kelpie dogs, Australian music,

noisy red motorbikes and single malt whiskey.




Chapter 1

Introduction

1.1 The Need for Numerical Relativity

@ eneral relativity is an inherently four dimenstonal theory that uses geometry to
describe the interactions of massive bodies and the four dimensional spacetime they
are contained in. While there is no doubt that this fundamentai coupling of space
and time provides an elegan. and powerful theory, it is not automatically conducive
to describing the dynamics of evolving gravitational systems. To fully describe a four
dimensional spacetime manifold we need to solve the ten coupled Einstein equations,
which relate the metric on the 4-manifold, g,,,, the curvature of space (represented by

the Ricci tensor, Ry, and its trace, R) and the mass-energy teasor, T,,,. That is, we

must solve

Ru - -;-gwR = 87T, (1.1)




The Need for Numetical Relativity

for the entire past and future of the spacetime. For physically complicated, dynamical
systems, such as the collision of two or more compact objects, we are unable to pro-
vide this kind of analytical solution. Instead we need to recast the Einstein equations

into an initiat value (Cauchy) probiem.

As the Einstein field equations are inherently four-dimensional, non-linear and self-
coupled. the task of producing a Cauchy formulation is difficult. There is the addi-
tional problem that solutions to the field equations are unique only up to a diffeomor-
phism {Hawking and Ellis, 1973] so that solving the field equations actually results in
an equivalence class of solutions. Thus, reformulating the Einstein equations into an
initial value problem requires the imposition of gauge conditions to remove the extra
degrees of freedom in the system (see chapter 2 for a full derivation of the initial value

problem in general relativity).

The work presented herein is primarily concerned with the development and evatu-
ation of a modified formulation of the numerical Einstein equations , The advent of
gravitational wave detectors has highlighted the need for accurate and stable numer-
ical models of dynamics in the strong field regime of general relativity, for example,
the merger of binary black holes and collapse of supermassive stars. The rapid de-
velopment of supercomputing and paraliel programming techniques has meant that
the numerical general relativity community finally has at its disposal hardware and

numerical techniques capable of handling these kind of problems.

Unfortunately the major stumbling block has proved to be the mathematical structuse

of the equations themselves. When reformulated as an initial value problem, the




Aims and Outline

Einstein field equations are non-linear and do not conform to standard categories of
hyperbolic, elliptic or parabolic partial differential equations, alt of which have well .
understood properties and for which we have standard finite diffcrence techniques.

As stated above, there is the added problem that we must specily a gauge (in analogy

with classical electromagnetism) in order to uniquely specify a systens. This leads

to the added complication of gauge dynamics, that is, the appearance of effects that

rise fiom a certain choice of coordinate systemn, vather than from the physics of the

spacetime.

The Einstein equations were first presented as an initial value problem by Amowitt
et al. {1962]. The work most commonly followed today is, however, that of York
{1979] and it is on this form of the initial value problem (referred to throughout as

Standard ADM, or just ADM) that we base our benchmark code. We present and

test a modification of the Standard ADM equations, based on the idea of augmenting
the standard equations with the Bianchi identities, which we recast as an initial value
problem. The Bianchi identities are expressed in terms of the gravito-electric, £,
and gravito-magnetic, B,,, conformal tensors and we refer to the test scheme as the

ADM-+gravitoelectromagnetic, or GEM, system.

1.2 Aims and Qutline

We aim to develop a modified 3+ | formalism and to gauge its performance relative to
standard theory in a range of testbed calcuiations and to use the results 1o gain some

insights into the question of stability in numerical general relativity. In order to obtain




Aims and Outline

meaningful results, we must be very clear about the behaviour of the spacetimes we
model in order to distinguish between ‘real’ physics, gauge physics and behaviour
caused by the form of the equations used. The aim of the game here is not to discover
new physics, but to evaluate the worth of a new formalism in a range of familiar

seltings.

For this reason we limit the test cases considered to ones that may be modelled using
one spatial dimension plus time (a 1+1 formulation). For the most part, these are
spherically symmetric spacetimes. This allows us to investigate a simpler and more
transparent form of the equations investigated. It also means that we have, at best,

exact solutions and. at worst, a thorough understanding of the gualitative behaviour

of the spacetimes under consideration. This means we can gauge error growth and

convergence with confidence. We also limit ourselves to numerical techniques that
are as simple as possible. That is, we implement standard boundary conditions and in-
tegration algorithms. Again, the aim in this work is to gain insight into the feasibility

of the equations, not to develop new numerical techniques.

The structure of the work is as follows :

In chapter 2 we introduce the standard 3+1 formalism, referred to as the ADM system
throughout the work. This provides us with a foundation from which we can construct
a benchmark code, based on the standard numerical Einstein equations, that we can
test our modified equations against. We also discuss some of the problems inherent
in the standard approach and survey the more common approaches to dealing with

themn.

it i a2 e otk Ao v e L o e s
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U

Chapter 3 we introduce the conformal Weyl tensor and the Bianchi identities, as ex-
pressed using the Weyl tensor. We also discuss the derivation of the Maxwell equa-
tions in special relativity as an analogy for the following work. Fotlowing Maartens
and Bassett [1998} and Friedrich [1996] we construct, from the Bianchi identities,
a system of constraint and evolution equations for the Weyl tensor, that have simi-
lar properties to Maxwell’s equations of electromagnetism. We conclude the chapter
by augmenting the standard 341 equations with the Bianchi identities to produce the
system of equations (the GEM system) that will be the basis for the numerical work

we undertake.

In Chapter 4 we reduce the general GEM equations to their simplified (1+1) form and
outline the numerical techniques that were used in the development of the algorithimn.
We apply the algorithm and both sets of equations to evolve initial data represent-
ing perturbations of Minkowski spacetime in chapter 5. In this way we investigate
the performance of the algorithm in evolving initial data with both high and low fre-
quency perturbations. These tests are based around the standard numerical relativity

testbed calculations suggested in Alcubierre et al. {2003a].

Chapter 6 investigates well-established slicings of a Schwarzschild spacetime, fol-
lowing the tests carried out in Bernstein [1993]. Again we evaluate the performance
of the modified algorithm in handling a range of gauge phenomena, in comparison
with the benchmark code. Following this, in chapter 7, we consider a slicing of the
Schwarzschitd spacetime, with a line element related to that discussed in Alcubierre

{19971 with non-zero shift vector.

e




Notations and Conventions 6

Finally, we summarise our findings in chapter 8, outlining the major points of dif-
ference between the standard and modified equations in (1+1)-dimensions, We also

suggest a range of possible extensions of the work presented here.

1.3 Notations and Conventions

Throughout this work we shall use a range of notations and conventions when pre-

senting mathematical results. Note, in particuiar, the following:

o [t is assumed that Greek indices run over the range (0, . . ., 3) and Roman indices

run over (1,...,3).
¢ All metrics have signawre (- + + +).
e We shall use standard Einstein summation notation where vectors and tensors

are denoted using indices and summation occurs over recurring indices, i.e.:

VT = T+ 0' Ty + 0T + 0T (1.2)

o Symmetry is denoted by round brackets around the indices affected, Ay =

1(A, + Ay, and antisymmetry by square brackets, Ay = (A, — Ay)-

o The superscript ¥ is used to denote quantities defined on the four-dimensional
manifold (with respect to the 4-metric, g,,) and the superscript ** is used to

denote quantities defined on a spatial hypersurface (with respect to the metric
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on the hypersurface, L,,). For example the 4-connection is ¥T*,, aud the 3-

connection is O ,
» Covariant differentiation with respect to the 4-metric, ¢,,. is denoted by V,, and
with respect to the 3-metri¢, 1,,., is denoted by D,,. ie.

Vo WH, = 8, WH, ~ BT e 4+ O w7, (1.3)

ot

D WF, = 8, WH ~ O Wi + O W (14

The semi-colon notation, W, is used to denote covariant differentiation with
respect to the 4-metric only. Partial differentiation is referred to by buth g, and

comma notation. W, ..

e As this thesis deals with the question of numerical stability it is imperative that
we spell out exactly what we mean when we refer to stability. In this wotk
we shall nuse the definition of stability outlined in Alcubierre et al. [2003a).
That 1s. & numerical simulation is unstable if the errors (whether measured
through comparison with the exact solutions, or by tracking the viclation of
specific constraint equations that must be satisfied at all times) exhibit expo-
nential growth. The exceptions are when exponential error growth occurs on a
timescale much larger than the dynamical timescale of the system under con-
sideration and, naturally, when the exponential growth is a consequence of the

analytical probiein itself.




Chapter 2

The 341 Formalism in Generai

Relativity

2.1 Introduction & Motivation

@he 3+1 formalism in general relativity, first introduced by Amowitt et al. [1962]
provides a mechanism for decomposing 4-dimensional quantities into their 3-space
and 1-time components. Thus, we may formulate our solution as an initial value (or
Cauchy) problem. We specify our metric, its first time derivative, and any hydrody-
namical information on an tnitial, fully spatial hypersurface. This data s thea prop-
agated forward in a suitable gauge. 1t can be shown [Amowitt et al.. 1962} that the
long term solution of this initial value problem is equivalent to solving the Einstein

equations in full 4-dimensional general refativity.
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Constructing the 3+1 Space-time

The 3-+1 formulation most commonly used in numerical relativity (Stundard ADM)
was presented by York [1979] and is actually a modification of the original formal-
ism {Arnowits et al., 1962]. Although Standard ADM has been studied and used for
decades, it is worth reviewing, as we will be using the ideas in the development of our
adjusted formalism and will be using Standard ADM to construct a benchmark code
for coinparison with the approach discussed in this thesis. Unless noted otherwise, we

will follow the work of York [ 1979] and ihe later review given in Bernstein {1993).

2.2 Constructing the 3+1 Space-time

In order to recast the Einstetn equations into an initial value problem, we must frst
fotiate our tour dimensional manifold (M, g,,) with a series of Cauchy surfaces. A
Cauchy surface (T, 1;;) is defined as a closed, achronal set, for which the complete
domain of dependence is the manifold, M. The complete domain of dependence of
L, 15 the complete set of (past and future} events that may be determined through
knowledge of events on L,. The surface Z, is achronal if distinct points p. g € £, can
not be connected by a future (or past) directed timelike curve, i.e. event p dogs not

lie in the chronological past or future of ¢. and vice versa, {Wald, 1984).

Consider a family of spacelike hypersurfaces (L, L;;) embedded in a four-dimensional
manifold (M. g,,). We define a scalar function, called the Cauchy time function, .
such that every level surface of ¢, X, s a Cauchy surface. This series of hypersurfoces
provide a foliation of M, that is, they are non-intersecting and space-time-filling.

The Cauchy tirze foliation allows us (v define a coordinate time curve, so that the
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coordinates on M are (¢, X}, 2, ).

We define a future pointing vecter, # = (1,0,0,0), tangent to the coordinate time
curve. The motion of observers in the direction of the vector, #, can then be resolved
into components tangential and normal to the hypersurface, as illustrated in figure
2.1, First, we define a unit time-like one-form, n,, orthogonal o the hypersurface.
This implies

HyVoityy = 0 2.1)

and

nn" = -1 2.2

o

From equation (2.1) it follows that therc exists a positive definite scalar function, a,
such that

n, = —aVut = (-0,0,0,0) {(2.3)

The normal vector, n¥, represents the 4-velocity of an Eulerian observer (i.e. one at
rest with respect to the hypersurface). The quantity « s the lapse function, and we

shall outline its role below.

A related quantity, and one that will become useful later, is the 4-acceleration of the
L3 .u - - * - . -
Eulerian observers, #t , which is defined to be given by the covariant derivative of the

4-velocity, projected orthogonal to the hypersurfaces. i.e.
[
n=nvn' 2.4)

Thus. 7 is tangential to the hypersurface, j.e. " n, = 0. This follows directly from




Constructing the 3+1 Space-time

the above definition and equation (2.2). The d-acceleration is also related to the lapse
function via

n,=1 VY, (ne) = DAna) (2.5)

where D, is the covariant derivative associated with the 3-metric, L, (see section

2.2.1 for definition of the 3~metric).

Now we have defined a normal vector to our surface, we may also define a projection
tensor, i.e.:

L, =6, +nn (2.6)

which projects guantities in M onto Z.

Knowledge of the projection tensor allows us to construct a general prescription for
the projection of any geometric quantity on M onto a hypersurface. The full projec-

tion of a tensor quantity is

I — o Hi Hr B .5 e
LT =L LA MM TR 2.7

¥)..¥i ﬂl [ TPt 1

The projected quantity will be spatial. that is

"!li("" Tm‘.su.'...m ) o= Hw(.l. Tm...y, ) = 0 (?.8)

¥y..¥E Vi WL vy

This allows us to decompose four-dimensional quantities into their components in a
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Figure 2.1: Spacerime foliation, showing the hypersurfaces, the coordinate time and the
Sauge variables, a gnd p*

timelike and spacelike direction. For example, a rank-2 tensor may be written as

Tpv =1 T“y - (-L Tmnr)n, - (J. Twnr)n”

+ Tt nyn, (2.9)

and the eXtension to higher dimensional tensors is straightforward. In particular, the
projection of # givesus £, which we shall refer to as the shift vector. The shift vector

is defined as follows:

p =it (2.10)

As jllustrated in figure 2.1 the coordinate time curve tangent vector may then be

¢eXpressed as

# =an + g (2.1
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Note that ¢ = (1,0, 0, 0) regardless of the lapse and shift as it is, by definition. tangent
to the coordinate time curve, £. The coordinate time curve, however, is dependunt on
the lapse and shift and may be completely specified in terms of them and the normal
vector. Thus the lapsc, a. and shift vector, #/, are purely gauge variables and may
be chosen arbitrarily. The choice of a determines the structure of the foliation of
surfaces. The choice of 87 is arbitrary at each point, and a particular choice leads to a

particular family of curves ‘threading the slices of &' [York, 1979].

2.2.1 Hypersurface Structure

The description of the slices is governed by the knowledge of two basic quantities,
the induced metric of the slice, L,,, and the extrinsic curvature, K,,,. The former is

simply given by the projection of the 4-metric onto the slice.
L™= G + Nty (2.12)

c.f. equation (2.6).

The covariant derivative on the slice, D, is obtained by projecting its 4-dimensional
analog, ie

D,TH, =1 V,T*, (2.13)

where 7Y is an arbitrary spatial mixed tensor. Once we have assumed this form we
can show that D, does indeed satisfy the properties of a covariant derivative {as given

by Wald [1934], section 3.1). In particular. D, satisfies
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» Linearity:
D (AR 4 By Y = XD, AT + y D, B (2.14)
where x, i € R and A, B are tensors of rank (&, /).

e Leibniz Rule:

TR W LTS B Ry &, IRE et

DLy s B} = Biy oy Dl Ay 1+ AL DUl By Uy 2.13)
It is important to note that D, is still a 4-dimensional operator, and is designed to act
on 4-dimensional spatial tensors. A further important property of the spatial deriva-

tive is

Dy Log= 151815 Veingng)

= J.f, (ot + RN N ~ Mgty = MM Nys] = 0 (2.16}

as expected in comparison to the 4-dimensional case (V,g.3 = 0).

Contractions of the 4-dimensional Riemann tensor, PRz, provide important infor-
mation about the 4-dimensional spacetime curvature. The 3-dimensional Riemman
tensor, PR,,.a. is defined analogously to its 4-dimensional counterpart. That is, for

arbitrary one-forms, v, and w,,, (with w, spatial),

5, R, " = (V. V, - V,9,), QA7

w,'R,.." = (DD, - D,D,w, (2.18)
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In order to transtate information about the metric and curvature of the hypersurfaces
into information ubout the 4-dimensional spacetime we need to know how the slices,
Z, are cmbedded in M. That is, we need to define the extrinsic curvature (or second
fundamental form) of the slices. The extrinsic curvature, K. is obtained from the

J.covariamt derivative of the normal vector:

pr = D’,HV

= -0 Ven, 5 - 17 Von, (2.19)

{(For the third identity we have used the definition of the projection tensor (2.6) and

the identity n"n.V,n" = 0.) This also leads to the important result that

o .
v,unv = "K,uv -, n, (:20)

s

from equation (2.4). K,,, is symmetric, i.e. K, = Ky = %(K’m + K,,). This follows

from equations (2.20) and (2.1).

We now have the tools needed to constiuct the constraint equations governing the
components of the Riemana tensor on each slicing. In fact, we find that we are able

to constrain the 4-dimensional Riemana tensor, R,..». entirely in terms of sptial

components.
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2.2.2 Hypersurface Curvature & Constraint Equations

in order to split the Einstein equations into their 3+1 form, we first consider the
Riemann fensor. The three components of the decomposition of ) R,,.a leads to the

sct of equations known as the Gauss-Codazzi-Ricci equations. These equations are

» Gauss equation:

"L('"vaﬂﬁ =i R,;mﬂ <+ Km,Ky[g - KpﬁKwr (22!)

o Codazzi Equation:

LR e’ = DK,y = DyKoe 2.

-J
£
(%
p—

o Ricci Equation:

LR, a0 = 0V, Kyp + Koy Van”

+ KoV + K, K5 + @7 D,Dpa (2.23)

Eguation (2.21) is obtained from the projection of all indices of ¥R,z onto the
hypersurface, using equation (2.7) . This removeces all terms involving normal compo-
nents, leaving only terms involving P'R,,.¢ and K,,. Equation (2.22) follows from a
single projection along the normal and subsequent projection of the remaining three
indices onto the hypersurface. Similarly, equation (2.23) follows from double projec-
tiont along the normal. Due to the symmetries of the Ricci tensor, contraction of more

than two indices with the normal wiil yield a zero result {Bernstein, 1993].
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The total decomposition of Ryqa is then tound from the definition (2.9) which is then

simplified using equations (2.21) - (2.23) to obtain:

DRuw = PRy + KiyKog = KpKory
+ (17 Vo, Kog + Koo Vgn” + KopVon” + Ko K ‘;, +a” D, Dyr)
=,y (°V Kop + Ko V" + K gVon” + Ko K‘;, + n."lD,, Dpar)
+ 1,151V Ky + K V0™ + Ky V,17 4 Ko K, + a7 D, Dya0)
=m0V, K, + KoV n" + _Kt,,V,.n" + Koy K%, + o' D,Dyar)

- Z(Il”D[). Kﬁ]v + ’lwaK}u]ﬂ + H,D{u Kyw + nﬂD{va,.) (224)

For a complete picture we need to consider the presence of a matter distribution with
arbitrary mass-energy tensor T,,. The mass-encrgy tensor may be decomposed using

equation (2.9) to be expressed entirely in terms of hypersurface parameters:

Ty =S+ 2jun, + pnyn, (2.29)
whare
Sav =1 T,y
= - 1L (T'n,)
p = T"‘Bnt,np (2.20)

S, = mu+ L, P where m,, and P are the anisotropic and isotropic pressure re-

spectively, / represents energy flux and p the energy density of the fluid. Note that
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My = A and tr(n) = 27, = 0. The hydrodynamical quantitics are obtained for a
given matter distribution by specifying an equation of state and considering the twice

contracted Bianchi identitics, which are discussed in more detail in section 3.4.4,

We may also construct the Einstein tensor from the definition

1
DG = PRy~ 590 PR (2.27)

Using equation (2.24) we can project the Einstein equations (1.1) along the direction

of the normal vector to yield the constraint equations:

"G, 2P R+ 1KY - K, K" = 2xp (2.28)

- n'GT, = DK~ LK) = k) (2.29)

where ‘YR refers to the spatial Ricci scalar, « = 8x and tr(K) =1 K,, = ¢ K.
These are the Humiltonian constraint and the momenium constraints tespectively.
Equation (2.28) produces a scalar while equation (2.29) returns a spatial vector, hence
the combined hypersurface components (i.e. the tndices from 1-3) of the constraint

equations provide four of the ten independent equations needed to specify the system.

2.3 Propagation of Hypersurface Parameters

The remaining six Einstein equations prescribe the evolution of the hypersurface and

we shall outline their derivation in this section.
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2.3.1 Lie Derivatives

One of the most important tools in our development of the 3+1 problem is the concept
of the Lie derivative {sec Hawking and Ellis [1973] for a full description of the Lie
derivative’s properties). We shall define it in terms of its action on various fields. For
example. the Lie derivative of a scalar field, f, is analogous to a directional derivative

along a given vector lield X*.

£Yf = Xtrvlrf = Xo.j:;_r (2.30)

For a vector ficld, V¥, it is given by

£V* = XUTVH - VY XM (2.31)

and finally for a tensor field, T*,, we have

£ T = XOV, T, = TV, X" + T# V,X° (2.32)

An additional important property of the Lie derivative is its action on the projection
tensor. Using the detinition of the Lie derivative (2.32) and equations (2.5) and (2.12)
we find

£, =0 (2.3)

i

where n* is the velocity of the 4-observers that was introduced in section 2.2,

The evolution equations arz derived by considering the Lie derivative of L, and K,
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along the curve . By linearity of the Lic derivative:

L= g

(2.34)

(2.35)

Now we are ready to construct the evolution equations for initial data (the 3-metric,

1;;» and extrinsic curvature, Ki;) specificd on a hypersurface.

2.3.2 Propagation along ¢

Consider the Lie derivative of the 3-metric in the »# direction. We find:

£, 4, =0V, Ly + L, VonT+ 1, V0

=00, Von, + n°n,V,n,+ 17, YV, + L%, Von,
But from equation (2.20) and {2.5) we have
1 1, Ven, = n, n,= K,y = Vyun,
$O

g by=~Kpo~Vn + <K, - Von, + (87 +0%0,)V 0,

+(8) +n'n,)W,n,

(2.26)

(2.37)

(2.39)

(2.40)
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Thus, by the symmetry of K, the cvolution of L, along n" is given by

£y L= -2K, 1 (2.41)

The Lie derivative of the extrinsic curvature along »* is obtained through the full

projection of the Einstein equations (£.1) expressed as
(e} 1 o)
-L pr =X -.L (T‘n- - '?_'g}(VT) (—.42)

The right-hand side is expressed using purely spatial quantities through the defini-
tion of the mass-energy tensor (2.25). The left-hand side is obtained by taking the

projection of the Gauss equation (2.21) aleng the 3-metric which yields
LY R+ LD R enn™ =P Ry + tr(K)Kyy — Ko K7, (2.43)

Using the Ricci equation (2.23) and noticing that it includes the Lie derivative of the

extrinsic curvature leads to our next set of evelution equations:
£,K =OR,, + 1(K)K,y - 2K, K”, - @' DD\

1
- K(7Tyyy ~ 3 L, P) (2.44)

In order to use this information to construct time derivatives of our evolution vari-

ables, we remember that we have defined the tangent to our coordinate time curve




Propagation of Hypersurface Parameters

22

(section 2.2) as

# =(1,0,0,0) = 9, (2.45)

Thus £, = 8,. Using equation (2.35) we then obtain the general evolution equations

for L. and K. along the coordinate time curve:
and

(3, - £)K,y = 2(OR,, + tr(K)K, - 2K, K",) - D, D\t

= Ka(;ryv - 'i' J—yv P) (2;47)

If we take a moment to do some counting. we notice that the spatial components
(i.e. letting the index run from 1-3) of the evolution equations for the 3-metric (2.46)
represent the remaining six independent and non-trivial components of the Einstein
equations. Note also that these equations do not constrain the four gauge functions,
i.e. the tapse function, a, and shift vecior, 8. We are free to specify these. Once
we have done so, the coupled system of evolution equations, (2.46) and (2.47), the
four constraint equations given by the Hamiltonias and momentum constraints, (2.28)
and (2.29), along with evolution of any matter source terms provides us with the ten

independent components of the Einrstein equations, posed as a Cauchy problem.
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2.4 The Question of Stability

To solve for a complete spacctime using the Standard ADM formalism we firstly
specify our 3-metric and extrinsic curvature (according to the constraint equations) on
a Cauchy surface of our choosing. We shall pretend for the purposes of this thesis that
this is a straightforward task, as the inittal conditions for the spacetimes we consider
are easily specified. As the aim of the game in this work is to study the behaviour
of the evolution the question of initial conditions is tangential. There are, however a

number of interesting review papers on the topic for the interested reader, for example

Cook [2000].

Before we introduce the modified formalism in th: following chapter, we need to pro-
vide some justification for why any modification is considered necessary. Firstly, the
equations as they are presented above are not. in general, well-posed or hyperbolic.
A system of equations is well posed if we can show the existence and uniqueness of
a solution, and that the solution depends continuously on the initial values. That is,
if ithe constraints are satisfied initially they will be satisfied for subsequent hypersur-

faces, if the problem is well posed®. [Briigmann, 2000}

This has lead to a large body of work aimed at the modification cf the standard ADM
equations to obtain a hyperbolic formulation. The major advances in this area are
reviewed in Reula [1998). To date, the hyperbolic formulations of the 3+1 equations
have not shown themselves to have significant numerical stability advantages over the

stondard equations.

“although well-posedness in an analytical sense will not nccessanly ensttre the constraints re main
bounded in a numerical seiting
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Secondly, there is the problem of *gauge modes’. The specification of a gauge (¢ and

B} is only enough to constrain the metric and extrinsic curvature up to a coordinate -

transformation. It remains possible to transform the metric-cxtrinsic curvature pair
without changing the form of the lapse and shift functions. If the transformed solution
satisfies the constraint equations, this gauge constraint can, depending on the speed

of propagation of the mode, lead to unstable numerical results [Kelly et al., 2001}

A great deal of work has been done in trying to understand the mathematical na-
ture of the stabilities in both linearised and full-field general relativity. For example,
the work of Gen Yoneda and Hisa-aki Shinkai has dealt with the stability question
through the eigenvalue analysis of propagation equations for the constraint equations
(for a recent review see Shinkai and Yonreda [2002]). Their methodology requires an
eigenvalue analysis of the full non-linear constraint propagation equations, but an in-
sight into stability can be gleaned by restricting ourselves to the linear regime, namely

be considering the behaviour of linear perturbations on a Minkowski background.

Here we consider the theory as presented in Alcubierre et al. [2000]. By considering

a metric of the form

L= 6,'j + €; (2.48)

where lg;l << 1 we can derive linearised versions of the ADM evolution, and con-

straint equations. If we then slice the spacetime such that observers fall along geodesics
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(@ = 1,8 = 0) the linearised ADM system is [Alcubierre et al., 2000]

6;&]“5 = -‘2K,'j + h.o. (2.49)

]

8,K;; = VR, " 1 ho, (2.50)

where VR, j‘""”"” = 4(=0,0"€; ~ 0:0,tr(6) + DiOme"; + Budj€, ™) is the linearised Ricei
tensor and h.o. represents all terms of higher than linear order. The lincarised con-

steaint equations are given by

H = 0,(0,e™ - 8"1r(e)) = 0 (2.51)

M' = 8{8,,™ — &tr(e)) = 0 (2.52)

We assume a solution of the form of a plane wave travelling in the x-direction, i.e.

.L;j= lijei(m:—k.t} (253)
Kij= joei{w‘—kx) (2.54)

Substituting this into equations (2.49) and (2.50) and expressing the metric as a vec-
tor, Lj; = (Lee Loy Lo Lo Lizo Ly2) allows us to reduce the set of equations to an
eigenproblem for 1;;. The probiem admits two eigenvalues, 1 = Gand 2 = 1 and
six eigenvectors, Of these solutions, twe represent the physical gravitational wave
(i.e. they travel with specd one anrd are transverse and traceless), three modes vio-

late at least one constraint and one satisfies all the constraints, {2.51) and (2.52), and

propagates with zero speed.
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‘This last solution is the one that is most worrisome. This is not a physical solution,
it is a pure gauge phenomenon and, as it exhibits zero speed, can never propagate off
a numerical grid. Thus, numerical integrations using the ADM equations, in some
gauges at least, will exhibit a constraint violation that grows with time, lcading to an

unstable evolution.

Of the great number of modifications to the standard equations that have been pro-
posed, the most widely accepted at this point is the system presented in Baumgarte
and Shapiro [1999], based on the conformal, trace-split system of Shibata and Naku-
mara [Shibata and Nakamura, 1995]. The crux of this modification is, firstly, the use
of the conformal metric, 1;; = ™ L;;, where ¢* = (det L)"/?, The evolution of the
metric function is now split into two equations, one for the conformal factor, ¢ and
one for the conformal metric, 1;;. The evolution equation for the extrinsic curvature

is also split into its trace and trace-free parts, which are evolved separately.

Secondly, the conformal connection functions are raised to evolution variables through
the introduction of the kinematic quantity ¥ = 1/*[% s This quantity also allows the
definition of the 3-Ricci tensor to be recast in elliptic form, making it more conducive
to numerical computation. Furthermore, the evolution equation for 7 incorporates
the momentum constraint. It can be shown {Knapp et al., 2002 that this modification
has an important effect on the constraint-satisfying gauge mode. [n the BSSN formal-
ism, this mode propagates at the speed of light, thus enabling it to propagate off the

numerical grid, resulting in a more stable integration.
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Chapter 3

Gravitoelectromagnetism

3.1 Motivation

31\ this chapter we propose a modification of the Standard ADM equations, with
a view to improving their stability propertics. We propose to include the Bianchi
identities to the existing Standard ADM Cauchy system. This will change the existing
system of equations and will add in extra equations. The extra equations are formed
from the Bianchi identities and bear a strong resemblance to tiie Maxwell equations

of classical electromagnetism.

The Bianchi identities and their 3+ 1 decomposition are not new but (1o the best of our
knowledge) their use in augmenting the Standard ADM cquation and the development

of a numerical code with this medified formalism, is. Firstly, we shall outline some

27
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Previous Work

of the previous applications of these equations (section 3.2), We shall also review the
equations of classical clectromagnetism in section 3.3, before we spend the remain-
der of the chapter in building the gravitoelectromagnetism (GEM) formalism. The
general form of the 3+1+GEM equations that shall be used in this work are presented

in section 3.5.

3.2 Previous Work

The work that is closest in philosophy to that undertaken here is Friedrich [1996).
Friedrich introduced the idea of using the Bianchi identities as part of a hyperbolic
reduction of the Einstein field equations. The Weyl conformal tensor (section 3.4.3)
in a vacuum can be shown to propagate according to hyperbolic equations regardiess

of gauge.

The Wey!l conformal tensor and the Bianchi identities also play a large part in the
work done tn the field of cosmology by Ellis (sce, for example Ellis [[973]). In
order to carry out the decomposition ‘we modify Ellis® approach slightly, The major
diiferences between Ellis™ approach and standard ADM may be seen by comparing

figure 3.1 and figure 2.1.

Elilis considers local hypersurfaces that are co-moving with 2 congruence of observers
who are moving through spacetime. We observe that the congruence approach does
rot require the spacetime to admit a global foliation of hypersurfaces. There is still a

strong and obvious analogy between the two approaches, as the congruence approach
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Figure 3.1: Representation of the spacetime foliation in the congruence of observers method
of Ellis. Here 1 = %‘:—' is the co-moving velocity of the observer. We consider projection of
4-dimensional quantities into the Yocal subspaces of the observers.

splits the spacetime into its three space and one time components, though only in
a local sense. The congruence method equations are complicated, however, by the
appearance of vorticity terms arising from the rotation of the observers. Thesa terms

do not appear in the ADM case due to the imposition of global hypersurfaces.

In this work we assume the existence of a global foliation of hypersurfaces {1.e. there
will be no vorticity terms in our equations). We will, however, follow the methodol-

ogy and some of the notation of Ellis.

3.3 Relativistic Electromagnetism

In order to formulate the fully covariant 3+1 form of the Eiastein equations plus

Bianchi ilentities we consider an analogy to classical electromagnetic theory. For
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simplification, we consider the equations in Minkowski spacetime, i.e.

Gy = N = -L L1 1) (31)

where the normal speciat relativistic definitions apply.

The classical electromagnetic ficld is described by the two fundamental vectors: the
electric (E) and magnetic (B) fields. The evolution of these fields in a vacuum are
described by the set of evolution and constraint equations known as the microscopic

Maxwell equations, which are {Barut, 1980]:

dB+VxE=0 (3.2)
GE -V xB = —f (3.3
V-B=0 (3.4)
V.E=p (3.5)

Here j*™ is the cumrent density and p'™ is the charge density (the (em) superscript

differentiates them from the energy flux and energy density defined in the preceding

chapter). V = (:_’%r j%\' r%) is the standard flat-space gradient operator.

X

It is then common practice to define scalar and a vector potentials:

B=VxA (3.6)

Ve =-E-dA Qa7

The definition of the vector potential, A, (equation (3.6)) follows from equation (3.4)
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and the definition of the scalar potential, ¢ (cquation (3.7)) follows from equation
(3.2). This allows us to rework the Maxwell equations into evolution equations for

the gauge potentials, to obtain

(=07 + A = —p“ - (V- A + 0,0 (3.8)
(=8 + A = =" £ YTV A +3.9) (3.9)
o i Y

where & = (555 zime zomr) s the flat-space Laplacian operator. The set of equa-

tions (3.6) - (3.9) are equivalent to the Maxwell equations (3.2) - (3.5).

In this chapter we will be deriving the general relativistic counterparts o equations
(3.2) - {3.5). In order to draw comparisons between the two theories we shall refor-

mulate the above cquations into tensorial form. We define the ficld tensor F, by

0 -E, -E; -E
£, 0 8B -B

pv >

E: -8, 0 B

E_! B" ""B] 'U I

Likewise we define the 4-potential (A¥) and the 4-current (J*)

A* = (¢, AY (3.10)
J¢ = {p, j’) (3.1D

31

-
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The definitions of the scalar and vector potentials, {3.6) and (3.7), are equivalent to
F‘uv = pl‘l‘! - aw"l” (3-]2)
The Maxwell equations may then be expressed in tensorial form thus:

HFE = (3.13)

6[‘, Fﬁy) =0 (3. 14)

Note that equations (3.12)-(3. 14) are invariant under the transformation

A# - AF 4 -‘% (3.15)

where y is an arbitrary scalar function, This gives us the freedom to specify differ-
ent gauge choices, by placing conditions on the potentials, A and ¢. Two common

examples are the Coulomb gauge:

V:A=0 (3.16)
and the Lorentz gauge:
va+rZloo (3.17)
ar

We can see from this brief look at electromagnetism that the approach to modelling a
classical electromagnetism problem differs from the approach often taken in general

relativity. In electromagnetic theory we see that we start by ascribing the two fields, E
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and B. We then see that the Maxwell equations imply the existence of the potendals,

A and ¢, which generate the eleciric and magnetic field.

"This is the opposite of general relativity where. with knowledge of the ‘gravitational
potentials’ (the metric coeflicients) onc can calculate the ‘ficlds’ (the curvature of
spacetime). By solving the Einstein equations (in this case using the 3+1 formalism)
we obtain the fields generated by the potentials (that is, we solve the evolution and
constraint equations for the ten components of the spacetime metric). The Bianchi
identities (which we shall see are analogous to the Maxwell equations) provide the
integrability conditions for the Einstein equatior:s but, traditionally, are not used in

obtaining a sofution.

The reworking of the 3+1 formalism that we provide in this chapter sees us taking
an approach that is closer in philosophy to that used in classical electromagnetism
(following the work done by G.ER. Ellis in particular). That is to say, we use the
Bianchi identities in analogy with the Maxwell equations to provide evolution and
constraint equations for gravito-electric and gravito-magnetic field. The 3+1 Ein-
stein equations, augmented with the Bianchi identities, allow us to solve gravitational

potentials, whicl in turn, generate the gravitational field.
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3.4 The Gravitoelectrodynamic Equations

34.1 A Toolkit

Before we embark on the main aims of this chapter it is worth spending a moment
considering a few quantities that we will need along the way (i.e. we must build a
toolkit for the derivation). Firstly, we consider the alternating pseudo-tensor, &,y

We define this as

Euver = - det(g) 4! 60,5025, (3.18)
D . LI (3.19)

- det(g)

The 4-volume element is then

dV 1= - det(g) dCdxdd e
= &apd d X dx"dx? (3.20)

Note that this implies gp123 = + /- det(g), which gives our pseudo-tensor the opposite
sign to that defined in the work of Ellis et. al. (for example Ellis {1973] and Ellis
[1971]).

We define the alternating tensor assoctated with the 3-volume element as

Egva = Equvalt’ (3.20)
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The 4-alternating tensor may be decomposed as

Epvap = Eyvallg + Epaplty = Emplly — Evaglly (322)

The 3-altemating tensor may also be defined in terms of the 3-metric, via:

B = Ydet(L) 31 10,0112 (3.23)
=1 o
= s 3t 1y 1 (3.29)

and it has the following important properties

I

. Enatt® = 0 (i.e. &,,, is spatial)

2. D“s;nﬁ = 0
3 gpsy =+ ydet{ L)
4. (a) Eyvu&ﬂﬂ = 3! _L[i.l..o-v..l.r]u

(b) &% =20 L1915}
(€} Eupre™™ =2 L7,

(d) £qpre™™ =31
Secondly, we consider the Weyl Conformal tensor,

1
Cuvap = VR0uyop = 290 R + 39uadn R (3.25)

. i
Civap = (4)Rum.8 ~ K4 Tvp) ~ GadumT + B'Gn[u.fz'ﬁ]vn (3.26)
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From this definition e see that the Weyl tensor shares the same symmetries as the

Riemann tensor {see, for example Misner et al. {1973]). In particular:

Cymﬂ = Cl_uv}[:rﬂ} (327)
vaaﬂ = Lapuv (3-23)
C#[mﬁ] =C [uvag) = 0 (329)

The Weyl tensor has the additional constraint that it is trace-free, t.e.
(:"J"cIuﬁ =0 (3.30)

It represents the ten trace-{ree components of the Riemann tensor in a 4-dimensional

spacetime.,

Most importantly for this work we can express the familiar Bianchi identities (again,
see Misner et al. [1973]) in terms of the Weyl tensor. We do this by utilising the

definition (3.25) which gives us the uncontracted and contracted Bianchi identities

respectively:
1
- I
A" Cpmo’ = V[,Rp]“ + Egu[vvﬁ]R (332)

where the Ricci tensor and its trace are the four dimensional quantities.

To aid with the 3+1 decomposition of the Bianchi identities we can, with knowledge
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of the Wey| tensor and &,,q4, define the electric and magnetic parts of the Weyl tensor

E, = Copptt™n® (3.33)
1 ,
B, = 5Ewsa o
= %s,,,,,c““ﬁ,n“ (3.34)

These are both spatial (E,;n" = B,n" = 0) and trace-free (E°,. = BY, = 0).

|
|
!
} as [Ellis, 1971]
|
|
|
|
r
|
|
|
|
,l Just as the Riemann tensor may be decomposed in the 3+1 formalism, so may the

Weyl conformal tensor. The remainder of chapter will look at this decomposition,

and its implications for numerical relativity, in considerable depth.

| 3.4.2 The Decomposition of the Weyl Tensor

As with any 4-dimensional tensor quantity we can break the Weyl tensor up into its
components perpendicular and parallel to the hypersurface (Z), according to the rule

(2.7), yielding

Civeg = L Covop ~ (L Covapt Wy = (L Chrapn™ Iy =~ (L Cpprght’ g

= (L Cuyart g + (L Cragpn n”Inn, + (L Crypgn'n"In,n,

+ (L Crgoet NV Inygng + (L Curegn™ndn,n,

+ (L Curaoent' n” Iy + (L Cppron™n®In ng (3.35)
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noting that & projects all free indices only and that contracting the Weyl tensor with

the normal more then twice equals zero, through symmetry.

From the previous equation we can obtain three equations that are analogous to the
Gauss-Codazzi-Ricci equations ((2.21) - (2.23)). First we consider the double projec-
tion along the normal, L Cren"n?. By using the definition of the electric conformal

tensor {3.33) and the fact that it is spatial we obtain

L Cpraoent™n” = Eyy (3.36)

Considering the single projection along the normal,
L4

L Cragn” =151 120C (337)

leads to

L Crmﬁnr = snr,&rBa-y (3.38)

The full projection onto the hypersurface (L Cpyag ---J.,{,'_I.‘JJ.LE,"J_;" Clrolvew)) Yiclds

1 Cuvap = ~Epvnagp B (3.39)

By substituting equations (3.36) - (3.39) into the decomposition of the Weyl tensor

(3.35) we obtain an expression for the Weyl tensor in terms of its electric and magnetic
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parts:

Cﬂwﬁ == sumsuﬁpg‘w -~ Eapir B’ v
. o
+ Eapor 3T My — Eya B glu + Epve B g

+ E,oMng ~ E onung + Eggnn, — Egnon, {3.40)

Now that we have an expression for the Weyl tensor in terms of the gravito-electric
and gravito-magnetic tensors we are in a position to consider the 3+1 decomposition

of the Bianchi identities.

3.4.3 The Bianchi Identities

In this section we shall obtain the 3+1 Bianchi identities in terms of the gravito-
electric and gravito-magnetic tensors. For this we will start with equations (3.31) and
(3.32), the Bianchi identities. To obtain the gravitational analogue of the Maxwell
equations we need to construct four independent, tensorial equations. By considering
the decomposition of C,,,qs. equation (3.35), we surmise that we can obtain only three
independent equations from the once contscted identity so we must utilise both the

uncontracted and once contracted Bianchi identtities for our task.

We will get one tensorial equation from considering each of the foliowing projections
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of the Biancht identities:

1
L Vrrcyww' =1 K(V[valn + S'erlvv,u]T) (3-41)

- v 1
1 (v[rc‘ura(r)"‘ =1 K(V[f7ﬂlﬁ + a-g{t;erT) nr (3-42)

i
L (VC, o in'n® =1 K(V{rme + :jgw[,vp]'l’) n'nv (3.43)

and

L (VoCparin® = L x(2a¢m[“V"Tﬂ” - %SMTV"T) nr (3.44)

where we have used the Einstein equations, (1.1), to replace the Ricci tensor in equa-

tions (3.31) and (3.32) with the mass-energy tensor, Ty

We shall sketch the outline of the derivation by considering the left-hand and right-
rand sides of the above equations separalely. We first consider the left hand side (i.e.
the projection of the Wey! tensor) of equation (3.41). We replace the Weyl tensor
with its definition in terms of the gravito-electric and gravito-magnetic tensors, via

equation (3.40), and expand the derivative using the Leibniz rule, equation (2.15).
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We also make use of the identity (2.20) to replace terms of the form Vyn,. We obtain

-.L vamr = -L‘u.r--l-..',.ﬂ.J-‘_.‘Ii [—VU(Srnws;pr‘m) - Sf”wg"}f"'(K)
-
tEmu B gt 'hnaV"‘(sﬂ,wpm‘)]
+2 LT (Eqr e ~EquaB . K,)

+ Sy B Kora (3.45)

where the dot denotes the projection of the covariant 4-derivative in the direction of

the normal, i.e. for an arbitrary rank-2 tensor W,,,

Woo= neV"W,, (3.46)

We utilise the properties of the alternating pseudo-tensor (section 3.4.1, properties 1,2
and 4} and equation (3.22), to simplify this further. It follows from the defirition of
the the 3-covariant derivative (equation (2.13)) that the V7 £°,, in the above equation

may be replaced with D" E” .. Thus equation (3.45) becomes

Y

. 24
-2 (twrr(K)"' Buw _BW'Y Hon,

+ 2By K, + Bk’ Low B Kro] (347

Note we have also used the definition of the 3-covariant derivative, D,,, in terms of the
4-covariant derivative (2.13) in order to express the above equation in terms of spatial

quantities and operators only.
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Using the definition of the Lie derivative (2.32) along with equation (2.20) we can

identify

all

Buw= £4By + B(P(QKU-“) + Boangy 0 (3.48)

In order to highlight the mathematical similarities between the 3+1 Bianchi identities
and the microscopic Maxwell equations we make use of two important definitions, as
given by Maartens [1997). The spatial divergence of a vector and a rank-2 tensor are

taken to be

div¥ = DY, (3.49)

divM), = D'M,q (3.50)

respectively. Similarly we use the following definition of the curl of 2 vector and

tensor:

curl(V,)) = &,,3D°V? (3.51)

curl(My} = Eape DM, (3.52)
The curl and divergence are related via [Maartens and Bassett, 1998}

i .
curl(M,,) = £,5,D"M°, - -2-&:,,,,,,(dtvM)” (3.53)
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These relations allow us to reduce equation (3.47) to

[ 34

L Vo-cpwrrf =&,y w[£n Bow - Cllfl(Em,,) + zgtry((rEJ n

w)
|

- ;Butva‘rErp - 231,,_‘_,!!’(}() + 3B‘erﬂ‘“

+ ZBg('Ko.w- J."w Bo-pKap] (3-54)
Using the same techniques, we can express the left-hand side of equation (3.42) as

i
L (VIC qodn” = = [£,Eq, + curl(B,,) + Esa‘mD,B"“‘

— 280-‘”{“80. ;lw +SE()"HKU“ + ZEO'H Kwu

H)

= Loy EgoK™ = 2E,,tr(K)] (3.55)

The left-hand side of equation (3.43) is expanded using the Leibniz rule for deriva-
tives, L.e.

L (VICpar)'n” =L [V9(Cpr?'7%) = Cpro VI (') (3.56)

We then take the above equation and expand out each term, again using the Leibniz
rule. We utilise the definition of the gravito-electric tensor {3.33) the decomposition
of C,ug, €quation (3.40), and equation (2.20), which relates the 4-derivative of the

normal vector and the extrinsic curvature. This leads to the following expression

L (V' Chyao'n® = D7 E, + B K™ (3.57)

We expand equation (3.44) in the same way, taking note of the definition of the
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gravito-magnetic tensor, equation (3.34}, to obtain

i Sww(vcrc,umr)"r = *"?.Da-B‘ru - 25(!176)’&,Kwr (3.38)

For each of the right-hand sides of the contracted Bianchi identities, (3.41) - (3.43),

we substitute the 3+ decomposition of T}, (cquation (2.25)) and use the properties

of &,,, to obtain

l

Lk (Vthm« + -‘Jnlvva) =

|
3 Spvw[sqw(D‘}Hra - erpu) - —armuDrp (359)

3

» o™ (33
[”,mr =Nur n R, —"p, N n,

R X

1
1 K(V[TTJ,]“ + a—g‘,lrvpl7") o=

a
+ 2](}1 Ny —Kaup? ~— erthry = Ktr,uP

i .
+ 3 Lop 4D, (3.60
1 cu K2 R S L .
dox v'[1"."’:;:]w + 'j'gw[rvp]'r nn =‘,;[3'Dvp —z.flJ‘Kv +h—jel By tpon,

+ 7, R+, P+ D,P] (3.61)

Similarly, the right-hand side of the uncontracted Bianchi identity yields

§
L x(2 ,,p[(,V"'Tri‘" - 3.«:1,.‘"7"7) n" =KE e[ KT — D7 j4) (3.62)

We can use the definition of the curi of a tensor {3.51) to modify equation (3.59). We
can also simnplify equation (3.60) and equation (3.01) by considering the relationship

between the Lie derivative and the * operator. By definition of the Lie derivative and
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equation (2.20) we have

;) = £up (3.63)

» .Lr

Ju = Enfu— JoVun” =£,j, + j¢(Ku“ +hn,n) (3.64)
. 1 o
M = Enllyy = 2054, Vi)tt” = £a10,, + 205, K, + 2mgquityy 1 (3.63)

The right hand sides of the uncontracted Bianchi identities may then be expressed as

1
4 K(VIVTM" + -;-g,,[vv,,,r) == f-s “leurl(m,,) + -;s,,,,.‘.l)ﬂ;r“"’

2 H
+ Eranj KO\ + -;-smmD" ol (3.66)
L K(V[,Tpl‘, + %g‘,[,VHIT)n" =§[£,.:r,‘ﬂr + 7. K7, + 2 :'zu) ~Ku(P + p)
# Duja+ 3 Lo ) (3.67)

2

300 = JoK] +p n,

1 K ..
L K(vl:'Tﬂlw + 'igtuffvﬂlr) n'n® =;l£n}v +

+ Ty » 4 n, P+ D,P) (3.68)

Equation (3.62) remains unchanged.

3.44 Conservation Equations

Before we combine our left-hand (equations 3.54) - (3.58)) and right-hand (equations
{3.66) - (3.62)) sides, we choose to simplify ihe right-hand sides somewhat. You will
note that equations (3.67) and (3.68) contain propagation terms (e.z. £,j,). We can

simpiify the propagation terms involving the hydrodynamical quantities by consider-
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ing the twice contracted Bianchi identities,
v, 7% =0 (3.69)

which give rise to the conservation equations.

We derive the continuity equation from projecting equation (3.69) in the direction of

the normal vector, i.e. n7V, T, = 0 10 obtain the following [York, 1979}

40 = =D [T + 17K g + (P + OUH(K) = 2ju 1 (3.70)

The generalised Euler equations are found from the projection of the twice-contracted
Bianchi identities tangential to the hypersurface, 1%, V,7%; = 0. We obtain [York,

1979]

£nju = =Dyt = DyP + jutr(K) = Hau . —(P+p) 1, G.71)

Thus we see that we can obtain evolution equations for two of our hydrodynamical
quantities, the energy density and energy flux, directly from the twice contracted
Bianchi identities. In order to specify our isotropic and anisotropic pressures we need
exira information for a given matter configuration, for example an equation of state.
As we will be dealing only with vacuum spacetimes in this work, we will not go down
the path of obtaining explicit equations for the pressure terms. In general, the question
of finding an appropriate equation of state for relativistic fluids, such as in the interior
of neutron stars, is non-trivial and deserves a thesis worth of explanation in itself. It

was, however, worthwhile to consider the generalised continuity and Euler equations
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as we wish to present a prescription for 3+1+Bianchi identities that is applicable in

general spacetimes.

3.4.5 The Gravitoelectromagnetic Equations

We substitute the continuity equation, (3.70). and Euler equation, (3.71), into equa-
tions (3.67) and (3.68). We are then in a position to combine equations (3.54)-(3.58)

with equations (3.66)-(3.62) to obtain

D (Eyy + Jr,m) =Dp ~ £y (B + —E“"";,.)K" (3.72)

1 K K T -
D (BU'p + ;so'yy.}y) = strpy(Eyr + ‘,')"'JTY,)K (3.73)

These constraint equations are used to simplify the remaining two equations, which

become

EnEp+eurl(By) - 285uuBTy 1 +5EyuK, = Ly EgyK™ = 2Eir(K)
K ) I
= ‘E[ffo—m Kv)o‘ - £ﬂﬂuy - DU-"-}V) "'J(}! }1,, 'l‘(p + P)(K‘m, pv n'(K))

1
+ 3 Loy (Do J7 = rge KT 4 2f7 "cr)] (3.74)

K -

- 23,,,”(1()- Ly B K7 =0 (3.75)
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It can be shown [Friedrich, 1996] that the equations above, when considered in vac-
uum, represent a symmetric hyperbolic sysiem provided @ > 0 and 1, is positive
definite. Friedrich proposed the addition of the gravito-‘Maxwell’ equation system,
(3.72)-(3.75), to a hyperbolic formulation of the ADM equations, to form a complete
hyperbolic evolution system. We have, instead, chosen to augment the Standard ADM
equations with the gravito-‘Maxwell’ equations, in order to keep the resulting system

relatively simple and to aid us in drawing comparisons with Standard ADM.

In understanding the above equations, we make use of the similarities between the
above equations and the classical Maxwell equations, (3.2)-(3.4). Note in particular,
that if we choose a perfect fluid equation of state, where m,, = j, = 0, the cquattons

(3.72)-(3.75) reduce to the form

D’ E,, + [field coupling terms)| = %D“p (3.76)
D’ B,, + [ficld coupling terms] = 3.7
£,E,, + curl(B,,) + [field coupling terms] = (P + p} K,,, - % L. tn(K)) (3.78)
£48,, + curl(£,,) + | field coupling terms] = (3.79)

Firstly, note the additional ficld coupling terms that appear in the gravito-‘Maxwell’
equations, in comparison with the electromagnetic Maxwell equations. These arise
for two reasons, namely the the tensor coupling of the gravito-electric and gravito-
magnetic fields to the extrinsic curvature (K, and #r(X)) and to the gauge functions

2
(n terms).’

*Remember that # = D¥ In{er) by equation (2.5).
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By simplifying to a peifect fluid, we are able to dvaw an analogy between source
terms in classical electromagnetism and general relativity. By compiring equations
(3.76) and (3.5) we can identify the gradient of the energy density, D,p, as a gravito-
electric charge density, in comparison with p®™ in electromagnetism. We see alsg
that the general relativistic source term (P + p}(K, ~ % 1,, tr{K)) is analogous with
the concept of charge density, j*™ in the classical Maxwell equations. See Maariens
and Bassett {1998)] for a detailed discussion of these analogies in 1+3 formalism of

Ellis.

3.4.6 Gravito-electromagnetic Potentials

The next step is to define gravito-potential terms, in analogy with the electromag-
netism case. In classical electromagnetism the potentials are constructed from the
Maxwell equations. In our case, however, we cau define these more easily through

the Codazzi and Ricci equations (2.22) and (2.23).

Firstly we substitute the definition of the Weyl tensor (3.26) into the Codazzi equation
(2.22). We then use the 3+1 form of 7, (2.25) and equation (3.38) to obtain

K «F
By = EoruD"K," = >0y ] (3.80)

Note that B,, is, by definition, irace-free. This implies that we should split the right

hand side into its trace and trace-free parts in order to get a more ‘natural’ expression.
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To facilitate this we express the extrinsic curvature as
> l !
Ky = Ay + 3 Ly tr(K) (3.81)

where 1r(K) = K7, and 1r(A) = 0. The momentum constraint (2.29)) in this notation
is

D, {A™ — -_2; Lo K) =k} (3.82)

To simplify equation (3.80) we utilise equation (3.33), which relates the div and curl

operators, and the trace-split version of the momentum constraint (3.82) to obtain the

identity
Eery)A,T = éurl(A,,,.) + %a‘,wl)"’rr(ﬁ;’ )+ %a,w N (3.83)
This identity and equation (3.81) reduce equation (3.80)
By, = curld,, (3.84)

which defines our tensor potential 4,,, (compare to the definition of the vector poten-

tial in electromagnetism, given by equation (3.6)).

We now use the Ricci equation (2.23) along with the Weyl tensor in terms of the

4-Riemann tensor and the mass-energy tensor (3.26), the 3+1 decomposition of T,
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(2.25), and equation (3.39) to show that

1 1 1
Epv =y -L;.l\' (A(r'r + = Lyr rr(K))(Arn + = 'LOT IF(K))

3 3 3
o % 1K) -%‘-“Qm. + -;-Am,rr(K) + %(J..:%m)
= £4r(K) + (A, + % L, 7 (K Ay, + El,; Lo tr{K},
b 3D Dy~ 5 Ly DoDF ) (3.85)

Using the definition of the Lie derivative, we can derive the following helpful identi-

ties

. 2
LA= By + 24,547 + 34K (3.86)
2 . .
£;|K#y = -E”flpy - %APVK + ?;' -J-J[VK ""% -L‘np K- (3.87)
Equation (3.85) then reduces to
1 I of
E}w = §[£llAp\' - "3' —va (J- £ﬂAtrﬁ)]
{ |
+{DADy) = 3 Ly D" (D)) + 0, + FAwK (3.88)

Note that £,A,, — % Ly (L9 £,4,5) is the trace-free part of £,4,,. If we compare
equation (3.83) with equation (3.7) we can identify the quantity D,a as a vector po-

tential, in analogy with the scalar potential, ¢, in classical electromagnetism.

Furthermore, we can draw an analogy between gauge choices in general relativity and
electromaguetism. The gravitational analog of the Coulomb gauge (3.16) in electro-

magnetism is DA, = 0. From the momentum constraint (3.81) we see that this is
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equivalent to the general relativistic gauge choice t(K) = constant. A widely used

example of this family of gange choices is maximal slicing, where
tr(Ky=0 (3.89)

One of the most important points of the last few sections is that we can identify
potentials with those in flat-space electromagnetism, just as we can identify the Weyl
tensor with the electromagnetic tensor F, . In summary the key comparisons between

quantities in electromagnetism and general relativity are

Electromagnetism | General Relativity

Field Tensors

F ab Cuva,ﬁ

Eﬂ = F“bﬂb E“ﬁ = Curﬁpnr’ro

=} . -1
Ba = Esab(-Fb‘ Baﬂ - ESWUC"W,&,,HY

Poentials
A, A
& D,
Source Terms
jem (P +p)A,,

P[em) D” p
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3.5 The Modified 3+1 Equations

In chapter 2 we revicwed the 3+1 formalism for solving the Einstein equations. The
preceding parts of this chapter have outlined the Bianchi identities in terms of the
gravito-electric and gravito-magnetic tensors. We have seen how this allows us to
make a direct analogy between general relativity and electromagnetism, We are now

in a position to construct the numerical formalism.

The main modification to standard 3+1 formalism is made to the evolution equations
for the extrinsic curvature, K,,,. Because the gravito-electric and gravito-magnetic
tensors are by definition trace-free, we split up our standard evolution equations into
trace and trace-free parts. By breaking up the evolution of the extrinsic curvature

(2.44) we obtain

i t
£nA,uv - "5 -va (-LOT EnAUr) =l3)va - Z(Aﬂﬂi‘ya = ,'3' -va AH‘TAUT) + ';‘Apvfr(K)

1 {
1 1
£air(K) = (H(K)Y + AgrA™ = Dy D7 + %(p +3P) (3.91)

where PQ,, = MR, - 1 L., PR is the trace-free part of the 3-Ricci tensor.

We have also employed the Hamiltonian constraint (2.28) in the equation for the evo-
lution of tr(K), thereby removing the need to use the Ricci scalar explicitly in this
equation. In fact, we can remove the Ricci tensor entirely from both the above equa-

tions, by utilising the definition of the gravito-electric tensor in terms of the tensor
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potential (3.88) to remove Q,,, from equation (3.90). We are then left with

1 1
£nA,uv - ‘5 Loy (-Lm‘ £,A,1) =Epv - (AmrAy(r - '3' Lo A(rer*r)

| i X
- ;;(D,,D,,ar "3 Ly DD, ) - 5”‘"" (3.92)

Additionally, if we substitute the Lie derivative of A,,. from equation (3.90), into
equation (3.92) we gain the following constraint equation relating the gravito-electric

field, E,, and the trace-free part of the 3-Ricci tensor, ¥'Q,,,:

E,.+ gnm, =00, — (Ad,” - {- Ly, AgsA") + %Amlr(l(’) (3.93)

Note that the gravito-¢lectric tensor appears in the evolution equation for A, (3.92).
Thus we need to provide an evolution equation for E,, from our gravito-‘Maxwell’
equations (equation (3.74) to be precise). For this equation we need to know the
gravito-magnetic tensor on each hypersurface. We have two choices here: we may ei-
ther utilise the constraint equation (3.73) or the evolution equation (3.75)". We choose
to evolve B,,. This avoids curl(curl(A,,)) terms, ensuring our system of equations is

first order in both time and space.

The final form of the ADM + Gravitoelectromagnetism system is outlined below. The
system involves the evolution of L;j, A;;, tr(k), E;; and B;; subject to the cornstraint

equations and the gauge variables @ and g~

*though we shall sce in the next chapier that this choice is not so important for this work.
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» Evolution Equations

(O — £;3) L= —2(1‘[;‘\,‘1‘ + % Lij tr(K)} (3.94)

1 K
@~ £ =alky - 5 Ly ApA® = A A"~ 7l

1
- D,-Djﬂ’ + '_E 1ij D, Der (3.93)

&, — £Eg0r(K) =a(%fr( K) + ApA® + %(p +3P)} - DD (3.96)

1
0~ £)E;; = a[-curlB;j — 5E,;A ﬁ’" + EE} #r(K)

K i 1 o
+ Lij E,.A™ + 'i'(’rmtiA,)m + —JT,‘J‘U'(K) - = Ly TpnA™ = fnﬂ',‘j

3 3
-4 l bl
— Dgjp + 3 Li; D j™ + (P + p)A;5)]
. .

(0, - £3)B,'j = (I{Clll'l( E,-j + ;EIT;J;) - SB,,,(,‘Aﬁm + %B.-j!r(K}

+ L BunA™ - %SmnﬁAJ)mjn] - zgnm(iEﬁmD"(l’ (3.98)

plus the conservation equations (3.70) and (3.71) and a given equation of state.

o Constraints

. 2 .
2kp =R+ 3rru()- = ApsA™" (3.99)
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2
Kji = Dyg(A™; = 3 L% er(K) (3.100)
By = curl(Ay) (3.101)
EU + %nij = (3)Qi'j - (At'uAj“ - 'jj:' J-l'j AabA“h) + %Aij”.(K) (3.102)

We have seen in this chapter that it is possible to augment the Standard ADM equa-
tions with the Bianchi identities, writtzn in terms of the gravito-electro and gravito-
magnetic conformal tensors. We will refer to this system of equations as the gravito-
electromagnetic or GEM formalism. For the rest of this thesis we will be concerned
with the L. erical behaviour of the GEM formalism, particularly in comparison to
the Standard ADM. Before this we shall take advantage of the symmetry of the nu-
merical spacetimes under consideration in this work and reduce the GEM and ADM

equations to the form used in the numerical simulations presented later.




Chapter 4

One-Dimensional Test Code

Construction

311 order to properly evaluate the usefulness of GEM for numerical relativity appli-
cations we shall spend the remainder of this work in the construction and application
of an algorithm designed to compare the performance of our modificd evolution equa-

tions with the Standard ADM equations as presented in chapter 2.

It is important when undertaking this kind of comparison, to make the workings of
the test code as transparent as possible, assuring the reader that the performance we
present is “real” and to allow better understanding of where different aspects of the
performance are coming from. Thus, in this chapter we shall discuss the specific
form of the equations that we use in this work and the development of the lesting

algorithm. On the former point, we will be restricting ourselves to one-dimensional,

57
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vacuum spacetimes for the rest of this work. Although a great deal of current researcht
is focused on the solution of general three-dimensional spacetimes, the study of one
dimensional test cases will still provide us with insight into the stability propertics of

a given numerical formalism.

4.1 The One-Dimensional Equations

Because we limit the range of spacetimes considered in this work we can simplify our
equations somewhat. For clarity we shall lay out the GEM equations {(and Standard
ADM equations for cos..parison) as they are to be used in this work. We shali do this
in general and note that any changes specific to a given test will be ontlized in the
appropriate section. We assume general coordinates (¢, ‘) and the standard 3+1 line
element:

ds* = (@’ = Buf")dr + 2pdx'dr+ Ly ddy @D

or, alternatively, we can express the 4-metric components via

[ _(@-B.8" B B P
ﬁl
G =
p |4
| p

As we are dealing with one-dimensional spacetimes, the 3-metric is diagonal for all
the cases we consider here. Similarly, the only non-zero componeat of the shift vector

will be B!. Futthermore, in all cases we have Ls=1313, S0 our metric has only two
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independent components, which we shall denote as L, and L2°. Thus our 3-metric

takes the form
L= diag(Ly, L2, La) (4.2

This also means that we are only left with the following noa-zero connection func-

tions. !

U= 5= (4.3)
O, s Ol s (-2 (4.4)

O, = O, =~ () (4.5)

and Ricci tensor components:

\ __(%)3 1 +2 (-%"-’f?) Laly - (?TH‘) (%?f) L2

= ) i Y
' d1p) As Fis 2
Gp ! “(‘T?)W +2 (lﬂxl)!)"l" -2 (L) 47
»=- 1 (L )3 (+.7)
I
-2 (Qﬁu)(ﬂi.,) . _(m:, ):_;_ “2 1 (Lyy) +4 (‘33*")1_1«_;_
oo 2o )\ad) R TA G ) AT s An iy Gt ) Ly

2 (L) (L

(4.8)

As one of our spacetimes is best modelled using a conformal factor we will set up our

*Note that in the case of spherical symmetry, we have L= diag(.L ;. L2, L3 5sin8). By setting up
our finite ditference nodes along the line @ = § we obtain Lyy=14;.

'Again, in the case of spherical symineiry, we calculate the connections aad then let & = ftwo
simplify,
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general equations to allow for this. That is

L= W1 = Wdiag(Ly, 1n, 1)

= Wdiag(1,, 1, 1) (4.9)

where W is a function of x! only (see Chapter 6). The symmetry of the spacetimes
considered allows us to define the complete one-dimensional evolution variables for
each scheme as:
GEM

UPD = (1), 13, A A tr(K), By By 0, B

Standard ADM

(L!(adrm = (111 12‘ k" F:Z.(-”Rh (J)Rllaiﬁi)

where each of the variables is a function of (¢, x!) only, and where?

Ky = Pdiag(R\, K2, K>) (4.10)

Aij = PHK; - -é-ifj:r(x)) = Ydiag(A,, Az, As) (4.11)

Ei; = diag(E\, E», E3) (4.12)

3 R;= diag(m Rl,‘”R;,m R>) (4.13)

mQU = lS)Rjj - %\P-ll‘_jtJ)R = diag{le ‘{3"Q3‘ U}Qz) (4_14)
B =p (4.15)

Note that the electric conformal tensor, £;;. is unchanged under conformal transfor-

#Note that for the remainder of this work, £, and £; denote components of the gravito-electric
tensor, not the electric field.
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mations of the 3-metric.

One obvious thing to note here is that 8;; is tot included in the one-dimensional
evolution scheme. This is because Bj; is identically equal to zero for all the cases
considered here. To prove this we consider the definition of the gravito-magnetic

tensor

BU' = (,'IH‘!A,'_,‘ = Eah{iDﬂAﬂb

At

[Lin ™ DuA jpt Lju £ DyAip]

I o P -

= 6™ [ Lim @uAjp = T Aup) L (Buis = VT, A)) (4.16)

By using the fact that metric and extrinsic curvature are functions of ¢ and x' only and
by substituting the form of the evolution variables given by (4.9) and (4.10)-(4.14)
into the above definition (4.16), we can show that each component of 8;; is ilenticaily
equal to zero. This result holds in spherical symmetry or any spacetime where we can
reduce the metric (o the form L2=133. Early code tests evolved the gravito-magnetic
tensor to check this constraint and it was found to be satisfied to machine precision,
There is no reason, therefore, to include it in one-dimensional tests. It would be
interesting, however, to investigate its influence in higher dimensional spacetimes.

That is, however, beyond the scope of this work.

The evolution equations as they will be applied in this work are, therefore, given by:
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GEM Evolution Equations

. {
alL, =ﬁ10;.l.| 2y (.‘1\ -+ 3.!..]"‘(’()) + 4ﬂI.L1-(?"-P- + 2.1.161[3!
l . "'

-¥4D, Dy + % D, Do + 48'4A, %Y +2A4,0,8'

LI:A) 5(«4 3) )
3 (..l:|)l 3 _L\
Y

,Aa = ﬁ 5 A'} + (l'(\P_JE" -

- \P"“DzDga‘ + %igD‘,D"Q + 4ﬁlf\1—'\£’-
b L, (A 24
= 16 ¢ K + 1 (-_t - st e k) ] = D&l
-.I dar(K) = B dur(K) + ¢ 3 rK)y + ay Da
4 1 1L EA 4B,
HE, =g —Et 4 = +2 '
VE\ ﬁ5|51+0'(3 1r(K) G I, ) E\0\8

1 IEAy  3E\A,
hE+ = ‘6 - =E.tr(K) + - - -
k2 =p ’E"+“(3 A i S )

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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where
1
DDy "(3[) -z (—-—(6..1..) + \Péﬁ‘P) dr (4.24)
. tfd 41
Db =‘5 (:c’). 1+ —1-@61‘1‘)61(7 (4.25)
| D|Dlll’ 20Dy
o 2
D D(r-‘{“( T ) (4.26)

For comparison, we include the Standard ADM equations as they will be implemented

in our benchmark code:

Standard ADM Evolution Equations

1y =p'L, -2k +48'1, %‘f +21,0,8 (4.27)
1= d|ll.
O,1 —}3 01y~ 20k +43° 1 ;— 7 (4.28)
a‘K/l =ﬁ‘al R’l + a,(\l}—-l(l:‘)Rl) (Kl)~ : l\ )
( a) J-?.
- D;Ditl' + 4ﬁ I\IT + 2K1(')lﬂ (4.29)
8,K>=p'o,Ks + 0’( PR, + _LK )
)
- ¥ DsDsr + 48 Kﬁ'PlP. (4.30)

where the derivatives of the lapse function are as in (4.24) - (4.26).

dEPeT
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4.2 Coding Choices

As well as outlining the form of the equations used, we must comment on the general
choices of numerical techniques used to integrate the above equations. We do not con-
sider the wide range of cuttirg edge numerical techniques under development, such
as fixed and adaptive mesh refinement and black hole excision techniques (for exam-
ple see Alcubierre and Brilgmann {2001]). As we are trying to ascertain some of the
properties of the above equations, and not necessarily chasing long-term evolutions,

we use simple and transparent numerical techniques where possible.

The initial conditions are constructed on a one-dimensional, Eulerian grid. For the
GEM system, 2™, we evolve all the variables, except the gauge variables, « and
B, according to equations (4.1 7)-(4.23) using a numerical integrator. For the Standard
ADM system, 24™ we evolve all the variables except the gauge variables, o and
B!, and the 3-Ricci tensor components, Ry and Ry, according to equations (4.27)-
(4.30). The 3-Ricci tensor is found by equations (4.6)-{4.8) at each iteration of the
time-stepping algorithm. The methods used to calculate the gauge variables will be

outlined separately for each simulation.

To guard against confusing the numerical effects with physical results we have car-
ried out each of the simulations with two ditferent forms of time integrator. We use an
iterated Crank-Nicholson (CrN(2)) algorithm. with two iterations [Teukolsky, 2000].
This method is second-order accurate in time. It is considered to be a standard inte-
grator within numerical relativity. There has been some concern that it can exhibit

dissipation [Bona et al., 2003}. There was no evidence of this when we checked the
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Crank-Nicholson results against our second choice of integrator. a fourth-order in
time Runge-Kutta algorithin (RK4) [Press et al., 1996]. The Runge-Kutta integrator
is a widely regarded as a robust integrator for both ordinary anc partial differential
gquations, though it is relatively inefficient and for this reason is not often used for

3-D, large-scale simulations in general relativity.

For the most part we use centred, second order derivatives for the spatial derivatives,

i.e., for some variable u(x') defined at node { by the discrete value u;

o i = Uiy 2
= + X'y 4.31
axt 2Ax! Oax) @30
02" Winy = 20; + Hie) 1.2
= o 4.32
@) Gz TR 3:32)

The only exception is outlined in chapter 7 where the inclusion of a shift vector leads

to advection-type terms in the equations that are dealt with using upwind derivatives.

We are now in a position to study the behaviour of the GEM system of equations

when applied to a series of simple testbed spacetime simulations.

—




Chapter 5

Slicings of Minkowski Spacetime

5.1 Finding ‘Simple’ Test Cases in G.R.

31 is only fairly recently (within the last ten years) that the focus of research in
numerical relativity has shifted to the yuestion of stability. Therefore, it is only re-
cently that code tests in numerical relativity have been designed to highlight stability

features {along with standard accuracy and convergence testing).

In this chapter we consider various slicings of the simplest spacetime, Minkowski

spacetime. The Minkowski line-clement is given in cartesian coordinates ([t, x,y,2])

as

-

ds® = ~di* + dx* + dy2 +dz° (5.1)
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and in spherical polars ( [¢.1,8,¢] ) us

ds* = ~df + dr* + rd6* + ¥ sin°(0)d¢’ (5.2)

As these metrics represent simple four-dimensional flat spacetime, we may be led
to the assumption that the numerical evolution of Minkowski space would be trivial.
However, this is not necessarily the case. In fact, for nontrivial slicings and coordi-
nate choices the Minkowski spacetime can exhibit coordinate singularities [Bernstein,
1993]. We shall investigate this idea here, with a view to evaluating the GEM algo-

rithm’s response to non-trivial coordinate and gauge dynamics.

5.2 Minkowski + Noise Numerical Tests

Oue of the simplest comparisons between the GEM and Standard ADM algorithms
is constructed by supplying initial data from a Minkowski spacetime, plus small am-
plitude . andom noise, simuiating smaltl deviations from exact initial conditions. This
tests the growth of unstable modes in both systems and are set up according to Alcu-
bierre et al. [2003a). ai.hough we use spherically symmetric coordinates and a one-
dimensional, not three-dimensional stmulation. The test is designed to highlight the

kind of gauge mode instabilities outlined in section 2.4.

We have the freedom to choose our gauge, through the freely specifiable lapse and

shift functions. We choose zero shift vector and define the lapse using the harmonic
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slicing condition, as outlined below. Harmonic slicing is onc of the Bona-Masso

family of slicing conditions {Bona et al., 1995], given by the general formuta:
da = =" flar(K) (5.3)

where f(a) is an arbitrary function. Harmonic slicing corresponds to the case f(a) =

1, whereas the “1+In™ sticing is occurs when f(«) = L/a (see section 6.5).

By considering the evolution of the 3-metric (2.46) we can see that, with zero lapse.
A(det( L)) = ~(det( LYY (atr (X)) (5.4)
Using this we can integrate (5.3) to obtain

a = N(t, x¥) yJdet(1) (5.5)

where N(t, x') is an arbitrary function of (¢, xf). usually chosen to be time-independent
for simplicity of use and understanding. To implement (5.5) we shall make the com-

mon simplifying choice N1, x) = 1.

These slicing conditions have been a source of interest in numerical relativity over
a number of years. They have been widely used in the development of hyperbolic
numerical relativity formalisms. Their attraction lies in the fact that the spacification

of the gauge according to equation (5.3) allows the reduction of the Einstein equations

to a hyperbolic system [Reula, 1998).

o
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Our motivation is slightly different. Using harmonic slicing allows our coordinate
system to “respond” to changes in the spacetime, as opposed to a non-dynamic choice
such as geodesic or maximal slicing (see chapter 6). By choosing a dyn;.tmic lapse
we allow numerical noise to be propagated through space and possibly, depending
on boundary conditions, off the grid. This has the potential to avoid the kind of
¢oordinate ‘focusing’ singularities discussed in Bernstein [ 1993]. Although the Bona-
Masso slicing conditions are better suited to the problems discussed in this chapter,
they are not impervious to coordinate shock formation. For example see Alcubierre
[1997] for a study of the behaviour of hyperbolic formalisms when coupled to these

slicing conditions.

To set the initial conditions, the line element given in (5.2) was inodified by adding
small amplitude random noise (¢;) to L; and 1. The random noise was calculated
using a standard subroutine “ran2” given by Press et al. [1996]. The spherically sym-
metric grid was centred on r=10. This meant that the co-ordinate singularity at r=0
is avoided. Unfortunately it also meant that we were unable to use periodic bound-
ary conditions, which are the most practical way of avoiding errors due to boundary
noise. Instead we used a simple. static boundary value choice, where one ghost-point
was initialised on either side of the grid on the initial slice, and this value was kept
constant throughout the simulation. It was found that this *“rough-and ready™ bound-
ary condition did not cause unacceptable crrors and the boundary did not affect the

dynamics on the inner grid unduly.

The grid and time stepping choices used were : r € (9.5, 10.5). dr = 1/{50p) (no. of
grid points = 50p), and dt = 0.01p. where p = 1,2,4,8 is a scaling parameter. The
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purpose of this is allow us to increase grid resolution (to test convergence of errors)
while keeping the ratio di/d.x constant (d¢/dx = 0.5 in this case). This means that any
errors that respond to the resolution are etrors arising from gauge modes, not Courant

instabilities.

The amplitude of the noise was chosen to vary within the range
€; € [~1079/p% +107'9/0°) (5.0)

to keep the perturbation within the linear regime, at least at first. The evolution vari-

ables were initialised as follows:

o ¥ = |, ie. notaconformal metric

J_1=I+E|..Lz=l'2+61_

o Ky =Ky = A=A =r(K) =0, i.e. atime-symmetric initial slice.

¢ Ricci Tensor terms calculated from the 3-metric using (4.6) to (4.8)
o E, =90, E; = W0, using the constraint equation (3.93)
sea=], =0

To compare the two schemes and track the growth of errors, we consider a few key
variables. Consider a function W, defined at the discrete nodes i = 0 — nx by the

values W;. The L normof W is

LW = ,fz;i:;*(w,-p (5.7
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The L, norm is just the maximum value of W; on the grid. We track the L; and Lo
of the Hamiltonian (K) and mowmentum (M) constraints as well as key kirematic
quantitics, such as t{K) and a. To track the growth of these errors, we output ths
constraint information at ecach light crossing time, which is simply the time it takes
information travelling along a null geodesic to travel the length of the grid. Thus, for

a given metric we have

AL = (g A + gud6® + gsad*) gy (5.8)

and A8 = A¢ = 0 for radially travelling information in our 1-dimensional spucetime

and Ar = 1 is the length of the grid

Figures 5.1 and 5.2 show us the evolution of the L; norm of the Hamiitonian and
momentum coastraints respectively. Here we have used the second order iterative
Crank-Nicholson time-stepping routine (CeN(2)). The GEM case clearly shows a
growth of the initial emors in the constraints. The Standard ADM case shows a decay
of the errors. This is not what is seen in similar three-dimensional simulations (for
example Alcubierre et al. [2003a]) which cleatly demonstrate that the Standard ADM

equations exhibit exponential growth of these errors.

We aiso see that the deviation of our perturbed spacetime from Minkowski {figure 5.3)
is essentially constant for Standard ADM and grows with time for GEM. Also note
that the violation of the constraints and the magnitude of the errors in the evolution

variables increases with increasing resolution in both cases, as is expected for pure

gauge phenomena.
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Initintly, the growth of the constrainis using the GEM method are discouraging. Up
until 1000 crossing times. however, the errors do not grow exponentiatly. We find that
the momentum constraint grows linearly, whilst the error with respect to Minkowski

spacetime and the Hamiltonian constraint both exhibit quadratic growth,

If we consider the growih of the errors throughout the first half of the first crossing
time, we can glean some insight into why this happeus, in this particular case. Figure
5.4 shows the evolution of the extrinsic curvaturd on the central portion of our grid
(p = 1) for both methods, from the initial conditions through the fivst half crossing

time.

From this we sce that while the noise in the ADM case is propagated and “spread
out™ over time, the noise on each grid point grows on each step for GEM. and does
not propagate through the grid. This is purely due to the fact that the only spatial
derivatives lelt in our GEM equations (4.17 - 4.23) are derivatives of the gauge vari-
able, a. Due to the fact that our lapse function remains constant (¢ = 1} across
the grid for all time, our set of evolution cquations reduce to ordinary differential
equations and consequently, each grid point is “cut ot from its neighbour, stopping

information transmission across the grid.

The Standard ADM results recorded here could be attributed to a number of fac-
tors. Firstly, the simplified form of the one-dimensional equations effectively remove
a number of the degrees of freedom that are present in the three-dimensional sim-
ulations (for example, we are implicitly demanding that afl ofi-diagonal terms are

identically equal to zero). More interestingly, it could tell us something about the
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stability criteria for the ADM equaiions.

It is logical to assume that the ratio dt/dx, is related in some way (perhaps not triv-
ially) to the Courant-Friedrichs-Lewy (CFL) condition {Courant et al,, 1967] for cur
equations. If we vary dr/dx we see markedly diiferent responses, particularly in the
Standard ADM case. To test the relationship of dt/dx to stability we re-ran the p = 2
code, keeping the same spatial resolution (and hence the same initial noise to back-
ground zatio) but varying the temporal resolution. The results are summarised in table

5.5

We see that both fermalisms exhibit exponentiaily growing errors within one hundred
light crossing itmes when dt/dx 2 1| (dt/dx 2 1.5 when a fourth-order Runge-Kutta
integrator is used). The form of the growth is markedly different, however, when the
two formalisms are compared, as in figures 5.5 and 5.6. For GEM we see that, until
the instability reaches the ‘runaway’ stage (that leads to the code crashing within a
few time-steps) the growth is polynomial in time. The Hamiltonian constraint exhibits

quadratic growth, while the momentum constraint grows linearly.

The ADM case, however, shows clear exponential growth from early times (note the
log scale on the y-axis). We also see that this unstable mode has definite periodicity.,
with the period much less than a light crossing time, implying that the errors are true
‘grid phenomena’, rather then caused by spurious boundary conditions or such. This
result supports the findings of Jansen etal. {2003]. who found similar behaviour in the
3-dimensional ADM equaticns. The behaviour of both methods lead us to employ

a 4th order Runge-Kutta (RK(4)) algorithm [Press et al., 1996] for comparison and




Yplip Jo uonounf v sv Anpquis T1°¢ JqeL

Standard ADM GEM
dt/dx | Method | Runsto T=100? { Exp. growth? | Runsto T=100? { Exp. Growth?
0.5 | CrN¢(2) Yes No Yes No
0.75 | CrN(2) Yes No Yes No
1.0 | CrN(2) Yes Yes Yes No
1.} 1 CINQ2) | No (T = 0.682) Yes No (T.reu = 12.8) | at late times
0.5 RK{4) Yes No Yes No
1.0 RK4) Yes No Yes No
1.4 RK(4) Yes No Yes No
1.5 RK@) | No (T = 0.87) Yes NO (Tprua = 12.03) | at Jale times
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to establish that the stability behaviour previously discussed is not caused by our
choice of time-stepping routine. RK(4) has the advantage of being less dissipative
then Crauk-Nichotson (as the leading error is of order (Af)®) and is widely regarded as
a robust integrator for both partial and ordinary differential equations. As an example,
figure 5.7 shows us the violation of the Hamiltonian constraint using Runge-Kutta
(4. for dt/fdx = 05 and p = 1,2,4, 8 (refer to figure 5.1 for comparison), As you
can see there is little qualitative difference between the two integrators (nor was any
difference noted in the growth of the momentum constraint, or in the deviation from
flat space, though these are not pictured). The main difference we did note was a
slight difference in the stable values of dt/dx (see table 5.1). We also see a slight

trend toward constraint growth with ADM, though only in the tinest grid case.

5.3 The Gauge Wave Spacetime

The Minkowski+Noise spacetime gives us an idea of how differeat sets of evolution
equations, coupled to various numerical methods, behave in the presence of very
high frequency oscillations in the initia} data for even the simplest spacetimes. In
this section we will test the performance of both methods in the presence of a low

frequency perturbation, We do this by examining a “'gauge wave” spacetime.

To construct a gauge wave spacetime we take flat minkowski spacetime and perform

a coordinate transformation to write it in the form:

ds* = H(dx* ~ di®) + dy* + d° (5.9)
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using RK(4) integration.
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where H = H(x-t)is some positive function {Bona and Palenzuela, 2002} {Alcubierre
et al.. 2003a). Although this is a cartesian, and not a spherically symmetric grid, it
is a reasonably simple task to show that the symmetry avguments from the previous

chapter (e.g. B;; = 0) still hold.

Because equation (5.9) may be obtaitied from the Minkowski metric (5.1) by a simple
change of coordinates (and the fact that the 4-Riemann tensor is identically equal to
zero for the above imetric) we see that equation (5.9) represents a compietely flat
spacetime. Thus any non-trivial evolution is a consequence of co-ordinate and gauge

choices only.

Our choices for tiic function H(x - ¢) are numerous. Previous investigations of
these spacetimes have considered a raage of choices, including Gaussian waves [Al-
cubierre, 1997] {Bona et al., 1998], trigonometric functions {Bona and Palenzuela,
2002] [Alcubierre et al., 2003a) and combinations of the two [Calabrese et al., 2002a]}
[Calabrese et al., 2002b]. Here, as in the previous section, we choose to follow Alcu-

bierre et al. {2003a] and specify

(5.10)

H(x~0=1+Asin (M)

d
here A is the amplitude of the wave (we choose A = 107 so that the perturbation
remains small) and d is both the period of the wave and the size of the computational

domain in the direction of propagation of the wave.

Ve initialise our one-dimensional grid as x € (-0.5,0.5). Thus & = { in the above

equation (3.10). This allows us to implerient simple periodic boundary conditions, as
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Figure 5.8: Using ghostpoints to implement periodic boundary conditions : The value of a
Sunction oun the ghostpoints is used to evalnate derivatives on the boundary grid points, The
value of a given function on the left-most ghostpoint is set by remapping the value on the
right-most grid point (and vice versa). In this way the computational domain has gone from
being a line (or a n-cube in higher dimensions) to being a circle (or n-torus).

in figure 5.8, by setting functions on the ghostpoint on the right-hand-side of the grid
to be equal to their values first “real” grid point on the left-hand-side and vice versa.
This eliminates errors from the boundary conditions and means we can focus on the

influence of the gauge conditions alone.

Thus we have the following initial conditions for this simulation:

¥ = |, i.e. not 2 conformal metric

L= 1+ Asin(2rx), L=

£\ ol 27X}

* K= s K2 =0

° (J)Rl - (-’o)‘rg2 = (3)Ql = (S}QZ = (J)R =0
e £, =0, E; = 0, using the constraint equation (3.93)
e o= V0I+Asin(2rx),B=0
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We expect to see a couple of things in this simulation. We have implemented peri-
odic boundary conditions, rather than the more traditionai requirement of asymptotic
flatness. Thus there is no way for the gauge wave to leave the grid, which leads to
interesting spacetime dynamics. We can see from eguation (5.4) that #+{K) < 0 ev-
erywhere on a slice will drive an expansion of the voiume element, der(L), whercas
an everywhere positive value of r(K) must always lead to the focusing of obscrvers’
worldlines and the formation of a coordinate singularity [Wald, [984]. Similorly any
growth in the volume element {or a negative ¢r(K)) will drive a growth in the lapse
function, which will, in turn drive the expansion . Conversely, a decrease in the vol-
ume element will lead to a ‘freezing’ of « (hence the singularity avoiding nature of
the Bona-Masso fumily of slicing conditions in black hole spacetimes). Where tr(K)
changes from positive to negative across the grid we may see expansion or collapse

or both (the exact behaviour will be dependent on the formalism, algorithm eic.).

One thing to note though is that the evolution of the Minkowski+sinwave-+harmonic
slicing spacetime is expected to lead to a gauge pathology (whether that be expansion
or collapse). What we are looking at here, then, is the ability of the GEM (and, in
comparison ADM) evoiution equations to follow the dynamics of the spacetime for
a large rumber of light crossing times. We also hope to see that the errors in the

evolution variables converge to the exact solution with increasing resolution.

Again, we use harmonic slicing to propagate the gaugze variables and for comparison
we use both iterated Crank-Nicholson and Runge-Kutta(4). We found no qualitative
differences between the two, and thus present only the Crank-Nicholson results here.

We also implemented harmoni< slicing in two different ways: firstly by using the
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constraint equation (5.5) and secondly by evolving o according to equation (5.3).

Again, no qualitative diftcrence was found between the two.

5.3.1 Results

Figures 5.9 to 5.1t compare the qualitative behaviour of the Gaugewave simulation
using the two formalisms. We show the value of key evolution variables at every 100
crossing times (with the initial condition for comparisan) up to the 1000th crossing
time. The results depicted here are from the p = 2 case, that is, from the second

coarsest grid/dt choice. Thus the figures depict somewhat amplified gauge etfects.

We can see that the qualitative behaviour of the primary evolution variables in both
codes is very similar. Both show the expansion of the spacetime, through the be-
haviour of the 3-metric components in pasticular (fig. 5.9). We also see that the terms

representing the 3-curvature are zero or very close to.*

It is also clear that both codes exhibit a growing phase error. This is most evident in
the behaviour of the extrinsic curvature (fig. 5.10) which is becoming increasingly out
of phase with increasing time. The exact solution has a pertod of one crossing time,
but our numerical solution is drifting to the right with each successive crossing time.
The drift is worse for the coarser grids, and the numerical solution (for both methods)
converges to the exact solution with increasing resolution. This is illusirated in figure

5.12 showing the x component of the extnnsic curvature, A;. in the GEM formalism

*Note that the 3-Ricci tensor remains identically equal to zero in the ADM case. This is ensured
trivially due to the restrictions placed by demanding a [-D simulation, and doesa’t represent any ad-
vantage of this foermalism,
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The evolution of the nontrivial metric component (L1,) for the

Minkowski4-Sinwave spacetime (p = 2). Standard ADM is on the top, GEM on the bottom.

Values were output every 100 crossing times.
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after 500 light crossing times for each of the resolutions under consideration.

To examine further the behaviour of these errors with respect to the different grid
resolutions we plot the behaviour of the error in L; as a function of time, for each

resolution (figure 5.13). We note two things:

Firstly, the response of the two methods is almost identical. This similar behaviour
tells us something about the gauge properties of the GEM formalism. As both the
3-Ricci and gravito-electric tensors are negligible throughout the simulation (refer to
figure 5.11) the major difference between the two formulations, in this case, is the
way in which the extrinsic curvature is treated. Recal} that with the GEM evolution
equations, (4.17) - (4.23), we have split up the extrinsic curvature into its trace and
trace-free parts, thereby making the evolution of the Kinematic variable, (r(K), re-
moved from the other variables. It would appear, in this test case at least, that this

neither retards or encourages the development of gauge pathologies;

Secondly, the growth of the errors decreases with increasing spatial resolution (c.f.
the response of the Standard ADM algorithm in the Minkowski+Noise test). This
implies that we not detecting gauge modes here, but normal convergent behaviour.
Note, however, that convergence is weakened at late times due to the algorithms’
inability to accurately deal with the growth in the evolution variables as the spacetime

expands.

We can see this quantitatively in figure 5.14. Here we have taken the three coarsest

gnds (corresponding to p = {1, 2,4]) and calculated a convergence factor, g, accord-
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"o 9;,:1 - eP=1

P

(5.11)

€p=2 = €p=d
where e is some ervor measure. We expect that for second order convergence we
will have o= = 2, for fourth order o = 4, etc.. In figure 5.14 we show the conver-
gence factor, calculated from the error in Ly, as a function of time. Note that both
the Crank-Nicholson (O(Ax)O(Ar?)) and Runge-Kuita (O{AX*)0(Ar*)) show the ex-
pected second order convergence at early times. However, both ADM and GEM show
a deviation from this convergence as the infegration progresses, This behaviour may

influence the long term stability and convergence of more general spacetimes, using

both these formalisms, though, naturally the convergence of the scheme will also be
dependent on gauge choice, boundary conditions, etc.. This highlights the importance

of not only testing accuracy, but also convergence where possible.

Keeping these points in mind, in the next chapter we shall look more closely at the
behaviour of the GEM formalism in non-flat spacetimes. We do this by consider-
ing a range of slicings of a simple, spherically symmetric spacetime containing a

Schwarzschild black hole.
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Chapter 6

Tests of Schwarzschild Spacetimes

6.1 Properties of the Schwarzschild Solution

mhe Schwarzschild geometey is of fundamental importance in numerical general
relativity. Theory shows this geometry to be the end-state of dynamical spacetimes
such as the merger of compact objects and some supernovae explosions. As such, any
dynamical approach to the Einstein equations should be able to accurately and stably
model this geometry. Also, although the physical singularity of the black hole is a

non-trivial thing to model, the spacetime is spherically symmetric and admits exact

- solutions in a variety of coordinates, making it an obvious test-case for any nurmerical

relativist. However, as we saw in the previous chapter “simple™ spacetimes do not

necessarily lead to trivial numerical implementations.
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Properties of the Schwarzschild Solution

In this chapter we shall continue our discussion of the numerical propesties of the
GEM formalism, with an emphasis on modelling the dynamics of a Schwarzschild
spacetime. We shall look at the behaviour of the formalism in handling the gauge

dynamics for a number of slicings of a spherically symmetric black hole spacetime.

Historically, the first line-element to describe a black hole is given in Schwarzschild
coordinates, [, r.8, ¢, by
M\ . M\ L e a2
ds* = ~(l - ———) it + (l - -—-—) dre + rod& + r sin” Gdg- 6.1)
r r

As well as the physical singularity at r = O this coordinate system exhibits a coovdi-
nate singulanity at r = 2M, which represents the event horizon of the black hole. We
can see that this is truly a coordinate phenomenon by transforming our metric into the
conformally flat isotropic coordinates, {#;,.. , 8, ¢]. to obtain

4 e L - M/2F
T\ M)2F

5
-

drl, +(1+ %)“ [d7* + P(a6? + sin® 6dg™)]  (62)

where r = 1 + -,_‘}%)3 We see that this coordinate system is completely regular at
T = 2M, however g, goes to zero at F = M/{2. This represents the isometry surface
of the black hole, where the coordinate 7 undergoes the iransformation 7 — M*/4F.

This is equivalent to r = 0 in Schwarzschild coordinates.

In this work we shall make use of the following linc-element (with coordinates {t, 1, 8, $)

to describe our black-hole:

ds* = - anbi(p/2)d* +| V2M cosh(r;/.?,)r (d7* + 46 + sin® 8dg®) (6.3)
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where 7 = & e or, alternatively, r = 2M cosh*(/2). This coordinate system has been
used previously (most useful for us is Bernstein [1993} upon which we base the tests
in this chapter) and has a few properiies that ate worth noting. By inspection of the
line-element, the » radial coordinate is symmetric about # = 0 giving us natural in-
ner boundary conditions. Figure 6.1 shows the behaviour of the radial coordinate in
comparison to standard Schwarzschild coordinates. We see that 7 € {0M,6M1 cor-
responds to the interval r € {2M,200M). ‘Thus we can cover a much greater portion
of the underlying spacctime with tess grid points than in Schwarzschild coordinates.
We note also that 7 = 0 corresponds to r = 2M, so if we set up our grid with the

innermost grid point at 7 = 0 we are, in fact, placing this point on the event horizon.

6.2 Initial and Boundary Conditions

For each of the slicings under consideration in this chapter, we initialise the evolution

vatiables as

s ¥ = V2M cosh(n/2). i.e. we use a time-independent conformal factor

y i =1

o
=
]
o

L]

[
_D":t
)

» = Ay = Ax = 1r(K) = 0, i.e. atime-symmetric initial stice.

o OR =0, = ~1/(cosh’(n/2))
DR, = 0, = ~1/(2 cosh*(y/2))

'R = 0 using (4.6) to (4.8)
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o £ =0, £y = D@, using the constraint equation (3.93)

We also set o = 0 and 9,0, = 6 —dnpthroughout. Standard resolution is dr = 0.005M,

dn = 0.0075 (800 grid points).

The inner boundary conditions are set using symmetry conditions rather than more

complicated excision techniques. We implement ghost points on the inuer boundaries

and set the values of the evolution variables on the ghost points via symmetry lhat
is, if a function f, defined on the discrete nodes i = 0 - i = nx by the discrete
values f;, is symmetric about the isometry surface we set fyoy-poine = /i and if f
is antisymmetric fou-pomr = —fi. We use the ghost point values when evaluating

derivatives on the throat (n = 0).

':‘l
Al
i

On the inner boundary, symmetry of the coordinates telis us that the metric is symmet-

eedhs

,.._.
A AT

ric about i = 0 and we choose the lapse to be syminetric also (to allow evolution on
the throat). The shift vector (see the following chapter) is chosen to be antisymmet-
ric about 5 = 0. These conditions lead to the extrinsic curvature and gravito-electric

tensor also being symmetric about 7 = 0.

Although the asymptotic flatness of the spacctime allows us to make some judge-
ments about the form of the functions on the outer boundary, we choose a free evolu-
f‘,-: tion here (except where specific conditions were necessary for determining the gauge
variables). We obtain a value for funciions on the outer ghost point by fitting a curve

14 through the outer values of each of the variables and extrapolating along this curve.

BRI e o e
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We investigated two fitting functions

Po=govqe™ +qe™ (6.4)

and

Pe=q+qux+ qax° (6.5)

where x is the coordinate position in the x! direction (which is the radial direction, n,

in this particular case). The two fitting functions were found to give similar results,

unless otherwise indicated. We use equation (6.4) as a defauit.

6.3 Geodesic Slicing

Choosing the coordinate system attached to Eulerian observers who are falling along
geodesics iS a natural place to start our exploration of the behaviour of the GEM
equations in a Schwarzschiid spacetime. This slicing alse admits exact solutions.

Geodesic slicing is obtained by making the gauge choice

a=1 (6.6)

B=0 (6.7

Clearly, in this gauge, the proper time, 7, of the infalling observers is equivalent to
the coordinate time, £, This follows by inspectiou of the 3+1 line element (4.1). To

construct the exact solution with which we compare our code’s performance, we shall

£
:
i
A
(]
it
*
B 1
>
i
I
¥
i
i
3
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follow Misner et al. {1973] and, to recast the equations into our coordinates we have
followed the work of Bernstein [1993]. As the full derivation is available in Bernstein

[1993] we shall merely sketch out the steps here.

The geodesic of an infalling test particle is found by integmting

dr,
T f dr = f (M7, — 2M 7o 1T (68)

where the particle starts from rest at Schwarzschild radial coordinate r, = r,,,. The

solution is given tn parametric form, with respect to the parameter w, by

re= :‘;;3(1 + COS W) {6.9)
oo o .
T = 5 m(w + stnw) (6.10)

A particle starting at r,, = 2M will fall from rest (when w = Q) to the singularity

(when w = ) in proper time

o [rs e
r=fna(3s) = M (6.11)

-

On the initial slice, our inner-most grid point is located at 7 = 0, which is equivalent
to r; = 2M (see figure 6.1). As our observers fall toward the physical singularity, an
observer at 7 = 0 will measure the coordinate volume to be decreasing to zero. The
volume element will reach zero in 7 = 1 = 7M. At this point our inner-most observer

will hit the singularity and our numerical simulation wili crash. This provides us with

a simple first verification of the accuracy of our code.




E A g T T R

L gsh e
e

A v

Geodesic Slicing 102

To convert from (¢, r,6,¢) coordinates to (t,7,0,¢) we note that ¢+ = T and r,, =
M cosh:(q/Z) and we perform a coordinute transformation (where the s denotes

Schwarzschild coordinates and metric) c.ording to

. 0x7ax"

Guv = Q;,f'éf—. v (6.12)

to obtain the following cumbersome, but exact, solutions for the ADM variabies

wenier ) \
15 = 31 +cosw)’ (6.13)

< exact _ sin” @(sin” w + bwsinw + §cosw + 9w’ - 8) sinh’(7/2)
o (32 sinh*(/2)(1 + cos w) ~ 16 cosh®(7/2) sin” w
‘ 8(1 + cos w}3w sin w + 4) stah*(5/2)
" (32sinh3(n/2)(1 + cos w) — 16 cosh*(57/2) sin° w
_sin® wicosh®(/2)(1 + cos w) = 2)(sin” w(cos w ~ 3) + (1 + €05 w)(8 + 3wsin w))®
16(1 + cos w){cosh(17/2) sin® w(3 + cos w) — 2sin* w - 4sinl*(/2)(1 + cos w)*
Ii“(sinwcos w + 3w + 4sinw)

6.14)

krl:.m."l P - - : — (6-15)
(M cosh’(n/2)(1 + cos w)(2(1 + cos w)* + 3wsinw + 3 sin” w))
R;‘.wt'l = Sin [:) (6 l 6)
- 4M cosh’(n/2)

We implement the exact sofution by using a numerical root-finder algorithm (a sim-
plc mid-point sule) 1o solve for w using (6.10) and then use the above equations to

generate the exact solution thronghout the simulation.

Figure 6.2 shows the evolution of the GEM variables in this slicing. We can see that
atl the action is taking place near the throat, whilst the spacetime is asymptotically
flat (note that the computational grid was defined by € {0, 6) but we oniy show the

inner portion of the grid to highlight the dynamics). We see clear evidence of the
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dle) and the gravito-elecrric parr of the spacetime (bottom) for geodesic slicing implemented
in the GEM formalism. Results are plotted from t=0M 10 t=3.IM, in increments of 0.IM.

Time-stepping was CrN(2}
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underlying spacetime stretching in the radial direction from the behaviour of L;. Ay
and £} from the large gradients developing in the variables as the coordinate time
approaches 7M. We also see the contraction of the volume element, most noticeably
in L. which approaches zero on the throat. 1, = 0 signifies that the volume element
has decreased to zero (i.e. the first test particle has hit the physical singularity) and
the code will crash shortly after. We found that the GEM equations reproduced the
qualitative behaviour of this slicing accurately, and that for ali combinations of dt, dn
and time-stepping algorithm (see below) tesied the code crashed within a couple of

time-steps of t = 7M.

The ability to generate an exact solution means that we are able to use this slicing

to run convergence tests, to convince ourselves that our formalism tends toward the

exact Schwarzschild solution. This also enables us to quantitatively compare our
results with those obtained using the standard ADM equations, and to highlight some
of the properties of our equations. We check convergence with both dt and dn. For
checking convergence with dr we use a standard grid resolution of dip = 0.075 (800
grid-points) and for convergence with dip we use dt = 0.005M for all runs. We use

the exact solution to calculate the relative error in our numerical functions using

f - ﬂ'.mrr

err(f) =
j; Xt

(6.17)

and we calculate convergence at £ = 3M.

As was the case in section 5.2 the choice of geodesic slicing reduces the 1D GEM

equations to a set of ordinary differential equations, as all derivatives of the lapse
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function are zero. Thus the accutacy of our equations in this case are tndependent
of the grid’s spatial resolution. This will not be the case in more generat slicings,
but hiere it feads to the convergence behaviour we sce in figure 6.3, We see clear
second order convergence with time using second order Crank Nicholson and {ourth
order convergence with time using Runge-Kutta (4). Note that the seeming non-
convergence at fine resolutions is actually a result of the fact that the root-finder used
to construct the exact solution has a tolerance of 10~ so relutive etrors below this

level are not reliable.

The convergence behaviour of the standard ADM equations is summarised in figure
6.4 for comparison. We note a couple of important points. Firstly, the ADM for-
malism crashed well before ¢+ = 7M for those combinations of dt and dn for which
dt/dn > 1 (c.f. section §.2), whereas GEM reached ¢ = s in all cases. This is most
likely the same sort of combined Courant and gauge mode instability that we saw in

the Minkowski+Noise test case.

Secondly we see that the spatial grid spacing is the dominant factor in the size of the
crror. We see second order convergence with dn using both time-stepping algorithms
(the O(Ar) of the RK(4) is dominated by O(Ax?) spatial derivatives). The conver-
gence (or lack thereof) with dt is completely dominated by the relative error in the
grid spacing dnp = 0.0075 which is of the order 1073, This is highlighted in the bottom
graph in figure 6.4. We see that when dr becomes fine enough to lower the emor to

less than the error caused by the grid spacing, the d? convergence is hindered.
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6.4 Maximal Slicing

Due to the limited length of simulations of the Schwarzschild spacetime, geodesic
slicing’s usefulness s limited to testing the accuracy and couvergence of schemes. In
order to model realistic astrophysical phenomena, we need to be able to run long-term
simulations of black hole spacetimes. If we choose not to exciSe the physical singu-
larity we must choose = singularity avoiding gauge. One popular choice is maximal
slicing, where we impose

r(K)=0 6.18)

We set this condition on the initial hypersurface, and by enforcing the time derivative
of tr(K) to be zero for all time we obtain, through equation (3.96), the following

elliptical equation for the lapse function
D.D'a = A A™ (+.19)

which, using equation (4.21) reduces to

D.D'a =«

.‘51.1 ‘7:‘.":.2.3 )
(ll) +-(i3) ] (6.20)

Expanding the left hand side in our coordinates yields
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We implement second order centred differences for the derivatives of «, and require
that & — 1 on the outer boundary (i.e. we require asymptotic flatness). Furthermore,
a is symmetric about 5 = 0, which a~.sounts to the condition 8,al,-0 = 0. Equation
(6.21) then reduces to a tridiagonal matrix system for the lapse function which we
solve this numerically, following the method outlined in Brewin {2002]. Keeping our
outer boundary condition constant, we make two initial guesses for the inner ghost-

(ﬂ'l‘

point, @, " and solve equation (6.21) using a simple Thomas algorithm [Préss et al.,

1996]. We then make our third and final choice for the inner ghost-point value using

a listear combination +. * the first two guesses. i.e.

(I) (1} (31
“l J T mey

dy 1y

(6.22)

which becomes
de 89}
o _ dn
-1 7 1) (2
eie dnr +
e |

(6.23)

©—a')/(2An). We then make a final calculation using a®) as our inner

where * "" ={(a,
ghost-point value. We are justified in this method because (6.21) is linear ditferential

equation for a, thus a linear combination of two scolutions will automatically be a

solution also.

The fact that we must solve an elliptic equation for the lapse on each iteration of the
time-stepping algorithm means that maximal slicing is a relatively computationally
expensive choice. A possible advantage, however, is that it is a global condition, as

opposed to local algebraic conditions such as harmonic slicing. This is potentially

*We require the tapse function to lie between € and ) 50 we simply choose o “’ =0ondo "’
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advantageous, as solving the lapse equation will tend to smooth out local oscillations

across the grid.

To properly gauge the performance of our code in this slicing we implement three

sitnulations of differing resolutions, but all with dt/dy = 2/3. We choose

dt =0.01/p
nx=400p == dn=0.015/p 6.24)

p=1 24

Our initial conditions are as given in section 6.2 with the lapse function given by
the maximal slicing condition, and the shift vector kept equal to zero throughout the

simulation.

In tenns of providing long-term tntegrations of the Schwarzschild spacetime. max-

imal slicing is somewhat of a double-edged sword. Our observers are initially in-
falling, but it can be shown [Beig, 2000] that the lapse function on the throat collapses

exponentially, via

R s
PR LT A T

alnp=0)=Ge "' + O™ as t » o (6.25)

T
S TR A
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wheie
4_ a0 V6
G= \/3 {6.26)
&
F = ? {6.27)
3v3 -5

H---_-ln|13(3\/') 4)1«-91 ~ =0.2181 (6.28)

9v6 ~ 22

and M is the mass of the black hole. Thus the coordinate time becomes “frozen”
on the inner boundary. Thus, although our coordinates are able to cover a pottion of
the manifold intetior *» the event horizon, our observers will never hit the physical

singularity as in, for example, geodesic slicing

This does not mean we are able to run simulations for an infinite time though. As the
interior of the grid becomes frozen wihilst the exterior portion is still infalling, large
gradients develop in all our metric functions, and hence all our evolution variables.
The steep gradients that form in this transition region will eventually be the death of
most codes, especially those that implement simple numerical methods, such as ours.
This is because standard finite difference techniques implemented on a fixed gnid
struggle to resolve the coordinate shocks that develop, vesulting in mmnaway numerical

noise in the transition region.

This behaviour is illustrated in figures 6.5 and 6.6 which present the evolution of the
GEM variables for the “Standard” resolution case (p = 2). We output the variables ev-
ery SM untii r = H0M. Itis shortly after this that the error growth becomes unbounded
and the code becomes unstable. The results we present here were obtained with the

iterative Crank-Nicholson integrator, but similar results were found with Runge-Kuiia
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Figure 6.5: GEM evolution variables for maximal slicing : metric on line 1, gravito-electric
tensor on line 2. All variables are owtputted as a function of ny every t = SM from 1 = OM 10
t = 60M. The resolution is “standard” (p = 2). The steep gradients cause the code to crash

shortly after this point.




Maximal Slicing

113

- .
' -
3 .
-
1
. - .
- :
- &
b
-
. o
1
1
1
i - R, P PO U |
k] LR | L] 2 Z.% E] 13 + EI ] -
"
TR S B e R e ¥ - ey ¥
:c-:!l
Sw-11 f °
a
¥
b4
a
R L R
LIRS
RN .
.
[T} L 2 -
a.* H 1 1 L) 1 r.a 1
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{3 = 2). The steep gradients cause the code 1o crash shortly after this point.
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(thongh the RK(4) code was stable for slightly longer).

We see clearly the steep gradients forming well before 60M. The worst case of this is
£\, whose values vary by three orders of magnitude across the grid. Note also that at
1 = 60M the transition region is covered by only about 20 grid points. out of the 800
that cover the grid. Because we have no shift vector and do not have to compttie the
3-Ricci tensor directly, there there is no error caused by having to compute second
derivatives over the transition region. However, the large differences in scale in our
variables across the grid witl still cause round-oft error to be an issve. Also, the
resolution of the first order spatial derivatives becomes almost impossible with such

poor resolution,

The ADM code runs for longer than the GEM code in this configuration. Figure 6.7
shows the evolution of the metric in the ADM formalism. The ADM code, whilst
exhibiting stmilar behaviour to the GEM code, is stable until about ¢+ = 110M (for
thestandard resolution. p = 2). As both methods reproduce the expected qualitative
behaviour, it is not trivial to ascertain the reason that GEM performs worse in Lhis
case. By comparing figures 6.5 and 6.7 we can see that the peak in £/ is much more
severe than the peak that develops in R, in the ADM case (note that the plots in figure

6.7 show data for 40M fonger than figure 6.5).

To get a handle on what is happening here we consider the growth of the errors
throughout the simulation. We consider the collapse of the lapse on the throat, for

all three resolutions and for boti: formalisms, in figure 6.8. We use the analytic ex-

pression given by equation (6.25) for comparison.
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Figure 6.7: Evolution of the ADM metric functions in maximal slicing. All variables are
ouiputted as a function of p evervt = SM from ¢t = OM to t = (00OM. The resolution is
“standard” {p = 2). The stecp gradients cause the code to crash at around + = 110M
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Firstly we note that the coarser the grid, the longer the evolution lasted, for both
formalisms. We note that all resolutions give reasonably accurate results (until the
runaway errors dominate), The coarsest grid resolution leads to deviation from the
analytical solution at late times, with ADM being less accurate than GEM in this
case. This loss of accuracy is not unexpected for long integrations on coarser grids,
due to the lower resolution. The same sort of thing is discussed in section 5.3, where
the coarser grids exhibited growing inaccuracies with time. It is interesting that the
lapse is collapsing more slowly than expected. This would tend to lead to a slower
formation of the steep gradients in the transition region and, presumably, a longer

lived simulation.

Although we have no exact solution to compare with in the maximal slicing case, the
violation of the constraints can be used to gauge the accuracy and convergence of
our code. We plot the average value of the Hamiltonian and momentum constraints
at each time-step (figwes 6.9 and 6.10). Both sets of equations show convergent
behaviour at first but the convergence is destroyed once the codes are no longer able

to accurately resoive the gauge dynamics.

Again, figures 6.9 and 6.10 shows that the development of the steep gradients and the
violation of the constraints is exacerbated by better resolution, indicating a true gauge
instability rather than an code inaccuracy. Both formalisms violaie the constraints by
a similar amount at early times, indicating again that the poorer performance of GEM
does not arise from a low accuracy simulation, or an unstable formalism. Rather the
difficulty in following the gauge dynamics, especially the courdinate shocks, appear

to be the biggest factor in the performance of both formalisms in this particular case.
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6.5 1+In Slicing

D R g L T MR g g T T

We can also utitise the Bona-Masso family of slicing conditions (equation (5.3)) in

Fre

the Schwarzschild spacetiine, Harmonic slicing is not appropriate in this case as the
lapse does not collapse fast enough on the throat and the singularity is reached in
finite time [Bernstein, 1993). However, we can choose f() = 1/« in equation (5.3),
leading to what is commonly called {+log, or I+In slicing. The evolution of the lapse
is prescribed by

g = ~atr(K) (6.29)

which integrates to become @ = 1+In( Vdet( L)), hence the name. We also require that

the shift vector be identically equal to zero. Tne rest of the variables are initialised as

in section 6.2.

Like the maximal slicing condition, the 1+In gauge choice has both advantages and
disadvantages. A major advantage is in efficiency, as solving equation (6.29) is much
more computationally effiicieat than solving equation (6.21). Although tiis is not a
major issue in 1D, it is worth keeping in mind, as it will become an issue in higher

dimensions.

e T TS P T P T ST L ¥ T TR A e S St e A Y TR Y T R T L R P Y

e T e Gk

In terms of dyramics, I+In slicing is qualitatively similar to maximal slicing. Both
have singularity avoiding properties, with the lapse collapsing to zero on the inner
boundary. This leads to steep gradients forming in the transition region between

the frozen and infalling parts of the grid. As in the maximal slicing case, the sieer

R e

gradients and loss of resolution in this region will tend to destroy the accuracy and/or
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stability of the code over time,

We conducted the simulations using the same computational parameters as in the pre-
vious section. In particular we ran the tests at three different resolutions, as specified
by (6.24). We found our GEM code performed better in this gauge than in maximal
slicing, with each resolution running for approximately twice as loag as its maximal
slicing counterpart. Again, Crank-Nicholson(2) and Runge-Kutta{4) performed simi-
larly. The evolution of the key variables for the p = 2 standard resolution are given in
figures 6.11 and 6.12. Note these results extend to ¢ = 120M, an improvement over

the maximal slicing case (where, for p = | the GEM code crashed by about t = 80M).

As in the previons section, we again note the growth of the radial component of
the metric and gravito-electric tensor (figure 6.11). Both these components are only
starting to show spiking on the trausition region at ¢ = 120M where we note, for
cxample, that L; has grown by 750% from its original value and the transition region
is covered by only about 13 grid points. Note also that rr(K) is not zero in this gauge

(figure 6.12).

Again we see that ADM seems to cut-perform GEM in this gauge, in terms of fol-
lowing the evolution for longer. For all resolutions, the ADM code ran to ¢ = |50M
(when we terminated the run). The cause of this is indicated in figure 6.13 where we
see that the coordinate shocks in the ADM evolution vartables to not become as steep

as in the GEM case.

This is not all good news for ADM though. Figures 6.14 and 6.15 demonstrate the

convergence of the constraints with resolution. Although there is no exact solution
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Figure 6.11: GEM evolution variables for 1+in slicing : metric on line 1, gravito-electric
tensor on line 2. All variaSles are owpunted as a function of p every t = 10M from e = OM to
1 = 120M. The resolution is “standard” (p = 2). The sieep gradieuts cause the code to crash
shonly after this point.
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Figure 6.12: GEM evolution variables for 1 +n slicing: trace-free part of the extrinsic citr-
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Figure 6.13: ADM evolution variables for 1 +1n slicing : metric on line 1, extrinsic curvature
tensor on line 2. All variables are ontputted as a function of pevery t = 10M from ¢t = OM 1o
t = |SOM. The resolution is “standard” (p = 2). The steep gradicnts cquse the code to crash

shoretly after this point.




1+1n Slicing

available in this gauge, we can use the violation of the constraints to gauge the conver-
gence of a formalism to the “correct” solution. We use equation (5.11) to calculate the
convergence factor o using the Hamiltonian and momentun constraints. The GEM
equations are convergent until about 40-50M, which corresponds to the time at which
ervors in the finest grid resolution become unbounded. Therefore the behaviour of o
after this time indicates the loss of accuracy involved in trying to resolve the worsen-
ing coordinate shock, rather than saying anything meaningful about the convergence

properties of the GEM equations.

The ADM simulations all run to 150M for all resolutions, but we clearly see that the
convergence of the constraints is destroyed after about 30M. Note atso that the conver-
gence behaviour for both schemes (but in particular ADM) is unaffected by the choice
of time integrator. Both schemes use simple second-order centred differences for the
spatial derivatives and it is this that dominates both the error and the convergence of
the overall scheme. This suggests that the lack of convergence in the ADM case is
due to the tnability of the spatial differencing to approximate the first and, in particu-
lar, the second order derivatives. This, in turn, implies that the longer integration time

achieved with the ADM equations is gained at the expense of accuracy.

The fact that GEM does not exhibit this behaviour, then, is due to the fact that the
GEM equations are first order in both space and time. Because we have replaced the
3-Ricci tensor in the GEM evolution equations we do not have the additional compli-
cation of evaluating accurate second-order spatial derivatives on the steep gradients
in the transition region of the grid. We surmise that although the GEM simulations

were relatively short-lived, they appear to achieve a higher level of accuracy than the
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ADM equations in this slicing.
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Chapter 7

A Shift Vector Slicing

@ne of the fundamental difficulties in modelling the Schwarzschild spacetime is the
appearance of coordinate shocks when singulurity avoiding slicings are used. Tradi-
tional finite difference methods will always struggle to resolve these shocks regardless
of which 3+1 equations are used, which goes soine way to explaining the dearth of
long-tived evolutions of Schwarzschild in the maximal or 1+log family of slicing
conditions. One successful evolution is described in Alcubierre et al. {2003b). They
utilise the BSSN formalism coupled to a K-driver condition for the lapse function,
based on maximal slicing and the so-called Garama-dnver condition for the shift vec-

tor [Balakrishna et al., 1996} .

Another stable evolution was obtained by Brewin [2002] by using maximal slicing,
and no shift vector. The numerical technique was based on the smoothed lattice ap-

proach {Brewin, 1998b][Brewin, 1998a). Rather then using the 3-metric, this method
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utilises the teg-lengths of the lattice to calculute curvature, Although this approach
uses ideas and notation from the Eulerian ADM approach, it is tundamentally La-
grangian in implententation. This contribuies to the stable evolution, as the lattice is
able to stretch with the motion of the spacetime, which eliminates the gauge-shocks

seen in finite difference approaches.

In this chapter we aim o ascertain whether we can use our 3+1 approach, coupled
with an appropriate shift vector to mimic the result of Brewin {2002]. That is, can
we remove the gauge instabilities that plague the evolutions using both the ADM and

GEM equations by a prudent choice of shift vector?

To do this we implement a “radial distance locking™ gauge choice (c.f. area locking
gauge as examined in Kelly et al. {2001]). We use the gauge frecdorn to keep the radial
metric function constant at its initial vatue throughout the evolution. The motivation
to try to reduce the spiking seen in singularity avoiding slicing such as maximal and

1+In slicing,

We must first cast the spatial metric into o form more suited to our needs through a
change of variables from the (1, 3,9, ¢) of the previcus chapter, to a new system with
a modified radial coordinate. We restrict the radial component of the 3-metric to be

unity, thus imposing a constant radial resolution.*

*As opposed 10 the coordinates used in the previous chapter, in which the resolution decreased as a
function of proper spatial distance




A Coordinate Transformation

7.1 A Coordinate Transformation

We start with the spatial metric taken from equatioa (5.3). i.e.
di* = [ V2M cosh(n/D1'idn* + d6* + sin® 8d¢?) (7.1)

and implement the change to a new coordinate system. {f, 7,8, ¢] via the transforma-

tion
diy = [ V2M cosh(n/2)*dn (7.2)
which implics
M = 2(n + sinh(n)) (7.3)

As the Schwarzschild spacetime s sphetically symmetric, only the radial coordinate

was transformed.

The 3+1 line-element in the new coordinates is given by:
ds® = —(a* - BB)F + BidXdt + diY* + f()(d@ + sin® 8d*) (1.4

where f(g) = [ V2M cosh(n/2)]* and 5 is obtained by solving equation (7.2). We
cannot solve for i analytically, but obtain a nuimerical solution of a chosen tolerance.
This metric is related to that meationed in Alcubierre [1997], thougi that work in-

volved a transformation from isotropic coordinates.

The relations. ip of the modified radial coordinate to the radial coordinate used in

the preceding chapter and to the Schwarzschild radial coordinate is outlined in figure

—
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A Coordinate Transformation

7.1, The first thing to note is that the original p coordinate grows exponentially as
a function of 7. Thus, we need # € [0,200) 1o model the spacetime covered by
7 € 10, 6) and we will have significantly less resolution in the inner region. However,
as the horizon moves outward in, for instance, maximal slicing, the number of grid
points covering the ‘transition’ region will remain constant, not decrease as in the i
case. This should help alleviate some of the spiking behaviour seen in the previous
chapter. We also have from figure 7.1, or perhaps more clearly from equation (7.2)
that 7 = 0 when 7 = 0, so the position of the isometry surface has not changed.
This means we can implement simple inner boundary conditions. as in the previous

chapter.

The relationship to the Schwarzschild radial coordinate (;) is also interesting, Whilst
the relationship is almost linear on a large scale, we see that 7 decreases to zero as »;
approaches 2M. Thus this coordinate system is very similar to standard Schwarzschild

coordinates, with the added benus of being regular everywhere.

The initial conditions are set as follows:

i1 € [0,200), solve for n{f) using (7.2) and a standard bisection root-finder

algorithm [Press et al., 1996}.

e W1t

Li=1, L:={V2M (:C)Sl'l(l’]fZ)]'I

e K, = Ky = A, = A = tr{K) = 0, i.e. a time-symmetric initial slice.

DR, = D0 = ~2/(1 + cosh())’
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MRy = B Qs = /(1 + cosh(n))
l-“R =0

o =0, Ev =0, using the constraint equation (2.93)

The fact that the n and i7 coordinates have the same isometry behaviour allows us to
implement the inner boundary conditions outlined in section 6.2. The outer bound-
arics were treated in the same way as in section 6.2 also. It was found that the
quadratic fitting function (equation (6.5)) gave more accurate results then the ex-

ponential function (6.4) in approximating the outer value of L, which grows almost

quadratically with 7.

We wish to keep the metric in the form of (7.4) and in particular we wish to keep the

radial metric coinponent equal to one which necessitates the use of a non-zero shift

vector.

7.2 Radial Distance Locking Shift Vector

In order to keep L;3=L;= ! throughout the simulation we need to enforce the condi-

tion 4, .L,= 0. From spherical symmetry we assume the shift vector has the form

g =(8.0,0) (1.5)




Radial Distance Locking Shift Vector

Inspection of the equation for the time derivative of the metric (equation (4.17)) yields

the following condition on the shift vector

G38' = <2a(A; + % Ly tr(KY) (7.6)

To solve this first order differential equation we apply the boundary condition
Bl = 0) = 0 which ensures that the shift vector vanishes on the throat and removes

the need for complicated inner boundary conditions on our other evolution variables.

We solve equation (7.6) using a shooting method based on thai ased to solve for the
lapse in maximal slicing {section 6.4). The same principles hold as equation (7.6) is

linear in B'. We make two separate guesses for 8! on the outer boundary ('8! ) and

o

integrate in to the inner boundary using a standard second order predictor-corrector.

The third and final guess for the outer boundary value of the shift is constructed from

1 2 gt Nt
(”ﬁlml' - )B}m: —_ ( )ﬁi‘)ﬂ'l w( }ﬂmﬁ (7 7)
ngl 2t T (hgl gl .
Mgl - ! (hg!

in in

which becomes
g
Howt T el _(h Al -
¢ )ﬂin ( }‘Bin
For the following simulations we implement the radial distance locking shift and max-

imal slicing lapse function (see section 6.4). The addition of a non-zero shift vector

gives the 1D evolution equations (for both ADM and GEM) the form of advection
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oo

Radial Distance Locking Shift Vector

equations, i.e. all the evolution equations have the form

8,U = B8, U + o1 (7.9)

where U is the vector of evolution variables and g is & non-linear function of the
evolution variables. The derivative in the advective term is calculated using an upwind

difference method, as implemented in Kelly et al. [2001], i.e.

. Wiy = Wiay (wm - 3w,~ 4+ 3U);:.| - wi:‘.’) (7 10)

Onto; = 247 347

where + is chosen to correspond to the sign of the shift vector (always negative, in
this case) and ¢ is an arbitrary constant which must satisfy g » 0. Furthennore, Kelly

et al. {2001] show that the discretisation ecror associated with (7.10) is
err{d,w;) = 1(1 ~2AFT O * QA;‘;-‘aiu (7.11)
LF | 6 filad] 6 7|

We see from this that the truncation error is best (O(A77’)) when g=0.5. Thus, thisis

the choice we make here. Ali other derivatives are estimated by second-order centrod

differences.
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7.3 Results

The GEM and ADM codes were run with the following grid resolutions:

Tinner = OM  Rogee, = 200M (1.12)
dt = 0.02/p

no. grid points = 2000p == dip=0.01/p (7.13)
p=1 24

Figures 7.2 and 7.3 show the qualitative behaviour of the GEM evolution variables
with time, and figures 7.4 and 7.5 show the same for the ADM variables. We show

the results for the Standard resolution (p = 2) case.

We see from both sets of resuits the advantages in this gauge. The effect of the
shift vector is to *“pull in” observers frcm the outer region. giving constant resolution
over the transition from the frozen inner grid to the dynamical outer grid. We see
the volume element (indicated by 1.) growing with radial distance from the throat.
As the integration progresses, however, the value of L, on the outer grid decreases,

indicating that these observers are infalling.’

Although 1, is required to be {, we allow it to evolve freely, as an additional con-
straint. We see that L~ 1 throughout the evolutions. We also see that the values of

the extrinsic curvature terms remain bounded, and #r(K) remains very close to zero

"To be precise, in the Fulerian reference frame of the caleulation. the observers aren’t “pulled” or
infalling 2t all, ratber they remarn at constant spatial ceordinates and the ianer porttion of the space is
falling owi toward thern.
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trace-free part

ing gauge:

of the extrinsic curvature on line land the trace of the extrinsic curvature on bottom line. All

GEM evolution variables for the radial distance lock
=12).

+

is “standard” (p

variables are ontput as a function of ij every t = 5M from 1t = O0M 10 t = 60M. The resolusion

Results
Figure 7.3
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Results

although there is, raturally, a slightly higher error on the outer, free boundary.

Although GEM and ADM produce qualitatively similar results in the short term, the
GEM evolution is plagued by the onset of an instabitity which becomes noticeable by
100M (for the Standard resolution) and crashes the code before 150M. The onset of
instability is sooner at higher resotutions. It has the form of a high frequency wave

(see the evolution of L, in figure 7.2 for an illustration of this).

As a further test, we also ran the above tests whilst enforcing the constraint 3, L= 0,
and using centred differences in place of the upwind differences. Neither change
had any noticeable effect on the results. The instability appears to be linked to the
GEM equations themselves, rather then a numerical ecror (the same resolution, outer

boundary condition, time-stepping etc. routines were used for both sets of equations).

This is also indicated in figure 7.6, where we plot the growth of the Hamiltonian
and momentum constraints with time for each of the resolutions tested. We see that
the GEM scheme is convergent at eatly times, but errors luininate as the evolutions
continue. Most interesting is the fact that runaway errors appear earlier in the finer

resolutions. This implies some sort of gauge-driven instability.

The story is quite different with the ADM equations, however. As figures 7.4 and
7.5 show, the integration proceeded until the code was terminated at t=300M. At this
point, almost the entire grid is in the frozen region and we see ervors forming on the
outer bousndary, as our rudimentary boundary conditions are insufficient to aflow the

information to leave the grid cleanly (see K; in fig. 7.5 in particular).
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To really test out the stability of the ADM equations in this gauge, we remun the
p = 2 resolution, but extend the spatial domain so that f,, = 1000 and time the
evolution to runt untit ¢ = 1000M. This allowed the evolution variablc to evolve further
without interference from the outer boundary. The metric and extrinsic curvature are
presented in figure 7.7. The evolution of the Hamiltonian and momentum constraints

are given in figure 7.8.

We can see, that although there is still some ervor on the outer boundary, due to
our simple boundary conditions, the evolution proceeds in a stable fashion up to
t=1000M. We see that the relative error in the radial metric component, L; remains
bounded at around 0.1% and both the Hamiltonian and momentum constraints are

also bounded at less then ~ 3 % 10°% and ~ 9 x 1075 respectively.

These results are interesting on a number of levels. Firstly, despite the ill-posedness
(in a general gauge) of the standard ADM equations, stable and accurate long-term
integrations can stilt be obtained through a prudent choice of slicing condition. Sec-
ondly, it is a rerminder of how two reasonably similar formulations of the numerical

Einstein equations can produce markedly different responses to the same gauge.

Exactly why the GEM case exhibits unstable behaviour with the coordinate and gauge
conditions presented here remains an open question. The coordinate and gauge choices
both seem 1o be well-behaved. That is, there is no indication of the kind of gauge
shocks we see forming in the maximal and t+In slicings with zero shift vector. As
we have seen no evidence for gauge modes in GEM from the previous test cascs, it

remains unclear whether the behaviour presented in this chapter is an anomaly, or
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indicates a deeper pathology of the GEM equations themselves.

The only difference in the structure of the GEM equations in this chapter is the intro-
duction of the shift vector. It is possible that this changes the GEM system in such
way as to introduce spurious gauge modes, and render the system unstable. To answer
these questions with any confidence at all would require the GEM system to be tested

in a wider range of spacetimes, including higher dimensional spacetimes, with both

zero and non-zero shift vectors.




Chapter 8

Conclusions and Future Directions

ﬁesponding to the question of stability in numerical general relativity is anything
but trivial. To begin to have an understanding of the stability of even one formula-
tion of the 3+1 equations involves investigations of numerical techniques, Courant
conditions, gauge dynamics and the mathematical structure of the partial differential
equations themselves. Each one of these areas is nontrivial on its own and the interre-
lation of them creates an area of research deep enough that each individual work can

only scratch the surface of the bigger questions.

It is with this in mind that we have limited ourselves to asking some relatively simple
questions in this thesis. We have developed a modified set of equations in the 3+1
formalism (the GEM equations} and have compared the behaviour of our equat. 'ns
to the standard ADM equations through a number of standard test-bed calculations.

The modification, which centred around augmenting the standard ADM equations

148




149

with the Bianchi ideutitics (expressed in terms of the Wey! tensor), was presented and

ey T R

discussed in chapter 3.

In works such as this there ate a number of ways in which to construct the equa- 1
tions. We must consider which are the fundamental variables? Which are determined ,
through constraints and which through evolution? How, if at all, are the constraints *
incorporated into the construction of the evolution equations? For clarity, we have ?
constdered only one of the possible sets of equations that are obtainable through ,
adding the Bianchi identities to the evolution scheme. A natural extension of the j

work would involve investigating different forms of the ADM+ Bianchi identity com- W
bination. Some of the points of difference between the augmented equations used

herein and the Standard ADM equations are summarised below:

o The addition of an evolution equation for the gravito-electric tensor. E,,,.

» The splitting up of the evolution equation for the extrinsic curvature, K, into

evolution equations for the trace (tr(K)) and trace-free (A,,) parts.

s The use of the gravito-electric tensor to remove the (trace-free) Ricci tensor
from the evolution equation for A, and the use of the Hamiltonian constraint

to replace the Ricci scalar from the evolution equation for tr(K). The resultant

sct of partial differential equaticns are now first order in both space and time.

this last point was found to be beneficial in the Schwarzschild t+in slicing test

(section 6.5).

We have also limited ourselves to two one-dimeznsional spacetimes, namely Minkowski




and Schwarzschild. By ltmiting the range of spacetimes investigated we are abie to

consider a choice of gauges in each. We have chosen numerical techniques, e.g. time-

stepping algorithms and boundary conditions, that were expected to neither detract

from ci add to the performance of the equations themselves.

Through this woik we have been able to glean some insight into the behaviour of

the GEM equations in a numerical setting and the broader question of stability. Our

findings include:

o For gauge choices that result in a lapse function that does not change with time
{geodesic slicing and the implementation of harmonic slicing in the Minkowski+
Noise spacetimne) the GEM equations reduce 1o ordinary differe: ..al equations,
which affects their stability and convergence properties. From the Minkowski
+ Noise test (section 5.2) we found that the reduction to ordinary differentia}
equations will cause the violation of the constraints to increase with time. This
will eventually lead to a runaway error. However, the error growth is kept less
than exponential for a thousand light crossing times by a sensible choice of time

step.

In fact, the GEM code proved capabic of producing stable results for both the
Minkowski+Noise and Minkowski+Gaugewave (section 5.3) simulations. The
growth of errors (constraint violation and deviation from exact solution) was at
most quadratic for early to medium times (at least into the hundreds of crossing

times, except when very large time-steps were used).

o In the Minkowski+Noise test the GEM equations showed no evidence of the
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periodic error that the ADM equations exhibited for certain resolutions. These
errors appear in the ADM case as a resuit of the existence of gauge modes
that result in spurious high frequency waves that are acknowledged as on¢ of
the major drawbacks of the standard equations. Importantly, the appearance of

these gauge modes seem to be dependant on the ratio di/dx, implying a Courant

type instability.

o The Minkowski+Gaugewave spacetime showed the GEM equations to follow
the gauge dynamics as well as the Standard ADM cquations (for at least 1000
crossing times). The numerical solution showed no evidence of dissipation and,
althongh the travelling sin wave exhibited an increasing phase crror over time,

the numerical solution converged to the exact solution with increasing spatial

resolution.

The exploration of the Schwarzschild spacetimie also showed up some interesting

differences in the way the gange dynamics were handled by GEM and Standard ADM.

In particutar :

s In both maximal (section 6.4) and 1+In slicing (section 6.5) the GEM equa-
tions preduced shorter-lived evolutions than the ADM equations. However, the
runaway errors and the loss of convergence appeared to arise from the gauge
dynamics rather than an unstable formaiism. In particuiar, both the GEM and

Standard ADM codes eventually failed Once steep shocks in the evojution vari-

ables formed.

It is interesting that in the 1+In case, where the ADM equations evolved the
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spacetime for much longer than the GEM equations, the ADM code was not
convergent after about t=30M. This is well before the GEM code became non-
convergent due to coordinate shocks. This implies that the ADM evolution’s
longer life came at the expense of accuracy. It also highlights the imporance
of convergence testing in a field such as numerical relativity, where we have so

few exact solutions for comparison.

The most likely reason this behaviour did not manifest in the GEM code is
the absence of second-order spatial derivatives in the GEM formulation. This
suggests that the removal of the 3-Ricci tensor terms from the GEM evolution

equations results in better convergence.

A number of interesting questions were raised by the modelling of the Schwarzschild
spacetime in a maximal+shift vector slicing (chapter 7), where we chose a radial dis-
tance locking coordinate and gauge, to avoid the coordinate shocks usually assoctated

with a maxima'ly sticed Schwarzschild simulation .

o The first result is not with respect to the GEM equations at all, but is the fact that
in this coordinate system, the ADM equations are able to produce an accurate,
stable and convergent long-term integration, despite their known disadvantages.
It is an indication of the important role the choice of gauge plays in constructing

stable codes.

s This last spacetime, when modelled with the GEM equations gave rise to some
difficult questions, that remain open. The simulation was unstable in the long

term, with the appearance of a high frequency wave destroying both the ac-




curacy and stability of the evolution. The errors were worse at higher spatial
resolutions. This suggests that this is an unphysical. constraint satisfying mode,
of the type that can plague the Standard ADM equations. However, this is the
only one of the tests conducted here that indicated such a thing, implying that

further investigation of these equations is nceded.

This was tiie only onre of the spacetimes studied that involvad a non-zero shift
vector. This could possibly imply that the inclusion of the shift-vector changes
the system of GEM equations into a less numerically stable form. On the ev-
idence presented, however, it is impossible to do more than conjecture about
this. More tests are necessary to piiipoint whether the radial distance locking
coordinate represents an anomalous result, or an underlying property of the

GEM equations.

Indeed, as noted above, a work such as this can only scraich the surface of the na-
ture of the GEM equations and their pussible use in obtaining stable, accurate long-
term evolutions in general relativity. Thus, there exists much scope for extensions
to the work presented here. A natural first extension is to test these equations in a
3-dimensional setting. As we have restricted the form of the metric, for clarity, we

can only make limited, first conclusions as to the stability of the full GEM equations.

Another extension that would be possible in higher dimensions is to mazipulate the
structure of the equations themselves. In particular, it would be interesting to analyse
the effect of adding the gravito-magnetic tensor into the system, how this changes the

structure of the equations and whether it adds or detracts from the overali siability of

the system (and why it does so).




One related extension of this work is not in the field of numerical stability. but
rather in the the description of radiative spacetimes. Knowing the gravito-electric and
gravito-maagnetic tensors gives us information about the radiative part of the space-
time. The 3+1 Bianchi identities have a possible application in modelling the produc-
tion and propagation of gravitational radiation, whether they are coupled to the ADM
equations, as in this work, or used in tandem with one of the other variations of the

standard equations.

The results present od in this work provide a first step in the analysis of a2 modification
of the numeric: / Einstein equations. This thesis and its extensions are a part of the
process of uiderstanding, not only the behaviour of the equations presented here,

but the overall question of ‘What makes a stable numerical integration in general

- relativity aod why?” Whether or not these equations prove themselves to be useful in

obtaining long-term integrations in more physically interesting settings remain to be
seen, but we have provided a case for further investigation into the idea of applying

the equations governing gravitoelectromagnetism to numerical relativity.
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