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Errata
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p 7 point 1: "(

p 7 point 2: "±,/' for % , " , "£>," for "£>„"

D 7 eon H 4V " DAV^ = 3W^ — ^rmw^ + " 'T' Wm " for

p 16 para 2. "[Misneret.al., 1973]" for "(Bernstein. 1993J"

p 18 equ (2.29): "tr(K)n for "K"

p 23 para 3, sentence 3: "have shown certain promise, in terms of stability, bat work in this area is ongoing and
the full advantages are yet to be understood completely" for "have not shown themselves to have significant
numerical stability advantages over the standard equations."

p 30 para 2, sentence 2: "For our analysis «ve consider the case where the charge and current densities arise
from a system of point particles and the fields" for "The evolution of these fields in a vacuum"

p 50 eqn (3.82): "lr(K)n for "AT"

p 56 eqn (3.100): Add ")" to end of equation

p 58 para 2 (definition of g^):'%" for "£'"; "&" for "/?-*; "ft" for "/?<"

p 64 para 1, last sentence: "and not necessarily interested in chasing" for "not necessarily chasing"

p 65, para 1, last sentence: remove "and for this reason is not often used for 3-D, large-scale simulations in
general relativity"

p 68, para 2, first sentence: "shift" for "lapse"

p 70, eqn (5.7):" for "

p 81 para 1, second sentence: "than" for "then"

p 86 para 1, first sentence: "gauge condition" for "constraint equation"

p 96 para 2 first sentence: 'The line-element that describes a static black hole may be given by" for "Historically,
the first line-element to describe a black hole is given iu"

p 98, para 1 last sentence: "isoraetiy surface" for "event horizon**

p 99, para 4, first sentence: "non-Dirichlet" for "free evolution"

P 116 figure 6.8, both plots: "t" for "eta"

I
I

'k

p 120 para 1: replace sentence 2 with "Although harmonic slicing is singularity avoiding, the inner point of the
grid (rj = 0) comes arbitrarily close to the singularity (r = 0), making this slicing poor choice for numerical
simulations, unless adaptive mesh refinement techniques are employed"



Addendum

p 7, add at the end of point 2: 'This particular definition of stability is appropriate in this work as we arc not
concerned with spacetimes where the solution itself behaves exponentially. Furthermore, as we are interested
in long-term evolutions, having exponentially growing errors would render a simulatioa of little use, even if the
solution is 'stable' in the rigorous mathematical sense."

p 8, para 1, comment; The 3+1 formalism was originally published (using a restrictive gauge) by Choquet-
Brubat, in 'Theoreme d%existence pour certains systems d'equations an' derived particllcs nonlin&iires" in
Acta Mathematical, 141-225, 1952.

p 21, add after eqn (2.42): "where T = tr{T) = 7%"

p 23, Remove sentence 2, para 2 and add at end of para 2: "It is true that the constraint equations are compatible
with the evolution equations in the ADM formalism, as the Biaachi identities enforce that if the constraints arc
satisfied on the initial hypersurface, they nil! be satisfied on future hypersurfaces also. However, this analytical
result does not necessarily ensure stable numerical solutions, especially considering that the ADM equations do
not conform to the standard classification of partial differential equations, hyperbolic, parabolic or elliptic."

p 50, para 1, comment: 'This decomposition of Ku was introduced by York, in "Conformally invariant orthog-
onal decomposition of symmetric tensors on Remaimiaa manifolds and the initial value problem of general
relativity" in Journal ofMathematical Physics, 14(4), 456-464,1973

p 60, add after equation (4.15); "Note the decomposition given in equation (4.11) differs from the more standard
form given by York, 1979, namely Ati = *¥~l0Aij. Whilst our choice simplifies the form of the evolution
equations, it also leads to a more complicated form of the momentum constraint. We are justified in this as the
momentum constraint is not used to specify initial conditions in this work. However, for more general systems
this complication will need to be taken into account"

p 64, para 1, comment- "Flack hole excision techniques were introduced over a decade ago. For an example
of the development of this technique, see Thornburg. J. "Coordinates and boundary conditions for the general
relativistic initial data problem", Classical Quantum Gravity. 4,1119.1987

p 69 add to the end of para 2: 'It is true that this static boundary condition will introduce errors into the
derivative values on the boundary, resulting in small reflections. It was found that these errors remained less
than the errors applied to the grid for the life of the simulation. Therefore it was not deemed necessary to utilise
more careful boundary conditions, in this particular case."

p 125 add at the end of para 1: "One note of concern, however, for the OEM equations is the fact tr{K) does not
remain monotonic across the grid. This behaviour was found to persist when different time-stepping, boundary
conditions and spatial derivatives were tested This could indicate some deeper pathology of the GEM equa-
tions. This behaviour is also found to be a factor in the following chapter, where we consider non-zero shift
vector spacetimes."
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'When you are courting a nice girl an hour seems like a second. When

you sit on a red-hot cinder a second seems like an hour. That's relativ-

ity' - Albert Einstein

'People have stars, but they aren't the same. For travellers, the stars are

guides. For other people, they're nothing but tiny lights. And for still

others, for scholars, they are problems. For my businessman, they were

gold. But all those stais are silent stars. You, though, will have stars

like nobody else ... You'll have stars that can laugh.'

- Antoine De Saint-Exupery, from The Little Prince

'Marge, I agree with you - in theory. In theory, Communism works. In

theory.' - Homer J. Simpson
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Abstract

In recent years the advent of gravitational wave detectors and ever-growing computer

power have made the field of numerical general relativity increasingly relevant and

more accessible. At the same time the need for stable and accurate numerical models

of strong-field gravitational phenomena has raised many questions. The difficulties

of separating physical and coordinate results, and the problem of formulating the

Einstein equations in a way that produces numerically stable, results have resulted in

a wide body of research.

This thesis concerns itself mainly with the question cf numerical stability. We modify

the standard numerical formulation of the Einstein equations [Arnowitt et al., 1962]

in an attempt to produce a formalism that is better suited to numerical modelling.

We use the fact that the radiative part of spacetime, represented by the Weyl tensor,

may be expressed using the gravito-electric and gravito-magnetic field tensors. These

tensors represent a purely gravitational field, but are mathematically analogous to the

electric and magnetic fields of classical electromagnetism.

We decompose the Bianchi identities into 3+1 form which results in a system of

IV



evolution and constraint equations for the gravito-electric and gravito-magnetic field

(the gravitoelectromagnetic equations) that are analogous to the Maxwell equations in

electrodynamic theory. This system of equations is then used to augment the standard

equations. This removes the 3-Ricci tensor as an evolution variable, thereby making

the system first order in both space and time. This property is found to result in

improved convergence properties in spacetime where gauge shocks develop.

In order to test the modified formalism, we construct a one-dimensional test code. Our

aim is to compare the modified and standard formulations in a range of spacetimes.

As we are trying to gauge the effect of modifying the continuum equations, we use a

range of standard testbed spacetimes and standard numerical techniques.

We compare and contrast the two formulations under a range of gauge conditions

in both Minkowski and Schwarzschild spacetime. We find that the modified equa-

tions produce accurate, convergent and stable simulations in most of the spacetimes

considered. The results here suggest that further investigation into the use of the

gravitoelectromagnetism in numerical general relativity is justified.
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Foreword

The modified numerical formalism published in this work was first presented at the

GR16 conference, along with preliminary numerical results, based on a Schwarzschild

spacetime. While the theory presented here is the same as that presented previously,

the numerical results are not. This is due to the fact that further testing of the algo-

rithm post GR16 revealed results that were less encouraging than initially thought.

The initial numerical results in a maximally sliced spacetime appeared stable. How-

ever, further convergence testing revealed a coding error that lead to increased diffu-

sion in the time-stepping algorithm. This lead to a 'smearing-out' of the coordinate

shocks that usually form in this case.

The results presented herein have had this rectified, and all the test cases are designed

to be as transparent and as free of additional numerical effects as is possible.
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Chapter 1

Introduction

1.1 The Need for Numerical Relativity

\JP eneral relativity is an inherently four dimensional theory that uses geometry to

describe the interactions of massive bodies and the four dimensional spacetime they

are contained in. While there is no doubt that this fundamental coupling of space

and time provides an elegan^ and powerful theory, it is not automatically conducive

to describing the dynamics of evolving gravitational systems. To fully describe a four

dimensional spacetime manifold we need to solve the ten coupled Einstein equations,

which relate the metric on the 4-manifold, g^v, the curvature of space (represented by

the Ricci tensor, RMV, and its trace, R) and the mass-energy tensor, T^. That is, we

must solve

(1.1)

1

M
He



The Need for Numerical Relativity

for the entire past and future of the spacetime. For physically complicated, dynamical

systems, such as the collision of two or more compact objects, we are unable to pro-

vide this kind of analytical solution. Instead we need to recast the Einstein equations

into an initial value (Cauchy) problem.

As the Einstein field equations are inherently four-dimensional, non-linear and self-

coupled, the task of producing a Cauchy formulation is difficult. There is the addi-

tional problem that solutions to the field equations are unique only up to a difleomor-

phism [Hawking and Ellis, 1973J so that solving the field equations actually results in

an equivalence class of solutions. Thus, reformulating the Einstein equations into an

initial value problem requires the imposition of gauge conditions to remove the extra

degrees of freedom in the system (see chapter 2 for a full derivation of the initial value

problem in general relativity).

The work presented herein is primarily concerned with the development and evalu-

ation of a modified formulation of the numerical Einstein equations. The advent of

gravitational wave detectors has highlighted the need for accurate and stable numer-

ical models of dynamics in the strong field regime of general relativity, for example,

the merger of binary black holes and collapse of supermassive stars. The rapid de-

velopment of supercomputing and parallel programming techniques has meant that

the numerical general relativity community finally has at its disposal hardware and

numerical techniques capable of handling these kind of problems.

Unfortunately the major stumbling block has proved to be the mathematical structure

of the equations themselves. When reformulated as an initial value problem, the



Aims and Outline

Einstein field equations are non-linear and do not conform to standard categories of

hyperbolic, elliptic or parabolic partial differential equations, all of which have well

understood properties and for which we have standard finite difference techniques.

As stated above, there is the added problem that we must specify a gauge (in analogy

with classical electromagnetism) in order to uniquely specify a system. This leads

to the added complication of gauge dynamics, that is, the appearance of effects that

rise from a certain choice of coordinate system, vather than from the physics of the

spacetime.

The Einstein equations were first presented as an initial value problem by Arnowitt

et al. [19621. The work most commonly followed today is, however, that of York

[1979] and it is on this form of the initial value problem (referred to throughout as

Standard ADM, or just ADM) that we base our benchmark code. We present and

test a modification of the Standard ADM equations, based on the idea of augmenting

the standard equations with the Bianchi identities, which we recast as an initial value

problem. The Bianchi identities are expressed in terms of the gravito-electric, E^.,

and gravito-magnetic, B^, conformal tensors and we refer to the test scheme as the

ADM+gravitoelectromagnetic, or GEM, system.

1.2 Aims and Outline

We aim to develop a modified 3+1 formalism and to gauge its performance relative to

standard theory in a range of testbed calculations and to use the results to gain some

insights into the question of stability in numerical general relativity. In order to obtain

14;



Aims and Outline

meaningful results, we must be very clear about the behaviour of the spacetimes we

model in order to distinguish between 'real' physics, gauge physics and behaviour

caused by the form of the equations used. The aim of the game here is not to discover

new physics, but to evaluate the worth of a new formalism in a range of familiar

settings.

For this reason we limit the test cases considered to ones that may be modelled using

one spatial dimension plus time (a 1+1 formulation). For the most part, these are

spherically symmetric spacetimes. This allows us to investigate a simpler and more

transparent form of the equations investigated. It also means that we have, at best,

exact solutions and. at worst, a thorough understanding of the qualitative behaviour

of the spacetimes under consideration. This means we can gauge error growth and

convergence with confidence. We also limit ourselves to numerical techniques that

are as simple as possible. That is, we implement standard boundary conditions and in-

tegration algorithms. Again, the aim in this work is to gain insight into the feasibility

of the equations, not to develop new numerical techniques.

The structure of the work is as follows :

In chapter 2 we introduce the standard 3+1 formalism, referred to as the ADM system

throughout the work. This provides us with a foundation from which we can construct

a benchmark code, based on the standard numerical Einstein equations, that we can

test our modified equations against. We also discuss some of the problems inherent

in the standard approach and survey the more common approaches to dealing with

them.
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Chapter 3 we introduce the conformal Weyl tensor and the Bianchi identities, as ex-

pressed using the Weyl tensor. We also discuss the derivation of the Maxwell equa-

tions in special relativity as an analogy for the following work. Following Maartens

and Bassett [1998] and Friedrich [1996] we construct, from the Bianchi identities,

a system of constraint and evolution equations for the Weyl tensor, that have simi-

lar properties to Maxwell's equations of electromagnetism. We conclude the chapter

by augmenting the standard 3+1 equations with the Bianchi identities to produce the

system of equations (the GEM system) that will be the basis for the numerical work

we undertake.

In Chapter 4 we reduce the general GEM equations to their simplified (1+1) form and

outline the numerical techniques that were used in the development of the algorithm.

We apply the algorithm and both sets of equations to evolve initial data represent-

ing perturbations of Minkovvski spacetime in chapter 5. In this way we investigate

the performance of the algorithm in evolving initial data with both high and low fre-

quency perturbations. These tests are based around the standard numerical relativity

testbed calculations suggested in Alcubierre et al. [2OO3aJ.

Chapter 6 investigates well-established slicings of a Schwarzschild spacetime, fol-

lowing the tests carried out in Bernstein [1993], Again we evaluate the performance

of the modified algorithm in handling a range of gauge phenomena, in comparison

with the benchmark code. Following this, in chapter 7, we consider a slicing of the

Schwarzschild spacetime, with a line element related to that discussed in Alcubierre

[1997]) with non-zero shift vector.



Notations and Conventions

Finally, we summarise our findings in chapter 8, outlining the major points of dif-

ference between the standard and modified equations in (l + l)-dimensions. We also

suggest a range of possible extensions of the work presented here.

1.3 Notations and Conventions

Throughout this work we shall use a range of notations and conventions when pre-

senting mathematical results. Note, in particular, the following:

• It is assumed that Greek indices run over the range (0 , . . . , 3) and Roman indices

run over(1,...,3).

• All metrics have signature (- + + +).

• We shall use standard Einstein summation notation where vectors and tensors

are denoted using indices and summation occurs over recurring indices, i.e.:

(1.2)

Symmetry is denoted by round brackets around the indices affected, A

5GV + AVft), and antisymmetry by square brackets, A^] = \(A^V - Ay/i).

The superscript(4) is used to denote quantities defined on the four-dimensional

manifold (with respect to the 4-mctric, gftv) and the superscript(3) is used to

denote quantities defined on a spatial hypersurface (with respect to the metric
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on the hypersurface, X^). For example the 4-connecdon is 0)Vyy and the 3-

connection is (3)P" jk

• Covariant differentiation with respect to the 4-metric, g^v, is denoted by V,, and

with respect to the 3-metric, ±»v, is denoted by Da, i.e.

( 4 )Pa rW
r
v (1.3)

(1.4)

The semi-colon notation, Wh:v is used to denote covariant differentiation with

respect to the 4-metric only. Partial differentiation is referred to by both dt, and

comma notation, W^v.

• As this thesis deals with the question of numerical stability it is imperative that

we spell out exactly what we mean when we refer to stability. In this work

we shall use the definition of stability outlined in Alcubierre et al. [2003aJ.

That is, a numerical simulation is unstable if the errors (whether measured

through comparison with the exact solutions, or by tracking the violation of

specific constraint equations that must be satisfied at all times) exhibit expo-

nential growth. The exceptions are when exponential error growth occurs on a

timescale much larger than the dynamical timescale of the system under con-

sideration and, naturally, when the exponential growth is a consequence of the

analytical problem itself.



Chapter 2

The 3+1 Formalism in General

Relativity

2.1 Introduction & Motivation

e 3+1 formalism in general relativity, first introduced by Arnowitt et al. [1962]

provides a mechanism for decomposing 4-dimensional quantities into their 3-space

and 1-time components. Thus, we may formulate our solution as an initial value (or

Cauchy) problem. We specify our metric, its first time derivative, and any hydrody-

namical information on an initial, fully spatial hypersurface. This data is then prop-

agated forward in a suitable gauge. It can be shown [Arnowitt et al.. 1962] that the

long term solution of this initial value problem is equivalent to solving the Einstein

equations in full 4-dimensional general relativity.

8



Constructing the 3+1 Spncc-thnc

The 3*1 formulation most commonly used in numerical relativity (Standard ADM)

was presented by York [1979] and is actually a modification of the original formal-

ism [Amovvitt et al., 1962], Although Standard ADM has been studied and used for

decades, it is worth reviewing, as we will be using the ideas in the development of our

adjusted formalism and will be using Standard ADM to construct a benchmark code

for comparison with the approach discussed in this thesis. Unless noted otherwise, we

will follow the work of York [ 1979] and the later review given in Bernstein [1993].

2.2 Constructing the 3+1 Space-time

In order to recast the Einstein equations into an initial value problem, we must first

foliate our four dimensional manifold (At, g^v) with a series of Cauchy surfaces. A

Cauchy surface (£„ ±,/) is defined as a closed, achronal set, for which the complete

domain of dependence is the manifold, At. The complete domain of dependence of

Z, is the complete set of (past and future) events that may be determined through

knowledge of events on I f . The surface £, is achronal if distinct points ptq € X, can

not be connected by a future (or past) directed timelike curve, i.e. event p does not

lie in the chronological past or future of </, and vice versa. [Wald, 1984].

Consider a family of spacelike hypersurfaces (£, JL,;) embedded in a four-diinensional

manifold (Af,^»). We define a scalar function, called the Cauchy time function, t.

such that every level surface of/, £„ is a Cauchy surface. This series of hypersurfaces

provide a foliation of At, that is, they are non-intersecting and space-time-rilling.

The Cauchy time foliation allows us to define a coordinate time curve, so that the
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coordinates on At are (/, ,Y', X2, .r3).

We define a future pointing vector, f - (1,0,0,0), tangent to the coordinate time

curve. The motion of observers in the direction of the vector, f, can then be resolved

into components tangential and normal to the hypersurface, as illustrated in figure

2.1. First, we define a unit time-like one-form, n^, orthogonal to the hypersurface.

This implies

"[,(Vv«y)=0 (2.1)

and

njf = -1 (2.2)

From equation (2.1) it follows that there exists a positive definite scalar function, a,

such that

ty = - a - V = (-«"• 0,0,0) (2.3)

The normal vector, «", represents the 4-velocity of an Eulerian observer (i.e. one at

rest with respect to the hypersurface). The quantity a is the lapse function, and we

shall outline its role below.

A related quantity, and one that will become useful later, is the 4-acceleration of the

Eulerian observers, n , which is defined to be given by the covariant derivative of the

4-velocity, projected orthogonal to the hypersurfaces, i.e.

(2.4)

Thus, n is tangential to the hypersurface, i.e. n n^ = 0. This follows directly from
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the above definition and equation (2,2). The 4-acceleration is also related to the lapse-

function via

(2.5)

where Dv is tho covariant derivative associated with the 3-metric, i.,,,. (see section

2.2.1 for definition of the 3-metric).

Now we have defined a normal vector to our surface, we may also deiine a projection

tensor, i.e.:

V= V + "X

which projects quantities in M onto E.

Knowledge of the projection tensor allows us to construct a general prescription for

the projection of any geometric quantity on At onto a hypersurface. The full projec-

tion of a tensor quantity is

(2.7)

The projected quantity will be spatial, that is

n ( — n
Vi( i T'"->" } - 0 (2.8)

This allows us to decompose four-dimensional quantities into their components in a
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Figure 2.1: Spacetitue foliation, showing the hypcrsurfaces, the coordinate time and the
gQuge variables, a and/?1

tirnelike and spacelike direction. For example, a rank-2 tensor may be written as

+ T,

r K - U TTvn
T)nfi

(2.9)

and the extension to higher dimensional tensors is straightforward. In particular, the

projection of /" gives us/?\ which we shall refer to as the shift vector. The shift vector

is defined as follows:

P* =-L'V f (2.10)

As illustrated in figure 2.1 the coordinate (ime curve tangent vector may then be

expressed as

^' = 0^+0' (2.11)
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Note that t" = (1,0,0,0) regardless of the lapse and shift as it is, by definition, tangent

to the coordinate time curve, /. The coordinate time curve, however, is dependant on

the lapse and shift and may be completely specified in terms of them and the normal

vector. Thus the lapse, a. and shift vector, /?', are purely gauge variables and may

be chosen arbitrarily. The choice of a determines the structure of the foliation of

surfaces. The choice of J3' is arbitrary at each point, and a particular choice leads to a

particular family of curves 'threading the slices of S' [York, 1979].

2.2.1 Hypersurface Structure

The description of the slices is governed by the knowledge of two basic quantities,

the induced metric of the si'ice, 1^, and the extrinsic curvature, K^. The former is

simply given by the projection of the 4-metric onto the slice.

• V - gllv + n^riy (2.12)

c.f. equation (2.6).

The covariunt derivative on the slice, O;| is obtained by projecting its 4-dimensional

analog, ie

DVT\ =x VrT»v (2.13)

where Tv
l is an arbitrary spatial mixed tensor. Once we have assumed this form we

can show that Dir does indeed satisfy the properties of a covariant derivative (as given

by Wald [1984], section 3.1). In particular, DiT satisfies
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Linearity:

(2.14)

where .v, // e SX and /\, 5 are tensors of rank (A*, /).

Leibniz Rule:

It is important to note that D^ is still a 4-dimensional operator, and is designed to act

on 4-dimensional spatial tensors. A further important property of the spatial deriva-

tive is

— ±[r

; V6(nanfi)

+ nvn^nan,r%s - n^tty — H s 0 (2.16)

as expected in comparison to the 4-dimensional case (V f̂/,,̂  = 0).

Contractions of the 4-dimensional Riemann tensor, (4)/?;iV«/i, provide important infor-

mation about the 4-dimensional spacetime curvature. The 3-dimensional Riemman

tensor, li)Rhyap, is defined analogously to its 4-dimensional counterpart. That is, for

arbitrary one-forms, v(r and wiT, (with wir spatial),

w-

(2.17)

(2.18)

f-'C
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In order to translate information about the metric and curvature of the hypersurfaces

into information about the 4-dimensional spacetime we need to know how the slices,

2, are embedded in At. That is, we need to define the extrinsic curvature (or second

fundamental form) of the slices, The extrinsic curvature, K^v, is obtained from the

3-covariant derivative of the normal vector:

Dflnv

— — JLyA.v V i r / J r — — X-^ VyHy (2.19)

(For the third identity we have used the definition of the projection tensor (2.6) and

the identity nynT
J?ftn

r = 0.) This also leads to the important result that

(2.20)

from equation (2.4). K^v is symmetric, i.e. K^v = Killv) = \(KtiV + K^v). This follows

from equations (2.20) and (2.1).

We now have the tools needed to construct the constraint equations governing the

components of the Riemann tensor on each slicing. In fact, we find that we are able

to constrain the 4-dimensional Riemann tensor, (4)f̂ w ,̂ entirely in terms of spttial

components.



Constructing the 3+1 Spnce-tinie 16

2.2.2 Hypersurface Curvature & Constraint Equations

In order to split the Einstein equations into their 3+1 form, we first consider the

Riemann tensor. The three components of the decomposition of(4)/?,„•<>/» leads to the

set of equations known as the Gauss-Codazzi-Ricci equations. These equations are

Gauss equation:

-I- Ryvnp — ' (2.21)

Codazzi Equation:

-L (2.22)

Ricci Equation:

vnf}rf'na = nay7aKvB +

(2.23)

Equation (2.21) is obtained from the projection of all indices of (4)Rm,p onto the

hypersurface, using equation (2.7). This removes all terms involving normal compo-

nents, leaving only terms involving (3)^V(,^ and Kllv. Equation (2.22) follows from a

single projection along the normal and subsequent projection of the remaining three

indices onto the hypersurface. Similarly, equation (2.23) follows from double projec-

tion along the normal. Due to the symmetries of the Ricci tensor, contraction of more

than two indices with the normal will yield a zero result [Bernstein, 1993).
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The total decomposition of/?lmr/» is then found from the definition (2.9) which is then

simplified using equations (2,21) - (2.23) to obtain:

Rfl ^

•f tn
v +

(2.24)

For a complete picture we need to consider the presence of a matter distribution with

arbitrary mass-energy tensor Tuv. The mass-energy tensor may be decomposed using

equation (2.9) to be expressed entirely in terms of hypersurface parameters:

(2.25)

where

/ :=- i - (

p := Tapna (2.26)

5^v = *>+ -Lpv P where ^ v and P are the anisotropic and isotropic pressure re-

spectively, / represents energy flux and p the energy density of the fluid. Note that
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"V ~ n,i,V) and tr(n) = jf^. = 0. The hydrodynamical quantities are obtained for a

given matter distribution by specifying an equation of state and considering the twice

contracted Bianchi identities, which are discussed in more detail in section 3.4.4.

We may also construct the Einstein tensor from the definition

(2.27)

Using equation (2.24) we can project the Einstein equations (1.1) along the direction

of the normal vector to yield the constraint equations:

» s°> R -f tr(K)2 - K^KT = 2KP

nvG\. s Dy(K
flv- ±*v K) = tcf

(2.28)

(2.29)

where (3>/? refers to the spatial Ricci scalar, K - %n and tr{K) -L^v KMV = g^vK^v.

These are the Hamiltonian constraint and the momentum constraints respectively.

Equation (2.28) produces a scalar while equation (2.29) returns a spatial vector, hence

the combined hypersurface components (i.e. the indices from 1-3) of the constraint

equations provide four of the ten independent equations needed to specify the system.

2.3 Propagation of Hypersurface Parameters

The remaining six Einstein equations prescribe the evolution of the hypersurface and

we shall outline their derivation in this section.



• ' I " S

Propagntion of Hypcrsurface Parameters 19

2.3.1 Lie Derivatives

One of the most important tools in our development of the 3+1 problem is the concept

of the Lie derivative (see Hawking and Ellis [1973] for a full description of the Lie

derivative's properties). We shall define it in terms of its action on various fields. For

example, the Lie derivative of a scalar field, / , is analogous to a directional derivative

along a given vector field X11.

(2.30)

For a vector Held, V, it is given by

(2.31)

and finally for a tensor field, P'v, we have

(2.32)

An additional important property of the Lie derivative is its action on the projection

tensor. Using the definition of the Lie derivative (2.32) and equations (2.5) and (2.12)

we find

£„ - L > 0 (2.33)

where tf is the velocity of vhe 4-observers that was introduced in section 2.2.

The evolution equations are derived by considering the Lie derivative of ±MV and Kf
flv
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along the curve f. By linearity of the Lie derivative:

(2.34)

(2.35)

Now we are ready to constmct the evolution equations for initial data (the 3-metric,

±ij, and extrinsic curvature, K(j) specified on a hypersurface.

2.3.2 Propagation along t

Consider the Lie derivative of the 3-metric in the if direction We find:

£„ ±
ITtl

But from equation (2.20) and (2.5) we have

s n^ nY- -

so

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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Thus, by the symmetry of K^ the evolution of i./A, along rf is given by

(2.41)

The Lie derivative of the extrinsic curvature along «" is obtained through the full

projection of the Einstein equations (1.1) expressed as

1
(2.42)

The right-hand side is expressed using purely spatial quantities through the defini-

tion of the mass-energy tensor (2.25). The left-hand side is obtained by taking the

projection of the Gauss equation (2.21) along the 3-metric which yields

_L(4> R/tv+ =(3) (2.43)

Using the Ricci equation (2.23) and noticing that it includes the Lie derivative of the

extrinsic curvature leads to our next set of evolution equations:

-1

- P) (2.44)

In order to use this information to construct time derivatives of our evolution vari-

ables, we remember that we have defined the tangent to our coordinate time curve
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(section 2.2) as

" = (1,0,0,0) H (2.45)

Thus £, = dt. Using equation (2.35) we then obtain the general evolution equations

for ±^. and K^. along the coordinate time curve:

(d, ,= -2aKu (2.46)

and

1
P) (2.47)

If we take a moment to do some counting, we notice that the spatial components

(i.e. letting the index run from 1-3) of the evolution equations for the 3-metric (2.46)

represent the remaining six independent and non-trivial components of the Einstein

equations. Note also that these equations do not constrain the four gauge functions,

i.e. the lapse function, a, and shift vector, /?'. We are free to specify these. Once

we have done so, the coupled system of evolution equations, (2.46) and (2.47), the

four constraint equations given by the Hamiltonian and momentum constraints, (2.28)

and (2.29), along with evolution of any matter source terms provides us with the ten

independent components of the Einstein equations, posed as a Cauchy problem.
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2.4 The Question of Stability

To solve for a complete spacetime using the Standard ADM formalism we firstly

specify our 3-metric and extrinsic curvature (according to the constraint equations) on

a Cauchy surface of our choosing. We shall pretend for the purposes of this thesis that

this is a straightforward task, as tru initial conditions for the spacetimes we consider

are easily specified. As the aim of the game in this work is to study the behaviour

of the evolution the question of initial conditions is tangential. There are, however a

number of interesting review papers on the topic for the interested reader, for example

Cook [2000].

Before we introduce the modified formalism in the following chapter, we need to pro-

vide some justification for why any modification is considered necessary. Firstly, the

equations as they are presented above are not, in general, well-posed or hyperbolic.

A system of equations is well posed if we can show the existence and uniqueness of

a solution, and that the solution depends continuously on the initial values. That is,

if the constraints are satisfied initially they will be satisfied for subsequent hypersur-

faces, if the problem is well posed*. [Briigmann, 2000]

This has lead to a large body of work aimed at the modification cf the standard ADM

equations to obtain a hyperbolic formulation. The major advances in this area are

reviewed in Reula [1998]. To date, the hyperbolic formulations of the 3+1 equations

have not shown themselves to have significant numerical stability advantages over the

standard equations.

* although well-posedness in an analytical sense will not necessarily enstre the constraints remain
bounded in a numerical setting
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B

Secondly, there is the problem of 'gauge modes'. The specification of a gauge (a and

/?') is only enough to constrain the metric and extrinsic curvature up to a coordinate

transformation. It remains possible to transform the metric-extrinsic curvature pair

without changing the form of the lapse and shift functions. If the transformed solution

satisfies the constraint equations, this gauge constraint can, depending on the speed

of propagation of the mode, lead to unstable numerical results [Kelly et al., 2001],

A great deal of work has been done in trying to understand the mathematical na-

ture of the stabilities in both linearised and full-field general relativity. For example,

the work of Gen Yoneda and Hisa-aki Shinkai has dealt with the stability question

through the eigenvalue analysis of propagation equations for the constraint equations

(for a recent review see Shinkai and Yoneda [2002]). Their methodology requires an

eigenvalue analysis of the full non-linear constraint propagation equations, but an in-

sight into stability can be gleaned by restricting ourselves to the linear regime, namely

be considering the behaviour of linear perturbations on a Minkowski background.

Here we consider the theory as presented in Alcubierre et al. [2000]. By considering

a metric of the form

±V= Su + eij (2.48)

where \e,j\ « 1 we can derive linearised versions of the ADM evolution, and con-

straint equations. If we then slice the spacetime such that obsen'ers fall along geodesies

)*"v» V
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(a = l,/3' =5 0) the linearised ADM system is [Alcubierre et al., 2000]

€ij = -2Ktj + h.o.

d,Ki} = h.o.

(2.49)

(2.50)

where Q)R.}lintar) = ±(-gmff»€ij _ djdjiiie) + <9,<9m6™ + <9H15ye(.'") is the linearised Ricci

tensor and h.o. represents all terms of higher than linear order. The linearised con-

straint equations are given by

(2.51)

(2.52)A/1" = dt(dmeim - fftr(e)) = 0

We assume a solution of the form of a plane wave travelling in the x-direction, i.e.

J(cjt-kx)

Ku = Kij

(2.53)

(2.54)

Substituting this into equations (2.49) and (2.50) and expressing the metric as a vec-

tor, ±ij = (lxx, lyy, 1~, 1MJ, l . c , lyz) allows us to reduce the set of equations to an

eigenproblem for i/y. The problem admits two eigenvalues, A = 0 and A = 1 and

six eigenvectors. Of these solutions, twe represent the physical gravitational wave

(i.e. they travel with speed one and are transverse and traceless), three modes vio-

late at least one constraint and one satisfies all the constraints. (2.51) and (2.52), and

propagates with zero speed.
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This last solution is the one that is most worrisome. This is not a physical solution,

it is a pure gauge phenomenon and, as it exhibits zero speed, can never propagate off

a numerical grid. Thus, numerical integrations using the ADM equations, in some

gauges at least, will exhibit a constraint violation that grows with time, leading to an

unstable evolution.

Of the great number of modifications to the standard equations that have been pro-

posed, the most widely accepted at this point is the system presented in Baumgarte

and Shapiro [1999], based on the conformal, trace-split system of Shibata and Naku-

mara [Shibata and Nakamura, 1995]. The crux of this modification is, firstly, the use

of the conformal metric, i,-7- = e~M i.,;, where e^ = (det±) l /3. The evolution of the

metric function is now split into two equations, one for the conformal factor, <f> and

one for the conformal metric, X,-y. The evolution equation for the extrinsic curvature

is also split into its trace and trace-free parts, which are evolved separately.

Secondly, the conformal connection functions are raised to evolution variables through

the introduction of the kinematic quantity f' H lJkt' jk. This quantity also allows the

definition of the 3-Kicci tensor to be recast in elliptic form, making it more conducive

to numerical computation. Furthermore, the evolution equation for P incorporates

the momentum constraint. It can be shown [Knapp et al., 2002] that this modification

has an important effect on the constraint-satisfying gauge mode. In the BSSN formal-

ism, this mode propagates at the speed of light, thus enabling it to propagate off the

numerical grid, resulting in a more stable integration.
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Chapter 3

Gravitoelectromagnetism

3.1 Motivation

yn this chapter we propose a modification of the Standard ADM equations, with

a view to improving their stability properties. We propose to include the Bianchi

identities to the existing Standard ADM Cauchy system. This will change the existing

system of equations and will add in extra equations. The extra equations are formed

from the Bianchi identities and bear a strong resemblance to the Maxwell equations

of classical electromagnetism.

The Bianchi identities and their 3+1 decomposition are not new but (to the best of our

knowledge) their use in augmenting the Standard ADM equation and the development

of a numerical code with this modified formalism, is. Firstly, we shall outline some

27
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of the previous applications of these equations (section 3.2). We shall also review the

equations of classical clectromagnetism in section 3.3, before we spend the remain-

der of the chapter in building the gravitoelectromagnetism (GEM) formalism. The

general form of the 3+1+GEM equations that shall be used in this work are presented

in section 3.5.

3.2 Previous Work

The work that is closest in philosophy to that undertaken here is Friedrich [1996].

Friedrich introduced the idea of using the Bianchi identities as part of a hyperbolic

reduction of the Einstein field equations. The Weyl conformal tensor (section 3.4.3)

in a vacuum can be shown to propagate according to hyperbolic equations regardless

of gauge.

The Weyl conformal tensor and the Bianchi identities also play a large part in the

work done in the field of cosmology by Ellis (see, for example Ellis [1973]). In

order to carry out the decomposition we modify Ellis* approach slightly. The major

differences between Ellis' approach <̂id standard ADM may be seen by comparing

figure 3.1 and figure 2.1.

Ellis considers local hypersurfaces that arc co-moving with a congruence of observers

who are moving through spacetime. We observe that the congruence approach does

not require the spacetime to admit a global foliation of hypersurfaces. There is still a

strong and obvious analogy between the two approaches, as the congruence approach
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subspace

Figure 3.1: Representation of the spacetime foliation in the congruence of observers method
of Ellis. Here if = ^ is the co-moving velocity of the observer. We consider projection of
4-dimensional quantities into the local subspaces of the observers.

splits the spacetime into its three space and one time components, though only in

a local sense. The congruence method equations are complicated, however, by the

appearance of vorticity terms arising from the rotation of the observers. These terms

do not appear in the ADM case due to the imposition of global hypersurfaces.

In this work we assume the existence of a global foliation of hypersurfaces (i.e. there

will be no vorticity terms in our equations). We will, however, follow the methodol-

ogy and some of the notation of Ellis.

3.3 Relativistic Electromagnetism

In order to formulate the fully covariant 3+1 form of the Einstein equations plus

Bianchi identities we consider an analogy to classical electromagnetic theory. For

%
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simplification, we consider the equations in Minkowski spacetime, i.e.

(3.1)

where the normul special relativistic doHnitions apply.

The classical electromagnetic field is described by the two fundamental vectors: the

electric (E) and magnetic (B) fields. The evolution of these fields in a vacuum are

described by the set of evolution and constraint equations known as the microscopic

Maxwell equations, which are [Barut, 1980J:

<9,B + V x E = 0

d,E - V x B = - j u ' " )

V-B = 0

(3.2)

(3.3)

(3.4)

(3.5)

Here j ( r t M ) is the current density and p(cm) is the charge density (the (em) superscript

differentiates them from the energy flux and energy density defined in the preceding

chapter). V = (-jj, -jK, -^) is the standard flat-space gradient operator.

It is then common practice to define scalar and a vector potentials:

~ -E - d,\

(3.6)

(3.7)

The definition of the vector potential, A, (equation (3.6)) follows from equation (3.4)
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and the definition of the scalar potential, <f> (equation (3.7)) follows from equation

(3,2). This allows us to rework the Maxwell eqimtions into evolution equations for

the gauge potentials, to obtain

(3.8)

(3.9)

(-0; + A)0 - -p{cm) ~ 0,(V • A + d,

(~r9; + A)A = ~j""° + V(V • A

where A s (^TJJ* flu??* 0$?)ls t n e Oat-space Laplacian operator. The set of equa-

tions (3.6) - (3.9) are equivalent to the Maxwell equations (3.2) - (3.5).

In this chapter we will be deriving the general relativistic counterparts to equations

(3.2) - (3.5). In order to draw comparisons between the two theories we shall refor-

mulate the above equations into tensorial form. We define the field tensor Fpv by

F -

0 -E

£, 0

-E2

0

-B,

0

Likewise we define the 4-potential (A*) and the 4-current

(3.10)

(3.11)
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The definitions of the scalar and vector potentials. (3.6) and (3.7), are equivalent to

(3.12)

The Maxwell equations may then be expressed in tensorial form thus:

(3.13)

(3.14)

Note that equations (3.12)-(3.14) are invariant under the transformation

(3.15)

where x is a n arbitrary scalar function. This gives us the freedom to specify differ-

ent gauge choices, by placing conditions on the potentials, A and <t>. Two common

examples are the Coulomb gauge:

V-A = (3.16)

and the Lorentz gauge:

(3.17)

We can see from this brief look at electromagnetism that the approach to modelling a

classical electromagnetism problem differs from the approach often taken in general

relativity. In electromagnetic theory we see that we start by ascribing the two fields, E

ii
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and B. We then see that the Maxwell equations imply the existence of the potentials.

A and <p, which generate the electric and magnetic field.

This is the opposite of general relativity where, with knowledge of the 'gravitational

potentials' (the metric coefficients) one can calculate the 'fields' (the curvature of

spacetime). By solving the Einstein equations (in this case using the 3+1 formalism)

we obtain the fields generated by the potentials (that is, we solve the evolution and

constraint equations for the ten components of the spacetime metric). The Bianchi

identities (which we shall see are analogous to the Maxwell equations) provide the

integrability conditions for the Einstein equations but, traditionally, are not used in

obtaining a solution.

The reworking of the 3+1 formalism that we provide in this chapter sees us taking

an approach that is closer in philosophy to that used in classical electromagnetism

(following the work done by G.F.R. Ellis in particular). That is to say, we use the

Bianchi identities in analogy with the Maxwell equations to provide evolution and

constraint equations for gravito-electric and gravito-magnetic field. The 3+1 Ein-

stein equations, augmented with the Bianchi identities, allow us to solve gravitational

potentials, which in turn, generate the gravitational field.
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3.4 The Gravitoelectrodynamic Equations

3,4.1 A Toolkit

Before we embark on the main aims of this chapter it is worth spending a moment

considering a few quantities that we will need along the way (i.e. we must build a

toolkit for the derivation). Firstly, we consider the alternating pseudo-tensor, e^p.

We define this as

V-
4!

(3.18)

(3.19)

The 4-volume element is then

dV := j-del(g)d.i?d.xldx1dxi

(3.20)

Note that this implies £0123 = + yj-fel{cj), which gives our pseudo-tensor the opposite

sign to that defined in the work of Ellis et. al. (for example Ellis [1973] and Ellis

[1971]).

We define the alternating tensor associated with the 3-volume element as

(3.21)
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The 4-altcrnating tensor may be decomposed as

(3.22)

The 3-alternating tensor may also be defined in terms of the 3-metric, via:

/det(x)
. -L

1 , 2

v . o r ]
J

and it has the following important properties

(3.23)

(3.24)

1. stlvi1n
a = 0 (i.e. sMva is spatial)

= 0

3. £j23 = + Vdet(JL)

4. (a)

(b)

(c)

(d)

= 3! J.

= 2! ±'« ±

= 2 ±%

Secondly, we consider the Weyl Conformal tensor,

- R , Ry - v R

+ -

(3.25)

(3.26)
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From this definition we see that the Weyl tensor shares the same symmetries as the

Riemann tensor (see, for example Misner et al. [1973]). In particular:

n (3.27)

(3.28)

= 0 (3.29)

The Weyl tensor has the additional constraint that it is trace-free, i.e.

(3.30)

It represents the ten trace-free components of the Riemann tensor in a 4-dimensional

spacetime.

Most importantly for this work we can express the familiar Bianchi identities (again,

see Misner et al. [1973]) in terms of the Weyl tensor. We do this by utilising the

definition (3.25) which gives us the uncontracted and contracted Bianchi identities

respectively:

+ ^ (3.31)

(3.32)

where the Ricci tensor and its trace are the four dimensional quantities.

To aid with the 3+1 decomposition of the Bianchi identities we can, with knowledge

t
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of the Weyl tensor and s^vn0, define the electric and magnetic parts of the Weyl tensor

as [Ellis, 1971]

fcra

(3.34)

These are both spatial (EtiTnT = B^TnT = 0) and trace-free (E^ = BP,, = 0).

Just as the Riemann tensor may be decomposed in the 3+1 formalism, so may the

Weyl conformal tensor. The remainder of chapter will look at this decomposition,

and its implications for numerical relativity, in considerable depth.

3.4.2 The Decomposition of the Weyl Tensor

As with any 4-dimensional tensor quantity we can break the Weyl tensor up into its

components perpendicular and parallel to the hypersurface (I), according to the rule

(2.7), yielding

- (±

- (±

+ (J.

+ U

+ (i.

4- (J_

+ (J.

+ (J. C-tV(rpnTncr)ntlnu

(3.35)

IP
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noting that l projects aUfree indices only and that contracting the Weyl tensor with

the normal more then twice equals zero, through symmetry.

From the previous equation we can obtain three equations that are analogous to the

Gauss-Codazzi-Ricci equations ((2.21) - (2.23)). First we consider the double projec-

tion along the normal, .1 CtlTmrn
Tn'T. By using the definition of the electric conformal

tensor (3.33) and the fact that it is spatial we obtain

I r nrtf - F (3.36)

Considering the single projection along the normal.

(3.37)

leads to

(3.38)

The full projection onto the hypersurface (_L Cmifi =±.lJ±y]±lJ±"] C[r(rilrw]) yields

-L (3.39)

By substituting equations (3.36) - (3.39) into the decomposition of the Weyl tensor

(3.35) we obtain an expression for the Weyl tensor in terms of its electric and magnetic
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parts:

• • I :

— Va

(3.40)

Now that we have an expression for the Weyl tensor in terms of the gravito-electric

and gravito-magnetic tensors we are in a position to consider the 3+1 decomposition

of the Bianchi identities.

3.4.3 The Bianchi Identities

In this section we shall obtain the 3+1 Bianchi identities in terms of ihe gravito-

electric and gravito-magnetic tensors. For this we will start with equations (3.31) and

(3.32), the Bianchi identities. To obtain the gravitational analogue of the Maxwell

equations we need to construct four independent, tensorial equations. By considering

the decomposition of Cpv(,/j, equation (3.35), we surmise that we can obtain only three

independent equations from the once contacted identity so we must utilise both the

uncontracted and once contracted Bianchi identities for our task.

We will get one tensorial equation from considering each of the following projections
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of the Bianchi identities:

(3.41)

-L (V'rC,(T(rfr);r = JL K + ^ [ />r (3.42)

and

=x if

r —

+ i

VT " - - P VrTl«r

v ' Tj ^-aarv ' I ' •

(3.43)

where we have used the Einstein equations, (1.1), to replace the Ricci tensor in equa-

tions (3.31) and (3.32) with the mass-energy tensor, T^v.

We shall sketch the outline of the derivation by considering the left-hand and right-

hand sides of the above equations separately. We first consider the left hand side (i.e.

the projection of the Weyl tensor) of equation (3.41). We replace the Weyl tensor

with its definition in terms of the gravito-electric and gravito-magnetic tensors, via

equation (3.40), and expand the derivative using the Leibniz rule, equation (2.15).
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We also make use of the identity (2.20) to replace terms of the form V/(HV. We obtain

flvmr
, 0 J

Bfi

+ I ±y Xy (.1

+ r R^K

nK -

(3.45)

where the dot denotes the projection of the covariant 4-derivative in the direction of

the normal, i.e. for an arbitrary rank-2 tensor W,,v,

W,tv=,tv
(3.46)

We utilise the properties of the alternating pseudo-tensor (section 3.4.1, properties 1,2

and 4) and equation (3.22), to simplify this further. It follows from the definition of

the the 3-covariant derivative (equation (2.13)) that the V^E''^ in the above equation

may be replaced with DcrEp
lo. Thus equation (3.45) becomes

- 2BitJr(K)+ B,,a> ~Ky « wo

(3.47)

Note we have also used the definition of the 3-covariant derivative, D^, in terms of the

4-covariant derivative (2.13) in order to express the ubove equation in terms of spatial

quantities and operators only.
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Using the definition of the Lio derivative (2.32) along with equation (2.20) we can

identify

£nfl,,w + + 'n (3.48)

In order to highlight the mathematical similarities between the 3+1 Bianchi identities

and the microscopic Maxwell equations we make use of two important definitions, as

given by Maartens [1997]. The spatial divergence of a vector and a rank-2 tensor are

taken to be

divV = DaVa

(divM),, = D"M,a

(3.49)

(3.50)

respectively. Similarly we use the following definition of the curl of a vector and

tensor:

(3.51)

(3.52)

The curl and divergence are related via [Maartens and Bassett, 1998]

(3.53)
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These relations allow us to reduce equation (3.47) to

43

-i-

^ - 2BttJr(K)

(3.54)

Using the same techniques, we can express the left-hand side of equation (3.42) as

-L (V°"C«ro<r)w
T = - [£„£„„ + curl(ZU) + -i

(3.55)

The left-hand side of equation (3.43) is expanded using the Leibniz rule for deriva-

tives, i.e.

^ =± lV<r(C^w^^<?) - C ^ V V H " ) ] (3.56)

We then take the above equation and expand out each term, again using the Leibniz

rule. We utilise the definition of the gravito-electric tensor (3.33) the decomposition

of C/mr/J, equation (3.40), and equation (2.20), which relates the 4-derivative of the

normal vector and the extrinsic curvature. This leads to the following expression

•l + (3.57)

We expand equation (3.44) in the same way, taking note of the definition of the
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gravito-magnetic tensor, equation (3.34). to obtain

X (3.58)

For each of the right-hand sides of the contracted Bianchi identities, (3.41) - (3.43),

we substitute the 3+1 decomposition of 7//v (equation (2.25)) and use the properties

„ to obtain

-

~0«[r a - 7tTl1 tl

I 1 \
I V[rrplw + j ^ r V ^ r 1 nT/iw =

1 •
- ±aip +DMja]

K 2
[

»<rK 2 » .

-[-DvP - 2UKZ+ j v -U n nv + p nv

+ ^yir /J + nv P + Dyf ]

(3.59)

(3.60)

(3.61)

Similarly, the right-hand side of the uncontracted Bianchi identity yields

We can use the definition of the curl of a tensor (3.51) to modify equation (3.59). We

can also simplify equation (3.60) and equation (3.61) by considering the relationship

between the Lie derivative and the " operator By definition of the Lie derivative and
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equation (2.20) we have

P = £„/> (3.63)

(3.64)

I"" (3.65)

The right hand sides of the uncontracted Bianchi identities may then be expressed as

/ 1 \ K 1

+ eTpufK
p
a + -e^D^p] (3.66)

2 ; ^ na) -Ka
a)

1

7

£np]

Equation (3.62) remains unchanged.

(3.67)

(3.68)

3.4.4 Conservation Equations

Before we combine our left-hand (equations 3.54) - (3.58)) and right-hand (equations

(3.66) - (3.62)) sides, we choose to simplify the right-hand sides somewhat. You will

note that equations (3.67) and (3.68) contain propagation terms (e.g. £,J^). We can

simplify the propagation terms involving the hydrodynaniical quantities by consider-
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ing the twice contracted Bianchi identities,

V T" = 0 (3.69)

which give rise to the conservation equations.

We derive the continuity equation from projecting equation (3.69) in the direction of

the normal vector, i.e. tfV^T"^ = 0 to obtain the following [York, 1979]

£np = -Daf + Jt^Keu, + (P + p)tr(K) - 27V n (3.70)

The generalised Euler equations are found from the projection of the twice-contracted

Bianchi identities tangential to the hypersurface, ±^(r ^yT
v
p = 0. We obtain [York,

1979]

Znh = -D^ - D»P + jMtr(K) - nvll n" -(P + p) n^ (3.71)

Thus we see that we can obtain evolution equations for two of our hydrodynamical

quantities, the energy density and energy flux, directly from the twice contracted

Bianchi identities. In order to specify our isotropic and anisotropic pressures we need

extra information for a given matter configuration, for example an equation of state.

As we will be dealing only with vacuum spacetimes in this work, we will not go down

the path of obtaining explicit equations for the pressure terms. In general, the question

of finding an appropriate equation of state for relativistic fluids, such as in the interior

of neutron stars, is non-trivial and deserves a thesis worth of explanation in itself. It

was, however, worthwhile to consider the generalised continuity and Euler equations

2
•im
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as we wish to present a prescription for 3+1+Bianchi identities that is applicable in

general spacetimes.

3.4.5 The Gravitoelectromagnetic Equations

We substitute the continuity equation, (3.70). and Euler equation, (3.71), into equa-

tions (3.67) and (3.68). We are then in a position to combine equations (3.54)-(3.58)

with equations (3.66)-(3.62) to obtain

(3.72)

K
~*\)KT (3.73)

These constraint equations are used to simplify the remaining two equations, which

become

i ±,v

n +5Eir{JJKv)
cr

+ 2fno)]

tr(K))

(3.74)

K • y
n

= 0 (3.75)
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It can be shown [Friedrich, 1996] that the equations above, when considered in vac-

uum, represent a symmetric hyperbolic system provided a > 0 and JL V̂ is positive

definite. Friedrich proposed the addition of the gravito-'Maxwell' equation system,

(3.72)-(3.75), to a hyperbolic formulation of the ADM equations, to form a complete

hyperbolic evolution system. We have, instead, chosen to augment the Standard ADM

equations with the gravito-'Maxwell* equations, in order to keep the resulting system

relatively simple and to aid us in drawing comparisons with Standard ADM.

In understanding the above equations, we make use of the similarities between the

above equations and the classical Maxwell equations, (3.2)-(3.4). Note in particular,

that if we choose a perfect Huid equation of state, where n^v ~ jM - 0, the equations

(3.72)-(3.75) reduce to the form

, + [field coupling terms] = -

i + [field coupling terms] = 0

£n£pv + curl(^v) + [field coupling terms] = (F

£nS,)V + + [field coupling terms] = 0

3

(3.76)

(3.77)

tr(K)) (3.78)

(3.79)

Firstly, note the additional field coupling terms that appear in the gravito-'Maxwell'

equations, in comparison with the electromagnetic Maxwell equations. These arise

for two reasons, namely the »he tensor coupling of the gravito-electric and gravito-

magnetic fields to the extrinsic curvature (K^. and tr(K)) and to the gauge functions

(n terms).*

•Remember that n -D" ln(or) by equation (2.5).
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By simplifying to a peifect fluid, we are able to draw an analogy between source

terms in classical electromagnetism and general relativity. By comparing equations

(3.76) and (3.5) we can identify the gradient of the energy density, D^p, as a gravito-

electric charge density, in comparison with p(tm) in electromagnetism. We see also

that the general relativistic source term (P + p)(K^. - | 1^ tr{K)) is analogous with

the concept of charge density, ju'"° in the classical Maxwell equations. See Maartens

and Bassett [1998] for a detailed discussion of these analogies in 1+3 formalism of

Ellis.

3.4.6 Gravito-electromagnetic Potentials

The next step is to define gravito-potential terms, in analogy with the electromag-

netism case. In classical electromagnetism the potentials are constructed from the

Maxwell equations. In our case, however, we can define these more easily through

the Codazzi and Ricci equations (2.22) and (2.23).

Firstly we substitute the definition of the Weyl tensor (3.26) into the Codazzi equation

(2.22). We then use the 3+1 form of T^ (2.25) and equation (3.38) to obtain

™,T-£ (3.80)

Note that B^v is, by definition, trace-free. This implies that we should split the right

hand side into its trace and trace-free parts in order to get a more 'natural' expression.
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To facilitate this we express the extrinsic curvature as

(3.81)

where tr(K) = K\ and tr{A) = 0. The momentum constraint (2.29)) in this notation

is

(TV* — — X K) — Kf (j.oJ.)

3

To simplify equation (3.80) we utilise equation (3.53), which relates the div and curl

operators, and the trace-split version of the momentum constraint (3.82) to obtain the

identity
2 K

ea.TUDa'Av
T = curl(Auv) + -Enya-D^triK) + -SnV(rf (3.83)

3 2

This identity and equation (3.81) reduce equation (3.80)

(3.84)

which defines our tensor potential .4^v (compare to the definition of the vector poten-

tial in electromagnetism, given by equation (3.6)).

We now use the Ricci equation (2.23) along with the Weyl tensor in terms of the

4-Riemann tensor and the mass-energy tensor (3.26), the 3+1 decomposition of Tflv
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(2.25), and equation (3.39) to show that

Eflv - i v (/\crr + i .L(rr tr(K))(A'n

= £„//•(*) + (A/ + i ± /

(3.85)

Using the definition of the Lie derivative, we can derive the following helpful identi-

ties

2

3' 3
A

(3.86)

(3.87)

Equation (3.85) then reduces to

— L

(3.88)

Note that £.nA^y - - ±MV (1°^ £nAap) is the trace-free part of inA^v. If we compare

equation (3.85) with equation (3.7) we can identify the quantity D^a as a vector po-

tential, in analogy with the scalar potential, 0, in classical electromagnetism.

Furthermore, we can draw an analogy between gauge choices in general relativity and

electromagnetism. The gravitational analog of the Coulomb gauge (3.16) in electro-

magnetism is DMfr/, = 0. From the momentum constraint (3.81) we see that this is
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equivalent to the general relativistic gauge choice tr(K) = constant. A widely used

example of this family of gauge choices is maximal slicing, where

tr(K) = 0 (3.89)

One of the most important points of the last few sections is that we can identify

potentials with 'hose in flat-space electromagnetism, just as we can identify the Weyl

tensor with the electromagnetic tensor Fai,. In summary the key comparisons between

quantities in electromagnetism and general relativity are

Electromagnetism General Relativity

Field Tensors

Fab

Fields

Ea = Fabn
h

it "™" i^ufat't

Trf7-ap = CaTfr,nTri

= ±1 y

Potentials

Source Terms

(P

{em)
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3.5 The Modified 3+1 Equations

In chapter 2 we reviewed the 3+1 formalism for solving the Einstein equations. The

preceding parts of this chapter have outlined the Bianchi identities in terms of the

gravito-electric and gravito-magnetic tensors. We have seen how this allows us to

make a direct analogy between general relativity and electromagnetism. We are now

in a position to construct the numerical formalism.

The main modification to standard 3+1 formalism is made to the evolution equations

for the extrinsic curvature, K^v. Because the gravito-electric and gravito-magnetic

tensors are by definition trace-free, we split up our standard evolution equations into

trace and trace-free parts. By breaking up the evolution of the extrinsic curvature

(2.44) we obtain

±MV (±(rT

~(DMDva - -
a 3
1 K
-DirD a+-i

1
3

•v D^Dva)

v3P)

(3.90)

(3.91)

where O)Q^V = 0)R is the trace-free part of the 3-Ricci tensor.

We have also employed the Hamiltonian constraint (2.28) in the equation for the evo-

lution of tr(K), thereby removing the need to use the Ricci scalar explicitly in this

equation. In fact, we can remove the Ricci tensor entirely from both the above equa-

tions, by utilising the definition of the gravito-electric tensor in terms of the tensor
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potential (3.88) to remove (3)Qpv from equation (3.90). We are then left with

- - V D'Dra) - ^ (3.92)

Additionally, if we substitute the Lie derivative of A^, from equation (3.90), into

equation (3.92) we gain the following constraint equation relating the gravito-electric

field, Eflv and the trace-free part of the 3-Ricci tensor,

K

2'

1
< r ^ " ) (3.93)

Note that the gravito-electric tensor appears in the evolution equation for A^v (3.92).

Thus we need to provide an evolution equation for EMV from our gravito-'Maxwell'

equations (equation (3.74) to be precise). For this equation we need to know the

gravito-magnetic tensor on each hypersurface. We have two choices here: we may ei-

ther utilise the constraint equation (3.73) or the evolution equation (3.75)f. We choose

to evolve B^y. This avoids curl(curl(A^v)) terms, ensuring our system of equations is

first order in both time and space.

The final form of the ADM + Gravitoelectromagnetism system is outlined below. The

system involves the evolution of ±,j, Aij, tr(k), Ejj and £,-,- subject to the constraint

equations and the gauge variables a an

though we shall see in the next chapter that this choice is not so important for this work.
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Evolution Equations

(6, - £p) ±u= -2a[Aij + i ±ij tr(K)) (3.94)

(0, - £ii)A\j =a(Eij - - ±ij AlibA''b - AiaA" -. - -rcn
3 2

- DiDp + - ±ij DuD
aa (3.95)

(d, - ^a[~tr(K)2 + AabA"h + Z(p + 3P)) - Dat>
la (3.96)

±u EnmAmn

D(Jfl + -

^Eutr(K)

-. 1

DMf

~

~ j JLi} f'Dma) (3.97)

(d, - £p)B;j = a[curl{Eu + -nu) - 5Bni(iA/' + -Butr{K)

BmnA
mn - Z f) - 2emn{iE™[ra (3.98)

plus the conservation equations (3.70) and (3.71) and a given equation of state.

Constraints

\mn (3.99)
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, tr(K)

jj = curl(Ay)

(Ai(lAj" - - ±ij AubA"n) + -Aut,iK)
J 3 3

(3.100)

(3.101)

(3.102)

We have seen in this chapter that it is possible to augment the Standard ADM equa-

tions with the Bianchi identities, written in terms of the gravito-electro and gravito-

magnetic conformal tensors. We will refer to this system of equations as the gravito-

electromagnetic or GEM formalism. For the rest of this thesis we will be concerned

with the I.^I erical behaviour of the GEM formalism, particularly in comparison to

the Standard ADM. Before this we shall take advantage of the symmetry of the nu-

merical spacetimes under consideration in this work and reduce the GEM and ADM

equations to the form used in the numerical simulations presented later.



]

Chapter 4

One-Dimensional Test Code

Construction

*p n order to properly evaluate the usefulness of GEM for numerical relativity appli-

cations we shall spend the remainder of this work in the construction and application

of an algorithm designed to compare the performance of our modified evolution equa-

tions with the Standard ADM equations as presented in chapter 2.

It is important when undertaking this kind of comparison, to make the workings of

the test code as transparent as possible, assuring the reader that the performance we

present is "real" and to allow better understanding of where different aspects of the

performance are coming from. Thus, in this chapter we shall discuss the specific

form of the equations that we use in this work and the development of the testing

algorithm. On the former point, we will be restricting ourselves to one-dimensional,

57
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vacuum spacetimes for the rest of this work. Although a great deal of current research

is focused on the solution of general three-dimensional spacetimes, the study of one

dimensional test cases will still provide us with insight into the stability properties of

a given numerical formalism.

4.1 The One-Dimensional Equations

1

Because we limit the range of spacetimes considered in this work we can simplify our

equations somewhat. For clarity we shall lay out the GEM equations (and Standard

ADM equations for comparison) as they are to be used in this work. We shall do this

in general and note that any changes specific to a given test will be outlined in the

appropriate section. We assume general coordinates (/, .v1) and the standard 3+1 line

element:

ds2 ~ -(a-2 - p,,jri)dr + 2J3idxidi+ Xu dtfdx! (4.1)

or, alternatively, we can express the 4-metric components via

-(<r-/Un Pi Pz

As we are dealing with one-dimensional spacetimes, the 3-metric is diagonal for all

the cases we consider here. Similarly, the only non-zero component of the shift vector

will be/?1. Furthermore, in all cases we have 1:2^33, so our metric has only two
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independent components, which we shall denote as l\ and J.2*. Thus our 3-metric

takes the form

(4.2)

This also means that we are only left with the following non-zero connection func-

tions.

1

•sf

V1

(3)H _

2 _. (3)p3 if-L
'= ~ r l 3 " 2{±2

(4.3)

(4.4)

(4.5)

.:)

*:l

and Ricci tensor components:

(MY

'•> * . ">

(4.6)

(4.7)

(4.8)

As one of our spacetimes is best modelled using a conformal factor we will set up our

"Note that in the case of spherical symmetry, we have x,y= diag(JL\\.±2i< ±22 sin0). Bysettingup
our finite difference nodes along the line 0 = * we obtain ±22=113.

f Again, in the case of spherical symmetry, we calculate the connections and then let 9 = ? to
simplify.
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general equations to allow for this. That is

±22. i 3 j

(4.9)

where *F is a function of .v1 only (see Chapter 6). The symmetry of the spacetimes

considered allows us to define the complete one-dimensional evolution variables for

each scheme as:

GEM

Standard ADM

where each of the variables is a function of (r,.v") only, and where*

I
3'

ij - diag{E\,Ez, Ei)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Note that the electric conformal tensor, £(J, is unchanged under conformal transfor-

*Note that for the remainder of this work. E\ and £? denote components of the gravito-electric
tensor, not the electric field.
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mations of the 3-metric.

One obvious thing to note here is that % is not included in the one-dimensional

evolution scheme. This is because Bjj is identically equal to zero for all the cases

considered here. To prove this we consider the definition of the gravito-magnetic

tensor

1

jl
'if

I

;j

|
i
1

"hm

nb)+ l.Jm (daA» - 0)Tn
iaAnH)) (4.16)

By using the fact that metric and extrinsic curvature are functions of / and .v1 only and

by substituting the form of the evolution variables given by (4.9) and (4. iO)-(4.14)

into the above definition (4.16), we can show that each component of 5,7 is identically

equal to zero. This result holds in spherical symmetry or any spacetime where we can

reduce the metric to the form ±22=-l-33- Early code tests evolved the gravito-magnetic

tensor to check this constraint and it was found to be satisfied to machine precision.

There is no reason, therefore, to include it in one-dimensional tests. It would be

interesting, however, to investigate its influence in higher dimensional spacetimes.

That is, however, beyond the scope of this work.

The evolution equations as they will be applied in this work are, therefore, given by:
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GEM Evolution Equations

( 9 , 1 , -

d,l2 = 2a

(4.17)

(4.18)

21l(A2)3 4(/(l)
2\

- -7 , -T-f—

2 5(/ \2)2

l

(4.19)

(4.20)

d,tr(K) = 2 + ~

0,E2 =
(J-ir J-:

(4.22)

(4.23)
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where

DxD{a =(<9,)2(r - ± f ~

DD"a- •

~ (4.24)

(4.25)

(4.26)

1

1

For comparison, we include the Standard ADM equations as they will be implemented

in our benchmark code:

Standard ADM Evolution Equations

0,1 , = (4.27)

(4.28)

- vp

where the derivatives of the lapse function are as in (4.24) - (4.26).

(4.29)

(4.30)

It'j
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42 Coding Choices

,,1

'i.

As well as outlining the form of the equations used, we must comment on the general

choices of numerical techniques used to integrate the above equations. We do not con-

sider the wide range of cutting edge numerical techniques under development, such

as fixed and adaptive mesh refinement and black hole excision techniques (for exam-

ple see Alcubierre and Briigmann (2001J). As we are trying to ascertain some of the

properties of the above equations, and not necessarily chasing long-term evolutions,

we use simple and transparent numerical techniques where possible.

The initial conditions are constructed on a one-dimensional, Eulerian grid. For the

GEM system, 1l^an\ we evolve all the variables, except the gauge variables, a and

/?', according to equations (4.17)-(4.23) using a numerical integrator. For the Standard

ADM system, '£/""/'"), we evolve all the variables except the gauge variables, a and

/?', and the 3-Ricci tensor components, R\ and R2, according to equations (4.27)-

(4.30). The 3-Ricci tensor is found by equations (4.6)-(4.8) at each iteration of the

time-stepping algorithm. The methods used to calculate the gauge variables will be

outlined separately for each simulation.

To guard against confusing the numerical effects with physical results we have car-

ried out each of the simulations with two different forms of time integrator. We use a<i

iterated Crank-Nicholson (CrN(2)) algorithm, with two iterations [Teukolsky, 2000J.

This method is second-order accurate in time. It is considered to be a standard inte-

grator within numerical relativity. There has been some concern that it can exhibit

dissipation [Bona et al., 20031. There was no evidence of this when we checked the
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Crank-Nicholson results against our second choice of integrator, a fourth-order in

time Runge-Kutta algorithm (RK4) [Press et al., 1996). The Runge-Kutta integrator

is a widely regarded as r* robust integrator for both ordinary and partial differential

equations, though it is relatively inefficient and for this reason is not often used for

3-D, large-scale simulations in general relativity.

For the most part we use centred, second order derivatives for the spatial derivatives,

i.e., for some variable n(xl) defined at node / by the discrete value /<,

du

d2u iij+\ - 2iti + »,_i

(AJC1)2
O(A.x')2

(4.31)

(4.32)

The only exception is outlined in chapter 7 where the inclusion of a shift vector leads

to advection-type terms in the equations that are dealt with using upwind derivatives.

We are now in a position to study the behaviour of the GEM system of equations

when applied to a series of simple testbed spacetime simulations.



Chapter 5

Slicings of Minkowski Spacetime

5.1 Finding 'Simple' Test Cases in G.R.

t is only fairly recently (within the last ten years) that the focus of research in

numerical relativity has shifted to the question of stability. Therefore, it is only re-

cently that code tests in numerical relativity have been designed to highlight stability

features (along with standard accuracy and convergence testing).

In this chapter we consider various slicings of the simplest spacetime, Minkowski

spacetime. The Minkowski iine-element is given in cartesian coordinates ([t, x,ij,z])

as

dr = -dr + dx2 + dy1 + dr (5.1)

66
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and in spherical polars ([t, r, 6,0]) as

ds2 = ~dr + dr + rdd2 + r2 s\n2(O)d</>2 (5.2)

As these metrics represent simple four-dimensional flat spacetime, we may be led

to the assumption that the numerical evolution of Minkowski space would be trivial.

However, this is not necessarily the case. In fact, for nontrivial slicings and coordi-

nate choices the Minkowski spacetime can exhibit coordinate singularities [Bernstein,

1993J. We shall investigate this idea here, with a view to evaluating the GEM algo-

rithm's response to non-trivial coordinate and gauge dynamics.

5.2 Minkowski + Noise Numerical Tests

One of the simplest comparisons between the GEM and Standard ADM algorithms

is constructed by supplying initial data from a Minkowski spacetime, plus small am-

plitude . andom noise, simulating small deviations from exact initial conditions. This

tests the growth of unstable modes in both systems and are set up according to Alcu-

bierre et al. [2003a], auhough we use spherically symmetric coordinates and a one-

dimensional, not three-dimensional simulation. The test is designed to highlight the

kind of gauge mode instabilities outlined in section 2.4.

We have the freedom to choose our gauge, through the freely specifiable lapse and

shift functions. We choose zero shift vector and define the lapse using the harmonic
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slicing condition, as outlined below. Harmonic slicing is one of the Bona-Masso

family of slicing conditions [Bona et ah, 1995], given by the general formula:

d,a = -arf{a)tr(K) (5.3)

where f(a) is an arbitrary function. Harmonic slicing corresponds to the case f(a) -

1, whereas the "i+ln" slicing is occurs when f(ce) - I /a (see section 6.5).

By considering the evolution of the 3-metric (2.46) we can see that, with zero lapse.

d,(detU)m) = ~(det(±))l/2(atr(K)) (5.4)

Using this we can integrate (5.3) to obtain

(5.5)

where N(t, x') is an arbitrary function of (/, .t'), usually chosen to be time-independent

for simplicity of use and understanding. To implement (5.5) we shall make the com-

mon simplifying choice N(/,.O = 1.

These slicing conditions have been a source of interest in numerical relativity over

a number of years. They have been widely used in the development of hyperbolic

numerical relativity formalisms. Their attraction lies in the fact that the specification

of the gauge according to equation (5.3) allows the reduction of the Einstein equations

to a hyperbolic system [Reula, 1998].
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1

Our motivation is slightly different. Using harmonic slicing allows our coordinate

system to "respond" to changes in the spacetime, as opposed to a non-dynamic choice

such as geodesic or maximal slicing (see chapter 6). By choosing a dynamic lapse

we allow numerical noise to be propagated through space and possibly, depending

on boundary conditions, off the grid. This has the potential to avoid the kind of

coordinate 'focusing' singularities discussed in Bernstein [ 1993]. Although the Bona-

Masso slicing conditions are better suited to the problems discussed in this chapter,

they are not impervious to coordinate shock formation. For example see Alcubierre

[1997] for a study of the behaviour of hyperbolic formalisms when coupled to these

slicing conditions.

To set the initial conditions, the line element given in (5.2) was modified by adding

small amplitude random noise (e,j) to ±i and J_2- The random noise was calculated

using a standard subroutine "ran2" given by Press et al. [1996]. The spherically sym-

metric grid was centred on r=10. This meant that the co-ordinate singularity at r=0

is avoided. Unfortunately it also meant that we were unable to use periodic bound-

ary conditions, which are the most practical way of avoiding errors due to boundary

noise. Instead we used a simple, static boundary value choice, where one ghost-point

was initialised on either side of the grid on the initial slice, and this value was kept

constant throughout the simulation. It was found that this "rough-and ready" bound-

ary condition did not cause unacceptable errors and the boundary did not affect the

dynamics on the inner grid unduly.

The grid and time stepping choices used were : r e (9.5,10.5), dr = l/(50p) (no. of

grid points = 50p), anddt = 0.0 ip, where p ~ 1,2,4,8 is a scaling parameter. The

tel
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purpose of this is allow us to increase grid resolution (to test convergence of errors)

while keeping the ratio dt/dx constant (dt/dx = 0.5 in this case). This means that any

errors that respond to the resolution are errors arising from gauge modes, not Courant

instabilities.

The amplitude of the noise was chosen to vary within the range

(5.6)

to keep the perturbation within the linear regime, at least at first. The evolution vari-

ables were initialised as follows:

• H* = 1, i.e. not a conformal metric

• ±i= 1 + e\, ±2= r + &

• K\ = Ki = A\ - Ai - tr{K) = 0, i.e. a time-symmetric initial slice.

• Ricci Tensor terms calculated from the 3-metric using (4.6) to (4.8)

• E\ = {})Qi, E2 -
 (J)(22, using the constraint equation (3.93)

• a- 1, (3 = 0

i
i

To compare the two schemes and track the growth of errors, we consider a few key

variables. Consider a function W, defined at the discrete nodes / = 0 ~> nx by the

values Wj. The L2 norm of W is

(5.7)
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The Leo norm is just the maximum value of VV, on the grid. We track the Li and Lw

of the Hamiltonian (H) and momentum (A/1) constraints as well as key kinematic

quantities, such as tr(K) and a. To track the growth of these errors, we output the

constraint information at each light crossing time, which is simply the time it takes

information travelling along a null geodesic to travel the length of the grid. Thus, for

a given metric we have

At2 - r + - + (5.8)

and &6 = &<f> - 0 for radially travelling information in our 1-dimensional spucetime

and A/- = I is the length of the grid

Figures 5.1 and 5.2 show us the evolution of the L-± norm of the Hamiltonian and

momentum constraints respectively. Here we have used the second order iterative

Crank-Nicholson time-stepping routine (CrN(2)). The GEM case clearly shows a

growth of the initial errors in the constraints. The Standard ADM case shows a decay

of the errors. This is not what is seen in similar three-dimensional simulations (for

example Aleubierre et al. [20O3aJ) which clearly demonstrate that the Standard ADM

equations exhibit exponential growth of these errors.

We also see that the deviation of our perturbed spacetime from Minkowski (figure 5.3)

is essentially constant for Standard ADM and grows with time for GEM. Also note

that the violation of the constraints and the magnitude of the errors in the evolution

variables increases with increasing resolution in both cases, as is expected for pure

gauge phenomena.
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Initially, the growth of the constraints using the GKM method are discouraging. Up

until 1000 crossing times, however, the errors do not grow exponentially. We find that

the momentum constraint grows linearly, whilst the error with respect to Minkowski

spacctimc and the Hamiltonian constraint both exhibit quadratic growth.

If we consider the growth of the enors throughout the first half of the first crossing

time, we can glean some insight into why this happens, in this particular case. Figure

5.4 shows the evolution of the extrinsic curvature on the central portion of our grid

(p = 1) for both methods, from the initial conditions through the first half crossing

time.

From this we see that while the noise in the ADM case is propagated and "spread

out" over time, the noise on each grid point grows on each step for GEM, and does

not propagate through the grid. This is purely due to the fact that the only spatial

derivatives left in our GEM equations (4.17 - 4.23) are derivatives of the gauge vari-

able, n. Due to the fact that our lapse function remains constant (a = 1) across

the grid for all time, our set of evolution equations reduce to ordinary differential

equations and consequently, each grid point is "cut oft from its neighbour, stopping

information transmission across the grid.

The Standard ADM results recorded here could be attributed to a number of fac-

tors. Firstly, the simplified form of the one-dimensional equations effectively remove

a number of the degrees of freedom that are present in fhe three-dimensional sim-

ulations (for example, we are implicitly demanding that all off-diagonal terms are

identically equal to zero). More interestingly, it could tell us something about the

* • < • • "
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stability criteria for the ADM equations.

It is logical to assume that the ratio dt/dx, is related in some way (perhaps not triv-

ially) to the Courant-Friedrichs-Lewy (CFL) condition [Courant et al., 1967J for our

equations. If we vary dt/dx we see markedly dillerent responses, particularly in the

Standard ADM case. To test the relationship of dt/dx to stability we re-ran thep = 2

code, keeping the same spatial resolution (and hence the same initial noise to back-

ground ratio) but varying the temporal resolution. The results are summarised in table

5.1.

We see that both formalisms exhibit exponentially growing errors within one hundred

light crossing times when dt/dx > 1 (dt/dx > 1.5 when a fourth-order Runge-Kutta

integrator is used). The form of the growth is markedly different, however, when the

two formalisms are compared, as in figures 5.5 and 5.6. For GEM we see that, until

the instability reaches the 'runaway1 stage (that leads to the code crashing within a

few time-steps) the growth is polynomial in time. The Hamiltonian constraint exhibits

quadratic growth, while the momentum constraint grows linearly.

The ADM case, however, shows clear exponential growth from early times (note the

log scale on the y-axis). We also see that this unstable mode has definite periodicity,

with the period much less than a light crossing time, implying that the errors are true

'grid phenomena', rather then caused by spurious boundary conditions or such. This

result supports the findings of Jansen et al. [2003], who found similar behaviour in the

3-dimensional ADM equations. The behaviour of both methods lead us to employ

a 4th order Runge-Kutta (RK(4)) algorithm [Press et al., 1996] for comparison and



o
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Figure 5.5: 77K L2 norm of the Hamiltonian constraint for the Standard ADM (top) and GEM
(bottom) formalisms for the Minkowski+noise spaceiime when dt/dx = 1 . 1 . This shows the
evolution until just before the 'runaway' instability sets in, for both cases. Note the difference
in scale on the y-axis.
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Figure 5.6: The L2 norm of the Momentum constraint for the Standard ADM (top) and GEM
(bottom) formalisms for tfte Minkowski+noise space time when dtfdx = 1 . 1 . Again, we are
seeing the evolution until just before the 'runaway' instability causes the code to crash. Note
the difference in scale on the y-axis.



The Gauge Wave Spacetime 81

to establish that the stability behaviour previously discussed is not caused by our

choice of time-stepping routine. RK(4) has the advantage of being less dissipative

then Crank-Nicholson (as the leading error is of order (At)5) and is widely regarded as

a robust integrator for both partial and ordinary differential equations. As an example,

figure 5.7 shows us the violation of the Hamiltonian constraint using Runge-Kutta

(4), for dt/dx - 0.5 and p - 1,2,4,8 (refer to figure 5.1 for comparison). As you

can see there is little qualitative difference between the two integrators (nor was any

difference noted in the growth of the momentum constraint, or in the deviation from

flat space, though these are not pictured). The main difference we did note was a

slight difference in the stable values of dt/dx (see table 5.1). We also see a slight

trend toward constraint growth with ADM, though only in the finest grid case.

5.3 The Gauge Wave Spacetime

The Minkowski+Noise spacetime gives us an idea of how different sets of evolution

equations, coupled to various numerical methods, behave in the presence of very

high frequency oscillations in the initial data for even the simplest spacetimes. In

this section we will test the performance of both methods in the presence of a low

frequency perturbation. We do this by examining a "gauge wave" spacetime.

To construct a gauge wave spacetime we take flat minkowski spacetime and perform

a coordinate transformation to write it in the form:

ds2 = H{cLr - dr) + dip + dv (5.9)
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where H - H(x-t) is some positive function [Bonaand Palenzuela, 2002] [Alcubierre

et al., 2003a]. Although this is a cartesian, and not a spherically symmetric grid, it

is a reasonably simple task to show that the symmetr> arguments from the previous

chapter (e.g. By = 0) still hold.

Because equation (5.9) may be obtained from the Minkowski metric (5.1) by a simple

change of coordinates (and the fact that the 4-Riemann tensor is identically equal to

zero for the above metric) we see that equation (5.9) represents a completely flat

spacetime. Thus any non-trivial evolution is a consequence of co-ordinate and gauge

choices only.

Our choices for the function H(x - t) are numerous. Previous investigations of

these spacetimes have considered a range of choices, including Gaussian waves [Al-

cubierre, 1997] [Bona el al., 1998], trigonometric functions [Bona and Palenzuela,

2002] [Alcubierre et al., 2003a] and combinations of the two [Calabrese et al., 2002a]

[Calabrese et al., 2002b]. Hare, as in the previous section, we choose to follow Alcu-

bierre et al [2003a] and specify

H(x -t)= 1 + A sin j (5.10)

here A is the amplitude of the wave (we choose A = 10"2 so that the perturbation

remains small) and d is both the period of the wave and the size of the computational

domain in the direction of propagation of the wave.

We initialise our one-dimensional grid as x e (-0.5,0.5). Thus d - 1 in the above

equation (5.10). This allows us to implement simple periodic boundary conditions* as
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O grid point*

Figure 5.8: Using ghostpoints to implement periodic boundary conditions : The value of a
function on the ghostpoints is used to evaluate derivatives on the boundary grid points. The
value of a given function on the left-most ghostpoint is set by remapping the value on the
right-most grid point (and vice versa), hi this way the computational domain has gone from
being a line (or a n-cube in higher dimensions) to being a circle (or n-torus).

in figure 5.8, by setting functions on the ghostpoint on the right-hand-side of the grid

to be equal to their values first "real" grid point on the left-hand-side and vice versa.

This eliminates errors from the boundary conditions and means we can focus on the

influence of the gauge conditions alone.

Thus we have the following initial conditions for this simulation:

m

• *¥ = 1. i.e. not a conformal metric

• ±i= I +Asin(2;r.v), ±2=

2 nAcos(2n.x) A 1
(Znx) ~ 3 (I

= 0

E\ = 0, £2 = 0, using the constraint equation (3.93)

Q' = VI + A s\n(2xx\/3 = 0
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We expect to see a couple of things in this simulation. We have implemented peri-

odic boundary conditions, rather than the more traditional requirement of asymptotic

flatness. Thus there is no way for the gauge wave to leave the grid, which leads to

interesting spacetime dynamics, We can see from equation (5.4) that tr(K) < 0 ev-

erywhere on a slice will drive an expansion of the volume element, y/dcjt(±), whereas

an everywhere positive value of tr(K) must always lead to the focusing of observers'

worldlines and the formation of a coordinate singularity [Wald, 1984]. Similarly any

growth in the volume element (or a negative tr(K)) will drive a growth in the lapse

function, which will, in turn drive the expansion . Conversely, a decrease in the vol-

ume element will lead to a 'freezing' of a (hence the singularity avoiding nature of

the Bona-Masso family of slicing conditions in black hole spacetimes). Where tr(K)

changes from positive to negative across the grid we may see expansion or collapse

or both (the exact behaviour will be dependent on the formalism, algorithm etc.).

One thing to note though is that the evolution of the Minkowski+sinwave+harmonic

slicing spacetime is expected to lead to a gauge pathology (whether that be expansion

or collapse). What we are looking at here, then, is the ability of the GEM (and, in

comparison ADM) evolution equations to follow the dynamics of the spacetime for

a large number of light crossing times. We also hope to see that the errors in the

evolution variables converge to the exact solution with increasing resolution.

Again, we use harmonic slicing to propagate the gauge variables and for comparison

we use both iterated Crank-Nicholson and Runge-Kutta(4). We found no qualitative

differences between the two, and thus present only the Crank-Nicholson results here.

We also implemented harmonic slicing in two different ways: firstly by using the
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constraint equation (5.5) and secondly by evolving a according to equation (5.3).

Again, no qualitative difference was found between the two.

5.3.1 Results

Figures 5.9 to 5.11 compare the qualitative behaviour of the Gaugewave simulation

using the two formalisms. We show the value of key evolution variables at every 100

crossing times (with the initial condition for comparison) up to the 1000th crossing

time. The results depicted here are from the p = 2 case, that is, from the second

coarsest grid/dt choice. Thus the figures depict somewhat amplified gauge effects.

We can see that the qualitative behaviour of the primary evolution variables in both

codes is very similar. Both show the expansion of the spacetime, through the be-

haviour of the 3-metric components in particular (fig. 5.9). We also see that the terms

representing the 3-curvature are zero or very close to.*

It is also clear that both codes exhibit a growing phase error. This is most evident in

the behaviour of the extrinsic curvature (rig. 5.10) which is becoming increasingly out

of phase with increasing time. The exact solution has a period of one crossing time,

but our numerical solution is drifting to the right with each successive crossing time.

The drift is worse for the coarser grids, and the numerical solution (for both methods)

converges to the exact solution with increasing resolution. This is illustrated in figure

5.12 showing the x component of the extrinsic curvature, A,, in the GEM formalism

*Note that the 3-Rieci tensor remains identically equal to zero in the ADM case. This is ensured
trivially due to the restrictions placed by demanding a 1-D simulation, and doesn't represent any ad-
vantage of this formalism.
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Values were output every 100 crossing times.
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after 500 light crossing times for each of the resolutions under consideration.

To examine further the behaviour of these errors with respect to the different grid

resolutions we plot the behaviour of the error in ±i as a function of time, for each

resolution (figure 5.13). We note two things:

Firstly, the response of the two methods is almost identical. This similar behaviour

tells us something about the gauge properties of the GEM formalism. As both the

3-Ricci and gravito-electric tensors are negligible throughout the simulation (refer to

figure 5.11) the major difference between the two formulations, in this case, is the

way in which the extrinsic curvature is treated. Recall that with the GEM evolution

equations, (4.17) - (4.23), we have split up the extrinsic curvature into its trace and

trace-free parts, thereby making the evolution of the kinematic variable, tr{K), re-

moved from the other variables. It would appear, in this test case at least, that this

neither retards or encourages the development of gauge pathologies.

Secondly, the growth of the errors decreases with increasing spatial resolution (c.f.

the response of the Standard ADM algorithm in the Minkowski+Noise test). This

implies that we not detecting gauge modes here, but normal convergent behaviour.

Note, however, that convergence is weakened at late times due to the algorithms'

inability to accurately deal with the growth in the evolution variables as the spacetime

expands.

We can see this quantitatively in figure 5.14. Here we have taken the three coarsest

grids (corresponding to/> = [1,2,4J) and calculated a convergence factor, cr, accord-
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ing to

2<r =
efta\ -ep=2

(5.U)

where e is some error measure. We expect that for second order convergence we

will have cr = 2, for fourth order cr = 4, etc.. In figure 5.14 we show the conver-

gence factor, calculated from the error in JLi, as a function of time. Note that both

the Crank-Nicholson (O(A.x2)O(At2)) and Runge-Kutta (O(A.r)O(At4)) show the ex-

pected second order convergence at early times. However, both ADM and GEM show

a deviation from this convergence as the integration progresses. This behaviour may

influence the long term stability and convergence of more general spacetimes, using

both these fonnalisms, though, naturally the convergence of the scheme will also be

dependent on gauge choice, boundary conditions, etc.. This highlights the importance

of not only testing accuracy, but also convergence where possible.

Keeping these points in mind, in the next chapter we shall look more closely at the

behaviour of the GEM formalism in non-flat spacetimes. We do this by consider-

ing a range of slicings of a simple, spherically symmetric spacetime containing a

Schwarzschild black hole.

ill
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Chapter 6

Tests of Schwarzschild Spacetimes

6,1 Properties of the Schwarzschild Solution

Schwarzschild geometry is of fundamental importance in numerical general

relativity. Theory shows this geometry to be the end-state of dynamical spacetimes

such as the merger of compact objects and some supemovae explosions. As such, any

dynamical approach to the Einstein equations should be able to accurately and stably

model this geometry. Also, although the physical singularity of the black hole is a

non-trivial thing to model, the spacetime is spherically symmetric and admits exact

solutions in a variety of coordinates, making it an obvious test-case for any numerical

relativist. However, as we saw in the previous chapter "simple" spacetimes do not

necessarily lead to trivial numerical implementations.

95



Properties of the Schwarzschild Solution 96

In this chapter we shall continue our discussion of the numerical properties of the

GEM formalism, with an emphasis on modelling the dynamics of a Schwarzschild

spacetime. We shall look at the behaviour of the formalism in handling the gauge

dynamics fora number of slicings of a spherically symmetric black hole spacetime.

Historically, the first line-element to describe a black hole is given in Schwarzschild

coordinates, [ts, r,9,0], by

As well as the physical singularity at r = 0 this coordinate system exhibits a coordi-

nate singularity at r = 2M, which represents the event horizon of the black hole. We

can see that this is truly a coordinate phenomenon by transforming our metric into the

conformally flat isotropic coordinates, [f,w), r, 9, <p], to obtain

g ) dtjw + (1 + | ) * [d? + r + sin2 (6.2)

where r = f(l + ~y We see that this coordinate system is completely regular at

f = 2M, however g,, goes to zero at r - A//2. This represents the isometry surface

of the black hole, where the coordinate r undergoes the transformation f —* M2/4f.

This is equivalent to r = 0 in Schwarzschild coordinates.

In this work we shall make use of the following line-element (svith coordinates [/, t], 9, <f>])

to describe our black-hole:

dr = - tanh2(7/2)rfr + [ V2Mcosh(7/2)]4 (drf + d& + sin2 9d(fr) (6.3)
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where r = jen or, alternatively, r ~ 2A/ co$hr{>i/2). This coordinute system has been

used previously (most useful for us is Bernstein [1993] upon which we base the tests

in this chapter) and has a few properties that are worth noting. By inspection of tbs

line-element, the r] radial coordinate is symmetric about TJ - 0 giving us natural in-

ner boundary conditions. Figure 6.1 shows the behaviour of the radial coordinate in

comparison to standard Schwarzschild coordinates. We see that /? e [0/V/.6/V/] cor-

responds to the interval r e [2M,200M\. Thus we can cover a much greater portion

of the underlying spacetime with less grid points than in Schwarzschild coordinates.

We note also that rj - 0 corresponds to r - 2M, so if we set up our grid with the

innermost grid point at rj - 0 we are, in fact, placing this point on the event horizon.

6.2 Initial and Boundary Conditions

For each of the slicings under consideration in this chapter, we initialise the evolution

variables as

= y/2M cosh(ri/2), i.e. we use a time-independent conformal factor

= 1

K{ = K2 = A\ = A2 = tr(K) = 0, i.e. a time-symmetric initial slice.

=-l/(cosh2(7/2))

= 0 using (4.6) to (4.8)
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• Ei = <3)(?i, £2 = (3)(2:. losing the constraint equation (3.93)

We also set 70 - 0 and tjnMX = 6 -r/// throughout. Standard resolution is dt = 0.005M,

drj = 0.0075 (800 grid points).

The inner boundary conditions are set using symmetry conditions rather than more

complicated excision techniques. We implement ghost points on the inner boundaries

and set the values of the evolution variables on the ghost points via symmetry That

is, if a function / , defined on the discrete nodes / = 0 —» i = n.x by thf discrete

values ft, is symmetric about the isometry surface we set fghost-point ~ f\ and if /

is antisymmetric fount-point ~ ~f\- We u s e l ' i e ghost point values whe 1 evaluating

derivatives on the throat (77 = 0).

On the inner boundary, symmetry of the coordinates tells us that the metric is symmet-

ric about;/ = 0 and we choose the lapse to be symmetric also (to allow evolution on

the throat). The shift vector (see the following chapter) is chosen to be antisymmet-

ric about rj ~ 0. These conditions lead to the extrinsic curvature and gravito-elcctric

tensor also being symmetric about rj = 0.

Although the asymptotic flatness of the spacetime allows us to make some judge-

ments about the form of the functions on the outer boundary, we choose a free evolu-

tion here (except where specific conditions were necessary for determining the gauge

variables). We obtain a value for functions on the outer ghost point by fitting a curve

through the outer values of each of the variables and extrapolating along this curve.
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We investigated two fitting functions

Px = ~~x (6.4)

and

(6.5)

where .v is the coordinate position in the .xl direction (which is the radial direction, TJ,

in this particular case). The two fitting functions were found to give similar results,

unless otherwise indicated. We use equation (6.4) as a default.

6.3 Geodesic Slicing

Choosing the coordinate system attached to Eulerian observers who are falling along

geodesies is a natura? place to start our exploration of the behaviour of the GEM

equations in a Schwarzschild spacetime. This slicing also admits exact solutions.

Geodesic slicing is obtained by making the gauge choice

a- 1 (6.6)

(6.7)

Clearly, in this gauge, the proper time, r, of the infalling observers is equivalent to

the coordinate time, /. This follows by inspection of the 3+1 line element (4.1). To

construct the exact solution with which we compare our code's performance, we shall
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follow Misner et al. [1973] and, to recast the equations into our coordinates we have

followed the work of Bernstein [1993]. As the full derivation is available in Bernstein

[1993] we shall merely sketch out the steps here.

The geodesic of an infalling test particle is found by integrating

r _ r drs
~ J T J [2Af/r,-2Af/rM,]«/=

(6.8)

where the particle starts from rest at Schwarzschild radial coordinate rs = rso. The

solution is given in parametric form, with respect to the parameter co, by

Tv = - r - 0 + cos to)

r s=
Fs.o I f$.o

(u) + sin 10)

(6.9)

(6.10)

A particle starting at rs0 = 2M will fall from rest (when w - 0) to the singularity

(when IO - n) in proper time

T — —I (6.11)

On the initial slice, our inner-most grid point is located at rj - 0, which is equivalent

to rs = 2M (see figure 6.1). As our observers fall toward the physical singularity, an

observer at TJ = 0 will measure the coordinate volume to be decreasing to zero. The

volume element will reach zero in r = t = nM. At this point our inner-most observer

will hit the singularity and our numerical simulation will crash. This provides us with

a simple first verification of the accuracy of our code.
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To convert from (/.„ r, 0, tf>) coordinates to (/, rj, 0,0) we note that t - r and rSM -

2Mcos\r(rj/2) and we perform a coordinate transformation (where the s denotes

Schwarzschild coordinates and metric) &.> vrding to

I
I
i

MV '~ 9 aT (6.12)

to obtain the following cumbersome, but exact, solutions for the ADM variables

(6.13)

r exact _ sin2 co(s\n~ co + 6co sin co + 8 cos co + 9co2 - 8) s'mh2(rj/2)

S( 1 + cos io)(3co sin to + 4) s\nl\2(rj/2)
(6.14)

(32 sinh2(/7/2)( 1 + cos to) - 16 cosh2(^/2) sin2 o>
sin2 w[cosh2(/;/2)( 1 + cos w) - 2](sin2

 OJ(COS 6J - 3) + (1 + COS co)(S + 3OJ sin w))2

16( 1 + cos a>)(cosh2(r]/2) sin2 w(3 + cos to) - 2 sin2 o> - 4 sinlr(^/2)( 1 + cos cS)2

i""r'c.utct _A, i (sin to cos co + 3D + 4 sin cu)

(M cosh3(7/2)( 1 + cos co)(2( I + cos co)2 + 3UJ sin co + 3 sin2

sinw

(6.15)

(6.16)

We implement the exact solution by using a numerical root-finder algorithm (a sim-

ple mid-point rule) to solve for co using (6.10) and then use the above equations to

generate the exact solution throughout the simulation.

Figure 6.2 shows the evolution of the GEM variables in this slicing. We can see that

all the action is taking place near the throat, whilst the spacetime is asymptotically

flat (note that the computational grid was defined by /; € [0,6) but we only show the

inner portion of the grid to highlight the dynamics). We see clear evidence of the
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Figure 6.2: Evolution of the 3-metric (top) the trace-free part of the extrinsic curvature (mid-
dle) and the gravito-electric part of the spacetime (bottom) for geodesic slicing implemented
in the GEM formalism. Results are plotted from t=0M to t=3JM, in increments of 0.1 M.
Time-stepping was CrN(2)
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underlying spacetime stretching in the radial direction from the behaviour of i | , A\

and E\ from the largo gradients developing in the variables as the coordinate time

approaches nM. We also see the contraction of the volume element, most noticeably

in I i , which approaches zero on the throat. 12 = 0 signifies that the volume element

has decreased to zero (i.e. the first test particle has hit the physical singularity) and

the code will crash shortly after. We found that the GEM equations reproduced the

qualitative behaviour of this slicing accurately, and that for all combinations off//, drj

and time-stepping algorithm (see below) tested the code crashed within a couple of

time-steps of / = nM.

The ability to generate an exact solution means that we are able to use this slicing

to run convergence tests, to convince ourselves that our formalism tends toward the

exact Schwarzschild solution. This also enables us to quantitatively compare our

results with those obtained using the standard ADM equations, and to highlight some

of the properties of our equations. We check convergence with both dt and dt}. For

checking convergence with dt we use a standard grid resolution of drj - 0.075 (800

grid-points) and for convergence with drj we use dt = 0.005A/ for all runs. We use

the exact solution to calculate the relative error in our numerical functions using

err(f) = J .le.xaci

Je.xuc,
(6.17)

and we calculate convergence at / = 3M.

As was the case in section 5.2 the choice of geodesic slicing reduces the ID GEM

equations to a set of ordinary differential equations, as all derivatives of the lapse
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function are zero. Thus the accuracy of our equations in this case are independent

of the grid's spatial resolution. This will not be the case in more general slicings,

but here it leads to the convergence behaviour we see in figure 6.3. We see clear

second order convergence with time using second order Crank Nicholson and fourth

order convergence with time using Runge-Kutta (4). Note that the seeming non-

convergence at fine resolutions is actually a result of the fact that the root-finder used

to construct the exact solution has a tolerance of 10~9 so relative errors below this

level are not reliable.

The convergence behaviour of the standard ADM equations is summarised in figure

6.4 for comparison. We note a couple of important points. Firstly, the ADM for-

malism crashed well before t = nM for those combinations of dt and dq for which

clt/drj > 1 (c.f. section 5.2), whereas GEM reached / = nM in all cases. This Is most

likely the same sort of combined Courant and gauge mode instability that we saw in

the Minkowski+Noise test case.

Secondly we see that the spatial grid spacing is the dominant factor in the size of the

error. We see second order convergence vvith drj using both time-stepping algorithms

(the C?(A/4) of the RK(4) is dominated by O(A.r) spatial derivatives). The conver-

gence (or lack thereof) with dt is completely dominated by the relative error in the

grid spacing drj - 0.0075 which is of the order 10"5. This is highlighted in the bottom

graph in figure 6.4. We see that when dt becomes fine enough to lower the error to

less than the error caused by the grid spacing, the dt convergence is hindered.
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6.4 Maximal Slicing

Due to the limited length of simulations of the Schwarzschild spacetime, geodesic

slicing's usefulness is limited to testing the accuracy and convergence of schemes. In

order to model realistic astrophysical phenomena, we need to be able to run long-term

simulations of black hole spacetirnes. If we choose not to excise the physical singu-

larity we must choose a singularity avoiding gauge. One popular choice is maximal

slicing, where we impose

tr(K) = 0 (6.18)

We set this condition on the initial hypersurface. and by enforcing the time derivative

of tr{K) to be ^ero for all time we obtain, through equation (3.96), the following

elliptical equation for the lapse function

= aAubA"h

which, using equation (4.21) reduces to

DaDfa = a
.Aii]

Expanding the left hand side in our coordinates yields

(•'•19)

(6.20)

,6.2.)
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We implement second order centred differences for the derivatives of a, and require

that a -* 1 on the outer boundary (i.e. we require asymptotic flatness). Furthermore,

n- is symmetric about q = 0, which amounts to the condition dna\n=Q = 0. Equation

(6.21) then reduces to a tridiagonal matrix system for the lapse function which we

solve this numerically, following the method outlined in Brewin [2002]. Keeping our

outer boundary condition constant, we make two initial guesses for the inner ghost-

point, a^\f and solve equation (6.21) using a simple Thomas algorithm [Press et al.,

1996]. We then make our third and final choice for the inner ghost-point value using

a linear combination v. "the first two guesses, i.e.

(6.22)
dt] dt\ ' dt}

which becomes

a , -
J,,

(6.23)
*• dq dt] '

where ^ - (af-a^ )/(2A;/). We then make a final calculation using a(_3,' as our inner

ghost-point value. We are justified in this method because (6.21) is linear differential

equation for a, thus a linear combination of two solutions will automatically be a

solution also.

The fact that we must solve an elliptic equation for the lapse on each iteration of the

time-stepping algorithm means that maximal slicing is a relatively computationally

expensive choice. A possible advantage, however, is that it is a global condition, as

opposed to local algebraic conditions such as harmonic slicing. This is potentially

*We require the lapse function to lie between 0 and 1 ao we simply choose a-'1,' = 0 and a^ = I.
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advantageous, as solving the lapse equation will tend to smooth out local oscillations

across the grid.

To properly gauge the performance of our code in this slicing we implement three

simulations of differing resolutions, but all with dt/drj - 2/3. We choose

(it = 0.01/p

nx~400p = » c!rj = 0.015/p

p = l , 2, 4

(6.24)

Our initial conditions are as given in section 6.2 with the lapse function given by

the maximal slicing condition, and the shift vector kept equal to zero throughout the

simulation.

In terms of providing long-term integrations of the Schwarzschild spacetime, max-

imal slicing is somewhat of a double-edged sword. Our observers are initially in-

falling, but it can be shown [Beig, 2000] that the lapse function on the throat collapses

exponentially, via

as CO (6.25)
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where
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3V2
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3~V6l7
3_V<3

4
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3V3-5
9V6-22

= -0.2181

(6.26)

(6.27)

(6.28)

and M is the mass of the black hole. Thus the coordinate time becomes "frozen"

on the inner boundary. Thus, although our coordinates are able to cover a portion of

the manifold interior f"» the event horizon, our observers will never hit the physical

singularity as in, for example, geodesic slicing

This does not mean we are able to run simulations for an infinite time though. As the

interior of the grid becomes frozen whilst the exterior portion is still infalling, large

gradients develop in all our metric functions, and hence all our evolution variables.

The steep gradients that form in this transition region will eventually be the death of

most codes, especially those that implement simple numerical methods, such as ours.

This is because standard finite difference techniques implemented on a fixed grid

struggle to resolve the coordinate shocks that develop, insulting in runaway numerical

noise in the transition region.

This behaviour is illustrated in figures 6.5 and 6.6 which present the evolution of the

GEM variables for the "Standard" resolution case (p = 2). We output the variables ev-

ery 5M until / = 'oQM. It is shortly after this that the error growth becomes unbounded

and the code becomes unstable. The results we present here were obtained with the

iterative Crank-Nicholson integrator, but similar results were found with Runge-Kiuta
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Figure 6.5: GEM evolution variables for maximal slicing : metric on line 1, gravito-electric
tensor on line 2. All variables are outputted as a function oft] every t = 5 M from t = OA/ to
t - 60M. The resolution is "standard" (p = 2). The steep gradients cause the code to crash
shortly after this point.
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Figure 6.6: GEM evolution variables for maximal slicing : trace-free part of the extrinsic
cun'ature on line 1 and the trace of the extrinsic curvature on bottom line. All variables are
output as a function oft] every t - 5 M from t - 0\I to t = 60M. The resolution is "standard"
(p = 2). The steep gradients cause the code to crash shortly after this point.
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(though the RK(4) code was stable for slightly longer).

We see clearly the steep gradients forming well before 60/Vf. The worst case of this is

£i, whose values vary by three orders of magnitude across the grid. Note also thut at

/ = 60A/ the transition region is covered by only about 20 grid points, out of the 800

that cover the grid. Because we have no shift vector and do not have to compute the

3-Ricci tensor directly, there there is no error caused by having to compute second

derivatives over the transition region. However, the large differences in scale in our

variables across the grid will still cause round-ofF error to be an issue. Also, the

resolution of the first order spatial derivatives becomes almost impossible with such

poor resolution.

The ADM code runs for longer than the GEM code in this configuration. Figure 6.7

shows the evolution of the metric in the ADM formalism. The ADM code, whilst

exhibiting similar behaviour to the GEM code, is stable until about / = 110/V/ (for

thestandard resolution, p = 2). As both methods reproduce the expected qualitative

behaviour, it is not trivial to ascertain the reason that GEM performs worse in this

case. By comparing figures 6.5 and 6.7 we can see that the peak in E\ is much more

severe than the peak that develops in R\ in the ADM case (note that the plots in figure

6.7 show data for 40M longer than figure 6.5).

To get a handle on what is happening here we consider the growth of the errors

throughout the simulation. We consider the collapse of the lapse on the throat, for

all three resolutions and for boti. formalisms, in figure 6.8. We use the analytic ex-

pression given by equation (6.25) for comparison.
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Figure 6.7: Evolution of the ADM metric functions in maximal slicing. All variables are
outputted as a function of n every t = 5M from t - 0/V/ to t = 100/V/. The resolution is
"standard" (p = 2). The steep gradients cause the code to crash at around t = 110A/
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Firstly we note that the coarser the grid, the longer the evolution lasted, for both

formalisms. We note that all resolutions give reasonably accurate results (until the

runaway errors dominate). The coarsest grid resolution leads to deviation from the

analytical solution at late times, with ADM being less accurate than GEM in this

case. This loss of accuracy is not unexpected for long integrations on coarser grids,

due to the lower resolution. The same sort of thing is discussed in section 5.3, where

the coarser grids exhibited growing inaccuracies with time. It is interesting that the

lapse is collapsing more slowly than expected. This would tend to lead to a slower

formation of the steep gradients in the transition region and, presumably, a longer

lived simulation.

Although we have no exact solution to compare with in the maximal slicing case, the

violation of the constraints can be used to gauge the accuracy and convergence of

our code. We plot the average value of the Hamiltonian and momentum constraints

at each time-step (figures 6.9 and 6.10). Both sets of equations show convergent

behaviour at first but the convergence is destroyed once the codes are no longer able

to accurately resolve the gauge dynamics.

Again, figures 6.9 and 6.10 shows that the development of the steep gradients and the

violation of the constraints is exacerbated by better resolution, indicating a true gauge

instability rather than an code inaccuracy. Both formalisms violate the constraints by

a similar amount at early times, indicating again that the poorer performance of GEM

does not arise from a low accuracy simulation, or an unstable formalism. Rather the

difficulty in following the gauge dynamics, especially the coordinate shocks, appear

to be the biggest factor in the performance of both formalisms in this particular case.
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6.5 1+ln Slicing

!
i

We can also utilise the Bona-Masso family of slicing conditions (equation (5.3)) in

the Schvvarzschild spacetime, Harmonic slicing is not appropriate in this case as the

lapse docs not collapse fast enough on the throat and the singularity is reached in

finite time [Bernstein, 1993]. However, we can choose f(a) - I/a in equation (5.3),

leading to what is commonly called 1+log, or 1+ln slicing. The evolution of the lapse

is prescribed by

d,a = -atr(K) (6.29)

which integrates to become a = 1 +ln( Vdet(±)), hence the name. We also require that

the shift vector be identically equal to zero. The rest of the variables are initialised as

in section 6.2.

Like the maximal slicing condition, the 1+ln gauge choice has both advantages and

disadvantages. A major advantage is in efficiency, as solving equation (6.29) is much

more computationally efficient than solving equation (6.21). Although this is not a

major issue in ID, it is worth keeping in mind, as it will become an issue in higher

dimensions.

In terms of dynamics, 1+ln slicing is qualitatively similar to maximal slicing. Both

have singularity avoiding properties, with the lapse collapsing to zero on the inner

boundary. This leads to steep gradients forming in the transition region between

the frozen and infalling parts of the grid. As in the maximal slicing case, the steer

gradients and loss of resolution in this region will tend to destroy the accuracy and/or
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stability of the code over time.

We conducted the simulations using the same computational parameters as in the pre-

vious section. In particular we ran the tests at three different resolutions, as specified

by (6.24). We found our GEM code performed better in this gauge than in maximal

slicing, with each resolution running for approximately twice as long as its maximal

slicing counterpart. Again, Crank-Nicholson(2) and Runge-Kutta(4) performed simi-

larly. The evolution of the key variables for thep = 2 standard resolution are given in

figures 6.11 and 6.12. Note these results extend to t = 120/V/, an improvement over

the maximal slicing case (where, forp = 1 the GEM code crashed by about / = 80/V/).

As in the previous section, we again note the growth of the radial component of

the metric and gravito-electric tensor (figure 6.11). Both these components are only

starting to show spiking on the transition region at t = 120/V/ where we note, for

example, that I t has grown by 750% from its original value and the transition region

is covered by only about 10 grid points. Note also that tr(K) is not zero in this gauge

(figure 6.12).

Again we see that ADM seems to out-perform GEM in this gauge, in terms of fol-

lowing the evolution for longer. For all resolutions, the ADM code ran to / - 150M

(when we terminated the run). The cause of this is indicated in figure 6.13 where we

see that the coordinate shocks in the ADM evolution variables to not become as steep

as in the GEM case.

This is not all good news for ADM though. Figures 6.14 and 6.15 demonstrate the

convergence of the constraints with resolution. Although there is no exact solution
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Figure 6.11: GEM evolution variables for J+ln slicing : metric on line I, gravito-electric
tensor on line 2. All varia Ves are outputted as a function oft] every t = 10M front t = OA/ to
t = 120/V/. The resolution is "standard" (p - 2). The steep gradients cause the code to crash
shortly after this point.
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Figure 6.12: GEM evolution variables for l+ln slicing: trace-free part of the extrinsic cur-
vature on line one and the trace of the extrinsic cunature on bottom line. All variables are
output ted as a function of q e\>ery t = 10 A/ from t = QM to t - 120A/. The resolution is
"standard" (p = 2). The steep gradients cause the code to crash shortly after this point.
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Figure 6.13: ADM evolution variables for I+ln slicing: metric on line 1, extrinsic curvature
tensor on line 2. All variables are outputted as a function ofn every t = 10/V/from t = OM to
t - 150/W. The resolution is "standard" (p = 2). The steep gradients cause the code to crash
shortly after this point.
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available in this gauge, we can use the violation of the constraints to gauge the conver-

gence of a formalism to the "correct" solution. We use equation (5. U) to calculate the

convergence factor cr using the Hamiltonian and momentum constraints. The GEM

equations are convergent until about 40-50M, which corresponds to the time at which

errors in the finest grid resolution become unbounded. Therefore the behaviour of cr

after this time indicates the loss of accuracy involved in trying to resolve the worsen-

ing coordinate shock, rather than saying anything meaningful about the convergence

properties of the GEM equations.

The ADM simulations all run to 150M for all resolutions, but we clearly see that the

convergence of the constraints is destroyed after about 30M. Note also that the conver-

gence behaviour for both schemes (but in particular ADM) is unaffected by the choice

of time integrator. Both schemes use simple second-order centred differences for the

spatial derivatives and it is this that dominates both the error and the convergence of

the overall scheme. This suggests that the lack of convergence in the ADM case is

due to the inability of the spatial differencing to approximate the first and, in particu-

lar, the second order derivatives. This, in turn, implies that the longer integration time

achieved with the ADM equations is gained at the expense of accuracy.

The fact that GEM does not exhibit this behaviour, then, is due to the fact that the

GEM equations are first order in both space and time. Because we have replaced the

3-Ricci tensor in the GEM evolution equations we do not have the additional compli-

cation of evaluating accurate second-order spatial derivatives on the steep gradients

in the transition region of the grid. We surmise that although the GEM simulations

were relatively short-lived, they appear to achieve a higher level of accuracy than the
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ADM equations in this slicing.
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Figure 6.14: Convergence of the Hamiltonian constraints for ADM (top) and GEM (bottom)
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Chapter 7

A Shift Vector Slicing

'ne of the fundamental difficulties in modelling the Schwarzschild spacetime is the

appearance of coordinate shocks when singularity avoiding slicings are used. Tradi-

tional finite difference methods will always struggle to resolve these shocks regardless

of which 3+1 equations are used, which goes some way to explaining the dearth of

long-lived evolutions of Schwarzschild in the maximal or l+log family of slicing

conditions. One successful evolution is described in Alcubierre et al. [2003b]. They

utilise the BSSN formalism coupled to a K-driver condition for the lapse function,

based on maximal slicing and the so-called Gamma-driver condition for the shift vec-

tor [Balakrishna et al., 1996].

Another stable evolution was obtained by Brewin [2002] by using maximal slicing,

and no shift vector. The numerical technique was based on the smoothed lattice ap-

proach [Brewin, 1998b][Brewin, 1998a]. Rather then using the 3-metric, this method

129
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utilises the leg-lengths of the lattice to calculate curvature. Although this approach

uses ideas and notation from the Eulerian ADM approach, it is fundamentally La-

grangian in implementation. This contributes to the stable evolution, as the lattice is

able to stretch with the motion of the spacetime, which eliminates the gauge-shocks

seen in finite difference approaches.

In this chapter we aim to ascertain whether we can use our 3-f 1 approach, coupled

with an appropriate shift vector to mimic the result of Brewin [2002]. That is, can

we remove the gauge instabilities that plague the evolutions using both the ADM and

GEM equations by a prudent choice of shift vector?

To do this we implement a "radial distance locking" gauge choice (c.f. area locking

gauge as examined in Kelly et al. [2001J). We use the gauge freedom to keep the radial

metric function constant at its initial value throughout the evolution. The motivation

to try to reduce the spiking seen in singularity avoiding slicing such as maximal and

1+ln slicing.

We must first cast the spatial metric into a form more suited to our needs through a

change of variables from the (t, TJ, 9,0) of the previous chapter, to a new system with

a modified radial coordinate. We restrict the radial component of the 3-metric to be

unity, thus imposing a constant radial resolution.*

'As opposed to the coordinates used in the previous chapter, in which the resolution decreased as a
function of proper spatial distance
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7.1 A Coordinate Transformation

We start with the spatial metric taken from equation (6.3), i.e.

dl2 = [ V2A/cosh(/7/2)]V/: + de2 + sin2 8d<p2) (7.1)

and implement the change to a new coordinate system, [/, fj,6,0] via the transforma-

tion

drj = [ V l / V / c o s h ^ ) ] 2 ^ (7.2)

which implies

fj/M = 2{r) + sinh(/7)) (7.3)

As the Schwarzschild spacetime is spherically symmetric, only the radial coordinate

was transformed.

The 3+1 line-element in the new coordinates is given by:

ds2 = -((r2~PPi)dr +pid.xidt + drf + + shr Odp) (7.4)

where f{rj) = [ V2A7t;osh(^/2)]4 and i] is obtained by solving equation (7.2). We

cannot solve for rj analytically, but obtain a numerical solution of a chosen tolerance.

This metric is related to that mentioned in Alcubierre [1997J, though that work in-

volved a transformation from isotropic coordinates.

The relations, lp of the modified radial coordinate to the radial coordinate used in

the preceding chapter and to the Schwarzschild radial coordinate is outlined in figure
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Figure 7.1: Comparison ofrj and fj coordinates (top). Comparison of Schwarzschild (rs) and
fj coordinates (bottom). The inset shows the large-scale behaviour of the coordinate.
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7.1. The first thing to note is that the original ij coordinate grows exponentially as

a function of 77. Thus, we need 77 e [0,200) to model the spacetime covered by

77 e [0,6) and we will have significantly less resolution in the inner region. However,

as the horizon moves outward in, for instance, maximal slicing, the number of grid

points covering the 'transition' region will remain constant, not decrease as in the 77

case. This should help alleviate some of the spiking behaviour seen in the previous

chapter. We also have from figure 7.1, or perhaps more clearly from equation (7.2)

that 77 = 0 when rj - 0. so the position of the isometry surface has not changed.

This means we can implement simple inner boundary conditions, as in the previous

chapter.

The relationship to the Schwarzschild radial coordinate (rs) is also interesting. Whilst

the relationship is almost linear on a large scale, we see that 77 decreases to zero as r,

approaches 2M. Thus this coordinate system is veiy similar to standard Schwarzschild

coordinates, with the added bonus of being regular everywhere.

The initial conditions are set as follows:

• 77 6 [0,200), solve for 77(77) using (7.2) and a standard bisection root-finder

algorithm [Press et al., 1996].

±,= 1, J.2= [ V2A7cosh(/7/2)J4

K\ = AS = A\ = A2 - tr{K) = 0, i.e. a time-symmetric initial slice.

i = -2/(1 + cosh(/7))3
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i = 0)Qi -

= 0

• Ex = 0)Q\, Ei - 0)Qi, using the constraint equation (3.93)

The fact that, the rj and // coordinates have the same isometry behaviour allows us to

implement the inner boundary conditions outlined in section 6.2. The outer bound-

aries were treated in the same way as in section 6.2 also. It was found that the

quadratic fitting function (equation (6.5)) gave more accurate results then the ex-

ponential function (6.4) in approximating the outer value of -Li. which grows almost

quadratically with fj.

We wish to keep the metric in the form of (7.4) and in particular we wish to keep the

radial metric component equal to one which necessitates the use of a non-zero shift

vector.

7.2 Radial Distance Locking Shift Vector

In order to keep ±^=±1 = 1 throughout the simulation we need to enforce the condi-

tion d, ±1 = 0. From spherical symmetry we assume the shift vector has the form

= W\ 0,0) (7.5)
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Inspection of the equation for the time derivative of the metric (equation (4.17)) yields

the following condition on the shift vector

j X, tr(K)) (7.6)

To solve this first order differential equation we apply the boundary condition

j3l(rj = 0) = 0 which ensures that the shift vector vanishes on the throat and removes

the need for complicated inner boundary conditions on our other evolution variables.

We solve equation (7.6) using a shooting method based on that used to solve for the

lapse in maximal slicing (section 6.4). The same principles hold as equation (7.6) is

linear in /?'. We make two separate guesses for/?1 on the outer boundary ({i)f3[
mt) and

integrate in to the inner boundary using a standard second order predictor-corrector.

The third and final guess for the outer boundary value of the shift is constnicted from

A^Vnf rVm/ /-"oi/f • ' M I /

in "in in " w

(7.7)

which becomes

in ~m

(7.8)

For the following simulations we implement the radial distance locking shift and max-

imal slicing lapse function (see section 6.4). The addition of a non-zero shift vector

gives the ID evolution equations (for both ADM and GEM) the form of advection
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equations, i.e. all the evolution equations have the form

(7.9)

where 'ZV is the vector of evolution variables and g is a non-linear function of the

evolution variables. The derivative in the advective term is calculated using an upwind

difference method, as implemented in Kelly et al. [2001], i.e.

(7.10)
2Af/ 3A/)

where ± is chosen to correspond to the sign of the shirt vector (always negative, in

this case) and q is an arbitrary constant which must satisfy q 5* 0. Furthermore, Kelly

et al. [2001] show that the discretisation error associated with (7.10) is

1
(7.11)

We see from this that the truncation error is best (O(A^3)) when q=0.5. Thus, this is

the choice we make here. AH other derivatives are estinvated by second-order cent/vd

differences.
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7.3 Results

The GEM and ADM codes were run with the following grid resolutions:

fjinner = OM ffmtt, - 200M

dt = 0.02/p

no. grid points = 2000/9

p = l , 2, 4

dff = 0.01//)

(7.12)

(7.13)

m

Figures 7.2 and 7.3 show the qualitative behaviour of the GEM evolution variables

with time, and figures 7.4 and 7.5 show the same for the ADM variables. We show

the results for the Standard resolution (p = 2) case.

We see from both sets of results the advantages in this gauge. The effect of the

shift vector is to "pull in" observers frcm the outer region, giving constant resolution

over the transition from the frozen inner grid to the dynamical outer grid. We see

the volume element (indicated by ±z) growing with radial distance from the throat.

As the integration progresses, however, the value of ±2 on the outer grid decreases,

indicating that these obser/ers are infalling.1

Although i-i is required to be 1, we allow it to evolve freely, as an additional con-

straint. We see that ±[=s 1 throughout the evolutions. We also see that the values of

the extrinsic curvature terms remain bounded, and tr(K) remains very close to zero

'To be precise, in the Eulerian reference frame of the calculation, the observers aren't "pulled" or
infilling at all, rather they remain at constant spatial coordinates and the inner portion of ihe space is
falling out toward them.
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Figure 7.2: GEM evolution variables for the radial distance locking gauge : metric on line
I, gravito-electric tensor on line 2. All variables are output as a function off) every t = 5/V/

from t = OA/ to t = 110A/. 77i£ resolution is "standard" (p = 2). We can clearly see the onset
of instability, particularly in the evolution of±.\.
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although there is, naturally, a slightly higher error on the outer, free boundary.

Although GEM and ADM produce qualitatively similar results in the short term, the

GEM evolution is plagued by the onset of an instability which becomes noticeable by

100M (for the Standard resolution) and crashes the code before 150M. The onset of

instability is sooner at higher resolutions. It has the form of a high frequency wave

(see the evolution of i.| in figure 7.2 for an illustration of this).

As a further test, we also ran the above tests whilst enforcing the constraint d, ±\= 0,

and using centred differences in place of the upwind differences. Neither change

had any noticeable effect on the results. The instability appears to be linked to the

GEM equations themselves, rather then a numerical error (the same resolution, outer

boundary condition, time-stepping etc. routines were used for both sets of equations).

This is also indicated in figure 7.6, where we plot the growth of the Hamiltonian

and momentum constraints with time for each of the resolutions tested. We sec that

die GEM scheme is convergent at early times, but errors loininate as the evolutions

continue. Most interesting is the fact that runaway errors appear earlier in the finer

resolutions. This implies some sort of gauge-driven instability.

The story is quite different with the ADM equations, however. As figures 7.4 and

7.5 show, the integration proceeded until the code was terminated at t=300M. At this

point, almost the entire grid is in the frozen region and we see errors forming on the

outer boundary, as our rudimentary boundary conditions are insufficient to allow the

information to leave the grid cleanly (see AS in fig. 7.5 in particular).

L:
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To really test out the stability of the ADM equations in this gauge, we rerun the

p - 2 resolution, but extend the spatial domain so that tjm - 1000 and time the

evolution to run until / = J000M. This allowed the evolution variable to evolve further

without interference from the outer boundary. The metric and extrinsic curvature are

presented in figure 7.7. The evolution of the Hamiltonian and momentum constraints

are given in figure 7.8.

We can .see, that although there is still some error on the outer boundary, due to

our simple boundary conditions, the evolution proceeds in a stable fashion up to

t=1000M. We see that the relative error in the radial metric component, J_i remains

bounded at around 0.1% and both the Hamiltonian and momentum constraints are

also bounded at less then ~ 3 x 10"5 and ~ 9 x 10~6 respectively.

These results are interesting on a number of levels. Firstly, despite the ill-posedness

(in a general gauge) of the standard ADM equations, stable and accurate long-term

integrations can still be obtained through a prudent choice of slicing condition. Sec-

ondly, it is a reminder of how two reasonably similar formulations of the numerical

Einstein equations can produce markedly different responses to the same gauge.

Exactly why the GEM case exhibits unstable behaviour with the coordinate and gauge

conditions presented here remains an open question. The coordinate and gauge choices

both seem to be well-behaved. That is, there is no indication of the kind of gauge

shocks we see forming in the maximal and 1+ln slicings with zero shift vector. As

we have seen no evidence for gauge modes in GEM from the previous test cases, it

remains unclear whether the behaviour presented in this chapter is an anomaly, or
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indicates a deeper pathology of the GEM equations themselves.

The only difference in the structure of the GEM equations in this chapter is the intro-

duction of the shift vector. It is possible that this changes the GEM system in such a

way as to introduce spurious gauge modes, and render the system unstable. To answer

these questions with any confidence at all would require the GEM system to be tested

in a wider range of spacetimes, including higher dimensional spacetimes, with both

zero and non-zero shift vectors.

i



Chapter 8

Conclusions and Future Directions
i

responding to the question of stability in numerical general relativity is anything

but trivial. To begin to have an understanding of the stability of even one formula-

tion of the 3+1 equations involves investigations of numerical techniques, Courant

conditions, gauge dynamics and the mathematical structure of the partial differential

equations themselves. Each one of these areas is nontrivial on its own and the interre-

lation of them creates an area of research deep enough that each individual work can

only scratch the surface of the bigger questions.

It is with this in mind that we have limited ourselves to asking some relatively simple

questions in this thesis. We have developed a modified set of equations in the 3+1

formalism (the GEM equations) and have compared the behaviour of our equaL MIS

to the standard ADM equations through a number of standard test-bed calculations.

The modification, which centred around augmenting the standard ADM equations

I
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with the Bianchi identities (expressed in terms of the Weyl tensor), was presented and

discussed in chapter 3.

In works such as this there are a number of ways in which to construct the equa-

tions. We must consider which are the fundamental variables? Which are determined

through constraints and which through evolution? How, if at all, are the constraints

incorporated into the construction of the evolution equations? For clarity, we have

considered only one of the possible sets of equations that are obtainable through

adding the Bianchi identities to the evolution scheme. A natural extension of the

work would involve investigating different forms of the ADM+Bianchi identity com-

bination. Some of the points of difference between the augmented equations used

herein and the Standard ADM equations are summarised below:

I

• The addition of an evolution equation for the gravito-electric tensor, E^v.

• The splitting up of the evolution equation for the extrinsic curvature, K^v into

evolution equations for the trace (tr(K)) and trace-free (A^ parts.

• The use of the gravito-electric tensor to remove the (trace-free) Ricci tensor

from the evolution equation for AMV and the use of the Hamiltonian constraint

to replace the Ricci scalar from the evolution equation for tr(K). The resultant

set of partial differential equations are now first order in both space and time,

this last point was found to be beneficial in the Schwarzschild 1+ln slicing test

(section 6.5).

<

i

We have also limited ourselves to two one-dimensional spacetimes, namely Minkowski
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and Schwar2schild. By limiting the range of spacetimes investigated we are abie to

consider a choice of gauges in each. We have chosen numerical techniques, e.g. time-

stepping algorithms and boundary conditions, that were expected to neither detract

from cr add to the performance of the equations themselves.

Through this work we have been able to glean some insight into the behaviour of

the GEM equations in a numerical setting and the broader question of stability. Our

findings include:

For gauge choices that result in a lapse function that does not change with time

(geodesic slicing and the implementation of harmonic slicing in the Minkowski+

Noise spacetime) the GEM equations reduce to ordinary differei ..al equations,

which affects their stability and convergence properties. From the Minkowski

+ Noise test (section 5.2) we found that the reduction to ordinary differential

equations will cause the violation of the constraints to increase with time. This

will eventually lead to a runaway error. However, the error growth is kept less

than exponential for a thousand light crossing times by a sensible choice of time

step.

In fact, the GEM code proved capable of producing stable results for both the

Minkowski+Noise and Minkowski+Gaugewave (section 5.3) simulations. The

growth of errors (constraint violation and deviation from exact solution) was at

most quadratic for early to medium times (at least into the hundreds of crossing

times, except when very large time-steps were used).

In the Minkowski+Noise test the GEM equations showed no evidence of the
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periodic error that the ADM equations exhibited for certain resolutions. These

errors appear in the ADM case as a result of the existence of gauge modes

that result in spurious high frequency waves that are acknowledged as one of

the major drawbacks of the standard equations. Importantly, the appearance of

these gauge modes seem to be dependant on the ratio dt/dx, implying a Courant

type instability.

• The Minkowski+Gaugewave spacetime showed the GEM equations to follow

the gauge dynamics as well as the Standard ADM equations (for at least 1000

crossing times). The numerical solution showed no evidence of dissipation and,

although the travelling sin wave exhibited an increasing phase error overtime,

the numerical solution converged to the exact solution with increasing spatial

resolution.

The exploration of the Schwarzschild spacetime also showed up some interesting

differences in the way the gauge dynamics were handled by GEM and Standard ADM.

In particular:

• In both maximal (section 6.4) and l+ln slicing (section 6.5) the GEM equa-

tions produced shorter-lived evolutions than the ADM equations. However, the

runaway errors and the loss of convergence appeared to arise from the gauge

dynamics rather than an unstable formalism. In particular, both the GEM and

Standard ADM codes eventually failed once steep shocks in the evolution vari-

ables formed.

It is interesting that in the l+ln case, where the ADM equations evolved the I

|

j

. . • >,.-
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spacetime for much longer than the GEM equations, the ADM code was not

convergent after about t=30M. This is well before the GEM code became non-

convergent due to coordinate shocks. This implies that the ADM evolution's

longer life came at the expense of accuracy. It also highlights the importance

of convergence testing in a field such as numerical relativity, where we have so

few exact solutions for comparison.

The most likely reason this behaviour did not manifest in the GEM code is

the absence of second-order spatial derivatives in the GEM formulation. This

suggests that the removal of the 3-Ricci tensor terms from the GEM evolution

equations results in better convergence.

A number of interesting questions were raised by the modelling of the Schwurzschild

spacetime in a maximal+shift vector slicing (chapter 7), where we chose a radial dis-

tance locking coordinate and gauge, to avoid the coordinate shocks usually associated

with a maximally sliced Schwarzschild simulation .

• The first result is not with respect to the GEM equations at all, but is the fact that

in this coordinate system, the ADM equations are able to produce an accurate,

stable and convergent long-term integration, despite their known disadvantages.

It is an indication of the important role the choice of gauge plays in constructing

stable codes.

• This last spacetime, when modelled with the GEM equations gave rise to some

difficult questions, that remain open. The simulation was unstable in the long

term, with the appearance of a high frequency wave destroying both the ac-
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curacy and stability of the evolution. The errors were worse at higher spatial

resolutions. This suggests that this is an unphysical. constraint satisfying mode,

of the type that can plague the Standard ADM equations. However, this is the

only one of the tests conducted here that indicated such a thing, implying that

further investigation of these equations is needed.

This was the only one of the spacetimes studied that involved a non-zero shift

vector. This could possibly imply that the inclusion of the shift-vector changes

the system of GEM equations into a less numerically stable form. On the ev-

idence presented, however, it is impossible to do more than conjecture about

this. More tests are necessary to pinpoint whether the radial distance locking

coordinate represents an anomalous result, or an underlying property of the

GEM equations.

Indeed, as noted above, a work such as this can only scratch the surface of the na-

ture of the GEM equations and their possible use in obtaining stable, accurate long-

term evolutions in general relativity. Thus, there exists much scope for extensions

to the work presented here. A natural first extension is to test these equations in a

3-dimensiona! setting. As we have restricted the form of the metric, for clarity, we

can only make limited, first conclusions as to the stability of the full GEM equations.

Another extension that would be possible in higher dimensions is to manipulate the

structure of the equations themselves. In particular, it would be interesting to analyse

the effect of adding the gravito-magnetic tensor into the system, how this changes the

structure of the equations and whether it adds or detracts from the overall stability of

the system (and why it does so).
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One related extension of this work is not in the field of numerical stability, but

rather in the the description of radiative spacetimes. Knowing the gravito-electricand

gravito-magnetic tensors gives us information about the radiative part of the space-

time. The 3+1 Rianchi identities have a possible application in modelling the produc-

tion and propagation of gravitational radiation, whether they are coupled to the ADM

equations, as in this work, or used in tandem with one of the other variations of the

standard equations.

The results presen' jd in this work provide a first step in the analysis of a modification

of the numeric ' Einstein equations. This thesis and its extensions are a part of the

process of u iderstanding, not only the behaviour of the equations presented here,

but the overall question of 'What makes a stable numerical integration in general

relativity ajd why?' Whether or not these equations prove themselves to be useful in

obtaining long-term integrations in more physically interesting settings remain to be

seen, but we have provided a case for further investigation into the idea of applying

the equations governing gravitoelectromagnetism to numerical relativity.
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