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Abstract

iI
l . . . . !

%i The aim of this research is to devise a framework for intelligent decision support system !
*• 1

'5 (IDSS) that uses domain knowledge from organizational databases and applies this knowledge !

£ in problem solving. This research draws from the concepts of computational intelligence,

w knowledge discovery in databases and decision support \
\ . . . . . . . 1
* This research is concerned with investigating how data mining (DM) and artificial neural \

networks (NN) can cooperate in order to minimize problems related to knowledge acquisition,

and implement reasoning and learning in decision support systems.
i

As a result of this investigation a new decision support framework is proposed combining [
an association rule generator algorithm for data mining with an artificial neural network based

i i

1 system in a hybrid architecture, called the DM-NN model. |

, Data mining is applied to induce expert domain knowledge from organizational databases,

*' minimizing the problem of knowledge acquisition. The discovered association rules are stored

i in rule-based knowledge base. A neural network based system is introduced to provide

a
>. intelligent capabilities; in particular, learning and problem solving, taking advantage of neural l

* networks capability of generalization, handling large combinations of data, and coping with

_ noise data. \

To validate and assess the performance of the DM-NN model it has been implemented in

•v the context of aviation weather forecasting, identifying severe and rare weather phenomena at

•* j

| airport terminals, particularly fog phenomena. Severe and rare weatiier events are intrinsically >

"' {

f problematic to predict because weather forecasters normally do not have extensive experience •*

f in forecasting such events; as a result false alarms or incorrect forecasts are more likely to i

'/ occur. Furthermore, severe weather events are hazardous events that can potentially cause
• * . . . f

ri serious damage and unsafe conditions. These make forecasting of severe weadier events a f
4 suitable area for intelligent decision support. I

I
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As part of this research specific studies on data sampling, data preprocessing for data

mining and rule filtering thresholds were conducted and assessed through the implementation

of the DM-NN model in aviation weather forecasting.

A quantitative approach was used to assess the DM-NN model performance, where the

holdout method was employed using a database provided by the Australian Bureau of

Meteorology (BOM), with 49901 weather observations from July 1970 until June 2000, taken

at Tullamartne Airport.

The results achieved in this research demonstrated that the DM-NN model constitutes

suitable technology to implement the IDSS framework. The performance of the DM-NN

model in identifying fog phenomena demonstrated its potential applicability as a decision

support framework.
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Chapter 1

1 Introduction

This chapter introduces the research developed in this thesis, and gives an overview of its

theoretical background, objectives, contributions and motivations.

1.1 Research Overview

The focus of this research is to devise a framework for decision support that uses

organizational databases as a source of information, that is capable of automatically building

domain knowledge from such databases and applying that knowledge in problem solving. It is

a research that draws from the concepts of computational intelligence, knowledge discovery

and decision support.

This thesis introduces a nese approach for intelligent decision support systems (IDSS),

through the combination of data mining (DM) with artificial neural networks (NN) in a hybrid

architecture, called the DM-NN model.

This thesis presents the proposed IDSS model, its components and its development in

aviation weather forecasting.

In the context of this diesis intelligent decision support systems (IDSS) are computer-

based decision support systems capable of incorporating specific domain knowledge and

performing some type of intelligent behaviour, such as learning and reasoning about the

knowledge they possess in order to support decision making.

To implement these intelligent capabilities intelligent computing technologies are

employed. Intelligent computing technologies comprise diverse disciplines, such as artificial

neural networks (NN), rule induction (RI), fuzzy logic (FL), genetic algorithms (GA), case
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Chapter 1 Introduction

base reasoning (CBR), and expert systems (ES) used in building systems that exhibit a type of

intelligent behaviour such as being able to leam and reason (Zurada, 1992; Zadeh, 2000;

Medsker, 1995; Sun, 1995b).

1.2 Theoretical Background

Decisions are made through analyses of explicit domain knowledge, such as facts, data,

contexts, and relationships relevant to the decision problem, i.e., factual knowledge. Decision

making also involves the use of implicit domain knowledge from domain experts, i.e., expert

knowledge. Computational tools for decision support usually incorporate expert knowledge

from domain experts together with specific factual knowledge (Bonczek, Holsapple and

Whinston, 1981; Holtzman, 1989).

Factual knowledge in most decision domains is complex, ill structured and incomplete,

which makes it difficult to be fully understood, formalized and incorporated into a

computational system (Bonczek, Holsapple and Whinston, 1981; Turban and Aronson, 1998;

Sprague, 1993). On the other hand, expert knowledge acquisition from domain experts is not

an easy task either. Early attempts in building expert systems revealed the difficulties in

acquiring expert domain knowledge (Hayes-Roth, 1983; Tecuci and Kodratoff, 1995;

Buchanan and Feigenbaum, 1978; Lenat, Prakash and Shepherd, 1986).

Besides incorporating domain knowledge, decision support systems are also required to

perform some type of intelligent behaviour such as learning and reasoning about the

knowledge they possess in order to support decision making.

The need to incorporate domain knowledge and intelligent capabilities in decision support

systems have been identified in various forms by many researchers, such as Simon (1977),

Turban (Turban and Aronson, 1998), and Sprague (1993) among others.

For instance, Simon (1977) identifies three stages in a decision making process: intelligent,

design and choice. The capabilities of learning and reasoning are embodied in these stages, where

the intelligence stage relates to the search for conditions that demand decisions and identifying

opportunities; the design phase relrCes to developing and analysing possible courses of action,
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which includes activities such as understanding the problem, assessing and testing solutions;

and the choice phase is concerned with selecting a particular action or category.

Turban (Turban and Aronson, 1998) and Sprague (1993) introduced a decision support

framework composed by various subsystems, including a data management subsystem that

contains relevant data about a specific problem; a model management subsystem providing

analytical capabilities; a knowledge management subsystem that provides intelligent

capabilities, and a user interface subsystem. The knowledge management subsystem provides

expertise to the DSS when dealing with complex situations; this expertise can be implemented

by an expert system, by artificial neural networks or by some other intelligent system. A DSS

that includes such knowledge management subsystem is recognized as an IDSS according to

Turban (Turban and Aronson, 1998).

Teng (Teng, Mirani and Sinha, 1988) and Turban (Turban and Aronson, 1998) proposed

an architecture for an IDSS in which a knowledge acquisition subsystem is linked to an

intelligent supervisor, which is implemented through an inference engine. This architecture

also comprises a model base and a database management system.

An architecture to support the decision making process by combining a case base, a

database, and a rule base into an intelligent advisory system was proposed by Burstein

(Burstein et al., 1998). The proposed architecture is built around a collection of organizational

knowledge to make it accessible to decision makers. The aim of this architecture is to support

decision making by its capacity to recall past decisions and use this historical knowledge in

new decision problems.

The concept of model-based decision support relates to systems for decision support that

incorporates three stages: formulation, solution and analysts (Shim et al., 2002), Formulation relates

to the generation of problem and domain models, in a way they are acceptable to a model

solver. Solution relates to the algorithmic solution of the model. This includes the use of

technologies to effectively solve the problem: these technologies constitute combination of

techniques from artificial intelligence and operational research to address complex problems.

Analysis stage relates to the analyses and interpretation of model's solution and outcomes.

This includes report generators, graphical displays, sensitive and "what-if' analysis.
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It can be observed in the DSS models introduced above that they all incorporate a domain

knowledge component (through case bases, rule bases, knowledge acquisition subsystem, or

data management subsystem) and an intelligent system component (through an intelligent

advisory system, intelligent supervisor, or knowledge management subsystem). Consequently,

it is possible to observe that some of the main features to incorporate in DSS models are

domain knowledge and intelligent capabilities.

The concepts of intelligence and intelligent capabilities used in this research draws from

the field of artificial intelligence, which argues that the intelligent behaviour presented by an

intelligent system relates to the abilities of gathering and incorporating domain knowledge,

learning from acquired knowledge, reasoning about such knowledge and, when required, being

able to issue recommendations and justify outcomes (Schank, 1982; Newell and Simon, 1972).

Thus, the required intelligent capabilities in an IDSS model can be summarised as follows:

• Incorporating specific domain knowledge, both factual and expert knowledge

• Learning and reasoning

• Issuing recommendations

• Drawing justifications

A possible approach for domain knowledge acquisition is to automatically induce specific

domain knowledge directly from raw data (Fayyad et al., 1996; Quinlan, 1993; Tecuci and

Kodratoff, 1995; Wu, 1995; Catlett, 1991). This approach is particularly interesting in data rich

domains where large organisational databases are available. Potentially, large organisational

databases contain useful information mat can be used for decision making purposes,

identifying strategically important information patterns (Fayyad, Mannila and Ramakrishman,

1997), such as cases representing previously experienced problem situations. Knowledge

discovery in databases (KDD) is the process of extracting useful patterns and models from

raw data, and making those extracted patterns understandable and suitable for the resolution

of decision problems. KDD is a multi-stage process, in which data mining can be considered

the core activity (Han, 1998), and it relates to the process and the set of techniques used to

find (mine) underlying structure, information and relationships in normally large amounts of

data.
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Intelligent computing technologies have been applied in developing computational systems

to support a wide range of problems, incorporating intelligent behaviour in these systems. For

example, artificial neural networks (NN) have been explored to implement flexible learning

and reasoning mechanisms into computational systems, such as decision support systems

(Wang, 1994). NN excels in learning in uncertain or unknown environments and in

performing approximate reasoning, regarding its numeric, association, and self-organizing

nature (Medsker, 1995; Sun, 2001).

Most of the current literature about KDD relates to the development and optimisation of

algorithms or experiences of KDD in practice, but relatively little work has been published

relating integrated approaches of KDD and intelligent computing in the context of decision

support.

The research conducted and described in this thesis is concerned with investigating the

combination of knowledge discovery and intelligent computing technologies, in particular

artificial neural networks, in developing a framework for decision support.

From this perspective, this research has investigated how data mining and neural networks can

cooperate in order to minimize problems related to knowledge acquisition, reasoning, and learning in

building decision support systems.

1.3 Research Question and Objectives

The formulated research question of this thesis is:

What are the components of a framework for intelligent decision support system capable of:

• utilising organisational databases as source of information

• facilitating automatic knowledge acquisition from those organisational databases

• reasoning and learning upon this knowledge

to support decision making?
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In order to answer the research question, the objectives of this thesis are:

• To devise a framework for intelligent decision support system (IDSS) capable of

automatically building specific domain knowledge from data rich domains and

applying this knowledge in problem solving

• To specify the appropriate technological components of that framework

• To empirically verify the framework in prac* ze.

As a result of the investigation developed in this research, this thesis proposes a new

framework for decision support combining an association rule generator algorithm for data

mining with an artificial neural network based system in a hybrid architecture. This is called

the DM-NN model

Data mining is applied to induce expert domain knowledge from organizational databases,,

minimizing the problem of knowledge acquisition and at the same time facilitating the use of

organizational databases for decision support. The association rules discovered are stored in

rule based knowledge bases, which are accessed by a neural network model for learning

purposes.

A neural network based system is introduced to provide intelligent capabilities, in

particular, learning and problem solving, taking advantage of the generalization capability of

neural networks, as well as the capability of handling large combinations of data, and coping

with noise data (Medsker and Liebowitz, 1994).

One of the motivations for combining data mining (DM) and neural networks (NN) is that

the IDSS model could benefit from the large amount of available data in organisational

databases as a source of domain knowledge to facilitate knowledge acquisition. A second

reason was that by combining DM and NN, we could benefit both from the logical and

cognitive nature of symbolic systems through an association rules formalism for knowledge

representation, and from the numeric, adaptive and self-organizing nature of NN for learning

and reasoning purposes.

Additionally, the IDSS model aims to benefit from the whole KDD process by selecting

cases from large organisational databases in a way that ensures data quality.
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It is also part of the motivation of this research to continue with this author's previous

work in which artificial neural networks and symbolic structures were combined in

prototyping decision support systems (Viademonte, 1994; Viademonte, Leao and Hoppen,

1995; Viademonte, Hoppen and Beckenkamp, 1997; Pree, Beckenkamp and Rosa, 1997).

1.4 Contributions

The contributions of this thesis are concentrated in the areas of decision support systems

(DSS), intelligent systems (IS) and knowledge discovery from databases (KDD). This thesis is

an applied research and aims to contribute to both theory and practice.

This thesis adds to decision support theory by proposing a framework that represents a

novel approach for decision support systems, suitable for data rich domains. It defines the

computational architecture of the framework for DSS, its components, their operation and

interactions. The application of the proposed approach in the development of an industry

decision support system for aviation weather forecasting demonstrated its feasibility in a

practical situation, and contributes to the practice of decision support systems development.

This thesis also contributes to the theory of intelligent systems, by proposing a novel

architecture combining an association rule generator algorithm for data mining and a neural

network model based system. This hybrid architecture implements learning, reasoning,

recommendations and explanatory capabilities through a neural network environment, and

facilitates automatic knowledge acquisition from selected cases through data mining. The

development of the DM-NN hybrid approach contributes to the practice of hybrid systems

development

This research contributes to KDD practice by providing a description of the complete

knowledge discovery process from both a practical and an analytical point of view. The data

preparation procedures inherent in the KDD process to ensure data quality have been

carefully developed in this thesis; which provides contributions to data pre-processing, in

particular for the application domain, selected in this research. Furthermore, a deep study of

sampling design for data mining was undertaken and a specific sampling strategy was

implemented, giving contributions in sampling design for KDD purposes.
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As part of this research, the classificatory performance of diverse data models were

empirically assessed, through experiments using different levels of confidence degrees, support

degrees and rule order. These experiments provide guidance in selecting thresholds in data

mining applications using association rule generators or similar algoridims.

1.5 Research Design

This research constitutes an exploratory and empirical research, which includes the

development of a framework for decision support. The research design of this thesis includes

the process that was developed to address the research question and objectives, and the

performance assessment method that was applied.

1.5.1 Research Method

This project is an interdisciplinary, exploratory and applied research, which combines

concepts from decision support systems, knowledge discovery in databases and intelligent

system technologies, particularly NN.

The research method adopted in diis thesis draws on methods used in information systems

and artificial intelligence research (Cohen, 1996), in particular, die system development

research method described by Nunamaker (Nunamaker, Chen and Purdin, 1991) in

conjunction with the development cycle methodology proposed by Medsker (Medsker and

Iiebowitz, 1994).

Nunamaker (Nunamaker, Chen and Purdiii, 1991) proposed a system development

approach for information system research consisting of five well defined stages. These include

the construction of a conceptual framework, the development of a system architecture, system

analysis and design, system implementation, system observation and evaluation. According to

this method a conceptual framework is die design of a system to demonstrate the validity of

die solution, based on the suggested new methods, concepts and technologies. A system

architecture places the system components into the correct perspective, specifies the system

functionalities, and defines the structure relationships and dynamic interactions among system

components. The design phase involves the understanding of the studied domain, the

application of scientific and technological knowledge, the creation of alternatives, and
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evaluation of proposed alternative solutions. Building the system is used to demonstrate the

feasibility of the design and usability of the functionalities of a system project

The development cycle methodology was proposed by Medsker (Medsker and liebowitz,

1994). It particularly addresses the development cycle of NN based systems and models, and

includes four main phases: concept, design, implementation and maintenance. In the concept

phase an application domain is assessed and an appropriate NN architecture is selected

according to the characteristics of the application. In the design phase the system is developed,

a development environment is selected, the NN topology and learning algorithms are defined,

data are gathered and prepared, and testing and training datasets are generated. The

implementation phase concerns the NN execution, training and validation. And the

maintenance phase consists of evaluating the system performance and adapting it when

necessary.

These stages of the system development research method can be identified in the research

design applied throughout this research. The construction of a conceptual framework for

IDSS, and the definition of the framework's architecture and its technological components

relates to the first stages of the system development research method. The framework

development, implementation and evaluation in aviation weather forecasting relates to the

three last stages of the system development research method.

As the proposed framework for IDSS includes a NN component, the development cycle

methodology defined by Medsker (Medsker and Iiebowitz, 1994) was applied in defining the

NN environment (Chapter 6 discusses the NN model application in detail).

1.5.2 Outline of the Research Design

The research design of this thesis is concerned with technological components and their

combination in a single framework for decision support. It aims to provide the technological

infrastructure to implement the activities identified in building an IDSS, e.g., domain

knowledge acquisition and intelligent capabilities.

The research design that was applied comprises four main phases. The first phase relates

to the conceptual studies 2nd literature review; the second phase to the development of a

conceptual framework for IDSS defining its components and architecture. The third phase
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relates to the implementation of such conceptual framework in an industry problem, and the

fourth phase comprises the final discussions about the developed IDSS model and the

conclusions of this research.

Figure 1.1 illustrates the research design of this thesis, identifying each research phase and

its respective chapters.

1. Conceptual studies:
review of concepts and applications

(Chapters 2 and 3)

2. Framework for BOSS:
architecture and
components

(Chapter 4)

3. Applying the IDSS
model in aviation weather
forecasting

(Chapters 5, 6, 7)

4. Discussions and conclusions:

(Chapters 8 and 9)

Figure 1.1: Research design

The first phase of this research was dedicated to conceptual studies and investigation of

the relevant literature. The following topics were covered in this phase:

• Intelligent Decision Support Systems

• Intelligent Sy«^ms, including hybrid systems and symbolic-connsctionist

architectures, and Jidr applications in practice

• Knowledge Discovery in Databases

As a result of these studies, 2 conceptual framework for IDSS was designed and

implemented.

In the next phase, a particular industry problem was approached and studied, with the aim

of verifying its suitability to evaluate the IDSS framework. A computational model was
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desired, and technological requirements were assessed in order to implement that

framework.

The computational model was implemented, applied and evaluated throiigh the selected

industry problem. This phase comprises three distinct stages: the knowledge discovery stage,

the stage in which the neural network system was applied, and the assessment of performance.

In the knowledge discovery stage issues about data requirements, selection and modelling

were addressed, including the activities related to data preparation for KDD, such as data

preprocessing and data partitioning. The next stage relates to the application of the neural

network component, where issues of domain modelling, learning, and reasoning were

performed. The last stage presents and discusses the assessment of performance of the

developed model for IDSS in the selected industry problem.

Each chapter covers part of die research phases developed along this thesis. Chapter 2 and

3 cover the conceptual studies and literature review; Chapter 4 describes the proposed

framework, its technological components and interactions. Chapters 5, 6 and 7 are dedicated

to the development of the IDSS model in the selected industry problem, i.e., aviation weather

forecasting. Although these chapters cover distinct stages of die experiment developed in this

research, together they form the whole theme of the IDSS I'nodel application in aviation

weadier forecasting. Chapter 8 presents a discussion about the proposed model for IDSS, and

Chapter 9 presents the conclusions and contributions of this research.

The DM-NN model for IDSS proposed in this research has been applied in aviation

weather forecasting, identifying rare and severe weather events at airport terminals, particularly

fog occurrence.

1.5.3 Performance Asses sment Method

The performance of the proposed model for IDSS has been assessed according to its

capability to correctly classify meteorological observations, specifically fog cases in the context

of aviation weather forecasting. It is a quantitative approach where the holdout method was

employed (Weiss and Indurkhya, 1998). The system has been evaluated using a database

provided by the Australian Bureau of Meteorology (BOM), with 49901 weather observations

32



Chapter 1 Introduction

from July 1970 until June 2000, taken at Tullamarine Airport in Melbourne (henceforward

Tullamarine)-

ln the holdout method the data is randomly partitioned into two mutually exclusive

subsets, named training and testing datasets. A given learning system is first trained using the

training set and tested on the testing sti, and the estimation of accuracy is based on the

percentage of correctly classified cases and error rates in the testing set (Weiss and Indurkhya,

1998).

The DM-NN model comprises two main phases in its execution. First, descriptive models

of the application domain are generated using data mining technology {descriptive method). Second,

predictive models are generated with the application of neural networks {predictive method) Several

training sets were generated, each one resulting from a specific sampling proportion and

configuration of data mining parameters. The design decisions in building the descriptive

models have to be taken into consideration when assessing the performance of the proposed

model.

The performance assessment approach employed in this research addresses the developed

sampling design, the levels of rule confidence degree, rule support degree and rule order used

during the data mining experiments in aviation weather forecasting. These issues impact on

system performance, and consequently have to be taken into account when assessing that

performance.

Furthermore, if is important to remember that this research does not propose new data

mining or neural network algorithms, neither does it propose algorithm optimisations. As

such, it does not claim any contribution to algorithm development and optimisation. The main

focus of this research is the combined approach, with the DM-NN model performance as a

whole, its usefulness, suitability and effectiveness in the selected decision making problem,

rather than the performance of a single technology on its own. The contribution of this

research lies in the novelty and the effectiveness of the proposed framework for decision

support.

Additionally, it should be noted that the DM-NN model is proposed as an interactive and

evolutionary framework for decision support. It is interactive because the participation of the

33



Chapter 1 Introduction

user (the decision maker) is important in various moments, e.g., in selecting cases from raw

data, selecting features and discretization ranges, and tuning different data mining parameters.

The proposed model is an evolutionary model, as NN technology is evolutionary by its nature

through its adaptive capabilities. An interactive execution cycle is expected in most NN

applications until the system achieves a stable learning state. As the environment changes, the

model has to adapt to these changes through another learning cycle.

Consequently, the results obtained through the assessment of classificatory performance

have to be analysed taking all these characteristics into account. These results illustrate the

usefulness of die DM-NN model, especially its suitability and effectiveness in the selected

decision making problem, rather than validate any particular algorithm.

1.6 Structure of the Thesis

This thesis is organized into 9 chapters comprising the research phases previously outlined

in section 1.5.

The Introduction, Chapter 1, presented an overview of this research, its theoretical

background, objectives, research question and motivations. It also presented the contributions,

the research design, the research method being used and discusses the performance

assessment method that has been employed. Finally, the structure of the thesis is described.

Chapter 2 introduces die concepts and research related to intelligent decision support

systems. These concepts are introduced in two topics: intelligent systems and hybrid symbolic-

connectionist systems. The main reason for doing this is diat these two types of hybrid

architectures are related to this research project.

The topic about intelligent systems introduces hybrid architectures combining different

intelligent computing technologies. The topic about symbolic-connectionist systems

introduces hybrid architectures combining connectionist and symbolic approaches.

Chapter 3 introduces concepts about knowledge discovery in databases and data mining, as

well as issues about data preparation, dimensionality reduction, and data sampling.
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Chapter 4 introduces the proposed hybrid DM-NN model for IDSS, its components, their

respective roles and interactions. The applied knowledge representation schema, the employed

neural network environment and neural network model are also discussed in this chapter.

The development and application of the proposed DM-NN model for IDSS in aviation

weather forecasting comprises three stages. First the knowledge discovery stage is presented;

next the intelligent advisory system stage is described, and lastly the system performance is

discussed. Chapters 5, 6 and 7 describe this application.

Chapter 5 introduces the problem of aviation weather forecasting, and describes the stage

of discovering knowledge from a meteorological database. The activities of data preparation,

domain modelling, data sampling,, and data mining are presented in this chapter.

Chapter 6 describes the intelligent advisory system stage, which is implemented through a

neural network environment. Issues of domain modelling, learning, reasoning and user

interaction are discussed.

Chapter 7 presents and discusses the analysis of performance of the DM-NN model in the

context of aviation weather forecasting. Chapter 8 presents a discussion of intelligent systems

related to the DM-NN model, and discusses some limitations of the developed model.

Finally, Chapter 9 presents the conclusions, as well as a summary of contributions and

directions for further research.

1.7 Chapter Summary

This chapter introduced the research developed in this thesis. It gave an overview about

the research project, and introduced its theoretical background, as well as its objectives, the

formulated research question, motivations and contributions. This chapter also presented the

applied research method and design, and the assessment method employed to evaluate the

performance of the computational model for IDSS.

35



Chapter 2

2 Intelligent Decision Support Systems

This chapter introduces the concepts and research related with intelligent decision support

systems. These concepts are introduced in two topics: Intelligent Systems (IS) and Hybrid

Symbolic-Connectionist Systems (HS). This chapter also introduces the concepts of artificial

neural networks (NN), including NN structures and learning approaches. Some of the most

well known NN models are also briefly introduced.

2.1 Introduction

In the context of this thesis intelligent decision support systems (IDSS) are computer-

based decision support systems capable of acquiring domain knowledge and performing

learning and reasoning about the knowledge they possess.

To implement such intelligent capabilities intelligent computing technologies are

employed. Intelligent computing technologies comprise diverse disciplines, such as artificial

neural networks (NN), rule induction (RJ), fuzzy logic (FL), genetic algorithms (GA), case

base reasoning (CBR) and expert systems (ES) in building systems that exhibit a type of

intelligent behaviour such as learning and reasoning (Zurada, 1992; Zadeh, 2000; Medsker,

1995; Sun, 1995b).

2.2 Intelligent Systems

Although the term intelligent system is largely used, there is no commonly accepted definition

for the concept of intelligent systems. Often the terms intelligent systems, hybrid systems, soft
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computing systems and computational intelligence are interchangeably used. The concept of intelligent

systems varies according to different literatures.

According to Azvine (Azvine, Azarmi and Nauck, 2000) intelligent systems are computer

systems based on symbolic artificial intelligence combined with hybrid techniques from the

soft computing paradigm (Zadeh, 1973). Such a hybrid approach combines methods from

disciplines such as fuzzy set theory, neuroscience, agent technology, knowledge discovery, and

symbolic artificial intelligence. The aim of such a combination is to provide robust, adaptive

and easily usable systems.

Goonatilake (Goonatilake and Khebbal, 1995) associates intelligent systems with adaptive

machines, built through the combination of different types of intelligent computing

technologies, such as neural networks, genetic algorithms and fuzzy logic.

Kandel (Kandel and Langholz, 1992) defines intelligent systems as hybrid computational

architectures integrating the computational paradigm of expert systems and neural networks.

Bezdek (1994) presents a discussion in which the term "intelligent systems" is related with

the concepts of artificial intelligence and computational intelligence. According to Bezdek

(1994):

"a system is computationally intelligent when it deals with numerical (low-level) data, has a pattern

recognition component, and when it begins to exhibit computational adaptivtty, fault tolerance, speed

approaching human-like turnaround, and error rates that approximate human performance."

Additionally, Bezdek defines an artificially intelligent system as a computationally

intelligent system that incorporates knowledge in a non-numerical way, has the ability of

learning and dealing with new situations.

Although different literatures present distinct concepts about intelligent systems, it can be

observed that the idea of combinations of diverse technologies such as neural networks, fuzzy

systems, and evolutionary computing is a fundamental concept in these systems. Additionally,

the notion of systems capable of reasoning, learning and making decisions in uncertain

environments is inherent in the concept of intelligent systems.

Medsker (1995) provides a diagram introducing the various components of intelligent

systems. Figure 2.1- illustrates such a diagram:

I
i
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Hybrid Intelligent Systems

Expert
Systems

Fuzzy Logic

Genetic Algorithms

Case-Based Reasoning

Neural
Networks

Hardware & Software

Figure 2.1: Intelligent systems components as in (Medsker, 1995)

This thesis adopts the concept of intelligent systems as computational architectures that

combine diverse technologies to provide computerized systems with capabilities of learning,

reasoning and decisiori making in uncertain environments. Furthermore, this research borrows

from Medsker its theoretical framework for intelligent system.

2.2.1 Motivations of Intelligent Systems Development

The emergence of intelligent computing technologies and their respective combinations

have their origins in different sciences. Contributions and motivations have come from

researches and developments in decision analysis, cognitive science and artificial intelligence

(AI), and from the development of computerized information system applications in different

domains such as industrial control, financial modelling and cognitive modelling (Sun, 1995b;

Goonatilake and Khebbal, 1995; Zurada, 1992).

Complex industrial and business problems have partially driven the development of

intelligent computing technologies, to support die solution and management of complex tasks,

such as weather forecasting, medical diagnoses, air traffic control, trading decision in financial

markets, credit scoring and risk assessment in financial and insurance corporations and a

myriad of other industrial applications (Goonatilake and Khebbal, 1995; Medsker, 1995; Sun,

1995b). These complex tasks often require computational systems with special capabilities

such as interpreting incomplete readings, coping with ill defined and often conflicting

information, using sets of compiled knowledge and heuristics to infer and approximate

conclusions, handling tirne-dependent ininrmation, and in many situations being able to reach
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satisfactory conclusions rather than optimal ones (Zadeh, 1973; Goonat^ke and Khebbal,

1995).

The expert systems developed from the 1970s onwards are examples of computer systems

applied to support complex tasks. Expert systems such as DENDRAL (Buchanan and

Feigenbaum, 1978), which was developed to infer the molecular structure of unknown

compounds from mass spectral; MYCIN, developed at Stanford Medical School (Turban and

Aronson, 1998) and applied in the diagnosis and treatment of blood infections; and XCON

(Barker et al., 1989) used at DEC (Digital Equipment Corp), for computer configurations, are

examples of such systems.

The search to understand and explain human cognitive processes is the other driving force

motivating intelligent systems research and development Decision makers, engineers and

computer scientists have attempted to model and develop powerful computer-based decision

support tools (Holtzman, 1989), and cognitive scientists have attempted to model, verify and

test cognitive theories and models through computer simulations (Newell, Shaw and Simon,

1958; Colby, 1965; Reitman, 1965; Colby, Watt and Gilbert, 1966; Weizenbaum, 1968), and

(Newell and Simon, 1972). Theories of human cognitive processes have been implemented in

computer programs and tested to assess if they work. If the computer program produces the

same behaviour as a human, then the series of operations it implements may be considered as

an accurate representation of human cognitive processes (Mayer, 1992).

Some AI projects developed during recent years are examples of such attempts. One is

example the Logic Theorist, a theorem solver program developed by J. Shaw, A. Newell and

H. Simon in 1956. Logic Theorist was not only designed for logic theorem proving, but also to

verify how humans perform similar tasks by selecting appropriate heuristics rather than- using

an extensive search process (Crevier, 1993). The General Problem Solver (GPS) (Newell and

Simon, 1963; Ernest and Newell, 1969) is another example. GPS aimed to demonstrate that

certain general human reasoning procedures are not involved in any particular task, but

encoded in a completely task independent manner. Furthermore, these general procedures

could be implemented in a computer program able to solve a wide variety of different

problems (Crevier, 1993; Mayer, 1992). Another example of cognitive modelling through
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computer experiments is the Feigenbaum (1963) study about human learning. Feigenbaum

built the EPAM (Elementary Perceiver and Memorizer) program to emulate bow people

memorize nonsense syllables. The Automated Mathematician program developed by (Lenat,

1981), which learned by discovering mathematical concepts, is another example of cognitive

process implemented through a computer program. One of the most significant projects is the

Cyc (short for encyclopedia) that attempted to implement a large amount of common sense

knowledge through a large collection of self-evident facts stored in a complex hierarchy of a

frame based knowledge representation mechanism (Lenat, Prakash and Shepherd, 1986; Lenat

and Guha, 1988).

Symbolic AI systems (systems that apply a symbolic approach to represent and manipulate

knowledge) have been successfully applied in specific and well-defined r ru »lr)n domains, such

as expert systems in classification tasks, planning, and scheduling (AT?•.>.?..'.*. .-.zarmi and Nauck,

2000). However, there are some drawbacks, for example symbolic systen.: iiave difficulties in

taking into account uncertainty, imprecision and vagueness. In much the same way a single

approach is not enough to explain complex cognitive processes, it is also not enough to solve

many complex industrial problems.

Rather than a single approach, some problems require a combination of tools, theories and

technologies that can be applied under different circumstances. The necessity of a combined

approach where two or more techniques are combined in a way that overcomes the limitations

of individual techniques is the driving force behind intelligent system research and,

development.

2.2.2 Intelligent System Capabilities

Intelligent systems aim to overcome a series of limitations that have been identified in

information systems applying a single technique. Some of these limitations include (Medsker,

1995; Sun, 1995b):

• The knowledge acquisition bottleneck, i.e. the necessity of a consultation with

human experts for knowledge acquisition

• The need to synthesize new knowledge

• The need to dynamically modify knowledge whenever necessary
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• Difficulties in handling imprecise, incomplete and uncertain information

• Difficulties in implementing reasoning capabilities

• Difficulties in coping with the complexity of practical problems.

While systems using a single approach succeed in overcoming some of the limitations

mentioned above, diey normally fail in implementing solutions to more than one of those

problems. Each technique has partiailar properties that make them suitable for particular

problems and not for others. For example, rule base systems are good at transparent

knowledge representation, but have difficulties adapting to changes in the environment in

which they are applied.

Goonatilake (Goonatilake and Khebbal, 1995) identified four key information-processing

capabilities that can be handled by intelligent systems. These are: knowledge acquisition,

britdeness, higher and lower level reasoning and explanation.

Knowledge acquisition concerns building a knowledge base, which is recognized as a

fundamental activity in the development of intelligent systems. The traditional approach for

knowledge acquisition from human experts brings several disadvantages, such as the

requirement of human experts, and it is a time consuming and expensive activity.

Techniques such as neural networks, genetic algorithms and rule induction systems, which

can generate rules or decision trees from raw domain data, have been successfully applied to

automate the knowledge acquisition process in the development of intelligent systems.

Brittleness refers to die problem in which a system operates efficiently only in narrow

domains under normally limited operational conditions. Slight changes in the domain require

human intervention to accommodate die system (Holland, 1986). The main causes of

britdeness, according to Goonatilake (Goonatilake and Khebbal, 1995), are die use of

inadequate knowledge representation structures and reasoning mechanisms.

An example of the brittleness problem is a case when a system cannot cope with inexact,

incomplete or inconsistent data, or when failures in a single processing component make die

system non-operational. The distributed representation and reasoning of neural networks deal

well with incomplete data and also allow die system to gracefully degrade. This means a neural

network based system does not became non-operational when part of the neural network fails
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(Freeman and Skapura, 1991). Besides neural networks, fuzzy logic and genetic algorithms are

also alternatives to handle the brittleness problem.

Higher and lower level reasoning concerns the capability to execute tasks that require

different levels of reasoning. Low level reasoning is characterized by parallel, distributed, and

normally numeric processing. Pattern recognition tasks, such as understanding spoken

language, recognizing faces and recognizing a large variety of colours are examples of human

lower level reasoning. These activities require rather complex mental processing. Although we

naturally perform those activities all the time, if asked to explain the reasoning processing

involved we would have enormous difficulty to formally describe them.

At the other hand, high level reasoning relates to sequential, logical and normally symbolic

processing. Activities like goal-oriented planning, scheduling, and vehicle navigation are

examples of high level reasoning.

Expert system and symbolic based systems in general perform well in implementing higher

level reasoning, as in medical diagnosis applications, but their ability to implement low level

reasoning has been limited. Neural networks, for example, excel in recognising complex

patterns, like hand-written characters or profitable loans in financial trading decisions

(Goonatilake and KhebbaL, 1995); both of which are too complex to be implemented through

a symbolic approach.

Explanation concerns the ability to clarify to users how the system reasoning process

works. Explanation capabilities are required not only for understanding of the solutions

generated and recommended by die system, but also for the purpose of evaluating the

system's reasoning and outcomes. It frequently works as a debugging feature for knowledge

engineers and system developers.

In rule-based systems for example, explanation capability is normally implemented through

a backtracking process, in which the system backtracks the rules that were fired during its

reasoning process. Systems applying other approaches to knowledge representation, such as

frames and semantic nets, have to implement more sophisticated explanation algorithms; and

a much more complex solution is required in neural networks based systems, as in this case

the system knowledge is distributed across the whole neural network structure.
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Detailed discussions about explanatory features, especially in expert systems, can be found

in (Clancy, 1983; Ye and Johnson, 1995; Hayes-Roth and Jacobstein, 1994). Additionally,

(ZaneDa, Piero and Guida, 1997) and (Zanella and Gianfranco, 1999) provide a valuable

discussion about explanation and justification needs in decision support systems and complex

computer systems in general.

Besides the information processing capabilities described above, Azvine (Azvine, Azarmi

and Nauck, 2000) includes the following features as required capabilities in intelligent systems:

• Applicability under uncertain and vague conditions

• Adaptability, e.g. learning from experiences and human intervention

• Autonomy, e.g. the capacity of acting on behalf of a user without direct

intervention

• Multi-modal interfaces, such as vision, speech and natural language understanding

Moreover, Zadeh (1994) emphasizes that the guiding principle of soft computing is:

'To exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness,

and low solution cost."

There is general agreement in the literature that has been discussed in this chapter that the

ability to handle the knowledge acquisition problem, the ability to cope with imprecise, noise and uncertain

data, the ability of learning, reasoning, adaptation, and presenting some kind of explanation facility

are fundamental capabilities in intelligent systems.

2.2.3 The Role of Intelligent Computing Technologies in Building
Intelligent Systems

Diverse computing technologies have been applied in developing intelligent systems, as

mentioned in section 2.2. This thesis concentrates on the technologies of. symbolic systems

and artificial neural networks, with a brief introduction to fuzzy logic and genetic algorithms,

which are also core technologies in the intelligent systems toolbox. While these technologies

have produced encouraging results in specific tasks, certain complex problems like knowledge

representation, common sense reasoning, real time problem solving, vision and language

processing are too difficult to be solved by a single technique. Each of these techniques has
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strengths and weakness; this section briefly introduces each of them and their respective roles

in building intelligent systems.

Symbolic systems, such as expert systems, apply a symbolic approach to represent and

manipulate knowledge. A mechanism of symbol structures, such as production rules, semantic nets

and frames (Bonissone et al., 1999) is used to represent the domain knowledge. Moreover, in

symbolic systems the knowledge manipulation and inference are implemented by a sequential

processing of these symbolic structures. For that reason those systems are known as symbolic

systems, symbol-processing AI, classical AI or even symbolic AI.

Symbolic systems are good at transparent and local knowledge representation, and also to

implement explanation facilities. Symbolic knowledge representation mechanisms allow

explicit declarative knowledge representation. On the other hand, they are not easily adaptive

to changes in the environment, do not increase or learn with experience, do not represent

generalization capabilities and thus are unlikely to allow graceful degradation, and normally

require extensive involvement of experts for knowledge acquisition.

Neural networks constitute a set of processing units (also called neurons) connected in a

non-linear fashion. The information processing in neural network models is performed in a

parallel and distributed way (section 2.4 introduces neural networks in more detail). Neural

networks excel in learning avid self-organizing capabilities, generalization, interpolation and use

of partial information; they are also fault and noise tolerant. However, in neural network

models it is difficult to implement explanation facilities, because they do not have explicit and

declarative knowledge representation structures. Domain knowledge in a neural network

model is encoded incomprehensibly in a numerical fashion as weight vectors within the

trained NN topology, and hence cannot easily be accessible (Medsker and Iiebowitz, 1994).

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to

handle the concept of partial truth - truth-values between "completely true" and "completely

false." It was introduced by Dr. Zadeh in 1964 as a means to model the uncertainty of natural

language; fuzzy theory is a methodology to generalize any specific theory from a crisp

(discrete) to a continuous (fuzzy) form.
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Fuzzy logic provides a means for representing vague and uncertain information, normally

expressed in semantic terms, such as high, higher, medium, low, lower, cold, hot, warm, very cold, very

hot, likely, unBkelj, etc. These semantic terms (or variables) are used in everyday life for many

purposes, such as decision situations. Semantic variables lack a precise definition, and often

overlap /each other, hence it is very difficult to properly model and incorporate semantic

variables in computerized decision support systems.

For example, in a DSS in a hydroelectric power plant (Viademonte, Hoppen and

Beckenkamp, 1997), a decision variable identified as water flow rate could assume three attribute

(or classes): high when the water flow is higher than 40 m3/s/h, medium when the water flow

falls between 20 and 40 m3/s/h, and low when the water flow is less than 20 m3/s/h. Instead

of assuming a sharp transition between the water flow rates, it can be assumed that the flow rate

does not abruptly change between two classes, but gradually shifts from one point to another,

so that there are grey areas in which a particular flow rate value might overlap between two

classes. This can be illustrated by the value 43 m3/s/h, which falls into the classification high,

and "partially" falls into the class medium. Figure 2.2 illustrates this property.

According to Figure 2.2, the flow rate 43 m3/s/h belongs to the class high with 0-8

pertinence degrees (or confidence degrees), and also belongs to the class medium with 0.4

pertinence degrees.

Membership degree"

' ' 1 • • . : . ' High CO. 8")

Low

r50 0 15 25

High

High CIV

43 45 50 100
: Flow
Rate
Variation

Figure 2.2: Fuzzy modelling for flow rate variation variable as in (Viademonte, Hoppen
and Beckenkamp, 1997)

A knowledge based system might represent this fuzzy relation applying the two classes in

different decision rules, for an example refer to (Viademonte, Hoppen and Beckenkamp,
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1997). Otherwise, assuming a sharp transition between flow rate classes represents an over-

simplification of a more complex real situation, which may be useless in some decision

situations.

Fuzzy logic has been applied in decision support systems and, particularly, in expert

systems (so called fuzzy expert systems) representing vague and imprecise information

through the use of linguistic variables and inferring through fuzzy if-then rules (Medsker,

1995). Moreover, fuzzy logic is a suitable approach to implement approximate reasoning,

incorporate real-world ambiguities and high level of abstractions in problem solving. Systems

implementing fuzzy logic have been applied to a large range of problems including fuzzy

control, fuzzy expert systems and decision making in stock market forecasting, risk

management, targeted marketing, scheduling and weather forecasting, among many others

(Cox, 1994; Viademonte, Hoppen and Beckenkamp, 1997; Turban and Aronson, 1998). In

decision making situations fuzzy logic is particularly useful since decision making often

handles information that is incomplete, vaguely defined, sometimes contradictory and where

imprecise human estimation has been applied.

A drawback of fuzzy logic is that it does not offer the means to automatically discover the

fuzzy sets and respective fuzzy memberships function, requiring a high level of human

expertise and time.

Genetic algorithms (GA) are a computer technique inspired by biological concepts of

natural evolution, the survival of the fittest. It is an alternative approach to search methods,

based on local optimisations instead of a global optimisation where the main goal is to quickly

find an adequate solution for a specific problem (Lawrence, 1991).

GA is basically an interactive procedure over a set of data structures that represent

potential candidate solutions for a particular problem. The candidate solutions are called

chromosomes, and are normally represented by binary strings (strings in which the only values are

" 1 " and "0"). In each interaction, the candidates generate copies of themselves with slight

modifications, in an operation called generation. The current candidates are then rated for their

effectiveness as a solution to the problem at hand. Based on this evaluation, if no candidate is

rated good enough for the problem solution, the process is repeated with new chromosomes
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being generated. The algorithm follows this process until it finds a chromosome considered a

good solution to the problem. During the generation process, GA applies a set of genetic

operators, namely reproduction, crossover, and mutation.

In the reproduction operation the GA produces new generations of improved chromosomes

(solutions) through the selection of parent's chromosomes with higher fitness ratings. In the

crossover operation two chromosomes exchange part of their segments, which are randomly

selected in each chromosome. The Mutation operation is rarely executed; its purpose is to

avoid a stationary state in the algorithm by arbitrarily shifting values " 1 " and "0" instead of

duplicating these bits of information. GA performs a heuristic search for a local optimal

solution in the problem domain space. This optimisation characteristic makes GA an attractive

approach for many complex problems, where the search for global solutions in very large

solution spaces potentially leads to high computational cost.

Moreover, being able to maintain a population of solutions (chromosomes) makes GA

able to cope with brittleness (Holland, 1986), allowing self-organization and adaptation. GA

has been applied in problems such as job shop scheduling, distribution, resources allocation,

project management, financial forecasting and investment analysis, among others (Lawrence,

1991).

Machine learning explores the mechanisms by which knowledge in a computer system is

acquired through experience. Machine learning involves two kinds of information processing:

inductive and deductive reasoning. In inductive reasoning general patterns and rules (rule

induction is one type of machine learning approach) are determined from raw data. Deductive

reasoning applies general rules to infer specific facts. For instance, knowledge acquisition from

datasets is performed through an inductive approach, whereas a proof of theorem is

performed through a deductive approach where known axioms are used.

Goonatilake (Goonatilake and Khebbal, 1995) proposed a rating schema for the intelligent

techniques introduced in this section, considering the capabilities described in section 2.2.2.

According to this schema, expert systems are good at high-level reasoning and explanations;

neural networks are suitable for automated knowledge acquisition, coping with brittleness and

low-level reasoning; fu2zy systems perform well in coping with brittleness, low-level reasoning
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and explanations, and perform reasonably well in high-level reasoning. GA are good at

automated knowledge acquisition, and perform reasonably well in coping with brittleness, high

and low level reasoning and explanation capabilities. Machine learning technology, mainly rule

induction, is a good option for automated knowledge acquisition, and also performs

reasonably well in implementing explanations and high-level reasoning. But it does not

effectively handle the brittleness problem and low-level reasoning.

2.2.4 Intelligent System Classifications

With the development of intelligent systems combining different techniques, various

classification schemes for these hybrid architectures have been proposed. Medsker (Medsker

and Bailey, 1992) proposed a classification scheme where hybrid architectures are classified

according to their level of integration; this scheme addresses specifically hybrid architectures

integrating neural networks and symbolic systems. The identified models are (Medsker and

Bailey, 1992):

• stand-alone: in this model the symbolic and neural components are independent

and there is no interaction between diem. This strategy provides a means of

comparing the performance of the two techniques in a specific application;

additionally, because die techniques do not attempt to interface with each other die

model can be quickly developed, and even commercial software packages can be

used. However, this type of model does not benefit from the integration of both

techniques, and neither the neural component nor the symbolic component can

support the weakness of each otb-sr.

• transformational: diis is a similar model to the stand alone model; both

techniques are independent from each other. Transformational systems begin in

one approach (e.g. neural component) and migrate to another approach (e.g.

symbolic), or vice versa; consequently there are just two forms of transformational

model: symbolic systems transformed in neural systems or neural systems

transformed in symbolic systems. Transformational systems also do not benefit

from the integration between the neural and symbolic approaches.
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• loosely coupled: the systems in this class present an integration strategy "where the

application is decomposed into the neural component and symbolic components

that communicate via data files. It is a sort of weak integration where the

components exchange information via external data files. For example, an expert

system can be applied in a particular diagnosis application, and the expert system

recommendations can be submitted to a trained network model for data analysis or

verification. Loosely coupled systems benefit from the integration strategy, but they

require additional costs with communications and control of data redundancy and

consistency.

• tightly coupled: tightly coupled models apply an independent strategy between the

symbolic and neural component, where the integration between the techniques is

done by memory resident data structures, instead of external data files as loosely

coupled models. This integration strategy improves the interactive capabilities and

performance of tightly coupled systems. However, the development and

maintenance of tightly coupled systems is significantly complex as the internal data

interface requires redundant information control and the system validation and

verification is complex.

• fully integrated: in this model, symbolic and neural components share data

structures and knowledge representation, and the communication between them is

done by the dual nature (symbolic/subsymbolic) of the hybrid structure. For

example, a particular concept is represented as a neuron in the NN topology and by

a symbolic structure in the ES, such as a node in a semantic network, a frame

instance o.t an object instance in an object hierarchy. The information between

both components is exchanged by changing values and activations in this dual

structure. FuEy integrated models benefit from the self-adaptive and self-organizing

capabilities of connectionist systems, as well as the comprehensible knowledge

representation of symbolic systems, providing a full range of capabilities such as

adaptation, generalization and explanations. The main limitation of fully integrated

models is the complexity in developing the components' interface.
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A more general classification is proposed by Goonatilake (Goonatilake and Khebbal,

1995), where not only symbolic systems and neural networks are contemplated, but also a

diversity of techniques such as fuzzy logic, genetic algorithms, linear programming and other

numeric techniques. Additionally, this classification scheme is more generic as it takes into

account system functionaliriss, processing architecture and communication requirements,

rather than just implementation issues as in Medsker's classification scheme. The proposed

classes are (Goonatilake and Khebbal, 1995):

• function-replacing hybrids: this class relates to the functional composition of a

single technique, where a function of a specific technique is replaced by another

technique. Here the motivation is to overcome a weak property of a particular

technique by combining it with another technique that has strengths in that specific

property. For example, using genetic algorithms to automatically define fuzzy

membership functions.

• intercommunicating hybrids: in this class a specific problem is decomposed in

several tasks, where each task is assigned to a different technique to be solved.

Each technique comprises an independent and self-contained module that

exchanges information with other modules and performs a particular operation. A

control mechanism coordinates the individual modules in order to solve the

original problem.

• polymorphic hybrids: in this class, systems using a single processing architecture

are used to implement the functionalities of different intelligent techniques, in this

way polymorphic hybrid systems can emulate the functionalities of different

processing techniques. The main goal of this class of systems is realising multi-

functionality in a single architecture. An example of polymorphic hybrids is the

application of neural networks to implement some kind of symbol processing.

Another classification scheme for integrating exclusively neural networks and symbolic

systems was proposed by R. Sun (1995>b), in which four types of integration are described.

This classification scheme takes into account the type of NN models and the level of

connection between the NN and symbolic components.
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The first class comprehends a localist network1 used for symbolic processing, where each

node in the NN topology represents a particular concept In this integration strategy the NN

and symbolic structures are directly mapped between each other. A second class comprehends

a distributed network that is used for symbolic processing, i.e., the neural component

performs an equivalent function to symbolic processing. A third class relates to architectures

where the NN module and symbolic module are kept separated. A fourth class relates to

architectures using NN as basic small elements in symbolic modules, where a symbolic

approach is applied, but the elements of this symbolic structure are replaced by small scale

neural components.

The loosely coupled 2nd the intercommunicating hybrids models relate most to the architecture for

IDSS proposed in this thesis, where a neural network rnodel (the Combinatorial Neural

Model) has been combined with a separate DM module. Furthermore, the employed neural

network environment (CANN) relates more to die fully integrated models, as the nodes in the

neural network are also symbolically represented as objects in an object hierarchy, making a

clear distinction between th?m very difficult

2.3 Hybrid Symbolic-Connectionist Systems

Hybrid symbolic-connectionist systems are concerned with integrating the symbolic

computational paradigm and artificial neural networks (also called the subsymbolic or

connectionist paradigm), and investigating methods by which these two approaches can be

combined to represent and manipulate knowledge to emulate human-like thought process and

reasoning (Kandel and Langholz, 1992).

Sun (1995b) associates symbolic-connectionist systems with systems in which the

combination of knowledge representation and learning techniques from both symbolic

processing models and connectionist networks models are brought together to tackle

problems that neither type of model by itself can handle well, such as the problem of

modelling human cognition.

Localist network is a concept defined by R. Sun (1995b) that corresponds to a particular hybrid architecture.
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Although symbolic and cennectionist paradigms share the same cognitive inspiration, e.g.

to emulate cognitive behaviour in computing systems (Sun, 1995b), they are based on

significantly different conceptual principles. These differences are on three levels: understanding

of cognition, style of processing and knowledge representation structures. The symbolic paradigm assumes

the existence of mental representations in biological cognition; hence artificial cognition is

modelled through a sequential style processing of symbolic representations (Newell and

Simon, 1972), where the operations are performed in a step-by-step fashion over a set of

symbolic expressions, such as production rules in a rule-based expert system. Consequently,

the symbolic paradigm is msinly concerned with the definition of appropriate symbolic

structures for knowledge representation and manipulation. For instance, a particular relation

such as "A isa B", which means that A is an element that belongs to the set of elements

defined by B, and the individual concepts represented by A and B can be readily represented

through a symbolic mechanism.

Svuibolic systems are mainly suitable for applications in well defined and normally narrow

domains, where reasoning is performed upon established knowledge structures. In symbolic

systems knowledge is stored in knowledge bases separately from the reasoning mechanisms,

called the inference machine (Hayes-Roth and Jacobstein, 1994), thus knowledge is modified

by updating knowledge bases. Furthermore, these symbolic knowledge structures facilitate the

creation of explanation capabilities to help the user understand the system reasoning process.

On the other hand, the connectionist paradigm is inspired by the understanding of

biological neural networks where cognition emerges from the massive interaction of a large

number of single neurons. Thus, the connectionist paradigm is concerned in developing

parallel distributed processing architectures in which knowledge representation and

manipulation emerge from the interactions of a large number of single processing units, e.g.

neurons (McClelland, Rumelhart and Hinton, 1988). This parallel processing style of

connectionist systems is the source of their flexibility. Moreover, massive parallelism gives

connectiaTiist systems a very robust characteristic, as the computation is spread over many

neurons, so that failures in some neurons do not render the whole network unstable or even

non-operative. Consequently, connectionist systems handle noisy and incomplete inputs and
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allow for graceful degradation within a certain range. Another important feature in

connectionist systems is the way knowledge is represented; not as declarative expressions, but

numerically distributed across the network through weight vectors between neuron

connections (McClelland, Rumelhart and Hinton, 1988). According to Reategui (1997), in such

a model, the relation "A isa B" cannot be comprehensibly represented, although is possible to

indicate that some state of si affects states of JB.

Table 2.1 summari?es some of the weaknesses and strengths of symbolic and

connectionist paradigms (Medsker, 1995):

Table 2.1: Contrasting symbolic and connectionist features

S\ mbolic- ConnCctiohist

Easy to access, and declarative knowledge
representation.

Captures human knowledge-level concepts.

Relative easy to implement explanation features.

Requires extensive involvement of human experts in
performing knowledge engineering.

Inability to easily adapt to changes in environment,
by modifying knowledge whenever it becomes
necessa/y.

Inability to synthesize new knowledge and
consequently do not increase in performance with
experience.

No generalization or graceful degradation.

Difficult to handle noisy and incomplete input data.

Knowledge implicitly represented in a numeric
fashion as weights distributed across the
connectionist topology.

Analyzes large amount of data and establish patterns
iri situations where rules are unknown or costly to
achieve.

Difficult to implement explanation features.

Capabilities of learning from cases/examples and
self-organization.

Easy to adapt to changes in the
domain/environment, by (re) training the network
with new cases/examples.

May require excessive training times.

Fault tolerant and graceful degradation.

Copes well with noisy and incomplete data.

Nevertheless, despite their conceptual differences, symbolic and connectionist paradigms

are complementary to each other in the way they represent knowledge; through the logical

cognitive and mechanical nature of symbolic systems, and the numeric, association, robustness

and self-organizing nature of the neural networks (Medsker, 1991).

Symbolic systems are suitable for tasks where declarative knowledge and explicit reasoning

are desirable; connectionist systems are best suited for low-level processes, pattern matching,

and association memories, or even in situations when declarative knowledge is too costly to

achieve or human experts are not available. Combining symbolic and connectionist
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approaches potentially yields a more powerful system than either one of its components in a

single architecture; mainly when solving complex problems in domains characterized by

imprecise, changeable and uncertain information.

2.4 Artificial Neural Networks

Artificial neural networks or connectionist models have been developed based on

organizational principles that have been observed in biological neural networks1. The study of

artificial neural networks began around 1940, and the work of McCulloch and Pitts (1943) is

normally referenced as an initial mark in this field. The McCulloch and Pitts paper

concentrated on neurophysiology, especially the representation of events in the biological

nervous system. The paper describes a logical calculus of biological neural networks,

presenting a mathematical analysis of how interconnected cells could perform logical

operations by transmitting (or not transmitting) impulses between each other, a mechanism

that a structure like the brain could perform. Following McCulloch and Pitts, another major

development in neural networks came in 1949 with the publication of Donald Hebb's "The

Organization of Behaviour," (Hebb, 1949). Hebb presented a theory of a physiological

learning rule for synaptic modification, proposing the idea that brain connections change as

we learn different tasks. This is known as Hebb's postulate of learning, which states that the

effectiveness of a variable synapse between a pair of neurons is increased by the repeated

activation of one neuron by the other across that synapse (Hebb, 1949; Crevier, 1993). In 1952

Ashby published "Design for a Brain- T T ^ Origin of Adaptive Behaviour" (Ashby, 1952).

Ashby stated that adaptive behaviour is not inborn but learned, and through this learning

process a system usually changes its behaviour for the better. This emphasizes the dynamic

aspects of living organism and the concept of stability.

In the late 1950's the first connectionist systems appeared, one of these was the perception

and the perception convergence theorem introduced by Rosenblatt, as a result of his work in

pattern recognition (Rosenblatt, 1958). Also at that time, Bernard Widrow introduced the least

1 The terms artificial neural networks and neural networks are interchangeably used in this thesis; when
referring to natural neural networks the term biological neural networks is used.
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mean-square algorithm and formulated the Adaline (adaptive learning element) neural

network.

In 1969 Marvin Minsky and Seymour Papert published "Perception" (1969) in which they

explored the limited capability of one-layer perceptrons. For the next few years the research

and development of NNs remained concentrated in small groups of researchers. Then, in

1982, Hopfield published a paper where he presented the principle of storing information in

dynamically stable networks, and introduced a neural network model widi a feedback loop,

which became known as Hopfield networks (Hopfield, 1982). Soon after, in 1986, Rumelhart,

Hinton and Williams (1986) reported the development of the back-propagation algorithm

which solved the limitations presented in multi-layer perceptions1; also in this year Rumelhart

and McClelland published the two volumes of "Parallel Distributed Processing: Explorations

in the Microstructures of Cognition" (Rumelhart and McClelland, 1986). Since then, the field

of NN has beea increasingly studied by a large number of researchers and practitioners in the

various fields of computer science, neuroscience, cognitive science, psychology, mathematics

and engineering. Several applications have been developed and reported in areas such as

medical diagnosis, financial data analysis, decision making, engineering and industry

(Bonissone et al., 1999; Freeman and Skapura, 1991).

2.4.1 Biological Conceptualisation of Neural Networks

Artificial neural networks were inspired by their biological neural networks counterpart.

The fundamental elements of biological neural networks are the brain nerve cells, e.g. neurons.

Neurons are separated into groups, called networks. Each neural network contains thousands of

highly interconnected neurons (Freeman and Skapura, 1991).

The typical structure of a neuron includes dendrites, the cell body, and the axon. l l ie

dendrites are the transmission channels for the incoming signals (information). Synapses are

the contact regions with other cells and the axon is responsible for transmitting the output

signal to other neurons. The cell body contains organs responsible for its maintenance, such as

the mitochondria, responsible for supplying the cell with energy.

1 The back-propagation algorithm was first described by Werbos in his Ph.D. thesis in 1974 (1974), which
remained unknown by the academic community for several years.
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The axon is surrounded by a membrane named the myelin sheath, which is interrupted by

nodes of Ranvier along the axon. Connections among neurons occur at various locations on

the cell and are known as synapses; synapses connect the axon of a neuron to parts of other

neurons. The connection among neurons is done by electrical signal and involves a complex

chemical reaction. Briefly, the membrane keeps the neurons in an equilibrium state, called the

resting potential, by controlling the chemical exchange of sodium and potassium ions between

neurons and their external fluid through a pump mechanism. This mechanism transports

sodium ions out of the cell and potassium ions into the cell (Freeman and Skapura, 1991).

Nerve impulses through synapses result in changes in the potentials of cell the body of the

receiving neuron. For instance, excitatory inputs reduce the potential difference across the cell

membrane, resulting in a large influx of positive sodium ions into the cell, decreasing the

polari2ation of the celL On the other hand, inhibitory inputs increase die polarization of the

cell.

The communication between neurons occurs at the synapse level, as a result of the release

of neurotransmitters and its absorption by the postsynaptic cell. Neutotransmitters are a

substance released by presynaptic cell that causes a chemical reaction at the receptor neuron,

and an influx of positive ions into the cell will cause an excitatory effect. Otherwise, negative

ions will cause an inhibitory effect. Both effects are summed at the axon level; if the result of

this sum is greater than a certain threshold then an action potential is generated (Freeman and

Skapura, 1991).

Figure 2.3 illustrates the structure of a typical biological neuron.

Myclin steal*

-Axon hiloch

Nucleus

Figure 2.3: Structure of a typical neuron as in (Freeman and Skapura, 1991)

56



Chapter 2 Intelligent Decision Support Systems

Although much research has been done to understand the functionality of biological

neurons and biological neural networks, these subjects remain vastly unknown. Many areas of

study have investigated the field of biological neural networks, such as medicine, chemistry

and psychology. Computer sciences in general, and artificial intelligence in particular, have

been an important test bed for many theories arising from these researches. In fact, artificial

neural networks are a simplification of biological neural networks.

Deep study and discussion on biological neural networks and their relation with artificial

neural networks can be found in (Anderson, 1995; Rojas, 1996; Wang, 1994; Haykin, 1994)

and (Freeman and Skapura, 1991).

2.4.2 Neural Networks Conceptualisation

Using an analogy with biological neural networks, artificial neural networks consist of a

collection of parallel processors, so called neurons', connected together in the form of a

directed graph. The neurons are the nodes in the network structure and its fundamental

element

Artificial neurons receive inputs, analogous to the electrochemical impulses that the

dendrite ? of biological neurons receive from other neurons. Then, the neuron processes die

inputs and delivers a single output. The inputs can be data from a dataset, for example, or

outputs from another neurons; and the outputs can be the final product of the connectionist

system or can be an input to another neuron in the network.

The connection elements between neurons are called synapses, and each synapse has a

weight value associated with it, also called connection strength. Connection strengths can be

inhibitory, excitatory, or null. Inhibitory and excitatory connections are usually represented by

a negative real number or positive real number, respectively. A 2ero value indicates no

connection strength. The artificial neural process operates on two levels: the first level

corresponds to an integrator of synaptic inputs weighed by connection strengths; the second is

a function that operates on the output of the integrator, which calculates the neuron output

value. Figure 2.4 illustrates the processing in an artificial neuron.

1 The terms nodes, units, and processing elements are used as synonymous for neurons in diverse literature
about neural networks.
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Figure 2.4: Processing of a generic artificial neuron

The integrator is a summation function that multiplies each input value Xt by its

corresponding connection weight Wt and sums them, e.g., it calculates the inner product nett

(equation 2.1).

neti = V XjWij
j

Equation 2.1: Summation function

The result of the summation is a parameter of the activation function that calculates the

neuron output value. Thus, the output value is calculated applying an activation function that

has neti as a parameter. Equation 2.2 shows the output function notation.

y, = fi(neti)

Equation 2.2: Output function notation

There are several activation functions (fy, and the most common ones are: the Unear, the

Step, the Ramp, the Sigmoid and the Gaussian function (Simpson, 1992). The selection of a

specific activation function determines the network operation, for example, determining a

linear or a nonlinear relationship between the internal activation and the output.

One of the most common activation functions is the Sigmoid function, shown in equation

2.3. The Sigmoid functio/i has a S-shape, it is a bounded, monotonic, no decreasing function

that provides a nonlinear output value within a specific range. An example of the Sigmoid

function is the Logistic function, which provides output values between 0 and 1, inclusive.
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Equation 2.3: Sigmoid function

Where a denotes the slo^t parameter of the Sigmoid function, and is higher than 0 (usually

equal 1).

2.4.3 Neural Network Structures

Neural networks are organized in layered structures, also called topologies, which are the

building blocks of neural networks. The topologies are arrangements of neurons, including

dieir connections and activation functions. The topologies, together with learning algorithms,

define the overall neural network functionality. There are four basic neural network

topologies: single-layer feedforward networks, multi-layer feedforward networks, recurrent

networks, and lattice networks (Haykin, 1994).

Single-layer feedforward network. This is the simplest network model, in which a layer

of inputs is connected to a layer of output neurons, where the network processing takes place.

The single layer designation refers to die output layer, because there is no computation activity

in the input layer. An example of this type of network topology is die linear associative

memory neural network in which an input pattern is associated to an output pattern in the

form of a vector.

Multi-layer feedforward network. In this architecture one or more intermediate layers

(hidden layers) are applied. Multi-layer neural networks are in general used for learning

nonlinear relationships between an input space and an output space; the analysis of the hidden

units has shown that they are able to extract higher-order statistics, because of the extra set of

synaptic connections and die dimension of neural iterations (Haykin, 1994), and are also

capable of approximating any function (Hornik, Stinchcombe and White, 1989). Additionally,

the mapping mechanism is usually very robust in representing generalizations of die presented

examples. In a multi-layered neural network die input layer supplies elements of die input

vector, which are the input signals to the neurons in the second layer. The output signals of

the second layer are the inputs to the third layer, and the process follows this order until die
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signals of the last layer are computed. The input-output relationship of each unit, not

belonging to the input layer, is illustrated in equation 2.4:

Equation 2.4: Multi-layer network processing function

Where j represents the output unit, n the number of inputs elements xh w; the connection

weights and 8 the threshold a n d / t h e activation function for each unit's output function.

Multi-layer networks can be fully connected or not; it is described as fully connected when

each neuron in one layer is connected to all neurons in the adjacent forward layer, otherwise it

is regarded as partially connected.

Figure 2.5 illustrates a partially connected multi-layer feedforward network, with a 4-2-3

topology, e.g., four input neurons, two hidden neurons and three output neurons. This neural

network topology is particularly significant because the computational model developed in this

thesis applies a multi-layer feedforward partially connected neural network model, with three

layers.

Output layer

Hidden layer

Input layer

Figure 2.5: Multi-layer feedforward partially connected topology

Several design issues have to be evaluated when working with multi-layer neural networks.

Some of the most difficult decisions are determining how many layers are enough for a given

problem and how much data is enough to produce a sufficient mapping from the input layer
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to the output layer. Several empirical works have demonstrated that three layers are enough to

perform any nonlinear mapping with good degrees of accuracy (Simpson, 1992).

Multi-layer neural networks have been applied for pattern classification, pattern matchiag,

and function approximation in solving many problems, such as prediction and forecasting

(Wang, 1994).

Recurrent networks are similar to feedforward neural networks, but they have at least

one feedback loop. Recurrent networks may have single or multi-layers, where each neuron

feeds its output signals back to the inputs of the other neurons that might be in the same layer

or in a previous layer. A neuron can also feed its output signal back to its own input, doing a

self-feedback loop. Feedback loops greatly influence the learning capability of the network,

and also its performance. Additionally, feedback loops employ unit-delay elements that bring a

nonlinear dynamic behaviour to the network.

Lattice Structures consist of a multi dimensional array of neurons linked to a set of

source nodes that supply the input signals to the array. The dimension of the lattice can be

one-dimensional, two-dimensional, or higher-dimensions, in reference to the number of the

dimensions of the space where the graph lies. Also, a lattice network model can be viewed as a

feedforward model with the output neurons organized in rows and columns.

2.4.4 Neural Network Learning Approaches

The overall behaviour of an NN is given by its topology and the strengths of its synapses,

and is associated with the implemented learning algorithm. One of the most interesting

properties of NN is its ability to learn from the environment and, as a result, to improve its

performance. Usually, everything a NN model needs to learn is a collection of representative

examples of the environment about the problem being handled. After being presented with a

collection of examples, the NN adapts itself to reproduce the desired outputs when presented

with the example inputs. This ability gives a great advantage to NN when solving a problem,

as it is not necessary to have a well defined process for algorithmically converting an input to

an output (Freeman and Skapura, 1991).

Learning in NN is a result of the modification of the connection strengths of the synaptic

junction between neurons, with respect to a given objective function. It is normally
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accomplished by an interactive process of adjustments applied to the NN synaptic weights and

thresholds, of finding weights that encode the knowledge that the system is expected to learn

(Freeman and Skapura, 1991).

There are many NN learning algorithms, and they can be classified into two basic

categories: supervised and unstipervised learning. It is not the objective of this thesis to provide a

detailed discussion about NN learning algorithms, but it is necessary to briefly introduce some

concepts about them. Firstly, the learning categories will be introduced, followed by some of

the most important learning algorithms.

Supervised learning implies that the learning process is executed under the supervision of

an external "teacher." The teacher is a component in the neural network structure that has

knowledge about a particular domain (environment), which is represented by a set of input-

output examples and which provides the neural network with a desired response. The neural

network parameters are adjusted according to the training vector and an error signal, which is

defined as the difference between the actual NN response and the desired response. This

adjustment process is interactively performed until the NN reaches a state in which it emulates

the teacher. Therefore, the teacher regulates the learning process, to inform the network of

what has to be learned, and to assess the quality of the learning process. Some examples of

supervised learning algorithms are error correction learning, reinforcement learning and

stochastic learning.

Supervised learning is sub-classified in structural learning and temporal learning. Structural

learning concerns finding the best relationship between the input and output data for each

identified pattern. This learning approach has been applied in pattern matching and

classification problems. Temporal learning is concerned with capturing a sequence of patterns

needed to reach a particular desired outcome, as such, temporal learning assumes the existence

of a dependence relationship between the current response of the network and the previous

inputs and responses. Temporal learning has been applied in problems involving prediction

and control.

Unsupei-vised learning, also identified as self-organized learning, is a process that relies

only upon local information to discover its collective properties. There are no specific
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examples of the function to be learned to guide the learning process. In this learning process

the network iterates until it becomes tuned to certain statistical regularities of the input data,

forming representations for encoding the input features and therefore automatically

discovering the classes described by those features. Examples of unsupervised learning are

Hebbian learning and competitive learning.

Following are brief descriptions of some of the most common NN learning algorithms,

and various neural network modeis that implement these algorithms are identified.

The error correction learning algorithm aims to minimize a cost function based on the

error signal, which is calculated by the difference between the desired response and the

computed response of the neural network. As such, the algorithm adjusts the connection

weights between neurons proportionally to the error signal. The objective is for the computed

value of each output neuron in the network to match as much as possible the desired value for

that neuron, considering various statistical properties. Two layer NN that apply error

correction learning are able to capture linear mappings between input and output patterns, and

multi-layer NN applying error correction learning are able to capture nonlinear mappings

between input and output patterns (Simpson, 1992).

Perceptrons (Rosenblatt, 1962) and ADALINE (Widrow and Hoff, 1960) are two layer

NN models that implement the error correction learning algorithm. Backpropagation

(Werbos, 1974; Rumelhart, Hinton and Williams, 1986) is a multi-layer NN model that

implements the error correction learning algorithm.

The reinforcement learning algorithm consists of an input-output mapping through a

process of trial and error designed to maximize a performance index called the reinforcement

signal, where the connection weights are reinforced in case of a correct response, and punished

otherwise. Reinforcement learning is similar to error correction learning, but while error

correction learning applies an algorithm where the outputs of each neuron on the output layer

are considered, reinforcement learning applies a non-specific error information to determine

the network performance, e.g., the reinforcement signal. This learning approach is based on

Thorndike's law of effect, which says that if an action taken by a learning system is followed

by a satisfactory state, then the tendency of the system to produce that particular action is
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reinforced. Otherwise it is weakened (Haykin, 1994). The Adaptive Heuristic Critic (Barto,

Sutton and Anderson, 1983) and the Associative Reward-Penalty (Barto, 1985) are examples

of neural network models that implement reinforcement learning.

T"he stochastic learning algorithm applies a random process using a probability

distribution and an energy function to adjust the connection weights in multilayered neural

networks. The energy function value is determined by the states occupied by the individual

neurons of die network. The stochastic learning procedure is performed by randomly

changing the output signal of a neuron in a hidden layer (assuming for example a three layer

network), followed by an evaluation of the resulting difference in the neural network energy

(calculated through the energy function). If the calculated energy after the change is lower, the

algorithm keeps changing the output signals, otherwise it accepts the change according to a

previously determined probability distribution. The process repeats this procedure for each

pattern pair in the ciataset until the network reaches a stable state, in which its performance is

considered satisfactory. The Boltzmann machine (Ackley, Hinton and Sejnowski, 1985) NN

model implements the stochastic learning algorithm.

The Hebbian learning algorithm is a mechanism of adjustment of the connection

weights based on the correlation of neuron activation values. The algorithm has been

attributed to the neuropsychologist Donald Hebb (1949) who established the principle that a

change in a synapse's efficacy is prompted by a neuron's ability to produce an output signal

(Simpson, 1992). According to this principle, if two neurons in a connection (synapse) are

simultaneously (synchronously) and persistently activated, then the strength of that synapse is

selectively increased. Otherwise, if the neuron's activation is asynchronous, then that synapse

is selectively weakened or pruned.

A Hebbian synapse employs a time dependent mechanism as it relies on the exact time of

the activation occurrence; it is also employs a local mechanism to produce local sy; •,••• ;>tic

modifications. Moreover, Hebbian synapses apply an interactive mechanism to increase

synaptic efficiency as it depends on the correlation between the presynaptic and postsynaptic

activities.
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Some NN models that implement the Hebbiasi learning algorithm include the Linear

Associative Memory (Kohonen, 1972; Haykin, 1994), the Hopfield network (Hopfield, 1982)

and the Bidirectional Associative Memory (BAM) (Kosko, 1988).

The competitive learning algorithm is a method of automatically creating classes for a

set of input patterns (Simpson, 1992). In this approach, output neurons of a neural network

compete among themselves to be the one to be fired; as a result, only a single output neuron is

active at a time. This is in contrast to Hebbian learning, where several output neurons may be

simultaneously fired.

The Competitive learning algorithm has three basic elements: a set of neurons that

differentiate from each other by having some randomly distributed connection weight, and

consequently respond differently to a given set of inputs; a limit threshold on the strength of

each neuron, and a mechanism that allows the neurons to compete for the chance to respond

to a given set of input signs, in a way that only one output neuron will be active at a time. In

the simplest form of competitive learning the NN has a single output layer, where each neuron

is fully connected to the input neurons. The network may also include lateral connections

among neurons, performing inhibitory activation among neurons laterally connected. The

forward connections are excitatory. For a particular output neuron to be considered the

winner in an interaction related with a specific input pattern, its net activity must be the largest

among all the neurons in the network. Thus its output signal is set to one -and the other

neuron's output signals are set to zero.

Examples of neural network model that implement competitive learning algorithm are the

Adaptive Resonance Theory (ART) (Grossberg, 1982) neural network and the Self-Organizing

Feature Maps (SOM), also known as the Kohonen neural network model (Kohonen, 1982).

2.4.5 Neural Network Models.

Many neural network models have been developed since the publication of the Perceptron

(Rosenblatt, 1962). Each neural network model has specific purposes in terms of applicability

and/or functionality; for example, applications concerning pattern recognition, classification,

and optimisation. Each model also implements a specific learning algorithm, and has a specific

topology.

65



Chapter 2 Intelligent Decision Support Systems

In the work developed in this thesis, it is not necessary to enumerate the various neural

network models, but to mention some based on the criteria of applicability, relevance to the

work developed in this research, topology and type of learning. For that reason two neural

networks models are introduced- The first is Backpropagation NN model, as this is one of the

most used NN models and has been largely applied in classification problems, the same kind

of problem addressed in the research described in this thesis. Next, the Combinatorial Neural

Model (CNM) is .-nt/oduced, as this is the NN model employed in this research.

The chosen NN models are briefly described, as it is not the objective of this thesis to give

a full description about their mathematical foundations and algorithms, but to introduce their

main characteristics and potentialities.

2.4.5.1 The Backpropagation Neural Network Model

The Backpropagation neural model (BPN) (Werbos, 1974; Rumelhart, Hinton and

Williams, 1986) implements a multilayer, fully connected feedforward network, through a

supervised learning approach based on the error correction algorithm. There are no feedback

loops and no connections that bypass one layer to a higher level layer, and usually

Backpropagation models are implemented with three layers. Its topology is very similar at the

one illustrated in Figure 2.5.

The BPN learning procedure begins with a predefined set of input-output examples

(patterns), using a two-phase propagate and adapt cycle, where each input pattern has an

output pattern specifying its classification. An input pattern is presented in a form of input

vector to the first layer in the network. It is then propagated through each upper (hidden) layer

to the output layer, which computes the network output values, e.g., output pattern. The

computed output pattern is then compared to a given desired output pattern and an error

signal is computed for each output neuron, as a result of this comparison. This process repeats

layer by layer until each neuron in the network has computed an error signal that describes its

relative contribution to the total error.

Based on die computed error signal, connection weights are updated in order to reduce the

difference between the computed output pattern and the desired output pattern, converging

the network towards a state that allows all training patterns to be encoded.

s
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The learning algorithm implemented by the BPN is called the Generalized Delta Rule

(GDR). The GDR minimizes the square of the difference between the computed and the

desired output values summed over the output neurons and all pairs of input/output vectors.

The GDR algorithm applies the sequence of equations previously defined in section 2.4.2,

usually employing a Linear or Sigmoid activation function. Then, the algorithm applies a local

gradient function to calculate the errors in the output and hidden layers, and moves backwards

recalculating the weights of the neural network based on those local gradients.

The mathematical description of the GDR algorithm and its derivation can be found in

(Freeman and Skapura, 1991), and also in (Beckenkamp, 2002).

The multi-layered Backpropagation NN model is applicable in solving complex pattern-

matching problems (Freeman and Skapura, 1991), and is also recognized as very suitable for

classification purposes (Piramuthu, Shaw and Gentry, 1990). Classification problems occur in

financial management, credit analysis, medical diagnoses, prediction, and forecasting, among

others.

2.4.5.2 The Combinatorial Neural Model

The Combinatorial Neu?:al Model (CNM) (Machado and Rocha, 1989; Machado, Barbosa

and Neves, 1998) was developed and explored during the last decade; it is a relatively new

neural network model. It was inspired by the knowledge acquisition methodology of

knowledge graphs (Leao and Rocha, 1990), which was developed to provide means for the

representation and combination of knowledge elicited from multiple experts.

The CNM is an acyclic multilayer feedforward network. It is usually implemented with

three layers: an input layer, a hidden layer, and an output layer. The output layer contains

neurons that represent different classes; the input layer contains neurons that represent the

domain information that supports the output classes, and the hidden layers specify different

combinations of input neurons than can lead to a particular class.

CNM implements a supervised learning approach based on the error correction algorithm,

similar to the Backpropagation, in which punishment and reward accumulators are computed

for each connection in the network and the current connection weights are computed through

the normalisation of those accumulators.
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The CNM in its original form employs two learning algorithms, the Starter Reward and

Punishment (SRP) and the Incremental Reward and Punishment (IRP), which enables the

model to build a network based on knowledge elicited from domain experts and the

refinement of such knowledge with additional examples. The hidden layers apply a fuzzy

AND operator to propagate incoming input signals to the output layer. The output layer

employs a fuzzy OR operator to compute and propagate the maximum incoming signal, e.g.,

the neural network output

The CNM has been employed in several experiments dealing with classification problems,

such medical diagnoses (Leao and Reategui, 1993b), credit card scoring (Reategui and

Campbell, 1995) and engineering problems (Viademonte, Leao and Hoppen, 1995) with a

good level of efficiency and accuracy.

Besides the Backpropagation and CNM, several other neural networks have been

developed during the last years. The Perception (Rosenblatt, 1962) was the first neural

network model developed, and it consists of a feedforward (acyclic) network with two layers.

The Perception implements a supervised reinforcement learning algorithm in which

connection weights are reinforced when die system performs correcdy and punished

otherwise. The Perceptron could recognise linearly separable patterns and one of its

applications was character recognition.

Another important neural network model was developed by Grossberg (1982) and is

known as the ART (Adaptive Resonance Theory). The ART network was developed as a

solution to the stability-plasticity dilemma (Carpenter and Grossberg, 1987), which concerns

die stability and plasticity of a learning system regarding the significance of its inputs (Freeman

and Skapura, 1991). The ART neural network model employs a cyclic (bi-directional

connections) network topology with three layers, implementing a competitive non-supervised

learning approach; where connections can inhibit neighbouring neurons in a competitive

fashion. In the ART model the bottom-up connections attempt to classify input signals, while

top-down connections attempt to learn how to build classes (to make cluster) from the input

signal. ART neural networks have been applied in image processing and signal recognition

(radar and sonar).
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Kohonen (1982) proposed the Self-Organizing Feature Map (SOM) neural network model,

a feedforward network consisting of two layers. SOM implements a competitive unsupervised

learning, in which a spatial organization of neurons is used in the design of the network, which

enables the structured representation of input patterns.

The SOM network is concerned with the theory of competition, in which interactions

among competitive neurons could be used to construct a network that can classify clusters of

input vectors. The SOM acts as a competitive network for classification purposes. The

algorithm results in a topology-preserving map of the input data to the output units. As a

simplified definition, in a topology-preserving map neurons located physically next to each

other will respond to classes of input vectors that are likewise located next to each other. The

neurons become selectively tuned to various input vectors during the competitive learning

process. In the SOM, all the neurons in the neighbourhood that receive positive feedback

from the winning neuron participate in the learning process. The locations of the neurons tend

to become ordered vrith respect to each other, building a coordinate system for different input

features over the lattice.

A self-organized feature map is therefore characterized by the formation of a topographic

map of the input vectors, in which the coordinates of the neurons in the lattice correspond to

features of the input patterns. SOM neural networks have been applied in problems as speech

recognition, learning data distribution probabilities, and robot control.

2.5 Applying Intelligent Systems

This section presents some applications involving hybrid architectures for intelligent

systems that are related to the architecture proposed in this thesis, either combining symbolic

and connectionist approaches, or other intelligent technologies such as case-based reasoning

and rule induction. It does not intend to be a fully comprehensive list, but is representative

enough of the current state of research.

An application of hybrid systems for material inspection in manufacturing industry quality

control is described by Han and Wee (1992), where expert systems techniques are used to

incorporate various pattern recognition techniques and neural network as tools for data
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analysis. The KIPSE system (Knowledge-based Interactive Problem-solving System) is a

computer-based problem solving environment for data analysis, specifically for classification

problems. The KIPSE environment represents the overall solution of a problem in a decision

tree structure, where each node of the tree represents a partial solution to a particular problem.

New technologies can be integrated in the system by defining a new node in the system tree

structure, and through this mechanism KIPSE incorporates various classifiers models (Bayes

classifier, Fisher's linear discriminant classifier, K-nearest neighbourhood, and neural network

models). KIPSE is based on the divide and conquer approach, providing the user with the

capability of subdividing the problem into small sub problems and selecting the best methods

available for the solution of each. In this way, the entire problem solving process is viewed as

a multi-step decision making process, where at each step some kind of exploratory action is

executed. The KIPSE system is built on top of the KEE (Knowledge Engineering

Environment, a commercial expert system shell), using frame based structure to represent

domain knowledge as classes and member units, and unit's attributes. Attributes are specified

in slots, which contain descriptive and procedural information, and the relations are expressed

using slot values. KIPSE can be compared to the intercommunicating hybrid system

classification proposed by Goonatilake (Goonatilake and Khebbal, 1995), as it decomposes a

specific problem in several tasks, where each task is assigned to a different technique to be

solved.

An intelligent hybrid system for wastewater treatment is introduced by Krowidy

(Krowidy and Wee, 1992). The WATTS system (WAtewater Treatment System) combines

inductive learning, case base reasoning and NN approaches to generate optimal treatment

processes for wastewater. According to Krowidy (Ktowidy and Wee, 1992) the design of a

wastewater treatment system involves identifying, selecting and sizing a set of treatment

processes. These procedures involve a database search to identify candidates' treatment

processes and a combinatorial search to select an optimal sequence of such processes. The

WATTS system consists of two phases: analysis and synthesis. During the analysis phase

WATTS generates (induces) production rules from a set of examples stored in a tractability

database, using the ID3 (Quinlan, 1987) algorithm to generate decision trees augmented with a

I
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rule generator. The production rules obtained are further combined with a set of external rules

compiled by domain experts, thus generating a knowledge base. This phase basically consists

of a knowledge acquisition module. Next, during the synthesis phase, a treatment process is

developed through a heuristic search and/or neural network approaches. The heuristic search

algorithm is used to synthesize the processes reducing influent concentrations; a Hopfield

neural network model is further applied to optimise the synthesis phase problem (minimizing

costs) when needed, or even to synthesize the process when the problem size is too big to be

tracked by heuristic search. In this last situation, the neural network module is used to

decompose the problem in different stages. Furthermore, the WATTS system also applies a

case-based reasoner to retrieve old solutions from a case base, when solving a new problem.

WATTS updates the case base with the solution after a new problem is solved. The WATTS

system C-AA be related to the intercommunicating hybrid approach, as each technology consists

of self-contained modules that exchange information and perform their respective roles to

generate the problem solution.

A project investigating the application of computational intelligence techniques for data

mining is described by Jagielski (Jagielski and Jagieiska, 1998). The project applies genetic

programming and neural networks in the development of a decision support system (DSS) for

issuing smog alerts in the city of Melbourne, Australia. The DSS model uses genetic

programming and a neural network model to generate decision rules out of a database with

smog cases used by the Victorian Environment Protection Authority (EPA) for smog event

prediction. The predictive capability of both approaches was tested and their predictive

performance compared. Both approaches showed comparable predictive performance;

however, the genetic programming was capable of symbolic representation of decision rules

leading to a more self explanatory solution. The architecture developed in this project can be

related to the stand-alone model, as the symbolic and neural network approach work in a

completely independent way and the main reason for this hybrid model is the comparison of

performance between both approaches.

A hybrid architecture integrating a neural network model, the Combinatorial Neural

Model, with case-based reasoning for classification problems, is proposed by Reategui (1997).

71



Chapter 2 Intelligent Decision Support Systems

In this hybrid architecture the neural network makes hypotheses and provides insights that are

used in guiding the search for similar experiences in a library of previous cases. The case-based

reasoning component is responsible for the selection of the most similar match for a given

problem, and also to support a particular hypothesis made by the neural network component,

or even to decide among concurrent hypotheses. Additionally, structures called diagnosis

descriptors have been created in order to represent the knowledge stored in the neural

network in an intelligible way.

Four components are employed in the hybrid architecture: a domain knowledge unit that

represents domain knowledge through a hierarchical representation of all findings

(attribute/value pairs) used to describe the cases. A case library stores case descriptions and

their respective solutions. The neural network model is trained through the cases stored in the

library, and used during the consultation process to make hypotheses of possible diagnostic

solutions and also to guide the search for similar cases. The diagnosis descriptors keep a

representation of the knowledge stored in the neural networks; they are applied for

consultation purposes, and also for building explanations features. The hybrid case-based

reasoning and neural network model has been applied in the health care area, supporting the

diagnosis of congenital heart diseases. The neural network and the case-based reasoning

components are independent. Their integration is done by data exchange performed through

the knowledge units and the diagnosis descriptors, thus this hybrid system can be related to

the intercommunicating hybrid approach.

Sun (1995a) introduces the CONSYDERR system (CONnectionist SYstem Dual-

representation for Evidential Robust Reasoning), which was applied in natural language

understa iding, commonsense reasoning, and planning tasks. CONSYDERR implements a

different fashion of integration between connectionist and symbolic components. It represents

domain knowledge in a two level architecture: the top level is a network with a symbolic

localist1 representation, and the bottom level is a network with a connectionist distributed2

representation, where concepts and rules are represented in the bottom level by sets of feature

1 Localist is a representation schema in which one node represents each concept in a domain (Sun, 1995a).
2 Distributed is a representation schema in which a set of non-exclusive overlapping nodes represents each
concept (Sun, 1995a).

72



Chapter 2 Intelligent Decision Support Systems

units overlapping each other (Sun, 2001). The localist level comprises nodes, and each node

represents a concept in the domain. In the distributed level, called the microfeature level, each

node is a fine grained representation of a concept in the top leveL The localist network is

linked with the distributed connectionist network by connecting each node in the top level

(representing one concept) to all the feature nodes in die bottom level representing the same

concept When a node in the localist level is activated, all the nodes in the microfeature level

connected to that concept are also activated; through this interaction schema between the two

levels CONSYDERR implements a rule-based reasoning approach. Using this mechanism

CONSYDERR represents knowledge through the interaction between nodes in the form of

rules, which are expressed by the nodes of the symbolic layer, connecting rule antecedents to

rule consequents.

CONSYDERR can be associated to the fully-integrated and intercommunicating hybrid

model. The connectionist and symbolic components are separated modules, communicating

through a node to node integration schema.

A different approach from CONSYDERR is the RECON system. RECON is a

framework in which several technologies are combined to incorporate a wide range of

functionalities in a single system. RECON is a database mining framework, consisting of a

hybrid system that includes artificial intelligence and conventional data analysis techniques that

can be used, independently or cooperatively, to extract information from databases (Kerber,

Iivezey and Simoudis, 1995). Its architecture consists of five main elements: a graphical user

interface, six database mining cos. ^onents implementing a different technique each, a server

component, a knowledge repository, and interfaces for database management systems. Two of

the database mining components are a deductive database processor and a case-based

reasoner, which are used for pattern validation. The other four components are used for data

exploration, and these are: a supervised inductive learning component, a clustering

component, data visualization, and a statistical analysis component. Additional components,

for example neural networks, can be incorporated in the system as necessary. The RECON's

supervised inductive learning component is used to automatically explore the target database

to extract knowledge. It employs a symbolic induction algorithm that represents a
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classification model as a collection of rules. The clustering component is applied to partition

the target database into subsets, clusters, with the members of each cluster sharing interesting

properties. The obtained clusters are used either as input to other data exploration techniques

or for summarising the contents of the database accordingly their respective characteristics.

The visualization component provides visual summaries cf data from the database and also

data generated from other components, such as clusters. The visualization component

employs interactive visualization techniques (Kerber, Iivezey and Simoudis, 1995). The last

component in the RECON framework is a statistical analysis component, used to summarize

data and perform statistical analysis. RECON has been applied in a variety of problems, such

as financial analysis, manufacturing process analysis, and analysis of demographic information

(Kerber, Iivezey and Simoudis, 1995). The RECON system can be related to the

intercommunicating hybrid system classification, as its components are independently and

loosely integrated into the framework, and the interaction among the various components are

mainly done through the knowledge repository where the knowledge extracted by one

component is available vo other components.

Table 2.2 summarizes the hybrid systems introduced in this section, according to thek

classification, applied technologies and applications:

Table 2.2: Summary of some hybrid intelligent systems

SiMern * . .-.Classification . Applied''ayebiologies ' Applications

KIPSE (Han and
Wee, 1992)
WATTS (Krowidy
and Wee, 1992)
(Jagielski and
Jagielska, 1998)
(Reategui, 1997)

CONSYDERR
(Sun, 1995a)

RECON (Kerber,
Iivezey and
Simoudis, 1995)

intercommunicating
hybrid
intercommunicating
hybrid
stand-alone

intercommunicating
hybrid and loosely-
coupled
intercommunicating
hybrid and fully
integrated

intercommunicating
hybrid

expert system and neural
networks
inductive learning, case base
reasoning and neural networks
genetic programming and
neural network
neural network, case base
reasoning and diagnosis
descriptors
symbolic (localist network)
component and neural
network

artificial intelligent (case base
reasoning, supervised inductive
learning, clustering algorithm)
and statistical data analysis
techniques

industry quality control

wastewater treatment

smog alerts and
prediction
medical diagnosis

natural language
understanding,
commonsense reasoning,
and planning
financial data analysis,
manufacturing process
analysis, and analysis of
demograpluc information
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The next section discusses some difficulties in developing intelligent systems that relate to

this research.

2.6 Difficulties in Developing Intelligent Systems

The combination of different techniques to overcome the limitations of each has been the

driven force behind intelligent system development. However, some difficulties remain. Some

of the difficulties are related to knowledge acquisition and representation.

Early attempts in buildrng expert systems revealed the difficulties of capturing,

representing and incorporating expert knowledge (Buchanan and Feigenbaum, 1978; Tecuci

and Kodratoff, 1995). The knowledge acquisition problem has been typically addressed

through the application of artificial neural networks and/or inductive learning algorithms to

automatically induce expert domain knowledge directly from raw data (Fayyad, Mannila. and

Ramakrishman, 1997). This approach has been explored in Case Base Reasoning (CBR)

(Kolonder, 1993) and machine learning (Cadett, 1991; Quinlan, 1979; Tecuci and Kodratoff,

1995) experiments.

Extracting cases from raw data is an attractive solution for the problem of knowledge

acquisition; as cases can be generated from databases, stored in case bases and further

incorporated into an intelligent system. Furthermore, a machine learning algorithm, such as an

inductive algorithm, can be applied upon the case bases inducing specific domain knowledge.

Thus, in dais situation, cases constitute the set of examples from where domain knowledge can

be learned and represented in thf. form of rules or other knowledge representation formalisms.

This approach eliminates the necessity of long and costly knowledge engineering processes

and the need for human experts. However, it brings additional problems, such as:

• die necessity of a significant amount of raw data from where domain knowledge

can be generated. Some inductive learning algorithms and neural network models,

such as the Backpropagation5 require a large training dataset, e.g., raw data from

where knowledge can be automatically extracted. Moreover, some inductive

learning algorithms, mainly the decision tree generators, require that all the positive
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examples (possible classes in a specific domain) to be simultaneously presented in

the training set

Potentially, large organisational transaction databases can be used as a source of raw data

for automatic knowledge acquisition. However, using organisational transactions databases as

data sources has some drawbacks (Fayyad et aL, 1996; Smyth and Goodman, 1992), such as:

• the use of modern information technologies allows almost unlimited generation

and storage of digital data, consequendy die amount and diversity of available data

is significandy large, demanding specific attention and procedures. This problem is

known as "data overload phenomenon"

• dealing with large databases and high dimensionalities of data

• most of the data that comes from organisational transactions databases represents

online business processing. Transactional databases are modelled and designed

according to the process they support; consequendy they normally are not suitable

for knowledge-based activities such as decision making in ill-structured decision

problems, which are situations where intelligent systems are normally applied

• transactional databases normally present problems regarding data quality such as

missing and noisy data (Pyle, 1999), diat may compromise the quality of the

obtained knowledge.

Regardless of these problems, when properly represented and collected, transactional data

can be explored with automated tools to help structure a particular problem domain.

Knowledge Discovery in Databases (KDD) is concerned with exploiting, normally, massive

datasets in supporting the use of historical data for decision making. Therefore, KDD

technology represents a potential approach to handle problems of automatically building

domain knowledge from transaction databases, such as dealing with noise, missing data, and

widi large amounts and high dimensionalities of data.

The subjects of knowledge discovery in databases and data mining are discussed in die

next chapter.
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2.7 Chapter Summary

This chapter has introduced the concepts and research related with intelligent decision

support systems. The concepts and research in intelligent decision support systems were

introduced in two topics: Intelligent Systems (IS) and Hybrid Symbolic-Connectionist Systems

(HS). IS introduced hybrid systems combining different intelligent computer technologies, and

HS introduced hybrid systems combining connectionist with symbolic approaches. These two

types of hybrid architectures are closely related to this research. While the proposed

framework for IDSS relates to IS in a general perspective, the employed NN environment

relates to HS.

This chapter also introduced concepts of intelligent computing technology, focusing on

artificial neural networks (NN). Concepts of neural networks were discussed, and neural

network structures, learning approaches, and models were also introduced. Some well known

NN models were briefly presented.

This chapter also presented some applications and experiments involving hybrid

architectures for intelligent systems that are related to the architecture proposed in this thesis,

either combining symbolic and connectionist approaches, or other intelligent technologies

such as case-based reasoning and rule induction. Finally, some difficulties in developing

intelligent systems were discussed.
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3 Knowledge Discovery in Databases

This chapter introduces concepts about Knowledge Discovery in Databases (KDD) and

Data Mining (DM). The activities related to the KDD process and various data mining

algorithms are introduced and discussed. Issues about data preprocessing are also discussed. The

objective is not to extensively discuss these concepts, but to introduce the concepts relevant to the

research described in this thesis.

3.1 Introduction

With major advances in engineering, computational and database technologies,

organisations are now able to better generate, collect and store digital data. According to

Frawley (Frawley, Piatetsky-Shapiro and Matheus, 1992) the amount of information in the

world doubles every 20 months, and the size and number of databases probably increases even

faster. This situation is known as the data overload phenomenon (Fayyad, Mannila and

Ramakrishman, 1997). This phenomenon produces adverse effects on information use and

decision quality, because information users are often exposed to more information than they

can effectively process (Turetken and Sharda, 2004). As such, this creates the need for

computational technologies to support data analysis, coordination, utilization, knowledge

generation and management, in order to extract information useful for decision making

(Gottgtroy, Rodrigues and Sousa, 1998).

Knowledge Discovery in Databases (KDD) addresses the problem of data overload. It is

concerned with issues of extracting useful information in the form of patterns and models

from normally large databases, and making those discovered patterns understandable and
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suitable for decision problems resolution (Fayyad et aL, 1996). In short, KDD concerns the

theory and application of technologies for supporting analysis and decision making within,

normally massive, datasets.

The term KDD can be formally defined according to Fayyad (Fayyad et aL, 1996) as:

"the non-trivial process of discovering novel, implicit, potentially useful, and comprehensive knowledge from

normally large amounts of data."

Knowledge is considered as any piece of information that may be identified as an interesting

pattern according to a predefined user measure and criteria (Frawley, Piatetsky-Shapiro and

Matheus, 1992).

KDD is a growing area of research and application that combines methods from

disciplines such as statistics, artificial Intelligence, machine learning, databases, data

visualization, uncertainty modelling., high performance computing, knowledge representation,

and a range of activities related to data analysis.

3.2 The Process of Knowledge Discovery in Databases

There are several definitions about which activities are included in the process of KDD;

some literature describes data mining as the main or even the only activity in this process, and

considers data mining and KDD as synonymous. Other literature considers KDD as the

whole process of extraction of knowledge from data, and data mining the discovery stage of

this large process.

From a general point of view, knowledge discovery in databases can be understood as a

process ihat includes the stages of domain understanding, data selection and pre-processing,

data mining, knowledge evaluation and the use of discovered knowledge.

Fayyad (Fayyad et al., 1996) defines KDD as a large, interactive and iterative process; and

the various steps of this process include data warehousing, data selection, cleaning, pre-processing,

transformation and reduction, data mining, model selection, evaluation and interpretation, and the use of

obtained knowledge. Therefore, data mining is considered here as one of the various activities in

the whole KDD process.
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Additionally, Han (1998) includes the following stages in the KDD process: data cleaning

and integration, data warehousing, data selection, data mining and. pattern evaluation.

Normally, the K D D process is divided into two major stages. First, data is gathered from

(organisational) databases and external sources, prepared and then loaded into the data

warehouse. It includes the activities of selecting data from transactional databases, cleaning the

data, adding data from external sources (enrichment), coding and finally loading the data into

the data warehouse. This stage is frequently referred as ETL (Extract, Transform and Load) in

the literature. Figure 3.1 illustrates the various tasks of getting data from transaction databases

into the cfota warehouse.

Information
requirement

Data /^**
Selection ^̂ "̂

Cleaning

Enrichment

Coding

§§ operational
§§} data

extract/aggregate
filter

domain consistency

external data

-»• Warehouse *7

Figure 3.1: KDD stage from database to data warehousing

The next stage includes the activities of extracting data from the data war-shouse, loading

the data into a data mining environment, mining the data, analysing and evaluating extracted

knowledge. The final stage is the application of the obtained knowledge in knowledge based

activities, such as decision support. Figure 3.2 illustrates the stage from the data warehouse to

data mining.

Different stages and even definitions about the process of KDD can be found in the

literature, however there is general agreement with the steps proposed by Fayyad (Fayyad et

al., 1996). It has to be noted that many KDD applications do not follow a particular order;

neither are all the activities equally performed. For example, in many cases a data warehouse to

80



Chapter 3 Knowledge Discovery in Databases

extract cleaned and pre-processed data does not exist In other cases, historical transactional

data may not be readily available, or too expensive to obtain.

Data
Mining

Task Relevant
Data

Data
Select*

* Discovered
Patterns

Figure 3.2: KDD stage from data warehouse to data mining, as in (Han, 1998)

The research project described in this thesis draws from the concept defined by Fayyad,

previously mentioned. Moreover, for simplicity, the term data preparation is used to refer the

activities from selecting data for data mining, pre-processing these data until to effectively

mine the data.

Therefore, this thesis considers KDD as the whole process of extraction of knowledge from

data, and data mining the discovery stage of that process.

3.2.1 Classification of KDD Problems

The type of problems addressed by KDD technology can be classified into two major

groups according to Meneses (Meneses and Grinstein, 1998): prediction and description.

Prediction concerns building a predictive model that will predict unknown values of a variable,

from the known values of other variables. Description is concerned with finding patterns that

describe the model represented by the data or even the process generating the data, e.g., it is

concerned with building a descriptive model.

Weiss (Weiss and Indurkhya, 1998) proposed a categorization in which candidate problems

are classified into two general categories: prediction and knowledge discovery, where knowledge

discovery describes a stage prior to prediction, in which the available information is

insufficient for prediction.
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For example, the activity of knowledge acquisition, previously discussed in section 2.2.2,

concerns building and populating knowledge bases. It involves the investigation of a particular

domain, determining what concepts are important in that domain, creating a formal

description of the objects and relations, and finally building a knowledge base. As such, it falls

in the description classification according to Meneses (Meneses and Grinstein, 1998) or in the

knowledge discovery classification, according to Weiss (Weiss and Indurkhya, 1998).

In this thesis, the categories of prediction and description axe used to specify KDD problems.

Therefore, knowledge discovery and knowledge engineering are considered description

problems. And the term knowledge discovery is regarded as the highest level purpose of any KDD

application.

3.3 Data Mining

Data mining is considered the core activity of the KDD process (Han, 1998), and can be

understood as the process and the s^t of techniques and algorithms used to find (mine) the

underlying structure, information and relationships in normally large amounts of data, e.g.,

data mining is the knowledge discovery stage within the whole knowledge discovery process.

Data mining, as KDD, is an inter-disciplinary field with a wide variety of techniques for

extracting knowledge from databases; these techniques are drawn primarily from disciplines

such as statistics, machine learning, and artificial neural networks. Each technique has its

particularities, and it is suitable to a certain range of tasks in a certain context. For that reason,

it is important to identify the tasks in a data mining application in order to select the

appropriate techniques.

3.3.1 Data Mining Tasks

The literature enumerates distinct data mining tasks. It is not the purpose of this thesis to

cover all the possible definitions of data mining tasks, but to introduce some definitions and

tasks that are usually referred in most of the literature and relate to the work developed in this

research.

This thesis draws on the definition given by Fayyad (Fayyad et al., 1996) in which data

mining tasks are categorized as classification, association, regression, clustering, deviation detection,
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database segmentation, summarisation, visualisation, text mining, dependency modelling, and sequence

analysis.

Besides these, Hand (Hand, Mannila and Smyth, 2001) enumerates as data mining tasks the

following: density estimation, clustering and segmentation, classification, regression, pattern discovery, and

retrieval by content.

And Han (1998) proposes the following categories: summarisation, characterisation, association,

classification, clustering, prediction, trend and deviation analysis, and pattern analysis.

Again, different enumerations can be found in the literature, but the categories of tasks

listed above are the most common mentioned and accepted in the KDD literature.

For example, to illustrate the relation between KDD problems, data mining tasks and

techniques, consider a typical database marketing application: cross-selling. Cross-selling is the

activity in which a particular retail company wants to maximize sales of products from its

customer base. One possible approach for the cross-selling problem is analysing the purchase

patterns of products frequently purchased together.

According to the KDD classification schema mentioned in section 3.2.1, the cross-selling

problem can be categorized either as a description or a knowledge discovery problem, where die goal

is to discover and describe the purchase patterns of different products. Additionally, the cross-

selling problem can be categorized as a data mining clustering task. Cluster analysis is one

possible approach to this problem, and requires finding clusters of products frequendy

purchased together. Besides that, the cross-selling problem can also be handled by an

association approach, finding products frequently associated with each odier in a certain number

of transactions. In this last case, the cross-selling problem is categorized as a data mining

association task, instead of clustering.

It is important to understand that there is a wide variety of data mining problems, each of

which with respective tasks. For each task a group of techniques and algorithms exist, and

some algorithms are more suitable for a certain task than others. The selection of a particular

algorithm, technique or group of techniques depends on the specific KDD problem and the

specific data mining tasks, as well as the complexity of the problem under consideration.
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Weiss (Weiss and Indurkhya, 1998) proposed an useful schema to classify the data mining

tasks according to specific KDD problems. Table 3.1 shows that schema.

Table 3.1: Relation between KDD problems and data mining tasks

KDD Problems

Classification

Regression

Deviation detection

Database segmentation

Clustering

Association rules

Summarization

Visualization

Text mining

Prediction

Prediction

Description

Description

Description

Description

Description

Description

Description

According to this schema the KDD problems are classified into two major groups,

prediction and description. The data mining tasks of classification and regression are

considered as prediction problems, meanwhile the remaining data mining tasks such as

clustering, visualization and database segmentation are considered as description problems in

the KDD context.

3.3.1.1 Classification Tasks

Particularly relevant to the research project described in this thesis are classification tasks,

as the computational model for decision support developed here was applied in a classification

problem.

When building predictive models, prediction of categorical variables is identified as

classification, while prediction of quantitative variables is identified as regression (some of the

literature uses estimation when referring to prediction of quantitative variables, considering

regression as a particular case of estimation (Kennedy et al, 1998)).

The goal in classification t .̂sks is to build a classifier that, given a certain domain,

systematically predicts what class a particular new case falls in. Classification problems concern

the construction of a classifier procedure that is applied to a sequence of correctly classified cases,

in which new cases are assigned to one of a set of pre-defined classes based on its observed

I
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attributes or features. Classifiers are defined based on the measurement data on N cases

observed in the past together with their actual classification.

A classifier can be defined as a partition of the measurement space x, which contains all

possible measurements vectors, into / disjoint subsets Al, A2,..., Aj and x = UAj such that

for every measurement feature vector X G Aj the predicted class is / .

3.3.2 Algorithms for Data Mining

Besides issues of data availability and data quality, the success of a KDD application also

relies on the usefulness of the chosen algorithm for the class of problems being considered.

This section briefly introduces some of the most common algorithms and their respective data

mining tasks1. One algorithm for learning association rules is described in more detail, as it is

the chosen data mining algorithm for the hybrid computational model for decision support

proposed in this thesis.

Three major approaches are currently used for data mining. These are methods based on

statistics, machine learning and artificial neural networks. From a statistical perspective Fisher's

linear discriminants and Bayesian inference are some of the most common techniques for data

mining (Michie, Spiegelhalter and Taylor, 1994), for instance, the algorithms A^utoclass

(Cheeseman and Stutz, 1996) and Bayesian Networks (Heckerman, 1996) have been largely

applied in data mining for classification purposes.

From a neural network perspective several models have been used in data mining, among

them MLP (multilayered perceptron) implementing the Backpropagation algorithm (Werbos,

1974; Rumelhart, Hinton and Williams, 1986). This has been applied as a nonlinear model for

prediction problems, specifically in regression and classification tasks. Self Organising Feature Maps

(fCohonen, 1982) is usually applied for clustering tasks, and Radial Basis Functions (Freeman and

Skapura, 1991) has also been applied for prediction problems, either in classification and

regression tasks.

1 This thesis assumes an "off-the-shelf view of data mining algorithms. A more complex view is to see an
algorithm as a component-based structure, in which algorithms are composed of a combination of well-
defined components, such as model structure, score function, search methods, and data management
technique. Therefore, a data miner should analyse which components fit the specifics of his/her problem,
instead of which specific "off-the-shelf ai^iithm to choose. Hand (Hand, Mannila and Smyth, 2001)
discusses the component-based view of data mining algorithms.
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Ths k-neanst neighbourhood algorithm (Dasarathy, 1990), decision tree generators such as

C4.5 (Quinlan, 1993) and CART (Breiman et al., 1984), and rule induction algorithms (with a

machine learning background) are also techniques applied in several, data mining tasks.

For example, CART (Classification And Regression Trees) (Breiman et al, 1984; Hand,

Mannila and Smyth, 2001) is a widely used algorithm in data mining. CART produces models

with a tree-based structure, for regression and classification tasks, as its name suggests. The CART

tree model consists of a hierarchy of univariate binary decisions, which means that each node

in the tree specifies a binary test on a single variable. An example represented by a data vector

X follows a particular path in the tree structure from the root node to a leaf node based on

how the values of each its components match the binary test of the internal nodes. Each leaf

node specifies a particular class label. CART derives the tree structure from the data by

choosing the best variable (attribute) for splitting the data into two groups, starting at the root

no'ie. CART uses several splitting criteria (which are significantly complex), and all of them

produce the effect of partitioning the data at an internal node into two disjoint subsets. The

splitting procedure is then recursively Applied in each of the child nodes, until it reaches the

final nodes, e.g., the leaves. The size of the tree is a result of a pruning process, which

attempts to build optimal tree sizes, because large trees may overfit the data, and too small

trees may have insufficient predictive capability. Full descriptions about CART algorithm can

be found in (Breiman et al., 1984) and also in (Hand, Mannila and Smyth, 2001).

Another algorithm often applied in classification tasks is the k-neanst neighbour (Dasarathy,

1990). The k-nearest neighbour algorithm is a classic nonparametric method, in which the

training procedure consists in storing all input-to-output pairs from the training set into a

database. When a prediction (classification or regression) is needed on a new input case, the

result is achieved based on the K nearest training patterns in the database. As such, the main

decision in the algorithm is to set the parameter K and the type of distance metric. The

parameter K indicates the number of nearest neighbours used to classify the input cases; the

best value for K is normally determined, empirically using validation techniques such as cross

validation. The distance metric, which computes the meaning of nearest neighbour, is

normally the Euclidean measure that measures the distance between two D-dimensional

86

.»•



Chapter 3 Knowledge Discovery in Databases

vectors. The standard deviation is also used as distance measure. Basically, for each new case

the algorithm searches for the K nearest patterns to the input case using, for example, the

Euclidean distance measure. The algorithm computes the confidence for each class i, as CiJK,

where Ci is the number of classes among the K nearest patterns belonging to class i. As a

result, the classification for the input case is the clai:s with the highest confidence value, which

means that the input case is assigned the same classification as its K nearest neighbours. For

regression problems, the output value is calculated based on the average of the output values

of the K nearest patterns. Detailed discussion about the k-nearest neighbour algorithm can be

found in (Dasarathy, 1990) and in (Molina, Blanca and Taylor, 1994).

Besides neural networks, machine learning and statistical approaches, data visualization

algorithms also have been applied for data mining purposes. Data visualisation techniques are

powerful approaches to visualize and discover patterns in datasets, and there is a wide range of

visual techniques that can be applied in the various stages of the KDD process. They can be

used to get a first perspective about data features and their distribution during the pre-

processing stage, or to find data clusters, correlations and dependencies among attributes

during a data mining stage, or to visualize the final model produced by the data mining

algorithm.

Some of the most common visualization techniques are 2D (two dimensional) and 3D

(three dimensional) scatter-plots and scatter-plot matrix (Cleveland and McGill, 1988), and

various multi-dimensional visualization techniques that map a multi-dimension dataset in a 2D

or 3D mapping, such as Circle Segments (Ankerst, Keim and Kriegel, 1996) and Chernoff

Faces (Chernoff, 1973). There are also hierarchical techniques that subdivide N-dimeasional

space into subspaces, and present the subspaces in a hierarchical fashion, such as "Worlds

within Worlds" (Beshers and Feiner, 1990), InfoCube (Rekimoto and Green, 1993) and

Treemaps (Schneiderman, 1992), among other techniques.

For example, Turetken and Sharda (2004) present an interesting work addressing the

overload problem through information visualization. This work introduces the FISPA system

(Fisheye-based information search processing aid), which manages information overload

resulting from web searches. In brief, FISPA organizes search results by grouping them into a
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hierarchy based on their individual contents, and then presents a visual overview of the groups

facilitating the users to zoom on specific groups of interest.

Moustakis (MoustaMs, Letho acd Salvendy, 1996) presented a useful survey comparing

different learning algorithms and types of problems. In this survey, six classes of algorithms

and three types of problems were selected. The selected algorithms were the k-nearest

neighbour (KNN), decision trees (DTrees) (any algorithm that fall in this category such as

CART and C4.5), association rules (ARules), neural networks (NN), genetic algorithms (GA),

and inductive logical programming (ILP). The selected types of problems were: classification,

problem solving and knowledge engineering.

According to this survey, k-nearest neighbour, decision trees and association rules

algorithms, generally, perform better in classification problems than in problem solving and

knowledge engineering. Neural networks also showed good performance in classification, and

genetic algorithms showed to be appropriate for problem solving tasks. Inductive logical

programming outperformed the other algorithms in knowledge engineering tasks. Figure 3.3

illustrates the results of this survey.

Knowledge engineering

Classification Problem-solving

Figure 3.3: Relation between learning algorithms and type of problems, as in (Meneses
and Grinstein, 1998)

There are several studies and surveys examining data mining algorithms, their performance

and suitability relating to specific problems. Further discussions about data, mining algorithms

and their applicability can be found in (Kennedy et al., 1998) and also in (Michie, Spiegelhalter

and Taylor, 1994).
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3.3.2.1 The Ajpriori Algorithm for Association Rules Learning

Association rules are an approach to discover regularities in databases and represent them

in the form of "If-Then" rules, finding sets of the most commonly occurring groupings of

items. Originally association rules were applied to analyse large amounts of supermarket basket

data (Agrawal et al, 1996), describing how often items are purchased together. Association

rules became one of the most used approaches for data mining, being applied in a range of

different situations (FQemettinen, Mannila and Toivone, 1999).

The process of finding association rules consists firstly in finding all the sets of items,

named itemsets, that occur in the database with a frequency equal or higher than a pre-defined

frequency threshold, called minimum support. Such itemsets are known as large itemsets. An

itemset with k items is named k-itemset. The next phase consists of forming rules among the

large itemsets previously found (Agrawal, Imielinsk and Swami, 1993).

The general structure of association rules generator algorithms consists of making multiple

scans over the database. In the first scan the supports of individual itemsets are computed,

finding the large itemsets, i.e. items with minimum support. Each subsequent scan starts from a

seed set of large itemsets found in the previous scan. This seed set of itemsets is used to

generate new potentially large itemsets, named candidate itemsets, and the support of these

candidate itemsets are then computed through a scan over the database. At the end of the

scan, die large candidate itemsets ase selected, and they became the seed for the next scan. The

process follows this fashion until no new large itemsets are found in the database.

A formal definition of the problem of mining association rules is given by Agrawal

(Agrawal, Imielinsk and Swami, 1993) as follows:

Let 7 = {/„ 12,..., In) be a set of m distinct items;

D— {Tp T2, —, TK) a set of Tdistinct transactions, where:

each transaction T{ = {/,„ Ia,..., 7^}, is a set of items 7, where 7̂  e I and TQ I.

Associated with each transaction Tis a unique identifier T1D.

It is said that a transaction T contains Xy a set of some items in 7, if:

X C T .
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An association rule is an implication of the form X=> Y,

where X, YaJand XnY=0.

The rule X=> Y has support Si£S% of the transactions in D contain XuY.

The rule X=> Y has confidence CiiC% of transactions in D that contain X also contains

y.

The confidence is the ratio of the number of transaction that contain X LJ Y to the

number of transactions that contain X, given by the following expression:

C = support (XuY) I support (X)

As a result, given a set of transactions D, the problem of mining association rules is to

generate all association rules that have support and confidence greater or equal than a pre-

defined minimum support and minimum confidence.

One of the most well known association rules generator algorithms is the Apriori

algorithm (Agrawal et al., 1996). The general structure of the Apriori algorithm follows the

general structure of association rules generator algorithms, except that any subset of a large

itemset must also be large. During each iteration through the dataset only large candidates

found in the previous iteration are selected to generate new candidates. The structure of the

Apriori algorithm is as follows (Agrawal et al., 1996):

Let k denote the number of items in an itemset, e.g. itemset size, such that an itemset of

size k is termed a k-itemset.

Let Ljj, denote the set of large k-itemsets, and Ck the set of candidate ^-itemsets.

L, = {large 1-itemsets};

k , )
Ck = set of new candidates from L. ^;
fo£ all transactions T e D

for all /^-subsets I of T
if (I e Cf.) then s.count ++;

end
JL,, = { c E Ck | c.count ̂  minimum support};

end
Set of all large itemsets = XJMLk;

Figure 3.4: The Apriori algorithm for association rules (Agrawal et al., 1996)
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There are several association rules generator algorithms, such as the AIS (Agrawal,

Imielinsk and Swami, 1993), SETM (Houtsma and Swami, 1993), DHP (Park, Chen and Yu,

1995), AprioriTid (Agrawal et aL, 1998) and the Apriori (Agrawal et al., 1996) algorithm.

This thesis applies the Apriori (Agrawal et al., 1996) algorithm for association rules.

Empirical evaluations demonstrated that the Apriori algorithm outperforms the AIS and

SETM algorithms, performs equally to the AprioriTid, and has good scale-up properties

(Agrawal and Srikant, 1994).

Further discussion about the Apriori algorithm and its performance evaluation can be

found in (Agrawal and Srikant, 1994), and further discussions about association rules can be

found in (Agrawal, Imielinsk and Swami, 1993; Agrawal et al., 1998; Mohammed et al., 1996)

and (Adamo, 2000).

The data mining component of the DM-NN model for IDSS proposed in this research

applies a stand alone implementation of the Apriori algoridim.

3.4 Data Preparation

The data preparation stage in many KDD projects is usually time and budget consuming,

as frequently the input dataset present problems like noise and null values, which require

intensive data transformation and cleaning procedures. The importance of the data

preparation stage should not be underestimated, because if the quality of the data is low or the

problem is incorrectly formalized, the algorithms used for data mining will behave inefficiently

or even produce incorrect results.

Data preparation concerns the quality of database attributes1 being used for data mining

purposes. The use of real databases, i.e., databases not artificially built for experiments

purposes but provided from real world applications, brings several challenging problems.

According to (Pyle, 1999) the purpose of data preparation is to manipulate and transform

row data so a mining tool can best handle the information in the dataset. Performing data

preparation means carefully analysing each data, its information content and how accurately

1 The term "attribute" is used in this thesis to indicate a database field. However, the terras "variables",
"fields" and "features" are also used for the same purpose, when it contributes to a better understanding of the
subject being discussed or when referencing a work that applies those terms.
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the attributes represent the expected information. Berry gives some suggestions about what

characteristics a dataset for data mining should have, according to (Berry and Iinoff, 2000):

• all data should be in a single table or database view

• each row should correspond to an instance that is relevant to the application

domain

• columns with a single value should be ignored

• columns with different values for every row should be ignored, although the

information they contain may be extracted into derived columns

• for predictive modelling, the target column should be identified and all

synonymous columns removed.

There are many characteristics inherent in die nature of data; some of them may represent

problems that need to be addressed when preparing data for data mining purposes. In general

these characteristics concern volume of data and data quality issues, such as irrelevant fields,

sparsity, overfitting, monotonicity, dimensionality, oudiers, anachronisms and variables with

empty or missing values (Fayyad et al,, 1996). These characteristics, usually, imply removing or

transforming attributes from the dataset. Each of these characteristics is now briefly discussed.

A high volume of data is one of the challenges facing the KDD community. It relates to

the capability of inductive learning algorithms to mine large or very large databases in order to

discover useful knowledge. Large databases represent a difficult problem for data mining

applications for several reasons, ranging from the quality of dieir data to the time and

computer resources needed to process them. Possible solutions that have been suggested to

this problem are: breaking the dataset to reduce the amount of data (data partitioning),

speeding up the algorithm, and parallel processing. Detailed discussion about the approaches

of data partitioning, algorithm speeding up, and parallel processing can be found in (Provost

and Kolluri, 1999) and (GottgUroy, Rodrigues and Sousa, 1998).

Closely related to the problem of mining large databases is the problem regarding

dimensionality. This concerns the need to reduce (or even increase) an attribute's dimensions.

When a database has a very large number of attributes, it is said its dimensionality is high and

consequently the problem being modelled through diis database also has a high
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dimensionality. A high dimensional dataset increases the size of the search space at an

exponential rate for most of the induction algorithms, increasing the probability of finding

false and erroneous patterns.

Methods to reduce the dimensionality have been suggested, such as reducing the number

of attrit ites (known as vertical reducing methods or features selection), data partitioning

methods (known as horizontal reduction or case reduction), and processing data subsets

sequentially or concurrently (Provost and Kolluri, 1999). Normally, the problem of mining

large datasets is in reducing the dimensionality, however there are some cases where the

dimensionality of an attribute needs to be increased. Increasing dimensionality, in general,

applies to non-numerical data when presenting information that is better understood in more

than one dimension.

Dimensionality reduction, specifically case reduction and sampling, are further discussed in

the next section, as it is particularly relevant to the research described in this thesis.

The problem of overfitting is normally related to the limited amount of information. When a

learning algorithm searches for the best parameters for one particular model using a limited

amount of data it may overfit the data, resulting in poor performance. This means that the

learning algorithm memorized the training set instead of generalizing the concepts. In this

situation the algorithm normally performs very well in the training set, but performs poorly

when presented to new cases. Suggested solutions for the overfitting problem include cross-

validation, or even artificially increasing the data population (Berry and Iinoff, 2000).

One of the basic decisions in data preparation is whether or not to remove a certain

attribute. In general, an attribute must be removed when it presents few values in its range of

values, or it is a constant, or most of its values are empty or missing (Pyle, 1999), e.g. the

attribute suffers from lack of variability. Attributes that contain only a single value or with

entirely missing values can be removed from the dataset as the lack of variation in content

implies no information for modelling purposes (Pyle, 1999).

Handling missing and etnpty values is one of the most common problems in data

preparation. An empty value is a value that has no corresponding real world value, while a

missing value means a value that has not been stored in the dataset but which exists in the
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domain. Unfortunately, determining if any particuks: attribute is empty, rather than missing,

requires domain knowledge, and this is extremely difficult to detect automatically. Missing and

empty values can be removed or replaced in the dataset; basically this decision relies on the

amount of these values in the dataset and in domain knowledge as well. Domain knowledge is

necessary because it is possible that in a particular application empty or missing values can

have some information content, and in such cases the values must be kept in the dataset. Refer

to (Pyle, 1999) and (Catlett, 1991) for further discussions on how to handle missing and empty

values.

Other common problem found in data preparation for data mining concerns situations

when the information density of a certain attribute ir. k-'w; this is called sparsity. Thiv? means that

most of the instances values are empty, but sc.ne v-^aes are recorded. Normally, in this case,

diese attributes have insignificant values and can be removed. However there are cases when

sparse values represent significant information, such as in fraud detection, where the

exceptions are the most important information to be captured. Essentially, to remove a sparse

attribute or not is a decision based on confidence levels (Pyle, 1999).

There are techniques to deal with sparsity problems, such as dimensionality reduction or

collapsing a sparse attribute with another attribute. Detailed discussions about techniques to

deal with sparsity can be found in (Pyle, 1999; Weiss and Indurkhya, 1998) and (Berry and

Iinoff, 2000).

Another problem often found in data preparation is the occurrence of monotonic

attributes, or monotonidty. Basically, a monotonic attribute is an attribute that increases without

bounds. The most common examples of monotonic attributes are date stamps; it means

attributes that are linked with the passage of time, such as dates. Usually, monotonic attributes

are transformed into non-monotonic form for use in data mining.

When an attribute presents a very low frequency occurrence of a value, or a set of values,

that is far away from the bounds of other values in the column, this is known as an outlier

attribute. Outliers usually indicate a mistake, but there are cases when an outlier attribute could

represent valid information. Normally, domain knowledge is necessary to decide wether an

outlier value, or set of values, represents an error or not. Basically, there are two ways of
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handling an outlier attribute: to remove it or to remap the value reducing the distance j>ap

between the outlying value and the bulk of values.

Another problem in data preparation is called anachronism, which can be described ar

temporal displacement according to Pyle (1999). An anachronistic attribute is one that contains no

information, or the information is simply not available. Anachronistic attributes should be

removed from the dataset

There are several works in the literature that address the problems of preparing data foi*

knowledge discovery and data mining, appointing solutions, methodologies and case studies.

Detailed and further discussion on those issues can be found in (Pyle, 1999; Fayyad, Haussler

and Stolorz, 1996; Gottgtroy, Rodrigues and Sousa, 1998) and (Berry and linoff, 2000).

The problems discussed above arise, mainly, when dealing with significant amounts of

data. Consequently, it brings a prirn&ry issue into consideration that refers to the sufficient

amount of data for data mining. The next section discusses how much data is necessary for

data mining.

3.5 Dimensionality Reduction

In data modelling for data mining it is essential to know how much data is enough to build

descriptive or predictive models. Basically, the dataset must be large enough in order to

capture sufficient information about each individual variable (attribute.) and the interactions

among them (Provost, Jensen and Oates, 2001; Pyle, 1999).

Dimensionality reduction attempts to build datasets that accomplish this, to reduce data

dimensions while preserving data concepts (Weiss and Indurkhya, 1998). Dimensionality

reduction deals with the selection of features, values and instances. This section specifically

refers to instance selection (case selection), which addresses the issue c'i whether all cases

(instances) residing in a database are needed for effective mining.

Generally speaking, a larger amount of data is better because large data potentially can

provide more evidence about the induced concepts (Weiss and Indurkhya, 1998). If a small

amount of cases is used there is a higher risk that some concepts will not be represented in the

dataset, and consequently not captured by the learning algorithm.
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However, there are some issues to consider. Firstly, it is necessary to know how much data

is available. Second, it is important to be sure that there are enough instances representing the

events of interest v-1- 3e a huge amount of data has the potential for better results, there is no

guarantee that it will generate better results than small data. Furthermore, increasing the

number of cases also increases the complexity of the solutions, given that complexity is

measured in terms of concepts used to describe solutions. There is also a trade off between

complexity and interpretability; more complex models decrease the interpretsbility of the

solutions.

Finally, one of the most important reasons to consider instance selection is that the

number of available cases may be too large to compute in an acceptable time frame, as large

volumes of data imply computational costs regarding memory allocation and complexity of

learning algorithms. It has to be noted that computational complexity (run time) of most

learning algorithms is linear according to the size of the training set (Provost and Kolluri,

1999).

The main approach for instance selection is data sampling (Weiss and Indurkhya, 1998).

However, sampling a database, mainly a large database, is not a trivial task. The sampling

method has to generate data samples that capture the necessary information from the original

population, and the sampling design has to be suitable to a particular problem in a certain
* *

context.

The next section introduces some concepts and methods of data sampling.

3.6 Data Sampling

In KDD applications, data sampling is related to the available and required amount of data

to build descriptive or predictive models. Sampling can be understood as a technique that

selects a part to make inferences about the whole (Gu, Hu and Liu, 2001), to study the

characteristics of an entire population by examining only a part of it.

Data sampling is important for several reasons. It is used to overcome problems caused by

high dimensionality of attributes as well as large volumes of data. Data sampling is useful

when the interests and characteristics of a population are not available or arc too costly to
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obtain (as the characteristics of a sample are normally easier and cheaper to obtain) or for any

reasoa that prevents access to data about the whole population. Besides this, sampling also can

reduce costs and time without reducing accuracy. Additionally, most of the data mining

applications require a set of data from which to build a model (mining dataset) and another set

of data on which to test it (testing dataset). For those reasons sampling is very often necessary.

In order to build a valid model is necessary that the sample reflects the whole population;

the sample must be representative of the population. If this is not the case, the model does not

reflect what will be found in the population and is likely to give inaccurate results. According

to Gu (Gu, Hu and Iiu, 2001) there are tv o characteristics mat must be present in a sample

regardless of the adopted sampling strategy: a sample must be unbiased and must have a small

sampling variance.

Building data mining models requires that the dataset used for modelling capture the full

range of interactions between the attributes, e.g. the variability. Statistically, variability is defined

in terms of how far the individual instances of a population are from the mean of that

population.

To ensure that a particular sample is representative of a particular population it is also

necessary to not introduce any bias during the sampling procedures. For this random sampling

technique has to be usee. For data mining purposes it is enough to ensure that the variability

present in the source dataset is, to a certain level of confidence, present in the sample dataset

and any bias was introduced from the source dataset into the sample dataset (Gu, Hu and Iiu,

2001; Pyle, 1999).

3.6.1 Sampling Methods

A sampling strategy requires a careful design in order to deliver a reliable estimation from

its original population. If an estimate is close to the value of the population characteristics for

a set of samples, so the sampling strategy is recognized as a suitable strategy in that specific

case. However, when the estimate values from one sample to another varies significantly, then

uncertainty is higher. This is why it is important to select a proper sampling strategy for a

particular application, as different sampling strategies may produce different estimations about

the same population.

97

-II

S
I

i



Chapter 3 Knowledge Discovery in Databases

Gu (Gu, Hu and Iiu, 2001) presents a useful categorization of sampling methods, in which

sampling methods are grouped according different perspectives, such as non-probability and

probability, emphasizing the probabilistic strength of each sampling method, general purpose to

specific domain, one stage to multi-stage, and adaptive to non-adaptive. This categorization constitutes a

representative description of sampling methods, and provides a good understanding of the

relationship between them and their applicability. Figure 3.5 illustrates part of the proposed

categorization of sampling methods.

non-probability
- \
accidental

purposive

domain-specific

multi-stage
simple

multi-stage multi-stage random
varying

generaUrnirpose probability

double
varying equal-probability
probability ^ ^ 7 ^ = 5 ;

shannon ^s^ / \ ^
random stratified cluster systematic

Figure 3.5: Part of categorization tree of sampling methods proposed in Gu (Gu, Hu
and Liu, 2001)

A full discussion about the various sampling methods is beyond the scope of this research,

however some sampling methods for data mining that were studied more deeply and are

related to this research are introduced, for instance: random sampling, stratified sampling, multistage

sampling, incremental sampling, adjusting prevalence and progressive sampling. These sampling methods

are now briefly described. Further and detailed discussion about sampling methods and their

categorization can be found in (Gu, Hu and Iiu, 2001; 2000; Weiss and Indurkhya, 1998; Pyle,

1999), and (Foreman, 1991).

Random sampling is a method for selecting a number of units from a population in a

way that each possible combination of those units has the same probability of selection, and
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every element in the population has the same chance of being selected in the sample. It is the

most common sampling method in use. Random sampling can be with replacement and without

replacement. Random sampling without replacement is the method in which n distinct elements

are selected from a population of JV elements, in a way that every possible combination of n

elements is equally likely to be selected (Liu and Motoda, 2001). On the other hand, in random

sampling with replacement a sample of n elements is selected from a population of JV elements

in a series of draws; and each element may be selected more than once at any draw. This

means that the elements of the population have the same chance of being drawn, irrespective

of how many times they already have been drawn.

Stratified sampling consists in dividing a population in non-overlapping sub-populations,

called strata. Then small samples are selected from different strata independently of each other.

At the end, combining the small samples or individually selecting samples from each stratum

forms the total sample. Stratified sampling is efficient when class values are not uniformly

distributed, and one class dominates strongly in the population. In this situation examples of

the smaller class are selected with a greater frequency. Stratification is suitable in cases when

classifying the sampling units by location, type, and activity, for example (Provost and Kolluri,

1999).

Multistage sampling combines different sampling strategies in several sampling stages.

The population is sampled in stages, where in a first stage primary samples are generated; the

primary samples are then selected and divided in smaller secondary samples, which are again

sampled. The process continues in this way until ultimate samplings are reached. One distinct

characteristic of multistage sampling is that die sampling unit changes in the different stages,

whereas in a similar sampling approach known as multi-phase sampling the sampling unit

remains the same at each stage. There are several multistage sampling combinations; for

example multistage simple random sampling, which makes simple random sampling at each stage;

stratified multistage sampling, in which a population is first divided into strata and then sampling is

performed in stages separately within each stratum.

Incremental sampling is an empirical approach to instance selection (case reduction) in

which training is performed with increasing larger random subsets of cases. According to
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Weiss (Weiss and Indurkhya, 1998) a typical paUerii of incremental sampling might be 10%,

20%, 33%, 50%, 67% and 100% of the population. These percentages can be adjusted based

on domain knowledge and the amount of information available. The initial percentage should

be chosen to provide an initial idea of performance, and can be increased gradually to the

complete enumeration. The decision about to select large subsets relies on various parameters,

for example the training error rate. In general, when the solution performance does not

improve for an increment in the sample size, there is no need to move to a bigger sample.

Increasingly bigger samples nre expected to give better performance, until a stage is reached

where performance does not improve significantly with increase in sample size.

A similar approach of incremental sampling is discussed in (Provost, Jensen and Oates,

2001) as progressive sampling. The difference is that a sampling schema in progressive

sampling requires a more formal strategy. Progressive sampling is introduced later in this

section.

Adjusting prevalence method adjusts the prevalence of cases in a dataset. Given a low

prevalence class, typically where the classes are not homogeneously distributed among the

population, prevalence is increased by repeating or weighting cases related to the low

prevalence class in the training sample (Weiss and Indurkhya, 1998). As repeating cases

increases the sample size, an alternative approach is to keep the low prevalence class intact,

while including a random subset of a larger class in the training sample, ideally reaching a

balance of 50% of each class, in the case of binary classification. This approach is particularly

suitable when the low prevalence class is more important that the larger classes, and, as such,

the number of training cases may be balanced equally among the classes, increasing the cost of

error for the smaller class. However, again domain knowledge is necessary to use this

approach.

Progressive sampling is a strategy that attempts to maximize accuracy. It starts with

small samples, instead of using an entire population, and uses progressively larger samples

until the model accuracy improves. In this strategy, instance selection is limited to training sets

of tSe rninimum sufficient size, and the selection of individual instances is randomly done.

The central component of progressive sampling is defined as a sampling schedule S — {n0, nu
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p.y,.--, *?*} where tit is an integer that specifies the size of a particular sample in a dataset with

N instances, »,• <= N for all samples.

According to Provost (Provost, Jensen and Oates, 2001) the fundamental issues when

performing progressive sampling are determining an efficient sampling schedule, to determine

the point at which accuracy no longer improves (known as convergence detection) and also to

improve the schedule to achieve better performance.

The concept of convergence condition is also applied in incremental sampling, where large

data subsets are selected until the performance reaches a state where it does not improve.

The convergence condition is given by the shape of the learning curve, which graphically

represents the relation between model accuracy and the size of the training set for a learning

algorithm. This relation is represented by a Cartesian plan where the horizontal axis represents

the number n of instances in a given training set, and 0 <• n> N, where JV is the total number

of instances. The vertical axis represents the accuracy of a particular inductive algorithm,

trained with the training set represented in the horizontal axis. Figure 3.6 shows the general

shape of a learning curve.

When the accuracy no longer improves with increments in the training set size, the

learning curve reaches a stable level and stops, assuming a linear shape. Therefore, it is

assumed that the learning curve has converged and the training set size at this point is

recognized as the smallest sufficient training set (Provost, Jensen and Oates, 2001), denoted by

"mm-

Accuracy

n l n 2 n min n 3 nJ N
Training set size

Figure 3.6: Learning curve representing the convergence condition, as in (Provost,
Jensen and Oates, 2001)
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Training models smaller than z^will have 'ower accuracy, and training sets bigger than nmitt

will not presents significantly higher accuracy. Further and detailed references on theoretical

and empirical studies about learning curve detection for inductive algorithms can be found in

(Provost, Jensen and Oates, 2001; Catlett, 1991), and (Haussler et al., 1996).

An interesting and useful survey about suitable sampling techniques relating to specific

data mining tasks is presented in (Gu, Hu and Iiu, 2000). Where data mining tasks are divided

into mining association rules, classification and clustering (a different categorisation than the ones

previously presented in section 3.3.1). According to Gu, random sampling of the whole

dataset is suggested as an efficient strategy for mining association rules, as it efficiently

captures the population variability. For classification tasks, random sampling, windowing

(Quinlan, 1987), compacting duplicates, and stratification are suitable sampling approaches.

Each sampling approach has its own particularities that must be observed. For example,

stratification performs better when the class values are not uniformly distributed in the

training set For clustering, different sampling strategies can be used based on the nature of

data, for example, random samplings to create an initial model to start clustering.

Reinartz (2001) and Gu (Gu, Hu and Iiu, 2000) suggested that the study of sampling data

for data mining is an open field for research and experimentation. Currently, there is no

"cookbook" which indicates a priori which sampling approach better suits a particular data

mining task, given a specific dataset, in a specific context.

3.6.2 Designing the Training Dataset

Normally, data mining applications (and most of the situations that apply learning

algorithms) require a set of data from which to build the model (the training or mining

dataset), and another set of data on which to test the model (the testing dataset).

The issue of how large a training dataset has to be to effectively build descriptive and

predictive models remains an open research issue, as there is no definitive answer that fits all

cases. According to Weiss (Weiss and Indurkhya, 1998), as a rule of thumb, the whole dataset

is randomly divided into about 80% for training purposes and 20% for testing or evaluation,

when the original dataset has a size of approximately 1000 instances.
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However, most data mining applications deal with datasets that easily overcome the size of

1000 instances. In an attempt to obtain guidelines for building training datasets for data

mining, some reported studies and experiments handling data sampling are presented in this

section.

In, a datamining application to find patterns describing average temperatures in northern

France during September (Howard and Rayward-Smith, 1998), a database was randomly split

into training and testing sets with approximately a 2:1 ratio, out of a total of 95 records, 65

were selected for training and 30 for testing.

Buchner (Buchner et aL, 1998) reported an experiment where the dataset was split

accordingly with a time frame in a data mining application for forecasting high-intensity

rainfall over die territory of Hong Kong. In this experiment the training data encompassed the

years 1990 to 1996, and the testing data encompassed the period from 1987 to 1989.

Siegler (Siegler and Steurer, 1998) reported a data mining application for forecasting of the

German stock index DAX. In this application a dataset of 1000 daily observations from 1992

to 1995 was used. The dataset was split in 800 observations for training, 100 observations for

validation and 100 observations as a generalization period. This means that 80% of the whole

dataset was selected for training and 20% for testing purposes.

Hruschka (Hruschka and Ebecken, 1998) reported an experiment extracting rules from

neural networks in a data mining application, using a dataset with 768 cases about diabetes. In

this experiment 75% of the dataset was randomly selected for trailing and 25% for testing.

The dataset had two classes; and the proportion of the classes in the original dataset was kept

in the training dataset, being 65% of class 1 and 35% of class 2.

During the evaluation of Treplan, an algorithm for rule extraction from neural networks

applied in data mining (Ludermir et aL, 1998), a dataset with 9 inputs and 959 instances was

used. This dataset was randomly divided into a training set of 879 instances and a test set of 80

instances; e.g. about 92% of the whole dataset for training and 8% for testing.

A different method was employed by Chen (Chen et al., 1998) in an experiment modelling

financial data, specifically T-bond futures transaction data. In diis case, a dataset with three
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million records was used. After pre-processing, the dataset was randomly divided into 50% for

training and the rest for testing.

In conclusion, Berry (Berry and Iinoff, 2000) suggests that a split of 60% for training set,

30% for test set and 10% for evaluation set works well in practice in most cases.

Table 3-2 summarizes the experiments discussed in this section, identifying the specific

experiments, the portion of the dataset used for training (mining), for testing and the size of

the original database.

Table 3.2: Experiments on building training datasets

Application
Training set Testing set'

Dataset size

(Weiss and Indurkhya,
1998)
(Howard and Rayward-
Smith, 1998)

(Buchner et aL, 1998)

(Siegler and Steurer,
1998)

(Hruschka and Ebecken,
1998)

Treplan

(Chen etaL, 1998)

(Berry and Iinoff, 2000)

80%

65

Years 1990 to
1996

80%

75%

92%

50%

60%

20%

30

Years 1987
to 1989

20%

25%

8%

50%

30%

100%

95

1000 instances

768 instances

959 instances

3 million

100% (10% for
evaluation)

3.7 Difficulties in Knowledge Discovery Applications

In spite of the research and development that has been done and reported in the KDD

field, several problems and challenges still remain. Some of these problems concern:

• developing effective means for data sampling and dimensionality reduction

• problems related to data distribution in the population, for example developing

strategies to handle the low prevalence classification in data mining applications

• difficulties in determining the most appropriate set of thresholds when running

data mining experiments. For example, given a specific dataset and applying an

association rule learning algorithm, which degrees of rule confidence and support

thresholds lead to better descriptive models
si
U
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• providing integration between KDD and other complementary systems

• mining large databases.

One of the most challenging problems facing the KDD community is about scaling up

data mining; this means enabling inductive learning algorithms to mine large and very large

databases. The problem of mining large databases addresses issues of "how large" a problem

can be feasible handled, and "how fast" a problem can be run. In this situation, there normally

are two approaches to choose. One is speeding up a slow algorithm (handling the "how fast"

issue). And the second is breaking the dataset (data partitioning), which means reducing the

search space (handling the "how large" issue).

The number of examples (or amount of cases) has been one of the most common

problems in KDD applications, as it introduces potential problems with both time and space

complexity (Provost and Kolluri, 1999). In addition to time-complexity drawbacks, as the

number of instances grows, problems concerning main memory size and processor speed

became critical issues.

Another point to consider is the degradation of accuracy while learning; which implies that

any scaling up technique must be evaluated with regard to the level of accuracy.

Choosing the data partitioning approach to mine large datasets highlights the need for

developing effective means and strategies for data sampling, and dimensionality reduction.

A further problem in KDD applications relates to the applicability of knowledge

discovered, and how to effectively apply such knowledge in decision making.

Once the KDD process has been completed, the knowledge discovered can be

incorporated in a complementary system, such as a decision support system, providing

support for business, industrial and scientific applications. This concerns the integration of

complementary systems in the KDD process.

This research employs two technologies in order to devise a computational model for

decision support: knowledge discovery in databases and a hybrid neural network based system.

The knowledge discovery process was carefully performed in the chosen application domain,

i.e., aviation weather forecasting. The following issues were addressed:
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• the activities of data preparation were intensively applied with special care in data

partitioning; a specific sampling design was developed and issues of data and

dimensionality reduction were carefully considered

• a series of experiments were carried out in order to determine the most appropriate

thresholds when applying an association rule learning algorithm, given a specific

dataset. The rule confidence and support degrees, and rule order (ie. maximum

number of antecedent items) thresholds were carefully evaluated considering

datasets built from different sampling proportions

• the integration of KDD with other systems, through the application of a hybrid

neural network based system to build predictive models based on the knowledge

discovered. As such, incorporating the knowledge discovered into a decision

support model and providing means to effectively apply this knowledge in

supporting decision making

The process to perform knowledge discovery in databases is described in the next

chapters, together with the proposed hybrid computational model for decision support, its

architecture and components. Additionally, the chosen application domain is introduced.

3.8 Chapter Summary

This chapter introduced concepts about Knowledge Discovery in Databases (KDD) and

Data Mining (DM). The KDD process was described and a classification of problems suitable

for KDD application was presented.

Concepts about data mining were also presented, the specific types of data mining tasks

were discussed, and the classification task was introduced. Further, some of the most common

data mining algorithms were introduced, and the Apriori algorithm was described in more

detail.

Issues about data preparation for KDD were also presented, including dimensionality

reduction and data sampling. Several data sampling techniques for data mining were presented.

Finally, this chapter discussed some difficulties in developing KDD applications.
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Chapter 4

4 The Hybrid DM-NN Model for IDSS

The hybrid DM-NN model was developed for the purpose of investigating the combination

of knowledge discovery in database and intelligent computing technologies, in developing a

framework for decision support systems. This chapter introduces the proposed hybrid DM-NN

model for intelligent decision support system, its architecture, components and their respective

functionalities.

4.1 Introduction

This thesis describes research concerned with investigating the combination of knowledge

discovery in database and intelligent computing technologies, in particular an association rule

generator algorithm for data mining and artificial neural networks, in developing a framework

for decision support.

The aim of the proposed framework for intelligent decision support systems (IDSS) is to

support decision making by recalling past information, inducing "chunks" of domain knowledge from

this information and performing reasoning upon this knowledge in order to reach conclusions in a

given classificatory situation. In a general way, the proposed model for IDSS has to be capable of

building domain knowledge from data rich domains and applying this knowledge in problem

solving.

From that perspective, this research has concentrated on investigating how data mining and

neural networks can cooperate in order to minimize problems related to knowledge acquisition,

reasoning, and learning in building decision support systems.
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For this purpose, a new approach for intelligent decision support systems (IDSS)

combining data mining (DM) and artificial neural networks (NN) in a single framework (DM-

NN) has been developed and applied to a industry problem to empirically assess its

applicability.

The data mining component is an implementation of the Apriori algorithm for association

rules, as previously discussed in section 3.3.2.1. For the neural network system, the CANN

(Components for Artificial Neural Networks) simulator environment (Beckenkamp, 2002) has

been employed. CANN is a framework1 that provides an environment to implement and apply

neural network models.

This chapter introduces and describes the proposed hybrid architecture for IDSS. Firstly,

an overview about the DM-NN model and its functionality is presented. Next, the DM-NN

model architecture is described, along with its components, their roles and interactions.

Following, the employed knowledge representation schema is presented, and the neural

network environment and respective neural network model are also described.

4.2 Overview of the Hybrid DM-NN Model

The hybrid DM-NN model was conceived to be applied in solving complex classification

problems, according to the definitions presented in section 3.3.1, "Data Mining Tasks." In

particular, the DM-NN model is suitable for data rich domains requiring analysis of a

significant amount of information, being characterized as NP-complex problems.

The DM-NN model was designed as a predictive tool for classification problems. It aims

to predict a particular ckss in which a given case falls in within a certain degree of confidence.

Examples of such situations are medical diagnoses, where the objective is to diagnose a

particular disease based on a set of observed symptoms. Or weather forecasting, where the

likelihood of the occurrence of a particular weather phenomenon is determined based on a set

of weather observations. I

1 Here the term framework is used in the software engineering context, meaning "a set of cooperating classes
that make up a reusable design for a specific class of software" (Gamma et al., 1995).
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There are two main stages in the operation of the DM-NN model. First, descriptive

models about the applicatiori domain are built. Next, predictive models of this domain are

built

Raw data are extracted from databases or data warehouse, pre-processed, and cases are

obtained as a result of this process. Then, the resulting cases are used as input data into a

particular descriptive method in order to build descriptive models. Descriptive models are

stored in Lnowledge bases. An algorithm for data mining was chosen as the descriptive

method. Figure 4.1 illustrates the process of building descriptive models.

Data
Preprocessing

Descriptive
Method

Data
Mining

Descriptive
Model 1

Descriptive
Model 2

Descriptive
Model n

Knowledge.
Base Models.

Figure 4.1: Building descriptive models

In the next stage, the descriptive models are used as input data in a predictive method. As

the DM-NN model aims to solve classification problems, the predictive method is termed a

classifier. For this reason, a neural network model similar to the Backpropagation was

selected as the predictive method. The results of the neural network processing (predictive

method) are the predictive models. Figure 4.2 illustrates the process of building predictive

models.
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Descriptive
Model!

Descriptive
Model 2

Descriptive
Model a

.Knowledge

Predictive
Method-'MN

Predictive

Predictive

Domain
Modeling

Predictive

Model
Evaluation

Figure 4.2: Building predictive models

Chapter 5 describes the process of building descriptive models, and Chapter 6 describes

the process of building predictive models through an empirical experiment, in which the DM-

NN model was applied in aviation weather forecasting to identify fog cases.

4.3 The DM-NN Architecture

This research has coivcentrated on investigating how data mining and neural networks can

cooperate in order to minimize problems related to knowledge acquisition, reasoning, and learning in

building decision support systems.

The DM-NN architecture was designed to capture historical information about a current

situation and provide reasoning mechanisms to handle decision problems in a specific context.

It is a multilayered architecture that can be divided into two levels (or perspectives): data and

process. At the process level it applies data mining for knowledge acquisition and a neural

network based system as a core for an advisory system. Specifically, data mining technology

was chosen to induce expert domain knowledge from historical databases, hence minimizing

the difficulties of acquiring expert domain knowledge, as previously discussed in section 2.2.2,

"Intelligent Systems Capabilities" and section 2.6, "Difficulties in Developing Intelligent

Systems." A NN based system is employed to implement learning and reasoning with the

knowledge obtained through data mining. The NN system also provides explanatory

capabilities, and the user interface level. Section 1.2, "Theoretical Background" discussed the

110

I

i



Chapter 4 The Hybrid DM-NN Model for IDSS

B
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necessity of incorporating those capabilities in DSS models, and sections 2.2.3 and 2.6

discussed the required capabilities in DSS models.

At the data level the DM-NN model comprises all the data repositories used during the

various stages of decision support; it includes databases (ideally a data warehouse), case bases

and knowledge (rule) bases. Figure 4.3 illustrates the main components of the proposed hybrid

architecture and the way they interact.

The basic computational elements of the DM-NN architecture are:

• A decision-oriented data repository, such as a data warehouse

• Case bases

• Inductive algorithm for data mining

• Knowledge bases

• An intelligent advisory system

The dotted lines in Figure 4.3 represent processes among the components; for instance,

the dotted line from the data mining box indicates that a data mining process happens in order

to induce domain knowledge from case bases. The second dotted line indicates the capabilities

implemented by the NN based system: learning, reasoning and explanatioii. The dashed lines

in Figure 4.3 represent data flows between the components. For example, historical raw data

from databases are preprocessed and fed into the data warehouse; from where cases are

selected and extracted, and then stored in case bases.

In the DM-NN model, data warehouses contain historical raw data from the application

domain. Cases are built based on this data. Case bases contain selected instances of relevant

cases from the specific application domain, they consist of preprocessed sets of raw

(historical) data used as input in the data mining component. As such, case bases are also

termed data models (or mining datasets). Knowledge rule bases are built based on data mining

results; they contain structured generalized knowledge that corresponds to relevant patterns

found (mined) in the case bases. The knowledge obtained as a result of data mining trials is

termed knowledge models (training datasets),, and is stored in knowledge rule bases.

I l l
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Mining Dataset Training Dataset

NN Based
Hybrid System

CASE BASE;¥ Inducing Domain
Knowledge

Building

r Training the
Neural Netwons

Cases

Data
Warehouse

Preproce sing Data

Data Mining:
Association Rules
Apriori Algorithm

Learning, Reasoning &.
Explanations

Databases

Figure 43: The components of the hybrid DM-NN architecture for IDSS

A hybrid (symbolic-connectionist) system is applied to process the obtained knowledge

(e.g. knowledge bases), implementing learning, reasoning and explanatory capabilities. The

hybrid system also provides the interface for user decision makers to test and validate

hypotheses about the specific application.

Following, die components of the proposed DM-NN model for decision support and

dieir roles are described. The next section introduces the adopted knowledge representation

schema, including the neural network environment employed (CANN simulator) and

respective neural network model (CNM). The functionality of the DM-NN model for decision

support is explained later in this chapter.

4.3.1 Decision-Oriented Data Repository

A decision-oriented data repository is introduced in the DM-NN architecture as the

primary source of information, and ideally it should be a data warehouse.

Organisational databases normally support transaction processes and contain records from

applications and the results of these transactions. Therefore, most of the stored data are

transactional data, and normally they are modelled and designed following the logic of the

transactional process they support. Regardless of diis characteristic, transactional databases are

normally the main data source of information requirements for decision support systems.

k
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According to McFadden (McFadden, Hoffer and Prescott, 1999) most organisational

systems are developed to support transactional processing, with little attention given to the

information needed for decision making. Transactional processing manipulates data to support

daily operations, which have different data requirements than informational processing to

support decision making. The data warehousing process integrates data from multiple sources

into large 'warehouses' to support on-line analytical processing and business decision making

(Han, 1998). A data warehouse is a decision support-oriented database that is maintained

separately from the organization's operational databases (Han, 1998).

Data warehousing technology was introduced in the DM-NN model to overcome the

problems related with transactional data used in high level decision support tasks, i.e. to

transform transaction-oriented data to decision support-oriented data.

It should to be noted that the DM-NN model architecture does not specify any particular

technology, as this depends on the problem being addressed and the suitability of different

technologies, although the DM-NN model has been designed to specifically handle

classification problems. As such, the database can be of any format, such as relational, flat

files, or object oriented. And in the case of a data warehouse, it can be of any representation

schema, such as a star schema, snowflake, or fact constellations. What is relevant for the data

repository of the proposed DM-NN model is the quality of stored data. This relates to data

availability, redundancy, and noise data, as previously discussed in section 3.4, "Data

Preparation."

4.3.2 Case Base

A case base contains selected cases about the problem in concern. A case represents a past

occurrence and is described by a number of attributes. A case consists of a set of feature/value

pairs and a class in which the case falls. Features1 in a case relate to each other through a

logical AND operation, plus a feature identifying the respective class that the case belongs to.

The case base is a fundamental component in the proposed DM-NN model. The ability to

build relevant cases can lead to the success or failure of a particular application. For that

1 The terms features, attributes, and evidences are interchangeably used in this thesis, depending on the
context. For instance, attributes and features are normally used when referring to database structures in order
to keep the consistency with the jargon in that specific context.
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reason it is proposed that cases should be built from the data stored in a data warehouse, as

this can ensure consistency of data. In the DM-NN model case bases are also named mining

datasets, as cases constitute the set of data used for data mining, or even descriptive sets, as they

are employed to build descriptive models of a particular application domain.

The DM-NN model was applied in aviation weather forecasting; as such, in this research,

cases are a series of weather observations. Table 4.1 illustrates an example case of fog

phenomenon occurrence; the descriptions of the characteristics represent weather

observations on a particular day when a definite occurrence of fog was registered (Auer Jr.,

1992).

Table 4.1: Illustrating a case: a reported occurrence of fog phenomena

Wind speed 4.1 meters/second

Westerly winds during the day before

Dew Point dropping from 15 C in the morning to 5 C

Easterly wind in the evening

Low cloud in the morning = 1 h

Dew point temperature = 10 C

Sea level pressure = 1022.0 hPa

In the example presented in Table 4.1, all the feature/value pairs relate to each odier

through a logical AND relationship. For instance, the feature/value pairs "Wind speed 4.1

m/s" and "Wind direction Westerly" are logically connected with all others feature/value pairs

in the table, representing the weather conditions when a fog occurrence was observed.

4.3.3 Data Mining Component

The DM-NN architecture applies data mining to discover relevant relations out of the case

bases in the context of the problem being addressed. In this approach specific knowledge is

represented in the form of cases, from where general knowledge are derived in die form of

rules.

Sets of cases (mining datasets) stored in case bases are presented to a data mining

component to discover "chunks" of knowledge about a particular problem domain.

Specifically, this combination of data mining and case bases is suggested to implement

knowledge acquisition in the proposed decision support model (Viademonte et al., 2001b),

ft
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handling one of the bottlenecks in developing intelligent systems, the knowledge acquisition

from human experts. The idea of using cases to perform knowledge acquisition is based on

the assumption that a conceptualised part of knowledge about a certain domain is represented

as cases (Kolonder, 1993). Consequently, it is possible to induce relevant pieces of knowledge

(chunks) from a certain domain from sets of cases about that domain.

Figure 4.4 illustrates the proposed knowledge acquisition process through data mining.

Case Base Rule Base

Association Rules
,. Generator

Algorithm-Apriori

1 - IE Al (9.0) AND A2 (Z5)TEEN A

2~E\B1(7.8)ANDB2(85):[HEN"B ',

3-IF Cl (70) AND C2 (7.8) THEN C '

4 -IF C2 (8,6)'AND B2 (9.5) THEN B

Figure 4.4: Knowledge acquisition through data mining

In the DM-NN model the relations obtained from the cases are represented as association

rules and stored in knowledge rule bases. An association rules generator algorithm is employed

for data mining purposes. This is an implementation of the Apriori algorithm for association

rules (Agrawal, Imielinsk and Swami, 1993), already introduced in section 3.3.2. Briefly, an

association rule is an expression X—>Y, where X and Y are sets of predicates; X being the

precondition of the rule in disjunctive normal form and Y the target post condition.

Association rules have two attributes, a confidence measure and a support measure. The rule

confidence is the conditional probability with which predicates in Y are satisfied by a tuple

(record) in the database given that predicates in X ate satisfied. Such a rule is said to be

frequent if its frequency exceeds a predefined threshold, e.g. if all predicates X u Y occur

together at least a user-specified minimum number of times (Agrawal et al., 1998).

4.3.4 Knowledge Base

A knowledge base contains structured knowledge that corresponds to associations found

in the case bases, as a result of the data mining process. The content of knowledge bases are
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sets of association rules, according to what is described later in section 4.4.2.1, "Representing

Knowledge Through Association Rules."

Expert domain knowledge can be induced from -historical cases stored in case bases,

without using a traditional knowledge engineering approach. One of the purposes of this

research is to build domain knowledge through data mining.

In the context of the DM-NN model, knowledge bases are accessed by neural networks

for learning purposes, and as such they constitute the training datasets.

4.3.5 Intelligent Advisory System - IAS

It is the purpose of this research to implement the following capabilities in the DM-NN

model for decision support

• Incorporating specific domain knowledge

• Learning and reasoning

• Issuing recommendations

• Drawing justifications

This is in accordance with what has been discussed in section 1.2, "Theoretical

Background" and section 2.2.2, "Intelligent Systems Capabilities."

The IAS component is responsible for the implementation of these capabilities. It is said

to be advisory as it offers suggested choices to the user decision maker together with

respective justifications. The ' A.S component was especially designed to address classification

problems.

The specific architecture of this advisory system is hybrid as it combines NN within a

symbolic mechanism for knowledge representation, according to what is further discussed in

section 4.4, "The Knowledge Representation Schema." Furthermore, specific needs and

advantages of such a hybrid approach for knowledge representation are introduced in section

2.3, "Hybrid Symbolic-Connectionist Systems."

The IAS component is capable of learning from data, and reasoning about what was

learned through its neural network mechanism. And it is able to justify its reasoning through

its symbolic knowledge representation mechanism, which cooperates with the NN model. As

s
Si
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such this component is said to be intelligent, according to the concepts of intelligent systems

discussed in Chapter 2.

The IAS component uses knowledge stored in knowledge bases to learn about a particular

problem, this is why this research treats knowledge bases (see previous section) as training

datasets. After the neural network training process has been completed the system is capable of

reasoning about the problem within the boundaries of the knowledge it obtained. It can be

assumed that it had learned about the specific problem and it is ready to be used as an

advisory decision support system. Figure 4.5 shows an overview of the internal architecture of

such a system, its main components and processes.

Onacctionkt
Cenpojnmt

System
Output

Figure 4.5: Internal architecture of the IAS component

At the end of its operation the IAS component presents an evaluation of the situation it

was asked to process in the form of possible solutions, as well as explanations of its output.

The CNM neural network model was employed to implement die IAS component, CNM

is later discussed in this chapter, as well as the reasons it was selected in this research.

Briefly speaking, the IAS component implements learning through the CNM neural

network model. The CNM implements two learning algorithms, namely the Incremental

Reward and Punishment (IRP) algorithm and the Starter Reward and Punishment (SRP)

algorithm.

In the CNM, synapses have weights and pairs of accumulators for punishment and reward.

During the learning phase (training), as each example is presented and propagated, all links

f
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that led to the right classification have their reward accumulator incremented, otherwise,

misdassifications increment the punishment accumulators. At the end of the learning phase,

connections with higher punishment values than reward values are pruned. The remaining

connections have their weights updated using the accumulators. The IRP and SRP algorithms

are introduced in section 4.6, in this chapter.

Once the CNM is trained, it pursues the following strategy to come up with a decision for

a specific case. The CNM evaluates the given case and calculates a confidence value for each

hypothesis. The inference mechanism finds the winning hypothesis, the one with the highest

confidence value, and returns the corresponding result

Moreover, the IAS component is implemented through a NN environment that is able to

access the implicit information stored in the NN structured through a design that combines

NN models with a symbolic mechanism for knowledge representation. As a result of this

symbolic knowledge representation, the IAS is able to draw justifications about its output.

Once a particular output neuron is fired, the IAS recovers the input neurons and the pathway

that led to the result, identifying explicitly the information content of those neurons.

The CNM model and its algorithms are introduced in section 4.6 in this chapter. Next, the

DM-NN knowledge representation schema is explained, as well as the environment for the

IAS component in which the CNM model was implemented.

4.4 The Knowledge Representation Schema

The knowledge representation schema employed in the DM-NN model is grounded on

the knowledge representation formalism of knowledge graphs, the main goal of which is to

provide means for the representation and combination of knowledge elicited from multiple

experts (Leao and Rocha, 1990).

4.4.1 Knowledge Graphs

A Knowledge Graph (KG) is defined as a directed AND/OR acyclic graph used to

represent the knowledge of an expert or group of experts for a particular classification

hypothesis.

There are three types of nodes in a KG:
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• hypothesis nodes represent the hypotheses, or classes, considered in the graph

• evidence nodes represent input information that support a particular hypothesis.

Evidence nodes are placed in the graph in their order of importance, from left to

right

• intermediate nodes represent different groupings of evidences that leads to a specific

hypothesis or class. These groups of evidence represent chunks of knowledge

applied by an expert when reasoning about a problem. Intermediate nodes

represent a logical AND operation among the evidence nodes linked to them

Figure 4.6 illustrates the structure of a knowledge graph.

Knowledge Graph

Hypothesis nodes

Intermediate nodes

Evidence nodes

Figure 4.6: The basic structure of a knowledge graph

The knowledge acquisition methodology of knowledge graphs (Leao and Rocha, 1990) was

developed based on knowledge graphs formalism, with the aim of providing die means of

eliciting and representing knowledge from multiple experts.

Several experiments have been developed using the knowledge graph methodology for

knowledge acquisition. For example, Leao (Leao and Rocha, 1990; Leao, 1988) applied this

methodology in eliciting and representing expert knowledge in the domain of congenital heart

diseases, in a research conducted at the Cardiology Institute (Brazil, RS). Later, diis

methodology was applied in the development of die HYCONES system, a hybrid

connectionist expert system developed for die diagnosis of Congenital Heart Diseases (Leao

andReategui, 1993b).
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Furthermore, this methodology has also been applied in the development of the SECOX-

HI system, a hybrid model for expert systems developed for classification of operation states

of (reservoir) floodgate manoeuvres, in a hydroelectric power plant (Viademonte, 1994;

Viademonte, Leao and Hoppen, 1995), and (Viademonte, Hoppen and Beckenkamp, 1997).

The knowledge representation formalism of knowledge graphs also has been the main

motivation and basis for the development of the Combinatorial Neural Model (CNM)

(Machado and Rocha, 1989; Machado and Rocha, 1990), previously introduced in Chapter 2.

Figure 4.7 shows an example of the use of a knowledge gtaph for the representation of the

operation state of emergency for floodgate manoeuvres, one of the various operation states used to

classify floodgate manoeuvres. In this domain modelling the operation states are the

hypotheses (or classes) under representation.

(9 )

/
0

El
(9.5)

Emergency

/ \ , ,

\

E2 E3 E4
(9) (9) (8.5)

Knowledge Graph

El = Reservoir level [0.40 ; 0.50] meters

E2 = High outflow, over 1500 mVs

E3 = Low inflow, less than 500 aiVs

\ E4 = High flow rate variation, over 40 trf/s/h

0 E5 = Precipitation higher than 50 mm/day
E5
(«)

Figure 4.7: Knowledge graph for the operation state of emergency as in (Viademonte,

Figure 4.7 shows two different pathways that lead to the hypothesis of emergency. The

first pathway consists of the three leftmost nodes of the gtaph (El, E2, and E3) connected by

a logical AND operation through an intermediate node. The second pathway consists of the

node E5 and E4 connected by a logical AND to the first pathway. The two different pathways

can be described as two different alternatives to support the hypothesis of emergency, which

means they became connected by a logical OR operation.

The numbers associated to each input node are the importance degrees of the information

represented by the nodes. This number is normally assigned by a domain expert.
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The knowledge acquisition methodology for the construction of knowledge graphs starts

with a series of interviews with domain expert(s), who determine the set of problems to be

handled, as well as the information (or evidences) that influence the identification of each

problem.. For example, in the weather forecasting context, the expert would have to identify

the weather phenomena that the system would try to classify, as well as the weather

observations and measurements that contribute to the identification of each selected

phenomena. For each of the selected problems, the expert would then have to sort the

evidences according to their order of importance, and place them in the evidence layer

(bottom layer) in the KG. The hypotheses are placed as hypothesis nodes in the top layer.

Next, the evidence nodes that have some degree of importance when grouped together are

connected in intermediate nodes, which are then connected to the hypothesis nodes. Finally,

in the last phase, an importance degree value in a range between 0 and 1 has to be assigned to

each node.

The knowledge acquisition methodology for the construction of knowledge graphs is

described in Appendix A.

4.4.2 Representing Domain Knowledge

Domain knowledge is represented in three ways in this research:

• through association rules

• through a neural network model, e.g. implicit in the neural network structure

• through a hierarchy of classes and objects

4.4.2.1 Representing Knowledge Through Association Rules

Although knowledge graphs constitute a powerful approach for knowledge acquisition and

representation in classification problems, its construction is time consuming and involves a

costly process, requiring the assistance of at least one domain expert. This could be observed

during the development of the SECOX-HI system and its application in the domain of

floodgate manoeuvres, in which the knowledge acquisition methodology for the construction

of knowledge graphs was employed to acquire expert domain knowledge (Viademonte, 1994;

Viademonte, Leao and Hoppen, 1995).
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Consequently, the automatic construction of KGs and similar knowledge representation

formalism would represent a potential solution for the problem of knowledge acquisition

(when applying those knowledge representation formalisms), particularly in situations in which

domain experts are not available.

Considering Figure 4.7 as an example, each pathway in the graph can be translated to a rule

representation, associating the respective evidence nodes. For example, the first pathway in

Figure 4.7 can be represented as follows:

If El AND E2AND E3 THEN EMERGENCY with 90% degree of confidence.

Or in a more explicit fashion:

If Reservoir level is in the range of [0.40 ; 0.50] meters AND

High outflow, over 1500 m3f2 AND

Low inflow, less than 500 nf/2

THEN the state is emergency with 90% degree of confidence.

This notation is very similar to the notation of association rules, as described in section

3.3.2.1. An association rule is an expression X —» Y, where Xand Y are sets of predicates; X

being the precondition of the rule in the disjunctive normal form and Y the target post

condition. As such, the association rule representation of the first pathway of Figure 4.4 can

be described as:

X = {E1, E2, E3}, and Y = { EMERGENCY }, rule confidence^ 90%

Where X-+ Y

Consequendy, knowledge graphs can be represented by sets of association rules, similar to

the ones generated by the Apriori algorithm (Agrawal, Imielinsk and Swami, 1993), as

discussed in Chapter 3. Furthermore, association rules can be automatically induced from

cases, through an association rule generator algorithm. This approach might represent a

potential solution to the problem of knowledge acquisition and representation through

knowledge graphs.
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For that reason, association rules were chosen as the formalism to represent domain

knowledge in this research. As a result, an association rule generator algorithm was selected

for data mining in this research.

Therefore, association rules were chosen as the knowledge representation formalism in the DM-NN model

for their similarity mth knowledge graphs, because they represent a clear and natural way of knowledge

representation that is easy for people to understand, because they easily represent simple causalities which are

suitable for the meteorological domain, because there are efficient algorithms for association rules discovery, and

finally because they fit smoothly into the selected neural network model, the CNM.

4.4.2.2 Representing Knowledge Through Neural Networks

Neural networks (NN) are good at implementing lower level reasoning. They excel in

recognising complex patterns, learning and generali2ation from examples and have powerful

self-organizing capabilities (Zurada, 1992). Furthermore, NN models like Backpropagation

and CNM have been largely applied in classification problems, as discussed in Chapter 2.

Neural networks, particularly the CNM model, were the selected approach to implement

learning and reasoning capabilities in this research. The CNM was selected because of its

compatibility with KGs and, as a result, association rules. Additionally, the CNM has been

successfully employed in several experiments dealing with classification problems, such

medical diagnoses (Leao and Reategui, 1993b), credit card scoring (Reategui and Campbell,

1995) and engineering problems (Viademonte, Leao and Hoppen, 1995). Another reason for

choosing the CNM model is that this author has experience in applying and working with

CNM, and one of the motivations of this research was to continue with previous work *i>is

author have been involved in applying NN, particularly the CNM, in building intelligent

systems.

The knowledge acquisition methodology of KGs has been the main motivation and the

basis for the development of the CNM (Machado and Rocha, 1989). Therefore, the structure

of the CNM is very similar to that of the graphs.

The CNM is usually implemented with a three layer topology: an input layer, a hidden layer

(also named combinatorial layer), and an output layer. As such, KGs can be directly mapped

•{ into the CNM topology.

123



Chapter 4 The Hybrid DM-NN Model for IDSS

The hypothesis nodes in the KG are mapped into the CNM's output layer, so the hypothesis

nodes became the output neurons in the neural network. Evidence nodes in the KG become the

input neurons in the neural network, and intermediate nodes are mapped on to the CNM's hidden

(combinatorial) layer.

Regarding its similarity with the KGs, association rules can also be mapped into the CNM

topology. In this case, each evidence/attribute value pair corresponding to a rule's antecedent

items is mapped on to an input neuron in the CNM topology. The right side of the rule, e.g.

the consequent item, is mapped on to an output neuron; and the rules correspond to the

strengthened connections among the input nodes, e.g., the CNM combinatorial (hidden) layer.

For instance, rules describing relations in the weather forecasting domain (described in

Chapter 5) are represented by neurons and synapses. Figure 4.8 illustrates this property.

CNM Neural Network

Association Rules

Figure 4.8: Mapping rules into the CNM topology

In Figure 4.8, the antecedent items of the rules, the evidences A., B, C, X and Y, are

represented as input neurons in the CNM structure, and the hypotheses H1 and H2 are

represented as output neurons. For instance the rule antecedent item A. is mapped on the first

input neuron, item B is mapped on the second input neuron, and item Cis mapped on the

third input neuron. Additionally, importance degree values can be assigned to each rule

antecedent item, similarly to the importance degree values assigned to the evidence nodes in

the KGs. These importance degree values can be then transferred as input neuron weights in

the CNM structure. Synaptic weights are calculated by the CNM algorithms, and hidden

neurons correspond to combinations of evidences, representing rules. The leftmost hidden
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neuron in Figure 4.8 represents the rule If A. and B than H2, indicating to hypothesis H2,

represented by the output neuron with the same name.

The CNM was the selected neural network model in this research because of its generalisation, learning

from examples, and self-organising capabilities, by its compatibility mth the KGs and association rules, and

the facility of translating association rules into its topology. Furthermore, the CNM has been successfully

employed in several experiments dealing mth classification problems.

Section 4.6 describes the CNM model in more detail.

4.4.2.3 Representing Knowledge Through a Hierarchy of Classes and
Objects

Accordingly to what was previously discussed in Chapter 2 (see Table 2.1), in neural

network models knowledge is implicitly represented as connection weights distributed across

the NN topology. In such a knowledge representation schema it is very difficult to explicitly

access that knowledge for explanatory purposes. To minirmze this problem, the CANN

simulator was selected as the NN environment in the DM-NN model.

The Components for Artificial Neural Networks (CANN) environment is a research

project that concerns to the design and implementation aspects of a framework architecture

for decision support systems that rely on artificial neural network technology (Pree,

Beckenkamp and Rosa, 1997; Beckenkamp, 2002). The CANN project concerns the creation

of basic NN components to implement different NN models, and also to support problem

domain modelling.

The CANN architecture combines NN models with a symbolic mechanism to represent

the NN structure. The NN structure including the knowledge stored across that structure is

symbolically represented in a hierarchical fashion, dirough an object-oriented design that

reflects common properties of classification problems. For instance, the evidences form the

input data (in the same way KGs represent evidence nodes). Experts use evidences to analyse

the problem in order to be able to come up with decisions.

Evidences in the case of the aviation weather forecasting would be wind speed and

direction, for example. On the other hand, the classification categories, e.g. hypotheses,

constitute a further core entity of classification problems. In aviation weather forecasting,
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hypotheses would be fog occurrence, thunderstorms and cyclones, for example. In CANN, an

instance of class Domain represents the problem by managing the corresponding Evidence and

Hypothesis objects. Figure 4.9 illustrates an object-oriented representation of die weather

forecasting domain.
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Figure 4.9: Object-Oriented representation of the aviation weather forecasting domain

The domain of aviation weather forecasting is modelled as an instance of Domain class. The

Domain class manages hypothesis and evidences associated with a particular domain; and both

evidences and hypothesis are described by their attributes, which can be of different types,

e.g., numeric, fuzzy and string. Figure 4.9 shows two evidences associated with the hypodaesis

of fog occurrence, which is an instance of the Hypothesis class. In Figure 4.9, evidence instances

are nnnd speed 1, and wind direction NNE. Evidence instances are described by their respective

attribute instances; for example, wind speed1 is described by an instance of numeric attribute

associated with wind speed lower or equal to 1 meter/second (< — 1 m/s). In a similar way, the

evidence instance wind direction NNE is described by an instance of a string attribute associated

with wind direction North Northeasterly.

Besides implementing common properties of classification problems, the object-oriented

design allows the representation of abstract concepts such as generalisation, classification and
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aggregation; providing the necessary flexibility for knowledge modelling. Further discussion

about the representation of abstract concepts and their integration with neural network

models is provided in (Leao and Rocha, 1990; Reategui, Campbell and Leao, 1997).

The concepts and ideas discussed in this section, inherent to the CANN simulator, make it a suitable

choice to implement the Intelligent Advisory System (IAS) component in this research. Another reason for

choosing CANN is because this author has been working in the CANN project development and its

application, and is thus very familiar with its concepts and functionalities.

The next section introduces the CANN simulator.

4.5 Components for Artificial Neural Network - CANN

The Components for Artificial Neural Networks (CANN) is a research project that relates

to the design and implementation aspects of a framework architecture for decision support

systems that rely on artificial neural network technology (Pree, Beckenkamp and Rosa, 1997;

Beckenkamp, 2002). The CANN components are object-oriented designed; hence the core

parts are done as small frameworks to improve implementation reusability and flexibility.

The CANN project concerns the creation of basic NN components to build different NN

models; the creation of NN components that can be reused by third parties; and the

construction of a simulation infrastructure that allows to plug several NN components and

use/test them (Beckenkamp and Pree, 2000; Pree, Beckenkamp and Rosa, 1997). Additionally,

there is a component created to support problem domain modelling and access to data sources

for the NN learning and testing process.

At the time this thesis was written, the implemented NN models in the CANN framework

were (Beckenkamp, 2002): the Backpropagation (Rumelhart and McClelland, 1986),

Combinatorial Neural Model (CNM) (Machado and Rocha, 1990), the Self-Organizing Feature

Maps (SOM) (Kohonen, 1982), and the Adaptive Resonance Theory (ART) (Carpenter and

Grossberg, 1987). These models were chosen because they cover almost all learning strategies

and NN topologies. For example, Backpropagation implements a supervised learning based on

the error correction learning algorithm, and its architecture is feedforward multilayer and it is

fully connected. The CNM model also implements supervised learning based on a variation of
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the error Backpropagation learning algorit'un (see section 2.4.5), but the network is

feedforward and not fully connected. For more details about the NN models implemented in

CANN and their motivations, refer to (Beckenkamp and Pree, 2000) and (Beckenkamp, 2002).

Besides keeping the design open for supporting various NN models, a smooth integration

of NN technology into a decision support system forms another important design goal within

the CANN project. Thus the main goals of the CANN project are (Beckenkamp, 2002): the

description of flexible and reusable components for core aspects of neural networks implementations, the

integration of different neural network models in a decision support system, and the presentation of a decision

support system architecture that can be easily adapted to handle different domain problems. As such, the

CANN simulator is well suited to implement the IAS component in the decision support

model proposed in this research.

The next section introduces the CANN architecture and its main components. Full

discussions about CANN, including motivation and implementation aspects can be found in

(Beckenkamp, 2002).

4.5.1 The CANN Architecture

The CANN project was completely designed based on framework construction principles

(Gamma et al., 1995; Pree, 1995), in order to reflect the necessary building blocks for creating

different NN architectures. The design takes into consideration the flexibility for reusing the

core entities of an NN. Additionally, it is fully implemented in Java programming language

(Sun Microsystems, 2004).

There an ive frameworks implemented in CANN: the Simulation framework (which is why

it is called the CANN simulator), the Neural Network, Domain, Data Convener and GUI. This

thesis introduces the Neural Network and Domain frameworks, as they are particular relevant

to this research. The GUI framework is introduced in Chapter 6, through the application of

CANN in aviation weather forecasting.

The Domain framework implements a generalized way of defining problem domains; as a

result, it can be applied to any NN model and domain problem.

A NN framework is defined in order to facilitate the implementation of different NN

models. This is achieved by modelling the core entities of the NN (neurons and synapses) as
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objects and storing the generated NN topologies as objects via Java's serialization mechanism.

As such, CANN is able to reuse these core NN components for implementing new NN

models.

This section introduces the CANN architecture and design principles in order to illustrate

how CANN was applied in this research. Readers interested in detailed discussion about

CANN design should refer to (Beckenkamp, 2002). This thesis also assumes that readers are

familiar with concepts such as object orientation, frameworks and design patterns. Readers

interested in further discussion in these subjects should refer to (Pree, 1995) and (Gamma et

al., 1995).

4.5.1.1 Object-Oriented Modelling of Neural Networks

Neurons and synapses form the basic building blocks of NN models (see section 2.4).

CANN provides two classes1, Neuron and Synapse, whose objects correspond to these entities.

Both classes are abstract and offer properties that are common to different neural network

models. The idea is that these classes provide basic behaviour independent of the specific NN

model. Subclasses add the specific properties according to the particular model.

An object of the Neuron class provides methods to calculate its activation and to manage a

collection of Synapse objects that process outgoing signals of a neuron. A Synapse object

represents a directed connection between two neurons, a receptor and source neurons (see

Figure 4.10).

The receptor neuron manages a list of incoming synapses (represented by the solid arrows

in Figure 4.10) and computes its activation from these synapses. A Synapse object has one

Neuron object connected, which is the source of the incoming sign. The dashed arrows in

Figure 4.10 represent the computational flow (the set of incoming signs from all source

neurons). The incoming signal from one source neuron is processed by the synapse and

forwarded to the receptor neuron on the outgoing side of the synapsis. This Neuron object

computes its activation from all incoming synapses.

Through this mechanism different neuron network topologies can be built, for example, a

multilayer feedforward or recurrent networks. Each NN model is responsible for its

1 The terms classes and objects here, are. referred in the Object-Orientation context.
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topological construction; distinct models use Neuron and Synapse classes as their basic building

blocks for the neural network structure and behaviour construction.

For example, in the case of implementing a multilayer feedforward neural network model,

all necessary neurons are generated. Following, the synapses to connect the neurons at

different layers are generated and connected to their respective neuron layers.

Receptor Neuron

-V Synapses

Source Neuron

Figure 4.10: The relationship between Neuron and Synapses objects, as in
(Beckenkamp, 2002)

The abstract mediods defined in Neuron class are responsible for generating synapse

instances and their appropriate connection to source neurons. Specific methods for different

NN models are implemented in die abstract class that defines a particular neural network

model, which implements its respective subclasses. Through this mechanism of class

inheritance, different neural network models can be implemented. Figure 4.11 shows part of

the class hierarchy derived from the Neuron class, implemented in the neural network

framework.

Figure 4.11 illustrates the instantiation of a Backpropagation and CNM models. Specific

behaviour from Backpropagation and CNM neurons are implemented in respective Neuron

subclasses, namely, BPNeuron and CNMNemvp and their respective derived subclasses,

according to each neuron functionality, i.e. input, output, or hidden neuron (Beckenkamp,

2002).

The class hierarchy for the Synapse class follows a similar fashion to the Neuron class. In

both class, hierarchy subclasses are created to implement each specific NN model. For

example, specific Synapse subclasses in the CNM model include punish and reward

accumulators and a method to implement them. Such methods are implemented by the CNM

synapse subclass.
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Figure 4.11: Part of the Neuron class hierarchy implemented in CANN, as in
(Beckenkamp, 2002)

CANN provides a schema to separate specific NN implementations from die application

domain implementation. For that an abstract class named 'NetManager and an interface named

Inetlmplementation were defined. NetManager defines implementations tiiat do not belong to NN

models in particular, such as manipulating the domain knowledge, and fetching test and

training datasets. An INetlmpkmentation object represents the inference engine (e.g., neural

network model) of the running CANN system. Its interface reflects, the needs of die decision

making process under consideration in a particular CANN application.

Flexibility in implementing NN models is one of the main goals of die CANN project.

This means that die design should allow the experiment of different NN models, in a

simultaneous fashion. The NetManager class, togedier with the INetlmpkmentation interface,

implements this feature, and are responsible for controlling a set of instances of different

neural network models, or even a set of instances of die same neural model but widi different

configurations.

A specific NN model is defined by subclassing INetlmpkmentation and overriding the

corresponding hook mediods.
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4.5.1.2 Domain Representation

CANN was initially developed on ideas and applications of applying NN in classification

problems (Pree, Beckenkamp and Rosa, 1997), thus the chosen object-oriented design of this

system aspect reflects common properties of classification problems. In CANN, the domain is

represented through four main classes: Domain, Evidence, Hypothesis, and. Attribute. Figure 4.12

illustrates the class hierarchy for domain representations.

Evidences form the input data, and experts use evidences to analyse the problem in order

to arrive at decisions. Evidences in aviation weather forecasting would be the level of rainfall,

wind speed and direction, for example. Evidences are described by their respective attributes,

so the Attribute class was incorporated in the framework. One or more Attribute objects

describe the value of each Evidence object

Domain
-Evidences : Object
-Hypothesis : Object

1

1

manages
p • • • .

Evidences

-name : String
-Description ."String
-Attributes : Objsct
-fetcher : EvidenceFetcher

+setActivation Q : Boolean

1

E

manages
*

has

* •

Hypothesis

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher
+setActivation 0 : Boolean

I I 1 -
Attributes

-name : String
-activation : float
-evidence : IEvidence

NumericAttribute j I StringAttribute |

FuzzyAttrRrate J
Figure 4.12: Class hierarchy for domain representations, as described in (Beckenkamp,

2002)

For example, in the case of the evidence wind direction, this might be defined as a set of

string values (string attributes) such as North, Northwest, South, Southwest, etc. The evidence level

of rainfall might be defined by •*. numeric attribute, such as 7 (7 mm I'day) and the evidence

wind speed defined as a fuzzy set (Kosko, 1992; Viademonte, Hoppen and Beckenkamp, I
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1997) of values: light, moderate, light to moderate, fresh, strong and galeforce. Consequently, the

Attribute class is subclassed according to the different data types an attribute might hold, such

as numeric, string and fuzzy sets (see Figure 4.12).

Furthermore, the classification categories (or hypotheses) constitute a further core entity of

such problems. In aviation weather forecasting, hypotheses would be fog occurrence,

thunderstorms, cyclones, etc. The Hypothesis class represents the possible classes (or

hypotheses) involved in a particular application.

In CANN, an instance of class Domain represents the problem by managing the

corresponding Evidence and Hypothesis objects. Figure 4.12 shows the class hierarchy involved

in the problem domain representation.

4.5.1.3 Data Conversion

Training and testing of an NN model are important features, and for both tasks data have

to be provided. For training an NN to identify a particular weather pattern, data might come

from an ASCII file. One line of that file represents a set of weather observations, which are

the atmosphere evidences plus the correct pattern classification. After training the NN,

weather data should be tested, that is, CANN takes the evidences of a particular weather

observation as input data and has to classify it. The data source might in this case be a

relational database management system. It should be clear from this scenario that CANN has

to provide a flexible data conversion subsystem.

Besides the Neural Network and Domain frameworks, CANN defines a framework for

processing problem-specific data. Fetcher and Evidenced etcher abstract classes constitute the

framework for processing problem-specific data (Beckenkamp, 2002). Class Fetcher is abstractly

coupled with class Domain. A Fetcher object is responsible for the preparation/determination

operations associated with a data source. For instance, if the data source is a plain ASCII file,

the specific fetcher opens and closes the file.

The Evidence and Hypothesis classes are abstractly coupled with the EvidenceFetcher class.

Specific subclasses of EvidenceF etcher are responsible for accessing the data for a particular

evidence. For example, a converter for reading data from an ASCII file stores the position
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(from column, to column) of the data in the ASCII file. An Evidenced etcher for reading data

from a relational database would know how to access the data by means of SQL statements.

Readers interested in a more comprehensive and detailed discussion about the CANN

project and framework should refer to (Beckenkamp, 2002; Pree, Beckenkamp and Rossi,

1997), and (Beckenkamp and Pree, 1999).

In order to evaluate the proposed decision support model in this research, the CNM

neural network model was employed (for reasons previously discussed in section 4.4.2) as it is

implemented in CANN. The next section introduces the CNM NN model and its main

algorithms.

4.6 The Combinatorial Neural Model - CNM

The CNM network (Machado and Rocha, 1990) was designed to provide a computerised

method that would use the same reasoning model as knowledge graphs; consequently it is well

suited for classification problems (Leao and Reategui, 1993a). According to Reategui (1997) by

haviiig a neural network with a similar structure to that of knowledge graphs, machine learning

and knowledge engineering technologies could cooperate in the development of intelligent

systems.

The CNM neural network model was selected for this research for its generalization,

learning from examples, and self-organizing capabilities; by its compatibility with the KGs and

association rules, and, consequendy, by the facility CNM offers in translating association roles

into its topology, as previously discussed in section 4.4.2.2, "Representing Knowledge

Through Neural Networks."

In the CNM, domain knowledge is mapped on to the network through evidences and

hypotheses, in a similar fashion to KGs. The CNM has a feedforward topology, usually

implemented with three layers: an output layer, an input layer, and a hidden layer (also named the

combinatorial layer). The output layer represents the hypodieses (or classes) involved in a

particular problem, where each neuron (node) represents a single hypothesis. The input layer

represents the evidences, used to support a particular hypothesis. Each input neuron

represents an evidence/value pair, and an evidence might have many values. The

ft
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combinatorial layer represents different combinations of evidences that lead to a specific

hypothesis (Machado and Rocha, 1990). The topology of a CNM model is multi-layer

feedforward, and it is similar to that illustrated in Figure 2.5.

Evidences and hypotheses are assigned by a domain expert or a knowledge engineer. The

combinatorial layer, otherwise, is automatically generated. A combinatorial neuron is created

for each possible combination of evidences that lead to a specific class, from order 1 to a

maximum order predefined by the user.

Input neurons are formed by fuzzy values in the interval [0,1], indicating the degree of

confidence (or measure of relevance) of the information represented by each input neuron.

Neurons are linked by connections, e.g. synapses. CNM implements two types of synapses:

excitatory and inhibitory. Excitatory synapses propagate an input signal using their synaptic

weight X as an attenuating factor. Inhibitory synapses implement a fuzzy negation on the

arriving signal, transforming it into 1-X. Then signals are propagated by liiultiplying its value

by the synaptic weight.

Combinatorial neurons propagate incoming values according to a fuzzy AND operation.

The output value Y of a fuzzy AND operation corresponds to the minimal arriving value, e.g.,

the smallest value obtained from, the product of input signals with their corresponding

synaptic weights (Equation 4.1) (Machado and Rocha, 1992):

Equation 4.1: Fuzzy AND operation

In Equation 4.1, / C" {/,..., n}, indicates input neurons, Xi is the input signal of itb input

neuron, and Wi its corresponding synaptic weight.

The output layer implements a competitive mechanism among the pathways that connect

to each output neuron, propagating the maximum of their incoming values through a fuzzy

OR operation. The output value Y of a fuzzy OR operation corresponds to the maximum

arriving value from the lower layer, e.g., the highest value obtained from the product of input

signals with their corresponding synaptic weights (Equation 4.2) (Machado and Rocha, 1992).

Li
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Equation 4.2: Fuzzy OR operation

In Equation 4.2, icz {/,..., »}, indicates the output neurons, Xz is the incoming signal of ia

output neuron, and Wi its corresponding synaptic weight.

CNM modifies weight values through a supervised learning algorithm (section 2.4.5) that

aims to minimize the mean square error (Kosko, 1992) of the network. The mean square error

is propagated through the network during the :>-fining stage, when the neural network is

presented with a set of examples (training dataset).

The learning approach implemented by CNM is based on the concept of rewards and

punishments, analogous to that of the Backpropagation model, to identify successful and

unsuccessful pathways. Synapses defined in CNM topology have weights and a pair of

accumulators for rewards (RACc) and punishments (PAcc) (Machado and Rocha, 1992). To

begin with, all weights are set to one and all accumulators to zero. During the training phase,

as each example in the training set is propagated along the network, pathways that lead to

correct classifications have their reward accumulators incremented. Similarly, misclassifications

increment the punishment accumulators. Weights remain unchanged during the training

process. At the end of training phase, which is done with a single scan over the training set,

pathways with more punishments than rewards, e.g., RACc < PACO
 a r e pruned, and the

remaining connections have their weights calculated.

The CNM learning method is performed through the Incremental Reward and

Punishment (IRP) algorithm, and the Starter Reward and Punishment (SRP) algorithm. The

SRP algorithm is used to initialise the network and calculate the punishment and reward

accumulators according to the training set. The accumulators are set to zero and the weights

are set to one. All data examples are applied to the network in a single scan, to update the

rewards and punishment accumulators. After scanning the training set and calculating the

accumulator values, no-rewarded pathways are pruned and the remaining pathways have their

weights updated.

The IRP algorithm adjusts the knowledge (accumulator and weight values) of the network.

The IRP algorithm updates the punishment and reward accumulators, considering die values
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previously calculated by the SRP algorithm, removing all negative or weak connections. Weak

connections are those with weights smaller than a predefined pruning threshold that is

empirically determined by the user. Furthermore, the IRP algorithm identifies and keeps all

pathognomonic pathways (those with no punishment and a positive reward value), setting

their respective weights with values higher than the pruning threshold. After the learning

stage, the final CNM neural network keeps only the pathognomonic pathways.

Beckenkamp (2002) enumerates several characteristics of the CNM NN model. Some of

the characteristics that are particularly relevant to this research and its application in aviation

weather forecasting are:

• Input neurons only bypass the information, which has to be normali2ed in the

range [0,1]. This valxie is normally assigned by a domain expert or knowledge

engineer during a data preparation stage. It is called the relevance degree of an

evidence/value pair.

• Input and output neurons are defined by a domain expert or knowledge engineer.

Combinatorial neurons are automatically generated, based on the possible

combinations among input neurons. As a result, CNM can easily fall in a

combinatorial explosion situation. The CNM implementation in CANN provides

optimisation of the original CNM algorithm in order to minimize this problem.

• CNM synapses are provided with reward and punishment accumulators that are

used to decide whether or not to prune the synapses, and also to update synaptic

weights.

A more detailed explanation of both the IRP and the SRP algorithms can be found in

(Denis and Machado, 1991; Machado, Barbosa and Neves, 1998), and (Beckenkamp, 2002).

The CNM has been successfully employed in several experiments dealing with classification

problems, and these experiments are reported in the literature (Machado and Rocha, 1992;

Leao and Reategui, 1993a; Reategui, Campbell and Borghetti, 1995), and (Viademonte, Leao

and Hoppen, 1995). The successful applications of the CNM model in practice constitute one

of the main reasons for choosing the CNM as the NN model in this research.

Chapter 6 describes the CANN and CNM implementation in aviation weather forecasting.
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4.7 The Functionality of the DM-NN Model

The purpose oi the proposed DM-NN model is to support decision making by recalling

past facts and decisions, inducing "chunks" of domain knowledge from this information and

performing reasoning upon this knowledge in order to verify hypotheses and reach

conclusions in a given situation. The DM-NN model for IDSS is task-oriented. This is a

typical feature of an intelligent decision support, as the knowledge it contains should be

specific to the problem at hand. However, the general principles behind the proposed system

can be applied to any domain where large volumes of historical data are available.

The DM-NN model for decision support can be seen from two perspectiveo: as an

iterative and interactive decision support process and a computational architecture. Firstly, it defines

a decision process, and at the same time it provides a computational architecture for linking

various technological components in a single decision support cycle (see Figure 4.13).

From the process perspective it proposes a line of actions that can be taken to support a

particular decision situation. In that sense it is a normative process, as one activity relics on the

previous activity linked by some algorithmic relationship. Despite this normative aspect, it is

not necessary for the decision maker to follow all the proposed steps until the final

recommendation is reached. If a decision maker is satisfied with intermediary results, the

process can be stopped at that level.

At the same time, the proposed model for decision support involves a computational

architecture, as it suggests the combined use of different computational components and

technologies. As a result, it defines an interactive computational environment that uses data

mining technology to automatically induce domain knowledge from case bases, and a NN

based system as a core for an advisory system, which provides the user interface.

The decision support model comprises a decision-oriented data repository (data warehouse

or databases), case bases and knowledge rule bases. The data repository contains historical raw

data from the problem domain under consideration. Case bases contain selected cases from

the specific problem at hand, which are built from the historical raw data stored in databases.

Knowledge rule bases are built based on the data mining results; they contain structured

generalized knowledge that corresponds to relevant relations discovered (mined) in case bases.
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Figure 4.13 illustrates the decision support cycle of the DM-NN model.

Automatic
Discovery

Knowledge Rule
•;.•;. •. B a s e

User-System
Interaction

NN Based System

Figure 4.13: The decision support cycle of the DM-NN model

The system provides three levels of decision support: rules generation, case consult and case base

consult. The rule generation corresponds to the set of association rules generated in a data

mining session, which may be evaluated by the decision maker. If the generated set of

association rules provides enough information to the user decision maker to arrive at a

decision, the situation is resolved and the generated rules can be stored in the knowledge base

for further use. At this point the process can be considered finished.

Odierwise, the rules can be presented to the NN for learning. After the NN-based learning

procedure has been executed, the advisory component provides a case consult and a case base

consult facility through its consult mode for the user to test and validate hypotheses about the

current decision situation (see section 4.3.5, "Intelligent Advisor)' System.")

A case consult presents a selection of evidences, and their respective evaluation by the IAS

component. The IAS component evaluates the selected evidences and calculates a confidence

degree for each hypothesis. The inference mechanism implemented by the CNM neural model

indicates the hypothesis wim the highest confidence degree as the candidate solution (or class)

to the problem. A case base consult is similar to a case consult, except that instead of

presenting a single case (or one set of evidences; each time, several cases are presented to the
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IAS component for evaluation. The IAS component evaluates a set of cases in the same way

as a single case.

Furthermore, if the user decision maker believes that the outcome of the IAS (after a

consult has been performed) represents novel and potentially useful information; it can be

stored, either in the case base as a new case, or in the knowledge base as a new rule. Normally,

it is expected that IAS outcomes will be stored in the knowledge base, but this decision

depends on the specific characteristics of each application, and what the user believes is more

appropriate.

The proposed architecture aims to serve as a model for a KDD-based intelligent decision

support that can be used more widely in decision contexts, in data rich domains.

4.7.1 Applying the DM-NN Model

In order to verify the DM-NN model applicability and assess its performance it was

implemented in the context of aviation weather forecasting, to identify severe and rare weather

phenomena at airport terminals, particularly fog phenomena. Severe and rare weather events

are intrinsically problematic to predict because weather forecasters normally do not have

extensive experience in forecasting such events; as such, false alarms or incorrect forecasts are

more likely to occur. Furthermore, severe weather events are hazardous events that can

potentially cause serious damage and unsafe conditions.

Chapter 5 and Chapter 6 describe this implementation in the context of the decision

support cycle illustrated in Figure 4.13. Chapter 5 describes the knowledge discovery stage of

this implementation, where descriptive models are built (refer to section 4.2), and Chapter 6

describes the intelligent advisory stage where predictive models are built.

Specifically, Chapter 5 describes the process of building cases from a meteorological data

repository (Australian Data Archive for Meveorology, ADAM), including the activities of data

preprocessing for data mining to populate die case bases with built cases. Chapter 5 also

describes the data mining process, and the process of building knowledge bases.

Chapter 6 describes the intelligent advisory system stage, where the NN based system is

employed. The stages of domain modelling in the CANN simulator, NN training and

consultation are described.
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Figure 4.14 illustrates this approach. It depicts the decision support cycle implemented

through the DM-NN model and how that cycle is developed through the DM-NN model

implementation in aviation weather forecasting.

Knowledge Discovery Stage
Cbapter5

Intelligent Advisory System
Stage
Chapter 6

NNBactdSv-stew

Figure 4.14: The decision support cycle in the context of aviation weather forecasting

A quantitative approach was used to assess the DM-NN model performance, where the

holdout method was employed using a database provided by the Australian Bureau of

Meteorology (BOM), with 49901 weather observations from July 1970 until June 2000, taken

at Tullamarine.

Following, Chapter 5 and Chapter 6 describe the implementation of the DM-NN model in

aviation weather forecasting, and Chapter 7 discusses the performance of the DM-NN model

in the context of this implementation.

4.8 Chapter Summary

This chapter introduced the proposed hybrid DM-NN model for intelligent decision

support system. It first gave an overview of the operation of the DM-NN model, and then

described the proposed framework architecture, its components, their interactions and

functionalities. The employed knowledge representation schema was explained, the neural

network environment CANN simulator and CNM neural network model were introduced,

and the specific category of problems the DM-NN model was designed to handle, as well as

its operational mode were explained.
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Chapter 5

5 Applying the DM-NN Model in Aviation Weather
Forecasting: The Knowledge Discovery Stage

This chapter describes the stage of knowledge discovery in the implementation oj the Hybrid

DM-NN model for IDSS in the context of aviation weather forecasting at Tullamarim.

First, the problem of aviation weather forecasting is introduced. Next, the stages of

discovering knowledge from meteorological databases and building knowledge bases are

described.

5.1 Introduction

The implementation of the DM-NN model in aviation weather forecasting forms the

second major theme of the framework for the IDSS model proposed in this research. Chapter

4 introduced the framework technological components and their respective roles and

interactions. Chapter 5, Chapter 6 and Chapter 7 are dedicated to the implementation of the

IDSS model in aviation weather forecasting. Although these three chapters cover distinct

stages of that development, together they form the whole theme of that application.

This chapter covers the stage of knowledge discovery developed in this research that

relates to the activities of data gathering and preprocessing, data selection, modelling, sampling

and data mining.

Figure 5.1 illustrates the stage of knowledge discovery in the perspective of the decision

support cycle implemented through the DM-NN model, previously discussed in Chapter 4.

The activities depicted in Figure 5.1 were developed and discussed thoroughly this chapter in

the context of aviation weather forecasting.



Chapter 5 Applying the DM-NN Model in Aviation Weather Forecasting: The Knowledge Discovery
Stage

Knowledge Discovery Stage

«"pata.mpcfeling
for date mining^

.(including cfe'ta ~~

Automatic
Discovc

^Generating-"':. •
^'knowledge models

ADAM Knowledge Rule

Figure 5.1: The knowledge discovery stage

Section 5.2 introduces the issues of aviation weather forecasting, definitions and concepts.

Section 5.3 addresses the issues of data gathering and preparation. It includes the activities

of features selection and construction, and also data analysis. The activities of data modelling

for data mining are also described, including data sampling and building datasets for data

mining.

Section 5.4 addresses the activities of data mining, including selecting database attributes,

discretization of numerical attributes (features), choosing data mining threshold values and

finally generating the knowledge models.

5.2 Issues in Aviation Weather Forecasting

The proposed DM-NN model for IDSS was applied in aviation weather forecasting, in

particular, identifying fog phenomenon at airport terminals. It allowed a validation of the DM-

NN model and an assessment of its performance. This application was developed at

TuUamarine.

The Australian Bureau of Meteorology (Meteorology, 2003a), Victorian Regional

Forecasting Centre (VRFC) is the organization responsible for providing weather forecast

reports for metropolitan Melbourne and regional Victoria. These reports include public

weather forecasts, nautical information and aviation weather forecasts.
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The design, development and application of the DM-NN model in aviation weather

forecasting were done in the context of the Mandala Project (Linger et al, 2000). The Mandala

Project is the base for the Bureau's Forecast Streamling and Enhancement Project (FSEP),

which concerns the development of relevant and integrated support systems for operational

forecasters. The FSEP project aims to provide on-line services that include access to a wide

variety of data, data visualisation and graphical editors, historical forecast databases and

automated forecast guidance, amongst other services (Meteorology, 2003a; Linger et al., 2000).

It includes testing of intelligent alerting techniques based on 'agent5 technology, and the

implementation of a robust objective guidance technique at some 600 sites across Australia,

combining direct model output and statistical predictions of weather variables (Meteorology,

2003a).

Weather forecasts are based on a collection of weather observations describing the current

state of the atmosphere, such as precipitation levels, information on the ground about air and

wind-related measures, such as direction and velocity, temperature, dew point depression, etc

(Meteorology, 2003b). As described by the Bureau of Meteorology (Meteorology, 2003a) these

data come from a wide array of sources and include:

• weather reports from human observers, automatic weather stations, ships at sea

and buoys

r measurements of the upper atmosphere from instrument packs carried aloft by

weather balloons and from aircraft reports

• data received from weather satellites, including satellite images and vertical

temperature cross sections of the atmosphere, detected from satellite based

sounders

• data from other sources such as weather radar and surface based profilers

There are two types of weather phenomena that are particular relevant for aviation weather

forecast, rare and severe events. Rare events are intrinsically problematic to predict because

forecasters normally do not have extensive experience in forecasting such events; as such, false

alarms or incorrect forecasts are more likely to occur. Severe weather events are hazardous
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events that potentially can cause serious damage and unsafe conditions. Unsafe conditions are

named sub-minimalconditions.

In the case of aviation weather forecast, severe weather conditions potentially prevent

aircraft from landing and taking off. For example, if the visibility at the airport is below a

particular critical value, aircraft may not be allowed to take off and land.

Some of the most hazardous weather events are severe thunderstorm activity, cyclones,

low cloud and fog. In pz.rticular, dense fog and low cloud represent some of the greatest

hazards to aviation and to nearly all forms of surface transport. Aircraft are generally not

allowed to take off or land if the visibility is less than a critical minimum value.

5.2.1 Weather Forecast at Tullamarine Airport

Two different types of aviation weather forecasts are made for Tullamarine: TAF

(Terminal Aerodrome Forecast) and TTF (Trend Type Forecast). Routine TAFs are issued by

the Victorian Regional Forecasting Centre (VRFC) every 6 hours for a forecast period of 24

hours. TAFs are the primary information that is supplied to the airlines by the VRFC. TAF

provides hour-by-hour forecasts of weather conditions critical to aviation operations such as

cloud amount and height, visibility, turbulence, precipitation, wind speed and direction,

temperature and pressure (Meteorology, 2003a).

Every half an hour a TTF is appended to an observation of the current weather, which is

called the Metar. The forecast period of the TTF is 3 hours and for this period it overrides

TAF. These forecasts are amendable at any time. Special observations (named Speci) are

issued whenever horizontal visibility, cloud base or other significant weather varies across

certain minimum values critical to aircraft operations (Keith, 1991). Measurements below

these minimum values are known as sub-minimal conditions. Sub-minimal conditions are

particular significant because if they are predicted by forecasters for a certain period, the Civil

Aviation Authority (CAV) will assign a requirement that any aircraft allocated to arrive at the

airport during that period must carry extra fuel. This is to enable the aircraft to keep a holding

pattern over the airport, or to diverge to an alternative airport. Not properly forecasting sub-

minimal conditions can potentially cause a situation in which an aircraft does not have enough

fuel to travel to an alternate airport, as such, having to proceed with a risky landing operation.

I
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On the other hand, carrying more fuel than necessary has a significant economic impact on

the aitlines. Most sub-minimum weather conditions at Tullamarine are caused by low cloud

and fog (Keith, 1991),

TAFs are verified by the Aviation and Defence Office in the Services Policy Branch of the

Bureau of Meteorology's Head Office in Melbourne. Most planning of fuel requirements to

aircraft of international flights is done using TAF, and for national flights is done using TTF

(this is because most flights coming into Tullamarine arrive via Adelaide, Sydney, Kobart,

Canberra and provincial centres. AU of these are less than 2 hours flying time from

Melbourne).

According to Keith (1991) forecasts for Tullamarine demonstrate poor performance,

particularly of short-term forecasts of low stratus and jog. Short-term forecast is characterized by

forecasting an event from a progressively smaller lead of time.

Attempts to formulate objective forecasting schemes using conventional synoptic data

have not significantly improved very short-term forecasting. Keith (1991) demonstrated that

forecast skill decreases sharply when lead times become less than the interval between

synoptic observations. Love (1985) comments about the difficulty of very short-term forecasts

based on a synoptic network. According to Keith (1991) short term airport forecasts are based

on a variety of information, the most relevant of which are synoptic observations and aircraft reports

within about 150 kxi of the airport, satellite pictures and radar.

In the case of Tullamarine, where the vast majority of sub-minimal weather conditions

involve low cloud; and fog, radar is of value for only a relatively small percentage of sub-

minimum conditions. Most of the poor weather at Tullamarine occurs overnight, thus

assistance from satellite pictures is limited to 3-hourly infrared images. Keith (1991) observed

that despite several attempts using infrared satellite pictures for detection of low cloud and

fog, these have not proved helpful for the forecast problem at Tullamarine. For instance,

Bond (1981) aimed to detect moisture fields, which are a precursor of fog formation, using

infrared images; and Bedson and Canterford (1983) formulated a low cloud enhancement for

infrared satellite pictures. According to Keith (1991) the problem with using satellite pictures

for detection of jog and stratus is related to temperature. Fog and low stratus are invisible on
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these pictures due to the small differences between the ground and cloud-top temperature,

which are almost the same in most cases. In addition, the low cloud and fog does not simply

advert over the airport but forms over a broader area, so the satellite pictures do not identify

low cloud and fog in small areas, such as the airport (Keith, 1991; Auer Jr., 1992).

Additionally, one of the major difficulties of fog forecasting is that it is a very short-term

forecasting. As one attempts to forecast an event from a progressively smaller lead of time, the

utility of guidance that is derived from syr» optic-scale data progressively decreases. When it

occurs in a location, such as TuUamarine, where single station data gives no measurable

assistance, the forecast task become virtually impossible.

5.2.2 Fog Formation and Definitions

According to international convention (Auer Jr., 1992), fog can be defined as restricting

visibility to equal <"»? less than one kilometre, or visibility between one and two kilometres.

Fog forms when air cools without losing water, or when air is moistened (slightly or

moderately wet) without warming. Fog has several characteristics: restricts visibility, it has

aerosol composition, cooling and moistening of near surface air, it presents a coin effect (it

comes and goes successively), and it seems that the earlier it starts, the later it clears.

Fog is classified in different types, according to the origin of its formation. The types of

fog are: rain, radiation, freeing, post-front and hill fog.

It is necessary for the terminal forecast to indicate that fog is expected if the probability of

fog occurrence is higher than or equal to 50% (Fog (P) >— 50%). If the probability is higher

than or equal to 30% but less than 50% (Fog (?) >-30% and Fog (P) <50%), this needs to be

indicated in the terminal forecast.

If Fog (P)>=1% and Fog (P) <30%, this needs to be indicated in a special advice, referred to

as "Code Grey." The Code Grey advice stipulates a small but reasonable probability of a sub-

minimal weather condition occurrence.

There are two categories of Code Grey advice relating to fog phenomena occurrence:

when the probability of fog occurrence is higher than or equal to 15% and less than 30% (Fog

(P)>=15% and Fog (P) <3Q%), or when the probability of fog occurrence is higher than or

equal to 1% and less than 15% (Fog (P)>=1% and Fog (P) <15%)
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5.2.3 The Intelligent Decision Support for Aviation Wrather
Forecasting

The hybrid DM-NN model for IDSS was applied to identify the occurrence of fog

phenomena at Tullamarine, supporting the task of fog forecasting in small intervals of time

(short-term forecast). The DM-NN model is expected to issue a confidence measure related to

fog occurrence, taking into account the weather pattern at the airport at a particular time.

Fog phenomenon was selected in the application developed in this research because it is a

significant event for aviation weather forecast, and it is difficult to forecast. There is also

available historical data that makes it suitable for the concepts developed in the DM-NN

model.

The work of a forecaster is complex, and is categorised by uncertainty, incomplete

information, multiple sources and a great variety of information and strict timelines all overlaid

by a legal regime. Forecasters are required to exercise judgement because science is often

inadequate at the level of detail required by specific forecasts (Linger et aL, 2000). Much of the

skill of a forecaster is dependent on their experience in terms of the type of forecast and the

locality of the forecast. In such an environment, work activity assumes not only task

performance (construction of *. forecast), but also the review and re-assessment of the work

done in order to understand and learn from the experience. Such work requires an enhanced

decision support approach, which is called the Intelligent Decision Support (IDS) (Linger and

Burstein, 1997). In such IDS approach^ the forecaster is engaged in a cognitive process of

problem exploration, with the system providing necessary intelligent assistance to cope with

uncertainty (Burstein et al., 1998). This type of decision support requires the system to have an

extended functionality, including reasoning, memory aids, explanation facilities and learning

capability (Linger and Burstein, 1997). These requirements are in accordance with the

capabilities of intelligent systems as discussed in Chapter 2.

Local area forecasting (such as airport forecasting) relies on extensive knowledge of the

local weather patterns, the geography of the region and the development of weather at that

location in the context of broad meteorological features. Airport terminal forecasting is further

complicated by the time scale, which can be up to 18 hours, compared to 3 hours for general

forecasts. Rare event forecasts, such as fog forecast, are intrinsically problematic because, by
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definition, forecasters do not have extensive experience forecasting such events. Yet it is these

events that have the most significant impact on airport operations and financial (and legal)

implications for airlines. This is an area where forecasters need to share past experiences and,

importantly, to learn from those experiences (Linger and Burstem, 1997).

Consequently, access to past decision situations, and knowledge derived from them, can

provide a valuable source of improvement in forecasting rare weather events. The complexity

and diversity of weather observations and the large variation in the patterns of weather

phenomena implies serious problems for forecasters trying to devise correlation models.

Consequently, the area is a potential candidate for intelligent systems purpose (Viademonte et al.,

2001b).

Additionally, as previously discussed in section 5.2.1, data uviiiaulc ~ot predicting weather

phenomena is usually highly diverse, and comes in large vokux.es o;.(' from different sources

and formats. It must be organized into a comprehensible form before it is useful for

predicting the evolution or prognosis of future weather patterns. As such, there is an overload

of available data that makes KDD and data mining technologies potentially useful in this

domain.

5.3 Discovering Knowledge from Meteorological
Databases

This research applied data mining and performed the activities of data selection and

modelling, cleaning, pre-processing and sampling, this stage was named knowledge discovery stage.

Data mining was applied to generate sets of rules from sets of cases stored in case bases, as

such case bases constitute the sets of minable data. Generated rules are stored in knowledge

rule bases, and are further processed by the neural network component. As such, the

knowledge discovery stage comprises two main phases: case bases generation and knowledge

bases generation.

The case bases generation includes all data preparation activities done since the application

domain was identified, until a comprehensible set of minable data was achieved.
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As previously discussed in section 5.2, the DM-NN model was implemented to identify

fog occurrence at Tullamarine. A database with weather observations was categorized into two

groups (classes), one representing a fog occurrence, identified as fog cases (or fog class), and

one representing a non fog occurrence, identified as not fog cases (or not fog class).

The first step in knowledge discovery is to identify and understand the application domain,

gather and prepare data. This normally includes the activities of data cleaning, dimensionaEty

reduction, features selection and transformation, and data sampling.

In this research, after data preparation activities were performed, the resulting dataset was

split in two subsets of data: one dataset with fog cases only and the other with not fog cases

only. This division was performed for data analysis and sampling purposes. A random

sampling approach was used to generate the datasets for mining and testing. The mining sets

were used as input data into 2 data mining algorithm, and the testing sets were used to assess

the performance accuracy of the DM-NN model.

Figure 5.2 illustrates the adopted schema for generating case bases.

FQG +
NO FOG
CASES

v CASE
NBASE

FOG TEST
DATA SET

NO FOG TEST
DATA SET

Figure 5.2: Schema for generating case bases

Different subsets of data were generated for data mining, according to different sampling

proportions, and several rules describing fog and not fog were obtained as a result of the data

mining processing. The criterion adopted in this research to select interesting (or

representative) rules was based on data mining thresholds: setting different levels of rule

confidence degree, support degree and rule order. This is an interactive process, as normally

several data mining sessions are required to reach a satisfactory final set of rules. This

interactive process implies selecting different features (weather observations in the case of this
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research), modifications in the attribute discretization ranges and trying diverse settings of data

mining thresholds. As a result of this process, several sets of association rules were obtained in

the experiment conducted in this research.

The outcome of the data mining j , : .ess are sets of association rules, as described in

section 4.4.2 "Representing the Domain Knowledge," which populated the knowledge bases.

Figure 5.3 shows the process adopted to generate knowledge baser.
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RULES
SELECTION
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RULES
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NO FOG
RULES
SUBSET

KNOWLEDGE
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Figure 53: Schema for generating knowledge bases

The knowledge bases were used as the input data, e.g. training datasets, to the hybrid

neural network based system, called the IAS component in the DM-NN model (refer to

section 4.3.5, "Intelligent Advisor" System.")

After the training process is finalized, the DM-NN is ready to be used as an advisory

system within the application domain it was applied. The predictive performance of the DM-

NN model in aviation weather forecasting was assessed through the testing datasets. The

holdout method for estimation of accuracy (Weiss and Indurkhya, 1998) was applied for this.

Chapter 7 describes the performance assessment process developed in this research.

The activities of data preparation and data modelling are discussed next in this chapter,

including the stages of data cleaning, features selection and transformation, and data sampling.

The mining sets, training and testings sets obtained are also described in this chapter, as well

as the process developed in generating these sets of data.
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5.3.1 The Domain of Aviation Weather Forecasting

The database for the study of aviation weather forecasting was provided by the Bureau,

and obtained from ADAM (Australian Data Archive for Meteorology) data repository. It is a

database that stores daily weather observations, and is built and maintained by the Bureau.

Three sets of data were provided by the Bureau. The first dataset had 75 attributes

(features) and 2917 records of weather observations. Many of the attributes in this dataset

were related to data quality control and codes describing weather observations. For examp?e,

the dew point weather observation had two associated attributes, DWPT and DWPT_Q\JAL~

This last attribute indicates data quality information, which was not relevant for the data

mining purposes of this research. Many other observations (attributes in the database), like

wind speed, wind direction and visibility showed the same problem. The attribute identifying fog

occurrence was described through a Boolean type attribute (FOG_OCC) together with an

attribute describing the visibility observation, represented by codes.

This led to a situation that identified fog types instead of identifying fog occurrence; and

this research was concerned with identifying fog occurrence regardless its type. Clearly, this

situation was not desirable. The preliminary experiments showed that the problem of fog

forecasting would not be properly addressed without intensive data preparation work.

A second dataset was provided by the Bureau, with 47461 records and 17 attributes

representing weather observations, from July 1970 until June 1999. Later, a third dataset was

provided with weather observations from 1999 until 2000. This third dataset had 2440

records, and the same 17 attributes.

The final database had weather observations from July 1970 until June 2000, with 49901

records (rows of data), 17 attributes, and a size of nearly 250 MB.

The attributes represent the weather observations used when issuing an aviation weather

prognosis bulletin, and were selected and provided by forecasters from the Bureau.

The attribute definitions and relevance for fog forecasting were obtained during meetings

with forecasters from the Bureau, from bibliographic references and specific documents

provided by the Bureau, among them: (Auer Jr., 1992; Bedson and Canterford, 1983; Bond,

1981; Colquhoun, 1987; Keith, 1991; Love, 1985); including online information maintained by

the Bureau (Meteorology, 2003a; 2003b).
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Table 5.1 lists the weather observations attributes with their respective descriptions:

Table 5.1: Weather observations

Attributes Description

lYear

2 Month

3 Day
4 Hour

5 Dry-bulb temperature

6 Dew point temperature

7 Total cloud amount

8 Total low cloud amount

9 Mean sea level pressure

10 Past weather

11 Rainfall

12 Present weather

13 Visibility

14 Wind direction

15 Wind speed

16 Fog type

17 Fog occurrence

Year of the weather observation

Month of the weather observation

Day of the weather observation

Period of 3 hours weather observation

Temperature in Celsius degrees

Temperature in Celsius degrees

Height

Height

Pressure measured in HpA

Weather code, weather since last observation

Precipitation measured in millimetres (mm)

Weather code, weather when the observation was done

Kilometies, at the airport area

Degrees, direction from where the wind is coming

Meters/second

F = "Fog"; LF = "Local Fog"
FD = "Fog Day"; LFD = "Local Fog Day"

5.3.2 Understanding Meteorological Data

A series of meetings with weather forecasters were conducted in order to understand the

meaning and relevance of meteorological data. As a result of these meetings and the studied

literature, meteorological data was conceptualised according to the context of aviation weather

forecasting. This section explains the meaning of the selected meteorological data in that

context.

Seasonal factor

The attributes Month, Year, Day are date stamps and monotonic variables. The seasonal

factor was modelled monthly; as such, the year and day attributes were not necessary for data

mining purposes. However they were kept in the dataset, as they are necessary, to calculate the

Previous afternoon dew point attribute, which is a new calculated field (which will be discussed

further in this section).
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Hour observation

The hour observation refers to a three hour period observation. The weather observations

are recorded by the Bureau at a granularity of three hours. This granularity must be considered

when making a prognostic.

Fog identification

This research addresses the problem of fog forecasting; consequently fog is the event

under consideration. There were two attributes in the original database that together identified

a specific occurrence of fog, Fog type and Fog occurrence. When Fog type has no value it means no

fog phenomenon occurrence at that time. Fog occurrence indicates whether it is a Fog Day (FD),

or a Local Fog Day (LFD), or no fog day at all. The distinction between local fog and fog day

does not matter in terms of aviation weather forecasting; it does matter in terms of fog

phenomena classification. Therefore, the attribute Fog occurrence is not necessary for the

purposes of this research, as this research focus on fog phenomenon occurrence, regardless of

its classification. Fog occurrence was removed from the database.

Temperatures

The Dew point and Dry bulb are the local temperatures at the airport in degrees Celsius,

taken at the time of the observation.

Wind

This includes information about wind direction and speed. Both are taken on the surface at

the airport, around 200 feet altitude. The wind direction is expressed in degrees of compass

points, from 0° to 360°, and die speed in meters/second (m/s).

Weather codes (past and present weather)

Weather codes are provided by the Bureau, and a particular weather phenomena (or

pattern) has a code assigned to it. For example, code number '41' relates to fog in patches at

the time of the observation, with visibility less dian 1000 metres, but with the sky visible. Code

number '40' identifies occurrence of fog at a distance but no fog at the station during the past

hour vntla. visibility greater than 1000 metre. Code number '99' identifies heavy thunderstorms

with hail, at the time of the observation.
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The Past weather attribute (code) relates to what was the weather pattern since the last 3

hours observation, and the Present weather relates to the weather pattern at the time of the

observation.

All other weather observations, such as the Amount of clouds, Sea level pressure, Rainfall and

Visibility are taken locally at the airport.

The inclusion of new information not presented in ADAM (at the time this research was

being developed) was suggested by the forecasters. Among them, the Previous dew point

observation was suggested as potential useful information for fog prognosis. The Previous dew

point can be calculated through the Date, Hour and Dew point attributes. The Previous dew point

was inserted ,in the database as a new calculated field; it is discussed further in this chapter.

In addition, dew point depression, synoptic types, and geostrophic wind, which were not present in

the database provided by the Bureau were considered useful for a better predictive

performance, according to the forecasters. Because of time constraints, this information was

not included in the research developed in this thesis. It is important to observe that, although

a good predictive performance in fog identification is important for this research; the main

goal is to assess and evaluate the proposed DM-NN model for decision support.

5.3.3 Data Preparation

Normally, weather observations are collected and stored without necessary care for KDD

purposes. As a result, lack of consistency and quality problems are common, what makes data

preparation often necessary in the meteorological domain (Buchner et al., 1998). The

importance of the data preparation (or pre-processing) stage in the KDD process should not

be underestimated. If the quality of the data is low or the problem is incorrectly formalized,

the algorithms used for data mining will behave inefficiently or produce incorrect results.

An intensive data preparation stage, addressing issues t>i* data quality was performed in this

research, and was discussed in section 3.4, "Data Preparation."

5.3.3.1 Feature Selection and Construction

The features (attributes) in the dataset were mostly indicated by the Bureau. However,

some analyses were still performed. The Year and Day attributes were not necessary for dati
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mining purposes. The year attribute does not specify any pattern, as a year never repeats itself.

The forecasters specified that the seasonal factor should be modelled monthly; consequently

the day attribute was not relevant

The attribute Fog occurrence was removed because it is not necessary for the purposes of this

project. As previously discussed in section 5.3.1, this attribute identifies fog days or local fog

days, and such classification does not matter in terms of aviation weather forecasting.

A new attribute was inserted in the database, the ID attribute. It is an auto number type

attribute, and the primary key attribute.

A calculated attribute was built and inserted in the database. The weather observation

Previous afternoon dew point was calculated based on the Year, Month, Day, Hour and the Dew point

attributes. This calculated attribute was recommended by the forecasters as important

information for fog prognosis. For that reason, Year and Day attributes were not removed

from the database despite not being used in any data mining session.

For the purpose of inserting previous afternoon dewpoint information in the database a

new attribute was created, named Previous_DewPoint. A program module in Visual Basic was

written to calculate and update the previous afternoon dewpoint attribute. Because the

weather observation database was stored in MS Access, Visual Basic was the chosen language

to implement the algorithm in order to keep the same environment and to avoid unnecessary

data import/export procedures from MS Access and other environments. In addition, Visual

Basic offers a set of object classes in its DAO (Data Access Object) object library that

facilitates the manipulation of databases and tables.

The program scans the database with weather observations updating the Previous JDeivPoint

attribute. The Australian Bureau of Meteorology, Computing Services Division, informed the

algorithm. The program module called the 'FunctionJUpdateJPreviousDewPoint" hnplements the

algorithm described in Figure 5.4.

The algorithm to calculate the previous dew point attribute is described as follows:
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1 Starting sequentially from the beginning of the table
2 Read the current date {day/month/year) and hour attributes values
3 Calculate the previous date, related to the current date read in

step 2, i.e., the day before
4 Search for the previous date and the same hour read in step 2
5 If the search is successful go to 6, otherwise go to 7
6 Read the Dew Point attribute value
7 Move back to the record position with the current date, indicated in

step 2
8 Update the Previous Dew Point attribute value with the Dew Point

attribute value read in step 6, or leave it blank otherwise
9 Move to the next record in the database
10 Repeat steps 2 to 10 until reaching the end of the file

Figure 5.4: Algorithm to calculate the previous afternoon dew point

The generation of a new attribute identified as Dew point depression was also suggested by the

forecasters. The Dew point depression is calculated as the difference between Dry bulb and Dew

point temperatures.

Information related to synoptic types and geostrophic winds, (neither of which were in the

database provided by the Bureau) were also suggested to be included. For reasons of time

constraints, this information was not included in the weather observation database. The

information already available was considered enough for the research purposes of this thesis,

e.g. to verify the performance and feasibility of the proposed DM-NN model for decision

support.

5.3.3.2 Analysis of Null Values

Handling null values is one of the most common problems in data preparation for data

mining (Catlett, 1991; Fayyad, Haussler and Stolorz, 1996; Pyle, 1999). A null value in an

attribute or variable might be an empty or a missing value. An empty value is a value that has

no corresponding real world value, and a missing value has an underlying value that was not

captured, this means the value has not been stored in the dataset but it may exist in the

domain (Pyle, 1999).

Determining if any particular null value in a variable is empty, rather than missing, requires

domain knowledge and is extremely difficult to be automatically detected. Missing and empty

values can be removed or replaced; but this decision relies on the amount of those values, as
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well as domain knowledge. Section 3.4, "Data Preparation" discussed the issue of empty and

missing values.

Another common data quality problem that is closely related with the occurrence of mall

values is low information density, known as sparsity. In this case, variables are sparsely

populated with instances values. Normally, sparse variables can be removed. However, there

are cases when sparse values hold significant information. To remove or not a sparse vaaable

is an arbitrary decision based on confidence levels (Pyle, 1999).

According to the analysis of null values (see Table 5.2) the T&ainfall attribute showed a

significant ratio of null instances, 30.42%. This ratio of null values may be enough to discard

the attribute for data mining purposes; however, according to the experts (forecasters from the

Bureau), the rainfall observation consists of significant information and needs to be kept in the

database.

Table 5.2 shows the number of null values, which could be empty or missing, for each

attribute in the database.

Table 5.2: Analyses about null values

,f / • ' Attributes

lYear

2 Month

3 Day

4 Hour

5 Dry bulb temperature

6 Dew point temperature

7 Previous dew point temperature

8 Total cloud amount

9 Total low cloud amount

10 Mean sea level pressure

11 Past weather

12 Rainfall

13 Present weather

14 Visibility

15 Wind direction

16 Wind speed

17 Fog type

Amount of nulls \ alues
No nulls values

No nulls values

No nulls values

No nulls values

16 nulls (0.03%)

31 nulls (0.06 %)

572 nulls (1.14%)

25 nulls (0.05 %)

314 nulls (0.63 %)

25 nulls (0.05 %)

93 nulls (0.19 %)

15180 nulls (30.42%)

81 nulls (0.16 %)

14 nulls (0.03%)

104 nulls (0.21 %)

29 nulls (0.06 %)

48963 nulls (98.12%)

The Previous dew point temperature has 572 (1.14 %) null instances. Doing a specific analysis

with yssxjog cases, this attribute shows a smaller frequency of null values (see Table 5.3). As
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this research is particularly concerned with fog forecasting the attribute was kept in the

database without further modifications.

Fog type showed a high number of null values: 48963 (98.12%) instances. However, as

explained by the forecasters, in this case a null value is neither missing nor empty information,

but indicates that a particular weather observation is not a fog occurrence. Fog type was

transformed to properly represent this information; section 5.3.3.4 in this chapter described

the corresponding data transformation operation.

Analyses of empty and missing values were also individually made for both, fog and not Jog

classes, in order to verify the occurrence of empty/missing values in each class. The main

reason for this division is that the number of not fog cases (48963) is significantly higher than

fog cases (938). An attribute may have a small number of null values in the database, but with

the majority of its null values allotted to the fog class, this potentially represents a problem for

the purposes of this research and needs to be verified.

According to this analysis, the Rainfall attribute shows a significant number of null values

in fog class, as already verified in a previous analysis with the whole population. The other

attributes did not have enough null values to be considered sparse. For example, the Total cloud

amount and Total low cloud amount have 1.28 % and 2.24 % of null values respectively, which is

certainly not enough to consider these attributes as sparse.

Attributes without null values (either empty or missing) were not considered in this

analysis. Table 5.3 shows the results iotfog class.

Table 5.3: Analysis of sparse attributes in fog class

Attributes Amount of nulls values
Previous dew point temperature
Total cloud amount

Total low cloud amount

Mean sea level pressure

Rainfall

Wind direction

Wind speed

v.32 %
1.28%
2.24 %
0.11 %
21.11 %
0.32 %
0.21 %

A better understanding of the Rainfall attribute is necessary to take a decision concerning

its null values, and this is discussed in section 5.3.3.4, "Data Transformation."

The analysis performed in the fog class has also been done for not fog class.
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The same conclusions obtained in the analysis for fog class can be extended for not fog class.

This means that just the Rainfall attribute, again, can be considered sparse with a significant

amount of null values.

Table 5.4 shows the results of this analysis.

Table 5.4: Analysis of sparse attributes in not fog class

- Attributes

Diy-bulb temperature

Dew point temperature

Previous dew point temperature

Total cloud amount

Total low cloud amount

Mean sea level pressure

Past weather

Rainfall

Present weather

Visibility

Wind direction

Wind speed

Amount of nulls values

0.03 %

0.06 %

1.16%

0.03 %

0.59 %

0.05 %

0.20 %

30.60 %

0.16 %

0.03 %

0.21 %

0.06 %

5.3.3.3 Analysis of Variability

Another important issue to consider in KDD applications is the data distribution or

variability. The possible patterns enfolded in a variable are distributed across a variable's range

in some particular way. These patterns are fundamental to discover the relationships among

variables (Pyle, 1999). The analysis of variability is important in order to verify the occurrence

of constants, outliers and monotonic variables, as previously discussed in section 3.4.

In this research the standard deviation was used to calculate the variability of numeric

attributes and frequency analysis was used for categorical attributes.

Analysis of variability did not include Year, Day and Fog type attributes. Year and Day

attributes were not used for mining purposes, as previously discussed. The year is a monotonic

variable, which never repeats itself (when a year finishes it does not happen again). Fog type was

discretised in two possible values, F and JVF, indicating a fog case or a not fog case

respectively. Consequently its variability is limited to these two possible values.

The analysis of variability was primary done in the fog population. This was because the

classes' distribution in the population is significantly heterogeneous, with a much higher
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predominance of not fog class. Consequently, the variability iafbg class was more important to

capture.

As part of the variability analysis some statistics were generated through SPPS, including

the number of valid and null values (identified as "missing"), the mean, and standard

deviation. Table 5.5 shows the statistical measures taken from the fog population.

Table 5.5: Fog class statistics

Attribute* .

Diybulb

Previous dewpoint

Dewpoint

Total cloud

Total low cloud

Past weather

Sea level pressure

Rainfall

Present weather

Visibility

Wind direction

Wind speed

.Valid \

SI

938

935

938

926

917

938

937

740

938

938

935

936

Missing;

0

3

0

12

21

0

1

198

0

0

3

2

Mean

8.3932

6.9829

7.1631

5.1728

4.4809

1023.8779

8.041E-02

13.0951

162.2652

1.5654

Standard •
Deviation

3.7175

2.9539

3.2665

2.9574

3.2236

7.7426

0.3830

12.7766

153.5125

1.8022

The analysis of variability in not fog class was done as part of the sampling procedures, and

conducted in the different not fog samples. Additionally, as this research aims to identify fog

phenomena, it is primary concerned with building descriptive models of fog class.

Histogram graphs were generated to analyse the variability of the attributes using the SPSS1

Statistical Package. The histograms show the frequency distribution of each attribute, its

standard deviation, its mean and the number of valid values (not considering missing values).

The histograms for the fog population are as follows:

1 SPSS is a trademark of SPSS Inc.
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Figure 5.5: Frequency distribution for dry-bulb attribute

300

Std. Dev = 2.95
Mean = 7.0
N = 935.00

-2.0 14.0
0.0 4.0 8.0 12.0 16.0

Previous_Dewpoint

Figure 5.6: Frequency distribution for previous dewpoint attribute
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Figure 5.7: Frequency distribution for dewpoint attribute
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Figure 5.8: Frequency distribution for total cloud attribute
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Figure 5.9: Frequency distribution for total low cloud attribute

Std. Dev = 7.74
Mean = 1023.9
N = 937.00

SeaLevelPressure
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Figure 5.11: Frequency distribution for rainfall attribute
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Figure 5.12: Frequency distribution for visibility attribute
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Figure 5.13: Frequency distribution for wind direction attribute
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Figure 5.14: Frequency distribution for wind speed attribute

The analyses of variability revealed several problems. For instance, fog observations with

high Visibility values, and Wind direction with many instance values concentrated in the 0° and

360° degree points.

The Rainfall attribute shows two problematic behaviours for data mining: sparsity and lack

of variability. It has 198 null values, which is 21.11% of the total fog population, and 14982

null values, which is 30.60% of the total not fog population (refer to Table 5.4). For data

mining purposes this number of null values potentially represents a problem. There are

various approaches to handle this situation, such as removing the attribute, removing just the

rows with null values, replacing the null values or transforming the attribute. The selection of

any of these approaches requires domain knowledge, as the very basic question is finding out

what a null value really mean in this case.

According to weather forecasters from the Bureau, a null value in the Rainfall attribute

should be considered as zero, i.e. no rainfall at all, for forecasting purposes. According to

weather forecasters, and factual knowledge in the domain, fog is unlikely to occur during

rainfall. However, transforming all the null values to zero leads to the problem of lack of

variability, as the null values will represent 812 instances out of 938, or 86.57% of the fog

population. In this particular case the Rainfall attribute could be considered as a constant, and

could be removed because the lack of variation in content implies no information for

modelling purposes.
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A second problem that was observed was fog observations with high visibility values, near

or over 30 kilometres. The visibility axis in the histogram of frequency distribution for

Visibility (Figure 5.12) shows a cluster of high values at the right end of the axis, indicating a

possible case of outlier. Fog is mainly characterized by low visibility, normally less than 1

kilometre, so small values are expected. Apparently, the occurrence of fog with visibilities

around 30 kilometres is a contradiction, or even an impossible situation.

Again, domain knowledge is necessary to interpret this situation and make a decision.

According to weather forecasters, these particular cases of fog observations with high visibility

values refer to fog patches, which means that there are patches of fog over the airport runaway

area, but the overall visibility is mostly fine. Therefore, the high visibility values are not

incorrect, and were kept in the dataset without further modifications.

The third attribute that showed a potential problem was Wind direction. This is specified

relative to true geographic north, and is the direction from which the wind was blowing (at the

time the observation was recorded). Wind direction caa be specified either as the number of

degrees clockwise from true geographic north, or as one of eight or sixteen compass points

(Meteorology, 2003a).

Wind direction is numerically represented in the Bureau database in degrees of compass

points. The histogram of frequency distribution for Wind direction, Figure 5.13, shows a high

frequency of 2ero and its neighbourhood values, and also a high frequency of 360 degree

values. As these values represent compass points in degrees, zero and 360 represent the same

compass direction. The problem here is to understand exactly the meaning of zero degree

compass points, and whether a zero degree can be considered the same information as 360

degrees.

A second problem related to wind direction observation refers to the ranges of degrees,

e.g. how each range can be discretised and where the proper boundaries are between each

range. This problem is addressed at Chapter 9 as issues of future research.

The analysis of variability did not show other problems related to data distribution, such as

existence of outliers, monotonic variables or constants in fog population.
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Following, the approaches used to handle the problems discussed in this section are

described.

5.33.4 Data Transformation

For reasons of data integrity and compatibility, some of the attributes had their types and

sizes modified, and some integrity constraints updated. The attributes Year, Month, Day, Hour

are the database index and multi attribute secondary key (the ID attribute is the primary key).

They were transformed into the same data type, "TEXT" and had their size adjusted to their

possible range of values; for example, the Day attribute was originally defined with a size of 6

characters, and was modified to size of 2 characters, as it holds values between "01" and "31."

The following modifications were performed:

• Year attribute was modified to Text type, size 4. Integrity constraints: required, zero

length not allowed, validation rule: Is Not Null

• Month attribute modified to Text type, size 2. Integrity constraints: required, zero

length not allowed, validation rule: Is Not Null

• Day attribute modified to Text type, size 2. Integrity constraints: required, zero

length not allowed, validation rule: Is Not Null

• Hour attribute modified to Text type, size 2. Integrity constraints: required, zero

length not allowed, validation rule: Is Not Null

• Fog-Type attribute modified to Text type, size 2

• Fog_Occitmnce attribute was removed from the database

• A new identifier attribute was created named ID, autonumber type. This attribute

was necessary to identify specific records in the database, mainly during operations

of data import and export, such as when sampling data

• A new attribute was created, called the RainfaIl_Range, text type, size 1. This stores

the rainfall categorical ranges (further discussed in this section)

• A new attribute was created, called the Wind_Cotnpass, text type, size 8. This stores

the values of wind direction represented as compass points (North, South, etc)

instead of degrees (this transformation is further discussed in this section).
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As already mentioned, the Year and Day attributes were necessary to calculate the previous

afternoon dewpoint

In the original database Fog type could assume three possible values: JF when it was

indicating a fog observation, LF when indicating local fog and null when it was not a fog

observation. This study is concerned with the occurrence of fog, regardless of whether it is a

local fog or not. For this reason all the Fog type instances with a value of LF were transformed

into F, meaning a fog case. All instances of Fog type with a null value were assigned a NF value,

meaning not fog. As a result, the Fog type attribute holds two possible values, F when it refers

to an observation of fog, ie . a fog case, or NF otherwise, i.e. a not fog case.

The Past weather and Present weather attributes were transformed from numeric type (their

original data types) to non-numeric, type text, size 4 characters. These attributes are qualitative

(categorical) attributes, indicating weather codes.

A transformation of the Rainfall attribute was required. Rainfall was initially measured in

millimetres, but forecasters express rainfall in codes representing ranges of millimetres, rather

than discrete values of millimetres. This procedure makes sense according to the nature of the

forecast task, as it is almost impossible to differentiate precise measurements of rainfall, like

0.3 millimetres and 0.2 millimetres. For example, the small difference of 0.1 millimetres of

rainfall does not have any practical effect in aviation weather forecasting. The forecast task, in

general, has a tolerance for imprecision in order to conform best to reality.

As a result, the numeric values of rainfall were transformed into categorical codes,

representing ranges of rainfall. Table 5.6 shows the rainfall code ranges (Meteorology, 2003a).

Null values are classified as code zero (0), meaning no rainfall was observed.

Table 5.6: Categorical codes of rainfall attribute

Rainfall Code Description

0
1
2
3
4
5
6
7

No Rain
0.1 to 2.4 mm
2.41 to 4 ram
4.1 to 9 m<.n
9.1 to 19 mm
19.1 to 39 mm
39.1 to 79 mm
Above 79 mm

I
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To implement this operation a new attribute called the Raznfal/_Range was inserted into the

dataset, text type, with size 1. A Visual Basic procedure named Transform_Rainfall was

implemented to update the Rmnfall_Range categorical attribute according to the corresponding

Rainfall numeric value, as described in Table 5.6.

The categorical representation of rainfall observation conforms better to the weather

forecast task, but showed little impact in minimizing the problem of sparsity. Table 5.7 shows

the frequency distribution of Raznfall_Range attribute in the whole population.

Table 5.7: Frequency distribution of RainfaIl_Range attribute

Frequency Percent
0
1
2
3
4
5
6
7

Total

41617
6231
572
415
79
10
2
7

48933*

85.0%
12.7%
1.2%
0.8%
0.2%
0%
0%
0%

100%

*This analysis shows the results after the data preparation procedures were finalized, when

some not fog records with high number of null values were removed from the database.

Observations with no rainfall are still highly predominant in both classes, although

observations of code 1 have a better distribution for data mining purposes, followed by code

2. Figure 5.15 shows the frequency distribution histogram for Rmnfall_Range attribute in the

whole population.

Despite the sparse distribution along the range of its values, Rainfall_Range attribute was

kept in the database.

I
h
1
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Figure 5.15: Frequency distribution for Rainfall_Range attribute in the whole
population

Another problem was related to the wind direction observation. Wind direction is a

measure taken by instruments and it is numerically represented in degrees of compass points,

from 0° to 360°.

A high number of cases distributed in the compass points of 0° and 360° were identified in

the fog population (refer to Figure 5.13). The problem here is to understand the meaning of 0°

compass point, and whether a 0° could be considered the same information as 360°.

According to weather forecasters, a zero value assigned to a wind direction observation

does not represent a compass point direction. It indicates no wind observed or even a variable

weak wind blowing, with a speed equal to or approximately zero meters per second (0 m/s).

The wind direction attribute had to be adjusted to properly represent this information.

Additionally, weather forecasters do not use detailed numerical measurements when

reporting a forecast bulletin, but a categorical description of compass points, such as N for

North, S for South and successively. Figure 5.16 shows an example of part of a meteorological

observation bulletin for Melbourne (Meteorology, 2003a), which shows the wind direction

representation (columns named WIND indicate the wind direction information).

Wind direction is represented in this research by the 16 compass points representation,

from 0° degrees to 360° degrees. This representation is named VRB, and is used by the

Australian Bureau of Meteorology (Meteorology, 2003a).
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IDA33V00
BUREAU OF METEOROLOGY
VICTORIAN REGIONAL OFFICE
P.O. Box 1636M Melbourne Vic 3001 http://www.bom.gov.au

Three Hourly Meteorological Observations for Melbourne
Issued at 1406 on Thursday the 19th of October 2000

MELBOURNE LAVERTON MOORABBIN
HOURS TEMP (C) WIND (KNOTS) TEMP (C) WIND (KNOTS) TEMP (C) WIND (KNOTS)

3pm
6pm
9pm

19.6
17.9
18.2

Midnight 16.5
3am
6am
9am
Noon

Max to

13.4
13.0
16.6
19.0

2pm

E 6
E 7
E 6
SW 3
E 2
E 2
ENE 5
E 5

20.3

18.5
17.1
16.8
14.0

• 12.6

10.7
16.3
18.1

N 18
NNE
N 9
NNW
NW 6
NNE
N 8
WSW

16

26

5

9

18.2
16.2
17.2
16.3
13.4
13.2
16.3
19.0

NNE
NNE
NNE
N 9
NNE
ENE
N 12
NNE

15
12
18

7
5

11

Overnight Minimum 12.4
Yesterday's Maximum 19.7
Noon MSL Pressure 1009.0

Melbourne Ap Sunshine yesterday was 0 hrs

Figure 5.16: Three hourly meteorological observation bulletin foff Melbourne

According to the Australian Bureau of Meteorology, each value in degrees belongs to the

closest compass point. Therefore the middle value between each two compass points was

chosen as the boundary value, with the middle value itself belonging to the next upper

(clockwise) compass point. For example, between N (360° degrees) and NNE (22.5° degrees),

the middle point is 11.25° degrees, which belongs to NNE, with 11.24° degrees belonging to

N compass point (obviously, this procedure is a simplification of a more complex situation,

which is to properly establish numerical boundaries among qualitative compass points).

To implement the transformation of wind direction from numerical degrees to qualitative

description of compass points a new attribute was inserted into the dataset, a text type

attribute named WindCompass, of size 8 characters. A Visual Basic procedure named

Convert_WindCompass was implemented. This updates the WindCompass categorical attribute

according to the value? of WindDirection numerical attribute, using the compass points

classification as showed in Table 5.8.

Table 5.8 shows compass points in degrees, their respective value range in degrees, their

classification and descriptions.
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Table 5.8: Compass points classification

Compass v alue ranges in Compass points Cop>p"a"ss points • •
points degrees classification ' description ,

0

360

22.5

45

67.5

90

112.5

135

157.5

180

202.5

225

247.5

270

292.5

315

337.5

0

0

[0.1; 11.24] and
[348.75; 360]

[11.25; 33.74]

[33.75; 56.24]

[56.25; 78.74]

[78.75; 101.24]

[101.25; 123.74]

[123.75; 146.24]

[146.25; 168.74]

[168.75; 191.24]

[191.25; 213.74]

[213.75; 236.24]

[236.25; 258.74]

[258.75; 281.24]

[281.25; 303.74]

[303.75; 326.24]

[326.25; 348.74]

CALM, wind speed = 0

VARIABLE, wind speed > 0

N

NNE

NE

ENE

E

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

Calm

Variable

Northerly

North to North Easterly

North Easterly

East to North Easterly

Easterly

East to South Easterly

South Easterly

South to South Easterly

Southerly

South to South Westerly

South Westerly

West to South Westerly

Westerly

West to North Westerly

North Westerly

North to North Westerly

A final analysis was undertaken to verify the amount of null and missing values in the

whole population, in particular not fog. As a result, some instances of not fog with null values

assigned to most of their attributes were removed. As the amount of cases allotted to not fog

class were sufficiendy large, this operation would not cause any problem in terms of data

availability.

Initially, the not fog population had 48963 instances (records in the database). After all

data transformation and removal of instances with a significant amount of null values, not fog

population had 47995 instances. The fog population remained with 938 instances, and the

overall population had 48933 records. This database was used in selecting cases for data

mining.

Widi the operations described in dais section, the resulting database was considered

satisfactory in terms of data quality and integrity to move to the next phase of this research,

which is the data mining stage.
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5.3.4 Data Modelling for Data Mining

After data preparation, the next stage is to select a set of data for mining and testing. For

this it is necessary to verify data dimensionality, and how the classes are represented and

distributed in the database.

Dimensionality concerns the amount of attributes and instances (cases) for data mining.

Class distribution concerns the amount of instances presented for each class in the population.

The weather observation database used in this research showed a very heterogeneous class

distribution tot fog and not fog, consequently a homogeneous analysis of both classes was very

difficult The weather observations database showed a low prevalence classification, being

almost all cases allotted to not fog and far fewer cases to fog The dataset has 938 instances oifog

and 47995 instances of not fog Figure 5.17 illustrates the distribution of classes in the weather

observations database.

Fog and Not Fog Class Distribution.

Complete Enumeration.

NF

Figure 5.17: Distribution of classes in the population

Fog represents 1.92% of the population, and not fog represents 98.08% of the population.

This difference in class distribution relates to the nature of fog occurrence, fog is a rare

phenomenon. Consequently, a low number of fog cases are expected. The problem is that

most learning algorithms do not behave well in such situations (Cadett, 1991; Provost and

Buchanan, 1995). Furthermore, the dataset for data mining must capture sufficient

information about each individual class, attributes and their respective interactions (Provost

and Kolluri, 1999; Pyle, 1999).
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Because of this significant difference in class distribution direct sampling is usually

inefficient Using a single random sampling approach might bring few problems, for instance

the risk of no fog cases or too few fog cases being selected. If this happens the data mining

algorithm will not generate good descriptive models abost fog, and may not even generate a

single model.

On the other hand, taking all fog population and an equivalent number of not fog cases,

brings the risk of throwing away information in the unused not fog examples. As a

consequence, most patterns of not fog class might be missed, as a very small subset of not fog

population would be selected (approximately 1.95% of the not fog population).

The problem of imbalanced class distribution (or low prevalence classification) is not new.

Many data mining and machine learning researches have studied and proposed solutions for

this problem, for example (Fawectt and Provost, 1996; Lewis and Catlett, 1997). For instance,

one possible solution is to apply a learning algorithm that can rank examples. Ling (Ling and

Li, 1998), for example, applied a learning algorithm that ranked testing examples and used lift

analysis as the evaluation criterion in a data mining application for direct marketing. Another

possible solution is to implement a specific sampling design (Catlett, 1991; Provost, Jensen

and Oates, 2001); for example, oversampling with replacement the positive (fog) cases a few

times, while keeping the negative (not fog) cases unchanged, or simply sampling the negative

class in higher proportions than the positive class.

It is almost impossible to know in advance which technique works better in a given

circumstance, and time constraints make it unrealistic to experiment with many approaches in

a single situation. As such, a decision has to be made.

A specific sampling design was implemented in this research to deal with the low

prevalence classification problem. It combines stratified sampling with incremental

sampling.

Next, the developed sampling design to generate the datasets for mining and testing is

discussed. A third dataset was also generated, called the evaluation dataset. This dataset was

generated to handle the problem of overfitting (if necessary).

174



I

Chapter 5 Applying the DM-NN Model in Aviation Weather Forecasting: The Knowledge Discovery
Stage

5.3.4.1 Sampling Data

The sampling approach applied to generate the data models for mining and testing in this

research project can be classified as stratified multi-stage sampling (refer to Chapter 3, section 3.6

for a discussion about data sampling). The primary purpose of this sampling approach is to

achieve a more equal class distribution.

The original population was divided into two strata, and then sampling was separately

conducted in stages within the stratum with the highest number of instances (the major

stratum).

In the first stage, stratified sampling was used to separate the survey variable Fog type.

Stratified sampling consists of dividing a population into sub-populations, called strata. Then

small samples are selected from these different strata independently of each other. At the end,

the total sample is formed by combining (some of) the small samples (Gu, Hu and Liu, 2001).

In the second stage, incremental random sampling1 was used to sample the major not fog class.

Incremental sampling is a method in which the sampling size is updated and the data are

randomly sampled, starting with a small sample and using incrementally larger samples until

the model accuracy does not significantly improve (Weiss and Indurkhya, 1998) (refer to

section 3.6). As a insult of this approach, three datasets from not fog class were generated.

In the third stage, random sampling without replacement was applied to each sample in each

class to generate the datasets for mining and testing (and evaluation).

In the last stage, subsets of the initial population were reconstructed by joining each not fog

dataset with their respective fog dataset (i.e. mining and testing datasets from each class were

joined), obtaining as a result the final datasets for mining, testing and evaluation.

Following, the developed sampling design is described.

Firstly, stratified sampling (Gu, Hu and Iiu, 2001) was used to individually s a m p l e ^ and

not fog classes, as the Fog type attribute showed a very heterogeneous class distribution (see

Figure 5.17). Figure 5.18 illustrates this approach.

U.s
I

I
I

?

i

1 A similar approach is introduced by Provost (Provost, Jensen and Oates, 2001) as progressive sampling.
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Figure 5.18: Stratifying the weather observations database

As a result, two strata were obtained, one with fog cases, called fog stratum, and another

with not fog cases, called not fog stratum, as illustrated in Figure 5.18.

Sampling the Fog Class

stratum has 938 instances in its population. It corresponds to the most interesting

class and it is also a low prevalence class in comparison with the whole population.

Therefore a complete enumeration of fog stratum was used to generate the datasets for

mining and testing. The fog stratum was randomly sampled nnthout replacement in 85% for mining,

with 807 rows of data, and 7% for testing with 63 rows of data.

These percentages were arbitrarily chosen based on the experiments and literature

previously mentioned in sections 3.5 and 3.6, about dimensionality reduction and data

sampling.

Table 5.9 shows the selected datasets from fog stratum:

Table 5.9: Fog class datasets

D.uaset Number of instances

Population si2e (N)

Sample size (n)

Mining set

Testing set

938

938 (100% of N)

807 (85% of n)

63 (7% of n)

Sampling the Not Fog Class

The not fog stratum has 47995 instances. It was sampled in a different fashion than fog

stratum, as increased sizes samples were selected from the whole stratum in 10%, 20% and

100% proportions.

ft.

I

s
tfl

I
i

176



Chapter 5 Applying the DM-NN Model in Aviation Weather Forecasting: The Knowledge Discovery
StaEe

Incremental sampling jvith replacementwas used to generate the samples. The sample with 10%

out of the whole stratum was termed Modeli, and it has 4763 instances. The second sample,

ModelZ, is 20% of the stratum, and has 9572 instances. For comparison purposes the whole

stratum was also considered, and this was termed ModeHO, meaning 100% of the stratum.

The 10% and 20% percentages were arbitrarily selected based on the size of not fog and

fog strata; the aim here was to build data models to minimize the significant difference

between the numbers of instances from each class. Therefore small percentages were chosen

from the not fog stratum. In addition, the literature provides useful insights in incremental

sampling; according to Weiss (Weiss and Indurkhya, 1998) typical subset percentages for

incremental sampling might be 10%, 20%, 33%, 50%, 67% and 100%. Using 50% and higher

percentages would keep the difference between not fog cases and fog cases too large,

therefore small percentages were chosen. The 100% subset was selected to verify the data

mining algorithm performance when using a significantly different class distribution. The

assumption here was that this subset would produce none or very few fog cases rules.

The sample models obtained are termed data models in the context of this research project,

e.g., Modeli, Model2 and ModelfO are classified as data models.

Table 5.10 shows the sample models generated from the not fog stratum, sample size

indicates the number of instances.

Table 5.10: Sample models from not fog stratum

The next step is to generate, from each data model, datasets for mining and testing.

The new problem to be solved here concerns the size of the mining and testing data

subsets; and this is one of the most important issues in data modelling for data mining.

Normally the whole dataset is randomly divided into about 80% for training purposes and

20% for testing, when the original dataset has a size of approximately 1000 instances (Weiss

and Indurkhya, 1998). Several exploratory studies and experiments handling data sampling are

reported in the literature about knowledge discovery, knowledge engineering and machine

I
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learning. Refer to section 3.6.2, "Designing the Training Dataset," for examples illustrating

data sampling (Table 3.2 summarizes various experiments) and discussions about generating

datasets for data mining. Generally, choosing a suitable mining dataset is an empirical activity

rather than an exact science.

According to Weiss (Weiss and Indurkhya, 1998) and based on the experiments described

in section 3.6.2, it was decided to select proportions of 60% and 80% from each sample (data

model) to generate the mining datasets. And proportions of 10% of the remaining amount in

each data model were selected from testing datasets.

From Mode/1 two sets of data for mining and testing were obtained.

These were a mining dataset of 60% of Mode/1, with 2836 instances, called Mode/1-60, and a

testing dataset of 10% of Mode/1, with 500 instances. The mining and testing samples were

randomly selected without replacement, having different instances from each other.

A second mining dataset was generated from Mode/1, with 80% of the sample, having 3869

instances. A testing dataset was again generated, with 10% proportion random/y selected without

replacement from the Modeli sample, having 456 instances. This model is named Model1-80;

which means 10% from the not fog stratum was used in the sample, with 80% of the sample

selected for the data mining set Figure 5.19 illustrates the incremental sampling approach of

Mode/1.

Model Ml-60

Model Ml-80

Figure 5.19: Generating data mining and testing sets from not fog stratum

A similar approach was applied to Model2; however only a mining set in a 60% proportion

was generated, as an 80% proportion would represent a significant difference between the

1
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amount of not fog and fog cases. A mining dataset of 60% of Mode/2 with 5699 instances was

randomly (without replacement) selected. Following, a testing dataset was randomly selected without

replacement, being 10% of the remaining proportion oi Mode/2, having 992 instances. This data

model is named Mode/2-60.

Lastly, a data mining set was generated from the whole not fog stratum, using 60% of the

population having 28707 instances. A testing dataset was also generated from the whole not

fog stratum being 10% of the remaining population (excluding the instances already selected

for mining) with 4802 instances. This data model is named Mode/10-60, meaning 100% of not

fog stratum was used, with a 60% proportion selected for the data mining set

Table 5.11 shows the generated data models from the not fog stratum.

Table 5.12: Data models from not fog stratum

Dau Model

Population size (N)

Sample size (n)

Mining set

Testing set

1 , ^Iodcll-60 i

47995

4763 (10% of N)

2836 (60% of n)

500 (10% of n)

Modell-80

47995

4763 (10% of N)

3869 (80% of n)

456 (10% of n)

Modc-12-60

47995

9572 (20% of N)

5699 (60% of n)

992 (10%ofn)

Modell0j>0

47995

47995 (100% of N)

28797 (60% of n)

4802 (10% of n)

As previously mentioned in this chapter, from each data model an additional dataset was

obtained, in 10% proportions. The purpose of these datasets was to handle the problem of

overfitting when training the nectal network model, if necessary. These datasets were termed

evaluation datasets, and they were randomly sampled without replacement after the data mining and

testing sets were generated from each data model. The evaluation dataset from Modell-60 has

490 instances, Modell-80 has 438 instances, Model2-60 has 949 instances, and ModellO-60

has 4908 instances.

The obtained mining sets were considered sufficient to cover various proportions of the

not fog stratum, without requiring an excessive amount of time for running the data mining

experiments.

The data models, including the testing datasets, obtained through the employed sampling

approach are completely disjoint sets of data. Individual experiments were conducted to assess

which data model produces more accurate results, this is discussed in Chapter 7.
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The next stage in this research is to effectively mine the data. Le. to generate the data

mining models.

53.4.2 Generating Data Mining Models

The final datasets for data mining, called mining models, were obtained by combining the fog

mining dataset with each not fog mining dataset. Therefore four mining models were

obtained, identified by their corresponding sampling proportions: Mining ModeI1-60, Mining

Mode/1-80, Mining Mode/2-60, and Mining Mode/10-60.

For instance, Mining Mode/1-60 identifies a dataset obtained by a sample of 10% of the not

fog stratum, and a proportion of 6P>% of this sample was allocated for the data mining set.

This data mining set was then joined with the data mining set generated from the fog stratum,

resulting in the final mining set, including fog and not fog instances. The other data mining

models follow the same structure.

Table 5.12 describes the obtained models for data mining, identifying how each data

mining model is compounded and their respective amount of cases (rows of data) from each

class, as well as the total amount of cases. All samples were generated using the SPSS statistical

package.

The testing datasets were not used in the data mining stage, only the mining datasets.

Testing datasets were used at a later stage, when the generated rule sets were applied for

training the neural network based system, and testing datasets were used to assess the

performance of the DM-NN model. And the evaluation datasets would be used to handle to

problem of overfittmg in the neural network, if necessary.

Table 5.12: Data mining models

Mining M<wiel Mining Nlodel Mining Model Mining Model \ Mining Model
1-60 1-80 2-60 \ 10-60t

Mining sets

Rows in fog class

Rows in not fog
class

Total number of
rows

Fog mining +
NotFog mining
Model 1-60

807

2836

3643

Fog mining +
NotFog mining
Model 1-80

807

3869

4676

Fog mining +
NotFog mining
Model 2-60

807

5699

6506

Fog mining +
NotFog mining
Model 10_60

807

28797

29514

S t

4
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With the data models obtained for data mining, the next step is applying the data mining

component to generate descriptive models of fog occurrence, and then populate the

knowledge rule bases with the sets of association rules obtained.

5.4 Building Knowledge Bases: Mining Data

The next stage in applying the DM-NN model is to effectively mine the data mining

models obtained (see Table 5.12), and as a result to generate the knowledge rule bases. The

knowledge rule bases are the learning (training) datasets used by the artificial neural network

system CANN (refer to section 4.5).

Knowledge discovery in databases constitutes an interactive and iterative process, having

many steps. This research project distinguishes the activities of domain modelling, data modelling

and knowledge modelling.

In the scope of this research domain modelling is considered in the same way as it has

been widely used by decision support, expert systems and die artificial intelligence community

in general. Basically, it is concerned with building a model of a particular domain under

investigation for any particular purpose. In this thesis section 5.2 and section 5.3, including

subsection 5.3.2, "Understanding Meteorological Data," are concerned with domain

modelling.

Data modelling in the context of this research relates to all the activities that transform raw

data into the data used for data mining. Such data modelling includes data pre-processing,

features selection, reduction and transformation, and data sampling. Section 5.3.3, "Data

Preparation," and section 5.3.4, "Data Modelling for Data Mining," are concerned with data

modelling.

Knowledge modelling in this context includes die activities related to extracting knowledge

from data. This includes the interactive process of mining data, testing and tuning different

data mining parameters and data models, e.g., adding or eliminating data features, and even

cases. It is effectively an interactive and iterative process, where the purpose is to build

descriptive models the most comprehensible as possible about the application domain under

I
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study. The ultimate goal of such a knowledge modelling process is to achieve a good

predictive performance of the decision support model.

The above definitions are important for a better understanding of how the knowledge

models were generated and what they are in this research. The approach used here to generate

knowledge is based on the data models, a data mining algorithm (the descriptive method) and

the choice of data mining parameters (rule confidence degree, rule support and maximum rule

order). For each mining data model, and combinations of mining parameters, distinct sets of

association rules were obtained. Each of these distinct sets of association rules is identified as a

knowledge model, and populates a particular knowledge rule base.

The next step in the research described in this thesis is knowledge modelling. This includes

the interactive process of mining data, testing and tuning different data mining parameters and

data models, e.g., adding or eliminating data features, and even cases. The way these processes

were conducted in this research project are described next.

5.4.1 Applying Data Mining

There are various procedures that must be done when applying data mining, such as

features selection, selection of feature values, selection of a target attribute (also known as

survey variable), discretization of numeric attributes, and the selection of mining parameters.

Almost all data mining projects require the execution of these procedures at a certain level.

5.4.1.1 Selecting the Target Attribute

Selecting the target attribute concerns identifying the attribute in the database that

represents the target of the data mining process. This means the attribute that discriminates

the class under study, or the subject that has to be described. This attribute forms the

consequent part of the rules. As this research project aims to describe situations w jiere fog is

most likely to occur, the attribute in the database that identifies fog occurrence is the selected

survey variable, i.e. the FogType attribute. FogType attribute was discretised in two possible

values, F and JVF, representing whether a particular weather observation (case) refers to a fog

case (F) or not (NF), respectively.
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5.4.1.2 Features Selection

Features selection relates to choosing the attributes that form the antecedent part of the

rules. In this research almost all attributes were selected for data mining, except for the Year

and Day attributes, as already mentioned. The Year attribute was not used because a particular

year only happens once and is never repeated, as such a value of a particular year does not

categorize any situation. The Day attribute was not used because the forecasters classified this

information as not relevant for forecasting purposes.

The Visibility attribute represents the visibility over the airport runaway. This attribute

might be considered synonymous with the attribute that identifies fog occurrence, and

consequently could be discarded. For instance, low visibility values would indicate a definitive

occurrence of fog, and high visibility values would indicate a not fog case. Data mining

experiments selecting and not selecting Visibility attribute were conducted, with the aim of

verifying the impact of this attribute in identifying fog.

The objective of these experiments was to verify the generated rules in both classes (fog

and not fog) and the prevalence of Visibility attribute, and ultimately, the predictive performance

of the DM-NN model when trained with and without Visibility in the training set. Section 7.5

discusses these experiments.

5.4.1.3 Selection of Attribute Values

Selection of attribute values is a procedure that addresses dimensionality reduction,

together with feature and case selection. It is possible that some attribute values are not

relevant to the survey variable, or have a small frequency of occurrence in the database, or

have a high frequency for either fog or not fog. In all these cases, such attribute values can be

discarded for data mining purposes.

Attribute values with a small frequency of occurrence in the database do not specify any

pattern and are usually ignored by most data mining (and machine learning) algorithms. On

the other hand, attribute values with a high frequency of occurrence in all classes do not

discretize any class; and as such have no value for classification purposes.
*1
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Some values of Hour, Month and Rainfall attributes were excluded from the data mining

experiments because they had either a small frequency in the database, or because they had a

high frequency for either classes, fog and not Jog.

Figure 5-20 illustrates the frequency distribution for the Hour attribute in the whole

population.

0 11 12 14 16 17 18 2 20 21 23 3 5 6 8 9

Hour

Figure 5.20: Frequency distribution for the Hour attribute

In this attribute, the values 11,14,17, 2, 20, 23, 5 and 8 were discarded, as they have a very

low frequency of occurrence, below 0.5%. It can be observed in Figure 5.20 the small number

of occurrences for some values, such as 2 and 20, among others. This small frequency implies

that these values are likely to be ignored by the data mining algorithm; consequently there is

no need to select these values. It should be noted that the Apriori algorithm counts the sets of

the most frequently occurring groups of items, named large itemsets, as discussed in section

3.3.2.1

Considering the rainfall observation, only the categories 0, 1, 2, and 3 were selected in the

Rainfall_Rapge attribute. The remaining categories have a frequency below 0.5%, considered

very small for data mining purposes, as shown in Table 5.7 and Figure 5.15 in this chapter.

Considering the month observation, only the values of 4 (April), 5 (May), 6 (June), 7 (July),

8 (August), 9 (September) and 10 (October) were selected, as there is no occurrence of other

values for the month attribute in the database, as shown in Figure 5.21.
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Figure 5.21: Frequency distribution for Month attribute

The remaining attribute values were selected in all data mining experiments.

5.4.1.4 Discretization of Numerical Attributes

Discretization of numerical attributes is used to determine the granularity of a certain

variable and can be used to simplify the data mining problem. Most data mining tools and

algorithms, mainly those used to generate association rules, require numerical continuous

variables to be discretised in categorical ranges, or bins. This involves dividing the range of

values into subranges and using the subranges as substitutes for continuous values. This

process is called binning in some literature (Fayyad and Irani, 1993). The rules generated in

data mining processing describe ranges of values represented by a discrete value. Categorical

attributes already express a discrete value, consequently there is no need to discretise them.

However numerical attributes have to be discretised in ranges.

For example, for some decision purposes, air temperature may be discretised into the

categories hot, warm, cold, and freezing. Each of these four alpha labels (categories) represents

part of the ail temperature range. A rule representing some trivial relation could be: "If it is

cold than use a coat when going out," instead of: "If the temperature is between minus 10 Celsius

degrees and 5 Celsius degrees than use a coat when going out." In this example, the temperature

range of minus 10 Celsius to 5 Celsius degrees is replaced by the category of cold, which is a more

natural way of expreSvshig such a situation.
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In this research project, numerical attributes were discretised into categorical bins to

generate association rules. For example, the wind speed was discretised into four categories1:

light, light moderate, moderate, and fresh moderate. Figure 5.22 illustrates how binning works for the

wind speed attribute.

Domain knowledge facilitates setting the bin boundaries, identifying where meaningful

boundaries fall. When domain knowledge is not available, some rationale has to be applied.

For example, to assign bin boundaries so that each bin contains approximately the same range

she. Normally, the discretization of a particular attribute depends on the amount of cases in

the database and the frequency of each value in the attribute value range (Fayyad and Irani,

1993), ix. the discretization is a measure proportional to the total amount of cases in the mine

set and the frequency of occurrence of each, attribute value.

Light
Light
Moderate Moderate

Fresh
Moderate

0 1.5 3.6

Wind Speed

6.2 9.2 m/s

Figure 5.22: Discretizing continuous values of wind speed

The data mining algorithm employed in this research includes a method that automatically

discretdzes numerical attributes during pre-processing, based on the attribute frequency

distribution in the mine set and the number of their categories, aiming to achieve a uniform

grouping.

Because the number of cases varies in each data mining model, each numerical attribute

was discretised, keeping constant the number of cluster (bins) in each attribute for all data

1 The categories for wind speed used by the Bureau include strong and galeforce. Those categories were not
included in this research as there was no occurrence of these wind categories in the mine sets.
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mining models. Table 5.13 illustrates the clusters, their boundaries and labels for all numeric

attributes in Model1-60.

Table 5.13: Discretization of numerical attributes for Modell-60

*\ttnb Numerical ranges Labels
Dry Bulb
(Celsius degrees)

Dew Point and Previous
Dew Point
(Celsius degrees)

Total Cloud Amount
(Eighths)

Total Low Cloud Amount
(Eighths)

Sea Level Pressure
(HpA)

Wind Speed
(meters/second)

Visibility
(Kilometers)

< = 8.5
> 8.5 and <= 12

< = 4
> 4 and < = 6
> 6 and < = 9
> 9

< = 4
> 4 and < = 7
> 7

< = 1
> 1 and < = 6
> 6

< = 1014.1
>1014.1 and <= 1020.2
>1020.2 and <= 1025.6
> 1025.6

> 1.5 and < = 3.6
> 3.6 and < = 6.2
>6.2

< = 25
> 25 and < = 35
> 35 and < = 40
>40

Low
Med (medium)
High

Low
Med (medium)
High
Max (maximum)

Min (minimum)
Med (medium)
Max (maximum)

Min (minimum)
Med (medium)
Max (maximum)

Low
Med
High
VHigh (very high)

light
LMode (light moderate)
Mode (moderate)
FMode (fresh moderate)

Levl (level 1)
Lev2 (level 2)
Lev3 (level 3)
Lev4 (level 4)

The binning approach follows in the same fashion for all data mining sets used in this

research. The discretization values and ranges for Mode/1-80, Mode/2-60 and Mode/10-60 are

included in Appendix B.

5.4.1.5 Selecting Mining Parameters

Mining parameters (thresholds) orient die processing of rules, specifically die pruning of

uninteresting rules, and ranking rules according to some criteria. As a result of the pattern

discovery process, many rules are likely to be generated. Depending on the size of die

database, diousands of rules or even more, could be obtained. Some discovered rules might

not be interesting for several reasons. For example, a rule can correspond to already known

information, as such uninteresting, a rule can refer to uninteresting attribute combinations,
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and rules can be redundant (Weiss and Indurkbya, 1998). For those reasons, pruning and

sorting procedures are often necessary.

Generally, when evaluating the quality (or interestingness) of a rule, the common factors

that are taken into account are the coverage, the completeness, and the confidence of the rule.

Pruning and sorting criteria for association rules are rule confidence, frequency, and support degree

(Klemettinen, Mannila and Toivonen, 1997). Rules are pruned and ranked by setting

thresholds on these parameters.

The parameters for rule filtering used in this resear-h are: the minimum level of rule

confidence and support degree, the minimum number of records in the database that support a

particular rule, e.g., the minimum number of cases for which a rule is verified. And the

maximum rule order, e.g. the maximum number of rule antecedent itemsets.

Confidence and support constraints are important because they work as filters for relevant

rules; in general, relevant rules have support and confidence degrees above some minimum

threshold- If the support and confidence are not large enough, the rule is not relevant enough

and can be discarded. In brief, the support degree represents the ratio of the number of the

records in the database for which the rule is true to die total number of records in the

database. The confidence degree expresses the belief in the consequent being true for a rule

once the antecedent is known to be true. Refer to section 3.3.2.1, "The Apiiori Algorithm for

Association Rule Learning," for a formal definition of support and confidence degrees.

The problem is to effectively assign the best-fit set of such parameters in a given situation.

Tliresholdi; that are too restrictive are likely to miss important information, but on die other

hand, overly flexible thresholds might produce too much uninteresting information.

The weather observation database used in this research presented an unbalanced class

distribution. Although this problem was minimized dirough the applied sampling design, class

distribution remains a concern. For instance, the data mining model Model1-60 has 807 cases

of fog and 2836 cases of not fog (refer to Table 5.12). The problem is that it is generally easy

to discover rules predicting the major class, but difficult to discover rules predicting the minor

class (Kononenko, Simec and Robnik-Sikonja, 1997). This problem is worth avoiding because

it might have an impact later on the neural network training performance.

188



Chapter 5 Applying the DM-NN Model in Aviation Weather Forecasting: The Knowledge Discovery
Stage

Furthermore, there are computational costs associated to threshold levels; in general,

restrictive thresholds help reduce the search space, consequently reducing computational

costs. For instance, (Klemettinen, Mannila and Toivonen, 1997) shows the effect of setting

different rule confidence and frequency thresholds in a data mining application using an alarm

database.

In this research rules with 70%, 80% and 90% confidence degrees were generated. As it

was impossible to know beforehand the amount of rules that could be obtained according to a

specific confidence degree, it was decided to use the most frequent thresholds applied in data

mining applications (Weiss and Indurkhya, 1998; Piatetsky-Shapiro and Frawley, 1991;

Klemettinen, Mannila and Toivonen, 1997). The goal was to verify if there was a significant

difference in performance according to different combinations of parameters (confidence

degree, minimum support degree and maximum rule order). And, if so, which combination^)

of these parameters leads to a better classificatory performance.

Rules with 50% confidence degree were generated specifically for Mode/10-60. This model

contains the whole population, and an extremely unbalanced class distribution. As such, a

more flexible confidence degree was allowed in order to obtain a higher number of rules for

the fog class (it should be noted that in this data mining model the difference between fog and

not fog cases is very significant, as shown in Table 5.12).

Two sets of data mining experiments were conducted. In the first set of experiments, 50%

(for ModellO-60 only), 70%, 80%, and 90% of rule confidence degrees were used. The

minimum rule support was set to 8% and the maximum rule order to 7, with the minimum

number of cases as 50 cases. These parameters were arbitrarily selected. This first set of

experiments is identified as V2.

In particular, the maximum rule order of seven antecedent iternsets was selected because it

was verified that forecasters do not use more than seven pieces of information when issuing a

forecast report, and normally it is less than seven.

A second set of experiments was conducted, using a minimum rule support of 6% and a

maximum rule order relaxed to 10 itemsets. The levels of confidence degree remained the
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same in both set of experiments, as well the minimum amount of cases for each rule, Le. 50

cases. This second set of experiments is identified as V3.

Table 5.14 shows the data mining parameters selected in both sets of experiments.

Table 5.14: Mining parameters and thresholds

• *
Mining Parameter ThresholdsConfidence Degree

Minimum Number of
Cases
Minimum Support Degree

Maximum Rule Order

50%, 70%, 80%, 90%

50

8%

7

6%

10

The sets of rules obtained are identified as knowledge models and populate a particular

knowledge rule base.

The reason for conducting these two experiments is that the first experiment resulted in

very restrictive models, with a small number of rules describing fog class. Consequently, it was

decided to repeat the data mining experiments with more flexible thresholds, aiming to

achieve a higher amount of rules describing fog class. As such, the minimum rule support was

relaxed to 6% and a higher amount of rule itemsets were allowed, setting the maximum rule

order threshold to 10.

5.4.2 Generating Knowledge Models

The approach used in this research to generate knowledge was based on data mining

models (see Table 5.12), a data mining algorithm (the descriptive method, see section 4.2) and

a set of data mining parameters and respective diresholds (rule confidence degree, rule support

and maximum rule order). For each data mining model, and combinations of mining

parameters, a distinct set of association rules was obtained. Each of these distinct sets of

association rules is identified as a knowledge model, and populates a particular knowledge rule base.

For instance, Modell-60, with 70% minimum confidence degree, minimum rule support

of 8%, and maximum rule order of 7, populates a particular knowledge rule base as a result of

data mining processing.

Similarly, Modell-60, with 80% minimum confidence degree, minimum rule support of

6%, and maximum rule order of 10, populates a distinct knowledge base as a result of data
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mining processing. The process follows in this fashion until all data mining models are

processed with the selected data mining parameters and thresholds (refer to Table 5.14).

As already mentioned, two sets of mining experiments were conducted with all data

mining models, according to different combinations of parameters (refer to Section 5.4.1.5,

"Selecting Mining Parameters.") These two sets of experiments, identified as V2 and V3, are

described next.

5.4.2.1 Knowledge Models V2

The first data mining experiments resulted in association rules with 50% (for ModellO-60

only), 70%, 80%, and 90% of confidence degrees1, a minimum rule support of 8% and a

maximum rule order of seven, with a minimum number of cases as 50. This group of

experiments is identified as V2.

Table 5.15 shows the amount of rules obtained from each data mining model, according to

their confidence degrees. In Table 5.15 F identifies^ class and NF identifies not fog class.

Table 5.15: Rule sets by data mining models in experiment V2

Generated Rules b\ Rule Confidence Degree
\iinmg ' ,_ , ,- „, ' , , . „ , „ , ' _

, , Rule Support a .., Maximum Rule Order 7
M o d e l • • • ' . • •

Mining
Modell-60

Mining
Modell-80

Mining
Model2-60

Mining
ModellO-60

50%

F

17

NF

170

Total

187

70%

F

54

35

32

8

NF

186

180

177

170

Total

240

215

209

178

80%

F

22

16

18

7

NF

180

180

177

170

Total

202

196

195

177

90%

F

10

8

10

7

NF

122

128

169

170

Total

132

136

179

177

As can be observed from Table 5.15, the results obtained in these first experiments were

considered very restrictive, as the numbers of rules obtained, specifically for fog class, were

considered too small for a good descriptive capability. The highest number of association rules

describing the fog class was 54, obtained through Modell-60, using a 70% confidence degree.

'The confidence degrees indicate the minimum level of confidence accepted, rather than an absolute value.
For example, a data mining experiment with a 70% confidence degree indicates that 70% is the minimum
level; rules with higher levels than 70% are also included.
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In the same experiment, the number of association rules describing the not fog class was 186,

a difference of 132 rules, as shown in Table 5.15.

The experiment using ModellO-60 resulted in very poor models, with few association rules

allotted to the fog class and a significant difference between the amount of rules for fog and

not fog classes. Even relaxing the confidence degree to 50%, only 17 association rules were

obtained for the fog class, contrasting with 170 association rules for not fog class, as indicated

in Table 5.15. This difference might prevent a good descriptive capability for fog class from

this data mining model.

A similar interpretation can be extended to the experiments using a 90% confidence

degree. The resulting association rule sets have 132,136, 179 and 177 rules, with 10, 8, 10, and

7 rules describing fog class, respectively. The maximum number of 10 rules allotted to the fog

class was obtained with Modell-60 and Model2-60. Again, this number of rules, 10, is unlikely

to be enough for a satisfactory description of fog phenomenon.

Using a confidence level of 80%, an increase in the number of rules for the fog class was

obtained, but an increase in the number of rules for the not fog class was also obtained.

Meanwhile the higher amount of rules assigned to fog class helps improve the descriptive

capability for this class, the proportional increase of rules for the not fog class might not help

achieve a better predictive performance, as the rules distribution between both class remains

highly heterogeneous.

Figure 5.23 illustrates the rules distribution in each class, fog and not fog.

Rules Distribution by Class - V2

• • . / , . %,^-r; 1K • Not Fog

•Fog

Knowledge Bases

Figure 5.23: Rules distribution for Fog and Not Fog Class, in experiment V2
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The better models were obtained with a confidence level of 70%, with 54 association rules

assigned to fog class using Modell-60, 35 association rules assigned to fog class using Modell-

80, and 32 using Model2-60 (refer to Table 5.15).

It is very difficult to assess in advance the classificatory performance of the DM-NN

model, when training the neural network model with the knowledge rule bases obtained.

However, as already mentioned, is generally easy to discover rules predicting the major class,

but difficult to discover rules predicting the minor class (Kononenko, Simec and Robnik-

Sikonja, 1997).

Intuitively, it is easy to recognize that assumption, specifically in this research, as the used

neural network learning algorithm implements a supervised learning approach based on the

error correction algorithm. This means that the number of examples in each class under study

affects the algorithm learning rate. Refer to section 2.4.4, "Neural Networks Learning

Approaches," for discussions on this subject.

Consequently, it seemed necessary to achieve a more equal distribution between die

amount of rules describing either classes, or at least, to increase the number of rules describing

the fog class. This is because the difference in number of rules, or the small number of rules

assigned to the minor class, fog, might have a negative impact on the neural network training

performance. As such it was decided to repeat the experiments using a more relaxed set of

mining parameters. The next section discusses these experiments.

For illustration purposes, Figure 5.24 shows a set of association rules discovered through

the data mining processing of Modell-60, using a 70% minimum confidence degree.

For instance, the first association rule in Figure 5.24 indicates a fog case, attribute

FOGTYPE-F, with 91.82% rule confidence, 12.52% rule support, and found in 101 cases.

The itemsets of this first association rule are:

Dry Bulb temperature less or equal to 8.5 degrees Celsius, Total Cloud Amount higher than 7

heights, Total "Low Cloud\Antounthighet than 6 heights, and no Rainfall observed.

The numeric attribute values were later transformed into their respective labels, as

described in Table 5.13, before the rules were presented to the neural network system as part

of the integration of the knowledge rule bases within the CANN system.
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ASSOCIATION RULES- MODEL1-60V27D-NV
ITEMSETS

IF DRYBULB <= 8.5 &TOTALCLO > 7 & TOTALLOW > 6 & RAINFALL= 0
IF DRYBULB <= 8.5 8.TOTALCLO > 7 & SEALEVEL > 1025.6 & RA!NFALL= 0
IF DRYBULB <= 8.5 &TOTALCLQ > 7 & TOTALLOW > 6 & SEALEVEL > 1025.6
IF TOTALCLO > 7 &TOTALLOW > 6 & RAINFALL=0 & WINDCOMP = CALM
IF MtONTH=06 & DRYBULB <= 8.5 &WINDSPEE <= 1.5
IF DRYBULB <=8.5&DEWPOINT>6& DEWPOINT <= 9 & W1NDSPEE <= 1.5
IFDRYBULB'<= 85 &TbtAi±dw> 6 "i WINDSPEEVIS
Fl i roNTH'=074MBOLB"«^cL5' iWl 'NbSPK' '<^ i "5
IF HOUR=6 & TOTALCLO > 7 8. TOTALLOW > 6
IF TOTALCLO > 7 & WINDCOMP = CALM
IF TOTALCLO > 7 8. TOTALLOW >6&RAINFALL=0

• • - • -

CONSEQUENCE

THEN FOGTYPE = F
THEN FOGTYPE=F
THENFOGTYPE=F
THEN FOGTYPE = F
THEN FOGTYPE = F
THEN FOGTYPE = F
THEN FOGTYPE = F
iTHEN FOGTYPE = F
THEN FOGTYPE = F
THEN FOGTYPE = F
'THEN FOGTYPE = F

IF DEWPOINT > 6 &. DEWPOINT <= 9 8. TOTALCLO > 7 & WINDSPEE <= 1.5 THEN FOGTYPE = F
IF PREVIOUS > 6 & P R E V l 6 u S ^ ^
IF TOTALCLO > 4 8. TOTALCLO <= 7 & PASTWEAT= 2 & WINDCOMP = N
IF TOTALCLO > 4 8, TOTALCLO <= 7 & TOTALLOW > 1 8. TOTALLOW <= 6 & WINDSPEE > 6.2
IF TOTALCLO > AI TOTALCLO <= 7 & SEALEVEL <= 1014.1 8. WINDSPEE > 6.2
IF PREVIOUS <= 4 8. PASTWEAT= 2
IF DRYBULB > 8.5 & DRYBULB «= 12 8. TOTALCLO >• i & TOTALCLO <= 7 & PASTWEAT=2
IF DRYBULB > 8.5 8, DRYBULB <= 12 & WINDSPEE > 6.2
IF TOTALLOW <= 18. PASTWEAT = 2 & WINDCOMP = N
IF DEWPOINT > 6 8, DEWPOINT <= 9 & TOTALCLO > 4 8. TOTALCLO <= 7 8. PASTWEAT=2
IF SEALEVEL "«=' 1014.1 & WINDSPEE > 6.2

:|FWiNDSPEE>6.2
IF HOUR = 18 & TOTALCLO > 4 & TOTALCLO <= 7

THEN FOGTYPE = NF
THEN FOGTYPE =NF
THEN FOGTYPE = NF-
THEN FOGTYPE = NF
THEN FOGTYPE = NF
THEN FOGTYPE = N F
THEN FOGTYPE =NF
THEN FOGTYPE =NF

" THEN FOGTYPE = NF"
THEN FOGTYPE =NF
THEN FOGTYPE =NF

Knowledge Discovery

CONFIDENCE
%

91.82
9155
91.36
86.46
74.2

73.64
73.57
7Z82
72.22
72.11
71.17
70.71
99.58
99.58
99.57
99.56
89.41
99.34
99.29
99.28
99.26
99:22
98.15
97.94

N. OF CASES

101
65
74
B3

" 9 4
81

103
75
65

106
195
70

" 2 3 9
238
233
227
339
301
279
274
270
331
797
238

SUPPORT
i %
i 12.52
; 8.5
i 9.17

10.29
11.65

10.4
12.76

; "9.29
8.5

13.14
24.16

8.67
8.43
8.39
8.22

8
11.95
10.61
9.B4
9.66
9.52

13.43
28.1
8.39

Figure 5.24: Association rules from Modell-60, experiment V2

The data mining experiments were replicated using more relaxed levels of rule support and

rule order, the next section describes these experiments.

5.4.2.2 Knowledge Models V3

The first data mining experiments, V2, resulted in very restrictive models considering the

amount of association rules obtained, specifically describing fog class.

As such, it was decided to repeat the data mining experiments using more flexible mining

parameters, aiming to achieve a more equal distribution between the number of rules

describing either classes, or at least, to increase the number of rules describing the fog class.

This second set of experiments was conducted using the same mining models used in the

previous experiments, V2, keeping the same levels of rule confidence degrees, and relaxing the

minimum rule support from 8% to 6%, and allowing a higher number of rule antecedent

itemsets, from 7 to 10 itemsetff. The minimum amount of cases for each rule remained 50 in

all experiments, because this was considered a satisfactory amount, not very restrictive but

large enough for a good coverage.

This second set of experiments is identified as V3. Table 5.16 shows the number of rules

obtained from each data mining model, according to their confidence degrees in this second

set of experiments.

194



Chapter 5 Applying the DM-NN Model in Aviation Weather Forecasting: The Knowledge Discovery
Stage

Table 5.16: Rule sets by data mining models in experiment V3

Mining

Mode,l

Generated. Rules b\ Rule Confidence Ue^ree
Rule Support 6"», Maximum Rule Order 10

Mining
Modell-60

Mining
Modell-80

Mining
Model2-60

Mining
ModellO-60

50%

F

19

NF

279

Total

298

70%

F

104

67

45

10

NF

301

291

283

279

Total

405

358

328

289

80%

F

37

23

20

9

NF

291

291

283

279

Total

328

314

303

288

90%

F

16

12

12

9

NF

204

228

274

279

Total

220

240

286

288

The best results were obtained with Modell-60 and Modell-80, with 70% rule confidence

degree. There were 405 association rules, with 104 allotted to fog class for Modell-60, and 358

association rules, with 67 allotted to fog class for Modell-80. An increase of 50 rules can be

observed for fog class in Modell-60 and 32 rules for fog class in Modell-80.

Even with an increase fox the amount of rules allotted to the not fog class, these results

represent an improvement in terms of descriptive capability for fog phenomenon, compared

to the results achieved in the first set of data mining experiment (V2).

Significant changes were not observed in the other experiments. An increase of 15 rules

was verified in Modell-60 with an 80% confidence degree, an increase of 13 rules was verified

in Model2-60 with a 70% confidence degree, both for fog class. This is certainly an

improvement, but its significance is difficult to assess at this stage.

The experiments with a 90% confidence degree did not show significant improvements; an

increase of 6 association rules was verified in Modell-60, 4 rules in Modell-80, and only 2

rules in Model2-60 and ModellO-60, all for fog class. ModellO-60 did not show any

improvement at all, with an increase of 2 association rules for fog class, but a much higher

number for not fog class. Figure 5.25 compares the number of association rules for fog class

obtained in both sets of data mining experiments, V2 and V3.

An increase in the number of association rules allotted to the fog class can be verified in

this second set of experiments (V3), as a result of applying more flexible thresholds for the

mining parameters. The level of 70% rule confidence degree showed the best results, with 104,
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67 and 45 association rules obtained for each data mining model, with the exception of

ModellO-60.

Rules Distribution In Fog Class
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Figure 5.25: Rules distribution in Fog Class, in experiments Y2 and V3

Different threshold settings for mining parameters could be used to conduct new

experiments, however this approach would lead to a large number of new experiments,

demanding extra time. The results obtained at this stage were considered sufficient to assess

the performance and feasibility of the DM-NN model proposed in this research. Specifically,

die numbers of association rules in fog class that were obtained as a result of the new

experiments (V3) were considered satisfactory to populate the knowledge bases.

5.4.2.3 The Knowledge Bases

As a result of the data mining experiments, several distinct sets of association rules (s: ;>i'ar

to that shown in Figure 5.24) were obtained. Each of diese distinct sets of association rules

populates a particular knowledge nth base, and Figure 4.1 illustrates this process.

The knowledge bases were further applied as training datasets for the neural network

model, within the CANN system. As such they had to be properly identified. For this a

specific naming schema was developed in order to identify the knowledge bases according to

the strategy used to generate them, i.e., original data mining models, levels of rule confidence

and support degrees, and maximum rule order.

The knowledge bases naming schema is as follows:
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Train_ModeIX-XVmnn

where:

ModelX-X: identifies the original data mining model from where this knowledge base was

generated, e.g., Modell-60, Modell-80, Model2-60, or ModellO-60.

\'tni identifies data mining experiment, 2 or 3, according to the configuration of rule

support and rule order, as follows:

V2: identifies a minimum rule support of 8% and a maximum rule order of 7

V3'i identifies a minimum rule support of 6% and a maximum rule order of 10

nn: identifies the data mining rule confidence degree (50%, 70%, 80% oi 90%).

For example; Train_ModeJ1 -60V270

identifies a knowledge base originating from data mining Modell-60, in an experiment

using a rule minimum support of 8%, a maximum rule order of 7 itemsets (V2 configuration),

and a rule confidence degree of 70%.

All the knowledge bases obtained are now listed, identifying their original data mining

model, respective name, amount of rules, and the amount of rules in each class. The

knowledge bases were further used as the training datasets in the Intelligent Advisory System

(refer to section 4.3.5) implemented through the CANN simulator (refer to section 4.5).

Table 5.17 to Table 5.20 list the knowledge bases, organized by their respective data

mining models. It should be noted that not all sets of association rules were used to populate

the knowledge bases. In particular the association rules obtained through ModellO-60, with

70%, 80% and 90% rule confidence degrees, were not selected, because of the small number

of rules describing fog class. The significant difference between the rules allotted to both

classes, together with the small number of rules allotted to the fog class indicates a low

descriptive capability ia these models.
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Table 5.17: Knowledge bases from Modell-60

Knowledge Base Number Number of Number of Np-t
of Rules Fog Rules Fog Rules

1
2

3

4

5

6

Tram_i*fodell-60V270
Tram_Modell-60V280

Train_Modell-60V290

Train_Modell-60V370

Train_Modell-60V380

Train_Modell-6UV390

240
202

132

405

328

220

54
22

10

104

37

16

186
180

122

301

291

204

Table 5.18: Knowledge bases from Modell-80

Know ledge $. Number.
»f Rules

Number of"
Fog Rules

Number of Not
Fog Joules

7

8

9

10

11

12

Train_ModeJl-80V270

Train_Modell-80V280

Tiam_ModeIl-80V290

Tram_ModeIl-80V370

Train_Modell-80V380

Train_Modell-80V390

215

196

136

358

314

240

35

16

8

67

23

12

180

180

128

291

291

228

Table 5.19: Knowledge bases from Model2-60

ledge Ba»e Number
of Rule?

Number of
Fog Rules

Number of Not-
Fog Rules

13

14

15

16

17

18

Train_Model2-60V270

Train_Model2-60V280

Train_Model2-60V290

Train_ModeI2-60V370

Train_Model2-60V380

Train_Model2-60V390

209

195

179

328

303

286

32

18

10

45

20

12

177

177

169

283

283

274

Table 5.20: Knowledge bases from ModellO-60

Tram ModellO-60V250

20 Train ModellO-60V350

These final sets of rules, identified from Table 5.17 to Table 5.20, were applied as training

sets in the neural network model CNM, implemented through the CANN simulator.
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Although not specifically relevant to the purposes of performance of the DM-NN model,

but relevant to the construction of the computational environment developed in this research,

it has to be mentioned that a complex set of procedures were required to transform the files

generated through the data mining process into the final files used by CANN.

The knowledge bases shown in Tables 5.17 to 5.20 were generated as MS Access tables,

and then exported as ASCII plain files, in order to be read by CANN.

This process demanded a set of operations, such as, to properly transform the numerical

attributes into their corresponding categorical values, according to what is presented in Table

5.13. It can be observed in Figure 5.26 below, for example, that the wind speed observation in

rule 23 (the first rule at the top of the list) is given as light instead of its original value, in this

case a numerical measure less or equal 1.5 meters/second.

In order to be interpreted by CANN, the weather observations also had to be adjusted

according to their sizes and positions in the files. CANN reads data in training and testing

datasets according to their respective positions in these files (diis is discussed in Chapter 6).

T HR P^ DRYB1- DEVVP PRDW CLD LCL SEAPR WI.NDS- COM- R' PW TW VISI RULE

F
F
F
F
F
F
F
F
F 9
F
F 9
F
N
N
N
N

LOW
LOW
LOW HIGH

LOW
LOW

MAX
MAX

MAX
MAX
MAX

MAX

MAX
HIGH MED

MED
MED
MED

MAX

MAX

MAX
MAX

MAX

MED

VHSGH

VHIGH

VHIGH
VHIGH
VHIGH

VHIGH
VHIGH

LOW

LIGHT
LIGHT
LIGHT
LIGHT
LIGHT

CLM

LMODE
LIGHT

N
FMODE
FMODE

0

0

0

0 2
2

23
24
26
26
27
28
29
30
31
32
33
34
58
59
60
61

Figure 5.26: Association rules in Train_Modell-60V270

Figure 5.26 illustrates various rules from the training set Train_Modell-60V270. The first

row (header) of the table identifies the weather observation, and is presented here to help
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understand the rules displayed in the figure, but it is not included in the training and testing

ASCII files.

For instance, the header in Figure 5.26 identifies the first column as "T", which indicates a

fog case (F) or a not fog case (N). This column does not exist in the test datasets. Then "HR"

identifies the hour observation, "MT" identifies the month, "DRYB** identifies the dry bulb,

"DEWF' the dewpoint and CTRDW" the previous dewpoint, and so on.

For example, the top rule, number 23, indicates a fog case and can be read as:

If CLD = MAX And
SEAPR = VHIGH And
WINDS = LIGHT Then

Class - FOG.

Where: CLD = cloud amount
SEAPR = sea level pressure
WINDS = wind speed

Comparing the rules in Figure 5.26 with the rules in Figure 5.24 a significant difference in

their formats can be noticed. Also the confidence and support measures are disregarded in the

CANN simulator, these measures were used to filter and select rules during the data mining

process and were not necessary afterwards. The. CANN simulator employs neural network

weights and morbidity values to assign value measures to data. This is discussed next in

Chapter 6.

Chapter 6 describes the application of the CANN simulator to aviation weather

forecasting, which comprises the last part of the application of the DM-NN model for

decision support developed in this research. The CANN simulator is identified as the

Intelligent Advisory System component, as it is responsible for the implementation of

learning, reasoning and explanatory capabilities.

5.5 Chapter Summary

This chapter described the stage of knowledge discovery in the application of the Hybrid

DM-NN model in aviation weather forecasting at Tullamarine. First, the problem of aviation

weather forecasting was introduced and its suitability for this research was discussed. Next, the

stage of discovering knowledge from a meteorological database and building knowledge bases
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were described. This included the tasks of problem domain understanding, data gathering,

selection, and data preparation for data mining. The tasks of features selection, analysis of

missing values and variability, and data transformation were also described. Furthermore, this

chapter presented the data sampling approach that was adopted, and the data mining process

that was developed.

Finally, this chapter presented the process applied in generating knowledge bases and

described the knowledge bases obtained.
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Chapter 6

6 Applying the DM-NN Model in Aviation Weather
Forecasting: The Intelligent Advisory System Stage

The Intelligent ^Advisory System (LAS) is the component responsible for implementing

learning^ reasoning, and issuing recommendations in the DM-NN model for decision support.

The IAS component is implemented within a neural network environment — the CANN

simulator employing the CNM neural network model.

This chapter describes the implementation of the CANN simulator in aviation weather

forecasting. Issues of aviation weather forecasting domain modelling into CANN simulator are

described. The CNM learning stage is discussed in the context of aviation weather forecasting,

and the user interface functionalities are presented.

6.1 Introduction

The DM-NN model applies artificial neural network technology (NN) for the purposes of

processing the knowledge discovered through data mining, implementing learning and

reasoning upon this knowledge. The reason for this is because neural networks excel in

learning, self-organization, and generalization capabilities, as discussed in Chapter 2. Section

2.2.3, "Intelligent Systems Capabilities" addresses the issues of implementing learning and

reasoning capabilities in intelligent systems, and section 2.2.4 discusses the role of specific

computing technologies in building intelligent systems. Section 2.4 specifically discusses

artificial neural networks.

The component responsible for the implementation of learning, reasoning, issuing

recommendations and explanations in die DM-NN model developed in this research is
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identified as the Intelligent Advisory System (IAS). Section 4.3.5. "Intelligent Advisory

System" discusses the IAS component, its roles and functionalities.

In the research described in this thesis the IAS component is implemented within the

CANN simulator environment and the CNM neural network model

The Combinatorial Neural Model (CNM) was selected as the neural network model in this

research not only for its generalization, learning from examples, and self-organizing

capabilities, but also because of its compatibility with the knowledge representation formalism

of knowledge graphs and association rules. Section 4.4 discusses the knowledge representation

schema employed in the DM-NN model, and the CNM NN model is introduced in section

4.6 of that chapter.

Besides implementing learning and reasoning capabilities, another goal of the DM-NN

model is to issue recommendations and explanations. For this, the CANN simulator was

selected. CANN implements a computer system architecture that combines NN models with a

symbolic mechanism to represent NN structures. NN structures, including the knowledge

stored across these structures, are symbolically represented in a hierarchical fashion, through

an object-oriented design, thus minimizing the problem of implicit knowledge representation

in neural networks models.

This chapter describes the application of such an IAS component in aviation weather

forecasting. Firstly, the domain of aviation weather forecasting is modelled through a hieratchy

of classes. Next, this hierarchy is integrated into the CANN simulator. Once the domain is

modelled, CANN accesses the respective knowledge bases (refer to section 5.4.2.3, "The I

Knowledge Bases") for learning purposes. |

Learning is implemented through the CNM learning algorithms, and after the learning is |

completed the system is ready for consultation, which means testing hypotheses about the |

specific domain it has been applied to. CANN offers two ways for user interaction, a case

consult and a case base consult. In a case consult the user selects a set of evidences and the
s

system advises the hypothesis that is most likely to occur according to the selected group of j
ievidences. The case base consult works in a similar fashion, however, instead of a single case, I
I

many cases can be simultaneously presented to CANN for evaluation. I
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Figure 6.1 illustrates the intelligent advisory system stage from the perspective of the

decision support cycle implemented through the DM-NN model, previously discussed in

Chapter 4. The activities depicted in Figure 6.1 were developed and discussed thoroughly in

that chapter in the context of aviation weather forecasting.

Intelligent Advisory System Stage

Knowledge Rule
Base

Advisory
System

• -

User-System
Interaction

NN Based System

Figure 6.1: The intelligent advisory system stage

This chapter follows on to illustrate the application of one of the generated data models

(see Chapter 5) within the IAS component. The stages of domain modelling and integration

into the CANN simulator, learning, and consulting are presented, and are illustrated in Figure

6.1.

It has to be emphasized that it is not the purpose of this thesis to deeply discuss

implementation and design issues of the CANN simulator, but only to cover issues that are

relevant to the understanding of the research developed in this thesis. For further discussions

about the CANN simulator refer to (Beckenknmp, 2002), and for the CNM neural network

model refer to (Machado, Barbosa and Neves, 1998; Machado and Rocha, 1989).

Additionally, this thesis also assumes that readers are familiar with concepts of object

orientation, frameworks and design patterns. These concepts are necessary to understand the

subjects discussed in this chapter. Readers interested in further discussion in these concepts

should refer to (Pree, 1995) and (Gamma et al., 1995).
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6.2 Modelling the Domain of Aviation Weather
Forecasting

The knowledge representation schema employed in the DM-NN model has its grounds in

the knowledge representation formalism of knowledge graphs (KG). A KG has its structure

defined to represent knowledge in classification problems

Essentially, there are three types of nodes in a KG: hypothesis, evidence and intermediate.

Hypothesis nodes represent the hypotheses, or classes, considered in the graph; evidence

nodes represent input information that support a particular hypothesis, and intermediate

nodes represent different groupings of evidences that lead to a specific hypothesis.

Section 4.4, "The Knowledge Representation Schema" discusses the various knowledge

representation formalisms employed in the DM-NN model. At the data mining level

knowledge is represented through association rules. At the CANN level knowledge is

represented in two ways: implicitly stored in the neural network topology and through an

object-oriented design that reflects common properties of classification problems.

Therefore, the domain of aviation weather forecasting is modelled by a hierarchy of classes

and objects describing the domain classes, evidences, attributes and the interrelationships

among them. Through the use of the abstraction concepts (Hull and King, 1987) of

generalisation, classification and aggregation the domain knowledge can be represented in such

a hierarchy.

Figure 6.2 illustrates how the aviation weather forecasting domain was modelled according

to this approach. The main classes are Domain, Evidences, Attributes and Classes, which

correspond to nodes in the KGs. Specifically, hypothesis nodes are presented by instances of

Classes, evidence nodes are represented by instances of Evidences and Attributes, and

intermediate nodes are represented by aggregation between instances of Evidences/.Attributes

and Classes.

An important distinction has to be made about the concepts of Classes. The object-oriented

concept of class must not be confused with the classificatory concept of class. In this last case, a

class indicates the possible classification patterns in a certain domain, which corresponds to

the hypotheses nodes in KGs and output nodes in the CNM neural network model topology.
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|

Aviation
Weather ,
Forecasting

tancss &ft) Aggregation

Figure 6.2: The aviation weather forecasting domain model

In Figure 6.2, Domain is the higher level class, from where different application domains

can be subclassed, through "is-a" relationships. In this case, the Aviation Weather Forecasting

Domain is created as a subclass of Domain. The Domain ciass is connected by "part of' arcs to

Evidences and Classes, implying that the Domain should be made by die composition of these

two classes . > refore, die Aviation Weather Forecasting Domain is made by the composition

of instances of Classes and Evidences.

Instances of Classes (again, it is important to make the distinction between the object-

oriented deSnitioxi of Class, and the definition of a class as part of a classification problem) in

die Aviation Weather Forecasting Domain are weather phenomena such as fog, thunderstorms,

and cyclones.

Following Figure \>.?^ Evidences is connected to Attributes by a "part o f relationship,

implying that Evidences instances are composed of instances of Attributes. In Figure 6.2,

instances of Evidences class are Wind Speed, Cloud Amount and Wind Compass, connected to the

Evidences class by an "is-a" arc. Similarly, instances of Attributes class are Light and Moderate
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that are part of the Wind Speed evidence. In the same way, attribute instances Minimum and

Maximum are part of the Cloud Amount evidence.

Associations between Evidences I Attributes that together lead to instances of Classes are

represented by the concept of aggregation. In Figure 6.2, for example, the aggregation of the

evidence/attribute pairs Wind Speed light and Cloud Amount Maximum leads to fog.

Pairs of evidences/attributes have a morbidity value assigned to them. Morbidity is a value

that indicates the importance of a particular pair evidence/attribute related to instances of

Classes. Similarly, aggregations have a morbidity assigned to them, which indicates the

importance of a particular evidence/attribute association related to the class indicated by that

association.

In Figure 6.2, the value of 7.0 (in a scale from 0 to 10) assigned to the evidence/attribute

pair of Wind Speed Light means that this evidence/attribute pair has a significant importance in

classifying fog cases. In a similar fashion, the value of 9.0 assigned to the association between

Wind Speed Light and Cloud Amount Maximumindicates that this association strongly contributes

to a positive case of fog.

The morbidity is modelled as a class connected to the Attributes class through "part o f

arcs. The concept of morbidity to measure die importance of evidences in classification

problems used in this thesis is based in the morbidity scale used by the Internist-I system

(Miller, 1986) and later by the hybrid case base reasoning model developed in (Reategui, 1997).

In the KGs, morbidity corresponds to the degree of importance assigned to the evidence

nodes (refer to section 4.4 and also Appendix A). Morbidity can also be assigned as weight

values into the input neurons in the CNM neural network model, helping the model to more

easily converge to a stable state.

Through this modelling schema the domain of aviation weather forecasting can be

integrated into the Domain framework implemented in CANN, as introduced in section

4.5.1.2, "Domain Representation."
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6.3 Integrating the Domain Model of Aviation Weather
Forecasting into the CANN Simulator

The Components for Artificial Neural Networks Simulator (CANN) is a research project

that relates to the design and implementation aspects of a framework architecture for decision

support systems using artificial neural network technology (Pree, Beckenkamp and Rosa, 1997;

Beckenkamp, 2002). Besides the creation of NN components, CANN also supports problem

domain modelling.

CANN was initially developed on ideas and applications of NN in classification problems

(Pree, Beckenkamp and Rosa, 1997). Thus, NN structures (including the knowledge stored

across these structures) are symbolically represented in a hierarchical fashion, through an

object-oriented design that reflects common properties of classification problems. In CANN,

the domain is represented through four main classes: Domain, Evidence, Hypothesis, and

sittributes, as illustrated in section 4.5.1.2, "Domain Representation.")

An instance of class Domain represents the problem by managing the corresponding

Evidence and Hypothesis objects. The Domain class manages hypotheses and evidences associated

with a particular domain; and both evidences and hypotheses are described by their respective

attributes.

| Therefore, the first step in applying the CANN simulator is to integrate the domain of

aviation weather forecasting into the CANN modelling schema.

Each previously built data model, describes in section 5.3.4.2, "Generating Data Mining

Models," has to be individually modelled into the CANN simulator. The reason for this is that

they present different amounts of cases, having specific test sets and knowledge bases (training

sets) according to the tables listed in section 5.4.2.3, "The Knowledge Bases." Consequently,

for each data model a correspondent domain model was designed, thus, Domain Modell-60,

Domain Modell-80, Domain Model2-60 and Domain ModellO-60. The domain models might

have different amounts and pairs of evidences and attributes, and distinct morbidity values

assigned to them. Appendix D lists the domain model for Modell-oO, including its evidence

list.
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Domain Modell-60 is used to explain and illustrate how the CANN simulator was applied

in this research, and the other models were applied in a similar fashion. To illustrate this, the

components of GUI framework implemented in CANN are employed. The framework's

components implemented in CANN were introduced in section 4.5.1.

6.3.1 Domain Elements

The first step in working with the CANN simulator is to define a domain, and create a

project associated to that domain. This project will contain the entire domain modelling

information.

|P|5ModeH6 RSises V pi| fBOMIBI HHE3I
B^^^B Domain

Neyv ' -

Open ,.

• Save

- Save As

* Close "

Exit

Neural Network

-3»
3-

Help.

'* t
i '

•

Opened DACANMModelsUlodel1_6Wode'l16_KBases-V prj

Figu*e 6.3: Creating a project for domain Modell-60 in CANN

Figure 6.3 shows a project for Domain Modell-60 being created; this project is identified

as "BOM16_Kbases-V.prj" at die top of the window. It also shows, between parentheses, the

name of the domain model.

Four domain models were created in this research project, Domain Mode/1-60, Domain

Mode/1-80, Domain Mode/2-60 and Domain Mode/10-60. For each domain model distinct projects

were created according to die datasets used for training.

Domain creation is done through the Domain interface (GUI component). The following

procedures are executed through the Domain interface:

• Selecting a Domain. Domain instances can be created and selected to manipulate

hypotheses and evidences

• Creating and editing evidences
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Creating and editing hypotheses

Choosing the type of data source, e.g., a database table or an ASCII file

Selecting the data source for learning and testing, based on the chosen data type

S«odel16_KBases-V pn (BOM 16)

" Select

Evidences

Hypotheses

"

•

Learn

Test

Choose

Saved DAGANNU«a<te!sWo(teli_6Wudeli6_KBases-V.pn

Figure 6.4: The functionalities of Domain GUI

Figure 6.4 shows the functionalities implemented in die Domain GUI component.

The first step is to select or create a domain model, which is done through the Domain-

Select menu, the first option under Domain dialog. In this option a new Domain is created

simply by typing its name and clicking the Add button. This domain is then listed at die top of

the dialog list of domain names. Next, the evidence and hypotheses associated to that Domain

instance have to be created.

6.3.2 Modelling Evidences

Evidences1 are used by experts to analyze a certain problem in order to arrive at decisions.

Evidences in aviation weather forecasting are weather observations, as listed in Table 5.1, in

Chapter 5. As such, modelling evidences in this domain involves finding which weather

observations contribute to the hypotheses of tiiat domain, to determine the importance of

each evidence (evidence/attribute pair), i.e., morbidity, as previously discussed in section 6.2.

And finally, modelling evidences requires the specification of the respective position of each

evidence in training and testing files.

1 Evidences here are used in a broader context, meaning pairs of evidences and attributes.
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The first step is to select the evidences, e.g. weather observations, which contribute to the

classes (hypotheses) of the problem domain under study.

1 Evidences List ' '. JE3l

I

V i ... k ••; .•..:T-: * : . . . ; . . , , ; , , . - , • , / . ; . . - . , • . . , . ; . -

Hour _±_
Month
Drybulb
Dew Point
Previous Dew Point
Cloud Amount
Low Cloud Amount
Sea Level Pressure.
Wind Speed
Wind Compass
Rainfall
Present Weather —
PastWeather v

OK |

-Cancel j

Edit' ' } '

Add \

1 Remove ||

Figuie 6.5: Evidence list in the domain of aviation weather forecasting

Figure 6.5 shows a snapshot of the Evidence list dialog. The relevant weather observations

are integrated in the CANN simulator by inserting diem into the Evidence list.

Next, for each evidence, the respective set of attributes, morbidity values, and file

positions have to be specified. For example, considering the Wind Speed evidence, the

attributes of light, light moderate, moderate and fresh moderate need to be inserted.. Figure 6.6

illustrates the Wind Speedevidence and its attributes.

. Name jwind Speed

Description

OK

Cancel |

Wind speed over the airport run away at the J^J
time of the observation

Fetcher

LLIVV

> Atributes

SSI
LmodB
Moderate
Fmocie

Attribute Type

{String j j E d r t l

Add

Remove

Figure 6.6: Wind Speed evidence and its attributes
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Next, a morbidity value has to be assigned to all pairs of evidences/attributes. Morbidity is

a measure allocated to each evidence/attribute pair, as already discussed in section 6.2. In the

same way KGs require a morbidity value assigned to each evidence/attribute pair, the CANN

simulator also requires that information when entering evidences and attributes.

Normally, morbidity is assigned by domain experts in a range of 0 to 1. In the case of this

research a specific method had to be implemented to calculate the morbidity. A method based

on the computation of a weighted measure of frequency of evidence/attributes for each data

model was employed to compute the morbidity. This method was based on the computation

of sensibility degrees of the evidences observed in training datasets (Owens and Sox, 1990).

A variable p is used to weigh the frequency measures of evidences. It is used to give an

increasing degree of importance for evidences that have been recognized as highly relevant, or

the ones that have lower frequency values, but are relevant to the problem under

consideration.

The morbidity values are calculated through the following equation:

Morb (Ev) = ( freq (Ev)/n) * p

Equation 6.1: Morbidity function

Where:

Morb(Ev) indicates the morbidity value for the evidence Ev

Freq(Ev) is the frequency measure of the evidence Ev in the dataset

iVis the amount of cases in the dataset

(3 is the weighting variable, usually equal to 1.7

The value 1.7 assigned to the variable (3 was empirically determined through a set of

experiments. It was shown to be sufficiently accurate in most experiments, when discussed

with domain experts.

Figure 6.7 illustrates the morbidity value assigned to the evidence Wind Speed Ught. A

morbidity value has to be assigned for all evidence/attribute pairs in all domain models.

Identical evidence/attribute pairs might have different morbidity values assigned to them in
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1

i

I
1

different domain models. This is because the morbidity calcvilation method employed in this

research is based on the measure of frequency of each evidence/attribute pair in the dataset

Name jWind Speed

Descnpfioru

OK

Cancel

Wind speed over the airport run away at the *
time of the observation

Name- I Light

Morbidity )0 48 fe|§jj||

Figure 6.7: Assigning morbidity to Wind Speed Light

As illustrated in Figure 6.7, a value of 0.48 was assigned as the morbidity to Wind Speed

Light evidence. The Edit button in the Evidence dialog is used to assign the morbidity

measure.

The next information that has to be specified is the type of data source used for training

and testing, i.e., database or ASCII files. In this research the data sources are ASCII files (at

the time this thesis was being written only the Fetcher for reading data from ASCII files was

implemented in CANN. The Fetcher for reading data from relational databases was not fully

available for deployment). Information in ASCII files is identified by its position in the file, i.e.

the columns it occupies. As such, a data fetcher for reading data from ASCII files stores the

position, from column to column, of the data. Each line of the file stores one case.

Therefore, for each evidence its file position has to be informed to the CANN simulator.

Figure 6.8 illustrates the fetcher for the Wind Speed evidence.

The button Fetcher in Figure 6.8 is used to specify the evidence position in the files. The

data in an ASCII file must be organized as records, where each record corresponds to one line

in the file. As shown in to Figure 6.8, the Wind Speed evidence (and its respective attribute

instances) is stored between the column 28 to 32, inclusive, in the training and testing datasets.
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Figure 6.8: Fetching the Wind Speed evidence

Table 6.1 summarizes the information discussed so far in this section, exemplified through

the Wind Speed evidence. The same information is provided for all evidence instances in all

domain models. The complete domain modelling for Modell-60 is included in Appendix D.

The other models follow the same structure.

In Table 6.1, the "Fetcher" column indicates the position in the ASCII files (both for

training and testing) where the wind speed is stored. In this case, it starts at column 28, is five

characters long, and ends at column 32.

Table 6.1: Wind Speed modelling for domain Modell-60

Evidences
Wind Speed

Fetcher
[28; 32]

\ alues

LIGHT

LMODE

MODE

FMODE

Freqjiencv

1037

852

940

812

Percent

28.47

23.39

25.80

22.29

Morbidm

0.48

0.40

0.44

0.38

The ''Values" column in Table 6.1 specifies the possible values that can be assigned to

Wind Speed (refer to Table 5.13, for the discretization of numerical attributes for Modell-60).

The wind speed can assume values of light, light moderate (Iinode), moderate (mode), and fmode

(fresh moderate), as illustrated iii Figure 6.6.

The "Frequency" column indicates the frequency measured of the Wind Speed in the

dataset. For instance, Wind Speed'Light was verified in 1037 csises in the Modell-60 dataset. The

"Percent" column indicates the percent of the frequency in the dataset; Wind Speed Ught was

verified in 28.47% of cases in the Modell-60 dataset. This information is necessary to
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compute the morbidity, which is specified in the "Morbidity" column. The morbidity for Wind

Speed Ught\s 0-48, as a result of the morbidity calculation presented in Equation 6.1.

Once the integration of evidences has been performed, the hypotheses have to be

integrated into the domain.

6.3.3 Modelling Hypotheses

The classification categories, e.g. hypotheses, constitute a further core entity of

classification problems, and are modelled through the Hypothesis class into the CANN

simulator.

Hypotheses can be created and edited in a similar fashion as evidences. There is a list of

hypotheses that is similar to the list of evidences in Figure 6.5. The dialog for creating and

editing hypotheses is showed in Figure 6.9. This dialog has nearly the same functionalities as

for the evidences, specifying their respective fetcher (positions) and attributes. There is also a

list of related evidences. This list defines which evidences have to be considered in the

creation of the NN topology during the training phase, given a certain hypothesis. Normally

all the modelled evidences are associated to all hypotheses, but there might be cases where a

certain evidence contributes to a certain hypothesis and not to others. Frequency measure is a

possible way to approximately estimate this information.

Name JFog

"Description

Indicates a fog case

Attributes Ust

,' Fetcher j

Fog

Attribute Type

j String 'Edit"

/-CJiJ

Related Evidence Attributes

Wind Speed-> Moderate
Wind Speed-> Fmode
Wind Compass->Calmwind
Wind Compass-> North
Wino Cornpass-> NNE

id

Remove |

I . Add_j j

Remove

Speed-> Light j ^J
Speed-> Lmode
Speed-> Moderate
Speed-> Fmode
Compass->Calrm _
Compass-> North
Compass-> NNE .
Compass-> NNW j
Compass-> NW — 1 ,
Compass-> South
Compass-> SW ' ' ,
Compass-> West ' v

Compass-> WSW •
ComDass-»SSW,

OK

Cancel

Co
«T

Figure 6.9: Modelling Fog hypothesis
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In the study developed in this research, identifying fog occurrence at Tullarnarine, two

hypotheses were modelled: fog and not fog. Fog hypothesis is illustrated in Figure 6.9; it has one

attribute of string type that has the same name as the hypothesis, e.g., Fog. Figure 6.9 also

shows part of the list of evidences associated to the Fog hypothesis. For example, it shows that

the Wind Speed Moderate and Fmode, together with Wind Compass Calm, North and NNE were

selected in the creation of the NN topology related to the Fog hypothesis. On the righthand

side of this figure there is a list containing all evidences created in the project, from where

evidences can be chosen and associated to a hypothesis, or removed (through the A.dd and

Remove buttons). By selecting or removing evidences in a particular problem it is possible to

create different domain models in a unique project

By associating evidences with input neurons, and hypotheses with output neurons, CANN

builds NN topologies.

6.4 The Learning Process

Once the problem domain is modelled into the CANN simulator, the system is ready to

proceed with the learning process. For this the training datasets have to be presented to the

chosen NN model (the CNM model in this research). All knowledge bases listed in Chapter 5

were presented to CANN for learning, according to their respective domain models: Domain

Modell-60, Domain Modell-80, Domain Model2-60 and Domain ModellO-60.

6.4.1 The CNM Learning Mechanism

The learning process is executed through the CNM learning algorithms: the Starter Reward

and Punishment (SRP) and the Incremental Reward and. Punishment (IRP). The CNM

learning mechanism was introduced in section 4.6 of this thesis.

Basically, the learning mechanism implemented by CNM is a supervised learning approach,

which determines the combinations of evidences that are influential for each class

(hypodiesis).

The learning approach implemented by CNM is based on the concept of rewards and

punishments, analogous to that of the Backpropagation model, to identify successful and

unsuccessful pathways. Synapses defined in CNM topology have weights and a pair of

216



Chapter 6 Applying the DM-NN Model in Aviation Weather Forecasting: The Intelligent Advisory
System Stage

accumulators for rewards (R.AC^ and punishments (P^cd- At the beginning all weights are set

to one and all accumulators to zero. Daring the training phase, as each example in the training

sec is propagated along the network, pathways that lead to correct classifications have their

reward accumulator incremented. Similarly, misclassifications increment the punishment

accumulators.

This learning approach takes into account the evidential flow when determining the values

of punishments and rewards. The evidential flow observed in a connection corresponds to the

following product, for excitatory synapses (Reategui, 1997):

• destination-node activation multiplied by connection weight

For inhibitory connections, the product is:

• (1 - destination-node activation) multiplied by connection weight

Weights remain unchanged during the training process. At the end of the training phase,

which is done with a single scan over the training set, pathways with more punishments than

rewards are pruned, and the remaining connections have their weights calculated.

The IRP and SRP algorithms compute the punishment and reward accumulators. The SRP

algorithm is used to initialise the network and calculate the punishment and rewards

accumulators according to the training set The accumulators are set to zero and the weights

are set to one. All data examples are applied to the network in a single scan, to update the

rewards and punishment accumulators. After scanning the training set and calculating the

accumulator values, no-rewarded pathways are pruned and the remaining pathways have their

weights updated. The result of this process is a trained network that stores punishment and

reward accumulators in the interval [-ngj+nj, where ne is the number of training examples

presented to the network. This process generates a non operational network; to become

operational the network has to execute the pruning and normalisation algorithm, which

converts the accumulators into connection weights.

The IRP algorithm adjusts the knowledge (accumulators and weights values) of the

network. The IRP algorithm updates the punishment and reward accumulators, considering

the values previously calculated by the SRP algorithm, removing all negative or weak

connections. Weak connections are those with weights smaller than a predefined pruning

• : i i
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threshold that is empirically determined by the user. Again, the accumulator values have to be

processed by the normalisation algorithm to make the neural network operational- The

normalisation process converts the net values of the accumulators, the difference between

rewards and punishment, into connection weights between 0 and 1.

Furthermore, the IRP algorithm identifies and keeps all pathognomonic pathways (those

with no punishment and a positive reward value), setting their respective weights with values

higher than the pruning threshold.

Normally the pruning threshold in the CNM neural network is empirically verified,

through the systematic testing of the network with different threshold values.

More detailed explanations about the CNM learning algorithms can be found in (Denis

and Machado, 1991; Machado, Barbosa and Neves, 1998) and (Beckenkamp, 2002).

6.4.2 Training CNM with Association Rules

To illustrate the learning approach implemented by the CNM and how it operated in the

experiment conducted in this research, an example extracted from the domain Modell-60 is

now presented.

Let us consider some association rules extracted from the knowledge base identified as

Train_Model1 -60V370 (refer to Chapter 5 for a description of knowledge bases and their

naming schema).

Table 6.2: Association rules from Modell-60

Rule number C la^ . , V\ eather Observations (Ewdences)

17

25

246

249

Fog

Fog

No Fog

No Fog

Dry Bulb Low (el)
Cloud Amount Max (e2)
Sea Level Pressure Vhigh (e3)

Dry Bulb Low (el)
Cloud Amount Max (e2)
Wind Speed Light (e4)

Dry Bulb High (e5)
Previous Dew Point High (e6)
Cloud Amount Med (e7)

Dry Bulb High (e5)
Cloud Amount Med (e7)
Sea Level Pressure Med (e8)

Table 6.2 shows four rules extracted from the rule set Train_Model1 -60V370, indicating fog

and not fog class.
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For example, rule number 17 says:

If DyBu/b = Loa> And
CloudAmount — Max And
Sea Level Pressure = Vhigh

Then Class = Fog

When training the neural network with these four rules, eight distinct input neurons (each

input neuron is associated to an evidence) are instantiated and linked to different

combinatorial nodes, e.g., synapsis instances (refer to section 4.5 for discussion about the

CANN object model).

The synapses are connected to hypotheses (classes) and a synapse might have one or more

input neurons associated to it, depending on the number of the NN combination order. In

this example, a maximum of three input neurons are connected to a synapsis.

The SRP algorithm creates a fully connected non operational network topology, linking all

evidences and clusters of evidences to synapses and then to hypotheses. (The SRP algorithm

implemented in CANN was optimised in order to reduce the number of combinations when

the neural network is first created (Beckenkamp, 2002)).

Figure 6.101 shows the CNM network built according to the rules listed in Table 6.2.

Considering only fog rules, evidences e1 to e4 are represented in the figure (representing all

eight evidences will result in an incomprehensible drawing as the number of synapses will be

too many). For reason of better visualization the network was split into two drawings, one

representing the topology associated to fog class (F) and the other to not fog class (NF). The

input neurons are the same for both topologies. Although only the evidences supporting fog

class are illustrated, the initial neural network topology considers both fog class and not fog

class.

After the initial network is built the SPR is then used to train the neural network through

the training data, in this example using the rules listed in Table 6.2. The neural network

computes punishment and rewards for fog and not fog class.

1 Figures 6.10 and 6.11 were adapted from (Reategui, 1997).
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output neurons

synapses

input neurons

Dry Cloud Sea Wind
Bulb Amount Level Speed
Low Max Pressure Light

Dry Cloud Sea Wind
Bulb Amount Level Speed
Low Max Pressure Light

VMgh

Figure 6.10: The initial non operational CNM neural network

For instance, when presented with the first rule (number 17), the connections (synapses)

activated by the evidences e 1, e2 and e3 that lead to the correct hypothesis (fog) are rewarded

by the SRP algorithm, and the connections that lead to an incorrect hypothesis (not fog) are

punished. This process is illustrated next in Figure 6.11, which shows the punishment and

reward effect when the neural network is presented with rule number 17.

In Figure 6.11 the bold links identify the pathways (sets of input neurons, synapses and

output neuron) that were rewarded, containing the evidences e 1, e2 and e3 connected to the

fog class. Similarly, the dotted links identify pathways containing the same evidences, but

connected to the wrong class, not fog. Pathways with evidences not included in rule 17 are not

affected.

Rule ( If Dry Bulb=Low And
Cloud Amount=Max And
Sea Level Pressure=Vhigh

ThenClass=F)
F NF

Dry Cloud Sea Wind
Bulb Amount Level Speed
Low Max PxessureLight

Vhigh
pathways rewarded

Dry Cloud Sea Wind
Bulb Amount Level Speed
Low Max Pressure Light

Vhrigh

pathways punished
— pathways not affected

Figure 6.11: Training the CNM to learn an association rule
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After scanning the training set and computing the punishment and reward values, no-

rewarded pathways are pruned and the remaining pathways have their weights updated. The

IRP algorithm updates the punishment and reward accumulators, removing all connections

that have a larger number of punishments than rewards and weak connections.

Figure 6.12 illustrates the computation after the CNM has learned the rules listed in Table

6.1 (again considering only the evidences e 1 to cI for clarity purposes).

Dry
Bulb
Low

Cloud
Amount
Max

Sea
Level
Pressure
Vhigh

Wind
Speed
Light

Figure 6.12: The trained CNM neural network

It can be observed in Figure 6.12 that all pathways leading to not fog were pruned, as there

were no rewarded pathways leading to not fog (for the evidences e1, e2, e3 and e4). And the

pathways leading to fog class remain.

The synapse s1 in the network represents a strong pathway leading to fog class, indicating

that the simultaneously occurrence of evidences e1 and e2 strongly indicates a fog case. The

synapses s2 and s3 represent less strong information, and can be considered factual

information related to rules 17 and 25 (evidences e 1 and e2 are present in both fog rules).

The pruning threshold also has to be taken into account. If a higher threshold is set, only

the strongest pathways will remain. All the experiments conducted in this research used

pruning threshold 0.5, for example if a 0.6 threshold was used only the synapse s1 would be

kept in the network (this mote rigid threshold might result in a loss of significant information,

that was the reason the value 0.5 was set as pruning threshold).

The CANN simulator contemplates the learning functionality in its GUI, through the

Neural Network option in its tool bar. When this option is selected, it shows two functionalities:
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add a new neural network model and simulate. After a neural network model has been selected,

the simulate option can be accessed to start the learning process. Figure 6.13.illustrates the

learning dialog as it is implemented in CANN simulator.

l i t
Leam easel 91
Learn case 192
Learn case 1 93
Learn case 1 8*4
Leam case 196
Leam case 1 %
Leam case 18I7
Leam case 1 EI8
Pruning neural net
Neural net pruned
Incremental learning finished successfully
Number of combinations = 76
Learning spent : 205305 milisecons
Learning spent : 205.305 seconds
Learning spent : 3.25 minutes

-I]' / ^

'k OK-

Cancel

i t ' •

Figure 6.13: CANN Learning GUI

In the example given in Figure 6.13, the CNM network is generated from domain modeL

Modell-60 already discussed! in this chapter. Figure 6.13 shov/s a knowledge base (training set)

with 198 rules (CANN does not differentiate rules and cases, any training set is treated as a set

of cases), which was presented for learning. The learning process after the IRP algorithm was

executed resulted in 76 connections with a learning time of 3.25 minutes.

After the training process is completed the trained network can be saved and the CANN

simulator is ready to analyse cases and hypotheses about the problem domain it has been

trained.

6.5 Consulting and Testing Cases

After the problem domain has been correctly modelled and integrated into CANN, and all

training sets have been presented and the respective training processes finalized the CANN

simulator is ready for consultation and test.

Consulting and testing cases and hypotheses are done through the CNM reasoning

algorithm, which is accessed through the Consult functionality implemented in CANN.
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The CNM reasoning algorithm is implemented according to the equations described in

section 4.6, fuzzy AND and fuzzy OR. When presented with a set of evidences to analyse, the

CNM input layei (input neurons) bypass incoming signals through the network that are

propagated multiplying their values by synaptic weights. Combinatorial neurons propagate

incoming signals according to a fuzzy AND operation and output neurons propagate

incoming signals through a fuzzy OR operation. The output value of a fuzzy OR operation

corresponds to the maximum arriving value from the lower layer, e.g., the highest value

computed from the product of input signals widi their corresponding synaptic weights.

Consequently, CNM indicates the hypothesis (or class) with the higher output value as the

possible answer to a consult. However, if the output value (also named confidence degree) is lower

than a preset threshold the neural network fails to indicate a solution for the presented case.

A full discussion about the CNM reasoning algorithm can be found in (Denis and

Machado, 1991), and the algorithm as it is implemented in CANN is explained in

(Beckenkamp, 2002).

The CANN simulator implements two ways of consulting and testing cases, a case consult

and a case base consult. In a case consult dialog the user can build cases at runtime to be

presented to the NN for evaluation. Cases are built by selecting evidences in the case consult

dialog and then activating the NN model to evaluate the selected evidences.

CANN evaluates the case and calculates the confidence degree for each hypothesis. The

inference mechanism indicates the hypothesis with the highest confidence degree as the most

suitable solution (class) to the problem. Figure 6.14 illustrates a case consult where four

evidences are selected from the list of evidence attributes: Dry Bulb IJOW, Cloud Amount Max,

Sea Level Pressure Vhtgb and Wind Speed LJgbt. The list in the left side of the window shows all

the evidences modelled for the domain being analysed. The list in the right side of the window

shows the evidences that were selected for evaluation. When clicking the Test Case button the

NN is activated and evaluates the selected evidences (case).

The bottom part of the window in Figure 6.14 shows the NN output to the presented

case. In this example die NN evaluated fog hypothesis as the correct class (winner hypothesis).

The explanation for this is the simultaneous occurrence of evidences Cloud Amount Max and
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Wind Speed Ught, with a computed confidence degree of 0.953. This means that, based on what

was learned from the training sets, these evidences strongly contribute to a fog occurrence.

And strongly is here quantified as 0.953, based on the NN reasoning algorithm.

i

I

Consult User C-arse

• Evidences Attributes Ust ~

Si

* •

Sea Level Pressure.-> (•-••}
Wind Speed-> Lmode
Wind Speed-> Moderate .
Wind Speed-> Fmode » - j
Wind Compass->Calm—1 '
Wind Compass-> North < < J
Wind Compass-> NNE ' ;———»
Wind Compass->NNW V

i TestCaseTlJ^t

Winner Hypothesis = Fog
Cloud Amount-> Max
Wind Speed-> Light
Confidence = 0 953

Selected Case Ust

Drybulb-> Low
Cloud Amount-> Max
Sea Level Pressure -> Vhit
Wind Speed-> Light

. , :
J

J:f ' •/•„: ; ; • • . : / • • . :' . -

J
Cancel j

Figure 6.14: A fog case consult in CANN

Figure 6.15 shows the effect of the NN evaluation when the evidence WzW Speed Ught is

removed from the selected list and the case is again presented to the NN for evaluation.

lonsull U sei Case

Evidences Attributes Ust Selected Case Ust

Previous DewPolnt-> L -*•!
Previous Dew Point-> M ' >
Previous Dew Point-> H \
Previous Dew Pomt-> M—I t ,>•> 1,
Cloud Amourrt-> Minimi 'I'~r~ '
Cloud Amount-> Mediur «.< 1
Low Cloud Amount-> Mi .———'
Low Cloud Amount-> Mr^'.

l_Test_C_ase_|J

Winner Hypothesis = Fog
Cloud Amount-* Max
Sea Level Pressure.-* Vhlgh
Confidence = 0.936

Dtybulb-> Low
Cloud Amount-* Max -
Sea Level Pressure.-* Vhit;

if

<\ h i
•

|!

if

Figure 6.15: A case consult removing the wind speed light evidence
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In the example shown in Figure 6.15, when removing Wind Speed Ught the NN still

indicates fog hypothesis as the correct output, however this is now supported by the

occurrence of Cloud Amount Max and Sea Ijevel Pressure Vhigh with a confidence degree of

0.936. From the examples presented above is possible to conclude that Cloud Amount Max \s

highly significant information in supporting fog hypothesis. Also, Wind Speed Ught is more

strongly associated with fog cases than Sea Uvel Pressure Vhigh, as the confidence degree for

fog occurrence when Wind Speed Ught is selected is higher (0.953) than when it is not selected

(0.936).

It should to be noted that the examples shown in Figures 6.14 and 6.15 are results of a

training process done with a knowledge base with 240 rules, from domain Modell-60. It is not

a result from a training process done with the rules listed in Table 6.12, as those rules are for

illustration purposes only. Training processes with only four rules or cases are unlikely to

produce any NN pathway.

For illustration purposes, Figure 6.16 shows a case where not fog class is indicated as the

correct answer by the NN. In this example, the selected evidences are Dry Bulb High, Previous

Dew Point High, Cloud Amount Medium and Sea Level Pressure Medium. The NN supports its

conclusion by indicating the joint occurrence of Dry Bulb High and Cloud Amount Medium as

highly significant for not fog occurrence with a maximum confidence degree of 1.0.

Evidences Attributes List. Selected Case Ust

Hour->0
Hour->3
Hour->6
Hour->9
Hour->12
Hour->15
Hour->18
Hour->21

p
if

Drybull>-> High
Previous Dew Point-* High,
Cloud Amount-> Medium
Sea Level Pressure.-> Mec?

±L
• Test Case

Winner Hypothesis = Not Fog
Drybulb-> High
Cloud Amount-* Medium
Confidence = 1.0

Jtl

> Cancel <]

Figure 6.16: CNM evaluating a not fog case
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The case base consult functionality is similar to the case consult, however, instead of

presenting a single case (or one set of evidences) each time, several cases are simultaneously

presented to the NN for evaluation. The list of cases is stored in a separate file, called the

testing dataset In the CANN version used in this research testing files have to be ASCII plain

files, similar to the files used for training the NN.

In a case base consult the NN evaluates the set of cases in the same way it does for a single

case, and stores the result of its evaluation in an ASCII file. Figure 6.17 illustrates a case base

consult process. In this example a set of 120 cases were submitted for evaluation, and the

results for the last 2 cases, case numbers 119 and 120 are shown.

Case number 119 resulted in a not fog output, supported by the evidences Dry Bulb High

and Cloud Amount Medium with a 1.0 confidence degree. On the other hand, case 120 resulted

in a fog output supported by the evidences Cloud Amount and Low Cloud Amount both

Maximum, also widi a 1.0 confidence degree. This indicates that the joint occurrence of these

evidences is highly significant for their respective outputs, as a result of the dataset employed

for training and the domain model as well.

At the end of a case base consult process CANN presents the classes (hypotheses)

considered in the evaluation and the number of times these classes were indicated as the

correct output to the presented set of cases.

Consult Case Base

' ' '*?**' { ' / "ResrErcuJ * Slap j Resel

Consult case 119
Winner Hypothesis = Not Fog
Drybuib-> High

Cloud Amount-> Medium
Confidence = 1.0

Consult case 120
Winner Hypothesis = Fog
Cloud Amount-> Max
Low Cloud Amount-* Max
Confidence =1.0

Hypothese: Fog winner = 38
HypotheserNotFog winner=40

J nfraco hoco rnnciittinn

OK '

Cancel

Figure 6.17: CNM evaluating a case base in aviation weather forecasting
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For instance, in the example illustrated in Figure 6.17, fog was appointed as the correct

solution in 38 cases and not fog in 40 cases. Also, it is possible to conclude that for 42 cases

the NN was not able to reach a conclusion. This happens because for those cases there were

no pathways in the NN structure leading to the output layer with weights equal or higher than

the preset pruning threshold.

The testing datasets discussed in Chapter 5 (refer to section 5.3.4.2, "Generating Data

Mining Models") were used to evaluate the performance of the hybrid DM-NN model

through the case base consult functionality explained above. The testing datasets contain sets

of weather observations that are submitted to the NN model for evaluation.

The next chapter discusses the results obtained from the NN evaluation. The testing

datasets are presented and the results are discussed in the context of the DM-NN model's

classificatory performance in aviation weather forecasting, specifically identifying fog cases.

6.6 Comments

The DM-NN model for IDSS developed in this research proposes a framework that can

be seen as an infrastructure that can be built according to the needs of a particular problem.

In this regard the choice of the CANN simulator to implement the IAS component (refer

to section 4.3.5, "Intelligent Advisory System"), besides the reasons outlined in die referred

section also took into account the domain model functionality implemented in the CANN

simulator, which makes it very suitable for classification problems. The possibility of

incorporating a problem domain model based on hypotheses, evidences and attributes, and

their combinations in the CANN simulator facilitates its deployment in solving classification

problems.

The object-oriented design of NN models implemented in CANN facilitates the symbolic

representation of the knowledge implicitly stored across the NN topology. This mechanism

enables the identification of pathways that contribute to the system outputs, endowing the

system with explanatory capabilities.
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Furthermore, this information can he accessed and further employed in other components

either to build more sophisticated explanatory features, such as graphical displays, or even to

guide a more oriented reasoning process.

One of the drawbacks CANN presents concerns memory allocation. Neural networks with

combination orders higher than three caused the system to fall in exception situations and stop

running in some of the experiments conducted in this research. It might be the case that the

large amount of evidences (used to build the CNM input layer) has an impact in generating an

extremely large number of combinations, demanding an extremely large mam memory

capacity.

Another problem concerns data access. The knowledge bases listed in Chapter 5 had to be

exported from MS Access tables into ASCII plain files, as the converter to fetch data from

relational databases was not deployed in CANN at the time this research was being done. A

significant amount of procedures in SQL queries and MS Visual Basic program modules had

to be implemented to perform data integration into CANN. The exchange of information

among those distinct technologies demanded a complex and timely process.

6.7 Chapter Summary

This chapter presented the Intelligent Advisory System (IAS) stage in the DM-NN model

development in aviation weather forecasting. The IAS is the component responsible for

implementing learning, reasoning, and issuing recommendations in the DM-NN model for

decision support system.

The Intelligent Advisory System component is implemented within a neural network

environment — the CANN simulator employing the CNM neural network model.

This chapter described the application of CANN in aviation weather forecasting. Firstly,

the aviation weather forecasting domain modelling in CANN was described. It implies in

modelling the application domain in a hierarchy of classes and objects describing the domain

classes, evidences, attributes and the interrelationships among them.

This chapter also explained the method by which the aviation weather forecasting domain

was integrated into CANN. Furthermore, the learning mechanism implemented by the CNM
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NN was discussed and illustrated in the context of aviation weather forecasting, and the user

interface functionalities were also presented.

Lastly, this chapter commented on some difficulties and drawbacks in the development of

this application.
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Chapter 7

7 Analysis of Performance
I

This chapter presents the last stage of the implementation of the DM-NN model in

aviation weather forecasting; it discusses the performance of the DM-NN computational model

in the context of fog identification at Tullamarine.

This chapter, together with Chapter 5 and Chapter 6 form the whole theme of the DM-

NN model implementation in aviation weather forecasting, although each of these chapters

covers distinct stages of this application.

7.1 Introduction

The performance of the DM-NN computational model for IDSS has been assessed

according to its capability of correctly classifying meteorological observations, specifically fog

cases in the context of aviation weather forecasting. It is a quantitative approach where the

holdout method was employed.

As part of this research the activities of data preparation were intensively applied in order

to tackle the problems related to data quality in the database delivered by the BOM, and a

specific sampling design was developed and employed in order to address the issues of low

prevalence classification and the necessary amount of cases for training, as described in

Chapter 5.

Consequently, in the research described in this thesis the performance of the DM-NN

model relies not only on the applied computational technologies e.g. data mining and neural

networks, but also on the strategy applied in data modelling and knowledge modelling, as

discussed in Chapter 5. In this scope data modelling relates to the activities that transform raw

data into data used for data mining, including the activities of data pre-processing, features
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selection and data sampling. Knowledge modelling relates to the activities of extracting

knowledge from data, including the data mining process, tuning and testing data mining

parameters and data models.

A series of experiments were conducted in order to determine the most appropriate set of

parameters for data mining in the context of this research. Experiments taking into account

different levels of rule confidence degree, rule support degree and rule order were executed

within the data sets built according to different sampling proportions.

The knowledge models obtained were incorporated into a neural network based system

used as an advisory system, providing the means to apply the discovered knowledge in

supporting decision making.

The approach employed to assess the performance of the DM-NN model addresses the

sampling design developed, the levels of rule confidence degree, rule support degree and rule

order used during the data mining experiments. These issues impact on system performance,

and consequently they have to be taken into account when assessing that performance.

Furthermore, it is important to recall that this research is concerned with the overall DM-

NN model performance, especially its effectiveness in the decision making problem selected

rather than the performance of a single technology. The argument presented in this research is

that the DM-NN computational model proposes and describes a framework to support

decision making through the cooperation of the knowledge discovery process and intelligent

system technologies.

This chapter presents the experiments that were conducted and also the method applied to

estimate the performance accuracy.

In this chapter the training sets are referred to by names that identify their original data

models, and the data mining parameters used in their generation. Section 5.4.2.3, "The

Knowledge Bases" explains the naming schema adopted.
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7.2 The Assessment Method

According to what was previously discussed in section 1.5.3, 'Terformance Assessment

Method", a quantitative approach using the holdout method (Weiss and Indurkhya, 1998) was

applied to assess the performance of the experiments developed in this research.

In the holdout method the data is randomly partitioned into two mutually exclusive data

subsets, a subset for training and another subset for testing. A given learning algorithm is first

trained using the training set and tested on the testing set, and the accuracy evaluation is based

on the amount of correctly classified cases in the testing set, and error rates. The error rate is

the percentage of misclassifications, i.e., the ratio between misclassified cases and the total

amount of cases in the testing set (Weiss and Indurkhya, 1998).

In this research the training sets were built through data mining experiments, as described

thoroughly in Chapter 5, specially section 5.4.2.3 and Tables 5.17 to 5.20, which enumerate the

training sets according to their respective original data mining models.

Testing sets were generated during the data modelling stage, and section 5.3.4, "Data

Modelling for Data Mining" explains that process, and how independent testing sets were

obtained for each data model. In brief, 7% of the fog population was randomly sampled for

testing, resulting in 63 instances (the final fog testing set has 60, instances), excluding instances

already selected for mining.

From the not fog population, testing sets were individually selected from each not fog data

model in 10% proportions, and then amounts of 60 and 100 instances were selected. For data

Modell-60 and Modell-80, 60 instances of not fog were randomly selected from the initial

testing data set. For data Model2-60 and Model 10-60, 100 instances of not fog were randomly

selected.

Again, instances were randomly sampled and were mutually exclusive from the instances

selected for mining. Refer to Table 5.11 in Chapter 5 for a detailed description of the testing

sets for each not fog model.

Final testing sets were obtained by combining the fog testing set with each not fog testing

sets. This resulted in four testing sets, one for each data model. Table 7.1 describes the testing
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sets. Table 7.1 shows the number of cases in each class, fog and not fog, and the total amount

of cases for all testing sets.

Table 7.1: Testing sets

Data Model Test set Data
Modell-60 Modell-80

Test set Data
Model2-60

Test set Data
ModcllO-60

Fog instances
Not fog instances

Total number of instances

60
60

120

60
60

120

60
100

160

60
100

160

Each testing set was employed in the experiments performed within its respective data

model. For instance, the experiments that used training sets obtained from the data mining

Modell-60 (see Table 5.17, Chapter 5) are tested through the testing set drawn from the same

original data model.

Furthermore, during the data mining experiments only the parameters specified in Table

5.14 (Chapter 5) were applied. Regarding the CNM neural network model, all the experiments

were done with the same set of parameters; the maximum combination order was set as 3, the

acceptance threshold was specified as 0.5 and the pruning threshold as 0.4. The maximum

combination order of 3 was specified because higher combination orders caused memory

allocation problems during some experiments. The thresholds were arbitrarily selected, based

on previous experiments done with the CNM neural network model (Viademonte, Leao and

Hoppen, 1995; Pree, Beckenkamp and Rosa, 1997; Reategui, 1997). These parameters

remained unchanged during all the experiments.

7.3 Performance on Data Models

One of the first problems faced during the development of this research was how to deal

with the low prevalence classification problem, and consequently which approach to use to

sample the weather observation database for data mining and testing purposes. Selecting cases

for data mining is recognized as a very unique task, as each application has different

information requirements and principles (Liu and Motoda, 2001). Furthermore, according to

Brighton (Brighton and Mellish, 2001) the class distribution, whether it is homogeneous or

heterogeneous, is a decisive issue in choosing a particular case selection approach.
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The weather observations database employed in this research showed a low prevalence

classification problem with almost all cases allotted to the not fog class, and far fewer cases to

the fog class. Fog class represents 1.92% of the population, and not fog class represents

98.08%.

Because of this significant difference in class distribution a specific sampling design was

implemented. It combines stratified sampling with incremental sampling in an exploratory

fashion, and can be classified as stratified multi-stage sampling. Chapter 5 discusses the sampling

design employed in detail.

In the first stage a stratified sampling approach was used to separate the survey variable fog

type dividing the population in two strata, fog and not fog respectively. In the second stage

incremental random sampling was used to sample only the not fog class. The incremental sampling

approach was employed in this research as it was not possible to know beforehand which not

fog proportions would lead to a satisfactory performance.

At the third stage, from each sample in each class, random sampling without replacement was

applied to generate the data sets for mining and testing, meaning that mining and testing sets

always have different instances.

In the last stage, subsets of the initial population were reconstructed by joining each not

fog class data sets with their respective fog class data sets (e.g. mining and testing data sets),

obtaining as a result the final data sets for mining and testing.

As a result of this sampling method four data models for data mining were obtained and

named according to their sampling proportions, namely Modell-60, Modell-80, Model2-60

and ModellO-60 (refer to Table 5.12 in Chapter 5). Modell-60 means that this model was

obtained from a sample of 10% out of the not fog stratum, and 60% of diis sample was

selected for mining purposes and 10% for testing purposes. After that, testing and mining

datasets from the fog and not fog stratum were joined to form die final datasets. Modell-80 is

similar to Modell-60, but in this case 80% of the not fog sample was selected for mining

purposes.
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Model2-60 is a model obtained from 20% out of the not fog stratum, with 60% of this

sample selected for mining purposes. And ModellO-60 means that the whole not fog stratum

was employed, and 60% of the stratum was selected for mining purposes.

The main aim of this sampling design was to achieve a more homogeneous class

distribution in the datasets used for data mining, and consequently better descriptive models

for the minority class. The sampling strategy employed is explained in detail in section 5.3.4,

"Data Modelling for Data Mining."

7.3.1 Performance According to Sampling Proportions

Exploratory multiple runs were conducted through the holdout method to verify whether

data mining models result in better classificatory performance. The training sets described in

Chapter 5 were employed to train the CNM neural network model within the CANN

simulator, and their accuracies were verified through the testing sets described in Table 7.1. To

measure the classificatory performance the error rates and classification rates on testing data

were computed (Weiss and Indurkhya, 1998).

The training sets listed in Tables 5.17 to 5.20, were employed to assess the performance of

die data mining models. The training sets listed in Table 5.17 were employed to assess the

performance of data mining model Modell-60, the training sets listed in Table 5.18 were

employed to assess the performance of the data mining Modell-80, the training sets listed in

Table 5.19 were used for the assessment of data mining Model2-60, and lasdy data mining

ModellO-60 was assessed through die training sets listed in Table 5.20.

The results obtained are listed in Table 7.2 for each model. Table 7.2 shows the number of

cases for which die system could not reach a conclusion (which is not the same as

niisclassified cases), the classificatory performance on testing data, (i.e. the percentage of

correcdy classified cases) and the error rates.

The classificatory performance for each training set was computed and the average was

taken to obtain the measure for each model (Weiss and Indurkhya, 1998; Pyle, 1999),

according to the respective training sets (see Section 7.3.2, "Performance on Training Sets.")
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Table 7.2: Data mining models performance

U Mining

Model '
Not

• E\ alualed
Clas^ificatorv
Performance

Error
Rates

Modell-60

Modell-80

Model2-60

ModeI10-60

13.19%

6.67%

6.67%

8.75%

64.72%

70.83%

74.58%

70.00%

0.35

0.29

0.25

0.30

The same computation was done for the error rates. The error rate for each training set

was computed and the average (Breiman et al., 1984) was calculated to obtain the error rate for

each model. Figure 7.1 summarizes the error rates for each data model.

Error rates by data model

0.40
0.35

» 0.30
1 0.25
£ 0.20
| 0.15
uj 0.10

0.05
0.00

Model 1-60 Model 1-80 Model 2-60 Model 10-60

Data Models

Figure 7.1: Error rates by data model

According to the results illustrated in Table 7.2 and Figure 7.1 Model2-60 showed the best

classificatory performance with 74.58% correctly classified cases, and the smallest error rate of

0.25, followed by data model Modell-80 with 70.83% correctly classified cases and an error

rate of 0.29. Modell-60 shows the worst classificatory performance with 64.72% correctly

classified cases and an error rate of 0.35.

Mode2-60 was obtained out of a 20% sample from the not fog stratum, containing 9572

instances of not fog. The data set for mining obtained from Model2-60 contains a sample of

60% from the not fog stratum, with 5699 not fog instances and 807 fog instances (all data

models have the same number of fog instances), with a total of 6506 instances. This data

model has a more heterogeneous class distribution than Modell-80 and ModeJl-60 (see Table

5.12, "Data mining models" in Chapter 5); as such its superior performance cannot be related

236



Chapter 7 Analysis of Performance

to the class distribution but could possibly be associated to the amount of cases in the data

mining set. This means that despite having a more heterogeneous class distribution, this model

has a higher amount of cases in its data mining set, which resulted in the generation of better

association rules for the training data sets used to train the neural network model.

The fact the ModellO-60 performed surprisingly better than Modell-60 also supports this

conclusion, as ModellO-60 has the worst class distribution but has the higher number of cases

associated to not fog class. Normally, as the number of cases increases, error rates tend to

decrease (Weiss and Indurkhya, 1998), which possibly explains why ModellO-60's

performance was better than Modell-60, which has a smaller number of cases.

It is very difficult to control the effect of instance selection on the generalization capability

of trained neural networks, as this also depends on learning algorithms and neural network

topology. However the relation between the size of the training set and algorithm classificatory

performance has been studied by several researchers such as (Harris-Jones and Haines, 1997;

Weiss and Indurkhya, 1998). Breiman (Breiman et al., 1984), for example shows that error rate

decreases as the sample size increases in experiments using decision trees, and Chauchat

(Chauchat and Rakotomalala, 2001) shows how the generalization error rate decreases as the

sample size increases in experiments conducted with ChAID decision trees.

7.3.2 Performance on Training Sets

The training sets described in Chapter 5 were individually assessed to verify which resulted

the best classificatory performance. The classificatory rates, the number of cases for which a

conclusion could not be reached, and the error rate in the testing sets were individually

computed.

Training sets were assessed according to their respective data mining models.

7.3.2.1 Performance of Data Mining Modell-60

Table 7.3 shows the results obtained for Modell-60. The training set Train_Modell-

60V370 showed the best performance with an error rate of 0.32, a classificatory rate of

68.33% and 8.33% of not evaluated cases in the testing set. This training set had the highest

number of rules and a better class distribution within its model, with 405 rules, 104 of which

describing fog and 301 describing not fog.
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Table 73: Performance of data mining model Modell-60

Training '.et Not
Evaluated

Classificatorv Error Rite

Train_Modell-60V270

Tmn_Modell-60V280

Train_ModeIl-60V290

Train_Modell-60V370

Train_Modell-6V380

Train_ModeIl-60V390

12.50%

1Z5O%

23.33%

8.33%

10.00%

12.50%

65.00%

64.17%

56.67%

68.33%

67.50%

66.67%

0.35

0.36

0.43

0.32

0.33

0.33

As a result of its better class distribution and higher number of rules the better

performance of Train_Modell-60V370 was expected.

7.3.2.2 Performance of Data Mining Modell-80

Table 7.4 shows the results obtained for model Modell-80. Here two training sets showed

the best classificatory performance, and with similar results. Train_Modell-80V370 and

Train_Modell-80V380 both bad error rates of 0.26, a classificatory rate of 74.17% and 1.67%

of not evaluated cases.

These training sets differ in the levels of rule confidence degrees assigned to them, with

70% and 80% respectively, having the highest amount of cases in their group. Train_Modell-

80V370 has a higher number of rules (358 rules) as a result of a more flexible level of

confidence degree applied in its generation. Train_Modell-80V380 has 314 rules.

Table 7.4: Performance of data mining model Modell-80

Training; set
Classlficaton

Evaluated
Error Rate

Train_Modell -80V270

TrainJModell -80V280

Trab_ModeIl-80V290

Train_Modell-80V370

T«u»_Modell-80V380

TrainJVfodeM -80V390

3.33%

3.33%

" 33%

1.67%

1.67%

6.67%

72.50%

71.67%

60.00%

74.17%

74.17%

72.50%

0.28

0.28

0.40

0.26

0.26

0.28

A more detailed analysis showed that Train_Modell-80V370 had a better performance

than Train_Modell-80V380 in classifying fog cases, with 65% and 61.67% of correctly

classified fog cases respectively. This result can be explained as Train_Modell-80V370 has 67

association rules in the fog class, while Train_Modell-80V380 has 23 rules in the same class.

However Train_Modell-80V380 showed a better performance in classifying not fog cases,
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with 86.67% being correctly classified, while Train_Modell-80V370 had 83.33% of correctly

classified not fog cases. The better classificatory performance of Train_Modell-80V380 in

classifying not fog cases was expected as proportionally it has a higher number of not fog

cases.

Train_Modell-80V370 showed a better descriptive capability for fog phenomena, possibly

because of its higher number of association rules allotted to the fog class.

7.3.23 Performance of Data Mining Model2-60

Train_Model2-60V270 and Train_Model2-60V280 equally demonstrated the best

performance with an error rate of 0.24, a dassificatoiy rate of 75.63% and 6.25% of not

evaluated cases in the testing set

TrainJModel2-60V270 has more association rules (209 rules), than Train_Model2-60V280,

with 195 rules. Additionally, Train_Model2-60V270 has more rules describing fog class with

32 rules (15.31%), while Train_Model2-60V280 has 18 rules (9.23%) allotted to the fog class.

Because of this difference in between the number of rules and specifically the number of rules

allotted to fog class, Train_Model2-60V270 was expected to perform better. The equal

performance of these datasets may be explained by the descriptive quality of rules, rather than

the amount of rules.

Table 7.5 shows the results obtained for model Model2-60.

Table 7.5: Performance of data mining model Model2-60

Classificatory "Error
Rate

Train_Model2-60V270

Train_Model2-60V280

Train_Model2-60V290

Train_Model2-60 V370 •

Ttain_Model2-60V380

Train_Model2-60V390

6.25%

6.25%

7.50%

6.25%

6.25%

7.5%

75.63%

75.63%

73.13%

75.00%

75.00%

73.13%

0.24

0.24

0.27

0.25

0.25

0.27

However, when analysing the classificatory performance only in the fog class

Train_Model2-60V380 showed the best performance with 68.33% of correctly classified fog

cases (refer to Table 7.6). Train_Model2-60V270 and Train_Model2-60V280 both have
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classiflcatory rate of 63.33% in the fog class, a difference of 5%. Table 7.6 illustrates the

classificatory performance of Model2-60 on fog class.

Table 7.6: Performance of data mining model Model2-60 on fog class

Training set
Classification Rate on

fog class

TrainJVfodel2-60V270

Train_Model2-60V280

Train_Model2-60V290

Tiain_Model2-60V370

Train_Model2-60Y380

Train_Model2-60V390

63.33%

63.33%

65.00%

65.00%

68.33%

65.00%

Regarding the amount of cases not evaluated Train_Model2-60V380 was the same as

Train_ModeI2-60V270 and Train_Modei2-60V280, with 6.25% of not evaluated cases, but

with a slightly higher error rate of 0.25 (a difference of 0.01 higher than Train_Model2-

60V270 and Train_Model2-60V280).

With its better performance in classifying fog cases and its small difference in error rates,

Train_Model2-60V380 was considered as having the best descriptive capability within this

data model.

7.3.2.4 Performance af Data Mining ModellO-60

Table 7.7 lists the results obtained with ModellO-60, through the training sets listed in

Table 5.20 (Chapter 5).

Table 7.7: Performance of data mining model Model0-60

Training set
IN'ot Classificaton Efror

l£\~aTTJated Rate Rate

Train_Modell 0-60V250

Train_ModellO-60V350
10.00%

7.5%

68.13%
71.88%

0.32
0.28

This data model was obtained through a random sampling of the entire population.

The better performance of Train_ModellO-60V350 was expected as it has a higher

number of rules than Train_ModellO-60V250, with 298 and 187 rules respectively. Also, both

datasets have similar numbers of rules describing the fog class, 18 and 17 rules respectively.

Both data sets showed a surprisingly good classificatory performance, mainly in fog

classification, with 71.67% and 65% accuracy for fog class respectively. These results were

unexpected, because of the small amount of rules describing fog in both datasets. It potentially
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indicates that the CNM neural network model was able to generalize relevant pieces of

knowledge about fog phenomena even when presented with small sets of rules.

7.4 Performance on Data Mining Parameters

Besides sampling proportions, another problem faced in this research concerns the

selection of data mining parameters, specifically tunning the thresholds of rule confidence

degree, rule support degree and rule order. The aim is to achieve an acceptable classificatory

performance, as indicated by the error rate on testing data.

Data mining parameters orient the processing of rules, specifically pruning uninteresting

rules and ranking rules according to some criteria. The parameters used for rule filtering in this

research project are: the rninirnum level of rule confidence and support degree, and the maximum

rule order, e.g. the maximum number of rule antecedent itemsets.

Confidence and support constraints are important because they work as filters for relevant

rules; in general, relevant rules have support and confidence degrees above some minimum

threshold. The problem is to effectively assign the best-fit thresholds for these parameters in a

given situation. Overly restrictive thresholds are likely to miss important information, but

thresholds that are too flexible might produce too much uninteresting information.

In the research described in this thesis rules with 50%, 70%, 80% and 90% confidence

degree were generated. As it was impossible to know beforehand, the amount of rules that

could be obtained according to a specific confidence degree, it was decided to use the most

frequent thresholds applied in data mining applications (Weiss, Galen and Tadepalli, 1990;

Piatetsky-Shapiro and Frawley, 1991; Klemettinen, Mannila and Toivonen, 1997). The goal

here was to verify the difference in performance according to different combinations of

parameters (confidence degree, minimum support degree and maximum rule order), and to

determine which combinations of these parameters lead to a better classificatory performance.

First the performance according to rule confidence degree is discussed, followed by the

performance according to rule support and rule order.
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7.4.1 Performance According to Rule Confidence Degrees

Rules with 70%, 80% and 90% confidence degrees were generated from all data mining

models in this research, with the exception of ModellO-60. This model contains the whole

population, and an extremely unbalanced class distribution, as such a more flexible confidence

degree was allowed in order to obtain a reasonable number of rules for the fog class. Rules

with 50% confidence degree were generated specifically for ModellO-60.

Table 7.8 shows the classificatory performance and error rate of testing data for training

sets according to the levels of rule confidence degree.

The V2 and V3 suffixes assigned to the training dataset names in Table 7.8 identify the

minimum rule support and rule order, where V2 identifies minimum support of 8% and

maximum rule order of 7, and V3 identifies minimum support of 6% and maximum rule order

of 10.

The training sets listed in Table 7.8 are the same listed in section 7.3.2, "Performance on

Training Sets," but grouped according to their respective rule confidence degrees.

Table 7.8: Rule confidence degree on testing data

. Rule Confidence Decrees

Training
datasets

Modell-60(V2)

Modell-60(V3)

Modell-80(V2)

Modell-80(V3)

Model2-60(V2)

Model2-60(V3)

ModellO-60(V2)

ModellO-60(V3)

AVERAGE

50%

Correctly
Classified

68.13%

71.88%

70.01%

Error
Rates

0.32

0.28

0.30

70%

Correctly
Classified

65.00% '

68.33%

72.50%

74.17%

75.63%

75.00%

71.77%

Error
Rates

" 0.35

0.32

0.28

0.26

0.24

0.25

0.28

80%

Correctly
Classified

64.17%

67.50% -

71.67%

74.17%

75.63%

75.00%

71.36%

Error
Rates

0.36

0.33

0.28

0.26

0.24

0.25

0.29

90%

Correctly
Classified

56.67%

66.67%

60.00%

72.50%

73.13%

73.13%

67.02%

Error
Rates

0.43

0.33

0.40

0.28

0.27

0.27

0.33

It is important to recall that the levels of confidence degree were specified to generate sets

of association rules, which were used to train the neural network model. Consequently the

measures of classificatory performance and error rate were take*:, from the testing data after

the neural network system was trained with the sets of association rules.
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Table 7.8 shows the average measures calculated according to each level of confidence

degrees. The error rates for the experiments with 70% and 80% confidence degrees showed

the best performance, with a small improvement in performance in the 70% confidence

degree. The experiments with training sets obtained from Modell-80 and Model2-60 showed

equal error rates in both 70% and 80% levels of confidence degrees.

A slightly better classificatory performance is verified within training sets obtained from

Modell-60 using 70% confidence degree, with 0.35 and 0.32 error rates (70% confidence

degree) and 0.36 and 0.3:' for 80% confidence degree.

The best results were achieved with the training sets obtained from Modell2-60, with

similar error rates of 0.24 and a classificatory rate of 75.63% in both 70% and 80% levels of

confidence degrees.

Figure 7.2 summarizes the error rate measures according to the levels of confidence

degrees.

Error rates by confidence degrees

0.34
0.33
0.32

8 0.31
£ 0.30
o 0.29
£ 0.28

0.27
0.26
0.25

50% 70% 80% 90%
Confidence degrees

Figure 7.2: Error rates on testing data by levels of confidence degrees

The experiments with 70% confidence degree showed the best results on average with an

error rate of 0.28, and a classificatory rate of 71.77%. Average error rates of 0.30, 0.29 and

0.33 were verified for the experiments with confidence degrees of 50%, 80% and 90%

respectively.

The experiments with a 90% confidence degree showed the worst performance, and this

was expected because of the small number of association rules obtained when setting this
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parameter. (Refer to Table 5.15 and Table 5.16 to verify the number of association rules in tibe

training sets). The same observation can be extended to the 50% confidence degree, Le. the

small amount of rules resulted in poor performance, specifically related to the number of rules

describing fog class, having 17 and 18 association rules in the experiments conducted. It is

possible that a more relaxed level of confidence degree, i.e. less than 50%, assigned to

ModellO-60 would produce better results, because of the higher number of rules that would

be generated for the fog class.

In the experiments conducted in this research the training sets obtained from data mining

experiments using a 70% rule confidence degree provided the highest amount of rules for

both classes (fog and not fog) comparing within the training sets obtained from same data

models using different levels of rule confidence degrees.

Figure 7.2 shows how the error rate increases as the rule confidence degree increases from

the level of 70%. This association can be related to the amount of association rules obtained,

as increasing the level of confidence degree implies a more constrained parameter to the

association rule generator algorithm, consequently fewer rules are generated.

In the experiments with a 50% confidence degree the error rate also increased compared

to the 70% confidence degree, but this does not necessarily mean that the error rate also

increases when rule confidence degree decreases from 70%. It should be noted that the 50%

confidence degree was only applied in ModellO-60, and even with this more flexible

confidence degree fewer rules of fog class were obtained. Consequently, in the specific case of

this research, the same observation to the 90% confidence degree can be extended to the 50%

confidence degree applied to ModellO-60, that too few association rules for fog class were

obtained for a good descriptive capability.

7.4.2 Performance According to Rule Support and Rule Order

Two sets of data mining experiments were conducted in this research, according to

different combinations of rule support and rule order degrees (refer to Section 5.4.1.5,

"Selecting Mining Parameters" for a discussion about these experiments).
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In the first set of experiments the minimum rule support was set to 8% and the maximum

rule order to 7, with levels of confidence degree of 50% (for ModellO-60 only), 70%, 80%,

and 90%. This first set of experiments is identified as V2.

The results obtained in these first experirnents were considered very restrictive as the

numbers of rules obtained, mainly for the fog class, were considered too small for a good

descriptive capability (see Table 5.15). Consequently, it was decided to repeat the data mining

experiments using more flexible mining parameters, with the aim of achieving a more equally

balanced class distribution in the resulting association rule sets (see Table 5.16).

The second set of experiments was conducted keeping the same levels of rule confidence

degrees, but relaxing the minirnum rule support to 6% and allowing a higher number of rule

itemsets, setting the maximum rule order to 10 itemsets. This second set of experiments is

identified as V3.

Chapter 5 discusses these experiments, and this section discusses the classificatory

performance of the training sets according to the levels of rule support and rule order.

Figure 7.3 shows the trend of error rates on testing data according to rule support degree

and rule order by each training dataset.

Trend of error rates by rule support and rule order

-V2-*-V3

0.5

f 0.3
£ 0.2
•" 0.1

0
Mode!1- ModeH- Modeli- Modeli- Modeli- Modeli- Model2- Model2- Model2- ModeHO-
60(70) 60 (80) 60(90) 80(70) 80 (80) 80 (90) 60(70) 60(80) 60(90) 60(50)

Training sets

Figure 7.3: Trend of error rates on testing data by levels of rule support and rule order

In Figure 7.3, the training sets are grouped according to their minimum rule support and

maximum rule order. For example, the first training sets shown are the training sets obtained

from Modell-60, with a 70% rule confidence degree. The square icons represent the
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experiment with a minimum rule support of 8% and a maximum rule order of 7, and the

round icons represent the experiment with a minimum rule support of 6% and a maximum

rule order of 10.

In the research described in this thesis the experiments using a minimum rule support of

6% and a maximum rule order of 10 itemsets (V3 configuration) outperformed the

experiments using rule support of 8% and a maximum rule order of 7 (V2 configuration) for

almost all training sets. This is mainly because the training sets c^Wned from the V3

configuration have a higher number of association rules than the training sets obtained from

the V2 configuration, mainly concerning the fog class. As such the decision to relax those

parameters in order to get a more balanced class distribution was correct.

The only cases where this increment in performance was not observed were in the

experiments with training sets obtained from Model2-60 with 70% and 80% rule confidence

degrees. In this case a slightly better performance for the V2 configuration was observed with

an error rate of 0.24, compared to 0.25 in the V3 configuration. For Model2-60 with a 90-/o

confidence degree the error rates were the same, 0.27 for both configurations.

The possible reason for this exception is that the amount of association rules, mainly in the

fog class, slightly differs among the training sets obtained from Model2-60 with 70% and 80%

rule confidence degrees in both the V2 and V3 configuration.

The training set obtained from Model2-60 with a 70% confidence degree using the V2

configuration (identified as Train_Model2-60V270) has 32 association rules allotted to the fog

class and the training set obtained from the same model with a 70% confidence degree but

using the V3 configuration (identified as Train_Model2-60V370) has 45 association rules

allotted to the fog class, a difference of 13 association rules. At the 80% confidence degree this

difference is even smaller, with 18 association rules allotted to the fog class using the V2

configuration, and 20 association rules using the V3 configuration, a difference of just 2

association rules.

This is because Model2-60 has a more homogeneous class distribution than Modell-60

and Modell-80, this might prevent the mining sets obtained from Model2-60 being too

sensitive to changes due to the setting of different data mining parameters.
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figure 7.4 summarizes the results of the V2 and V3 experiments, through the averages of

error rate obtained on testing data.

The error rates were computed for all training sets using both V2 and V3 configurations>

as shown in Figure 7.4, and then the averages of these results for each configuration were also

computed.

Error rates by rule support and rule

Figure 7.4: Error rates by levels of rule support and rule order

Figure 7.4 demonstrates that the experiments using a minimum rule support of 6% and a

maximum rule order of 10 itemsets (V3) outperformed the experiments using a minimum rule

support of 8% and a maximum rule order of 7 itemsets (V2), The V3 configuration has an

error rate average of 0.28 with a 71.84% classificatory rate, and the V2 configuration has an

error rate average of 0.31 with a 68.25% classificatory rate.

This is mainly because the training sets obtained from experiments using V3 configuration

have a higher number of association rules than those of V2, mainly concerning the fog class,

as already discussed in this chapter. This was the main reason these expedments were

conducted, to achieve a more equally balanced class distribution in the association rule sets,

with the expectation of a better classificatory performance.

Obviously, new experiments could be conducted to try different combinations of rule

support and rule order thresholds in order to achieve a higher classificatory performance.

However, this research does not aim to discover the best possible solution for the task of fog

classification. The aim here is to achieve satisfactory results that indicate the applicability of

the DM-NN model for decision support, rather than optimal results in one specific scenario.
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7.5 Some Specific Analysis with Weather Observations

As part of this research, intensive data preparation work was developed widi the weather

observations database, as discussed thoroughly in Chapter 5.

Features (or attributes) selection contributes to the descriptive capabilities of models, and

is particularly relevant to projects dealing witH inductive algorithms. The problem is that it is

not always clear whether a particular feature is relevant or not to a particular domain, and

whether selecting it or not will affect predictive performance. Features selection usually

requires domain knowledge, and very often relevant (or irrelevant) features are only verified

empirically. In that perspective, additional experiments were conducted as part of this research

to assess the relevance, of certain weather observations.

7.5.1 Assessing the Visibility Observation

Fog phenomena is primarily defined as restricting visibility, to a level equal or less than one

kilometre (Auer Jr., 1992). In the weather observation database there is an attribute

(observation) that numerically describes the level of visibility at the airport when the

observation was recorded.

The question that arose during the development of this research was that the visibility

observation might be synonymous with fog occurrence, in which case it could be discarded

from the database or even replace the ¥og Type attribute.

As a result of the discretization procedures developed (refer to section 5.4.1.4,

"Discretization of Numerical Attributes") the visibility observation was disctetized into four

levels: Levell, Level2, LeveB and Level4. Levell indicates the worst level of visibility, and

Level4 indicates the highest level of visibility, usually higher than 40 kilometres. It has to be

noted that fog might occur over a broad area (even in situations with high levels of visibility,

there is a possibility of fog patches at the airport. In this case the visibility over the airport can

be very poor, even if the visibility in the area is generally high).

The data mining experiments were replicated to include the visibility observation (in the

first experiments visibility observation was not included), keeping the same data mining and

neural network parameters. The experiments including the visibility observation had the

particular purpose of verifying if this information might be considered as synonymous with
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fog occurrence. For instance, low visibility values wou)d indicate a definite occurrence of fog,

and high visibility values would indicate a definite not fog case. The resulting rule sets from

the experiments conducted including the visibility attribute are listed in Appendix C.

Model2-60 was selected to conduct the experiment including visibility observation, because

it showed the highest dassificatory performance in the experiments previously conducted

without the visibility observation. (Any data mining model could be selected; the only

requirement is that the same model has to be used in both experiments in order to be

comparable). Table 7.9 shows the results obtained.

Table 7.9 lists the training sets obtained from Model2-60, including the visibility

observation, their dassificatory rates, the number of cases for which a conclusion could not be

reached, and the error rate in the testing set. The suffix "V" in the training set names is used

to indicate the visibility attribute was included during the data mining runs.

Table 7.9: Performance o£ Model2-60 including Visibility

Not

Evaluated

Classifjciton

.Rate /

Error

Rate

Rate on Fog.

Classification

Train_Model2-60V270_V

Train_Model2-60V280_V

Train_ModeI2-60V290_V

Train_ModeI2-60V370_V

Train_Model2-60V380_V

Train_Model2-60V390_V

AVERAGES

1.88%

2.50%

2.50%

1.88%

1.88%

2.50%

2.19%

76.88%

76.88%

78.13%

78.75%

76.88%

76.25%

77.29%

0.23

0.23

0.22

0.21

0.23

0.24

0.23

81.67%

81.67%

68.33%

86.67%

83.33%

76.67%
79.72%

According to Table 7.9 all training sets showed a better performance when the visibility

attribute was included (refer to Table 7.5 to see the results of not including visibility), with

Train_Model2-60V370_V showing the best performance, with 78.75% of correctly classified

cases, 86.67% of correctly classified fog cases, and an error rate of 0.21. These results indicate

the relevance of visibility observation in fog classification, with a significant increase in

performance compared to the performance of Model2-60, not including the visibility

observation.

Figure 7.5 illustrates the average measures from Model2-60 with and without the visibility.

It can be observed in Figure 7.5 that including the visibility attribute in the data mining

experiments resulted in better descriptive models. The fog classification- performance with
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visibility information is 79.72%, and 65% when visibility is not included. Also, the data models

with visibility showed a much better performance concerning cases where the NN model

could not reach a conclusion of either fog or not fog. The percentage of not evaluated cases is

2.19% -with visibility and 6.67% without, a difference of 4.48%. This indicates that the CNM

neural network model demonstrated a better generalization capability when the visibility

observation was presented in the set of rules used for training.

Model2-60 Performance on Visibility
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Figure 7.5: Average measures on testing data by Visibility on ModeI2-60

These results indicate the relevance of visibility observation in fog classification. To clarify

this relevance, the neural network pathways with higher confidence degrees were selected

when the training set with the best performance (Train_Model2-60V370_V) was presented to

the neural network. The neural network pathways were obtained after the cases from the test

set were evaluated.

The combinations with higher confidence degrees for the fog class were wind speed light and

visibility leveli, with a confidence degree of 1.0, cloud and low cloud amount both maximum with a

confidence degree of 0.965, sea level pressure vhigh and visibility leveli with a confidence degree of

0.964, and low cloud amount maximum and visibility leveli with a confidence degree of 0.942.

Figure 7.6 illustrates the neural network pathways corresponding to these combinations.

The selected pathways clearly indicate that visibility leveli (lower levels of visibility) is

strongly related to fog classification, and certainly the absence of this information leads to a

diop in classificatory performance, as previously discussed (see Table 7.5).
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0.964

Visibility Winu Cloud Low Sea Level
Level 1 Speed Amount Cloud Pressure

Light Max Amount Vhigh
Max

Figure 7.6: Pathways with higher confidence degrees leading to the fog class

For the not fog class the combinations with higher levels of confidence degree were cloud

amount medium and visibility leveB with a confidence degree of 1.0, dry bulb high and cloud amount

medium with a confidence degree of 0.968, and cloud and low cloud amount both medium with a

confidence degree of 0.913. Figure 7.7 illustrates the neural network pathways corresponding

to these combinations.

Not Fog

0.913

Visibility Cloud Diy Low Cloud
Level 3 Amoimt Bulb Amount

Medium High Medium

Figure 7.7: Pathways with higher confidence degrees leading to the not fog class

A similar conclusion from the fog class can be extended to the not fog class; in tliis case

the high level of visibility [level?) is strongly related to not fog occurrence.

The training set Train_Model2-60V370_V used in this experiment has 48 not fog instances

with visibility leveB (visibility between 35 and 40 kilometres), 5 not jog instances with visibility

Ievel2 (visibility between 30 and 35 kilometres), 50 fog instances with visibility leveli (visibility less

than 30 kilometres). There are no instances of not fog class with visibility leveli associated to

them, and also there are no instances with visibility Ievel4 in both classes.
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Through the experiments discussed in this section and the results described in Table 7.9

and Figure 7.5, it is possible to assess the relevance of visibility observation in fog

classification. Although this conclusion does not lepresent any surprise, the experiments

provided a quantitative idea of its relevance.

Regarding the possibility that the visibility observation could be considered as synonymous

with fog occurrence, and as such removed from the observation database (or even replace the

Fog Type attribute), tliis is not supported by the experiments conducted in this research.

Although the visibility observation was verified in the neural network pathways with a

100% confidence degree (value 1 in Figure 7.6 and 7.7), what surely indicates its relevance to

the concept being classified, it is always associated with other weather observations. For

instance, in fog class visibility is associated with, wind speed light, sea level pressure vhigh, and low

cloud amount maximum. In not fog class visibility is associated with cloud amount medium.

As such, in the experiments conducted in this research, a neural network pathway directly

connecting the visibility observation to fog or not fog with a 100% confidence degree was not

verified. It indicates that only visibility levels are not enough information to identify fog

occurrence, in the scope of the problem addressed in this research.

7.6 Discussions

It is important to recall that the DM-NN computational model is proposed as an iterative

and interactive environment for decision support, which defines a decision process and a

computational framework Unking diverse components in a decision support cycle (Figure 4.13

in Chapter 4 illustrates this concept).

The application of such an approach requires a series of activities in its diverse stages, for

example, gathering information about a particular decision problem, analysing such

information and preparing data, as well as choosing an adequate technology for mining data,

evaluating outcomes and populating knowledge bases. The necessity of gathering new data or

making changes in the domain are also considered (even expected), as discovered knowledge is

likely to give new insights about new information to be collected or better ways to model the

problem under study. For instance, weather observations initially not considered in this
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research were suggested by weather forecasters during discussions about the preliminary

results (refer to section 5.3.2, "Understanding Meteorological Data" for information about

suggested weather observations).

Data mining by itself constitutes an interactive process, as demonstrated by the

experiments conducted in this research, where several data mining experiments were

performed with diverse settings of rule confidence degree, rule support degree and rule order.

Additionally, the IAS component is likely to require a series of interactions until it achieves

its best performance or a stable level of performance, as problem situations are dynamic.

Consequently, problem models are expected to change and adapt over time.

The model proposed in thir research is said to be evolutionary, as NN is an evolutionary

technology regarding its adaptive capabilities. An interactive and evolutionary execution cycle

is normally expected in NN applications, until the system achieves a stable learning state. As

the environment changes, the model needs to adapt to those changes.

What was discussed in Chapter 6 also has to be taken into account, i.e. how the domain of

aviation weather forecasting was modelled and integrated into the CANN simulator. Different

ways of modelling the problem might result in better performances that the ones achieved in

this research. For instance, the experiments conducted with the visibility observation

demonstrated that a higher performance was achieved when this information was included in

the data mining models. Additional experiments with other weather observations could

certainly result in better classificatory performance; even changing the morbidity values

associated to the evidences (weather observations) could potentially improve performance.

The results obtained can be considered satisfactory for fog identification. It has to be

recalled that fog phenomena is considered a severe and rare weather event, which is difficult

to predict and where false alarms and incorrect forecasts are likely to occur (Keith, 1991).

(Refer to section 5.2, "Issues in Aviation Weather Forecasting" for a discussion about weather

forecasting at Tullamarine). According to a study developed by Keith (1991) forecasts for

Tullamarine demonstrate poor performance for low stratus and fog. This study considers a 5

year means for various airport cities in Australia, taking the latest 5-month running means of
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the probability of detection (POD) and false alarm ratio (FAR) for low cloud cases including

fog. Tuflamarine showed the worst POD with 69% and a FAR of 77%.

The experiments conducted through the DM-NN model, particularly when taking the

visibility observation into account, resulted in a fog dassificatory performance of 79.72% for

Model2-60, with the best individual performance of 86.67% when applying Train_Model2-

60V370__V. Figure 7.8 contrasts these results.

POD versus Classification Rate

100%
90%
8C%
70%
60%
50%-j
40%
30%
20%
10%
0%

79.72%
86.67%

1

BPOD • Average Model2-60-V HTrain_Model2_60V370_V

Figure 7.8: Contrasting the POD with dassificatory rates

These results are indicative of a higher performance achieved by the DM-NN approach

when contrasted with the results reported by Keith's study (Keidi, 1991).

The experiments and results conducted in aviation weather forecasting and discussed in

this chapter aim to provide ground to assess the feasibility and applicability of the DM-NN

approach for decision support, rather than to come up with optimal results. The research

described in this thesis concerns in achieving satisfactory results, where satisfactory results are

defined by the user decision makers based on their own utility functions about die novelty or

usefulness of the outputs given by the proposed approach for decision support.

It is important to remember that the individual performance: of the data mining and neural

network algorithms are not the main concerns in this research. This research project does not

claim contributions on algoridims development and optimisations. This research is concerned

with the combined approach, with the DM-NN IDSS model performance as a whole, its
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usefulness, suitability and effectiveness in a decision making problem, rather than the

performance of a single technology by itself.

Consequently, fhe results obtained through the dassificatory performance have to be

analysed taking all these characteristics into account These results provide directions regarding

the DM-NN model's applicability as a decision support framework for a data rich domain,

rather than validating any particular algorithm.

7.7 Chapter Summary

This chapter presented the results of the DM-NN computational model performance in

the context of aviation weather forecasting.

The performance of the DM-NN computational model was assessed in terms of its

accuracy in identifying fog cases at Tullamarine. It is a quantitative approach, where the

holdout method was applied to evaluate the DM-NN model through die classificatory

performance on the testing data sets.

The analysis of the DM-NN model performance took into account the design employed to

generate the data mining models and knowledge models, e.g. sampling strategy and the

combinations of data mining parameters employed.

Each of these design issues was individually presented and discussed in this chapter. The

sampling proportions were analysed to verify which proportions lead to a better performance.

Additionally, the experiments conducted with distinct rule confidence degrees were analysed.

For each level of rule confidence degree, the experiments done with different values of rule

support and rule order were assessed and discussed.

Specific experiments conducted with weather observations were also discussed in this

chapter.
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Chapter 8

8 Discussions About the DM-NN Approach

The chapter discusses certain concepts of intelligent systems that relate to the DM-NN

architecture. Furthermore this chapter contrasts the DM-NN approach mth related works,

and discusses some of its limitations.

8.1 Concepts Related to the DM-NN Architecture

This section discusses the DM-NN architecture according to the concepts of intelligent

systems (IS) previously introduced in Chapter 2, taking into account the knowledge

representation schema adopted, the type of reasoning implemented and level of integration

among the components.

The operation mode of the DM-NN model follows a cycle, as discussed in Chapter 4.

Cases are extracted from source databases, presented to a data mining component from which

a series of association rules are obtained, and them those rules are accessed by a neural

network based system for learning and consultation purposes.

Within that schema the DM-NN architecture employs diverse types of knowledge in its

reasoning process: specific knowledge, generalised knowledge, and a type of compiled generalised

knowledge.

Specific knowledge is represented as cases. Generalized knowledge is extracted from cases

and represented as association rules; where rules are generalizations of specific cases.

Compiled generalized knowledge results from the neural network learning process and is

represented through the neural network structure, as has been discussed in Chapter 6.
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In this architecture specific knowledge (cases) is used to acquire general expert knowledge

(rules). Generalised knowledge (rules) is used to guide the neural network learning process. And

compiled knowledge kept in the neural network is used for problem solving and to build

explanations.

The approach of utilizing general and specific (cases) knowledge in a cooperative way has

been studied by Aamodt (1995); this approach is grounded in Riesbeck and Schank's

psychological theory (1989) which says that humans do not reason from cases when well-

established roles are available, and rules are originated through the continuous repetition of a

certain activity (Surma and Vanhoof, 1995; Riesbeck and Schank, 1989).

According to this cognitive theory, the human reasoning mechanism operates from the

general to the specific when general knowledge is available. This theory considers two basic

reasoning heuristics for problem solving. First, a rule based reasoning approach is employed.

If there are no rules that cover the problem, then an attempt is made to remember a similar

problem (case) that was solved in the past and adapt it to solve the current problem, thus a

case based reasoning approach.

Rule based reasoning is the mechanism employed by most expert systems, often called rule

base expert systems (Hayes-Roth and Jacobstein, 1994), and case based reasoning is the approach

employed in CBR (case based reasoning) systems (Riesbeck and Schank, 1989). Although

many CBR systems use both these reasoning approaches (Surma and Vanhoof, 1995). For

example, the CABARET system described by Rissland (Rissland and Skalak, 1991) integrates

rule base and case base reasoning, and the CREEK system (Aamodt, 1991) combines rule

based and case based reasoning in a single framework. CREEK first attempts to solve a

problem by case based reasoning, and if an acceptable match is not found, a rule based

approach is triggered.

Although the DM-NN system does not claim cognitive contributions, its reasoning

schema draws from Riesbeck and Schank's theory (1989). It follows a rule based reasoning

approach, in which rules are mapped on to the neural network structure and used for problem

solving. In this schema, cases are not used in problem solving but to generate rules

(generalized knowledge).
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Regarding the level of integration between the data mining and neural network

components, the DM-NN architecture can be classified as a loosely coupled system, according to

the intelligent system classification proposed by Medsker (Medsker and Bailey, 1992) and as an

intercommunicating hybrid system, according to the classification proposed by Goonatilake

(Goonatilake and Khebbal, 1995) (refer to section 2.2.4, "Intelligent Systems Classification.")

The proposed architecture can be classified as loosely coupled because both components

communicate <?yith each other via data files, where the data mining results are stored in

knowledge rule base?;; these are later accessed by the neural network component for training.

The data mining component does not directly interface with the connectionist model.

Moreover, the DM-NN architecture can also be classified as an intercommunicating hybrid

system, as each component is self-contained and individually performs a particular task, e.g., the

data mining component is assigned to implement knowledge acquisition and the neural

network component is assigned to implement learning and reasoning. There is no overlap

between the roles of each component in the proposed architecture.

Furthermore, the neural network system applied relates more to the fully integrated

classification proposed by Medsker (Medsker and Bailey, 1992), as CANN implements a

computer system architecture that tightly integrates neural network models within an object

oriented hierarchy (Beckenkamp, 2002). In this system architecture the neural network

topology is symbolically represented as objects in a hierarchy of classes, in which a clear

distinction between the connectionist approach and its symbolic representation is very

difficult.

8.2 Knowledge Discovery Related Work

This section contrasts the DM-NN approach with some related knowledge discovery

based systems, taking into account the architecture implemented, the data preprocessing

phase, the data mining algorithms, and the utilization of discovered knowledge. The purposes

of this study were to understand the architecture implemented by different authors and also to

assess the limitations of the DM-NN modei.
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A knowledge discovery methodology used to automate knowledge acquisition from large

databases was studied first. This methodology has two distinctive characteristics: firstly a large

collection of potentially relevant patterns is discovered at once, and next, different views are

formed on the discovered patterns in an iterative and interactive fashion (Klemettinen, 1999).

This methodology has been implemented as part of the TASA system (Telecommunication

Alarm Sequence Analyser) (Klemettinen, 1999; Klemettinen, Mannila and Toivone, 1999).

TASA is a data mining system that discovers recurrent patterns of alarms in

telecommunication alarm databases and provides tools for interactive identification of relevant

patterns. The purpose of TASA is to support the knowledge acquisition phase for creating

alarm correlation patterns, which are further used in the construction of real-time alarm

correlation systems. The types of patterns discovered by TASA are episode rules (Manr;.1;-.

Toivonen and Verkamo, 1995) and association rules (Agrawal, Imielinsk and Swami, 1993..

The knowledge discovery methodology implemented in TASA covers the stages of dkti.

preprocessing, r'.brovery, and presentation of discovered patterns, including postprocessing.

Within this methodology large collections of patterns are discovered at once, and iterative

information retrieval methods are employed to provide various views of the discovered

patterns. Such a knowledge discovery methodology emphasizes two central phases: a pattern

discovery phase, finding all potentially interesting patterns according to some loose criteria,

and providing flexible methods to present the discovered patterns, allowing iterative creation

of different views of the discovered patterns. As such the emphasis of this KDD methodology

relies on the presentation of discovered patterns (Klemettinen, Mannila and Toivone, 1999).

During the application's first phase raw data is collected and prepared for the discovery

phase (data mining), and relevant features are selected. During the discovery phase all

potentially interesting patterns are generated through loose interestingness criteria, for

example, setting low values for frequency and confidence thresholds. The objective is to

obtain large numbers of patterns, minimizing as much as possible the need for a new

discovery process. The main role of the KDD methodology implemented in TASA is to

provide tools for displaying and browsing discovered patterns, allowing efficient and

interactive views of the patterns obtained. TASA allows users to interactively change rule
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pruning thresholds, ranking rules according some criteria such as statistical significance, and

even organize rules in structured ways. Additionally, users can define rule templates, which are

expressions that describe the forms of rules being generated.

In the TASA application, a large database of alarms is firstly analysed, and in this step

episode and association rules are automatically discovered. Then network management

specialists analyse the discovered rules, and based on background and inferred knowledge,

select interesting rules. Finally, the selected rules are converted into correlation rules that have

been applied in real-time fault identification, alarm correlation systems, and network

surveillance (Klemettinen, 1999; Klemettinen, Mannila and Toivone, 1999).

There are similarities between the DM-NN model for IDSS described in this thesis and

the KDD methodology implemented in TASA. Both approaches aim to automate knowledge

acquisition to a certain degree and an interactive cycle is proposed within the application of

both approaches. This interactive cycle is due to the recognition tfiat expert background

knowledge is an essential part of any KDD process.

On the other hand TASA focuses on knowledge presentation and its further integration

into another device, such as the alarm correlation system. The DM-NN model focuses on

knowledge acquisition and how to make this process as automated as possible. A smooth and

direct integration into a complementary system, called the intelligent advisory system (the IAS

component) is also a major goal. In such an approach, the presentation of discovered

knowledge is not a major concern as it is in TASA, although it has been contemplated in the

DM-NN model. Section 4.7 discusses model functionality and Figure 4.14 illustrates that

functionality.

Furthermore, the DM-NN model gives special attention to the utilization of discovered

knowledge, with the integration of a complementary component into the KDD process and

the functionalities deployed by such a component. Specifically, the IAS component (refer to

section 4.3, "The DM-NN architecture") is proposed as an integrated element into the DM-

NN architecture. Within this approach the DM-NN model contemplates the whole KDD

cycle from the preprocessing level to a fully integrated level with a complementary component

in its architecture, e.g. the intelligent advisory system implemented through CANN.
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A second work that was studied was a meteorological and data mining enviroianent called

MADAME (Buchner et aL, 1998). MADAME was primarily designed for meteorological

forecasting of high- intensity rainfall in Hong Kong. MADAME was designed as a multilayer,

open and extensible architecture compounded by three li -ij\ dements: a meteorological data

warehouse, a knowledge modelling and a knowledge base. MADAME incorporates diverse

types of meteorological data and supports machine-learning algorithms for data mining.

MADAME is tible to deal with different types of data, such as images obtained from radar

and satellite pictures, as well as text data such as wind speed and directions, and various

temperature measurements. Hence, data extraction from diverse sources, data transformation,

and loading operations are implemented in tliis architecture, including the design and

maintenance of a meteorological data -warehouse. Besides historical data, online readings such

as rainfall levels, wind and air measurements are also loaded into the data warehouse on a

legular basis.

The knowledge modelling component and the knowledge base constitute the knowledge

discovery component of MADAME. The MADAME architecture has been designed to be

open and extensible, in which different algorithms for data mining can be applied in diverse

experiments. Meteorological experiments using the general rule induction algorithm (GRI),

classification trees algorithms, neural network models such as Backpropagation, and hybrid

approaches of these algorithms have been reported with promising results by Buchner

(Buchner et aL, 1998).

The third component of MADAME's architecture is a knowledge base, which

incorporates domain knowledge. The major objective of incorporating such knowledge is to

reduce problem dimensionality and improve the quantity and quality of domain knowledge.

The outcomes (discovered patterns) are used for meteorological analyses and predictions.

Furthermore, MADAME can be connected to an existing meteorological prediction system to

provide complementary information, or it can be used as a stand alone application. A series of

meteorological experiments have been conducted and reported in (Buchner et ai., 1998) to

assess the applicability of the MADAME approach as a meteorological knowledge discovery

environment.
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MADAME implements a meteorological KDD environment that includes a

meteorological data warehouse and data mining components, including a knowledge base. The

basic elements of this architecture are similar to the DM-NN model, mainly in the use of a

data warehouse as the data source for the data mining component. The DM-NN model

architecture differentiates from MADAME mainly in the utilization of discovered knowledge,

as the integration of a complementary component into the KD process is a core issue in the

DM-NJN model. It is also contemplated in MADAME, but the system can also be used as a

stand alone application.

A third work that was studied is a toolkit for knowledge discovery (KD toolkit) that was

initially applied in discovering patterns describing average temperatures in northern France.

This experiment consisted of generating a set of rules that were used for meteorological

predictions in mid-long term forecasts (Howard and Rayward-Smith, 1998). The toolkit

comprises features for data preprocessing and data mining, together with database and data

analysis functionalities (Howard and Rayward-Smith, 1998).

The database features include data manipulation techniques such as sorting, searching,

appending records and fields, data sampling techniques and field selection, among others. The

data preprocessing features include simple two dimensional graphs visualization, data

histograms and tabular views. Data discretization techniques and missing data summaries are

also included as part of the data preprocessing component.

According to Howard (Howard and Rayward-Smith, 1998), the data mining component

consists of a rule induction approach, which is implemented through a simulated annealing

algorithm and hill-climber search engine. Other induction algorithms are externally available in

the toolkit. For data analysis the toolkit provides a rule editor for visual editing of the

extracted rules, and it also allows the user to conduct experiments with rule properties, such as

selecting or deselecting features in rules (itemsets).

Additionally the KD toolkit implements specialised features for the meteorological

domain, suoh as a series of specific data conversion routines and graphical facilities (Howard

and Rayward-Smith, 1998).
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One of the particularities of the KD toolkit is that it provides its own features for data

manipulation and preprocessing, instead of relying on third party databases. In this way the

KD toolkit seems to be a more self-contained approach, with basic features available in the

toolkit. For discovered patterns the KD toolkit implements a rule editor facility for rule editing

and manipulation. Additionally, the possibility of integration of an existing system within the

KD toolkit would be an interesting way to enhance the toolkit capabilities, especially from the

utilization of discovered knowledge.

The last work studied was an association classification framework named Classification

Based on Associations (CBA). CBA integrates an association rule mining algorithm with a

classification rule mining algorithm, and was proposed by I iu (Liu, Hsu and Ma, 1998). The

integration in this framework is done by mining a special subset of association rules that the

authors called class association rules (CARs). An association rule mining algorithm based on the

Apriori algorithm (Agrawal et al., 1996) was adapted to generate all the CARs that satisfy user-

specified minimum support and confidence constraints (Liu, Hsu and Ma, 1998). Further, a

classification algorithm is applied for building a classifier based on the set of discovered CARs.

Essentially, the CBA framework aims to build an accurate classifier for prediction from the set

of generated rules (CARs). The CBA consists of two main parts: a rule generator (CBA-RG)

algorithm for finding association rules, and a classifier builder (CBA-CB). The CBA-RG

algorithm is adapted from the Apriori algorithm (Agrawal et al., 1996), and it generates all the

frequent set of items (rule items) belonging to each class in the training data set by making

multiple passes over the data; where "frequent" indicates that a particular item satisfies a

minimum predefined support degree. The basic idea of the CBA-CB algorithm is to choose a

set of high precedence rules from the set of CARs to cover the training data (Liu, Hsu and

Ma, 1998).

The CBA-CB algorithm performs three steps: first it sorts the CARs rules according to a

precedence criteria, then it selects the sorted sequence of rules and searches by the cases in the

training set that are covered by the selected rules. Rules that successfully classified one or

more cases are marked to become part of the classifier, otherwise they are discarded. When

classifying a new case, the first rule that satisfies the case will classify it, and if there is no rule
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that satisfies the new case, the algorithm takes on a predefined default class. When there is no

rule or training case left, the rule selection process is completed. A detailed discussion about

the CBA algorithm can be found in (Liu, Hsu and Ma, 1998). The author reported

experimental results showing that the CBA algorithm was in general more accurate than that

produced by the classification algorithm C4.5.

The CBA framework is a different kind of work from what has previously been discussed

in this section. In the CBA framework there is no explicit emphasis on the KDD process, but

in building an accurate classifier from induced sets of association rules. This is a similar

approach to the one implemented in the DM-NN model, as both aim to build classifiers for

prediction based on association rules. While the CBA framework integrates an association rule

mining algorithm with a classification rule mining algorithm, the DM-NN model integrates an

association rule mining algorithm with a neural network model. The class association rules

defined by Iiu (Liu, Hsu and Ma, 1998) are equivalent to the set of association rules that

populate the knowledge rule bases in the DM-NN model. Besides employing the same

knowledge representation schema (association rules) both approaches also rely on levels of

confidence and support degree as the main criteria for rule filtering.

The CBA framework consists of two main parts: a rule generator algorithm for finding

association rules, and a classifier builder. Similarly, the DM-NN model has two main stages:

first, descriptive models are built, and then predictive models are built based on these

descriptive models. Although the CBA framework and the DM-NN model share a similar

approach in building descriptive models (generating association rules), they differ in the way

the classifiers are built. The CBA framework selects sets of high precedence rules from the set

of CARs that cover the cases in the training data, and the DM-NN uses a set of rules as a

training set for a neural network model; thus, rule selection is performed through the neural

network pruning and reward algorithm.

Additionally, issues of data sources and data preprocessing that are not specifically

addressed in the CBA framework have a definite importance in the DM-NN model.
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Chapter 8 Discussions About the DM-NN Approach

The works that were studied and introduced in this section bring valuable insights for the

development of computerized solutions for decision support based on the knowledge

discovery in databases approach.

Firstly, almost all the discussed works somehow address the data preprocessing stage.

Solutions vary from the implementation of a dedicated data warehouse as proposed in the

MADAME architecture (Buchner et al., 1998), to the implementation of specific database

functionalities for data preprocessing and data visualization features, as implemented in the

KD toolkit (Howard and Rayward-Smith, 1998). Regardless of the strategy employed, data

preprocessing is a relevant activity in almost any knowledge discovery in databases system, and

the experiment in aviation weather forecasting described in this thesis consolidates that

conclusion.

In the DM-NN architecture, a decision-oriented data repository is introduced as the

primary source of information, and ideally, it should be a data warehouse.

Rule induction seems to be the predominant formalism for data mining and the

representation of discovered patterns in the works introduced in this section, although

decision trees are also contemplated. Different applications and systems apply a range of rule

induction approaches, such as episode rules and association rules as in TASA, the general rule

induction algorithm implemented in MADAME, the rule induction approach implemented

through a simulated annealing algorithm in the KD toolkit, and association rules implemented

in the CBA framework which is similar to that implemented in the DM-NN system.

The need to use different approaches for knowledge discovery is also an important feature.

For instance, MADAME implements an open and extensible data mining component with the

aim of supporting diverse machine learning algorithms (Buchner et al., 1998). The KD toolkit

also provides a hill-climber algorithm for data mining and induction algorithms available

through external links.

As for the presentation of discovered patterns, TASA provides tools for displaying and

browsing rules, the KD toolkit implements a rule editor for visual editing of the extracted

rules, and MADAME provides a domain knowledge component in which interesting

discovered patterns can be stored for further analysis. The DM-NN architecture incorporates
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a rule evaluation stage, although this was not implemented in the application in aviation

weather forecasting described in this thesis.

Regarding the utilization of discovered knowledge, almost all authors address the

integration of a complementary system into the KDD process. TASA integrates an alarm

correlation system within its architecture (Klemettinen, 1999). MADAME includes a

knowledge base to store discovered knowledge and a further connection to existing

meteorological prediction systems within its architecture is a possibility,, although the system

can be used as a stand alone application. And the CBA framework applies discovered rules to

build a classifier. Although the authors of the CBA framework (Liu, Hsu and Ma, 1998) do

not specifically argue that the framework was conceived within a knowledge discovery process

point of view, CBA consists of a rule generator (CBA-RG) algorithm for finding association

rules and a classifier builder (CBA-CB). In this approach, the rule generator is the data mining

component of CBA framework, and the classifier builder is where the discovered knowledge is

utilized.

In contrast with the works discussed in this section, the integration of a complementary

system into the knowledge discovery process is an important goal in the DM-NN architecture.

The purpose of this architecture is to devise a model for decision support systems through the

combination of data mining and intelligent computing technologies, specifically neural

networks. Data mining is applied for knowledge acquisition, and neural networks are applied

to implement learning and reasoning capabilities. In this architecture the emphasis is not

specifically on the knowledge discovery process, but in the amplification of that process on

the utilization of the knowledge discovered. From that perspective the DM-NN architecture

draws from the ideas of intelligent systems, where two or more technologies are combined to

overcome limitations of each other, endowing the resulting systems with capabilities that

would be very difficult to implement within a single approach.

8.3 Improvements and Limitations

The previous section of this chapter, together with section 2.5, "Applying Intelligent

Systems", comprise the study of works related to the DM-NN model proposed and developed
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as part of this thesis. The purpose in presenting and discussing them was not to give an

exhaustive list, but rather a comprehensive enough sample of the current state of research and

development in the field of intelligent systems and knowledge discovery based systems.

Furthermore, the author aimed to learn and consolidate his own knowledge in the related

fields.

The works discussed, together with the experience gained with the implementation

developed in aviation weather forecasting as part of this research helped to assess some

improvements and limitations of the DM-NN model for decision support

The hybrid DM-NN architecture introduced certain facilities related to knowledge

acquisition, representation and utilization of specific and general knowledge, as well as

implementation of learning and reasoning in a decision support framework. However, there

are limitations and costs associated to the proposed model, which will now be discussed.

In the DM-NN architecture, a decision-oriented data repository is introduced as the

primary source of information. Ideally, it should be a data warehouse. A meteorological data

warehouse was not available in the implementation done in aviation weather forecasting as

part of this research. Therefore a significant effort in data preprocessing was needed, as

discussed in Chapter 5. The availability of a meteorological data warehouse would significantly

minimise the intensive work and time in data preprocessing that was required.

The DM-NN system was successfully able to discover interesting rules about aviation

weather forecasting, but does not provide facilities for editing, browsing, or any kind of

visualization of the discovered knowledge. While a stage of rule evaluation is suggested in the

model application, the emphasis relies on the generation of association rules (domain

knowledge) and its further access by the neural network system. Although knowledge

acquisition is the primary role of the data mining component, the capability to access and

manipulate the discovered knowledge would represent an improvement in the model.

As already mentioned, the proposed architecture is classified as a loosely coupled system

because both components communicate witii each other via data files. Therefore, the data

mining component does not directly interface with the connectionist model. Hybrid

architectures bring improvements in overcoming limitations of single technologies, hence
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empowering systems with better capabilities. But such improvements also bring additional

costs, such as the necessity to coordinate diverse components, mainly in architectures where

the components are loosely integrated.

Hie weak integration between the DM and NN components requires a significant amount

of work in data transfer. This is a time consuming and error prone situation. For instance, a

complex set of procedures was required to transform the data sets obtained through data

mining into the final data sets used by CANN in the application developed in this research.

The knowledge bases obtained had to be exported from MS Access tables to ASCII plain files

in order to be read by CANN, and the attributes had to be carefully adjusted. A significant

number of SQL queries and MS Visual Basic program modules had to be implemented to

perform this data integration.

Besides that, a set of program modules were implemented and executed in MS Visual Basic

to compute the discretization schema discussed in section 5.4.1.4. New attributes had to be

created in the database, and each attribute had to be properly adjusted in the correct position

and size, as this is necessary when exporting MS Access tables to ASCII files.

It is worth pointing out that a great variety of data formats and software programs were

used in this research, from when the first database with weather observations was delivered by

BOM until the last stage of this research. Some of these were MS Access and .DBF tables, MS

Excel spreadsheets, the SPSS statistical package and its own proprietary data format, and

ASCII plain text files.

Furthermore, the weak integration between the data mining and neural network

components restricted the usability of the discovered patterns to a single reasoning schema.

This also brings problems regarding the redundancy of information, as the information has to

be simultaneously represented in the neural network structure, as association rules, and also in

the case bases. Rules are mapped on to the neural network structure; both formalisms keep

the same type of knowledge. Moreover, cases stored in the case bases are another way of

representing the same classificatory knowledge. This redundancy of information requires a

control mechanism to ensure that changes are propagated accordingly. For example, if a new

feature is inserted or removed as part of the data mining component (or even changes in the

v

!*- 4

»••?

if*

268



Chapter 8 Discussions About the DM-NN Approach

discretization of a particular feature), that change has to be propagated to the neural network

structure, even adding or removing the feature from the domain, or deselecting it from the list

of evidences associated to its class.

The problem domain has to be modelled into the CANN object hierarchy, as described in

Chapter 6. This domain modelling is stored in the object hierarchy implemented in CANN,

and is therefore not easily available for other applications; furthermore, changes in the domain

need to be propagated into CANN, which might require the execution of a new neural

network training procedure.

Specifically with the CNM neural network model, care should be taken to avoid an

excessively large combination of input nodes. This leads to the problem of combinatorial

explosion, especially in applications where there is a large number of evidences as well as

classes. A user should not attempt to combine all the evidences in the domain in all possible

ways, for each class. Instead, only evidences observed for a particular class should be selected

and used to build die clusters for that class (refer to section 6.3.3, "Modelling Hypotheses" in

Chapter 6). Although the CNM implementation in CANN has been optimised to minimise

some of the drawbacks of the original CNM model implementation, combinatorial explosion

has to be taken into account when performing domain modelling.

Certainly, most of the limitations discussed above can be overcome. A loosely coupled

architecture brings several disadvantages, but it also brings several clear advantages. For

instance, each component in a loosely coupled architecture can be more easily replaced than in

tighdy coupled or fully integrated architectures. Normally, loosely coupled architectures are

more flexible, and as such, easier to adapt. In this context, it should be observed that the DM-

NN model for IDSS does not enforce any particular technology, but rather proposes a

framework that can be seen as an infrastructure that can be built according to the needs of a

particular problem. As such, a particular component can be replaced to suit the needs of a

specific problem.

From this perspective the inclusion of a data warehouse is not a difficult task. In the case

of the experiment developed in aviation weather forecasting a data warehouse was not used

only because it was not available from BOM at the time it was developed.
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The coordination between the data mining and IAS components, as well as the flow of

data can be achieved through the implementation of a high level manager component Such a

component would coordinate the actions and events in the DM-NN architecture.

As for the limitations of the CNM neural network model, the first approach is certainly

careful domain modelling and dimensionality reduction, to avoid unnecessary features. Besides

that, a mechanism to generate only relevant clusters of evidence can be applied. For example,

Machado (Machado, Rocha and Denis, 1992; Reategui, 1997) described an approach where

genetic algorithms are used to generate and select the most significant clusters associated to a

class.

8.4 Chapter Summary

This chapter discussed various concepts of intelligent systems that relate to the DM-NN

architecture. The cognitive plausibility of the reasoning mechanism employed by the DM-NN

systems was discussed, as well its classification according to the level of integration among its

components and their functionalities.

Some related knowledge discovery based systems were introduced and contrasted with the

DM-NN architecture, taking into account the architecture implemented, the data

preprocessing phase, the data mining algorithms, and the utilization of discovered knowledge.

The purposes of this study were to understand and learn from the architecture implemented

by different authors.

Furthermore, some limitations and issues of improvement of the DM-NN architecture

were discussed as part of this chapter.
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Chapter 9

9 Conclusions

i

i

This chapter presents the conclusions and contributions of the research described in this

thesis, and indicates possibilities for future research.

9.1 Introduction

The research conducted and described in this thesis has been concerned with investigating

the combination of knowledge discovery in databases and intelligent computing technologies

for decision support. As a result of tliis investigation, this thesis has proposed a new

framework for decision support, combining data mining with artificial neural networks in 2

hybrid architecture, called the DM-NN model. This architecture employs an association rule

generator algorithm for data mining to build domain knowledge from organizational

databases, and a neural network based system is used to implement reasoning and problem

solving. To assess the applicability of die proposed DM-NN model in practice it was applied

to aviation weather forecasting, to identify the occurrence of fog phenomena at Tullamarine.

The DM-NN model for decision support has been presented and evaluated in this thesis.

The achieved results, summary of contributions and possibilities for future research are

discussed in the next sections.

9.2 Results

The research question as oudined in Chapter 1 was:

What are the components of a framework for intelligent decision support system capable of:
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• utilising organisational databases as source of information

• facilitating automatic knowledge acquisition from those organisational databases

• reasoning and learning upon this knowledge

to support decision making ?

The conceptual studies undertaken in this research contributed to define the architecture

of the proposed framework for intelligent decision support, and its components.

The results of tfiis research demonstrated that these components include a decision-

oriented data repository such as a data warehouse as the framework's primary data source, case

bases that store selected cases from the data warehouse, a data mining component to build

domain knowledge from the cases stored in case bases, and knowledge bases to store the

knowledge built through data mining.

The framework also includes an intelligent advisory system capable of learning from the

knowledge bases, reasoning upon the knowledge learned, and issuing recommendations and

drawing justifications.

An architecture that implements the proposed framework was developed in this research.

The results achieved in this research demonstrated that a combination of data mining

through an association rule generator algorithm and artificial neural networks was capable of

providing a model for decision support systems that automatically builds domain knowledge

from organisational databases, and performs learning and reasoning upon that knowledge in

supporting decision making.

It has been possible to conclude that:

• The DM-NN model constitutes a suitable technology to implement the IDSS

framework. Its performance in identifying fog phenomena demonstrated its

potential applicability as a decision support framework. From Table 7.2 it is

possible to observe that the DM-NN model achieved average performances of

74.58%, 70.83%, 70% and 64.72% of correctly classified cases according to the

data models obtained. From Table 7.9 it can be observed that the highest

performance measure was verified when the visibility attribute was included in the
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mining and training sets, with 86.67% of correctly classified fog cases, and an

average performance of 79.72% correctly classified fog cases.

• There is a need for a decision-oriented data repository such as a data warehouse as

the primary data source in the DM-NN model. This has been consolidated

through the application in aviation weather forecasting. The unavailability of a

meteorological data warehouse in the aviation weather forecasting implementation

demanded a great amount of time and effort in data preprocessing, and in building

the case bases. This therefore compromised the gain obtained in automatic

knowledge acquisition dirough data mining. The experience gained in this research,

as well as the discussion of die literature and related knowledge discovery systems

presented in Chapter 8 led to the conclusion that a data warehouse is a significant

component in any knowledge discovery based system, in order to minimise

problems related to data quality and data preprocessing.

• Data mining dirough an association rule generator algorithm showed a promising

and effective approach to facilitate automatic knowledge acquisition from

organizational databases. The rule sets obtained (discussed in Chapter 5) and die

performance of die proposed model (discussed in Chapter 7) showed that the data

mining algorithm employed was able to induce relevant domain knowledge from

cases obtained from the meteorological database used in this research.

• The adaptive, learning and generalization capabilities of neural networks facilitated

learning, reasoning and problem solving in die proposed architecture. Neural networks

proved to be an efficient technology to build generalizations from association rules

and to implement reasoning upon that knowledge. Furthermore, neural networks

were able to generate satisfactory predictive models about fog occurrence,

according to the performance assessment. The best predictive performance

averages achieved were 74.58% (refer to Table 7.2) and 77.29% (refer to Table 7.9)

of correcdy classified cases (both fog and not fog classes), which can be considered

satisfactory for fog phenomena, as was discussed in Chapter 7. Additionally, based
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on published results, Figure 7.8 contrasts the probability of detection for fog with

the DM-NN dassificatory performance.

The Combinatorial Neural Model (CNM) was able to successfully build chunks of

domain knowledge from sets of association rules. Figure 7.6 and Figure 7.7 illustrate

pathways created by the CNM learning algorithm. Furthermore, its compatibility

with the knowledge representation formalism of knowledge graphs and association

rules facilitated the integration of knowledge represented through rules into its

topology. The availability of a data fetcher for relational databases in CANN would

significantly improve this integration.

The CANN simulation environment greatly facilitated domain modelling, and

implementation of reasoning, recommendations and explanation capabilities in the DM-

NN model. Because CANN is an environment dedicated to the implementation of

neural network models, it proved to be a useful approach to implement learning and

reasoning capabilities. Besides that, there are two characteristics in its architecture that

are particularly relevant for the purposes of this research: first, CANN was

designed to support problem solving and domain modelling in classification

problems (Pree, Beckenkamp and Rosa, 1997). The problem domain was easily

modelled into die simulator, and a user can interact with the system adding,

removing, selecting or deselecting features and classes. This capability allows

interactive and iterative characteristics in the DM-NN model. Second, its dual

knowledge representation schema helps to overcome one of the major drawbacks

in artificial neural networks, which is the difficulty in accessing the knowledge

distributed in the neural network structure. This dual knowledge representation

schema facilitated the implementation of explanatory capabilities in the DM-NN

model.

The DM-NN model proved to be capable of incremental learning through the

incorporation of new cases in the case bases, generating new sets of association

rules and training die neural network with these new rules. Furthermore, the neural
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outputs can be stored as new rules in the knowledge bases, and the neural

can be retrained to learn about these new rules. This is a type of

reinforcement learning implemented through a feedback learning approach.

Specific studies about data sampling for data mining and rule filtering thresholds were also

conducted as part of this research, and the results obtained from these studies give guidance in

developing knowledge discovery applications with similar characteristics to that of aviation

weather forecasting.

The meteorological database used in the experiment developed in this research showed a

low prevalence classification problem. It had approximately 50000 instances, with two classes

representing the survey variable in which the positive class (fog) represented only about 2% of

the population and the negative class (not fog) represented the other 98% of that population.

Considering knowledge discovery in database applications with similar characteristics to

the application developed in this research, e.g., database size, population distribution, the

nature of the problem being addressed, and applying a data mining algorithm with similar

characteristics to the Apriori algorithm (Agrawal et al, 1998) for association rules, the research

findings are:

• The Results obtained through the analysis of performance indicate that the data

sampling design elaborated in this research was capable of efficiently capturing

information from both classes, fog and not fog. It indicates that in data mining

applications where the original population presents a low prevalence classification

probleru, similar to that found in this research, a stratified sampling approach to

separate both classes combined with a multi-stage sampling approach conducted in

the majority class potentially constitute a suitable sampling strategy.

i

As fo* data partitioning, the results discussed in section 7.3, and illustrated in Table

7.2 and Figure 7.1 show that the best classificatory performance was achieved by

the data model obtained through a sample of 20% of the majority class population.

The data set for data mining was obtained through a subsample of 60% of the

majority class sample, together with a sample of 85% of the minority class
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I

population. These results indicate that similar sampling proportions potentially

constitute an appropriate choice for data partitioning in knowledge discovery in

database applications with similar characteristics to the ones presented in this

research.

According to the results presented in Table 7.8 and Figure 7.2, it can be observed

that the data mining experiments with a 70% rule confidence degree produced the

best results, with averages of 0.28 of error rate and 71.77% of classificatory

performance. In the experiments conducted in this research the training sets

obtained from data mining experiments using a 70% rule confidence degree

provided the higher number of rules for both classes, compared with training sets

obtained from the same data models using different levels of rule confidence

degrees. Figure 7.2 illustrates how the error rate increases as the rule confidence

degree progresses upwards from 70%. This association can be related to the

amount of association rules obtained, as increasing the levels of confidence degree

implies a more constrained parameter to the association rule generator algorithm,

consequently generating fewer rules. These results support the conclusion that

normally error rates decrease as the si2e of training sets increase when using

inductive algorithms for classification. Furthermore, this result indicates that levels

comparable to 70% can be considered suitable thresholds for ride confidence degree, in

experiments with similar characteristics to the one developed in this research.

According to the results presented in Figure 7.3 and Figure 7.4, it can be observed

that the data mining experiments using the configuration of 6% of rriinimum rule

support combined with a maximum rule order threshold of 10 itemsets produced

the best results, with averages of 0.28 of error rate and 71.84% of classificatory

performance. The reason for this is possibly because the training sets obtained

from the experiments using this configuration presented higher numbers of

association rules and a more equally balanced class distribution than the training

sets obtained using a different configuration. These results support the conclusion
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that the dassificatory performance of inductive algorithms relates not only to the

si2e of training sets, but also to the distribution of classes within them.

Performance is expected to increase as the size of training set increases, and as the

distribution of classes in the training set becomes more homogeneous.

Furthermore, these results indicate that similar levels to 6% for minimum rule support

and 10 for maximum rule order can be considered suitable thresholds in experiments

with similar characteristics to the one developed in this research.

Based on the above conclusions, this work has achieved its goals, which were:

• To devise a framework for intelligent decision support system (IDSS) capable of

automatically building specific domain knowledge from data rich domains and

applying this knowledge in problem solving

• To specify the appropriate technological components of that framework

• To empirically verify the framework in practice.

9.3 Summary of Contributions

The main contributions of this research are:

• the conception and design of a new framework for decision support based on

knowledge discovery in. databases and intelligent computing technologies,

identifying its technological components, roles and respective relationships.

• the development of a hybrid model for intelligent decision support systems that

implements that conceptual framework, through the combination of an association

rule generator algorithm for data mining and a neural network model. This hybrid

model benefits from the inductive capability of an association rule generator

algorithm to build domain knowledge from databases, from the learning and

reasoning capabilities of neural networks, and from the explanatory capability of a

symbolic-connectionist knowledge representation schema.

• a description and empirical validation of the knowledge discovery in databases

process from both practical and analytical points of view. The knowledge
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discovery process developed in this research contains several stages: the

application domain modelling, preparing the data set, mining data, data

postprocessing, and integrating a complementary computerized system.

Furthermore, the description of the stage of knowledge discovery in this research

provides guidance for data partitioning and selection of thresholds for rule

confidence, support and rule order in data mining applications.

• provided a technological approach in the hybrid DM-NN model that allows access

to the hidden knowledge stored in the neural network structure. This approach

facilitated explanatory capabilities in the proposed model for decision support,

which otherwise would be very difficult to achieve. It should be noted that the

symbolic representation of the knowledge implicitly stored in neural network

structures has been a subject of current research in the areas of artificial neural

networks and intelligent systems, as discussed in Chapter 2 (refer to section 2.3,

"Hybrid Symbolic-Connectionist Systems.") It represents one of the major

difficulties in applying neural network technologies in computerized information

systems that need to deliver human readable outputs, such as decision support

systems.

• the application of the proposed model for intelligent decision support system in

aviation weather forecasting. The model was developed covering all stages of

knowledge discovery, i.e. building descriptive models of the domain, and building

predictive models of that domain through the application of a neural network

based system. It demonstrated the applicability and effectiveness of the proposed

framework in practice, bringing contributions to the practice and theory of

intelligent system and decision support systems.

9.4 Future Work

As a result of the work developed in this research, some subjects for future research were

identified and presented in this section. These subjects were classified in four sections:
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extending the DM-NN architecture, implementing reasoning and knowledge representation

approaches, data preparation and modelling and DM-NN model applicability.

• Extending the DM-NN architecture

An interesting subject for future research is investigating the possibilities of expanding the

DM-NN architecture towards a more integrated approach. One of the possibilities in that

direction would be to coordinate the interactions between the diverse components of the

architecture. This can be achieved by integrating a manager component in the DM-NN

architecture. For instance, such a manager component would be able to extract cases from the

data repository, store them in case bases and then notify (or even activate) the data mining

component that new knowledge is available for learning (mining).

Moreover, the manager component would coordinate the operation between the data

mining and neural network components. For example, it should notify the neural network

system when there is new knowledge available for training, and the neural network system

would execute a new training procedure.

Another interesting functionality would be the ability to automatically store neural network

outputs back in the knowledge bases, when these outputs indicate novel information

according to user criteria.

The implementation of such a manager component would make the current architecture

more flexible, widi a more intelligent and autonomous coordinating mechanism. This

mechanism would lead to some interesting research issues to the areas of intelligent and

autonomous agents and distributed computing.

Another possibility is to investigate the extension of the CANN framework, implementing

other reasoning mechanisms besides the connectionist one. One possible approach is to plug

into the framework a new hierarchy of classes to implement other machine learning

algorithms, such as die Apriori algorithm (Agrawal, Imielinsk and Swami, 1993).

Another interesting research subject would be the definition of structures to represent

domain modelling and domain knowledge using a metadata schema, and implementing that

schema in XML. This would facilitate a fully integrated architecture for the DM-NN model,

and would also give access of that domain modelling and knowledge to other computer
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systems. It also would facilitate changes in domain modelling, bringing a significant higher

level of flexibility into the DM-NN architecture.

* Implementing reasoning and knowledge representation approaches

Expanding the DM-NN architecture also brings the possibility of investigating alternative

reasoning approaches besides the connectionist For example, a more traditional rule based

reasoning approach could be implemented using the knowledge bases. Similarly, cases stored

in case bases could be used to implement a case based reasoning schema. The implementation

and integration of these diverse reasoning approaches in a single framework raises interesting

and challenging research issues not only from the computational perspective but also in

cognitive plausibility, suggesting insights on how the model could be improved from a

cognitive perspective.

According to the reasoning mechanism employed in the DM-NN model, rules are

obtained from cases and accessed by neural networks for learning and reasoning purposes. As

such, rules can be considered generalizations of sets of cases, representing a kind of

"condensed" knowledge derived from cases. Thus, it seems reasonable to be able to assign a

measurement to rules, representing this "condensed" type of knowledge. In CANN a

morbidity value (refer to section 6.3.2, "Modelling Evidences") is assigned to each evidence in

the domain and then used as a weighting factor to the input neurons, but there is no

mechanism to assign a measurement to specific groups of evidences, because CANN does not

differentiate rules from cases and treats diem in the same way. A mechanism to differentiate

rules from cases would represent a more realistic reasoning approach when training the CNM

with rules instead of cases, and it would seem to be more realistic from a cognitive point of

view.

The implementation of such a mechanism, and a comparative study of learning from cases

and learning from rules, would constitute interesting research issues.

The use of other data mining algorithms in a comparison study would also be an

interesting research topic, besides potentially improving the DM-NN applicability. For

instance, the use of episode rules (Mannila, Toivonen and Verkamo, 1995) instead of
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association rules, or a combination of both approaches in the meteorological and other

domains, constitutes an interesting topic to investigate.

Rule evaluation is not considered in the current DM-NN implementation; and the

availability of such facilities for rule browsing, evaluation and visualization would certainly

represent an improvement to the current architecture.

* Data preparation and modelling

Among the most difficult questions that arose during this research were those that related

to the necessary number of cases that were sufficient for data mining and training, and to

define suitable sampling strategies. The experience gained in this research indicates that these

questions are empirically defined, and depend on the nature of the problem being addressed,

as well as knowledge about the problem and the information available. To create mechanisms

and theories to help these tasks to be automatically performed seems a difficult and exciting

challenge for future research.

The work carried out in data preparation and transformation of meteorological data can be

useful in further experiments applying data mining, or inductive learning algorithms, in the

meteorological domain. In that context, a potential research topic would be to investigate the

construction of a library of program modules for meteorological data preprocessing. Such a

library could be used together with a meteorological data warehouse, or even an ADAM

module, to facilitate further knowledge discovery experiments. In that perspective, the

application the DM-NN model for the prediction of other hazardous weather events, such as

tropical cyclones and severe thunderstorms, is a possibility for further research.

Another interesting research topic refers to data modelling in meteorology. For instance,

the use of fuzzy logic to model and represent semantic variables such as wind speed and

direction potentially could avoid oversimplifications when representing meteorological

continuous information through sharply defined categorical data.

• DM-NN model applicability

From an engineering point of view, it would be interesting to investigate the possibility of

having an IAS module (a trained neural network module) inside an aircraft and used as a

iimulation instrument. For instance, some weather conditions could be communicated to the
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IAS module (for example by the crew) in order to verify the likelihood of occurrence of a

particular weather event, such as fog.

The application of the DM-NN framework to other domains and problems would help to

assess its applicability in different scenarios, raising further issues for improvement in the

model, and potentially create new research topics in the areas of intelligent systems, knowledge

discovery and decision support Furthermore, the author believes mat incorporating different

reasoning schemas and possible different knowledge representation approaches in the

framework may contribute to the investigation of cognitive models observed in humans.
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Appendix A

The Knowledge Acquisition Methodology for
Elicitation of Knowledge Graphs1

Phase 0 - Problem Definition

1) Define the problem domain

2) Define the hypotheses (classes) that will be part of the domain

3) Define a list of evidences and attributes, with the assistance of an expert or a group of

experts

Phase 1 - Knowledge Acquisition

1) Select one of the hypothesis (classes)

2) Ask the expert to indicate, in the list of evidences, the items necessary for the

formulation of the hypothesis, by which a working subset of evidences is defined

3) Ask the expert to rank the working subset according to the importance of the items for

the hypothesis

4) Ask the expert to assume the items of the ordered list as the evidence nodes of a

Lnowledge graph and to associate them in the form that he judges necessary to

establish an adequate foundation for the hypothesis (generating intermediate nodes

that converge to the hypothesis)

I
I

'Adapted from (Reategui, 1997; Leao and Rocha, 1990).
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5) Ask the expert to assign a membership degree between 0 and 10 for the information

represented in each node of the graph in relation to the hypothesis

6) Ask the expert to define the logical operators (AND, OR, NOT) associated with the

nodes of the graph

7) Repeat the process for the other hypotheses, to form a family of graphs.
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Appendix B

Discretization of Numerical Attributes for Modell-80,
Model2-60 and ModellO-60

Attribiife

DiyBuIb
(Celsius degrees)

Dew Point and
Previous Dew
Point
(Celsius degrees)
Total Cloud
Amount
(Eighths)
Total Low Cloud
Amount
(Eighths)
Sea Level
Pressure
(HpA)

Wind Speed
(meters/second)

Visibility
(Kilometers)

Mining M-.dcl l-£0

< = 8.5
> 8.5 & <= 12
>12
< = 4
> 4 & < = 6
> 6 & < = 9
> 9
<=4
> 4 & < = 7
> 7
< = 1
> 1&< = 6
> 6
< = 1013.9
>1013.9 & <= 1019.8
>1019.8&<= 1025.2
> 1025.2
< = 1.5
>1.5&< = 4.1
> 4.1 & < = 6.2
>6.2
< = 25
> 25 & < = 35
> 35 & < = 40
>40

Mining Model 2-60

< = 8.5
> 8.5 & <= 12
>12
< = 4
> 4 & < = 6
> 6 & < = 9
> 9
< = 4
> 7 & < = 7
> 7
< = 1
> 1 & < = 6
> 6
< = 1013.6
>1013.6&<= 1019.7
>1019.7&<= 1024.9
>1024.9
< = 2.1
> 2.1 & < = 4.1
> 4.1 & < = 6.7
>6.7
< = 30
> 30 & < = 35
> 35 & < = 40
>40

Mining Model 10-60

< = 8.5
> 8.5 & <= 12
>12
< = 4
> 4 & < = 6
> 6 & < = 9
> 9
< = 4
> 4 & < = 7
> 7
< = 1
> 1 & < = 6
> 6
< = 1013.6
>1013.6 & <= 1019.2
>1019.2&<= 1024.9
> 1024.9
< = 2.6
> 2.6 & < = 4.6
> 4.6 & < = 7.2
>7.2
< = 30
> 30 & < = 35
> 35 & <= 40
>40

Labels

Low
Med
High
Low
Med
High
Max
Min
Med
Max
Min
Med
Max
Low
Med
High
VHigh
Light
LMode
Mode
FMode
Levl (level 1)
Lev2 (level 2)
Lev3 (level 3)
Lev4 (level 4)

There are certain conventions in the labels, for instance: Med indicates medium, Mir.

indicates minimum, Max indicates maximum, VTJigh indicates very high, LMode indicates light to

moderate, Mode indicates moderate and FMode indicates fresh to moderate.
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Appendix C

Rule Sets by Mining Models Selecting Visibility
Observation

Data Minino Generated Rules b\ Rule Confidence Degree - l\lo;del \ 2 •

Rule Support 8".., Ma.\imum Rule Order 7, Selecting \'isibilir\

Mining
Modell-60

Mining
Modell-80

Mining
ModeI2-60

Mining
ModellO-60

F

28

50%

NF

228

Total

256

70%

F

148

209

86

11

NF

180

234

215

228

Total

328

443

301

239

80%

F

92

120

36

7

NF

177

234

215

228

Total

269

354

251

235

F

23

22

13

7

90%

NF

138

182

207

228

Total

161

204

220

235

Data Mjninj. • Generated Rules b\ Rule Confidence Degree - Model \ 3 •

Model Rule Suppurt 6"-., Max'imuin Rule Order 10, Selecting Visibility

Mining
Modell-60

Mining
Modell-80

Mining
Model2-60

Mining
Modell0-60

50%

F

32

NF

375

Total

407

70%

F

243

332

144

14

NF

310

377

315

375

Total

553

709

495

389

80%

F

149

188

51

9

NF

305

377

351

375

Total

454

565

402

384

90%

F

83

38

16

9

NF

295

314

254

375

Total

378

352

358

384
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Appendix D

Domain Modelling in the CANN Simulator for Modell-
60.

The domain modelling for Modell-60 is presented here. The other models (Moldel-8,

Model2-6 and Modell 0-60) follow the same structure. Different models might have different

evidences, evidence values and morbidity values associated to them. Chapter 6 discussed issues

about domain modelling into CANN.

In the table's header, the first column indicates the evidence (including the value ranges in

the case of numerical evidences). The "Fethcer" column indicates the position in the ASCII

files (both for training and testing) where the evidence is stored.

The £CValues" column indicates the possible attributes that can be assigned to the

evidences. The "Frequency" column indicates the frequency measured of each

evidence/values pair in the dataset. The "Percent" column indicates the percent of the

frequency in the dataset. The "Morbidity" specifies the morbidity value of the evidences, as a

result of the morbidity calculation presented in Equation 6.1.

Hour Fe tiMier F re q u c n c\ P c rcc n t Morbidin

f a *

!f '

0
3

6

9

12

15

18

21

425
490

528

585

425

363

392

387

11.67
13.45

14.49

16.06

11.67

9.96

10.76

10.62

0.20
0.23

0.29

0.32

0.20

0.17

0.18

0.18

Motrih < f-etcher Values Frequence P.erdent Morbidin ,

[3,4] 04

05

06

07

08

09

10

502

569

613

555

496

471

437

13.78

15.62

16.83

15.23

13.62

12.93

12.00

0.23

0.27

0.29

0.26

0.23

0.22

0.20
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Onbuib

<=85

]8.5; 12]

>12

Fetcher

[5,8]

Values

LOW

MED

HIGH

Frequency

1217

1225

1201

Percent

33.41

33.63

32.97

Morbidity

0.57

0.57

0.56

Dew point

<=4

]4;6]

]6;9]

> 9

F-etcher

[9,12]
\ alues

LOW

MED

HIGH

MAX

Frequency >

972

874

1186

611

Percent

26.68

23.99

32.56

16.77

Morbidity

0.45

0.41

0.55

0.42

Previous D.ev. p.

<=4

]4;6]

]6;9]

> 9

Fetches

[13 ,16]
Values

LOW

MED

HIGH

MAX

Frequency

950

912

1221

558

Percent

26.08

25.03

33.52

15.32

Morbidity .

0.44

0.43

0.57

0.38

Cloud •

<=4

]4;7]

> 7

. Fetcher

[17,19]

Values

MIN

MED

MAX

Frequency

1327

1761

545

Percent

36.43

48.34

14.96

•t

Mrtrbidm

0.62

0.48

0.75

Low cloud Fetcher *

]1;6]

> 6

[20,22]

A alues

MIN

MED

MAX

Frequency

1431

1284

908

Percent

39.28

35.25

24.92

Morbidity

0.67

0.60

1.00

I
it
•5

t

4
?

r

;V t

>eJ'le\el pressure-

<= 1014.1

] 1014.1 ; 1020.2]

]1020.2; 1025.6]

> 1025.6 •

Fetcher

[23,27]
- \ allies

LOW

MED

HIGH

VHIGH

Frequency

914

899

903

910

Percent

25.09

24.68

24.79

24.98

Morbidity

0.43

0.42

0.42

0.45

/ Rainfall

\\ ind speed-.

<=1.5

]1.5; 3.6]

]3.6; 6.2]

>6.2

Fetcqer

[28; 32]
\ alues

LIGHT

LMODE

MODE

FMODE

Frequency

1037

852

940

812

Percent

28.47

23.39

25.80

22.29

Morbidity

0.48

0.40

0.44

0.38

Values Frequency Percent

311

"Morbidity

no rain

[0.1; 2.4]

12-4; 4]

[36] 0

1

2

3127

435

43

85.84

11.94

1.18

0.43

0.20

0.11

4
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'A
t 1

i

V

: J

!>• i

f:

I
I

. Fetcher Values . Frequency Percent Morbidity

<=25

]25,35]

135,40]

>40

[41; 44] LEV1

LEV2

LEV3

LEV4

1098

1032

1338

175

30.14

28.33

36.73

4.80

0.75

0.48

0.62

0.08

\\ indcompass Fetcher

Calm

Variable

Unknown

[33; 35]

Values

CLM

N

NNE

NNW

NW

S

sw
w

wsw
ssw

WNW

VAR

UNK

Frequency

584

1162

159

218

149

222

188

333

183

109

113

'Percent

16.03

31.90

4.36

5.98

4.09

6.09

5.16

9.14

5.02

3.00

3.10

Morbidity

0.27

0.54

0.07

0.10

0.07

0.10

0.09

0.16

0.09

0.05

0.05

0.05

0.05

Present weather Fetcher •

[37; 38]

Values'

1

2

3

4

5

15

40

Frequency

314

1259

361

289

119

228

213

Percent

8.62

34.56

9.91

7.93

3.27

6.26

5.85

Morbidity j

0.15

0.59

0.17

0.13

0.06

0.11

0.10

Past weather Fctche'r

[39; 40]

Values

2

3

4

15

40

44

80

Frequency

650

1163

243

159

111

185

162

230

Percent

17.84

31.92

6.67

4.36

3.05

5.08

4.45

6.31

Morbidity

0.30

0.54

0.11

0.07

0.05

0.09

0.08

0.11

The weighting variable {3 is totally equal to 1.7. There were cases in which a different value

was arbitrarily assigned to (3. This is because domain knowledge indicated that a certain

evidence value might Have a higher or lower value than 1.7. For example, Visibility level 1> (3 =

2.5. This is because lower levels of visibility are strongly associated to fog occurrence. Rainfall
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level 0, (3 = OJx This is because rainfall level G i associated with fog and other weather events

as wefl. And a high number of rainfall level 0 was verified in the weather observation database.

The evidences with different values than 1.7 assigned to (3 are: Rainfall level 2 ((3=9.5),

wind compass unknown and variable ((3=0.05), sea level pressure VHIGH ((3=1.8), low cloud

amount MAX ((3=4), cloud amount MAX ((3=5), cloud amount MED ((3=1), previous

dewpoint MAX ((3=2.5), dewpoint MAX ((3=2.5) and hour 6 and 9 Q3=2).

i
•-is
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4
I
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i
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