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Abstract

\i

Fuzzy rule-based image segmentation techniques are able to incorporate human expert and/or

domain specific knowledge, however, they tend in general, to be image and application dependent

with predefined membership function structures and in certain cases, the corresponding parameters

being manually determined. This thesis proposes a new flexible integrated fuzzy rule-based image

segmentation (object-based) framework, which automates many aspects of previous systems as well

as enabling new rules, special domain information, and high-level semantics of an object to be

easily incorporated.

The framework comprises four novel dedicated fuzzy rule-based segmentation algorithms that

seek to exploit particular image attributes for perceptual grouping. These are: a generic fuzzy rule

based image segmentation (GFRIS) algorithm, which is both application and image independent

and also importantly exploits inter-pixel spatial relationships. The second algorithm comprises a

series of refinement rules which are collectively called fuzzy rules for image segmentation (FRIS)

and are primarily based on region splitting and merging techniques, combining uniquely the

topological feature of connectedness and object surroundedness. The third algorithm, fuzzy rule for

image segmentation incorporating texture features (FRIST), integrates the fractal dimension and

contrast features of a texture by considering image domain specific information within the GFRIS

algorithm. Finally, since GFRIS, FRIS, and FRIST are developed for gray level images, a new

fuzzy rule based colour image segmentation (FRCIS) algorithm is introduced, which is an extension

of GFRIS and includes a special algorithm for calculating the average of hue components of the

HSV (hue, saturation, and value) colour model.

A comprehensive qualitative and quantitative evaluation is presented together with a time

complexity analysis for all four major algoritlims. A statistical significance test, namely the sign test

is used to assess the performance improvement achieved by each algorithm. This new flexible

framework provides significant segmentation improvements over traditional fuzzy c-means (FCM)

and possibilistic c-means (PCM) algorithms for many different image types and with the single

exception of FRIS, without any increase in the overall order of computational complexity.
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Acronyms and Abbreviations

asd

CAT

DBC

FCM

FD

FDF

FRCIS

FRIS

FRIST

GFRIS

HSV

MRI

nasd

OCA

PCM

RGB

sofd

Average sum of differences.

Computed axial topography.

Differential box counting.

Fuzzy c-means.

Fractal dimension.

Fractal dimension based feature.

Fuzzy rule-based colour image segmentation.

Fuzzy rules for image segmentation: a refinement algorithm.

Fuzzy rule for image segmentation incorporating texture features.

Generic fuzzy rule-based image segmentation.

Hue, saturation, and value.

Magnetic resonance image.

Normalised average sum of differences.

Obj ect-count-agreement.

Possibilistic c-means.

Red, green, and blue.

Absolute sum of differences.
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Nomenclature

Symbols Denotation

i

c(Rj)

diff{hx,h2)

FD{WKh{s,t))

/*,(•)

Number of bits.

The total number of both surrounded and connected objects of other

regions with the main object of region Rj.

Contrast of object Oy.

Centre of region /? . .

Difference between two hue angles h{ and h2 .

The city block distance between pixels Pxy and Psjt.

The fractal dimension based feature (FDF) of a candidate pixel PJt.

Polynomial for the pixel distribution for the ith colour component of

region Rj.

Polynomial for the pixel distribution of region Rj for gray level

image.

The /'* hue angle.

Gray level histogram hist{Pt) for pixel intensity />•.

An arbitrary constant.

Function that determines whether the main object Omkk is

sufficiently large with respect to its own region Rk.

The ith object of region Rj.

The main object of region Rj.

Function that determines whether Rk is an outer region.

A pixel with a gray level or colour value Pst at location (s,t).

A set of all regions.

A:

Ou

outer(Rk)

's,t

R



VI

Symbols Denotation

r Neighbourhood radius.

Rj The j t h region.

Membership function that measures the similarity between two

-4 objects, Omkk and Oik .

•t s • The total number of objects that are surrounded by the main object of
•4

region R.-.

T The threshold for the variations of gray level pixel intensity.

^ Ta Approximate threshold.

4 uniformity\pv) The entropy which measures the uniformity of the gray level

- distribution of object Oy.

V A set of centre pairs of all regions.

Wh h (s, t) A window Wh h (s, t) of size h x h with its centre at (s, t).

J,*. wi The weighting factor for the ith membership function.

The x coordinate of pixel Pf.

y(Pj) The y coordinate of pixel Pt.

X Threshold for similarity measure.

T Scale down ratio.

<p The number of colour components.

zl, A threshold that defines the minimum size of a main object.

A2 A threshold that defines the maximum size of the main object.

V Membership function.

) The overall membership value for region /?,•.

) Membership function to measure the closeness of a region for region

Rj.

.) Membership function to measure the closeness of region for the

i'h colour component of region Rj.

) Membership function for the contrast of region /?.-.
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VII

Symbols Denotation

H
v ,

Membership function for the pixel distribution of region Rj.

Membership function for the pixel distribution for the ith colour

compon^iU of region Rj.

Membership function llFR (PStt) of fractal dimension based feature

for region Rf.

Membership function to determine the size of main object.

The size of the main object within its own region Rk.

Membership function for spatial relations for region Rj.

Membership function for spatial relations for the /'* colour

component of region Rj.

Membership function for estimating the degree of surroundedness.

Standard deviation of region /?,•.

A threshold that determines the minimum degree of surroundedness.

Neighbourhood system with radius r, of a candidate pixel PSJ.

The number of segmented regions.
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Chapter 1

Introduction

1.1 Image Segmentation Background

The use of digital images is increasing rapidly due to the development of the Internet and

related multimedia technologies, such that the focus of much recent research has been directed

towards the field of digital image processing. Digital image processing covers a wide range of

application areas from medical science to document processing. In general terms, it refers to the

manipulation and analysis of pictorial information and is mainly classified into five categories: (i)

enhancement, (ii) restoration, (iii) analysis, (iv) compression, and (v) synthesis. Image analysis in

particular, includes image segmentation, feature extraction, and object classification [11].

Image segmentation is the process of separating mutually exclusive homogeneous regions

(objects) of interest from other regions (objects) in an image. It is one of the most important and

challenging tasks of digital image processing and analysis systems, due to the potentially inordinate

number of objects and the myriad of variations among them. Most natural objects are not

homogeneous, which contradicts the above definition for object-based image segmentation. This is

because in general there is no universal standard definition of image segmentation. It is essentially

an ad hoc process, which depends on the emphasis given to particular desired properties and a

trade-off between them [2,12].

Image segmentation has been extensively used in a wide range of diverse applications. These

include, but are not limited to, automatic car assembly in robotic vision, airport identification from

aerial photographs, object based image identification and retrieval, object recognition, second

generation image coding, criminal investigation, computer graphic, and medical science (cancerous

cell detection, segmentation of brain images, skin treatment, and intrathoracic airway trees) [13-15].

Many of the above applications, however, require different types of digital images. The most

commonly used are light intensity (LI) images, range images (RI), computed tomography (CT)

images, thermal images, and magnetic resonance images (MR1). However, much of the research
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published in the image segmentation area is highly dependent on the type of image, its dimension,

and its application domain. No single unified technique is suitable for every type of image [14].

The literature reveals a wide variety of image segmentation techniques that are broadly

classified into two approaches: region-based and boundary or contour-based [16, 17]. The former

uses the homogeneity of pixels or features, while the latter finds the contour of a region of interest.

Two types of contours are: active contours [18-21] and deformable contours [17,22,23].

Haralic [24] went a step further and divided image segmentation techniques into four classes: -

1. Measurement space guided spatial clustering (e.g. thresholding and multidimensional

measurement space clustering) [25-28].

2. Region growing (e.g. single linkage, hybrid linkage, and centroid linkage region

growing approaches) [29-32].

3. Spatial clustering [33-35].

4. Split and merge [36-39].

The first technique assigns each pixel a cluster index of an appropriate cluster of the

measurement space. Pixels having the same cluster index are treated as the connected component

and in the same class. Generally, clustering and histogram mode seeking techniques are used in this

approach, though they do not work well when the gray level intensity of an object of interest for

segmentation varies extensively and the background is not uniform.

In the second of the above categories, the image is divided into an arbitrary number of regions.

The gray level intensity variation of all the pixels of a region lies within the limit of a specified

threshold. The region is grown by taking a pixel as a starting point and then adding all pixels into

the region whose gray level intensity variation lies within the threshold [40]. This technique is

expensive both in terms of computation and memory [41]. A short review of the three linkage

approaches identified above is now provided. The single linkage region growing approach applies

graph theory to segment the image with each vertex of the graph representing a pixel of the image.

Pixels containing similar characteristics are connected by the links of the graph. This approach

suffers from the problem of chaining, whereby if a chain is broken, it loses all the pixels of the

other part. The hybrid linkage region growing approach allocates a property vector to each pixel,

which is a function of its kxk neighbourhood values. In the centroid linkage region growing

approach, the image is firstly scanned and then a region is formed by comparing the pixel value

with the mean of that region. Pixels are added into the region if they are close enough and then the
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mean of the region is updated. Similar regions (if any) are merged. The effectiveness of this

approach depends on the combining criteria.

The third segmentation approach, spatial clustering, forms the clusters by considering both the

measurement space as well as spatial space between the parent pixels and their neighbours, while

the fourth approach initially assumes the image as one segment and then divides if. into a number of

sub-divisions (4" where n = 1,2,...) based on a quadtree [40,42]. Adjacent regions are merged if

they are sufficiently homogenous, while the quadrants are further subdivided if they are not.

Pal and Pal [14] stated that image segmentation approaches could be generally classified into

two approaches: classical and fuzzy mathematical. Classical approaches include histogram

thresholding, edge detection, and semantic and syntactic. Fuzzy mathematical approaches are

categorized as edge detection, thresholding, and relaxation. They also mentioned some other

approaches [43-46] that are not classified into either of the above-mentioned classes. They

classified all image segmentation into six main classes: -

1. Gray level thresholding [47-49].

2. Iterative pixel classification (e.g. relaxation, Markov random field (MRF) based

techniques, and neural network based approaches) [50-59].

3. Surface based segmentation [60-62].

4. Segmentation of colour images [63, 64].

5. Edge detection [65-68].

6. Methods based on fuzzy set theory (e.g. fuzzy thresholding and fuzzy edge detection).

Although the final category describes fuzzy segmentation approaches, [14] did not include the

segmentation approaches based on fuzzy rule, fuzzy integral, genetic algorithms, and soft

computing. Genetic algorithm based image segmentation is described in [69-71]. Zadeh [72] first

introduced the term soft computing in the early 1990s and it includes all of the approaches that are a

synergistic combination of artificial neural networks, fuzzy logic, genetic algorithms, and

probabilistic computing.

Image segmentation is one of the most complicated tasks in image processing and computer

vision due to many factors, some of which are summarized as follows [14,17,24]:

• Any image processing system possesses some inherent constraints, so the resulting

image is not perfect and will contain artifacts.

if
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• Image data can be susceptible and ambiguous. For example, SPECT (Single Photon

Emission Computed Tomography) imaging often deforms the high frequency

information of the image data and produces fuzzy and non-reliable edges.

• The shape of the same object can differ from image to image. The structures of the

objects are not well defined in most natural images and it is very difficult to find the

accurate contour of an object.

• The gray level pixel values and their distributions of the same object are not the same

for all images. Even in the same image, pixels belonging to same class may differ in

their pixel intensities and distributions.

• The objects to be segmented are highly domain and application dependent.

• The properties of an object can differ in their representation, depending upon the type

of the image and their domain It also needs a trade off between the desired properties.

For example, gray level distribution follows the Poisson distribution for some visual

images but this is not valid in the case of both MRI and RI images, so segmentation

techniques need semantic and prior information on the type of image, in addition to

other properties.

It may be easily deduced from these observations that most images contain some form of

ambiguity. For example, it is not possible to define precisely the contour of an object in an image,

region, and the relation between the regions, edge, surface, and corner. Pal and Pal [14] confirmed

that LI images contain ambiguities because of their multi-valued gray level pixel intensity. This

ambiguity may be defined in two ways: grayness and spatial. The former represents the whiteness

or blackness of a pixel, while the latter covers the shape and geometry of a region contained in an

image. In classical methods, each is taken as a crisp or hard decision. Hard decisions are however

not suitable for image processing because of the aforementioned ill-defined data. It is of paramount

importance that image processing systems should have a recognition strategy, which can handle all

types of uncertainty arising at any level of the processing. Prewitt [73] recognized this when he

introduced image segmentation by exploiting fuzzy regions.

In a fuzzy system, each image consists of a number >_'" >y regions, /?!,...,/?„ where n is the

number of regions [74]. Each region contains a set of pixels, with each pixel assigned a grade (a

degree of membership value), which measures the possibility of a pixel belonging to a region. The

membership function maps each of the feature values f{x,y) of a pixel l(x,y) of image / having

3
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coordinate (x,y) into the closed range from 0 to 1. The membership function ju for image / can

be defined as: -

/;(/•(*, .y)):O-> [0,1] (1.1)

where Q represents a universal set of all feature values for all pixels in image / .

It is evident that the fuzzy approach can handle uncertainty better and use the membership

value (varying grade) to define the imprecise or iM-defined property of an image. It was previously

mentioned that the membership value denotes the possibility of a pixel belonging to a region (or

more than one region), which distinguishes the fuzzy from the classical (hard decision-based)

approach. The fuzzy approach can also interpret very well linguistic variables such as VERY

BRIGHT, BRIGHT, and BLACK. Medasani, Krishnapuram, and Keller [74] measured geometric

(area, perimeter, height, and length) and non-geometric (average pixel intensity, entropy, and

homogeneity) properties for both real and artificial images using both fuzzy and crisp approaches.

Experimental results proved that the fuzzy approach gave more accurate values for both geometric

and non-geometric properties than the crisp approach. They also examined their performance by

adding different levels of noise for both approaches. Again the fuzzy approach produced improved

estimates compared with the crisp approach for both properties, even in the noisy image. They also

proved that there was no need for noise removal during the measuring of fuz2y properties, which is

especially useful in overcoming some of the difficulties raised in eliminating noise in textured

images.

One of the most intractable tasks in image segmentation is to define the properties for

perceptual grouping, which requires human expert knowledge to be incorporated in order to achieve

superior segmentation results. Fuzzy rule-based image segmentation techniques are able to

incorporate such expert knowledge and this was one of the key factors behind the motivation to

investigate fuzzy image segmentation techniques. Before exploring which particular fuzzy based

system was applied in this research, a brief overview of fuzzy image segmentation techniques is

presented.

1.2 Fuzzy Image Segmentation Techniques

Fuzzy image segmentation has increased in popularity because of the rapid extension and

development of fuzzy set theory based on mathematical modelling, synergistic combination of

fuzzy, genetic algorithms, and neural networks, and its successful and practical application in image
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processing, pattern recognition, and computer vision systems. Fuzzy image segmentation

techniques may be broadly classified into the following six categories [75]: -

1. Fuzzy clustering-based image segmentation.

2. Fuzzy geometry-based image segmentation.

3. Fuzzy thresholding-based image segmentation.

4. Fuzzy integral-based image segmentation.

5. Soft computing-based image segmentation.

6. Fuzzy rule-based image segmentation.

A brief review of each of these techniques is now presented.

1.2.1 Fuzzy Clustering

Clustering is known as class discovery [76] or unsupervised grouping of data based on a

similarity measure [13, 77]. There are mainly two types of clustering: hard and fuzzy clustering. In

the former, a datum is classified into only one group, i.e. the groups are mutually exclusive, while

in fuzzy clustering a membership value is assigned to a datum, which supports the group to which it

belongs. A datum may belong to more than one class. The basis of fuzzy clustering is on the

iterative minimization of an objective function, with the most widely used and popular algorithms

being fuzzy c-means algorithm (FCM) [78-80] and possibilistic c-means algorithm (PCM) [81-83].

The main problems associated with fuzzy clustering algorithms are [2]: -

• The initialisation of the membership functions.

• The objective function is unable to achieve a local minimum in the case of FCM or a

global in the case of PCM.

• It cannot directly incorporate human expert knowledge.

• Number of clusters must be known a priori.

Despite these apparent drawbacks, fuzzy clustering algorithms such as FCM are frequently used

to achieve initial segmentation of an image and it is in this context that FCM will be applied in this

thesis.

1.2.2 Fuzzy Geometry

Geometrical properties such as perimeter, area, length, width, extrinsic diameter, intrinsic

diameter, index of area coverage (IOAC), and compactness are used to describe any object [84-88].

Such properties can be derived using fuzzy membership values without segmenting} the object from
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the image and hence they are dependent on the fuzzy membership function iji). Segmentation is

achieved through the utilization of a minimum value of compactness or IOAC [88-90].

The optimum value of IOAC is calculated by considering the predefined membership function

called standard S type and in terms of area, length, and breath of an object. It is very difficult to

accurately calculate the area, length, and breath of an object with a wide range of gray level pixel

intensity variations. The resultant segmentation will not be good if there exists a significant number

of overlapping pixels. This technique is also computationally expensive, as it needs to calculate the

value of the membership function for each pixel, every time the cross-over point that is the point at

which the value of the membership function is 0.5, is adjusted.

1.2.3 Fuzzy Thresholding

Thresholding-based image segmentation is one of the oldest, and well-known techniques with

its main function being background and foreground separation [77]. It is very difficult to produce-

appropriate threshold since the real image is itself ambiguous and there is almost always overlap

between background and foreground pixels. Fuzzy thresholding based image segmentation has the

potential to handle imprecise data, and to date there are generally two ways to calculate the optimal

threshold in the fuzzy system: -

1. Techniques based on minimum values of index of fuzziness and entropy [91].

2. Fuzzy image thresholding based on minimization of fuzziness using histogram [77,92].

In the first technique, the optimal threshold is determined by adjusting the cross-over point so

that optimal (minimum) values of index of fuzziness and entropy are achieved. Thresholding is not

however a goo-5 solution for image segmentation if there is a significant overlap between the

background and xiie object pixels, which is a typical characteristic of many real world images.

1.2.4 Fuzzy Integral

Keller [93] proposed image segmentation based on the fuzzy integral. Fuzzy integral is a fuzzy

aggregator operator on multi-attribute fuzzy information and provides a natural coupling of

objective evidence and expectation. Besides this, it was used in combining the results from

different classifiers i.e. in classifier fusion [94]. The segmentation of colour image using fuzzy

integral and mountain clustering has also been reported in [95]. The techniques used in colour

image segmentation of this method contain the following two steps: -
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1. Determination of the number of clusters and the initial values of the cluster centres

it&ing mountain clustering and fuzzy integral.

2. PCM classification of colour image pixels by measuring the similarity between a colour

image pixel and cluster centre? using fuzzy integral.

Tfefc f^jtential of this technique depends :̂$ th<? number of grid points and the value of the

threshold T used in the mountain clustering algorithm. Very few techniques on image

segmentation feas«4 on fuzzy integral have been published to date, due to the high mathematical

complexity involved.

1.2.5 Soft Computing

Soft computing is an integrated method, which is a synergistic combination of fuzzy logic (FL),

neurocomputisiif!, (NC), jjsnetic computing (GC), and probabilistic computing (PC) [96]. Each of

these techniques has a distinguished capability to solve problems that enables soft computing to

manipulate imprecision, uncertainty, and partial truth in a better way compared to traditional

approaches and to yield promising results.

Image segmentation based on fuzzy-genetic computing has been presented in [97, 98]. In [97]

the objective function of FCM algorithm is optimised using a genetic algorithm. Ishibuchi and

Murata [98] classified the high dimensional patterns by genetically selecting the minimum number

of fuzzy ftiles that maximize the classification performance. A method of MRI segmentation based

on neuro-ruzzy computing has been described in [99], where the MRI scan of the brain was

segmented using a fuzzy algorithm for unsupervised linear vector quantisation neural network. Due

to the synergistic combination of techniques, most soft computing based techniques are

computationally expensive.

1.2.6 Fuzzy Rule

Fuzzy (IF-THEN) rule-based modelling is i very promising field of research because of its

increasingly usage in a wide range of applications including the fields of industrial robotic, control

engineering, medical imaging, and complex non-linear system recognition. The advantages of this

approach are [72, 100]:-

1. Potential capability to represent the knowledge explicitly using IF-THEN rule and

capture the knowledge from imprecise information in linguistic as well as numerical

terms.
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2. T h e ability of partial reasoning in human understandable terms. It determines the

similarity based on the degree of condit ion satisfied in the antecedent clause of the rule.

Th i s is in contrast with the classical approach.

'̂  3. H u m a n s can more easily understand the problems by using the linguistic representation

53," of numeric variables.

"•, 4. Approximat ing capabil i ty of complex non-l inear systems.
' ' , * " • *

>V- Fuzzy rule-based segmentation techniques are generally used in MRI and are dependent on

.** image type and application domain. The performance of the technique is sensitive to the selection

^ of the structure of the membership functions as well as their associated parameters [101].

i,- In evaluating the above fuzzy image segmentation techniques, they all have advantages and

> disadvantages. From the viewpoint of object-based image segmentation however, whose

applications encompass such diverse and challenging areas as MPEG-4 video object (VO)

"?- segmentation for content-based video coding [102] through to object-based description of

•,'X multimedia content for MPEG-7 [103], the requirement for considering the human expert and/or

V domain specific knowledge is paramount. Indeed without such knowledge, accurate and effective
i

"; segmentation would be impossible and thus fuzzy rule-based image segmentation is the only
.^ technique so far, wmcb affords the potential for achieving this goal.

>: 1.3 Motivation and Contributions

,*s" While fuzzy ruie-based image segmentation techniques are able to incorporate human expert

"*-• knowledge, they are very much application domain and image dependent. The structures of all of

I.'- the membership functions are manually defined and their parameters are either manually or

.) automatically derived. The perfonnance of fuzzy rule-based techniques depends on selecting the

- >' structure and their associated parameters of the membership function. Fuzzy rule-based techniques

have been popular engineering tools, but their application has been limited because of their

exponential complexity property [104], This dissertation is motivated by the following three key

factors: -

1. Development of a general fuzzy rule-based image segmentation (object-based)

framework considering the most important general attributes for perceptual grouping so

that they can be applied in a wide range of image types and applications.

2. Incorporation of human expert and/or domain specific knowledge into the framework

for a particular application.

•v
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3. Heuristic definition of a small number of rules in order to reduce the complexity of the

algorithms.

It was to directly address these three key objectives that the integrated fuzzy rule-based

segmentation framework shown in the block diagram Fig. 1.1. was formulated and developed. The

original and segmented images are included as a representative example. The framework

specifically incorporates four innovative fuzzy rule-based image segmentation algorithms, which

are identified as Blocks 1, 2, 3, and 4 in Fig. 1.1. An important feature of this framework is its

flexibility as while the research has focused on perceptual grouping and other related key features,

new rules relevant to special domain and/or applications can be integrated easily into the

framework.

Fig. 1.1: Block diagram of the integrated fuzzy rule-based image segmentation framework.
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The theory and performance of these constituent blocks will be fully analysed in subsequent

chapters. The key contributions to the research can be identified as follows: -

• Development of a generic fuzzy rule-based image segmentation (GFRIS) algorithm,

which considers region pixel distributions, similarity based on gray level pixel

intensity, and the proximity and good continuation principles (Block 1 in Fig. 1.1). This

algorithm is both application and image-type independent and exploits inter-pixel

spatial relationships [3,4,6].

• Development of an algorithm for the automatic data mining of the key weighting factor

and threshold for the GFRIS algorithm (Block 1 in Fig. 1.1).

• While GFRIS has provided significant improvements in the overall segmentation

performance compared with FCM and PCM, it has proved to be ineffective for image

regions that are characterised by either being non-homogeneous or possessing sharp

variations in pixel intensity. To address this, a new segmentation refinement algorithm

called fuzzy rules for image segmentation (FRIS) is presented for integration into the

generic fuzzy rule-based framework. This utilises a combination of an object's

connectedness, surroundedness, uniformity, and contrast properties (Block 2 in

Fig. 1.1) [5, 7, 9].

• The performance of the FRIS algorithm depends entirely on the results of the initial

segmentation algorithms. This is because FRIS is a refinement algorithm, so in order to

improve the performance of the GFRIS algorithm for non-homogeneous and textural

regions, a new algorithm, namely fuzzy rule for image segmentation incorporating

texture features (FRIST) is proposed. This integrates two new membership functions

based upon the texture features of fractal dimension and contrast considering image

domain specific information into the GFRIS algorithm. (Block 3 in Fig. 1.1) [8].

• While the main focus of the research has been on gray level images, the framework is

also able to process colour information. A fuzzy rule-based colour image segmentation

(FRCIS) algorithm is developed by extending the GFRIS algorithm (Block 4 in

Fig. 1.1) and implemented using one of the popular perceptual colour models, namely

HSV (hue, saturation, and value) and the basic colour model, namely RGB (red, green,

and blue). An algorithm for calculating the average of hue angles of the HSV colour

model is also presented.
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• Detailed computational complexity analysis of all algorithms in the framework has

been undertaken and is included in each representative chapter.

• The segmentation performance of all the key constituent blocks is analysed and

numerically evaluated using the two powerful objective and quantitative segmentation

evaluation techniques, namely discrepancy based on the number of miss-segmented

pixels and discrepancy based on the number of objects in the image. A statistical

significance test, namely the sign test is applied to test the statistical significance

improvements of all proposed algorithms. A comparison is made with GFRIS, FCM

and PCM algorithms using many different image types (Block 6 in Fig. 1.1).

Finally, Block 5 in Fig. 1.1 represents the initial segmentation algorithms that are needed for

the FRIS algorithm. In principal, this includes any segmentation algorithm such as FCM, PCM, and

GFRIS, which does not consider the perceptual properties of connectedness and surroundedness.

Given the large reservoir of literature covering basic segmentation techniques (see the

comprehensive literature review in Chapter 2), this block will not be considered further in the

thesis.

1.4 Structure of the Thesis

The thesis is organised as follows: -

Chapter 2 includes a contemporary review of fuzzy clustering, fuzzy based and colour image

segmentation techniques and explores some of the existing texture estimation techniques and colour

models- The advantages and disadvantages of each technique are described in this chapter. Sections

from this chapter have previously been published by Karmakar etal in [1] and as a book chapter in

[2]-

Chapter 3 proposes the new generic fuzzy rule-based image segmentation (GFRIS) algorithm,

which considers region pixel distribution, closeness to a region and spatial relations. The algorithm

for automatically data-mining both the key fuzzy rule weighting factor and the threshold is also

discussed in this chapter. This work has already been published by Karmakar et al in [3, 4, 6].

Chapter 4 introduces the fuzzy rule-based refinement (FRIS) algorithm, which unifies the

properties of connectedness, surroundedness, uniformity, and contrast and has previously been

published by Karmakar et al. in [5, 7. 9].

Chapter 5 presents a new algorithm, fuzzy rules for image segmentation incorporating texture

features (FRIST) by integrating two new membership functions into the set of GFRIS membership
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functions, based upon fractal dimension and contrast, and image domain specific information,

which has been published by Karmakar et al. in [8].

Chapter 6 details the fuzzy rule-based colour image segmentation (FRCIS) algni^hm by

extending the GFRIS algorithm from gray level to colour images. This algorithm is applied to both

the HSV and RGB colour models. This chapter also defines a novel algorithm for calculating the

average of hue components of the HSV colour model.

Chapter 7 provides a comprehensive qualitative and quantitative analysis of the performance of

all the proposed algorithms in the framework. These are compared with the FCM and PCM

algorithms and analysed using many different types of image. This chapter also examines the

implementation details of all algorithms, the methods of numerical evaluation, and a statistical

significant test for the overall segmentation performances.

Finally, Chapter 8 details the conclusions derived from this research as well as defining future

potential directions for this work.



•ti

Chapter 2

A Review of Relevant Fuzzy Clustering, Rule-Based,
and Colour Image Segmentation Techniques

Sections 1.2.1 and 1.2.6 have respectively identified the potential of both fuzzy clustering and

fuzzy rule-based image segmentation algorithms to be used for image segmentation. This chapter

provides a comprehensive overview of the various methods used in fuzzy clustering and rule-

based image segmentation techniques [2] as well as brief descriptions of a number of texture

representation techniques, popular colour models, and fuzzy colour image segmentation

techniques. Fuzzy clustering algorithms are used in pixel-based classifications for image

segmentation, while fuzzy rule-based modelling is a very challenging field of research. It is

widely used in the field of industrial applications including robotics, control engineering, medical

imaging, and complex non-linear system recognition. Fuzzy rule-based segmentation techniques

are able to incorporate domain expert knowledge and manipulate numerical as well as linguistic

data. They are also capable of drawing partial inference using fuzzy IF-THEN rules [72, 100]. For

these reasons they have been extensively applied in medical imaging. Fuzzy rule-based image

segmentation techniques tend in genvral, to be application dependent with the structure of the

membership functions being predefined and in certain cases, the corresponding parameters being

manually determined. The overall performance of these segmentation techniques is very sensitive

to parameter value selections. Chapter 3 will address these issues by introducing a generic fuzzy

rule-based image segmentation (GFRIS) algorithm, which is both application independent and

exploits inter-pixel spatial relationships.

This chapter is organized as follows: In Section 2.1, fuzzy clustering algorithms are

described, with fuzzy rule-based image segmentation techniques being presented in Section 2.2.

A brief description of texture feature approximation techniques are given in Section 2.3.

Section 2.4 looks at colour models in the context of image segmentation, while Section 2.5

provides a brief outline of various popular fuzzy colour image segmentation techniques.

14
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2.1 Fuzzy Clustering Based Image Segmentation

Clustering means unsupervised grouping of data based on a similarity measure [77]. An

example of four clusters having different colours is given in Fig. 2.1.

Fig. 2.1: An example of clusters.

There are mainly two types of clustering: hard clustering and fuzzy clustering. In the former,

a datum is clearly classified into only one group i.e. the groups are mutually exclusive, while in

fuzzy clustering a membership value is assigned to a datum, which supports the group to which it

belongs. A datum may also belong to more than one class. The two most popular and extensively

used fuzzy clustering algorithms are [2]: -

1. Fuzzy c-means algorithm (FCM).

2. Possibilistic c-means algorithm (PCM).

These will now be discussed in greater detail.

2.1.1 Fuzzy C-Means Algorithm (FCM)

FCM is the oldest and most popular fuzzy based clustering technique. It was developed by

Bezdek [79] and is still being applied in image segmentation. It performs classification based on

the iterative minimization of the following objective function and constraints [77-81, 105, 106]: -

(2.1)

and j (2.2)
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ye {!,...,»} (2-3)

'4

5."'

(2.4)

where c and « are respectively the number of clusters and data, // is a fuzzy partition matrix

containing membership values [//,-,], V is a prototype vector containing the values of cluster

centres [v; ] , m is the fuzzifier 1 < m <, oo, X is a data vector [xj ], and d[xj, v,) is the distance

between Xj and v ;. The following two equations are derived by minimizing the function

fm(ju,V,X) in (2.1) with respect to ju and V.

(2.5)

V, = - (2.6)

The set of cluster centres is initialised either randomly or by using an approximation method

and the membership values and cluster centres are updated through an iterative process until the

maximum change in //# becomes less than or equal to a specified threshold.

The number of clusters, the fuzzifier (w), and the threshold need to set empirically in FCM.

Equations (2.5) and (2.6) are insufficient to achieve the local minimum of fm{p,V,X) [107]. The

selection of the value of m is especially important, as if it is equal to 1 then FCM produces a

crisp instead of a fuzzy partition. If any of the distance values d(xJ-,vi) = 0, then (2.5) will be

undefined. FCM strongly supports probability as it has set the constraint in (2.3), which prevents

the trivial solution fi = 0.
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2.1.2 Possibilistic C-Means Algorithm (PCM)

FCM arbitrarily divides the data set based on a selected number of clusters. The membership

values generated by FCM represent the degrees of sharing. In order to eliminate the constraints

in (2.3), Krishnapuram and Keller introduced PCM whose membership values represent the

degrees of typicality, instead of degrees of sharing and aV 'asters are independent to each other

[82, 83]. They modified the FCM objective function and -j. "Jied the PCM objective function as,

m m

1=1 j=\

(2.7)

with the corresponding constraints given by: -

/e{l,...,c} andye{l f...,»} (2.8)

(2.9)
7=1

ye{l,...,/i} (2.10)

where r\i is the scale parameter, which determines the zone of influence of a poini and the

suggested value for t]i is the variance of cluster / and other parameters are as defined in Section

2.1.1. The membership values //,-, and prototype centres v, are obtained by minimizing the

objective function fm(/i,V,X) in (2.7) and then iteratively updating using the following two

equations.

(2.11)
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V, = - (2.12)

7=1

When fuzzifier m = 1, PCM produces a crisp partition. PCM gives promising results in the

presence of noise but it is highly dependent on initialisation and estimation of the scale

parameters. The output of FCM can be used for initialisation and scale estimation however FCM

is very sensitive to noise. Barni also noted that PCM achieves local minimum but is unable to

minimize fm(jj,V,X) globally [108]. The overall time complexity of the PCM algorithm is

O(ncp) where p is the dimension of the feature.

2.2 Fuzzy Rule-Based Image Segmentation

As discussed in Section 1.2.6, this approach offers considerable potential for exploitation in

image segmentation. Initially fuzzy IF-THEN rules were extensively used in control engineering

problems but now their application in image segmentation is increasing. Their advantages may be

summarised as follows [109,110]: -

• Human can easily understand the problems due to the linguistic representation of numeric

variables.

• Computationally less expensive than fuzzy clustering methods.

• Has the potential ability to integrate domain expert knowledge.

The general format of fuzzy IF-THEN rule can be defined as follows: -

IF <antecedent -condition> THEN <consequence>

There are two parts to this fuzzy rule: the antecedent-condition and the consequence. The rule

evaluates the former and determines its amount of truthfulness. The consequence is measured

based on the quantity satisfied in the antecedent condition. The general model of the fuzzy rule-

based system is given in Fig. 2.2 [75, 111].

Fuzzy rule-based image segmentation mainly consists of three parts: image fuzzification,

fuzzy rules, and defuzzification (if necessary). The first step is to fuzzify the pixels of the image

and determine the degrees for the regions to which they belong using the appropriate membership

functions. The model can, if required, take into account human expert knowledge. Once the pixels

are fuzzified, the rules are applied to determine the outcome (consequence) of each rule. In this
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step, if essential, human expert knowledge is used to define the fuzzy rules and/or for some

models feedback is taken from human experts in order to reduce the conflicts arising among the

rules. The results of the fuzzy rules can be applied to the output membership functions if needed.

Finally, if there is more than one non-mutually exclusive rule, the results are combined and

defuzzified in order to calculate a single output value.

Image

Human Expert
Knowledge

Fuzzify
Apply Fuzzy

Rules Defuzzify

Segmented Result

Fig. 2.2: General model of fuzzy rule-based image segmentation system.

Due to its limited application and dependency on image types, fuzzy rule-based image

segmentation has generally only been applied to three image types: light intensity (LI), magnetic

resonance (MR), and computed tomography (CT) images [1]. The various fuzzy rule-based image

segmentation techniques relevant to these 3 image types are described in the following sections.

Each technique is discussed in detail to highlight the problems and drawbacks of contemporary

fuzzy rule-based techniques, and to place in context the originality of the research findings

presented in this thesis.

2.2.1 Fuzzy Rule-Based LI Image Segmentation

Chi and Yan utilized the fuzzy IF-THEN rules in the segmentation (separation of background

and foreground pixels) of 8-bit (256 gray levels) geographic map images. These composed text,

streets, roads, and boundaries, which were considered foreground pixels [77, 112]. The nviin

processing steps of this approach are described as follows: -

Features Used in Segmentation

Three features, difference between pixel intensity (DI), local standard deviation (SD) and

local contrast of darker pixel (CD) were used in the segmentation and defined as: -

(2.13)
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x+3 y+3

I "Z{Pl(iJ)-LA(iJ))2

49
(2.14)

CD(X y\=
LA(x,y)

(2.15)

where Pl(x,y)\s pixel intensity in the location (x,y), LA(x,y) is local average pixel intensity in

a 7x7 window, sgn(C/(x,y)) is the sign operator, which is -1 when CI(x,y) < 0 for a brighter

pixel Pl(x,y); otherwise it is 1, Cl(x,y)is the difference of pixel intensity at location (x,y), and

the average of its neighbours and can be defined as: -

3

U
/=-3

(2.16)

U4»

BR{x,y) is the average of relative brighter pixels and is defined as:-

(2.17)

where //indicates the number of brighter pixels (CI(x,y)<,0) contained in a 9x9 window.

Membership Functions

The input domain is divided into five fuzzy regions named as L2, LI, M, HI and H2 while

the output domain is split into two fuzzy regions, background and foreground. Triangular

membership functions are utilized for the input regions. The input and output membership

functions are shown in fig. 2.3 (a) and 2.3(b) respectively.

Development of Fuzzy Rules

Fuzzy rules are developed by learning from examples [113], with the input and output

domains divided into the fuzzy regions shown in Fig. 2.3. The membership values of all regions

for each input are calculated and each input is assigned to the region having the maximum
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membership values. So a pair of rules is generated for each training sample. An example of such

a rule could be

IF DI is LI ANDSD is HI AND CD isH2 THEN it is a foreground pixel

IF DI is HI AND SD is MAND CD is LI THEN it is a background pixel

background foregroundL2 LI

0
M

A
HI

A
H2

r
1.00.0 0.25 0.5 0.75 1.0 0.0 0.5

fa) (b)
Fig. 2.3: Input and output membership functions, (a) Input membership functions, (b) Output
membership functions.
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Fig. 2.4: Fuzzy rule bank for geographic map image segmentation.
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The learning set produced by this method may contain a larger number of ;ules including

repeated and conflicting rules. To avoid these, the rules are selected that are supported by a large

number of examples. Each rule is kept in a fuzzy rule bank, which is shown w Fig. 2.4.

Dejuzzification

The centroid defuzzication method used to calculate the output for each input pixel is defined

as: -

C p — (2.18)

where Q is the class produced by the ith rule, n is the number of rules and M'p is the matching

degree of the antecedent of i'h rule for the p'h pattern. If Cp £0.5, the input pixel is

categorised as a background pixel otherwise it is categorised as a foreground pixel, which works

well for two class problems, but a large number of fuzzy rules are needed for multiple classes

[114].

Concluding Comments

This approach is faster than neural network techniques but it has been found that some parts

of the text characters of the maps are missed for standard triangular function [77], because the

shape and parameters of ths membership functions were intuitively selected. For this they used an

automatic method based upon FCM to determine the parameters of the membership functions.

The drawback however was the fundamental problem of manual determining the shape of the

membership function. Heuristic rules were also not used in this technique.

2.2.2 Fuzzy Rule-Based ME! Segmentation

Magnetic resonance images (MRI) are one of the most important and complicated images

used in medical imaging. They are extensively used in various types of disease diagnostic tasks.

Medical experts generally draw the conclusion in regard to the disease by manually scanning such

images [109], which is both a tedious and time-consuming task. Analysis, especially

segmentation of MR images using automated computer techniques saves time and helps the
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doctor to detect irregularity in diagnosis. Fuzzy rule-based MRI image segmentation techniques

may be broadly classified into two classes:

1. Hybrid fuzzy rule-based MRI segmentation.

2. Conventional fuzzy rule-based MRI segmentation.

Both methods are discussed fully in the following sections.

2.2.2.1 Hybrid Fuzzy Rule-Based MRI Segmentation

A hybrid fuzzy rule-based segmentation system combines fuzzy rules with a fuzzy c-means

clustering algorithm. Clustering is computational expensive, does not incorporate human expert

knowledge, and thus does not produce appropriate class [115]. For these reasons, a set of fuzzy

rules is applied to classify the pixels/voxels, where a voxel represents a pixel in three-dimensional

space. It is very difficult to define fuzzy rules that cover all pixels/voxels, so the FCM algorithm

is used to classify the remaining pixels/voxels and those classified by the fuzzy rules are used to

initialise the centre of the clusters. Hybrid fuzzy rule-based segmentation systems are faster than

clustering.

Two examples of a hybrid fuzzy rule-based system are: - (i) adapting fuzzy rules for the brain

issue segmentation [115] and (ii) a rule-based segmentation system with automatic generation of

membership functions for pathological brain MR tissues [109]. A description of these two

systems is now given.

Adapting Fuzzy Rules for the Brain Tissue Segmentation

The technique [115] utilising adapting fuzzy rules for segmenting the brain tissue into six

classes: white matter (WM), gray matter (GM), cerebro-spinal fluid (CSF), pathology, skull

tissues, and background is described in the following.

Database and Features

105 axial brain slices, 5 mm thick from 15 people (39 normal slices from 8 people and 66

abnormal slices from 7 patients) are used for experimental purposes. Relative pixel intensities of

Tl, T2, and Proton Density (PD) weighted images are used as features.

Membership Functions

The triangular and trapezoidal membership functions used in the experiment are shown in

Fig. 2.5. The parameters of the membership functions (al, a2, bl, b2, b3, b4, b5, and b6) are

calculated by determining the turning points of intensity histograms based on a training set
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consisting of 6 normal and 4 abnormal slices and incorporating suggestions from expert

radiologists. The turning points are regarded as peaks, valleys or the starting point of the

histogram, and indicate the estimated boundary of the tissue types. The turning points of the

histograms are shown in Fig. 2.6.

Sei-F

b6

(b) (c)
Fig. 2.5: Definition of membership functions [115], (a) Membership functions for Tl weighted
image, (b) Membership function for Tl weighted image, (c) Membership function for T2
weighted image.

Patients having brain tumours usually receive radiation and chemotherapy treatment. For this

the PD histogram of the patient with a brain tumour becomes like the PD histogram for abnormal

slice shown in Fig. 2.6 due to the change of properties of gray and white matter. The turning

points of this histogram are obscure and difficult to select. An edge detection technique [116] is

used in order to sharpen the boundary between gray and white matter and utilizes a suitable

threshold to detect the peaks. The initial value of threshold is chosen as 5 and increased by 5 until

two peaks have been found. If peaks are not found, two peaks are assumed at 1/3 and 2/3 of the

region between bl and b2.
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Fuzzy Rule Generation

The turning points of three histograms (Tl, T2, and PD histograms) are used to separate the

tissue into white matter, gray matter, cerebro-spinal fluid (CSF), pathology, background (air), and

other skull tissues. The heuristics used here to generate the rules are that all voxels between b2

and b4 are usually white matter, below bl are air in PD histogram, and between al and a2 are a

mixture of white and gray matter in the Tl weighted histogram. A set of rules used to classify the

brain tissue is described as follows: -

IF voxel in Tl in set-E AND voxel in T2 in set-F THEN voxel is CSF

IF voxel in PD is set-C AND voxel in Tl in set-A THEN voxel is white matter

IF voxel in PD is set-D AND voxel in Tl in set-A AND NOT (voxel in T2 is set-FAND voxel in

Tl is Set-E) THEN voxel is gray matter

IF voxel in Tl is set-B AND voxel in T2 is set-F THEN voxel is pathology

IF voxel in Tl is set-B AND NOT (voxel in T2 is set-F) THEN voxel is other

IFPD voxel intensity < bl AND T2 voxel intensity < cl THEN voxel is background

Rules adapt themselves to each slice during processing as they are generated from the turning

points of the histograms.
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Fig. 2.6: Histograms with turning points [116].
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Classification Techniques

Voxels are classified into six classes by applying the above rules. The unclassified and

isolated voxels (voxels whose membership values are 1 but have no neighbourhoods) for each

class are assigned the membership values with the average membership values of their

neighbourhoods and zero respectively. Finally the voxel membership values are normalized (0 to

1) using the following equation.

(2.19)

where / and j represent each of the six classes. The incorrectly classified voxels (voxels whose

membership values is £ 0.80) are classified using the semi-supervised clustering algorithm [117].

The correctly classified voxels are used as training set and weighted by 100.

Concluding Comments

This system is faster than FCM, but while the parameters of the membership functions are

adjusted automatically during the processing of each slice, it does not produce superior results

compared with FCM. Rules are generated based on turning points of the histogram but the turning

points are not sufficient to distinguish the voxels if there is a significant number of overlapping

voxels. The spatial information is not well considered as it is taken into account for only

unclassified voxels. The threshold and approximate peaks (when there is no peak in the PD

histogram) are chosen empirically and extra cranial tissues are not removed before classification.

The second of the hybrid fuzzy rule-based systems is discussed in the next section.

A Rule-Based Fuzzy Segmentation System with Automatic Generation of Memberships for

Pathological Brain MR Images

This hybrid fuzzy rule-based brain MR image segmentation system automatically generates

the memberships for pathological brain MR1 images [109] in order to separate white matter

(WM), gray matter (GM), cerebro-spinal fluid (CSF), and cytomegalovirus (CMV) lesion from

the brain. It works as follows: -

• s
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Database

A set of Tl, T2 and PD weighted images containing 12 normal images and 3 abnormal

images with lesions are used for experimental purposes. GE Signa 1.5T MRI and a Technicare

0.6T instruments are used to access these images.

Preprocessing Stage

This comprises image registration and the selection of a region of interest (ROI). The former

ensures the same coordinates for the same pixels in two different images using the method of

shifting of coordinates. For example, if the two images T2 and PD weighted are not matched, the

coordinates of the PD image are shifted to match with T2 weighted image. The shifted

coordinates of the PD image are recorded and the shifted PD image is regarded as a registered

image.

The intracranial region of the brain is selected as the ROI, which has to be separated from the

skull and scalp. It is anatomically separated from the scalp and skull by a layer of CSF, except for

the fact that there are a few connections, where the layer of CSF is thin. To separate the

intracranial region, the image is first threshold and then a region growing technique is applied to

grow the empty space surrounding the intracranial region. The problem of the connections

between brain and scalp is solved by applying the two morphological operators, erosion and

dilation [118].

Determination of Parameters of the Membership Functions

The membership functions are perceptually identified. Three different types of tissue, namely

WM, GM and CSF were identified for T2 weighted images. The T2 weighted images as well as

its edges that are determined by Cohen's edge detection method described in [84] are classified

into five classes WM, GM, CSF, WM-GM, and GM-CSF using the standard FCM algorithm. The

mean intensity (//,) and variance (or,) of /'* class are used to calculate the parameters of the

membership function for i'h class. The membership functions for the T2 weighted images are

shown in Fig. 2.7.

The PD weighted image and its edge values are used by FCM to classify them into four

classes. The class containing the highest pixel intensity is discarded in order to eliminate the high

edge values at the boundary of the brain. The techniques used to generate the membership

function for PD weighted images are the same as for T2 weighted images. The membership

function for PD weighted images is shown in Fig. 2.8.
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Membership

Mixture of Dark and Gray Mixture of day and Bright

Fig. 2.7: Membership function for T2 weighted images.
Intensity

Membership
Mixture of Bright and Dark-Gray

Dark-Gray Bright

255
Intensity

Fig. 2.8: Membership function for PD weighted images.

PD weighted abnormal images contain periventricular hyperintensity, which have higher

pixel intensities in brighter class than other pixels in the same class. So the membership function

for PD weighted abnormal image is presented in Fig. 2.9.

A membership function to represent the closeness of a pixel from the centre of the brain as

the ventricle is considered a major connected CSF area adjacent to the centre of the brain. This

membership function is used to discover the periventricular hyperintensity, which represents the

lesions of the PD weighted images. The membership function to measure the closeness to the

ventricle is given in Fig. 2.10.

fl
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Membership

Mixing of Very Bright Pixels and Dark-Gray Pirels

255 Intensity

Fig. 2.9: Membership function forPD weighted abnormal images.

Membership

Boundary of the Ventricle

Inside the Ventricle Outside the Ventricle

Distance (in pixels)

16 Iteration number of the dilation 16

Fig. 2.10: Membership function to represent the closeness to ventricle.

Development of Fuzzy Rule-Based Segmentation

Two groups of fuzzy rules have been developed. The first group is used to segment the T2

weighted images and to recognize CMV lesions.

F&H



Chapter 2 Review of Relevant Fuzzy Clustering, Rule-Based, and Colour Image Segmentation 30
Techniques

First Group:

IF pixel in T2 is Dark THEN pixel is White Matter

IF pixel in T2 is Grey THEN pixel is Grey Matter

IF pixel in T2 is Bright THEN pixel is CSF

The second group is formulated by splitting the last rule of the first group into three new rules

that discriminate between CSF and CMV lesions.

Second Group:

IF pixel in T2 is Dark THEN pixel is White Matter

IF pixel in T2 is Grey THEN pixel is Grey Matter

IF pixel in T2 is Bright AND pixel in PD is Dark-Grey THEN pixel is CSF

IF pixel in T2 is Bright AND pixel in PD is Very Bright AND pixel is not close to the ventricle

Th£Npixel is CSF

IF pixel in T2 is Bright AND pixel in PD is Very Bright AND pixel is close to the ventricle

THEN pixel is CMV lesion

The AND operator is evaluated by applying the fuzzy logic minimum operator [119]. All

pixels are classified using the above rules, with those whose membership values<0.5 and the

pixel having two maximum membership values being declared as unclassified pixels.

Modified FCM Segmentation

The initial value of each cluster centre is derived from the average value of each respective

classified class. All unclassified pixels are classified using FCM with the derived initial cluster

centres. If the number of classified pixels in CMV lesion is very small (from 10 to 20), they are

reclassified as CSF.

Concluding Comments

This system is 10 to 20 times faster than FCM, and produces better results for abnormal

images containing lesions but it does not exhibit such promising result compared to FCM for

normal images. The parameters of the membership functions have been derived automatically but

the structure of the membership functions have been defined according to the knowledge of

medical experts. Although anatomical position of the lesion has been taken into account, inter-
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pixel correlations have not been considered. Some additional criteria may be included in addition

to gradient and pixel intensity in order to define the membership functions' parameters.

2.2.2.2 Conventional Fuzzy Rule-Based MRI Segmentation

Conventional fuzzy rule-based segmentation techniques use only fuzzy rules to segment the

MR image and do not apply FCM in addition to the fuzzy ruUs. Sasaki et ah introduced such a

fuzzy rule-based method to segment the menisci region from MR images [120].

Database

Five normal MR data sets consisting of three normal and two injured knees are used in the

experiments. Tl weighted 3D SPGR with TR=I00 msec, TE=15 msec, and flip angle=30 degree

images are acquired with Genesis Sigma 1.5 Tesla MRI scanner. Each image contains 60 separate

1.5 mm thick slices.

Knowledge Used to Segment the Menisci Region

The anatomical position of the menisci region is shown in Fig. 2.11. The following

knowledge is used to generate the fuzzy rules.

cartilage

meniscus

muscle

meniscus

cartilage

(a) (B)
Fig. 2.11: Anatomical location of menisci region [120], (a) MRI and enlarged Image, (b)
Anatomical location of knee.

1. Voxel intensities of cartilage regions are high.

2. The menisci region lies in between the thigh and shinbone.

3. The cartilage regions are adjacent to the centre of gravity of the knees.

w'ms i
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4. The menisci are automatically located near the cartilage.

5. The voxel intensities of the menisci regions are coherent.

Fuzzy Rules Generation and Segmentation

Two different sets of fuzzy rules are developed as the segmentation is performed in two

stages. Firstly the candidate region of the menisci is segmented whereas the menisci are extracted

from the candidate region in the second stage. The candidate region is defined as the region

between the cartilages as menisci are located between the cartilages. A set of voxels represented

by straight contiguous two-dimensional data(x,z)h called unit(x,z). Two types of units, A

and B are defined to segment the candidate region. Unit A contains the candidate region while

unit B does not contain any candidate region voxels. Fig. 2.12 shows the model of candidate

region and representation of the smallest unit.

cartilage

7 7

unit B ^. , . , -_
shinl5onecente'lun!t '. *

.. i meniscus

f f A / { / ( f f ( f f / r f

the candidate region unit

Fig. 2.12: A model of candidate region and representation of the smallest unit [120].

D and d denote the constant distance of the most distance unit and distance of the interested

unit from the centre. Unit A and B are shown in Fig. 2.13.

II
Vi
it

ihigh

cartilage

meniscus

disparity of intensity is large

disparity of intensity is small L / " '
cartilage

shinbone |

unit A

Fig. 2.13: Unit A and unit B [120].

J-J

unit B

The number of disparity between two adjacent voxel intensities on a unit is defined as: -
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J-\
n = ICO) (2.20)

where C(/)is calculated as: -

fl, for\v(j)-v(j

[O, otherwise.
(2.21)

and J is the range of candidate region, v(/) is the voxel intensity at coordinate j and T is the
threshold.

The membership functions of distance and disparity to measure the values of linguistic

variables, small and large are shown in Fig. 2.14.

w
1.0
0.6
0.4

0 dl d d2 D
Euclidian distance 0 "in p2 J

disparity
Fig. 2.14: Membership functions for distance and disparity of intensity [120].

From the previously defined knowledge 1,2, and 3, the following two rules are defined using

the membership functions shown in Fig. 2.14 in order to segment the candidate region.

IFdis small AND n is large THEN degree of belonging to unit A is large

IFd is large AND n is small THEN degree of belonging to unit B is large

The degrees of belonging to units A and B are calculated using the following equations.

gradeA = vfj x udsmall(d) + w2x unl arg e(n) (2.22)

gradeB - Wj x udlaige(d) + w2 x unsmall(n) (2.23)

where wl and ve2 are weights. The unit is classified into unit A if gradeA > gradeB, otherwise

the unit is classified into unit B.
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The coherent
intensity of the
menisci

(a) (b) (c)
Fig. 2.15: Membership functions for segmenting menisci from cartilage region [120]), (a)
Distance from cartilage, (b) Membership functions for distance from cartilage, (c) Membership
functions for voxel intensity.

From the above defined knowledge 4 and 5, two membership functions uc and ui shown in

Fig. 2.15 are derived for segmenting the menisci from the candidate region. Fig. 2.15(a) shows

that the menisci exist near the cartilage. Both uc and ui calculate respectively the degree of

belonginess to the menisci from the distance of a voxel from the cartilage region and the voxel

intensity. The parameters dj and abused in the membership functions shown in Fig. 2.15(b)

and Fig. 2.15(c) respectively are the widths of the one side of the triangles whereas aM is the

coherent intensity.

The calculation of uc for two cartilages is defined: -

\uc\(j) + uclQ), for uc\(j) + ucl(j) < I;

ll, otherwise.
(2.24)

1:1

while for one cartilage it is: -

uc(j) = uc\(j) (2.25)

The following two rules are developed from the membership functions shown in Fig. 2.15

and the knowledge 4 and 5.

IF a voxel is anatomically adjacent to the cartilage THEN the degree of menisci voxel for uc is

high

IF the intensity of the voxel is the same as coherent intensity of the menisci voxel THEN the

degree for ui is high

The total degree, gradeM =w3uc(j) + w4ui(m) (2.26)
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where w3 and w4 are the weights. If gradeM > arbitrary threshold T then the voxel is

classified as a menisci voxel.

Concluding Comments

This method can successfully separate the menisci. 3D construction and display of menisci

has been performed for both normal and injured knees in order to identify cartilage tears. The

rules have been heuristically defined from the anatomical position and coherent intensity of the

menisci voxels. The structure of the membership function is predefined with the corresponding

parameters being directly determined from the MR device parameters.

2.2.3 Fuzzy Rule-Based CAT Image Segmentation

CT imaging is also known as Computed Axial Tomography (CAT) scanning [121] and is

one of the most important medical imaging techniques and used in various types of disease and

wound diagnosis. A fuzzy rule-based segmentation of intrathoracic airway trees on CAT image

has been described in [101].

Database

Five canine data sets are scanned using EBCT scanner from five anaesthetised dogs. Each

data set contains 40 slices of 3mm thick. 40 slices, 8 per data set are randomly selected and their

j§ airways are perceptually determined by an expert in order to determine both the training and test

sets.

Stages in Airway Tree Segmentation

This consists of the following five steps: -

1. Separation of lungs from the volumetric data set.

2. Definition of primary airway tree.

3. Preprocessing of all individual image slices.

4. Fuzzy rule-based identification of airways in all image slices.

5. Construction of airway tree using 3-D connectivity.

The techniques used for steps 1, 2, and 3 are described in [101,122-124], The primary airway

tree contains the major branches of the tree and is defined as the 3-D connected components of

the image voxels below a threshold, which is formed by 3-D seeded region growing approach
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[125,126]. The main task of this preprocessing step is to identify the background and all possible

locations of airways and vessels for each slice. The pixels having from 55 to 110 gray level

intensities are considered background pixels. Voxels darker and brighter than background are

treated as candidate airways and vessels respectively.

Fuzzy Rule-Based Identification of Airways in AH Image Slices

The following anatomical information is used to determine the airways.

1. Airways are generally dark

2. Airways are encompassed by airways wall

3. Airways are near to airway vessels

The anatomical position of airways and their vessels are shown in Fig. 2.16.

lungilsme

b)

Fig. 2.16: Anatomical position of airways [101], (a) Airways detection principles, (b)
Assessment of wall evidence.

1
1

•us

The following three features are defined according to a region adjacency graph property

[127].

1. Brightness: Uses minimum and maximum grey level regions to represent the airways

and vessels candidate regions respectively.

2. Adjacency: Represents the grey level of the brightest adjacent region.

3. Degree of Wall Existence: Determines the existence of the wall and is calculated by

the ratio of the total number of concentric rays possessed dark-bright-dark profile and

the total number of concentric rays directed from the centre of the candidate region.

I



Chapter 2 Review of Relevant Fuzzy Clustering, Rule-Based, and Colour Image Segmentation 3 7
Techniques

I

The membership functions for Brightness, Adjacency and Degree_of_Wall _Existence

including their linguistic variables are shown in Fig. 2.17.

The parameters of the membership function are determined from a manually tracking training

set containing eight randomly selected slices of a single volumetric data set. The conflict arising

amongst membership functions is solved manually in order to obtain optimum classification

results [128, 129]. The rule banks developed for the segmentation are represented in tabular form

and shown in Fig. 2.18.

43 50 80 115 140

Low Medium High

0.2 0.25 0.3 0.43 0.45 0.5 0.52 ]

Degree_of_Wall_Existence

140 145 150 160 165 Adjacency 225
c b a

a: Very High
b: High
c: Medium
d: Low Labelling
e: Very Low Confidence

1 2

Fig. 2.17: Membership Functions for Brightness, Adjacency, and Degree _of_ Wall_Existence.
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Degree_pf_Wall_Existence
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Brightness
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Degree_of_Wall_Existence
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Low
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Low

Very
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Low

Med

Low

Very
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Brightness
Low
Med
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Adjacency=Low

Fig. 2.18: Fuzzy rule banks to determine the confidence level of airway.

The value of each cell indicates the confidence level of airway, as for example in the following
rule.

IF Brightness is Low AND Adjacency is Low AND Degree_of_Wall Existence is High THEN

region is airway with Medium confidence

Finally, centroid defuzzification is applied in order to obtain numerical confidence level for

each region, which indicates the possibility that the region belongs to airway.

Construction of Airway Tree Using 3-D Connectivity

Airway tree named C-tree is constructed by stacking all the regions whose airway confidence

level is greater than 73% utilizing shape based interpolation along the z-axis [130]. From C-tree,

A-tree and B-tree are created. A-tree is defined as a 3-D connected region and subset of C-tree,

which contains the airway-tree root. B-tree is the combination of A-tree and disconnected airway

tree branches of C-tree that contains above the empirically selected threshold for volume.

Concluding Comments

This method has constructed three trees named A-tree, B-tree, and C-tree. The medical

specialist may use any of the trees according to their needs though the parameters of the

membership function are not automatically derived. It showed good performance in vivo analysis

of 3-D human CAT image data sets.
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While each of the reviewed fuzzy rule-based systems has particular merits, they also each

have some inherent limitations. They may be summarised as follows: -

1. The systems are both image and application dependent.

2. The structures of the membership functions are manually defined.

3. Spatial relations of pixels are not exploited by all systems.

4. In certahi cases, the parameters of the membership functions are perceptually

derived.

5. None of the systems considered texture.

As will be proven in subsequent chapters, the fuzzy rule-based framework solution proposed

in this thesis specifically addresses all of the above limitations.

2.3 Texture Features

Texture representation is one of the fundamental problems of digital image processing since

there is no widely accepted definition of texture and generally it represents the structural

arrangement of the surfaces and their relationships. Most natural objects contain texture and are

usually identified by shape, colour, and texture [10], so it is crucial to give consideration to

texture feature for object based image segmentation. There are a large number of techniques

available in the literature to estimate the texture. Some of the most common techniques are [10,

131]:-

• Gray level histogram.

• Gray-tone co-occurrence matrix.

• Fourier transform energy.

• Dominant local orientation and frequency.

• Gradient analysis.

• Relative extrema density.

• Markov random field model.

• Gibbs random field model.

• Gabor filters.

• Fractal dimension.

A brief description of the gray level histogram technique will be given in Section 4.3 where it

is employed for measuring the uniformity. The main limitation of this approach is that the gray

level histogram only considers first order statistics and so does not consider the relative position

of the pixels [10]. Sharma et al [132] performed an evaluation between five different texture
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extraction techniques for image analysis and proved the gray-tone co-occurrence matrix the best.

This technique measures the second order joint probability between a pair of pixels separated by a

particular distance in a specific direction [10]. The features obtained from the gray-tone co-

occurrence matrix however are not truly rotation invariant and thus not suitable in the context of

the framework because in calculating the membership functions for texture for each pixel, a small

window is used, typically of size 4x4. Higher sized windows are not suitable to calculate the

membership function for each pixel.

A broad tutorial review of many of these different techniques including their advantages and

disadvantages is given in [10][133j. Of the above, in the context of the thesis and particularly the

role of texture in the fuzzy based framework, the fractal dimension (FD) is especially

advantageous for the following reasons:

1. It is relatively scale insensitive and corresponds to human perception of texture that

is, there exists uniformity between the human perception and the surface roughness

[131].

2. It is suitable for describing the erratic and complex behaviour of the surface of

natural objects [134].

3. The FD based feature is also appropriate to consider image domain specific

information based on a window in segmentation.

This final attribute is very important in being able to take image domain specific information

into account and was one of the key reasons for selecting FD in the fuzzy rule-based framework

(Fig. 1.1) for texture segmentation purposes. This will be discussed in greater detail in Chapter 5.

2.4 Colour Models

Colour is a physiopsychological phenomenon and exists in every aspect of human life.

Colour analysis has been essential in computer vision based on the simple notion the more

information helps to more accurately represent the visual scene [135]. The following two primary

aspects inspire the application of colour in image processing [84]: -

1. Colour is a very important attribute, which makes easier the object recognition and

extraction from the image.

2. Colour has a huge number of shades and intensities, whereas gray level has only

about 24 shades of gray.

All colours are generated by the combination of three primary colours: red, green, and blue.

The amounts of red, green, and blue used to generate a particular colour are known as tristimulus
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values. So 2 colour is represented by a point within a subspace of 3-D coordinate system. The

specifications of 3-D arrangements of the colour sensations are called colour models or colour

spaces or colour coordinate systems. The colour models used in image processing are generally

developed from following sources [136]: -

• Human visual systems: for example, RGB, opponent, and HSV colour models.

• Technical Domain: for example, XYZ (colorimetry) and YUV (television) colour models.

• Developed specifically for image processing: for example, Otha and Kodak Photo YCC

models.

A brief description of some of the colour models is presented in the following sections.

2.4.1 RGB Colour Model

Blue

Magenta
(Rmax,O,Bmax)

Cyaxi
(O,Gmax,Bmax)

White
(Rmax,Gmax,Bmax)

Green

Yellow
(Rmax,Gmax,O)

Fig. 2.19: RGB Colour Model (RGB Cube).
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RGB model is the basic colour model and in general it is used to derive other colour models.

Each colour is represented by the three components: red (R), green (G), and blue (B) using 3-D

Cartesian coordinate system. The RGB colour gamut uses a unit cube called RGB cube shown in

Fig. 2.19 assuming all three components are normalized within [0, 1], in which the positions of

red, yellow, green, white, magenta, cyan, blue, and black are shown. The gray level is shown by

the dotted lines connecting the black (0,0,0) and white (1,1,1) points [84, 136].

While the RGB colour model is used in many colour applications, such as cameras, scanners,

and displays and aerial and multispectral image processing [84], it has some significant

disadvantages when considered from a segmentation perspective.

• The R, G, and B components are highly correlated.

• A non-intuitive colour modei, which means that it is very difficult to perceive the colour

based on the values of the R, G, and B components.

• A non-uniform colour model, which means that usually the perceptual difference between

two colours does not conform to the corresponding Cartesian distance.

As mentioned earlier, since RGB is the fundamental colour model and extensively used in

colour image processing, its application to image segmentation will be examined in detail in

Chapter 7.

2.4.2 HSV Colour Model

HSV is one of the perceptual colour models, in which human can easily perceive the basic

attributes: hue (H), saturation (S), and value (V) [136]. Hue represents the dominant wavelength

&, of the colour stimulus, while saturation denotes the relative purity of the colour. V corresponds to

the gray level intensity of a colour that is, the luminance. HSV colour system uses a cylindrical

coordinate system and the colour subspace is a hexcone, as shown in Fig. 2.20 [137].

The angle around the vertical line starting with 0 represents the hue and the saturation is

measured by the distance of the colour point from the vertical line (V axis) within the normalised

range of [0,1]. The advantages of the HSV colour model may be summarised as follows [136]: -

• Intuitive colour model.

• Separation of chrominance from luminance.

• Only hue component (H) can be used in object recognition and segmentation.

The main disadvantages of this model are: -

• Perceptually non-uniform.
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• The inevitable singularities arising during the transformation from the RGB to HSV

model.

• Difficulties in some arithmetic operations on hue angles e.g. averaging.

Fig. 2.20: HSV Colour model (Hexcone).

Since hue is expressed using the cylindrical coordinate system, the calculation of the average

of hue angles based on Cartesian coordinates does not make sense. For this reasons, an alternative

strategy be specifically proposed in Section 6.4, where an algorithm is developed for calculating

the average of hue angles for the processing.

HIS (hue, intensity, and saturation) and HLS (hue, lightness, and saturation) are the same as

the HSV colour model. In the light of the above mentioned advantages, especially its potential

capability for object recognition and segmentation, the HSV colour model will be utilised in the

proposed fuzzy rule-based colour image segmentation (FRCIS) algorithm (Block 4 in Fig. 1.1)

and analysed in greater detail in Chapter 7.

2.4.3 Television Colour Models

The television models were mainly created in order to reduce the bandwidth of the composite

video signal (CVS), so that it can be transmitted through existing TV channels used by

monochrome television systems [136]. These are opponent colour models, where the luminance

(Y) and chrominance components (U and V or I and Q) are separated. The two chrominance
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components are derived from the colour difference signals: R-Y and B-Y. YUV and YIQ colour

models are used in the analogue PAL (625 lines) and NTSC (525 lines) TV signal coding

systems respectively, while YQ>Cr is independent of the actual TV signal coding system and is

suitable for the digital coding of TV pictures [136].

2.5 Fuzzy Colour Image Segmentation Techniques

As alluded in Section 2.4, the human eye can discern a huge number of shades and intensities

of colour but only around two-dozen shades of gray. Using this additional information, objects,

which are not possible to be segmented using gray level information, may potentially be able to

be segmented using colour information [138].

Lim and Lee [139] proposed a colour image segmentation using multilevel thresholding and

the FCM algorithm. There are two stages: coarse and fine, associated with this algorithm. In the

coarse stage, the segmentation is performed using multilevel thresholding, while in the fine stage,

the segmented results produced by the coarse stage are refined using the FCM algorithm. Its

application is limited due to applying the histogram mode seeking technique [138], which usually

uses the peaks in the histogram to determine the number of regions (clusters). It is difficult to

calculate the number of regions (clusters), if there is no distinct peak in the histogram.

Another colour image segmentation technique using fuzzy integral and the RGB colour

model has previously been discussed in Section 1.2.4.

Moghaddamzadesh and Bourbakis [140] introduced a fuzzy region growing approach for

colour image segmentation, by defining a function contrastiy, w) to measure the contrast between

two pixels with v and w colour vectors in the following way: -

contrast^ =^(RV -Rwf +{GV - G W ) 2 +{BV -Bwf

The fuzzy membership function for the contrast is defined as:

{0, if contrast <,ax;

1, ;/ contrast > a2; (2.28)
(contrast - ax )/(a2 - ax), otherwise.

where o^and a 2
a r e t ^ 0 predefined thresholds. The contrast is deployed to measure the

homogeneity during region-growing approach. Two types of contrast are determined, namely

absolute contrast (contrast between a pixel and a region) and relative contrast (contrast between a
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pixel and its neighbours in the growing direction). The membership function for farness,

which is used in classifying a pixel to the appropriate cluster is defined as: -

(2.29)

where pd\s the membership function for measuring the distance. The contrast defined by this

technique is not reliable because of the high correlation between the colour components of the

RGB colour model and not being illumination invariance [138].

Chien and Cheng [141] proposed a colour image segmentation approach based on fuzzy

similarity measure by defining a set of fuzzy colours based on hue and tone using the HLS colour

model. The tone is developed based on lightness and saturation. The predefined triangular

membership functions are used for both hue and tone. Each pixel is represented by a set of fuzzy

colours that are defined in the colour palette selected by human. They also defined a ruzzy

similarity measure to calculate the similarity between two fuzzy colours. The adjacent pixels are

merged based on their similarity value.

Cheng et al [142] introduced a fuzzy colour image segmentation technique based on

homogram mode seeking approach using the RGB and HSI colour model. In this technique, a

homogram is defined in terms of gray level occupancies and fuzzy homogeneity among the

neighbouring pixels. The two main processing steps of this technique are as follows:

1. The image is classified into major homogeneous regions by the homogram analysis

based on entropy.

2. The final segmented results are produced by merging the smaller and closest regions

with their closet regions in order to avoid over segmentation.

The segmented regions produced by these techniques are not perceptually meaningful objects

and as mentioned before, the mode seeking approach is not suitable for object based image

segmentation. This technique fails to separate the regions if there is no peak in the homogram at

all. The approach also omits how to actually calculate the similarity for the HSI colour model,

especially for the hue values.

2.6 Summary

This chapter has outlined some of the popular fuzzy clustering and rule-based image

segmentation techniques. The simplest, oldest, and most widely used clustering algorithm is

fuzzy c-means clustering algorithm (FCM), which arbitrarily divides the data sets and the
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equations provided for the cluster centre and the membership function are not sufficient to

achieve the local minimum of the object function. It also strongly follows the probability, which

avoids the trivial solution for the membership function. Although the possibilistic c-means

algorithm (PCM) considers the underlying meaning of data and hence has solved the problems for

the degrees of sharing and strongly supporting the probability of the FCM membership function,

its objective function cannot achieve a global minimum. The main two drawbacks of these

clustering algorithms are the number of clusters and their initial values.

In contrast, fuzzy rule-based image segmentation techniques are able to integrate expert

knowledge and are less computationally expensive compared with fuzzy clustering. They are also

able to interpret linguistic as well as numeric variables. The performance of fuzzy rule-based

segmentation in many applications however, is sensitive to both the structure of the membership

functions and associated parameters used in each membership function. The example in

Section 2.2.1 of a rule-based LI segmentation technique for geographic map images, intuitively

defined the structure of the membership functions with the related parameters being automatically

determined.

It is evident from the various examples and commenting that fuzzy rule-based image

segmentation techniques offer much greater potential, though both the structure of membership

functions and derivation of their relevant parameters are still very much application domain and

image dependent.

The chapter has also reviewed ways of representing both texture and colour in images. The

motivation for choosing fractal dimension (FD) to incorporate texture together with the image

domain specific information for segmentation and the descriptions of different colour models

including their respective advantages and disadvantages have been provided. Colour image

segmentation techniques based on histogram/homogram mode seeking or thresholding have also

been reviewed for few suitability for object based image segmentation.

The next chapter will introduce a new generic fuzzy rule-based image segmentation (GFRJS)

algorithm, which will address a number of the aforementioned issues, most crucially by

incorporating spatial pixel information and automatically data-mining both the key fuzzy rule

weighting factor and its threshold.
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A Generic Fuzzy Rule-Based Image Segmentation
Algorithm

The literature review in Chapter 2 highlighted that fuzzy rule-based image segmentation

techniques tend in general, to be application dependent with the structure of the membership

functions being predefined and in certain cases, the corresponding parameters being manually

determined. The net result is that the overall segmentation performance of a technique is very

sensitive to parameter value selections. This chapter addresses these issues by introducing a generic

fuzzy rule-based image segmentation (GFRIS) algorithm (Block 1 in Fig. 1.1), which is both

application independent and exploits inter-pixel spatial relationships. The GFRIS algorithm

automatically approximates both the key weighting factor and threshold value in the definitions of

the fuzzy rule and neighbourhood system respectively. A detailed time complexity analysis of this

algorithm is also presented in this chapter. A complete quantitative evaluation will be presented

between the segmentation results obtained using GFRIS and the two popular fuzzy c-means (FCM)

and possibilistic c-means (PCM) algorithms in Chapter 7.

This Chapter is organised as follows: In Section 3.1, the three membership functions used in the

GFRIS algorithm are defined. The fuzzy rule definition and underlying theory, together with fthe

data-mining algorithm for obtaining both the key weighting factor and threshold are presented in

Sections 3.2 and 3.3 respectively. Section 3.4 details the full GFRIS algorithm, together with a full

time complexity analysis, while Section 3.5 addresses the performance of the GFRIS algorithm.

3.1 Defining the Membership Functions

The definition of the membership function lies at the heart of any fuzzy logic system and the

capability of fuzzy rule-based techniques significantly depend upon it. The Gestalt principle states

that visual elements may be perceptually grouped together based on the principles of: proximity,

similarity, common fate, good continuation, surroundedness, closure, relative size, and symmetry

[143]. Of these perceptual characteristics, three membership function types are defined based on the

47
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Gestalt principles of similarity, proximity, and good continuation, to respectively represent the: (i)

region pixel distributions, (ii) closeness to a region's centre, and (iii) pixel spatial relations. The

first and second membership functions characterise similarity based on a region's pixel distribution

and gray level pixel intensity respectively, while the third reflects the characteristics of both

proximity and good continuation. Each membership function has a corresponding membership

value for every region, which indicates the degree of belonging to that region. These three

membership functions will now be individually discussed.

3.1.1 Membership Function for Region Pixel Distributions

In gray level images, every region has a distinctive pixel distribution, which characterises to

some extent that region's properties. The approach adopted here is to automatically define the

membership function including its structure from the pixel distribution of that particular region.

This is achieved in three steps: -

1. Segment the original image into a desired number of regions by applying a clustering

algorithm such as fuzzy c-means (FCM).

". Generate the gray level pixel intensity histogram for every region and normalise the

frequency for each gray level into the range {0 1].

3. Use a polynomial representation to approximate each region. The polynomial value of a

region, for every gray level pixel corresponds to the membership value of that pixel in that

region, with the actual gray level intensity values being the parameters of the membership

function.

As an example, the reference image shown in Fig. 3.1(a) is classified into two separate regions,

namely Rx (cloud) and R2 (urban scene) using the standard FCM algorithm. The respective pixel

distribution of each region is used to produce the corresponding membership function and a gray

level intensity histogram (gray level histogram) is generated for both regions, with the frequencies

of occurrence being normalized. A polynomial then approximates the histogram of each region. As

an example, a 3rd order polynomial is given by: -

f(x)=aQ a3x
2 (3.1)

where AT is an independent variable, which in this example is the 8-bit gray level pixel intensity.
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The coefficients a0, a l s a2, and a3 are computed by applying a least squares (LS) fit to the

histogram for each region. The values of f{x) are constrained between 0 and 1, and represent the

membership value of each gray level pixel. The 3rd order polynomials for the segmented regions Rx

and R2 in the example image are shown in Fig. 3.1(b) and 3.1(c) respectively.

(a) (b) (c)

Fig. 3.1: Reference image and its membership function for each region: (a) Original image, (b)
Membership function for Rx, (c) Membership function for R2.

The degree of belonging to a region of a candidate, pixel, that is the pixel to be classified, is

determined from the respective membership function. Hence, for a pixel having a gray level value

of 150, the membership values for regions R} and R2 can be easily determined from the respective

polynomials as 0.425 and 0.125 respectively. Considering the general case of a pixel with a gray

level value of Ps( at location (s, t), then the two membership functions pDRl (psl) and nDRi (Psl)

for the pixel distribution of regions Rl and R2 respectively, are expressed as: -

(3.2)

and

(3.3)

where fRi (Pst) and fRi (Pst) are the respective polynomials of regions Rx and R2.
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3.1.2 Membership Function to Measure the Closeness of a Region

This membership function represents the similarity between a candidate pixel and the centre of

a region based on gray level pixel intensity. A pixel must always be closer to the belonging region

than any other region and the degree of belongingness of a candidate pixel to a region is determined

from the k-means clustering algorithm [144]. When a candidate pixel joins its nearest region, the

centre of that particular region is recomputed. The centroid of a region Rjh defined as: -

(3.4)

•th

I

where Njis the number of pixels and Pj(j) represents the i'h pixel gray level intensity in they

region.

A membership function should reflect the axiom that the closer a pixel is to a region, the larger

the membership value that pixel should have. Hence, the membership function juCR {Pst), which

determines the degree of belongingness of a candidate pixel Pst at location (s,t), to a region Rj is

defined as: -

(3.5)

where a b-bit gray level image is assumed.

Lemma 3.1: The maximum value of the membership function fiCK ( i ^ w i l l always be at the

centre of the region and the structure of the function will be symmetrical about a vertical line that

passes through the centre of the region.

Proof: For positive values of (2* - l ) , ' yj / ' ' ' ;>0 , The function VCR {ps,t) will

therefore be a maximum whenever |c(/2y)—P,p/| = 0, i.e. when c(Rj)=Pst, so the maximum

always occurs at C[RJ), which is the centre of region Rj.
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To prove the membership function is symmetrical about C{RJ), consider the values of

Mat (ps,t) f o r psj =C{RJ)+S and Pst = C(RJ)-S , where Sis an arbitrary constant.

fc*

Since juCR (c(i?y)+<?)=//c/j (c(/?y)-^), juCR [Pst) is also symmetrical about a vertical line

passing through the centre of region Rj. u

3.1.3 Membership Function for Spatial Relations

The principles of proximity and good continuation are used to define this particular

membership function. Wherever pixels are close together and exhibit relatively smooth variations,

there is an obvious expectation that strong spatial relationships will exist between neighbouring

pixels within that region. In the preceding two sections, the respective membership functions have

been constructed using only feature values, i.e. gray level pixel intensities. Spatial relations between

pixels within an identified region have not been considered, yet are vital since they characterise the

geometric features of a region as any spatial object contains two descriptors: feature and geometric

[145,146].

In many natural images, there are a large number of overlapping pixels between regions, so that

effective segmentation cannot be expected unless these overlapping pixels are taken into account.

By considering the neighbourhood relationship between the candidate pixel and the pixels of a

region that surround it, a large number of overlapping pixels can be reduced. Based on the

neighbourhood relations, the candidate pixel can then be assigned to the appropriate region.

Many approaches exist to define neighbourhood relations [147], such as minimum spanning

tree, fixed size neighbourhoods, and Voronoi tessellation. This paper concentrates upon only fixed

size neighbourhoods around the candidate pixel, since the number of pixels and their distances from

a candidate pixel has to be calculated.
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The neighbourhood pixel configurations for r=\, r=2, and r=4 are shown in Fig. 3.2(a), 3.2(b),

and 3.2(c) respectively [148] where r ^ l denotes the neighbourhood radius, while O and #

represent the candidate and neighbourhood pinsis respectively. The number of neighbours will be

(r +1)2 for r = 1 and (r +1)2 - 1 otherwise.

#

#
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#

# #

#

#

0
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#
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#
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(a) /=1 (b) r=2

Fig. 3.2: Neighbourhood configurations.

(c) r=4

As previously mentioned, the principles of proximity and good continuation imply that pixels,

which are close together and have smooth variations should be part of the same region, that is,

segmented regions are homogeneous and mutually exclusive, it is thus assumed that the variation of

neighbouring pixels in a region is limitei to some threshold T, and the neighbourhood system of a

region based on this premise is defined as: -

Definition 3.1—A Neighbourhood System: A neighbourhood system £{Psl,r) with radius r,

of a candidate pixel Pst is the set of all pixels Px>y such that

t(P*j*r)=fyxJfa(Pxy,PsMr)h\pXwy -PS,\ZT)\ where the distance,

d[Pxy,Psl)= \x-s\ + \y-t\. Pxy is the gray level value of the pixel at Cartesian coordinates (x,y),

and T is the threshold.

To construct a membership function, the number of neighbourhood pixels and their distances

from the candidate pixel must be considered, while to achieve proximity and good continuation, the

membership function /i should possess the following properties: -

1. n oc N where iVis the number of neighbours.
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2. ju oc

where d[pxy,Pst) is the distance between pixels Pxy and Psl. The second property may

intuitively be interpreted as the smaller the distance between a candidate pixel Pst and its

neighbour Pxy, the larger the value of the membership Junction n.

The summation of all inverse distances of a region Rt is: -

i=\dj\Px<y,PSfl)
(3.6)

where Nj =\C\PSJI,r\ is the number of neighbourhood pixels of the candidate pixel Pst in the

region Rj and dj{pxy,Psl) is the city block distance between the i'h pixel Pxy of region Rj and

the candidate pixel Pst.

By considering the number of neighbours Nj and the sum of their inverse distances GR from

the candidate pixel Psi, the membership function jum (P,,,r)of the region /^becomes,

NJXGR.

VNRJ (ps,t»r) = —, J (3.7)

where 91 is the number of segmented image regions. Eq. (3.7) shows that the greater the number of

neighbours in a region, the larger the membership function value will be for that region. Hence, if

all neighbours fall into a single region, the corresponding membership function value will be one

for that region, since the sum of the membership function values for all regions always equals unity.

It is worth mentioning that (3.7) is not a probability function, since it is does not use any

random data or samples to develop the membership function. Rather it uses actual data to

approximate spatial relationships. The sum of all the membership function values for all regions is

deliberately kept equal to unity in order to reward regions that have and are close to neighbours, and

to do the converse for regions that is further away and have a smaller number of neighbours.

Experiments were performed with this restriction relaxed, but they did not produce very promising

results.
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3.2 Defining the Fuzzy Rule

Having defined the three membership functions, the next step is to combine them using a fuzzy

rule. The definition of the fuzzy rule is the single most important and challenging aspect of fuzzy

rule-based image segmentation, as its effectiveness is vital to the overall performance. In this

section, the fuzzy rule is heuristically defined using the three membership functions defined in

Section 3.1, in combination with the widely used fuzzy IF-THEN rule structure.

' The overall membership value fiM (Ps<l,r) of a pixel Psl for region Rj represents the overall

degree of belonging to that region, and is defined by the weighted average of the three individual

membership function values ptDR\Ps,t), MCR ips,t) ^ d MNR, (^,/>r)> which were given in (3.2),

(3.5) and (3.7) respectively.

MAR\jVsjl>r)-
t,(v)

(3.8)

where W\, w2, and w3 are the weightings of the membership values for pixel distribution,

closeness to the cluster centres, and neighbourhood relations respectively. The overall membership

value HM (PS ,, r) is used in the antecedent condition of the fuzzy IF-THEN rule.

Definition 3.2—Fuzzy Rule: IF JUMJ (Pst, r) = max {//^ (PS ,, r)\ THEN pixel Psl belongs to

region Rj.

This rule is made deliberately generic so that it can be applied to any image type thus adhering

to one of the key objectives that the GFRIS algorithm should be both image and application

independent. Clearly the weightings in (3.8) applied to each membership function have to be

calculated and play a vital role in the performance of the GFRIS algorithm. In the next section, a

strategy will be discussed to calculate each weighting value.

3.3 Determination of Weighting Factors and the Threshold

The threshold value T introduced in Section 3.1.3, plays a major role in defining the spatial

relationship between pixels in any region, because it regulates the level of variation between the

candidate pixel and its neighbours. The greater the variation between a candidate pixel and its
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neighbours, the larger the standard deviation will be, which pro rata results in poor continuation.

Two issues need to be considered in determining the threshold value: -

1. The degree to which pixels of one region overlap with those of another region.

2. The pixel standard deviations in each region.

The approximate threshold Ta is computed using step 1, by considering the centres of the

initially segmented regions, while the status of this approximate threshold as to whether it is

actually an overestimation of the final threshold value, is determined using step 2. Estimation of

both the status and final threshold value is detailed in Algorithm 3.1. If the centre of a particular

region is two standard deviations away from the boundary of another region and the pixels in that

region are normally distributed, there is at best a 5% probability that the pixels of that region will

overlap with the other. The procedure to determine the approximate threshold Ta for two regions

may be formalized as follows: -

Theorem 3.1: If two regions with centres Cj and c2 have pixels that are normally distributed,

then for at least 5% levels of significance, the approximate threshold will be bounded by

Proof: Assuming that the pixels are normally distributed, then in a region having a centre q

and standard deviation <r1, the 5% level of significance means the probability of pixels falling

outside cj ±2ax will be 0.05 [149]. The same is also true for the other region, which has a centre

c2 and standard deviation <r2. Thus, for at least 5% levels of significance,

2(crr; c

Since the threshold is considered the same for both regions, it may be written as Ta = — —

such that,

This theory may be extended to an arbitrary number of regions for determining the weight and

the threshold values. If the approximate threshold is overestimated, the minimum value between the
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standard deviations and the approximate threshold is used as the final threshold. This is conditional

on the value not being either zero or very small (less than some arbitrary percentage of Ta), so

ensuring that some spatial relationship exists. The weight wl in (3.8) governs the importance

assigned to region pixel distributions, and extensive empirical observations revealed that the

resultant segmentation was not very sensitive to variations in this particular parameter.

The important weighting factors are w2 and w3, as their values represent a trade-off between

the gray level pixel intensity and spatial relationship. Prominence was initially given to the former,

because it contributed more to the human visual perception and for this reason, following empirical

evaluation; w2 was set equal to 1.8, with the other two weighting factors being set to one. If the

standard deviation in a number of regions is high with respect to the approximate threshold, then

the spatial relationship will be ineffective and greater emphasis needs to be given to w2by

increasing its value. In all other instances, importance should be given to the pixel spatial

relationships so that the value of >v2 should be reduced. The following details the various stages of

the algorithm to automatically determine this key weighting factor and its threshold.

Algorithm 3.1 Determining the weighting factors and threshold T

1. Set the initial values for the three weighting factors as Wj = 1; w2 = 1.8; w3 = 1.

2. Define a set of all regions ( R ) and a set of centre pairs of all regions (V ).

3. Compute the absolute sum of differences (sqfd) between the elements of all pairs.

where is the number of combination pairs of all regions.

4. Determine the approximate threshold Ta using Theorem 3.1.
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5. Calculate the average sum of differences (asd) between the various standard deviations and

approximate threshold.

asd = -

where oR is the standard deviation of region Rj.

6. If the approximate threshold is overestimated, i.e. asd <0 then the minimum of the

standard deviation and Ta, is taken as the final threshold value T, provided this value is

neither too small (less than K% of Ta, where K is positive arbitrary constant) nor zero.

Otherwise Ta becomes the final threshold, T.

7. Normalise the average sum of differences between the standard deviation and approximate

threshold.

asd

max! max \aR

nasd =

8. Adjust the weight w2 accordingly.

nasd

This algorithm has been experimentally tested upon various different image types and as results

will prove in Chapter 7, the automatic data mining of the key weighting factor and threshold value

is a significant reason for the superior performance of the GFRIS algorithm compared with other

segmentation techniques such as FCM and PCM. The complete GFRIS algorithm is now discussed.
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3.4 The GFRIS Algorithm

3.4.1 The Algorithm

As discussed before, the GFRIS algorithm is specifically designed so that it can be applied to

any type of image and application. The detailed stages involved in the GFRIS algorithm may be

formalised as follows: -

Algorithm 3.2 GFRIS

1. Classify the pixels of an image into a desired number of regions using any appropriate

clustering algorithm.

2. Derive the key weight w2 and threshold value by applying the data-mining Algorithm 3.1

and the membership function for each region pixel distribution (Section 3.1.1).

3. Initialise the centre of all regions required to define the membership function in Section

3.1.2, with the respective centres produced in step 1.

4. Sequentially select an unclassified pixel from the image and calculate each membership

function value in each region for that pixel.

5. Classify the pixel into a region applying the fuzzy rule (Definition 3.2).

6. Return to step 4 until every pixe! is classified.

It is also noteworthy from a computational perspective, that since all three membership

functions are independent of each other, the GFRIS algorithm possesses a high degree of inherent

concurrency, which could be exploited by a parallel implementation, with a dedicated processor

being used for each function.

3.4.2 Time-Complexity Analysis of the GFRIS Algorithm

3.4.2.1 Fundamental Assumption for the complexity analysis of GFRIS

Without loss of any generality, the following assumption is made for the sake of simplicity in

the complexity analysis. Any perceptually meaningful object is considered the region of interest for
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object-based image segmentation and hence the number of regions to be segmented is limited to a

certain extent.

Assumption 3.1: The number of regions 9? is so small compared with the total number of

pixels n such that SR can be considered a constant, i.e. #(l) with respect to n.

Unless otherwise annotated, the above assumption holds for the remainder of the thesis.

3.4.2.2 Time-Complexity Analysis

In the results in Chapter 7, FCM is applied to segment the original image into a desired number

of regions to calculate region pixel distributions (Section 3.1.1). The following two Lemmas 3.2

and 3.3 describe the computational processing time required to derive the membership function for

region pixel distributions, including the initial FCM segmentation: -

Lemma 3.2: Given n pixels in an image, the FCM algorithm can be completed in O(n) time

for calculating the region pixel distribution.

Proof: Let 9? and p be the number of regions and the dimensions of a feature vector

respectively. The overall time complexity of the FCM algorithm is O^R2pnJ [150]. Since the gray

level pixel intensity is the only feature used to calculate the region pixel distributions, p = 1.

Moreover, by applying Assumption 3.1, 9? = O(\), so the overall complexity of the FCM algorithm

in determining region pixel distributions will be O(n). m

Lemma 3.3: For an image containing n pixels, the membership function for region pixel

distributions in Section 3.1.1, based on the initial segmentation using FCM, can be computed in

O(n) time.

Proof: Given n pixels in an image, the initial segmentation using FCM can be performed in

O(n) time using Lemma 3.2. The calculation of histograms and their normalisation also requires

0{n) time, while the polynomial approximation requires 0(256) = 0(l) time [151]. The total time

required for the region pixel distribution membership function is 0(n) + o(n) + (9(1) = O(n). m

The next pair of lemma deal with the computational complexity of the other two membership

functions used in GFRIS.
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Lemma 3.4: The membership function measuring the closeness of a region (Section 3.1.2)

requires 0(»)time.

Proof: Let 91 be the number of segmented regions then, the time to progressively calculate the

centres using the previous centres and the membership function for each pixel in each region is

O(n) and O(nm) respectively. As 9? = O(l), the total time is O(n)+ 0(«9?)= O(n). •

Lemma 3.5: Membership function for spatial relations (Section 3.1.3) can be computed in

O(n) time.

Proof: Let the number of neighbours considered in segmentation be rj. The time required to

count the neighbours and to calculate the membership function for each pixel of all regions can be

determined in 0{nrj) and O(n9l)respectively. Total time is O(IITJ) + 0{p'Si)=0{n) since rj is a

f(r) where r=O(l) with respect to n. •

Lemma 3.6: The implementation time of the fuzzy rule (Section 3.2) is O(ri). m

Lemma 3.7: Determining the weighting factors and the threshold values in Algorithm 3.2, can

be completed in O(n) time.

Proof: To calculate the standard deviations for all regions requires O(n) time. Steps 2 and 6 of

the Algorithm 3.2 can be computed at 0(9?2J time while the other remaining steps can be

performed in 0(9?). As 9? = O(l), this algorithm needs time in O(n) + o(lR2)+ 0(9?) = O(n). m

Lemma 3.8: The time-complexity of the GFRIS algorithm (Algorithm 3.2) is <9(n)time.

Proof: By applying Lemma 3.2, step 1 of requires time inO(w). From Lemmas 3.3 and 3.7,

steps 2 and 3 can be performed in O(n) time. Steps 4 to 6 can also be completed in O(n) time

using the Lemmas 3.2 to 3.7. •

In conclusion, Lemmas 3.2 and 3.8 and Section 2.1.2 prove that GFRIS has exactly the same

computational complexity as FCM and PCM, O(n) and as Chapter 7 will show, it provides

significantly enhanced segmentation perfonnance.
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3.5 Discussion of the Performance of the GFRIS Algorithm

Section 7.5 will provide a complete analysis of the performance of the GFRIS algorithm,

however in order to qualitatively illustrate the improvement obtained and also some limitations of

using GFRIS, an example is included in this chapter.

The cloud image shown in Fig. 3.3(a) contains two regions (objects), namely cloud (Rx) and

urban scene (R2). The cloud (/?j) region is homogeneous, while the urban scene (R2) has sharp

variations in pixel intensity, i.e. it is non-homogeneous. The segmented results of the cloud image

in Fig. 3.3(a) into two regions produced by GFRIS for r = l, FCM, and PCM algorithms are

presented in Fig. 3.3 using a separate colour for each region so that both correctly and incorrectly

classified pixels are visible.

(a) Cloud Image (b) GFRIS, r = \ (c) FCM (d) PCM

Fig. 3.3: The segmented results of the cloud image in Fig. 3.3(a) into two regions using the
GFRIS, r = 1, FCM, and PCM algorithms.

From the Fig. 3.3(b), it is clear that almost all of the pixels of the cloud (/?j) region have been

correctly classified by GFRIS using r = \ because it is essentially a homogeneous region. A

qualitative comparison of Fig. 3.3(b) to 3.3(d) reveals that GF°JS exhibited a substantial

improvement over both FCM and PCM. The example in Fig. 3.3(b). so highlights however that

GFRIS did not produce superior results for the urban scene (R2) region, because it is a non-

homogeneous region. A number of pixels in (R2) have been misclassified into (R:), which means

a poorer performance for the non-homogeneous region. The reason for this is that one of the

fundamental principles of GFRIS is proximity and good continuation and non-homogeneous

regions violate this premise. Solutions to this problem will be presented in the subsequent chapters.



Chapter 3 A Generic Fuzzy Rule-Based Image Segmentation Algorithm 62

3.6 Summary

This Chapter has presented a new generic fuzzy rule-based image segmentation (GFRIS)

algorithm, which crucially has incorporated spatial relationships between pixels. Chapter 7 will

provide the analysis of performance of the GFRIS algorithm in comparison with both FCM and

PCM.

A single fuzzy rule has been defined in order to classify the pixels, and three weighting factors

M>I , w2, and w3 applied to stress the importance attached to feature based and spatial information

in the image. Another important advantage of the GFRIS algorithm was that the structure of the

membership functions and associated parameters were automatically derived and a new data-

mining algorithm presented to determine both the key weighting factor and threshold value. The

vital role of the threshold to the performance of GFRIS in controlling the maximum permitted pixel

intensity variation between neighbouring and candidate pixels was highlighted.

A full computational complexity analysis has been presented and shown that it has exactly the

same order O(n) complexity as other segmentation algorithms FCM and PCM.

As GFRIS is fuzzy rule-based, the algorithm has the capability of incorporating any type of

image attribute in any special application, by simply defining new membership functions, so

making this solution both image and application independent.

As alluded in Section 3.5, the one major drawback of GFRIS is that it does not produce

improved resuSts for such regions. In order to improve the effectiveness of the GFRIS algorithm for

non-homogeneous regions, the next chapter will introduce a generic segmentation refinement

algorithm based on connectivity, surroundedness, uniformity, and contrast properties.



Chapter 4

Fuzzy Rules for Image Segmentation: A Refinement
Algorithm

The generic fuzzy rule-based image segmentation (GFRIS) algorithm, which has been

articulated in the preceding chapter, attempted to solve a number of the identified limitations of

modern fuzzy-based segmentation techniques. While GFRIS outperformed both FCM and PCM in

segmenting many images, it did not prove to be so effective for image regions characterised by

either being non-homogeneous or possessing sharp variations in pixel intensity. This is because it is

developed mainly based on homogeneity and does rtot consider the two important properties of

perceptual grouping, namely surroundedness and connectedness (see Session 3.5). To address these

disadvantages, this chapter introduces a new fuzzy ruh-based refinement algorithm called FRIS,

which unifies the aforementioned properties of connectedness, surrouridedness, uniformity and

contrast (Block 2 in Fig. 1.1). A full time-compi.exity analysis of the proposed FRIS algorithm is

also presented in this chapter. An analysis and numerical evaluation of the results produced by this

new refinement algorithm will be undertaken in Chapter 7.

This chapter is organised as follows: Section 4.1 illustrates the connectedness and

surroundedness properties. Section 4.2 provides a brief description on the region splitting

techniques and image preprocessing ussd. The underlying theory of the various membership and

other functions used is described kt Section 4.3, while the fuzzy rules applied in the FRIS algorithm

are given in Section 4.4. The FRIS algorithm is formalised in Section 4.5, together with a detailed

time-complexity analysis. Section 4.6 pi events a representative performance of the FRIS algorithm

to illustrate its potential.

4.1 Connectedness and SurreuMdedness

A topological relation of the parts or features of the data represents their mutual spatial as well

as structural relationships [152], Connectedness, a topological feature, indicates whether a

63
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topological space is contiguous or not. A topologjcal space, which cannot be divided into two

disjoint, nonempty and closed sets, is called the connected space. For example, suppose q>x and <p2

are two nonempty and closed sets of the set <p. <p will be disconnected when <p} r\ <p2 = 0 and

<p = <pj u <p2 [153]. The neighbourhood system has already been defined in Definition 3.1, however

in this chapter, a slightly different representation of neighbourhood system is defined for

connectivity. For the sake of consistency, the definitions of <?-neighbourhood and

8 - connectivity [154] are formally provided: -

the set of all pixels Pt, such that = \pi

Definition 4.1—5-neighbourhood: The 8 -neighbourhood $$ (p) of a candidate pixel P, is

d(Pi,P)<,-\ where <?e{4,8},

PhP) = \x(Pj)- x(P} + \y(Pt)- y(p)\is the city block distance, vAth xfc) and y(Pt) being the x

and y coordinates respectively of pixel P(.

Definition4.2—8-connectivity: Let Pt and Pybe two neighbouring pixels, and i?,and i?ybe

two regions. Then 5-cotmected(PhPj) and 8-connected^,Rj) are defined as follows: -

8 - connected(Pj,Pj )=
(true, if PteCs(Pi);

[false, otherwise.

8-connected(Rj,Rj)=(3/} €R t)A \3PJ e /? , )A

8 - connectedyPj, Pj

As alluded in the previous chapter, surroundedness is one of the eight Gestalt perceptual

principles, which implies that the surrounded areas could be interpreted as a single object [155,

156]. The surfaces of most natural objects are connected, oriented, and closed [157], so effective

segmentation cannot be expected unless properties such as connectedness and surroundedness

(closeness) have been incorporated. Exploitation of these two properties is rare in the image

segmentation literature, and this is the first fuzzy rule-based segmentation technique to propose [2,
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14, 12, 158] using them. In addition, other key features such as uniformity and the contrast

properties of a group of pixels comprising an object are also incorporated with the overall goal of

reducing the segmentation error due to non-homogeneity.

4.2 Region Splitting and Image Preprocessing

4.2.1 Initial Segmentation

The initial image segmentation phase may be undertaken using any standard segmentation

algorithm [2, 14] (Block 1 in Fig. 1.1). In this paper, the initial segmentation was performed using

one of following three algorithms: - GFRIS [6], FCM [79], and PCM [82]. The results were

subsequently refined using fuzzy rules based on the principles of connectedness, surroundedness,

uniformity, and contrast criteria.

4.2.2 Region Splitting Techniques

This section discusses the splitting techniques applied to the initially segmented 9? regions,

represented by 7?_/-,y = l,...,SR. Each region is split into a number of mutually exclusive objects

using the 4-connected neighbourhood property. The reason for applying 4-connectedness in the

splitting process, instead of the more usual 8-connectedness is to avoid weak connections within an

object and also to maximize the number of possible objects in any region.

Let the set of all objects in region Rj be denoted as plJ,O2j,-..,On j \ where ^represents

the number of 4-connected objects in that region. It is interesting to note that

°\j ^Oij KJ---KJ°nJj ~Rj a n d °\j n02Jn...n0njJ = <j>. Now let object Omjj, be the main

object of region Rjt where Omjj =max|Jo1y|,|o2y|.---» O^-k and \Q\denotes the number of

pixels in object (region) Q.
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4.2.3 Image Preprocessing

The result from the initial segmentation of each region is split into a number of objects

exploiting the connectedness property for refinement. Connectedness however assumes all

background pixels have a gray level intensity of zero, so a DC level A/shift is introduced to ensure

all pixel values are non-zero and positive. This requirement is also essential for the numerical

evaluation of the segmented results, which will be discussed in Section 7.3. Concomitant with this

objective is that any DC bias must not affect the visual perception of the image, and so it was

empirically chosen that A/ = 5 during the preprocessing phase, as this provides an imperceptible

change to 8-bit gray level images [84].

4.3 Defining the Membership and the Other Functions

Before detailing the new refining fuzzy rules, a collection of membership and other functions

are firstly defined.

Surroundedness is by its very nature fuzzy, since any object may either be or not be entirely

surrounded by another object. This leads to the definition of a membership function for estimating

the degree of surroundedness of an object (region) A by another object (region) B as: -

the

(4.1)

The largest object within a region Rk is designated as the main object, and its size is defined by

membership function nt(Omkk,Rk)&s follows: -

(4.2)

The segmented results of the Indira Gandi image shown in Fig. 4.1 (a) for two regions, namely

the person Indira Gandi (R}) and background (R2) produced by GFRIS, r = 1 are shown in

Fig. 4.1. The segmented result for the 7?j region and its main object are shown in Fig. 4.1(b) and
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4.1 (d) respectively. The size of the main object with respect to the segmented /?j region

(Fig. 4.1(b)) is 0.947 that is in this example, the main object is 94.7% of region R}.

Two other functions, namely outcr(Rk) and large\pm k,Rk) can now be defined using (4.1)

and (4.2) respectively. The former determines whether Rk is an outer region, which is the region

not surrounded by any other region and encompassing all regions. This function is true provided the

degree of surroundedness of every region, except Rk, is greater than or equal to the specified

threshold £ : -

(4.3)

The segmented result in Fig. 4.1(c) for the background R2 region is an example of an outer

region because it is not surrounded by any other region and also encloses the segmented R{ region

inFig. 4.1(b).

(a) (b) (c) (d)

Fig. 4.1: Segmentation results of the Indira Gandi Image for two regions produced by GFRIS, r = 1,

(a) Original Indira Gandi image, (b) Segmented Indira Gandi (/?]) region, (c) Segmented

background (R2) region, (d) The main object of the segmented Indira Gandi (/?,) region.

The large{Omkk,Rk) function determines whether the main object Omkk is sufficiently large

with respect to its own region 7? ,̂ by using a threshold A, that defines the minimum size of a main

object. This function is formalized as follows: -
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R (4.4)

As mentioned above, the size of the main object in Fig. 4.1(d) for the segmented R^ region

(Fig. 4.1 (b)) is 0.947. This is sufficiently large with respect to R} as it is greater than the predefined

threshold ^ in (4.4), which is empirically set for all the experiments at 0.70.

Two other functions uniformityfoy)and contrast^)j,)are also defined at this stage. Using a

gray level histogram hist(Pj), the occurrence probability for pixel intensity Pt in object Oy is

obtained, where n discrete gray-level values are assumed. The entropy is then used as a measure of

the uniformity of the gray level distribution of object Oy [10]: -

) = - jj hist{Pi )log[hist(Pi)] (4.5)
/=o

The standard deviation a of the gray level probability distribution reflects the dynamic range

of pixel values and is the preferred measure of contrast [144]. The kurtosis a, which represents the

polarization of the distribution of the black and white on the gray level histogram (the ratio of black

and white areas in the image), is given as [159]: -

where fi4is the fourth moment about the mean and the contrast of an object Oy, contrast(o;-,)is

defined as: -

(4.7)

where g is a positive number in the range - , 8
8

, which is empirically selected as 0.25.
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By now using (4.5) and (4.7), the membership function s\m\\ar{omtk,Ojk j can be defined as a

measure of the similarity between a main object Om/,k and its siblings (all other objects Oik

belonging to the same region): -

(4.8)

funiformity(<9 A)-uni
s i m i l a r l y , O f t H ' , ,

A (|contrast(0%Jt)- c o n t r a s t ^ )| <; x jcontrast(o%it))

where x ls m e maximum permitted percentage variation in the similarity measure.

To define the final function, let

maxs1 * Ms , Omkk )= max {fis {otj, Omi, ))\
i*J

be the set of indices of all regions for which the degree of surroundedness of an object Og

another region, by the main objects of those regions, is a maximum. The function connect^(Oy

represents the set of indices of those regions returned by maxs(o,y)for which object 0,-,-is

S -connected (Definition 4.2) with the main object of another region Omkk.

(4.9)
connect <y (

= jfc & e maxs^O,-,) A 8 - connected^, Omkk jj

All these functions are now used in defining the FRIS rules in the following section.

4.4 Defining Fuzzy Rules

As was discussed in Chapter 3, the fuzzy rule definitions are the most important and

challenging aspect of fuzzy rule-based image segmentation. In the refinement phase, three different

classes of fuzzy rules are heuristically defined covering three totally different scenarios.
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There will always exist the possibility after the initial image segmentation, of obtaining a small

main object, that is an object less than or equal to/Lj xlOO% of its region (see (4.4)), after splitting.

This is very much dependent upon the pixel distribution of the regions and the type of objects in an

image. If the main object of a region is not sufficiently large it will be unable to enclose all the

other objects or components in that region. To address such a problem, any small main objects

(except the main object of the outer region) need to be grown, as otherwise the new refinement

algorithm will wrongly classify these objects, leading to poor segmentation results.

The main object of the outer region is prevented from being grown as otherwise objects inside

this region may be incorrectly merged with its main object. As mentioned in Section 4.3, the outer

region encapsulates all other regions and in general, the outer region is a background region. The

first fuzzy rule definition, called the growing up rule, has the express purpose of growing small

main objects according to the similarity between the main object and its siblings, provided the main

object is not the main object of the outer region. The growing up rule is defined as: -

Definition 4.3-Growing Up Rule: IF NOT \arge(omtk,Rk) AND NOT outerfo) AND

similar(0m^,0/Jt) THEN merge Oik with Omkk.

(a) (b) (c)

Fig. 4.2: Example of a main object, (a) Original aerial image (b) Segmented land region ( j )
of the aerial image produced by GFRIS, r = l , (c) The main object of the land region after
splitting based on 4-connectedness.

Some objects of a region may be enclosed by the main object of another region, but not covered

by their own main object. In such circumstances, the objects will be misplaced even though their

own main object is large. For example, the aerial image in Fig. 4.2(a) has two regions, namely land
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]) and water (R2). The segmented land fa) region produced by GFRIS, r = \ and its main

object are shown in Fig. 4.2(b) and 4.2(c) respectively. It is obvious that the main object in

Fig. 4.2(c) of the land fa) region does not cover all the objects in Rx and that all the parts, except

the main object of R} are enclosed by the other region, namely the water (R2) region.

To address this matter, three conditions are tested to see if (a) such objects are similar to their

main object, (b) whether-the size of their main object lies between the range {Xx, ̂  ]> and (c) their

region is not an outer region. If all three conditions are met then these objects are prevented from

merging with any other main object by applying the following fuzzy definition, called the

preventive rule.

Definition 4.4-Preventive Rule: IF simi\ar(omkk,Oik)AND kx <nl\pmkk,Rk)<,X7 AND

NOT outer(Rk) THEN prevent Oik from merging.

The final set of definitions concern a group of mutually exclusive merging rules, which are

applied to coalesce suitable objects with the main objects of other regions, based upon the

principles of connectedness and surroundedness. 8-connectedness is selected for merging in order

to consider all possible connected objects, including those with weak connections. If there is one

maximum degree of surroundedness of an object by the main object of another region, the degree of

surroundedness is greater than or equal to the threshold £ , and the object is 8-connected with that

main object, the object is merged using the first merging rule: -

Definition 4.5-Merging Rule 1: IF |maxs| = l AND ps(Ojj,Omkk)z<!; AND

8 - connected^, 0 ^ ) THEN merge Oy with Omkk .

Two other merging rules (2 and 3) are also defined for selecting the most suitable surrounding

main object. If there is more than one maximum degree of surroundedness of an object, the smallest

4-connected main object is selected, provided there are 4-connected main objects (merging rule 2),

otherwise the smallest 8-connected main object is chosen for merging (merging rule 3).
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Definition 4,6-Merging Rule 2; IF |maxs|>l AND fis (Otj,, Omkk) £ £ AND

4 - connected^-, Omkk) THEN merge Oy with <9m^such that

n (n \ M
reconnect A\Off)

Definition 4.7-Merging Rule 3:

8-connected(Oj,-,OmtJt) THEN

Mi[Omkk,Rk)= min ,
1 t[O,j

IF |maxs| > 1 AND ^(o^O^^g AND

merge Oy with O
mkk

such that

reconnect s[O,j

Note, that in all the above definitions, it is assumed k*j to ensure that object Oy always

merges with the main object Ofttkk, of another region. The perceptual selection of all the various

parameters used by the fuzzy rules namely, X\, X^, £ , and % n a v e been also proven to be suitable

for all image types. The complete FRIS algorithm will now be described using the defined

membership and other functions (Section 4.3) and the above fuzzy rules.

4.5 The FRIS Algorithm

4.5.1 The Algorithm

The FRIS segmentation refinement algorithm can be formalised in the following steps: -

Algorithm 4.1 FRIS

Precondition: Initially segmented image regions using any standard segmentation algorithm such

as FCM [79] or PCM [82] or GFRIS [6] (Block 5 in Fig. i. 1).

Postcondition: Refined segmented regions.

1. Each segmented regions is split into a number of objects based upon 4-connected

neighbourhoods. The main object, that is the object in each region containing the maximum

number of pixels, is then determined.
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2. If the size of the main object of a region is small, and it is NOT an outer region, then it is

grown using the growing rule (Definition 4.3).

3. Objects in a region, except the outer region, which are similar to their main object, are

prevented from merging with the main object of another region by applying the preventive

rule (Definition 4.4).

4. A candidate object is tested for merging with the main objects of another region based on

one of the three merging rules (Definitions 4.5,4.6, and 4.7).

5. If the object is merged, the algorithm repeats for all other objects, which were previously

surrounded but not connected to the merged main object.

6. Return to step 4 until all candidate objects have been merged.

4.5.2 Time-Complexity Analysis of the FRIS Algorithm

As with GFRIS, a computational complexity of the FRIS algorithm is presented by applying a

series of lemmas. In order to calculate the degree of surroundedness, firstly the boundary, i.e the

convex hull of the main object, needs to be computed and secondly a decision needs to be made as

to whether a particular pixel lies inside the convex hull. The first pair of lemmas consider the

former.

Lemma 4.1 [1511: The convex hull of n pixels can be computed in O(n log w)time. •

Lemma 4.2: Consider a region of n pixels whose height and width are of O\y[nj. The convex

hull of this region can be computed in O(n)time.

Proof: The region can have at most 4xO\Jn)=O\<Jn) boundary pixels and these boundary

pixels can be found for both the average and worst cases in <?(w)time. The convex hull of the

region can now be computed using only the boundary pixels in O\Jn log^w)), so that the total

time required to construct the convex hull is O(n)+O\Jn log Vwj = O(n). •
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The next is to calculate the computational complexity for deciding whether a pixel lies inside

the convex hull of the main object i.e. the convex polygon. This is defined using the following

lemma: -

Lemma 4.3 [151]: The decision as to whether a pixel lies inside the convex polygon having

N vertices can be determined in O(log//)time. •

Lemma 4.4: The decision as to whether a pixel lies inside the convex hull of a region of n

pixels, whose height and width are of O\Jn), can be determined in C?(log->/« Jtime.

Proof: In the proof for Lemma 4.2, it was shown that such a region has a maximum of O\ynj

boundary pixels and hence the convex hull of that region will be a polygon, of at most O\Jn)

vertices. Applying Lemma 4.3, the decision can therefore be made in (9(logvw j time. •

Let A and B be two objects (regions) whose height and width are bounded by O^y/ĵ jj and

^ w H ) respectively. By using Lemma 4.4, it can be easily shown that the number of pixels e A

that lie inside the convex hull of B can be determined in 0|j4|logW2?|] time. In the worst case, both

|^| and \B\ will be O(n), where n is the number of pixels in the image. Thus, for an image with n

pixels, the membership function for the degree of surroundedness defined in (4.1), and the two

functions (4.3) and (4.9) can computed in O(«logV«j time, while membership functions (4.2) and

(4.8), as well as function (4.4) can be computed in O(n) time.

Lemma 4.5 [160]: The connected components of a set of wpixels can be found in 0(«)time.

•

Lemma 4.6: Given n pixels in an image, the FRIS algorithm can be completed in

O(n log n) time.

Proof: Based on Lemma 4.5, step 1 of the FRIS algorithm (Section 4.5) can be performed in

O(n) time. All the membership and other functions (Section 4.3) required for steps 2 and 3 can be

computed in O(n) time, so by inference steps 2 and 3 can also be completed in O(n) time. To

evaluate the time-complexity for steps 4, 5, and 6, let Sj be the total number of surrounded objects,

and Cj be the total number of both surrounded and connected objects of other regions with the

main object of the j ' h region, where Cj <, Sj, As step 5 of the FRIS algorithm points out, after the
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merging of an object, all other objects that were previously surrounded, but not connected to the

main object, are recursively tested for connectedness and hence for merging. Step 6 confirms the

iterative nature of the algorithm for all candidate objects. Given 9t segmented regions, in the worst

case, the total number of recursions required to check for connectedness is: -

»e = I £(Sj -0 = I.\SjCj ~Cj(Cj ~l)/2] (4.10)
M ,=o

Main objects will dominate the major proportion of image pixels and even if this is relatively

small, it will be increased using the growing-up rule (Definition 4.3 in Section 4.4). The number of

objects will therefore be negligible compared with the number of pixels. All split objects may not

be surrounded by the main objects of other regions and some objects, similar to their main object,

will be prevented from merging in the algorithm (Definition 4.4), so the total number of surrounded

objects is generally less than the total number of split objects, so Cj £ Sj, which yields nc«n.

Since the maximum order of the time-complexity of the membership functions and functions in

steps 4 and 5 is (2(wlog>/nj, the time-complexity for the entire FRIS algorithm will be the

same 0(« log Vtfj, i.e.,0(«logw). •

4.6 Discussion of the Performance of the FRIS Algorithm

As with GFRIS, a qualitative example is included in this chapter to illustrate the main

advantages and problems associated with using this refinement algorithm. Overall, the FRIS

algorithm has shown significantly improved results when the initial algorithm is able to separate the

regions. The results produced by GFRIS, r = 1 and PCM for the Brodatz texture segmentation for

two regions, namely d8 (/?]) and d94 (R2) without and with the FRIS algorithm are shown in

Fig. 4.3. If the segmented result produced by GFRIS, r = 1 shown in Fig. 4.3(b) is compared with

the result produced by GFRIS, r = \ incorporating the new refinement rules (Fig. 4.3(c)), it is

visually apparent that FRIS gives an improved segmentation. This will be discussed fully in

Chapter 7.

Since FRIS is a refinement algorithm, however, its performance depends very much on the

effectiveness of the initial segmentation. If the result of the initial segmentation is poor for a region
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(object), the FRIS algorithm will produce little or no improvement for that particular region

(object).

To confirm this, the segmented result in Fig. 4.3(c) shows that PCM could not separate d8 (/?])

from d94 (R2) at all and for this reason, FRIS provided very little improvement upon the results

produced by PCM for this image, especially the d8 (/?]) region (Fig. 4.3(d)).

(a) (b) (c) (d) (e)

Fig. 4.3: An example of Brodatz texture segmentation into two regions, (b) Original Brodatz

texture (d8 and d94), (b) Segmented results produced by GFRJS, r ~ 1, (c) Segmented results

produced by GFRIS, /- = lwith using FRIS, ;d) Segmented results produced by PCM, (e)

Segmented results produced by PCM with using FRIS.

Thus far in the framework (Fig. 1.1), texture has not been directly considered. The GFRIS

algorithm described in Chapter 3 was unable to resolve accurately non-homogeneous regions, while

the refinement rules in FRIS are very dependent on the initial segmentation. There is dearly scope

for integrating texture into the basic GFRIS algorithm. This is the motivation behind the algorithm

that will be presented in the next chapter.

4.7 Summary

This chapter has shown that the characteristics of both connectedness and surroundedness are

not only very important in providing high-level visual features, but also can pl.iy a vital role in

reducing and eliminating segmentation errors. A new image segmentation refinement algorithm



Chapter 4 Fuzzy Rules for Image Segmentation: A Refinement Algorithm 77

called, Juzzy rule-based refinement algorithm (FRIS) has been presented that exploits the principles

of connectedness, surroundedness, uniformity, and contrast properties amongst an object's pixels.

Objects were defined as a 4-connected component of a region's pixels, when splitting the regions

into objects to avoid weak connections between objects. During the merging however, 8-

connectedness was used to explore all possible connections. A set of fuzzy rules covering the

growing of a small main object, preventing similar siblings from merging with other main objects,

and selecting the best surrounding main object were defined in this new algorithm. The growing

and prevention rules handled a disconnected object if there existed some similarity based on

uniformity and contrast between the different components of that object. The algorithm was tested

using a wide variety of images types containing different numbers of regions.

The time complexity of the new algorithm was analysed and shown to be wlogw. The initial

segmentation can be performed using any suitable standard segmentation algorithm.

The FRIS algorithm produced significant improvement, however, it depends very much on the

initial segmentation (see Section 4.5). As mentioned in Section 3.5, GFRIS could not produce good

results for non-homogeneous region and does not directly consider texture. In this context, it needs

to develop the original GFRIS algorithm by incorporating texture, which will be fully explained in

the next chapter.



Chapter 5

Fuzzy Rule for Image Segmentation Incorporating
Texture Features

Section 4.6 has shown that the segmentation performance of the FRIS algorithm depends very

much on the initial segmentation. The generic fuzzy rule-based image segmentation (GFRIS)

algorithm does not produce good results for images containing non-homogeneous regions (see

Section 3.5). This means it does not directly consider texture, however, texture is one of the most

important attributes of any image. It represents the structural arrangement of the surfaces as well as

the relations among them and is widely used in image segmentation [131]. Most natural images

contain textures, some examples of which include the Brodatz (dl2) and background textures given

in Fig. 5.1.

(a) (b)

Fig. 5.1: Examples of textural images, (a) Brodatz texture (d 12), (b) Background texture.

It needs to be emphasised that this chapter deals with a very challenging task, incorporating

te.\ture together with spatial relations. This is however, a fundamental contradiction since texture

direct!y opposes spatial relations. The latter as has been highlighted in Chapter 3, is usually

78
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measured based on the principles of proximity and good continuation, while texture clearly is not.

For this reason, the variation amongst neighbourhood pixels must be controlled and kept within a

limit using a threshold for spatial relations. If the variation exceeds this limit for a pixel, it will not

be considered a neighbourhood of the candidate pixel. Using this rationale, highly textural surfaces,

which exhibit sharp variations that oppose the principle of spatial relations defined in Section 3.1.3,

can therefore still be considered and membership functions that represent texture can be integrated

in the fuzzy rule-based framework.

In this chapter a new algorithm called fuzzy rule for image segmentation incorporating texture

features (FRIST) is proposed, which includes two additional membership functions to those already

defined in the framework (Block 1 in Fig. 1.1). FRIST (Block 3 in Fig. 1.1) incorporates the fractal

dimension (FD) and contrast features of a texture by considering image domain specific

information. Quantitative evaluation of the performance of FRIST will be discussed and contrasted

with GFRIS in Chapter 7.

This chapter is organised as follows: Section 5.1 briefly describes the fractal dimension and the

differential box-counting method. In Section 5.2, the membership functions used in the FRIST

algorithm are described. The definition of the fuzzy rule, and also the determination of the

weighting factors are presented in Sections 5.3 and 5.4 respectively. The FRIST algorithm as well

as its time-complexity analysis is given in Section 5.5. The performance of the FRIST algorithm is

discussed in Section 5.6.

5.1 Fractal Dimension Representation

A set whose Hausdoiff-Besicovitch dimension is strictly greater than its topological dimension

is called a fractal set [161], The central notion of fractal is the concept of self-similarity, which is

used in estimating the fractal dimension. A self-similar set (/I) is the union of NT mutually

exclusive copies of itself that are similar to A and scaled down by a ratio r where r <1. The FD

of A can then be defined as,

(5.1)
iog(l/r)

Most natural objects are full of textures, which are very complex and erratic in nature and

cannot be readily approximated using classical geometry. Fractal dimension (FD) has been chosen

to describe these high degrees of irregularity and complex behaviour of the surface of the natural
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objects [134] because as described in Section 2.3, it offers scale insensitive and uniform surface

behaviour. In describing such erratic behaviour of objects, it is very important to consider the

domain specific information of that object for image segmentation, which will be discussed shortly.

A brief overview of texture representation and the rationale of choosing fractal dimension to

estimate the texture have already been presented in Section 2.3. FD can be derived in a variety of

ways but the motivation in this research is to use an efficient differential box-counting (DBC)

method as it is faster and more efficient than other methods [131] and is suitable for incorporating

image domain specific information.

5.1.1 Differential Box Counting (DBC) Method

The estimation of FD using the DBC method [134] is described as follows: -

Image Intensity Surface

Fig. 5.2: Estimation of «T using the DBC method [162].

For an image of size MxM to be scaled down to a size of xxx where 2 ^ x <, [_M/2j, the

ratio of scale down is r = xlM . The image is then extended into 3-D space by introducing a 3rd co-

ordinate for the 8-bit gray level intensity of 256 levels. If the image is partitioned into grids of size

xxx, then each grid will comprise a column of boxes of size xxxxx shown in Fig. 5.2, which

implies [256/x 1= [ivf/*_]. If the maximum and minimum gray level values in the (M,v)rtgrid are
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in the llhand k'h boxes, the thickness of the blanket (surface variations) covering the image surface

on the grid (w,v) is:-

nT(u,v) = l- (5.2)

Since the blanket effectively describes the surface variations of the image, the smaller the size

of the grid, the greater their number and the finer the variations of the surface though of course this

ccnswnensurately increases computational complexity. For the example, in Fig. 5.2, the blanket

thickness is nx (u, v) = 3 - 1 +1 = 3. The contribution from all the grids defining the blanket is: -

(5.3)

2.5 3
Log(1/t)

3.5

Fig. 5.3: Least square linear fit of \og{Nr) versus log(l/r) of the cloud image in Fig. 3.1(a).
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!

The value of Nx is calculated using different values of x. The FD can then be estimated as the

slope of the least square (LS) linear fit of log(//r) against log(l/r) using (5.1), an example of

which, for the cloud image in Fig. 3.1 (a), is shown in Fig. 5.3.

5.2 Membership Functions

The GFRIS algorithm, described in Chapter 3, uses three types of membership functions to

represent the region pixel distributions (Section 3.1.1), the closeness to their centres (Section 3.1.2),

and the spatial relations among the pixels in a particular region (Section 3.1.3). Each membership

function possesses a membership value for every region, which indicates the degree of belonging to

that particular region. FIRST incorporates two additional membership functions based on the fractal

dimension and contrast features of a texture by considering image domain specific information. A

detailed description of these new membership functions is provided in the following section.

5.2.1 Membership Functions for Fractal Dimension

Fractal dimension (FD) is used to estimate the texture in an image. To define the membership

function for fractal dimension, the fractal dimension based feature (FDF) of a candidate pixel />,, is

used. Since the DBC method has been chosen to calculate the FDF for a candidate pixel, it is

necessary to consider all the neighbourhoods around the candidate pixel in a window. The FDF of a

candidate pixel Ptl is calculated on a window Whh(s,Oof size hxh with its centre at (s,t)(see

Fig. 5.4) rather than the entire image and defined as: -

0) (5.4)

where FD(Whh(s,t)) denotes the FDF on Whh(s,i) derived using the DBC method in the following

manner. The bound of the grid size is chosen as 2<,%£\hl2\, the scale down ratio r = \jlh\ and

in order to consider the finer variations of the gray level values or the surface, x is taken as

[256 x £ I heightJ where height is the height of the image.

The value of FD(Whh(s,t)) will not be the exact fractal dimension of the window Whh(s,t)

because the height of the image is used in calculating x rather than the height of the window, h.
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Fig. 5.4: A column of boxes on the(s,/)grid in the window Whh(s,t) for

calculating the fractal dimension based feature (FDF).

Fig. 5.4 shows an example of a window Whh{s,t) together with all its grids and the column of

boxes on grid (s,t) required to calculate the FDF of the candidate pixel Ps,. Instead of considering

the log-log plot in Fig. 5.3 to reduce computational complexity, the average value of

log(// r)/log(l/r) is used to obtain the fractal dimension. The membership function fjFR (Pst) of

fractal dimension based feature for the region Rj and the pixel Pst is formulated as: -

(5.5)

where FDRRj(Psl)and FDFj(Psl)are the fractal dimension based features for the segmented

region Rj and the original image respectively, so this membership function does consider image

domain specific information for segmentation. FDFj(Psl) is determined from the ratio of the
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number of contributory and total grids during the corresponding FDFR (Psl) calculation for each

value of T.

As an example, the window Whh{s,S) shown in Fig. 5.5 is scaled down by a ratio r = l / 2 , so

the four resulting grids are represented by different colours. Some grids in the window of a

segmented region will not be filled with previously classified pixels, especially those grids

containing pixels that have already been classified into another region and that will be referenced

later. Assume that the grids containing the blue circles are already classified into a segmented

region Rj. These grids are called contributory grids for the regions Rj as only these grids will be

used in calculating the FDF for this region.

In the Fig. 5.5 example there are four grids in total and two of them are contributory, so the

ratio of the contributory grids in this example will therefore be 2/4 = 0.5. For the sake of

accuracy, it is essential that in the membership function defined in (5.5) between the region Rj and

the original image, the proportion of the FDF of the original image, for a specific value of the ratio

of the scale down, is always considered.

Fig. 5.5: Window Whh(s,t) located in a segmented region

for a specific value of the scale down ratio r = 0.5.
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5.2.2 Membership Functions for Contrast

Contrast provides the measure of the texture of an image and is measured by considering the

dynamic range of gray levels and the polarization of the distribution of black and white on the gray

level histogram. The contrast of a window Whh{s,t) in an image is calculated using the technique

described in [159]. The membership function for the contrast of the region Rj and the pixel Psl

can be defined as: -

Mc,R,Rj \Ps,t H "

contrastRj (Pst) - contrast r (Ps( )|

' ' ' " * contrastj(Psl))
(5.6)

where contrastR \Ps<t) and contrastj\Pst) represent the contrast of the portions of the segmented

region Rj and the original image covered by the window W/,f,(s,t) respectively, '^ain note that

image domain specific information is incorporated into this membership function.

5.3 Defining the Fuzzy Rule

The original fuzzy rule defined in Section 3.2 has utilised three membership functions. In this

section the fuzzy rule is heuristically defined incorporating two additional membership functions,

which relate to texture, namely FD and contrast.

The overall membership value / / ^ (Ps,t>r) of a pixel Psl for region Rj represents the overall

degree of belonging to that region, and is defined by the weighted average of the five individual

membership function values MDRJ(PSJ), /JCRJ(PSJ)> ^NRj{Ps,,^)^FRj(Psl),and MctRj{Psj)-

(5.7)

5
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where wu w2, ^ 3 , w4, and ws are the weightings of the membership values for pixel

distribution, closeness to the cluster centres, neighbourhood relations, fractal dimension, and

contrast respectively.

Definition 1—Rule: IF p^ {PSJ,r)= max {w,^ (/>,,,, r)} THEN pixel Pst belongs to region

This straightforward extension of the original fuzzy rule in Section 3.2 illustrates how new

membership functions (attributes) can be integrated and highlights one of the key advantages of the

approach adopted in this research, which is the flexibility of the framework or the fuzzy rule-based

system. As with the original rule, this new rule is also generic and thereby application and image

type independent. Further attributes or new features, such as for example, object motion in video

segmentation can easily be included into the framework. Since all of the membership functions are

independent of each other, one other interesting feature to highlight is that they each can be

implemented concurrently using a parallel algorithm.

5.4 Determining the Parameters

The weighting factors M\, W2, and w3, and threshold Tfor neighbourhood system are

automatically determined using the algorithm by Karmakar et al [6]. The other two weighting

factors w4 and w5 are approximated based on the FD of the entire image and the standard

deviations (rstd) of pixel intensities of the initially segmented regions, as follows: -

w4 = w5 = a(FD - 2) / \ar(rstd) (5.8)

where var (rstd) is the variance of the standard deviations of all segmented regions.

Since 2<,FD<,2 and 2 is the topological dimension of the 2D image, this value is deducted

from the FD thereby keeping the original contribution of the fractal within [0,1]. This ensures that

the contributions of all the weights are constrained within their limits. From the observations, it was

found that the regions having high texture suppressed regions containing less texture because they

produced higher FD values. The standard deviation approximates the texture and the variance of the

standard deviations of all regions measures the spread across the regions, that is the variability of
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the texture in those regions. In order to prevent high textured regions from suppressing the less

textured regions, the weights M>4and w5 are normalised using the variance of the standard

deviations var(rstd) of the initially segmented regions i.e. the higher the value of the \ar(rstd)

then the lower the values of the weights w4 and w5 and hence smaller their contributions to the

segmentation. This will be experimentally tested upon various image types in Chapter 7.

The following section describes the steps of the complete FRIST algorithm utilising the

membership functions (Sections 3.1 and 5.2) and the fuzzy rule defined in Section 5.3.

5.5 The FRIST Algorithm

5.5.1 The Algorithm

The detailed stages involved in the FRIST algorithm can now be formalised are as follows: -

Algorithm 5.1 FRIST

1. Classify the pixels of an image into a desired number of regions using any appropriate

clustering algorithm (Block 5 in Fig. 1.1).

2. Derive the weights and threshold value by applying the data-mining algorithm,

Algorithm 3.1 and (5.8).

3. Derive the membership function for each region pixel distribution (Section 3.1).

4. Initialise the centre of all regions required to define the membership function in Section

3.1.2, with the respective centres produced in step 1.

5. Sequentially select an unclassified pixel from the image and calculate each membership

function value in each region for that pixel.

6. Classify the pixel into a region applying the fuzzy rule defined in Section 5.3.

7. Return to step 5 until every pixel is classified.

It is important to reiterate that the FRIST algorithm considers image domain specific

information when segmenting. The reason for this is that the membership functions for both the

fractal dimension based feature (5.5) and the contrast (5.6) of a candidate pixel are developed for

each region by comparing the physical structural characteristics of the surface of the respective

segmented region with that of the original image within a window i.e. the segmentation is based on
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information directly related to the original image. If a group of pixels is close together and has

sharp variations, the membership function (3.7) for spatial relations will be ineffective, but the

membership functions (5.5) and (5.6) for texture will be effectual and vice versa. This is because

the variations among the pixel intensities are not limited by the threshold T for the membership

functions (5.5) and (5.6). In this way, the algorithm addresses the obvious contraction that has been

identified at the beginning of this chapter, between spatial relations of pixels and texture.

5.5.2 Time-Complexity Analysis of the FRIST Algorithm

Lemma 5.1: The fractal dimension (FD) using the differential box counting (DBC) method

can be computed in O(n) time for an image of n pixels.

Proof: To calculate the nT(i,j) for a grid of s\zexxy, needs O(xy) time in the worst case.

The whole image consists of — grids and hence NT can be computed in —xO(xy)=O(n) time.
xy xy

To calculate the FD using DBC method for o different values of v can be estimated in

uxO(n)= O(n) since u can be considered constant with respect to n. m

Lemma 5.2: The time complexity of the FRIST algorithm (Algorithm 5.1) is O(n) for an

image containing n pixels.

Proof: The initial segmentation can be performed in O(n) time using the FCM algorithm

(Lemma 3.2), while the membership functions defined in Section 3.1 are determined in O(n) time

(Lemmas 3.3 to 3.5). From Lemma 5.1, the membership functions of FDF and contrast for each

pixel on the window of size hxh require O[h2) time. The FRIST algorithm (Algorithm 5.1) for

the whole image can be performed in O(n)+nxO[h2)=O(n) since hcan be considered constant

with respect to n. •

Here, the order of computational time of the FRIST algorithm remains the same as the GFRIS

algorithm (Section 3.4.1) i.e.0(w), although it incurs some additional computational cost for

calculating the FD and the two related membership functions for texture, namely FDF and contrast.
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5.6 Discussion of the Performance of the FRIST Algorithm

For completeness and to present a qualitative evaluation of the potential capability of the

FRIST algorithm, the segmented results of the Brodatz texture image in Fig. 5.6(a) containing two

regions, namely d8 (R^) and d94 (R2) produced by the GFRIS and FRIST algorithms using the

neighbourhood radius r = \ are shown in Fig. 5.6. If the result (Fig. 5.6(b)) produced by GFRIS,

/• = 1 is contrasted with the result (Fig. 5.6(c)) produced by FRIST, r = 1, it is perceptually apparent

that the FRIST algorithm exhibits considerable improved segmentation results compared with the

GFRIS algorithm. FRIST correctly classified in Fig. 5.6(c) a significant number of pixels that

GFRIS misclassified in Fig. 5.6(b) for both d8 (/?,) and d94 (R2) regions. A detailed performance

analysis of the FRIST algorithm will be given in Chapter 7.

(a) (b) GFRIS, r -1 (c) FRIST, r = 1
Fig. 5.6: The segmented results of the Brodatz texture (d8 and d94) image shown in Fig. 5.6(a) into

two regions produced by GFRIS and FRIST using r = 1.

5.7 Summary

This chapter has outlined the development of a new general fuzzy rule-based image

segmentation algorithm, namely fuzzy rule for image segmentation incorporating texture features

(FRIST) by integrating fractal dimension and contrast and also considers domain specific

information about an object. The weighing factors for the membership functions for FD and

contrast have been automatically derived by considering the FD of the entire image and the

variability of the texture in all regions produced by the initial segmentation.
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The analysis of the computational complexity of the FRIST algorithm has been performed and

proven that it requires O(n) time for an image containing n pixels.

So far all of the algorithms in the framework have been developed for gray level image

segmentation. In many real world images, there exist some information of an object such as edges,

that cannot be separated using gray level information alone but that can be separated using colour

information. Colour provides more information concerning an object and hence plays an important

role in enabling the separation of an object (region) from an image, which is the main motivation to

develop a fuzzy rule-based colour image segmentation algorithm. This will be the focus of the next

chapter.



Chapter 6

A Fuzzy Rule-Based Colour Image Segmentation
Algorithm

Colour is a very common attribute of all natural and artificial objects, which contains far more

information about an object than gray level intensity [163] and plays an important role in separating

an object from its domain. There is some information about an object, such as edge, that is only

visible in the colour domain. So the greater the visual information concerning an object potentially

helps to improve the accuracy of the segmentation of that object. For these reasons, it is frequently

easier to segment a colour image than a gray level image [135]. An example of a colour image

separated into its gray level (luminance) and colour (chrominance) components is shown in

Fig. 6.1. This confirms that perceptually colour provides additional information (Fig. 6.1(b)) to the

gray level information (Fig. 6.1 (a)) of the original object crocodile shown in Fig. 6.1(c).

A brief review of fuzzy colour image segmentation techniques has been provided in

Section 2.5. To date, most fuzzy rule-based segmentation techniques are based on gray level pixel

intensity (see Section 2.2). This chapter introduces a new colour image segmentation algorithm,

namely a fuzzy rule-based colour image segmentation (FRCIS) algorithm by extending the GFRIS

algorithm described in Chapter 3, from gray level to colour and developing a new algorithm for

averaging hue angles (Block 4 in Fig. 1.1). The proposed FRCIS algorithm will be both

perceptually and numerically evaluated and compared with FCM and PCM using the HSV and

RGB colour models (see Section 2.4) in the next chapter.

This chapter is organised as follows: In Section 6.1. the membership functions used in the

FRCIS algorithm are defined. The definition of the fuzzy rule, and also the determination of the

weighting factors are presented in Sections 6.2 and 6.3 respectively. The algorithm required for

averaging the hue angles together with the operator for measuring the difference between two hue

angles is described in Section 6.4. The complete FRCIS algorithm with its time-complexity analysis

is given in Section 6.5. Finally, a qualitative performance analysis of this algorithm using the HSV

colour model is provided in Section 6.6.

91
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(c)

Fig. 6.1: An example of colour image, (a) Gray level (luminance) information, (b) Colour

(chrominance) information, (c) Original image.

6.1 Defining Membership Functions

The FRCIS algorithm uses three membership functions namely, the membership function for

region pixel distributions, the closeness to their centres, and the spatial relations among the pixels in

a particular region. These have already been fully described in Section 3.1 and are the bedrock of

the GFRIS algorithm. However, all these membership functions have been defined for only gray

level pixel intensity. In this section, these membership function definitions are extended for each

colour component of each region. As mentioned in Section 2.4, each colour is represented by a

point within the colour space of a 3D-coodinate system, so each colour will have three components.

All of the membership functions for each colour component are defined in the following sections.

6.1.1 Membership Function for Region Pixel Distributions

As alluded above, a detailed description of this membership function has been provided in

Section3.1.1. The membership function for the pixel distribution of region Rj, pDjR (Psl) of a

pixel with a gray level value of Psl at location (5,/) for the i'h colour component can be defined

as: -
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(6.1)

where fiR.{Ps<t) is the polynomial for the i'h colour component of region Rj and /e{l,...,

where <j> is the number of components for a particular colour model, i.e. <j> = 3 for HSV, though in

certain cases it may not be equal to 3.

6.1.2 Membership Function to Measure the Closeness of a Region

The definition of this particular membership function differs slightly from the definition

presented in Section 3.1.2. This is because it uses a normalised difference with respect to the

maximum value of the candidate pixel Psl and the respective centre C,(/?y) of a region Rj, instead

of fixed value (2* - lj where b-bit gray levels or colour components are presumed. The

membership function for the closeness to a region Rj, //qR (Psl) of a candidate pixel Pst for the

/'* colour component is defined as: -

(6.2)

where Ci\Rj) is the centre of the ith colour component of region Rj. This membership function

considers more accurately the human visual perception than (3.5) in the GFRIS algorithm. For

example, if the difference i.e. |c,(/?,•)-/>,,I is the same for a luminance component for two

regions, namely Rt and R2, the membership function (3.5) will generate exactly the samr • dlue for

both regions. However, the new membership function (6.2) will produce a different value thereby

reducing the inclination towards the less bright region.

To illustrate this, let the values of the centres of regions Rl and R2 for a luminance component

be 60 and 200 respectively. If a candidate pixel value is 130, the difference

|60 -130| = |200 -130| = 70 is the same for the two regions. It is essential to determine which region

would be more appropriate for this pixel. Perceptually 130 is closer to region R2 than /?j because

R2 possesses a lower percentage difference. The ratio of the difference for region Rx is

|60-13|/max(60,130)=7/13, while it is |200-130|/max(200,13 )r-7/20 for R2 where
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7/20 < 7/13. The corresponding values of the membership function (6.2) for this example for

regions /?, and R2 are (1-7/13) = 6/13 = 0.46 and (1-7/20) = 13/20 = 0.65 respectively. Since

the value of the membership function for R2 is greater than that of Rx, (6.2) conforms more to

human visual perception, which was the main reasoning for defining this membership function.

While the above example only considered the luminance component, it can also be extended to

include the chrominance components.

6.1.3 Membership Functions for Spatial Relation

The membership function for spatial relation between the pixels of the i'h colour component of

a region Rj, nNfR {Ps>,,r) for the neighbourhood radius r is defined as: -

*G« ) (6.3)

where Ny and G^ are respectively the number of neighbours and the sum of the inverse distances

of the \thcolour component of a region .K,- from the candidate pixel Pst. 9?is the number of

segmented regions.

6.2 Defining the Fuzzy Rule

In contrast to the fuzzy rule defined in Section 3.2 for only one component (gray level pixel

intensity), in this section a fuzzy rule is heuristicaily defined for all three colour components.

The overall membership value ju^ (PSJ,r) of a pixel Pst for a region Rj represents the

overall degree of belonging to that region for ail colour components. This is defined by the

weighted average of all membership functions for all colour components nDR (PStl), MCR (Pst)>

iRj (Ps,t) + t WliVcfij fas ) + f WliMNflj (?s,t,
(6.4)
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where wli,w2i, andw3lare the weightings of the membership vai-j;? of i'h colour component for

pixel distribution, closeness to the cluster centres, and neighbourhood relations respectively.

Definition 6.1—Rule: TBHAR ipst^r)- maxl",i/?, (pst>r)} THEN pixel Fst belongs to region
J ' l£/s3R ' ' '

!"'•»

As in Section 3.2, this rule is general enough to ensure that this algorithm is both application

and image independent. The effectiveness of this rule will be assessed using one of the perceptual

colour models (HSV) and the basic colour model (RGB) in Chapter 7.

6.3 Determining the Weighting Factors and the Threshold

The data mining Algorithm 3.1, which was articulated in Section 3.3, is extended to incorporate

colour components and determine the weighting factors wu, w2i, and w3i, and threshold 7}. The

spatial relationship weighting factors wM and w32for the hue and saturation colour components of

the HSV colour model were empirically chosen as 0.2. The reason for the low value of both

parameters is that hue denotes the dominant colour and already represents spatial relations by

suppressing the minor variations of a colour, while saturation represents the relative colour purity,

that is the whiteness of hue [136].

6.4 Arithmetic Operators for Hue in the HSV Colour Model

The hue in the HSV colour model represents the dominant wavelength of the colour stimulus.

The HSV colour model is represented by a cone shown in Fig. 2.20, where the hue is the angle of

each colour within the cone starting from 0 point on the x-axis [164]. Hue angles are used in

calculating the membership functions defined in Sections 6.1.2 and 6.1.3 and automatically deriving

the key weighting factors and thresholds described in Section 6.3 for the hue component of the

HSV colour model. Since hue is expressed in angles, the arithmetic operations for Cartesian

coordinates are not suitable for hue and as mentioned in Section 2.4.2 this leads to some difficulties

when applying certain arithmetic operations on hue angles e.g. averaging. The definition of the

difference between two hue angles //] and ^ where both h{ and h2 are bounded in the range the

[0, 2K] and the formula for calculating the average of n hue angles are given as follows: -
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Definition 6.2—Difference Between Two Angles: The difference between two hue angles

/jj and h2, diff{hx,h2)is defined as: -

diff(hx,h2)=m\n(\hx - (6.5)

As mentioned in Section 3.1.2, when a candidate pixel joins its nearest region, the centre of that

particular region is recomputed. The rationale behind recomputing the centre of a region, which

considers the previous values of the centre and its candidate pixels, is best understood using an

analogy from basic force analysis.

Let the initial hue value of the centre of a particular region be hx shown in Fig. 6.2. If the

saturation is assumed as 1, this can be considered a unit force Fx with direction hx. If a candidate

pixel h2 joins this region, this can be regarded as a unit force F2 with direction h2 . The resultant

force of Fx and F2, namely R} and resultant hue angle i//x of hx and h2 shown in Fig. 6.2 are

computed using the force analysis technique, which will be formalised in Algorithm 6.1. Note, that

the magnitude of Rx may not be unity. If another candidate pixel h3 with unit force F3 joins this

region, the resultant force of Rx and F3, namely R2 and resultant hue angle y 2 °f V\ a n^ h3
 c a n

also be calculated in exactly the same way. Therefore, y/2 is the average angle of hx, h2, and h3. A

similar process is applied to recalculate the centre of this region for all candidate pixels that join

this region.

This process can be formalised as follows: -

1. The initial value of the centre of a region and the first candidate pixel are

considered two angles of unit force, since the respective saturation values are

always one.

2. The resultant angle of the two forces (the initial value of the centre and the

candidate pixel; is regarded as the current value of the centre.

3. When another candidate pixel joins this region, the resultant force (angle and

magnitude) for the current centre and the force for the candidate pixel are used to

recalculate the centre of this region. This process is repeated for all candidate pixels

that join this particular region.
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X

Fig. 6.2: Resultant (average) hue angle y/2 of h{, h2, and h3

X

Fig. 6.3: The sign of X and Y components of the resultant force.

The actual magnitude of the resultant angle depends on the sign of both the X and Y

components of the resultant force because of the n radians periodicity of the tangent function

shown in Fig. 6.3. This means that the resultant angle will be in first, second, third, and fourth

quadrant depending on the respective signs of the X and Y components.

The algorithm for calculating the average angle of two hue angles based on force analysis is

formalised as follows: -
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Algorithm 6.1 Calculation of the average of two hue angles

Precondition: Two hue angles hx and h2 with magnitudes F] and F2 of the forces Fx and F2

respectively.

Postcondition: Resultant direction y/ (average angle) and magnitude Rof the force R.

1. Calculate the X and Y components of the resultant force R.

Rx = Fx cos(//,) + F2 cos(/»2)

Ry = Fj sin(/»,) + F2 sin(/j2 )

2. Compute the magnitude of the resultant force R. If it is zero, mark the resultant angle y/ as

undefined by setting its value as -1 and go to step 4.

IF (/? = 0) THEN

GOTO step 4

3. Determine the resultant direction (average angle).

-i Ry

v V

IF fc
IF (/?,<()) THEN

y/ = 2K - y/

ELSE

IF ( ^ > 0 ) T H E N

ELSE

4. STOP
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All those pixel values, for which the average angle becomes undefined are blocked from the

process for modification of each region centre in Section 6.1.2.

6.5 The FRCIS Algorithm

Many of the steps of the FRCIS algorithm are the same as the GFRIS algorithm in

Algorithm 3.2, described in Section 3.4. There are however some subtle differences in certain the

stages of processing, so for completeness, the entire FRCIS algorithm is formalised in

Algorithm 6.2.

Algorithm 6.2 FRCIS

1. This step is same as Algorithm 3.2, however the initial segmentation uses (6.5) to calculate

the distance between two hue angles for the HSV colour model.

2. Derive the weighting factors and threshold values by applying the data-mining

Algorithm 3.1 and the membership function for each region pixel distribution for each

colour component (Section 6.1.1). This step again uses (6.5) for the hue component in the

HSV colour model.

3. Initialise the centre of all regions for each colour component required to define the

membership function in Section 6.1.2, with the respective centres produced in step 1.

4. Sequentially select an unclassified pixel from the image and calculate the membership

function value for each colour component in each region for that pixel. This step uses (6.5)

and Algorithm 6.1 for the hue component of the HSV colour model.

5. Classify the pixel into a region applying the fuzzy rule (Definition 6.2).

6. Return to step 4 until every pixel is classified.

It is important to reiterate that as with GFRIS, this algorithm is image and application

independent. The time complexity of this algorithm is described using the following lemma.

Lemma 6.1: The computational complexity of the FRCIS algorithm is O(ri) for an image

containing n pixels.

Proof: For a specific colour component, the time complexity for the FRCIS algorithm

(Algorithm 6.2) is same as the GFRIS algorithm (Algorithm 3.2) assuming the same initial
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segmentation. This is because the computational time of the membership functions defined in

Section 6.1 is the same as those defined in Section 3.1 for a particular colour component. Although

steps 2 and 4 of Algorithm 6.2 uses (6.5) and step 4 also uses Algorithm 6.1 for the hue component

of the HSV colour model, these do not change the order of the computational time. The

computational time complexity of the FRCIS algorithm is greater than the GFRIS algorithm

because three colour components are considered, so the order of time complexity of the FRCIS

algorithm is three times of that of the GFRIS algorithm, i.e. 3 x O(ri) = 0{n) (see Section 3.4.2)

where n is the total number of pixels of an image. •

6.6 Discussion of the Performance of the FRCIS algorithm

As in other chapters, a representative sample of the performance of this algorithm in

segmenting the cloud image in Fig. 6.4(a) for two regions, namely the cloud (/?[) and urban scene

(R2) produced by the FRCIS using r = 1, FCM, and PCM algorithms using the HSV colour model

is shown in Fig. 6.4.

(a) (b) FRCIS, r = 1 (c) FCM (d) PCM
Fig. 6.4: The segmented results of the cloud image in (a) into two regions for the HSV colour

model produced by the FRCIS using r = 1, FCM, and PCM algorithms.

The segmented results shown in Fig. 6.4(b) visually confirm that FRCIS using r = 1, separated

almost the entire cloud (/?,) region from the urban scene (R2)- It also exhibits considerable

improvement over both the FCM and PCM algorithms (Fig. 6.4(c) and 6.4(d)) with FCM again

produced better results especially for the cloud (/?,) region than PCM. An extensive performance

analysis of this algorithm will be presented in the next chapter using both the HSV and RGB colour

models.

6.7 Summary

Colour is an additional attribute of an object, which leads to more appealing and easy

interpretation of the object. There are some edges of an object that are only visible in the colour
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domain. In this chapter, a new fuzzy rule-based colour image segmentation algorithm called FRCIS

has been proposed by extending the original gray level fuzzy rule-based image segmentation

algorithm GFRIS described in Chapter 3. The difference operator and an algorithm for calculating

the average of hue components of the HSV colour model have been defined.

The computational complexity of the FRCIS algorithm is also the same as the GFRIS algorithm

i.e. O(n) for an image containing n pixels.

Numerical evaluation of this algorithm using one of the perceptual colour modeiii, namely HSV

and the basic colour model RGB will be performed in the next chapter.



Chapter 7

Experimental Results and Discussions

In this chapter, the performance of all the various constituent blocks in the fuzzy rule-based

image segmentation framework shown in Fig. 1.1 is analysed and discussed. The GFRIS (Block 1),

FRIS (Block 2), FRIST (Block 3), and FRCIS (Block 4) algorithms are applied to a wide range of

real images containing different features and number of objects/regions (Block 6). The results

produced by the proposed algorithms are compared with those obtained using FCM and PCM, and a

numerical evaluation is undertaken using the two powerful objective and quantitative segmentation

evaluation methods, namely discrepancy based on the number of mis-segmented pixels and

discrepancy based on the number of objects in the image. A statistical significance test, called the

sign test, is also applied to determine the worthiness of any improvement in each segmentation

algorithm's performance. All algorithms including FCM and PCM were implemented using

MATLAB version 6.0.

This chapter is organised as follows: In Section 7.1, the segmentation evaluation methods used

in the experiments are described. The statistical significance test (sign test), the image database and

manually segmented reference images, and the parameter settings are presented in Sections 7.2, 7.3,

and 7.4 respectively. The performance analysis of the GFRIS, FRIS, FRIST, and FRCIS algorithms

are given in Sections 7.5, 7.6, 7.7, and 7.8 respectively. Finally, some general issues relating to the

framework are discussed in Section 7.9.

7.1 Segmentation Evaluation Methods

Segmentation evaluation methods can be generally categorised into the following two classes

[165]:-

1. Analytical methods

2. Empirical methods

102

q. . i v
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Analytical methods directly assess the segmentation algorithms by examining their principles,

requirements, utilities, and complexity, while empirical methods indirectly evaluate the results of

the segmentation algorithms based on some test images and by measuring the quality of the

segmented results. Empirical methods are generally divided into two classes: goodness and

discrepancy. Goodness methods appraise the performance of a segmentation algorithm by

determining the quality of the results based on primarily some predefined goodness parameters such

as entropy and gray-level uniformity. Discrepancy based methods judge the segmentation

performance by calculating the disparity between the segmentation results and the corresponding

ideal or expected results (reference images). It has been experimentally shown that generally,

discrepancy methods are more powerful than other methods [165]. In this chapter, the numerical

evaluation of each segmentation algorithm in the framework (Fig. 1.1) is performed based on two

powerful discrepancy methods, namely: -

1. Discrepancy based on the number of mis-segmented pixels.

2. Discrepancy based on the number of objects in the image.

These are discussed in the following sections.

7.1.1 Discrepancy Based on the Number of Mis-segmented Pixels

This measures the percentage error of misclassified pixels due to the segmentation. The

confusion matrix C is a 9? by 9? square matrix, where 9t is the number of segmented regions and

Cj, denotes the number of f region pixels that are wrongly classified in region / by the

segmentation algorithm. Two error measures Type I, errorl, and Type II, errorll,, are defined as

performance measures [165, 166] as follows: -

errorl / =
9?

xlOO (7.1)

errorll) =
( SR

•xlOO (7.2)
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Type I, errorlj gives the percentage error of ith region pixels that are not classified in the /'*

region, whereas Type II, errorll,, is the percentage error of all other region pixels wrongly

classified in the ith region. For the case of 5R = 2 (two regions), the error rates (7.1) and (7.2) for

one region will therefore be the reverse of those of the other region.

7.1.2 Discrepancy Based on the Number of Objects in the Image

The total number of objects in any region of a segmented image should be equal to that in the

respective region of the reference image where ideal segmentation is assumed. Any discrepancy in

the number of objects between the segmented and reference images leads to poorer results. Let Sf

and Rt be the respective number of objects in the /"' region of the segmented and reference

images. The probability that both £, and Rt are taken from the same distribution that is used to

measure the object-count-agreement (OCA) is defined as [165,167]: -

POCA = \ 1
(7.3)

where r) = SR-l and T(.)are the degrees of freedom and the gamma function respectively. The

value of C, is determined from the following: -

QxR,
(7.4)

where 0 is the correlation parameter. This evaluation is important because for example, the

principle behind the refinement algorithm described in Chapter 4 if, fundamentally based upon

splitting and merging of region objects. Every segmented and reference region is split into objects

using 8-connected neighbourhood for the purpose of this evaluation. The reason for using 8-

connected instead of 4-connected neighbourhood is to find as many as possible perceptually

meaningful objects by considering all weak connections between the pixels.

7.2 Statistical Significance Test

To determine whether or not the results of one algorithm provided a significant improvement,

i.e. positive differences over the other, a statistical significance test was applied. The sign test has
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been extensively used to measure the differences between related samples, considering as it does,

only the direction and not the magnitude of any differences [168]. The sign test is appropriate for

determining the differences between two segmentation results for the same image or a region

produced by two different algorithms, since it only checks whether a pixel has been correctly

classified or not. If Ax and A2 are two algorithms, the null hypothesis A\ is not better than A2 can

be assessed based on the classification of each pixel of an image, by applying the truth table in

Table 7.1.

Table 7.1: Truth table for Al is better than A 2 .

Ax A2 Al is better than A2

Correct
Correct

Incorrect
Incorrect

Incorrect
Correct
Correct

Incorrect

+
X

Correct and Incorrect respectively denote the classification of a pixel,
either by algorithm ^ or J42 ; x means dont care.

If the number of plus signs is considerably greater than the minus signs, the sign test detects a

significant difference using the equation for the z value defined in [168] and hence the null

hypothesis is rejected. This z value yields the significance level of the differences from the table of

the standard normal curve. Note, that the sign test is only performed on the Type I error since it

only considers correctly classified pixels for a particular region and not those pixels from other

regions that are misclassified into that region, which is what the Type II error in (7.2) measures.

7.3 Image Database and Manually Segmented Reference Images

The image database used throughout the evaluation comprised 18 different natural images

consisting of two (9), three (8) and five (1) regions. The images were collected from the IMSI*,

Brodatz album*, and the Internet. In order to fully evaluate the performance and potential of the

GFRIS, FFIS, FRIST, and FRCIS algorithms, these different natural 18 images were selected

because they possessed a range of disparate features such as homogeneous and non-homogeneous

regions, low pixel contrast regions, perceptually distinct region*, ;?';TLr,,. <• «ypes of natural objects,

Brodatz textures, and colours.

* IMSI's Master Photo Collection, 1895 Francisco Blvd. East \?
* Brodatz Textures, http://www.ux.his.no/~tranden/brodatz.ht ••:*.

, USA.
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Ri

(m) (n) (o) (p)

Fig. 7.1: A sample of original and their manually segmented reference images, (a) and (b) The

cloud and its reference image (2 regions), (c) and (d) The Brodatz texture (d8 and d94) and its

reference image (2 regions), (e) and (f) The forest and its reference image (3 regions), (g) and (h)

The hill and its reference image (3 regions), (i) and 0) The food and its reference image (5

regions), (k) and (1) The gorilla and its reference image (3 regions), (m) and (n) The crocodile and

its reference image (2 regions), (o) and (p) The fish and its reference image (3 regions).

As mentioned in Section 4.2.3, for the sake of the numerical evaluation and the connectedness

property, all zero pixel values were pre-processed by adding 5 to each of them before applying any
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of the segmentation algorithms. This has not effect upon the visual perception of the images [84].

A representative sample of these and their manually segmented reference images are shown in

Fig. 7.1. The remainder of the images are included in Appendix B.

7.4 Setting the Framework Parameters

For the implementation of all algorithms in the framework (Fig. 1.1) as well as the PCM and

FCM algorithms, the derivation of key algorithm parameter values were as follows: -

For FCM, initialisation of the cluster centre was performed randomly. The maximum number of

iterations, the minimum level of improvement, and the value of the fuzzifier (m) were empirically

selected as 100, 0.00001 and 2, respectively. Note, that the threshold (the maximum level of

improvement) was chosen as 0.00001, which is a very small value and sufficient to ensure good

convergence. FCM converged at this threshold in all our experiments with the number of iterations,

always being less than the maximum number of iterations i.e. 100.

For PCM, initialisation of the cluster centres used the output of FCM. The value of the scale

parameter nt was taken as the variance of the cluster / produced by FCM. The maximum number

of iterations, minimum level of improvement and value of fuzzifier (m) were empirically chosen as

200, 0.00001 and 1.5, respectively. The maximum number of iterations was chosen to be greater

than for FCM (100) as PCM took more iterations than FCM to converge. The approach adopted to

set the values of the threshold and the maximum number of iterations for PCM was exactly the

same as FCM.

For GFRIS, FRIST, and FRCIS, the membership function for region pixel distribution

MDRji^sj) w a s developed using the clusters produced by the initial segmentation results using the

fuzzy c-means (FCM) algorithm [80]. The centre values were used to initialise the centres of the

clusters required to define the membership function for the closeness of a region. The respective

weighting and threshold values were automatically data-mined by the algorithm delineated in [6],

using the arbitrary constant K = 0.25. The neighbourhood radius (r) was taken as 1, 2, and 4, with

the size of the window Whh (s, 0 used in the FRIST algorithm (see Section 5.2.1) being 4x4 pixels.

In FRIS, the values of the three thresholds £ . \ , and A? were empirically selected as 0.8,0.7,

and 0.9 respectively. The dependency of the overall segmentation performance to slight variations

in the values of these three parameters has proven to be negligible. The values of % w e r e

intuitively chosen as 1 and 0.8 for the growing up and preventive rules respectively.
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In the numerical segmentation evaluation, namely discrepancy based on the number of objects

in the image described in Section 7.1.2, the value of the correlation parameter 9 was empirically

selected as 200.

7.5 Performance Analysis of the GFRIS Algorithm

While some sample preliminary results of the GFRIS algorithm were included in Section 3.5,

this section provides a comp?ete analysis and evaluation of this algorithm. The segmentations were

performed using eight different gray level images containing two regions. A representative sample

of the segmented results of the two images in Fig. 7.1 (a) and 7.1 (c) for the two regions, cloud {Rx)

and urban scene (R2) of the cloud image and d8 (R^) and d94 (R2) of the Brodatz texture

produced by GFRIS, FCM, and PCM respectively are shown in Fig. 7.2 and 7.3. The segmentation

results for the remaining six images shown in Fig. B. 1, are included in Fig. C. 1 (Appendix C).

(a) GFRIS, r = l (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d)FCM (e)PCM

Fig. 7.2: The segmented results of the cloud image in Fig. 7.1 (a) into two regions using the GFRIS,

FCM, and PCM algorithms.

The results confirm that GFRIS separated almost the entire cloud (Rt) and Brodatz texture d8

(/?,) regions from the urban scene (R2) and Brodatz texture d94 (R2) regions respectively. It

produced significantly better results than both FCM and PCM for these two as well as the other six

images shown in Fig. B.I. FCM and PCM gave approximately equal performance for the cloud

image (Fig. 7.1(a)), since as alluded earlier, both algorithms do not consider the spatial relationships

between the pixels in each region, while PCM could not separate the Brodatz texture regions at all

(Fig. 7.3(e)). GFRIS also exhibited better results for larger values of neighbourhood radius r

(Fig. 7.2(b) and 7.2(c), and Fig. 7.3(b) and 7.3(c)), since the region pixels in both the cloud (/?,)

and Brodatz texture d8 (R\) possess strong spatial correlation. Evaluation of the segmentation

results for the cloud and Brodatz texture images, compared with the manually segmented reference

images in Fig. 7.1 (a) and 7.1(c), are shown in Table 7.2 with the results for other images shown in
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Table D.I (Appendix D). Note, that only the error rates for the segmented cloud (/?,) and Brodatz

texture d8 (Rx) regions are displayed in Table 7.2, since as explained in Section 7.1.1 for two

regions, the error rate of one region will be the reverse of the other region. The shaded entries

correspond to the best GFRIS results. While GFRIS provided particularly good performance in

segmenting the cloud (/?]) and Brodatz texture d8 (i?j) regions, it is worth noting that the error

rates of GFRIS for the Type II error of the cloud (/?])and Brodatz texture d8 (/?]) regions

respectively were higher than those for both PCM and FCM. This was because not all the pixels in

these regions possessed good continuation due to the abrupt changes in the Brodatz texture d94

{R2) region as well as in the urban scene (^2)- The urban scene for instance does not constitute a

single object and so opposes the necessary condition for good inter-pixel relationships. This issue

has been addressed by the refinement (FRIS) algorithm described in Chapter 4 and will be analysed

further in Section 7.6.

(a) GFRIS, r = l (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d)FCM (e)PCM

Fig. 7.3: The segmented results of the Brodatz texture image (d8 and d94) in Fig. 7.1(c) into two

regions using the GFRIS, FCM, and PCM algorithms.

The average GFRIS error rates (the average of Type I and Type II errors) with respect to the

corresponding manually segmented reference regions are plotted in Fig. 7.4 for the Brodatz texture,

the cloud, and an average of all eight sample images. This shows that GFRIS performed

significantly better than both FCM and PCM for each value of the neighbourhood radius r. The

overall error improvements for GFRIS were 35.1% and 51.5% over FCM and PCM respectively for

the eight images. Note, that the overall average error for GFRIS was calculated considering all
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values of the neighbourhood radius r . Unless otherwise stated, this will hold for the remainder of

this chapter.

Table 7.2: Error percentages for the cloud fa) and Brodatz texture d8 fa) regions of the cloud
(Fig. 7.1 (a)) and Brodatz texture (Fig. 7.1(c)) image segmentations respectively using the GFRIS,
FCM, and PCM algorithms.

Cloud (/^Region Brodatz Texture d8 (#,) Region

Algorithm
GFRIS r=\ ! § |
GFRIS 7=2 H
GFRIS r=A H I
FCM
PCM

Type I

•iiiiliil
28.0000
26.8939

Type II
17.0513 wm
21.2500 1 1 1
23.6218 i H
15.7372
16.3141

Ty

llllllllil

el

1I
29.920
96.089

Type II
13.991
14.542
13.600
13.156
10.044

65 -i

55-

§ 4 5 -
UJ
& 35-
2
• 25-
<C

15 -

/

/

GFRIS, GFRIS, GFRIS, FCM PCM
r=1 r=2 r=4

Algorithm

—•— Brodatz

-»--Cloud

Avg..8_lmages

Fig. 7.4: Average error rates of GFRIS, FCM, and PCM for the Fig. 7.1 (a) and 7.1 (c),

and average of the eight image segmentations.

Another evaluation was conducted utilising the method of discrepancy based on the number of

objects for all eight images. The probabilities of object-count-agreement (OCA) for each algorithm

for the cloud and Brodatz texture images are given in Fig. 7.5, while the probabilities of OCA for

the algorithms applied to other images are given in Table D.I. The probabilities of OCA for the

GFRIS algorithm were much better (overall 35.9% and 41.6% for the eight images) than those for

the FCM and PCM algorithms, which represent far better agreement between the number of objects

in the segmented and the corresponding reference regions.



Chapter 7 Experimental Results and Discussions 111

0.80-1

< 0.70

2 0.60 H
o

I" 0.50 -
« 0.40-

IX

£ 0.30-

0.20

-Brodatz

-Cloud

A«L8_lmages

GFRIS, GFRIS, GFRIS, FCM
r=1 r=2 r=4

Algorithm

PCM

Fig. 7.5: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM for

the Fig. 7.1 (a) and 7.1(c), and an average of the eight image segmentations.

Table 7.3: The overall
Fig. 7.1 (a).

Algorithm

GFRIS r=l
GFRIS r=2
GFRIS r=4
PCM
GFRIS r=l
GFRIS r=2
GFRIS r=4
FCM
GFRIS r=\ with FRIS
GFRIS r=2 with FRIS
GFRIS r=4 with FRIS
FCM with FRIS
PCM with FRIS
FRIST r=l
FRIST r=2
FRIST r=4

results of the statistical significance test, sign

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

GFRIS r=l
GFRIS r=2
GFRIS r=4

FCM
PCM

GFRIS r=l
GFRIS r=2
GFRIS r=4

Percentage
of + Pixels

10.715
13.393
13.483
0.553

10.250
12.936
12.986

0.288
3.285
3.654
2.772
3.032
3.220
6.426
8.542
9.792

Percentage
of - Pixels

1.03S
3.013
4.327
0.288
0.838
2.821
4.094
0.553
0.000
0.000
0.000
0.000
0.008
1.758
3.721
2.742

test for the

Z Value

-34.610
-35.459
-32.950
-5.661

-34.106
-34.929
-32.398
-5.661

-14.248
-15.033
-13.077
-13.893
-14.037
-7.131
-1.345
-7.951

cloud image in

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

0.0893
Beyond 0.0001

A further quantitative evaluation was conducted using the statistical significance test called the

sign test. The results of this test are presented in Tables 7.3 and 7.4, which again demonstrate that

GFRIS accomplished significant progress over both FCM and PCM for both images at a

significance level beyond 0.0001, that is 0.01%, which is a very high significance indeed.
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Table 7.4: The overall results of the statistical significance test, sign test for the Brodatz image in
Fig. 7.1(c).

Algorithm Ref. Algorithm Percentage
of + Pixels

Percentage
of - Pixels

Z Value Significance
Level

GFRIS r=l
GFRIS r=2
GFRIS r=4
PCM
GFRIS r=l
GFRIS r=2
GFRIS r=4
FCM
GFRIS r=l with FRIS
GFRIS r=2 with FRIS
GFRIS r=4 with FRIS
FCM with FRIS
PCM with FRIS
FRIST r=\
FRIST r=2
FRIST r=4

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

GFRIS r=\
GFRIS r=2
GFRIS r=A

FCM
PCM

GFRIS r=\
GFRIS r=2
GFRIS

9.911
16.080
15.680
8.533

43.911
50.G18
50.782
40.062

6 . 6 4 0
8 . 9 6 9
7,
7,
0.

,964
,467
,400

13.591
6.356
5.431

5.316
4.684
3.227

40.062
7.787
7.093
6.800
8.533
0.089
0.000
0.044
0.000
0.089
0.667
0.569
0.000

-12.467
-26.504
-30.356
-47 .958
-53.276
-60.232
-61.464
-47 .958
-26.750
-31 .733
-29.650
-28 .948

-4 .585
-36 .280
-23.289
-24 .678

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
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(a) GFRIS, r = l (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d)FCM (e)PCM

Fig. 7.6: The segmented results of the forest image in Fig. 7.1(e) into three regions using the

GFRIS, FCM, and PCM algorithms.

(a) GFRIS, r = l (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d)FCM (e)PCM

Fig. 7.7: The segmented results of the hill image in Fig. 7.1(g) into three regions using the GFRIS,

FCM, and PCM algorithms.

A second series of experiments were performed using the six natural images containing three

different objects shown in Fig. 7.1(e), 7.1(g), and B.2. The forest and hill images in Fig. 7.1(e) and

7.1(g) comprise three distinct regions, namely forest (/?,), sky (R2), and water (/?3) and sky (/?,),

i !
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hill (R2), and field (R3) respectively. The segmentation performance for the three regions using

GFRIS, FCM, and PCM is presented in Fig. 7.6, 7.7, and C.2.

Table 7.5: Error percentages for the forest and hill image segmentations respectively using the
GFRIS, FCM, and PCM algorithms.

Algorithm
Forest (Fig. 7.1 (e)) Hill (Fig. 7.1fe))

Region Typt» TT Region Type I

GFRIS r=\

GFRIS r=2

GFRIS r=4

FCM

PCM

Forest (Rx)

Sky (R2)

Water (R3)

Forest (/?,)

Sky (R2)

Water (R3)

Forest (/?,)

Sky (R2)

Water (R3)

Forest (R}) 25.353

Sky (R2) 0.730
Water (R3) 1 5 7 6 1

Forest (Rx) 3 > 5 7 8

Sky (R2) 1.141
Water (/?3) 8 3 i 0 0 8

6 398 Sky (K,)
Hill {R2)

Field {R3)

Sky (*,)

Hill (/?2)

Field (7?3)

5.526

3.539

16.485

49.464

2.254

2.206

Sky

Hill (R2)

Field (/?3)

Sky (/?,)

Hill

Field

Sky

Hill

Field {R3)

0.440

44.836

54.720

0.387

5.317

97.338

1.680

33.233

32.799

3.484

58.497

3.420

It was visually apparent again that the GFRIS algorithm produced more distinctive regions in

both images for all values of the neighbourhood radius r and hence considerably outperformed both

FCM and PCM. PCM could not separate the water (R3) (Fig. 7.6(e)) and field (R3) (Fig. 7.7(e))

regions from the forest and hill images respectively because it was unable to distinguish between

regions exhibiting a poor gray level contrast. In Fig. 7.7(a)-Fig. 7.7(c) GFRIS provided better

results for the hill image compared with FCM and PCM, even though it could not separate the hill

(R2) and field (R3) regions well because as mentioned earlier, they are very similar in gray level

and exhibit strong spatial correlation, which means they perceptually appear almost the same.

The error rates for the segmentation of the forest, hill, and additional four images compared

with the manually segmented reference images are given in Tables 7.5 and D.2 respectively. Again
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the shaded entries in Table 7.5 highlight the best GFRIS results. Overall, GFRIS obtained improved

results especially for all regions and the sky (fl,) and field (R2) regions of the forest and hill

images respectively because there exists good continuation among the spatially correlated pixels of

these regions.

The mean error rates shown in Fig. 7.8 of GFRIS for the forest, hill, and the average of the six

images containing three regions were considerably lower than for both FCM and PCM, while the

error was the highest for the PCM for all cases. As mentioned before, this was Jue to PCM being

unable to segment poorly contrasted regions. GFRIS achieved 14.8% and 31.2% of the overall error

improvements over FCM and PCM respectively for the six images.

30 i

25-

20-

-B-

-HII

- Forest

Avg_6_lmages

-B -

GFRIS, GFRIS, GFRIS, FCM FCM
r=1 r=2 r=4

Algorithm

Fig. 7.8: Average percentages of error rates of GFRIS, FCM, and PCM for the

Fig. 7.1(e), 7.1(g), and average of the six image segmentations.

Fig. 7.9 shows better probability of object-count-agreement for GFRIS for all the sample

images. The best probability was obtained for GFRIS using neighbourhood radius r - 4 because the

higher order spatial relationship reduces the scattering regions therefore keeping the spatially

correlated pixels together. Overall GFRIS provided significant improvements (34% and 50.6%

over FCM and PCM respectively for the six images) for all values of r and both forest and hill

images at a significance level greater than 0.0001 as shown in 7>' * 7.6 and 7.7.
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Fig. 7.9: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM for

the Fig. 7. l(e), 7.1(g), and average of the six image segmentations.

Table 7.6: The overall
Fig. 7.1(e).

Algorithm

GFRIS /=1
GFRIS r=2
GFRIS r=4
PCM
GFRIS r=l
GFRIS r=2
GFRIS r=4
FCM
GFRIS r=l with FRIS
GFRIS r=2 with FRIS
GFRIS /=4 with FRIS
FCM with FRIS
PCM with FRIS
FRIST r=\
FRIST r=2
FRIST r=4

results of the statistical significance test, sign

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

GFRIS r=l
GFRIS r=2
GFRIS r=4

FCM
PCM

GFRIS r=l
GFRIS r=2
GFRIS r=4

Percentage
of + Pixels

2.398
2.649
3.073
7.258

22.903
22.867
23.527
22.553

3.375
4.029
3.691
9.358
0.176
0.564
0.611
0.543

Percentage
of - Pixels

1.369
1.768
1.514

22.553
6.579
6.691
6.673
7.258
0.013
0.008
0.013
0.011
0.247
0.021
0.000
O.CCC

test for the

Z Value

-11.297
-8.998

-14.427
-46.585
-50.964
-50.347
-52.044
-46.585
-33.408
-37.068
-35.540
-58.095

-1.762
-13.567
-14.697
-14.000

forest image in

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

0.0392
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

In the above experiments, the number of segmented regions was constrained to either two or

three. In order to examine the full discriminating potential of the GFRIS algorithm for a larger

number of regions, a comparison was made with the FCM and PCM algorithms on the image in

Fig. 7.1(i) that possessed five regions [6]. The regions were: - egg fa), glass of milk (R2), curtain
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(i?3), cheese (R4), and table (R5). Fig. 7.10 shows the respective segmentation performance of

the GFRIS, FCM, and PCM algorithms.

Table 7.7: The overall results of the statistical significance test, sign test for the hill image in
Fig, 7.1 (g).

Algorithm Ref. Algorithm Percentage
of + Pixels

Percentage
of - Pixels

Z Value Significance
Level

GFRIS r=l
GFRIS r=2
GFRIS r=A
PCM
GFRIS r=l
GFRIS r=2
GFRIS /=4
FCM
GFRIS r=l with FRIS
GFRIS /=2 with FRIS
GFRIS r=4 with FRIS
FCM with FRIS
PCM witn FRIS
FRIST r=\
FRIST r=2
FRIST r=A

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

GFRIS r=l
GFRIS r=2
GFRIS r=4

FCM
PCM

GFRIS r=l
GFRIS r=2
GFRIS rM

4.792
7.871

13.269
15.628
16.228
17.179
15.087
16.643

0.934
0.512
0.752
1.205
0.074

18.710
20.779
14.113

4.194
6.805

11.713
16.643
14.614
15.098
12.515
15.628

0.060
0.256
0.006
0.000
0.000
9.910
8.980

17.591

-4 .393
-3 .814
-8 .472

-15.060
-13 .051
-12.484

-8 .209
-15.060
-17.718

-7 .430
-15.202
-23.324

-5 .570
-20.339
-28.974
-14.543

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Bevond 0.0001

(a) GFRIS, r = 1 (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d) FCM (e) PCM

Fig. 7.10: The segmented results of the food image in Fig. 7.1(i) into five regions using the GFRIS,

FCM, and PCM algorithms.

From Fig. 7.I0(d)-7.10(e), it is clear that both FCM and PCM arbitrarily divided the image into

five regions without considering any semantic meaning of the data. The results produced by GFRIS

for r=l and r=2, in Fig. 7.10(a) and 7.10(b) showed much greater consistency with the information

derived from the manually segmented regions. There are some regions such as egg (Rl) and milk

(#2), curtain (R3) and cheese (^4), which overlap with each other because their gray level pixel

intensities are very similar. The most promising results in Fig. 7.10(c) were obtained for GFRIS
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using r=4, with the exception of region cheese (^?4), which partially merged with region milk (R2)

because cheese (R4) and milk (R2) possess almost exactly the same gray level intensities. Again

the GFRIS algorithm considered the underlying meaning of data far better than both the FCM and

PCM algorithms when compared with the manually segmented results.

Table 7.8: Error percentages for the food image segmentation in Fig. 7. l(i).

Egg (/?j") Milk (R2) Curtain (R3) Cheese (R4) Table (Rs)

Algorithm Error Type Error Type Error Type Error Type Error Type

II II II II II

GFRIS

GFRIS

GFRIS

FCM

PCM

r=l |

r=2 1
r=4 I

sH

11KKSS

53
24

HiIIasBSm

.90

.58

HHHmm•msBBSBBmSi

27.79
59.36

82.05

91.35

SSbJSraaBI

78.17
97.22

18.38 |

9.46 1

33.21 I

17.57

3.85

1
57

98

m11
.73

.21

MBWHBBinMMB

19.91

19.38

1.10

111
81.04

81.43

73.68

61.25

mBHraHKHanaS

12.02

11.22

18.32

30.53

69.86

mH
64.17

100.00

2.77

2.15

3.02

1.67

2J3

The numerical evaluations of the image segmentation given in Table 7.8, reveal that the mean

errors for the egg (/?]), curtain (R3), and cheese (R4), egg (/?>), curtain (R3), and table (Rs),

and egg (/?j), milk {R2), curtain (i?3), and table (R5) regions were appreciably lower using

GFRIS with r=l, r=2, and r=4 respectively than for either FCM or PCM. In general, the results

confirm that a significant improvement was achieved for all regions using GFRIS with

neighbourhood rr-jius r=4, except for the cheese (R4)region, for the reason alluded above.

The average ;jrror rates and the probabilities of object-count-agreement (OCA) for each

algorithm in the food image segmentation are shown in Fig. 7.11 and 7.12 respectively. These show

lower average errors and better object'count-agreement for GFRIS for all values of neighbourhood

radius r over both the FCM and PCM algorithms. GFRIS obtained 17.9% and 29.2% improved

overall errors and 203.9% and 2127.4% (!) better overall probability of OCA than FCM and PCM

respectively. The inordinately high improvement over PCM for overall probability of OCA is due

to the very poor performance of PCM highlighted in both Fig. 7.10(e) and Fig. 7.12 caused by the

poorly contrasted regions in the food image (Fig. 7.1(i)). This five region example confirms that

just as with FCM and PCM, the GFRIS algorithm can be extended to separate an arbitrary number
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of ?«gions (objects) in an image, though there will be a commensurate increase in the computational

GFRIS. r=1 GFRIS, r=2 GFRIS, r=4

Algorithm

FCM PCM

Fig. 7.11: Average percentages of error rates of GFRIS* FCM, and PCM for the

Fig. 7. ICO image segmentation.
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Fig. 7.12: Probability of object-count-agreement (OCA) for GFRIS, FCM, and

PCM for the Fig. 7. l(i) image segmentation.

The results of the sign test in Table 7.9 also support the significantly improved results of the

GFRIS algorithm over both the FCM and PCM algorithms at a significance level greater than

0.0001.
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In comparison with both FCM and PCM, GFRIS provided significantly superior results for a

variety of different image types, including image examples having multiple regions. Its

performance in considering the underlying meaning of data was also better when the results were

compared with the manually segmented reference regions. However, it proved ineffective for image

reg?--:>ns characterised by esther being non-homogeneous or possessing sharp variations in pixel

intensity (see urban sceros (R2) in Fig. 7.2(a)-(c) and Brodaiz texture d8 (/?]) and d94 (R2) in

Fig. 7.3(a)-(c) regions). To fddress these disadvantages, new refining rules have been developed for

integration into the integrated fuzzy rule-based image segmentation framework (Fig. 1.1), by

utilizing a combination of &n object's connectedness, surroundedness, uniformity, and contrast

properties. These refinement rules have been fully explained in Chapter 4 and the performance

analysis of the FRIS algorithm will now be discussed.

Table 7.9: The overall
Fig. 7.10).

Algorithm

GFRIS r=l
Gf RIS r=2
GFRIS r=4
PCM
GFRIS r=l
GFRIS r=2
GFRIS r=4
FCM

results of the statistical significance test,

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

15.597
24.504
34.821
13.326
27.364
30.967
41.865
24.046

Percentage
of - Pixels

7.502
11.292

8.833
24.046

8.549
7.036
5.157

13.326

sign test for the

Z Value

-72.576
-89.370

-176,214
-122.966
-177.769
-203.151
-269.828
-122.966

food image in

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

7.6 Performance Analysis of the FRIS Algorithm

Since FRIS (Block 2 in Fig. 1.1) is a refinement algorithm, GFRIS will be used together with

FCM and PCM in order to initially segment an image. The refinement process will be applied to all

three algorithms and the performance correspondingly evaluated. The segmentation results of the

cloud (Fig. 7.1(a)), Brodatz texture (Fig. 7.1{c)), and the other six images (Fig. B.I) comprising the

two regions are shown in Fig. 7.13,7.14, and C.3 respectively for FCM, PCM, and GFRIS.

It is visually apparent that the segmentation results especially for the urban scene (R2) and

d8 (#j) and d94 (R2) of the cloud and Brodatz texture regions respectively (Fig. 7.2(a) - 7.2(e) and

7.3(a) - 7.3(e)) produced by FCM, PCM, and GFRIS algorithms, without applying FRIS contain a
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large number of misclassified pixels from the other region. This is because in all cases they possess

very sharp variations in pixel intensity. Nearly all the misclassified pixels of all regions, except the

text caption for cloud and the misclassified pixels by PCM for Brodatz texture were correctly

classified when the refinement rules of FRIS were incorporated into GFRIS, FCM, and PCM

(Fig. 7.13(a) - 7.l3(e) and 7.l4(a) - 7.l4(d)). FRIS improved very little for PCM for the Brodatz

texture image (Fig. 7.14(e)) because the initial PCM segmentation could not separate the texture

regions at all for this image. This reiterates the point that FRIS refines effectively an initial

segmentation, but is unable to improve a very poor initial segmentation.

(a) GFRIS, r = i (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d) FCM (e) PCM

Fig. 7.13: The segmented results of the cloud image in Fig. 7.1 (a) into two regions using FRIS with

the GFRIS, FCM, and PCM algorithms.

(a) GFRIS, r = \ (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d)FCM (e)PCM

Fig. 7.14: The segmented results of the Brodatz texture image (d8 and d94) in Fig. 7.1(c) into two

regions using FRIS with the GFRIS, FCM, and PCM algorithms.

The numerical segmentation results of the cloud, Brodatz texture, and supplementary six image

segmentations with respect to the manually segmented reference images (Fig. 7.1 and B.I) using

the discrepancy based on the number of mis-segmented pixels method are shown in Tables 7.10 and
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D.3 respectively. In Table 7.10, only the error rates for the cloud (ftj) and Brodatz texture d8 (/?j

regions are shown. The improvements achieved using FRIS are highlighted in Table 7.10.

Table 7.10: Error percentages for the cloud and Brodatz texture d8 regions of the cloud (Fig. 7.1 (a))
and Brodatz texture (Fig. 7.1(c)) image segmentations respectively using FRIS with the GFRIS,
FCM, and PCM algorithms.

Algorithm

Cloud (i?j) Region Brodatz Texture d8 (/?,) Region

Type I II
GFRIS r=\
GFRIS r=2
GFRIS r=4
FCM
PCM

60 !

50 -

§ 40 H
UJ

& 30-
2
0)

< 20 -I

10 -

GFRIS, GFRIS, GFRIS, FCM
r=1 r=2 r=4

Algorithm

PCM

-Without FRIS Brodatz

-With FRIS Brodatz

Without FRIS Cloud

-With FRIS Cloud

Without FRIS
Avg__8Jmages

With FRIS
AvgL_8Jmages

Fig. 7.15: Average percentages of error rates of GFRIS, FCM, and PCM with and without using

FRIS for the Fig. 7.1(a) and 7.1(c), and average of the eight image segmentations.
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The average error rates for all three algorithms with and without using FRIS are plotted in

Fig. 7.15. This reveals very promising results for all algorithms for all images including the average

results of the eight images when FRIS was integrated within these algorithms. The exception was

PCM for the Brodatz texture, which as mentioned above failed because PCM could not segment the

Brodatz texture d8 (/?]) region at all. 48.4%, 37.2%, and 20.7% improvements of the overall errors

were obtained for the GFRIS, FCM, and PCM algorithms respectively for the eight images, again

emphasising the merit of incorporating the refinement rules.

The probabilities of object-count-agreement (OCA) for all algorithms with and without using

FRIS are shown in Fig. 7.16 and reveal considerable improved probabilities of OCA for the

refinement algorithm than those for all algorithms without FRIS. The GFRIS, FCM, and PCM

algorithms produced 45.5%, 123.5%, and 48.9% higher probabilities of OCA for the eight images.

GFRIS, GFRIS, GFRIS, FCM
r=1 r=2 r=4

Algorithm

PCM

-Without FRIS Brodatz

-With FRIS Brodatz

Without FRIS Cloud

-With FRIS Cloud

-Without FRIS
AvgJL'mages

-With FRIS
A\Kj_8_lmages

Fig. 7.16: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM with

and without using FRIS for the Fig. 7.1 (a) and 7.1(c), and average of the eight image

segmentations.

The results of the statistical significance test (sign test) in Tables 7.3 and 7.4 show that all of

the algorithms incorporating FRIS exhibited significant improvement at the significant level beyond

0.0001 for the cloud and Brodatz texture image segmentations.

The segmented results of GFRIS, FCM, and PCM integrating FRIS for the forest (Fig. 7.1(e)),

hill (Fig. 7.l(g)), and the remaining four images (Fig. B.2) containing three regions are shown in

Fig. 7.17, 7.18, and C.2 respectively. The results for the forest image (Fig. 7.17(a) -7.17(d)) exhibit

the perceptually improved regions for all algorithms, except PCM, by applying the FRIS algorithm.
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It is important to emphasise that FRIS is a refinement algorithm, so its performance depends very

much on the initial segmentation algorithm and for PCM the improvement is negligible because

PCM could not initially separate the water (^?3) region from the forest (R^) region in Fig. 7.17(e).

The best improvement achieved for the FCM algorithm is shown in Fig. 7.17(d), where almost a!'*

three regions have been completely separated.

The segmentation potential of the FRIS algorithm was tested again using the hill image

(Fig. 7.1(g)), which contains extremely poor contrast regions, namely the hill (R2) and field (R3)

shown in Fig. 7.1(g). If the results produced by the original initial algorithms (Fig. 7.7(a) - 7.7(e))

are compared with the results (Fig. 7. 18(a)- 7.18(e)) after applying FRIS, it can be seen that the

latter ensures better results, even though the initial segmentation for these two regions was not

promising (see Fig. 7.7). The numerical results using the FRIS algorithm, shown in Table 7.11,

prove that FRIS accomplished better results for all regions of the forest and most of the regions in

the hill image for all algorithms, except in the case of the hill (R2) region for GFRIS, r = 2 and

r = 4 and PCM because of poor initial segmentation. The numerical results for the remaining four

images are given in Table D.4.

(a) GFRIS, r = l (b) GFRIS, r = 2 (c) GFRIS, r =4 (d) FCM (e)PCM

Fig. 7.17: The segmented results of the forest image in Fig. 7. l(e) into three regions using FRIS

with the GFRIS, FCM, and PCM algorithms.

&32
(a) GFRIS, r = 1 (b) GFRIS, r = 2 (c) GFRIS, r = 4 (d) FCM (e) PCM

Fig. 7. 18: The segmented results of the hill image in Fig. 7.1(g) into three regions using FRIS with

the GFRIS, FCM, and PCM algorithms.
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The overall improvement in all three algorithms compared with obtained by using the FRIS

algorithm in terms of both the average error percentage and the probability of object-count-

agreement are shown in Fig. 7.19 and 7.20 respectively. Fig. 7.19 shows that FRIS obtained slight

better overall errors for the hill image for all initial algorithms because of the inferior initial

segmentation, but it achieved much higher probability of object-count-agreement for the hill image

as shown in Fig. 7.20, since it reduced the scatter parts of some of the segmented regions of this

image. The average error percentages and probability of object-count-agreements for the forest, the

hill, and the six natural images containing three different regions clearly emphasise the improved

performance of the FRIS algorithm. The overall error improvements obtained were 15.2%, 16.2%,

and 9.3% for the GFRIS, FCM, and PCM algorithms respectively, whereas the respective gains for

the probabilities of OCA were 27.7%, 58.5%, and 14% for the six images.

Table 7.11: Error percentages for the forest and hill image segmentations respectively using FRIS
with the GFRIS, FCM, and PCM algorithms.

Initial
Algorithm

GFRIS r=\

GFRIS /=

GFRIS r=4

FCM

PCM

Forest Image (Fig. 7.1(e)J Hill Image (Fig. 7. l(g))
Region Type I

Forest to
Sky (R2)

Water (R3)

Forest to)
Sky {R2)

Water (R3)

Forest to)
Sky (R2)

Water {R3)

Forest (/?,)

Sky (R2)

Water {R3)

Forest

Sky (*2)

Water (R3)

Region Type I
Sky ( , )

Hill (R2)

Field {R3)

Sky (/?,)

Hill (R2)

Field (R3)

Sky M
Hill (R2)

Field (R3)

Sky

Hfflte)
Field (i?3)

Sky ( , )

Hill (R2)

Field (R3)
59.843

3.443
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Fig. 7.19: Average percentages of error rates of GFRIS, FCM, and PCM with and without

using FRIS for the Fig. 7. l(e), 7. l(g), and average of the six image segmentations.
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r=1 r=2 r=4

Algorithm
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Fig. 7.20: Probability of object-count-agreement (OCA) for GFRIS, FCM, and PCM with

and without using FRIS for the Fig. 7.1 (e), 7.1(g), and average of the six image

segmentations.

The sign test also confirmed these improvements for all algorithms using the refinement rules

except PCM for the forest image at a significance level greater than 0.0001 shown in Tables 7.6 and

7.7. Table 7.6 illustrates that the significance level of improvement for PCM for the forest image
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was 0.0392 i.e. 3.92% significance level of improvement, which means that this achievement is also

noteworthy since it is more significant than the usual 5-10% significant levels.

From the analysis of the experimental results it has been proven that the FRIS algorithm has

certainly enhanced segmentation of all algorithms, however, its potentiality depends on the

performance of the initial segmentation algorithm. In this context, this demands improvement in the

basic GFRIS algorithm. Note, that it was mentioned in Section 3.5 that the GFRIS algorithm did not

generate good results for regions that contain irregular texture. The next section will describe the

performance of the FRIST algorithm (Block 3 in Fig. 1.1), which incorporates membership

functions to consider texture features.

7.7 Performance Analysis of the FRIST Algorithm

The results of segmenting the cloud, Brodatz texture, and the additional six images into two

regions using the FRIST algorithm, articulated in Chapter 5, are shown in Fig. 7.21, 7.22, and C.5

respectively. Fig. 7.21 and 7.22 demonstrate that a considerable number of the misclassified pixels

of the urban scene (R2) in Fig. 7.2 and the Brodatz texture d94 (R2) in Fig. 7.3 produced by the

GFRIS algorithm have been correctly classified by the FRIST algorithm for all images. Note, also

that the FRIST algorithm correctly classified all most the entirely text caption of the cloud image

(Fig. 7.21), which was not accomplished even by the FRIS algorithm (Fig. 7.13) because these two

regions contain a number of sharp variations in the pixel intensity. As mentioned in Chapter 5, these

sharp variations directly oppose the spatial relationships between the pixels, which is the basis of

the GFRIS algorithm, however, the merit of the strategy adopted by FRIST to relax the condition

upon the variance of spatial relations (see (5.5) and (5.6)) is fully vindicated by the results in

Fig. 7.21 and 7.22.

(a) FRIST, r = 1 (b) FRIST, r = 2 (c) FRIST, /• = 4
Fig. 7.21: The segmented results of the cloud image in Fig. 7. l(a) into two regions using the FRIST

algorithm.
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(a) FRIST, r = 1 (b) FRIST, r = 2 (c) FRIST, r = 4
Fig. 7.22: The segmented results of the Brodatz texture image (d8 and d94) in Fig. 7.1(c) into two

regions using the FRIST algorithm.
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The numerical segmentation results of the cloud and Brodatz texture images together with the

other six image segmentations with respect to manually segmented reference images are shown in

Tables 7.12 and D.5 respectively. FRIST achieved improved Type II error and Type I and II errors

for the cloud and Brodatz texture images respectively, especially for the regions that contain

textures i.e. the urban scene (R2) and d94 (R2) regions of the cloud and Brodatz texture

respectively.

Table 7.12: Error percentages for the cloud and Brodatz texture (d8) regions of the cloud
(Fig. 7.1(a)) and Brodatz texture (Fig. 7.1(c)) image segmentations respectively using the FRIST
algorithm.

Cloud (/fj) Region Brodatz Texture d8 (/?j) Region

Algorithm Type I Type II Type I Type II
FRIST /=1
FRIST r=2
FRIST /=4

10.560
9.106
7.287

The average error rates and probability of object-count-agreement (OCA) for the FRIST and

GFRIS algorithms for the cloud, Brodatz texture, and average of the eight images are graphically

shown in Fig. 7.23 and 7.24 respectively. From Fig. 7.23 and 7.24, it is clear that FRIST achieved

considerable improvements over GFRIS. The best performance was obtained for the Brodatz

texture image, because both its regions contain textures. The average over the eight images also

illustrates the potential performance (25.5% and 15.3% improvements of the overall average error

and probabilities of OCA respectively over GFRIS) of the FRIST algorithm.
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Fig. 7.23: Average percentages of error rates of FRIST and GFRIS for the Fig. 7. l(a) and

7.1 (c), and average of the eight image segmentations.
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Fig. 7,24: Probability of object-count-agreement (OCA) of the FRIST and GFRIS

algorithms for the Fig. 7.1 (a) and 7.1 (c), and average of the eight image segmentations.

The significance levels of the improvement for the clouu and Brodatz image segmentations for

the FRIST algorithm compared \.Hh GFRIS were greater than 0.0001 (Tables 7.3 and 7.4) except,

for the case of r = 2 for the cloud image, which provided a significance level of 0.0893. This was

because FRIST could not segment the entire cloud (fl,) region as GFRIS did for r = 2. The reason

for this is that there is no distinct boundary between the cloud (Rx) and urban scene (#2) regions,

so, GFRIS interpreted some sections of the urban scene (R2) as cloud (/?j) for higher order spatial
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relations. FRIST, because it is specifically designed to consider texture, relaxes the condition for

good continuation and so prevents this misclassification thereby improving the segmentation

performance and justifying the integration of this algorithm into the framework. This is also a

-ignificant improvement since the significance level of 0.0893 i.e. 8.93% is less than the standard

significance level of 10%.

(a) FRIST, r = 1 (b) FRIST, r - 2 (c) FRIST, r = 4
Fig. 7.25: 1..tt segmented results of the forest image in Fig. 7. l(e) into three regions using the

FRIST algorithm.

(a) FRIST, r = 1 (b) FRIST, r = 2 (c) FRIST, r - 4
Fig. 7.26: The segmented results of the hill image in Fig. 7.1(g) into three regions using the FRIST

algorithm.

The segmentation results of the forest (Fig. 7.1(e)), hill (Fig. 7.1(g)), and four supplementary

images (Fig. B.2) into three regions produced by FRIST are shown in Fig. 7.25, 7.26, and C.6

respectively. If the segmented results of FRIST (Fig. 7.25 and 7.26) are compared with the

corresponding segmented results of GFRIS (Fig. 7.6 and 7.7), the improvement of the FRIST

algorithm is perceptually better despite the example of r = 4 for the hill image. This case

misclassified some portions of the field (#j) region into sky (/?,) and hill (R2) because a portion

of the field (R3) has a similar gray level intensity to the sky (/?,). In addition the hill (R2) and

field (R3) regions exhibit very poor contrast, are spatially correlated, and have the same surface
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characteristic i.e. texture. The highest improvement was obtained using FRIST, r - 2 for the hill

image (Fig. 7.26(b)), which completely separated the three regions except a small portion of the hill

(R2) region, which was misclassified into the field fa3) region.

The numerical error rates of the misclassified pixels of the forest, hill, and additional four

image segmentations with respect to the manually segmented reference regions (Fig. 7.1 and B.2)

are given in Tables 7.13 and D.6 respectively. FRIST improved for all regions of the forest and the

hill (R2) and field (R3)regions of the hill images except r = 4. For such high order spatial

relationship FRIST clearly identified the three regions (Fig. 7.26(c)) of the hill image but as

mentioned previously, a part of the field fa3) region is very similar to the sky fa^) region, which

resulted in it being misclassified as the sky, which is shown by the erroneous narrow blue band in

the field (/?3) region in Fig. 7.26(c).

The comparative values of the average of error percentages and the probabilities of the object-

count-agreement for the segmentation of the forest (Fig. 7.1(e)), hill (Fig. 7.1(g)), and the average

of the six images (Fig. B.2) are plotted in Fig. 7.27 and 7.28 respectively. These illustrate that

FRIST provided better performance compared with GFRIS except as mentioned above for the case

of r = 4 . The average error (5.9% of overall error improvement) and probabilities of OCA (17.6%

of overall probabilities of OCA) for the six image segmentations confirm both the potentiality and

improvement of integrating these additional texture-based membership functions in the overall

segmentation framework.

Table 7.13:
algorithm.

Initial
Algorithm

Error percentages for the forest

Forest Image (Fig. 7.1(e)
Region Type I

and

)
Ty

hill

pen

image segmentations using the

Hill
Region

Image (Fig. 7.l(g))
Type I

FRIST

Type II

FRIST r=1

FRIST r=2

FRIST r=4

Forest (/?j)

Sky fa2)
Water fa3)

Forest ( , )

Sky (R2)

Water fa3)

Forest ( j )

Sky {R2)
Water fa3)

Sky

Hill to2)
Field fa3)

Sky to)
Hill fa2)
Field to,)

Sky fax)
Hill to2)
Field to3)

0.686

58.649

1.246

40.862

2.812

39.802

11.965
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The sign test also confirmed significant improvement of FRIST algorithm over GFRIS

algorithm at a significance level greater than 0.0001, except for r = 4 (Tables 7.6 and 7.7).
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Fig. 7.27: Average percentages of error rates of FRIST and GFRIS for the Fig. 7.1(e),

7.1(g), and average of the six image segmentations.
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Fig. 7.28: Probability of object-count-agreement (OCA) of the FRIST and GFRIS

algorithms for the Fig. 7.1(e), 7.1(g), and average of the six image segmentations.

So far, the segmentation of only gray level images have been considered for all algorithms,

however, colour is the most important attribute of an object. It provides additional information in

addition to the gray level, which can assist the segmentation of an object from an image. The next
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section will provide the effectiveness of the fuzzy rule-based colour image segmentation (FRCIS)

algorithm (Block 4 in Fig. 1.1), which has been analysed in Chapter 6.

7.8 Performance Analysis of the FRCIS Algorithm

In this section, colour image segmentation performance using FRCIS, FCM, and PCM based on

the HSV and RGB colour models will be described. The detailed underlying theory of the FRCIS

algorithm and the motivations for choosing the HSV and RGB colour models havs been presented

in Chapter 6 and Section 2.4 respectively. The results produced by the FRCIS, FCM, and PCM

algorithms for the cloud (Fig. 7.1 (a)) and crocodile (Fig. 7.1(m)) images based on the HSV and

RGB colour models are presented in Fig. 7.29 and 7.30 and Fig. 7.31 and 7.32 respectively. FRCIS

provided better results than FCM and PCM when the segmented results of the FRCIS are visually

compared wifh the respective results of FCM and PCM.

(a) FRCIS, r = l (b) FRCIS, r = 2 (c) FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.29: The segmented results of the cloud image in Fig. 7.1 (a) into two regions for the HSV

colour model using the FRCIS, FCM, and PCM algorithms.

:;•••"•• V; ' - I ' -v . i

(a)FRCIS, r~\ (b)FRCIS, r = 2 (c)FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.30: The segmented results of the crocodile image in Fig. 7. l(m) into two regions for the HSV

colour model using the FRCIS, FCM, and PCM algorithms.

The results produced using the HSV colour mojel (Fig. 7.29 and 7.30) outperformed those

obtained utilising the RGB colour model (Fig. 7.31 and 7.32) for all images and algorithms except

PCM for the crocodile image (Fig. 7.30(e) and 7.32(e)), which was totally unable to separate the

background (R2) region from crocodile (Rx). This is because the background (i?2) and the
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crocodile (/?j) regions are very poor in contrast and PCM could not separate regions in such

circumstances. The main reason for the superiority of the HSV colour model compared with the

RGB model for colour image segmentation is that HSV is a perceptual colour model i.e. humans

can recognise the basic attributes of the colour: H (hue), S (saturation), and V (value), while

conversely RGB is a non-uniform colour model [136].

(a) FRCIS, r = l (b) FRCIS, r = 2 (c) FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.31: The segmented results of the cloud image in Fig. 7.1 (a) into two regions for the RGB

colour model using the FRCIS, FCM, and PCM algorithms.

(a) FRCIS, r = l (b) FRCIS, r = 2 (c) FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.32: The segmented results of the crocodile image in Fig. 7.1(m) into two regions for the

HSV colour model using the FRCIS, FCM, and PCM algorithms.

Table 7.14: Error percentages for the cloud (Rx) and crocodile (i?,) regions of the cloud
(Fig. 7.1(a)) and crocodile (Fig. 7.1(m)) image segmentations respectively for the HSV and RGB
colour models using the FRCIS, FCM, and PCM algorithms.

Algorithm

FRCIS, M
FRCIS, r=2
FRCIS, r=4
FCM
PCM

Cloud
Type I

Wmw
21.12
28.33

HSV Colour Model
Region

Type II

PHI
13.24
10.67

Crocodile
Type I

PHIWmmwmm
57.00

0.00

Region
Type II
33.37 I
35.53 I
33.79 1
32.88
99.89

Cloud
Type I

IHiBi
21.12
28.33

RGB Colour Model
Region

Type II
i 16.96 I
I 17-37
1 16.83

14.97
15.80

Crocodile
Type I

57780 "I
59.41 §
56.63

0.00

Region

ill
46 .

1 0 0 .

5 II

Mmm
43
00

The error percentages for the cloud (Rx) and crocodile (Rx) regions of the image in Fig. 7.1 (a)

and 7.1(m) respectively using the HSV and RGB colour models, and the FRCIS, FCM, and PCM
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algorithms are tabulated in Table 7.14. It can be seen that the error rates of FRCIS for all values of

r are better than both FCM and PCM using both the HSV and RGB colour models.

• HSV Cloud

D RGB Cloud

D HSV Crocodile

• RGB Crocodile

GFRIS/FRCIS, GFRIS/FRCIS, GFRIS/FRCIS.
n=1 n=2 f=4

FCM PCM

Algorithm

Fig. 7.33: Average error rates of the FRCIS, FCM, and PCM algorithms using the HSV and RGB

colour models for the Fig. 7.1 (a) and 7.1 (m).

Table 7.15: The overall results of the statistical significance test, sign test for the cloud image in
Fig. 7. l(a) using the HSV colour model.

Algorithm

FRCIS r=l
FRCIS r=2
FRCIS /=4
PCM
FRCIS r=l
FRCIS r=2
FRCIS r=4
FCM

Table 7.16: The
Fig. 7.1 (a) using

Algorithm

FRCIS r=l
FRCIS r=2
FRCIS r=A
PCM
FRCIS r=l
FRCIS r=2
FRCIS ,"-4
FCM

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

6.242
6.523
6.864
0.606
9.220
9.545
9.697
3.606

Percentage
of - Pixels

0.720
0.667
0.492
3.606
0.697
0.689
0.326
0.606

overall results of the statistical significance test, sign
the RGB colour model.

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

3.856
6.803
6.962
0.515
3.455
6.371
6.545
0.197

Percentage
of - Pixels

0.720
0.644
0.545
0.197
0.636
0.530
0.447
0.515

Z Value

-24.015
-25.060
-26.957
-16.752
-31.067
-31.777
-33.981
-16.752

test for the

Z Value

-16.805
-25.899
-26.874

-4.229
-15.965
-25.511
-26.464

-4.229

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.000 i
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

cloud image in

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
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Table 7.17: The overall results of the statistical significance test, sign test for the crocodile image in
Fig. 7. l(m) using the HSV colour model.

Algorithm

FRCIS r=l
FRCIS r=2
FRCIS r=4
PCM
FRCIS r=l
FRCIS 7=2
FRCIS r=A
FCM

Re£ Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

11.671
11.519
11.865
28.493
74.042
71.647
73.576
74.584

Percentage
of - Pixels

6.689
9.015
8.153

74.584
22.969
23.051
23.773
28.493

Z Value

-23.289
-11.066
-16.616
-90.982

-103.921
-100.080
-101.161
-90.982

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

Table 7.18: The overall results of the statistical significance test, sign test for the crocodile image in
Fig. 7.1(m) using the RGB colour model.

Algorithm

FRCIS r=l
FRCIS r=2
FRCIS r=4
PCM
FRCIS r=l
FRCIS r=2
FRCIS r=4
FCM

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

9.351
12.856
14.422
28.316
63.546
67.559
68.405
59.632

Percentage
of - Pixels

4.967
5.512
7.035

59.632
27.846
28.899
29.703
28.316

Z Value

-23.208
-34.333
-31.948
-66.920
-74.839
-78.887
-78.307
-66.920

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

A comparison of the average error rates between the algorithms using the HSV and RGB

models for the cloud and crocodile images are displayed in Fig. 7.33. The average error rates of the

FRCIS algorithm for both images using the HSV and RGB models are lower than those of FCM

and PCM algorithms. The overall error improvements of FRCIS over FCM and PCM for the cloud

and crocodile images were 17.4% and 26.2% using the HSV colour model respectively, while the

corresponding values for the RGB colour model were 10.1% and 8%, which again confirms the

superiority of HSV for colour image segmentation since it is a perceptual colour model. The results

of statistical significant test (Tables 7.15-7.18) prove that FRCIS produced significant better results

compared with FCM and PCM for both the cloud and crocodile images for both the HSV and RGB

colour models at a significance level greater than 0.0001.

Further experiments were conducted using the gorilla (Fig. 7.1(k)) and fish (7.1(o)) images

consisting of three distinct regions. The gorilla (Fig. 7.1(k)) image has background (/?j), gorilla

(R2), and field (R3) regions, while the fish (7.1(o)) image comprises water (/?]), ground and trees

(R2), and fish (R3) regions. The segmented results of these two images produced by the FRCIS,

FCM, and PCM algorithms using the HSV and RGB colour models are presented in Fig. 7.34 and
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7.35 and Fig. 7.36 and 7.37 respectively. Fig. 7.34 clearly illustrates that FRCIS separated gorilla

(Fig. 7.34(a) - 7.34(c)) better for the HSV colour model and all values of r than FCM and PCM

(Fig. 7.34(d) and 7.34(e)). For this, FRCIS provided improved results for all values of r especially

for gorilla region than both FCM and PCM (Fig. 7.34(d)-(e)). FRCIS also outperformed both FCM

and PCM especially for ground and trees (/?2) and fish (R3) regions for the fish image (Fig. 7.35

and 7.37) for both the HSV and RGB colour models. PCM could not separate at all the fish

(i?3)from ground and trees (R2) region shown in Fig. 7.35(e) and 7.37(e).

(a) FRCIS, r = \ (b) FRCIS, r = 2 (c) FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.34: The segmented results of the gorilla image in Fig. 7.1(k) into two regions for the HSV

colour model using the FRCIS, FCM, and PCM algorithms.

(a) FRCIS, r = l (b) FRCIS, r = 2 (c) FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.35: The segmented results of the fish image in Fig. 7. l(o) into two regions for the HSV colour

model using the FRCIS, FCM, and PCM algorithms.

(a) FRCIS, r = l (b) FRCIS, r = 2 (c) FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.36: The segmented results of the gorilla image in Fig. 7.1(k) into two regions for the RGB

colour model using the FRCIS, FCM, and PCM algorithms.
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(a) FRCIS, r = \ (b) FRCIS, r = 2 (c) FRCIS, r = 4 (d)FCM (e)PCM

Fig. 7.37: The segmented results of the fish image in Fig. 7.1(o) into two regions for the RGB

colour model using the FRCIS, FCM, and PCM algorithms.

Table 7.19: Error percentages for the gorilla and fish image segmentations for the HSV colour
model using the FRCIS, FCM, and PCM algorithms.

Algorithm

FRCIS, r=l

FRCIS, r=2

FRCIS, r=4

FCM

PCM

Gorilla Image (Fig. 7.1(k))
Region

Background fa)

Gorilla (R2)

Field (fl3)

Background fa)

Gorilla (R2)

Field (R3)

Background fa)

Gorilla (R2)

Field (R3)

Background fa)

Gorilla (R2)

Field (R3)

Background fa)

Gorilla (/?2 )

Field (/?3)

Type I

46.058

45.555

27.525

54.850

43.072

39.471

61.565

42.566

42.145

88.712

55.752

7.576

85.259

65.117

3.066

Type II

36.982

30.008

2.850

35.854

33.701

5.972

36.184

36.589

6.784

39.985

19.240

24.905

44.563

8.558

30.963

Fish Image (Fig. 7.1(o))
Region

Water fa)
Ground (R2)

Fish (R3)

Water fa)
Ground (R2)

Fish (R3)

Water fa)
Ground (R2)

Fish (R3)

Water fa)
Ground (R2)

Fish (/?3)

Water fa)
Ground (R2)

Fish (R3)

Type I

2.057

24.161

35.592

0.434

25.386

38.179

0.468

26.145

37.834

1.014

34.294

33.283

36.098

0.990

97.588

Type II

2.618

20.050

12.593

3.557

20.343

12.744

3.966

19.939

12.931

1.597

19.099

18.903

0.002

71.810

0.578

In all these three region examples, it is clear again that the HSV colour model has consistently

provided improved results over the RGB model from a segmentation perspective.

The numerical results of the gorilla and fish image segmentation using the FRCIS, FCM, and

PCM algorithms for the HSV and RGB colour models are shown in the Table 7.19 and 7.20

respectively. The results using the HSV colour model shown in Table 7.19 exhibit that FRCIS

provided better results for both images than both FCM and PCM, which was confirmed by the
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comparative average error rates presented in Fig. 7.38. The FRCIS algorithm obtained 4.9% and

26.3% of the overall error improvements over FCM and PCM respectively for the gorilla and fish

images using the HSV colour model, compared with corresponding values of 2.4% and 12.5% for

the RGB colour model.

For the RGB colour model, FRCIS gave improved performance over FCM for all values of

neighbourhood radius r, for the gorilla (Fig. 7.1(k)) and r = \ and r = 2for the fish (Fig. 7.1(o))

images. FRCIS also produced better average errors than PCM for all values of r for fish image only

(Fig. 7.38).

Table 7.20: Error percentages for the gorilla and fish image segmentations for the RGB colour
model using FRCIS, FCM, and PCM algorithms.

Algorithm

FRCIS, r=l

FRCIS, r=2

FRCIS, r=4

FCM

PCM

Gorilla Image (Fig. 7. l(k))
Region

Background (/?])

Gorilla (R2)

Field (R3)

Background (R\)

Gorilla (R2)

Field (R3)

Background (/?})

Gorilla (R2)

Field {R3)

Background (/?])

Gorilla (R2)

Field (R3)

Background (/?])

Gorilla (R2)

Field {R3)

Type I

91.840

42.867

17.320

92.701

42.890

18.348

93.078

41.910

20.837

83.363

61.095

22.769

89.371

49.963

17.139

Type 11

1.279

27.646

47.631

1.128

28.190

47.998

0.915

28.912

47.820

42.795

27.165

22.395

33.110

27.640

24.344

Fish Image (Fig. 7.1(o))
Region

Water (i?,)

Ground (R2)

Fish (R3)

Water (/?,)

Ground (R2)

Fish (R3)

Water (Rx)

Ground (R2)

Fish (R3)

Water (/?,)

Ground (R2)

Fish (R3)

Water (i?,)

Ground (R2)

Fish (R3)

Type!

1.995

24.495

34.372

2.023

25.533

33.876

1.820

24.348

35.763

2.186

34.482

35.053

14.757

3.936

93.041

Type II

2.467

19.459

12.821

2.711

19.154

13.176

2.827

20.106

12.404

0.890

20.700

19.755

0.147

60.211

2.159

For the HSV colour model, FRCIS produced significantly superior results to FCM and PCM for

both the gorilla and fish images (Table 7.21 and 7.23), whereas for the RGB colour model, it

provided significant improved results with respect to FCM, for all values of r (Table 7.22) and

r = 2 and r = 4 (Table 7.24) for the gorilla and fish images respectively. FRCIS also showed
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significant improvements over PCM for the fish image for the RGB colour model at a significance

level beyond 0.0001 (Table 7.24).

—•— Gorflla HSV

- » - Gorilla RGB

Fish HSV

- * — Fish RGB

FRCIS, FRCIS, FRCIS, FCM
r r i r=2 r=4

Algorithm

PCM

Fig. 7.38: Average percentages of error rates of the FRCIS, FCM, and PCM

algorithms for the Fig. 7.1(k) and 7.1(o) image segmentations using the HSV and

RGB colour models.

Table 7.21: The
Fig. 7.1 (k) using

overall results of the statistical significance test, sign test for the gorilla image in
the HSV colour model.

Algorithm

FRCIS r=l
FRCIS r=2
FRCIS r=4
PCM
FRCIS r=I
FRCIS r=2
FRCIS /-4
FCM

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

11.671
11.519
11.865
28.493
74.042
71.647
73.576
74.584

Percentage
of - Pixels

6.689
9.015
8.153

74.584
22.969
23.051
23.773
28.493

Z Value

-23.289
-11.066
-16.616
-90.982

-103.921
-100.080
-101.161

-90.982

Significance
Level

Beyond 0.000 J
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.000 i
Beyond 0 0001

Table 7.22: The overall results of the statistical significance test, sign test for the gorilla image in
Fig. 7. l(k) using the RGB colour model.

Algorithm

FRCIS r=l
FRCIS r=2
FRCIS r=4
PCM
FRCIS r=l
FRCIS r=2
FRCIS r=4
FCM

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

3.868
5.406
5.980
8.157
2.858
2.396
2.578
2.931

Percentage
of - Pixels

2.196
2.814
2.691
2.931
6.412
5.031
4.515
8.157

Z Value

-21.926
-29.202
-36.092
-50.713
-37.723
-31.233
-23.491
-50.713

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0,0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
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Table 7.23: The overall results of the statistical significance test, sign test for the fish image in
Fig. 7.1(o) using the HSV colour model.

Algorithm

FRCIS r=l
FRCIS r=2
FRCIS r=4
PCM
FRCIS r=l
FRCIS r=2
FRCIS r=4
FCM

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

8.478
8.499
8.303

15.724
41.062
41.214
40.480
41.387

Percentage
of - Pixels

4.686
4.977
5.026

41.387
11.607
12.030
11.539
15.724

Z Value

-24.104
-22.124
-20.702
-78.352
-93.646
-92.284
-92.583
-78.352

Significance
Level

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

Table 7.24: The overall results of the statistical significance test, sign test for the fish image
Fig. 7. l(o) using the RGB colour model.

Algorithm

FRCIS/=1
FRCIS r=2
FRCIS r=4
PCM
FRCIS r=\
FRCIS r=2
FRCIS r=4
FCM

Ref. Algorithm

FCM
FCM
FCM
FCM
PCM
PCM
PCM
PCM

Percentage
of + Pixels

5.597
5.450
5.794

14.430
29.303
29.363
29.675
30.982

Percentage
of - Pixels

5.214
5.197
5.296

30.982
12.368
12.557
12.625
14.430

Z Value

-2.676
-1.780
-3.436

-56.670
-60.529
-59.887
-60.484
-56.670

Significance
Level

0.00375
0.0375
0.0003

Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001
Beyond 0.0001

Overall, the FRCIS algorithm produced improved results for the FCM and PCM algorithms for

both the HSV and RGB colour models, while the HSV colour model proved its superiority to the

RGB colour model for image segmentation particularly that involving object-based segmentation.

This is because, as mentioned before, HSV is a perceptual colour model.

7.9 General Framework Issues

To conclude this chapter we briefly discuss some broader issues relating to the fuzzy rule-based

framework. One of the key advantages of the framework is its inherent flexibility, that is its ability

to integrate any type of image attribute in any special application, which has been experimentally

proven by integration of the texture features into the FRIST algorithm. Possible examples for

further extending the framework include text and video object segmentation, which will be briefly

explored in the future work section of Chapter 8.
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One requirement that is enforced it that the actual number of regions ft to be separated needs to

be stipulated prior to the segmentation, however, possible solutions to automate this will also be

discussed in the future work in section.

There are also domain specific issues that cognisance must be made of, such as that

segmentation may be ineffective in separating regions, which are adjacent and have similar colours

or exhibit very strong spatially correlation, which has been highlighted in Fig. 7.10 for the food

image segmentation, where certain regions were not able to be completely segmented. This is

however a fundamental challenge for any image segmentation system.

Finally, from a computational perspective, since ?J1 the membership functions are independent

of each other, every algorithm except FRIS, in the framework possess a high degree of inherent

concurrency, which could be exploited by a parallel implementation, with a dedicated processor

being used for each membership function.

7.10 Summary

A full evaluation of the performance und the potential capability of the proposed four (GFRIS,

FRIS, FRIST, and FRCIS) algorithms for object-based image segmentation have been examined

using an image database comprising 18 different natural images consisting of two, three, and five

objects (regions). The images were selected considering natural objects as regions and possessing

diverse characteristics including homogeneous, non-homogeneous, very poor contrast, perceptually

distinct, and natural textured regions. All the results have been numerically evaluated, statistically

tested for significant improvements, and contrasted with the standard fuzzy image segmentation

clustering algorithms, namely FCM and PCM. The methods of numerical evaluations and the

statistical significant test have also been described in this chapter.

The generic fuzzy rule-based segmented algorithm (GFRIS) has showed promising

performance for the regions (objects) that are homogenous i.e. having proximity and good

continuation relation (spatial relation) and some Brodatz texture images compared with FCM and

PCM. The segmentation refinement algorithm (FRIS) has provided significant improved results

than all of the original initial algorithms (GFRIS, FCM, and PCM) except some cases for PCM.

Since it is a refinement algorithm, its performance crucially depends on the initial algorithm and for

this reason FRIS could not always provide good results for PCM. The algorithm incorporating

texture features based on image domain specific information (FRIST) achieved superior results to

GFRIS for the selected Brodatz texture as well as the natural images, especially for images that



Chapter 7 Experimental Results and Discussions 142

have texture to some degree. The GFRIS algorithm has been extended to colour image

segmentation with an algorithm for calculating the average of the hue components of the HSV

colour model and named as FRCIS. The FRCIS algorithm has produced enhanced results over FCM

and PCM for both in the HSV and RGB colour models. FRCIS provided better results for the HSV

colour model than the RGB.

The numerical evaluations have been conducted based on two powerful objective and

quantitative segmentation evaluation methods, namely discrepancy based on the number of mis-

segmented pixels and discrepancy based on the number of objects in the image. A statistical

significant test called sign test has also been implemented. Almost all of the algorithms for all

images achieved an overall significant improvement at a significance level greater than 0.0001.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

Image segmentation particularly that involving object-based segmentation, is very complex and

demands fuzzy image processing due to the imprecise nature of the data involved. It is also

necessary to incorporate human expert and/or domain specific knowledge. Fuzzy rule-based

techniques afford the potential of integrating such knowledge into a segmentation system, however,

such techniques are very much application domain and image dependent. The structures of the

membership functions are perceptually defined and their corresponding parameters are eitlier

manually or automatically derived.

This thesis has directly addressed these issues, by presenting the development and

implementation of a novel, flexible, general-purpose integrated fuzzy rule-based image

segmentation (object-based) framework. The framework considers all possible general attributes of

the perceptual grouping so that users can incorporate their own application specific information in

order to obtain perceptually meaningful segments. In pursuit of this aim, four dedicated fuzzy rule-

based image segmentation algorithms have been developed for the framework.

The first of these is a generic fuzzy rule-based image segmentation (GFRIS) algorithm, which is

both image and application independent and also exploits inter-pixel spatial relationships. GFRIS

has three membership functions, which considers the principles of similarity based on a region's

pixel distribution and gray level pixel intensity, together with proximity and good continuation. The

algorithm automatically approximates both the key weighting factor and threshold value in the

definitions of the fuzzy rule and neighbourhood system respectively. The performance of GFRIS

has proven very effective, outperforming both FCM and PCM in segmenting many image types

with no increase in the order of computational complexity, which is O(n) for an image containing

n pixels. One issue identified within the GFRIS algorithm was that it was not so effective in

segmenting regions characterised by non-homogeneity or possessing sharp variations in pixel

143
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intensity. This lead to the second major algorithm in the framework, which is a refinement

algorithm called fuzzy rules for image segmentation (FR1S).

FRIS is mainly based on region splitting and merging techniques and utilises the principles of

connectedness, surroundedness, uniformity, and contrast properties amongst an objects1 pixels. A

series of mutually exclusive rules covering the growth, prevention, and merger of objects were

developed to help FRIS provide significant improvements to the initial segmentations produced by

algorithms such as GFRIS, FCM, and PCM. The computational complexity of this algorithm is

0(«log(w)), which is however higher than FCM and PCM. The performance of FRIS also depends

on the initial segmentation and in this context, meant that the basic GFRIS algorithm needed to be

enhanced, since it does not directly consider texture.

The third algorithm, called fiizzy rules for image segmentation incorporating texture features

(FRIST), integrates the fractal dimension and contrast features of texture together with image

domain specific information within the GFRIS algorithm. This new algorithm exhibited

significantly better results than the original GFRIS algorithm, however, it incurs an additional

computational cost for integrating these membership functions, though the order of the

computational complexity remains the same at O(n).

Finally, as all three framework algorithms (GFRIS, FRIS, and FRIST) have been developed for

gray level images, the fourth algorithm deals with colour segmentation. Colour often provides

additional information and in many cases makes it easier to separate an object from an image. A

new fuzzy rule-based colour image segmentation (FRCIS) algorithm has been presented by

extending the original gray level GFRIS algorithm to process colour model components including

RGB and HSV. A special algorithm has been developed to calculate the average of the hue

components in the perceptual HSV colour model. The FRCIS algorithm significantly outperformed

the FCM and PCM algorithms for both the HSV and RGB colour models and importantly it also

does not alter the order of the computational complexity, which remains at O(n).

All framework algorithms have been both quantitatively and qualitatively evaluated using a

database containing 18 different types of real images having two, three, and five objects. A

statistical significance test called sign test has also been conducted. The overall conclusion being

that all four algorithms in the framework produced significantly improved segmentation

performance. One additional major advantage of the framework is its flexibility, with the potential

for integrating new membership functions into this system for high-level semantics of an object for

object-based image segmentation.
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8.2 Future Work

There are a number of potential areas where this research may be fruitfully extended within the

framework in Fig. 1.1. Some of them are summarised as follows: -

1. The framework currently requires the number of regions to be segmented to be pre-

defined prior to the segmentation. All the proposed algorithms except FRIS, could be

extended in order to automatically estimate the explicit number of regions in an image

possibly using histogram analysis or mountain clustering techniques [95]. This is

however one of the most difficult and challenging tasks in object-based image

segmentation.

2. Since the framework is fuzzy rule-based, it is capable of incorporating any type of

attribute of any special application domain. For example, algorithms could be

introduced to segment objects in video sequences, text or particular medical imaging

applications by incorporating domain specific information. For instance, in the case of

video, object motion in the form of motion vectors and motion compensation could be

exploited as feasible membership functions. Again the flexibility of the framework

means that application specific information from medical experts could be incorporated

to assist in identifying for instance, abnormalities in MRI, X-ray, and CAT scans for

detecting brain tumours and skin cancers. Dedicated membership functions could be

defined based upon expert knowledge from medical practitioners.

3. It is important to state that while the research focus has been on segmenting images, the

flexibility of the framework means that it can equally be applied to audio segmentation

for example, by incorporating membership functions relevant to audio features such as

pitch and frequency content.

4. The FRCIS algorithm could be developed by intuitively defining fuzzy colour model

exploiting human visual perception. The fuzzy colour model could be defined by

quantising and combining the components of existing colour models [141] and the

membership value estimated from the predefined fuzzy colour.
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Abstract

Fuzzy rule based image segmentation techniques tend in general, to be application dependent with the structure of
the membership functions being predefined and in certain cases, the corresponding parameters being manually deter-
mined. The net result is that the overall performance of the segmentation technique is very sensitive to parameter value
selections. This paper addresses these issues by introducing a generic fuzzy rule based image segmentation (GFRIS)
algorithm, which is both application independent and exploits inter-pixcl spatial relationships. The GFRIS algorithm
automatically approximates both the key weighting factor and threshold value in the definitions of the fuzzy rule and
neighbourhood system, respectively. A quantitative evaluation is presented between the segmentation results obtained
using GFRIS and the popular fuzzy c-means (FCM) and possibilistic c-rr.eans (PCM) algorithms. The results dem-
onstrate that GFRIS exhibits a considerable improvement in performance compared to both FCM and PCM, for many
different image types. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Generic fuzzy rules; Image segmentation; Spatial information; Fuzzy clustering

I. Introduction

Classical, so-called "crisp" image segmentation
techniques, while effective for images containing
well-defined structures such as edges, do not per-
form as well in the presence of ill-defined data. In
such circumstances, the processing of images that
possess ambiguities is better performed using fuzzy
segmentation techniques, which are moro adept at
dealing with imprecise data. Fuzzy techniques may

'Corresponding author. Tel.: +51-223-884; fax: +99-026-
842.

E-mail addresses: Gour.Karmakar@infotech.monash.edu.au
(G.C. Karmakar), Laurence.Dooley@infotech.monash.edu.au
(L.S. Dooley).

be broadly classified into five main categories:
fuzzy clustering, fuzzy rule based, fuzzy geometry,
fuziy thresholding, and fuzzy integral based seg-
mentation techniques (Tizhoosh, 1998). Of these,
the most widely used are fuzzy clustering and fuzzy
rule based segmentation.

The two most popular fuzzy clustering tech-
niques are the fuzzy c-means (FCM) (Bezdek,
1981; Chi et al., 1996) and possibilistic c-means
(PCM) algorithms (Krishnapuram and Keller, 1993).
While both these methods have been applied ex-
tensively, neither integrates human expert knowl-
edge nor includes information about pixel spatial
relations. Image segmentation which relies upon
only feature based information without consid-
ering inter-pixel relationships, does not generally

0167-8655/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII:S0167-8655(02)00069-7
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produce good results, because there are usually a
large number of overlapping pixel values between
different regions.

In contrast, fuzzy rule based image segmen-
tation techniques are able to integrate expert
knowledge and are less computationally expensive
compared with fuzzy clustering. They are also able
to interpret linguistic as well as numeric variables
(Chang et al., 1998). The performance of fuzzy rule
based segmentation in many applications however,
is sensitive to both the structure of the membership
functions and associated parameters used in each
membership function. For example, the fuzzy rule
based segmentation technique proposed by Chi
and Yan (1993) for geographic map images, intu-
itively defined the structure of the membership
functions with the related parameters being auto-
matically determined, while Hall and Namasiva-
yam (1998) and Chang et al. (1998) used a different
approach for segmenting magnetic resonance
images (MRI) of the brain. They predefined the
membership functions so the corresponding pa-
rameters could be automatically derived. Another
approach (Sasaki et al., 1999) was used for seg-
menting the menisci region from MRI slices, with
the structure of the membership functions defined
from the anatomical knowledge of the knee and
the parameters being taken from actual MRI de-
vice data. A different strategy was proposed by
Park et al. (3998) who used perceptually selected
structures and parameters for the membership
functions, in the segmentation of intrathoracic
airways trees in computer tomography (CT)
images.

Karmakar et al. (2000) presented a contempo-
rary review of fuzzy rule based image segmenta-
tion techniques, and confirmed that despite being
used in a wide range of applications, both the
structure of membership functions and derivation
of their relevant parameters were still very much
application domain and image dependent.

This paper presents a new generic fuzzy rule
based image segmentation (GFRIS) algorithm,
which addresses a number of the aforementioned
issues, most crucially by incorporating spatial pixel
information and automatically data-mining both
the key fuzzy rule weighting factor and its
threshold (Karmakar and Dooley, 2001). The

paper is organised as follows: In Section 2, the
three membership functions used in the GFRIS
algorithm are defined. The fuzzy rule definition and
underlying theory, together with the data-mining
algorithm for obtaining both the key weighting
factor and threshold are presented in Sections
3 and 4, respectively. Section 5 details the full
GFRIS algorithm, while Section 6 discusses the
experimental results and performance of this new
segmentation technique when applied to a range of
different images. All the results are quantitatively
evaluated using the empirical objective segmenta-
tion assessing method (Zhang, 1996), "discrepancy
based on the number of mis-segmented pixels".
Finally, Section 7 concludes the paper.

2. Definition of membership functions

The definition of the membership function lies
at the heart of any fuzzy logic system and the ca-
pability of fuzzy rule based techniques significantly
depend upon it. The eminent psychologist Gestalt,
discovered that visual elements may be perceptu-
ally grouped together based on the principles of:
proximity, similarity, common fate, good con-
tinuation, surroundedness, closure, relative size
and symmetry (Wertheimer, 1923). In this section,
three membership function types are defined to
respectively represent the: (i) region pixel distri-
butions, (ii) closeness to a region's centre, and
(iii) pixel spatial relations. The second member-
ship function for instance, characterises similarity
based on gray level pixel intensity, while the third
reflects the characteristics of proximity and good
continuation. Each membership function has a
corresponding membership value for every region,
which indicates the degree of belonging to that
region.

2.1. Membership function for region pixel distribu-
tions

In gray level images, jvery region has a dis-
tinctive pixel distribution, which characterises to
some extent that region's properties. The approach
adopted here is to automatically define the mem-
bership function including its structure from the
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pixel distribution of that particular region. This is
achieved in three steps:

1. Segment the original image into a desired num-
ber of regions by applying a clustering algo-
rithm such as FCM.

2. Generate the gray level pixel intensity histo-
gram for every region and normalise the fre-
quency for each gray level into the range [0 1].

3. Use a polynomial representation to approxi-
mate each region. The polynomial value of a re-
gion, for every gray level pixel corresponds to
the membership value of that pixel in that re-
gion, with the actual gray level intensity values
being the parameters of the membership func-
tion.

As an example, the reference image shown in Fig.
l(a) is classified iiito two separate regions, namely
R\ (cloud) and R2 (urban scene) using the standard
FCM algorithm. The respective pixel distribution
of each region is used to produce the correspond-
ing membership function and a gray level intensity
histogram (gray level histogram) is generated for
both regions, with the frequencies of occurrence
being normalised. A polynomial then approxi-
mates the histogram of each region. As an exam-
ple, a 3rd order polynomial is given by

f(x) = a0 + a ix + a2x
2 + a^x3, (1)

where x is an independent variable, which in this
example is the 8-bit gray level pixel intensity.

The coefficients ao, a\, a2, and a-x, are computed
by applying a least squares (LS) fit to the histo-
gram for each region. The values of f(x) are con-

strained between 0 and 1, and represent the mem-
bership value of each gray level pixel. The 3rd
order polynomials for the segmented regions R\
and R2 in the example image, are shown in Fig.
l(b) and (c), respectively.

The degree of belonging to a region of a candi-
date pixel, that is the pixel to be classified, is de-
termined from the respective membership function.
Hence, for a pixel having a gray level value of 150,
the membership values for regions R\ and R2 can be
easily determined from the respective polynomials
as 0.425 and 0.125, respectively, Considering the
general case of a pixel with a gray level value of PSt,
at location (s, t), then the two membership func-
tions ^DRt(Ps,i) and nDRl(Ps,t) for the pixel distri-
bution of regions R\ and R2, respectively, are
expressed as:

' s,l) — JRi\rsj) I / ;

(3)

and

where /*,(/>,,,) and fRl(Pt4) are the
polynomials of regions R\ and R2.

respective

2.2. Membership function to measure the closeness
of a region

This membership function represents the simi-
larity between a candidate pixel and the centre of
a region based on gray level pixel intensity and
is measured using the city block distance. A pixel
must always be closer to the belonging region than
any other region and the degree of belongingness of
a candidate pixel to a region is determined from

V "so "ioo" i » sooMO 330 M0

Fig. 1. Reference image and its membership function for each region: (a) original image, (b) membership function for R\, (c) mem-
bership function for R2.
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the fc-means clustering algorithm (Gose et al.,
1996). When a candidate pixel joins its nearest
region, the centre of that particular region is re-
computed. The centroid of a region Rj is defined as

(4)

where Nj is the number of pixels and Pj(i) repre-
sents the fth pixel gray level intensity in the yth
region.

A membership function should reflect the
axiom that "the closer a pixel is to a region, the
larger the membership value that pixel should
have". Hence, the membership function nCR (PS<1),
which determines the degree of belongingness of
a candidate pixel Psj at location (s, t), to a region
Rj is defined as

\C{Rj)-C{Rj)

\C{Rj)~Ps

D
(5)

where D is a constant equal to the difference be-
tween the maximum and minimum gray level in-
tensity values in an image, so using an 8-bit gray
scale, D = 255.

Theorem 1. The maximum value of the membership
function HcRj(Ps,t) will always be at the centre of the
region and the structure of the function will be
symmetrical about a vertical line that passes through
the centre of the region.

Proof. For positive values of D,

D

The function nCR.{PSJi) will tlierefore be a maximum
whenever \C(Rj)-P^\ = 0, i.e. when C(R}) = Ps,,,
so the maximum always occurs at C(Rj), which is
the centre of region Rj.

To prove the membership function is symmet-
rical about C(Rj), consider the values of HCRJ(PSII)

for Ptt = C(Rj) + 8 and Ps>l = C(Rj) - 8, where 8 is
an arbitrary constant.

D

13

D

Since HCRJ(C(RJ) + S) = iiCRj{C{Rj) - d), liCRj{Ps,t)
is also symmetrical about a vertical line passing
through the centre of region Rj. D

2.3. Membership function for spatial relations

The principles of proximity and good continu-
ation are used to define this particular membership
function. Wherever pixels are close together and
exhibit relatively smooth variations, there is an
obvious expectation that strong spatial relation-
ships will exist between neighbouring pixels within
that region. In the preceding sections, the respec-
tive membership functions have been constructed
using only feature values, i.e. gray level pixel in-
tensities. Spatial relations between pixels within an
identified region have not been considered, yet are
vital since they characterise the geometric features
of a region as any spatial object contains two de-
scriptors: feature and geometric (Kellogg et al.,
1996; Yip and Zhao, 1996).

In many natural images, there are a large
number of overlapping pixels between regions,
so that effective segmentation cannot be expected
unless these overlapping pixels are taken into ac-
count. By considering the neighbourhood rela-
tionship between the candidate pixel and the pixels
of a region that surround it, a large number of
overlapping pixels can be reduced. Based on the
neighbourhood relations, the candidate pixel can
then be assigned to the appropriate region.

Many approaches exist to define neighbourhood
relations (Tuceryan, 2000), such as minimum span-
ning tree, fixed size neighbourhoods, and Voronoi
tessellation. This paper concentrates upon only
fixed size neighbourhoods around the candidate
pixel, since the number of pixels and their distances
from a candidate pixel has to be calculated.

The neighbourhood pixel configurations for r =
1, r = 2, and r = 4 are shown in the Fig. 2(a)-(c),
respectively, (Geman and Geman, 1984) where
r ^ 1 denotes the neighbourhood radius, while o
and # represent the candidate and neighbourhood
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(a) n=l (b) ^=2 (c) r=4

Fig. 2. Neighbourhood configurations.

pixels, respectively. The number of neighbours will
be ( r+ 1) for r = 1 and ( r+ I)2 - 1 otherwise.

As previously mentioned, the principles of
proximity and good continuation imply that pix-
els, which are close together and have smooth
variations should be part of the same region, that
is, segmented regions are homogeneous and mu-
tually exclusive. It is thus assumed that the varia-
tion of neighbouring pixels in a region is limited to
some threshold T, and the neighbourhood system
of a region based on this premise is defined as

Definition 1 (Neighbourhood system). A neigh-
bourhood system £(Ps<l,r) with radius r, of a can-
didate pixel PSi, is the set of all pixels PXJf such that

where the distance, d(PXt>.,Ps^) = \x — s\ + \y-1\,
PXJ, is the gray level value of the pixel at Cartesian
coordinates (x,y), (Px>y ~ PSJ) is the absolute value
of the difference between the gray level values of
the pixels Px>>. and PSit, and T is the threshold.

To construct a membership function, the num-
ber of neighbourhood pixels and their distances
from the candidate pixel must be considered. The
membership function // should possess the fol-
lowing properties:

I. fiocN where N is the number of neighbours.

where d(PXiy,PSt,) is the distance between pixels PXt},
and Pif.

The summation of inverse distances of a region
Rjis

i

TTT. (6)

where Nj = \£(PSthr)\ is the number of neighbour-
hood pixels of the candidate pixel Ps%l in the region
Rj and di(PXj,PStt) is the distance between the /th
pixel Pxy of region Rj and the candidate pixel Ps>l.

By considering the number of neighbours Nj
and the sum of their inverse distances GRj from the
candidate pixel Ps,,, the membership function

Ps,hr) of the region Rj becomes

x G
Rj (7)

where 9? is the number of segmented image re-
gions. Eq. (7) shows that the greater the number of
neighbours in a region, the larger the membership
function value will be for that region. Hence, if all
neighbours fall into a single region, the corre-
sponding membership function value will be one
for that region, since the sum of the member-
ship function values for all regions always equals
unitv.

3. Fuzzy rule definition

The definition of the fuzzy rule is the single
most important and challenging aspect of fuzzy
rule based image segmentation, as its effectiveness
is vital to the overall performance. In this paper,
the fuzzy rule is heuristically defined using the
three membership functions defined in Section 2,
in combination with the widely used fuzzy IF-
THEN rule structure.

The overall membership value nAR(Ps%t) of a
pixel Ps<l for region Rj represents the overall degree
of belonging to that region, and is defined by the
weighted average of the three individual mem-
bership function values iiDRj{Pt,t)> HcRj(Ps,t) and
VNRjfat), w m ' c n are given in Eqs. (2), (5) and (7),
respectively.

+ +

(8)

W\, Wi, and W$ are the weightings of the mem-
bership values for pixel distribution, closeness
to the cluster centres, and neighbourhood rela-
tions, respectively. The overall membership value
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HARj(Ps,i) is used in the antecedent condition of the
fuzzy IF-THEN rule.

Definition 2 (Rule). IF {xARj{PSfi) supports region
Rj THEN pixel Ps,t belongs to region Rj.

wu"l giy e support to the region Rj if
j fo)W) ( ) }

This rule is deliberately generic so that it can be
applied to any image type thus adhering to one
of the key objectives that the GFRIS algorithm
should be both image and application indepen-
dent.

4. Determination of weighting factors and the
threshold

The threshold value Tintroduced in Section 2.3,
plays a major role in defining the spatial relation-
ship between pixels in any region, because it reg-
ulates the level of variation between the candidate
pixel and its neighbours. The greater the variation
between a candidate pixel and its neighbours, the
larger the standard deviation will be, which pro
rata results in poor continuation. Two issues need
to be considered in determining the threshold
value:

1. The degree to which pixels of one region over-
lap with those of another region.

2. The pixel standard deviations in each region.

The approximate threshold Ta is computed
using 1, by considering the centres of the initially
segmented regions, while the status of this ap-
proximate threshold as to whether it is actually an
overestimation of the final threshold value, is de-
termined using 2. Estimation of both the status
and final threshold value is detailed in the algo-
rithm below. If the centre of a particular region is
two standard deviations away from the boundary
of another region and the pixels in that region are
normally distributed, there is at best a 5% proba-
bility that the pixels of that region will overlap
with the other. The procedure to determine the
approximate threshold Ta for two regions may be
formalised as follows

Theorem 2. If two regions with centres c\ and c2

have pixels that are normally distributed, then for at
least 5% levels of significance, the approximate
threshold will be bounded by Ta ^ \c\ — c2|/4.

Proof. Assuming that the pixels are normally dis-
tributed, then in a region having a centre c\ and
standard deviation ax, the 5% level of significance
means the probability of pixels falling outside
ci ±2CT, will be 0.05 (Zaman et al., 1982). The
same is also true for other region, which has a
centre c2 and standard deviation c2. Thus, for at
least 5% levels of significance,

2(o-i — c2|.

Since the threshold is considered the same for both
regions, it may be written as 7"a = (a\ + <J2/2) such
that

47; c2\
\c\ - c2\ D

This theory may be extended to an arbitrary
number of regions for determining the weight and
the threshold values. If the approximate threshold
is overestimated, the minimum value between the
standard deviations and the approximate thresh-
old is used as the final threshold. This is condi-
tional on the value not being either zero or very
small (less than some arbitrary percentage of Ta),
so ensuring that some spatial relationship exists.
The weight W\ in Eq. (8) governs the importance
assigned to region pixel distributions, and empiri-
cal observations reveal that the resultant segmen-
tation results are not very sensitive to variations in
this particular parameter.

The important weighting factors are W2 and W$,
as their values represent a trade-off between the
gray level pixel intensity and spatial relation-
ship. Prominence was initially given to the former,
because it contributed more to the human visual
perception and for this reason, following empirical
evaluation; W2 was set equal to 1.8, with the other
two weighting factors being set to one. If the
standard deviation in a number of regions is high
with respect to the approximate threshold, then
the spatial relationship will be ineffective and
greater emphasis needs to be given to W2 by in-
creasing its value. In all other instances, impor-
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tance should be given to the pixel spatial rela-
tionships so that the value of V/2 should be re-
duced. The following details the various stages of
the algorithm to automatically determine this key
weighting factor and its threshold.

1. Set the initial values for the three weighting fac-
tors as W\ = 1; W2 = 1.8; Ws = 1.

2. Define a set of all regions (R) and a set of centre
pairs of all regions (V)

V =

3. Compute the absolute sum of differences (sofd)
between the elements of all pairs

where ncl is the number of combination pairs
of all regions.

4. Determine the approximate threshold Tz using
Theorem 2

71 =
sofd

nc2*4'
5. Calculate the average sum of differences {arstd)

between the various standard deviations and
approximate threshold

EMarstd =
Tm)

where rstdi is the standard deviation of the ;th
region.

6. If the approximate threshold is overestimated,
{arstd < 0), then the minimum of the standard
deviation and Ta is taken as the final threshold
value T, provided this value is neither too small
(less than K% of Ta, where K is an arbitrary con-
stant) nor zero. If this condition is invalid, then
Ta becomes the final threshold.

7. Normalise the average sum of differences be-
tween the standard deviation and approximate
threshold

, arstd
narstd = ; ——-.

max(rstdj, Ta)

8. Adjust the weight W2 accordingly

W2 = W2 + narstd.

This algorithm has been experimentally tested
upon various different image types and as results
will prove in Section 6, the automatic data mining
of the key weighting factor and threshold value is a
significant reason for the superior performance of
the GFRIS algorithm.

5. The GFRIS algorithm

The detailed stages involved in the GFRIS al-
gorithm can now be formalised as follows:

1. Classify the pixels of an image into a desired
number of regions using any appropriate clus-
tering algorithm.

2. Derive the key weight and threshold value by
applying the data-mining algorithm in Section
4, and the membership function for each pixel
distribution from the theory given in Section
2.1.

3. Initialise the centre of all regions required to de-
fine the membership function in Section 2.2,
with the respective centres produced by the clus-
tering algorithm in step 1.

4. Sequentially select an unclassified pixel from the
image and calculate each membership function
value in each region for that pixel.

5. Classify the pixel into a region applying the
fuzzy rule defined in Section 3.

6. Return to step 4 until every pixel is classified.

6. Discussion of experimental results

The GFRIS algorithm, FCM, and PCM were
all implemented using MATLAB version 6.0. In
order to evaluate the performance of the new
GFRIS algorithm, a variety of different image
types were applied possessing diverse characteris-
tics, including homogeneous and non-homo-
geneous regions, low pixel contrast regions and
perceptually distinct regions. Three images in
particular, Figs. l(a), 5(a) and 6(a), were used for
demonstration and numerical evaluation.

All quantitative evaluations were performed
using the powerful empirical discrepancy method
(Zhang, 1996) discrepancy based on the number of
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mis-segmented pixels. The confusion matrix C is
a 3? x 9? square matrix, where Qj denotes the
number of y"th region pixels wrongly classified in
the /th region by the segmentation algorithm. Two
error measures Type I, errorlt and Type II errorllh

were defined as performance measures:

errorlj —
\ S);=i Q/ ~ C-i J

x 100, (9)

For the GFRIS algorithm, the membership
func'tion defined in Section 2.1 was constructed
using the regions produced by FCM, with their
centre values used to initialise the centre of the
regions required to define the membership func-
tion (Section 2.2). The respective weighting and
threshold values were automatically data mined
using the algorithm described in Section 4, with
the constant K — 0.25. The segmented results of

errorllj = x 100.

(10)

Type I, errors represents the percentage error of
all /th region pixels that are not classified in the /th
region, whereas Type II, errorllj, is the percentage
error of all other region pixels wrongly classified in
the /th region. The two manually segmented ref-
erence regions of the image in Fig. l(a) used in the
evaluation, are shown in Fig. 3.

For FCM, initialisation of the centre of the
regions was performed randomly. The maximum
number of iterations, the minimum level of im-
provement and the value of the fuzzifier (w) were
empirically selected as 100, 0.00001 and 2, re-
spectively.

For PCM, initialisation of the centre of the re-
gions utilised the output of FCM. The value of
the scale parameter ^, (Krishnapuram and Keller,
1993), was taken as the variance of the region /
produced by FCM. The maximum number of it-
erations, minimum level of improvement and value
of fuzzifier (in) were empirically chosen as 200,
0.00001 and 1.5, respectively.

Fig. 3. Manually segmented reference regions of Fig. l(a): (a)
cloud, (b) urban scene.

Fig. 4. Automatic segmentation of Fig. l(a) into two regions
using FCM (a)-(b), PCM (cHd), and GFRIS (e)-(j).
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Table 1
Error percentages for the cloud region {R{) segmentation in Fig
Ka)

Algorithm

FCM
PCM
GFRIi: r = 1
GFRIS r = 2
GFRIS r = 4

Error

Type I

28.0000
26.8939
7.3333
1.7273
1.8030

Type II

15.7372
16.3141
17.0513
21.2500
23.6218

Mean

21.8686
21.6040
12.1923
11.4887
12.7124

the image Fig. l(a) for the two regions, cloud (R\)
and urban scene (R2) produced by FCM, PCM and
GFRIS, respectively are shown in Fig. 4.

The results confirmed that GFRIS separated
almost the entire cloud region from the urban
scene and produced significantly better results
than both FCM and PCM. FCM and PCM gave
approximately equal performance since as alluded
earlier, both algorithms do not consider the spatial

(m) R3, r=2 (n) /?, , n=4, , ' - r (o)R2,r=4 Ritr=4

results for three regions produced by FCM (b)-(d), PCM (e)-{g), and GFRIS
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relationships between the pixels in each region.
GFRIS also exhibited better results for larger
values of neighbourhood radius r, since the pixels
of region R\ (cloud) are homogeneous and possess
strong spatial correlation. Evaluation of the seg-
mentation results for the cloud image, compared
with the manually segmented reference images in
Figs. 3(a) and (b), are shown in Table 1, where the
final column is the average of the Type I and Type
II errors. Note that only the error rates for the
segmented cloud region are displayed in Table 1,
because only two regions were identified, and the
error rate of one region would be the reverse of
that of the other region. The values given in italics
correspond to the best GFRIS results.

The average GFRIS error rates for Fig. l(a)
were significantly better than those of both FCM
and PCM for each value of the neighbourhood
radius r. While GFRIS provided particularly good
performance in segmenting the cloud region (#«), it
is worth noting that the error rates of GFRIS for
the type II error were higher than those for both
PCM and FCM. This was because not all the
pixels in this region possessed good continuation
due to the abrupt changes in the urban scene,
which did not constitute a single object and so
opposed the necessary condition for good inter-
pixel relationships.

A second series of experiments were performed
using the image in Fig. 5(a), which comprised three
distinct regions, namely water (R\), iceberg (Ri),
and sky (R3). The segmentation performance for
the three regions using FCM, PCM and GFRIS is
presented in Figs. 5(b)-(p).

It was visually apparent again that the GFRIS
algorithm produced more distinctive regions for all
values of neighbourhood radius r and hence con-
siderably outperformed both FCM and PCM.
PCM divided the iceberg image into only two re-
gions (Figs. 5(e) and (0) instead of three, because
it was unable to distinguish between regions hav-
ing a poor gray level contrast. The error rates for
the segmentation of the iceberg image compared
with the manually segmented reference images are
given in Table 2.

The mean error rates of GFRIS for the iceberg
and sky regions were considerably lower than for
both FCM and PCM, while the error was slightly

Table 2
Error percentages for the iceberg image segmentation in Fig.
5(a)

Algorithm

FCM

PCM

GFRIS
r = l

GFRIS
r = 2

GFRIS

Region

Water
Iceberg
Sky

Water
Iceberg
Sky

Water

Iceberg
Sky

Water

Iceberg
Sky

Water

Iceberg
Sky

Error

Type I

7.2228
62.5797
1.0421

8.9581
28.3612

100.0000

7.4898

51.5495
1.1869

7.0449

51.8344
1.3027

9.1435

51.7933
1.1406

Type II

20.7483
0.8486

24.3015

19.1153
59.5832
0.0000

21.3213

0.9331
15.8559

22.2586

0.9299
14.9659

21.4849

0.9006
16.3272

Mean

13.9856
31.7141
12.6718

14.0367
43.9722
50.0000

14.4055

26.2413
8.5214

14.6517

26.3822
8.1343

15.3142

26.3470
8.7339

higher for the water region. This was due to
floating ice on the water, which was classified as
water in the manually segmented reference region
but was misclassified as sky using GFRIS.

In the above experiments, the number of seg-
mented regions was constrained to two and three,
respectively. In order to examine the discriminat-
ing potential of the GFRIS algorithm for a larger
number of regions, a comparison was made with
FCM and PCM algorithms on the image in Fig.
6(a) that possessed five regions. These were: egg
(Ri), glass of milk (R2), curtain (i?3), cheese (R4)
and table (R5). Fig. 6 shows the segmentation
performance of all three algorithms.

From Fig. 6(b)-(k), it is clear that both FCM
and PCM arbitrarily divided the image into five
regions without considering any semantic meaning
of the data. The results produced by GFRIS for
r = 1 and r = 2, in Figs. 6(l)-(u) showed more
typical information of the regions. There are some
regions such as egg and milk, curtain and cheese,
which overlap with each other because their gray
level pixel intensities are very similar. The most
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(x) R3, r=4

Fig. 6. Original food image (a), and its segmented results for five regions produced by FCM (b)-(0. PCM (g)-{k), and GFRIS (l)-(z).

promising results in Fig. 6(v)-(z) were obtained
for GFRIS using r = 4, with the exception of re-
gion R4 (cheese) in Fig. 6(y), which partially
merged with region R2 (milk) as shown in Fig.

6(w). Again the GFRIS algorithm considered the
underlying meaning of data far better than both
the FCM and PCM techniques when compared
with the manually segmented results.
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Table 3
Error percentages for the food image segmentation in Fig. 6(a)

Algorithm

FCM

PCM

GFRIS r = l

GFRIS r = 2

GFRIS r = 4

Region

Egg
Milk
Curtain
Cheese
Table

Egg
Milk
Curtain
Cheese
Table

Egg
Milk
Curtain
Cheese
Table

Egg
Milk
Curtain
Cheese
Table

Egg
Milk
Curtain
Cheese
Table

Error

Type I

53.8987
78.1723
57.7310
73.6814
64.1724

24.5806
97.2167
98.2103
61.2456

100.0000

27.5875
82.0478
34.9451
72.7393
69.8608

21.2948
91.3547
16.2"73
81.0402
5 i. 6803

5.8837
14.8145
49.5865
81.4295
46.0001

Type II

27.7937
17.5717
19.3766
18.3165

1.6680

59.3575
3.8489
1.0998

30.5258
2.3314

19.8809
18.3831
15.1^.4
18.4654
2.7701

25.2192
9.4606

19.9142
12.0240
2.1541

0.2062
33.2056
6.2929

11.2236
3.0249

Mean

40.8462
47.8720
38.5538
45.9990
32.9202

41.9690
50.5328
49.6551
45.8857
51.1657

23.7342
50.2155
25.0683
45.6024
36.3155

23.2570
50.4077
18.0708
46.5321
26.9172

3.0450
24.0099
27.9397
46.3266
24.5125

The numerical evaluations of the image seg-
mentation given in Table 3, revealed that the mean
error rates for the egg, curtain and cheese, egg,
curtain and table, and egg, milk, curtain and table
regions were appreciably lower using GFRIS with
r = 1, r — 2, and r = 4, respectively than for either
FCM or PCM. Overall the results confirmed that a
significant improvement was achieved for all re-
gions using GFRIS with neighbourhood radius
r — 4, except for the cheese (/?4) region, for the
reason alluded to above.

7. Conclusions

This paper has presented a new generic fuzzy
rule based image segmentation (GFRIS) algo-

rithm, which crucially has incorporated spatial
relationships between pixels. It has been experi-
mentally shown that in comparison with both
FCM and PCM, GFRIS provided significantly
superior results for a variety of different image
types, including image examples having multiple
regions. Its performance in considering the un-
derlying meaning of data was also better when the
results were compared with the manually seg-
mented reference regions.

A single fuzzy rule was defined in order to
classify the pixels, and three weighting factors W\,
W2, and Wi applied to stress the importance at-
tached to feature based and spatial information in
the image. Another important advantage of the
GFRIS algorithm was that the structure of the
membership functions and associated parameters
were automatically derived and a new data-mining
algorithm presented to determine both the key
weighting factor and threshold value. The vital
role of the threshold to the performance of GFRIS
in controlling the maximum permitted pixel in-
tensity variation between neighbouring and can-
didate pixels was highlighted.

From a computational perspective, since the
three membership functions are independent of
each other, the GFRIS algorithm possesses a high
degree of inherent concurrency, which could be
exploited by a parallel implementation, with
a dedicated processor being used for each func-
tion.

Finally, as GFRIS is fuzzy rule based, the al-
gorithm has the capability of incorporating any
type of image attribute in any special application,
! simply defining new membership functions, so
nuking this solution both image and application
independent.
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Chapter XIV

Review of Fuzzy Image
Segmentation Techniques

Gour C. Karmakar and Laurence Dooley
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Minnesota Stete University, Mankato, MN, USA

This chapter provides a comprehensive overview of various methods of fuzzy
logic-based image segmentation techniques. Fuzzy image segmentation tech-
niques outperform conventional techniques, as they are able to evaluate impre-
cise data as well as being more robust in noisy environment. Fuzzy clustering
methods need to set the number of clusters prior to segmentation and are
sensitive to the initialization of cluster centers. Fuzzy rule-based segmentation
tsckniqiiss can incorporate the domain expert knowledge and manipulate
numerical as well m linguistic data. It is also capable of drawing partial
inference using fuzzy IF-THEN rules. It has been also intensively applied in
medical imaging, The.ie rules are, however, application-domain specific and
very difficult to acjine either manually or automatically that can complete the
segmentation alone, fuzzy geometry and thresholding-based image segmenta-
tion techniques are suitable only for bimodal images and can be applied in
multimodal images, but they don't produce a good result for the images that
contain a significant amount of overlapping pixels between background and
foreground regions. A few techniques on image segmentation based on fuzzy
integral and soft computing techniques have been published and appear to offer
considerable promise.

INTRODUCTION
The usage of digital images is increasing rapidly due to quick development of Internet

and multimedia technologies, so the recent research interests are being directed towards
the fields of digital image processing. There are various types of digital images, as they are
generated from the diverse fields of application. Most commonly used are light intensity
(LI) images, range images (RI), computed tomography (CT) images, thermal images and

Copyright © 2001, Idea Group Publishing-
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magnetic resonance image (MRI). Image segmentation can be defined as the process for
separating the mutually exclusive homogeneous interested region(s) from other regions of
an image. Image segmentation is becoming an active and promising field of research since
it is the most challenging and difficult task of image processing and computer vision
systems. Much research to date has been done in this field, but it is highly dependent on
the type of image, its dimension and its applications. None of them is suitable for all types
of images. Image segmentations are being extensively used in the various types of
applications such as automatic car assembly in robotic vision, airport identification from
aerial photographs, object-based image identification and retrieval, object recognition,
second-generation image coding, criminal investigation, computer graphic and medical
science (cancerous cell detection, segmentation of brain images and intrathoracic airway
trees, etc.) (Phan and Prinle, 1999; Pal and Pal, 1993).

Image segmentation may be achieved in a large variety of ways. Generally it is divided
into two approaches: region-based approach and boundary or contour-based approach
(Ballard and Brown, «9S2; Chakrabotry, Staib and Duncan, 1994). The first one uses the
homogeneity of the pixel or features while the later one finds the contour or the boundary
of the interested region. The two types of contours mainly used are: active contours (Kass,
Witkin and Terzopoulos, 19SS; Cohen and Cohen, 1993; Ronald, 1994; Caselles, Kimmel
and Shapiro, 1995). and deformable contours (Chakrabory et al., 1994; Grzeszczuk and
Levin, 1997; Grzeszczuk and Levin, 1993)

Haralic (19S5) divided the image segmentation techniques into four classes: measure-
ment space guided spatial clustering, region growing (single linkage, hybrid linkage and
centroid linkage region growing approaches), spatial clustering, and split and merge.
Measurement space guided spatial clustering assigns each pixel a label of a cluster of the
measurement space in which it feels right. The pixels bearing the same label are treated as
the connected component and in the same class. Generally clustering and histogram mode-
seeking techniques are used in this approach. This method does not work well when the gray
label intensity of an object in the interest of segmentation varies extensively and the
background is not uniform. In region growing the image is divided into some regions. The
gray level intensity variation of all the pixels of a region lies within the limit of the specified
threshold. The region is grown by taking a pixel as a starting point and then adding all pixels
into the region whose gray level intensity variation lies within the selected threshold (Reid,
Millar and Black, 1997). This technique is expensive in terms of computation and memory
(Moghaddamzadeh and Bourbakis, 1997). The single linkage region growing approach uses
the graph theory to segment the image. Each vertex of the graph represents each pixel of the
image. Pixels containing similar characteristics are connected by the links of the graph. This
approach suffers from the problem of chaining. If the chain cuts, it loses all the pixels of the
other part. Hybrid linkage region growing approach allocates a property vector to each
pixel, which is a function of its kxk neighborhood values. One of the hybrid linkage
approaches used information on the edges to connect the link, but this depends on the edge
detection method used. In the centroid linkage region growing approach, the image is first
scanned and then a region is formed by comparing the pixel value with the mean of that
region. Pixels arc added into the region if they are close enough and then update the mean
of the region. The similar regions (if any) are merged. The effectiveness of this approach
depends on the combing criteria. The spatial clustering approach forms the cluster by
considering both the measurement space as well as spatial space between the parent pixels
and their neighbors. Initially, split and merge approach assumes the image as one segment
and then divides the image into some subdivisions (number of subdivision=4" where
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n=l,2,3...) based on quadtree (Samet, 1989a; Reid et al., 1997). Adjacent regions are
merged if they are sufficiently homogenous, but if the quadrants are not sufficiently
homogeneous they will again be subdivided.

Pal and Pal (1993) stated that the image segmentation approaches could be generally
classified into two approaches: classical and fuzzy mathematical approaches. The classical
approach includes histogram thresholding, edge detection, and semantic and syntactic
approaches. Fuzzy mathematical approaches are categorized as edge detection, thresholding
and relaxation. They also mentioned that there are some other approaches (Hansen and
Elliott; Derin and Elliott, 19S7; Derin, Elliott, Cristi and Gcman, 1984; Geman and Geman,
1984) that are not classified into either of the above mentioned classes. They described all
image segmentation approaches in seven sections: gray level thresholding, iterative pixel
classification (relaxation, MRF-based techniques and neural network-based-approaches),
surface-based segmentation, segmentation of color images, edge detection and methods
based on fuzzy set theory (fuzzy thresholding and fuzzy edge detection). Although they
described the fuzzy segmentation approaches, they did not include the fuzzy segmentation
approaches on fuzzy rule, fuzzy integral, genetic algorithm-based approaches and soft
computing approaches. Genetic algorithm-based image segmentation approaches are
described in Cognoni, Dobrzeniecki and Yanch (1999), Bhanu, Lee and Ming (1995) and
Andrey and Tarroux (1994). Zadeh first introduced the term soft computing in the early
1990s and it includes all of the approaches that are a synergistic combination of neural
networks, fuzzy logic, genetic algorithms and probabilistic computing (Yen, 1999).].

Image segmentation is one of the most complicated tasks in image processing and
computer vision due to a lot of factors, some of which are summarized below (Pal and Pal,
1993; Chakrabotry et al., 1994; Haralic and Shapiro, 1985).

• The image processing system possesses some inborn constraints, so the resulting
image is not perfect and will contain artifacts.

• The image data can be susceptible and ambiguous. For example, SPECT imaging
often deforms the high frequency information of the image data and produces fuzzy
and non-reliable edges.

• The shape of the same object can differ from image to image. The structures of the
object are not well defined for most natural images and very difficult to find the
accurate contour of an object.

• The gray level pixel values and theirdistributions of the same object are not the same
for all images. Even in the same image, the pixels belonging to the same class may
differ in their pixel intensities and distributions.

• The object(s) to be segmented are highly domain and application dependent.
• The properties of an object used in image segmentation differ in the way of

representations, the types of the images and their domains. It also needs a trade off
between the desired properties. For example, gray level distribution follows the
Poisson distribution for some visual images, but this is not a valid case for MRI and
RI images. So segmentation techniques need semantic and prior information on the
type of image in addition to other properties.
From the above-mentioned problems, it is obvious that an image itself contains a lot

of ambiguities. For example, it is not possible to define precisely the contour of an object
in an image, region, the relationship between the regions, edge, surface and corner, etc. Pal
and Pa! (1993) mentioned that LI images contain ambiguity because of their multi-valued
gray level pixel intensity. This ambiguity may be defined in two ways: grayness and spatial.
Grayness ambiguity represents the whiteness or blackness of a pixel, while spatial
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ambiguity deals with the shape and geometry of a region contained in an image. In classical
methods, each is taken as a crisp or hard decision. Hard decision is not suitable for image
processing because of its ill-defined data. It is of paranicwiLiropeftertic llut an image-
processing system need a recognition strategy, which can handle any type of uncertainty
arising in any level of the processing steps. Prewitt (1990) recognized this when he
introduced image segmentation by exploiting fuzzy regions.

In a fuzzy system each image is considered as a number of fuzzy regions, such as

R{.../?„ where n denotes the number of regions (Medasani, Krishnapuram and Kclleer,
1999). Each region contains a set of pixels, and each pixel is assigned a grade (a degree
of membership value), which measures the possibility of a pixel belonging to a region. The
membership function maps each of the feature values f(x,y) of a pixel I(x,y) of an image
/in coordinate (x,y) into a range of value from 0 to 1. The membership function of pixels
for image / can be defined as

M(f(x,y)):Q~*[0,l] (i)
where Q represents a universal set of all feature values for all pixels contained in image/.

It is evident that a fuzzy approach can handle many uncertainties well and use the
membership value (varying grade) to define the imprecise or ill-defined property of an
image. It was mentioned that membership value denotes the possibility of belonging to a
region or more than one regions which contrasts the fuzzy approach with the classical
approach (hard decision-based approach). Fuzzy approach can also interpret linguistic
variables such as VERY BRIGHT, BRIGHT and BLACK, etc., very well. Medasani,
Krishnapuram and Keller, J. (1999) measured geometric (area, perimeter, height and
length) and non-geometric (average pixel intensity, entropy and homogeneity) properties
for both real and artificial images using both fuzzy and crisp approaches. Experimental
results showed that fuzzy approach give more accurate and better values in both cases than
crisp approach. They also calculated those properties by adding different levels of noise for
both approaches. It was shown that the fuzzy approach produced more improved estimates
than the crisp approach for both properties even in the noisy image. They also showed that
there was no need for noise removal during measuring of fuzzy properties, which is
especially useful in overcoming some of the difficulties raised in eliminating noise
especially for texture images.

Fuzzy rule-based modeling is a very interesting and promising field of research. It is
widely used in various fields of industrial applications such as robotic, control engineering,
medical imaging and complex nonlinear system recognition. The advantages of this
approach are given below Yen, 1999; Yen and Wang, 1999).

• Potential capability to represent the knowledge explicitly using IF-THEN rule and
capture the knowledge from imprecise information of linguistic as well as numerical
terms.

• The ability of partial reasoning in human understandable terms. It determines the
degree of similarity based on the degree of condition satisfied in the antecedent clause
of the rule.

• Approximating potency of complex nonlinear system.
This chapter will examine the different method.1; used for fuzzy image segmentation.

The types of fuzzy image segmentation approaches developed s" far will be described in
the next section, while a detailed description of each approach is then presented. Finally
a conclusion is provided.
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TYPES OF FUZZY IMAGE SEGMENTATION
Fuzzy image segmentation is increasing in popularity because of the rapid extension

of fuzzy set theory, the development of various fuzzy set theory-based mathematical
modeling, synergistic combination of fuzzy, genetic algorithm and neural networks, and its
successful and practical application in image processing, pattern recognition and computer
vision system. One may classify fuzzy image segmentation in a variety of ways, however
they may be broadly classified as Tizhoosh (1998).

• Fuzzy clustering-Based Image Segmentation
• Fuzzy Rule-Based Image Segmentation
• Fuzzy Geometry-Based Image Segmentation
• Fuzzy Thresholding-Based Image Segmentation
• Fuzzy Integral-Based Image Segmentation
• Soft Computing-Based Image Segmentation

A review of the different techniques available in each category will now be provided.

FUZZY CLUSTERING-BASED
IMAGE SEGMENTATION

Clustering means unsupervised grouping of data based on similarity measure (Chi,
Yan and Pham, 1996). There are mainly two types of clustering: hard clustering and fuzzy
clustering. In hard clustering, data is clearly classified into only one group, i.e., the groups
are mutually exclusive. But in fuzzy clustering a membership value is assigned to data,
which supports the group(s) into which it belongs. One data may belong to more than one
group. Fuzzy clustering techniques can be classified into the following.

• Fuzzy C-Means Algorithm (FCM)
• Possibilistic C-Means Algorithm (PCM).
• Adaptive Fuzzy C-Means Algorithm (AFCM).

Fuzzy C-Means Algorithm (FCM)
FCM is the oldest and most popular fuzzy-based clustering technique. It was

developed by Bezdek (1981) and is still being used in image segmentation. It performs
classification based on the iterative minimization of the following objective function and
constraints (Chi, Yan and Pham, 1996).

(2)

(3)

(4)

0<JU <

= 1

..c} andje{l..n)

(5)

j
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Where c and n are the number of cluster and data respectively, u is a fuzzy partition

matrix containing membership values [ ^ ], V is a prototype vector containing the values

of cluster centers [v.], m is the fuzzifier (l<m<«>), d is the distance between .*., vf and X is
a data vector. The next two equations are derived after minimization of function fm(P-, V,
X) in equation (2) with respect to u and V.

(6)

(7)

The set of cluster centers is initialized randomly or by an approximation method. The
membership values and cluster centers are updated through an iterative process until the

maximum change in jU,y becomes less or equal to a specified threshold.

The number of clusters, the fuzzifier (m), and the threshold are needed to set up
empirically in FCM. Equations (6) and (7) are not sufficient to achieve the local minimum
of fm(u, V, X) (Tolias and Panas, 1998). The selection of the value of m is also important,
as if it is equal to 1; FCM produces crisp partition instead of fuzzy patron. If any of the values
of the distances (d(.xf v^) is zero, the equation (6) will be undefined. FCM strongly supports
probability as it has set the constraint in (4), which prevents the trivial solution u=0.

Possibilistic C-Means Algorithm (PCM)
FCM arbitrarily divides the data set based on the selected number of clusters. The

membership values generated by FCM represent the degrees of sharing. In order to eliminate
the constraints in equation (4), Krishnapuram and Keller first introduced PCM whose
membership values represent the degrees of typicality, instead of degrees of sharing, and
clusters are independent of each other (Krishnapuram and Kelleer, 1993; 1994. They
modified the FCM objective function and defined the PCM objective function as:

(=1 y=i

and the constraints are:
1 ie{l . .c}andjs{l . .n}

0

(9)

(10)

max,
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where T]i is the scale parameter, which determines the zone of influence of a point, and other
parameters are as defined previously. The following are obtained after minimizing the
function f (u., V, X).

1

1 +
Y(m-\)

(12)

SM"
(13)

The membership value (jLiy) and prototype center (v.) are updated using the equations

(12) and (13) through an iterative process. When fuzzifier m=l, PCM produces crisp
partition. PCM gives promising results in the presence of noise but it is highly dependent
on initialization and estimation of the scale parameters. The output of FCM can be used
for initialization and scale estimation, but FCM is very sensitive to noise. Barni also
mentioned that PCM achieves local minimum but it can't minimize fn(u., V, X) globally
(Barni, Cappellini and Mecocci, 1996).

Adaptive Fuzzy C-Means Algorithm (AFCM)
Image data are intrinsically correlated. It is essential for segmentation techniques to

adapt themselves to local features of an image, which is the important disadvantage of both
FCM and PCM, In FCM and PCM, the prototype vectors don't vary spatially and inter-pixel
correlation and intensity inhomogeneities are not considered. The adaptive fuzzy C-means
algorithm in which prototype vectors are varied along the image have been described in
Pham and Prince (1993) and Tolias and Panas (1998). Inter-pixel correlation and intensity
inhomogeneities are taken into account in Pham and Prince (1993) and Tolias and Panas
(199S) respectively.

Both algorithms degenerate, into crisp clustering as m tends to one. The selection of as
optimum number of cluster automatically remains unsolved, which is the crucial problem
of clustering algorithms. Some of the parameters especially for Pham and Prince (1993)
are selected empirically.

FUZZY RULE-BASED IMAGE SEGMENTATION
This is a promising field of research, Initially fuzzy IF-THEN rules were extensivel

used in control engineering problems but now the application of fuzzy IF-THEN rules i
image segmentation is increasing. Their advantages in image segmentation are mainly i
the following (Chang et al., 1998).

• Human can easily understand the problems due to linguistic representation <
numeric variables.
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s-r
• It is computationally less expensive than fuzzy clustering methods.
• It has the potential ability to integrate the domain expert knowledge.

The general format of fuzzy IF-THEN rule can be defined as follows.
IF antecedent-condition THEN consequence

The consequence is measured based on the quantity satisfied in the antecedent
condition. Generally fuzzy rule-based image segmentation has been applied to three image
types: LI, MR and CT images. These are described in the following subsections.

Fuzzy Rule-Based LI Image Segmentation
Chi and Yan utilized the fuzzy IF-THEN rules in the segmentation (separation of

background and foreground pixels) of 8 bits (256 gray scales) geographic map images
containing strings, streets, roads, boundaries, etc., that are considered foreground pixels
of the images (Chi, Yan and Pham, 1996; Chi and Yan, 1993). The main processing steps
of this approach are described in the following.

Features used in segmentation
Three features, difference between pixel intensity (DI), local standard deviation (SD)

and local contrast of darker pixel (CD), are used in segmentation and they are defined as:

DI(x,y) = PI(x,y) - LA(x,y) (14)

.r + 3 >+3

SD(x,y) =

) =

(15)

(16)
LA{x,y)

Where PI(x,y) is pixel intensity in the location (x,y), LA(x,y) local average pixel
intensity in 7x7 window, sgn ( CI(x,y)) is sign operator and it is -1 when CI(x,y) <0
otherwise it is 1. CI(x,y) is the difference of pixel intensity in location (x,y) and the average
of its neighbours and can be defined as:

(.x, y) = ~[Pl(x - 3,y) + Pl(x - 2,y) + Pl(x + 2,y) + Pl(x + 3,y) + P!(x,y-3) + Pl{.x.y - 2) + Pl(.x,y + 2)
8

) (17)

BR(x,y) is the average of relative brighter pixels and is defined as:

)

y j y
CHijlSO

where N indicates the number of brighter pixels contained in 9x9 window.

Membership functions
The input and output domains are divided into five fuzzy regions named as L2, LI,

M, HI and H2 and two fuzzy regions such as background and foreground respectively.
Triangular membership functions are utilized for input regions. The input and output
membership functions are shown in Figures l(a) and l(b) respectively.
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Figure 1: Input and output membership functions

(a): Input membership functions (b): Output membership functions
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Development of fuzzy rules
Fuzzy rules are developed by learning from examples as outlined bv Wang (Wang and

Mendel, 1991). The input and output domains are divided into fuzzy i. •••.•- ~ that are shown
in Figure 1. The membership values of all regions for each input are ,.v,..'ylated and each
input is assigned to the region of the maximum membership values. So a pair of rules is
generated for each training sample. An example of such rule would be

IF DI is Ll AND SD is HI AND CD is H2 THEN it is a foreground pixel
IF DI is HI AND SD is M AND CD is Ll THEN it is a background pixel

A learning set produced by this method may contain a larger number of rules including
repeated and conflict rules. To avoid these the rules are selected that are supported by a large
number of examples. Each rule is kept in a fuzzy rule bank and is shown in Figure 2.

Defuzzification
The centroid defuzzication method used to calculate the output for each input pixel is

defined as:

(19)

1=1

Figure 2: Fuzzy Rule Bank for Geographic Map Image Segmentation.
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where C, is the class produced by the ith rule n is the number of rules and M' is the

ma'ching degree of the antecedent of ith rule for pth pattern. If C <0.5 , the input pixel is
caugorized as background pixel, otherwise it is categorized as foreground pixel.

Concluding remarks
This system is faster than neural network techniques. It was found that some parts of

characters of the maps are missed for standard triangular function (Chi, Yan, and Phan,
1996). This is because the selecting of the shape and parameters of the membership
functions was done intuitively. For this they used an automatic method using fuzzy C-
means clustering (extension factor = 3.0 and merging threshold=O.OS) to determine the
parameters of the membership functions. But there still exists the problem of manual
determination of the shape of the membership function. Heuristic rules are not used in this
method.

Fuzzy Rule-Based MR Image Segmentation
Magnetic resonance images are the most important and complicated images used in

medical imaging. Magnetic resonance images are extensively used in the various types of
disease diagnostic tasks. Medical experts generally draw the conclusion in regard to the
disease by manually scanning the images (Chang, Ying, Hilln'an, Kent, and Yeu, 1998),
which is both a tedious and time-consuming task. Analysis, especially segmentation of MR
images using automated computer techniques, saves the time and helps the doctor to detect
irregularity in diagnosis. The fuzzy rule-based MRI image segmentation methods may be
broadly classified into two classes: hybrid fuzzy ruie-based MRI segmentation and
conventional fuzzy rule-based MRI segmentation. Both of the methods are described in the
following sections.

Hybrid fuzzy rule-based MRI segmentation
Hybrid fuzzy rule-based segmentation system consists of fuzzy rule-based and fuzzy

C-means clustering algorithm. Clustering is computational expensive, does not incorpo-
rate human expert knowledge and thus does not produce appropriate class (Hall and
Namasivayam, 1998). For these reasons, a set of fuzzy rules is applied to classify the pixels/
voxels. It is very difficult to define fuzzy rules that cover all pixels/voxels. So fuzzy C-
means algorithm is used to classify the remaining pixels/voxels, and the pixels/voxels
classified by the fuzzy rules are used to initialize the centers of the clusters during
clustering. Hybrid fuzzy rule-based image segmentation systems are faster than clustering
and are described in Chang et al. (1998) and Hall and Namasivayam (1998).

The techniques (Hall and Namasivayam, 1998) utilizing adapting fuzzy rules for
segmenting the brain tissue into six classes—white matter (WM), gray matter (GM),
cerebrospinal fluid (CSF), pathology, skull tissues and background—are described in the
following.

Database and features
105 axia! brain slices, 5 mm thick from 15 persons (39 normal slices from 8 persons

and 66 abnormal slices from 7 patients) are used for experimental purposes. Relative pixel
intensities of Tl , T2 and PD weighted images are used as features.
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Figure 3: Membership functions (Source ref: Hall & Namasivayam, 1998)
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Membership Functions
Triangular and trapezoidal membership functions used in the experiment are shown in

Figure 3.
The parameters of the membership functions (al, a2, bl , b2, b3, b4, b5 and b6) are

calculated by determining the turning points of intensity histograms based on a training
set consisting of 6 normal and 4 abnormal slices and suggestions from expert radiologists.
The turning points are regarded as peaks, valleys or the starting point of the histogram and
indicate the estimated boundary of the tissue types. The turning points of the histograms
are shown in Figure 4.

Patients having brain tumors usually get treatment with radiation and chemotherapy.
For this the PD histogram of the patient with brain tumor becomes like the PD histogram
for abnormal slice shown in Figure 4 due to the change of properties of gray and white
matter. The turning points of this histogram are obscure and difficult to select. An edge
detection technique (Weszka and Rosenfeld, 1979) was used in order to sharpen the
boundary between gray and white matter and utilized a suitable threshold to detect the
peaks. The initial value of threshold is chosen as 5 and increase by 5 until two peaks are
found. If peaks are not found, two peaks are assumed at 1/3 and 2/3 of the region between
bl and b2.

Rules generation
The turning points of three histograms (Tl ,T2 and PD histograms) are used to separate

the tissue into white matter, gray matter, cerebrospinal fluid (csf). pathology, background
(air) and other skull tissues. The heuristics used here to generate the rules are 'all voxels
between b2 and b4 are usually white matter, below bl are air in PD histogram, and between
al and a2 are the mixture of white and gray matter in Tl weighted histogram'. A set of rules
used to classify the brain tissue is described as follows:

IF voxel in Tl in Set-E AND voxel in T2 in Set-F THEN voxel is CSF
IF voxel in PD is Set-C AND voxel in Tl in Set-A THEN voxel is White matter
IF voxel in PD is Set-D AND voxel in Tl in Set-A AND NOT (voxel in T2 is Set-F
AND voxel in Tl is Set-E) THEN voxel is Gray matter
IF voxel in Tl is Set-B AND voxel in T2 is Set-F THEN voxel is Pathology
IF voxel in Tl is Set-B AND NOT (voxel in T2 is Set-F) THEN voxel is Other
IF PD voxel intensity < bl AND T2 voxel intensity < cl THEN voxel is Background
Rules are adapted themselves to each slice during processing as they are generated

from the turning points of the histograms.

Classification techniques
Voxels are classified into six classes by applying the above rules. The unclassified

voxels and isolated voxels (voxels whose membership values are 1 but no neighborhoods)
for each class are assigned the membership values with the average membership values of
their neighborhoods and zero respectively. Finally the voxel membership values are
normalized (0 to 1) using the following equation:

(20)
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where / andy represent each of the six classes and visa voxel. The incorrect classified voxels
(voxels whose membership values is less than and equal to 0.80) are classified using semi-
supervised clustering algorithm (Bensaid et al., 1996). The correctly classified voxels are
used as training set and weighted by 100.

Concluding remarks
This system is faster than FCM and the parameters of the membership functions are

adjusted automatically during the processing of each slice, but it does not produce better
results than FCM. Rules are generated based on turning points of the histogram, but the
turning points are sufficient to distinguish the voxels if there is a significant amount of
overlapping voxels. The spatial information is not well considered as it is taken into account
for only unclassified voxels. The threshold and approximate peaks (when there are no peaks
in PD histogram) are chosen empirically, and extra cranial tissues are not removed before
classifies MM.

Another hybrid fuzzy rule-based brain MR image segmentation technique (Chang et
al., 1998) used to separate WM, GM, CSF and CMV lesion from the brain is as follows.

Database
A set of Tl , T2 and PD weighted images containing 12 normal images and 3

abnormal images with lesions are used for experimental purposes. GE Signa 1.5T MRI and
a Technicare 0.6T instruments are used to access these images.

Preprocessing
Preprocessing stage comprises image registration and selection of region of interest

(ROI). Image registration makes the same pixeis1 coordinates for the same pixels contained
in two different images by the method of shifting of coordinates. For example, if the two
images T2 and PD are not matched, the coordinates of PD image are shifted to match with
T2 image. The shifted coordinates of PD image are recorded, and T2 and shifted PD images
are regarded as registered image.

Intracranial region of the brain is selected as ROI. It is needed to separate the
intracranial region from the skull and scalp. The intracranial region is anatomically

Figure 5: Membership Function for T2 Weighted linages
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separated from the scalp and skull by a layer of CSF, except there are a few connections
where the layer of CSF is thin. To separate the intracranial region, the image is first
thresholded and then a region growing technique is applied to grow empty space
surrounding the intracranial region. The problems for the connections between brain and
scalp are solved by applying the morphological operators erosion and dilation (Kapur,
1995).

Determination of parameters of the membership functions
The membership functions are identified perceptually. Three different types of tissue

such as WM, GM and CSF were identified forT2 images. T2 image as well as its edges that
are determined by Cohen's edge detection method described in Gonzalez and Woods (1992)
are classified into five classes WM, GM, CSF, WM-GM and GM-CSF using standard FCM
algorithm. The mean intensities (M.) and variance {0) of ith class are used to calculate the
parameters of the membership function for ith class. The membership functions for T2
images are shown in Figure 5.

The PD weighted image and its edge values are given to FCM, which classifies them
into four classes. The class containing highest pixel intensity is discarded in order to
eliminate the high edge values on the boundary of the brain. The techniques used to
generate the membership function for ?D weighted images are the same as T2 weighted
images. The membership function for PD weighted images is shown in Figure 6.

PD weighted abnormal images contain periventricular hyperintensity which have
higher pixel intensities in brighter class than other pixels in the same class. So the
membership function for PD weighted abnormal image is presented in Figure 7.

A membership function to represent the closeness of a pixel from the center of the
brain as the ventricle is considered a major connected CSF area adjacent to the center of
the brain. This membership function is used to discover the periventricular hyperintensity
which represents the lesions of the PD weighted images. The membership function to
measure the closeness to the ventricle is given in Figure 8.

Development of fuzzy rule-based segmentation
Two groups of fuzzy rules have been developed. The first and the second group are

used to segment the T2 weighted images and to recognize the CMV lesions.

Figure 6: Membership function for PD weighted images
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7: Membership function for PD weighted abnormal images
Figure

Mixing of Vety Bright Pixels and Dark-Cay Pixels
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First Group:
IF pixel in T2 is Dark THEN pixel is White Matter
IF pixel in T2 is Grey THEN pixel is Grey Matter
IF pixel in T2 is Bright THEN pixel is CSF

The second group is formulated by splitting the last rule of the first group into thre(

new rules that discriminate CSF and CMV lesions.

Second Group:
IF pixel in T2 is Dark THEN pixel is White Matter
IF pixel in T2 is Grey THEN pixel is Grey Matter
IF pixel in T2 is Bright AND pixel in PD is Dark-Grey THEN pixel is CSF
IF pixel in T2 is Bright AND pixel in PD is Very Bright AND pixel is not close to tr

ventricle THEN pixel is CSF
IF pixel in T2 is Bright AND pixel in PD is Very Bright AND pixel is close to tl

ventricle THEN pixel is CMV lesion

Figure S: Membership function to represent the closeness to ventricle
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AND operator is evaluated by applying the fuzzy logic minimum operator (Zadeh,
1965). All pixels are classified using the rules described above The pixels whose
membership values are less than 0.5 and the pixel having two maximum membership
values are declared as unclassified pixels.

Modified FCM segmentation
The initial value of each cluster center is derived from the average value of each

respective classified class. All unclassified pixels are classified using FCM with the derived
initial cluster centers. If the number of classified pixels in CM V lesion is very small (from
10 to 20), they are reclassified as CSF.

Concluding remarks
This system is 10 to 20 times faster than FCM, and produces better results for

abnormal images containing lesions but it has not given promising result compared to FCM
for normal images. The parameters of the membership functions have been derived
automatically, but the structure of the membership functions have been defined according
to the knowledge of medical experts. Although anatomical position of the lesion has been
taken into account, the inter-pixel correlation has not been considered. Some other criteria
may be included in addition to gradient and pixel intensity in order to define the
membership functions' parameters.

Conventional fuzzy rule-based MRI segmentation
Conventional fuzzy rule-based segmentation uses only fuzzy rules to segment the MR

image and does not apply FCM in addition to the fuzzy rules. Sasaki et. al. introduced such
a fuzzy rule-based method to segment the menisci region from MR images (Sasaki et a!
1999).

Figure 9: Anatomical location of menisci region (Source ref: Sasaki et al., 1999)
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Database
Five normal MR data sets consisting of three normal and two injured knees are used

in the experiments. Tl weighted 3D SPGR with TR=100 msec. TE=15 msec and flip
angle=30 degrees image are acquired with Genesis Sigma 1.5 Tesla MRI scanner. Each
image contains 60 separate 1.5 mm thick slices.

Knowledge used to segment the menisci region
The anatomical position of the menisci region is shown in Figure 9. Knowledge is

used to generate the fuzzy rules.
1. Voxel intensities of cartilage regions are high.
2. The menisci region lies in between the thigh and shinbone.
3. The cartilage regions are adjacent to the center of the gravity of the knees.
4. The menisci are automatically located near the cartilage.
5. The voxel intensities of the menisci regions are coherent.

Fuzzy rules generation and segmentation
Two different sets of fuzzy rules are developed as the segmentation is performed in two

stages. Firstly the candidate region of the menisci are segmented whereas the menisci are
extracted from the candidate region in the second stage. Candidate region can be defined
as the region between the cartilages as menisci are located between the cartilages. A set
Of voxels represented by straight contiguous two-dimensional data (x,z) is called unit (x,z).
Two types of units, A and B, are defined to segment the candidate region. Unit A contains
the candidate region while unit B does not contain any candidate region voxels. Figure 10
shows the model of candidate region and representation of the smallest unit.

D and d denote the constant distance of the most distance unit and distance of the

interested unit from the center. Units A and B are shown if Figure 11.

Figure 10: A model of candidate region and representation of the smallest unit (Source
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The number of disparities between two adjacent voxel intensities on a unit is defined

i
i

KV

y-i
as

7=o

where C(j) is calculated as

for\v(j)-v(j+l)\>T.

0 otherwise

(21)

(22)

and J is the range of candidate region, v(j) is the voxel intensity at coordinate j and T is the
threshold.

The membership functions of distance and disparity to measure the values of linguistic
variables, small and large, are shown in Figure 12.

From the knowledge, 1,2 and 3, the following rules are defined using the membership
functions described above in order to segment the candidate region:

IF d is small AND n is large THEN degree of belonging to unit A is large
IF d is large AND n is small THEN degree of belonging to unit B is large

The degree of belonging to unit A and B are calculated using the following equations:

grade A - w\ udsmall(d) + w2 unlarge(n) (23)
gradeB = wl udlarge(d) + vv2 unsmall(n) (24)

where wl and w2 are weights. The unit is classified into unit A if gradeA > gradeB,
otherwise unit is classified into unit B.

Figure 12: Membership functions for distance and disparity of intensity (Source ref:Sasaki
et ah. 1999)
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From knowledge 4 and 5, two membership functions uc and ui shown in Figure 13 are
derived for segmenting the menisci from the candidate region. Figure 13(a) shows that the
menisci exist near the cartilage, uc and ui map the distance of a voxel from the cartilage
region and the voxel intensity into degree of belonginess to menisci respectively. The
parameters dj and dM used in the membership functions, shown in Figure 13(b) and J3(c)
respectively, are widths of the one side of the triangles, whereas aM is the coherent
intensity.

The calculation of uc for two cartilages is defined:

\uc\(j) + uc2(j) for ucl(j) + uc2(j) < 1

|l otherwise (25)

For one cartilage:

UC{j) = ucl(j) (26)
The following two rules are developed from knowledge 4 and 5.

IF a voxel is anatomically adjacent to the cartilage THEN the degree of menisci voxel
for uc is high
IF the intensity of the voxel is same as coherent intensity of the menisci voxel THEN
the degree for ui is high

The total degree, gradeM = w3uc(j) + w<\ui(m) (27)
where w3 and w4 are the weights. If gradeM > Th then the voxel is classified as a menisci
voxel. Where Th is a threshold.

Concluding remarks
3D construction and display of menisci has been performed for both normal and

injured knees. This method can successfully identify cartilage tears. The rules have been
defined based on anatomical position and coherent intensity of the menisci voxels. The
structure of the membership function is predefined. The parameters used in the member-
ship functions are taken from the MR device parameters.

Fuzzy Rule-Based CT Image Segmentation
CT imaging is also known as Computed Axial Tomography (CAT) scanning (CT

2000). CT is one of the most important medical imaging techniques and is used in various
types of disease and wound diagnosis. A fuzzy rule-based segmentation of intrathoracic
airway trees on CT image has been described in Park and Hoffman (1998).

Database
Five canine data sets are scanned using EBCT scanner from five anesthetized dogs-

Each data set contains 40 slices of 3mm thick. 40 slices, 8 per data set are randomly selected
and their airways are perceptually determined by an expert in order to determine both the
training and test sets.

Steps of airway tree segmentation
Segmentation technique consists of the following five steps.

• Separation of lungs from the volumetric data set
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• Definition of primary airway tree
• Preprocessing of all individual image slices
• Fuzzy rule-based identification of airways in all image slices
• Construction of airway tree using 3-D connectivity.

The techniques used for steps 1,2, and 3 are described in Park and Hoffman (1998) and
Sonka, Park and Hoffman (1996). Primary airway tree contains the major branches of the
tree and is defined as the 3-D connected components of the image voxels below a threshold,
which is formed by 3-D seeded region growing approach. The main task of the preprocess-
ing step is to identify the background and all possible locations of airways and vessels for
each slice. The regions having from 55 to 110 gray level intensities are considered
background. The regions darker and brighter than background are treated as candidate
airways and "essels respectively.

Fuzzy rule-based identification of airways in ail image slices
The following anatomical information is used to determine the airways.

1. Airways are generally dark
2. Airways are encompassed by airways wall
3. Airways are near to airway vessels

The anatomical position of airways and their vessels are shown in Figure 14.
The following three features are defined according to a region adjacency graph

properties (Sonka, Hlavac and Boyle, 1993).
• BRIGHTNESS: Uses minimum and maximum grey level regions to represent the

airways and vessels candidate regions respectively.
• ADJACENCY: Represents the grey level of the brightest adjacent region.
• DEGREE OF WALL EXISTENCE: It determines the existence of the wall. The

degree of wall existence is determined by the ratio of the total number of concentric
rays possessed dark-bright-dark profile and the total number of concentric rays
directed from the center of the candidate region.

Figure 14: Anatomical position ofainvays (Source ref: Pork and Hoffman, 1998)

(a) Airways detection principles (b) Assessment of wall evidence
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Figure 15: Membership Functions for BRIGHTNESS, ADJACENCY ami
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The membership functions for BRIGHTNESS, ADJACENCY and

DEGREE__OF_WALL _EXISTENCE, including their linguistic variables, are shown in
Figure 15.

The parameters of the membership function are determined from a manually tracking
training set containing eight randomly selected slices of a single volumetric data set. The
conflicts arising among membership functions are solved manually in order to obtain
optimum classification results.

The rule banks developed for the segmentation are represented in the tabular form and
shown in Figure 16.

The value of each cell indicates the confidence level of airway. For example of a rule,
IF BRIGHTNESS is LOW AND ADJACENCY is LOW AND
DEGREE_OF_WALL_EXISTENCE is HIGH THEN region is airway with ME-
DIUM confidence

Finally a defuzzification method, namely, centroid defuzzification is applied in order to get
numerical confidence level for each region, which indicates the possibility that the region
belongs to airway.

Figure 16: Fuzzy Rule Banks to Determine the Confidence Level of Airway
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Construction of airway tree using 3D connectivity
Airway tree named C-tree is constructed by stacking all the regions whose airway

confidence level is more than 73% utilizing shape-based interpolation along z-axis. From
C-tree, A tree and B-tree are created. A-tree is defined as a 3D connected region and subset
of C-tree, which contains the airway-tree root. B-tree is the combination of A-tree and
disconnected airway tree branches of C-tree that contains above threshold volume.

Concluding remarks
This method has constructed three trees named A-tree, B-tree and C-tree. The medical

specialist may use any of the trees according to his need. The parameters of the membership
function have not been derived fully automatically.

FUZZY GEOMETRY-BASED
IMAGE SEGMENTATION

Geometrical properties such as perimeter, area, length, width, extrinsic diameter,
intrinsic diameter, index of area coverage (IOAC) and compactness of an object can be used
to describe an object (Rosenfeld, 1984; 1992; Dubois and Jaulent, 1987; Pal and Gosh,
1990). Such geometrical properties of an object can be derived using fuzzy membership
values without segmenting the object from the image, and they are dependent on fuzzy
membership function (u,). Segmentation is achieved through the utilization of minimum
values of compactness or IOAC (Pal and Gosh, 1990; 1992; Pal and Rosenfeld, 1988).
Geometrical properties of an object in an image are determined using fuzzy membership
in the following ways (Rosenfeld, 1984; Pal and Gosh, 1990).

Area
The equation to calculate the area of fuzzy subset \i is expressed as:

(28)

where integration covers the region whose outside (.1=0. The equation of area for piecewise
or digital image is defined as:

iv h

>CO') (29)
.1=1 >'=1

where w and h are the widtJi and height of the image respectively.

Perimeter
The equation of perimeter for piecewise constant function ji is expressed as:

(30)

where A(i j ,k ) is the kth common arc length between m(i) and m(j) meet. The common arc
length between neighboring pixels of digital image is one. So the equation (30) for digital
image is defined as:

(31)
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Height
The height of \x is defined as:

For digital image,

(32)

(33)

Width

The width of y. is defined as:

wlju) = jmax[i(x,y)] dx

For digital image,

(34)

(35)

Length

The length of fuzzy subset u. is defined as:

IQX) = max^l(x,y) dy]

For digital image.

l(/J) = max
X

y

Breadth
The breadth of fuzzy

W = max[|u(.v,;

For digital image,

b(p) - max
y

X

,y>_

subset j.i is defined as

V) dx]

x.y)

(36)

(37)

(38)

(39)

Compactness v
The compactness of fuzzy subset j.t means the portion of maximum area covered by the -:j

object and is defined as: ,4

(40)

where a{\x) and p((.i) denote the area and perimeter of fuzzy subset \x respectively.
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Index of Area Coverage (IOAC)
The IOAC of fuzzy subset ).i is defined as:

where a(j.t), l().i) and b(|i'i are area, length and breath of j.1 respectively.

Techniques of Segmentation Using IOAC
The techniques used in segmentation are described in detail in Pal and Gosh (1990).

The input pixels are fuzzified using standard S or 2 (l-S) type membership function for
bright or dark object pixels respectively and then the crossover point is calculated. In the
crossover point, the value of the membership function is 0.5 and it is below or above 0.5
in below or above of the crossover point. The IOAC is calculated using equation (41). IOAC
and compactness measures decrease for increasing \i and are lowest for a crisp one. The
crossover point is adjusted in order to get the minimum value of IOAC. The j.i plane
obtained for minimum value of IOAC is used for segmentation. For image containing
multiple objects, multiple optimum ,u planes can be used.

Concluding remarks
The optimum value of IOAC has been calculated considering the predefined member-

ship function, namely, standard S type membership function. The IOAC has been
calculated using are?., length and breadth of an object. It is very difficult to calculate the
accurate area, length and breadth of an object with wide range of gray level pixel variations
and the result of segmentation will not be good if there exists a significant amount of
overlapping pixels. It is computationally expensive, as it needs to calculate the value of the
membership function for each pixel everytime the crossover point is adjusted.

FUZZY THRESHOLDING-BASED IMAGE
SEGMENTATION

Thresholding-based image segmentation is one of the oldest and most well-known
techniques. Its main function is background and foreground separation. It is very difficult
to produce appropriate threshold since the real image is itself ambiguous and there is
overlap between background and foreground pixels. Fuzzy thresholding-based image
segmentation is potential as it can handle imprecise data (Chi, Yan and Pham, 1996). So
far there are the following two ways to calculate the optimal threshold in the fuzzy system:

• Techniques based on minimum values of index of fuzziness and entropy (Pal and
King, 19S3).

• Fuzzy image thresholding based on minimization of fuzziness using histogram (Chi,
Yan and Pham, 1996; Huang and Wang, 1995).

In the first technique the optimal threshold is determined by adjusting the cross over
point so that optimal (minimum) values of index of fuzziness and entropy are achieved. The
segmentation based on index of fuzziness and entropy is described in the following.
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Segmentation based on index of fuzziness and entropy
The input image is fuzzified using the standard S-function in the following ways.

= Sffiij). a, b. c) =
ifa<f[ij)<b

(42)

otherwise

Where f(i,j) is the grey level pixel intensity at (i j ) location, X is the fuzzy property plane

, 1 / x
of image fCi.j),^ - ~\a + c) is the crossover point where the value of the membership

function is 0.50 and Ab=b-a=c-b is the bandwidth.
The linear and quadratic index of fuzziness measure the distance between property

plane X and its nearest ordinary plane X. The linear index of fuzziness is defined as:

(43a)

(43b)

v-l h-\

i=0 j=0

where \v and h are the width and height of the image respectively and % is the complement

set of X.
The quadratic index of fuzziness is defined as:

2 ( w-ih-\

The entropy is defined as:

(44)

(45)

whereSn(Mx(/(/,;))) = -/ix(/(/,./))ln ^
The crossover point is adjusted so that optimum (minimum) values of 1(X) and E(X)

are achieved. The crossover point corresponding to the minimum values of 1(X) and E(X)
represents the optimum threshold, which provides the appropriate segmentation of the
object and background. This technique may be applied to the segmentation of an image
contains more than two regions or multiple objects by obtaining each local minimum of 1(X)
and E(X) for each optimum threshold value.

This method needs to compute the membership values for each pixel for all possible
values of crossover point in order to calculate the optimum values of 1(X) and V(X). For
this the computational cost increases rapidly with the increase of the size of the image (Chi,
Yan and Phatn, 1996).

Segmentation based on minimization of fuzziness using histogram
In this method the image is segmented using the threshold, which is determined by

I
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computing the minimum value of fuzziness between the regions, i.e., object and background
for bimodai images (Huang and Wang, 1995). The techniques used in this method are
described in the following.

Calculating expected values of background and object regions
For a given threshold T, the expected values of background (j.t0) and object (j.i() are

defined as:

(46)

p=0

L-l

... _
L-\ (47)

where h(p) denotes the frequency of gray level p and 0..L-1 is the range of the gray level
intensity of the image.

Calculation of membership function
The value of membership function is calculated by considering the notion that each

pixel should be classified into its nearest region, i.e., the less distance between the pixel and
its belonging region, the more value of the membership function. The membership function
is defined as:

1
ifjlx.y) < T

if fay) > (48)

where f(x,y) is the gray level pixel intensity at the position (x,y) and D is chosen in such
a way that 0.5 < ?x(f(*,y)) ^ 1 »s achieved. The usual value of D is taken as the absolute
difference between the maximum and minimum gray level values.

Entropy and Yager's fuzziness measure
The entropy has already been defined in equation (45) and using the histogram it is

defined as:
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Yager (1979) defined the measure of fuzziness of a set as its lack of distinction from

its complement set. The fuzziness between fuzzy image set X and its complement set % is

defined as:

(50)

where DJXX) is the distance between X a n d ^ and it is defined as:

(51)

using histogram:

h(p) (52)

where p=0, 1,...,L-1 and e is 1 for Hamming distance and 2 for Euclidean distance.

Determination of optimum threshold
The fuzziness of an image is calculated using equation (48 and 49) or (52) considering

all gray level pixel intensity, i.e., for all values from 0 to L-l. The optimum threshold is
regarded as one of the gray level pixel intensities for which the fuzziness is a minimum
value. Sometimes this optimum threshold does not locate in the deepest valley between the
peaks. A fuzzy range (R) is defined in the following way in order to make sure that the
optimum threshold falls in the real valley.

R=minf+(maxf-minf)xa7o (53)
where mint" and maxf are the minimum and maximum measure of fuzziness respectively
and the value of a is between 0 and 100 inclusive. The optimum threshold is determined by
minimizing h(p-l)+h(p)+h(p+l) where peR. It is possible to calculate the multilevel
threshold using this method.

Concluding remarks
Thresholding is not a good solution for the image segmentation if there is a significant

overlap between the background and the object pixels.

FUZZY INTEGRAL-BASED
IMAGE SEGMENTATION

A few techniques on image segmentation based on the fuzzy integral have been
published so far. Fuzzy integral has been used in image segmentation (Keller, Qiu an"
Tahani, 19S6) and classifier fusion (Chi, Yan and Pham, 1996; Tahani and Keller. 1990)-
Recently segmentation of color image using fuzzy integral had been done (Pham and Yan
1999). The techniques used in color image segmentation of this method contain i
following two steps.

iiilti
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• Determination of number of clusters and the initial values of the cluster centers using
mountain clustering and fuzzy integral respectively.

• FCM classification of color image pixels by measuring the similarity between a color
imago pixel and cluster center's using fuzzy integral.

Determination of number of clusters and the initial values of the
cluster centers using mountain clustering and fuzzy integral

The image space is divided into a specific number of grid points that are initially
considered possible cluster centers and denoted by c( where i=l M and M is the number
of grid points. The correct number of clusters and their centers are determined using the
mountain function, which has been described in Phan and Yan (1999). The mountain

function Mj{ct) for grid pointy is defined as:

-aeflprc,>
(54)

where O. is a constant, n is the number of pixels, p. is the jth pixel and d(p, c) is the distance
between jth pixel p. and c.grid point using fuzzy integral is defined as:

cJ (55)
and S(p. ct) the similarity between pixel p. and cluster center c using Choquet integral is
defined as:

(56)

where/(.v) is extended ^-membership function, which was introduced by Zadeh (1976),

f(xo)=O, *, = pJt,x2 = pjc,x3 = pJB,A = {A-, = ch,x2 = Cia,X, = C,fl} and g(A)

is fuzzy density measure, which is measured by scaling the individual color component of
all pixels using the following exponential equation as the R, G and B component of each
pixel is in the range [0,1]:

x = bQ+b(l-e~'y°) (57)

where bQ=0.2, b=l and a=l for this particular problem. The techniques used in fuzzy
measure are described in Tahani and Keller, (1990). In the first step the grid point, which
achieves the largest mountain vaiue, is regarded as the first cluster center. The next cluster
center is identified by setting the previous cluster to zero and utilizing a specified thre -.hold
T instead of adopting subtractive techniques used in mountain clustering. If the fuzzy
integral similarity values between a grid point having largest mountain value and a!l
previously identified clusters are less than threshold, T is treated as the next cluster center.
This also ensures that there exists some dissimilarity between cluster centers.

FCM classification of color image pixels by measuring the similarity
between a color image pixel and cluster centers using fuzzy integral

In this method the distance between RGB color components of a pixel and cluster
center is determined using the fuzzy integral in equation (55) instead of using traditional
distance measure method during FCM classification of the color image pixels.

:&&
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Concluding remarks
This method has solved the two main drawbacks of fuzzy clustering—the number of

cluster centers and their initial values utilizing mountain algorithm. But there exists a trade
off between the number °f grid points and computational cost, especially for a large image.
The potential of this meihod also depends on the value of threshold T used in mountain
algorithm.

SOFT COMPUTING-BASED
IMAGE SEGMENTATION

Soft computing is an integrated method, which is a synergistic combination of fuzzy
logic (FL), neurocomput»ng (NC), genetic computing (GC) and probabilistic computing
(PC) (Zadeh, 1998). Each part has distinguished capability to solve the problem that
enables soft computing to manipulate imprecision, uncertainty and partial truth in a better
way than compared to traditional approaches, and yields low cost and promising results.

Image segmentation based on fuzzy-genetic computing has been presented in Hall,
Ozyurt and Bezdek (1999) and Ishibuchi and Murata (1997). In Hall, Ozyurt and Bezdek
(1999) the objective function of FCM algorithm is optimized using a genetic algorithm.
Ishibuchi et.al. classify the high dimensional patterns by genetically selecting the
minimum number of fuzzy rules thav maximize the classification performance. A method
of MRI segmentation based on neuro-fuzzy computing has been described in Karayiannhis
and Pai (1999). In this niethod the MR image of the brain was segmented using a fuzzy
algorithm for unsuper^ised linear vector quantization neural network.

CONCLUSION
This chapter has outlined some of the existing fuzzy image segmentation techniques,

which have been shown to perform better than conventional techniques as well as coping
with the noise. The most difficult task of fuzzy image segmentation is to determine the
shape and parameters of the membership functions. Some of the methods have calculated
the parameters of the membership functions automatically, but all of the methods have
applied the predefined structures of the membership functions.

The leading techniques for fuzzy image segmentation are fuzzy clustering and rule-
based techniques. The "lain two drawbacks of the former are to select the appropriate
number of clusters and their initial values. Fuzzy rule-based image segmentation tech-
niques seem promising, but they are very much application specific and very difficult to
define and select fuzzy rules that cover all voxels/pixels. They can incorporate domain
expert knowledge, process the linguistic variables and draw partial inference. For this
fuzzy rule-based segmentation, techniques have been extensively applied to medical
imaging. Fuzzy geometry and thresholding-bised image segmentations are suitable for
bimodal images and don't produce a good result if there exists a significant amount of
overlapping pixels between the background and foreground regions. The literature on
fuzzy integral and soft computing-based image segmentation techniques is not so rich. The
fuzzy integral is good f°r integrating the results produced from different sources. Soft
computing-based techniques are very promising for future research in the field of image
segmentation.
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ABSTRACT

This paper describes the various fuzzy rule based
techniques for image segmentation. Fuzzy rule based
segmentation techniques can incorporate the domain
expert knowledge and manipulate numerical as well as
linguistic data. They are also capable of drawing partial
inference using fuzzy IF-THEN rules. For these reasons
they have been intensively applied in medical imaging.
But these rules are application domain specific and it is
very difficult to define the rules either manually or
automatically so that the segmentation can be achieved
successfully.

1 INTRODUCTION

Prewitt first stated that image segmentation should
produce fuzzy regions [1]. Fuzzy image segmentation
techniques are advantageous over classical methods as
they are capable of handling imprecise data and they
may be broadly classified in five classes [2]: fuzzy
clustering, fuzzy rule, fuzzy geometry, fuzzy
thresholding, and fuzzy integral. Initially fuzzy IF-THEN
rules were extensively used in control engineering
problems but now they are being increasingly applied in
image segmentation. The advantages of the fuzzy rules
based image segmentation over other methods are
mainly [3] that humans can more easily understand the
problems due to linguistic representation of numeric
variables, it is computationally less expensive than fuzzy
clustering methods, and it has the potential ability to
integrate the domain expert knowledge. Generally fuzzy
rule-based image segmentation has been applied in three
types of images: light intensity (LI), magnetic resonance
(MR), and computed tomography (CT) images and they
are described in the sections 2, 3 and 4 respectively.
Section 5 provides the conclusion.

2 FUZZY RULE BASED LI IMAGE
SEGMENTATION

Chi and Yan utilized the fuzzy IF-THEN rules in the
segmentation (separation of background and foreground
pixels) of 256 gray scale geographic map images
containing strings, streets, roads, boundaries etc. that are
considered foreground pixels of the images [4-5]. Three
features such as difference intensity (DI), local standard
deviation (SD) and local contrast of darker pixel (CD)
are used in segmentation. The input and output domains

are divided into five fuzzy regions named as L2, Ll, M
HI & H2 and two fuzzy regions such as background &
foreground respectively. Triangular membership
functions shqwn are utilized for input regions. Fuzzy
rules are generated by learning from examples. A pair of
rules shown below is generated for each training sample

IF DI is Ll AND SD is HI AND CD is H2 THEN it is a
foreground pixel
IF DI is HI AND SD is M AND CD is Ll THEN it is a
background pixel

To avoid repeated and conflict rules, the rules selected
are supported by a large number of examples. If the
centroid defuzzification value Cp<=0.5, the input pixel is
categorized as background pixel otherwise it is
categorized as foreground pixel. This system is faster
than neural network techniques and superior to the
adaptive thresholding techniques. It was found that some
parts of characters are missed for standard triangular
function [4]. This is because of selecting the shape and
parameters of the membership functions was done
intuitively. For this they used an automatic method
using fuzzy C-means clustering (FCM) to determine the
parameters of the membership functions. The shapes of
the membership functions have been determined
manually and heuristics rules are not used in this method.

3 FUZZY RULE BASED MR IMAGE
SEGMENTATION

The fuzzy rule based MRI image segmentation methods
may be broadly classified into two classes: Hybrid and
conventional fuzzy rule based MRI segmentation.

3.1 HYBRID FUZZY RULE BASED MRI
SEGMENTATION

Hybrid fuzzy rule based segmentation system consists of
fuzzy rule based and FCM. Clustering is computational
expensive and does not produce appropriate class alone
due to inability of incorporating human expert
knowledge [6]. For these reasons, a set of fuzzy rules is
applied to classify the pixels/voxels. It is very difficult to
define fuzzy rules that cover all pixels/voxels. So the
classified pixels/voxels are used to initialize the cluster
centers and FCM is used to classify the remaining
unclassified pixelsi'voxels. Hybrid fuzzy rule based



image segmentation systems are faster than clustering
and are described in [3][6].
The method using adapting fuzzy rules for segmenting
the brain tissue into six classes: white matter (WM), gray
matter (GM), cerebro-spinal fluid (CSF), pathology,
skull tissues and background is described in [6]. In this
method 105 axial brain slices, 5 mm thick from 15
persons (39 normal slices from 8 persons and 66
abnormal slices from 7 patients) are used for
experimental purposes. Relative voxel intensities of Tl,
T2 and PD weighted intensity images are used as feature.
The shapes of the membership functions are triangular
and trapezoidal. The parameters of the membership
functions (al, a2, b l , b2, b3, b4, b5 and b6) are
calculated by determining the turning points (peaks,
valleys or the starting point of the histogram) of intensity
histograms of Tl, T2 and PD images using a training set
consisting of 6 normal & 4 abnormal slices and
suggestions of expert radiologists. The PD histogram of
the patient with brain tumor become like the PD
histogram for abnormal slice due to the change of
properties of gray and white matter. The turning points
of this histogram are obscure and difficult to select. They
used an edge detection technique in order to sharpen the
boundary between gray & white matter utilizing a
suitable threshold to detect the peaks. The initial value of
threshold is chosen as 5 and increased by 5 until two
peaks are found. If peaks are not found, two peaks are
assumed at 1/3 and 2/3 of the region between bl and b2.
The Set-A, Set-B, Set-C, Set-D, Set-E, and Set-F are
defined from the membership functions. A set of the
following fuzzy rules are defined heuristically.

IF voxel in Tl in Set-E AND voxel in T2 in Set-F
THEN voxel is CSF
IF voxel in PD is Set-C AND voxel in Tl in Set-A
THEN voxel is White matter
IF voxel in PD is Set-D AND voxel in Tl in Set-A AND
NOT (voxel in T2 is Set-F AND voxel in Tl is Set-E)
THEN voxel is Gray matter
IF voxel in Tl is Set-B AND voxel in T2 is Set-F
THEN voxel is Pathology
IF voxel in Tl is Set-B AND NOT (voxel in T2 is Set-F)
THEN voxel is Other
IF PD voxel intensity < bl AND T2 voxel intensity < cl
THEN voxel is Bcakground

Rules adapt themselves for each slice during processing.
After classification using fuzzy rules the unclassified
voxels and isolated voxels for each class are assigned the
membership values with the average membership values
of their neighbors and zero respectively. Finally the
voxel membership values are normalized (0 to 1). The
incorrect classified voxels (voxels whose membership
value <= 0.80) are classified using semi-supervised
clustering algorithm [7]. The correctly classified voxels
are used as training set for the clustering algorithm. This
system is faster than FCM. Rules are generated based on

turning points of the histograms that are not sufficient
enough to distinguish the brain tissues containing a
significant amount of overlapping voxels. The threshold
and approximate peaks (when there are no peaks in the
PD histogram) are chosen empirically.
Another hybrid fuzzy rule based brain MR image
segmentation method, which separates WM, GM, CSF
and CMV lesion from the brain is described in [3]. In
this method a set of T l , T2 & PD weighted images
containing 12 normal images and 3 abnormal images
with lesions are used for experimental purposes.
Preprocessing step consists of two sub-steps: Image
registration and selection of region of interest (ROI).
Image registration makes the same pixel coordinates for
the same pixels contained in two different images by the
method of shifting of coordinates. Intracranial region of
the brain is selected as ROI. The shapes of the
membership functions are identified perceptually. Three
different types of tissue such as WM, GM and CSF were
identified for T2 images. T2 image as well as its edges
that are determined by Cohen's edge detection method
[8] are classified into five classes WM, GM, CSF, WM-
GM and GM-CSF using standard FCM algorithm. The
mean intensities (//,.) and variance (<7;) of ith class are

used to calculate the parameters of the membership
function for ith class. The PD weighted image and its
edge values are given to FCM, which classifies them into
four classes. The class containing highest pixel intensity
is discarded in order to eliminate the high edge values on
the boundary of the brain. The techniques used to
generate the membership function for PD weighted
images are same as T2 weighted images. For PD
weighted abnormal images contain periventricular
hyperintensity which have higher pixel intensities in
brighter class than other pixels in the same class. So
another membership function for PD weighted abnormal
image is generated. A membership function is used to
represent the closeness of a pixel from the center of the
brain as the ventricle is considered a major connected
CSF areas adjacent to the center of. the brain. This
membership function is used to discover the
periventricular hyperintensity, which represents the
lesions of the PD weighted images. Two groups of fuzzy
rules have been developed. First and the second group
are used to segment the T2 weighted images and to
recognize the CMV lesions respectively. The first group
is shown below.

IF pixel in T2 is Dark THEN pixel is White Matter
IF pixel in T2 is Grey THEN pixel is Grey Matter
IF pixel in T2 is Bright THEN pixel is CSF

Second group shown below is formulated by splitting the
iast rule of the first group into three new rules that
discriminate CSF and CMV lesions.

IF pixel in T2 is Dark THEN pixel is White Matter
IF pixel in T2 is Grey THEN pixel is Grey Matter

351



IF pi<el in T2 is Bright AND pixel in PD is Dark-Grey
THEN pixel is CSF
IF p-^el in T2 is Bright AND pixel in PD is Very Bright
AND pixel is not close to the ventricle
THEN pixel is CSF
IF pixel in T2 is Bright AND pixel in PD is Very Bright
AND pixel is close to the ventricle
THEN pixel is CMV lesion

All pixels are classified using the rules described above.
The pixels whose membership values are less than 0.5
and the pixel having two maximum membership values
are declared as unclassified pixels. The initial value of
each cluster center is derived from the average value of
each respective classified class. All unclassified pixels
are classified using FCM. If the number of classified
pixels in CMV lesion is very small (from 10 to 20), they
are reclassified as CSF. This system is 10 to 20 times
faster than FCM and gives better result for abnormal
images containing lesions. The structures of the
membership functions have been defined according to
the knowledge of medical experts.

3.2 CONVENTIONAL FUZZY RULE BASED
MRI SEGMENTATION

Conventional fuzzy rule based segmentation uses only
fuzzy rules to segment the MR image. Sasaki et. al.
introduced such a fuzzy rule based method to segment
the menisci region from MR images [9]. Five Tl
weighted images (three normal and two injured knees),
each contains 60 separate 1.5 mm thick slices are used in
the experiments. The knowledge used to generate the
fuzzy rules is : voxel intensities of cartilage regions are
high, the menisci region lies in between the thigh and
shinbone, the cartilage regions are adjacent to the center
of the gravity of the knees, the menisci are automatically
located near the cartilage, and the voxel intensities of
the menisci regions are coherent. Two different sets of
fuzzy rules are developed as the segmentation is
performed in two stages. In first the candidate region of
the menisci are segmented whereas the menisci are
extracted from the candidate region in the second stage.
Candidate region can be defined as the region between
the cartilages as menisci are always located between the
cartilages. A set of voxels represented by straight
contiguous two dimensional data(x,z) is called unit(x.z).
Two types of units such as unit A and unit B are defined
to segment the candidate region. Unit A contains the
candidate region while unit B does not contain any
candidate region voxels. From the knowledge, 1, 2 and
3, the following rules are defined functions in order to
segment the candidate region.

IF d is small AND n is large THEN degree of belonging
to unit A is large
IF d is large AND n is small THEN degree of belonging
to unit B is large

Where d and n denote distance of the interested un-
from the center, and the number of disparity of vo*
intensity on a unit respectively. The membersh'
functions for distance and disparity to measure th i
values of linguistic variables, small and large are defined
intuitively. The degree of belonging to unit A and B ar
calculated using equations: gradeA=wI udsmall(d)+U9
unlarge(n) and gradeB=wl unlarge(d)+w2 unsrnall(n)
where wl and w2 are weights. The unit is classified im0

unit A if gradeA > gradeB, otherwise the unit j s

classified into unit B. From knowledge 4 and 5, tWo

membership functions uc & ui, and the following two
fuzzy rules are derived to segment the menisci from the
candidate region.

IF voxel is anatomically adjacent to the cartilage THEN
the degree of menisci voxel for uc is high
IF the intensity of the voxel is same as coherent intensity
of the menisci voxel THEN the degree for ui is high

The total degree, gradeM=w3uc(i)+w4ui(m) where w3
and w4 are the weights. If gradeM > T, the voxel is
classified as menisci voxels where T is the threshold.
This method can successfully identify the tears. The
rules have been defined based on anatomical position
and coherent intensity of the menisci voxels. The
structure of the membership function is defined from the
knowledge of the expert. The parameters used in
membership function are taken from the MR device
parameters.

4 FUZZY RULE BASED CT IMAGE
SEGMENTATION

A fuzzy rule based automatic segmentation of
intrathoracic airway trees on CT image has been
described in [10]. Five canine data sets, each contains 40
slices of 3mm thick are scanned from five anesthetized
dogs. 40 slices, 8 per data set are randomly selected and
their airways are perceptually determined by an expert in
order to determine the training and test sets.
Segmentation consists of the following five steps:
separation of lungs from the volumetric data set,
definition of primary airway tree, preprocessing of all
individual image slices, fuzzy rule based identification of
airways in all image slices, and construction of airway
tree using 3-D connectivity. The techniques used for
steps 1, 2, and 3 are described in [10-11]. Primary
airway tree contains the major branches of the tree and is
defined as the 3-D connected components of the image
voxels below a threshold, which is formed by 3-D
seeded region growing approach. The main task of
preprocessing step is to identify the background and all
possible locations of airways and vessels for each slice.
The pixels (55 to 110 gray level intensities) are
considered background pixels. The voxels darker and
brighter than background are treated as candidate
airways and vessels respectively. The anatomical
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information used to determine the airways is: airways are
generally dark, airways are encompassed by airways
wall, and airways are near to airway vessels. The
following three features are defined according to a
region adjacency graph properties [12].

• BRIGHTNESS: Uses minimum and maximum grey
level regions to represent the airways and vessels
candidate regions respectively.

• ADJACENCY: Represents the grey level of the
brightest adjacent region.

• DEGREE OF WALL EXISTENCE: It determines
the existence of the wall. The degree of wall
existence is determined by the ratio of the total
number of concentric rays possessed dark-bright-
dark profile and the total number of concentric rays
directed from the center of the candidate region.

The membership functions for BRIGHTNESS,
ADJACENCY and DEGREE_OF_WALL
_EXISTENCE including their linguistic variables are
determined perceptually. The parameters of the
membership function are determined from a manually
tracking training set containing eight randomly selected
slices of a single volumetric data set. The conflicts arisen
among membership functions are solved manually in
order to get optimum classification results. The rule
banks are developed for the segmentation. For example,
a rule of the rule bank,

IF BRIGHTNESS is LOW AND ADJACENCY is LOW
AND DEGREE_OF_WALL_EXISTENCE is HIGH
THEN region is airway with MEDIUM confidence

Centroid defuzzification is applied to get numerical
confidence level for each region, which indicates the
possibility that the region belongs to airway. Airway tree
named C-tree is constructed by stacking of all the
regions whose airway confidence level is more than 73%
utilizing shape based interpolation along z-axis. From
C- tree, A tree and B-tree are created. A-tree is defined
as a 3-D connected region and subset of C-tree, which
contains the airway-tree root. B-tree is the combination
of A-tree and disconnected airway tree branches of C-
tree that contains above threshold volume. This method
has constructed three trees: A-tree, B-tree and C-tree and
is not fully automatic.

5 CONCLUSION

This paper describes some of the existing fuzzy rule
based image segmentation techniques. The most difficult
task of fuzzy image segmentation is to determine the
shape and parameters of the membership functions.
Some of the methods have calculated the parameters of
the membership functions automatically but all of the
methods have applied the predefined structures of the
membership functions. It has been seen from the

literature that fuzzy rule based image segmentation
techniques seem promising but they are very much
application specific and very difficult to define and
select fuzzy rules that cover all voxels/pixels. Fuzzy rule
based techniques are capable of incorporating expert
knowledge, processing the linguistic variables and
drawing partial inferences.
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ABSTRACT

Many fuzzy clustering based techniques do not incorporate
spatial relationships of the pixels, while all fuzzy rule-based
image segmentation techniques tend to be very much
application dependent. In most techniques, the structure of the
membership functions are predefined and their parameters are
either automatically or manually determined. This paper
addresses the aforementioned problems by introducing a
general fuzzy rule based image segmentation technique, which
is application independent and can also incorporate the spatial
relationships of the pixels. It also proposes the automatic
defining of the structure of the membership functions. A
qualitative comparison is made between the segmentation
results using this method and the popular fuzzy c-means (FCM)
applied to two types of images: light intensity (LI) and X-ray of
human vocal tract. The results clear rhow that this method
exhibits significant improvements over FCM for both types of
images.

1. INTRODUCTION

Classical so-called "crisp", image segmentation techniques
while effective when an image contains well-defined structures,
such as edges and regular shapes, do not perform nearly so well
in the presence of ill-defined data. In such circumstances, the
processing of such images that possess ambiguities produces
fuzzy regions. Fuzzy image segmentation techniques can cope
with the imprecise data well and they can be classified into five
classes: fuzzy clustering, fuzzy rule based, fuzzy geometry,
fuzzy thresholding, and fuzzy integral based image
segmentation techniques [1] but among them the most dominant
are fuzzy clustering and fuzzy rule based segmentation
techniques. The most popular and extensively used fuzzy
clustering techniques are: fuzzy c-means (FCM) [2-3] and
possibilistic c-means (PCM) algorithms [4]. These clustering
techniques however cannot incorporate human expert
knowledge and spatial relation information. Image segmentation
witfiout considering the spatial relationships among pixels docs
not produce good result, as there is a huge amount of
overlapping pixel values between different regions. Fuzzy rule
based image segmentation techniques can incorporate human
expert knowledge, are less computational expensive than fuzzy
clustering and able to interpret linguistic as well as numeric
variables [5]. But they are very much application dependent and
very difficulty to define fuzzy rules that cover all of the pixels.
In most techniques, the structures of the membership functions
are predefined and their parameters are either manually or

automatically determined [5-9]. In addition to the above-
mentioned advantages, a fuzzy rule based image segmentation
technique should be both application and image independent,
be capable of incorporating spatial information of the regions
and be able to define the membership functions and their
parameters automatically.
This paper explores a new approach in the development of such
a type of fuzzy rule based image segmentation techniques.
Section 2 explores the technique used to define the membership
function, while the underlying theoretical concepts and fuzzy
rule definition and the experimental results are presented in
sections 3 and 4 respectively. Finally the discussions and
conclusion are provided in section 5.

1. DEFINITION O F M E M B E R S H I P

FUNCTIONS

In this section three types of membership functions arc
automatically defined to represent respectively the region pixel
distributions, the closeness to their centers and their spatial
relations. Each membership function possesses a membership
value for each region, which indicates the degree of belonging
to that particular region. The techniques used to automatically
define the structures of the membership functions and hence the
membership functions from the region pixel distributions are
described in the following subsection

2.1. Membership Function for Region Pixel
Distributions

In this subsection an attempt is made to automatically define the
membership function including its structure from the region
pixel distributions. The steps needed to define the membership
function are: classification of the sample or the image to be
segmented into desired number of regions using manual
segmentation or automatically by applying any of the fuzzy
clustering algorithms, generation of the gray level pixel
intensity histogram for each region and map the frequency for
each gray level into [0 I], and approximation of the polynomial
for each region. This polynomial represents the membership
function for that particular region and the value of the
polynomial for each gray level denotes the membership value of
that particular gray level value. The cloud image shown in
figure l(a) is divided into two regions namely cloud ( R , ) and
urban scene ( R , ) using FCM. The membership functions
shown in figures l(b)-l(c) of these two regions are determined
from respective region pixel distributions using third order
polynomial approximation.
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(a): Cloud (b): Membership (c): Membership
image function for R, function for R,

Figure 1: Cloud image and its region membership functions

The degree of belonging of a candidate pixel (the pixel to be
classified) to a region is determined from the respective
membership function. The structures of the membership
functions are automatically generated from the region pixels
and hence relieve us from manually defining the structure and
parameters of the membership function for each region. The
membership function \lm . ( P l t ) of the region R, for the pixel

distribution can be defined as

HD»J(P. . , )=VP.. ,) (i)

Where f R . (P , , )and P,, are the polynomial of the region

Rj and the pixel value at the position (s,t) respectively.

2.2. Membership Function to Measure the Closeness
of the Region

Each pixel should be more compact i.e. more close to the
belonging region than other regions. The degree of
belongingness of a candidate pixel to a region is determined by
following the strategy of k-mcans clustering algorithm.
Candidate pixel joins in its nearest region and after joining the
center of that region is recomputed. The centroid of a region
R, can be defined as

(2)

Where N^ and Pj(i) represent the number of pixels and the ith

pixel gray level intensity of the jth region respectively.
The membership function should reflect the relation " the more
close to a region the larger membership value the pixel should
have". So the membership function HmCP,. , ) , which

determines the degree of belongingness of a candidate pixel
P,, at a location (s,t) to a region R, can be defined as

(3)

Where the constant D can be defined as difference of maximum
and minimum gray level intensity values of an image i.e. here D
equals to 255. The maximum value of the membership function
will be always at the center of the region and the structure of the
membership function will be symmetrical around the vertical
line passes through the center of the region.

2.3. Membership Functions for Spatial Relation

In the previous two sections the membership functions have
been developed only based on the feature values i.e. gray level
pixel intensities of an image. They dont consider any spatial
relationships of the pixels of a region, but there exists strong
spatial relations between the pixels of a region. Spatial relations
also represents the geometric features of a region and a spatial
object contains two descriptors- feature and geometric [11].
There is a large amount of overlapping pixels between the
regions. Segmentation docs not produce good result without
taking into account of these overlapping pixels. The number of
overlapping pixels can be trim downed by considering the
neighborhood relation among a candidate pixel and the
classified pixels of the regions i.e. once we get the some region
pixels we can easily calculate the neighborhood relation
between the candidate pixel and the region pixels. Based on the
neighborhood relation the candidate pixel can be assigned to the
appropriate cluster or group. The neighborhood relation can
mainly be defined using the three techniques- fixed size
neighborhoods around candidate pixel, minimum spanning tree
and Voronoi tessellation even though there are many ways to
define a neighborhood relation [12]. We are interested in fixed
size neighborhoods around a candidate pixel, as we need to
calculate the number of pixels and their distances from the
candidate pixels inside the neighborhood area. The
neighborhood configurations of the pixels for r=l, r=2 and r=4
are shown in the figures 2(a), 2(b) and 2(c) respectively [13]
where 0 , # and r represent the candidate pixel, neighborhood
pixels and neighborhood radius respectively.
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(a): r-1 (b):r=2 (c): r=4
Figure 2: Neighborhood configuration

The number of neighbors would be (r+l)Jfor r^l

otherwise (r+1)1 - 1 . The main task of the segmentation

is to divide the image into desired number of mutually
exclusive homogeneous regions. It is thus assumed that
the variation of the- pixel intensities of a region is in a
limited extent but there is a sharp variation of the pixel
intensities on the boundaries of the regions that divides
the image into some regions. We are interested in
determining the spatial relationships among the pixels of
a region. So the neighborhood system of i. region can be
defined as,

Definition I (Neighborhood system) A neighborhood system
with radius r, f (P , , , r) of a candidate pixel P,, is a set of all

pixels P, y such that C(P,,,,r) = {P,.y I (d(P,.y.Pu) C r )A

((P,, ~ P , , ) £T)} where <tom«ced(P l i y ,PM)=|x-s | + | y - t | .

P, y is a 2D image pixel at Cartesian coordinate (x.y), and T is
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• < <

the threshold, which denotes the maximum pixel intensity
variation of a region .
Now it is needed to define a membership function, which
considers the number of neighborhood pixels and the distances
between the neighbors and candidate pixel. A membership
function (i of the spatial relation should possess two

characteristics: (ia N where N denotes the number of

neighbors and ju a .
"l"«jr»*t.i'

The summation of inverse distances of a region Ki can be

defined as

=5
' '^(Px.Y.P,,) ^

Where N̂  = |?(P,,,,r)| •• the number of neighborhood pixels of

the candidate pixel Plt in the region RJ and d,(PKy,PM) is

the distance between the ith pixel P, y of the region R j & the

candidate pixel P,, .

So considering the number of neighbors (Nj ) and their sum of

inverse distances (GR ) from the candidate pixel (P s , ) , the

membership function fXm ( P J / S r ) o f the region RjCan

defined as

(5)
X(N,xGRj)

Where 9i is the desired number of regions of an image.

3. FUZZY RULE DEFINITION

The effectiveness of the fuzzy rule plays the vital role for the
segmentation result. In this paper, a fuzzy rule is hcuristically
defined using the three membership functions defined in section
2 and the most wide used fuzzy IF-THEN rule structure.
The overall membership value p.AIl. (P,,) of a pixel Pu for the

region Rj, which represent the overall degree of belonging to

the region Rj, can be define;] by the weighted average of the

values of the membership functions Hon^P,,,), ^ . ( P , , ) and

(

Where W,, W,and W, represent the weight of the
membership values for the pixel distribution, closeness to the
cluster centers and neighbor relation respectively. The overall
membership value u (PST) is used in the antecedent

condition of IF THEN RULE and the rule can be defined as,

Dsfinition 2 (Rule) IF HAR^P,.,) supports region

pixel P,,, belongs to region R r

VI) will give support to the region R, if

^A.J (P.,) -m«{ HA«, (P...) • HA*2 (P..,) ^ « * (P., ) )
where SR indicates the number of region. As this is the only
rule, it is generalized one and can be applied in any type of
image.

4. EXPERIMENTS

The proposed system and FCM had been implemented using
MATLAB 5.3.1 (The Mathworks, Inc.). Two types of images
such as light intensity (LI) shown in figure 1 (a) and X-ray
image of the human vocal tract shown in figure 4(a) were used
in the experiments. For FCM, the initialization of the cluster-^
center was done randomly. The maximum number of iterations,
minimum amount of improvement and the value of the fuzzifier
(m) were taken as 100, 0.00001 and 2 respectively. For our
proposed system, GFR1S the membership function defined in
section 2.1 was developed using the clusters produced by FCM
and their center values were used to initialize the centers of the
clusters required to define the membership function described
in section 2.2. The values of weights and the threshold were
determined empirically and taken as W, = 1, W, = 2 , W, = I,

T=25, and W, = 1, W, = 1.5, W, = 1, T=30 for cloud and X-
ray image of the human vocal tract respectively. The segmented
results of the original cloud image (figure l(a)) for two regions
namely cloud (R,) and urban scene (R , ) produced by FCM
and GFR1S arc graphically displayed in the figure 3.

(a): FCM (b): FCM (C): GFFJS (f):GFRIS
for R, for R, for R, for r»l for R, for r-1

(g):GFRIS (h):GFRIS (e): GFR1S (0: GFRIS for
for R, for for R2 for for R, for r=4 R2forr»4

r=2 r-2
Figure 3: The segmented results of the cloud image into two

regions produced by FCM and GFRIS

From the results it is visually shown that GFRIS separated
almost the whole cloud from the image and produced
significantly better results than FCM because FCM did not
consider the spatial relationships among the pixels of a region.
GFRIS also showed better results for larger values of
neighborhood radius r, because the pixels of R, (cloud) are

homogeneous and very much spatially correlated.
Another experiment was performed using an X-ray image of the
human vocal tract shown in figure 4(a) and its segmentation
results into two regions namely human vocal tract (R,) and
background ( R,) produced by FCM and GFRIS are presented
in the figures 4(b) - 4(i). It is visually evident that the proposed
technique GFRIS considerably outperformed FCM. There arc
no isolated pixels at all in the regions produced by GFRIS
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whereas the regions (figures 4(b) -4(c)) produced by FCM
contain significant amount of isolated pixels.

(a): X-ray image of
human vocal tract

(b): FCM for R, (c): FCM for R,

(d):GFRIS forR,

forr=l

(Q: GFRIS for
R, forr=2

(g): GFRIS for R, (h): GFRIS for (i): GFRIS for R,

forr=2 R i f o r r = 4 forr=4
Figure 4: X-ray image of the human vocal tract and its results
for two regions produced by FCM and GFRIS

This also ensures that the spatially related pixels had been
classified successfully by GFRIS. The image shown in figure
3(a) contains two regions such as human vocal tract (lips,
tongues, teeth) and background. The soft part of the human
vocal tract is not clearly visible and has low local contrast
pixels [14]. Almost the whole of the vocal tract had been
successfully separated by GFRIS using r=4, which ensures the
larger values of r, the better representation of the spatial
relation. It also considered the underlying meaning of data
better while FCM did not consider at all.

5. DISCUSSIONS AND CONCLUSION

In this paper a general fuzzy rule based image segmentation
technique has been proposed. The proposed technique includes
the spatial relationships among the pixels. It is also image and
application independent like the standard fuzzy clustering
algorithm FCM. The results have shown that it has represented
the spatial relationships as well as the underlying meaning of
the data better than FCM. Only one fuzzy rule is capable to
classify all the pixels. The structures of the membership
functions have been automatically derived and there is no need
of defining the parameters. It is visually apparent that this
system has shown promising result over FCM.
The values of the weighting factors W, & W,, and W,

imposes the importance of the feature based and spatial
information. There is a trade-off between feature based and
spatial information. It depends on the application, which one is
assigned to how much importance. It is apparent that feature-
based information should be given more emphasis than spatial
information as it represents more human visual perspective than
spatial information. Another parameter is the value of the
threshold T, which represents the .maximum amount of pixel
intensity variation between neighbor and candidate pixels. It is
intuitively determined that the suitable range of the value of
W, and T are 1.5 to 2, and 25-30 respectively and others are 1.

It also needs more research for determining the suitable values
of weighting factors and the threshold. As the proposed
technique is fuzzy rule based technique, it is capable to
incorporate any types of attributes of any special application. It
is also possible to add membership function from the high level
semantics of an object for object based image segmentation.
Like FCM the proposed technique needs to provide the desired
number of regions. It also needs more investigation for
automatically determine the optimum number of regions.
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Abstract

Generic fuzzy rule based technique for image
segmentation is a fuzzy rule based, application and
image independent image segmentation technique.
Fuzzy clustering algorithms are the most popular and
widely used in image segmentation. This paper
presents a rigorous performance analysis of fuzzy
clustering algorithms and generic fuzzy rule based
technique for image segmentation using light
intensity and medical images. A quantitative
evaluation is also conducted based on a standard
segmentation evaluation technique called the
empirical discrepancy method. Generic fuzzy rule
based technique for image segmentation outperforms
both fuzzy clustering algorithms FCM and PCM for
both types of images. It also represents the
underlying meaning of data better. PCM shows
slightly better results and underlying structure of
data than FCM.

Keywords : Fuzzy Rule, Image Segmentation, Fuzzy
Clustering, and Generic.

1 Introduction

Classical so-called "crisp", image
segmentation techniques while effective when an
image contains well-defined structures, such as edges
and regular shapes, do not perform nearly so well in
the presence of ill-defined data. In such
circumstances, the processing of such images that
possess ambiguities produces fuzzy regions. Fuzzy
image segmentation techniques can cope with the
imprecise data well and they can be classified into
five classes: fuzzy clustering, fuzzy rule based, fuzzy
geometry, fuzzy thresholding, and fuzzy integral
based image segmentation techniques [1] but among

them the most dominant are fuzzy clustering and
fuzzy rule based segmentation techniques. The mos:
popular and extensively used fuzzy clusterins
techniques are: fuzzy c-means (FCM) [2-3] and
possibilistic c-means (PCM) algorithms [4]. Fuzzy
rule based image segmentation techniques can
incorporate human expert knowledge, are less
computational expensive than fuzzy clustering and
able to interpret linguistic as well as numeric
variables [5j. But they are very much application
dependent and very difficulty to define fuzzy rules
that cover all of the pixels. In most techniques, the
structures of the membership functions are predefined
an.l their parameters are either manually or
automatically determined [5-9]. Generic fuzzy rule
based technique for image segmentation (GFRIS) is a
general fuzzy rule based image segmentation
technique, which is application and image
independent. It also automatically derives the
structures of the membership functions and
incorporates the spatial relation information [10-11].
The performance evaluation of image segmentation is
most critical task of computer vision system. This
paper carries out an extensive comparative study of
the performances of fuzzy clustering algorithms and
generic fuzzy rule based technique for image
segmentation. It employs the more suitable and better
objectively assessing segmentation evaluation
method, discrepancy based on the number of mis-
segmented pixels, one of the empirical discrepancy
methods [12] using two quite different types of
images: light intensity and medical image (x-ray of
human vocal tract).

Section 2 gives a brief of the technique of
generic fuzzy rule based technique, and the
underlying theoretical concepts of FCM and PCM.
The techniques of evaluation and experimental results
are given in section 3. Finally some conclusions are
provided in section 4.
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Analysis of Fuzzy Clustering and A Generic Fuzzy Rule Based Image Segmentation Technique

A brief description on generic fuzzy rule
| technique for image segmentation (GFRIS),

means zn(^ possibilistic c-means are given in

.'following sections.

Generic Fuzzy Rule Based Technique For
Image Segmentation {GFRIS)

The GFRIS technique uses three types of
abership functions to respectively represent the

ion pixel distributions, the closeness to their
i&ntrcs and the spatial relations among the pixels in a

ticular region. Each membership function
Ssesses a membership value for every region,

indicates the degree of belonging to that
icular region [10,11]. It also uses a single fuzzy

:e. Details of the algorithm applied to automatically
fefine the membership function and fuzzy rule, are

ibed in the following sections.

\,L1 Membership Function for Region Pixel
i'C Distributions

,- ' This section outlines the stages used to
automatically define the membership function
Încluding its structure from the region pixel
distributions. The three steps required to define the

fancmbcrship function are: -

Classify the image into a desired number of
regions using manual segmentation or
automatically by applying any fuzzy
clustering algorithms.

Generate the gray level pixel intensity
histogram for each region and normalise the
frequency for each gray level into the range
[01].

Approximate the polynomial for each
region. This polynomial represents the
membership function for thai particular
region and the value of the polynomial for
each gray level denotes the membership
value of that particular gray level value.

The degree of belonging of a candidate pixel

(the pixel to be classified) to a region is determined
from the respective membership function. The
membership function uDR (Pvi) of the regionR^for

the pixel distribution is defined as

(1)

where fR i(P l t)and P)t are the polynomial of the

region Rt and the pixel at position (s,t) respectively.

2.1.2 Membership Function to Measure the
Closeness of the Region

This type of membership function represents
the similarity between the candidate pixel and the
centre of a region based on the gray level intensity,
and is based upon a Euclidean distance measure. The
degree of belongingness of a candidate pixel to a
region is determined by following the strategy of Je-
rricans clustering algorithm. Candidate pixels join
their nearest region and after joining, the centre of
that particular region is recomputed. The centroid of a
region Rj is defined as

^ (2)

where Nj and P^i) represent the number of pixels

and the i* pixel gray level intensity of the j * region
respectively.

The membership function should reflect the
axiom that " the closer to a region, the larger the
membership value a pixel should have". So the
membership function uC R . (P, , ) , which determines

the degree of belongingness of a candidate pixel
P,, at a location (s,t) to a region Ri can be defined as

P i n 1C(R^-Pv
D

(3)

where the constant D is defined as the difference
between the maximum raid minimum gray level
intensity values of an image, so for an 8 bit gray scale
image, D=255. The maximum value of the
membership function will always be at the centre of
the region and the structure of the membership
function will be symmetrical about the vertical line
that passes through the centre of the region.
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Figure!: Neighbourhood system

Th, neighbourhood system of a region is defined as,

Definition J (Neighborhood system) A
neighbourhood system with radius r > ^ *$ ^

candidate ptxelPM is a set of all pixels ' p such

2.7. J Membership Functions for Spatial Relation

In the previous sections, the membership
functions have been developed based only on feature
values i.e. gray level intensities of a particular image,
and thus did not consider any spatial relationships of
the pixels within an identified region. Clearly, there is
an expectation that strong spatial relationships wiil
exist between neighbounng pixels within a region,
while at the same time there also could be a
considerable number of overlapping pixels between
the regions. Good segmentation cannot therefore be
expected unless these overlapping pixels are taken
into account. By considering the neighbourhood
relation between a candidate pixel and the classified
pixels of the regions, the number of overlapping
pixels can be reduced. Based on the neighbourhood
relation the candidate pixel can be assigned to the
appropriate groun. In this paper, we concentrate
especially on fixed size neighbourhoods around a
candidate pixel. The neighbourhood configurations of
the pixels for r=] , r=2 and r=4 are shown in the
figures 1 (a), (b) and (c) respectively, where O and #
represent the candidate and neighbourhood pixels
respectively.

image pixel at Cartesian coordinate (x.y), r"is the

thZol 6 neihbhd ^ HZ

The membership function u,,.(P l t .r)of the regi

R i is defined as
region

L0\xG R . ) '"'

where N. =\C(P rV ;- t.
, |&lr,.,.r;, is the number o

f

neighbourhood pixels of the candidate pixel P in'

^ e region R ^ G . J is the sum of inverse pixel
d.stances and K is the number of regions ir an
image to be segmented. an

The membership function of
in (4) considers the number of

their sum of inverse distances for all
greater the number of neighbours in

The

2.1.4 Fuzzy Rule Definition

The overall membership value MAR (P ) o f

P-fcr «he region R ^ ^ c h ™ ^

overall degree of belonging to the region R J ) C a n b c

^ " ^ ^ 1 V a * o f ^ values of the

where W W ^ V ,

P..,) is used ,„ the antecedent condition of the

IF-THEN rule, which is defined as,

Rule) IF ^ ^ suppom

P^P,, belongs to region Rs

will give support to the region R if

^(,) , ,M
91 indicates the number of regions.
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! • ! j-I

0<u.y<l ie{l..c}and

2.2 Fuzzy c-Means (FCM) Algorithm

FCM is the most popular fuzzy based
clustering technique. Developed by Bezdek [3], it is
still being used today in image segmentation. It
performs classification based on the iterative
minimization of the following objective function and
associated constraints [2].

(6)

(7)

(8)

(9)

where c and n are the number of cluster and data
respectively, \i is a fuzzy partition matrix containing
membership values [//,y], V is a prototype vector

containing the values of cluster centres [ v. ], m is the

fuzzifier (l<m<<*), d is the distance between

Xj & v,., and X is a data vector. The following two

equations are derived after minimization of the
function f a (ji, V, X) in (6) with respect to |i and V.

(10)

( ID

The set of cluster centres is initialised either
randomly or by an approximation method. The
membership values and cluster centres are updated
through an iterative process until the maximum
change in fl., becomes less than a predefined

threshold. The selection of the value of m is
important, as if m=l, then FCM produces a crisp
instead of a fuzzy partitioning. Note, that if any of
the distance values dtXj.v,) is zero, then equation

(11) is undefined.

2.3 Possibilistic c-Means (PCM) Algorithms

FCM arbitrarily divides the data set based on
a selected number of clusters. The membership values
generated by FCM represent the degrees of sharing.
In order to eliminate the constraints in equation (8),
Krishnapuram and Keller first introduced PCM
whose membership values represent the degrees of
typicality, instead of degrees of sharing and clusters
are independent with each other [4,13J. They
modified the FCM objective function and defined the
PCM objective function as,

i - I

(12)

with the constraints being

0<u.. £1 is{l..c}and j

0 < i u i J < n ie{l..c}

max u. >0 je{l..n}

(13)

(14)

(15)

where r\i is the scale parameter, which determines

the zone of influence of a point and other parameters
are as defined in section 2.2. The following are
obtained after minimizing the function fm fa, V, X).

(16)

(17)

The membership value (fi^) and prototype

centre (v,) are updated using the equations (16) and
(17) through an iterative process. As with FCM, when
fuzzifier m=l, PCM produces a crisp partition. PCM
offers more promising results in presence of noise but
it is highly dependent on initialisation and estimation
of the scale parameters. The output of FCM can be
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used for initialisation and scale estimation but FCM is
very sensitive to noise. '

3 Experiments and Discussions

GFRIS, FCM. and PCM were implemented
using MATLAB 5.3.1 and two different example
images were used in the experiments, namely a gray
scale image showing a cloud and urban scene shown
in figure 2(a) and a medical X-ray image of the
human vocal tract shown in figure 2(d).

(a) Cloud (b) Ref. image
for cloud

(c) Ref. image
for urban

scene

(d) Human (e) Ref. (f) Ref. image
vocal tract image for

for vocal tract background
Figure 2: Original cloud and x-ray of human
vocal tract and their reference images

For FCM the initialization of the cluster
centre was performed randomly. The maximum
number of iterations, the minimum level of
improvement and the value of the fuzzifier (m) were
empirically evaluated as 100, • 0.00001 and 2
respectively.

For PCM, the initialization of the cluster
centres used the output of the FCM. The value of
scale parameter T), was taken as the variance of the
cluster / produced by FCM [13].

For GFRIS, the membership function
defined in section 2.1.1 was developed using the
clusters produced by FCM and their centre values
were used to initialise the centres of the clusters
required to define the membership function, as
described in section 2.1.2. The respective values of
the weights and threshold were determined
empirically as W, = 1, W, = 2 , W, = 1, T=25, for the

image in figure 2(a) and YV, = 1, W, = 1.5, W3 = 1,
T=30 for the X-ray image in figure 2(d). The
segmented results of the gray scale image for the two

regions (cloud, Rj and urban scene. R2 ) produced b\

FCM. PCM and GFRIS respectively are displayed in
the fieure 3.

(e) R, r=l (f)R2 r=l (g)R) r=2 (h)R, r=2

(i) R, r=4 (j)R2 r=4

Figure 3: The segmented results of the cloud image
with two regions by FCM ((a) and (b)), PCM ((c)
and (d» and"GFRIS ((e) to (j))

The results clearly show that GFRIS
separated almost all the cloud from the image and
produced significantly better results than both FCM
and PCM. FCM and PCM gave approximately equal
performance since as alluded earlier, both techniques
do not consider the spatial relationships between the
pixels comprising each region. GFRIS also exhibited
better results for larger values of neighbourhood
radius r, because the pixels of region 1 (cloud) are
homogeneous and possess very strong spatial
correlation.

The quantitative evaluations were performed
using one of the most powerful empirical discrepancy
methods [12] based upon the number of wrongly
segmented pixels. The confusion matrix C, is a
9vby5v square matrix where 9\ represents the
number of segmented region and C,. denotes the

number of j * region pixels classified as region i by
segmentation. Type I error, e.rrorl is defined as,

errorl, =
95

X100 (18)

while a Type II error, errorll is defined as,
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25 f"

9? 91 91
rXlOO (19)

The reference images in figure 2 were again
used for evaluation purposes. The results of the cloud
image segmentation with respect to reference images
(figures 2(b) and 2(c)) are shown in Table I.

Table 1: Percentage errors for cloud (region Rj)

segmentation in figure 2(a).

Method

FCM

PCM

GFRIS r=1

GFRiS r=2

GFRIS r=4

Error Type I

28.7335

27.1375

8.8332

1.9749

2.0388

Error Type II

17.4194

18.3409

20.4783

21.4497

23.9742

In the above table, the image is segmented
into two regions, so the error rates refer to incorrect
segmentation for region Rj (clouds). Since the error

rate of one region will be the inverse of the error rate
of other region, the results reveal that GFRIS
provides superior performance for region Rj, which

indicates that GFRIS successfully separated the cloud
from the image and represents the underlying
structure of data far better than FCM and PCM. The
error rates of GFRJS for type II error are higher than
for both PCM and FCM because the pixels in this
region do not have good continuation i.e. they are
abruptly changing, which oppose a strong spatial
relation. In fact, the urban scene is not a single
object. Good continuation is one of the seven
properties of grouping of the visual elements [14J.
The average error rates of the three techniques are
shown in the figure 4.

This graph shows that the average error rates
of GFRIS are much less than those of PCM and FCM.
Average error rate of GFRIS for r=4 is higher than
that of for r=2 because there is no sharp boundary
between cloud and urban scene. For this case, GFRIS
interpreted some sections of the urban scene as cloud
for r=4. PCM again showed slightly better
performance than FCM.

o o
o t
O) ID
c en
HI Hif \j
a >
a- <

20

15

10

0 ! r '—'
FCM PCM

Technique

Figure 4: Average error rates of PCM. FCM and
GFRIS for cloud image segmentation

A second series of experiments were
performed using a medical x-ray image of the human
vocal tract (figure 2(d)). The segmentation was again
for two regions, namely the human vocal tract (region
Rj, figure 2(e)) and general background (region R 2 ) .

The corresponding results produced by FCM, PCM
and GFRIS are presented in figure 5.

(e) R, r=l (f)R2 r=l (g) R,r*2 (h)R2r=2

Figure 5: Segmented results of human vocal tract
into two regions produced FCM ((a) and (b)),
PCM ((c) and (d)) and GFRIS ((e) to (j))

It is visually evident that the proposed
technique GFRIS considerably outperforms both the
FCM and PCM techniques for this image type as
well. The image (figure 2(d)) contains two regions,
the vocal tract (comprising the lips, tongues, teeth,
aural cavity) and general background. The soft part of
the human vocal tract is not clearly visible and has
low local contrast pixels [15J. Almost the entire
vocal tract had been successfully separated by GFRIS
using r=4, which confirms that the larger values of r,
provide a better representation of the spatial relation.
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Here PCM showed slightly better performance than
FCM. The error rates of human vocal tract
segmentation wi(h respect to the reference images
(figures 2(e) and 2(0) are shown in the table 2. Both
types of errors for human vocal tract segmentation are
less than FCM and PCM except the error rate of error
type II of GFRIS using r=4. This is caused by the
fact there is good continuation of low contrast pixels
of human vocal tract with the background and it takes
some portion of the background as a part of human
vocal tract for higher order of spatial relation i.e. r=4.
The numerical results and average error rates of the
human vocal tract segmentation are shown in Table 2
and figure 6 respectively.

Table 2: Error percentage for human vocal tract
(region Rj) of x-ray of human vocal tract

segmentation

Method

FCM

PCM

GFRIS r=1

GFRIS r=2

GFRIS r=4

Error Type I

42.S797

38.409

38.0529

30.1424

3.903

Error Type II

7.5045

7.5716

7.477

7.47776

14.5789

All the average error rates for GFRIS are
less than those of FCM and PCM. The error rate is
decreasing rapidly for higher orders of spatial
relation, because the pixels of both regions are almost
homogeneous. The error rate of FCM is higher than
PCM.
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Figure 6: Average error rates of PCM, FCM and
GFRIS for human vjral tract segmentation

For all of the above experiments the number!
of regions to be segmented was two. It is impurtarJ
however to use a larger number of regions in order to I
check the underlying meaning of data. To achieve!
this, another experiment was performed using the!
above techniques identifying three regions to be
segmented. From the experimental results, it was
shown that GFRIS considered the underlying
meaning of data better than FCM and PCM and out I
performed both of them for both types of images for'
three regions. PCM again showed better underlying
structure of the data than FCM for both types of
images when three regions were to be segmented

4 Conclusions

In this paper both quantitative and
qualitative performance analysis of FCM, PCM and
GFRIS have been performed based on the standard
segmentation evaluation method, empirical
discrepancy method using two different types of
images. Both results proved that generic fuzzy rule
based technique for image segmentation (GFRIS)
provided significantly better results than either FCM
or PCM. The reasons for this are that GFRIS has
considered spatial relationships very well and hence
represented the underlying meaning of data better
than both FCM and PCM. PCM has considered the
underlying structure of data in some extent but FCM
has arbitrarily divided the data into region without
considering any underlying meaning of data.

The values of the weighting factors W.r

W2 , and W3 of GFRIS were determined empirically.

More research needs to be undertaken in order to
determine the suitable values of both the three
weighting factors as well as the threshold.

Finally, as the proposed technique is fuzzy
rule-based, it is capable of incorporating any type of
attribute of any special application. It is thus possible
to add membership functions from the high level
semantics of an object for object-based image
segmentation, such as in MPEG-4 applications. Like
FCM and PCM, the GFRIS technique needs to be
provided with the desired number of regions to be
segmented. It also needs further investigation for
automatically determining the optimal number of
regions.
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ABSTRACT

The generic fuzzy rule-based image segmentation technique
(GFR1S) does not produce good results for non-homogeneous
regions that possess abrupt changes in pixel intensity, because it
fails to consider two important properties of perceptual
grouping, namely surroundedness and connectedness. In this
paper a new technique called extended fuzzy rules for image
segmentation (EFRIS) is proposed, which includes a second rule
to that defined already in GFRIS, that incorporates both the
surroundedness and connectedness properties of a region's
pixels. This additional rule is based on a spilt and merge
algorithm and refines the output from the GFRIS technique. Two
different classes of image, namely light intensity and medical X
rays are empirically used to assess the performance of the new
technique. Quantitative evaluation of the performance of EFRIS
is discussed and contrasted with GFRIS using one of the
standard segmentation evaluation methods. Overall, EFRIS
exhibits significantly improved results compared with the GFRIS
approach.

1. INTRODUCTION

Image segmentation is the most important and difficult task of
digital image processing and analysis systems, due to the
potentially inordinate number of objects and the myriad of
variations among them. The most intractable task is to define
their properties for percertui) grouping, a demand that requires
human expert knowledge be incorporated to achieve a superior
segmentation result. Fuzzy rule-based image segmentation
systems can incorporate this expert knowledge, but are very
much application domain and image dependent. The structures
of all of the membership functions are manually defined and
their parameters are either manually or automatically derived [1-
5]. Karmakar and Dooley [6-8] proposed a novel generic fuzzy
rule based technique for image segmentation (GFRIS) by
addressing these aforementioned problems. The technique
however, does not work very well for image regions that are
non-homogeneous and have sharp variations in pixel intensity.
The eminent psychologist Gestalt stated that visual elements are
grouped perceptually upon the principles of: proximity, closure,
similarity, good continuation, common fate, surroundedness,
relative size and symmetry [9]. The proximity, similarity and
good continuation elements are all reflected in GFRIS. In this
paper an extended fuzzy rule-based image segmentation (EFRIS)
technique is proposed by integrating a rule, based upon the

surroundedness and connectedness properties of region's pixels
in combination with the GFRIS rule. The performance analysis
of both methods is conducted by applying a superior objective
segmentation evaluation technique called the "discrepancy based
on the number of mis-segmented pixels", which is one of the
powerful empirical discrepancy methods [10]. This method is
subsequently applied to two different classes of image: light
intensity and medical x-ray of the human vocal tract.

Section 2 provides a brief overview of the technique used to
define the fuzzy rules. The processing steps of the proposed
methods are presented in sections 3. The evaluation and
experimental results are discussed in section 4, with conclusions
provided in section 5.

2. FUZZY RULES

Two fuzzy rules are used for two different purposes. The first
represents the similarity, proximity, good continuation and
spatial information of a region, while the second considers the
surroundedness and connectedness of a region's pixels. Both
rules are described in the following sections.

2.1. First Rule

Full details of this rule and its membership functions are given in
[6-8]. It uses three membership functions to represent the region
pixel distribution ( U D R J ( 1 \ , I ) ) ' closeness of a region

(uCR .(P,,)), and spatial information among region pixels

( MNR (PI,I) )• Here H, R i, and P1>( are the membership function,

j t h region and the pixel at location (s,t) respectively. The two
membership functions HDR.(P(il) and HCR(P,,,) represent the

similarity bssed on gray level pixel distribution and intensity
respectively, while the third HNR-CYI) characterizes the

proximity, good continuation and spatial information of a region.

The overall membership value HAR.(P,,) of a pixel P l t foi the

region R j , which represents the overall degree of belonging to

the region R j , is defined by the weighted average of the values

of the three membership functions HDRj(P,,t), Hc-Rj(p..i)' anc l

w 1 + w 2 + w 3

0-7803-6725-1/01/$ 10.00 ©2001 IEEE 1099



where W], W2 and W3 represent the weightings given to the
respective membership values for pixel distribution, closeness to
the cluster centres and neighborhood relation. The rule is defined

as:-

Definition 1 (First Rule) IF u A R . (P s t ) supports region

R. THENpixel P,, belongs to region R r

u A R : (P s t ) will give support to the region Rj if

r^AR- v s t > ^ " " X v r A R M 11 / ' M-AR? v*s t / »• ••» r^ARw V s l) t

where SR indicates the niimber of regions.

2.2. Second Rule

The second rule deals specifically with two perceptual properties
of a region, namely surroundedness and connectedness. This rule
is pipelined with the above rule, so that its output is refined
using the surroundedness and connectivity properties of a region
based on the split and merge algorithm. If the segmented regions
produced by the first rule arc denoted as R; where j=1...9?,

then all segmented regions (every Rj) are split into a number of

objects using 4-connected neighborhood property. Following
the splitting, region Rj = J0 | j , 0 2 j , . . . , 0 n j | is a set of objects

where 0 1 j n 0 2 j n , . . . , n 0 n . j = 0 and nj represents the number

of 4-connected neighborhood objects in region R j . The main

object of a region R j , 0 m j = 0 j j for

Oy =max| Ojj, O 2 j , . . . , On.j ] where | | is the cardinality of

a set i.e. the number of pixels belonging to an object. The
membership function for the surroundedness of an object (Oy)

surrounded with a main object ( Q m k ) is then defined as:-

(2)

where riyis the number of pixels of an object.Oy, inside the

main object O ^ . The contour of the main object is determined

by constructing the convex hull for that object. The merging
operation is performed by the following rule:-

Definitlon 2 (SecondRule) IF \iso>. (Oy, Om k k ) £Th AND

Ojj is 8-connected neighborhood with Om k THEN Oy

merges with Om^. .

Where i * nij A k * j ensures that an object Oy is not a main

object of its region Rj and merges with a main object of another

region. Th is a threshold, which defines the degree of
surroundedness used in the experiments.

3. SEGMENTATION STEPS

The segmentation consists of the following steps:-

Step 1: The image is initially segmented using the first rule.

Step 2: Each segmented region is spilt into a number of
objects based upon 4- connected neighborhood. The
main object, which is the object that contains the
maximum number of pixels of each region, is then
determined.

Step 3: Objects are merged with a main object of other regions
based on the second rule (see section 2.2). Once an
object is merged, the merging algorithm repeats for all
other objects belonging to the same region that were
previously surrounded and not connected to the main
region.

4. EXPERIMENTAL RESULTS

Both the new EFRIS and GFRIS systems were implemented
using MATLAB 5.3.1 (The Mathworks, Inc.). Two different
image types were used in the experiments, namely a light
intensity gray-scale image shown in figure l(a) which comprises
one homogeneous and one non-homogeneous region, and a
medical X-ray of the human vocal tract shown in figure l(d),
which contains two separate homogeneous regions.

(d) (e) (0
Figure 1: Original cloud scene, X-ray of the human vocal tract i
and their reference images: (a) Cloud image, (b) Ref: image for
cloud, (c) Ref: image for urban scene, (d) Human vocal tract, (e)
Ref: image for vocal tract, (f) Ref: image for the background

As alluded previously, quantitative evaluation of the
segmentation process was achieved using discrepancy based on
the number mis-segmented pixels [10]. The confiision matrix C,
is an SR by 9? square matrix where 9? represents the number of
segmented regions and CSj denotes the number of j l h region

pixels classified as region i by the segmentation process. For the
ith region, type I error, errorl, and type II error, errorllj are
defined as:-

errorlj =
95 xlOO (3)

s
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errorllj = xlOO (4)

For both GFRIS and EFRIS, the membership function for
region pixel distribution uDR . (P,,) was developed using the

clusters produced by the fuzzy c-means (FCM) algorithm [11]
and their centre values were used to initialize the centres of the
clusters required to define the membership function for closeness
of a region ( i im . (P,,)). The values of weights and the threshold

were empirically determined as W, = 1, W2 = 2 , W3 = 1,
T=25, and W, = 1, W2 = 1.5, W, = 1, T=30 for the cloud and
human vocal tract images respectively. The neighborhood radius
(r) was taken as 1, 2 and 4. The threshold Th was empirically
selected as 0.8. The segmented results of the cloud image (figure
l(a)) into two regions namely, the homogenous clouds (R | ) and
non-homogenous urban scene ( R 2 ) produced by GFRIS and
EFRIS are shown in figure 2.

(e):R|,r=4 (f):R2, r=4 (g): R,, r=l (h):R2,r=l

(i): R,, r=2 0): R2 . r=2 (k): R,, r=4 (1): R2 , r=4
Figure 2: The segmented results of the cloud image into two
regions by GFRJS (a) to (0 and EFRIS (g) to (1)

The numerical segmentation results of cloud image
segmentation with respect to reference images (figures l(b) and
l(c)) are shown in the following table 1.

Table 1: Error percentage for cloud (region

segmentation

i) of cloud image

Method

GFRIS r=l

GFRIS r=2

GFRIS r=4

Error I

8.8332

1.9749

2.0388

Error II

20.4783

21.4497

23.9742

Method

EFRIS r=l

EFRIS r=2

EFRIS r=4

Error I

8.8332

1.9749

2.0308

Error II

12.9107

13.4333

17.7535

In table 1, only the error rates for region R( are shown

since the error rates of the other region R2 will simply be the

reverse order of region R t. The segmentation results for the

cloud image using GFRIS show that region R| i.e. cloud

(figures 2(a), 2(c) and 2(e)) contains a large number of
misclassified pixels from region R 2 , the non-homogeneous
urban rccne region, which has sharp variations in pixel intensity.
Type II error rates for region R| using GFRIS (Table 1) are

higher than type I error rates. AJmost all of the misclassified
pixels, except the text caption were correctly classified using the
second rule of EFRIS (figures 2(g)-2(I)). The type I errors of
region R! for EFRIS were caused almost exclusively by the text

caption. The average error rates for both techniques are
graphically shown in figure 3.

20-I

£ 15-
m
• 10-

1 "
A

^ ^ » — -

—•-GFRIS

—•-EFRIS

— • •
•

1 2 4

Neighborhood Radius

Figure 3: Average error rates of GFRIS and EFRIS for cloud
image segmentation

From figures 2 and 3, it is cl:ar that EFRIS achieved
significant improvements over the GFRIS approach. The average
error rates of both techniques for r=4 are higher than that for r=2
because there is no sharp boundary between cloud and urban
scene. As a result, some portions of the urban scene have been
interpreted as part of the cloud segment for higher orders (r=4)
of spatial information.

A second series of experiments was performed using a
medical X-ray image of the human vocal tract (figure l(d)). The
segmentation results for the two separate regions namely, the
human voca! ircct R t , figure l(e)) and background (R 2 ) ,
produced by both GFRIS slid EFRIS are given in figure 4.

(a ) :R , , r= l (b) :R 2 , r=l (c) :R, , r=2 (d): R2 r=2

(e): R,, r=4 (f): R2 , r=4 (g): R,, r=l (h): R2 , r=l

(i): R,, r=2 (j): R2 - r=2 (k): R,, r=4 (1):R2, r=4
Figure 4: Segmented results of human vocal tract into two
regions produced by GFRIS (a) to (f) and EFRIS (g) to (I)
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The error and average error rates of human vocal tract
segmentation with respect to the reference images (figures l(e)
and l(f)) are shown in Table 2 and figure 5 respectively. The
segmented results (figures 4(g)-4(j) and Table 2) using EFRIS
for r=l and r=2 are not significantly better compared with
GFRIS, because there are no meaningful objects of a region that
are surrounded and connected with other region and vice versa.
EFRIS demonstrated superior performance compared with
GFRIS for r=4, as depicted in figures 4(k), 4(1) and 5.

Table 2: Error percentage for human vocal tract (region R[) of

x-ray of human vocal tract segmentation

Method

GFRIS r=l

GFRIS r=2

GFRIS r=4

Error I

38.0529

30.1424

3.903

Error II

7.477

7.47776

14.5789

Method

EFRIS r=l

EFRIS r=2

EFRIS r=4

Error I

37.7601

29.7274

1.9118

Error II

7.4734

7.4772

14.3982

GFRIS was unable to separate a small section of the human
vocal tract (figures 4(e) and 4(f)) because of the very low pixel
contrast, however EFRIS was able to successfully separate the
entire human vocal tract (figure 4(k)).

Figure 5: Average error rates of GFRIS and E^RIS for human
vocal tract segmentation

Both the error and average error rates decrease rapidly for
higher order of spatial information because the both regions are
homogeneous.

5. CONCLUSIONS

This paper has outlined the development of a generic fuzzy rule-
based image segmentation technique by incorporating two of the
most important perceptual properties of region grouping namely,
surroundedness and connectedness. A new technique called the
extended fuzzy rules for image segmentation (EFRIS), has been
proposed and both a quantitative and qualitative analysis
undertaken to compare it with the generic approach (GFRIS).
The experimental results have shown that EFRIS outpcrfonned
GFRIS, despite being more computationally expensive because
of the additional rule integrated into the GFRIS model. The
weighting factors and the thresholds were empirically
determined, though a fully automated technique is currently
being developed to determine these parameters. Since the

proposed technique is fuzzy rule based, it is capable of
incorporating any type of attribute of any special application
domain. It is possible to add membership functions for high level
semantics of an object for object based image segmentation.
More research however is required in order to automatically
determine the explicit number of regions in an image.
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PHYSICAL AND LOGICAL STRUCTURE OF PRINTED BILINGUAL DICTIONARY
ITEMS: LINGUISTIC REPRESENTATION AND RECOGNITION

Song Mao, University of Maryland at College Park. United States; Tapas Kanungo, IBM Almaden Research Center, United
States

Parsing bilingual dictionaries is important for building cross-language retrieval systems and speech recognition algorithms.
We describe a general purpose algorithm that can be easily modified to convert printed bilingual dictionaries in various
layouts and language pairs into electronic/symbolic lexicons. In a previous paper [SPIE Document Recognition and
Retrieval, San Jose, January 2002], we described an algorithm for segmenting the physical layout of dictionaries into
columns and lines. In this paper we assume that the physical lines are given then recognize the lines that constitute a
dictionary item. Furthermore, the algorithm simultaneously recognizes the logical structure within the dictionary items
(head-word, pronounciation, part of speech and definition). We demonstrate our algorithm on 30 scanned Chinese-English
dictionary pages which include more than 2500 lexicon items.

NEW FUZZY RULES FOR IMPROVED IMAGE SEGMENTATION

Gour Karmakar; Laurence Dooley; Manzur Mursked, Monash University, Australia

The extended fuzzy rales for image segmentation (EFRIS) algorithm initially splits all segmented regions into mutually
exclusive 4-connected objects, from which the largest one in each region is designated as its main object. A drawback of this
approach is that it is less effective when the main objects are relatively small and some of the minor objects are completely
surrounded and connected to the main object of another region. Besides, defining insufficient merging rules, EFRIS also only
considers the surrounding main objects in the original order that the regions were segmented, which is undesirable. I»i this
paper, a new general segmentation algorithm called modified extended fuzzy rules for image segmentation (MEFRIS) is
presented, which addresses these problems and whose improved segmentation performance is analysed and numerically
evaluated. The results are also contrasted with both the original generic fuzzy rule-based image segmentation (GFRIS) and
EFRIS algorithms.

DSP CONTROLLED LOW-VOLTAGE HIGH-CURRENT FAST-TRANSIENT VOLTAGE
REGULATOR MODULE

Jaber Abu-Qahouq; Nattorn Pongratananukul; Issa Batarseh; Takis A pans, University of Central Florida, United States

Future generation of microprocessors will require high performance Voltage Regulator Modules (VRMs) that produce tightly
regulated low supply voltage with very small deviation window and able to respond very quickly to a large and continuous
load transients at high output current while maintaining a high power density. On one hand, the current drawn from the
VRM by the microprocessor is continuously changing since it depends at the current use of the microprocessor. On the other
hand, High Frequency VRMs as any Power Electronics System is a complex combination of linear, nonlinear, and switching
elements that is required to have fast dynamics. Moreover, this complex combination is also real-time system that needs to
continuously and instantly monitor and respond to the load changes (the microprocessor). A high performance basic control
loop is essential to follow up with such transients. Such controller design is usually complicated especially since it requires
high knowledge of the converter and its behavior and accurate converter model that includes nonlinearities and parameters and
components variations. DSP has many advantages over the analog circuits when it comes to applying high performance
sophisticated control techniques such the simplicity in applying sophisticated control algorithms and modifying them via
software revision, lower environmental and noise sensitivity, and less components count. In this paper, a DSP setup to be
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FUZZY RULE FOR IMAGE SEGMENTATION INCORPORATING
TEXTURE FEATURES
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ABSTRACT

The generic fuzzy rule-based image segmentation algorithm
(GFRIS) does not produce good results for images containing
non-homogeneous regions, as it does not directly consider
texture. In this paper a new algorithm called fuzzy rules for
image segmentation incorporating texture features (FRIST) is
proposed, which includes two additional membership functions
to those already defined in GFRIS. FRIST incorporates the
fractal dimension and contrast features of a texture by
considering image domain specific information. Quantitative
evaluation of the performance of FRIST is discussed and
contrasted with GFRIS using one of the standard segmentation
evaluation methods. Overall, FRIST exhibits considerable
improvement in the results obtained compared with the GFRIS
approach for many different image types.

1. INTRODUCTION

Image segmentation is the most important and difficult task of
digital image processing and analysis systems, due to the
potentially inordinate number of objects and the myriad of
variations among them. The most intractable task is to define
their properties for perceptual grouping, a demand that requires
human expert and/or domain specific knowledge to be
incorporated to achieve a superior segmentation result. Fuzzy
rule-based image segmentation systems can incorporate this
expert knowledge, but they are very much application domain
and image dependent. The structures of all of the membership
functions are manually defined and their parameters are either
manually or automatically derived [l]-[5]. Karmakar and Dooley
[6] [7] proposed a novel generic fuzzy rule based image
segmentation (GFRIS) algorithm to address the aforementioned
problems. This algorithm however, does not work well for
images containing texture, which is for regions that are non-
homogeneous and have sharp variations in pixel intensity.
Texture is one of the most important attributes of any image that
represents the structural arrangements of the surface as well as
the relations among them and is widely used in image
segmentation [8]. In this paper a new algorithm, fuzzy rules for
image segmentation incorporating texture features (FRIST) is
proposed by integrating two new membership functions into the
set of GFRIS membership functions, based upon the texture
features of fractal dimension and contrast. These additional
membership functions consider the image domain specific

information. The performance analysis of both the GFRIS and
FRIST is conducted by applying a superior objective
segmentation evaluation technique called the discrepancy based
on the ruinber of mis-segmented pixels [9]. The new algorithm is
subsequently applied to many different types of images.

The remainder of the paper is organized as follows. Section
2 provides a brief overview of the techniques used to define the
membership functions. The definition of the fuzzy rule, and also
the determination of the weighting factors and threshold used are
presented in Sections 3 and 4 respectively. The evaluation and
experimental results are discussed in Section 5, with conclusions
provided in Section 6.

2. MEMBERSHIP FUNCTIONS

The GFRIS algorithm uses three types of membership functions
to represent the region pixel distributions, the closeness to their
centres and the spatial relations among the pixels in a particular
region. Each membership function possesses a membership
value for every region, which indicates the degree of belonging
to that particular region. Full details of these membership
functions arc given in [6][7]. For the sake of completeness, a
brief description of them is now provided.

Thj approach adopted for the membership function for
region pixel distributions is to automatically define the
membership function, including its structure from the pixel
distributions of a region. This is obtained from !he initial
segmentation results of the respective region and a polynomial
approximation of the pixel distribution of each region. The
membership value of a pixel at location (s,t), having a gray
level value of Pt, in region Rj is defined as: -

PDllj(P,,) = f«j(P,.l) (1)

where fR. (Plt) is the polynomial for the region Rj.

The membership function to measure the closeness of a
pixel to a region represents the similarity between the pixel to be
classified, called the candidate pixel, and the centre of a region
based on the gray level intensity. The membership function
reflects the axiom that the closer to a region, (he larger the
membership value of the candidate pixel and is defined as: -

- 1 ) (2,

where C(R;) is the centre of the region Rj, it is assumed that a

b-bit gray scale image is used.

0-7803-7622-6/02/S 17.00 ©2002 IEEE 1-797 IEEE ICIP 2002



The membership function for spatial
relations//^.(i^.r) of the region /J;for the neighbourhood

radius r represents the spatial relations between the candidate
pixel Pt, and its neighbours, and with a total of SR segmented

image regions, is defined as: -

u (P ) = (N • xG ) IT" (N x Go ) (3)

where Nt and GRJ are the number of neighbours and the t^iri of

their inverse distances of the region Rj from the candidate pixel

Ps, respectively.

2.1. Membership functions for fractal dimension

Fractal dimension (FD) is used to estimate the texture in an
image. There are many different models for estimating FD. One
is called the differential box counting (DBC) method [10], and
approximates the fractal dimension based feature (FDF) for
developing the membership functions for fractal dimension. The
notion of self-similarity is used to estimate fractal dimension. A
self-similar set (A) is the union of N, mutually exclusive copies

of itself that are similar to A and scaled down by a ratio ¥. The
FD of A can then be defined as,

log//, . ^
log(l/r) l S

Nt is determined using the DBC method in the fallowing

way [10]. For an image of size M*M to be seated down to a
size of xxx where 2<x<,\_M/2J, the ratio of seals down is

T-X/M. The image is then extended to 3-D space by
introducing a 3rd co-ordinate for the 8-bit gray level miensity of
256 levels. If the image is partitioned into grids of si2e xxx,

then each grid will have a column of boxes of atee xxxxx ,
which implies [_256/jc'J = l_A//xJ. If the maximum and minimum

gray level values in the (u,v)th grid are in thfi/"*and k* boxes,
the thickness of the blanket covering the im-ige surface on the
grid («,v) is: -

wf(w,v) = /-A: + l (5)

The contribution from all grkk ir< ./.efiued as: -

1 = N.r™ => FD ••

,= !",(«. V) (6)

FD is estimated from the least square linear fit of log(Nr)

against log(l/r).
To define the membership function for fractal dimension,

the FDF of a cfindidate pixel PMJ is calculated on a window

Wkik(s,t) of size hx h with its centre st (s,t) rather than the

ontire image and is defined as: -

FDFiPJ-FDQV^s,!)) (7)

where FD(Whik(s,t)) denotes the FDF on Whh{s,t) derived using

DBC in the following manner. Thi? bound of the box size is

chosen as 2 ̂  £ H |_/r/2j, the scale down ratio r = \jlh\ and x

is taken as ^256 x£/'heightJ in order to consider the finer

variations of the gray level values, where height is the height of
the image. The value of FZ>(WM(.s,/)) will not be the exact

fractal dimension of the window WkJl(s,t) because the height of

the image is used rather than h , the height of the window, in

calculating x . Instead of considering log-!og plot, the average

value of log(7Vr)/log(l/r) is used to obtain the fractal

dimension. The membership function fifR{P,j) of fractal

dimension bppx<i feature for the region Rs and the pixel Pt)

can be formulated as: -

(8)

where FDRR. {PtJ) and FDF,(PSI) are the fractal dimension-

based features for the segmented region Rj and the original

image respectively. This membership function considers the
image specific information for segmentation. FDFj(Ptl) is

determined fiwi the ratio of the number of contributory and
total grids during FDFR.{Ptl) calculation for each value of r .

2.2. Membership functions for contrast

Contrast provides the measure of the texture of an image and is
measured by considering the dynamic range of gray levels and
the po'sniiation of the distribution of black and white on the
gray-levei histogram. The contrast of a window WKk(PtJ) in an

image w calculated using the technique described in [11]. The
itiv<-.ii>c-s&;< .function for the contrast of the region Rt and the

pixel ftl can be defined as: -

'Contrast K,(P,,)- Contrast,(.

maK(ContrastR.(P,,), ContrastJP,,))
(9)

where Contrast K ) and Contrast,{Plt) represent the

contrast of the portions of the segmented region Rf and the

original image covered by the window Wktk(PtJl) respectively.

3. DEFINING FUZZY RULE

The overall membership value HMAP,,,,r) of a pixel />,, for

region Rj represents the overall degree of belonging to that

region, and is defined by the weighted average of the five
individual membership function values pDR (PtJ), fiCR (Ptl),

A'wyCw.O - Pnjtf,j).and Pc,tj(P,,) •

(10)
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where w,, u>2, w}, wt, andw, are the weightings of the
membership values for pixel distribution, closeness to the cluster
centres, neighbourhood relations, fractal dimension and contrast
respectively.

Definition 1 (Rule) IF/jMj{PtJ,r) = max^ S / (P M , r ) } THEN

pixel Pst belongs to region Rj.

4. DETERMINING THE PARAMETERS

The weighting factors w,, w2, and w3, and threshold T for

neighbourhood system are automatically determined using the

algorithm described in [7]. The other two weighting factors w4

and ws are approximated based on the FD of the entire image

and the standard deviations (rstd) of pixel intensities of the

initially segmented regions, as follows:

w4 = w5 = (FD - 2)1 \ar(rstd) (11)

Since 2 < FD £ 3 the topological dimension of the image
(2) is deducted from the FD, thereby keeping the original
contribution of the fractal within [0,1]. This ensures that the
contributions of all the weights are constrained within their
limits. From the observations, it was found that the regions
having high texture suppressed the regions containing less
texture because they produced higher FD values. Since the
standard deviation approximates the texture, the weights wt and

ws are normalised using the variance of the standard deviations

vanrstd) of the initially segmented regions, to minimize this

effect. This has been experimentally tested upon various image

types.

5. EXPERIMENTAL RESULTS

Both the new FRIST and GFRIS algorithms were implemented
using MATLAB 6.0 (The Mathworks, Inc.). A number of
different image types were used in the experiments, but only two
are included in this paper, namely the cloud shown in Fig. 1 (a),
which comprises one homogeneous and one non-homogeneous
region, atfd the Brodatz texture image shown in Fig. l(c), which
contains two separate textural regions.

(a) (b) (c) (d)
Fig. 1: (a) Cloud image, (b) Ref: images for cloud, (c) Brodatz
textures, (d) Ref: images (d60 and d98) for Brodatz textures.

As alluded previously, quantitative evaluation of the
segmentation process was achieved using discrepancy based on
the number mis-segmented pixels [9]. Type I, errorl, represents
the percentage error of all /** region pixels that are not classified
in the fh region, whereas Type II, errorll,, is the percentage

error of all other region pixels wrongly classified in the fh

region.

For both GFRIS and FRIST, the membership function for
region pixel distribution MDRJ(PM ) was developed using the

clusters produced by the initial segmentation results using the
fuzzy c-means (FCM) algorithm [12]. The centre values were
used to initialize the centres of the clusters required to define the
membership function for the closeness of a region ( \ i m :(?,,,))•

The neighborhood radius (r)was taken as 1, 2 and 4, but only

the results for the r = land2cases are included in this paper,

with the size of the window Wh k(s,t) being 4 x 4 . The results of

segmenting the cloud image (Fig. l(a)) into two regions namely,
cloud ( R ] ) and urban scene (R2) using GFRJS and FRIST are

shown in Fig. 2. The numerical segmentation results of the cloud
image segmentation with respect to manually segmented
reference images (Fig. 1 (b)) are shown in Table 1.

(a)GFRIS,r = (c)FRIST,r =

(b) GFRIS, r = 2 (d) FRIST, r = 2
Fig. 2: The segmented results of the cloud image into two regions
by GFRIS (a) to (b), and FRIST (c) to (d).

Table 1: Error percentage for region R| of cloud (cloud) and

Brodatz (d60) image segmentations

Image Algorithm Error I Error II Algorithm Error I Error II

GFRIS r=l

Cloud GFRIS r=2

GFRIS r=4

7.33 17.05 FRIST r=l 10.560 4.487

1.73 21.25 FRIST r=2 9.106 4.230

1.80 23.62 FRIST r=4 7.287 4.038

GFRISr=l 33.99 17.11 FRIST r=] 28.247 15.718

Brodatz GFRIS r=2 33.16 19.47 FRIST r=l 25.488 18.687

GFRIS r=4 26.65 21.96 FRIST r=A 19.97 16.269

In Table 1, only the error rates for region R| are shown

since the error rates of the other region R2 are simply the

reverse order of R ] . The segmentation results for the cloud

image using GFRIS showed that region R] (Fig. 2(a) and (b))

contained a large number of misclassified pixels from region

R 2 , which has sharp variations in pixel intensity. Type II error

rates for region R) using GFRIS (Table 1) were higher than type

I error rates. Almost all of the misclassified pixels, including the
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text caption were correctly classified using FRIST (Fig. 2(c) and
(d)). The average error rates for both techniques are graphically

^ 30-,
§ 2 5 -
ui 20-
©

2 10 -
o _> 5
* 0-

v 5>('

• B - .

1 2 4

Neighbourhood Radius

— • - GFRISC

- • - F R I S T C
GFRISB

— * ~ FRISTB

Fig. 3: Average error rates of GFRIS and FRIST for cloud
(GFRISC and FRISTC) and Brodatz (GFRISB and FRISTB)
images texture segmentation.

shown in Fig 3. From Fig. 2 and 3, it is clear that FRIST
achieved considerable improvements over the GFRIS.

(a) GFRIS, (b) FRIST, (c) GFRIS, (d) FRIST,
r = 1 r = 1 r = 2 r = 2

Fig. 4: Segmented results of Brodatz texture into two regions
using GFRIS (a) and (c), and FRIST (b) and (d).

A second series of experiments was performed using the
Bodaz texture image (Fig. l(c)). The segmentation results for the
two separate regions namely, d60 (./?,) and d98(^2) produced

by the GFRIS and FRIST are presented in Fig. 4. The error and
average error rates of d60 segmentation with respect to the
manually segmented reference images (Fig. l(d)) are shown in
Table 1 and Fig. 3 respectively. The segmented results obtained
using FRIST for all values of rare again considerably better
than GFRIS. Note, that it was shown in [7], that GFRIS
consistently provided superior results to both FCM [12] and
possibilistic c-means (PCM) [13] algorithms for many different
image types.

6. CONCLUSIONS

This paper has outlined the development of a new general fuzzy
rule-based image segmentation technique incorporating texture
based upon fractal dimension and contrast. A new algorithm
titled fuzzy rules for image segmentation incorporating texture
features (FRIST), has been proposed and both a quantitative and
qualitative analysis have been undertaken to compare it with the
generic approach (GFRIS). The experimental results have shown
that FRIST outperformed GFRIS for many different image

types. Since the proposed technique is fuzzy rule based, it is
capable of incorporating any type of attribute of any special
application domain. It is possible to add membership functions
for high-level semantics of an object for object based image
segmentation. More research however is required in order to
automatically detennine the explicit number of regions in an
image.
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ABSTRACT

The extended fuzzy ruk.\ for image segmentation (EFRIS)
algorithm initially splits all segmented regions into mutually
cCelus'U- -4-connected objects, from which the largest one in
c,w\\ rciiion is designated ns its main object. A drawback of this
;ipnro;K'h is that it is less effective when the main objects are
relatively small and some of the other objects are completely
siirroimJed and connected to the main object of another region.
Besides possessing insufficient merging rules. EFRIS also only
considers the surrounding main objects in the original order that
the reeicms were segmented, which is undesirable. In this paper.
ii new general segmentation algorithm called modified extended
[uzzv rules for image segmentation (MEFRIS) is presented,
'which addresses these problems and whose improved
segmentation performance is analysed and numerically
euluated. The results are also contrasted with both the original
\>eueric fuzzy rule-based imagt.' segmentation (GFRIS) and
I-I'RIS algorithms.

1. INTRODUCTION

Image segmentation is one of the most important and difficult
tasks of digital image processing and analysis systems, due to
the potentially inordinate number of objects and the myriad of
variations among them. The most intractable task is to define the
properties for perceptual grouping, which requires human expert
knowledge to be incorporated in order to achieve superior
segmentation results. Fuzzy rule-based image segmentation
techniques can incorporate such expert knowledge, but are very
much application domain and image dependent, with the
structure of the membership functions and the corresponding
parameters having to be defined either manually or
automatically [1-4]. Karmakar and Dooley [5-6] proposed a
novel generic fuzzy rule based image segmentation (GFRIS)
algorithm, which attempted to solve the aforementioned
problems. The approach however, docs not work effectively for
image regions that were cither non-homogeneous or have sharp
variations in pixel intensity. Subsequently. Karmnkar and
Dooley [7] introduced a revised algorithm called, extended fuzzy
rules for image segmentation (EFRIS). which incorporated the
perceptual properties of surroundedness and connectedness in
segmented regions. The algorithm split the regions that had
already been segmented by the first rule, which was inherited
Irom the GFRIS algorithm, into mutually exclusive 4-connected
°tyecis. The largest object in each region was designated as its
'"'"" °hkct and all minor objects were then tested* against the
u ° atorementioned perceptual properties, with respect to the
'"'"" °ki>-'cis of other regions, for better placement through the

merging rule. This procedure has been found to be ineffective
under three specific conditions: (i) when the main object is
relatively small, (ii) when some of the minor objects are
completely surrounded and connected to the main object of
another region, and (iii) the single merging rule, which formed
the fundamental basis of the EFRIS algorithm, and selected the
surrounding main objects in the exact order that the regions were
originally segmented by the first rule.

In this paper, a modified extended fuzzy rule based image
segmentation (MEFRIS) algorithm is proposed which redefines
the merging rule of the EFRIS algorithm, by incorporating new
fuzzy rules for growing relatively small main objects and
preventing similar objects from merging with other main objects.
Additional merging rules are also defined for selecting the most
suitable surrounding main object.

The paper is organised as follows. Section 2 provides a
brief description on the initial segmentation and splitting
techniques used. The underlying theory, and various
membership and other functions used in MEFRIS are described
in Section 3. while the fuzzy rules used in the MEFRIS
algorithm are provided in Section 4. Some comparative
experimental results with discussions are presented in Sections
5. Section 6 concludes the paper.

2. INITIAL SEGMENTATION AND SPLITTING
TECHNIQUES

. The initial image segmentation may be undertaken using any
standard segmentation algorithm such as fuzzy clustering, or the
GFRIS algorithm. The results of this initial phase are then
refined using the fuzzy rules based on the principles of
connectedness, surroundedness. uniformity and contrast criteria.

Connectivity is defined [12] as follows: -

Definition 1 (6-contwctivity) Let XS(P,) denote the set of all

the 6 -neighbours of pixel R . Then pixel J]is considered 6-

connecieduitl, pixel P,. iff Px 6 X S<J\) where Se J4.RJ.

Let the initial 9\ segmented regions be represented by

Rt ,j = 1 ...9\. Each of these regions is then split into a number of

mutually exclusive objects using the 4-connected neighbourhood
property. The reason for applying 4-connectedness, instead of
the usual 8-connectedness in the region splitting process, is to
avoid weak connections within an object and to maximize the
number of possible objects in any region. Let the set of all
objects in reaion /?.be denoted as k),,.O,, 0,, .[where

0-7803-7488-6/02/$ 17.00 © 2002 IEEE.
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itj represents the number of 4-connected objects in that region.

It is interesting to ,iote that 0 u u 0 , ( u . . . u 0 ^ = /?, and

0, ( n 0,, n . . . n On , = <f>. Let object Om j , where

OB., =max{|0j,|.|0 :,j,...,0v |)be the main object of region

Rt, where |O| denotes the number of pixels in object 0.

3. MEMBERSHIP AND OTHER FUNCTIONS

The surroundedness property is itself fuzzy in nature as any
object may either be or not be completely surrounded by another
object. This leads to the definition of a membership function for
estimating the degree of surroundedness. The membership
function for the siirr.nmdedness of an object (region) A by
another object (region) B is defined as>

The membership function for the size of the main object
Om k with respect to its region Rk is defined as:-

T1 (2)

Using memberslu'p functions (1) and (2), two other
functions large(0,)lit.,^i.)andouter(^Jl.) can be defined as

follows:-

tme. \\. u.(Om.k,
\i\xoe{O R) = \ "'kt

lalse. otherwise

1 (3)

(4)

where \ and £ are prescribed thresholds.

Let us now define the function similar(0miit,0A) between

the main object 0m;<. and its sibling Oik. based on uniformity

and contrast, as:-

|unifonnit>(0n.J,.,.) - unifonnity(0lt \

y< r|unifonnity(0mJ,.t)j J (5)

A |contrast(C)mA.,) - contrast(0u.)

similar(0mJ,.,,0,1.) =

where i denotes the percentage of variation, while the two
functions uniformity and contrast are determined using the
equations given in [9-10].

Let

represent the set of indices of regions for which the degree of
surroundedness of an object O,j , by the main objects of those

regions, is a maximum. The functions /?-connected^.,Om ; ; t)

and connectp(£)tf) can then be defined as follows: -

true, if O is p - connected

(6

false, otherwise

) = {t|A- e MaxS(Oy) A p - connected(Oy ,O,,a,)}

where pe ;4,Sj.

All tliese functions are used in defining the MEl'lUS !'uzz'
rules in tlie following section.

4. FUZZY RULES

Three different types of fuzzy rules are now defined for tine-
totally different purposes. The first type comprises only one rule
known as the growing up nile, and is used simply to grow smal
main objects, while the second type, namely \hc preventive rule
seeks to block objects similar to their main object from mergiiv.
with any other main object. The final type represents a group o
mutually exclusive merging niles that are applied to joi:
together suitable objects with the main objects of other region
based on the principles of connectedness and surroundednesr
These fuzzy rules ore formalised as follows, where it is assume-
throughout that k * j to ensure that object O1; merges will

the main object On,tkoi another region and A, is a threshol.

value: -

Definition 2 (Growing Up Rule) IF NOT large(0HI.t.ftt. ).-i.\7

NOT outer(^.) AND similar(Ow,it. ,Olk) THEN merge O,, witi

Definition 3 (Preventive Rule) IF siim\ar(Omtk,Olk)ANI.

4 <v((O,,,tk,Rk)Z*, AND NOT outer(/?t) THEN prcven

Oik from merging.

Definition 4 (Merging Rule 1) IF \\IcixS\=\ AM

Ms[Oij..Ointk)>Z AW 8 - c o n n e c t e d ^ , 0 W i J THEN nu;^

Definition 5 (Merging Rule 2) IF [\IaxS\>l AM

//s(0,,,0,,,,J>d; AND 4-co.mected(O ! / (a ) iJ THEN nn-rg.

Oy with 0 * such that min {//((0 k.Rk)}.
J l JUconnect.,(p., r '

Definition 6 (Merging Rule 3) IF [\Ici.xS\>\ AM

ps{O0!OMtk)>4 AND S -comiec ted lO, , , ^ , ) THEN nurg

Ov with 0 k such that min [u, ( 0 t .Rk)}.
Jt-;cmuKclsiO(;l

5. EXPERIMENTS

The new MEFRIS, EFRIS, and GFRIS systems wei
implemented using MATLAB 6.0 (The Mathworks. Inc.). IV
the impleinentiition of the membership functions defined in (I
and (2), the contour of the regions and their main obfecis woi
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. nlljned using their respective convex hulls. The two
ff-rente inwaes'in Fig. l(a) and (c) were used for empirical

^valuation of the MEFRIS algorithm.

i~z I " . I *

(a)

^ • ' r ~ ' ;••

(c) (d)
[•"i<. 1: Original images and reference regions, (a): Church
imaue. (b): Ref. regions for cluirch image, (c): Saiid image,
(ii;:~Rof. regions for Sand image.

Wi'^S

i. H»>

(0 r -2
^'? 2. 1'he segmented results of the church imaae into two
wgions by GFR1S (a) & (b). EFRIS (c) & (d). and MEFRIS (e)

For the MEFRIS algorithm, the initial segmentation was
carried out using GFRIS [6]. In GFRIS, the membership
function for a region's pixel distribution / / M (P J ( ) \ \BS

developed using the clusters produced by the fuzzy c-means
(FCM) algorithm [11] and their centre values were used to
initialize the centres of the clusters required to define the
membership function for closeness of a region JJC!! (Psl). The

values of the tliree thresholds £ , Ax, and ?., were empirically
selected as O.S, 0.7 and 0.9 respectively. The values of r was
also intuitively chosen as 1 and 0.8 for the growing up
(definition 1) and preventive (definition 2) rules respectively,
while a neighbourhood radius (/•) of 1 and 2 was chosen. The
results of segmenting the church image (Fig. l(a)) into two
regions, namely the church (/?,) and the sky (/?,). using the

GFRIS, EFRIS, and MEFRIS algorithms are displayed in Fig. 2.
If the results shown in Fig. 2(a)-2(d) are compared with the

results presented in Fig. 2(e)-2(f), it is visually apparent that the
MEFRIS algorithm separated more distinct regions (church and
sky) than the GFRIS and EFRIS algorithms. The reason for the
poor EFRIS performance in not achieving superior results was
as alluded earlier, because of small main objects and merging
similar objects with other WO/H objects (Fig. 2(c)-2(d)).

" • * » " * 1 ' . • ' • > • > • • • • S'^:V-:'':'

(c) r = 1

••-•i^-.iV- •.-.•..'

)
Fig. 3: The segmented results of the image into three regions by
GFRIS (a) & (b), EFRIS (c) & (d), and MEFRIS (c) & (6.

All segmentation results were quantitatively evaluated
using the powerful discrepancy based on tin- number mis-
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segmented pixels [S] objective assessment method. Type I,
errorlj represents the percentage error of i* region pixels that

are not classified in the iUl region, whereas Type II, crrorll;, is
the percentage error of all other region pixels that are wrongly
classified in the iUl region. The numerical segmentation results of
the church region for the Fig l(a) segmentation with respect to
manually segmented reference images are shown in Table 1.
This reveals that the error rates (T>pe I) of MEFRIS are
considerable lower than those of both GFRIS and EFRIS for all
values of /•.

Another series of experiments were performed using the
image in Fig. l(c). which comprised three distinct regions,
namely sky (/?,), sand (/?:), and rock (/?,). The segmentation

performance for the three regions using GFRIS, EFRIS and
MEFRIS is presented in Fig. 3. EFRIS produced almost exactly
the same results as GFRIS because of having small main objects.
It is perceptually apparent that the MEFRIS algorithm exhibited
significantly improved results compared with both GFRIS and
EFRIS for both values of the neighbourhood radius. The
numerical error rates of the sand image segmentation with
respect to the manually segmented reference images are shown
in Table 2. Both enx>r rates for MLFRIS are noticeably lower
than the GFRIS and EFRIS for both values of >•. The best result
is achieved by using MEFRIS at r = 1. A statistical significance
test, called sign test was also conducted, and confirmed the
significance improvements of MEFRIS over GFRIS and EFRIS
113].

Table 1: En-or percentages for the church region (Ri) in Fig.

Alsorithm
GFRIS
EFRIS

MEFRIS

Error r= 1

Type I Type II
53.5207 0.4700
67.3970 0.15SS
48.9272 0.4700

Error r=2

Type I TvpeII
52
54
42

Table 2: Error percentages of the sand image

Alsorithm
Error r=l

Region Type I Tvpe II

.8810 0.3302

.0143 0.22S6

.6816 0.3302

in Fig. Kb).
Error r=2
TvpeI Type II

GFRIS

EFRIS

MEFRIS

Sky
Sand
Rock
Sky
Sand
Rock
Sky
Sand
Rock

36.916
66.092
19.125
36.9SS
66.092
19.125
37.155
21.100
19.073

33.9S0
22.831

7.619
33.533
23.241

7.619
3.3451
30.0S1
6.196

19.067
87.714
1O.5S3
1S.995
S7.714
6.479

19.212
54.12S
10.614

31.542
12.037
15.153
16.732
11.928
25.2S8
13.093
13.775
14.067

6. CONCLUSIONS

This paper has addressed the three fundamental limitations of the
extended fuzzy nilesfor image segmentation (EFRIS) algoritlun
by proposing a new general segmentation teclinique called
modified extended fuzzy mle based image segmentation
(MEFRIS). New- rules for growing a small main object,
preventing similar siblings from merging with another main
object, and selecting the best surrounding main object have been
incorporated into this new algoritlun. Experimental results and

statistical significance test have conclusively shown that the
MEFRIS significantly outperformed both the EFRIS and GFRIS
algorithms for different image types. Since the proposed
teclinique is fuzzy rule based, it is capable of incorporating am
type of attribute of any special application domain. It is therefore
possible to add membership functions for high-level semantics
of an object for object based image segmentation.
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Appendix B

Supplementary Original and Their Manually Segmented
Reference Images

(a)

(e)

(b) (c)

(g)

(d)

(h)

(0 (j) (k) (1)
Fig. B.I: The other gray level original and their manually segmented reference images used in the
evaluation in Chapter 7 for two regions.
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Appendix B Supplementary Original and Their Manually Segmented Reference Images B-2

(a) (b) (c) (d)

^Sss te *

(e) (f) (g) (h)

Fig. B.2: The other gray level original and their manually segmented reference images used in the
evaluation in Chapter 7 for three regions.



Appendix C

The Segmentation Results for Supplementary Images

(a) GFRIS, r = 1

(f) GFRIS, r =

(b) GFRIS, r =

(g) GFRIS, r = 2

(c) GFRIS, r =

(h) GFRIS, r = 4

(d) FCM

1|%BBS
1
iIllili

(i) FCM

(e) PCM

(j)PCM

••A

(k) GFRIS, r = 1 (1) GFRIS, r = 2 (m) GFRIS, r = 4

• p

(n) FCM
V ' • % . . :•••r

(o) PCM

w-s...,,

(p) GFRIS, r = 1 (q) GFRIS, r = 2 (r) GFRIS, r = (s) FCM (t) PCM

C-l



Appendix C The Segmentation Results for Supplementary Images C-2

(v)GFRIS, r = 2 (w)GFRIS, r = 4 (x) FCM (y) PCM

(z) GFRIS, /• = 1 (aa) GFRIS, r = 2 (ab) GFRIS, r = 4 (ac) FCM (ad) PCM

Fig. C.I: The segmented results of the images shown in Fig. B.l(a), B.l(c), B.l(e). B.l(g), B.l(i), and
B.l(k) are (a) to (e), (f) to (j), (k) to (o), (p) to (t), (u) to (y), and (z) to (ad) respectively for two regions
using the GFRIS, FCM, and PCM algorithms.
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Appendix C The Segmentation Results for Supplementary Images C-3

(c) GFRIS, r = 4 (d) FCM
*n**!?«"sw-r'

H®

(0 GFRIS, r = (g) GFRIS, r = :

\ „ ?

(h) GFRIS, r = 4 (i) FCM

(k) GFRIS, /- = (1) GFRlS, r = 2 (m) GFRIS, r = 4 (n) FCM

(e) PCM

(j)PCM

(o) PCM

(p) GFRIS, r = l (q) GFRIS, r = 2 (r) GFRIS, r = 4 (s) FCM (t) PCM

Fig. C.2: The segmented results of the images shown in Fig. B.2(a), B.2(c), B.2(e), and B.2(g) are (a) to
(e), (f) to (j), (k) to (o), and (p) to (t) respectively for three regions using the GFRIS, FCM, and PCM
algorithms.



Appendix C The Segmentation Results for Supplementary Images C-4

(a) GFRIS, r = 1 (b) GFRIS, r = 2

(f) GFRIS, r = \

li::

(k) GFRIS, r = 1

(g) GFRIS, r = 2

(c) GFRIS, r = 4 (d) FCM (e) PCM

(h) GFRIS, (i) FCM 0) PCM

(1) GFRIS, r = 2 (m) GFRIS, r = (n) FCM (o) PCM

(p) GFRIS, r = l fq) GFRIS, r = 2 (r) GFRIS, r = (s) FCM (t) PCM

(u) GFRIS, r = I (v) GFRIS, r = (w) GFRIS, r = (x) FCM (y) PCM



Appendix C The Segmentation Results for Supplementary Images C-5

(z) GFRIS, r = 1 (aa) GFRIS, r = 2 (ab) GFRIS, r = 4 (ac) FCM (ad) PCM

Fig. C.3: The segmented results of the images shown in Fig. B.l(a), B.l(c), B.l(e), B.l(g), B.l(i),
and B.l(k) are (a) to (e), (f) to (j), (k) to (o), (p) to (t), (u) to (y), and (z) to (ad) respectively for two
regions using FRIS with the GFRIS, FCM, and PCM algorithms.



Appendix C The Segmentation Results for Supplementary Images C-6

(a) GFRIS, r = 1

(f) GFRIS, r = \

(b) GFRIS, r = 2 (c) GFRIS, r = 4 (d) FCM (e) PCM

(g) GFRIS, r = 2 (h) GFRIS, r = (i) FCM 0)PCM

(k) GFRIS, r = l

kmk
(1) GFRIS, r =

(p) GFRIS, r = \ (q) GFRIS, r = 2 (r) GFRIS, r = 4 (s) FCM (t)PCM

Fig. C.4: The segmented results of the images shown in Fig B.2(a), B.2(c), B.2(e), and B.2(g) are (a)
to (e), (f) to (j)> (k) to (o), and (p) to (t) respectively for three regions using FRIS with GFRIS, FCM,
and PCM algorithms.



Appendix C The Segmentation Results for Supplementary Images C-7

i 1
(e) r = (f)r =

(m)r = l (n)r = 2 (o) r = 4 (p) r = l (q) r = 2 (r) r =
Fig. C.5: The segmented results of the images shown in Fig. B.l(a), B.l(c), B.l(e), B.l(g), B.l(i),
and B.l(k) are (a) to (c), (d) to (f), (g) to (i), (j) to (1), (m) to (o), and (p) to (r) respectively for two
regions using the FRIST algorithm.

' » ' • : • • > . • ; - ' • ;- * • • " s k l • - • »
(h)r = 2 (O'=4 0) '• = 1 (k)r = 2 (1) r = 4

Fig. C.6: The segmented results of the images shown in Fig. B.2(a), B.2(c), B.2(e), and B.2(g) are
(a) to (c), (d) to (f), (g) to (i), and (j) to (1) respectively for three regions using the FRIST algorithm.



Appendix D

Numerical Segmentation Results for Supplementary
Images

Table D.I: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for other images shown in Fig. B.I, having two regions using the GFRIS,
FCM, and PCM algorithms.

Type I Type II Average P(OCA)Algorithm Region Type I Type II Average P(OCA) Region
GFRIS r=\
GFRIS r=2
GFRIS r=A
FCM
PCM
GFRIS r=\
GFRIS r=2
GFRIS r=4
FCM
PCM
GFRIS r=\
GFRIS r=2
GFRIS r=A
FCM
PCM

t in
Fig. B.I (a)

Hill in
Fig. B.l(e)

Lower half
(dl8)in
Fig. B.I(i)

7.97
7.95
7.84
7.52
0.74

20.85
18.89
10.02
34.02
23.83
25.17
23.50
25.00
36.68
32.53

1.17
0.89
0.67

24.35
87.24

0.17
0.17
0.15
0.06
0.10

28.66
27.89
27.95
23.11
25.99

4.57
4.42
4.25

15.94
43.99
10.51

9.53
5.09

17.04
11.96
26.92
25.70
26.47
29.89
29.26

0.344
0.352
0.352
0.231
0.244
0.200
0.263
0.337
0.170
0.175
0.411
0.446
0.431
0.374
0.390

Fig. B.I (c)

Lower half
(d69) in
Fig. B.I (g)

Lower half
(d81)in
Fig. B.I (k)

5.24
4.17
2.99

12.45
5.47

10.28
9.05
8.16

10.01
9.19

16.85
16.48
12.68
22.79
15.86

0.00
0.00
0.00
3.91
7.65

13.05
9.96
0.98
8.21
9.72

29.32
29.48
30.42
27.43
30.33

2.62
2.08
1.49
8.18
6.56

11.66
9.50
4.57
9.11
9.46

23.08
22.98
21.55
25.11
23.09

0.465
0.491
0.543
0.210
0.300
0.517
0.543
0.590
0.404
0.398
0.328
0.343
0.364
0.279
0.290

1

i

Table D.2: Error percentages, average errors
count agreement P(OCA.) for other images
GFRIS, FCM, and PCM algorithms.

(average of Type I and II), and probability of object
shown in Fig. B.2, having three regions using the

Algorithm
Image and its

Regions
Type I Type II

GFRIS r=l
GFRIS r=l
GFRIS r=4
FCM
PCM
GFRIS r=l
GFRIS r=2
GFRIS r=4
FCM
PCM
GFRIS r=\
GFRIS r=2
GFRIS r=4
FCM
PCM
GFRIS r=-\
GFRIS r=2
GFRIS r=4
FCM
PCM

Walll (R,),
floor (Rj), and
wall2 (R}) of
Fig. B.2(a)

Pot(R,),
asparagus (R2), and
background (R3) of
Fig. B.2(c)

House (Ri),
sky (R2), and
tree (R3) of
Fig. B.2(e)

Hill(R0,
sky (Rj), and
water (R3) of
Fig. B.2(g)

Ri
0.00
0.00
0.00

30 .21
87.99
53.89
61.44
62.58
64. 48
14.41
48 .21
48 .21
47.41
45.87
48.88
36.57
37.97
35.47
40.76
65.06

R2
49.00
49.94
49.33
44.03
16.06

8.81
6.19
6.80

40.38
78.27

2.88
3.08
3.48

22.93
8.35
1.87
1.55
1.56
1.78

63.70

R3
10.16
14.44
34.43
6.87
6.95
6.39
7.73
3.91
0.86
4.83

27.06
27.59
27.04
23.83
25.69
34.85
38.15
40.32
47.11
30.11

R!
9.14
9.36
9.67
6.83
0.87
4.90
3.62
3.29
1.82

52.59
1.28
1.32
1.56
6.85
2.60

15.12
16.78
20.11
14.37
41.01

R5

5.61
8.71

23.32
11.67
27.75
33.29
33.81
33.30
32.05

7.28
26.12
26.23
25.36
22.32
25.72

8.42
8.95
6.54

19.01
1.42

Ri
2.94
3.01
2.66
4.43
4.34
2.51
2.69
3.11

28.58
6.56
6.41
6.54
6.59
7.22
6.62

13.13
13.29
12.44
13.88
23.95

Average
12.81
14.24
19.90
17 ,,34
23.99
19.13
19.25
18.83
28.03
27.32
18.66
18.83
18.57
21.50
19.64
18.33
19.45
19.40
22.82
37.54

P(OCA)
0.486
0.492
0.554
0.449
0.457
0.698
0.707
0.725
0.562
0.445
0.688
0.694
0.694
0.600
0.649
0.414
0.444
0.452
0.276
0.229
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Appendix D Numerical Segmentation Results for Supplementary Images D-2

Table D.3: Error percentages, average (average of Type I and
agreement P(OCA) for other images shown in Fig. B.I, having
GFRIS, FCM, and PCM algorithms.

II), probability of object count
two regions using FRIS with the

| Algorithm
I GFRIS r=\

GFRIS r=2
GFRIS r=A
FCM
PCM
GFRIS r=\
GFRIS r=2

j GFRIS r=4
I FCM
1 PCM
I GFRIS r=\
I GFRIS r=l
1 GFRIS r=A
1 FCM
1 PCM

Region

Texture in
Fig. B.I (a)

Hill in

rig. B.l(.e)

Lower half
(dl8)in
Fig. B.I(i)

Type I
0.00
0.17
0.40
0.00
0.67
0.79
0.73
0.74

20.37
1.50

25.23
24.18
25.64
35.84
32.14

Type II
1.17
0.89
0.66

23.64
86.31

0.19
0.19
0.17
0.08
0.11
5.97
6.19
4.55
0.43
3.96

Average
0.59
0.53
0.53

11.82
43.49

0.49
0.46
0.46

10.22
0.80

15.60
15.18
15.09
18.13
18.05

P(OCA)
1.000
1.000
1.000
0.764
0.294
0.931
0.960
1.000
0.669
0.931
0.689
0.685
0.752
0.724
0.703

Region

Water in
Fig. B.I (c)

Lower half
(d69) in
Fig.B.l(g)

Lower half
(d81)in
Fig. B.l(k)

Type I
4.09
0.26
0.21
0.08
3.91
8.94
6.29
5.74
6.86
5.81
0.07
0.07
0.21
0.07
0.07

Type II
0.00
0.00
0.00
3.13
4.92
4.48
4.09
0.20
3.64
4.16

28.87
28.85
29.78
26.93
29.65

Average
2.05
0.13
0.11
1.60
4.42
6.71
5.19
2.97
5.25
4.99

14.47
14.46
15.00
13.50
14.86

P(OCA)
0.713
1.000
1.000
0.920
0.651
0.746
0.888
0.862
0.777
0.841
0.689
0.708
0.718
0.718
0.699

Table D.4: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for other images shown in Fig. B.2, having three regions using FRIS with
the GFRIS, FCM, and PCM algorithms.

Algorithm
GFRIS r=l
GFRIS r=2
GFRIS r=4
FCM
PCM
GFRIS r=\
GFRIS r=2
GFRIS r=A
FCM
PCM
GFRIS r=\
GFRIS r=2
GFRIS r=4
FCM
PCM
GFRIS r=\
GFRIS r=2
GFRIS r=A
FCM
PCM

image and its
Regions

Walll (R,),
floor (R2), and
wall2 (R3) of
Fig.B.2(a)

Pot(R,),
asparagus (R2), and
background (R3) of
Fig. B.2(c)

House (Ri),
sky (R2), and
tree (R3) of
Fig. B.2(e)

H1UR ^
sky (R2), and
water (RO of••***\*i y* *J I v i

Fig. B.2(g)

Ri
0.00
0.00
0.O0

30.25
88.08
56.19
56.35
56.78
59.22
14.91
32.17
32.32
33.39
26.24
33.23
33.44
36.98
33.64
42.02
74.73

Type I
R2

31.39
31.68
46.56
32.76

4.30
7.61
6.01
6.88

41.52
77.39

7.10
6.41
4.11

27.90
12.05

1.60
1.40
1.27
1.69

37.54

R3
7.31

13.75
31.44

5.47
3.58
7.98
9.47
5.44
1.26
4.73
9.15

16.10
20.45
10.21
11.29
22.81
27.51
35.90
41.49
28.21

Ri
5.44
5.37
5.20
6.16
0.60
4.95
3.89
4.85
8.09

51.74
0.92
1.12
1.38
7.66
2.26

14.23
16.20
20.69
13.16
28.48

Type II
R2

5.38
10.20
23.32
11.21
25.34
32.36
31.89
30.19
29.28

7.77
9.79

13.16
15.79
7.41

11.65
0.81
1.86
2.75

16.47
5.41

R3
0.04
0.04
5.94
0.31
0.42
1.71
2.27
2.02

23.46
6.59
8.05
7.47
6.52
8.01
7.72

11.33
12.58
11.27
13.95
24.07

Average
8.26

10.17
18.74
14.36
20.39
18.47
18.31
17.69
27.14
27.19
11.20
12.77
13.61
14.57
13.03
14.04
16.09
17.59
21.46
33.07

P(OCA)
0.689
0.805
0.705
0.760
0.777
0.722
0.745
0.768
0.621
0.569
0.890
0.866
0.840
0.811
0.862
0.807
0.659
0.752
0.407
0.342
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Appendix D Numerical Segmentation Results for Supplementary Images D-3

Table D.5: Error percentages, average errors (average of Type I and II),
count agreement P(OCA) for other images shown in Fig. B.I, having two
algorithm.

and probability of object
regions using the FRIST

1 Algorithm

1 FRIST
1 r=1
1 r=2

1 r=4
1 r=l

1 r=2
r=4
r=l
r-2
r=4

Region

Texture in
Fig. B.l(a)

Hill in
Fig. B.l(e)
Lower half
(dl8)in
Fig. B.l(i)

Type I
7.45
7.70
7.78

19.95
17.75

9.66
23.50
17.94
17.42

Type II
1.43
0.60
0.39
0.17
0.18
0.15

27.63
27.43
28.50

Average
4.44
4.15
4.08

10.06
8.97
4.90

25.56
22.68
22.96

P(OCA)
0.357
0.361
0.361
0.205
0.263
0.341
0.418
0.458
0.444

Region

Water in
Fig. B.l(c)

Lower half
(d69) in
Fig. B.!(g)
Lower half
(d81) in
Fig. B.l(k)

Type I
4.74
3.68
2.89
0.23
0.23
0.20

16.32
15.70
11.66

Type 11
0.00
0.00
0.00
6.17
0.21
0.20

29.72
29.60
30.44

Average
2.37
1.84
1.45
3.20
0.22
0.20

23.02
22.65
21.0E

P(OCA)
0.462
0.493
0.551
0.815
0.841
0.852
0.334
0.347
0.376

Table D.6: Error percentages, average errors (average of Type I and II), and probability of object
count agreement P(OCA) for other images shown in Fig. B.2, having three regions using the FRIST
algorithms.
Algorithm

FRIST
f ^ l
r=2

r=A

r=\
r=2

r=A

r=\
r=2

r=A

r=\
r=2

r=A

Image and its
Regions

Walll (R,)(

floor (R2), and
wall2 (R3) of
Fig. B.2(a)
Pot(R,),
asparagus (R2), and
background (Rj) of
Fig. B.2(c)
House (Ri),
sky (R2), and

tree (R3) of
Fig. B.2(e)
Hill(R,),
sky (R2), and

water (R3) of
Fig. B.2(R)

R,
0.00
0.00

0.00

59.00
61.46

62.80

50.29
51.72

49.55

36.45
37.91

35.47

Type I
R2

48.56
49.53

48.70

7.80
6.14

6.28

2.94
3.07

3.61

1.87
1.53

1.56

R3
10.04
13.91

24.76

6.50
7.73

3.91

24.01
25.26

24.65

34.65
37.92

41.00

R.
9.13
9.32

9.56

4.90
3.58

2.90

1.00
1.04

1.23

15.30
16.79

20.58

Type II
R2

5.52
8.34

16.24

33.40
33.83

33.42

26.24
27.68

26.11

8.05
8.77

6.47

R3
2.81
2.87

2.42

1.79
2.68

3.11

6.34
6.29

6.33

13.08
13.25

12.44

Average
12.68
13.99

16.94

18.90
19.24

18.74

18.47
19.18

18.58

18.23
19.36

19.59

P(OCA)
0.489
0.500

0.543

0.697
0.707

0.726

0.702
0.708

0.705

0.418
0.449

0.457
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