
'
MONASH UNIVERSITY

THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
ON 3 May 2002

y

8

? ...
IW Sec. Research Graduate School Committee

Under the copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any
assistance obtained from this thesis.

0
Le

2-OO1

ERRATA

P2 Last sentence: "accesses" for "access"
P8 para 1, line 11: "$100,000" for "$100000"
P10 para 1, line 3: "don't" for "doesn't"
P12 para 1, line 1: "in one way" for "in a one way"
P15 para 1, line 4: "underlying" for "underline"
P16 last para, line 7: "Comer[20] and Knott[69]" for "[20,69]"
P17 point (2): "method" for "methods"
P21 para 2, line 2: "are" for "is"
P21 para 2, line 3: "known" for "know"
P26 para 2, line 10: " 2 d - 7 - 1" for " 2 d - / "
P39 para 1, line 3: "a way" for "away"
P40 para 1, line 2: "Section 2.6" for "section 2.G"
P42 para 3, line 5: "function" for "functions"
P44 para 1, line 1: "include" for "includes"
P48 para 4, line 2: "discuss" for "discusses"
P50 para 1, line 5: "of for "of of
P50 para 2, line 1: "Section 2.1" for "2.1"
P53 para 1, line 2: "2-dimensional" for "an 2-dimensional"
P53 para 1, line 3: "levels" for "level"
P53 para 1, line 11: "partitions" for "partition"
P53 para 4, line 2: "Figure 3.3" for "3.3"
P62 para 1, line 3: "occur" for "occurs"
P62 para 2, line 2: "by Freeston" for "Freeston"
P89 para 1, line 1: "bUil" for nbUfi"
P89 para 1, line 2: "bUik - 1" for "bI>j<k"
P91 para 3, line 9: "and so" for "and an so"
P115 para 3, line 2: "Section 5.3" for "section 5.3"
P115 para 3, line 4: "Section" for "section"
P116 para 3, line 1: "satisfy" for "satisfies"
P120 Last para, line 1: "let lh be the" for "let lh the"
P121 para2, line 10: "Equation 5.7" for "Equation 5.7 is"
P130 paral, line 4: "smaller page sizes" for "smaller pages"
P142 para 2, line 1: "compute" for "computes"
P152 para 3, line 3: "Smaller buffers" for "Smaller buffer"
P170 para 1, line 5: "the cost of other" for "the cost the other"
P185 last para, line 2: "Student ID containing" for "Student ID. containing"
P189 para 1, line 3: "have increased" for "have increased"
P189 para 1, line 8: "these devices" for "this devices"
P190 para 1, line 2: "this thesis" for " these thesis"
P190 para 3, line 6: "don't" for "doesn't"
P192 para 2, line 1: "Many" for "A lot"
P192 para 2, line 3: "many" for "a lot"
P192 para 4, line 1: "we showed how" for "we showed that how"

Optimal
Multidimensional Storage

Organisation
for Efficient Query Processing

in Databases

Salahadin Mohammed

School of Computer Science and Software Engineering
Monash University

Australia

Thesis submitted in fulfillment of the requirement

for the degree of Doctor of Philosophy

September 2001

DECLARATION

This thesis contains no material which has been accepted for the award of

any other degree in any other university. To the best of my knowledge, this

thesis contains no material previously published or written by another per-

son, except when due reference is made in the text of the thesis.

Salahadin Mohammed

September 15, 2001

ACKNOWLEDGEMENTS

I am grateful to my supervisors, Prof. Bala Srinivasan, Prof. Rao Kotagiri

and Dr Evan Harris for their able guidance, valuable suggestions, and support

in all respects throughout my degree.

I extend my sincere thanks to all the staff and postgraduate students in

both Monash and Melbourne Universities for their timely help, patience and

coordination. Particularly, Dr Pei Li Joe Zhou, Dr Maria Indrawan, Dr

Campbell Wilson, and Dr Phu Dung Le for their understanding, friendship,

and patience for the long period of time we shared the same office. I also

direct my thanks to Robert Redpath, Duke Fonias, See, Dr Rosanne Price,

Arie, Alamin, Mariam, and Khadija for their friendly support.

I dedicate this thesis to my parents, my brothers and sisters, my daughter,

and my dearest wife Samira for their love and support throughout my studies.

n

ABSTRACT

In a database management system, the performance of query process-

ing is significantly affected by the way the underlying data is organised and

accessed. The organisation of uni-dimensional data has been studied exten-

sively, but little work has been done in optimising the organisation of multi-

dimension data. The lack of order that preserves spatial proximity of records

in uni-dimensional access methods makes them much easier to design than

multidimensional access methods. This is because there is no total order-

ing of objects in two or higher dimensional space that completely preserves

spatail proximity. Optimally organising multidimensional data is NP-hard.

One way to circumvent the problem is to find heuristic solutions, that is, to

look for total orders that preserve spatial proximity at least to a great extent.

The goal of all heuristic solutions is that objects located close to each other

in the original space should likely be stored close together on the disk. This

could contribute substantially in minimizing the number of disk accesses per

query.

The little work that has been done in optimising multidimensional data

was limited to uniform data distribution and rarely considered the probability

of use of each query. And those who did consider the probability of use of

each query, they were limited to either partial match query or range query.

This is the first ever work which shows that by combining heuristics and

combinatorial algorithms, near-optimal solutions can be found which organise

multidimensional data (uniform or skewed) on which all the relational queries

are efficiently performed. The heuristic algorithms reduce the problem to a

manageable size and the combinatorial algorithms determine near-optimal

solutions.

The proposed optimal multidimensional storage organisation is done by

selecting a number of bits from each significant attribute of a relation, and

then arranging these bits in an optimal way to form a vector (called the choice

vector). The choice vector is then used to store and retrieve the records of

the relation.

We also propose algorithms which use choice vectors for range queries, join

queries and other relational queries, and describe the cost of these algorithms.

Then, using these algorithms we compare the performance of the proposed

storage design with the existing multidimensional storage arrangements.

Combining algorithms which utilise memory efficiently and those which

organise storage optimally is expensive. However, we show that when the

queries are processed using our algorithms, which use choice vectors and

determine good memory utilisation, the cost of the average query can be

dramatically reduced.

The experimental results of the proposed algorithms show that perfor-

mance gains of up to 3617% are achieved, when compared with standard

schemes. Moreover, the proposed algorithms are not very sensitive to the

change in the query distribution. The result show that if the query prob-

abilities change by upto 80% of their original values, the original storage

organisations remain near optimal. Hence, frequent reorganisation of the

storage arrangement is also not required.

IV

Contents

1 Introduction 1

1.1 Optimising the performance of a database management system 2

1.2 Objective of this thesis 4

1.3 Related previous work 7

1.4 Contributions of this thesis , 8

1.5 Research methodology 10

1.6 Thesis layout 11

2 Background 14

2.1 Introduction 14

2.2 Multidimensional access methods 18

2.3 Multidimensional hashing based PAMs 21

2.3.1 Partial-match retrieval and PAMs 22

2.3.2 Multidimensional order preserving linear hashing with

partial expansion 25

2.3.3 The Grid file 29

2.4 PAMs based on hierarchical access methods 31

2.4.1 Multilevel grid file 32

2.4.2 The hB-tree 34

2.5 Current methods of optimising PAM design 37

2.6 Combinatorial optimisation techniques 40

2.6.1 The optimisation problem 40

2.6.2 Minimal Marginal Increase (MMI) 41

2.6.3 Simulated annealing 42

2.6.4 Combining MMI and simulated annealing 43

2.6.5 Other optimisation solutions 43

2.7 Summary 45

3 Reorganising multidimensional data 47

3.1 Introduction 47

3.2 The BANG file 50

3.3 The BANG file structure 51

3.4 Data partitions 55

3.5 Partition identifier 57

3.6 BANG directory 59

3.7 Searching, insertion, deletion and merging 65

3.8 Binary division 66

3.9 Choice vectors 67

3.9.1 Cyclic choice vector 69

3.9.2 Optimized choice vector 70

3.9.3 Choice vector size 71

VI

3.10 Effect of choice vectors on the load factor 72

3.10.1 Experimental results and analysis 73

3.11 Conclusion 82

4 Optimising Partial-match Queries 85

4.1 Introduction 85

4.2 Partial-match retrieval 87

4.3 Partial-match retrieval Algorithm using The BANG file 88

4.4 Optimising partial-match retrieval 90

4.5 Cost functions 91

4.6 Performance Evaluation 94

4.6.1 Environment 95

4.6.2 Results 95

4.7 Conclusion 112

5 Optimizing Range Query Retrieval 114

5.1 Introduction 114

5.2 Range Queries 115

5.3 Minimising range query costs 118

5.4 Cost functions 119

5.5 Experimental Results 121

5.5.1 Environment 122

5.5.2 Effect of data and querr distributions 125

5.5.3 Number of attributes . . . 127

vn

5.5.4 File size 128

5.5.5 Page size, elapsed time and CPU time 129

5.5.6 Stability 131

5.5.7 Query-space size 134

5.6 Conclusion 136

6 Join query processing for skewed data distributions 138

6.1 Introduction 138

6.2 The proposed join algorithms 140

6.2.1 The selection-module 141

6.2.2 The matching-module 150

6.3 Optimizing join query processing 151

6.3.1 Buffer size vs wa\k size 152

6.3.2 Wave size and choice vector 153

6.3.3 Heuristic algorithms and Cost functions 155

6.4 Results and analysis 157

6.4.1 Environment 158

6.4.2 Effect of data and query distributions 158

6.4.3 Number of attributes 160

6.4.4 File size 161

6.4.5 Page size 162

6.4.6 Buffer size 163

6.4.7 Stability 164

6.5 Conclusion 168

Vlli

7 Optimizing other relational operations 170

7.1 Introduction 170

7.2 Selection 171

7.3 Projection 174

7.4 Join 174

7.4.1 Nested loop 175

7.4.2 Sort-merge 177

7.4.3 Hash joins 178

7.4.4 The proposed join algorithm 180

7.5 Intersection 182

7.6 Union 183

7.7 Difference 184

7.8 Division 185

7.9 Duplicate removal and aggregation . 187

7.10 Conclusion 187

8 Conclusions and Future work 189

8.1 Conclusions 189

8.2 Future work 191

IX

List of Tables

4.1 Query distributions 96

4.2 Average query costs for a uniform data distribution 97

4.3 Average query costs for a clustered data distribution 97

4.4 Average query costs for a sinusoidal data distribution 98

4.5 Average query costs foi a linear data distribution 98

4.6 Effect of the number of attributes on the average query cost. . 101

5.1 Query distribution 0 i 123

5.2 Query distribution 02 124

5.3 Query distribution 03 124

5.4 Query distribution ©4 125

5.5 Average query cost for a uniform data distribution 126

5.6 Average query cost for a clustered data distribution 126

5.7 Average query cost for a sinusoidal data distribution 126

5.8 Average query cost for a linear data distribution. 126

5.9 Effect of the number of attributes on the average query cost. . 128

6.1 Average query cost for a uniform data distribution 159

6.2 Average query cost for a clustered data distribution 159

6.3 Average query cost for a sinusoidal data distribution 159

6.4 Average query cost for a linear data distribution 160

6.5 Effect of the number of attributes on the average query cost. . 161

6.6 Effect of buffer size on query cost 165

7.1 SUBJECTS table 185

7.2 STUDENTS-SUBJECTS table 185

7.3 Answer 186

XI

List of Figures

2.1 Multi-level grid file 35

3.1 A BANG file of 12 records and 5 data pages 52

3.2 The structure of a BANG file 54

3.3 P0,i encloses P0,2 and P0)3, but it directly encloses P0i2 and not

Po,3 55

3.4 Peer-split of P into Px and P2 56

3.5 Enclosure-split of P into P3 and P4 56

3.6 Assigning partition-numbers to sub-spaces 58

3.7 Splitting a directory. 61

3.8 Splitting a directory partition 63

3.9 The four data distributions used in generating the results. . . 75

3.10 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 1024 bytes, data distribution = uni-

form 76

3.11 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 1024 bytes, data distribution = clus-

tered 76

xn

3.12 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 1024 bytes, data distribution = si-

nusoidal 77

3.13 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 1024 bytes, data distribution = linear. 77

3.14 Effect of the choice vector on the load-factor. Number of at-

tributes = 2, page size = 1024 bytes, data distribution = uni-

form 78

3.15 Effect of the choice vector on the load-factor. Number of at-

tributes = 3, page size = 1024 bytes, data distribution = uni-

form 79

3.16 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 1024 bytes, data distribution = linear. 79

3.17 Effect of the choice vector on the load-factor. Number of at-

tributes = 8, page size = 1024 bytes, data distribution = uni-

form 80

3.18 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 512 bytes, data distribution = uniform. 81

3.19 Effect of the choice vector on the load factor. Number of

attributes = 4, page size = 2048 bytes, data distribution =

uniform 82

4.1 relation Rofi 88

4.2 Aoto is specified as 40. Roto has more intervals based on AotQ. • 90

4.3 Effect of the page size on performance 99

xm

4.4 Effect of page size on CPU time 99

4.5 Effect of file size on performance 100

4.6 Stability of optimized solution. Query distribution = ©i, data

distribution = uniform 104

4.7 Stability of optimized solution. Query distribution = G2, data

distribution = uniform 104

4.8 Stability of optimized solution. Query distribution = 63, data

distribution = uniform 105

4.9 Stability of optimized solution. Query distribution = 64, data

distribution = uniform 105

4.10 Stability of optimized solution. Query distribution = 0 i , data

distribution = clustered 106

4.11 Stability of optimized solution. Query distribution = 02, data

distribution = clustered 106

4.12 Stability of optimized solution. Query distribution = 63, data

distribution = clustered 107

4.13 Stability of optimized solution. Query distribution = 64, data

distribution = clustered 107

4.14 Stability of optimized solution. Query distribution = 0 i , data

distribution = sinusoidal 108

4.15 Stability of optimized solution. Query distribution = ©2, data

distribution = sinusoidal 108

4.16 Stability of optimized solution. Query distribution = ©3, data

distribution = sinusoidal 109

xiv

4.17 Stability of optimized solution. Query distribution = 64, data

distribution = sinusoidal 109

4.18 Stability of optimized solution. Query distribution = Qu data

distribution = linear 110

4.19 Stability of optimized solution. Query distribution = 62, data

distribution = linear 110

4.20 Stability of optimized solution. Query distribution = 0 3 , data

distribution = linear I l l

4.21 Stability of optimized solution. Query distribution = 04 , data

distribution = linear I l l

5.1 Query-space intersecting four partitions 116

5.2 Pip, is a ^-partition but P^o and f^i are not 117

5.3 Query-space intersecting four partitions 118

5.4 Effect of file size on relative performance 129

5.5 Effect of page size on performance 130

5.6 Effect of page size on CPU time 131

5.7 Stability of the optimised choice vector using 0 ! and the uni-

form data distribution 132

5.8 Stability of the optimised choice vector using 0 i and the clus-

tered data distribution 133

5.9 Stability of the optimised choice vector using 0 i and the si-

nusoidal data distribution " 133

5.10 Stability of the optimised choice vector using 0 i and the linear

data distribution 134

xv

5.11 Effect of query-space size on relative performance 135

6.1 po,o and PXfi are join-compatible while Po,o and Pi i l2 are not. . 141

6.2 For each interval of R2 there are two intervals of R3 146

6.3 P4i0 spans J4]0 and J4jl 147

6.4 W5,i is embedded in W5>0 148

6.5 W6,i is join-compatable to W7)0 and W7jl 148

6.6 Waves with number of partitions higher than the buffc: size

result in higher join query cost 154

6.7 Reducing the number of partitions per wave so that they fit

in the available buffer reduces cost 155

6.8 Effect of file size on relative performance 162

6.9 Effect of page size on performance 163

6.10 Stability of the optimised choice vector using 0 i and the uni-

form data distribution 166

6.11 Stability of the optimised choice vector using 0 i and the clus-

tered data distribution 166

6.12 Stability of the optimised choice vector using 6 i and the si-

nusoidal data distribution 167

6.13 Stability of the optimised choice vector using 9 i and the linear

data distribution 167

xvi

Chapter 1

Introduction

Effective and efficient management of a large volume of data is critical in

modern and future computer applications, such as business data processing,

multimedia applications, computer aided design and manufacturing, library

informations retrieval systems, scientific computations, real-time process con-

trol and many other systems. As the size and speed of computer systems

has increased, so has the amount of data which has to be manipulated. The

manipulation of data is done by using a database management system, which

is a collection of programs that enable a user to create, query and maintain a

database (a collection of related data). So the aim of this thesis is to find opti-

mal or near optimal ways of manipulating large volumes of multidimensional

data which improve the performance of a database management system.

The main criteria of evaluating the performance of a database manage-

ment system is the amount of time it takes to respond to users queries.

Researchers have been and still are conducting extensive research with the

aim of improving the performance of database management systems. The

primary focus of the research has been on secondary storage systems, that

is, using disk drivers to store the data. In recent years, the increase in the

amount of physical memory in computer systems has lead to research into

primary storage systems, in which the data is held in memory. But with

large volumes of multimedia data, which needs to be stored on secondary or

tertiary storage systems, means that techniques for managing and manipu-

lating data on non primary storage systems are likely to be required for a

number of years.

This chapter has 6 sections. Section 1.1 discusses the main research areas

of optimizing the performance of a database management system. The re-

search area chosen in this thesis is explained in section 1.2. In section 1.3, the

existing approaches that try to solve similar problems of this thesis are in-

troduced. The main contributions of this thesis are presented in section 1.4.

Section 1.5 discusses the setup of the experiments done in this thesis and

section 1.6 presents a summary of each chapter of this thesis.

1.1 Optimising the performance of a database

management system

In the last thirty years extensive research has been conducted to improve the

performance of a database management system. Following is a list of areas

where most of the research was focused.

Minimising I /O. One of the main factors in calculating th' cost of

a query is the number of access done to the hard disk when executing

the query. One technique of reducing this factor is indexing [22,46] and

another technique is clustering [51-54,100].

• Reducing computation. The number of tuples to be compared can

be reduced if good hashing, clustering or partitioning algorithms are

used [3,83,84,116].

• Hardware support. Using dedicated database machines such as

hardware hashing units, sorters and filters, processing can be speeded

up. There are plenty of such machines and a comprehensive survey can

be found in [132].

• Parallel processing. Many database operations have high degree of

inherent parallelism. This can be exploited to perform them in paral-

lel [23].

• Query optimisation. Query optimisation is mainly selecting the best

way of executing a query. For example, determining optimal nesting of

joining in a multiway join or devising optimal strategies for distributed

join processing [19,113,133,142].

• Optimising buffer usage. By optimal buffer usage we mean reducing

the amount of memory needed in executing a query or making the best

of the available memory in executing a query. Optimising buffer usage

can reduce the number of disk blocks accesses thus reducing query

cost [53,100].

1.2 Objective of this thesis

As mentioned in the beginning of this chapter, one of the most important

criteria for evaluating the performance of a database management system is

how fast the system can accesses the data queried by users. This criteria

depends, to a large extent, on the organisation of the underlying data. In

relational database management system, data is first organised as records.

A record consists of a list of fields. Each field, also called attribute, has a

domain, which is a set of values from which a field value can be drawn. A

collection of related records form a file. A file normally resides in a disk.

A disk is divided into blocks. Each disk block has a capacity of a limited

number of records. So each file is stored in one or more disk blocks. The

number of disk blocks of a file depends on the size of the disk block, the size

of each record, the number of records and the way the records are organised

in the file. A disk block is also a unit of transfer between a disk and the

primary memory. So a request of one record from a disk block causes all the

records in the block to be transferred to the primary memory.

A query is an expression that describes records to be retrieved from a

file or a database. An answer to a query is the retrieval of all the described

records. The four main database queries are exact match, partial match,

range and join [25].

• In au. exact match query the record to be retrieved is described by

specifying all the fields.

• In a partial match query the records to be retrieved are described by

specifying a subset of the fields.

m

• In a range query records to be retrieved are described by specifying a

range of values to r> .si<r/>et of the fields.

• In a join query records are retrieved from more than one file and mainly

described using counuo;i Jivlxis,

Records of each disk block containing at least one required record are

transferred to the primary memory. Then the primary memory is searched

to retrieve the? required recoils. Since the disk access time is considerably

higher than the primary memory retrieval time, the time to respond to a

query is mainly measured in terms of the number of disk access done to

answer the query. So having two required records each residing in a separate

disk block will cost nearly twice as much time as two or more required records

residing in a single block.

One way of improving the performance of algorithms manipulating data

on secondary storage is to cluster similar data [3,83,84,116]. The rational-

ization behind this approach is that if one item of data is required to answer

a query, a similar item of data is also likely to be required to answer the

query. By clustering the data items together, the amount of time taken to

locate and retrieve the data will be reduced. If the amount of data is large,

the increo.se in performance can be substantial.

The cluiskarmg of data will be of most benefit if it results in the reduction

of the time taken to perform operations which are frequently required of

the database management system. To achieve the optimal performance, the

frequency, type and the cost of each operation must be taken into account

when designing a clustering arrangement. If it is not known, statistics can

be kept on the operations performed on existing systems, and can be used

to reorganise the data i'nto better clustering arrangement.

Even if the frequency, type and cost of each operation is known, deter-

mining the optimal arrangem*5'A can be expensive. For example, Moran [94]

showed that designing a particular optimal partial-match retrieval system

was NP-hard. However, efficient algorithms have been found which can

quickly find optimal or near optimal solutions to this problem [3,83,84,90,

91,116].

Little work has been done in determining an optimal clustering of multidi-

mensional data for queries oih zx than partial-match retrieval. Other cluster-

ing techniques have been proposed; however, they rarely consider the prob-

ability of an operation being asked to be \s. .wrrned. For example, Faloutsos

and Roseman [33] proposed using fractals to clusfcer multidimensional data in

one dimension for storage on disk. They showed that this clustering technique

performed better for range queries than a number of older clustering tech-

niques, but they did not consider varying the frequency of queries. The join is

very important and expensive operation in a relational database management

system tfQ* Io6,137]. As the join operation is so expensive, any increase in its

cost can result in a significant degradation of the performance of the database

management system. Also, most of the other relational database operations,

such as intersection, union and difference, are very similar in implementation

to the join. As a result a large amount of research has been conducted to find

methods of efficiently implementing the join. Using the clustering provided

by a data structure to increase the performance of the join has been consid-

ered in the past, by Ozkarahan and Ouksel [50,111,135]. However, none of

the authors attempted to find the optimal clustering organisation.

The primary objective of this thesis is to find optimal multidimensional

data organisation which supports the efficient processing of range queries,

join queries and other relational operations, and to compare the performance

of this arrangement with that of the standard multidimensional data organ-

isaion arrangement.

An optimal data organisation is expected to be optimal only for a query

distribution that was used to find it and, perhaps, other similar query dis-

tributions. This thesis also addresses the issue of how much must the query

distribution change before current data organisation arrangement is no longer

near optimal. In other words, how sensitive are our techniques of data or-

ganisation to changes in the query distribution?

1.3 Related previous work

As mentioned above little work has been done on attempting to determine an

optimal organisation of multidimensional data for queries other than partial-

match retrieval. Other clustering techniques have been proposed; however,

they rarely consider the probability of an operation being asked to be per-

formed. The few who did, assumed a uniform data distribution [51,99]. J.

Lee, Y. Lee, K. Whang and I. Song [79], attempted to do the same like what

is done in this thesis but their research is limited to range queries. Their

approach will be explained in more detail in Section 2.5, but the following is

a brief summary of their approach.

A range query can be expressed by specifying a region, called query region.

It is convenient to think of a query region as a cross product of the specified

intervals (partial domains) in the query. A range query is a conjunction

of equality predicates with at least one range predicate. Query processing

can be interpreted as an operation of accessing all the pages intersecting

the query region, and then retrieving the required records from these pages.

Hence, J. Lee et. al. suggested that the cost of a query can be minimised if

the number of pages intersecting the query region is minimised. They define

an interval ratio as the ratio of intervals of the attributes. For example,

in the following query: "Find all employees whose ages are between 30 and

50 and whose salaries are between $50,000 and $100000", the interval ratio

for age and salary becomes 1:2500 when the same integer domain is used.

Interval ratios are used to represent the shape of a region. J. Lee et. al.

suggested that the number of regions intersecting with a query region at a

given arbitrary position is minimised when the interval ratio of each page

region in the domain space is the same as that of the query region, regardless

of the size of the page region.

1.4 Contributions of this thesis

In this thesis, we propose new data organisation techniques which minimise

the average cost of a given set of operations whose probability distribution is

known. What makes our work different from the other similar works is that,

the data distribution can be skewed and attributes can be correlated. Plus

our study not only covers partial match query, which is the case with the

other studies, but other relational operations like range query, join, union,

difference and others. The main contributions of this thesis are:

• New techniques of optimising storage design for a set of queries with

known probability distribution are proposed. Finding optimal storage

design is NP-hard. We show that by combining heuristics and combina-

torial algorithms, near-optimal storage designs can be achieved which

organise multidimensional records on which all the relational queries

are efficiently performed. The heuristic algorithms reduce the prob-

lem to a manageable size and the combinatorial algorithms determine

near-optimal storage designs.

• Nearly all existing storage design algorithms are limited to optmis-

ing uniform multidimensional data. In our proposed algorithms there

is no such limitation. This makes our work the first ever work which

optimises the organisation of multidimensional data when the data dis-

tribution is skewed.

• New algorithms for processing exact match, partial match, range, join,

union, intersection, difference and division queries are proposed. Com-

bining algorithms which utilise memory efficiently and those which or-

ganise storage optimally is expensive. However, we show that when

the queries are processed using our algorithms, which use the proposed

storage design techniques and determine good memory utilisations, the

cost of the average query can be dramatically minimised. Experimental

results of the proposed algorithms show that performance gains of up

to 3617% are achieved, when compared with standard schemes.

• New and more accurate cost models for all the relational database

operations is proposed. Unlike the existing cost models, the proposed

cost models doesn't ignore the cost associated with directory pages.

These cost models together with the proposed heuristic algorithms are

used to find the optimal way of organising multidimensional data.

• Query distribution change overtime. Storage organisation which is op-

timal for the current query distribution may not be optimal in the

future once the query distribution changes. Rearranging storage de-

sign in order to optimise it for the current query distribution can be

an expensive operation. The proposed storage design algorithms are

not that sensitive to minor changes in the query distribution. Using

the proposed techniques, query distributions can change up to 80% of

their original values, and the original storage organisations remain near

optimal. Hence, frequent reorganisation of the storage arrangement is

not needed.

1.5 Research methodology

To carry out the experiments and to validate the performance of the algo-

rithms in this thesis, a mini relational database management, system was

implemented using C++. The underlying data was organised by a multidi-

mensional file structure called the Balanced and Nested Grid (BANG) file

which was also implemented using C++. The BANG file is explained in

Chapter 3. This mini database management system supported, exact match,

range, and join queries. A query language was implemented using C++ to

10

manipulate the data in the mini database management system. All the ex-

periments were conducted on Sun workstations. Each experimental relations

were populated by randomly generating one million data records. The dis-

tribution of the multidimensional data ranged from uniform to extremely

skewed.

1.6 Thesis layout

This thesis consists of seven chapters. Chapter 2 provides the background for

this thesis. This chapter contains the discussion of the terminology, the data

organisations and the tools which are fundamental to the work of this thesis.

The chapter starts by the introducing the terms used in this thesis, followed

by a brief discussion of data organisations, mainly multidimensional, and

their access methods. This is followed by a brief introduction and analysis

of the existing approaches which optimise data organisations. The chapter

concludes by a discussion of some tools (heuristic algorithms) used in this

thesis to optimise data organisations and their access methods.

Chapter 3 discusses techniques of organising data and an access structure

known as the BANG file [37]. This is the file structure that is used in this

thesis for all the experiments. Hence the chapter explains the structure of

the BANG file, what the initial structure of the BANG file looks like, how its

structure changes as more records are inserted, what happens as the number

of records to be stored in a data block exceeds its limit, how partitions of

the file are labeled, how new directory blocks are added, how records are

searched, inserted and deleted, and how under populated blocks are merged

11

in the BANG file. In the original BANG file, data was organised in a one way.

In the same chapter we discuss our version of the BANG file which allows

multiple ways of organising data. Also, in the same chapter, the effect of

different ways of organising data on the load factor and other characteristics

of the BANG file are discussed.

In Chapter 4, we present a technique of clustering records in multidimen-

sional structures which minimises the average cost of partial-match query.

The chapter starts by discussing partial match queries in general. It then

explains a partial-match retrieval algorithm using the BANG file. This is

followed by the introduction of new techniques of optimising partial-match

queries using heuristic algorithms and some cost functions. The chapter con-

cludes by presenting the analysis and the experimental results of the new

techniques.

Chapter 5 discusses new ways of organising data for optimising range

queries. The chapter first explains range queries in general, which is followed

by the discussion of range query algorithms using the BANG file. Also in

the same chapter a new way of minimising range query cost is explained. At

the end of the chapter the experimental results and analysis of the proposed

algorithms are presented.

In Chapter 6, the optimisation of join queries with known probability

distribution is discussed. In this chapter we explain how the join query

processing can be optimised by optimising the organisation of data. The ex-

perimental results and analysis of the proposed algorithms are also discussed

in the same chapter.

12

In Chapter 7, we combine and generalise the work in the previous chap-

ters. We also discuss the implementation and the comparison of a number

of other basic relational operations such as union, division and intersection,

required of a database management to answer queries.

Chapter 8 presents the conclusion and possible future work in the area.

13

Chapter 2

Background

2.1 Introduction

The main objective of this thesis is to optimise the organisation of multidi-

mensional data (skewedly or uniformly distributed) in order to minimise the

cost of a set of queries with known probability distribution. In this chapter

we cover the different types of rnuitidimensional data organisations and the

methods that are used to optimize them. The chapter starts with the intro-

duction of common terms used in this thesis, followed by a brief discussion

of multidimensional data organisations, which is again followed by a brief

introduction and analysis of some existing approaches which optimise mul-

tidimensional data organisations. The chapter concludes by a discussion of

some methods (heuristic algorithms) which are used in this thesis to optimise

multidimensional data organisations.

14

One of the most important criteria for evaluating the performance of a

database management system is how fast the system accesses data queried

by users. This criteria depends, to a large extent, on the organisation of

the underline data. In relational database management system, data is first

organised as records. A record consists of a list of fields. Each field, called

attribute, has a domain, which is a set of values, from which the field value

can be drawn. A collection of related records form a file. Records of a file are

organised in blocks. So a file consists of a number of blocks. In this thesis

we refer to the block as the basic unit of storage. It is also the basic unit of

transfer between disk and memory. It is also expected to be a small multiple

of the disk hardware sector size. The block address is a number which the

index scheme interprets to determine the physical loc/< I ion of a block within

the data file.

A query is an expression that describes records to be retrieved from a

file or a database. An answer to a query is the retrieval of all the described

records. The four main database queries are exact match, partial match,

range and join [25]. In an exact match query the record to be retrieved is

described by specifying all the fields. In a partial match query the records to

be retrieved are described by specifying some and not all of the fields. In a

range query the records to be retrieved are described by specifying a range

of values to at least one of the fields. In a join query records are retrieved

from more than one file and mainly described using common fields.

J.

15

The main objective of this thesis is to find efficient ways of organising

records in files in order to speed up query processing. An ideal data organi-

sation is an organisation which has:

• Access methods which are:

— fast

— efficient for all types of operations

— able to adopt well to database growth

— simple with few special cases

— efficient in handling concurrent transactions

— easy and minimum impact when integrated to existing systems

— independent of data order and distribution.

• High storage utilization. The amount of data in each disk block on the

average should be high. The index size should be small compared to

t\v^. of the actual data.

To speed up q^yry processing, each record in a file is placed using the

values of one or movf ;<f its attributes. The attributes that determine the

placement of recordi! in a file are called the organising attributes. A file whose

records are placed using one organising attribute has a uni-dimensional file

organisation. File organisations like B-trees [4,5], linear hashing [78,81] and

extendible hashing [29] are some examples of uni-dimensional file organi-

sation. Although somewhat outdated [20,69] present a good coverage of

uni-dimensional file organisations. A file whose records are placed using

16

m.

more than one organising attribute has a multidimensional file organisation.

Some examples of multidimensional file organisation are X-tree [11], filter

trees [127], BSP-Tree [39,40], BV-tree [38], G-tree [76], GBD-Tree [105], and

hB-tree [28]. Methods used to access multidimensional files are called mi"

tidimensional access methods. A good coverage of multidimensional access

methods can be found in [41,87].

With an increasing number of applications such as computer aided de-

sign [66] and VLSI [130], robotics, geometric or geographic systems, medical

imaging [48], environmental protection, data warehouse [26], visual percep-

tion and text retrieval systems, searching using several attributes is common

than using one attribute. With such applications, its is better to use multi-

attribute indexing instead of several single at;>'bute indexes for the following

two reasons:

1. The number of disk blocks to be accessed can be minimised, because one

index instead of multiple single attribute indexes has to be searched.

2. When new records are inserted, deleted or updated multiple updates

are required for multiple single indexes, but a single update of index is

needed for a multidimensional access methods.

The databases of the above mentioned applications, tend to be notoriously

large, and are growing fast [18]. Despite growing primary memories, it is often

impossible to hold the entire database in main memory.

The time taken to answer a query (query cost) is mainly measured by the

number of disk accesses performed to retrieve the records described by the

query. If the described records of a query are scattered in many blocks, the

17

cost of the query will be high. But if the described records are clustered in

smaller number of blocks the cost of the query will be lower. Minimizing the

cost of single attribute access methods has been extensively studied, hence

our techniques will look at multidimensional access methods. Few researchers

studied techniques of minimizing query costs when using multidimensional

file structures, but nearly all of them were limited to uniform data distribu-

tions [52-54,60,77,79,133]. Some of the existing t e chn i c s will be discussed

in subsequent sections. To our knowledge this is the first study which intro-

duces techniques of optimally clustering records in a multidimensional file

structure when the data distribution is skewed.

This chapter has 7 sections. Section 2.2 gives introduction to multidi-

mensional access methods. Sections 2.3 and 2.4 explain point access methods

which are based on hashing and those which are based on hierarchical or tree

like access structures respectively. Existing techniques of optimizing physical

database design for efficient query processing are explained in Section 2.5.

Section 2.6 discusses some of the heuristic and combinatorial algorithms used

in the optimisation of physical database design. Section 2.7 summarizes this

chapter.

2.2 Multidimensional access methods

As was explained in the last section, a file whose records are placed using more

than one organising attribute has a multidimensional file organisation. The

methods used to access multidimensional files are called multidimensional

access methods.

18

Multidimensional access methods are classified into two types: point ac-

cess methods(PAM) and spatial access methods (SAM). Point access meth-

ods are primarily been designed to perform searches in cb I abases that store

only points. Points correspond to records (entities) that doesn't have spatial

extension. Examples of such access methods are interpolation based grid

files [108,110], twin grid file [58], hB-lree [85], k-d-b-tree [119] and Buddy-

tree [125]. Spatial access methods however, can manage extended objects,

such as lines, polygons and higher dimensional polyhydra. Examples of spa-

tial access methods are DO [32], the different flavor of R-trees [8,49,64,65,

121,124,126], cell tree [47], LSD-tree [55] and SKD-tree [101].

A multidimensional file with n organising attributes can be envisioned as

a n dimensional domain space. We define a domain space as the Cartesian

product of the domains of all the organising attributes. The domain space

is partitioned into a number of regions. Each region corresponds to a disk

block. In PAM, each record is represented as a point within a region and is

stored in the disk block corresponding to the region.

In the current PAMs, each region is accessed using a multidimensional

hash function or hierarchical access methods (search trees) or both. PAMs

which use multidimensional hash functions include the GRID file [97], EX-

CELL [134], the Two-Level Grid File [56], Multidimensional Linear Hash-

ing and its variants like multidimensional order-preserving linear hashing

with partial expansions (MOLHPE) [57,71] and PLOP-hashing [75]. PAMs

which use hierarchical access methods, unlike hash based methods, perform

no address computation. Example of such PAMs include Balanced Multidi-

mensional Extendible Hash Tree [106,107], k-d-B-Tree [119] and the LSD-

19

Tree [55]. Some PAMs have tree structured directory and also employ dy-

namic hashing scheme. Some examples of such PAMs are Interpolation Based

Grid File [110], The BANG file [36], the buddy tree and the hB-tree and its

variants [27,28,85,86].

The lack of order that preserves spatial proximity of records in uni-

dimensional access methods makes them much easier to design than mul-

tidimensional access methods [42,104]. There is no total ordering of objects

in two or higher dimensional space that completely preserves spatial proxim-

ity. One way to circumvent the problem is to find heuristic solutions, ihat

is, to look for total orders that preserve spatial proximity at least to a great

extent. The goal of all heuristic solutions is that objects located close to each

other in the original space should likely be stored close together on the disk.

This could contribute substantially in minimizing the number of disk accesses

per range query. One thing that all proposed methods have in common is

that they first partition the domain-space into regions. Each of the regions is

labeled with a unique number that defines its position in the total order. The

records (points in the domain-space) are then sorted and indexed according

to their region. The way the regions are labeled determines how clustered

adjacent regions are stored in the secondary memory. Some common la-

belling techniques used are: row-wise enumeration of regions [122], Peano

curve [95], quad codes [34], N-trees [141], vocation codes [2], z-ordering [104]

(used by Oracle in 1995), Hilbert curves [33], and Gray ordering [30,31].

To further elaborate the design of PAMs, four PAMs are discussed in

more detail in the subsequent subsections. The BANG file will be discussed

in more details in the next chapter, because it is implemented and used

20

in the experiments of this thesis. Though the experiments in this thesis

were carried out using the BANG file, they are equally applicable with other

multidimensional access methods.

2.3 Multidimensional hashing based PAMs

In this section, example of PAMs which use multidimensional hash functions

are discussed. First the common features of these PAMs is discussed and then

some of the well know PAMs which use multidimensional hash functions are

discussed. The use of multidimensional hashing in partial-match queries is

also mentioned.

In hashing schemes; the address of a disk block where a record resides is

determined by a hash key calculated for that record. If the file on which the

record rasides has one organising attribute, a hash function is applied to the

value of that attribute. But if the file has many organising attributes, then as

many hash functions are used. Each organising attribute has a hash function

which maps a value into bit strings. For example, in a relation, R4, with

organising attributes Aifl, A\i> • • • -^i.n-ij n n a s h functions, /i^o, h^i,... /i»in_i,

;<re employed. Ay, maps each Aij value to a bit string, &i,j,(A,j,i • • • &i,j,C;,.,-i)

where Cij is the minimum number of bits needed to represent any values of

Aij. For example, if A+j represents a gender of an employee in a company,

then the minimum number of bits nee: kid to represent any value of Aij is

I. Hence, cy = 1. The hash key for a record is constructed by taking cu-

bits, where 0 < dij < c%,j, from the bit string of hij and combining them in

a specific order. This order is maintained by a structure known as a choice

21

vector. In short a choice vector specifies the order by which the hashed bit

strings are combined to form a hash key of a record. Each element of a

choice vector is a bit position and is denoted as 6ijifc, where 0 < k < aj. For

example, 6,-1iIo&t)3,o&i,3,i&i,olô ,3,2&i,i,i&»,2,o is a valid choice vector for Ri with

four attributes, AiyQ, AiiX, Aifi and Ai>3.

Let the number of elements in the choice vector be denoted as d*, where

di = £"=0 d{j. Since each element of a choice vector is assigned a value of a

0 or a 1, the maximum number of blocks in the file of Ri is 2di.

2.3.1 Partial-match retrieval and PAMs

As was explained in the beginning of this chapter a query is an expression

that describes records to be retrieved from a file or a database. An answer to

a query is the retrieval of all the described records. In a partial match query

the records to be retrieved are described by specifying a subset of the fields.

To answer a partial-match query, when using PAMs which use multidi-

mensional hash functions, a hash key is constructed from the query, using

the same hash functions which are used to store the data. The hash func-

tions for each attribute value specified by the query is applied to the value of

the attribute, forming a bit string for the attribute. The hash key is formed

using the choice vector and the bit strings for the attribute. The bits in the

choice vector of attributes which were not specified in the query are not set

in the hash key. All the blocks in the data file which match the hash key are

retrieved and searched for matching records. If a bit is not set in the hash

key, blocks with either value for that bit in their address must be retrieved.

22

We use a "*" to mark the place of the each bit in the hash key which is not

set.

For example, consider the following choice vector of an arbitrary relation

Ri which has four attributes: &i,o,o&i,i,o&i,3,o&i,2,o&i,i,i&i,i,2&t,3,i- Assume a query

that specifies values for A{$, Aip and A ^ but not by A^i. Also, assume that

the values of the attributes specified in the query results in the following bit

strings:

hijo = 1011010010100
h->2 = 0110101010110

= 1010110001101

Combining the corresponding bit strings, us specified by the choice vector,

&itoJo&t,i)o&i,3,ofet,2,ofci,i,ibi,i,2̂ ,3,i) results in the hash key 1*10**0. Since Aiti is

not specified in the query, the three bits which correspond to A^i in the

hash key, 1*10**0, are assigned "*". The 3 unkaown bits in the hash key

will retrieve 23, 8, blocks. The resulting eight blocks retrieved to answer the

query are:

1010000
1010010
1010100
1010110
1110000
1110010
1110100
mono

23

\}

.1-

1

s •>

The order of the bits in the choice vector can have an impact on the

performance of the retrieval algorithm. For example, two consecutive disk

blocks can be retrieved faster than two non-consecutive disk blocks because

no seek is required to locate the second block once the first has been read. As

mentioned in section 2.3.1, the way the regions are labeled determines how

clustered adjacent regions are stored in the secondary memory. Some com-

mon labelling techniques used are: row-wise enumeration of regions, Peano

curve, quad codes, N-trees and Gray ordering. Faloutsos in [30] suggested us-

ing Gray codes to map the hash keys to disk block addresses which only differ

in precisely one of the last two bit positions will be located in consecutive

blocks. This results in better retrieval performance.

Without additional information to aid in determining what the composi-

tion of the choice vector should be, the choice vector for a relation usually

consists of an equal number of bits from each attribute arranged in a cyclic

fashion. Such choice vectors are known as cyclic. By using additional infor-

mation, such as the probability of each attribute being accessed and the cost

of access, better choice vectors can be built. We will call such choice vectors

as optimised. Our aim in the subsequent chapters is to find optimised choice

vectors.

Aho and Ullman in [3] described how to determine the optimal number of

bits to take from the bit string of each attribute to make up the choice vector

for partial match retrieval. Their method assumes that the probabilities of

each attribute appearing in a query is specified, and that the probabilities

are independent of each other. Moran in [94] showed that for the general

problem when the probability of an attribute appearing in a query is not

24

independent of the other attributes, finding the optimal bit allocation is NP-

hard. Lloyd in [83,84] presented an efficient heuristic algorithm for finding

a good solution to this general problem.

2.3.2 Multidimensional order preserving linear hash-

ing with partial expansion

Multidimensional order preserving linear hashing with partial expansion,

MOLHPE, is a dynamic hashing scheme introduced by Kriegel and Seeger

in [71]. MOLHPE used very small directory or used no directory at all. The

hash key for a record, whose construction is determined by the choice vector,

specifies the address of the block in the data file in which the record is stored.

MOLHPE combines standard linear hashing [57,81] linear hashing with par-

tial expansion [78], and order preserving linear hashing [57,109] schemes.

So to understand MOLHPE, let us first discuss briefly, the standard linear

hashing, linear hashing with partial expansion, and order preserving linear

hashing.

Linear hashing

In Section 2.3 it was mentioned that the size of a hash file which belongs

to Ri is 2di blocks, where di is the size of the choice vector of Ri. If this is

maintained then it means that the size of a hash file is increased by doubling

its current size, from 2di to 2di+1. For example, if the current size of Ri is

2di blocks, then the next size of Ri is 2di+1 blocks. Doubling a file size in

one step is a waste of disk space and a very expensive operation because all

&

25

H &i

existing records have to be reorganised. To avoid doubling the hash file in

one step, researchers came with different methods of expanding a hash file.

For example, Letwin in [81] proposed a hash file called linear hash file which

expands by one block at a time. By choosing appropriate functions and by

expanding the file size by one block at a time, only records in one block are

rearranged.

In a linear hash file overflow records are stored in blocks chaining from

the primary blocks. A primary block is a block which contains no overflow

records. A block which contains overflow records is called an overflow block.

Linear hashing increases the storage space gradually by splitting the primary

blocks in an orderly fashion. Consider a file consists of 2di primary blocks

which are labeled as 0,1,... , 2dl — 1. When the splitting of block 0 takes place,

the file is extended by one block, which is block 2di, and approximately half

of the records in block 0 will move to block 2*. After the split of block 0 is

finished, the next block to split is block 1, then block 2 and so on until block

2di. A pointer is used to indicate the next block to be split. This pointer

starts from block 0. After the split of block 2di — 1 into two block 2di — 1 and

2d'+i _ it the pointer is reset to block 0 again and the same splitting process

is repeated again but this time with twice the original number of primary

blocks which is 2*+ 1 .

;1

$ & ft

Linear hashing with part ial expansion

An important factor in hashing techniques is that the best performance is

achieved when the records are uniformly distributed among the file blocks.

With linear hashing that is not the case. In linear hashing, when blocks with

^ ,

nM

no overflow blocks is split, the storage utilization of the two resulting blocks

is half that of the original block. To improve the distribution of records

among blocks of a linear hash file, Larson in [78] proposed expanding the

hash file by more than one block in one step. He called his version of linear

hash file as linear hashing with partial expansion. A full expansion increases

the size of a file from B.2di to B,2di+1 by splitting each of the 2di blocks

into two, a block at a time, in the manner we have just described. By using

partial expansions, the file size increases from B.2di to (B + l).2d|', to . . . to

(2J5 - l).2di, to B.2di+1. While this still results in an even decrease in the

storage utilisation, the difference is much smaller than that of the standard

linear hash.

During the first partial expansion, B blocks are split into B + 1 blocks

by moving some records from each of the B block into block B + 1 . Records

are not moving between the B blocks. During the second partial expansion,

B + l blocks are split into B + 2 blocks, in the same way as in the first partial

expansion. This is repeated for each of the B partial expansions. During the

last partial expansion, 2B — 1 blocks are split into 2B blocks. The value ot

2di is then set to 2*+1, so that there are B groups of 2di+1 blocks, instead

of 2B groups of 2di blocks, and the process starts again. Thiy was analysed

and discussed in more details in [114].

By using linear hashing with partial expansion, the reallocation of records

to new blocks is ordered and doesn't occur all at once. Therefore, the cost

of increasing the size of the file is low.

IA:

tv

•K

^
27

Order preserving linear hashing

Order preserving linear hashing was independently discovered by Burkhard [15],

Orenstein [104], and Ouksel and Scheuerman [109]. It is implemented by us-

ing an order preserving hash function to generate the hash key for records

which are then stored in a linear hash file. Instead of taking the d{ least

significant bits from the hash key to index a file of size 2di, as is usually done

in linear hashing, the d most significant bits must be taken . This ensures

that the file can expand dynamically while still remaining ordered.

The primary problem with order preserving linear hashing occurs when

the data is not uniformly distributed. It results in a large number of over-

flow blocks for some hash keys, and sparsely filled blocks for others. To

overcome this problem, Orenstein proposed multilevel order preserving lin-

ear hashing [104]. The problem of long overflow chain is reduced by storing

the overflow blocks of each hash key in a i?+-tree instead of in a list. The

problem of sparse blocks is reduced by assigning different level (depths) to

the blocks stored in order preserving linear hash files, and by eliminating

sparsely filled blocks.

MOLHPE combines order preserving linear hashing and linear hashing

with spatial expansions. In MOLHPE each dimension is treated equally. The

key space of each dimension is mapped into a number between 0 and 1 by an-

order preserving hash function. As in linear hashing with partial expansion,

the size is doubled by a series of partial expansions. Only one dimension is

expand at a time. That is, the file size is doubled by splitting in one dimen-

sion. MOLHPE outperforms its competitors for uniformly distributed data.

However, with nommiform data distribution it fails because hash functions

f

28

don't adapt gracefully to the given distribution. To overcome this problem

Kriegel and Seeger [72,73] attempted to employ stochastic techniques (a-

qunitiles) [16] to determine the split point. The idea is to transform the

nonuniform data into uniformly distributed values for a. These values are

then used as input to MOLHPB algorithm for retrieval and update. Since the

region boundaries are not simple binary intervals, a small directory is needed.

They claimed that this method guarantees the performance of MOLHPE to

be nearly the same for both uniform distributions and nonuniform data dis-

tributions. Unfortunately, this is true only if the distribution of a data in

each dimension is independent. Other variant of MOLHPE was introduced

by Hutflesz [57] using z-hashing [103] to guarantee that points located close

to each other are also stored close together on the disk. But later it was

proved to have similar limitations.

Coming back to our main point, to improve the performance of query pro-

cessing in MOLHPE, optimised choice vector can be used to determine which

dimension is to be split at each stage, rather than splitting each dimension

in a cyclic manner.

2.3.3 The Grid file

The grid file of Nievegelt et al. [97] and some of its variants [7,117] are typical

representatives of a point access method (PAM) based on hashing. The grid

file superimposes a d-dimensional grid on the domain space, thus dividing it

into partitions known as cells. The superimposed grid may not be regular,

hence the resulting cells may be of different shapes and sizes. One or more

cells are associated with one disk block. The association between a disk block

29

III*

I M

• ! «.-3

<$&

and its cells is maintained by a multidimensional directory. The directory is

usually too big to fit in the main memory so it is usually kept on secondary

storage. To guarantee that data items are found in two disk access, the list

of spilt points for each dimension (the grid) is kept in the main memory in

a d one-dimensional array cailed scales. An answer to an exact match query

incurs the use of the scales to locate the appropriate directory cell (which will

be read from disk), and then the disk block containing the required record.

The original grid file scheme does not specify a splitting or merging pol-

icy, and how the grid directory should be implemented. Those are left to the

implementor. However, Nievergelt et al. [97] recommended that the split-

ting policy should be such that a block is always divided into two blocks

during splitting. They reasoned that splitting a block into more than two

blocks results in a significantly lower average block occupancy. The choice

of dimension and location within the dimension to be split are not specified.

They noted that one policy is to choose the dimension according to a fixed

schedule, such as cyclically. The location of the split could be the midpoint of

the interval being split, but it need not be. Nievergelt, compared the buddy

and neighbour system for block merging. In the buddy system, a block can

only merge with one adjacent, equal-sized buddy in each dimension. In the

neighbour system, a block can merge with either of its two adjacent neigh-

bours in each dimension, providing the resulting region is convex. Every

buddy is a neighbour, but not every neighbour is a buddy. Two blocks can

be merged if the number of records in the two blocks can be contained within

a single block. The neighbour system result in a higher storage utilisation

because a neighbour is more likely to be available for merging than a buddy.

«5

30

Depending on the implementation of the grid directory, merging may require

a complete directory scan [56,74]. The grid directory may be implemented

in many ways, fro:n lists of lists to a multidimensional array. Nievergelt [97]

favored the multidimensional array for space efficiency. In this implementa-

tion, each time a dimension is split, the directory size doubles because the

space covered by each directory entry is divided in two. However, the num-

ber of data blocks is only increased by one. The reference of many directory

entries to the same data block illustrates a well known problem on the grid

file, which is a super-linear growth of the directory even for a uniformly dis-

tributed data [117]. Theoretical analysis of various grid file can be found

in [6,117].

While others have discussed the grid file, it has generally been assumed

that the directory is stored as multidimensional array, that dimensions are al-

ways split into two at the midpoint of the range, and dimensions are typically

chosen cyclically [117]. Optimised choice vectors can be used to determine

which dimension is to be split thus optimizing the query processing.

2.4 PAMs based on hierarchical access meth-

ods

In this section we discuss some PAMs which use hierarchical directory struc-

tures, mainly trees, and perform little or no address computation. Like hash-

ing methods, however, they organise the data points in a number of buckets.

Each bucket usually corresponds to a leaf node (also called data node) of

the tree and the disk block, which contain those points located in the cor-

31

i*

I

responding bucket region. The interior nodes of the tree (also called index

nodes) are used to guide the search; each of them typically corresponds to a

larger subspace of the universe that contains all bucket regions in the subtree

below. A search operation is then performed by a top-down tree traversal.

In the rest of this section we will discuss example of PAMs which use

hierarchical access methods like Extendible hashing [29], multi-level grid

file [140], The hB-Tree [28] and The BANG file [37]. The BANG file is

used extensively in the experiments of this thesis, hence it will be discussed

in more detail in the next chapter.

2.4.1 Multilevel grid file

The multilevel grid file was designed by Whang and Krishnamurthy [139,

140] to overcome the problem of the multidimensional grid file directory

size. It achieves this by making the directory a multilevel balanced tree

structure and by redefining the way a grid entry is computed. A directory

entry in the lowest level of *\e tree refers to a data page and represents

the region allocated to the data page. A data page contains only those

records that belong to the region referred to by directory entry. An entry

in a higher level directory refers to a directory page of the next lower level

directory and represents the region allocated to it. Figure 2.1 by Whang and

Krishnamurthy [140], shows a partitioned data space in which the dashed

boxes represent data blocks. A two level directory for the data space is also

mentioned as shown in Figure 2.1.

The number of entries which can be stored in a page is limited. When the

number of entries which rr.ust be stored in a page exceeds its limit, the page

i

•i t

32

is split into two. In a grid file splitting a directory is based on attribute value.

In multilevel grid file, each dimension (attribute domain) has an associated

hash function which returns a bit string. A dimension is then split using the

bits of its hash function. The directory entries contain bit string prefixes and

their associated pointers Figure 2.1.

In multilevel gridfile, searching for records starts from the root node. All

the entries matching the search criteria are identified. Then the search for

matching entries descends to the next lower level directory using the identified

matching entries. The same process is repeated on the remaining directory

levels until all the data pages enclosing the required records are retrieved. For

example, consider a partial-match query which does not specify a value for

the first attribute, but does for the second attribute, for the data structure

shown in Figure 2.1. Assume that the value of the second attribute returned

by the hash function has a bit string prefix of 01. Thus, we must search for

blocks with prefixes (-,01). We start with the root node of the multilevel

grid file directory, and find that the first, third and fourth entries match the

query. Therefore, three entries at the second level must be searched. In the

first of the three, the third and fourth entries match our query. We must

retrieve their associated data blocks, and search them for answers to our

query. In the second of the second level directory entries we must examine,

the third directory entry, both the second and third entries match our query,

so their data blocks must be retrieved and searched. In the third second

level directory entry we must examine, the fourth directory entry, the first

two entries match our query, so both their data blocks must be retrieved and

searched for matching entries. Thus, in total we must retrieve six data blocks

I P

33

for potentially locating the matching records.

Grid regions with no associated data blocks do not appear in the directory

hierarchy. For example, in Figure 2.1, the region with the prefixes (00,1)

does not have an associated data blocks. Therefore, it does not appear in

the second level of the index. Grid regions appear only once at any directory

level. For example, the region with the bit string (01,-) has only one data

block. Consequently, it has only one entry in the second directory level, the

last entry of the first directory block. These two features ensure that the

directory will grow at the same rate as the data, even for non-uniform data

distributions. Therefore the multilevel grid file does not have the same worst

case performance as the standard grid file, in which the directory size can

potentially double each time a new data block is required.

We believe the cost of processing queries in multilevel grid files can be

minimised, if optimised choice vectors are used-in association with the hash

functions. Optimised choice vectors will be explained in chapters 3 to 7.

2.4.2 The hB-tree

The hB-tree is a multidimensional file structure which has features of K-D-

B-tree [119] and k-d tree [9,10]. It differs from K-D-B-tree by the following

two features:

1. Its index nodes are organised as k-d trees.

2. A split of an hB-tree node may be done using more than one attribute.

To understand the hB-tree, let us first discuss both the K-D-B and the k-d

trees.

!«v!gSp

kH
Tit

34

11

10

01

00

1

1

1
1

1
1
1

1

-

1
1
1
1

000 001 010 on 100 101 110 111

000,00
001,00
00 ,01
01 , -

w
w,
h,

w

Data blocks f .

Figure 2.1: Multi-level grid file

35

V

K-D-B-tree represents an attempt to generalize B-tree to the multidimen-

sional case. A directory entry of a B-tree contains search values in disjoint

intervals of a one dimensional space. A directory entry of a K-D-B-tree rep-

resents a region (hypercube) in a k-dimensional space. Further, like B+-tree,

data records are stored in leaf nodes, internal nodes contain only index entries

which direct search. A K-D-B-tree is a balanced tree, that is, the distance

between the root and each leaf node is the same. Regions corresponding to

nodes at the same tree level are mutually disjoint: their union is the complete

domain space. The leaf nodes store the data points that are located in the

corresponding region.

Search queries are answered analogously to the k-d-tree algorithms. For

the insertion of a new data point, first perform a point search to locate the

right region. If the region is not full, then the entry is inserted. Otherwise,

it is split and about half the entries are shifted to the new data node. If the

parent index node does not have enough space left to accommodate the new

entries, a new page is allocated and the index node is split by a hyperplane.

The entries are distributed among the two pages depending on their position

relative to the splitting hyperplane, and the split is propagated up in the tree.

The split of the index node may also affect regions at the lower level of the

tree, which must be split by this hyperplane as well. Because of this forced

split effect, it is not possible to guarantee a minimum storage utilization.

Deletion is done after performing an exact match query on the record to

be deleted. If the number of entries drops below a given threshold, the data

node may be merged with sibling data node as long as the union remains

a ^-dimensional interval. The procedure to find a suitable sibling node to

¥!m

•M

i '>s

36

merge with may involve several nodes. The union of data pages results in the

deletion of at least one hyperplane in the parent index node. If an underflow

occurs, then the deletion has to be propagated up the tree.

The main difference between the K-D-B-tree and the hB-tree is the way

the pages are organised. In K-D-B-tree, regions are disjoint while in hB-tree

regions can enclose other regions. Also, in K-D-B-tree the, organization of

the directory entries are not clear, but in hB-tree directory is organised as

k-d-trees. K-d-tree is a multidimensional binary search tree. A search in a

standard binary tree is based on one key field. In a k-d-tree this is done using

multiple keys, Ko, Ki,... Kn-i- On the first level of the tree, the decision of

going to the left child or to the right child is based on the value of Ko, on

the second level the decision is based on the value of K\ and so on in a cyclic

manner.

To optimise query processing in an hB-tree, the search key to be used at

each level of the tree can be chosen based on a choice vector.

f !•

fa

i

2.5 Current methods of optimising PAM de-

sign

Many researches have proposed different multidimensional access methods [61-

63,102,120,127], but few attempted to optimally design the access methods

for a given set of queries. Even all those who tried, except one [79], were

limited to uniform data distribution [52-54,99]. J. Lee et. al. [79], who

attempted to optimise multidimensional access methods for a given set of

queries (independent of the data distribution), were limited to range queries.

%

37

To our knowledge, for a given set of queries (partial match, range, join or

other common relational queries) and their probabilities, this is the first work

which attempts to optimally organise multidimensional data, even when the

data distribution is skewed. In the rest of this section we will explain the

techniques introduced by Lee, et. al. [79].

In multidimensional files, a range query can be expressed by specifying a

region, called the query region. It is convenient to think of a query region as

a cross product of the specified intervals (partial domains) in the query. A

range query is a conjunction of equality predicates with at least one range

predicate.

Query processing can be interpreted as an operation of accessing all the

pages intersecting the query region, and then retrieving the required records

from these pages. Hence, Lee et. al. [79], suggests that the cost of a query

can be minimised if the number of pages intersecting the query region is

minimised. They define an interval ratio as the ratio of intervals of the

attributes. For example, in the following query: find all employees whose

ages are between 30 and 50 and whose salaries are between $50,000 and

$100000, the interval ratio for age and salary becomes 1:2500 when the same

integer domain is used. Interval ratios are used to represent the shape of

a region. It is suggested that, the number of regions intersecting with a

query region at a given arbitrary position is minimised when the interval

ratio of each page region in the domain space is the same as that of the

query region, regardless of the size of the page region. To determine the

interval ratio, they use a query pattern given by the user. The query pattern

can be obtained by collecting the usage statistics of a database during a

f r

I "1 y

IK

38 1'
! ^

certain time interval [143] or by analyzing the application profiles provided

by database administrator [35]. The query pattern is then used for region

splitting strategy that partitions the domain space in such away that the

interval ratio of a page regions are close to those of query regions.

Lee et. al. [79] didn't discuss how forcing the page region to be equiva-

lent to the query region affects other properties of the multidimensional file,

specially storage utilization. Also, there is no discussion on how the other re-

lational operations can benefit from their proposal. Also the query area size

over which their proposal is cost effective is not investigated. Query pattern

changes with time, and the effect of query changes on the existing design

(design which was optimal before query pattern change) is not discussed in

the paper.

The approach taken in this thesis is totally different from that taken by

Lee et. al. [79]. In this thesis, to find an optimised multidimensional access

method the following two items were used.

• Multidimensional data organisations which evenly distribute records

among the allocated disk blocks;

• Heuristics and combinatorial optimisation techniques to find optimal

data organisations.

Optimising the organisation of multidimensional data in order to min-

imise the average cost of a given set of queries can be done by using optimal

bit allocation. Finding the optimal bit allocation for arbitrary query distri-

bution is NP-hard [94], but the problem can be solved by using heuristics

*•'•;>

39

and combinatorial optimisation techniques which are discussed in the next

section, section 2.6.

2.6 Combinatorial optimisation techniques

Finding the optimal multidimensional data organisations we are trying to

find are NP-hard. To attempt to find good solutions,optimal multidimen-

sional data organisations, we used heuristic and combinatorial optimisation

algorithms. These techniques are not guaranteed to find optimal solution to

any problem. In the subsequent sections we use the term minimal or opti-

mised to indicate a solution which is the result produced by one or more of

these techniques. These minimal solutions are typically local minima or local

optima. For some problems, they are almost optimal. In this section, we in-

troduce the combinatorial optimisation techniques we used to find optimised

choice vectors.

2.6.1 The optimisation problem

The optimisation solutions that we used can be described in the following

way. Consider a set, k, of n non-negative integers, k{, upon which cost func-

tion, f, is defined as [51]

C = f(k)

where k — {ko,ki,...,&n_i}. The main objective here is to find kmin, such

that f(kmin) < f(k), for all members of k. The constraint

40

' is .

M

must be satisfied.

Relating this to a choice vector, section 2.3, k is the number of elements

in the choice vector, &,• is the number of bits allocated to the zth attribute,

k is a bit allocation, and kmin is the optimal bit allocation. As we will find

out in the subsequent chapters not only the value of ki is important but also

the position of these bits within tY.-s choice vector.

Finding optimal choice vectors of many of the problems we are trying to

solve is NP-hard. To attempt to find good solutions we used heuristic and

combinatorial optimisation algorithms. These techniques are not guaranteed

to find optimal solution to any problem. Examples of such algorithms are

minimal marginal increase and simulated annealing. Minimal Marginal In-

crease (MMI) and Simulated Annealing are discussed in Section 2.6.2 and

Section 2.6.3 respectively.

2.6.2 Minimal Marginal Increase (MMI)

Minimal Marginal Increase (MMI) is a greedy heuristic algorithm which we

used to come up with optimised choice vectors. MMI works as follows:

Initially nothing is allocated to the elements of the choice vector. Then

the first element of the choice vector is allocated to 61,0,0 and the average

query cost using the cost functions (which will be discussed in the coming

chapters) is computed. The average query cost is repeatedly computed after

giving the same choice vector element instead to 61,1,0, and then to &i,2,0)

and GO on, until all the attributes are tried. The attribute which gives the

\>

0V

41

lowest average query cost is permanently allocated as the first element of the

choice vector. The same process is repeated for the second element of the

choice vector, then the third, and so on. This process is repeated until all

the elements of the choice vector are allocated. The number of choice vector

elements will be discussed later in section 3.9.3.

2.6.3 Simulated annealing

The second optimisation technique that is used in this thesis to come with

the optimal bit allocation is Simulated annealing [1]. Simulated annealing

is a class of optimisation algorithms based on Monte Carlo techniques. The

algorithm in this thesis is substantially the same as that used in Ramamo-

hanarao et al [115].

The algorithm begins by selecting a random choice vector and computes

the cost of the problem on hand using cost functions, which are dependent

on the choice vector. Then in each iteration, the algorithm computes new

choice vectors and accepts the new choice vector as the basis for further per-

turbations if it improves the cost or when a cooling functions determines that

it be accepted. The cooling function is a monotonically decreasing function

which specifies the probability of accepting a solution (a choice vector in our

case) which does not improve the cost. In the early iteration the probability

of accepting a solution that does not improve the cost function is high, but

approaches to zero in the later stages. There are a number of parameters

which can be used to control the amount of computational resources used by

the algorithm. The algorithm terminates when the costs has not improved

after pre-specified number of iterations since the last accepted choice vector.

Uf

US

If

42

In our implementation, we use a set of random starting allocations (trials)

and iterate over each of these, finally selecting the best over the trials.

2.6.4 Combining MMI and simulated annealing

A property that simulated annealing does not share with minimal marginal

increase is the dynamic nature of MMI. In simulated annealing, there is no

straight forward method to find the optimal bit allocation for d+1 bits, even

if the optimal bit allocation of the first d bits is known. However, MMI may

be used in conjunction with simulated annealing to obtain the property of

being able to be used for dynamic files. The initial bit allocation can be

determined for one file size using simulated annealing. If the size of the file

increases, MMI can then be used to determine the attribute to allocate the

next bit to. Similarly, if the data file is required to decrease in size, then the

technique of maximal marginal decrease (MMD) can be used to provide this

ordering. MMD operates in the same way as MMI, except that a single bit is

subtracted from each attribute and the cost is recalculated. The aim is still

to find the attribute which results in the lowest cost. However, this result

of removing a bit from the attribute which results in the largest decrease in

cost, instead of allocating a bit to the attribute which results in the smallest

increase in the cost.

2.6.5 Other optimisation solutions

Combinatorial optimisation is an active area of research. There are a number

of other techniques which could be used in addition to MMI and simulated

43

annealing to search for optimal bit allocations. These includes iterative im-

provement, which was used by Swami [133], for join query optimisation, the

tabu search [43] and genetic algorithms [88]. Some examples of genetic algo-

rithm that can be used are Genocop (version 2.0) [88] and SGA-C [44,131].

Additionally, more complex simulated annealing algorithms with sophisti-

cated cooling functions and domain specific knowledge can perform better

than more general simulated annealing algorithms [21,59].

Nurmela in [99] found that simulated annealing typically performed as

well or better than iterative improvement and a number of other combina-

torial optimisation methods including tabu search, threshold accepting and

record to record travel. He also found that simple genetic algorithms which

did not use problem specific knowledge did not perform as well as local search

algorithms. Implementing a good combinatorial optimisation algorithm for a

specific problem is difficult. Each of those algorithms discussed above have a

large number of parameters which should be varied, depending on the prob-

lem domain. Using domain specific knowledge can also result in a dramatic

increase in the performance of the algorithms. We have deliberately used

a relatively simple version of the simulated annealing algorithms which use

little or no domain specific knowledge. The results generated using this al-

gorithm will show that it is possible to find good solutions to the problem

we consider in a reasonable amount of time.

44

2.7 Summary

In relational database systems records are organised as blocks and blocks as

files. To speed up query processing, each record in a file is placed by hashing

the values of one or more of its attributes. The attributes that determines

a placement of records in the file are called the organising attributes. A file

whose records are placed using one organising attribute has a uni-dimensional

file organisation and a file whose records are placed using more than one

attribute has a multidimensional file organisation. When searching using

several attributes is more common than using one attribute, it is better to

use multi-attribute indexing instead of several single attribute indexes.

The aim of these thesis is to find techniques of organising multidimen-

sional access methods in order to minimise the average cost of a set of

queries, whose probability distribution is known. Minimizing the cost of

uni-dimensional access methods has been extensively studied, hence our tech-

niques looks at multidimensional access methods. Few researchers studied

tecnniques of minimizing query costs when using multidimensional access

methods, but nearly all of them were limited to uniform data distributions.

To our knowledge this is the first study which introduces techniques which op-

timise multidimensional access methods when the data distribution is skewed

or uniform.

In this chapter we covered the different types of multidimensional data

organisations and the tools which we use in this thesis, to optimise them.

Multidimensional access methods are classified into two classes: point access

methods (PAM) and spatial access methods (SAM). PAMs are primarily been

it

ft

45

designed to perform searches in databases that store only points (records).

SAMs however, can manage extended objects, such as lines, polygon and

higher dimensional polyhydra.

The time taken to answer a query is mainly measured by the number of

disk accesses performed to retrieve the records described by the query. If the

described records of a query are scattered in many blocks, then the cost of

the query will be high. But if the described records are clustered in smaller

number of blocks then the cost of the query will be lower.

In this thesis, to answer a query, we use multidimensional hash functions.

A hash key is constructed from the query, using the same hash functions

which are used to store the data. The hash functions for each attribute value

specified by the query is applied to the value of the attribute, setting the bits

of the hash key according to the order specified by the choice vector. The

bits in the choice vector which corresponds to the unspecified attributes in

the query are not set in the hash key. All the blocks in the data file which

match the hash key are retrieved and searched for matching records.

Finding optimal choice vectors of many of the problems we are trying

to solve is NP-hard [94]. In this thesis, to attempt to find good solutions

we use heuristics and combinatorial optimisation algorithms such as mini-

mal marginal increase and simulated annealing, which are explained in Sec-

tion 2.6.. But before optimising a multidimensional access method using

heuristic and combinatorial algorithms, it is important to examine that such

reorganisation doesn't change the features of the multidimensional access

method, and this is the topic of the next chapter.

46

•>#

a

I <=?.:•

Chapter 3

Reorganising multidimensional

data

3.1 Introduction

This chapter discusses new techniques of organising multidimensional data.

Although the proposed techniques are applicable to any multidimensional

data structure, in this thesis they were applied to a multidimensional file

structure known as the Balanced And Nested Grid (BANG) file. The BANG

file and why we chose it for our experiments will be discussed in subsequent

sections.

As explained in Chapter 1 a query is an expression that describes required

records to be retrieved from a file or a database. Blocks that contain at

least one required record are transferred to the primary memory. Then the

primary memory is searched to retrieve the required records. Since the disk

access time is considerably higher than the primary memory retrieval time,

O
*"

47

the time to respond to a query is mainly measured in terms of the number

of disk access done to answer the query. So having two required records each

residing in a separate disk block will cost nearly twice as much time as two

or more required records residing in a single disk block.

One way of improving the performance of algorithms manipulating data

on secondary storage is to cluster similar data. The rationalization behind

this approach is that if one item of data is required to answer a query, a similar

item of data is also likely to be required to answer the query. By clustering

the related data items together, the amount of time taken to locate and

retrieve the data will be reduced. If the amount of data is large, the increase

in performance can be substantial.

The clustering of data will be of most benefit if it results in the reduction

of the time taken to perform operations which are frequently required of

the database management system. To achieve the optimal performance, the

frequency, type and the cost of each operation must be taken into account

when designing a clustering arrangement. If it is not known, statistics can

be kept on the operations performed on existing systems, and can be used

to reorganise the data into better clustering arrangement.

Since in all the experiments of this thesis are using the BANG file [37],

the main aim of this chapter is to discusses:

1. possible data organisations in the BANG file;

2. new techniques of data organisation in the BANG file;

3. the effect of different types of data organisations on the features of the

BANG file, specially its load factor.

i »

k

f A

48

This chapter has eleven sections. Section 3.2 briefly explains the structure

of the BANG file and why the BANG file was chosen for the experiments in

this thesis. The structure of the BANG file and its other main features are

covered in the next section. Also, in the next section the two parts of the

BANG file, namely, data partitions and directory partitions, are discussed.

Section 3.4 concentrates on the data partitions of the BANG file. The section

explains how data partitions are created and how they are uniquely identi-

fied. Section 3.5 explains how partition identifiers are computed. Directory

partitions are discussed in section 3.6. The section also discusses how direc-

tory partitions are created and how they are uniquely identified. The way

records are searched, deleted and inserted in a BANG file are covered in

section 3.7. Section 3.8 explains a technique of partitioning a domain-space.

The technique that is explained in this section is known as a binary division.

It is important to understand the binary division in order to understand how

partitions are labeled and how choice vectors are generated. There are three

possible types of choice vectors, namely, cyclic, random and optimised. They

are explained in detail in section 3.9. Cyclic choice vector, which is the one

used by the original BANG file, is discussed in subsection 3.9.1, while ran-

dom and optimised choice vectors are discussed in subsections 3.9.2 and 3.9.3

respectively. The effect of the choice vectors on the load factor is discussed in

section 3.10. This section shows experimental results of how the load factor is

affected when a cyclic or a random or an optimised choice vector is used with

different data distributions, different number of attributes, different number

of records and different number of disk block sizes. The1 last section is the

conclusion of this chapter.

49

m

3.2 The BANG file

The BANG file is a multidimensional file structure which was first introduced

by Micheal Preeston [36,37]. It has many similarities to the other grid files

like multilevel grid file [139,140] and nested interpolation based grid file [110].

It differs from the other grid files in the way its domain-space is partitioned.

The way the BANG file is partitioned together with the rest of of its other

features will be explained in the subsequent sections.

As mentioned in 2.1, minimizing the cost of single attribute access meth-

ods has been studied extensively, hence our techniques is limited to mul-

tidimensional access methods, specially Point Access Methods, PAMs. So,

for our experiments we required a PAM which supports efficient processing

of queries and whose performance does not degrade in the presence of non-

uniform data distributions. The BANG file is such a PAM. This is because

the BANG file evenly distributes records amongst its partitions even if the

distribution of data is extremely skewed [36,37]. It does so by creating more

partitions in the domain subspaces where the density of the records is high

and fewer partitions where the density of the data is low. The subsequent

sections will explain how the BANG file does this.

Other reasons why we chose the BANG file for study include its:

• multidimensional file structure;

• high load factor (> 67%); ,

• fully dynamic in nature;

• no data replication property;

50

• high fun-out ratio;

• overflow and underflow propagating only upwards the tree;

• maintenance of spatial relationships between objects;

• worst case singe object searching, insertion and deletion require no

more disk accesses than the hight of the tree;

• easy incremental reorganization as the file grows;

• ability to handle range searches, partial match searches and exact

match searches.

The techniques of optimising data organisations, which are proposed in

this thesis, are not limited to work with the BANG file, they are equally

applicable with other multidimensional file structures.

3.3 The BANG file structure

The BANG file has a multidimensional file organization. It has a structure of

a balanced tree where each leaf node corresponds to a disk block containing

d:\-i -ecr. . and each non-leaf node corresponds to a disk block containing

entires •%-nkh contain inform ,.v"" r^out nodes one level down the tree.

Yoi .an also envisage * B/WG Hh- ;th n organizing attributes as an n-

dimensional data space, ror ^x.unpie. , relation Ri which has n attributes,

^i,0)A,i) •• -j^i.n-i, organised .-;• a BANG file can be envisioned as an n-

dimensional data space where each dimension corresponds to the domain of

an attribute in the relation. The domain-space of the relation is the cartesian

51

P..o

•

•

•

P*

V

Figure 3.1: A BANG file of 12 records and 5 data pages.

product of A',o, A,i, • • •, A>-i , where A,j is the domain of Aisi. A record

is represented as a point and a node as an n-dimensional partition within

the domain-space. Figure 3.1 contains an example of a relation which has

2 attributes organised as a BANG file. The relation has 5 partitions (the

boxes) and 12 records (the points).

Let Pitj represent a partition in /?,-, where 0 < j < N and where N is

the number of partitions in B4. Pij is a hyper-rectangle which covers the

subspa,ce (eijfl, e t J)i,..., e^n-i), where e ^ is an edge describing the extent

of the hyper-rectangle along A,fc-

As explained in the beginning of this chapter a BANG file has a balanced

tree structure. Each node of the tree corresponds to a partition. Partitions

which correspond to nodes of the same level of the BANG tree span the

domain space. For example, if the height (number of levels) of a BANG tree

is 3, partitions at level 1 span the whole domain-space, those at level 2 also

span the whole domain-space and so on. Figure 3.2 contains an example of

52

s
•

1

r'

a BANG file organization. The figure shows the BANG file represented as a

tree and as an 2-dimensional domain space. The BANG file in the figure has

3 levels, namely, level 0,1 and 2. Level 0 is the level of the leaf nodes and level

2 is the level of the root node. In the figure, a node and its corresponding

partition have been assigned the same label. The root partition, PO|o, is at

level 2 and its spans the whole domain-space. It has three entries which

correspond to partitions which are at level 1, namely, Po.u Po,i, and P0)3.

Also, the 3 partitions at level 1 span the whole domain-space. Each of the

partitions at level 1 contains entries which correspond to partitions at level

0. For example, P0,i of level 1 contain entries of POj4) Po,5, and P0)6. These

3 partition span the subspace spanned by Po,i- All the partitions at level 0

span the whole domain-space.

Each partition of a relation has a unique identifier. Each identifier con-

sists of two numbers, namely, a partition-number and a partition-level, and

is denoted as: partition-number:partition-level. The computation and

meaning of partition numbers and partition levels will be explained in sec-

tion 3.5.

In a BANG file, a partition can be enclosed by other partitions and it can

also enclose other partitions. In Figure 3.3 partition P$^ encloses partition

P0)2 and P0l3. Also, P0)2 encloses P0)3.

Partition x directly encloses partition y if x is the smallest partition from

all the partitions which enclose y. For example in 3.3, P0>i directly enclose

P0)2 but it doesn't directly enclose P0)3. Po,2 directly encloses P0,3.

ii

53

3
J

Figure 3.2: The structure of a BANG file.

Following is the formal definition of encloses and directly encloses.

Definition 3.1 Partition u : v, where u is the partition-number and v is

the partition-level, encloses partition x : y if v < y and the least significant

(rightmost) v bits of x are identical to u.

Definition 3.2 Partition u : v directly encloses partition x :y if there is no

other partition w : z which encloses x : y and is enclosed byu:v.

A leaf node of the BANG file contains actual data records. Each entry

of a non-leaf node contains a partition identifier and the corresponding disk

address of a node which is at the next lower level of the BANG tree. From now

on lets us call a partition which correspond to a leaf node as a data-partition

and those which correspond to non-leaf nodes as directory-partitions.

54

Po.i

P<U

P0.3

i

Figure 3.3: P^\ encloses Po,2 and PQJ, but it directly encloses Po,2 and not
Po.3-

3.4 Data partitions

Initially the BANG file has one leaf node and one non-leaf node (the root).

At this point the leaf node has no records. The root has one entry (record)

which contains the address of the non-leaf node. When new records are

inserted they are stored in the leaf node.

The number of records which can be stored in a leaf node is limited. As the

number of records to be stored in a leaf node exceeds its limit, it is split into

two new leaf nodes. Its records are then divided between the two new nodes

and it ceases to exit. The division of a data-partition into two is a recursive

process. First the partition is divided into two equal sized partitions. If the

contents of the two new partitions is balanced the division process ends. By

balanced we mean that the number of records in both new partitions are

equal or very close to equal. If the contents of the two new partitions is

not balanced, the size of the partition with the higher number of records is

successively halved until a balance is achieved. If the split results in two

equal sized partitions it is called a peer-split, and the two resulting partitions

I

55

*2,2

Before After

Figure 3.4: Peer-split of P into Pi and i^-

p
3,1

*3,2

Before

Figure 3.5: Enclosure-split of P into P3 and P4.

are called peers. A non peer-split is called an enclosure-split because one of

the partitions encloses the other. Figure 3.4 contains an example of peer-split

and Figure 3.5 contains an example of an enclosure-split.

In the BANG file, as in many other multidimensional files, a peer-split of a

partition is done using a technique known as a binary division. A value, which

is a mid point of one of its edges is used to bisect the current partition. We

call this value split-value and its corresponding attribute the split-attribute.

Records with value less than the split-value are put in one of the peers and

the remainder are put in the other peer. Let us call the former peer as the

low-peer and the latter as the high-peer.

ilk

56

,&

i I*

A

Each time a partition is created, a new record which contains its iden-

tifier and its address is inserted into a directroy-partition. The number of

such records which can be stored in a directory-partition is also limited. As

the number of records which must be stored in a directory-partition is above

its limit more directory-partitions are created by dividing existing directory-

partitions. The process of dividing a directory-partition is explained in sec-

tion 3.6.

3.5 Partition identifier

A partition identifier uniquely identifies a partition in a relation. It consists

of two numbers, a partition-number and a partition-level, and is denoted as:

partition-numberrpartition-level.

Partition-level: denotes the size of a partition relative to the size of

the domain-space. As explained in section 3.4, a new partition is created by

successively halving an existing partition. Therefore, the size of a partition is

2~/x that of the domain space, where n is 0,1,2, The partition-level of a

partition is its corresponding // value. For example, in Figure 3.1 the size of

the domain-space is equal to 2°, 23, 24, 24, and 24 that of Pi,0,Pi,i> ^1,2,^1,3

and Pi,4 respectively. Hence the partition-levels of Pi,o,Pi,i,Pi,2,Pi,3 and

P1)4 are 0, 3, 4, 4 and 4 respectively.

Parti t ion-number: denotes the logical address of a partition in a domain-

space. The method of assigning partition-numbers to partitions can be easily

explained with the help of the binary tree of Figure 3.6. Each node of the

binary tree consists of a partition-number, a pointer to a left child and a

¥

4-

57

low-peer /

Ox

low-peer '

low-peer

Before

low-peer

high-peer

OOllx lOllx
X

101 lx

After

Figure 3.6: Assigning partition-numbers to sub-spaces.

pointer to a right child. The left child corresponds to the low-peer and the

right-child to the high-peer. If the partition-number of a node is x (in bi-

nary), then that of its left child is Ox (prepend 0 to x) and that of its right

child is lx (prepend 1 to a;).

An enclosure split can be seen as successive peer-splits performed until a

balance is achieved. The partition-number of the enclosing partition is the

same as the original partition. The partition-number of an enclosed partition

depends on the number of peer splits performed to create it, and whether

a low or a high peer was chosen in each peer split. For example, consider

it.

\k

58

if

i

the splitting of a partition with partition-number of x (in binary) as shown

in Figure 3.6. Assume a balance (in number of records) in splitting x was

achieved after four successive splits. In the first split x was peer splitted into

l x and Ox. Since the number of records in l x was much more than the rest

of x, l x was further split into in l l x and Olx. Even after this split a balance

was not achieved and the number of records in l l x was much higher than

the rest of x. So l l x was split into Ol lx and l l l x . Even after this split a

balance was not achieved for the number of records in Ollx was much higher

than the rest of x. Finally, Ol lx was split into OOllx and l O l l x and a

balance was achieved between l O l l x and the rest of x. Hence, x was split

between l O l l x and the rest of x. This is shown in Figure 3.6. The solid

path of the figure shows the path that were taken in the successive splits.

3.6 BANG directory

A BANG file has the structure of a balanced tree, as shown in Figure 3.2.

Each non-leaf node contains entries which correspond to some nodes in the

next lower level of the tree. If there is an entry in Pitj which corresponds to

Pijk then Pij is the parent of i^,* and P^ is the child of Pitj. Each entry

consists of a child identifier and its corresponding disk block address.

Like a data-partition, a directory-partition is uniquely identified by a

partition-number and a partition-level. These values are computed in the

same way as those of the data-partitions. A partition which corresponds to

a parent node encloses all the partitions of its children.

59

The number of entries that can be stored in a directory partition is lim-

ited. When the number of entries that has to be stored in a directory-

partition is greater than its capacit}', the directory-partition is divided into

two. In the parent node, the entry for the old node is replaced by entries

for each of the two new nodes. This process is repeated if as a result the

parent node overflows. If the partition that is divided is the root, a new root

is created and entries for each of the two new nodes are placed into it.

The algorithm which is used to split a directory-partition is different from

that of the data-partition. A data partition encloses data records. Data

records are points, so that when a data-partition is split, each of its data

records has to be in one side or the other side of the division boundary. A

directory-partition is a partition which encloses other partitions. Partitions

are not points but subspaces, so when a directory-partition is split, it is

possible that one or more of its component partitions lie on both sides of the

division boundary.

For example, let us consider the BANG file given in Figure 3.7(a), where

•P-MJ Pi,4, A.S) -̂ 4,6 and Ptj are data-partitions and P4)o is the root partition.

Let us assume that the maximum number of entries that can be stored in a

directory-partition is 5.

If after few insertions P4]4 is split into P4)8 and P4,9 as in Figure 3.7(b), the

number of entries in P4)0 will be six hence P4,0 will overflow. If we divide P4)0

using the division algorithm of data-partitions, it could be divided into P4ii

and P4)2. P4,i encloses P4>6 and P4)7, while P4,2 encloses partitions P4)5, P4,8

and P4i9. P4)3 lies on both sides of the division boundary. The unshaded part

of P4i3 will lie in P4,i and the shaded part of P4,3 will lie in P4,2. The following

t

60

•i

Directory partitions

Data partitions

P4.4

P«3

P«

P4.7

p 4 f i

Before

(a)

Directory partitions

Data partitions

p
4,9

P4.8

P4

P43

Figure 3.7: Splitting a directory.

After

(b)

i
I

u

61 I?
M

are two approaches (there can be plenty others) which can be used to solve

the problem of partitions which lie on both sides of the division boundary.

• Divide the partitions which lie on both sides of the division boundary

along the division boundary [36]. This process can recursively prop-

agate to lower level nodes if the same situations occurs, forcing the

division of partitions even if they have few entries. Using this ap-

proach, to split the partitions of Figure 3.8, we need to split P^3 even

if it is not full. This approach can result in a lower load factor (number

of entries per partition) and higher insertion cost [37].

• Choose a division boundary such that no partition lies on both sides of

the boundary. One such splitting algorithm was also presented Freeston

in [37] and it works as follows:

Assume P{j is the partition to split. An initial boundary which best

splits the content of Pij is chosen. Let us name this boundary as B l . If

there is no partition in P{j which encloses B l or there is one partition

whose boundary coincides with that of B l , then Pij is split along B l .

Otherwise, search for two partitions in Pij, one which directly encloses

B l , and the second one which does not enclose B l but which encloses

the highest number of partitions in Pitj. Let us call the boundary of

the first partition B2 and that of the second one B3. Then split P^

along B2 or B3 depending on which one of them best splits Pij, that

is, provides the best balance of entries within the resulting partitions.

For example, P0,o of Figure 3.8a, is a parent of the 7 partitions shown in

the figure. If the maximum number of entries that can be stored in a parent

62

i

h

0,0 I P
0,2

P
0,4

P0.6
P
0,7

P
0,5

P0,3

(a)

f.

Figure 3.8: Splitting a directory partition.

63

partition is 7, then POiO is full. If as a result of insertion POi7 is divided into

Po,8 and POi9, as shown in Figure 3.8b, then the number of entries in Po,o will

be 8, hence it must be split. The initial boundary, B l , which best splits P0)0

is shown in Figure 3.8b. This boundary contains four of the eight partitions,

namely, P0|5, P0i6, POj8 and POig. But B l cannot be used to split POjo because:

1. it doesn't coincide with the boundary of a partition;

2. it is enclosed by P0)4.

Hence we search for two other boundaries:

1. B2 which directly encloses B l and

2. B3 which doesn't enclose B l but which encloses the highest number

of other partitions.

B2 and B3 are shown in Figure 3.8b. B2 splits POiO into two partitions. The

first one will contain five partitions, Po,4, Po,5, Po,6> Po,8 and Po.g, and the

second one will contain the rest, P0)i, Po,2 a,nd P0)3. Also, B3 splits POio into

two partitions. The first one will contain six partitions, Po,3, Po,4, Po,5> Po,6J

Po>8 and Po,9, and the second one will contain two partitions, Po,i and Po,2.

Since B2 best splits POiO than B3, Po,o will be split along B2.

Out of the two above mentioned approaches of splitting directory parti-

tions, we chose ths latter one because it results in a higher load factor and

lower insertion cost than the former [37].

I (

ll

64

V
3.7 Searching, insertion, deletion and merg-

ing

The search for a record starts at the root directory node. From the root

entries, a partition which encloses the record is chosen. If there are two or

more partitions which enclose the record, the one which directly encloses

the record is chosen. This is the one with the higher partition-level. The

search then descends to the next lower level of the BANG file directory tree,

following the page identifier from the chosen entry. The searcli procedure is

repeated within the current level. This search procedure is applied at each

level of the tree until the data-partition wfckh directly encloses the record is

found.

Insertion of a record starts by first searching for a partition which will

directly enclose the record. The search for the partition starts at the root

directory node. Prom the root entries, a partition which encloses the record

is chosen. If there are two or more partitions which enclose the record, the

one which directly encioses the record is chosen. As explained in the previous

paragraph, this is the one with the higher partition-level. The search then

descends to the next lower level of the BANG file directory tree, following

the page identifier from the chosen entry. The search procedure is repeated

within the current level. This search procedure is applied at each level of the

tree until the data partition which directly encloses the record is found.

The deletion of a particular record starts by first searching for tht dat&

partition that directly encloses the record. The search for the data partition

is done as explained above in this same section. Then the record is searched

65

if
t If

0

within that page and deleted.

If as a result of many deletions, the number of records in a partition

falls below certain threshold, the partition can be merged with others were

possible. To merge an underpopulated partition, an attempt is made to

first merge it with one of the partitions it immediately encloses. If such a

partition cannot be found or the merging results in an overflow an attempt

is made to merge it with its peer. Again if the merging with its peer was not

successful, a last attempt is done to merge it with a partition which directly

encloses it. A merge of two partitions means a deletion of a partition. Hence

a successful merge can again result in underpopulated partition of the next

upper directory level. As a result a successful merge can propagate upwards

the tree [36].

3.8 Binary division

In the BANG file as in many other PAMs, splitting a partition is done by

a process known as a binary division. In the context of this thesis a binary

division is the division of a domain into edges (sub-domains) whose sizes are

2~k (where k = 0 ,1 ,2 . . .) of the domain. To simplify the understanding of

binary division, let us assume D{j as a domain of unsigned integers rangvng

from 0 to 2di<> - 1. So the minimum number of bits needed to represent my

value in Ditj is dy. Let 6Uifc, where 0 < k < ditj, represent the kth most

significant bit of a value in A j - For example, if dij is 6, then Dij will range

from 0 to 26 - 1 = 63. The values of 6y,5, biJA and bitj>3 bitjt2, biijti and biij>0

of 7 (000111 in binary) are 0,0,0,1,1 and 1 respectively.

t

r*.

66

The value of the most significant bit position can be used to divide the

values in Did into two equal halves. For example, if Dtj values range from

0 to 63, then a minimum of 6 bits is needed to represent all its values. For

values less than 32, the value of the most significant bit position, &,Ji5, is 0,

and for those which are greater or equal to 32 it is 1. The two most significant

bit positions, 6,-JI5 and 6tJi4, can be used to divide the values of D{j into 4

equal intervals. Values of 6^5 and 6,̂ 4 are:

• 0 and 0 respectively for the values > 0 and < 16,

• 0 and 1 respectively for the values > 16 and < 32,

• 1 and 0 respectively for the values > 32 and < 48,

• 1 and 1 respectively for the values > 48 and < 64.

Once Dij is divided into 4 equal intervals, the next less significant bit position

can be used to further divide each of the 4 intervals into two equal halves

and so on. In short the xth most significant bit can be used to bisect each

interval that was created as the result of the x — 1th most significant bit. The

process of dividing domains in such a way is called binary division.

6

3.9 Choice vectors

As was discussed in section 3.4, peer-splitting a partition is done by bisecting

one of its n edges (sub-domains). An fedge) is the extent of a partition along

a particular domain. The edge to be bisected cannot be chosen randomly for

the following two reasons.

67

1. The partition-number as it was discussed in the section 3.5 will be

useless. So it will be impossible to identify a partition.

2. As will be discussed in this and the next few chapters, the order by

which a partition is divided significantly affects query cost.

The order by which a partition is divided is maintained in an ordered list

known as a choice vector. Each element of a choice vector is a bit position.

The mapping between an element of a choice vector (a bit position) and

an edge of a partition was discussed in section 3.8. Since peer-splitting a

partition is done by bisecting one of its edges, is in fact a binary division.

Therefore peer-splitting a partition can be done by using bit positions and

that is why each element of a choice vector is a bit position. An element of a

choice vector is labeled as ft,-^ and represents the kih most significant bit of a

Dij value. Elements of a choice vector are ordered and are used accordingly.

Bit positions which create larger intervals come first in the order, which

means an element of a choice vector which divides a domain into 2X must be

used before the one that divides the same domain into 2X+1. We know from

section 3.5 that the partition-level of a partition shows the size of a partition

relative to the domain-space. For example, if the size of the partition is ^

that of the domain-space, then its partition-level is k. The choice vector

element to be used for the next split is specified by the partition-level of the

partition. So when we divide a partition whose partition-level is k we use the

kth element of the choice vector. For example, if &o,o,o> &o,i,o, &o,o,i, Vi,i> &o,o,2

is a choice vector of Ro which has 2 a t t r i bu te s , ^ and AOii, then a partition

with partition-level of 2 is peer-splitted by 6o,o,i-

X
r i l l

If

68

ii<</

The First choice vector element, the left most one, creates partitions

which are half the size of the domain-space, while the second element creates

partitions which are a quarter the size of the domain-space, the third element

creates | and the xth element creates ^ that of the domain-space and so on.

Choice vector affects the wa}r a domain-space is partitioned which in re-

turn affects the cost of a query. Bad choice vector significantly add to the

cost of a query and good choice vector significantly minimize query cost.

Chapters 4 to 7 will explain, in details, the relationship between choice vec-

tors and query cost and how to find a choice vector which results in the

minimal average query cost. But first lets us discuss the two main types of

choice vectors used in this thesis, namely, cyclic choice vectors and optimized

choice vectors.

3.9.1 Cyclic choice vector

A cyclic choice vector is a choice vector whose elements are assigned bit posi-

tions from different attributes in a cyclic fashion. It is the choice vector that is

used by the existing BANG file [37]. &i,o,o&«!iA)2A',oA,i>î 2,A">o,2&i,i,2&«,2,2,

is an example of a cyclic choice vector for a relation, Ro, which has 3 at-

tributes, labeled Aifi, AiiU and Ai<2. The most significant bit position of Aifl

is assigned to the first element of the choice vector, &;i0,0) then the most sig-

nificant bit position of the second attribute, Aiti is assigned to the second

element of the choice vector, then the most significant bit position of the

third attribute, Ai>2 is assigned to the third element of the choice vector and

so on.

69

As was mentioned in section 1.2, the way the data is organised affects

performance. Since the way data is organised is enforced by a choice vector,

choosing the right choice vector is very important. When there is no clue of

the type and distribution of the queries to be used, the data can be organised

using the cyclic choice vector. In Chapters 4 to 7, we will compare the

performance, in terms of query cost, of the cyclic choice vector and that of

the optimal choice vectors. Unlike that of the cyclic choice vector the finding

of an optimal choice vector takes into consideration the query distribution.

The elements of an optimal choice vector are assigned by using heuristic

algorithms and some cost functions and will be discussed in the next section.

3.9.2 Optimized choice vector

Choice vectors affect query cost. For queries with known probabilities, it

is possible to approximate the choice vector which results in their mini-

mum average cost. Such a choice vector is called an optimized choice vector.

Moran in [94] showed that for the general problem when the probability of

an attribute appearing in a query is not independent of the other attributes,

finding the optimal bit allocation is NP-hard. Hence, in this thesis heuris-

tic algorithms, which are explained in section 2.6, together with some cost

functions (which will be explained in the coming chapters) will be used to

determine good choice vectors.

For example, finding optimized choice vector using minimal marginal in-

crease, which was explained in section 2.6.2, and a given cost function F, is

done as follows. Initially nothing is allocated to the elements of the choice

vector. Then the first element of the choice vector is allocated to bifit0 and

70

the average query cost using cost function F is computed. The average query

cost is repeatedly computed after giving the same choice vector element in-

stead to 6,->li0, and then to &i)2)o, and so ct\. until all the attributes are tried.

The attribute which gives the lowest average query cost is permanently al-

located the first element of the choice vector. The same process is repeated

for the second element of the choice vector, then the third, and so on. This

process is repeated until all the elements of the choice vector are allocated.

From now on the term minimal or optimal will be used to indicate a

solution which is the result produced by the heuristic algorithms and cost

functions. These minimal or optimal solutions are typically local minima or

local optima respectively.

3.9.3 Choice vector size

To create a partition whose size is \ of that of the domain-space, the first

element (the right most) of the choice vector is used. To create a partition

whose size \ that of the domain-space, the second element of the choice vector

element is used. The third element of the choice vector creates partitions

whose sizes are - that of the domain-space. Inshort to create a partition

whose size is 2~k that of the domain-space, kth element of the choice vector

is used. Hence the size of the choice vector is decided by the size of the

smallest partition in the domain-space.

In the BANG file the size of a choice vector needed becomes smaller and

smaller as we go up the directory level. This is because partitions of a higher

directory level encloses many lower level partitions. This makes the number

Ik

71

of partitions of an upper level directory lower and their sizes larger than

those which are in the lower directory level.

Each BANG file uses one choice vector for both its data and directory

partitions. But as we go up the directory level, more of the elements on

the right end of the choice vector are not used. For example in a BANG

file whose smallest data partition is 2~8 of the domain-space, the minimum

size of the choice vector is 8. If the size of smallest partition in the lowest

directory level is 2~6, the last two right most elements of the choice vector

will not be used in this directory level.

3.10 Effect of choice vectors on the load fac-

tor

The data of the original BANG file [37] was organised using a cyclic choice

vector. In this thesis, and for the first time, the BANG file was extended

using non-cyclic choice vectors. The main objective of using non-cyclic choice

vectors is that most optimal choice vectors are non-cyclic.

Inorder to prove that none of the original BANG file features were compro-

mised as a result of using non-cyclic choice vectors, we conducted a number

of experiments. In the experiments three types of choice vectors were used,

namely, cyclic, optimised and random. The cyclic and the optimised choice

vectors were explained in sections 3.9.2 and 3.9.1 respectively. The random

choice vectors were generated randomly.

One of the main features of the original BANG file is its load factor. It

is a main feature of the BANG file because change in the load factor affects

72

many of the other BANG file features that are mentioned in section 3.1. So to

analyse the impact of a choice vector on the load-factor of the BANG file, four

sets of experiments were conducted. In each set of experiment all the three

types of choice vectors and one of four parameters, namely, data distribution,

number of attributes, number of records and disk block size were used. Then

we compared the results with that of original BANG file [37], which only uses \[f

cyclic choice vectors. The experimental results are presented in Figures 3.10

to 3.19. They indicate that none of the aforementioned parameters have a
'/ y

noticeable effect on the load-factor of the BANG file. Therefore, for a given %

V
7

query distribution we can use the optimal choice vector to obtain the best

performance in terms of the average query cost without increasing the storage

cost.

3.10.1 Experimental results and analysis

This subsection presents the experimental results. The results are logically

divided into four sets. The first set of results shows how the load factor of ,%

a BANG file is affected by using non-cyclic choice vectors and different data

distributions. The second set of results shows how the load factor of the

BANG file is affected by non-cyclic choice vectors and different number of ^

attributes. The third and the fourth sets of results show the effect of non-

cyclic choice vector on the load factor when each non-cyclic choice vector is

used with different number of records and different block size respectively.

73

Unless specified each experiment is conducted using:

• SPARCstation 20 using SunOS 5.5.1;

• a BANG file of a million records;

• relations of 4 attributes;

• domains of unsigned integers;

• a disk block size of 1 Kbytes.

Non-cyclic choice vector vs data distribution

This subsection presents the first set of results. The results are obtained by

experimenting each type of a choice vector with differnet data distributions.

The data distributions used were chosen from the set: uniform, clustered,

sinusoidal, and linear. Figure 3.9 provides examples of each of these data

distributions.

The final results are shown in Figures 3.10, 3.11, 3.12 and 3.13. The

horizontal axis of each figure represents the number of records and the ver-

tical axis represents the load factor. Each figure shows three results and are

represented as dotted, dashed and solid lines. The dotted line represents

the average load factor when a cyclic choice vector is used. The dashed line

represents the average load factor when a random choice vector is used. The

average load factor when an optimised choice vector is used is represented by

the solid line. The three results shown in Figure 3.10 were generated using a

uniformly distributed data, those shown in Figures 3.11, 3.12 and 3.13 were

74

» * r y \ /
Uniform Clustered Sinoid Linear

Figure 3.9: The four data distributions used in generating the results.

generated using clustered, sinusoidal, and linear data distributions respec-

tively. The results show that choice vector has no effect on the load-factor

when used with different data distributions.

The results of the uniform and clustered distribution have .a sinusoidal

shape while that of the other two have a strait line shape. The reason for

this is that in a uniform and in a clustered distributions, nearly all the data

blocks become full in nearly the same time and as a result they will be split

at nearly the same time. That is why the load factor goes up and down as is

shown in Figures 3.10 and 3.11. The data blocks in a linear and sinusoidal

distributions don't become full in the same time, hence they don't split at

the same time thus on the average the load factor remains the same all the

time.

Non-cyclic choice vectors vs number of attributes

To study how the load factor is affected when used with different number of

attributes and different choice vectors, we experimented using relations of 2,

3,4 and 8 attributes. Figures 3.14 to 3.17 show the results of the experiments.

The horizontal axis of the figures represents the number of records and the

vertical axis represents the load factor.

75

u

I
S

100 n

80-

60-

40-

20-

Cyclic
Random

• Optima!

M/WWW

10 100
—i 1—
1000, 10000
Number of tuples

100000 1000000

Figure 3.10: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page rize = 1024 bytes, data distribution --- uniform.

lOO-i

8 0 -

¥ 60 H

T3 4 0 -

2 0 -

Cydie
Random

• Optimal

M/VVW\M/W

10 100 1000 10000

Number of tuples
100000 1

1000000

Figure 3.11: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = clustered.

76

I

S

lOO-i

80-

tor
oa

d-
J

60

40

20-

Random
Optimal

A»

10 100 1000 10000

Number^ tuples
100000 1000000

Figure 3.12: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = sinusoidal.

o
"S

I
CO

100 n

80-

60-

40-

20-

Cyclic
— — — Random
—^— Optimal

10 r
100

— i —
1000

T
10000

Number of tuples

100000
—I
1000000

Figure 3.13: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = linear.

f£

• ' , - %

77

I
§
9

100-,

80-

6 0 -

40-

20-

Random
Optimal

10 —r~
100

1000 10000

Number of tuples

1
100000

—I
lOOUJOO

Figure 3.14: Effect of the choice vector on the load-factor. Number of at-
tributes = 2, page size = 1024 bytes, data distribution = uniform.

Figure 3.14 shows three results as dotted, dashed and solid lines. The

dotted line represents the results obtained when cyclic choice' vectors are

used. The dashed and the solid lines represent the results obtained when

random and optimal choice vectors were used respectively. All the three

results were generated using relations having two attributes. Similar results

were obtained when relations with three, four and eight attributes were used

as shown in Figures 3.15 3.16 and 3.17 respectively. These results show that

choice vectors have no effect on the load-factor even when different number

of attributes are used. The load-factor always remained around 67% as that

obtained by Freeston in [37].

Non-cyclic choice vectors vs number of records

To study the effect of choice vectors on load-factor when used with different

number of records we experimented using relations having from 100000 to

1000000 records. Figures 3.10 to 3.19 show the results of the experiments.

78

il

ft

&

i
I

100-.

,-s 8 0 "

J 60-

-a 40-

20-

• Cyclic
— — — Random
— — Optimal

WWWV

10 r
100

i 1
1000 10000
Number of tuples

100000
—I
1000000

Figure 3.15: Effect of the choice vector on the load-factor. Number of at-
tributes = 3, page size = 1024 bytes, data distribution = uniform.

I

100 -i

8 0 -

6 0 -

4 0 -

2 0 -

Cyclic
— — — Random

Optimal

10 100 1000 10000

Number of tuples

100000 1000000

Figure 3.16: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = linear.

J 79

u2u
a

CS

lOO-i

80-

60-

40-

20-

C)-clk
— Random

Optimal

10 100
—I 1—
1000 • 10000
Number of tuples

100000
—I
1000000

Figure 3.17: Effect of the choice vector on the load-factor. Number of at-
tributes = 8, page size = 1024 bytes, data distribution = uniform.

The horizontal axis of the figures represents the number of records and the

vertical axis represents the load factor. Each figure shows three results which

are represented as dotted, dashed and solid lines. The dotted line was gener-

ated using cyclic choice vectors, The dashed line was obtained using random

choice vectors and the solid line was obtained using optimised choice vec-

tors. In all the cases the load factor remained around 67%. This implies that

choice vectors have no effect on the load-factor even when used with different

number of records.

Non-cyclic choice vectors vs block size

The fun out, which is the number of directory records that can be put in a

disk block, affects performance. If the number of directory records that can

be put in a disk block is small, the BANG tree will have more number of

levels. Increasing the level of the BANG file by one, causes the number disk

accesses done to answer a query to increase by one.

80

5

I

%

I
% ' ' •

• I - '

V

% :

lOO-i

80-

g 60-

-o 40-

j
2 0 -

Qrfic
• — Random
—— Optimal

10 100 1000 1O0O0

Number of tuples

— 1 —
100000

—I
1000000

Figure 3.18: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 512 bytes, data distribution = uniform.

To study the effect of choice vectors on load-factor when used with dif-

ferent bi'ock sizes, we experimented with block sizes of 512, 1024, 2048, 4096

and 8192 bytes. Figure 3.18 to 3.19 show some of the results of the exper-

iments. The horizontal axis of the figures represents the number of records

and the vertical axis represents the load factor. Each figure shows three re-

sults which are represented as dotted, dashed and solid imes. The dotted

line was generated using cyclic choice vectors, The dashed line was obtained

using random choice vectors and the solid lin<.; was obtained using optimised

choice vectors.

The results show that the load-niotir is around 67%.This implies that

choice vectors have no effect on the load-factor even when used wi-Ji different

block sizes.

81

I

a?:

x
$

-fit

T

lOO—i

8 0 -

o 60-J

5 40-

5
20-1

Cydie
Random

• Optimal

10 —r~
100

1000 10000

Number of tuples
100000 1000000

Figure 3.19: Effect of the choice vector on the load factor. Number of at-
tributes = 4, page size = 2048 bytes, data distribution = uniform.

3.11 Conclusion

A BANG file structure is a dynamic multidimensional file structure. It has

a directory structure of a balanced tree. It is similar to the other grid files

but it differs from them in the way its partitions are created.

The are two types of partitions in the BANG file, namely, data partitions

and directory partitions. Both types of partitions are labeled in the same

way. The unique identifier (label) of a BANG file partition has two parts,

namely, partition-level and partition-number. Partition number denotes the

position of the partition in the domain-space of BANG file, and partition level

denotes the size of the partition relative to that of the whole domain-space.

The main reason that the BANG file was chosen for the experiments of

this thesis is because of its ability to distribute records amongst available

disk blocks (with a load-factor of 67%) even when the data distribution is

skewed. One of the reasons that the BANG file has such an attribute is

82

; i

because, in the BANG file a partition can enclose other partitions and it can

also be enclosed by other partitions.

One way of improving the performance of algorithms manipulating data

on secondary storage is to cluster similar data. The clustering of data will

be of most benefit if it results in the reduction of the time taken to perform

operations which are frequently required of the database management sys-

tem. To achieve the optimal performance, the frequency, type and the cost

of each operation must be taken into account when designing a clustering

arrangement.

In the BANG file as in may other PAMs, clustering related data is

achieved by using choice vectors, which is structure which maintains the

order by which a domain-space is split. Splitting the domain-space of the

BANG file is done by a process known as a binary division. In a binary

division each edge of a partition has a size of 2~k (where k = 0,1,2...) that

of its corresponding domain.

There are three types of choice vectors, namely, cyclic, random and op-

timized. The original BANG file uses only the cyclic choice vector. In this

thesis the BANG file was extended by using non-cyclic choice vectors. To

make sure that such an extension was not done at the expense of other

BANG file properties, specially its load factor, a series of experiments were

performed. Experiments were done using non-cyclic choice vectors together

with different data distribution, different number of attributes, different num-

ber of records and different disk block sizes. In all the experiments the load

factor remained as that of the original BANG file, 67%. This shows that

choice vectors have no effect of the load factor of the BANG file.

" fM

4 &

- ! ; s

I * "

* • >

.4I

t r ^

[•••• '?;•

83
l ! I ", i

Choice vectors affect performance. So if the distribution of a set of queries

is known, then it is better to use a choice vector which will minimize the

average cost of the set. Such a choice vector is know as optimized choice

vector. Techniques of finding optimised choice vectors for partial match

queries will be discussed in the next chapter and that of the other relational

operations will be discussed in subsequent chapters.

ife-

1«
1 %

*i
r*

84

Chapter 4

Optimising Partial-match

Queries

1I
!
I
a •

4.1 Introduction

Partial-match retrieval is one of the most important class of queries in a

database system retrieval. It is concerned with the retrieval of records in

a file when a liir ited amount of information is provided to identify those

records. Answering a partial-match query requires reading all the disk blocks

that may contain matching records. The following query is an example of a

partial-match query:

fr

SELECT studentID
FROM student (q0)
WHERE major = 'Computer Science'

where student is a relation, and siudentID and major are some of its

attributes.

85

A common method used to evaluate the performance of a database system

is to count the average number of disk accesses made to answer a query.

To minimize the average query cost, the average number of disk accesses

needed to answer a query must be minimized. One way to achieve this is by

using efficient access structures to cluster records that are frequently accessed

together in the smallest possible number of disk blocks.

The number of disk blocks retrieved depends on the algorithm used to

place the records in the blocks within the file. The average number of disk

blocks accessed per query can be minimized if an efficient record placement

algorithm which takes the query distribution into account is used.

In this chapter, we present a technique of clustering records in multi-

dimensional structures which minimizes the average cost of partial-match

query. Researchers have proposed different ways of clustering records in

multidimensional file structures, but few have tried to optimize their clus-

tering technique in order to reduce the average query cost. Those that have

done so [3,51,52,83,84,116] were limited to uniform data distribution. To

avoid this limitation, we use a multidimensional file organization that evenly

distribute records among the allocated disk blocks even when the data distri-

bution is skewed. This is the first study of optimizing partial-match queries

when the data distribution is non-uniform. Data distributions are often

non-uniform in real application domains and therefore this study is impor-

tant [138].

Although the techniques described in this chapter were experimentally

tested using the BANG file, they can be used to optimize other multidimen-

sional file structures.

86

•r

V?

'i

This chapter has 7 sections. Section 4.2 is an intoduction to partial match

queries. Section 4.3 explains a partial-match retrieval algorithm using the

BANG file. Section 4.4 discusses a technique of optimising partial-match

queries using minimal marginal increase (MMI) together with the associated

cost functions. T ie cost functions are explained in detail in Section 4.5.

Section 4.6 presents the analysis and the experimental results of the proposed

technique. Section 4.7 is the conclusion.

4.2 Partial-match retrieval

A partial-match query is a specification of the values of zero or more at-

tributes in a record. Answering partial-match queries requires accessing all

the disk blocks which may hold records satisfying the condition specified in

the WHERE clause of the query. For example, in the following query, qu

which uses relation RQ of Figure 4.1, the values of the attribute A0,o is spec-

ified as 40. Let us call partitions which contain records which satisfy the

WHERE condition of a partial-match query as ^-partitions.

SELECT A0,i
FROM RQ (qi)
WHERE Ao,o = 40

The answer to the query, q\, consists of records whose -4O)o value is 40.

These records can be found in four disk blocks: P0,A, PO,5, Po,6 and P0,7- So

these four disk blocks are the ^-partitions of qx.

$

&
%

87

!£

R
0,1

i

J

24

16

p
0,3

P0,2

Po,i

P
0,0

"0,7

P»,5

Po,4

0 40 A*°
0 32 64

Figure 4.1: relation i2o,o-

4.3 Partial-match retrieval Algorithm using

The BANG file

The partial-match retrieval algorithm starts by creating a search string. Each

element of a search string is either 0 or 1 or " *". The length of a search string

is equal to the size of the choice vector which belongs to the relation used

in the query. Each element of a search string corresponds to a choice vector

element. Each element of the search string which corresponds to a specified

attribute is assigned a 0 or a 1, depending on tin value specified. Each

element which corresponds to the unspecified attribute is assigned a "*". In

Sections 2.3 it was discussed that the most significant bit of an attribute Aitj

is represented as bitjfi and the second most significant bit is represented as

bijto and so on. In short the kth most significant bit of A{j value is represented

as bijtk. For example, consider the above mentioned query qi which uses RQ

of Figure 4.1. The values of AQfi range from 0 to 31, so a maximum of 6 bits

is enough to represent a value in >10,O- The most significant bit is of a value in

Aafl is represented by &o,o,o and the second most significant bit is represented

by &o,o,i and the least significant bit by 6OiO)5. Similarly a maximum of 5

bits is enough to represent any value in AQ>i. Let tne choice vector of RQ

be &o,o,o&o,iIo&o,i,i- In the example query, qx, Ao,o is specified as 40 (101000

in binary) therefore &o,o,o is 1. Since Aoti is not specified its corresponding

bits in the choice vector, 60,i,o and 60,1,1, are each assigned a "*". Hence the

search string (search index) is 1 * *.

In a BANG file the search for the ^-partitions starts from the root par-

tition. The partition-number in each entry of the root is converted to bi-

nary, then inverted and then matched with the search index. Only the

left most m (where m is equal to the partition-level of the partition) bits

of the inverted partition-number are matched with their corresponding ele-

ments of the search string. A partition to be an ^-partition, every bit of its

inverted partition-number must match its corresponding element from the

search string whose value is not "*". The search for the ^-partitions de-

scends to the next lower level directory using the entries of the ^-partitions

identified so far. These process is repeated until all the ^-partitions are

identified.

4

,-Sr;

89

R
0,1

32

16

p
0,1

p
0.0

p
0.3

P0.2

P0,5

* 0 , 4

Po,7

* 0 , 6

40 A
0 16 32

Figure 4.2: Aofi is specified as 40. 2

0.0
48 64

ofl has more intervals based on AQt0.

4.4 Optimising partial-match retrieval

The manner in which a BANG file is partitioned significantly affects the

number of disk blocks accessed to answer a partial-match query. For example,

in the above query, qi, if RQ of Figure 4.1 was replaced by Ro of Figure 4.2

only 2 partitions (P0,4 and P0)5) instead of 4 will be accessed. Although

the number of disk blocks in both relations is the same, fewer disk blocks

are accessed when the query uses Ro of Figure 4.2. This is because the

later relation has more divisions based on the specified attribute, AOtO. This

means, in the choice vector of RQ of Figure 4.2, more elements allocated to

Aoto than that of ^o,i-

For a given set of queries, if the queries which specify A0>i are more likely

than those which specify AOj, a lower average query cost is more likely to

90

v

L

k

result if more element of the corresponding choice vector are allocated to

AQji than to AOj. For an arbitrary set of queries, finding optimal choice

vectors, which results in the minimum average query cost, is NP-hard [94].

Hence, heuristic algorithms and partial-match query cost functions are used

to find optimal or near optimal choice vectors. The heuristic algorithm used

is chapter is minimal marginal increase,MMI. MMI was extensively discussed

in Section 2.6.2. The partial-match query cost functions are discussed in the

next section, Sectim 4.5.

4.5 Cost functions

This section discusses the cost functions used with MMI when searching for

choice vector which results in the minimal average query cost.

A relation, i?,-, which has a choice vector of length di has a maximum

of 2di partitions. This is because each element of a choice vector represents

a bit position, so it can only have a value of zero or one. In Section 4.3 it

was discussed that in the the search string of a query, each element of an

unspecified attribute is assigned a "*". The choice vector elements which

correspond to the specified attribute are assigned a zero or a one depending

on the specified value. For example, if the specified value is 40 (101000

in binary) then the value of the first search index which correspond to the

specified attribute is assigned a one and the second one a zero and an so

on. If in the search sting, the number of elements which correspond to the

specified attribute is dij, then the number of elements which belong to the

unspecified attributes (those assigned "*") is d{ - diyj. Therefore the number

91

• _ ;

-!" V

1
IS
i
1
si*
tf
-v-SrfP

1
1
J

/"̂

<

f",fi 1
'•IT*1

- %

W\
[I
!*T> 1

f !^"jw

""""•'I

%&

• : - !

; ^

»

i

i ; *

of partitions which can hold the value specified are at most 2di~di'j. Hence

the cost of that query is 2*~*J. In short, if the number search string which

are assigned is m then the cost of the query is 2m.

A typical BANG file has more than one directory level. The partitions

in each level span the whole domain-space. Directory levels are labeled as

0 , 1 , . . . , F, where F is the level of the root directory and 0 is the level of the

data partitions. Let the partition-level of the smallest partition at level k be

denoted as Ik- Since the smallest partition at level k is bigger in size than

the smallest partition at level k — 1, the number of choice vector elements

used at level k will be smaller. In fact at, level k, only the first Z* elements

of the choice vector are used. Prom the first Z* elements of the choice vector,

let d^j be the number bits which correspond to -A,-,j. Then the cost of a

partial-match query can be estimated as:

n A (4.1)

where q corresponds to the attributes with values specified in the query.

For example, consider a relation R\ which has three attributes, .Ai,o, ^4i,i

and -Ai)2. Let the choice vector of R\ be: 61,1,0 61,0,0 61,2,0 61,0,1 61,1,1 61,0,2 61,2,1

61,0,3 61,2,2 61,0,4 &i,i,2 61,2,3. If a partial-match query q2 specifies (in binary)

Aifl and Ai>2 as 0100110010001 and 1110010001100 respectively, the search

index will be *011 * 01011 * 0. Assume i?i has 3 directory levels with /0, 1̂

and l2 as 0, 4, 12 respectively. By applying Equation 4.1 to calculate the cost

of performing q2, 8, 2 and 1 partitions are retrieved from directory levels 0, 1

and 2 respectively. Therefore, the cost of q2, which is the number of disk

J
1

1

• 1 1
"inm
Hm

i * *f

92

i

accesses done to answer q2, is 11.

Equation 4.1 differs from those described in [3,51,52,83,84,116] because

they describe the cost for multi-attribute hash files, which do not include any

directory blocks. Equation 4.1 takes into account both the data and directory

blocks of the BANG file, and assumes that the cost at each level is uniform.

In general, this is not the case. However, at the data block level, the BANG

file ensures that, on average, the density of data blocks is uniform, and our

cost formula reflects this. At higher (directory) levels, this is not guaranteed.

However, the number of blocks at higher levels is significantly smaller than

those at the data block level, and therefore the resulting error will generally

be small.

For a set of queries, Q, the average cost of a query is given by

Cost =

where pg is the probability of query q being asked, and cq is the cost of query q

and is given by Equation 4.1. Combining Equations 4.1 and 4.2, the average

cost of a partial-match query is

(4.3)

To ensure a minimal average query cost, elements of a choice vector be

allocated using MMI and the cost function of Equation 4.3.

93

(4.2)

4.6 Performance Evaluation

In this section we present six sets of experimental results which show the

performance of a BANG file constructed using a choice vector determined

by the MMI. We refer to these choice vectors as optimized choica vectors,

although choice vectors found using MMI are not guaranteed to be optimal.

The first set of results compares the performance of the optimized and

cyclic choice vectors. The cyclic choice vector does not take the query dis-

tribution into account. It is a choice vector having an equal number of bits

from each attribute, allocated in a cyclic order. Cyclic choice vectors are

discussed in Section 3.9.1.

The second, third and fourth sets of results show the effect of the page

size, file size and number of attributes on the performance of query processing

using..the optimized choice vector.

The fifth set of results shows whether the average query costs using op-

timized choice vectors are local minima. This is achieved by evaluating the

cost of choice vectors which differ in 1 or 2 elements from the optimized

choice vector. Let the choice vectors which differ in 1 or 2 elements be called

neighbours in our discussion.

Query distributions change over time. Since generating an optimal choice

vector every time when the query distribution is changed is an expensive

operation, we don't want to change our choice vector whenever the query

distribution changes slightly. A solution, based on MMI and Equation 4.3,

is called stable if a slight change in the query distribution doesn't affect the

optimality of the solution. The last set of results deals with the stability of

i i

94 u
I'--

I
the optimized solution. It shows the change in the average query cost of the

optimized choice vector as the query probabilities change.

i
i

4.6.1 Environment

Our implementation of the BANG file includes our extension of splitting

using a choice vector. We ran our experiments on a SUN SPARCstation.

For a relation containing n attributes, we generated 2" — 1 partial-match

queries with different randomly generated probability distributions. As the

cost of the open query (the query not specifying any attributes, which re-

trieves all records) is independent of the choice vector, we assume that the

probability of specifying the open query was zero.

Unless specified, the page size was set to be 1024 bytes, four (integer)

attributes per relation were used, and each BANG file (relation) contained

one million randomly generated records.

4.6.2 Results

A number of experiments were performed to study the performance of the

optimized choice vectors determined using MMI. The experiments were done

using different query and data distributions. The data distributions used are

shown in Figure 3.9.

The four query distributions used are shown in Table 4.1. They are la-

belled as 0 i , 0 2 , 03 and 0 4 . In Table 4.1, the first column indicates which of

the four attributes are specified in each query (a 1 if the attribute is specified

95

i

I

Attributes

A,3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

Ai,2
0
0
0
0
1
1
1

1
0
0
0
0
1
1
1
1

Ai,l

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Query distributions
©i
0.0

0.06413
0.32996
0.12622
0.06384
0.02950
0.12566
0.05201
0.03208
0.01803
0.05738
0.02718
0.01790
0.01282
0.02709
0.01618

e2
0.0

0.02005
0.00140
0.05364
0.00104
0.03718
0.00268
0.09943
0.00195
0.07287
0.00513
0.19476
0.00357
0.13518
0.00949
0.36160

e3
0.0

0.11619
0.04203
0.03352
0.16105
0.12118
0.04360
0.03466
0.09484
0.07241
0.02875
0.02373
0.09878
0.07527
0.02961
0.02439

e4
0.0

0.04092
0.26666
0.17226
0.04550
0.03057
0.19335
0.12524
0.00991
0.00768
0.03141
0.02150
0.00819
0.00663
0.02364
0.01653

Table 4.1: Query distributions.

and a 0 if it is not), while the remaining columns show the probability of the

query in each ••: f the query distributions.

Optimized vs cyclic choice vectors

Tables 4.2, 4.3, 4.4 and 4.5 show the performance of the cyclic and optimized

choice vectors for four query and data distributions. Column 1 of each table

shows the query distribution used for each BANG file. Columns 2 and 4

show the average query cost, in disk accesses and elapsed time in milliseconds

respectively, for BANG files built using the cyclic choice vector. Columns 3

and 5 show the average query cost for a BANG file built using the optimized

choice vector. The final two columns show the improvement in performance

96

i
<

m
Iv

'%%

U

Query
Distribution

01
©2
©3

Pages accessed
Cyclic
1444
163
1138
1150

Optimized
888
70

1004
537

Time (msec)
Cyclic
13453
1569
10491
10518

Optimized
7821
638
9013
4472

Improvement
Pages
1.63
2.33
1.13
2.14

Time
1.72
2.46
.1.16
2.35

Table 4.2: Average query costs for a uniform data distribution.

Query
Distribution

0 i
©2
©3
©4

Pages
Cyclic

692
83
554
548

accessed
Optimized

445
37
499
300

Time (msec)
Cyclic
5944
722

4679
4799

Optimized
3628
313
4187
2573

Improvement
Pages
1.56
2.24
1.11
1.83

Time
1.64
2.30
1.12
1.87

Table 4.3: Average query costs for a clustered data distribution.

achieved by using the optimized choice vector instead of the cyclic choice

vector to build the BANG file.

The data distributions used to build the BANG files in Tables 4.2, 4.3, 4.4

and 4.5 were uniform, clustered, sinusoidal and linear (see Figure 3.9), re-

spectively.

The results show that the average query cost can be significantly reduced

by using the optimized choice vector in the construction of the BANG file

compared with the cyclic choice vector. The largest improvement that we

observed for these distributions with four attributes was a factor of 2.33 in

the number of disk accesses and 2.46 in elapsed time. In Section 4.6.2 we

will show an improvement by a factor of 6.41 for a distribution with eight

attributes.

97

Query
Distribution

0i
02
©3
04

Pages accessed
Cyclic

225
26
187
175

Optimized
161
15
168
113

Time (msec)
Cyclic
2003
216
1709
1616

Optimized
1364
95

1540
1019

Improvement
Pages
1.40
1.74
1.11
1.55

Time

1.47
2.27
1.11
1.59

Table 4.4: Average query costs for a sinusoidal data distribution.

Query
Distribution

0i
©2

Pages accessed
Cyclic

207
22
170
160

Optimized
148
14

155
104

Time (msec)
Cyclic
2035
180
1575
1491

Optimized
1324
90

1384
883

Improvement
Pages
1.40
1.61
1.09
1.53

Time
1.54
1.99
1.14
1.69

Table 4.5: Average query costs for a linear data distribution.

Page size

We performed experiments to study the effect of the page size on the per-

formance of the optimized and cyclic choice vectors. Page sizes of 1, 2, 4, 8,

16, 32 and 64 kbytes were used. The experiments were repeated using the

uniform, clustered, sinusoidal and linear data distributions.

We found that an improvement in performance was achieved by using the

optimized instead of the cyclic choice vector for all page sizes, as shown in

Figure 4.3.

To study the effect of page size on the CPU time we performed exper-

iments using different data and query distributions. The results, shown in

Figure 4.4, indicate that the optimal page size is between 4 and 8 kbytes for

the configuration that we tested.

98

• Uniform
Clustered
Sinoid
linear

4 8 16
Block size (KB)

32 64

Figure 4.3: Effect of the page size on performance.

a,.:
* 1 B

• Uniform
• Clustered

Sinoid
linear

2 4 8

Block size (Kbytes)

Figure 4.4: Effect of page size on CPU time.

32
l
64

99

iik

i

• Uniform
• Clustered
• Sinoid
• linear

File size (Mbytes)

Figure 4.5: Effect of file size on performance.

File size

A number of experiments were performed to study the effect of the file size on

the performance of the optimized and cyclic choice vectors. File sizes ranging

from 4 Mbytes to 40 Mbytes were used. Again, the experiments were repeated

using the uniform, clustered, sinusoidal and linear data distributions.

The experimental results are shown in Figure 4.5. They indicate that the

improvement in performance gained by using the optimized instead of the

cyclic choice vector was reasonably consistent for all file sizes for a given data

distribution.

Number of attributes

To investigate how the number of attributes affect the performance of the op-

timized choice vector we performed experiments on BANG files with different

numbers of attributes. Table 4.6 shows results when BANG files of 2, 3, 4 and

100

Number of attributes
2
2
2
2
3
3
3
3
4
4
4
4
8
8
8
8

Cyclic cost
88
47
108
75

383
134
441
276
1442
165
1151
1148
2285
263

4453
2142

Optimised cost
82
23
95
64

318
45
374
218
877
68

1023
531
1246
41

2661
639

Improvement
1.07
2.04
1.14
1.17
1.20
3.0
1.18
1.27
1.64
2.43
1.13
2.16
1.83
6.41
1.67
3.35

Table 4.6: Effect of the number of attributes on the average query cost.

8 attributes are used. Each of these BANG files were built using a uniform

data distribution. Each row in a table corresponds to a different query dis-

tribution. Column 1 shows the number of attributes per record. Columns 2

and 3 show the average number of pages accessed to answer queries using a

BANG file built using the cyclic and optimized choice vectors, respectively.

The final column shows the improvement in the average query cost if the

BANG file was built using the optimized choice vector instead of the cyclic

choice vector.

If a query distribution is non-uniform then, in general, we expect that

the improvement in performance achieved by using an optimized choice vec-

tor instead of the cyclic choice vector will increase with the increase in the

number of attributes. This is because with more attributes there is a greater

101

-1 'ft
If

if

•h

Ji

i li%.

chance of allocating a larger proportion of the indexing bits to unimportant

attributes using the cyclic choice vector. The results shown in Table 4.6

support this hypothesis.

Local minima

As we mentioned in Section 4.5, for an arbitrary query probability distribu-

tion, finding the optimal choice vector is NP-hard [94], so our approach is

not guaranteed to find the optimal choice vector. To determine whether we

produce good choice vectors, we ran a series of experiments to compare the

average query cost using the optimized choice vector with the average query

cost using neighbouring choice vectors.

We created four sets of neighbouring choice vectors by changing some

of the bits in the choice vector obtained using MMI. The first set of choice

vectors were created by swapping a single pair of bits in positions m and

m + 1, where m is an even position. The second set was created swapping a

single pair of bits in positions m and m + 2. The third set was created by

changing the allocation of a single bit position from one attribute to each of

the others. The final set was created by rotating the positions of the first 12

bits.

For a BANG file of 4 attributes and a choice vector of 30 elements, the

number of neighbouring choice vectors generated in each of the four sets

was 29, 28, 90 and 12 respectively, totalling 159 choice vectors. The average

query cost using each of these choice vectors was found experimentally.

We found that when the data distribution is uniform, the average query

cost using the optimized choice vector is either a local minima or nearly a

l.>

"Xl

f- ft

's

TBS*

I J!w!

102

local minima. For non-uniform data distributions, the average query cost

using the optimized choice vector was never more than 2.5% greater than

that of any of the 159 neighbouring choice vectors.

Stability

Query patterns can change over time. A BANG file which is optimal for a

given query pattern may not remain optimal if the query pattern changes.

In order to study the stability of the optimized choice vectors, we per-

formed a series of experiments to determine the change in performance when

the query distribution changes. These experiments were similar to those

performed in [53] and were performed using different data and query distri-

butions.

We define a change of x% in a query distribution to be the result of

randomly changing each query probability, p, to be in the r a n g e p x (l ± ^)

prior to the whole query distribution being normalized.

Figures 4.6 to 4.21 show how the average query cost is affected when the

probability of each query changes by up to 80%. The horizontal axis of each

figure denotes the percentage change in the query distribution. The vertical

axis denotes the ratio of the average query cost of one choice vector with

the average query cost of a choice vector optimized for this changed query

distribution.

In each figure, three average query cost ratios are shown, using dotted,

dashed and solid lines. The dotted line ("Cyclic/New") corresponds to a

BANG file built using a cyclic choice vector. The dashed line ("Old/New")

corresponds to a BANG file which was built using the optimized choice vector

103

2.5-1

2 .0 -

i 1.5-

1.0

0.5'

Cyclic/New
Old/New
New/New

20
I

40
1
60

Change in query distribution (%)

Figure 4.6: Stability of optimized solution. Query distribution
distribution = uniform.

80

data

2.5-i

2.0 H

5
1.0

0.5
20

— , . . Cyclic/New
Old/New
New/New

—r~
40

60 80

Change in query distribution (%)

Figure 4.7: Stability of optimized solution. Query distribution = 0 2 , data
distribution = uniform.

104

I

Cyclic/New
Old/New

——— New/New

2.5 n

2.0-̂

5 1.5-

1.0

o
'•a

5

0.5'

o
i

20 40 60
Change in query distribution (%)

80

Figure 4.8: Stability of optimized solution. Query distribution = 0 3 , data
distribution = uniform.

Cyclic/New
Old/New
New/New

2,5-1

2.0 H
o

'•a

£ 1-5 -i

1.0

0.5-
20 40

Change in query distribution (%)

60 80

Figure 4.9: Stability of optimized solution. Query distribution = 6 4 , data
distribution = uniform.

105

fei

2.5 n

2.0-

!
u 15-1

• 4 - 1 • ' • - '

8
1.0
0.5

Cyclic/New
Old/New
New/New

T
20 40 60
Change in query distribution (%)

—I
80

Figure 4.10: Stability of optimized solution. Query distribution = 6 i , data
distribution = clustered.

2.5 n

2.0-
o

••a

1.0

0.5

Cyclic/New
OWNew

——— New/New

i
20 40 60

Change in query distribution (%)

80

Figure 4.11: Stability of optimized solution. Query distribution = 02, data
distribution = clus^red. T

106

©

U

2.5-i

2.0 H

1.0

0.5-

Cyclic/New
Old/New
New/New

20 . 40 60
Change in query distribution (%)

80

Figure 4.12: Stability of optimized solution. Query distribution = 0 3 , data
distribution = clustered.

H

' if
'i :fcif

i

t S '

2.5-i

2.0 -\

i
i 1.5-

u
1.0

0.5

Cyclic/New
OWNew
New/New

l
20 40 60 80

Change in query distribution (%)

Figure 4.13: Stability of optimized solution. Query distribution = 04, data
distribution = clustered.

Y

1 • !

107

en
O

U

2.5

2.0

1.0

0.5

- Cyclic/New
Old/New
New/New

20
i

40
I

60
Change in query distribution (%)

Figure 4.14: Stability of optimized solution. Query distribution =
distribution = sinusoidal.

i
80

data
&>

' tf

2.5 n

2.0-

1.0

0.5

Cyclic/New
Old/New
New/New

20 40 60
Change in query distribution (%)

80

Figure 4.15: Stability of optimized solution. Query distribution = 62, data
distribution = sinusoidal.

*

If*

I
if
J

F ;

108

2.5 -i

2.0-
o

2 1 5 H

1.0

0.5-

Cyclic/New
Old/New

—— New/New

T
20 40

- r -
60

l
80

Change in query distribution (%)

Figure 4.16: Stability of optimized solution. Query distribution = 03) data
distribution = sinusoidal.

to
O

2.5 -|

2.0 H

1.0

0.5'

Cyclic/New
Old/New
New/New

T
20

" T "
40 60 80

Change in query distribution (%)

Figure 4.17: Stability of optimized solution. Query distribution
distribution = sinusoidal.

= 04, data

109

fo'l
J U

Cyclic/New
Old/New
New/New

1
1

2.5-,

2.0-

1.5-

1.0

0.5'
0 20 40 60

Change in query distribution (%)

Figure 4.18: Stability of optimized solution. Query distribution = 6 i , data
distribution = linear.

Cyclic/New
Old/New
New/New

2.5-.

2.0-
o

i 1.5-

a
1.0

0.5
20 40 60

Change in query distribution (%)

Figure 4.19: Stability of optimized solution. Query distribution = 0 2 , data
distribution = linear.

110

1
80

Cyclic/New
Old/New

2.5-,

2 .0 -

I -
1.0

0.5-
0 20 40 60

Change in query distribution (%)

Figure 4.20: Stability of optimized solution. Query distribution = 0 3 , data
distribution = linear.

2,5-1

2.0-
o

'•a

3
1.0

0.5

& •

Cyclic/New
Old/New
New/New

0 20 40 60
Change in query distribution (%)

Figure 4.21: Stability of optimized solution. Query distribution = 0 4 , da
distribution = linear.

determined using the original query distribution. The solid line ("New/New")

corresponds to a BANG file built using an optimized choice vector determined

using the new (changed) probability distribution.

Our results show that when a query probability distribution changes by

20%, the degradation in performance of a BANG file built using an original

optimized choice vector is always better than that of the cyclic choice vector.

On many occasions the degradation is less than 20% even if there is an 80%

change to the query distribution. As a result, we can conclude that we need

only reorganise a BANG file to use a new optimized choice vector when the

query distribution changes substantially (by at least 20%).

4.7 Conclusion

This chapter discusses in detail a new approach of optimising partial-match

queries for multidimensional file structures. Unlike previous similar work us-

ing multi-attribute hash files, the approach proposed does not assume a uni-

form data distribution, instead it uses file structure which evenly distributes

records amongst disk pages, even when the data distribution is skewed. The

proposed strategy takes the query distribution into account and finds opti-

mised choice vectors which result in an average query cost which is signifi-

cantly less than that of the strategy which assumes that all attributes are of

equal importance.

To determine the performance of the proposed approach we ran an exten-

sive series of experiments. These experiments were conducted using a range

of different data and query distributions. Our experiments show that an op-

112

timized choice vector results in a significant reduction in the average query

cost compared with alternative (cyclic choice vector) policy which do not

take the query distribution into account. In one case, for a relation with 8

attributes, we observed an improvement in performance by a factor of 6.4. In

general, the improvement in performance was greater for relations containing

a. larger number of attributes.

Finding an optimal choice vector is NP-hard. However, the experiments

indicate that the optimized choice vectors found using MMI and Equation 4.3

are either local minima or very close to the local minima. Further more, the

stability of the optimized choice vector is excellent. A change in the query

distribution of up to 20% has a minimal impact on the performance (less

than 5%) when using an optimized choice vector found for the original query

distribution. Often the degradation is not significant (less than 20%) even

when the original query distribution is changed by 80%.

113

Chapter 5

Optimizing Range Query

Retrieval

5.1 Introduction

Range queries are a common database operation. In a range query, a range

of values is specified for one or more attributes of a relation. The result of a

range query is the retrieval of all the records with values within the specified

ranges.

The cost of a range query is mainly measured in the number of disk blocks

accessed to answer the query. The number of disk blocks retrieved depends on

the algorithm used to place the records within the file. The average number

of blocks accessed per query can be minimised if an efficient record clustering

algorithm, which takes the query distribution into account, is used.

The aim of this chapter is to describe a method of clustering related

records into fewer disk blocks such that the average number of disk blocks

114

accessed, over all expected range queries, is minimised. The method is appli-

cable to multidimensional file structures and the query distribution is known

in advance.

Several methods have been proposed to optimally cluster records for range

queries [17,52,79], but all of them were limited to uniform data distribution.

The methods described in this chapter avoid this limitation, by using mul-

tidimensional file organisations which distribute records evenly even if the

data distribution is non-uniform. Although the method is tested using the

BANG file [36,37], it can be used with a number of other multidimensional

file structures such as the nested interpolation based grid file [110], the multi-

level grid file [140] and other similar file structures [86,98].

This chapter has six sections. Section 5.2 discusses range queries in gen-

eral. A way of minimising range query cost is discussed in section 5.3. Sec-

tion 5.4 discusses cost functions related to range queries. The results of our

experiments are presented in section 5.5 and section 5.6 is the conclusion.

5.2 Range Queries

As is mentioned in the previous section, in a range query, a range of values is

specified for one or more attributes of a relation. The result of a range query

is the retrieval of all the records with values within the specified ranges. The

following query, q0, is an example of a range query:

SELECT Ao,o
FROM i?0

WHERE Ao i BETWEEN 35 AND 48

115

0 2 5 / 5 0 75 99
0,1

Query space

Figure 5.1: Query-space intersecting four partitions.

Where RQ is the BANG file representative of the relation as shown Fig-

ure 5.1.

A range query defines a subspace within the domain-space of a relation.

We call such a subspace a query-space. For example, the shaded area in

Figure 5.1 is the query-space of <fo-

The records which satisfies a range query can be found in the partitions

that overlap with the query-space. We call a record which satisfies a query

a ^-record of the query, and its corresponding partition a ^-partition. For

example, the ^-partitions of q0 in Figure 5.1 are P0)4, Po,5, Po,6, and F0,7-

If a ^-partition is not totally enclosed by the query space, some of its

records may lie outside the query-space and so are not ^-records. For exam-

ple, a record with a value of 30 for A0)0 and a value of 40 for Ao,i is not a

116

t I

P2,o

P2,l

H

-

Query space

Figure 5.2: P2>2 is a ^-partition but P2)G and P2)i are not

^-record even though it is found in partition P0)5, which is a $-partitioi_ of

q0, Figure 5.1.

If there are two or more partitions which totally enclose a query-space,

only the partition which directly encloses the query-space is the ^-partition.

The others will not contain ^-records, so there is no need to retrieve them.

For example, in Figure 5.2 all three partitions, P2,o, P2,i and P2|2 enclose the

query space but only P2,2 directly encloses it, so it is the only ^-partition.

In a BANG file the search for the ^-partitions starts from the root par-

tition. Once the ^-partitions in the root are identified, the search for the

^-partitions descends to the next lower level directory using the entries of

the ^-partitions identified so far. These process is repeated until all the

^-partitions are identified. Then the ^-records are searched from the $-

partition which contain data records.

\jf\

117

25

0 Lo,i

0 99

Query space

Figure 5.3: Query-space intersecting four partitions.

5.3 Minimising range query costs

The cost of a query depends on the number of disk accesses performed to

answer the query. The cost of a query can be reduced if its ^-records are

clustered in fewer partitions (disk pages). In other words the cost of a query

is minimised if the number of ^-partitions is minimised.

The search for ^-records of a query is performed using the values of the

attributes specified in the WHERE clause of the query. For example, in

searching for the ^-records of qo, we use the values of Ao>o, because AotQ is

the specified attribute in the WHERE clause of q$. We call the attributes

that we use to search for the ^-records the significant attributes.

A domain-space which is partitioned to a greater degree on the most sig-

nificant attributes will potentially cost less than the one that is partitioned

r

ft

I

:I
, : • • i

- : i

.' -h

1)

118

on the less significant attributes or one which treats all attributes as equally

significant. For example, q0 has four $-partitions if used with RQ of Fig-

ure 5.1, but only two ^-partitions if used with Rt of Figure 5.3. This is

because the domain-space in Figure 5.3 is partitioned to a greater degree on

Aofl, which is the most significant attribute, compared with Figure 5.1 in

which the domain-space is partitioned using a cyclic choice vector.

Figures 5.1 and 5.3 show how the partitioning order affects the cost of one

query in a two dimensional domain-space. The problem we are addressing

here is that given an n dimensional domain-space, an arbitrary number of

queries and their probabilities, can we construct the choice vector which

results in the minimal average query cost. For an arbitrary set of queries,

finding the optimal choice vector is NP-hard [94]. As a result, we use an

heuristic technique, minimal marginal increase (MMI), together with the

cost functions presented in section 5.4 to minimise the average query cost.

MMI, which is described in section 2.6.2,. is a greedy algorithm and choice

vectors obtained using MMI do not guarantee optimality, although they have

often been optimal or near-optimal for other problems in the past [54].

rf

5.4 Cost functions

We define the cost of a query to be the number of disk pages- accessed to

answer the query. For the set of all queries Q, the average cost of a query is

given by

(5.1)

119

where pg is the probability of q being asked, and C{q) is the cost of answering

the query q.

For range queries, the average cost of a query can be approximated as

follows. Assume that the number of data blocks of a BANG file is 2d, where d

is equal to the length of the choice vector, which is also the highest partition-

level in the domain-space. Assume also that attribute Aij appears dij times

in the choice vector. Let n be the number of attributes, then we have

n - l
_
ij = d. (5.2)

t = 0

Let rij(q) be the proportion of the total range of Aij that query q spec-

ifies. For example, if the domain of Aij is [1,100], and a query, q, specifies

the range [2,7] then

(5.3)

We assume that the average number of data pages accessed in answering q

can be approximated by

n - l

t=0

(5.4)

As in the previous chapter let lh the partition-level of the smallest parti-

tion at directory level h. Out of the lh choice vector elements at level h let

d}j belong to attribute Aitj. Then the average number of directory level h

f
fc1

'hi

pages accessed in answering q can be approximated by

i=0
(5.5)

Combining Equations 5.4 and 5.5, if there are V directory levels in addi-

tion to the data pages, the average cost of q can be approximated by

(5.6)
h=0 t=0

Combining Equations 5.1 and 5.6, the average cost of the set of all queries

Q can be approximated by

E I I
/i=0 i=0

(5.7)

Previously, there was no good model available to estimate a query cost in

a BANG file. Experimental studies [36] show that the BANG file evenly

distributes data records among disk blocks even when the data distribution is

highly non-uniform, which makes Equation 5.7 is a reasonable approximation

of the cost.

5.5 Experimental Results

In this section we present the results of experiments comparing the perfor-

manc oi the optimised and cyclic choice vectors.

The first set of results shows the performance of the optimised and the

cyclic choice vectors on different data and query distributions. The second

121

V! .

3r.

set of results shows the effect of the number of attributes on the performance

of both choice vectors. The third and fourth sets show the effect of the file

size and page size on the performance of the cyclic and optimised choice

vectors.

Query distributions change over time. A choice vector optimised for one

query distribution may not perform as well if the query distribution changes.

A solution, based on MMI and Equation 5.7, is called stable if a slight change

in the query distribution doesn't affect the optimality of the solution. The

sixth set of results demonstrate the stability of the optimised choice vector.

The final set of results show how the performance of the optimised choice

vector is affected as the size of query-space changes. The size of a query

space is the size of all the partitions (subspaces) which overlap the query in

the domain-space.

5.5.1 Environment

We implemented the BANG file with our extension (discussed in section 3.10)

of using choice vectors during partition splitting. In each experiment we

used 16 randomly generated queries and assigned each of them a randomly

generated probability. Unless specified, we used a page size of 1024 bytes,

four integer attributes per record and one million randomly generated records

per relation (BANG file). We ran all our experiments on a SPARC station

20.

The data distributions used were uniform, clustered regions, a linear cor-

relation, and a non-linear correlation function (a sine wave). Examples of

122

Attributes

506
2334
3694
2854
161
2147
773
833
441
447
1283
87
8093
337
3478
26

366
64

1386
2514
2667
1780
305
452
1168
10

1813
319
219
3519
1570
1957

•Ai,2

1005533
827174
847200
680605
249084
948659
390266
417366
616981
274510
73602
885838
104153
826968
131805
53432

Aw
377939
941936
666416
119300
39314
308398
1002868
232725
449444
15654
25405
524852
18256
399079
852635
652329

Query distribution
0.064619
0.064450
0.064505
0.064466
0.064374
0.064613
0.064647
0.064434
0.064586
0.064350
0.064309
0.064591
0.032452
0.064361
0.064595
0.064648

' W

Table 5.1: Query distribution Oj..

these are shown in Figure 3.9. We refer to them as uniform, clustered, linear

and sinusoidal, respectively.

In the experiments in which a relation of four attributes was involved,

up to four different query distributions were used. These query distributions

were generated randomly and are referred to as 0 j , Q?., ©3 and 64. They

are shown in Tables 5.1 to 5.4. Bach entry in one of the first four columns

represents a range specified for the corresponding attribute, Aifi, Aiti, Ai>2

or Aifi. The domain of each attribute is between 0 and 1048575 (220 - 1).

The first four columns of each row represents the query and the last column

is its probability.

Attributes
Aifi
1759
42817
81
1076
1964
2322
362957
1
621

661341
204
15434
2575
751
426
1656

Ai,i
2041
287843
1V79
217
467

133052
336
3532
1636
2058
28
92
2259
1841
913
1893

Ai,2
635273
308082
334939
853330
491378
258460
138907
696988
814401
758929
739366
190968
308333
1007087
458917
21487

Ai,3
1025206
12032
353540
499153
594646
581514
527880
512476
832879
1028152
869555
338957
835018
577772
766551
127925

Query distribution
0.076838
0.000554
0.076743
0.076803
0.076848
0.038611
0.038717
0.076695
0.076971
0.038691
0.077001
0.038494 •
0.076760
0.076824
0.076750
0.076700

Table 5.2: Query distribution ©2-

Attributes
Aifi
7385
1188

295974
33435
136513
3495
60813
825
338
56

168742
1163
495
18790
2030
298

Ai,x
284251
818

230166
160798
4163
43
20
977
850
741
473
1206
56647
91289
510
676

505581
572743
237306
822957
280042
32554
1004336
58904
457631
23639
595126
483057
796117
849767
31842
152878

498772
456734
964901
454672
480255
644906
69033
397042
282380
476335
320760
798659
688349
896630
346635
215281

query distribution
0.000853
0.099394
0.000543
0.000675
0.050236
0.099919
0.050140
0.099485
0.099446
0.099390
0.050392
0.099902
0.050078
0.000716
0.099328
0.099504

Table 5.3: Query distribution 0;

124

•Aija

2403
772
2825
5053
26 :

1823
5io

119228
2464'.
85
375
2313
283
1356
1800
456

Au.»
Au "j
1528
2052

im
811
2244

JrJ '1

l&fS
5CS
378
1645
152687
543
m
Mm
1005

butes

577372
607591
529654
334026
269907

595636
588547
'27409
73284
71(5835
600556
752214
$12213
497024

As
8013645
392585
406208
547291
902371
G97994
858766
934196
888557
453937
565287
122699
267813
319236
639519
775743

Query distribution
0.071582
0.071303
0.035OT-!
0.035704
0.071297
0.071349
0.071391
0.035824
0.071551
0.071253
0.071268
0.036023
0.071475
0.071362
0.071354
0.071292

Table 5.4: Query distribution 64.

5.5.2 Effect of data and query distributions

The effect of using the optimised and cyclic choice vectors on the average

query cost using diffeit-iit data and query distributions is shown in Tables 5.5

to 5.8. The first column in each of these tables shows the query distribution

used. The second and the fourth columns correspond to the cyclic choice

vector and show the cost in disk page accesses and time taken, respectively.

Similarly, the third and fifth jolumns show the costs corresponding to the

optimised choice vecim. The improvement in the number of disk page ac-

cesses, md time taken when using the optimised choice vector rather than

the cyclic dsoice vector is shown in the final two columns.

125

Query
Distribution

Pages accessed
Cyiie

77.06
166.S8
75.72
118.34

Optimised

7.32

14.52

13.78

Time (msec)
Cyclic

624.76
1147.5
599.87
914.36

Optimised

80.54
172.67
147.75
138.12

Improvement in
Pages accessed

10.52
8.80
5.22
8.59

Time

7.75
6.64
4.06
6.62

Table 5.5: Average query cost for a uniform data distribution.

Query
Distribution

Thetai

Theta.2

Thetaz

Thetai

Pages accessed
Cylic

30.05

73.28
31.29
49.30

Optimised

5.33
13-46

11.21
30-87

Time (msec)
Cyclic

226.55
474.66
232.49

339.09

Optimised

58.213

127.4
106.5
95.58

Improvement in
Pages accessed

5.64
5.44

2.79
4.54

Time

3.88

3.73
2.18
3.55

Table 5.6: Averagt query cost for a clustered data distribution.

Query
Distribution

Pages accessed
Cylic j Optimised

12.16 4.95

21.46
10.54 f

8.66
6.53

16.59 i 7.92

Cyclic ; Optimised

96.98 61.16

172.80
97.93

84.36
67.98

146.4 82.77

Improvement in
Pages accessed | Time

2.45
2.48
1.62

2.09

1.59
2.05
1.44

1.77

Table 5.7: Average query cost for a sinusoidal data distribution.

'Query
Distribution

©l
02 J

83 1

, Pages accessed \ Time (msec)

Cylic

7.17
21.02

9.1G

G4 1 17,25

Optimised

5.05
7.47

6.79
9.02

Cyclic

66.39

168.27
76.17
140.39

Optimised

61.86

70.08
62.64
87.26

Improvement in

Pages accessed

1.42

2.81
1.35
1.91

Time
r1.07

2.40
1.22
1.61

Table 5.8: Average query cost for a linear data distribution.

I1

126

In all the experiments the optimised choice vector performed better than

the cyclic one. The improvement is lower for the non-uniform data distribu-

tions due to correlation of the attributes. The value of the first attribute was

randomly generated and then used to generate the values of the remainder

of the attributes.

5.5.3 Number of attributes

As the number of attributes increases, the number of attributes that are

specified in few or no queries (nonsignificant attributes) is likely to increase.

Therefore, if. the cyclic choice vector is used, peer-splitting based on these

attributes also increases. As a result, the performance improvement achieved

by using the optimised choice vector instead of the cyclic choice vector should

also increase.

Table 5.9 shows experimental results obtained using BANG files with

different numbers of attributes for different query distributions. The first

column of the table shows the number of attributes in each BANG file. The

second column shows the average number of disk page accesses required when

the cyclic choice vector was used. The third column shows the average num-

ber of disk page accesses required when the optimised choice vector was used.

The last column shows the improvement achieved using the optimised choice

vector rather than the cyclic choice vector. The table shows that as the

number of attributes increases the improvement increases, as we expect.

The ratio of the significant attributes to the nonsignificant attributes is an

important factor in the improvement that is achieved. As this ratio increases,

the performance improvement of the optimised choice vector over the cyclic

Vif

127
i ft i

Number of Attributes
2
2
2
2

3
3
3
3
4
4
4
4
8
8

• 8

8

Cyclic cost

107.14
101.15
112.51
96.13

260.72
244.80
304.52
317.59
77.06
166.96
75.72
118.34
255.06
274.C8
260.67
214.97

Optimised cost

22.58
18.80
17.98
22.76
22.89
29.94
23.86
19.52
7.30
18.96
14.52
13.78
7.05
11.21
15.01
10.16

Gain

4.74
5.38
6.25
4.22
11.39
8.18
12.76
16.26
10.52
8.80
5.22
8.59
36.17
24.45
17.37
21.16

Table 5.9: Effect of the number of attributes on the average query cost.

choice vector decreases. That is, the total number of attributes in a relation

is not as important as the proportion of significant attributes. In Table 5.9

the optimised choice vector performs better when the number of attributes

is three than when it is four. This is because one of the three attributes (|)

was done significant in the former case and two of the four (§) attributes was

done significant in the latter case.

5.5.4 File size

To study the effect of the file size on the performance of the optimised and

cyclic choice vectors, experiments with files ranging in size from 4 Mbytes

to 40 Mbytes were performed. The experiments were repeated using the

uniform, clustered, sinusoidal and linear data distributions. The results are

128

Uniform
• Clustered

Sinusoidal
linear

20

File size (Mbytes)
30 40

Figure 5.4: Effect of file size on relative performance.

shown in Figure 5.4. The vertical axis of Figure 5.4 represents the average

query cost ratio 0$££sed and the horizontal axis represents the file size in

Mbytes.

In all the experiments the optimised choice vector consistently performed

better than the cyclic choice vector, as can be seen in Figure 5.4. The im-

provement increased (of the order of 200% for sinusiodal to 600% for uniform)

as the file size increased.

5.5.5 Page size, elapsed time and CPU time

Experiments were conducted to study the effect of the page size on the per-

formance of the optimised and cyclic choice vectors. Page sizes between 1

and 64 kbytes were used. The experiments were repeated using the uniform,

clustered, sinusoidal and linear data distributions. The results are shown in

Figure 5.5.

129

1000-

500

—•—— Un<f. rm (optimised)
• - - • - - Uniform (cyclic)
— • — Clustered (optimised)
• - • • - - Clustered (cyclic)
—X— Sinusoidal (optimised)
• - -X - - Sinusoidal (cyclic)
— A — Linear (optimised)
— A - - Linear (cyclic)

1

3

Page size (kbytes)

Figure 5.5: Effect of page size on performance.

As can be seen in Figure 5.5, the optimised choice vector performs bet-

ter than the cyclic choice vector for all page sizes. The results show that

the performance improvement is greater with smaller page sizes. This is be-

cause smaller pages result in higher number of pages and page splits, so the

improvement gained by using a better splitting policy is greater.

In these results, the minimum elapsed time was achieved when the page

size was 8 kbytes.

Experiments were also performed to determine which page size results

in the minimum CPU time, that is, the minimum time spent searching the

contents of pages rather than waiting for the disk. Again, experiments were

performed using pages between 1 and 64 kbytes. The results are shown in

Figure 5.6.

130

— • — Uniform (optimised)
— • - - Uniform (cyclic)
— • — Clustered (optimised)
- - • • - - Clustered (cyclic)
—X— Sinusoidal (optimised)
• - -X - - Sinusoidal (cyclic)
— * — Linear (optimised)
• • •A-- Linear (cyclic)

a>

Page size (kbytes)

Figure 5.5: Effect of page size on performance.

As can be seen in Figure 5.5, the optimised choice vector performs bet-

ter than the cyclic choice vector for all page sizes. The results show that

the performance improvement is greater with smaller page sizes. This is be-

cause smaller pages result in higher number of pages and page splits, so the

improvement gained by using a better splitting policy is greater.

In these results, the minimum elapsed time was achieved when the page

size was 8 kbytes.

Experiments were also performed to determine which page size results

in the minimum CPU time, that is, the minimum time spent searching the

contents of pages rather than waiting for the disk. Again, experiments were

performed using pages between 1 and 64 kbytes. The results are shown in

Figure 5.6.

130

S" W

r
i'

4 •

? \m

, *

200-1

— • — Uniform (optimised)
— • - - Uniform (cyclic)
— • — Clustered (optimised)
• - • • - - Clustered (cyclic)
— X — Sinusoidal (optimised)
— X - - Sinusoidal (cyclic)
— A — Linear (optimised)
— A - - Linear (cyclic)

32 642 4 8 16
Page size (kbytes)

Figure 5.6: Effect of page size on CPU time.

The results indicate that for all the distributions, the minimum CPU time

is generally achieved when the page size is 4 kbytes.

v\

yy i

5.5.6 Stability

Query distributions can change over time. A choice vector optimised for a

given query distribution may perform worse than the cyclic choice vector if

the query distribution changes significantly. In order to study the stability of

our optimised choice vectors, experiments were done to determine the change

in performance when the query distribution changes.

We state that each query distribution is changed by x% if each query

probability, p, is randomly changed to be in the range px (1± ^) prior to

the whole query distribution being normalised.

131

Cyclic/New
Old/New

— — — New/New

10 —i

8 -

o 4-
V

2 -

20 40 60
Change in query distribution (%)

80

Figure 5.7: Stability of the optimised choice vector using 0 i and-the uniform
data distribution.

Figures 5.7 to 5.10 show how the average query cost is affected when the

probability of each query changes by up to 80%. In each figure, three average

query cost ratios are shown, using dotted, dashed and solid lines. The dotted

line ("Cyclic/New") corresponds to comparing the average query cost of a

BANG file built using a cyclic choice vector with that of a BANG file built

using a choice vector optimised for the new, changed, query distribution.

The dashed line ("Old/New") correspond to a BANG file which was built

using an optimised choice vector determined by using the original query

distribution. The solid line ("New/New") corresponds to BANG files built

using an optimised choice vector determined using the changed probability

distribution.

In some of the experiments, such as in Figure 5.10, using a choice vec-

tor produced using the original query distribution was better than using one

produced by the changed query distribution. This is because the new choice

132

Cyclic/New
Old/New
New/New

tio

8
u

6 - 1

4 -

-

2 -

0 -
I I I i

20 40 60

Change in query distribution (%)
80

Figure 5.8: Stability of the optimised choice vector using 9i and the clustered
data distribution.

• Cyclic/New
Old/New
New/New

3-1

©

1 2-
(4

I
20 40 60

Change in query distribution (%)
80

Figure 5.9: Stability of the optimised choice vector using 9i and the sinu-
soidal data distribution.

133

4
if

I '

[ml
I "

? •

Cyclic/New
Old/New
New/New

2.0-'

« ,5

<5
1.0

0.5
20 40

i
60 80

Change in query distribution (%)

Figure 5.10: Stability of the optimised choice vector using 0 i and the linear
data distribution.

vector is not optimal. This can occur because MMI does not guarantee to

produce the optimal choice vector, and Equation 5.7 defines a good approx-

imation of the actual cost, not the exact cost.

Our results show that the performance of the optimised choice vector of

the original query distribution is almost as good as that of the changed query

distribution even when the distribution was changed by 80%. As a result,

we can conclude that an optimised BANG file needs to be reorganised rarely,

only when the query distribution changes drastically.

5.5.7 Query-space size

When the query-space is the whole domain-space, we must access all the

pages of the file regardless of the choice vector used. When the query is a

point query the number of page accesses performed using both the optimized

and cyclic choice vectors will be the same because there is precisely one

134

Uniform
Clustered
Sinusoidal
Linear

1E-09 1E-08 1E-07 1E-06 1E-05 0.0001 0.001 0.01 0.1
r
10 100

Query size (%)

Figure 5.11: Effect of query-space size on relative performance.

destination page. Therefore, there is no advantage in using an optimised

choice vector for these two extreme queries.

We performed experiments in order to study the effect of the query-space

size on the performance using the optimised choice vector. Figure 5.11 shows

the performance of the optimised choice vector compared to the cyclic choice

vector as the query-space size changes. Each line in the figure corresponds

tc 3 different data distribution. The vertical axis of the figure represents

the cost ratio 0 %S an<^ ^ e horizontal axis represents the percentage the

query space size ib to the domain-space size. The results show that there

is a largt; range of query-space sizes where using an optimised choice vector

produces far better results than using the cyclic choice vector.

(I-
V

f. , 1 i I

\

I

135

5.6 Conclusion

Our study shows that given a probability distribution of range queries, an

efficient physical database design can be created by using minimal marginal

increase and Equation 5.7. Unlike previous approaches, our approach is

not limited to a uniform data distribution or to independently specified at-

tributes, and the precise nature of any non-uniformity does not need to be

known. We avoid these limitations by using a file structure which distributes

records evenly amongst disk pages even when the data distribution is highly

non-uniform. For our experiments, we used the BANG file.

When compared to the cyclic choice vector, our results show that the

optimised choice vector produces more efficient physical database designs,

reducing the average query cost. For example, in one of our experiments in

which a BANG file of eight attributes was used, the optimised choice vector

resulted in an improvement of a factor of 36 over the cyclic choice vector.

The improvement gained by using an optimised choice vector instead of

the cyclic choice vector increases as the number of attributes increases. This

is because as the number of attributes increase, the likelihood of dividing

the domain space using attributes which do not occur frequently in queries

is higher when the cyclic choice vector is used. This results in an inefficient

physical database design. For example, in the experiments that we per-

formed, the improvement in performance was greater when there were eight

attributes in the relation than when there were two, three or four attributes.

Similarly, as the ratio of attributes which occur frequently in queries to at-

tributes which do not increases, the improvement in the performance of the

136

i

'\ m

A"

Ci
L '

ra) s.

'0

optimised choice vector over the cyclic choice vector decreases.

We found that the optimised choice vector consistently performs better

than the cyclic choice vector across a wide range of file and page sizes. The

improvement is greater as files get larger and pages get smaller. For both

types of choice vector, the CPU time taken searching pages is minimal when

the page size iis 4 kbytes.

The relative size of the query-space also affects the performance of the

optimised choice vector. For a query space size which ii> either equal to

the whole domain-space or is a point query-space, both the optimised and

cyclic choice vectors perform the same. However, the optimised choice vector

performs better than the cyclic choice vector when the query-space size 5s

between these two extremes.

There is no need to rearrange the optimised choice vector whenever the

query distribution changes by a reasonable araount. Our experiments show

tha.t the optimised choice vector for a given query distribution will remain

almost as good as the optimised choice vector built for a variation on the

query distribution even when the query distribution changes by 80%.

We conclude that if tho query distribution is known and a file structure

which evenly distributes records amongst disk pages is used regardless of the

data distribution, an optimised choice vector produces an efficient physical

database design. To our knowledge, this is the most practical method of

storing multidimensional data in order to best exploit a known query distri-

bution. We therefore recommend that such structures be incorporated into

new generation database systems.

Vfc,

••,rrr-

137

Chapter 6

Join query processing for

skewed data distributions

6.1 Introduction

The join operation is one of the database operations which is used to com-

bine tuples from two or more relations based on a condition known as join-

condition. Tuples of the input relations are combined when they satisfy the

specified condition. The result of a join operation is a relation which has

some or all of the attributes of the input relations. Because a join query

takes two or more relations as input, it is much more costly than a range or

a partial match query. The following is an example of a join query.

SELECT emp.name, dept.name
FROM emp, dept
WHERE emp.dept-no = dept.dept-no

' .7

Pi
't
j

138

In g0, emp and dept are the input relations, emp.dept-no = dept.dept-

no is the join-condition and dept-no is the join-attribute. A join-attribute

is an attribute specified in a join-condition.

The join operation has been extensively discussed and researched because

it is frequently used and is one of the most time consuming and data-intensive

operations in relational query processing. Also many of its optimizations

implicitly include the optimization of other common relational operations

such as selection, projection, union, intersection, difference and division.

This chapter discusses the optimization of join queries whose probabil-

ity distribution is known. Based on this assumption we will introduce new

optimized join algorithms for multidimensional file structures. Unlike the

existing algorithms [52-54,99], we don't assume the data distribution of the

files to be uniform. Other main difference between the proposed join algo-

rithms and the existing algorithms is that the existing algorithms assume that

all partitions in a relation have the same partition level. This assumption

makes many partitions to be read several times. In the proposed algorithm

each partition assumes its actual partition level and an attempt is done to

read it once. Although the proposed optimization algorithms can be used

with any multidimensional file structures, experimental results were collected

using the BANG file because of the reasons discussed in section 3.2.

This chapter consists of five sections. Section 6.2 discusses the the pro-

posed join algorithms. Section 6.3 explains how the join query processing

can be optimized. The experimental results and analysis of the proposed

join algorithms is presented in section 6.4. Section 6.5 is the conclusion of

this chapter.

t r

'X

I'.

139

6.2 The proposed join algorithms

The join algorithms discussed in this chapter have two main modules, a

selection-module and a matching-module. The selection-module selects some

partitions from each input relation based on the join-condition, and passes the

selected relations to the matching-module. The matching-module matches

the tuples of the selected partitions for join. Tuples satisfying the join-

conditicn are inserted into the result table. The two parts are performed

alternatively several times, each time with a different set of partitions, till

the join of ihe input partitions is complete. The join of these set of partitions

is equivalent to the join of the input relations. The next two subsections will

discuss the selection and matching modules in detail. But first let us define

the terms, join-attribute domain, join-attribute edge and join-compatible par-

titions, which are frequently used in the rest of this chapter. Examples of

the terms will be given in the next section.

Definition 6.1 join-attribute domain is the domain of ihe join-attribute in

the query.

Definition 6.2 join-attribute edge is the side of a partition which corre-

sponds to the join-attribute.

Definition 6.3 Join-compatible partitions ore partitions from different in-

put relations whose join-attribute edges share at least one common value.

w\

V"

V
1 I

4

140

0,1

1000

750

500

250

P0.3

Po,

R

0,7

Po,

Po,

R,

Po.u

Po.io

Po,9

P0,8

"(IK

Pfl,13

0.0

25 50 75 100

_J 1 1
I I I
0.1 0.2 0.3

0.0

p
r1.3

p
r1.2

Pu

P1.0

1

3
r1.7

P..6

Pl.5

P..4

P W1

M.1O

P..9

Pl.8

•-

P..15

P..14

P..13

P,12

1 1 1
I 1.0 h.l • 1.2 x 1.3

Figure 6.1: po,o and Pip are join-compatible while Po,o and P\ti2 are not.

6.2.1 The selection-module

The selection-module exploits the partitioning and clustering properties of

the BANG or other multidimensional file structures in selecting the next set

of join-compatible partitions. For example, assume the following query, qx,

which uses RQ and R\ of Figure 6.1 as input relations.

SELECT AOfi, A0,u
F R O M Ro, Ri
WHERE AOfi = ^1 ,

(ft)

In processing gh for example, there is no point of matching P0,3 and

Pi,i2 for join. They don't share tuples which can satisfy the join-condition

because their join-attribute edges don't overlap. By don't overlap we mean

they don't share any common join-attribute values. The join-attribute edge

of P0,3 covers values between 0 and 25 and that of Pi>12 covers values between

141

75 and 100. But P0)3 and Pi]0 are join-compatible partitions, because their

join-attribute edge overlap. Both cover values between 0 and 25. POi3 is also

join-compatible to P M , P1>2 and P1>3. In fact each of P0>0, POil, p0>2 and

P0,3 are join-compatible to Plfi, P l f l , Ph2 and P1>3. So the selection-module

identifies such join-compatible partitions and passes them to the matching-

module. The matching-module matches the tuples of these partitions for join.

Once the join of the current join-compatible set is completed, the algorithm

again starts selecting the next join-compatible set. In case the of qx, the next

join-compatible set contain partitions P0l4> Po,5> Po,6 and P0t7 with Pij4, P l j5,

P1|6 and P1(7.

Before the start of the two modules, the join algorithms computes the

number of join-compatible sets. This is done by logically dividing the join-

attribute domain into a number of equal intervals. Then partitions are

mapped into these intervals. Partitions mapping to the same interval form a

set called a wave. The selection-module uses intervals and waves to select the

next join-compatible partitions. Intervals and waves are discussed in detail

in the following subsection.

is

1,V\

0,

Intervals

As mentioned in the last paragraph, the join-attribute domain is logically di-

viding into a number of equal intervals before performing selection or match-

ing. The size of each interval is equal to the size of join-attribute edge of

the smallest partition in the relation. In case of qx, the domain of the join-

attribute is partitioned into 4 2qual intervals as shown in Figure 6.1. This is

because the size of the smallest join-attribute edge in the relation is a fourth

142

of the join-attribute domain size, which is 100.

For time being let's assume that the number of intervals in the input

relations are equal, and each partition be within one interval. Later in this

chapter we will remove these restrictions.

Intervals are labeled. Intervals corresponding to J^ are labeled as Iifi, Iiti, Ii<2

and so on. Attribute values in / , j + 1 are higher than those in Iiyj. For exam-

ple, in Figure 6.1 the intervals of RQ are labeled as /00,/o,i,/o,2, and IQt3. IOfi

covers attribute values between 0 and 24 inclusive, jQ x covers values between

25 and 49 inclusive, /o,2 covers values between 50 and 74 inclusive, and /o,3

covers values between 75 and 99 inclusive.

Partitions whose join-attribute edge overlapping the same interval are put

in the same join-compatible set. This makes the number of intervals to be

equal to the number of join-compatible sets.

The number of intervals can be computed from the choice vector. For

example in a choice vector of size 10 elements, let the second, fifth and

seventh elements belong to an arbitrary attribute A.^. The second element

of the choice vector splits Ditj, the domain of Aij, into 2 equal edges. The

fifth element further splits an edge, which was created by the second element,

into two equal halves. The seventh element further splits an edge, which was

created by the fifth element, into two equal halves. In other words, the

second, fifth and seventh elements of the choice vector result in edges which

are \,\ and \ the size of A j respectively. Therefore if in a choice vector, the

number of elements which correspond to a join-attribute Aij is dtJ-, then the

number of intervals along Ditj is 2*-*.

143

Waves

As mentioned previously, partitions of a relation whose join-attribute edge

overlapping the same interval belongs to the same join-compatible set. For

example, partitions overlapping Iitk are put in one set and partitions over-

lapping /j.fc+i are put in a separate set. We call such a set a wave.

Waves are labeled as Wifi, Wi>h Wi>2 and so on. There is one-to-one map-

ping between waves and intervals. W^k contains only partitions overlapping

Iitk. This makes the number of waves to be equal to the number of intervals.

Relations with equal number of waves

Waves which contain join-compatible partitions are called join-compatible

waves. If the number of waves in two arbitrary input relations, Ri and Rj is

the same, then each W^k is only join-compatible to Wj^. For example, when

using gi, 4 waves are created in RQ, and 4 waves in Ri of Figure 6.1.

Waves created in relation RQ are:

Wofl, which consists of partitions Po,o> Po,i, Po,2 and Po,3, •

Wo,i, which consists of partitions Po,4, Po,5> Po,e and Po,7,

Wop, which consists of partitions Po,8, Pop, Po,io and Po.n, and

WOiz, which consists of partitions P0>i2, Po,i3, Po,u and P0)i5,

And waves created in partitions R\ are:

Wifl, which consists of partitions P^o, Pi,i, Pi,2 and Pitz,

Witi, which consists of partitions Pi,4, Pi,5, P^e and Pij,

Wit2, which consists of partitions Pi)8, Pi,9, Pi.io and Pitu, and

Wlt3, which consists of partitions Pi,i2, Pi,i3, P\,u and Pi,is-

t><

144

W0,o, WOtu Wo,2, and WQt3 are join-compatible to Wlfi, W1A, Wh2) and Wh3

respectively.

All waves are not created in the selection-module of the same cycle. For

example, Wi>0 and Wjfi are created in the selection-module of the first cycle,

Wij and Wjti are created in the selection-module of the second cycle and so'

on.

Relations with unequal number of waves

At the beginning of this chapter we discussed that the number of intervals

created along the domain values of A{j, Ditj, is 2di-i. The ratio of the number

of waves created in one relation to the number of waves created in another

relation is always 1 : 2", where n is an integer number.

For example, let us join R2 and R3 of Figure 6.2 using A2ii = A3ii as the

join-condition. The number of intervals corresponding to R2<x is 21 and that

of ^3,1 is 22. The number of waves of R2 to that of R3 is | r — 21, which

means that the size of I2)i is twice that of I3j. In other words, each wave of

R2 has two join-compatible waves of R3. W2,o must join with W3fi and W3t\.

Similarly W2fi must join with W3)2 and W3,3- Each W2,i must join with W3i,>2

and H/3,i*2+i- I n fact if the the number of waves in Ri is m times that of Rj,

then each W^k must join with Wj^m,Wjtk*m+i,Wjik*m+2,• • • ,Wjtk*m+m-i-

From now on let W^ represent all the join-compatible waves of Wi>k-

l i
i-i

1:

Embedded waves

The join-attribute edge of a partition can span more than one interval. Such

a partition can become a member of more than one wave. For example, P4>0

145

R, R,

2,1

r2,2

r2,0

r2,3

r2,2

50
2,0

100

L3.1

p p p
r3.3 Fj,7 _Jr3.11

P3,2

p
r3,l

P,6

P3.5

P3.4

P3.10

^3.15

>
J3.14

P P
r3.9 r3,13

P P
r 3.8 F3.12

k3.0

Figure 6.2: For each interval of R2 there are two intervals of #3.

of Figure 6.3 is such a partition. It spans 74,0 and I^i. Therefore it is a

member of \V4j0 and W^\.

Some times all the members of a one wave are also members of another

wave. This happens when some partitions of a wave span more than one

interval. For example, all the members of W5ii of Figure 6.4, are also members

of Wsja. If all members of Wijk are also members of Wij for any j < fc We

say, Wiyk is embedded in W^. All the join-compatible waves of the embedded

wave are also join-compatible of the embedding one. For example, when we

join relations R6 and R7 of Figure 6.5, using A6 - A7 as a join-condition,

W6j0, which embeds W6,u is join-compatible to W7,0 and W7,i.

Mapping portions to waves

A partition can be mapped to particular wave number using its partition-

number and its corresponding choice vector. The following steps show the

f

; •

146

A•4,1

4,1

4,0

4,4

4,3
-A4.I

0 25 50 75 100

Figure 6.3: P4)o spans /4)0 and /4,i.

mapping of an arbitrary partition, Fij, into a wave-number.

1. Convert the partition-number of Pij into its equivalent binary number,

say bv

2. If the number of bits in b\ is less than the size of the choice vector,

prepend zero bits to b\.

3. Extract all bits values in bx corresponding to the the join-attribute and

form another binary number &2-

4. Inverse b2 and form another binary number b3. In this step the most

significant bit in b2 becomes the least significant bit in b3 and so on.

5. The wave number of Pitj is the decimal equivalent of b3.

147

6,1

r6.1

r6.0

5,2

5,1

5,0

5,4

5,3
-Aw

0 25 50 75 100

Figure 6.4: W5>i is embedded in W5,o.

P6.3

6,2 6,4

7,1

P
7,1

7,3

7,2

7,5

7,4

7,7

7,6

6,0
0 25 50 75 100

Io I. I. l 2 A3

Figure 6.5: W^\ is join-compatable to W7fi and W7ii.

148

For example, take an arbitrary relation fy which has four attributes, Aifii

Ai,u Ai>2 and Aifi and a choice vector of size 6. Let Aifi be the join-attribute

and 001023 be the choice vector. By following the above mentioned steps, the

wave-number of a partition with a partition-number of 13 can be computed

as follows:

1. The binary equivalent of 13 is 11016 or 6j is 11016.

2. The relation has a choice vector of size 6, so we prepend two zero bits

to &i, which makes &i 0011016.

3. In the choice vector, the bits corresponding to the join-attribute are

bits 2, 4 and 5 (where bit 0 is the right most element) and their values

are 1, 1 and 1 respectively. Therefore, 62 is 1 lift.

4. Inverting 62 (Hlfi) results in 63, which is 111ft.

5. The wave number is the decimal equivalent of 63, which is 7.

Multiple join-attributes

When the number of join-attributes in a relation is more than one, the

number of intervals (waves) created is a multiple of all the individual join-

attribute intervals. For example, let Aiti and Aitj be two join-attributes.

Also let d\ti and rfij be their number of elements in the corresponding choice

vector respectively. Then the number of waves created are 2dli< x 2dlJ.

The steps of mapping a partition-number to a wave-number is the same as

that of a single join-attribute. The only difference is that we use bit positions

of multiple join-attributes instead of a single attribute. For example, if in a

ft1

? i
^
* * ' *

i 1

r/

149

!-*• '

partition-number, each bit-position corresponding to a join-attribute has a

value of 0, then the partition belongs to Wii0.

\ r
1 i

6.2.2 The matching-module

After the selection-module of a cycle is completed, the matching-module of

the same cycle starts. Up to now, we have identified the data partitions

of both waves but we haven't actually read any of them yet. It is in the

matching-module where the data partitions of the current join-compatible

waves are actually read and joined. The matching-module is performed in

nc-sied loop. In the outer loop, the partitions of one of the two waves are read

and their tuples are put into a hash table. In the inner loop, the partitions of

the other wave are read and their tuples probed into the hash table for join

with the tuples of the outer loop. Let us call the wave processed in the outer

loop of the matching-module the outer-wave and the one processed in the

inner loop the inner-wave. A simplified matching-module algorithm is shown

below. In the algorithm, hash-table.put is a function which hashes a record

and puts it into a hash table, the hash-table.prope functions hashes a record

and probes it into the same hash table to match it for join, the join function

joins the matching records and the READ function reads a partition from

disk.

ft'

V

k

150

The following is the maching algorithm:

MODULE matching(outer-wave, inner-wave)
BEGIN

FOR partition IN outer-wave
BEGIN

READ(partition);
FOR EACH record IN partition

hash-table.put(record);
END

FOR EACH partition IN inner-wave
BEGIN

READ(partition);
FOR EACH record IN partition
BEGIN

hash-table.probe(record);
join;

END
END

END

The matching algorithm

6.3 Optimizing join query processing

The cost of a join query is minimised if:

1. pages which don't contribute to the join result are not accessed,

2. each page which contribute to the join result is accessed once and

3. only records which can satisfy the join condition are matched.

151

i L

The proposed join algorithm is based on the partitioning of the input

relations into join compatible waves before tuples are matched for join. Min-

imising the size of the join compatible waves minimise the number of tuples

which has to be matched for join. To reduce the number of times a page isi

accessed, the size of one of each join compatible waves must be less than the

buffer size. The relation ship of a buffer size and a wave size is explained in.

detail in the next subsection.

The number of waves and the number of partitions per wave is affected

by the choice vector. Optimal choice vectors tend to reduce the number of

partitions per wave and this increases the chance of a wave to fit into the

availabe buffer. The relationship of choice vectors and waves is explained in

the subsection 6.3.2.

6.3.1 Buffer size vs wave size

As mentioned in section 2.1, the cost of a query is mainly measured by the

number of disk accesses required to answer the query. The number of disk

accesses required is significantly affected by the buffer size. Smaller buffer

can result in more disk accesses than a larger one. For example, let the

number of partitions of the outer-wave be 24 and the number of partitions

of the inner-wave be 7. Let the buffer size be 10 blocks. Let 8 of the 10

blocks be allocated for the outer-wave, 1 block be allocated for inner-wave

and the remaining 1 block be allocated for the result. Since we allocated 8

blocks for the outer-wave we can only hash 8 partitions at a time. We can

read all of them in 3, which is [f] , loops. In the first loop we will read the

first 8 partitions and hash them. Then in the same loop we will read the

•i >

i S

152

L t ,1

seven partitions of the inner-wave, one at a time (since we have allocated one

block for the wave) and join them with the 8 partitions of the outer-wave.

Then we repeat the same process for the next 8 partitions of the outer-v/ave

with the same 7 partitions of the inner-wave and so on. At the end of the

third loop, the join of the two waves is complete and 24 + f^l x 7 = 45 disk

accesses are performed. 24 accesses are performed reading the partitions of

the outer-wave, which is done in 3 loops, and j ^ l x 7 = 21 disk accesses

are performed reading the partitions of the inner-wave. Let the number of

partitions in Wiyk be denoted by \Wiik\.

The cost (in terms of disk accesses) of joining arbitrary wave W^ and its

join-compatible wave, Wj$, using a buffer size of B is, |W/i1fc|+1 Q^\ X \WJ$\.

The cost of processing join-compatible waves can be reduced if the wave

with the smallest number of partitions is used as the outer-wave. If the buffer

size is big enough to accommodate all the outer-wave partitions, each parti-

tion of the inner-wave will be read only once. For instance in our previous

example if the wave with 7 partitions was done the first wave and the other

with 24 partitions as the inner-wave, the cost would have been 7 + f | j x 24,

which is 31 disk access only.

i

' , '

6.3.2 Wave size and choice vector

Choice vectors significantly affect the cost of a join query. For example,

assume the join of two relations R& and Rg of Figure 6.6 with As,o = AgtQ

as a join-condition. Let us assume that the first-wave always belongs to ASfi

and the second-wave to A9fl. Let the buffer size allocated for the first-wave

be 2 and for the second-wave be 1 and for the result be 1. Then the cost

153

R, R.
8,1

P8.3

P8.2

PM

P8,0

P8.7

P8.6

Pw

P8.4

P8,ll

P
8,10

P8,9

P8.8

*8,15

P
8,14

*8.13

*8,12 A
8,0

9,1

p
r9.3

p
r 9,2

p
r9.1

p
r9,0

>
r9,7

P9.6

P 9 ,

P9.4

P9.ll

P910

P , 9

P9.8

3
r9,15

9,14

3
r9,13

p
r9,12 —A 9,0

25 50 75 100

I I I I I I I I

Figure 6.6: Waves with number of partitions higher than the buffer size result
in higher join query cost.

of each join-compatible wave is as follows: 4 + [|1 x 4 = 12. Since we have

4 join-compatible waves, the join of Rs and R$ will cost 4 x 12 = 48 disk

accesses. But if Rg was partitioned (using a different choice vector) as shown

in Figure 6.7 the cost will be 32. The join using R$ of Figure 6.7 instead

of Rs of Figure 6.6 costs less because the size of its corresponding waves is

smaller. So allocating more elements of a choice vector to join-attributes

results in smaller size waves. The problem now is, given a number of join

queries and their probabilities, to find optimal choice vectors which results

in minimal average cost. Finding optimal choice vectors for arbitrary query

distribution is NP-hard [94]. Hence we will use heuristic algorithms to find

optimal or near optimal choice vectors.

5,1

r
1U

7M

s \

154

R12

pu

P8.o

P8.3

P,2 P8.4

P8.7

P8,

P8.9

P8 .8

Ps,n

°8,10

P8.!3

P8..2

P,.5

P,u

l
8 , 0

25 50 75 100

Figure 6.7: Reducing the number of partitions per wave so that they fit in
the available buffer reduces cost.

6.3.3 Heuristic algorithms and Cost functions

The heuristic algorithm that we used to find optimized choice vectors was

simulated annealing. Simulated annealing was extensively discussed in sec-

tion 2.6.3. Simulated annealing uses cost functions which are dependent on

the problem on hand. In our case, the problem is given a set of join queries

and their probabilities, is to find optimized choice vectors which minimize

the average query cost of the set. The rest of this section discusses the cost

functions we used.

Assume that Ri and Rj are two arbitrary input relations. In the proposed

join algorithm, the partitions of two relations is grouped into waves and then

the join compatible waves are joined. So the cost of joining the two relations

is equivalent to the sum of the sub join costs. The average join query cost is:

155

CQ = i x Pi (6.1)

where pq is the probability of q and Q is a set of join queries. Cq is the cost

of a single query. The cost of joining two join compatible waves is:

CWt = max (6.2)

Where 5 is the buffer size.

Let the choice vector elements of Ri be di out of which d^ belong to the

join attribute. Similarly let the choice vector elements of Rj be dj and that

of the its join attribute be d,*. The number of waves created in Ri and Rj

is 2di and 2d->' respectively. So on the average each wave of Ri will contain

2<U-di* a n (j e a c n wave of Rj will contain 2dJ~d>*. Let 5i = di — d^ and Sj =

dj — dj*. Hence Equation 6.2 can be rewritten as:

Cw.k = min(2*, 2*0 + max(2*, (6.3)

The cost of a query is equal to the cost of its join compatible joins and is

represented as:

Cg= (6.4)
k=0

By combining Equations 6.1, 6.4 and 6.3 we end up with:

156

CQ = £ min(2*, 2s*) + max(2*\ 2*)
min(2<5-",2l5j)'

(6.5)

So by using simulated annealing together with Equation 6.5 we will find

the optimized choice vectors.

6.4 Results and analysis

In this section we present the results of experiments comparing the perfor-

mance of the optimised and cyclic choice vectors.

The first set of results shows the performance of the optimised and the

cyclic choice vectors on different data and query distributions. The second

set of results shows the effect of the number of attributes on the performance

of both choice vectors. The third, fourth iand fifth sets show the effect of

the file size, page size and buffer size on the performance of the cyclic and

optimised choice vectors.

Query distributions change over time. A choice vector optimised for one

query distribution may not perform as well if the query distribution changes,

/i. solution, based on simulated annealing and Equation 6.5, is called stable if

a slight change in the query distribution doesn't affect the optimality of the

solution. The last set of results demonstrate the stability of the optimised

choice vector.

157

6.4.1 Environment

We implemented a BANG file with our extension of using a choice vector

during partition splitting. In each experiment we used randomly generated

queries and assigned each of them a randomly generated probability. Unless

specified, we used a page size of 1024 bytes, four integer attributes per record

and one million randomly generated records per relation (BANG file). We

ran all our experiments on a SPARC station 20.

The data distributions used were uniform, clustered regions, a linear cor-

relation, and a non-linear correlation function (a sine wave). Examples of

these are shown in Figure 3.9. We refer to them as uniform, clustered, linear

and sinusoidal, respectively.

In the experiments, four sets of query distributions were used. Query

distributions in each set were generated randomly using a fixed set of seeds.

The seeds used for one set were different from that of the other. In this

thesis, these four sets of query distributions are referred to as 9 i , 02, 63

and 64.

6.4.2 Effect of data and query distributions

The effect of using the optimised and cyclic choice vectors on the average

query cost using different data and query distributions is shown in Tables 6.1

to 6.4. The first column in each of these tables shows the query distribu-

tion used. The second and the fourth columns correspond to the cyclic choice

vector and show the cost in number of disk accesses and in lapse time, respec-

tively. Similarly, the third and fifth columns show the costs corresponding

158

Query
Distribution

©i
©2
©3
©4

Disc accesses
Cylic

154634
151735
160048
162986

Optimised

60093
61208
60128
58960

Time (sec)
Cyclic

1438
1382
1483
1464

Optimised

589
588
594
554

Improvement in
Disk access

2.57.
2.48
2.66
2.76

Time

2.44
2.35
2.50
2.64

Table 6.1: Average query cost for a uniform data distribution.

Query
Distribution

©i
©2
©3

©4

Disc accesses
Cylic

153329
150170
159020
161434

Optimised

62549
60740
60575
58211

Time (sec)
Cyclic

1397
1381
1351
1402

Optimised
572
573
529
517

Improvement in
Disk access

2.45
2.47
2.62
2.77

Time

2.41
2.41
2.55
2.71

Table 6.2: Average query cost for a clustered data distribution.

to the optimised choice vector. The improvement in the number of disk page

accesses and time taken when using the optimised choice vector rather than

the cyclic choice vector is shown in the final two columns.

In all the experiments performed the optimised choice vector performed

better than the cyclic choice vector. The improvement is lever when both

input relations have skewed data distributions. The more skewed the data

Query
Distribution

©l
02
0 3

©4

Disc accesses
Cylic

51684
51462
61156
51756

Optimised

50073
49133
59429
48356

Time (sec)
Cyclic

477
480
558
472

Optimised

468
466
552

441

Improvement in
Disk access

1.03
1.05
1.03
1.07

Time
1.02
1.03
1.01
1.04

w

Table 6.3: Average query cost for a sinusoidal data distribution.

159

Query
Distribution

02
9 3

©4

Disc accesses
Cylic
52213
52040
55847
52477

Optimised
49131
48759
51415
48177

Time (sec)
Cyclic

482
485
490
474

Optimised
459
458
449
439

Improvement in
Disk access

1.06
1.07
1.09
1.09

Time

1.05
1.06
1.09
1.08

Table 6.4: Average query cost for a linear data distribution.

distribution is, the more are the elements of the choice vector. More ele-

ments in the choice vector causes more number of waves hence less number

of partition per wave which can fit into the available memory.

6.4.3 Number of attributes

As the number of attributes increases, the number of attributes that are

specified in few or no queries (nonsignificant attributes) is likely to increase.

As the ratio of the nonsignificant to significant attributes increases, the per-

formance improvement of the optimised choice vector over the cyclic choice

vector decreases. This is because when the cyclic choice vector is used, peer-

splitting based on the non significant attributes increases. As a result, the

performance improvement achieved by using the optimised choice vector in-

stead of the cyclic choice vector increases.

Table 6.5 shows experimental results obtained using BANG files with

different numbers of attributes for different query distributions. The first

column of the table shows the number of attributes in each BANG file.

The second column shows the query distribution used. The third column

shows the average number of disk page accesses required when the cyclic

160

Number of
Attributes

2
2

Query
distribution

e2

Number of Disk accesses
Cyclic Optimal
23589
23649
23473
23434
66949
66948
66936
66939
154634
151735
160048
162986
524492
524465
524573
524512

22572
22542
22591
22566
41478
41432
41398
41487
60093
61208
60128
58960
73400
73290
73310
73237

Gain =
Cyclic/ Optimised

1.05
1.05
1.04
1.04
1.61
1.62
1.62
1.61
2.57
2.48
2.66
2.76
7.15
7.16
7.16
7.1.6

Table 6.5: Effect of the number of attributes on the average query cost.

choice vector was used. The fourth column shows the average number of

disk page accesses required when the optimised choice vector was used. The

last column shows the improvement achieved using the optimised choice vec-

tor rather than the cyclic choice vector. The table shows that as the number

of attributes increases the improvement increases, as we expect.

6.4.4 File size

To study the effect of the file size on the performance of the optimised and

cyclic choice vectors, experiments with files ranging in size from 4 Mbytes

to 40 Mbytes were performed. The experiments were repeated using the

uniform, clustered, sinusoidal and linear data distributions. The results are

161

,

• Uniform
Clustered
Sinoid
Linear

3.0-1

o* 2-°-l

I ..5H

1.0 • *
10 20 30

T

40
File size (Mbytes)

Figure 6.8: Effect of file size on relative performance.

shown in Figure 6.8. The vertical axis of Figure 6.8 represents the average

query cost ratio op^
c
sed and the horizontal axis represents the file size in

Mbytes.

In ail the experiments the optimised choice vector consistently performed

better than the cyclic choice vector, as can be seen in Figure 6.8. The

improvement remains nearly the same as the file size is increased, which

shows that the file size has no effect on the performance of the proposed join

algorithm.

6.4.5 Page size

Experiments were conducted to study the effect of the page size on the per-

formance of the optimised and cyclic choice vectors. Page sizes between 1

and 64 kbytes were used. The experiments were repeated using the uniform,

clustered, sinusoidal and linear data distributions. The results are shown in

162

Uniform
Clustered
Sinoid
linear

3.0-i

1.0

Block size (KB)

Figure 6.9: Effect of page size on performance.

Figure 6.9.

As can be seen in Figure 6.9, the optimised choice vector performs better

than the cyclic choice vector for all page sizes. The results show that the

performance improvement is greater with smaller page sizes when the data

distribution is uniform. This is because smaller pages result in higher number

of pages and page splits, so the improvement gained by using a better splitting

policy is greater. When the data distribution is skewed, the improvement in

cost is better when larger pages sizes are used. This is because larger pages

decrease the size of the choice vector hence the number of splits based on the

non significant attributes.

6.4.6 Buffer size

The size of the buffer that is available for the join operation significantly

affects the cost of join. If the number of partitions in each of two join

'}•>

163

compatible waves is smaller than the available buffer size then each partition

in those waves is read only once. But if each join compatible wave has

partitions to big to fit into the available buffer then the partitions of one of

the waves will be accessed once but that of the other will be read several

times.

For example, assume Witj and Wkj are two join compatible waves and

B is the size o£ the availabe buffer. Let us also assume that Wij has less

number of partitions than WkJ. If \Wij\ < B, then each partition of those

waves will be accessed once. But if \Witj\ > B, then the partitions of Wkj

will be accessed several times (-OELiiU o n ^ a v e r ag e) thus increasing the cost

of the join operation. The cost is higher if the availabe buffer size is smaller.

The experimental results in Table 6.6 shows the relationship between the

buffer size and the cost of the join operation. Column one of the table shows

the ratio of the buffer size to the size of the smaller relation. Column two

shows the query distribution used to perform the joins. Columns three and

four show the cost of the join operations when using the cyclic choice vector

and the optimised choice vector respectively. The last column shows the gain

that is achieved by using the optimised choice vector instead of the cyclic

choice vector. It is computed by dividing the cost obtained by using the

cyclic choice vector by that of the optimsed choice vector. As can be seen

from the table, as the buffer size increases the cost decreases.

6.4.7 Stability

Query distributions can change over time. A choice vector optimised for a

given query distribution may perform worse than the cyclic choice vector if

I 1

,1*

164

Size ratio
(buffer/relation)

0.001
0.005
0.01
0.05
0.1
0.15
0.2

Query
distribution

©l
9 i
6 i
6 i

©i
0 i

0 i

Number of disk accesses
Cyclic

1286212
281041
154634
64042
45893
45482
45235

Optimised

270619
75878
60093
47474
45117
44873
44873

Gain =
(Cyclic/Optimised)

4.75
3.70
2.57
1.35
1.02
1.01
1.01

I

Table 6.6: Effect of buffer size on query cost.

the query distribution changes significantly. In order to study the stability

of our optimised choice vectors, experiments were done to determine the

change in performance when the query distribution changes. We state that

each query distribution is changed by x% if each query probability, p, is

randomly changed to be in the range p x (1 ± ^) prior to the whole query

distribution being normalised.

Figures 6.10 to 6.13 show how the average query cost is affected when the

probability of each query changes by up to 80%. In each figure, three average

query cost ratios are shown, using dotted, dashed and solid lines. The dotted

line ("Cyclic/New") corresponds to comparing the average query cost of a

BANG file built using a cyclic choice vector with that of a BANG file built

using a choice vector optimised for the new, changed, query distribution.

The dashed line ("Old/New") correspond to a BANG file which was built

using an optimised choice vector determined by using the original query

distribution. The solid line ("New/New") corresponds to BANG files built

usin6 an optimised choice vector determined using the changed probability

distribution.

165

Hi'?

Cyclic/New
Old/New
New/New

5-5

-3

2
S 2 - I
u

40
I

60 80

Change in query distribution (%)

Figure 6.10: Stability of the optimised choice vector using 6 i and'the uniform
data distribution.

Cyclic/New
OUUNew

— — New/New

5 -

2
• 4 - 1 -

1

0 r
20 40 60

Change in query distribution (%)

80

Figure 6.11: Stability of the optimised choice vector using 0 i and the clus-
tered data distribution.

166

4-i
©

o 2-1

Cyclic/New
Old/New
New/New

20 40 60
Change in query distribution (%)

80

Figure 6.12: Stability of the optimised choice vector using 6 i and the sinu-
soidal data distribution.

g J

1 2
U

1

Cyclic/New
Old/New
New/New

20 40 60
Change in query distribution (%)

80

Figure 6.13: Stability of the optimised choice vector using 0 i and the linear
data distribution.

167

Our results show that the performance of the optimised choice vector of

the original query distribution is almost as good as that of the changed query

distribution even when the distribution was changed by 80%. As a result,

we can conclude that an optimised BANG file needs to be reorganised rarely,

only when the query distribution changes drastically.

1 V

6.5 Conclusion

Our study shows that given a probability distribution of join queries, an

efficient physical database design can be created by using simulated annealing

and Equation 6.5. Unlike previous approaches, our approach is not limited to

a uniform data distribution or to independently specified attributes, and the

precise nature of any non-uniformity does not need to be known. We avoid

these limitations by using a file structure which distributes records evenly

amongst disk pages even when the data distribution is highly non-uniform.

For our experiments, we used the BANG file.

When compared to the cyclic choice vector, our results show that the

optimised choice vector produces more efficient physical database designs,

reducing the average query cost. For example, in one of our experiments in

which a BANG file of eight attributes was used, the optimised choice vector

resulted in an improvement of 716% over the cyclic choice vector.

The improvement gained by using an optimised choice vector instead of

the cyclic choice vector increases as the number of attributes increases. This

is because as the number of attributes increase, the likelihood of dividing

the domain space using attributes which do not occur frequently in queries

• ;» •

168

Til

is higher when the cyclic choice vector is used. This results in an inefficient

physical database design. For example, in the experiments that we per-

formed, the improvement in performance was greater when, there were eight

attributes in the relation than when there were two, three or four attributes.

Similarly, as the ratio of attributes which occur frequently in queries to at-

tributes which do not increases, the improvement in the performance of the

optimised choice vector over the cyclic choice vector decreases.

We found that the optimised choice vector consistently performs better

than the cyclic choice vector across a wide range of file sizes, page sizes and

buffer sizes.

There is no need to rearrange the optimised choice vector whenever the

query distribution changes by a small amount. Our experiments show that

the optimised choice vector built for the current query distribution will re-

main almost as good as the optimised choice vector built for a variation on

the current query distribution even when the query distribution changes by

80%. There was a degrediation of less than 5% in perfromance.

We conclude that if the query distribution is known and a file structure

which evenly distributes records amongst disk pages is used regardless of the

data distribution, an optimised, choice vector produces an efficient physical

database design. To our knowledge, this is the most practical method of

storing multidimensional data in order to best exploit a known query distri-

bution. We therefore recommend that such structures be incorporated into

new generation database systems.

169

I

i
d

IK

Chapter 7

Optimizing other relational

operations

7.1 Introduction

In the previous chapters we discussed new techniques of optimising the or-

ganisation of multidimensional data in order to minimise the cost of partial

match, range and join queries. In this chapter we will discuss new techniques

of optimising the organisation of multidimensional data in order to minimise

the cost the other standard basic operations such as selection, projection,

join, intersection, union difference and division.

The selection operation includes the exact match, partial match and range

queries all of which were explained in the previous chapters. Hence, the

selection operation will be discussed briefly.

170

'if

"I

Projection requires each record to be read once. It cannot be optimised

if it is the only operation to be performed and duplicates are to remain in

the output relation.

The implementation of intersection, union difference and division is sim-

ilar to that of the join operation. Thus, the same basic approach can be

taken in their efficient implementation. There are a number of possible join

implementations which can be used with multidimensional data. This chap-

ter will first discuss these join implementations and then it will discuss how

some of these implementations can be used for intersection, union difference

and division.

This chapter consists of 10 sections. The next two sections, sections 7.2

and 7.3, discuss the implementation of selection and projection operations

respectively. The different algorithms of the join operation are covered in

section 7.4. The implementations of the intersection, union, difference and

division operations are explaineu in sections 7.5 to 7.8 respectively. Duplicate

removals and aggregation is discussed in section 7.9. The last section is the

conclusion of this chapter.

7.2 Selection

The selection operation retrieves records from a file or a database which

satisfy the queries condition. There are three types of selection queries,

namely, exact match, partial match and range query.

1. In an exact match query records to be retrieved are described by spec-

ifying all the fields of the record.

171

2. In a partial match query records to be retrieved are described by spec-

ifying a subset of its fields.

3. In a range query the records to be retrieved are described by specifying

a range of values to a subset of the fields.

In an exact match query, a search string, which is a string of binary

values, is contracted from the values of the specified attributes. This is done

by assigning the bit positions in the choice vector which correspond to the

specified attribute according to the specified value. Once the search string is

constructed the search for the record starts from the root. Each root entry

is matched with the search string. The matching is done by comparing the

bits of the search string to that of the partition number of the entry. If the

partition level of the entry is d, and, the first d bits of the partition number

match that of the search string, then this entry is a candidate to hold the

required record. Prom all the candidate entries, the one with the highest

partition level is the one which can hold the search record. Then the search

descends to the next lower directory level using the chosen entry. The same

process (as that of the root) is again repeated on the entries of the chosen

page. The search then descends to the next lower level and so on until the

data page which may contain the required record is retrieved.

A search string is also constructed when processing partial match queries.

In the search string, the bits which correspond to the specified attributes are

set accordingly and those bits which correspond to the unspecified attributes

are left as don't care. In a partial match query, searching for the required

records starts from the root. All the entries of the roo' page are matched

i ,

172

with the search string. All the entries matching the bits of the specified

attribute in the search string are chosen. The search for the required records

then descends to the next lower directory level using all the entries chosen

from the root page. The same process is repeated in this level again. The

search then descends to the next lower level an so on until all the data pages

which may contain the required records are searched. The main difference

in processing a partial match query and an exact match query is that, in

an exact match query an entry which directly encloses the required record is

chosen, while in partial match query all the entries which directly or indirectly

enclose the required records are chosen.

In a range query, the construction of the search string is nearly the same

as that of the partial match query. As was explained in Section 5.2, a range

query can be envisioned as a subspace called query space within the domain

space of a relation. The search string represents the query space. An answer

to a range query is the retrieval of all the records in the query space. Search-

ing for the required records starts from the root. Root entries matching the

search string are candidates for the next search. If there are two candidate

entries, A and B, where A encloses B and B encloses the query area, then A

is dropped as a candidate. This is because A will never contain the required

records.

As was discussed in the beginning of this chapter, selection consists of

partial match query and range query. Hence, the techniques used, in chap-

ters 4 and 5, to find optimised choice vectors for partial match query and

range query can be used to minimise the cost of selection.

173

' f c

7.3 Projection

If we think of a relation as a table, then the select operation selects some

rows from the table while discarding the other rows. The project operation,

on the other hand, selects certain columns from the table and discards the

other columns. If we are interested in certain attributes of a relation, we use

the project operation to "project" the relation over the selected attribute

list. If the attribute list includes only nonkey attributes of a relation, then it

is probable that duplicate records may appear in the result. The result of the

project operation is a set of records and hence a valid relation. Providing no

duplicate removal is required, the number of records in the output relation

is the same as that of the input relation.

The project operation is usually performed as a part of another operation.

Because it requires full scan of the input relation, its implementation is the

most straightforward of all the relational operations providing no duplicate

removal is required. The removal of duplicate records from the result query

is a problem common to this operation and many of the other relational

operations. Consequently, we discuss it separately, in Section 7.9.

7.4 Join

The join operation is one of the database operations which is used to combine

records from two or more relations based on a condition known as join-

condition. Records of the input relations are combined when they satisfy the

specified condition. The result of a join operation is a relation which has

some or all of the attributes of the input relations.

174

The analysis and implementation of the join operation for uni-dimensional

data has been an active area of research. There is a comprehensive survey

paper on this active research area done by Mishra and Eich in [89]. The

existing join implementations for a uni-dimensional data can also be used for

multidimensional data after the multidimensional data is optimally organised

using choice vectors. At the moment, there are three main types of join

algorithms , namely, nested loop, sort-merge and hash join. This section

contains overview of each of these algorithms, providing the foundation upon

which our variation is based.

7.4.1 Nested loop

The nested loop algorithm is the simplest of the join algorithms. In nested

loop one of the relations being joined is designated as inner relation, and

the other one is designated as the outer relation. It works in the following

way. For each record in the outer relation, all records of the inner relation

are read and compared with the record from the outer relation. Whenever

the compared records satisfy the join condition, they are concatenated and

placed in the output buffer. The outer relation is typically the smaller of the

two relations.

In practice, more than one record of the outer relation is read before the

inner relation is scanned. For example, Blasgen and Eswaran [13] held many

records of the outer relation in memory as possible and read one record at a

time from the inner relation.

A similar algorithm has been suggested on the disk block level. For

example, if the size of the memory is B blocks, B - 2 blocks of the outer

,11

175

relation are read at a time, and the inner relation is scanned one block at a

time. One block is reserved for the result records. This algorithm is often

called the nested block algorithm.

Several optimisations can be applied to the above algorithm. Two im-

portant ones are, the use of a hash table, and rocking. Instead of comparing

every record in the inner relation with every record of the outer relation,

the records outer relation can be inserted into a hash table r..& 4 < k-:~ *>*-

tributes to form the hash key. The records of the inner re1 .:: if v. •. ••?saj

to probe the hash table, searching for records to join with. '•'•;••, •• ••£?<]:•vav" ,y

reduces the number of comparisons required.

A further step towards efficiency consists of rocking [67j ;*.:- •::/ ested by

Kim. Rocking is used when the outer relation is larger than its memory

buffer. On the first pass through the inner relation, the inner relation is read

from disk. On subsequent passes, part of the inner relation will already be in

the memory, from the previous pass. This part need not be reread from disk.

The name, rocking, derives from the observation that one implementation of

this is to read the inner relation forwards and backwards on alternate passes.

Thus the beginning and the end of the relation is only read on alternate

passes.

In most operating system it is much more efficient to read a file forward

than backwards. Under these these circumstances, a better implementation

of rocking is to read the file in a circular manner. Each pass should start by

processing the records already in memory. It should then start reading from

the end of the last part of the file read during the previous pass and read to

the end of the file. It should then go back to the start of the file and read to

176

1

lfY>

the start of the first block of the file which was in memory at the beginning

of the pass. The same number of blocks are read as in Kim's scheme, but the

total time taken to read it will be shorter because the file was always read

in the forwards direction [51].

7.4.2 Sort-merge

The sort-merge join is done in two phases, namely, a sorting phase and a

merging phase. In the sorting phase, each relation is physically sorted in its

respective attributes and in the merging phase, both relations are scanned in

the order of the join attributes, and records satisfying the join condition are

merged to form a single relation. Whenever a record from the first relation

matches a record from the second relation, the records are concatenated and

placed in the output relation.

In the sorting phase, depending on the size of available memory, a num-

ber of sorted partitions are created. Replacement sections, as described by

Knuth [70], can be used to generate the initial sorted partitions. In the

merging phase, corresponding sorted partitions are scanned and records with

the matching join attributes are joined. By first sorting both relations, the

merging phase is performed in linear time in the size of the relations.

If the relations are presorted, this algorithm has a major advantage over

the other join algorithms because each relation is scanned only once. Further

if the number of the records in the output relation is low in comparison to the

number of records in either input relations, then the number of records to be

compared are considerably lower than that in the nested loop join algorithm.

Blasgen and Eswaran has shown that this algorithm is most efficient in a

177

If

uniprocessor system [13]. Blasgen and Eswaran and another researcher, Su,

in [132] suggested that in the absence of indexes and knowledge about the

selectivity, and if there is no basis for choosing a particular join algorithm,

then the sort-merge algorithm is often found to be the best choice.

7.4.3 Hash joins

In a hash join, the join attribute values of each record in the first relation is

hashed and then put in a hash table according to the hash value. Similarly

the join attribute values of each record in the second relation is hashed and

is probed the same hash table for join [24]. The hash join tries to take

the advantage of nested loop and sort-merge join algorithms. It takes the

advantage of the fact that the nested loop algorithm only requires a single

scan of the input relations if one of the two relations can be completely

contained in memory. They aim to partition the relations so that this is

possible. Also it takes the advantage of merge-sort in comparing only records

which can possibly satisfy the join condition [14,45]. A large number of join

algorithms using hashing has been proposed and we will briefly discuss some

of them in the following subsections.

GRACE hash join

GRACE hash join consists of two phases, namely, the partitioning phase and

the matching phase [68].

During partitioning phase each relation is split into equal number of parti-

tions. This is done by reading each record of the input relations and applying

178

hash function to its join attributes. The results of applying the hash func-

tion are used to form a hash key for each record. The hash key is used to

determine which output partition each record is placed in. The same hash

function must be used to partition each relation, producing the same num-

ber of partitions, P, from each relation. If two records must be joined they

will have the same hash keys, and, therefore, will be in the corresponding

partition of each relation. If the smaller partition of a corresponding pair of

partitions is larger than main memory the pair of partitions are themselves

partitioned into pairs of smaller partitions. This process continues until at

least one partition in each pair can be contained in memory.

In the matching phase of the GRACE hash join algorithm; the nested

loop algorithm is applied to each pair of partitions. In each case, the outer

relation is read and its records are inserted into a hash table. Then the inner

relation is scanned and the hash table is probed to join the records. Records

satisfying the join condition are concatenated and placed in the output buffer.

Hybrid hash join

The hybrid hash join algorithm is to a large extent similar to the GRACE

hash join [24,128]. The difference lies in the fact that the hybrid hash join

algorithm does not write out all partitions to disk. It starts the join process

on the first pair of partitions while the second relation is being partitioned.

Instead of writing out each partition to the disk as it is created, the hybrid

hash join keeps one partition in main memory (in a hash table) while writing

out all the others to the disk. When the second relation is partitioned, records

which hash into the partition which corresponds to the one in the hash table,

179

BftLA'J ".

mm.

1

are joined with the records of the first relation by probing the hash table.

Keeping one of the partitions in the memory during the partitioning phase

of the first relation, minimizes the I/O activity to the extent of not having

to write the partition to disk and then read it back once the partitioning

phase is complete. This is particularly advantageous when the size of each

partition is quite large.

. A number of hybrid hash join variations have been proposed. Their pri-

mary aim has been to overcome the problems of uneven distribution of data

which can result in large differences in the sizes of the partitions of a relation

[96,112,144].

7.4.4 The proposed join algorithm

Our version of join implementation was extensively discussed in the previous

chapter. The proposed join implementation is a variation of the hash join

algorithm. Hence, in this subsection we will explain how it is related to the

other hash joins.

As was discussed in Section 7.4.3, a hybrid join algorithms has 2 phases,

namely, the partitioning phase and the matching phase. The main difference

between the various hybrid joins and ours is mainly in the partitioning phase.

We know that in the BANG file as in all other multidimensional file struc-

tures, the data is already partitioned. So our join algorithms exploits the

existing partitions of such file structures to skip or minimize the partitioning

phase.

Our algorithm starts by mapping the domains of all the join attributes

into one domain. This is done by assuming the bit positions in the choice

180

vector which correspond to the join attributes to belong to one imaginary

attribute. For example, if the number of join attributes is 3 and each one of

them has 2 choice vector bits, then the number of choice vector bits of the

imaginary attribute will be 6. Let us call these bits a bits. If the sizes of

the a bits in the joining relations is different, then the minimum of all the

sizes is considered to be the size of the a bits. If the size of the a bits is n,

then the imaginary domain is partitioned into 2n intervals. These intervals

are labeled as 0 , 1 , . . . 2" - 1.

A partition intersects an interval if the values of its a bits in its partition

number is equal to the interval label. For example, if the size of the a bits

is 6, and the a bits in the partition-number of a partition P have values of

0,0,0,0,1,0,1, then P intersects interval 5, which is 0000101 in binary. Let

us call the set of partitions from Ri which intersect interval j as Wij. For

example, the set of R\ partitions intersecting interval 0 is Wi$-

Once the size and the positions of the a bits are known, our algorithm

searches both joining relations, R\ and R2, for members of W-L>o and W2>Q. If

the number of partitions in Wi)0 are less than those in W2>o, records in Wifi

are placed in a hash table and those in W2,o probe the hash tables for join.

But, if the number of partitions in W2>0 are less than those in Wifi, records

in W2,o are placed in a hash table and the records in Wifi probe the hash

tables for join. Once the join of Wi)0 and W2fl is done, a similar process is

repeated for the join of Whi and W2)i, then for W\,2 and W2>2 and so on till

the join of Wipi-i and W2)2»-i-

Each set of partitions doesn't have to be processed in a separate loop. If

the smallest partition in a set spans many intervals, then all the partitions

181

which intersect those intervals can be processed in one loop. Hence the

number of loops can be much less than the number of intervals.

If a set contains partitions of different sizes, records in a large partition

may be processed in differnet loops. Some records of such a partition may

not be put in a hash table but instead be placed in partitions, according to

their hash values, which will be processed in the coming loops.

7.5 Intersection

An intersection is an operation which takes two relations as input, and results

in a third relations which includes records which are in both input relations.

The implementation of the intersection operation is similar to that of the

join. The primary difference (other than the result of the operation) is that,

with the intersection operation all the choice vector bits can be considered

as a bits. But if the size of the a bits is equal to the size of the choice vector,

each interval on the average will be intersected by one page. This means

that one page from each relation will be read and processed in each loop of

this algorithm. But processing one page at a time will substantially increase

the number of directory traversals. So to minimise the traversal of directory

pages, the number of intervals must be reduced. Reducing the number of

intervals will increase the average number of data pages intersecting an in-

terval. So to reduce the number of intervals, the number of a bits can also be

reduced. The number of a bits must be reduced until the number of pages

intersecting an interval comes close to the available memory.

Without loss of generality less us assume that the current intersecting

182

sets of partitions to be Wid and WkJ and the number of partitions in Witj

to be less than that of WkJ. The implementation of the join operation of

section 7.4.4, works by reading records of the W{J matching certain hash

values. The intersection operation can be implemented in the same way

provided that all of the records of the WtJ matching the given hash value are

in memory at once. During the pass over the Wkj, those records in the Wij

which match (intersect with) those in the WkJ should be marked. After all

the records in the Wkj have been read, the marked records of the Witj can

be written out. This also ensures that no duplicate records are written.

7.6 Union

A union is an operation which takes two relations and results in a third rela-

tion which includes all records that are in either or in both input relations.

Duplicates must also be removed. However, unlike intersection operation,

the answer to the union are not present in one relation. To remove dupli-

cates without performing passes over the current sets of partitions, we must

have all the records from both sets matching certain hash values in memory

simultaneously. If this condition is met, the algorithm is simply a modifica-

tion of the join algorithm which performs the union operation instead of join

in the loop. The number of partition in Wij and Wkj must not be larger

than the memory buffer allocated to them. This can be done by choosing a

reasonable size of a bits.

The output partitions must be processed to remove the duplicates, and

the duplicate removal is described in Section 7.9.

&K1

tr- .
4>\

* &''^

183

S <2 i

7.7 Difference

The difference opcratifm, which is denoted as Ri-R2, is an operation which

takes two imw.. relations, Rx and R2, and result in a third relation which

includes aH the records that are in #1 but not in /22.

The initial ? w « o n ','»£ the output records of the difference is the first

relation, fq. Tain is different from the union operation, in which the result

records come from both relations. It is also different from the intersection

operation, in that the result records are found within one specific relation.

The differ*mo« operation is not commutative, and requires that duplicate

records be removed from the output. To avoid performing a final pass over

the output file to remove duplicates, each partition of the first relation must

be held in memory at erne time. Thus the partitions of first relation must

be placed in the hash table, even if they are more than those of the second

relation.

The differ&iî e operation can be implemented using the same algorithm as

the j :in, given in Section 7.4.4, except that the partitions of the first relation

must be placed into the hash table and those of the second one must probe

the hash table later. If the number of partitions in the current set of the first

relation is more than the allocated memory, duplicate records will have to be

removed from the output partitions after it has been produced, as described

in Section 7.9.

The main part of the difference algorithm can be implemented in a manner

similar to the intersection operation, described in Section 7.5. The only

change that is required is that instead of writing out the marked records, the

• r

184

1

I I

\
ft?'-

Subject code
CS001
CS002

Subject name
Databases

Operating systems

Table 7.1: SUBJECTS table

Subject ID
STU001
STU002
STU003
STU003
STU004
STU005
STU006
STU007
STU007
STU008
STU009

Subject code
C3002
C3001
CSGOi
CS002
CS001
CS002
CS001
CS001
CS002
CS002
CS002

Table 7.2: STtfHSWTS-SUBJECTS table

unmarked records should be written out.

7.8 Division

The division process is best illustrated by considering the division of a relation

rnih. two columns by a relation with single column. As an example assume

the division of the STUDENTS-SUBJECTS relation , shown in Table 7.2,

by SUBJECTS relation which is shown in Table 7.1.

The result relation, the quotient, will be a relation with one column which

is the Student ID. containing the ids of the students who took all the subjects

in the SUBJECTS table. The rows in the quotient relation will consist of

A 185

1

Student ID
STU003
STU007

Table 7.3: Answer

students ids of the students who took all the subjects in the SUBJECTS

table. With our sample data, the new relation will consist of STU003 and

STU007 as shown in Table 7.3.

Our new division algorithm, on relations having multidimensional data,

starts by organising the data with optimised choice vector. The process of

finding the optimised choice vector is the same as that of join operation and

was discussed in Chapter 6. Like the join, the division operations consists of

two phases, namely, the selection phase and the hashing phase.

The selection phase is exactly the same as that of the join operation and

was explained in Section 6.2.1. The hashing phase has the following features.

1. Two hash tables, one for the divisor and the other one for the quotient

are created.

2. Each divisor is assigned a unique sequence number.

3. For each quotient candidate, a bit map is kept. The bit map contains

a bit for each divisor, indexed by the sequence number.

4. When a quotient candidate is found, the bit corresponding to the divi-

sor is set in the bit map of the quotient candidate.

5. The final quotient consists of all quotient candidates which have all the

bits set in their bit map.

m

, w y

186

7.9 Duplicate removal and aggregation

The removal of duplicate records is implicit in most relational operations.

If an operation is of the type select-operation-project, and the attributes

on which the operation is performed are not included in the records after

the projection, the output could include duplicate records which must be

removed.

We eliminate duplicate records from a relation by arranging the records

into partitions, such that each partition is smaller than the size of main

memory. The partitions can then be read into main memory, the duplicates

removed, and the remaining records written out. The first step is the normal

process of partitioning a relation. Memory which is not used during the

execution of relation operation can be used to create the initial part of the

index at little additional cost.

Aggregate functions like SUM, AVG, MAX, MIN etc., often group records

together and produce some computed output. Therefor aggregate functions

can be implemented using the same basic algorithm as duplicate removals.

7.10 Conclusion

In this chapter we covered new techniques of optimising the organisation of

multidimensional data in order to minimise the cost of the standard relational

operations such as selection, projection, join, intersection, union difference

and division.

The selection operation is either exact match, partial match or range

query. The cost of exact match query is determined by the depth of the

187

BANG file so no optimal organisation of the multidimensional data is re-

quired. Finding optimised choice vectors which minimise the cost of the

partial match and range queries were covered in Chapters 4 and 5 respec-

tively, and a brief summary of them is in this chapter for completeness.

Projection requires each record to be read once. It cannot be optimised

if it is the only operation to be performed and duplicates are to remain in

the output relation.

Duplicate records are eliminated from a relation by arranging its records

into partitions, such that each partition is smaller than the size of main mem-

ory. The partitions can then be read into main memory and the duplicates

removed.

Aggregate functions often group records together and produce some com-

puted output. Thus they can be implemented using the same basic algorithm

as duplicate removals.

The implementation of intersection, union difference and division is sim-

ilar to that of the join operation. Thus, the same basic approach, as the one

discussed in Chapter 6, can be taken in their efficient implementation.

188

?<•

Chapter 8

Conclusions and Future work

8.1 Conclusions

Effective and efficient management of a large volume of data is critical in

modern and future computer applications. As the size and speed of com-

puter systems has increased, so has the amount of data which has to be

manipulated. While the CPU speed is still doubling nearly every eighteen

months, the performance of the secondary storage devices is not increasing

on the same rate. That is why the cost of answering a query is mainly

measured by the number of disk accesses performed to retrieve the records

described by the query. Therefore the efficiency with which this devices are

used continues to be very important. This thesis has addressed the issues

associated with improving the efficiency with which these devices are used.

The improvement is achieved by way of organising the data based on the

distribution of queries.

189

Minimizing the cost of uni-dimensional access methods has been exten-

sively studied, hence the aim of these thesis is to find techniques of opti-

mally organising multidimensional data. The lack of order that preserves

spatial proximity of records in uni-dimensional access methods makes them

much easier to design than multidimensional access methods. This is because

there is no total ordering of objects in two or higher dimensional space that

completely preserves spatial proximity.

Optimally organising multidimensional data is NP-hard. To circumvent

the problem, in this thesis, we use heuristic solutions, that is, we look for total

orders that preserve spatial proximity at least to a great extent. Our aim

is that objects located close to each other in the original space should likely

be stored close together on the disk. This could contribute substantially

in minimizing the number of disk accesses per query. Existing solutions

are limited to uniform data distribution or to optimising either a partial

match query or range query. The solutions in this thesis include skewed data

distributions and all types of relational queries.

For each type of relational operation a new algorithm was proposed. Also,

for each type of relational query, a cost model was proposed in order to

come up with cost functions that are used in association with the heuristic

algorithms. The proposed cost models are more accurate than the existing

cost models [17,51,136]. Unlike the existing cost models, the proposed cost

models doesn't ignore the cost associated with directory pages.

We found that the proposed organisation of multidimensional data con-

sistently performs better than the standard organisation across a wide range

of file sizes, page sizes, and buffer sizes. In one of our experiments, the gain

190

K

1

in performance was 3617%. The improvement in performance was greater

for relations containing a larger number of attributes. Further more, the

proposed data organisation is not that sensitive to minor changes in the

query distribution. In more than 90% of our experiments, a change in the

query distribution of up to 20% has a minimal impact on the performance

(less than 5% degradation). Often the degradation is not significant (less

than 20%) even when the original query distribution is changed by 80%.

In range queries, the relative size of the query-space also affects the perfor-

mance of the proposed solution. For a query space size which is either equal

to the whole domain-space or is a point query-space, both the proposed data

organisation and the standard data organisation perform the same. How-

ever, the proposed solution performs better than the standard one when the

query-space size is between these two extremes.

To our knowledge, this is the most practical method of storing multi-

dimensional data in order to best exploit a known query distribution. We

therefore recommend that such structures be incorporated into new genera-

tion database systems.

8.2 Future work

There are a number of open problems resulting from the work in this thesis.

The heuristic algorithms that are used in this thesis to generate the opti-

mised organisation of multidimensional data are minimal marginal increase

and simulated annealing. Minimal marginal increase is a greedy algorithm

and is not guaranteed to find the optimal solution. The time taken by simu-

191

V
I

I

lated annealing to come up with the optimal solution may not be an option

for some applications. So there is a scope of finding heuristic algorithms

that are fast, dynamic and those which result in the optimal organisation of

multidimensional data.

A lot of the solutions that we proposed in this thesis can be done in

parallel. For example, in the proposed join algorithm, the join compatable

waves can be processed in parallel. Also, in recent years a lot of researches

came up with parallel algorithms to implement relational database opera-

tions [12,80,82,92,93,118,123,129,138]. These algorithms can be enhanced

to exploit the proposed multidimensional data organisation. This is another

area that can be investigated.

The full advantage of processing queries in parallel can not be achieved

unless the data is striped across multiple disks. The optimal way of striping

skewed multidimensional data in order to speed up query processing is an an

area which has never been touched before.

In section 6.4.6 we showed that how the buffer size affects the cost of a

join query. Also, Evan et. al. in [53] show that the way the available buffer

is split between the two input relations significantly affects the cost of the

join operation. The optimal way of dividing the available memory between

the two input relations of the join operation to further optimise the proposed

join algorithms is another area to be looked at.

In multidimensional files, the way transactions are controlled and the way

locks are administered are not yet investigated. Also the way constraints are

handled, specially foreign key constraint, needs further investigation.

ta

MI
-:•&

ft-

192

Bibliography

193

it;

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann Machines.

Wiley, 1989.
r

[2] D. J. Abel and J. L. Smith. A data structure and algorithm based on

a linear key for a rectangle retrieval problem. Comput. Vis., 24:1-13,

• 1983.

[3] A. V. Aho and J. D. Ullman. Optimal partial-match retrieval when

fields are independently specified. ACM Transactions on Database Sys-

tems, 4(2): 168-179, June 1979.

[4] R. Bayer and E. M. Mccreight. Organization and maintenance of large

ordered indices. Ada Inf., 1(3):173-189, 1972.

[5] R. Bayer and M. Schkoinick. Concurrency of operations on b-trees.

Ada Inf., pages 1-21, 1977.

[6] B. Becker, P. PrancLosa, S. Gschwind, T. Ohler, F. Thiem, and P. Wid-

mayer. Enclosing many boxes by an optimal pair of boxes. In In Pro-

ceedings ofSTACS92, pages 475-486, 1992. A. Finkel and M. Jantzen,

Eds., LNCS 525, Springer-Verlag, Berlin/Heidelberg/Nev/ York.

• • < & &

[7] L. Becker. A new algorithm and a cost model for join processing with the

grid file. PhD thesis, Universitiit-Gesamthochschule, Siegen, Germany,

1992.

[8] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Sfeger. The r*-

tree: An efficient and robust access method for points and rectangles.

In ACM SIGMOD International Conference on Management of Data,

pages 322-331,1990.

[9] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509-517, 1975.

[10] J. L. Bentley and J. H. Friedman. Data structures for range searching.

A CM Computing Surveys, Vl(4):397-409, 1979.

[11] S. Berchtold, D. Keim, and H.-P. Kriegel. The x-tree: An index struc-

ture for high-dimensional data. In The 22nd International Conference

on Very Large Data Bases, pages 168-179, 1996.

[12] D. Bitton, H. Boral, D. J. DeWitt, and W. K. Wilkinson. Parallel

algorithms for the execution of relational database operations. A CM

Transactions on Database Systems, 8(3):324-353, September 1983.

[13] M. W. Blasgen and K. P. Eswaran. Storage and access in relational

database. IBM Systems, 16(4):105-115,1977.

[14] K. Bratbergesengen. Hashing methods and relational algebra opera-

tions. In Proceedings of the 10th VLDB Conference, pages 323-333,

August 1984.

194

[15] W. A. Burkhard. Interpolation-based index maintenance. BIT, 23:274-

294, 1983.

[16] W. A. Burkhard. Index maintenance for non-unifrom record distribu-

tion. In The Third ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 173-180, 1984.

[17] C. Y. Chen, C. C. Chang, and R. C. Lee. Optimal MMI file systems

for orthogonal range queries. Information Systems, 18:37-54, 1993.

[18] L. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani.

Access to multidimenensional datasets on tertiary storage systems. Inf
r

SysL, 20(2): 155-183,1995.

[19] S. Christodulakis. Estimating block transfer and join size. In In Pro-

ceedings ofSIGMOD. CODASYL, 1971. Database Task Group Report.,

pages 105-115, 1985.

[20] D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(2): 121-

138, 1979.

[21] H. Dang and D. Abramson. Cooling schedules for simulated anneal-

ing based on scheduling algorithms. In Proceedings of the 17th An-

n-f.ti.l Computer Science Conference, pages 541-550, Christchurch, New

.'!.«aland, January 1994.

[22] B. P. Desai. Performance of a composite attribute and join index. IEEE

Trans, on Software Engineering, SE-15(2):143-152, February 1989.

195

[23] D. J. DeWitt and J. Gary. Parallel database systems: the future of

database processing or passing fad. SIGMOD rec, 19(4):104-112, De-

cember 1990.

[24] D. J. DeWitt, R. H. Katz, L. D. Olken, " *, R. Shapiro, Stonebraker,

and Wood D. Implementation technique for main memory database

systems, pages 1-8, Boston, Massachusetts, USA, „ *ie 1984.

[25] R. Elmasri and S. B. Navathe. Fundamentals of database, systems.

Benjamin/Cummings Publishing Co., Redwood City, California, 1994.

[26] M. Ester, J. Kohlhammer, and H. Kriegel. Tl > dc-tree: A fully dynamic

index structure for data warehouses. In ieeetkde, pages 379-388, 2000.

[27] G. Evangeliais, D. Lomet, and B. Salzberg. The hb-tree: A modified

hb-tree supporting concurrency, recovery and node consolidation. In

The 21st International Conference on Very Large Data Bases, pages

551-561, 1995.

[28] G. Evangflidis. The hB-tree: A concurrent and recoverable multi-

attribute inde'j; structure. PhD thesis, Northeastern University, Boston,

MA., 1994.

[29] R. Fagin, J. Nievergelt, N. Pippeiiger, and R. Strong. Extendible hash-

ing: A fast access method for dynamic files. ACM Transactions on

Database Systems, 4(3):315-344, 1979.

[30] C. Faloutsos. Multiattribute hashing using gray-codes. In The ACM

SIGMOD International Conference on Management ofdata, pages 227-

238, 1986.

3fc

i <:

196

-o

I
TV

V

[31] G. Faloutsos. Gray-codes for partial match and range queries. IEEE

Trans. Softw. Eng., 14:1381-1393, 1988.

[32] G. Faloutsos and Y. Rong. Dot: A spatial access method using fractals.

In The Seventh IEEE International Conference on Data Engineering,

pages 152-159, 1991.

[33] G. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In

The Eighth ACM SIGA^T-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems, pages 247-252,1989.

[34] R. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval

of composite keys. Ada Inf., 4(l):l-9, 1974.

[35] S. Finkelstein. Physical database design for relational databases. ACM

Transactions on Database Systems, 13(1):91—128, March 1988.

[36] M. Freeston. The bang file: A new kind of grid file. In U. Dayal and

I. Traiger, editors, The ACM SIGMOD International Conference on

Management of Data, pages 260-269, San Francisco, California, USA,

May 1987.

[37] M. Freeston. Advances in the design of the bang file. In In the pro-

ceeding of the Third International Conference on Foundations of Data

Organization and Algorithms, pages 322-338, 1989.

[38] M. Freeston. On the complexity of bv-tree updates. In The CDB97

and CP'96 Workshop on Constraint Databases and their Applica-

tion, V. Gaede, A. Brodsky, 0. Gunther, D. Srivastava, V. Vianu,

197

s
iM'

and M. Wallace, Eds., pages 282-293, LNCS 1191, Springer-Verlag,

Berlin/Heidelberg/New York, 1997.

[39] H. Fuchs, G. D. Abram, and F,. D. Grant. Near real-time shaded display

of rigid objects. Computer Graph, 17(3):65-72,1983.

[40] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by

a priori tree structures. Computer Graph, 14(3), 1980.

[41] V. Gaede and 0 . Gunther. Multidimensional access methods. ACM

Computing Surveys, 30(l):170-230, June 1998.

[42] A. K. Garg and C. C. Gotlieb. Order preserving key transformation.

A CM Trans. Database Syst, ll(2):213-234, 1986.

[43] F. Glover. Tabu search: a tutorial. Interface, 20(4):74-94,1990.

[44] D. E. Goldberg. Genetic algorithms in search, optimization, and ma-

chine learning. Addison-Wesley, Reading, Massachusetts, USA, 1989.

[45] J. R. Goodman. An investigation of multiprocessor structures and

algorithms for database management. Technical Report UCB/ERL,

M81/33, University of California, Berkly, 1981.

[46] P. Goyal, H. Li, E. Regener, and F. Sadri. Scheduling of page fetches

in join operations using bc-trees. In In Proceedings of Conference of

Data Engineering, pages 304-310, 1988.

[47] O. Gunther. The cell tree: An object-oriented index structure for

geometric databases. In The Fifth IEEE International Conference on

Data Engineering, pages 598-605, 1989.

5sP

is-**

198

>^

4
i

•B

[48] 0 . Gunther and A. Buchmann. Research issues in spatial databases.

SIGMOD Rec, 19(4):61-68,1990.

[49] A. Guttman. R-trees: A dynamic index structure for spatial searching.

In Proceedings of the 198'4 ACM SIGMOD International Conference

on the Management of Data, pages 47-54, Boston, 1984.

[50] L. Harada, M. Nakano, M. Kitsuregawa, and M. Takagi. Query pro-

cessing method for multi-attribute clustered relations. In Proceedings of

the 16th VLDB Conference, pages 59-70, Brisbane, Australia, August

1990.

[51] E. P. Harris. Towards optimal storage design for efficient query pro-

cessing in relational database systems. PhD thesis, The University of

Melbourne, Melboure, Australia, 1994.

[52] E. P. Harris and K. Ramamohanarao. Optimal dynamic multi-attribute

hashing for range queries. BIT, 33(4):561-579, 1993.

[53] E. P. Harris and K. Ramamoliinarao. Optimal clustering of relations

to improve sorting and partitioning for joins. The Computer Journal,

40(7):416-434,1997.

[54] E. P. Harris and K. Ramamohanarao. Generalising minimal marginal

increase to cluster records in multi-dimensional dat.-, files. In John

Roddick, editor, Database Systems '1999, Proceedings of the 10th

Australasian Database Conference, pages 129-140, Auckland, New

Zealand, January 1999. Springer.

199

if

[55] A. Henrich, H.-W. Six, and P. Widmayer. The Isd tree: Spatial access

to multidimensional point and non-point objects. In The 15th Inter-

national Conference on Very Large Data Bases, pages 45-53, 1989.

[56] K. Hinrichs. Implementation of the grid file: Design concepts and

experience. BIT, 25:569-592,1935.

[57] A. Hutflesz, H.-W. Six, and P. Widmayer. Globally order preserving

multidimensional linear hashing. In The Fourth IEEE International

Conference on Data Engineering, pages 572-579,1988.

[58] A. Hutflesz, H.-W. Six, and P. Widmayer. Twin grid files: Space

optimizing access schemes. In The ACM SIGMOD International Con-

ference on Management of Data, pages 183-190, 1988.

[59] L. Ingber and B. Rosen. Genetic algorithms and very fast simu-

lated annealing: a comparison. Mathematical and Computer Modelling,

16(ll):87-100, 1992.

[60] Y. E. Ioaunidis and Y. C. Kang. Randomized algorithms for optimizing

large join queries. In Proceedings of the 1990 ACM SIGMOD Interna-

tional Conference on the Management of Data, pages 312-321, Atlantic

city, New Jersey, USA, May 1990.

{61] H. V. Jagadish. Linear clustering of objects with multiple attributes.

In The ACM SIGMOD International Conference on Management of

Data, pages 332-342,1990.

[62] H. V. Jagadish. On indexing line segments. In The Sixteenth Interna-

tional Conference on Very Large Data Bases, pages 614-625, 1990.

- . \l

f t

4*

K.-CP"-

k

200

K

[63] H. V. Jagadish. Spatial search with polyhedra. In The Sixth IEEE

International Conference on Data Engineering, pages 311-319, 1990.

[64] I. Kamel and C. Faloutsos. Parallel r-trees. In The ACM SIGMOD In-

ternational Conference on Management of Data, pages 195-204, 1992.

[65] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using

fractals. In The Twentieth International Conference on Very Large

Data Bases, pages 600-509,1994.

[66] A. Kemper and M. Wallrath. An analysis of geometric modeling in

database systems. ACM Computing Surveys, 19(1):47-91, 1987.

[67] W. Kim. A new way to compute the product and join of relations. In

Proceedings of the 1980 ACM SIGMOD International Conference on

the Management of Data, pages 179-187, 1980.

[68] M. Kitsuregawa, M. Nakayama, and M. Takagi. The effect of bucket

size tunning in the dynamic hybrid grace hash join methods. In Pro-

ceedings of the 15th VLDB Conference, pages 257-266, Amestardam,

The Netherlands, August 1989.

[69] G. D. Knott. Hashing functions. Comput. J., 18(3):265-278, 1975.

[70] D. E. Knuth. Sorting and Searching. Addison-Wesley, Reading, Mas-

sachusetts, USA, 1973. Volume 3 of The Art of Computer Program-

ming.

[71] H.-P. Kriegel and B. Seeger. Multidimensional order preserving linear

hashing with partial expansions. In In Proceedings of the Interna-

J r!

F

i :J

vk

i$

201

tional Conference on Database Theory, LNCS 243, Springer-Verlag,

Berlin/Heidelberg/NewYork, 1936.

[72] H.-P. Kriegel and B. Seeger. Multidimensional quantile hashing is very

efficient for non-uniform record distributions. In In Proceedings of ihe

Third IEEE International Conference on Data Engineering, pages 10-

17, 1987.

[73] H.-P. Kriegel and B. Seeger. Multidimensional quantile hashing is very

efficient for non-uniform distributions. Inf. Sci, 48:99-117, 1989.

[74] M. Kriegel, H.-P.and Schiwietz, R. Schneider, and B. Seeger. Perfor-

mance comparison of point and spatial access methods, pages 89-114,

1990.

[75] H.-P. Kriegfl and B. Seeger. Plop-hashing: A grid file without directory.

In The Fourth IEEE International Conference on Data Engineering,

pages 369-376,1988.

[76] A. Kumar. G-tree: A new data structure for organizing multidimen-

sional data. IEEE Trans. Knowl. Data Eng., 6(2):341-347, 1994.

[77] R. S. G. Lanzelotte, P. Valduriez, and M. Zait. On effectiveness of opti-

misation search strategies for parallel execution spaces. In Proceedings

of the 19th VLDB Conference, pages 493-504, Dublin, Ireland, August

1993.

[78] P. A. Larson. Linear hashing with partial expansions. In Proceedings

of the 6th VLDB Conference, pages 224-232, 1980.

Kit

L4
I MS

202
< I

[79] J.-H. Lee, Y.-K. Lee, K.-Y. Whang, and I.-Y. Song. A region splitting

strategy for physical database design of multidimensional file organi-

zations. In Proceedings of the 23rd VLDB Conference, pages 416-425,

Athens, Greece, August 1997.

[80] J. Li, D. Rotem, and J. Srivastava. Algorithms for loading parallel

grid files. In Proceedings of the 1993 ACM SIGMOD International

Conference on the Management of Data, pages 347-356, Washington,

DC, USA, May 1993.

[81] W. Litwin. Linear hashing: A new tool for file and table addressing. In

The Sixth International Conference on Very Large Data Bases, pages

212-223, Monterial, Canada, August 1980.

[82] W. Litwin and M.-A. Neimat. Distributed linear hashing. Technical

memo HPL-DTD-92-7, Hewlett Packard, 7 1992.

[83] J. W. Lloyd. Optimal partial-match retrieval. BIT, 20:406-413,1980.

[34] J. W. Lloyd and Ramamoharao K. Partial-match retrieval for dynamic

files. BIT, 22:150-168,1982.

[85] D. B. Lomet and B. Salzberg. The hb-tree: A robust multiattribute

search structure. In In Proceedings of the Fifth IEEE International

Conference on Data Engineering, pages 296-304, 1989.

[86] D. B. Lomet and B. Salzberg. The hb-tree. a multiattribute indexing

method with good guaranteed performance. ACM Transactions on

Database Systems, 15(4):38-71, 1990.

:&-

SIf

• I *

203

[87] H. Lu and B.-C. Ooi. Spatial indexing: Past and future. IEEE Data

Eng. Bull., 16(3):16-21, 1993.

[88] Z. Michalewicz. Genetic algorithms + data structures = evolution pro-

grams. Springer- Verlag, 1992.

[89] P. Mishra and M. H. Eich. Join processing in relational databases.

ACM Computing Surveys, 24(1):63-113, March 1992.

[90] S. Mohammed, E. P. Harris, and K. Ramamohanarao. Efficient partial-

match retrieval for skewed data distributions. In John Roddick, ed-

itor, Database Systems '1999, Proceedings of the 10th Australasian

Database Conference, pages 37-48, Auckland, New Zealand. January

1999. Springer.

[91] S. Mohammed, E. P. Harris, and K. Ramamohanarao. Efficient range

query retrieval for non-uniform data distributions, January 2000.

[92] S. Mohammed and B. Srinivasan. A novel parallel algorithms for grid

files. In IEEE, 3rd International Conf. on High Performance Comput-

ing, pages 31-40, Trivandrum, India, December 1996.

[93] S. Mohammed and B. Srinivasan. Efficient parallel join algorithms for

multidimensioanl files. In Robotics, Vison and Parallel Processing for

Industrial Automation Conf., pages 141-151, Ipoh, Malaysia, Novem-

ber 1997.

[94] S. Moran. On the complexity of designing optimal partial-match re-

trieval systems. ACM Transactions on Database Systems, 8(4):543-551,

December 1983.

204

[95] G. Morton. A computer oriented geodetic database and a new tech-

nique in file sequencing. IBM Ltd., 1966.

[96] M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-partitioned join

method using dynamic destaging strategy. In Proceedings of the 15th

VLDB Conference, pages 468-478, Los Angeles, California, USA, Au-

gust 1988.

[97] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adapt-

able, symmetric multikey file structure. In The Third ECI Conference,

A. Duijvestijn and P. Lockemann, Eds., LNCS 123, Springer-Verlag,

Berlin/Heidelberg/New York, pages 236-251,1981.

[98] J. Nievergelt, H. Hinterberger, and K. C. Seycik. The grid file: An

adaptable, symmetric multikey file structure. ACM Trans. Database

Syst, 9(1):38-71,1984.

[99] K. J. Nurmela. Constructing combinatorial designs by local search.

Department of Compuer Science, Digital Systems Laboratory A-2i,

Helsinki University, Finland, November 1993.

[100] E. Omiecinski. Heuristics for join processing using non clustered index.

IEEE Trans, on Software Engineering, 15(l):18-25, January 1989.

[101] B. C. Ooi, K. J. Medonell, , and R. Sacks-davis. Spatial kd-tree: An

indexing mechanism for spatial databases. In Ine IEEE Computer

Software and Applications Conference, pages 433-438,1987.

[102] P. Oosterom. Reactive-data structures for geographic information sys-

tems. PhD thesis, University of Leiden, The Netherlands, 1990.

-few'm

205

[103] J. Orenstein and T. H. Merrett. A class of data structures for associa-

tive searching. In The Third ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, pages 181-190, 1984.

[104] J. A. Orenstein. A dynamic hash file for random and sequential access.

In Proceedings of the 9th VLDB Conference, pages 132-141, Florence,

Italy, November 1983.

[105] Y. Oshawa and M. Sakauchi. A new tree type data structure with

homogeneous node suitable for a very large spatial database. In The

Sixth IEEE International Conference on Data Engineering, pages 296-

303, 1990.

[106] E. J. Otoo. Symmetric dynamic index maintenance scheme. In The In-

ternational Conference on Foundations of Data Organization, Plenum,

New York, pages 283-296,1985.

[107] E. J. Otoo. Balanced multidimensional extendible hash tree. In Pro-

ceeding of the 5th ACM SIGACT-SIGMOD Symposium on Principles

of Database Systems, pages 100-113, 1986.

[108] M. Ouksel. The interpolation based grid file. In The Fourth ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems,

pages 20-27, 1985.

[109] M. Ouksel and P. Scheuermann. Storage mappings for multidimen-

sional linear dynamic hashing. In The Second ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems, pages 90-105, 1983.

| |

} |

fit

ill

ft

206

I 4

[110] M. A. Ouksel and 0. Mayer. A robust and efficient spatial data struc-

ture. Ada Informatica, 29:335-373, 1992.

[Ill] E. A. Ozkarahan and M. Ouksel. Dynamic and order preserving data

partitioning for database machines. In Proceedings of the 11th VLDB

Conference, pages 90-105, 1983.

[112] H. Pang, M. J. Carey, and M. Livny. Partially preemptive hash joins.

In Proceedings of the 1993 ACM SIGMOD International Conference on

the Management of Data, pages 59-68, Washington, DC, USA, Novem-

ber 1993.

[113] W. Perrizo, J. Y Lin, and W. Hoffman. Algorithms for distributed

query processing in broadcast local area network. IEEE Trans, on

Knowledge and Data Engineering, l(2):215-225, June 1989.

[114] K. Ramamohanarao and J. W. Lloyd. Dynamic hashing schemes. The

Computer Journal, 25:478-485, 1982.

[115] K. Ramamohanarao and R. Sacks-Davis. Recursive linear hashing.

ACM Transactions on Database Systems, 8(9):369-391, September

1984.

[116] K. Ramamohanarao, J. Shepherd, and R. Sacks-Davis. Multi-attribute

hashing with multiple file copies for high performance partial-match

retrieval. BIT, 30:404-423, 1990.

[117] M. Regnier. Analysis of the grid file algorithms. BIT, 25:335-357,1985.

ess*
'̂ e

207

IW

1 "< A

I
[118] J. P. Richardson, H. Lu, and K. Mikkilineni. Design and evaluation of

parallel pipelined join algorithms, pages 399-409, Sanfrancisco, Cali-

fornia, May 1987.

[119] J. T. Robinson. The k-d-b-tree: A search structure for large multidi-

mensional dynamic indexes. In Proceedings of the 1981 ACM SIGMOD

International Conference on the Management of Data, pages 10-IS,

1981.

[120] J. B. Rosenberg. Geographical data structures compared: A study of

data structures supporting region queries. IEEE Trans, on Computer-

aided Design, CAD-4(l):53-67, January 1985.

[121] N. Ron sopoulos and D. Leifker. Direct spatial search on pictorial

databases using packed r-trees. In In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 17-31, 1985.

[122] H. Samet. The Design and Analysis of Spatial Data Structures.

Addison-Wesley, Reading, MA., 1990.

[123] D. A. Schneider and D. J. DeWitt. A performance evaluation of four

parallel join algorithms in a shared nothing multi-processor environ-

ment. In Proceedings of the 1989 ACM SIGMOD International Con-

ference on the Management of Data, pages 110-121, Portland, Oregon,

1989.

[124] R. Schneider and H.-P. Kriegel. The tr*-tree: A new representation

of polygonal objects supporting spatial queries and operations. In

208

In Proceedings of the Seventh Workshop on Computational Geome-

try, LNCS 553, Springer-Verlag, Berlin/Heidelberg/New York, pages

249-264, 1992.

[125] B. Seeger. Performance comparison of segment access methods im-

plemented on top of the buddy-tree. In In Advances in Spatial

Databases, 0. Gunther and H. Schek, Eds., LNCS 525, Springer-

Veriag, Berlin/Heldelberg/New York, pages 277-296, 1991.

[126] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree. a dynamic

index for multidimensional objects. In In Proceedings of the Thirteenth

International Conference on Very Large Data Bases, pages 507-518,

1987.

[127] K. Sevcik and N. Koudas. Filter trees for managing spatial data over a

range of size granularities. In In Proceedings of the 22th International

Conference on Very Large Data Bases, pages 16-27, Bombay, India,

1996.

[128] L. D. Shapiro. Join processing in database systems with large main

memories. ACM Transactions on Database Systems, ll(3):239-264,

September 1986.

[129] A. Shatdal and J. F. Naughton. Using shared virtual memory for

parallel join processing. In Proceedings of the 1993 ACM SIGMOD

International Conference on the Management of Data, pages 119-128,

Washington, DC, USA, May 1993.

209

[130] S. Shekhar and D.-R. Liu. Ccam: A connectivity-clustered access

method for aggregate queries on transportation networks: A summary

of results. In In Proceedings of the Eleventh IEEE International Con-

ference on Data Engineering, pages 410-419, 1995.

[131] R. E. Smith, D. E. Goldberg, and J. A. Earickson. Sga-c: A c-language

implementation of a simple genetic algorithm. Technical Report 91002,

The Clearinghouse for Genetic Algorithms, Department of Engineering

Mechanics, The University of Alabama, Tuscaloosa, Alabama, USA,

May 1991.

[132] S. Y. W. Su. Database Computers: Principles, Architectures, and Tech

niques. McGraw-hill, New York, 1988.

[133] A. Swami. Optimization of large join queries: combining heuristics and

combinatorial techniques. In Proceedings of the 1989 ACM SIGMOD

International C-nference on the Management of Data, pages 367-376,

Portland, Oregon, USA, June 1989.

[134] M. Tamminen. The extendible cell method for closest point problems.

BIT, 22:27-41, 1982.

[135] J. A. Thorn and L. Ramamohanarao, K. Naish. A superjoin algorithm

for deductive databases. In Proceedings of the 12th VLDB Conference,

pages 189-196, Koyoto, Japan, August 1986.

[136] J. D. Ullman. Principles of database and knowledge-base systems, vol-

ume 1. Computer Science Press, Rockville, Maryland, USA, 1988.

210

' • ' ' • i
1

!

[137] J. D. Ullman. Principles oj database and knowledge-base systems, vol-

ume 2. Computer Science Press, Rockville, Maryland, USA, 1989.

[138] C. B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy and perfor-

mance model of data skew effects in parallel joins. In Proceedings of the

nth VLDB Conference, pages 537-548, Barcelona, Spain, September

1991.

[139] K.-Y. Whang and Krishnamurthy R. Multilevel grid files. Techni-

cal report, IBM Thomson J. Research Center, November 1985. IBM

Research Report RC 11516.

[140] K.-Y. Whang and Krishnamurthy R. The multilevel grid file — a dy-

namic hierarchical multidimensional file structure. In International

Symposium on Database Systems for Advanced Applications, pages

449-459, Tokyo, Japan, April 1991.

[141] M. White. N-trees: Large ordered indexes for multidimensional space.

Technical report, Statistical Research Division, US Bureau of the Cen-

sus, 1981. Application Mathematics Research Staff.

[142] H. Yoo and S. Lafortune. An intelligent search method for query op-

timisation by semi-joins. IEEE Trans, on Knowledge and Data Engi-

neering, l(2):226-237, June 1989.

[143] C.T. Yu and et al. Adaptive record clustering. ACM Transactions on

Database Systems, 10(2):180-204, June 1985.

Vkv

211

I
[144] H. Zeller and J. Gray. An adaptive hash join algorithms for multiuser

environments. In Proceedings of the 16th VLDB Conference, pages

186-197, Brisbane, Australia, August 1990.

r * r

\\-

212

