MONASH UNIVERSITY
THESIS ACCEPTEL IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

1) | %

u)\(Sec. Research Graduate School Committee
Under the copyright Act 1968, this thesis must be used only under the
normal conditions of scholarly fair deating for the purposes of
research, criticism or review. In particular no results or conclusions
should be extracted from it, nor should it be copied or closely
paraphrased in whole or in part without the written consent of the

author, Proper written acknowledgement should be made for any
assistance obtained from this thesis.

ERRATA

P2 Last sentence; "accesses” for "access”

P8 para 1, line 11: ”$100,000” for ” $100000”

P10 para 1, line 3: ”don't” for "doesn’t”

P12 para 1, line 1: ”in one way” for "in a one way”

P15 para 1, line 4: "underlying” for "underline”

P16 last para, line 7: ”Comer[20] and Knott{69]” for ”[20,69]"
P17 point (2): "method” for "methods”

P21 para 2, line 2: "are” for "is"

P21 para 2, line 3: "known™ for "know”

P26 para 2, line 10: "2%-/ - 1" for "2d—I»

P39 para 1, line 3: "a way” for " away”

P40 para 1, line 2; *Section 2.6” for "section 2.6”

P42 para 3, line 5: "function” for "functions"

P44 para 1, line 1: "include” for "includes®

P48 para 4, line 2: ”discuss” for "discusses”

P50 para 1, line 5: "of” for of of”

P50 para 2, line 1: *Section 2.1” for "2.1"

P53 para 1, line 2: ¥2-dimensional” for "an 2-dimensional”
P53 para 1, line 3: "levels” for "level”

P53 para 1, line 11: "partitions” for "partition”

P53 para 4, line 2; "Figure 3.3" for ”3.3”

P62 para 1, line 3: "occur” for "occurs”

P62 para 2, line 2: "by Freeston” for ”Freeston”

P89 para 1, line 1: "b; ;1" for "by ;0"

P39 para 1, line 2: ”bl,j.k — 1" for ”b],j,k”

P91 para 3, line & "and so” for "and an so”

P115 para 3, line 2: "Section 5.3" for "section 5.3”

P115 para 3, line 4: "Section” for "section”

P116 para 3, line 1: "satisfy” for ”satisfies”

P120 Last para, line 1; "let {; be the” for "let I5 the”

P121 paraZ, line 10: "Equation 5.7 for " Equation 5.7 is”
P130 paral, line 4: "smaller page sizes” for “smaller pages”
P142 para 2, line 1: "compute” for ”computes”

P152 para 3, line 3: "Smaller buffers” for "Smaller buffer”
P170 para 1, line 5: "the cost of other™ for "the cost the other”
P185 last para, line 2: "Student ID containing” for "Student ID. containing”
P189 para 1, line 3: "have increased” for "have increased”
P189 para 1, line 8: "these devices” for "this devices”

P190 para 1, line 2: "this thesis” for ¥ these thesis”

P190 para 3, line 6: "don’t” for "doesn’t”

P192 para 2, line 1: "Many” for " A lot”

P192 para 2, line 3: "many” for "a lot”

P192 para 4, line 1: "we showed how” for " we showed that how”

Optimal

Multidimensional Storage
Organisation

for Efficient Query Proces-sing
in Databases

Salahadin Mohammed

School of Computer Science and Software Engineering
Monash University
Australia

Thesis submitted in fulfillment of the requirement

for the degree of Doctor of Philosophy

September 2001

DECLARATION

This thesis contains no material which has been accepted for the award of
any other degree in any other university. To the best of my knowledge, this
thesis contains no material previously published or written by another per-

son, except when due reference is made in the text of the thesis.

Salahadin Mohammed

September 15, 2001

ACKNOWLEDGEMENTS

T'am grateful to my supervisors, Prof. Bala Srinivasan, Prof. Rao Kotagiri
and Dr Evan Harris for their able guidance, valuable suggestions, and support
in all respects throughout my degree.

I extend my sincere thanks to all the staff and postgraduate students in
both Monash and Melbourne Universities for their timely help, patience and
coordination. Particularly, Dr IPei Li Joe Zhou, Dr Maria Indrawan, Dr
Campbell Wilson, and Dr Phu Dung Le for their understanding, friendship,
and patience for the long period of time we shared the same office. I also
direct my thanks to Robert Redpath, Duke Fonias, See, Dr Rosanne Price,
Arie, Alamin, Mariam, and Khadija for their friendly support.

I dedicate this thesis to my parents, my brothers and sisters, my daughter,

and my dearest wife Samira for their love and support throughout my studies.

il

ABSTRACT

in a database management system, the performance of query process-
ing is significantly affected by the way the underlying data is organised and
accessed. The organisation of uni-dimensional data has been studied exten-
sively, but little work has been done in optimising the organisation of multi-
dimension data. The lack of order that preserves spatial proximity of records
in uni-dimensional access methods makes them much easier to design than
multidimensional access methods. This is because there is no total order-
ing of objects in two or higher dimensional space that completely preserves
spatail proximity. Optimally organising multidimensional data is NP-hard.
One way to circumvent the problem is to find heuristic solutions, that is, to
look for total orders that preserve spatial proximity at least to a great extent.
The goal of all heuristic solutions is that objects located close to each other
in the original space should likely be stored close together on the disk. This
could contribute substantially in minimizing the number of disk accesses per
query.

The little work that has been done in optimising multidimensional data
was limited to uniform data distribution and rarely considered the probability
of use of each query. And those who did consider the probability of use of
each query, they were limited to either partial match query or range query.
This is the first ever work which shows that by combining heuristics and
combinatorial algorithms, near-optimal solutions can be found which organise
multidimensional data (uniform or skewed) on which all the relational queries

are efficiently performed. The heuristic algorithms reduce the problem to a

i

manageable size and the combinatorial algorithms determine near-optimal

solutions.

The proposed optimal multidimensional storage organisation is done by

selecting a number of bits from each significant attribute of a relation, and

then arranging these bits in an optimal way to form a vector (called the choice

vector). The choice vector is then used to store and retrieve the records of
the relation.

We also propose algorithms which use choice vectors for range Queries, join
queries and other relational queries, and describe the cost of these algorithms.
Then, using these algorithms we compare the performance of the proposed
storage design with the existing multidimensional storage arrangements.

Combining algorithms which utilise memory efficiently and those which
organise storage optimally is expensive. However, we show that when the
queries are processed using our algorithms, which use choice vectors and
determine good memory utilisation, the cost of the average query can be
dramatically reduced.

The experimental results of the proposed algorithms show that perfor-
mance gains of up to 3617% are achieved, when compared with standard
schemes. Moreover, the proposed algorithms are not very sensitive to the
change in the query distribdtion. The result show that if the query prob-
abilities change by upto 80% of their original values, the original storage
organisations remain near optimal. Hence, frequent reorganisation of the

storage arrangement is also not required.

iv

Contents
1 Imtroduction 1
1.1 Optimising the performance of a database management system 2
1.2 Objective of thisthesis 4
1.3 Related previouswork 7 j
1.4 Contributions of thisthesis. 8 I
1.5 Researchmethodology 10 .'.
1.6 Thesis IYOUb « . o o v v o e e e 1 '
2 Background 14 1
21 Imiroduction i 14 ’ :I_
2.2 Multidimensional accessmethods 18 I
2.3 Multidimensional hashing based PAMs 21
2.3.1 Partial-match retrievaland PAMs . , 22

2.3.2 Multidimensional order preserving linear hashing with

partialexpansion,
233 TheGridfile,

9.4 PAMSs based on hierarchical access methods

241 Multilevelgridfile 32

242 ThehB-tree 34

2.5 Current methods of optimising PAM design 37

2.6 Combinatorial optimisation techniques 40

2.6.1 The optimisation problem 40

2.6.2 Minimal Marginal Increase (MMI). 41

2.6.3 Simul;dted annealing 42

2.6.4 Combining MMI and simulated annealing 43

2.6.5 Other optimisation solutions 43

27 SUmMMArY it e e e e e e 45

3 Reorganising multidimensional data 47

31 Imtreduction L e 47

32 TheBANGfile, 50

3.3 The BANGfilestructure, 51

3.4 Datapartitions Lo e 55

3.5 Partitionidentiiero, 57

36 BANGdirectoryo v v v it ittt 59

3.7 Searching, insertion, deletion and merging 65

3.8 Binarydivision o o o e 66
3.0 CholCe VRCLOIS .« « - v« vt v vt ee et e e e 67

% 3.9.1 Cyclicchoicevector, 69

3.9.2 Optimized choicevector 70

3.9.3 Choice vector size
]

3.10 Effect of choice vectors on the load factor

oooooooooooo

3.10.1 Experimental results and analysis

3.11 Conclusion

Optimising Partial-match Queries

41 Imtroduction o i i i it e

4.3 Partial-match retrieval Algorithm using The BANG file
4.4 Optimising partial-match retrieval e e e e e e
45 Costfunctions ¢t
4.6 Performance Evaluation
461 Environment
46.2 Results. i ittt e e

47 Conelusion v . i e e e e e e e

Optimizing Range Query Retrieval

51 Introduction« . o i i i e e e e

5.2 Range QUEriES v v v v v v v s vt e e

5.3 Minimising rangequerycosts

54 Costfunctionsot i e

5.5 Experimental Results
551 Environment
552 FEffect of data and quer distributions

5.5.3 Number of attributes

85
85
87
38
90
91
94
95
85
112

114
114
115
118
119
121
122
125
127

294 Filesize 128

5.5.5 Page size, elapsed time and CPU time 129

556 Stability 131

5.8.7 Query-spacesize, 134

5.6 Conclusion . . L e e 136

6 Join query processing for skewed data distributions 138

6.1 Imtreduction oui.n.. 138

6.2 The proposed join algorithms 140

6.2.1 Theselection-module 141

8.2.2 The matching-module 150

6.3 Optimizing join query processing 151

631 DBuffersizevswav.size........... ..., .. 152

‘ 6.3.2 Wave size and choicevector 1563

6.3.3 Heuristic algbrithms and Cost functions, 155

6.4 ResuMsandanmalysis 157

6.4.1 Eavironment e 158

6.4.2 Effect of data and query distributions 158

6.4.3 Numberofatiributes 160

6.44 Filesize i i e e e e 161

6.45 Pagesize.o, 162

646 Buffersize i e 163

F 6.4.7 Stability i 164
6.5 Conclusion

7 Optimizing other relational operations

71 Introduction 170
7.2 Selection L ., 171
73 Projection e, 174
74 Join e 174
741 NestedloOp . . oo oo ee i 175
742 Sort-merge. i i i e 177
743 Hashjoins............. 178
7.4.4 The proposed join é.lgorithm 180

75 Imtersection 182
76 Union i e e 183
7.7 Difference i i e e e e 184
78 Division e 185
7.9 Duplicate removal and aggregation 187
710 Conclusion v v i i it i e e 187
8 Conclusions and Future work 189
81 Conclugionsoc..... e 189

8.2

Future work o i v i e e e e e e e e e

List of Tables

4.1
4.2
4.3
44
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
2.8
8.9

6.1

Query distributions. o6
Average query costs for a uniform data distribution. 97
Average query costs for a clustered data distribution. 97
Average query costs for a sinuscidal data distribution.. 98
Average query costs for a linear data distribution. 98
Effect of the number of attributes on the average query cost. . 101

Query distribution©,. Lo L 123
Query distribution ©,. L oL 124
Query distribution ©3. L. 124
Query distribution ©4., cen .. 125
Average query cost for a uniform data distribution. 126
Average query cost for a clustered data distribution.. 126
Average query cost for a sinusoidal data distribution. 126
Average query cost for a linear data distribution.126

Effect of the number of attributes on the average query cost. . 128

Average query cost for a uniform data distribution. 159

Pt et iy e it ey

|
E
]
!
H
i
?
il
|
|
!

6.2
6.3
6.4
6.5
6.6

71

7.2
7.3

Average query cost for a clustered data distribution. 159
Average query cost for a sinusoidal data distribution. 158
Average query cost for a linear data distribution. 160
Effect of the number of attributes on the average query cost. . 161

Effect of buffer sizeonquerycost. 165
SUBJECTStable 185
STUDENTS-SUBJECTS table., 185
ADSWEL . . . L i e e e e e e e e e e e e e e 186

xi

g i e 4

g g

e, hog

PR T g AT A R T T e ey e e g e

& b B g St LT, gk SR, ST

List of Figures

2.1 Multi-levelgridfile

3.1 A BANG file of 12 records and 5 data pages.
3.2 Thestructureofa BANGfile. b

3.3 Py, encloses 5 and Fy3, but it directly encloses Fy» and not

T 55
34 Peer-splitof PintoPand P. 56
3.5 Enclosure-splitof Pinto Psand Py. 56
3.6 Assigning partition-numbers to sub-spaces. o8
3.7 Splittingadirectory., 61
3.8 Splitting a directory partition., 63

3.9 The four data distributions used in generating the results. .. 75

3.10 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 1024 bytes, data distribution = uni-

3.11 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 1024 bytes, data distribution = clus-

3.12 Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = si-
nusoidal. L e 77

3.13 Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = linear. 77

3.14 Effect of the choice vector on the load-factor. Number of at-
tributes = 2, page size = 1024 bytes, data distribution = uni-
form. e 78

3.15 Effect of the choice vector on the load-factor. Number of at-
tributes = 3, page size = 1024 bytes‘, data distribution = uni-
form., .. e e e e e e e e 79

3.16 Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = linear. 79

3.17 Effect of the choice vector on the load-factor. Number of at-

tributes = 8, page size = 1024 bytes, data distribution = uni-

3.18 Effect of the choice vector on the load-factor. Number of at-

tributes = 4, page size = 512 bytes, data distribution = uniform. 81

3.19 Effect of the choice vector on the load factor. Number of
attributes = 4, page size = 2048 bytes, data distribution =

EUE 5 o) ¢ o VA 82

41 relation Rog. - - . .o oo i 88
4.2 Agp is specified as 40. Ry o has more intervals based on Agg. . 90

4.3 Effect of the page size on performance. 99

xiii

e e e T T T e T IR T L e —p—

4.4 Effect of pagesizeon CPUtime.

4.5 Effect of file size on performance.
4.6 Stability of optimized solution. Query distribution = ©,, data
distribution=wuniform.
4.7 Stability of optimized solution. Query distribution = ©,, data
distribution = uniform. L o L.
4.8 Stability of optimized solution. Query distribution = ©,, data
distribution =uniform. o o o
4.9 Stability of optimized solution. Query distribution = 8y, data
distribution = uniform. 0 0 0o
4.10 Stability of optimized solution. Query distribution = ©,, data
distribution =clustered.
4.11 Stability of optimized solution. Query distribution = @5, data
distribution = clustered.
4.12 Stability of optimized solution. Query distribution = ©3, data
distribution = clustered.
4.13 Stability of optimized solution. Query distribution = @4, data
distribution =clustered.
4.14 Stability of optimized solution. Query distribution = ©, data
distribution = sinuseidal. oL,
4.15 Stability of optimized solution. Query distribution = ©,, data
distribution =sinusoidal. o 0.
4.16 Stability of optimized solution. Query distribution = ©;, data

distribution = sinusoidal.

xiv

106

106

107

107

I I SIRTRA————.

T T A R T D v

|

4.17 Stability of optimized solution. Query distribution = 0y, data

distribution = sinusoidal., ..

4.18 Stability of opﬁimized solution. Query distribution = 9,, data

distribution =linear.
4.19 Stability of optimized solution. Query distribution = &,, data

distribution =linear. L.
4.20 Stability of optimized solution. Query distribution = 03, data

distribution =linear.

4.21 Stability of optimized solution. Query distribution = ©,, data

distribution =linear.

5.1 Query-space intersecting four partitions.
5.2 P,y is a $-partition but Pyp and /5 arenot. L.
5.3 Query-space intersecting four partitions. e
5.4 Effect of file size on relative performance.
5.5 Effect of page size on performance.
5.6 Effect of pagesizeon CPUtime.

5.7 Stability of the optimised choice vector using ©; and the uni-

form data distribution. e e e

5.8 Stability of the optimised choice vector using ©, and the clus-

tered data distribution. oL oL
5.9 Stability of the optimised choice vector using ©; and the si-

nusoidal data distribution. e e e e
5.10 Stability of the optimised choice vector using ©, and the linear

data distribution. e

xv

.
4

5.11 Effect of query-space size on relative performance.

6.1 poo and Py are join-compatible while Pyg and Py, are not. .
6.2 For each interval of R, there are two intervalsof Rz..
6.3 FPgospansfypand fg3. - o
6.4 WipisembeddedinWso.
6.5 Ws, is join-compatable to Wyoand Wry.

6.6 Waves with number of partitions higher than the buffc : size

result in higher joinquery cost.

6.7 Reducing the number of partitions per wave so that they fit

in the available buffer reduces cost. e
6.8 Effect of file size on relative performance.
6.9 Effect of page size on performance.
6.10 Stability of the optimised choice vector nsing ©; and the uni-
form data distribution. o L 0oL
6.11 Stability of the optimised choice vector using &, and the clus-
tered data distribution. oL,
6.12 Stability of the optimised choice vector using ©; and the si-
nusoidal data distribution. oo 0 0oL
6.13 Stability of the optimised choice vector using ©; and the linear

data distribution. e e e e e e e e e

141

154

155

L N S R i e ok Ry A

Ay

=xy

A ATy

3T ki

T

Chapter 1

Introduction

Effective and efficient management of a large volume of data is critical in
- modern and future computer applications, such as business data processing,
multimedia applications, computer aided design and manufacturing, library
informations retrieval systems, scientific computations, real-time process con-
trol and many other systems. As the size and speed of computer systems
has increased, so has the amount of data which has to be manipulated. The
manipulation of data is done by using a database management system, which
is a collection of programs that enable a user to create, query and maintain a
database (a collection of related data). So the aim of this thesis is to find opti-
mal or near optimal ways of manipulating large volumes of multidimensional

data which improve the performance of a database management system.

The main criteria of evalua..ng the performance of a database manage-

ment system is the amount of time it takes to respond to users queries.
Researchers have been and still are conducting extensive research with the

aim of improving the performance of database management systems. The

primary focus of the research has been on secondary storage systems, that
is, using disk drivers to store the data. In recent years, the increase in the
amount of physical memory in computer systems has lead to research into
primary storage systems, in which the data is held in memory. But with
large volumes of multimedia data, which ueeds to be stored on secondary or

tertiary storage systems, means that techniques for managing and manipu-
lating data on non primary storage systems are likely to be required for a

number of years.

This chapter has 6 sections. Section 1.1 discusses the main research areas
of optimizing the performance of a database management system. The re-
search area chosen in this thesis is explained in section 1.2. In section 1.3, the
existing approaches that try to solve similar problems of this thesis are in-
troduced. The main contributions of this thesis are presented in section 1.4.
Section 1.5 discusses the setup of the experiments done in this thesis and

section 1.6 presents a su-imary of each chapter of this thesis.

1.1 Optimising the performance of a database
management system

In the last thirty years extensive research has been conducted to improve the
performance of a database management system. Following is a list of areas

where most of the research was focused.

¢ Minimising I/0. One of the main factors in calculating ths cost of

a query is the number of access done to the hard disk when executing

S Sy R ity =ty ey s b T —

the query. One technique of reducing this factor is indexing (22, 46) and
another technique is clustering {51-54, 100].

Reducing computation. The number of tuples to be compared can

be reduced if good hashing, clustering or partitioning algorithms are

used [3, 83, 84,1186.

Hardware support. Using dedicated database machines such as
hardware hashing units, sorters and filters, processing can be speeded
up. There are plenty of such machines and a comprehensive survey can

be found in [132].

Parallel processing. Many database operations have high degree of
inherent parallelism. This can be exploited to perform them in paral-

lel [23].

Query optimisation. Query optimisation is mainly selecting the best
way of executing a query. For example, determining optimal nesting of
joining in a multiway join or devising optimal strategies for distributed

join processing (19,113,133,142].

Optimising buffer usage. By optimal buffer usage we mean reducing
the amount of memory needed in executing a query or making the best
of the available memory in executing a query. Optimising buffer usage
can reduce the number of disk blocks accesses thus reducing query

cost [53,100].

1.2 Objective of this thesis

As mentioned in the beginning of this chapter, one of the most important
criteria for evaluating the performance of a datahase management system is
how fast the system can accesses the data queried by users. This criteria
depends, to a large extent, on the organisation of the underlying data. In
relational database management system, data is first organised as records.
A record consists of a list of fields. Each field, also called atiribute, has a
domatn, which is a set of values from which a field value can be drawn. A
collection of related records form a file. A file normally resides in a disk.
A disk is divided into blocks. Each disk block has a capacity of a limited
number of records. So each file is stored in one or more disk blocks. The
number of disk blocks of a file depends on the size of the disk block, the size
of each record, the number of records and the way the records are organised
in the file. A disk block is also a unit of transfer between a disk and the
primary memory. So a request of one record from a disk block causes all the
records in the block to be transferred to the primary memory.

A gquery is an expr;:ssion that describes records to be retrieved from a
file or a database. An answer to a query is the retrieval of all the described
records. The four main database queries are exact match, partial match,

range and join [25].

e In an ezact match query the record to be retrieved is described by

specifying all the fields.

e In a pertial match query the records to be retrieved are described by

specifying a subset of the fields.

» In a range query records Lo be retrieved are described by specifying a

range of values to o sriset of the Gelds.

e In a join query records are ieirieved from more than one file and mainly

described using covumcn Hulds,

Records of each disk block containing at least one required record are
transferred to the primary memory. Then the primary memory is searched
to retrieve the required yecuinds, Since the disk access time is considerably
higher than the primary memeory retrieval fime, the time to respond to a
query is mainly measured in terms of the number of disk access done to
answer the query. So having two required records each residing in a separate
disk block will cost nearly twice as much time as two or more required records
residing in a single block.

One way of improviny *he performance of algorithms manipulating data
on secondary storsge is to cluster similar data [3,83,84,116). The rational-
ization behind this approach ié that if one item of data is required to answer
a query, a similar item of data is also likely to be required to answer the
query. By clustering the data ite'ns together, the amount of time taken to
locate and retrieve the «data will be reduced. If the amount of data is large,
the increase in performance can be substantial.

The clustaring of data will be of most benefit if it results in the reduction
of the time taken to perform operations which are frequently required of
the database management system. To achieve the optimal performance, the
frequency, type and the cost of each operation must be taken into account

when designing a clustering arrangement. If it is not known, statistics can

be kept on the operations performed on existing systems, and can be used

to reorganise the data into bettei clustering arrangement.

Even if the frequency, type and cost of each operation is known, deter-
mining the optimal arrangeme: t can be expensive. For example, Moran [94]
showed that designing a particular optimal partial-:natch retrieval system
was NP-hard. However, eflicient algorithms have been found which can
quickly find optimal or near optimal solutions to this problem [3,83, 84, 90,
91,116).

Little work has been done in dctermining an optimal clustering of multidi-
mensional data for queries oib it than partial-match retrieval. Other cluster-
ing techniques have been proposed; however, they rarely consider the prob-
ability of an operation being asked to be j.r....sined. For example, Faloutsos
and Roseman {33] proposed using fractals to cluster multidimensional data in
one dimension for storage eon disk. They showed that this clustering technique
performed better for range queries than a numier of older clustering tech-
niques, but they did net consider varying the frequency of queries. The join is
very im,-ortant and expensie operation in a relational database management
systera %9, 156, 137]. As the joiu operation is so expensive, any increase in its
cost can result in a significant degradation of the performance of the database
management svstem. Also, most of the other relational database oj:erations,
such as intersection, union and difference, are very similar in implementation
to the join. As a s#sulf a large amount of research has been conducted to find
methods of efficiently implementing the join. Using the clustering provided
by a data structure to increase the performance of the join has been consid- |

ered in the past, by Ozkarahan and Ouksel [50,111,135). However, none of

the authors attempted to find the optimal clustering organisation.

The primary objective of this thesis is to find optimal multidimensional
data organisation which supports the efficient processing of range queries,
join queries and other relational operations, and to compare the performance
of this arrangement with that of the standard multidimensional data organ-

isaion arrangement.

An optimal data organisation is expected to be optimal only for a query
distribution that was used to find it and, perhaps, other similar query dis-
tributions. This thesis also addresses the issue of how much must the query
distribution change before current data organisation arrangement is no longer
near optimal. In other words, how sensitive are our techniques of data er-

ganisation to changes in the query distribution?

1.3 Related previous work

As mentioned above little work has been done on attempting to determine an
optimal organisation of muitidimensional data for queries other than partial-
match retrieval. Other clustering techniques have been proposed; however,
they rarely consider the probability of an operation being asked to be per-
formed. The few who did, assumed a uniform data distribution [51,98]. J.
Lee, Y. Lee, K. Whang and 1. Song [79], attempted to do the same like what
is done in this thesis but their research is limited to range queries. Their
approach will be explained in more detail in Section 2.5, but the following is

a brief summary of their approach.

A range query can be expressed by specifying a region, called query region.

It is convenient to think of a query region as a cross product of the specified
intervals (partial domains) in the query. A range query is a conjunction
of equality predicates with at least one range predicate. Query processing
can be interpreted as an operation of accessing all the pages intersecting
the query region, and then retrieving the required records from these pages.
Hence, J. Lee et. al. suggested that the cost of a query can be minimised if
the number of pages intersecting the query region is minimised. They define
an interval ratio as the ratio of intervals of the attributes. For example,
in the following query: ”"Find all employees whose ages are between 30 and
50 and whose salaries are between $50,000 and $100000”, the interval ratio

| for age and salary becomes 1:2500 when the same integer domain is used.
Interval ratios are used to represent the shape of a region. J. Lee et. al
suggested that the number of regions intersecting with a query region at a
given arbitrary position is minimised when the interval ratio of each page
region in the domain space is the same as that of the query region, regardless

of the size of the page region.

1.4 Contributions of this thesis

In this thesis, we propose new data organisation techniques which minimise
the average cost of a given set of operations whose probability distribution is
known. What makes our work different from the other similar works is that,
the data distribution can be skewed and attributes can be correlated. Plus

our study not only covers partial match query, which is the case with the

other studies, but other relational operations like range query, join, union,

difference and others. The main contributions of this thesis are:

¢ New techniques of optimising storage design for a set of queries with
known probability distribution are proposed. Finding optimal storage
design is NP-hard. We show that by combining heuristics and combina-
torial algorithms, near-optimal storage designs can be achieved which
organise multidimensional records on which all the relational queries
are efficiently performed. The heuristic algorithms reduce the prob-
lem to a manageable size and the combinatorial algorithms determine

near-optimal storage designs.

o Nearly all existing storage design algorithms are limited to optmis-
ing uniform multidimensional data. In our proposed algorithms there
is no such limitation. This makes our work the first ever work which
optimises the organisation of multidimensional data when the data dis-

tribution is skewed.

e New algorithms for processing exact match, partial match, range, join,
union, intersection, difference and division queries are proposed. Com-
bining algorithms which utilise memory efficiently and those which or-
ganise storage optimally is expensive. However, we show that when
the queries are processed using our algorithms, which use the proposed
storage design techniques and determine good memory utilisations, the
cost of the average query can be dramatically minimised. Experimental
results of the proposed algorithms show that performance gains of up

to 3617% are achieved, when compared with standard schemes.

o New and more accurate cost models for all the relational database

operations is proposed. Unlike the existing cost models, the proposed

cost models doesn’t ignore the cost associated with directory pages.
These cost models together with the proposed heuristic algorithms are

used to find the optimal way of organising multidimensional data.

¢ Query distribution change overtime. Storage organisation which is op-
timal for the current query distribution may not be optimal in the
future once the query distribution changes. Rearranging storage de-
sign in order to optimise it for the current query distribﬁtion can be
an expensive operation. The proposed storage design algorithms are
not that sensitive to minor changes in the query distribution. Using
the proposed techniques, query distributions can change up to 80% of
their original values, and the original storage organisations remain near
optimal. Hence, frequent reorganisation of the storage arrangement is

not needed.

1.5 Research methodology

To carry out the experiments and to validate the performance of the algo-
rithms in this thesis, a mini relational database management system was
implemented using C++. The underlying data was organised by a multidi-
mensional file structure called the Balanced and Nested Grid (BANG) file
which was also implemented using C++. The BANG file is explained in
Chapter 3. This mini database management system supported, exact match,

range, and join queries. A query language was implemented using C++ to

10

ot
. . Y

manipulate the data in the mini database management system. All the ex-
periments were conducted on Sun workstations. Each experimental relations
were populated by randomly generating one million data records. The dis-

tribution of the multidimensional data ranged from uniform to extremely

skewed.

1.6 Thesis layout

This thesis consists of seven chapters. Chapter 2 provides the background for

this thesis. This chapter contains the discussion of the terminology, the data

- organisations and the tools which are fundamental to the work of this thesis.

The chapter starts by the introducing the terms used in this thesis, followed

by a brief discussion of data organisations, mainly multidimensional, and

- their access methods. This is followed by a brief introduction and analysis

of the existing approaches which optimise data organisations. The chapter
concludes by a discussion of some tools (heuristic algorithms) used in this
thesis to optimise data organisations and their access methods.

Chapter 3 discusses techniques of organising data and an access structure
known as the BANG file [37]. This is the file structure that is used in this
thesis for all the experiments. Hence the chapter explains the structure of
the BANG file, what the initial structure of the BANG file looks like, how its
structure changes as more records are inserted, what happens as the number
of records to be stored in a data block exceeds its limit, how partitions of
the file are labeled, how new directory blocks are added, how records are

searched, inserted and deleted, and how under populated blocks are merged

11

T P Yl T T o T e L el T Ty e 2 g T e e p e e Bl e - e e

T AT e L TR TR A AR

r-auiils

SPECEY [P PIETN
i AL L A e o

T
e e

Ty

L

in the BANG file. In the original BANG file, data was organised in a one way.
In the same chapter we discuss our version of the BANG file which allows
multiple ways of organising data. Also, in the same chapter, the effect of
different ways of organising data on the load factor and other characteristics
of the BANG file are discussed.

In Chapter 4, we present a technique of clustering records in multidimen-
sional structures which minimises the average cost of partial-match query.
The chapter starts by discussing partial match queries in general. It then
explains a partial-match retrieval algorithm using the BANG file. This is
followed by the introduction of new techniques of optimising partial-match
queries using heuristic algorithms and some cost functions. The chapter con-
cludes by presenting the analysis and the experimental results of the new

techniques.

Chapter 5 discusses new ways of organising data for optimising range
queries. The chapter first explains range queries in general, which is followed
by the discussion of range query algorithms using the BANG file. Also in
the same chapter a new way of minimising range query cost is explained. At
the end of the chapter the experimental results and analysis of t‘he proposed
algorithms are presented.

In Chapter 6, the optimisation of join queries with known probability
distribution is discussed. In this chapter we explain how the join query
processing can be optimised by optimising the organisation of data. The ex-
perimental results and analysis of the proposed algorithms are also discussed

in the same chapter.

12

In Chapter 7, we combine and generalise the work in the previous chap-
ters. We also discuss the implementation and the comparison of a number
of other basic relational operations such as union, division and intersection,
required of a database management to answer queries.

Chapter 8 presents the conclusion and possible future work in the area.

13

Chapter 2

Background

2.1 Introduction

" The main objective of this thesis is to optimise the organisation of multidi-

mensional data (skewedly or uniformly distributed) in order to minimise the

cost of a set of queries with known probability distribution. In this chapter
we cover the different types of multidimensional data organisations and the
methods that are used to cptimize them. The chapter starts with the intro-
duction of common terms used in this thesis, followed by a brief discussion
of multidimensional data organisations, which is again followed by a brief
introduction and analysis of some existing approaches which optimise mul-
tidimensional data organisations. The chapter concludes by a discussion of
some methods (beuristic algorithms) which are used in this thesis to optimise

multidimensional data organisations.

14

One of the most important criteria for evaluating the performance of a
database management system is how fast the system accesses data queried
by users. This criteria depends, to a large extent, on the organisation of
the underline data. In relational database management system, data is first
organised as records. A record consists of a list of fields. Each field, called
attribute, has a domain, which is a set of values, from which the field value
can be drawn. A collection of related records form a file. Records of a file are
organised in blocks. So a file consists of a number of blocks. In this thesis
we refer to the block as the hasic unit of storage. It is also the basic unit of
transfer between disk and memory. It is also expected to be a small multiple
6f the disk hardware sector size. The block address is a number which the
index scheme interprets to determine the physical lczi-iion of a block within

the data file.

A query is an expression that describes records to be retrieved from a
file or a database. An answer to a query is the retrieval of all the described
records. The four main database queries are exact match, partial match,
range and join [25]. In an ezact match query the record to be retrieved is
described by specifying all the fields. In a pertial match guery the records to
be retrieved are described by specifying some and not all of the fields. In a
range query the records to be retrieved are described by specifying a range
of values to at least one of the fields. In a join query records are retrieved

from more than one file and mainly described using common fields.

15

T o i

e AR S H R A

The main objective of this thesis is to find efficient ways of organising

records in files in order to speed up query processing. An ideal data organi-

sation is an organisation which has:

o Access methods which are:

— fast
- efficient for all types of operations
— abie to adopt well to database growth
— simple with few special cases
— efficient in handling concurrent transactions
— easy and minimum impact when integrated to existing systems
— independent of data order and distribution.
¢ High storage utilization. The amount of data in each disk block on the

average should be high. The index size should be small compared to

ti:o of the actual data.

To speed up query processing, each record in a file is placed using the
values of one or morr «f its attributes. The attributes that determine the
placement of records in a file are called the organising atiributes. A file whose
records are placed using one organising attribute has a uni-dimensional file
organisation. File organisations like B-trees (4, 5], linear hashing [78,81] and
extendible hashing [29] are some examples of uni-dimensional file organi-
sation. Although somewhai outdated [20,69] present a good coverage of

uni-dimensional file organisations. A file whose records are placed using

16

more than one organising atiribute has a multidimensional file organisation.
Some examples of multidimensional file organisation are X-tree [11], filter
trees [127), BSP-Tree [39, 40}, BV-tree [38], G-tree [76], GBD-Tree [105), and
hB-tree [28]. Metliods used to access mmitidimensional files are called m: "
tidimensional access methods. A good coverage of multidimensional access
methods can be found in [41,87].

With an increasing number of applications such as computer aided de-
sign (66] and VI.SI [130], robotics, geometric or geographic systems, medical

imaging [48], environmental protection, data warehouse [26], visual percep-

-tion and text retrieval systcms, searching using several attributes is common

than using one attribute. With such applications, its is better to use multi-
attribute indexing instead of several single at: »'bute indexes for the following

two reasons:

1. The number of disk blocks to be accessed can be minimised, because one

index instead of multiple single attribute indexes has to be searchea.

2. When new records are inserted, deleted or updated multiple updates
are required for multiple single indexes, but a single update of index is

needed for 2 multidimensional access methods.

The databases of the above mentioned applications, tend to be notoriously
large, and are growing fast [18]. Despite growing primary memories, it is often
impossible to hold the entire database in main memory.

The time taken to answer & query (query cost) is mainly measured by the

number of disk accesses performed to retrieve the records described by the

query. If the described records of a query are scattered in many blocks, the

cost of the query will be high. But if the described records are clustered in
smaller number of blocks the cost of the query will be lower. Minimizing the
cost of single attribute access methods has been extensively studied, hence
our techniques will look at multidimensional access methods. Few researchers
studied technigues of minimizing query costs when using multidimensional
file structures, but nearly all of them were limited to uniform data distribu-
tions [52-54, 60, 77, 79, 133]. Some of the existing techni. ;; es will be discussed
in subsequent sectiors. To our knowledge this is the first study which intro-
duces techniques of optimally clustering records in a multidimensional file
structure when the data distribution is skewed.

This chapter has 7 sections. Section 2.2 gives introduction to multidi-
mensional access methods. Sections 2.3 and 2.4 explain point access methods
which are based on hashing and those which are based on hierarchical or tree
like access structures respectively. Existing techniques of optimizing physical
database design for efficient query processing are explained in Section 2.5.
Section 2.6 discusses some of the heuristic and combinatorial algorithms used
in the optimisation of physical database design. Section 2.7 summarizes this

chapter.

2.2 Multidimensional access methods

As was explained in the last section, a file whose records are placed using more
than one organising attribute has a multidimensional file organisation. The

methods used to access multidimensional files are called multidimensional

access methods.

18

Multidimensional access methods are classified into two types: point ac-
cess methods(PAM) and spatial access methods (SAM). Point access meth-
ods are primarily been designed to perform searches in databases that store
only points. Points correspond to records (entities) that doesn’t have spatial
extension. Examples of such access methods are interpolation based grid
files {108, 110], twin grid file [58], hB-tree [85], k-d-b-tree [119] and Buddy-
tree [125]. Spatial access methods however, can manage extended objects,
such as lines, polygons and higher dimensional polyhydra. Examples of spa-
tial access methods are DO [32], the different flavor of R-trees [8,49, 64, 65,
121,124,126), cell tree [47), LSD-tree [55] and SKD-tree [101].

A multidimensional file with n organising attributes can be envisioned as
a n dimensional domain space. We define a domain space as the Cartesian
product of *he domains of all the organising attributes. The domain space
is partitioned into a number of regions. Each region corresponds to a disk
block. In PAM, each record is represented as a point within a region and is
stored in the disk block corresponding to the region.

In the current PAMs, each region is accessed using a multidimensional
hash function or hierarchical access methods (search trees) or both. PAMs
which use multidimensional hash functions include the GRID file [97], EX-
CELL [134], the Two-Level Grid File [56], Multidimensional Linear Hash-
ing and its variants like multidimensional order-preserving linear hashing
with partial expansions (MOLHPE) [57,71] and PLOP-hashing [75]. PAMs
which use hierarchical access methods, unlike hash based methods, perform
no address computation. Example of such PAMs include Balanced Multidi-

mensional Extendible Hash Tree [106,107}, k-d-B-Tree {119) and the LSD-

19

Tree [55]. Some PAMs have tree structured directory and also employ dy-
namic hashing scheme. Some examples of such PAMs are Interpolation Based
Grid File [110], The BANG file [36], the buddy tree and the hB-tree and its
variants (27, 28, 85, 86].

The lack of order that preserves spatial proximity of records in uni-
dimensional access methods makes them much easier to design than mul-
tidimensional access methods [42,104). There is no total ordering of objects
in two or higher dimensional space that completely preserves spatial proxim-
ity. One way to circumvent the problem is to find heuristic solutions, that
is, to look for total orders that preserve spatial proximity at least to a great
extent. The goal of all heuristic solutions is that objects located close to each
other in the original space should likely be stored close together on the disk.
This could contribute substantially in minimizing the number of disk accesses
per range query. One thing that all proposed methods have in common is
that they first partition the domain-space into regions. Each of the regions is
labeled with a unique number that defines its position in the tatal order. The
records (points in the domain-space) are then sorted and indexed according
to their region. The way the regions are labeled determines how clustered
adjacent regions are stored in the secondary memory. Some common la-
belling techniques used are: row-wise enumeration of regions [122], Peano
curve [95), quad codes [34], N-trees [141], wocation codes (2], z-ordering [104]
(used by Oracle in 1995), Hilbert curves (3], and Gray ordering (30, 31].

To furthker elaborate the design of PAMs, four PAMs are discussed in
more detail in the subsequent subsections. The BANG file will be discussed

in more details in the next chapter, because it is implemented and used

20

in the experiments of this thesis. Though the experiments in this thesis
were cariied out using the BANG file, they are equally applicable with other

multidimensional access methods.

2.3 Multidimensional hashing based PAMs

In this section, example of PAMs which use multidimensiona] hash functions
are discussed. First the common features of these PAMs is discussed and then
some of the well know PAMs which use multidimensional hash functions are
discussed. The use of multidimensional hashing in partial-match queries is
also mentioned.

In hashing schemes, the address of a disk block where a record resides is
determined by a hash key calculated for that record. If the file on which the
record rasides has one organising attribute, a hash function is applied to the
value of that attribuze, But if the file has many organising attributes, then as
many hash functions are used. Each organising attribute has a hash function
which wmaps a value into bit strings. For example, in a relation, R;, with
organising attributes A;g, A1, .. . Ain—1, 7 hash functions, ki, i, ... hin-1,
are employed. f;j, maps each A;; value to a bit string, bijobiji. .. bije -1,
where ¢;; is the minimum aumber of bits needed to represent any values of
A; ;. For example, if A;; represents a gender of an employee in a company,
then the minimum number of bits nee:iud to represent any value of A;; is
i. Hence, ¢;; = 1. The hash key for a record iz constructed by taking d; ;

bits, where 0 < d;; < ¢ij, from the bit string of h;; and combining them in

a specific order. This order is maintaiued by a structi.re known as a choice

vector. In short a choice vector specifies the order by which the hashed bit
strings are combined to form 2 hash key of a record. Each element, of 2
choice vector is a bit position and is denoted as ; ks Where 0 < & < ¢; ;. For
example, b;10b:30bi3,10i00bi320:1,1bi2,0 is a valid choice vector for R; with
four attributes, Ao, 4;1, Ai2 and A, ;.

Let the number of elements in the choice vector be denoted as d;, where
d; = 1775 di;. Since each element of a choice vector is assigned a value of a

0 or a 1, the maximum number of blocks in the file of R; is 2%.

2.3.1 Partial-match retrieval and PAMs

As was explained in the beginning of this chapter a query is an expression
that describes records to be retrieved from a file or a database. An answer to
a query is the retrieval of all the described records. In a partial maich query

the records to be retrieved are described by specifying a subset of the fields.

To answer a partial-match query, when using PAMs which use multidi-
mensional hash functions, a hash key is constructed from the ﬁuery, using
the same hash functions which are used to store the data. The hash func-
tions for each attribute value specified by the query is applied to the value of
the attribute, forming a bit string for the attribute. The hash key is formed
using the choice vector and the bit strings for the attribute. The bits in the
choice vector of attributes which were not specified in the query are not set
in the hash key. All the blocks in the data file which match the hash key are
retrieved and searched for matching records. If a bit is not set in the hash

key, blocks with either value for that bit in their address must be retrieved.

We use a ”*” to mark the place of the each bit in the hash key which is not

set.,

For example, consider the following choice vector of an arbitrary relation
R; which has four attributes: b;p0bi,1,00:3.00i2,00i,1,10:1,25;,2,1. Assume a query
that specifies values for Aig, A;2 and A; 3 but not by A;;. Also, assume that

the values of the attributes specified in the query results in the following bit

strings:

hip = 1011010010100
hi = 0110101010110
his = 1010110001101

Combining the corresponding bit strings, «s specified by the choice vector,
bi.0,0:,1,00:.3,00i,2,003,1,15:,1,28:,3,1, results in the hash key 1*10**0. Since 4, is
not specified in the query, the three bits which correspond to A;; in the
hash key, 1*10**0, are sssigned "*’. The 3 unkaown bits in the hash key
will retrieve 2%, 8, blocks. The resulting eight blocks retrieved to answer the

query are:

1010000
1010010
1010100
1010110
1110000
1110010
- 1110100
1110110

The order of the bits in the choice vector can have an impact on the
performance of the retrieval algorithm. For example, two consecutive disk
blocks can be retrieved faster than two non-consecutive disk blocks because
no seek is required to locate the second block once the first has been read. As
mentioned in section 2.3.1, the way the regions are labeled determines how
clustered adjacent regions are stored in the secondary memory. Some com-
mon labelling techniques used are: row-wise enumeration of regions, Peano
curve, quad codes, N-trees and Gray ordering. Faloutsos in [30] suggested us-
ing Gray codes to map the hash keys to disk block addresses which only differ
in precisely one of the last two bit positions will be located in consecutive
blocks. This results in better retrieval performance,

Without additional information to aid in determining what the composi-
tion of the choice vector should be, the choice vector for a relation usually
consists of an equal number of bits from each attribute arrange;:l in a ¢yclic
fashion. Such choice vectors are known as cyclic. By using additional infor-
mation, such as the probability of each attribute being accessed and the cost
of access, better choice vectors can be built. We will call such choice vectors
as optimised. Our aim in the subsequent chapters is to find optimised choice
vectors, |

Aho and Ullman in (3] described how to determine the optimal number of
bits to take from the bit string of each attribute to make up the choice vector
for partial match retrieval. Their method assumes that the probabilities of
each attribute appearing in a query is specified, an2 that the probabilities
are independent of each other. Moran in [94] showed that for the general

problem when the probability of an attribute appearing in a query is £ot

A b e T

R e

3T P, T T g

independent of the other attributes, finding the optimal bit allocation is NP-
hard. Lloyd in [83,84] presented an efficient heuristic algorithm for finding

a good solution to this general problem.

2.3.2 Multidimensional order preserving linear hash-

ing with partial expansion

Multidimensional order preserving linear hashing with partial expansion,
MOLHPE, is a dynamic hashing scheme introduced by Kriegel and Seeger
in [71). MOLHPE used very small directory or used no directory at all. The
hash key for a record, whose construction is determined by the choice vector,
specifies the address of the block ir the data file in which the record is stored.
MOLHPE combines standasd linear hashing [57, 81] linear hashing with par-
tial expansion (78], and order preserving linear hashing [57,109] schemes.
So to understand MOLHPE, let us first discuss briefly, the standard linear
hashing, linear hashing with partial expansion, and order preserving linear

hashing.

Linear hashing

In Section 2.3 it was mentioned that the size of a hash file which belongs
to R; is 2% blocks, where d; is the size of the choice vector of R;. If this is
maintained then it means that the size of a hash file is increased by doubling
its current size, from 2% to 2%+, For example, if the current size of R; is

249 blocks, then the next size of R; is 24%! blocks. Doubling a file size in

one step is a waste of disk space and a very expensive operation because all

existing records have to be reorganised. To avoid doubling the hash file in
one step, researchers came with different methods of expanding a hash file.
For example, Letwin in [81} proposed a hash file called linear hash file which
expands by one block at a time. By choosing appropriate functions and by
expanding the file size by one block at a time, only records in one block are
rearranged.

In a linear hash file overflow records are stored in blocks chaining from
the primary blochs. A primary block is a block which contains no overflow
records. A black which contains overflow records is called an overflow block.
Linear hashing increases the storage space gradually by splitting the primary
blocks in an orderly fashion. Consider a file consistfé of 2% primary blocks
which are labeled as 0, 1, ..., 2% — 1. When the splitting of block 0 takes place,
the file is extended by one block, which is block 2%, and approximately half
of the records in block 0 will move to block 2%. After the split of block 0 is
finished, the next block to split is block 1, then block 2 and so on until block
2%, A pointer is used to indicate the next block to be split. This pointer
starts from block 0. After the split of block 2% — 1 into two block 2% — 1 and
24i+1 _ 1 the pointer is reset o block 0 again and the same splitting process

is repeated again but this time with twice the original number of primary

blocks which is 2%+,

Linear hashing with partial expansion

An important factor in hashing techniques is that the best performance is
achieved when the records are uniformly distributed among the file blocks.

With linear hashing that is not the case. In linear hashing, when blocks with

26

o

no overflow blocks is split, the storage utilization of the two resulting blocks
is half that of the original block. To improve the distribution of records
among blocks of a linear hash file, Larson in [78] proposed expanding tha
hash file by more tkan one block in one step. He called his version of linear
hash file as linear hashing with partiel expansion. A full expansion increases
the size of a file from B.2% to B.2%*! by splitting each of the 2% blocks
into two, a block at a time, in the manner we have just described. By wsing
partial expansions, the file size increases from B.2% to (B +1).2%, to ... to
(2B - 1).2%, to B.2%*!, While this still results in an even decrease in the
storage utilisation, the difference is much smaller than that of the standard
linear hash.

During the first partial expansion, ‘B blocks are split into B + 1 blocks
by moving some records from each of the B block into block B + 1. Records
are not moving between the B blocks. During the second partial expansion,
B+ 1 blocks are split into B +2 blocks, in the same way as in thq first partial
expansion. This is repeated for each of the B partial expansions. During the
last partial expansion, 2B — 1 blocks are split into 2B blocks. The value ot
2% is then set to 2%*1, so that there are B groups of 24+! blocks, instead
of 2B groups of 2% blocks, and the process starts again. This was analysed
and discussed in more details in [114].

By using linear hashing with partial expansion, the reallocation of records
to new blocks is ordered and doesn’t occur all at once. Therefore, the cost

of increasing the size of the file is low.

v

Order preserving linear hashing

Order preserving linear hashing was independently discovered by Burkhard [15],
Orenstein {104}, and Ouksel and Scheuerman [109}. It is implemented by us-
ing an order preserving hash function to generate the hash key for records
which are then stored in a linear hash file. Instead of taking the d; least
significant bits from the hash key to index a file of size 2%, as is wsually done
in linsar hashing, the d most significant bits must be taken . This ensures
that the file can expand dynamically while still remaining ordered.

The primary problem with order preserving linear hashing occurs when
the data is not uniformly distributed. It results in a large number of over-
flow blocks for some hash keys, and sparsely filled blocks for others. To
overcome this problem, Orenstein proposed multilevel order preserving lin-
ear hashing [104]. The problem of long overflow chain is reduced by storing
the overflow blocks of each hash key in a B*-tree instead of in a list. The
problem of sparse blocks is reduced by assigning different level (depths) to
the blocks stored in order preserving Jinear hash files, and by climinating
sparsely filled blocks.

MOLHPE combines order preserving linear hashing and linear hashing
with spatial expansions. In MOLHPE each dimension is treated gqually. The
key space of each dimension is mapped into a number between 0 and 1 by an-
order preserving hash function. As in linear hashing with partial expansion,
the size is doubled by a series of partial expansions. Only one dimension is
expand at a time. That is, the file size is doubled by splitting in one dimea-
sion. MOLHPE outperforms its competitors for uniformly distributed data.

However, with nonvniform data distribution it fails because hash functions

* don’t adapt gracefully to the given distribution. To overcome this problem
Kriegel and Seeger [72,73] attempted to employ stochastic teéhniques (a-
qunitiles) [16} to determine the split point. The idea is to transform the
nonuniform data into uniformly distributed values for a. These values are
then used as input to MOLHPE algorithm for retrieval and update. Since the
region boundaries are not simple binary intervals, a small directory is needed.
They claimed that this method guarantees the performance of MOLHPE to
be nearly the same for both uniform distributions and nonuniform data dis-
tributions. Unfortunately, this is true only if the distribution of a data in
each dimension is independent. Other variant of MOLHPE was introduced
by Hutflesz [57] using z-hashing [103] to guarantee that points located close
to each other are also stored close together on the disk. But later it was
proved to have similar limitations.

Coming back to our main point, to improve the performance of query pro-
cessing in MOLHPE, optimised choice vector can be used to determine which
dimension is to be split at each stage, rather than splitting each dimension

in a cyclic manner.

2.3.3 The Grid file

The grid file of Nievegelt et al. [97] and some of its variants [7,117] are typical
representatives of a point access method (PAM) based on hashing. The grid

file superimposes a d-dimensional grid on the domain space, thus dividing it

into partitions known as cells. The superimposed grid may not be regular,

hence the resulting cells may be of different shapes and sizes. One or more

cells are associated with one disk block. The association between a disk block

and its cells is maintained by a multidimensional directory. The directory is
usually too big to fit in the main memory so it is usually kept on secondary
storage. To guarantee that data items are found in two disk access, the list
of spilt points for each dimension (the grid) is kept in the main memory in
a d one-dimensional array called scales. An answer to an exact match query
incurs the use of the scales to locate the appropriate directory cell (which will
be read from disk), and then the disk block containing the required record.
The original grid file scherhe does not specify a splitting or merging pol-
icy, and how the grid directory should be implemented. Those are left to the
implementor. However, Nievergelt et al. [97] recommended that the split-
ting policy should be such that a block is always divided into two blocks
during splitting. They reasoned that splitting a block into more than two
blocks results in a significantly lower average block occupancy. The choice
of dimension and location within the dimension to be split are not specified.
They noted that one policy is to choose the dimension according to a fixed
schedule, such as cyclically. The location of the split could be the midpoint of
the interval being split, but it need not be. Nievergelt, compared the buddy
and neighbour system for block merging, In the buddy system, a block can
only merge with one adjacent, equal-sized buddy in each dimension. In the
neighbour system, a block can merge with either of its two adjacent neigh-
bours in each dimension, providing the resulting region is convex. Every
buddy is a neighbour, but not every neighbour is a buddy. Two blocks can
be merged if the number of records in the two blocks can be contained within
a single block. The neighbour system result in a higher storage utilisation

because a neighbour is more likely to be available for merging than a buddy.

30

Depending on the implementation of the grid directory, merging may require
a complete directory scan [56,74]. The grid directory may be implemented

in many ways, fron lists of lists to a multidimensional array. Nievergelt [97]

favored the multidimensional array for space efficiency. In this implementa-

tion, each time a dimension is split, the directory size doubles because the
space covered by each directory entry is divided in two. However, the num-
ber of data blocks is only increased by one. The reference of many directory
entries to the same data block illustrates a well known problem on the grid
file, which is a super-linear growth of the directory even for a uniformly dis-
tributed data [117). Theoretical analysis of various grid file can be found
in {6,117).

While others have discussed the grid file, it has generally been assumed
that the directory is stored as multidimensional array, that dimensions are al-
ways split into two at the midpoint of the range, and dimensions are typically
chosen cyclically {117). Optimised choice vectors can be used to determine

which dimension is to be split thus optimizing the query processing.

2.4 PAMs based on hierarchical access meth-
ods

In this section we discuss some PAMs which use hierarchical directory struc-
tures, mainly trees, and perform little or no address computation. Like hash-
ing methods, however, they organise the data points in a number of buckets.
Each bucket usually corresponds to a leaf node (also called data node) of

the tree and the disk block, which contain those points located in the cor-

responding bucket region. The interior nodes of the tree (also called index
nodes) are used to guide the search; each of them typically corresponds to a
larger subspace of the universe that contains all bucket regions in the subtree
below. A search operation is then performed by a top-down tree traversal.
In the rest of this section we will discuss example of PAMs which use
hierarchical access methods like Extendible hashing [29], multi-level grid
file [140], The hB-Tree [28] and The BANG file [37). The BANG fie is

used extensively in the experiments of this thesis, hence it will be discussed

in more detail in the next chapter.

2.4.1 Multilevel grid file

The multilevel grid file was designed by Whang and Krishnamurthy [139,

140] to overcome the problem of the multidimensional grid file directory
size. It achieves this by making the directory a multilevel balanced tree
structure and by redefining the way a grid entry is computed. A directory
entry in the lowest level of *"e tree refers to a data page and represents
the region allocated to the data page. A data page contains only those
records that belong to the region referred to by directory entry. An entry
in a higher level directory refers to a directory page of the next lower level
directory an< represents the region allocated to it. Figure 2.1 by Whang and
Krishnamurthy [140], shows a partitioned data space in which the dashed
boxes represent data blocks. A two level directory for the data space is also
mentioned as shown in Figure 2.1.

The nuinber of entries which can be stored in a page is limited. When the

number of entries which must be stored in a page exceeds its limit, the page

is split into two. In a grid file splitting a directory is based on attribute value.
In multilevel grid file, each dimension (attribute domain) has an associated
hash function which returns a bit string. A dimension is then split using the
bits of its hash function. The directory entries contain bit string prefixes and

their associated pointers Figure 2.1.

In multilevel gridfile, searching for records starts from the root node. All

the entries matching the search criteria are identified. Then the search for

matching entries descends to the next lower level directory using the identified
matching entries. The same process is repeated on the remnaining directory
levels until all the data pages enclosing the required records are retrieved. For
example, consider a partial-match query which does not specify a value for
the first attribute, but does for the second attribute, for the data structure
shown in Figure 2.1. Assume that the value of the second attribute returned
by the hash function has a bit string prefix of 01. Thus, we must search for
blocks with prefixes (-,01). We start with the root node of the multilevel
grid file directory, and find that the first, third and fourth entries match the
query. Therefore, three entries at the second level must be searched. In the
first of the three, the third and fourth entries match our query. We must
retrieve their associated data blocks, and search them for answers to our
query. In the second of the second level directory entries we must examine,
the third directory entry, both the second and third entries match our query,
so their data blocks must be retrieved and searched. In the third second
level directory entry we must examine, the fourth directory entry, the first
two entries match our query, so both their data blocks must be retrieved and

searched for matching entries. Thus, in total we must retrieve six data blocks

for potentiaily locating the matching records.

Grid regions with no associated data blocks do not appear in the directory
hierarchy. For example, in Figure 2.1, the region with the prefixes (00,1)
does not have an associated data blocks. Therefore, it does not appear in
the second level of the index. Grid regions appear only once at any directory
level. For example, the region with the bit string (01,-) has only one data
block. Consequently, it has only one entry in the second directory level, the
last entry of the first directory block. These two features ensure that the
directory will grow at the same rate as the data, even for non-uniform data
distributions. Therefore the multilevel grid file does not have the same worst
case performance as the standard grid file, in which the directory size can
potentially double each time a new data block is required.

We believe the cost of processing queries in multilevel grid files can be
minimised, if optimised choice vectors are used-in association with the hash

functions. Optimised choice vectors will be explained in chapters 3 to 7.

2.4.2 The hB-tree

The hB-tree is a multidimensio_nal file structure which has features of K-D-
B-tree [119] and k-d tree [9,10). It differs from K-D-B-tree by the following

two features:
1. Its index nodes are organised as k-d trees.
2. A split of an hB-tree node may be done using more than one attribute.

To understand the hB-tree, let us first discuss both the X-D-B and the k-d

trees.

|||||| AR N o
“ il it i !
¥ ". .h h“ “!...
! ik i o =
[L K Hh H
' i flmw oo ." H 2
[] L I Hyscamwm— t m
' tovh Kl H N ey
" 1 H K " | e s
A | A = 5
' e KL ! H A
] L h .". : .
T -— g e - b
' oy pfrmmmmm——pmTm TN
' L UK :
’ Hr ." “I
' " ' =
1
! g it | S =
t tly ML L et) =
] 1y Newwroem—
' i IR [i g
" ". h T “ E
r '
: \] g—]
S| T IS O Bl X gz ||538 | &
............................. ; s > o S]
! ! — et
— N o 4 - — x4
_ _m = o
t
| _ =
1 : x
¥ - &
: : P
1 H = &
' = g
' '
_ _ Eo
: 2

K-D-B-tree represents an attempt to generalize B-tree to the multidimen-
sional case. A directory entry of a B-tree contains search values in disjoint
intervals of a one dimensional space. A directory entry of a K-D-B-tree rep-
resents a region {hypercube) in a k-dimensional space. Further, like Bt-tree,
data records are stored in leaf nodes, internal nodes contain only index entries
which direct search. A X-D-B-tree is a balanced tree, that is, the distance
between the root and each leaf node is the same. Regions corresponding to
nodes at the same tree level are mutually disjoint; their union is the complete
domain space. The leaf nodes store the data points that are loFated in the
corresponding reginn.

Search queries are answered analogously to the k-d-tree algorithms. For
~ the insertion of a new data point, first perform a point search to locate the
right region. If the region is not full, then the entry is inserted. Otherwise,
it is split and about half the entries are shifted to the new data node. If the
parent index node does not have enough space left to accommodate the new
entries, a new page is allocated and the index node is split by 2 hyperplane.
The entries are distributed among the two pages depending on their position
relative to the splitting hyperplane, and the split is propagated up in the tree.
The split of the index node may also affect regions at the lower level of the
tree, which muist be split by this hyperplane as well. Because of this forced
split effect, it is not possible to guarantee a minimum storage utilization.

Deletion is done after performing an exact match query on the record to
be delered. If the number of entries drops below a given threshold, the data
node may be merged with sibling data node as long as the union remains

a k-dimensional interval. The procedure to find a suitable sibling node to

36

merge with may involve several nodes. The union of data pages results in the
deletion of at least one hyperplane in the parent index node. If an underfiow
occurs, then the deletion has to be propagated up the tree. ‘

The main difference between the K-D-B-tree and the hB-tree is the way
the pages are organised. In K-D-B-tree, regions are disjoint while in hB-tree
regions can enclose other regions. Also, in K-D-B-tree the, organization of
the directory entries are not clear, but in hB-tree directory is organised as
k-d-trees. K-d-tree is a multidimensional binary search tree. A search in a

“standard binary tree is based on one key field. In a k-d-tree this is done using
multiple keys, Ko, Kj, ... Kn-3. On the first level of the tree, the decision of
going to the left child or to the right child is based on the value of K, on
the second leve] the decision- is based on the value of X, and so on in a eyclic
manner.

To optimise query processing in an hB-tree, the search key to be used at

each level of the tree can be chosen based on a choice vector.

2.5 Current methods of optimising PAM de-
sign

Many researches have proposed different multidimensional access methods [61-
63,102,120, 127}, but few attempted to optimally design the access methods
for a given set of queries. Even all those who tried, except one {79], were
limited to uniform data distribution [52-54,99]). J. Lee et. al. [79}, who

attempted to optimise multidimensional access methods for a given set of

queries (independent of the data distribution), were limited to range queries.

To our knowledge, for a given set of queries (partial match, range, join or

other common relational queries) and their probabilities, this is the first work

which attempts to optimally organise multidimensional data, even when the

data distribution is skewed. In the rest of this section we will explain the
techniques introduced by Lee, et. al. [79].

In multidimensional files, a range query can be expressed by specifying a
region, called the query region. It is convenient to think of a query region as
a cross product of the specified intervals (partial domains) in the query. A
range query is a conjunction of equality predicates with at least one range

predicate.

Query processing can be interpreted as an operation of accessing all the
pages intersecting the query region, and then retrieving the required records
from these pages. Hence, Lee et. al. {79}, suggests that the cost of a query
can be minimised if the number of pages intersecting the query region is
minimised. They define an interval ratio as the ratio of intervals of the
attributes. For example, in the following query: find all employees whose
ages are between 30 and 50 and whose salaries are between $50,000 and
$100000, the interval ratio for age and salary becomes 1:2500 when the same
integer domain is used. Interval ratios are used to represent the shape of
a region. It is suggested that, the number of regions intersectine with a
query regio.n at a given arbitrary position is minimised when the interval
ratio of each page region in the domain space is the same as that of the
query region, regardless of the size of the page region, To determine the

interval ratio, they use a query pattern given by the user. The query pattern

can be obtained by collecting the usage statistics of a database during a

certain time interval {143] or by analyzing the application profiles provided
by database administrator [35]. The query pattern is then used for region
splitting strategy that partitions the domain space in such away that the
interval ratio of a page regions are close to those of query regions.

Lee et. al. [79] didn’t discuss how forcing the page region to be equiva-
lent to the query region affects other properties of the multidimensional file,
specially storage utilization. Aléo, there is no discussion on how the other re-
lational operations can benefit from their proposal. Also the query area size
over which their proposal is cost effective is not investigated. Query pattern
changes with time, and the effect of query changes on the existing design
{design which was optimal before query pattern chanss) is not discussed in
the paper.

The approach taken in this thesis is totally different from that taken by
Lee et. al. [79]. In this thesis, to find an optimised multidimensional access

method the following two items were used.

o Muitidimensional data organisations which evenly distribute records

among the allocated disk blocks;

» Heuristics and combinatorial optimisation techniques to find optimal

data organisations.

Optimising the organisation of multidimensional data in order to min-
imise the average cost of a given set of queries can be done by using optimal
bit allocation. Finding the optimal bit allocation for arbitrary query distri-

bution is NP-hard [34], but the problem can be solved by using heuristics

39

O

T TINR)

and combinatorial optimisation techniques which are discussed in the next

section, section 2.6.

2.6 Combinatorial optimisation techniques

Finding the optimal multidimensional data organisations we are trying to
find are NP-hard. To attempt te find good solutions,optimal muitidimen-
sional data organisations, we used heuristic and combinatorial optimisation
algorithms. These techniques are not guaranteed to find optimal solution to
any problem. In the subsequent sections we use the term minimal or opii-
mised to indicate a solution which is the result produced by one or more of
these techniques. These minimal solutions are typically local minima or local
optima. For some problems, they are almost optimal. In this section, we in-
troduce the combinatorial optimisation techniques we used to find optimised

choice vectors.

2.6.1 The optimisation problem

The optimisation solutions that we used can be described in the following
way. Consider a set, I?:, of n non-negative integers, k;, upon which cost func-

tion, f, is defined as [51]

c=f)

where k = {ko, k1, ..., kn—1}. The main objective here is to find Enin, Such

that f(kmin) < f(£), for all members of k. The constraint

TR g

?—__01 ki =k

must be satisfied.

Relating this to a choice vector, section 2.3, & is the number of elements
in the choice vector, %; is the number of bits allocated to the ith attribute,
I is a bit allocation, and Emin is the optimal bit allocation. As we will find
out in the subsequent chapters not only the value of k; is important but also
the position of these bits within tk: choice vector.

Finding optimal choice vecters of many of the problems we are trying to
solve is NP-hard. To attempt to find good solutions we used heuristic and
cowhinatorial optimisation algorithms. These techniques are not guaranteed
to find optimal solution to any problem. Examples of such algorithms are
minimal marginal increase and simulated annealing. Minimal Marginal In-
crease (MMI) and Simulated Annealing are diséussed in Section 2.6.2 and

Section 2.6.3 respectively.

2.6.2 Minimal Marginal Increase (MMI)

Minimal Marginal Increase (MMI) is a greedy heuristic algorithm which we
used to come up with optimised choice vectors. MMI works as follows:
Tnitially nothing is allocated to the elements of the choice vector. Then
the first element of the choice vector is allocated to b;g0 and the average
query cost using the cost functions (which will be discussed in the coming
chapters) is computed. The average query cost is repeatedly computed after
giving the same choice vector element instead to b;10, and then to bigp,

and so on, until all the attributes are tried. The attribute which gives the

41

lowest average query cost is permanently allocated as the first element of the
choice vector. The same process is repeated for the second element of the
choice vector, then the third, and so on. This process is repeated until all
the elements of the choice vector are allocated. The number of choice vector

elements will be discussed later in section 3.9.3.

2.6.3 Simulated annealing

The second optimisation technique that is used in this thesis to come with
the optimal bit allocation is Simulated annealing [1]. Simulated annealing
is a class of optimisation algorithms based on Monte Carlo techniques. The
~ algorithm in this thesis is substantially the same as that used in Ramamo-
hanaraoc et al [115].

The algorithm begins by selecting a random choice vector a.ﬁd computes
the cost of the problem on hand using cost functions, which are dependent
on the choice vector. Then in each iteration, the algorithm computes new
choice vectors and accepts the new choice vector as the basis for further per-
turbations if it improves the cost or when a cooling functions determines that
it be accepted. The cooling function is a monotonically decreasing function
which specifies the probability of accepting a solution (a choice vector in our
case} which does not improve the cost. In the early iteration the probability
of accepting a solution that does not improve the cost function is high, but
approaches to zero in the later stages. There are a number of parameters
which can be used to control the amount of computational resources used by
the algorithm. The algorithm terminates when the costs has not improved

after pre-specified number of iterations since the last accepted choice vector.

42

E:
il
&

TR} I R

In our implementation, we use a set of random starting allocations (trials)

and iterate over each of these, finally selecting the best over the trials.

2.6.4 Combining MMI and simulated annealing

A property that simulated annealing does not share with minimal marginal
increase is the dynamic nature of MMI. In simulated anlnealing; there is no
straight forward method to find the optimal bit allocation for d+1 bits, even
if the optimal bit allocation of the first d bits is known. However, MMI may
be used in conjunction with simulated annealing to obtain the property of
being able to be used for dynamic files. The initial bit allocation can be
determined for one file size using simulated annealing. If the size of the file
increases, MMI can then be used to determine the attribute to allocate the
next bit to. Similarly, if the data file is required to decrease in size, then the
technique of maximal marginal decrease (MMD) can be used to provide this
ordering. MMD operates in the same way as MMI, except that a single bit is
subtracted from each attribute and the cost is recalculated. The aim is still
to find the attribute which results in the lowest cost. However, this result
of removing a bit from the attribute which results in the largest decrease in

cost, instead of allocating a bit to the attribute which results in the smallest

increase in the cost.

2.6.5 Other optimisation solutions

Combinatorial optimisation is an active area of research. There are a number

of other techniques which could be used in addition to MMI and simulated

43

annealing to search for optimal bit allocations. These includes iterative im-
provement, which was used by Swami [133], for join query optimisation, the
tabu search [43} and genetic algorithms [88]. Some examples of genetic algo-
rithm that can be used are Genocop (version 2.0) [88] and SGA-C [44,131).
Additionally, more complex simulated annealing algorithms with sophisti-
cated cooling functions and domain specific knowledge can perform better
than more general simulated annealing algorithms [21, 59).

Nurmela in [99] found that simulated annealing typically performed as
well or better than iterative improvement and a number of other combina-
torial optimisation methods including tabu search, threshold accepting and
record to record travel. He also found that simple genetic algorithms which
did not use problem specific knowledge did not perform as well as local search
algorithms. Implementing a good combinatorial optimisation algorithm for a.
specific problem is difficult. Each of those algorithms discussed above have a
large number of parameters which should be varied, depending on the prob-
lem domain. Using domain specific knowledge can also result in a dramatic
increase in the performance of the algorithms. We have deliberately used
a relatively simple version of the simulated annealing algorithms which use
little or no domain specific knowledge. The results generated using this al-
gorithm will show that it is possible to find good solutions to the problem

we consider in a reasonable amount of time.

44

2.7 Summary

In relational database systems records are organised as blocks and blocks as
files. To speed up query processing, each record in a file is placed by hashing
. the values of one or more of its attributes. The attributes that determines
a placement of records in the file are called the organising attributes. A file
whose records are placed using one organising attribute has a uni-dimensional
file organisation and a file whose records are placed using more than one
attribute has a multidimensional file organisation. When searching using
several attributes is more common than using one attribute, it is better to

use multi-attribute indexing instead of several single attribute indexes.

The aim of these thesis is to find techniques of organising multidimen-
sional access methods in order to minimise the average cost of a set of
queries, whosge probability distribution is known. Minimizing the cost of
uni-dimensional access methods has been extensively studied, hence our teck-
niques looks at multidimensional access methods. Few researchers studied
tecuniques of minimizing query costs when using multidimensional access
methods, but nearly all of them were limited to uniform data distributions.
To our knowledge this is the first study which introduces technigues which op-
timise multidimensional access methods when the data distribution is skewed
or uniform.

In this chapter we covered the different types of multidimensional data
organisations and the tools which we use in this thesis, to optimise them.
Multidimensional access methods are classified into two classes: point access

methods (PAM} and spatial access methods (SAM). PAMs are primarily been

45

designed to perform searches in databases that store only points (records).
SAMs however, can manage extended objects, such as lines, polygere and
higher dimensional polyhydra.

The time taken to answer a query is mainly measured by the number of
disk accesses performed to retrieve the records described by the query. If the
described records of a query are scattered in many blocks, then the cost of
the query will be high. But if the described records are clustered in smaller

nrumber of blocks then the cost of the query will be lower.

In this thesis, to answer a query, we use multidimensional hash functions.
A hash key is constructed from the query, using the same hash functions
which are used to store the data. The hash functions for each attribute value
specified by the query is applied to the value of the attribute, setting the bits
of the hash key according to the order specified by the choice vector. The
bits in the choice vector which corresponds to the unspecified attributes in
the query are not set in the hash key. All the blocks in the data file which
match the hash key are retrieved and searched for matching records.

Finding optimal choice vectors of many of the problems we are trying
to solve is NP-hard [94]. In this thesis, to attempt to find good solutions
we use heuristics and combinatorial optimisation algorithms sich as mini-
mal marginal increase and simualated annealing, which are explained in Sec-
tion 2.6. But before optimising a multidimensional access method using
heuristic and combinatorial algorithms, it is important to examine that such
reorganisation doesn’t change the features of the multidimensional access

method, and this is the topic of the next chapter.

46

Chapter 3

Reorganising multidimensional

data

3.1 Introduction

This chapter discusses new techniques of organising multidimensional data.

Although the proposed techniques are applicable to any multidimensional

data structure, in this thesis they were applied to a multidimensional file

structure known as the Balanced And Nested Grid (BANG) file. The BANG

file and why we chose it for our experiments will be discussed in subsequent

sections. -
As explained in Chapter 1 a query is an expression that describes required

records to be retrieved from a file or a database. Blocks that contain at

least one required record are transferred to the primary memory. Then the

primary memory is searched to retrieve the required records. Since the disk

access time is considerably higher than the primary memory retrieval time,

47

b] e b

o

i o A E

the time to respond to a query is mainly measured in terms of the number

of disk access done to answer the query. So having two required records each
residing in a separate disk block will cost nearly twice as much time as two

or more required records residing in a single disk block.

One way of improving the performance of algorithms manipulating data
on secondary storage is to cluster similar data. The rationalization behind
this approach is that if one item of data is required to answer a query, a similar
item of data is also likely to be required to answer the query. By clustering
the related data items together, the amount of time taken to locate and
retrieve the data will be reduced. If the amount of data is large, the increase
in performance can be substantial.

The clustering of data will be of most benefit if it results in the reduction
of the time taken to perform operations which are frequently required of
the database management system. To achieve the optimal performance, the
frequency, type and the cost of each operation must be taken into account
when designing a clustering arrangement. If it is not known, statistics can
be kept on the operations performed on existing systems, and .can be used
to reorganise the data into better clustering arrangement.

Since in all the experiments of this thesis are using the BANG file [37],

the main aim of this chapter is to discusses:
1. possible data organisations in the BANG file;
2. new techniques of data organisation in the BANG file; -

3. the effect of different types of data organisations on the features of the

BANG file, specially its load factor.

48

This chapter has eleven sections. Section 3.2 briefly explains the structure
of the BANG file and why the BANG file was chosen for the experiments in
this thesis. The structure of the BANG file and its other main features are
covered in the next section. Also, in the next section the two parts of the
BANG file, namely, data partitions and directory partitions, are discussed.
Section 3.4 concentrates on the data partitions of the BANG file. The section
explains how data partitions are created and how they are uniquely identi-
fied. Section 3.5 explains how partition identifiers are computed. Directory
partitions are discussed in section 3.6. The section also discusses how direc-
tory partitions are created and how they are uniquely identified. The way
records are searched, deleted and inserted in 2 BANG file are covered in
section 3.7. Section 3.8 explains a technique of partitioning a domain-space.
The technique that is explained in this section is known as a binary division.
It is important to understand the binary division in order to understand how
partitions are labeled and how choice vectors are generated. There are three
possible types of choice vectors, namely, cyclic, random and optimised. They
are explained in detail in sectidn 3.9. Cyclic choice vector, which is the one
used by the original BANG file, is discussed in subsection 3.9.1, while ran-
dom and optimised choice vectors are discussed in subsections 3.9.2 and 3.9.3
respectively. The effect of the choice vectors on the load facior is discussed in
section 3.10. This section shows experimental results of how the load factor is
affected when a cyclic or a random or an optimised choice vector is used with
different data distributions, different number of attributes, different number
of records and different number of disk block sizes. The last section is the

conclusion of this chapter.

49

3.2 The BANG file

The BANG file is a multidimensional file structure which was first introduced
by Micheal Freeston (36,37]. It has many similarities to the other grid files
like multilevel grid file {139, 140} and nested interpolation based grid file [110].
1t differs from the other grid files in the way its domain-space is partitioned.
The way the BANG file is partitioned together with the rest of of its other
features will be explained in the subsequent sections.

As mentioned in 2.1, minimizing the cost of single attribute access meth- ‘
ods has been studied extensively, hence our techniques is limited to mul-
tidimensional access methods, specially Point Access Methods, PAMs. So,
for our experiments we required a PAM which supports efficient processing
of queries and whose performance does not degrade in the presence of non-

uniform data distributions. The BANG file is such a PAM. Thi's is because
| the BANG file evenly distributes records amongst its partitions even if the-
distribution of data is extremely skewed {36, 37]. It does so by creating more
partitions in the domain subspaces where the density of the records is high
and fewer partitions where the density of the data is low. The subsequent

sections will explain how the BANG file does this.

Other reasons why we chose the BANG file for study include its:

multidimensional file structure;

high load factor (2 67%); s

fully dynamic in nature;

no data replication property;

50

high fun-out ratio;
o overflow and underflow propagating only upwards the tree;

¢ maintenance of spatial relationships between objects;

e worst case singe object searching, insertion and deletion require ne

more disk accesses than the hight of the tree:
casy incremental reorganization as the file grows;

e ability to handle range searches, partial match searches and exact

match searches,

The techniques of optimising data organisations, which are proposed in
this thesis, are not limited to work with the BANG file, they are equally

applicable with other multidimensionai file structures.

3.3 The BANG file structure

The BANG file has a multidimensional file organization. It has a structure of
a balanced tree where each leaf node corresponds to a disk block confaining
d..vo ecr. i and each non-leaf node corresponds to a disk block containing
enties wiich contain inforr.:v e ~Sout nodes one level down the tree.

Ye: .an also envisage = $$ AN tiv o {h n organizing attributes as an n-
dimensional data space. -or »amnple. . relation R; which has n attributes,
Aip, Aity .-+, Ainoy, organised = a BANG file can be envisioned as an n-
dimensional data space where cach dimension corresponds to the domain of

an attribute in the relation. The domain-space of the relation is the cartesian

. °
¢ Pl.z ’
. . . .
PM Plfa
°
. ' .
Py P, *

Figure 3.1: A BANG file of 12 records and 5 data pages.

product of Dy, D;y1, ..., Digp-1, where D;; is the domain of A;;. A record
is represented as a point and a node as an n~dimensional partition within
the domain-space. Figure 3.1 contains an example of a relation which has
2 attributes organised as a BANG file. The relation has 5 partitions (the
boxes) and 12 records (the painis).

Let F;; represent a pariition in R;, where 0 £ j < N and where N is
the number of partitions in R;. P;; is a hyper-rectangle which covers the
subspace (¢; 3,00 €Ly - +» €igm—1), Where e; ;1 is an edge describing the extent
of the hyper-rectangle along D;).

As explained in the beginning of this chapter a BANG file has a balanced
tree structure. Bach node of the tree corresponds fo a partition. Partitions
which correspond to nodes of the same level of the BANG tree span the
domain space. For example, if the height (number of levels) of a BANG tree
is 3, partitions at level 1 span the whole domain-space, those at level 2 also

span the whole domain-space and so on. Figure 3.2 contains an example of

P

e

a BANG file organization. The figure shows the BANG file represented as a
tree and as an 2-dimensional domain space. The BANG file in the figure has
3 levels, namely, level 0, 1 and 2. Level 0 is the level of the leaf nodes and level
2 is the level of the root node. In the figure, a node and its corresponding
partition have been assigned the same label. The root partitioﬁ, Py, is at
level 2 and its spans the whole domain-space. It has three entries which
correspond to partitions which are at level 1, namely, Py;, Po2, and Pys.
Also, the 3 partitions at level 1 span the whole domain-space. Bach of the
partitions at level 1 contains entries which correspond to partitions at level
0. For example, Py, of level 1 contain entries of Py 4, Pys, and Fpe. These
3 partition span the subspace spanned by Pp,. All the partitions at level 0
span the whole domain-space.

Each partition of a relation has a unique identifier. Each identifier con-
sists of two numbers, namely, a partition-number and a partition-level, and
is denoted as: partition-number:partition-level. The computation and
meaning of partition numbers and partition levels will be explained in sec-
tion 3.5.

In a BANG file, a partition can be enclosed by other partitions and it can
also enclose other partitions. In Figure 3.3 partition Fp; encloses partition
Pyz and Py3. Also, Py, encloses Py .

Partition = directly encloses partition y if x is the smallest partition from

all the partitions which enclose y. For example in 3.3, Fp,, directly enclose

Py 2 but it doesn’t directly enclose Fy3. Fpp2 directly encloses Py 3.

Pt

Pay lpn.l ‘plm

Pas P,s
po| [P
Pos

Figure 3.2: The structure of 2 BANG file.

Following is the formal definitivn of encloses and directly encloses.

Definition 3.1 Pariition u : v, where u is the partition-number and v s
the partition-level, encloses partition x : y if v < y and the least significent

(rightmost) v bits of z are identical to u.

Definition 3.2 Partition u : v directly encloses partition z : y if there is no

other partition w : z which encloscs z 1y and is enclosed by u: v.

A leaf node of the BANG file contains actual data records. Each entry
of a non-leaf node contains a partition identifier and the corresponding disk
address of a node which is at the next lower level of tiie BANG tree. From now
on lets us call a partition which correspond to a leaf node as a data-partition

and those which correspond to non-leaf nodes as directory-partitions.

54

PD.I

Figure 3.3: Py, encloses Py, and FPy3, but it directly encleses Py and nof
P 0,3-

3.4 Data partitions

Tnitially the BANG file has one leaf node and one non-leaf node (the root}.
At this point the leaf node has no records. The root has one entry (record)
which contains the address of the non-leaf node. When new records are
inserted they are stored in the leaf node.

The number of records which can be stored in a leaf node is limited. Asthe
number of records to be stored in a leaf node exceeds its limit, it is split into
two new leaf nodes. Its records are then divided between the two new nodes
and it ceases to exit. The division of a data-partition into two is a recursive
process. First the partition is divided into two equal sized partitions. If the
contents of the two new partitions is balanced the division process ends. By
balanced we mean that the number of records in both new partitions are
equal or very close to equal. If the contents of the two new partitions is
not balanced, the size of the partition with the higher number of records is
successively halved until a balance is achieved. If the split results in two

equal sized partitions it is called a peer-split, and the two resulting partitions

P 20 P Pzz

Y 2,1 s

Before After

Figure 3.4: Peer-split of P into P, and B,. ':'

P3 0 PS,‘I

¥

Before ' _ After

Figure 3.5: Enclosure-split of P into P5 and Py.

are called peers. A non peer-split is called an enclosure-split because one of
the partitions encloses the other. Figure 3.4 contains an example of peer-split

and Figure 3.5 contains an example of an enclosure-split.

In the BANG ﬁle, as in many other multidimensional files, a peer-split of a
partition is done using a technique known as a binary division. A value, which
is a mid point of one of its edges is used to bisect the current partition. We
call this value split-value and its corresponding attribute the split-atiribute.
Records with value less than the split-value are put in one of the peers and &

the remainder are put in the other peer. Let us call the former peer as the

low-peer and the latter as the high-peer.

Each time a par’tition is created, a new record which contains its iden-
tifier and its address is inserted into a directroy-partition. The number of
such records which can be stored in a directory-partition is also limited. As : i
the number of records which must be stored in a directory-partition is above
its limit more directory-partitions are created by dividing existing directory-
partitions. The process of dividing a directory-partition is explained in sec-

tion 3.6. ;

3.5 Partition identifier

A partition identifier uniquely identifies a partition in a relation. It consists

of two numbers, a partition-number and a partition-level, and is denoted as:
partition-number:partition-level.

Partition-level: denotes the size of a partition relative to the size of
the domain-space. As explained in section 3.4, a new partition is created by
successively halving an existing partition. Therefore, the size of a partition is
2-* that of the domain space, where 4 is 0,1,2,.... The partition-level of a
partition is its corresponding g value. For example, in Figure 3.1 the size of
the domain-space is equal to 20, 28, 24, 24, and 2% that of P g, Pri, Pi2, Pis
and P, respectively. Hence the partition-levels of Pig, Py, Pr2, Pis and
Py 4 are 0, 3, 4, 4 and 4 respeciively.

Partition-number: denotes the logical address of a partition in a domain-
space. The method of assigning partition-numbers to partitions can be easily
explained with the help of the binary tree of Figure 3.6. Each node of the

binary tree consists of a partition-number, a pointer to a left child and a

/! high-peer X

low-)
owpeet ," Before |
01x 11x

P \ w
4 "\ high-peer
H \
i | Olix 1ilx L
LL‘ ,, E, esnsseras

A low-peer 7 high-peer :

)
0011x 1011x <
After

Figure 3.6: Assigning partition-numbers to sub-spaces.

pointer to a right child. The left child corresponds to the low-peer and the
right-child to the high-peer. If the partition-number of a node is z (in bi-
nary), then that of its left child is 0z (prepend O to z) and that of its right
child is 1z (prepend 1 to z).

An enclosure split can be seen as successive peer-splits performed until a
balance is achieved. The pa.rt;it-ion-number of the enclosing partition is the
same as the original partition. The partition-number of an enclosed partition
depends on the number of ﬁeer splits performed to create it, and whether

a low or a high peer was chosen in each peer split. For example, consider

VL B

2 e i e e A

T SR kTR e

the splitting of a partition with partition-number of x (in binary) as shown
in Figure 3.6. Assume a balance (in number of records) in splitting x was
achieved after four successive splits. In the first split x was peer splitted into
1x and Ox. Since the number of records in 1x was much more than the rest
of x, 1x was further split into in 11x and 01x. Even after this split a balance
was not achieved and the number of records in 11x was much higher than
the rest of x. So 11x was split into 011x and 111x. Even after this split a
balance was not achieved for the number of records in 011x was much higher
than the rest of x. Finally, 011x was split into 0011x and 1011x and a
balance was achieved between 1011x and the rest of x. Hence, x was split
between 1011x and the rest of x. This is shown in Figure 3.6. The solid

path of the figure shows the path that were taken in the successive splits.

3.6 BANG directory

A BANG file has the structure of a balanced tree, as shown in Figure 3.2.
Each non-leaf node contains entries which correspond to some nodes in the
next, lower level of the tree. If there is an entry in P;; which corresponds to
P;; then P;; is the parent of P;; and P is the child of F; ,,-..Each entry
consists of a child identifier and its corresponding disk block address.

Like a data-partition, a directory-partition is uniquely identified by a
partition-number and a partition-level. These values are computed in the
same way as those of the data-partitions. A partition which corresponds to

a parent node encloses all the partitions of its children.

The number of entries that can be stored in a directory partition is lim-
ited. When the number of entries that has to be stored in a directory-
partition is greater than its capacity, the directory-partition is divided into
two. In the parent node, the entry for the old node is replaced by entries
for each of the two new nodes. This process is repeated if as a result the
parent node overflows. If the partition that is divided is the root, a new root
is created and entries for each of the two new nodes are placed into it.

The algorithm which is used to split a directory-partition is different from
that of the data-partition. A data partition encloses data records. Data
records are points, so that when a data-partition is split, each of its data
records has to be in one side or the other side of the division boundary. A
directory-partition is a partition which encloses other partitions. Partitions
are not points but subspaces, so when a directory-partition is split, it is
possible that one or more of its component partitions lie on both sides of the

division boundary.

For example, let us consider the BANG file given in Figure 3.7(a), where
Py3, Psa, Pys, Pag and Py 7 are data-partitions and Py g is the root partition.
Let us assume that the maximum number of entries that can be stored in a
directory-partition is 5.

If after few insertions Py 4 is split into Py g and Pyg asin Figure 3.7(b), the
number of entries in P; o will be six hence Pyp will overflow. If we divide Pyp
using the division algorithm of data-partitions, it could be divided into Py,
and Py,. Py; encloses Pyg and Py 7, while Py, encloses partiti?ns Pys, Pag
and Pyg. P, 4 lies on both sides of the division boundary. The unshaded part
of Py 3 will lie in Py, and the shaded part of P, 3 willlie in Py». The following

60

T
Fret
R

.

£
=h

i

Directory partitions

Directory partitions

P4,2

P4, 1

Pio

Data partitions

Data partitions

P.,

P 4,3

P4,6

P4.7

Pis

After

Before

()

(@)

tory.

1rec

: Splitting a d

Figure 3.7

61

i

are two approaches (there can be plenty others) which can be used to solve

the problem of partitions which lie on both sides of the division boundary.

¢ Divide the partitions which lie on both sides of the division boundary
along the division boundary [36). This process can recursively prop-
agate to lower level nodes if the same situations occurs, forcing the
division of partitions even if they have few entries. Using this ap-
proach, to split the partitions of Figure 3.8, we need to split Py 3 even
if it is not full. This approach can result in a lower load factor (number

of entries per partition) and higher insertion cost [37).

¢ Choose a division boundary such that no partition lies on both sides of
the boundary. One such splitting algorithm was also presented Freeston

in [37) and it works as follows:

Assume P, ; is the partition to splif. An initial boundary which best
splits the content of P;; is chosen. Let us name this boundary as B1. If
there is no partiticn in F;; which encloses B1 or there is one partition
whose boundary coincides with thai of B1, then F; ; is split along B1.
Otherwise, search for two partitions in P, j, one which directly encloses
B1, and the second one which does not enclose B1 but which encloses
the highest number of partitions in F;;. Let us call the boundary of
the first partition B2 and that of the second one B3. Then split F;
along B2 or B3 depending on which one of them best splits F;;, that

is, provides the best balance of entries within the resulting partitions.

For example, Pgo of Figure 3.8a, is a parent of the 7 partitions shown in

the figure. If the maximum number of entries that can be stored in a parent

62

(a)

0.4

el

T T 8 v T 4

ton.

tory partit

irec

Splitting a d

13
.

Figure 3.8

ey St oo £ oTre e

O TR A L g R

partition is 7, then Pop is full. If as a result of insertion Py is divided into
Py s and Py, as shown in Figure 3.8b, then the number of entries in Py p will
be 8, hence it must be split. The initial boundary, B1, which best splits Fyg
is skown in Figure 3.8b. This boundary contains four of the eight partitions,

namely, Pos, Pos, Fos and Fop. But B1 cannot be used to split Py because:
1. it doesn’t coincide with the boundary of a partition;

2. it is enclosed by P 4.
Hence we search for two other boundaries:

1. B2 which directly encloses B1 and

2. B3 which doesn't enclose B1 but which encloses the highest number

of other partitions.

B2 and B3 are shown in Figure 3.8b. B2 splits Py into two partitions. The
first one will contain five partitions, Pos, Pos, Fos, Fog and Fpg, and the
second one will contain the rest, By, Poo and Fp3. Also, B3 splits Py into
two partitions. The first one will contain six partitions, Py3, Pos, Fos, Pos,
Pys and Py, and the second one will contain two partitions, Po,l and Pyo.
Since B2 best splits Fyg than B3, Fyg will be split along B2.

Out of the two above mentioned approaches of splitting directory parti-
tions, we chose the latter one because it results in a higher load factor and

lower insertion cost thian the former [37).

64

3.7 Searching, insertion, deletion and merg-
ing

The search for a record starts at the root directory node. From the root
entries, a partition which encloses the record is chosen. If there are two or
more partitions which enclose the record, the one which direct!y encloses
the record is chosen. This is the one with the higher partition-level. The
search then descends to the next lower level of the BANG file directory tree,
following the page identifier from the chosen entry. The searcii procedure is
repeated within the current level. This search procedure is applied at each
level] of the tree until the data-partition which directly encloses the record is

found.

Insertion of a record starts by first searching for a partition which will
directly enclose the record. The search for the partition starts at the root
directory node. From the root entries, a partition which encloses the record
is chosen. If there are two or more partitions which enclose the record, the
one which directly encioses the record is chosen. As explained in the previc::s
paragraph, this is the one with the higher partition-level. The search then
descends to the next lower level of the BANG file directory tree, following
the page identifier from the chosen entry. The search procedure is repsated
within the current level. This search procedure is applied at each level of the
tree until the data partition which directly encloses the record is found.

The deletion of a particular record starts by first searching for the Auwse
partition that directly encloses the record. The search for the data partition

is done as explained above in this same section. Then the record is searched

within that page and deleted.

If as a result of many deletions, the number of records in a partition
falls below certain threshold, the partition can be merged with others were
possible. To merge an underpopulated partition, an attempt is made to
first merge it with one of the partitions it immediately encloses. If such a
periition cannot be found or the merging results in an overflow an attempt
is made to merge it with its peer. Again if the merging with its peer was not
successful, a last attempt is done to merge it with a partition which directly
encloses it. A merge of two partitions means a deletion of a partition. Hence
a successful merge can again result in underpopulated partition of the next
upper directory level. As a result a successful merge can propagate upwards

the tree [36].

3.8 Binary division

In the BANG file as in many other PAMs, splitting a partition is done by
a process known as a binary division. In the context of this thesis a binary
division is the division of a domain into edges (sub-domains) whose sizes are
2-% (where ¥ = 0,1,2...) of the domain. To simplify the understanding of
binary division, let us assume D;; as a domain of unsigned integers ~mnging
from 0 to 2% — 1. So the minimum number of bits needed to represeny sny
value in Dy is d;;. Let b;jx, where 0 < & < d;;, represent the &% most
significant bit of a value in D; ;. For example, if d; ; is 6, then D;; will range
from O to 26 — 1 = 63. The values of ; ;s5, b; ;4 and by ;3 b2, bija and b0

of 7 (000111 in birary) are 0,0,0,1,1 and 1 respectively.

66

A e m———————

The value of the most significant bit position can be used to divide the
values in Dy ; into two equal halves. For example, if D; ; values range from

0 to 63, then a minimum of 6 bits is needed to represent all its values. For

~values less than 32, the value of the most significant bit position, b; 4.5 18 0,

and for those which are greater or equal to 32 it is 1. The two most significant

bit positions, b;;5 and b;;4, can be used to divide the values of D;; into 4

equal intervals. Values of b; ;5 and b; ;4 are:

¢ 0 and 0 respectively for the values > 0 and < 18,
¢ () and 1 respectively for the values > 16 and < 32,
e 1 and 0 respectively for the values > 32 and < 48,

e 1 and 1 respectively for the values > 48 and < 64.

Once D; ; is divided into 4 equal intervals, the next less significant bit position
can be used to further divide each of the 4 intervals into two equal halves
and so on. In short the z** most significant bit can be used to bisect each
interval that was created as the result of the = — 1** most significant bit. The

process of dividing domains in such a way is called binary division.

3.9 Choice vectors

As was discussed in section 3.4, peer-splitting a partition is done by bisecting
one of its n edges (sub-demains). An (edge) is the extent of a partition along

a particular domain. The edge to be bisected cannot be chosen randomly for

the following two reasons.

67

1. The partition-number as it was discussed in the section 3.5 will be

useless. So it will be impossible to identify a partition.

2. As will be discussed in this and the next few chapters, the order by

which a partition is divided significantly affects query cost.

The order by which a partition is divided is maintained in an ordered list
known as a choice vector. Each element of a choice vector is a bit position.
The mapping between an element of a choice vector (a bit position) and
an edge of a partition was discussed in section 3.8. Since peer-splitting a
partition is done by bisecting one of its edges, is in fact a binary division.
Therefore peer-splitting a partition can be done by using bit positions and
that is why each element of a choice vector is a bit position. An element of a
choice vector is labeled as b; ; » and represents the k** most significant bit of a
D;; value. Elements of a choice vector are ordered and are used accordingly.
Bit positions which create larger intervals come first iv the order, which
means an element of a choice vector which divides a domain into 2° must be
used before the one that divides the same domain into 2°+1. We know from
section 3.5 that the partition-level of a partition shows the size of a partition
relative to the domain-space. For example, if the size of the partition is 5‘;
that of the domain-space, then its partition-level is k. The choice vector
element to be used for the next split is specified by the partition-level of the
partition. So when we divide a partition whose partition-level is k£ we use the
kth element of the choice vector. For example, if bog 0, bo,1,0, 80,0,1, bo,1,1, bo,0.2
is a choice vector of Ry which has 2 attributes,Ago and Ap;, then a partition

with partition-level of 2 is peer-splitted by boe,1-

68

The First choice vector element, the lefi most one, creates partitions
which are half the size of the domain-space, while the second element creates
partitions which are a quarter the size of the domain-space, the third element
creates § and the z'* element creates - that of the domain-space and so on.

Choice vector affects the way a domain-space is partitioned which in re-
turn affects the cost of a query. Bad choice vector signiﬁca.ntly add to the
cost of a query and good choice vector significantly minimize query cost.
Chapters 4 to 7 will explain, in details, the relationship between choice vec-
tors and query cost and how to find a choice vector which results in the
minimal average query cost. But first lets us discuss the two main types of
choice vectors used in this thesis, namely, cyclic choice vectors and optimized

choice vectors.

3.9.1 Cyclic choice vector

A cyelic choice vector is a choice vector whose elements are assigned bit posi-
tions from different attributes in a cyclic fashion. It is the choice vector that is
used by the existing BANG file [37). b;p,0bi1,0bi2,001,010:,1,10.2,1060,2bi1 2bi.2.2
is an example of a cyclic choice vector for a relation, Ry, which has 3 at-
tributes, labeled Ao, A;1, and A;2. The most significant bit position of A4;9
is assigned to the first element of the choice vector, b; 0, then the most sig-
nificant bit position of the second attribute, A;; is assigned to the second
element of the choice vector, then the most significant bit position of the

third attribute, A; , is assigned to the third element of the choice vector and

50 On.

69

[
i

i
R 5

T

As was mentioned in section 1.2, the way the data is organised affects
performance. Since the way data is organised is enforced by a choice vector,

choosing the right choice vector is very important. When there is no clue of

the type and distribution of the queries to be used, the data can be organised

using the cyclic choice vector. In Chapters 4 to 7, we will compare the

performance, in terms of query cost, of the cyclic choice vector and that of
the optimal choice vectors. Unlike that of the cyclic choice vector the finding
of an optimal choice vector takes into consideration the query distribution.
The elements of an optimal choice vector are assigned by using heuristic

algorithms and some cost functions and will be discussed in the next section.

3.9.2 Optimized choice vector

Choice vectors affect query cost. For queries with known probabilities, it
is possible to approximate the choice vector which results in their mini-
mum average cost. Such a choice vector is called an optimized choice vector.

Moran in [94) showed that for the general problem when the probability of

an attribute appearing in a query is not independent of the other attributes,
finding the optimal bit allocation is NP-hard. Hence, in this thesis heuris-
tic algorithms, which are explained in section 2.6, together with some cost
functions (which will be explained in the coming chapters) will be used to
determine good choice vectors.

For example, finding optimized choice vector using minimal marginal in-
crease, which was explained in section 2.6.2, and a given cost function F' is
done as follows. Initially nothing is allocated to the elements of the choice

vector. Then the first element of the choice vector is allocated to b; o0 and

70

the average query cost using cost function F is computed. The average query
cost is repeatedly computed after giving the same choice vector element in-
stead to b;10, and then to bz, and so rrv. until all the attributes are tried.
The attribute which gives the lowest average query cost is permanently al-
located the first element of the choice vector. The same process is repeated
for the second element of the choice vector, then the third, and so on. This
process is repeated until all the elements of the choice vector are allocated.
From now on the term minimal or optz'n}al will be used to indicate a
solution which is the result produced by the heuristic algorithms and cost
functions. These minimal or optimal solutions are typically local minima or

local optima respectively.

3.9.3 Choice vector size

To create a partition whose size is % of that of the domain-space, the first
element (the right most) of the choice vector is used. To create a partition
whose size ;} that of the domain-space, the second element of the choice vector
element is used. The third element of the choice vector creates partitions
whose sizes are 3 that of the domain-space. Inshort to create a partition
whose size is 2% that of the domain-space, k** element of the choice vector
is used. Hence the size of the choice vector is decided by the size of the
smallest partition in the domain-space.

In the BANG file the size of a choice vector needed becomes smaller and
smaller as we go up the directory level. This is because partitions of a higher

direétory level encloses many lower level partitions. This makes the number

71

of partitions of an upper level directory lower and their sizes larger than
those which are in the lower directory level.

Each BANG file uses one choice vector for both its data and directory
partitions. But as we go up the directory level, more of the elements on
the right end of the choice vector are not used. For example in 2 BANG
file whose smallest data partition is 278 of the domain-space, the minimum
size of the choice vector is 8. If the size of smallest partition in the lowest
directory level is 278, the last two right most elements of the choice vector

will not be used in this directory level.

3.10 Effect of choice vectors on the load fac-
tor

The data of the original BANG file [37] was organised using a cyclic choice
vector. In this thesis, and for the first time, the BANG file was extended
using non-cyclic choice vectors. The main objective of using non-cyclic choice
vectors is that most optimal choice vectors are non-cyclic.

Inorder to prove that none of the original BANG file features were compro-
mised as a result of using non-cyclic choice vectors, we conducted a number
of experiments. In the experiments three types of choice veciors were used,
namely, cyclic, optimised and random. The cyclic and the optimised choice
vectors were explained in sections 3.9.2 and 3.9.1 respectively. The random
choice vectors were generated randomily.

One of the main features of the original BANG file is its load factor. It

is a main feature of the BANG file because change in the load factor affects

72

many of the other BANG file features that are mentioned in section 3.1. So to
analyse the impact of a choice vector on the load-factor of the BANG file, four
sets of experiments were conducted. In each set of experiment all the three
types of choice vectors and one of four parameters, namely, data distribution,
number of attributes, number of records and disk block size were used. Then
we compared the results with that of original BANG file [37], which only uses
cyclic choice vectors. The experimental results are presented in Figures 3.10
to 3.19. They indicate that none of the aforementioned parameters have a
noticeable effect on the load-factor of the BANG file. Therefore, for a given
query distribution we can use the optimal choice vector to obtain the best
performance in terms of the average query cost without increasing the storage

cost,

3.10.1 Experimental results and analysis

This subsection presents the experimental results. The results are logically
divided into four sets. The first set of results shows how the load factor of
a BANG file is affected by using non-cyclic choice vectors and different data
distributions. The second set of results shows how the load factor of the
BANG file is affected by non-cyclic choice vectors and different number of
attributes. The third and the fourth sets of results show the effect of non-
cyclic choice vector on the load factor when each non-cyclic choice vector is

used with different number of records and different block size respectively.

73

Unless specified each experiment is condutted using:

SPARCstation 20 using SunQ8 5.5.1;

a BANG file of a million records;

relations of 4 attributes;

domains of unsigned integers;

a disk block size of 1 Kbytes,

Non-cyclic choice vector vs data distribution

This subsection presents the first set of results. The results are obtained by
experimenting each type of a choice vector with differnet data distributions.
The data distributions used were chosen from the set: uniform, clustered,
sinusoidal, and linear. Figure 3.9 provides examples of each of these data
distributions.

The final results are shown in Figures 3.10, 3.11, 3.12 and 3.13. The
horizontal axis of each figure represents the number of records émd the ver-
tical axis represents the load factor. Each figure shows three results and are
represented as dotted, dashed and solid lines. The dotted line represents
the average load factor when a cyclic choice vector is used. The dashed line
represents the average load factor when a random choice vector is used. The
average load factor when an optimised choice vector is used is represented by
the solid line. The three results shown in Figure 3.10 were generated using a

uniformly distributed data. those shown in Figures 3.11, 3.12 and 3.13 were

74

Uniform

Clustered

Figure 3.9: The four data distributions used in generating the results.

generated using clustered, sinusoidal, and linear data distributions respec-
tively. The results show that choice vector has no effect on the load-factor

when used with different data distributions.

The results of the uniform and clustered distribution have a sinusoidal
shape while that of the other two have a strait line shape. The reason for
this is that in a uniform and in a clustered distributions, nearly all the data
blocks become full in nearly the same time and as a result they will be split
at nearly the same time. That is why the load factor goes up and down as is
shown in Figures 3.10 and 3.11. The data blocks in a linear and sinusoidal
distributions don't become full in the same time, hence they don't split at

the same time thus on the average the load factor remains the same all the

time.

Non-cyclic choice vectors vs number of attributes

To study how the load factor is affected when used with different number of
attributes and different choice vectors, we experimented using relations of 2,
3, 4 and 8 attributes. Figures 3.14 to 3.17 show the resnlts of the experiments.
The horizontal axis of the figures represents the number of records and the

vertical axis represents the load factor.

79

- =veree Opcli
100 LI Qe
: ———— Opiinal AT

Load-factor(%)

o | [T - T -1
10 100 1000 10000 100000 1000000

Number of taples

Figure 3.10: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page vize = 1024 bytes, data distribution = uniform.

og I
J Optimal
80+

Load-factor(%)
N
el

L | 1 o
10 100 1000 1000G 100000 10006000
Number of taples

Figure 3.11: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 1024 bytes, data distribution = clustered.

76

100 - —maene Cyclic

= == Random
-| Oprimal
— 20
EQ, E
'g 60 -
[p
<
..'é 40} -
3 4
20 +
0 | L | T 9
i0 100 1000 10000 100000 1600000

Number «.f tuples

Figure 3.12: Effect of the choice vector on the lpad-factor. Number of at-
tributes = 4, page size = 1124 bytes, data distribution = sinusoidal.

- asaw=a Cyclic
100 — — =~ Random

Gprimal

Load-factor{%)

T T T J —
10 100 1000 10000 100000 1000000
Number of fuples

Figure 3.13: Effect of the choice vector on the load-factor. Number of at-
tributes == 4, page cize = 1024 Lytes, data disiributior = linear.

77

ES
b

e A

5
i
3

ey SR

DI oo
o — Optimef
80 - .
g |
T -
‘3 60- !
&
g 40
_§]
20 -
1
0) 1 T — T 1
10 100 1000 10000 100000 10600,000

Number of tuples
Figure 3.14: Effect of the choice vector on the load-factor. Number of at-
tributes = 2, page size = 1024 bytes, data distribution = uniform.

Figure 3.14 shows three results as dotted, dashed and solid lines. The
dotted line represents the results obtained when cyeclic choice vectors are
used. The dashed and the solid lines represent the results obtained when
random and optimel choice vectors were used respectively. All the three
results were generated using relations having two attributes. Similar results
were obtained when relations with three, four and eight attributes were used
as shown in Figures 3.15 3.16 and 3.17 respectively. These results show that
choice vectors have no effect on the load-factor even when different number
of attributes are used. The load-factor always remained around 67% as that

obtained by Freeston in [37].

Non-cyclic choice vectors vs number of records

To study the effect of choice vectors on load-factor when used with different
number of records we experimented using relations having from 100000 to

1000000 records. Figures 3.10 to 3.19 show the results of the experiments.

I Ay

a0

RO R L <

e 7 5 T)

gt

R OO T ST

oA g g S
e o o

o

e -
st

i

e e

L

Iy

T By

e as e T ay

Snimive fr i g

i
1
&

Load-factor{%)

I 1 T T 1
10 100 1000 10000 100000 1060060
Numtber of tuples

Figure 3.15: Effect of the choice vector on the load-factor. Number of at-
tributes = 3, page size = 1024 bytes, data distribution = uniform.

- “essns Cpelic
100 ~ == Random
- Optimaf

Load-factor(%)

[1 | I
H 100 1000 10000 10000¢ 1000000
Number of tuples

Figure 3.16: Effect of the choice vector on the load-factor. Number of ai-
tributes = 4, page size = 1024 hytes, data distribution = linear.

79

Load-factor(%)

T)] T
10 100 1600 - 10000 100000 1 006000
Number of tuples

Figure 3.17. Effect of the choice vector on the load-factor. Number of at-
tributes = 8, page size = 1024 bytes, data distribution = uniform.

The horizontal axis of the figures represents the number of records and the
vertical axis represents the load factor. Each figure shows three results which
are represented as dotted, dashed and solid lines. The dotted line was gener-
ated using cyclic choice vectors, The dashed line was obtained using random
choice vectors and the solid line was obtained using optimised choice vec-

tors. In all the cases the load factor remained around 67%. This implies that

choice vectors have no effect on the load-factor even when used with different

number of records.

Non-cyclic choice vectors vs block size

The fun out, which is the number of directory records that can be put in a
disk block, affects performance. If the number of directory records that can
be put in a disk block is small, the BANG tree will have more number of
levels. Increasing the level of the BANG file by one, causes the number disk

accesses done to answer a query to increase by one.

80

10 o Cyele

80 -

Load-factor(%)

1 I 1
10 100 1000 19090
Number of tuples

J 1
100000 1006000

Figure 3.18: Effect of the choice vector on the load-factor. Number of at-
tributes = 4, page size = 512 bytes, data distribution = uniform.

To study the effect of choice vectors on loud-factor when used with dif-
ferent biock sizes, we experimented with block sizes of 512, 1024, 2048, 4096
and 8192 bytes. Figure 3.18 to 3.19 show some of the resulis of the exper-
inents. The korizontal axis of the figures represents the number of records
and the vertical axis represents the load factor. Each figure shows three re-
sults which are represented as dotted, dashed and solid iives. The dotied
line was generated using cyclic choice vectors, The dashed line was obtained
using random cheice vectors and the solid lin: was obtained using optimised
choice vectors.

The 1results show that the load-ftar §s around 67%.7is implies that
choice vectors have no effect on the load-factor even when nsed with different

block sizes.

81

100 "ttt Cyelic

— — =~ Random
Oprima}
80 :
~ 4
& Wi A
§ 60 -
© 5
&
g 404
R]
204
0 T T T 1 - 7
10 100 1000 10000 100000 1000000
Number of tuples

Figure 3.19: Effect of the choice vector on the load factor. Number of at-
tributes = 4, page size = 2048 bytes, data distribution = uniform.

3.11 Conclusion

A BANG file structure is a dynamic multidimensional file structure. It has
a directory structure of a balanced tree. It is similar to the other grid files
but it differs from them in the way its partitions are created.

The are two types of partitions in the BANG file, namely, data partitions
and directory partitions. Both types of partitions are labeled in the same
way. The unique identifier {Jabel) of a BANG file partition has two parts,
namely, partition-level and partition-number. Partition aumber denotes the
position of the partition in the domain-space of BANG file, and partition level
denotes the size of the partition relative to that of the whole domain-space.

The main reason that the BANG file was chosen for the experiments of
this thesis is because of its ability to distribute records amongst available
disk blocks (with a load-factor of 67%) even when the data distribution is
skewed. One of the reasons that the BANG file has such an attribute is

82

because, in the BANG file a partition can enclose other partitions and it can

also be enclosed by other partitions.

One way of improving the performance of algorithms manipulating data
on secondary storage is to cluster similar data. The clustering of data will
be of most benefit if it results in the reduction of the time taken to perform
operations which are frequently required of the database management sys-
tem. To achieve the optimal performance, the frequency, type and the cost
of each operation must be taken into account when designing a clustering

arrangement.

In the BANG file as in may other PAMs, clustering related data is
achieved by using choice vectors, which is structure which maintains the
order by which a domain-space is split. Splitting the domain-space of the
BANG file is done by a process known as a binary division. In a binary
division each edge of a partition has a size of 27% (where £ =0,1,2...) that

of its corresponding domain.

There are three types of choice vectors, namely, cyclic, random and op-
tirnized. The original BANG file uses only the cyclic choize vector. In this
thesis the BANG file was exteﬁded by using non-cyclic choice vectors. To
make sure that such an extension was not done at the expense of other
BANG file properties, specially its load factor, a series of experiments were
performed. Experiments were done using non-cyclic choice vectors together
with different data distribution, different number of attributes, different num-
ber of records and different disk block sizes. In all the experiments the load
factor remained as that of the original BANG file, 67%. This shows that

choice vectors have no effect of the load factor of the BANG file.

83

i ot e

;
4
L

o R T

Choice vectors affect performance. So if the distribution of a set of queries
is known, then it is better to use a choice vector which will minimize the
average cost of the set. Such a choice vector is know as optimized choice
vector. Techniques of finding optimised choice vectors for partial match
queries will be discussed in the next chapter and that of the other relational

operations will be discussed in subsequent chapters.

34

| Chapter 4

Optimising Partial-match
Queries

i 4.1 Introduction

. Partial-match retrievai is one of the most important class of queries in a

database system rtrieval. It is concerned with the retrieval of records in

T A i e S

a file when a lir ited amount of information is provided to identify those
records. Answering a partial-match query requires reading all the disk blocks
that may contain matching records. The following query is an example of a

partial-match query:

SELECT studentID
FROM student (g0)
WHERE major = 'Computer Science’

where student is a relation, and sindentID and major are some of its

attribytes.

A common method used to evaluate the performance of a database system
is to count the average number of disk accesses made to answer a query.
To minimize the average query cost, the average number of disk accesses
needed to answer a query must be minimized. One way to achieve this is by
using efficient access structures to cluster records that are frequently accessed

together in the smallest possible number of disk blocks.

The number of disk blocks retrieved depends on the algorithm used to
place the records in the blocks within the file. The average number of disk
blocks accessed per query can be minimized if an efficient record placement
algorithm which takes the query distribution irto account is used.

In this chapter, we present a technique of clustering records in multi-
dimensional structures which minimizes the average cost of partial-match
query. Researchers have proposed different ways of clustering records in
multidimensional file structures, but few have tried to optimize their clus-
tering technique in order to reduce the average query cost. Those that have
done so [3, 51,52, 83, 84,116 were limited to uniform data distribution. To
avoid this limitation, we use a multidimensional file organization that evenly
distribute records amorg the allocated disk blocks even when the data distri-
bution is skewed. This is the first study of optimizing partial-match queries
when the data distribution is non-uniform. Data distributions are often
non-uniform in real application domains and therefore this study is impor-
tant [138].

Although the technigues described in this chapter were experimentally
tested using the BANG file, they can be used to optimize other multidimen-

sional file structures.

86

b R ek

SR

This chapter has 7 sections. Section 4.2 is an intoduction to partial match
queries. Section 4.3 explains a partial-match retrieval algorithm using the
BANG file. Section 4.4 discusses a technique of optimising partial-match
queries using minimal marginal increase (MMI) together with the associated
cost functions. The cost functions are explained in detail in Section 4.5.
Section 4.6 presents the analysis and the experimental results of the proposed

technique. Section 4.7 is the conclusion.

4.2 Partial-match retrieval

A partial-match query is a specification of the values of zero or more at-
tributes in a record. Answering partial-match queries requires accessing all
the disk blocks which may hold records satisfying the condition specified in
the WHERE clause of the query. For example, in the following query, ¢,
which uses relation Rp of Figure 4.1, the values of the attribute Agyp is spec-
ified as 40. Let us call partitions which contain records which satisfy the

WHERE condition of a partial-match query as ®-partitions.

SELECT Ao,
FROM R, (@)
WHERE Ay = 40

The answer to the query, qi, consists of records whose Agg value is 40.
‘These records can be found in four disk blocks: P4, Pos, Pogs and Py 7. So

these four disk blocks are the ®-partitions of gj.

Figure 4.1: relation Ryp.

4.3 Partial-match retrieval Algorithm using

The BANG file

The partial-match retrieval algorithin starts by creating a seasch string. Each

element of a search string is either 0 or 1 or «”. The length of a search string

is equal to the size of the choice vector which belongs to the relation used

in the query. Each element of a search string corresponds to a choice vector

element. Each element of the search string which corresponds to a specified

attribute is assigned a 0 or a 1, depending on th» value specified. Each

element which corresponds to the unspecified attribute is assigned a ”+”. In

Sections 2.3 it was discussed that the most significant bit of an attribute A4;;

is represented as b; ;o and the second most significant bit is represented as

bij,0 and so on. In short the k™ most significant bit of A;; value is represented
as b; ;.. For example, consider the above mentioned query g, which nses Ro
of Figure 4.1. The values of Ay range from 0 to 31, so a maximum of 6 bits
is enough to represent a value in Apy. The most significant bit is of a value in
Ao is represented by by and the second most significant bit is represented
by bpe1 and the least significant bit by bygg. Similarly a maximum of 5
bits is enough to represent any value in Ap;. Let the choice vector of Ry
be bo00b0,1,000,,1. In the example query, g1, Aop is specified as 40 (101000
in binary) therefore bogog is 1. Since Ag; is not specified its corresponding
bits in the choice vector, by 10 and b;,11, are each assigned a ”+”. Hence the
search string (search index) is 1 * #.

In a BANG file the search for the ®-partitions starts from the root par-
tition. The partition-number in each entry of the root is converted to bi-
nary, then inverted and then matched with the search index. Only the
left most m (where m is equal to the partition-level of the partition) bits
of the inverted partition-number are matched with their corresponding ele-
ments of the search string. A partition to be an ®-partition, every bit of its
inverted partition-number must match its corresponding element from the

. »n
%

search string whose value is not The search for the ®-partitions de-
scends to the next lower level directory using the entries of the ®-partitions
identified so far. These process is repeated until all the ®-partitions are

identified.

89

A 0
0,1
32 :
1
|
\
1
P P ;
0.1 03 Pos} |Pos
16 L
1
|
I
1
]
I
P 1
1
0,0 Po. P 041 P 0,6
0]
40 A 00
0 16 32 48 64

Figure 4.2: Aoy is specified as 40. Ry ¢ has more intervals based on Ag.

4.4 Optimising partial-match retrieval

The rﬁanner in which a BANG file is partitioned significantly affects the
number of disk blocks accessed to answer a partial-match query. For example,
in the above query, ¢, if Rq of Figure 4.1 was replaced by Ry of Figure 4.2
only 2 partitions /Py and Fos) instead of 4 will be accessed. Although
the number of disk blocks in both relations is the same, fewer disk blocks
are accessed when the query uses Rq of Figure 4.2. This is because the
later relation has more divisions based on the specified attribute, Ag,q. This
means, in the choice vector of Ro of Figure 4.2, more elements allocated to
Ay than that of Ao

For a given set of queries, if the queries which specify Ag; are more likely

than those which specify Agj, a lower average query cost is more likely to

90

result if more element of the corresponding choice vector are allocated to
Ap; than to Ag;. For an arbitrary set of queries, finding optimal choice
vectors, which results in the minimum average query cost, is NP-hard [94].
Hence, heuristic algorithms and partial-match query cost functions are used
to find optimal or near optimal choice vectors. The heuristic algorithm used
is chapter is minimal marginal increase, MMI. MMI was extensively discussed
in Section 2.6.2. The partial-ma_tch query cost functions are discussed in the

next section, Secti-m 4.5.

4.5 Cost functions

This section discusses the cost functions used with MMI when searching for

choice vector which results in the minimal average query cost.

A relation, R;, which has a choice vector of length d; has a maximum
of 2% partitions. This is because each element of a choice vector represents
a bit position, so it can only have a value of zero or one. In Section 4.3 it
was discussed that in the the search string of a query, each element of an
unspecified attribute is assigned a ”%”. The choice vector elements which
correspond to the specified attribute are assigned a zero or a one depending
on the specified value. For example, if the specified value is 40 (101000
in binary) then the value of the first search index which correspond to the
specified attribute is assigned a one and the second one a zerc and an so
on. If in the search sting, the number of elements which correspond to the
specified attribute is d;j, then the number of elements which belong to the

unspecified attributes (those assigned ”+”) is d; — d; ;. Therefore the number

91

of partitions which can hold the value specified are at most 2%-%.s. Hence
the cost of that query is 2%~ In short, if the number search string which
are assigned is m then the cost of the query is 2™.

A typical BANG file has more than one directory level. The partitions
in each level span the whole domain-space. Directory levels are labeled as
0,1,...,I, where I is the level of the root directory and 0 is the level of the
data partitions. Let the partition-level of the smallest partition at level k be
denoted as ;. Since the smallest partition at level % is bigger in size than
the smallest partition at level ¥ — 1, the number of choice vector elements
used at level & will be smaller. In fact at level k, only the first /; elements
of the choice vecter are used. From the first i, elements of the choice vector,
let d¥; be the number bits which correspond to A;;. Then the cost of a

partial-match query can be estimated as:

= 55 IT 2% (4.1)

k=0 A; 564

where ¢ corresponds to the attributes with values specified in the query.
For example, consider a relation Ry which has three attributes, Ay, 41,
and A;o. Let the choice vector of Ry be: #y,10 bi,0,0 1,20 1,0 b1,1 dr02 B12s
bros brzp bips b1z bigs. If a partial-match query g; specifies (in binary)
Ay and A; 2 as 0100110010001 and 1110010001100 respectively, the search
index will be %011 % 01011 x 0. Assume R; has 3 directory levels with Iy, I
and I, as 0, 4, 12 respectively. By applying Equation 4.1 to calculate the cost
of performing gz, 8, 2 and 1 partitions are retrieved from directory levels 0, 1

and 2 respectively. Therefore, the cost of gz, which is the number of disk

92

accesses done to answer ¢, is 11.

Equation 4.1 differs from those described in 3,51, 52, 83, 84, 116] because
they describe the cost for multi-attribute hash files, which do not include any
directory blocks. Equation 4.1 takes into account both the data and directory
blocks of the BANG file, and assumes that the cost at each Ievel is uniform.
In general, this is not the case. However, at the data block level, the BANG
file ensures that, on average, the density of data blocks is uniform, and our
cost formula. reflects this. At higher (directory) levels, this is not guaranteed.
However, the number of blocks at higher levels is significantly smaller than
those at the data block level, and therefore the resulting error will generally

be small.

For a set of queries, 2, the average cost of a query is given by

Cost = Y, pqecy (4.2)
9eQ

where p, is the probability of query ¢ being asked, and ¢, is the cost of query ¢
and is given by Equation 4.1. Combining Equations 4.1 and 4.2, the average

cost of a partial-match query is

T
Cost =S p, > I 2%. (4.3)

geQ k=0 A ;¥¢

To ensure 2 minimal average query cost, elements of a choice vector be

allocated using MMI and the cost function of Equation 4.3.

93

4.6 Performance Evaluation

In this section we present six sets of experimental resuits which show the
performance of a BANG file constructed using a choice vector determined
by the MMI. We refer to these choice vectors as optimized choicz vectors,
although choice vectors found using MMI are not guaranteed to be optimal.

The first sef. of results compares the performance of the optimized and
cyclic choice vectors. The cyclic choice vector does not take the query dis-
tribution into account. It is a choice vector havling an equal number of bits
from each attribute, allocated ina cyclic order. Cyclic choice vectors are
discussed in Section 3.9.1.

The second, third and fourth sets of results show the effect of the page
size, file size and number of attributes on the performance of query processing

- using.the optimized choice vector.

The fifth set of results shows whether the average query costs using op-
timized choice vectors are local minima. This is achieved by evaluating the
cost of choice vectors which differ in 1 or 2 elements from the optimized
choice vector. Let the choice vectors which differ in 1 or 2 elements be called
neighbours in our discussion.

Query distributions change over time. Since generating an optimal choice
vector every time when the query distribution is changed is an expensive
operation, we don’t want to change our choice vector whenever the query
distribution changes slightly. A solution, based on MMI and Equation 4.3,
is called stable if a slight change in the query distribution doesn't affect the

optimality of the solution. The last set of results deals with the stability of

94

the optimized solution. It shows the change in the average query cost of the

optimized choice vector as the query probabilities change.

4.6.1 Environment

Our implementation of the BANG file includes our extension of splitting
using a choice vector. We ran our experiments on a SUN SPARCstation.

For a relation containing n attributes, we generated 2" — 1 partial-match
queries with different randomly generated probability distributions. As the
cost of the open query (thé query not specifying any attributes, which re-
trieves all records) is independent of the choice vector, we assume that the
probability of specifying the open query was zero.

Unless specified, the page size was set to be 1024 bytes, four (integer)
attributes ber relation were used, and each BANG file (relation) contained

one million randomly generated records.

4.6.2 Results

A number of experiments were performed to study the performance of the
optimized choice vectors determined using MMI, The experiments were done
using different query and data distributions. The data distributions used are
shown in Figure 3.9.

The four query distributions used are shown in Table 4.1. They are la-
belled as ©;, O3, O3 and B4. In Table 4.1, the first column indicates which of

the four attributes are specified in each query (a 1 if the attribute is specified

95

 Attributes Query distributions

Ais | Asa | Ais A =2 O3 9y

0 0.0 0.0 0.0 0.0

0.06413 | 0.02005 | 0.11619 | 0.04092
0.32996 | 0.00140 | 0.04203 | 0.26666
0.12622 | 0.05364 | 0.03352 | 0.17226
0.06384 | 0.00104 | 0.16105 | 0.04550
0.02950 | 0.03718 { 0.12118 | 0.03057
0.12566 | 0.00268 | 0.04360 | 0.19335
0.05201 | 0.09943 | 0.03466 | 0.12524
0.03208 | 0.00185 | 0.09484 | 0.00991
0.01803 | 0.07287 | 0.07241 | 0.00768
0.05738 | 0.006518 | 0.02875 | 0.03141
0.02718 | 0.19476 | 0.02373 | 0.02159
0.01790 | 0.00357 | 0.09878 | 0.00818
0.01282 [0.13518 { 0.07527 | 0.00663
0.02709 | 0.00949 { 0.02961 | 0.02364
0.01618 | 0.36160 | 0.02439 | 0.01653

=

O R O OO O e O O Off e

bt bl et ek i el b = D DO OO OO

H R OO R HOOHREOD OO

o O OO0 OO OO

Table 4.1: Query distributions.
and a 0 if it is not), while the remaining columus show the probability of the
query in each <f the query distributions.
Optimized vs cyclic choice vectors

Tables 4.2, 4.3, 4.4 and 4.5 show the performance of the cyclic and optimized
choice vectors for four query and data distributions. Column 1 of each table

shows the query distribution used for each BANG file. Columns 2 and 4

show the average query cost, in disk accesses and elapsed time in _millisecouds
respectively, for BANG files built using the cyclic choice vector. Columns 3
and 5 show the average query cost for a BANG file built using the optimized

choice vector. The final two columns show the improvement in performance

96

Query Pages accessed Time {msec) Improvement
Distribution | Cyclic | Optimized | Cyclic | Optimized | Pages | Tine
© 1444 888 13453 7821 1.63 | 1.72

G, 163 70 1569 638 2.33 | 2.46

©s 1138 1004 10491 9013 113 | 1.16

©y 1150 537 10518 4472 214 | 2.35

Table 4.2: Average query costs for a uniform data distribution.

Query Pages accessed Time (msec) Improvement
Distribution | Cyclic | Optimized | Cyclic | Optimized | Pages | Time
& 692 445 5944 3628 1.06 | 1.64

O, 83 37 722 313 224 | 2.30

O, 554 499 4679 4187 1.11 (1.12

=N 548 300 4799 2573 1.83 { 1.87

Table 4.3: Average query costs for a clustered data distribution.

achieved by using the optimized choice vector instead of the cyclic choice
vector to build the BANG file.

The data distributions used to build the BANG files in Tables- 42,4.3,44
and 4.5 were uniform, clustered, sinusoidal and linear (see Figure 3.9), re-
spectively.

The results show that the average query cost can be significantly reduced
by using the optimized choice vector in the construction of the BANG file
compared with the cyelic choice vector. The largest improvement that we
observed for these distributions with four attributes was a factor of 2.33 in
the number of disk accesses and 2.46 in elapsed time. In Section 4.6.2 we
will show an improvement by a factor of 6.41 for a distribution with eight

attributes.

97

Query Pages accessed Time (msec) Improvement
Distribution | Cyclic { Optimized | Cyclic | Optimized | Pages | Time
S 225 161 2003 1364 1.40 | 1.47

©2 26 15 216 95 1.74 | 2.27

©; 187 168 1709 1540 111 | 111

© 175 113 1616 1019 1.55 | 1.59

Table 4.4: Average query costs for a sinusoidal data distribution.

Query | Pages accessed Time (msec) Improvement
Distribution | Cyclic | Optimized | Cyclic | Optimized | Pages | Time
© 207 148 2035 1324 140 | 1.54

O, 22 14 180 80 1.61 | 1.99

O3 170 155 1575 1384 1.09 | 1.14

4 160 104 1491 883 1.53 | 1.69

Table 4.5: Average query costs for a linear data distribution.
Page size

We performed experiments to study the effect of the page size on the per-
formance of the optimized and cyclic choice vectors. Page sizes of 1, 2, 4, 8,
16, 32 and 64 kbytes were used. The experiments were repeated usiﬁg the
uniform, clustered, sinusoidal and linear data distributions.

We found that an improvement in performance was achieved by using the
optimized instead of the cyclic choice vector for all page sizes, .as shown in
Figure 4.3.

To study the effect of page size on the CPU time we performed exper-
iments using different data and query distributions. The results, shown in
Figure 4.4, indicate that the optimal page size is between 4 and 8 kbytes for

the configuration that we tested.

98

—B— Clustered
~—— Sinoid
—d—— Jincar
g i.84
g‘ 1.6
T 14
8 L
1.2 -
1.0] 1 | T 7 —
1 2 4 8 16 32 64
Block size (KB)
Figure 4.3; Effect of the page size on performance,
—%— Uniform
——— Clustered
—— Sinoid
——de— lincar
500
- 400
W
E 300
o
E
=
2 200
&
100

—8—— Uniform

VIR S VRN
=¥ I T | —
4 § 16 32 64

Block size (Kbytes)

|

Figure 4.4: Effect of page size on CPU time.

99

e

——@— Uniform
—W— Clustered
—¥— Sinoid
—d— linear

Gain

10 ,
10 20 30 40

File size (Mbytes}

| I 1

Figure 4.5: Effect of file size on performance.
File size

A number of experiments were performed to study the effect of the file size on
the performance of the optimized and cyclic choice vectors. File sizes ranging
from 4 Mbytes to 40 Mbytes were used. Again, the experiments were repeated

using the uniform, clustered, sinusoidal and linear data distributions.

The experimental results are shown in Figure 4.5. They indicate that the
improvement in performance gained by using the optimized instead of the
cyclic choice vector was reasonably consistent for all file sizes for a given data

distribution.

Number of attributes

To investigate how the number of attributes affect the performance of the op-
timized choice vector we performed experiments on BANG files with different

numbers of attributes. Table 4.6 shows results when BANG files of 2, 3, 4 and

100

Numnber of attributes | Cyclic cost | Optimised cost | Improvement
2 38 82 1.07
2 47 23 2.04
2 108 95 1.14
2 75 64 117
3 383 318 1.20
3 134 45 3.0
3 441 374 1.18
3 276 218 1.27
4 1442 877 1.64
4 165 68 2.43
4 1151 1023 1.13
4 1148 531 2.16
8 2285 1246 1.83
8 263 41 6.41
8 4453 2661 1.67
8 2142 639 3.35

Table 4.6: Effect of the number of attributes on the average query cost.

8 attributes are used. Each of these BANG files were built using a uniform
data distribution. Each row in a table corresponds to a different query dis-
tribution. Column 1 shows the number of attributes per record. Columns 2
and 3 show the average number of pages accessed to answer queries using a
BANG file built using the cyclic and optimized choice vectors, respectively.
The final column shows the improvement in the averége query cost if the

BANG file was built using the optimized choice vector instead of the cyclic

choice vector.

If a query distribution is non-uniform then, in general, we expect that
the improvement in performance achieved by using an optimized choice vec-
tor instead of the cyclic choice vector will increase with the increase in the

number of attributes. This is because with more attributes there is 2 greater

chance of allocating a larger proportion of the indexing bits to unimportant
attributes using the cyclic choice vector. The results shown in Tabie 4.6

support this hypothesis.

Local minima

As we mentioned in Section 4.5, for an arbitrary query probability distribu-
tion, finding the optimal choice vector is NP-hard [94], so our approach is
not guaranteed to find the optimal choice vector. To determine whether we
produce good choice vectors, we ran a series of experiments to compare the
average query cost using the optimized choice vector with the average query
cost using neighbouring choice vectors.

We created four sets of neighbouring choice vectors by changing some
of the bhits in the choice vector obtained using MMI. The first set of choice
vectors were created by swapping a single pair of bits in positions m and
m + 1, where m is an even position. The second set was created swapping a
single pair of bits in positions m and m 4+ 2. The third set was created by
changing the allocation of a single bit position from one attribute to each of
the others. The final set was created by rotating the positions of the first 12
bits.

For a BANG file of 4 attributes and a choice vector of 30 elements, the
number of neighbouring choice vectors generated in each of the four sets
was 29, 28, 90 and 12 respectively, totalling 159 choice vectors. The average
query cost using each of these choice vectors was found experimentally.

We found that when the data distribution is uniform, the average query

cost using the optimized choice vector is either a local minima or nearly a

102

local minima. For non-uniform data distributions, the average query cost
using the optimized choice vector was never more than 2.5% greater than

that of any of the 159 neighbouring choice vectors.

Stability

Query patterns can change over time. A BANG file which is optimal for a
given query pattern may not remain optimal if the query pattern changes.

In order to study the stability of the optimized choice vect;:>rs, we per-
formed a series of experiments to determine the change in performance when
the query distribution changes. These experiments were similar to those
performed in {53] and were performed using different data and query distri-
butions.

We define a change of 2% in a query distribution to be the result of
randomly changing each query probability, p, to be in the range p x (13- §5)
prior to the whole query distribution being normalized.

Figures 4.6 to 4.21 show how the average query cost is affected when the
probability of each query changes by up to 80%. The horizontal axis of each
ﬁgure_denotes the percentage change in the query distribution. The vertical
axis denotes the ratio of the average query cost of one choice vector with
the average query cost of a choice vector optimized for this changed query
distribution.

In each figure, three average query cost ratios are shown, using doited,
dashed and solid lines. The doited line (“Cyclic/New”)} corresponds to a
BANG file built using a cyclic choice vector. The dashed line (“Old/New”)

corresponds to a BANG file which was built using the optimized choice vector

103

e s === Cyclic/New
- = OldWNew
——— New/New

Cost ratio
Pt
th
[W | lJ_]l 1§
M
[]
.
[
:
'
'
'
h
H
:
H
[
;
W

1.0 e et = = I :

bk)

0.5 ,
20 40 60 80

Change in query distribution (%)

<

Figure 4.6: Stability of optimized solution. Query distribution = @4, data
distribution = uniform.

== en-= Cyclic/New
- = Old/New
New/New
25+
2.0

Cost ratio
En
1

Change in query distribution (%)

Figure 4.7: Stability of optimized solution. Query distribution = ©,, data
distribution = uniform.

104

s=rvuss Cyelie/New
- = Oli/New
New/New

Cosi ratio
E
b d l PR A |

.................. bttt dededated Al LR L L R P G g
————

1.0

0.5

T) T 1
0 20 40 60 80

Change in query distribution (%)

Figure 4.8: Stability of optimized solution. Query distribution = ©;, data
distribution = uniform.

v enen= Cyclic/New

- —— Oid/New
New/New
2.5 -
2 - -.-...-.-.--.-
'«5 'I '--ﬁ.‘.'-'-.-.-.-...-
E 1‘5_-' Tevrtessaia,,
8] o
b) T
104 —mme o
]
0.5 l I | |
’ 2 40 60 80

Change in query distribution (%)

Figure 4.9: Stability of optimizéd solution. Query distribution = ©,, data
distribution = uniform.

105

""" CyclicNew

== OldNew
New/New
2.5
2.0
g 1.5{ e L R ..-...............‘.-‘.....--..-‘.
1.0 mmmmme e e
0.5 T T r I
0 20 40 0 80

Change in query distribution (%)

Figure 4.10: Stability of optimized solution. Query distribution = ©,, data
distribution = clustered.

=e==ee Cyclic/New
- OdNew
New/New

D
n
waned

Cost ratio
- L
in o

[y _l A 4 4 l

]
=
]

el el et

g

wn
=
8-..
o
=3
o0
od

Change in query distribution (%)

Figure 4.11: Stability of optimized solution. Query distribution = ©,, data
distribution = clus*ered.

106

sese-o Cyclic/New

= —— Oid/New
New/New
2.5-“
:
. 20
o 3
= .
E 1.5
@]
S
e —m— e mr—————-
0.5 - , l . .

Change in query distribution (%)

Figure 4.12; Stability of optimized solution. Query distribution = €3, data
distribution = cjustered.

semen. Cyclic/New
- - OldNew
New/New
2.5-—_
2.0—: il L T P P oﬁ.o..-..'-‘....-
2]
§ 154
1.0 = e m e m = ————
]
05 T I : |
0 2 4 60 80

Change in query distribution (%)

Figure 4.13: Stability of optimized solution. Query distribution = Oy, data
distribution = clustered.

107

Cost ratio

2.5

=e==a= Oyrlic/New
- Ojd/New
New/New

i N
e B .
LR A LY Y
LR LR Y T,

0 20 40 60 80

Change in query distribution (%)

Figure 4.14: Stability of optimized solution. Query distribution = ©,, data
distribution = sinusoidal.

Cost ratio

-e=ans CycliciNew

-—— O{dNew
New/New
2.5
2.0
15 e mmmmmmm T
104mez=c"
0.5 T)] 1
0 20 40 &0 80

Change in query distribution (%)

Figure 4.15: Stability of optimized solution. Query distribution = ©, data
distribution = sinusoidal.

108

s==eee Cyclic/New

- — =~ OldNew
New/New
: 2.5—_
2.0
&]
'-g -
S 15
g J
Q ..., U
1'0] el L LW WS
0.5 = T T T 1
0 20 40 60 %

Change in query distribution (%)

Figure 4.16: Stability of optimized solution. Query distribution = ©;, data
distribution = sinusoidal.

ee=-e= Cyclic/New

- NdNew
New/New
2.5
2.0
o]
'-E]
?} 1‘5-—' .-.-.-....--'-.-"""' ------- .-o-'-o--o---.-o-...--o--co-oo-oﬁ‘-.sﬁ
e - _,____,__.-
© b e
1.0 ——
0.5 l | | |
° 0 40 0 >

Change in query distribution (%)

Figure 4.17: Stability of optimized solution. Query distribution = 04, data
distribution = sinusoidal.

109

ssveas Cyclic/New
-~ = Ol New

New/MNew
254
2.0

Cost ratio
&
|

wé e,
0.5 [] L 1
0 20 40 60 80

Change in query distribution (%)

Figure 4.18: Stability of optimized solution. Query distribution = ©,, data
distribution = linear.

=ereen CyclicNew

——- OidNew
NewiNew .
2.5
2.0

Cost ratio
tn
1

104 = LY TN
0.5 T T T |
0 20 40 60 80

Change in query distribution (%)

Figure 4.19: Stability of optimized solution. Query distribution = ©,, data
distribution = linear.

110

TN

L e

3t

wemeen Cyclic/New

- == OliNew
New/New
25 -
2.0 5
e]
ﬁ i
= 1.5
&]
O e L
1,0] i St i it v S A Al Bk ot et s
05 ‘ | - :
0 20 40 60 80

Change in query distribution (%)

Figure 4.20: Stability of optimized solution. Query distribution = ©,, data
distribution = linear.

«eneeo Cyclic/New

- - OdNew
New/New
2.5-_
2.0
1= N
o .
E {5 ._:........-.......-........--...-...-....-...-...................-..--
g] “---—-'_--_‘-__ iy
S 7 mmm === T
1.0 ==
.
05 -] : l 7 o
0 2 40 60 80

Change in query distribution (%)

Figmre 4.21: Stability of optimized solution. Query distribution = @y, data
distribution = linear.

111

determined using the original query distribution. The solid line (“New/ New")
corresponds to a BANG file built using ap optimized choice vector determined
using the new (changed) probability distribution.

Our results show that when a query probability distcibution changes hy
20%, the degradation in performance of a BANG file built using an original
optimized choice vector is always better than that of the cyclic choice veetor.
On many occasions the degradation is less than 20% even if there is an 80%
change to the query distribution. As a result, we can conclude that we need
only reorganise a BANG file to Iuse a new optimized choice vector when the

query distribution changes substantially (by at least 20%).

4.7 Conclusion

This chapter discusses in detail a new appro~ch of eptimising partial-match
queries for multidimensional file struciures. Unlike previous similar work us-
ing multi-attribute hash files, the approach proposed does not assume a uni-
form data distribution, instead it uses file structure which evenly distributes
records amongst disk pages, even when the data distribution is skewed. The
proposed strategy takes the query distribution into account and finds opti-
mised choice vectors which result in an average query cost which is signifi-
cantly less than that of the strategy which assumes that all attributes are of
equal importance.

| To determine the performance of the proposed approach we ran an exten-
sive series of experiments. These experiments were conducted using a range

of different data and query distributions. Our experiments show that an op-

112

timized choice vector results in a significant reduction in the average query
cost compared with alternative (cyclic choice vector) policy which do not
take the query distribution into account. In one case, for a relation with 8
attributes, we observed an improvement in performance by a factor of 6.4. In
general, the improvement in performance was greater for relations containing
a larger number of attributes.

Finding an optimal choice vector is NP-hard. However, the experiments
indicate that the optimized choice vectors found using MMI and Equation 4.3
are either local minima or very close to the local minima. Further mozre, the
stability of the optimized choice vector is excellent. A change in the query
distribution of up to 20% has a minimal impaet on the performance (less
than 5%) when using an optimized choice vector found for the original query
distribution. Often the degradation is not significant (less than 20%) even

when the original query distribution is changed by 80%.

113

I, e e et B

| Chapter 5

Optimizing Range Query

Retrieval

5.1 Introduction

Range queries are a common database operation. In a range query, a range
of values is specified for one or more attributes of 2 relation. The result of a
' range query is the retrieval of all the records with values within the specified
ranges.

The cost of a range query is mainly measured in the number of disk blocks
accessed to answer the query. The number of disk blocks retrieved depends on
the algorithm used to place the records within the file. The average number
of blacks accessed per query can be minimised if an efficient recox"d clustering
algorithm, which takes the query distribution into account, is used.

The aim of this chapter is to describe a method of clustering related

records into fewer disk blocks such that the average number of disk blocks

114

accessed, over all expected range queries, is minimised. The method is appli-
cable to multidimensional file structures and the query distribution is known

in advance.

Several methods have been proposed to optimally cluster reco;'ds for range
queries [17, 52, 79], but all of them were limited to uniform data distribution.
The methods described in this chapter avoid this limitation, by using mul-
tidimensional file organisations which distribute records evenly even if the
data distribution is non-uniform. Although the method is tested using the
BANG file [36,37], it can be used with a number of other multidimensional
file structures such as the nested interpolation based grid file (110}, the multi-
level grid file [140] and other similar file structures [86, 98].

This chapter has six sections. Section 5.2 discusses range queries in gen-
eral. A way of minimising range query cost is discussed in section 5.3. Sec-
tion 5.4 discusses cost functions related to range queries. The results of our

experiments are presented in section 5.5 and section 5.6 is the conclusion.

5.2 Range Queries

As is mentioned in the previous section, in a range query, a range of values is
specified for one or more attributes of a relation. The result of a range query
is the retrieval of all the records with values within the specified ranges. The

following query, go, 15 an examﬁle of a range query:

SELECT Ao
FROM R, (g0)
WHERE Ao, BETWEEN 35 AND 48

115

99
75 Pos
Po2
: 50
Poy
25
P
o 0,0
0 25
Query space

Figure 5.1: Query-space intersecting four partitions.

Where Ry is the BANG file representative of the relation as shown Fig-
ure 5.1.

A range query defines a subspace within the domain-space of a relation.
We call such a subspace a query-space. For example, the shaded area in
Figure 5.1 is the query-space of g.

The records which saiisfies a range query can be found in the partitions
that overlap with the query-space. We call a record which satis;ﬁes a query
a ®-record of the query, and its corresponding partition a ®-partiticn. For
example, the ®-partitions of g in Figure 5.1 are P4, Fos, Py ¢, and Py 7.

If a ®-partition is not totally enclosed by the query space, some of its
records may lie outside the query-space and so are not ®-records. For exam-

ple, a record with a value of 30 for App and a value of 40 for Ao, is not a

116

——3» (uery space

Pyo

Figure 5.2: P, is a ®-partition but P and Py are not

CI)—reéord even though it is found in partition Py, which is a ®-partitior. ¢
go, Figure 5.1,

If there are two or more partitions which totally enclose a query-space,
only the pariition which directly encloses the query-space is the ®-partition.
The others will not contain ®-records, so there is no need to retrieve them.
For example, in Figure 5.2 all three partitions, P4, P, and P, 5 enclose the
query space but only P, directly encloses it, so it is the only ®-partition.

In 3 BANG file the search for the ®-partitions starts from the root par-
‘tition. Once the ®-partitions in the root are identified, the search for the
®-partitions descends to the next lower level directory using the entries of
the ®-partitions identified so far. These process is repeated until all the

¢-partitions are identified. Then the ®-records are searched from the -

partition which contain data records.

PP
0,110.190,15

EJ.IO CRELA d_ A,

Query space

Tigure 5.3: Query-space intersecting four partitions.
5.3 Minimising range query costs

The cost of a query depends on the number of disk accesses performed to
answer the query. The cost of a query can be reduced if its ®-records are
clustered in fewer partitions (disk pages). In other words the cost of a query
is minimised if the number of @-partitions is minimised.

The search for ®-records of a query is performed using the values of the
attributes specified in the WHERE clause of the query. For example, in
searching for the ®-records of go, we use the values of Agg, because Agp is
the specified attribute in the WHERE clause of g5. We call the attributes
that we use to search for the ®-records the significant attribuies.

A domain-space which is paftitioned to a greater degree on the most sig-

nificant attributes will potentially cost less than the one that is partitioned

118

on the less significant attributes or one which treats all attributes as equally
significant. For example, gy has four ®-pariitions if used with Ry of Fig-
ure 5.1, but only two ®-partitions if used with R, of Figure 5.3. This is
because the domain-space in Figure 5.3 is partitioned to a greater degree on
App, which is the most significant attribute, compared with Figure 5.1 in
which the domain-space is partitioned using a cyclic choice vector.

Figures 5.1 and 5.3 show how the partitioning order affects the cost of one
query in a two dimensional domain-space. The problem we are addressing
here is that given an n dimensional domain-space, an arbitrary number of
queries and their probabilities, can we construct the choice vector which
results in the minimal average query cost. For an arbitrary set of queries,
finding the optimal choice vector is NP-hard [94]. As a result, we use an
heuristic technique, minimal marginal increase (MMI), together with the
cost functions puesented in section 5.4 to minimise the average query cost.
MMI, which is described in section 2.6.2,.is a greedy algorithm and choice
vectors obtained using MMI do not guarantee optimality, although they have

often been optimal or near-optimal for other problems in the past [54].

5.4 Cost functions

We define the cost of a query to be the number of disk pages accessed to
answer the query. For the set of all queries), the average cost of a query is
given by

Casg = D_ 14C (@), (5.1)

gEQ

119

where p, is the probability of ¢ being asked, and C(q) is the cost of answering
the query g.

For range queries, the average cost of a query can be apprbxhnated as
follows. Assume that the number of data blocks of a BANG file is 29, where d
is equal to the length of the choice vector, which is also the highest partition-
level in the domain-space. Assume also that attribute A;; appears d;; times

in the choice vector. Let n be the number of attributes, then we have

n=-1

> diy=d. (5.2)

ci=0

Let 7; 5(g) be the proportion of the total range of A;; that query g spec-
ifies. For example, if the domain of A4;; is [1,100], and a query, ¢, specifies

the range {2, 7] then
ri,(g) = (7 — 2+ 1)/100 = 0.06. (5.3)

We assume that the average number of data pages accessed in answering ¢

can be approximated by

n-1

C%q) = I [res(@)2™91. (5.4)

=0

As in the previous chapter lét I, the partition-level of the smallest parti-
tion at directory level k. Qut of the I, choice vector elements at level h let

d?; belong to attribute A;;. Then the average number of directory level b

120

Ppages accessed in answering ¢ can be approximated by

C*(q) = nl:f f?‘i.j[q)ild?-f 1. (5.5)

i=0

Combining Equations 5.4 and 5.5, if there are I directory levels in addi-

tion to the data pages, the average cost of g can be approximated by

' -1

olg) = 3> T1 Fregl@)2®s), 8

h=0i=0

Combining Equations 5.1 and 5.6, the average cost of the set of all queries

@ can be approximated by

T n-1
Cavg = z pq E H [TiJ(Q)zd?'jl (57)
ge h=0i=0

Previously, there was no good model available to estimate a query cost in
a BANG file. Experimental studies {36] show that the BANG file evenly
distributes data records among disk blocks even when the data distribution is
highly non-uniform, which makes Equation 5.7 is a reasonable approximation

of the cost.

5.5 Experimental Results

In this section we present the results of experiments comparing the perfor-

manc o1 the optimised and eyclic choice vectors.

The first set of results shows the performance of the optimised and the

cyclic choice vectors on different data and query distributions. The second

121

T R

set of results shows the effect of the number of attributes on the performance
of both choice vectors. The third and fourth sets show the effect of the file
size and page size on the performance of the cyclic and optimised choice
vectors.

Query distributions change over time. A choice vector optimised for one
query distribution may not perform as well if the query distribution changes.
A solution, based on MMI and Equation 5.7, is called stable if a slight change
in the query distribution doesn’t affect the optimality of the solution. The
sixth set of results demonstrate the stability of the optimised choice vector.

The final set of results show how the performance of the optimised choice
vector is affected as the size of query-space changes. The size of a query
space is the size of all the partitions (subspaces) which overlap the query in

the domain-space.

5.5.1 Environment

We implemented the BANG file with our extension (discussed in section 3.10)
of using choice vectors during partition splitting. In each experiment we
used 16 randomly generated qﬁeries and assigned each of them a randomly
generated probability. Unless specified, we used a page size of 1024 bytes,
four integer attributes per record and one million randomly generated records
per relation (BANG file). We ran all our experiments on a SPARC station
20.

The data distributions used were uniform, clustered regions, a linear cor-

relation, and a non-linear correlation function (a sine wave). Examples of

122

Attributes
Aip | Aix Aig Aiz | Query distribution
506 | 366 | 1005533 | 377939 0.064619
2334 | 64 | 827174 | 941936 0.064450
3694 | 1386 | 847200 | 666416 0.064505
2854 | 2514 | 680605 | 119300 0.064466
161 | 2667 | 249084 { 39314 0.064374
2147 | 1780 | 948659 | 308398 0.064613
773 | 305 { 390266 | 1002868 0.064647
833 | 452 | 417366 | 232725 0.064434
441 | 1168 | 616981 | 449444 0.064586
447 § 10 | 274510 | 15654 0.064350
1283 | 1813 | 73602 25405 0.064309
87 | 319 | 885838 | 524852 0.064591
8093 | 219 | 104153 ; 18256 0.032452
337 | 3519 | 826968 | 399079 0.064361
3478 | 1570 | 131805 | 852635 0.064595
26 | 1957 | 53432 | 652329 0.064648

Table 5.1: Query distribution ©,.

these are shown in Figure 3.9. We refer to them as uniform, clustered, linear
and sinusoidal, respectively.

In the experiments in which a relation of four attributes was involved,
up to four different query distributions were used. These query distributions
were generated randomly and are referred to as ©;, ©;, ©; and O4. They
are shown in Tabjes 5.1 to 5.4. Each entry in one of the first four columns
represents a range specified for the corresponding attribute, A;g, A, Aiz
or A;a. The domain of each attribute is between 0 and 1048575 (22 — 1).
The first four columns of each row represents the query and the last column

is its probability.

123

Attributes
Aip A Aisp Aig Query distribution
1759 2041 635273 | 1025206 0.076838
42817 | 287843 | 308082 12032 0.000554
81 1779 334939 { 353540 0.076743
1076 217 853330 | 499153 0.076803
1964 467 491378 | 594646 0.076848
2322 | 133052 | 258460 | 581514 0.038611
362957 336 138907 | 527880 0.638717
1 3532 606988 | 512476 0.076695
621 1636 814401 | 832879 0.076971
661341 | 2068 768529 | 1028152 0.038691
204 28 739366 | 869555 0.077001
15434 92 190968 | 338857 0.038494
2575 2259 308333 | 835018 0.076760
751 1841 | 1007087 | 577772 0.076824
426 913 458917 | 766551 0.076750
1656 1893 21487 127926 0.076700
Table 5.2: Query distribution ©,.
 Aftributes
Ao | Aig Ain A;; | query distribution
7385 | 284251 | 505581 | 498772 0.060853
1188 818 572743 | 456734 0.099394
205974 | 230166 | 237306 | 964901 0.000543
33435 | 160798 | 822957 | 454672 0.000675
136513 ¢ 4163 280042 | 480255 0.050236
3495 43 32554 | 644906 0.099919
60813 20 1004336 | 69033 0.050140
825 977 58904 | 397042 0.099485
338 850 457631 | 282380 0.099446
56 741 23639 | 476335 0.099390
168742 473 595126 | 320760 0.050392
1163 1206 483057 | 798659 0.099902
495 56647 | 796117 | 688349 0.050078
18790 | 91289 | 849767 | 896630 0.000716
2030 510 31842 | 346635 0.099328
208 676 152878 | 215281 0.099504

Table 5.3: Query distribution ©;.

Ai-::.:.:.ibutea

Aig | Ais | A | Aia | Query distribution
2403 1508 { 413378) 509645 0.071582
772 aN52 | 577372 | 292585 0.071303
28925 | 42ma1 | 607591 | 406208 0.03501°
5053 : 1967 | 5ean54 | 547201 0.0357v4
26§ #11 1334025 | 902371 0.071297
1823 | 2242 i 263007 | 697994 0.071349
5i6 1 &5 | 01258 | 858766 0.071291
119228 | 1%48 ! 595416 | 934196 0.035824
246¢. 535 | 588547 | 888557 0.071551
85 378 | 27400 | 453937 0.071253
375 1645 | 73284 | 565287 0.071268
2313 | 152687 { 71(835 ! 122699 0.036023
283 543 | 600556 | 267813 0.071475
1356 | 173 £ 752214 | 319236 0.071362
1800 | 2608 ! £12213 | 639519 0.071354
456 1005 | 497024 | 775743 0.071292

Table 5.4: Quary distribution ©y.
5.5.2 Effect of data and query distributions

The effect of using the optimised and cyclic choice vectors on the average
¥

query cost using diffei-ut data and query distributions is shown in Tables 5.5
to 5.8. The Arst column in each of these tables shows the query distribution

used. The second and the fourth columns correspond to the cyclic choice

vector and show the cost in disl_{ page accesses and time taken, respectively.
Similarly, the third and fifth columns show the costs corresponding to the
optimised choice vectsr. The improvement in the number of disk page ac-
cesser and time taken when using the optimised choice vector rather than

the cyclix: hoice vector is shown in the final two columns.

125

Query Pages accessed - Time (msec) Improvement in
Distribution | Cylic | Optimised } Cyclic | Optimised | Pages accessed | Time
O 77.06 7.32 624.76 80.54 10.52 7.75
O3 166.96 18,96 1147.5 172.67 8.80 6.64
O3 75.72 14.52 599.87 | 14%.75 5.22 4.06
©4 118.34 13.78 914.36 | 138.12 8.59 6.62

Table 5.5: Average nuery cost for a uniform data distribution.

Query Pages arczsked Time (msec; Improvement in
Distribution | Cylic | Optimised | Cyclic | Optimised | Pages accessed | Time
Thetay 30.05 5.33 226.55 58.26 5.64 3.88
Thetag 73.28 13.46 474.66 127.4 5.44 3.73
Thetas | 3120 | 1121 | 23249 | 1065 2.79 2.18
Thetoy 49.30 10.87 339.09 ©5.568 4.54 3.55

~ Table 5.6: Average query cost for a clustered data distribution.

Query Pages nccessed -—“_'::- (msac) Improvement in
Distribution { Cylir. | Optimised | Cyclic | Optimised | Pages accessed | Time
o1 1206 | 495 | 9698 | 6116 2.48 1.59
O 21.46 | 8.66 172.80 | 84.36 2.48 2.05
O3 10.54] 6.53 97.93 57.98 1.62 1.44
O4 16.59 ¢ 7.92 146.4 82.77 2.09 . L77

Table 5.7: Average query cost for a sinusoidal data distribution.

T ey Fages accessed Time (msec) Improvement in
Distribution | Cylic | Optimised | Cyclic | Optimised | Pages accessed | Time
&1 7.17 5.05 66.39 61.86 1.42 1.07
& 21.02 747 168.27 70.08 2.81 2.40
(o2 1 9.16 6.7 76.17 62.64 1.35 1.22
Q4 {17.25 9.02 140.39 87.26 191 1.61

Tahle 5.8: Average query cost for a linear data distribution.

126

In all the experiments the optimised choice vector performed better than
the cyclic one. The improvement is lower for the non-uniform data distribu-
tions due to correlation of the attributes., The value of the first attribute was

randomly generated and then used to generate the values of the remainder

of the attributes.

5.5.3 Number of attributes

As the number of attributes increases, the number of attributes that are
specified in few or no queries (nonsignificant attributes) is likely to increase.
Therefore, if the cyclic choice vector is used, peer-splitting based on these
attributes also increases. As a result, the performance improvement achieved
by using the optimised choice vector instead of the cyclic choice vector should
also increase.

Table 5.9 shows experimental results obtained using BANG files with
different numbers of attributes for different query distributions. The first
column of the table shows the number of attributes in each BANG file. The
second column shows the average number of disk page accesses required when
the cyclic choice vector was used. The third column shows the average num-
bér of disk page accesses required when the optimised choice vector was used.
The last column shows the improvement achieved using the optimised choice
vector rather than the cyclic choice vector. The table shows‘tha.t as the
number of attributes increases the improvement increases, as we expect.

The ratio of the significant attributes to the nonsignificant attributes is an
important factor in the improvement that is achieved. As this ratio increases,

the performance improvement of the optimised choice vector over the cyclic

127

Number of Attributes | Cyclic cost | Optimised cost | Gain
2 107.14 22.58 4,74

2 101.15 18.80 5.38

2 112.51 17.98 6.25

2 196.13 22.76 4.92

3 1 260.72 22.89 11.39

3 ¢ 244.80 29.94 8.18

3 304.52 23.86 12.76

3 317.59 19.52 16.26

4 77.06 7.30 10.52

4 166.96 18.96 8.80

4 75.72 14.52 5.22

4 118.34 13.78 8.59

8 255.06 7.05 36.17

J 8 2748 11.21 24.45
-8 260.67 15.01 17.37
8 214.97 10.16 21.16

" Table 5.9: Effect of the number of attributes on the average query cost.

choice vector decreases. That is, the total number of attributes in a relation
is not as important as the proportion of significant attributes. In Table 5.9
the optimised choice vector performs better when the number of attributes
is three than when it is four. This is because one of the three attributes (%)
was done significant in the former case and two of the four (%) attributes was

done significant in the latter case.

5.5.4 File size

To study the effect of the file size on the performance of the optimised and
eyclic choice vectors, experiments with files ranging in size from 4 Mbytes
to 40 Mbytes were performed. The experiments were repeated using the

uniform, clustered, sinusoidal and linear data distributions. The results are

128

e

g

—&—— Uniform
—W— Clusiered
—3— Sinusoidal
—de—— Linear

ey
@

Cyclic/Optimised

File size (Mbytes)

Figure 5.4: Effect of file size on relative performance.

shown in Figure 5.4. The vertical axis of Figure 5.4 represents the average

query cost ratio a-};‘ff-g‘f——:—ed and the horizontal axis represents the file size in
Mbytes.

In all the experiments the optimised choice vector consistently performed
better than the cyclic choice vector, as can be seen in Figure 5.4. The im-

provement increased (of the order of 200% for sinusiodal to 600% for uniform)

as the file size increased.

5.5.5 Page size, elapsed time and CPU time

Experiments were conducted to study the effect of the page size on the per-
formance of the optimised and cyclic choice vectors. Page sizes between 1
and 64 kbytes were used. The experiments were repeated using the uniform,
clustered, sinusoidal and linear data distributions. The resuits are shown in

Figure 5.5.

129

~—@—~ Uni.rm (optimised)

v~ @~- Uniform {cyclic) .
~—W— Ciustered (optimised)

== M-~ Clusrzred (cyclic)

Y Sinusuidol (optimised)

=+ -~ Sinusoidal {cyclic)

~—k—— Linear (optimised)

~=-h-- Linear{cyclic)

Elapsed time (msec)

Page size (kbytes)

Figure 5.5: Effect of page size on performance.

As can be seen in Figure 5.5, the optimised choice vector p(-arforms bet-~

ter than the cyclic choice vector for all page sizes, The results show that

" the performance improvement, is greater with smaller page sizes. This is be-

cause smaller pages result in higher number of pages and page splits, so the
improvement gained by using a better splitting policy is greater.

In these results, the minimum elapsed time was achieved when the page

size was 8 kbytes.

Experiments were also performed to determine which page size results
in the minimum CPU time, that is, the minimum time spent searching the
contents of pages rather than waiting for the disk. Again, experiments were

performed using pages between 1 and 64 kbytes. The results are shown in

Figure 5.6.

130

—@— Uniform {optimised)
~~-@-- Uniform (cyclic}
M Clustered (optimised)
-- M-~ Clustered {cyelic)
Y- Sinusoida! {optimised)
«=X-~ Sinusoidal (cyclic)
=—tk— Linear {optimised)
==+~ Linear{cyclic)

Elapsed time (msec)
th
2

Page size (kbytes)

Figure 5.5: Effect of page size on performance.

As can be seen in Figure 5.5, the optimised choice vector performs bet-
ter than the cyclic choice vector for all page sizes. The results show that
" the performance improvement is greater with smaller page sizes. This is be-
cause smaller pages result in higher number of pages and page splits, so the
improvement gained by using a better splitting policy is greater.
In these results, the minimum elapsed time was achieved when the page
size was 8 kbytes.
Experiments were also performed to determine which page size results
in the minimum CPU time, that is, the minimum time spent searching the

contents of pages rather than waiting for the disk. Again, experiments were

performed using pages between 1 and 64 kbytes. The results are shown in

Figure 5.6.

130

—&— Uniform {optimised)
-« @ Uniform (cyclic)
—®— Clustered (oprimised)
« -+ Clustered (cyclic)
—¥— Sinusoidal {optimised)
== ¥+~ Sinusoidel {cyclic}
—d— Linear {oprimised}
==&+ Linear(cyclic}

[—y
5]
===

50

CPU time (msec)
2

Page size (kbytes)

Figure 5.6: Effect of page size on CPU time.

The results indicate that for all the distributions, the minimum CPU time

is generally achieved when the page size is 4 kbytes.

5.5.6 Stability

Query distributions can change over time. A choice vector optimised for a
given query distribution may perform worse than the cyclic choice vector if
the query distribution changes significantly. In order to study the stability of
our optimised choice vectors, experiments were done to determine the change
in performance when the query distribution changes.

We state that each query distribution is changed by 2% if each query
probability, p, is randomly changed to be in the range p x (1 ;35) prior to

the whole query distribution being normalised.

131

""" Cyclic/New

= = =+ Dld/New
New/New
10 5
g T
.ﬁ 6— ------------------------------
ot 5 L LT T
7
e 4+
v)
2“ — T
0 I | I 1
0 20 40 60 80

Change in query distribution (%)

Figure 5.7: Stability of the optimised choice vector using ©; and-the uniform
data distribution.

Figures 5.7 to 5.10 show how the average query cost is affecied when the
probability of each query changes by up to 80%. In each figure, three average
query cost ratios are shown, using dotted, dashed and solid lines. ‘The dotted
line (“Cyclic/New”) corresponds to comparing the average query cost of a
BANG file built using a cyclic choice vector with that of a BANG file built
using a choice vector optimised for the new, changed, query distribution.
The dashed line (“Old/New”) cocrespond to a BANG file which was built
using an optimised choice vector determined by using the original query
distribution. The solid line (“New/New”) corresponds to BANG files built
using an optimised choice vector determined using the changed probability
distribution.

In some of the experiments, such as in Figure 5.10, using a choice vec-
tor produced using the original query distribution was better than using one

produced by the changed query distribution. This is because the new choice

132

l
i
|
|
+
3
1|
&
|

------ Cyclic/New
— - = Qld/New
New/New
6_
L"
o 4 el
=] 4 "--..-..-....-.---......_"._. I
ﬁ P TTIT e P L
ke d
S
L 24
0 T T]]
0 20 40 60 80

Changé in query distribution (%)

Figure 5.8: Stability of the optimised choice vector using &, and the clustered
data distribution,

«vvmse Cyclic/New
—— = OldiNew
New/New

="
-
e eeemeaam -

[5]

NPV ITETETEENE PETRENTTR |

. L
L Ty

Cost ratio

- -———— -
- -~ T et
e — o e ———

Wi

J J J 1
20 40 60 80

Change in query distribution (%)

o

Figure 5.9: Stability of the optimised choice vector using ©, and the sinu-
soidal data distribution.

"""" Cyclic/New
- - OldNew
New/New
25,
2049
og : “q
E 1.5
g et e
&) i e
102
0.5 ; : . ‘

Change in query distribution (%)

Figure 5.10: Stability of the optimised choice vector using ©; and the linear
data distribution. ‘

vector is not optimal. This can occur because MMI does not guarantee fo
produce the optimal choice vector, and Equatizn §.7 defines a good approx-
imation of the actual cost, not 1_;he exact cost.

Our results show that the performance of the optimised choice vector of
the original query distribution is almost as good as that of the changed query
distribution even when the distribution was changed by 80%. As a result,
we can conclude that an optimised BANG file needs to be reorganised rarely,

only when the query distribution changes drastically.

5.5.7 Query-space size

When the query-space is the whole domain-space, we must access all the
pages of the file regardless of the choice vector used. When the query is a
point query the number of page accesses performed using both the optimized

and eyclic choice vectors will be the same because there is precisely one

134

o i i e

ki
k:
i
A
3
K
H

=8~ Uniform
~—Ml— Clustered
~—M— Sinusoidal
—d— Linear

Cost ratio (Cyclic/Optimised)

T T T 1 T T
1E-09 1E-08 1E-07 1E-06 1E-050.0001 0.001 0.01 0.1 1 o0 100
Query size (%)

Figure 5.11: Effect of query-space size on relative performance.

destination page. Therefore, there is no advantage in using an optimised

rhoice vector for these two extreme queries.

We performed experiments in order to study the effect of the query-space
size on the performance using the optimised choice vector. Figure 5.11 shows
the performance of the uptimised choice vector compared to the cyclic choice
vector as the query-space size changes. Each line in the figure corresponds
tc » different data distribution. The vertical axis of the figure represents
the cost ratio T.,;%;%’f?i and the horizontal axis represents the percentage the
query space size % to the domain-space size. The results show that there

is a large range of query-space sizes where using an optimised choice vector

produces far better results than using the cyclic choice vector.

5.6 Conclusion

Our study shows that given a probability distribution of range queries, an
efficient physical database design can be created by using minimal marginal

increase and Equation 5.7. Unlike previous approaches, our -approach is

not limited to a uniform data distribution or to independently specified at-

tributes, and the precise nature of any non-uniformity does not need to bz
known. We avoid these liritations by using a file structure which distributes
records evenly amongst disk pages even when the data distribution is highly
non-uniform. For our experiments, we used the BANG file.

When compared to the cyclic choice vector, our results show that the
optimised choice vector produces more efficient physical database designs,
reducing the average query cost. For example, in one of our experiments in
which a BANG file of eight attributes was used, the optimised choice vector
resulted in an improvement of a factor of 36 over the cyclic choice vector.

The improvement gained by using an optimised choice vector instead of
the cyclic choice vector increases as the number of attributes increases. This
is because as the number of attributes increase, the likelihood of dividing
the domain space using attributes which do not occur {requently in queries
is kigher when the cyclic choice vector is used. This results in an inefficient
physical database design. For example, in the experiments that we per-
formed, the improvement in performance was greater when there were eight
attributes in the relation than when there were two, three or four sttributes.
Similarly, as the ratic of attributes which occur frequently in queries to at-

tributes which do not increases, the improvement in the performance of the

optimised choice vector over the cyclic choice vector decreases.

We found that the optimised choice vector consistently performs better
than the cyclic choice vector across a wide range of file and page sizes. The
improvement is greater as ﬁIeslget larger and pages get smaller. For both
types of choire vector, the CPU time taken searching pages is minimal when
the page size is 4 kbytes.

The relative size of the query-space also affects the performanue of the
optimised choice vector. For a query space size which i1 either equal to
the whole domain-space or is a point guery-space, both the optimised and
cyclic choice vectors perform the same. However, the optimised choice vector
performs better tlian the cyclic choice vector when the query-space size is
between these two extremes.

There is no need to rearrange the optimised choice vector whenever the
query aistribuiion changes by a reasonable ariount, Our experiments show
that the optimised choice vector for a given query distribution will remain
almost as good as the Optimiséd choice vector built for a variation on the
query distribution even when the query distribution changes by 80%.

We conclude that if the query distribution is known and a file structure
which evenly distributes records amongst disk pages is used regardless of the
data distribution, an optimised choice vector produces an efficient physical
database design. To our knowledge, this is the most practical method of
storing multidimensional data in order to best exploit a known query distri-
bution. We therefore recommend that such structures be incorporated into

new generation database systems.

137

Chapter 6

| Join query processing for

skewed data distributions

e

| 6.1 Introduction

The join operation is one of the database operations which is used to com-
bine tuples from two or more relations based on a condition known as join-
condition. Tuples of the input relations are combined when they satisfy the

specified condition. The result of a join operation is a relation which has

some or all of the attributes of the input relations. Because a join query
takes two or more relations as input, it is much more costly than a range or

a partial match query. The following is an example of a join query.

SELECT emp.name, dept.name :
FROM emp, dept (g0)
WHERE emp.dept-no = dept.dept-no .

In g, emp and dept are the input relations, emp.dept-no = dept.dept-
no is the join-condition and dept-no is the join-attribute. A join-attribute
is an attribute specified in a join-condition.

The join operation has been extensively discussed and researched because
it is frequently used and is one of the most time consuming and data-intensive
operations in relational query processing. Also many of its optimizations
imb]icitly include the optimization of other common relational operations
such as selection, projection, union, intersection, difference and division.

This chapter discusses the optimization of join queries whose probabil-
ity distribution is known. Based on this assumption we will introduce new
optimized join algorithms for multidimensional file structures. Unlike the
existing algorithms [52-54, 99], we don’t assume the data distribution of the
files to be uniform. Other main difference between the proposed join algo-
rithms and the existing algorithmsis that the existing algorithms assume that
all partitions in a relation have the same partition level. This assumption
makes many partitions to be read several times. In the proposed algorithm
each partition assumes its actual partition level and an attempt is done to
read it once. Although the proposed optimization algorithms ;:an be used
with any multidimensional file structures, experimental results were collected
using the BANG file because of the reasons discussed in section 3.2.

This chapter consists of five sections. Section 6.2 discusses the the pro-
posed join algorithms. Section 6.3 explains how the join query processing
can be optimized. The experimental results and analysis of the proposed
join algorithms is presented in section 6.4. Section 6.5 is the conclusion of

this chapter.

139

6.2 'The proposed joir. :lgorithms

The join algorithms discussed in this chapter have two main modules, a
selection-module and a matching-module. The selection-module selects some
partitions from each input relation based on the join-condition, and passes the
selected r:lations to the matching-module. The matching-module matches
the iuples of the selected paxt;itions for join. Tuples satisfving the join-
conditicn are inserted into the result table. The two parts are performed
alternatively several times, each time with a different set of partitions, till
the join of the input partitions is complete. The join of these set of partitions
is equivalent to the join of the input relations. The next two subsections will
discuss the selection and matching modules in detail. But first let us defire
the terwas, join-atiribute domain, join-atiribute edge and Foin-compatible par-
titions, which are frequently used in the rest of this chapter. Examples of

the terms will be given in the next section.

Definition 6.1 join-attribute domain és the domain of the join-aitribuie in

the query.

Definition 6.2 join-attribute edge i the side of ¢ partition which corre-

sponds to the join-atiribuie.

Definition 6.3 Join-compatible partitions sre partitions from diffzrent in-

put relations whose join-atiribute edges share at leest one common value.

R
A R, !
o A,
“1p.|p.lP p. b, |p L
o ; X P
’s0 3 0.7 011 Pc ‘ 13 17 111 L1s
Poa | Pos | Poao i Poua P12 1Bis |Piso [P
500
Pos | Pos | Pog | Pors P [Pis [P |Pus
250
0 _Pﬁ—‘l PoslPos Pmo A P‘-o P|.4 PI.S II,.IZ Aw
0 25 50 75 100 00 '
} { ! | 1 '
Irm Io.l Ioz Io.s Le Ty Tz I,

Figure 6.1: poo and Py are join-compatible while Py and P, ;4 are not.

6.2.1 The selection-module

The selection-module exploits the partitioning and clustering properties of
the BANG or other multidimensional file structures in selecting the next set
of join-compatible partitions. For example, assume the following query, 1,

which uses Ry and R; of Figure 6.1 as input relations.

SELECT Ao, Aoy A1
FROM Ry, R (@)
WHERE Ao,g == Al,ﬁ
In processing gy, for example, there is no point of matching Fp3 and
P12 for join. They don’t share tuples which can satisfy the join-condition
because their join-attribute edges don’t overlap. By don’t overlap we mean
they don’t share any common join-attribute values. The join-attribute edge

of Py3 covers values between 0 and 25 and that of Py, covers values between

141

-

et gty e Es

AT He b I

75 and 100. But Fy3 and P, are join-compatible partitions, because their
join-attribute edge overlap. Both cover values between 0 and 25. FPosis also
join-compatible t0 P11, Pi2 and Py3. In fact each of Py, Py, Py and
Po‘_s are join-compatible to P;,n; Py, Py and P3. So the selection-module
identifies such join-compatible partitions and passes them to the matching-
module. The matching-module matches the tuples of these partitions for join.
Once the join of the current join-compatible set is completed, the algorithm
again starts selecting the next join-compatible set. In case the of g;, the next
join-compatible set contain partitions Py 4, Pos, Pos and Foz with Pyg, Py s,
P g and Py ;.

Before the start of the two modules, the join algorithms computes the
number of join-compatible sets. This is done by logically dividing the join-
attribute domain into a number of equal intervals. Then partitions are
mapped into these intervals. Partitions mapping to the same interval form a
set called a wave. The selection-module uses intervals and waves to select the

next join-compatible partitions. Intervals and waves are discussed in detail

in the following subsection.

Intervals

As mentioned in the last paragraph, the join-attribute domain is logically di-
viding into a number of equal intervals before performing selection or match-
ing. The size of each interval is equal to the size of join-atiribute edge of
the smallest partition in the relation. In case of ¢y, the domain of the join-

attribute is partitioned into 4 cqual intervals as shown in Figure 6.1. This is

because the size of the smallest join-attsibute edge in the relation is a fourth

of the join-atiribute domain size, which is 100.

For time being let’s assume that the number of intervals in the input

relations are equal, and each partition be within one interval. Later in this

chapter we will remove these restrictions.

Intervals are labeled. Intervals corresponding to R, are labeled as J; g, [;1, Ji 2

and so on. Attribute values in I; ;;; are higher than those in I;;. For exam-

ple, in Figure 6.1 the intervals of Ry are labeled as I 5, lo1, Io,2, and I 5. Tog
covers attribute values between 0 and 24 inclusive, I, ; covers values between
25 and 49 inclusive, I, covers values between 50 and 74 inclusive, and Iy 3
covers values between 75 and 99 inclusive.

Partitions whose join-attribute edge everlapping the same interval are put
in the same join-compatible set. This makes the nymber of intervals to be
equal to the number of join-compatible sets.

The number of intervals can be computed from the choice vector. For
example in a choice vector of size 10 elements, let the second, fifth and
seventh elements belong to an arbitrary attribute A, ;, The second element
of the choice vector splits D, ;, the domain of Ai;, into 2 equal edges. The
fifth element further splits an edge, which was createq by the second element,
into two equal halves. The seventh element further splits an edge, which was
created by the fifth element, into two equal halves, In other words, the
second, fifth and seventh elements of the choice vector result in edges which
are %,41 and % the size of D; ; respectively. Therefore if in a choice vector, vhe
number of elements which correspond to a join-attribute As; is dy ;, then the

number of intervals along D;; is 2%,

143

] Waves

As mentioned previously, partitions of a relation whose join-attribute edge

overlapping the same interval belongs to the same join-compatible set. For
example, partitions overlapping I are put in one set and partitions over-
lapping I; k41 are put in a separate set. We call such a sei a4 wave.

: Waves are labeled as W, W; 3, Wi, and so on. There is one-to-one map-

ping between waves and intervals. W;; contains only partitions overlapping

1; x. This makes the number of waves to be equal to the number of intervals.

Relations with equal number of waves

Waves which contain join-compatible partitions are called join-compatible

waves. If the number of waves in two arbitrary input relations, R; and R; is

i
B
4%
&

the same, then each W;; is only join-compatible to W;;. For example, when

Ty

using ¢, 4 waves are created in Ry, and 4 waves in R; of Figure 6.1.

3 Waves created in relation Ry are:

T AR

W0, which consists of partitions Pog, Po1, Po2 and Py, -

I

i
3

Wh,1, which consists of partitions Fog, FPos, Fos and Py,
Wo,2, which consists of partitions Pog, Fo9, Fo,10 and £p,13, and

Wo,3, which consists of partitions Po2, Poz3, Fo,14 and Fpys,

And waves created in partitions R, are:

i Wl.ﬂa which consists of partitions P 10: .P1,1, P1‘2 and Pl'g,

W),1, which consists of partitions P4, P13, Pr e and Py,

W2, which consists of partitions Pys, P9, P10 and Ppy;, and

W, 3, which consists of partitions Praz, Pias, P and P 5.

144

Wo.0, Wo,1, W2, and Wy 3 are join-compatible to Whe, Wiy, Wiy, and Wy 5
respectively.

All waves are not created in the selection-module of the same cycle. For
example, W; o and W, are created in the selection-module of the first cycle,

Wi,y and W;, are created in the selection-module of the second cycle and 50’

on.

Relations with unequal number of waves

At the beginning of this chapter we discussed that the number of intervals
created along the domain values of A, ;, D; ;, is 2%4. The ratio of the number
of waves created in one relation to the number of waves created in another
relation is always 1: 2", where n is an integer number.

For example, let us join R, and Rj3 of Figure 6.2 using A;; = Az, as the
join-condition. The number of intervals corresponding to R,; is 2! and that
of Ag, is 2% The number of waves of Ry to that of Rj is & = 2, which
means that the size of Ip; is tw'}ce that of I3;. In other words, each wave of
R, has two join-compatible waves of R3. Wy must join with Wig and Wy,.
Similarly W, o must join with W35 and Wy 3. Each Wy; must join with Wy,
and Wy s9.1. In fact if the the number of waves in B; is m times that of R;,
then each W, must join with Wjgem Wikems1, Wikema2: - -, Wiksmem—1-

From now on let Wz represent ali the join-compatible waves of Wi k.

Embedded waves

The join-attribute edge of a partition can span more than one interval. Such

a partition can become a member of more than one wave. For example, Pyq

145

Er P

g

e e i e e

R, R,
A
21 Ay,
Py Py Py Pags
P,, P, P2 |Pas |Puo B
P [Fas | Bas | Fuss
P P,, A Pso |Paa |Pas Pan
e 2‘0 A 3.0
0 50 10
| | | |
- T | l
5 L b L L g

Figure 6.2: For each interval of Ry there are two intervals of Rj.

of Figure 6.3 is such a partition. It spans 4o and Is;. Therefore it is a
member of Wy and Wy,

Some times all the members of a one wave are also members of another
wave. This happens when some partitions of a wave span more than one
interval. For example, all the members of W ; of Figure 6.4, are also members
of Wsg. If all members of Wi are also members of W;; for any j < & We
say, Wiy, is embedded in Wy ;. All the join-compatible waves of the embedded
wave are also join-compatible of the embedding one. For example, when we
join relations R; and Ry of Figure 6.5, using Ag = 47 as a join-condition,

WS 0, which embeds W, is join-compatible to W, and W 4.

Mapping partions to waves

A partition can be mapped to particular wave number using its partition-

number and its corresponding choice vector. The following steps show the

146

‘P4,1 2 P 44 IB,G

IP 490 P4,3 B,S

0 25 50 75 100

Asp

Figure 6.3: Py spans Iy and Iy ;.

mapping of an arbitrary partition, 1}, into a wave-number.

1. Convert the partition-number of p;; into its equivalent binary number,

say by.

9. If the number of bits in b, is less than the size of the choice vector,

prepend zero bits to by.

3. Extract all bits values in b, corresponding to the the join-attribute and

form another binary number .

4. Inverse b, and form another binary number bs. In this step the most

significant bit in b, becomes the least significant bit in b3 and so on,

5. The wave number of P;; is the decimal equivalent of bs.

147

EP 50 P5,3 E,S

0 25 50 75 100

Asp

Figure 6.4: Ws; is embedded in Ws .

R, R,
A‘" Ay

: 7 7.5 77
P, Pss | Pos

Figure 6.5: Wy is join-compatable to Wy and W7,).

148

A

For example, take an arbitrary relation R; which has four attributes, 4;,
A1, Aig and A;3 and a choice vector of size 6. Let Aip be the join-attribute
and 001023 be the choice vector. By following the above mentioned steps, the

wave-nmber of a partition with a partition-number of 13 can be computed

as follows:

‘1. The binary eyuivalent of 13 is 1101, or b, is 1101,.

2. The relation has a choice vector of size 6, so we prepend two zero bits

to b, which makes by 001101,.

3. In the choice vector, the bits corresponding to the join-attribute are
bits 2, 4 and 5 (where bit 0 is the right most element) and their values

are 1, 1 and 1 respectivelv. Therefore, by is 1115,
4. Inverting by (111,) results in bs, which is 111,.

5. The wave number is the decimal equivalent of b3, which is 7.

Multiple join-attributes

When the number of join-attributes in a relation is more than one, the
number of intervals (waves) created is a multiple of all the individual join-
attribute intervals. For example, let A;; and A4;; be two join-attributes.
Also let di; and d; ; be their number of elements in the corresponding choice
vector respectively. Then the number of waves created are 241+ x 2%,

The steps of mapping a partition-number to a wave-number is the same as
that of a single join-attribute. The only difference is that we use bit positions

of multiple join-attributes instead of a single atiribute. For example, if in a

149

i T T e s S e L ikl

partition-number, each bit-position corresponding to a join-attribute has a

value of 0, then the partition belongs to W;y.

6.2.2 The matching-module

After the selection-module of a cycle is completed, the matching-module of
the same cycle starts. Up to now, we have identified the data partitions
of both waves but we haven’t ctually read any of them yet. It is in the
matching-module where the data partitions of the current join-compatible
waves are actually read and joined. The matching-module is I;erformed in
ncsted loop. In the outer loop, the partitions of one of the two waves are read
and their tuples are put into a hash table. In the inner loop, the partitions of
the other wave are read and their tuples probed into the hash table for join
with the tuples of the outer loop. Let us call the wave processed in the outer
loop of the matching-module the ouler-wave and the one processed in the
inner loop the inner-wave. A simplified matching-module algorithm is shown
below. In the algorithm, hash-teble.put is a function which hashes a record
and puts it into a hash table, the hash-table.prope functions hashes a record
and probes it into the same hash table to match it for join, the join function
joins the matching records and the READ function reads a partition from

disk.

150

The following is the maching algorithm:

MODULE matching(outer-wave, inner-wave)
BEGIN

FOR partition IN outer-wave
BEGIN

READ(partition);
FOR EACH record IN partition
hash-table.put(record);
END

FOR BACH partition IN inner-wave
BEGIN

READ(partition);

FOR EACH record IN partition
BEGIN

hash-table. probe(record);
Jjoin;
END
END

END

The matching algorithm

1 6.3 Optimizing join query processing
. The cost of a join query is minimised if:

1. pages which don’t contribute to the Join result are not accessed,

2. each page which contribute to the Join result is accessed once and

3. only records which can satisfy the join condition are matched,

o

The proposed join algorithm is based on the partitioning of the input

relations into join compatible waves before tuples are matched for join. Min.
imising the size of the join compatible waves minimise the number of tuples
which has to be matched for join. To reduce the number of times a page is
accessed, the size of one of each join compatible waves must be less than the
buffer size. The relation ship of a buffer size and a wave size is explained in
detail in the next subsection. |

The number of waves and the number of partitions per wave is affected
by the choice vector. Optimal choice vectors tend to reduce the number of
partitions per wave and this increases the chance of a wave to fit into the
availabe buffer. The relationship of choice vectors and waves is explained in

the subsection 6.3.2.

6.3.1 Buffer size vs wave size

As mentioned in section 2.1, the cost of & query is mainly measured by the
number of disk accesses required to answer the query. The number of disk
ax;cesses required is significantly affected by the buffer size. Smaller buffer
can result in more disk accesses than a larger one. For example, let the
number of partitions of the outer-wave be 24 and the number of partitions
of the inner-wave be 7. Let the buffer size be 10 blocks. Let 8 of the 10
blocks be allocated for the outer-wave, 1 block be allocated for inner-wave
and the remaining 1 block be allocated for the result. Since we allocated 8
blocks for the outer-wave we can only hash 8 partitions at a time. We can
read all of them in 3, which is [%‘1.', loops. In the first loop we will read the

first 8 partitions and hash them. Then in the same loop we will read the

seven partitions of the inner-wave, one at a time (since we have allocated one
block for the wave) and join them with the 8 partitions of the outer-wave.
Then we repeat the same process for the next 8 partitions of the outer-wave
with the same 7 partitions of the inner-wave and so on. At the end of the
third loop, the join of the two waves is complete and 24 4+ [385.] x 7 =45 disk
accesses are performed. 24 accesses are performed reading the partitions of
the outer-wave, which is done in 3 loops, and [383] X 7 = 21 disk accesses
are performed reading the partitions of the inner-wave. Let the number of
partitions in W, be denoted by |W;,4l.

The cost (in terms of disk accesses) of joining arbitrary wave Wy, and its
join-compatible wave, W; ;, using a buffer size of B is, |W; x|+ P“—:g*—'] x \W; izl

The cost of processing join-compatible waves can be reduced if the wave
with the smallest number of partitions is used as the outer-wave. If the buffer
size is big enongh to accommodate all the outer-wave partitions, each parti-
tion of the inner-wave will be read only once. For instance in our previous
example if the wave with 7 partitions was done the first wave and fhe other
with 24 partitions as the inner-wave, the cost would have been 7+]-g] X 24,

which is 31 disk access only.

6.3.2 'Wave size and choice vector

Choice vectors significantly affect the cost of a join query. For example,
assume the join of two relations Rg and Ry of Figure 6.6 with Agg = Agp
as a join-condition. Let us assume that the first-wave always belongs to Asp
and the second-wave to Agg. Let the buffer size allocated for the first-wave

be 2 and for the second-wave be 1 and for the result be 1. Then the cost

153

Ps ! P 37| Panr| Prys Pos Fox [Py IP 215
Py, | Pas 810 P&l 4 P, (Pos 1Py o4
P. P P P
51 | Pasl Pyl Py e > i
s0 | Psa Pes Pa A Foo Poo |P o3 [Po
50 Agg
0 25 50 B 100
i } i 1 i i

I o Il I2 13 I o I‘ I2 I3

Figure 6.6: Waves with number of partitions higher than the buffer size result
in higher join query cost.

of each join-compatible wave is as follows: 4 + [g-] x 4 = 12. Since we have
4 join-compatible waves, the join of Az and Ry will cost 4 x 12 = 48 disk
accesses. But if Ry was partitioned (using a different choice vector) as shown
in Figure 6.7 the cost will be 32. The join using R; of Figuré 6.7 instead
of Rg of Figure 6.6 costs less because the size of its corresponding waves is
smaller. So allocating more elements of a choice vector to join-atiributes
results in smaller size waves. The problem now is, given a number of join
gueries and their probabilities, to find optimal choice vectors which results
in minimal average cost. Finding optimal choice vectors for arbitrary query

distribution is NP-hard {94]. Hence we will use heuristic algorithms to find

optimal or near optimal choice vectors.

P&l PB.! PS.S Ps:.' Pw P&Il i:'s.l3 Ps,ls

PB.O P!J P&d PB.G Pl.s Ps.w PS.II P&M

As.o

L 5 50 75 L))

Figure 6.7: Reducing the number of partitions per wave so that they fit in
the available buffer reduces cost.

6.3.3 Heuristic algorithms and Cost functions

The heuristic algorithm that we used to find optimized choice vectors was
sirzulated annealing. Simulateci annealing was extensively discussed in sec-
tion 2.6.3. Simulated annealing uses cost functions which are dependent on
the problem on hand. In our case, the problem is given a set of join queries
and their probabilities, is to find optimized choice vectors which minimize
the average query cost of the set. The rest of this section discusses the cost
functions we used.

Assume that R; and R; are two arbitrary input relations. In the proposed
join algorithm, the partitions of two relations is grouped into waves and then
the join compatible waves are joined. So the cost of joining the two relations

is equivalent to the sum of the sub join costs. The average join query cost is:

155

Co=3_Cyxpy (6.1)
q

where p, is the probability of ¢ and Q is a set of join queries. Cy is the cost

of a single query. The cost of joining two join compatible waves is:

‘ in({W; «[, |W;
Gy = minWo W)+ max (8, ;) | 222038 g

Where B is the buffer size.

Let the choice vector elements of R; be d; out of which d;, belong to the
join attribute. Similarly let the choice vector elements of R; be d; and that
of the its join attribuie be dj,. The number of waves created in R; and R;
is 2% and 2% respectively. So on the average each wave of R; will contain
24-di« and each wave of R; will contain 2%~%+. Let §; = d; — di, and §; =

d; — d;.. Hence Equation 6.2 can be rewritten as:

(6.3)

: 26.' 26j
Cw, = min(2%, 257) + max(2%, 2%) {______mm(~))1

The cost of a query is equal to the cost of its join compatible joins and is

represented as:

2min(a,- 4) 1

Co=). OCw (6.4)
k=

By combining Equations 6.1, 6.4 and 6.3 we end up with:

156

2““"(51"5_1')_1

Co=2"p; Y min(2% 2%) 4 max(2%,2%) [(6.5)
o

min (2%, 25)]
k=0 B

So by using simulated annealing together with Equation 6.5 we will find

the optimized choice vectors.

6.4 Results and analysis

In this section we present the results of experiments comparing the perfor-

mance of the optimised and cyclic choice vectors.

The first set of results shows the performance of the optimised and the
cyclic choice vectors on different data and query distributions. The second
set of results shows the effect of the number of attributes on the performance
of both choice vectors. The third, fourth iand fifth sets show the effect of
the file size, page size and buffer size on the performance of the cyclic and
optimised choice vectors.

Query distributions change over time. A choice vector optimised for one
omery distribution may not perform as well if the query distribution changes.
#s solution, based on simulated annealing and Equation 6.5, is called stable if
a slight change in the query distribution doesn't affect the optimality of the
solution, The last set of results demonstrate the stability of the optimised

choice vector.

157

6.4.1 Environment

We implemented 2 BANG file with our extension of using a choice vector

during partition splitting. In each experiment we used randomly generated
queries and assigned each of them a randomly generated probability. Unless
specified, we used a page size of 1024 bytes, four integer attributes per record
and one million randomly generated records per relation (BANG file). We
ran all our ex*eriments on a SPARC station 20.

The data distributions used were uniform, clustered regions, a linear cor-
relation, and a non-linear correlation function (a sine wave). Examples of
these are shown in Figure 3.9. We refer to them as uniform, clustered, linear
and sinusoidal, respectively.

In the experiments, four sets of query distributions were used. Query
distributions in each set were generated randomly using a fixed set of seeds.
The seeds used for one set were different from that of the other. In this
thesis, these four sets of query distributions are referred to as ©,, 92, O3

and 64.

6.4.2 Effect of data and query distributions

The effect of using the optimised and cyclic choice vectors on the average
query cost using different data and query distributions is shown in Tables 6.1
to 6.4. The first column in each of these tables shows the query distribu-
tion used. The second and the fourth columns correspond to the cyclic choice
vector and show the cost in number of disk accesses and in lapse time, respec-

tively. Similarly, the third and fifth columns show the costs corresponding

158

Query Disc accesses Time (sec) Improvement in
Distribution | Cyiic | Optimised | Cyclic | Optimised | Disk access | Time
0, 154634 | 60093 1438 589 2.57. 2.44
=2 151735 61208 1382 588 2.48 2.35
O3 160048 60128 1483 594 2.66 2.50
9, 162986 58960 1464 554 2.76 2.64

Table 8.1: Average query cost for a uniform data distribution.

Query Disc accesses Time (sec) Iinprovement in
Distribution | Cylic | Optimised | Cyclic | Optimised | Disk access | Time
6, 153329 62549 1397 572 2.45 2.41

O 150170 60740 1381 573 2.47 2.41

S 159020 60575 1351 529 2.62 2.55

4 161434 58211 1402 517 2.77 2.71

Table 6.2: Average query cost for a clustered data distribution.

to the optimised choice vector. The improvement in the number of disk page
accesses and time taken when using the optimised choice vector rather than
the cyclic choice vector is shown in the final two columns.

In all the experiments perforied the optimised choice vector performed
better than the cyclic choice vector. The improvement is lower when both

input relations have skewed data distributions. The more skewed the data

Query Disc accesses Time (sec) Improvement in
Distribution | Cylic | Optimised | Cyclic | Optimised | Disk access | Timne
=5 51684 50073 477 468 1.03 1.02

. 51462 49133 480 466 1.05 1.03

Qs 61156 59429 558 5562 1.03 1.01

04 51756 48356 472 441 1.07 1.04

Table 6.3: Average query cost for a sinusoidal data distribution.

159

; Query Disc accesses Time {sec) Improvement in

] Distribution | Cylic | Optimised { Cyclic | Optimised | Disk access | Time
6 52213 49131. 482 459 1.06 1.05
=23 52040 48759 485 458 1.07 1.06
©3 55847 51415 490 449 1.09 1.09
Qy 52477 48177 474 439 1.09 1.08

Table 6.4: Average query cost for a linear data distribution.

distribution is, the more are the elements of the choice vector. More ele-
ments in the choice vector causes more number of waves hence less number

of partition per wave which can fit into the available memory.

6.4.3 Number of attributes

As the pumber of attributes increases, the number of attributes that are
specified in few or no queries (nonsignificant attributes) is likely to increase.
As the ratio of the nonsignificant to significant attributes increases, the per-
formance improvement of the optimised choice vector over the cyclic choice
vector decreases. This is because when the cyclic choice vector is used, peer-
splitting based on the non significant attributes increases. As a result, the
performance improvement achieved by using the optimised choice vector in-
stead of the cyclic choice vector increases.

Table 6.5 shows experimental results obtained using BANG files with
different numbers of attributes for different query distributions. The first
column of the table shows the number of attributes in each BANG file.
The second column shows the query distribution used. The third column

shows the average number of disk page accesses required when the cyclic

160

Number of Query Number of Disk accesses Gain =

Attributes | distribution | Cyeclic Optimal Cyclic/Optimised
2 o7 23589 22572 1.05
2 ©s 23649 22542 1.05
2 ©3 23473 22591 1.04
2 Oy 23434 22566 1.04
3 G 66949 41478 1.61
3 Oy 669438 41432 1.62
3 ©3 66936 41398 1.62
3 04 66939 41487 1.61
4 1 154634 60093 2.57
4 G2 151735 61208 2.48
4 O3 160048 60128 2.66
4 2 162986 58960 2.76
8 O3 524492 73400 7.15
8 02 524465 73280 7.16
8 ©3 524573 73310 7.16
8 Oy 524512 73237 7.16

Table 6.5: Effect of the number of attributes on the average query cost.

choice vector was used. The fourth column shows the average number of
disk page accesses required when the optimised choice vector was used. The
last column shows the improvement achieved using the optimised choice vee-
tor rather than the cyclic choice vector. The table shows that as the number

of attributes increases the improvement increases, as we expect.

6.4.4 File size

To study the effect of the file size on the performance of the optimised and
cyclic choice vectors, experiments with files ranging in size from 4 Mbytes
to 40 Mbytes were performed. The experiments were repeated using the

uniform, clustered, sinuscidal and linear data distributions. The results are

161

~— Uniform
—— Clustered
—— Sinoid
——tr—~ Linear

w
o

D
in

Cyclic/Optimised
P ¥
th (=3
l L Ll Ll L

{

1.0 ¥_ o e 1_§==q
10 20 30 40
File size (Mbytes)

Figure 6.8: Effect of file size on relative performance.

shown in Figure 6.8. The vertical axis of Figure 6.8 represents the average
query cost ratio jﬁ%:?d and the horizontal axis represents the file size in
Mbyres.

In all the experiments the optimised choice vector consistently performed
better than the cyclic choice vector, as can be seen in Figure 6.8. The
improvement remains nearly the same as the file size is incr(;ased, which

shows that the file size has no effect on the performance of the proposed join

algorithm.

6.4.5 Page size

Experiments were conducted to study the effect of the page size on the per-
formance of the optimised and cyclic choice vectors. Page sizes between 1

and 64 kbytes were used. The experiments were repeated using the uniform,

clustered, sinusoidal and linear data distributions. The results are shown in

162

—&—— Unijorm
—il— Clustered
—— Sinoid
——t— linear

{Cyclic/Optimised)

»

Block size (KB) .

Figure 6.9: Effect of page size on performance.

Figure 6.9.

As can be seen in Figure 6.9, the optimised choice vector performs better
than the cyclic choice vector for all page sizes. The results show that the
performance improvement is greater with smaller page sizes when the data
distribution is uniform. This is because smaller pages result in higher number
of pages and page splits, so the improvement gained by using a better splitting
policy is greater. When the data distribution is skewed, the improvement in
cost is better when larger pages sizes are used. This is because larger pages
decrease the size of the choice vector hence the number of splits based on the

non significant attributes.

6.4.6 Buffer size

The size of the buffer that is available for the join operation significantly

affects the cost of join. If the number of partitions in each of two join

163

e R T e TS

compatible waves is smaller than the available buffer size then each partition
in those waves is read only once. But if each join compatible wave has
partitions to big to fit into the available buffer then the partitions of one of
the waves will be accessed once bui that of the other will be read several
times.

For example, assume W;; and Wy ; are two join compatible waves and
B is the size of the availabe buffer. Let us also assume that W; 4 has less
number of partitions than Wy ;. If [W; ;] < B, then each partition of those
waves will be accessed once. But if |Wy;| > B, then the partitions of W, ;
will be accessed several times (ﬂﬂgfﬂ on the average) thus increasing the cost
of the join operation. The cost is higher if the availabe buffer size is smaller.

The experimental results in Table 6.6 shows the relationship between the
buffer size and the cost of the join operation. Column one of the table shows
the ratio of the buffer size to the size of the smaller relation. Column two
shows the query distribution used to perform the joins. Columns three and
four show the cost of the join operations when using the cyclic choice vector
and the optimised choice vector respectively. The last célumn shows the gain
that is achieved by using the optimised choice vector instead of the cyclic
choice vector. It is computed by dividing the cost obtained by using the
eyclic choice vector by that of the optimsed choice vector. As can be seen

from the table, as the buffer size increases the cost decreases.

6.4.7 Stability

Query distributions can change over time. A choice vector optimised for a

given query distribution may perform worse than the cyclic choice vector if

164

Size ratio Query Number of disk accesses Gain =
{buffer/relation) | distribution |- Cyclic Optimised | (Cyclic/Optimised)

0.001 SH 1286212 270619 4.75
0.005 e, 281041 75878 3.70

0.01 &, 154634 60093 2.57

0.0 & 64042 47474 1.35

0.1 ©; 45893 45117 1.02

0.15 o1 45482 44873 1.01

0.2 ch 45235 44873 1.01

Table 6.6: Effect of buffer size on query cost.

the query distribution changes significantly. In order to study the stability
of our optimised choice vectors, experiments were done to determine the
change in performance when the query distribution changes. We state that
each query distribution is changed by % if each query probability, p, is
randomly changed to be in the range p x (1 & 335) prior to the whole query
distribution being normalised.

Figures 6,10 to 6.13 show how the average query cost is affected when the
- probability of each query changes by up to 80%. In each figure, three average
query cost ratios are shown, using dotted, dashed and solid lines. The dotted
line (“Cyclic/New”) corresponds to comparing the average que-ry cost of a
BANG file built u.sing a cyclic choice vector with that of a BANG file built
using a choice vector optimised for the new, changed, query distribution.
The dashed line (“Old/New”) correspond to a BANG file which was built
using an optimised choice vector determined by using the original query
distribution. The solid line (“New/New”) corresponds to BANG files built

using an optimised choice vector determined using the changed probability

distribution.

165

seveaa Cyclic/New
- = OfdNew
New/New

+ th
i ul

W
1

i R R R L R T e
-= -u

Cost rati
v

1 P T N Y
0 ! 1 I 1
0 20 4 60 80

Change in query distribution (%)

Figure 6.10: Stability of the optimised choice vector using ©, and the uniform
data distribution.

veeeee Cyclic/New
- = = - Old/New
New/New

Lh

e
| FEPTYYTOR FPYPYPITY |

.E 3

el

& L e e em e iaeeesamamcmamemsameseecasAtaa aneasan et aan e ems e ennae

bt =

& 23

©
1 - ey o o e = A v b A = o = =
0 b |] 1

0 20 40 60 . 80

Change in query distribution (%)

Figure 6.11: Stability of the optimised choice vector using ©, and the clus-
tered data distribution.

k-
5

¥,
3
3
'!

seeeen Oyclic/New

— =~ Old/New
New/New
53
43
£ 3
g F
L]
8 2-
L
1 o g e e e m R A A ek P S Sk St B e’ s alie
0] T 7)
0 20 40 &0 80

Change in query distribution (%)

Figure 6.12: Stability of the optimised choice vector using ©, and the sinu-
soidal data distribution.

------ Cyclic/New
o Old/New
New/New
5
4
K
3
&
L)
g 2
(&)
1 e A A bk kw4 s g M o Aap e g ag e parupe faEaypApsEe s e e s e e b
0 1 _] I]
0 20 . 40 60 80

Change in query distribution (%)

Figure 6.13: Stability of the optimised choice vector using @, and the linear
data distribution.

167

Our results show that the performance of the optimised choice vector of
the original query distribution is almost as good as that of the changed query
distribution even when the distribution was changed by 80%. As a result,
we can conclude that an optimised BANG file needs to be reorganised rarely,

only when the query distribution changes drastically.

6.5 Conclusion

Our study shows that given a probability distribution of join queries, an
efficient physical database design can be created by using simulated annealing
and Equation 6.5. Unlike previous approaches, cur approach is not limited to
2 uniform data distribution or to independently specified attributes, and the
precise nature of any non-uniformity does not need to be known. We avoid
these limitations by using a file structure which distributes records evenly
amongst disk pages even when the data distribution is highly non-uniform.
For our experiments, we used the BANG file.

When compared to the cyclic choice vector, our results show that the
optimised choice vector produces more efficient physical database designs,
reducing the average query cost. For example, in one of our experiments in
which a BANG file of eight attributes was used, the optimised éhoice vector
resulted in an improvement of 716% over the cyclic choice vector.

The improvement gained by using an optimised choice vector instead of
the cyclic choice vector increases as the number of attributes increases. This
is because as the number of attributes increase, the likelihood of dividing

the domain space using attributes which do not occur frequently in queries

168

is higher when the cyclic choice vector is used. This results in an inefficient

physical database design. For example, in the experiments that we per-

formed, the improvement in performance was greater when there were eight

attributes in the relation than when there were two, three or four attributes.

Similarly, as the ratio of attributes which occur frequently in queries to at-

tributes which do not increases, the improvement in the performance of the

optimised choice vector over the cyclic choice vector decreases.

We found that the optimised choice vector consistently performs better

than the cyclic choice vector across a wide range of file sizes, page sizes and

buffer sizes.

There is no need to rearrange the optimised choice vector whenever the

query distribution changes by 2 small amount. Qur experiments show that

the optimised choice vector built for the current query distribution will re-

main almost as geod as the optimised choice vector built for a variation on

the current query distribution even when the query distribution changes by

80%. There was a degrediation of less than 5% in perfromance.

We conclude that if the query distribution is known and a file structure

which evenly distributes records amongst disk pages is used regardless of the

data distribution, an optimised choice vector produces an efficient physical

database design. To our knowledge, this is the mosi practical method of

storing multidimensional data in order to best exploit a known query distri-

bution. We therefore recommend that such structures be incorporated into

new generation database systems.

Chapter 7

Optimizing other relational

operations

7 1 Introduction

In the previous chapters we discussed new techniques of optimising the or-
ganisation of multidimensional data in order to minimise the cost of partial
match, range and join queries. In this chapter we will discuss new techniques
of optimising the organisation of multidimensional data in order to minimise
the cost the other standard basic operations such as selection, projection,
join, intersection, union difference and division.

The selection operation includes the exact match, partial match and range
queries all of which were explained in the previous chapters. Hence, the

selection operation will be discussed briefly.

170

Projection requires each record to be read once. It cannot be optimised

F if it is the only operation to be performed and duplicates are to remain in

the output relation.

The implementation of intersection, union difference and division is sim-
ilar to that of the join operation. Thus, the same basic approach van be
taken in their efficient impl-emeﬁtation. There are a number of rossible join
implementations which can be used with multidimensional data. This chap-
ter will first discuss these join implementations and then it will discuss how
some of these implementations can be used for intersection, union difference
and division.

This chapter consists of 10 sections. The next two sections, sections 7.2
and 7.3, discuss the implementation of selection and projection operations
respectively. The different algorithms of the join operation are covered in
section 7.4. The implementations of the intersection, union, difference and

division operations are explained in sections 7.5 to 7.8 respectively. Duplicate

removals and aggregation is discussed in section 7.9. The last section is the

conclusion of this chapter.

7.2 Selection

The selection operation retrieves records from a file or a data:zbase which
satisfy the yueries condition. There are three types of selection queries,

namely, exact match, partial match and range query.

1. In an ezact match query records to be retrieved are described by spec-

ifying all the fields of the record.

171

2. In a partial match query records to be retrieved are described by spec-

ifying a subset of its fields.

3. In a range query the records to be retrieved are described by specifying

a range of values to a subset of the fields.

In an exact match query, a search string, which is a string of binary
values, is contracted from the valies of the specified attributes. This is done
by assigning the bit positions in the choice vector which correspond to the
specified atiribute according to the specified value. Once the search string is
Iconstructed the search for the record starts from the root. Fach root entry
is matched with the search string. The matching is done by comparing the
bits of the search string to that of the partition number of the eniry. If the
partition level of the entry is d, and, the first d bits of the partition number
match that of the search string, then this entry is a candidate to hold the
required record. From all the candidate entries, the one with the highest
partition level is the one which can hold the search record. Then the search
descends to the next lower directory level using the chosen entry. The same
process (as that of the root) is again repeated on the entries of the chosen
page. The search then descends to the next lower level and so on until the
data page which may contain the required record is retrieved.

A search string is also constructed when processing partial maf.ch queries.
In the search string, the bits which correspond to the specified attributes are
set accordingly and those bits which correspond to the unspecified attributes
are left as don’t care. In a partial match query, searching for the required

records starts from the root. Al the entries of the roo* page are matched

172

with the search string. All the entries matching the bits of the specified
attribute in the search string are chosen. The search for the required records
then descends to the next lower directory level using all the entries chosen
from the root page. The same process is repeated in this level again. The
search then descends to the next lower level an so on until all the data pages
which may contain the required records are searched, The main difference
in processing a partial match query and an exact match query is that, in
an exact match query an entry which directly encloses the required record is
- chosen, while in partial match query all the entries which directly or indirectly
enclose the required records are chosen.

In a range query, the construction of the search string is nearly the same
as that of the partial match query. As was explained in Section 5.2, a range
query can be envisioned as a subspace called query space within the domain
space of a relation. The search strinc represenis the query space. An answer
to a range query is the retrieval of all the records in the query space. Search-
ing for the required records starts from the root. Root entries matching the
search string are candidates for the next search. If there are two candidate
entries, A and B, where A encloses B and B encloses the query area, then A
is dropped as a candidate. This is because A will never contain the required
records.

As was discussed in the beginning of this chapter, selection consists of
partial match query and range query. Hence, the techniques used, in chap-
ters 4 and 5, to find optimised choice vectors for partial match query and

range query can be used to minimise the cost of selection.

173

7.3 Projection

If we think of a relation as a table, then the select operation selects some
rows from the table while discarding the other rows. The project operation,
on the other hand, selects certain columns from the table and discards the
other columns. If we are interested in certain attributes of a relation, we use
the project operation to "project” the relation over the selected attribute
list. If the attribute list includeé only nonkey attributes of a relation, then it
is probable that duplicate records may appear in the result. The result of the
project operation is a set of records and hence a valid relation. Providing no
duplicate removal is required, the number of records in the output relation
is the same as that of the input relation.

The project operation is usually performed as a part of another operation.
Because it requires full scan of the input relation, its implementation is the
most straightforward of all the relational operations providing no duplicate
‘removal is required. The removal of duplicate records from the result query
is a problem common to this operation and many of the other relational

operations. Consequently, we discuss it separately, in Section 7.9.

7.4 Join

The join operation is one of the database operations which is used to combine
records from two or more relations based on a condition known as join-
condition. Records of the input relations are combined when the‘y satisfy the
specified condition. The result of a join operation is a relation which has

some or all of the attributes of the input relations.

The analysis and implementation of the join operation for uni-dimensional
data has been an active area of research. There is a comprehensive survey
paper on this active research area done by Mishra and Eich in [89). The
existing join implementations for a uni-dimensional data can also be used for
multidimensional data after the multidimensional data is optimally organised
using choice vectors. At the moment, there are three main types of join
algorithms , namely, nested loop, sort-merge and hash join. This section
contains overview of each of these algorithms, providing the foundation upon

which our variation is based.

7.4.1 Nested loop

The nested loop algorithm is the simplest of the join algorithms. In nested
loop one of the relations being joined is designated as inner relation, and
the other one is designated as the outer relation. I works in the following
way. For each record in the outer relation, all records of the inner relation
are read and compared with the record from the outer relation. Whenever
the compared records satisfy the join condition, they are concatenated and
placed in the ontput buffer. The outer relation is typically the smaller of the
two relations.

In practice, more than one record of the outer relation is read before the
inner relation is scanned. For example, Blasgen and Eswaran [13] held many
records of the outer relation in memory as possible and read one record at a
time from the inner relation. |

A similar algorithm has been suggested on the disk block level. For

example, if the size of the memory is B blocks, B — 2 blocks of the outer

175

relation are read at a time, and the inner relation is scanned one block at a

time. One block is reserved for the result records. This algorithm is often

called the nested block algorithm.

Several optimisations can be applied to the above algorithm. Two im-
portant ones are, the use of a hash table, and rocking. Instead of comparing
every record in the inner relation with every record of the outer relation,
the records outer relation can be inserted into a hash table v 2« . &= 2t
tributes to foxm the hash key. The records of the inner re? - . « v "5 1
to probe the hash table, searching for records to join with. "% inieay y
reduces the number of comparisons required.

A further step towards efficiency consists of rocking [67) ..~ --n:-ested by
Kim. Rocking is used when the outer relation is iarger than its memory
buffer. On the first pass through the inner relation, the inner relation is read
from disk. On subsequent passes, part of the inner relation will already be in
the memory, from the previous pass. This part need not be reread from disk.
The name, rocking, derives from the observation that one implementation of
this is to read the inner relation forwards and backwards on alternate passes.
Thus the beginning and the end of the relation is only read on alternate
passes.

In most operating System it is much more efficient to read a file forward
than backwards. Under these these circumstances, a better implementation
of rocking is to read the file in a circular manner. Each pass should start by
processing the records alveady in memory. It should then start reading from
the end of the last part of the file read during the previous pass and read to
the end of the file. It should then go back to the start of the file and read to

176

the start of the first block of the file which was in memory at the beginning
of the pass. The same number of blocks are read as in Kim’s scheme, but the
total time taken to read it will be shorter because the file was always read

in the forwards direction [51].

7.4.2 Sort-merge

The sort-merge join is done in two phases, namely, a sorting phase and a
merging phase. In the sorting phase, each relation is physically sorted in its
respective attributes and in the merging phase, both relations are scanned in
the order of the join attributes, and records satisfying the join condition are
merged to form a single relation. Whenever a record from the first relation
matches a record from the second relation, the records are concatenated and
placed in the output relation.

In the sorting phase, depending on the size of available memory, a num-
ber of sorted partitions are created. Replacement sections, as described by
Knuth [70], can be used to generate the initial sorted partitions, In the
merging phase, corresponding sorted partitions are scanned and records with
the matching join attributes are joined. By first sorting both relations, the
merging phase is performed in linear time iﬁ the size of the relations.

If the relations are presorted, this algorithm has a major advantage over
the other join algorithms because each relation is scanned only once. Further
if the number of the records in the output relation is low in comparison to the
number of records in either input relations, then the number of records to be
compared are considerably lower than that in the nested loop joip algorithm.

Blasgen and Eswaran has shown that this algorithm is most efficient in a

uniprocessor system [13]. Blasgen and Eswaran and another researcher, Su,
in [132] suggested that in the absence of indexes and knowledge about the
selectivity, and if there is no basis for choosing a particular join algorithm,

then the sort-merge algorithm is often found to be the best choice.

7.4.3 Hash joins

In a hash join, the Jjoin attribute values of each record in the first relation is
hashed and then put in a hash table according to the hash value. Similarly
the join attribute values of each record in the second relation is hashed and
is probed the same hash table for join [24]. The hash join tries to take
the advantage of nested loop and sort-merge join algorithms. It takes the
advantage of the fact that the nested loop algorithm only requires a single

scan of the input relations if one of the two relations can be completely

" contained in memory. They aim to partition the relations so that this is

possible. Also it takes the advantage of merge-sort in comparing only records
which can possibly satisfy the join condition [14,45]. A large number of join
algorithms using hashing has been proposed and we will briefly discuss some

of them in the following subsections.

GRACE hash join

GRACE hash join consists of two phases, namely, the partitioning phase and
the matching phase [68].
During partitioning phase each relation is split into equal number of parti-

tions. This is done by reading each record of the input relations and applying

178

hash function to its join attributes. The results of applying the hash func-
tion are used to form a hash key for each record. The hash key is used to
determine which output partition each record is placed in. The same hash
function must be used to partition each relation, producing the same num-
ber of partitions, P, from each relation. If two records must be joined they
will have the same hash keys, and, therefore, will be in the corresponding
partition of each relation. If thé smaller partition of a correspending pair of
partitions is larger than main memory the pair of partitions are themselves
partitioned into pairs of smaller partitions. This process continues until at
least one partition in each pair can be contained in memory.

In the matching phase of the GRACE hash join algorithm; the nested
loop algorithm is applied to each pair of partitions. In each case, the outer
retation is read and its records are inserted into a hash table. Then the inner

relation is scanned and the hash table is probed to join the records. Records

~ satisfying the join condition are concatenated and placed in the output buffer.

Hybrid hash join

The hybrid hash join algorithxﬁ is to a large extent similar to the GRACE
hash join [24,128). The difference lies in the fact that the hybrid hash join
algorithm does not write out all partitions to disk. It starts the join process
on the first pair of partitions while the second relation is being partitioned.

Instead of writing out each partition to the disk as it is created, the hybrid
hash join keeps one partition in main memory (in & hash table) while writing
out all the others to the disk. When the second relation is partitioned, records

which hash into the partition which corresponds to the one in the hash table,

are joined with the records of the first relation by probing the hash table.

Keeping one of the partitions in the memory during the partitioning phase
of the first relation, minimizes the I/O activity to the extent of not having
to write the partition to disk and then read it back once the ‘partitioning
phase is complete. This is particularly advantageous when the size of each
partition js quite large.

A number of hybrid hash join variations have been proposed. Their pri-
mary aim has been to overcome the problems of uneven distribution of data
;which can result in large differences in the sizes of the partitions of a relation

[96,112, 144].

7.4.4 The proposed join algorithm

Our version of join implementation was extensively discussed in the previous
chapter. The proposed join implementation is a variation of the hash join
algorithm. Hence, in this subsection we will explain how it is related to the
‘other hash joins.

- As was discussed in Section 7.4.3, a hybrid join algorithms has 2 phases,
namely, the partitioning phase and the matching phase. The main difference
between the various hybrid joins and ours is mainly in the partitioning phase.
‘We know that in the BANG file as in all other multidimensional file siruc-
tures, the data is already partitioned. So our join algorithms exploits the
existing partitions of such file structures to skip or minimize the pariitioning
phase.

Our algorithm starts by mapping the domains of all the join attributes

into one domain. This is done by assuming the bit positions in the choice

180

vector which correspond to the join attributes to belong to one imaginary
attribute. For example, if the number of join attributes is 3 and each one of
them has 2 choice vector bits, then the number of choice vector bits of the
imaginary attribute will be 6. Let us call these bits o bits. If the sizes of
the « bits in the joining relations is different, then the minimum of all the
sizes is considered to be the size of the & bits. If the size of the « bits is n,

then the imaginary domain is partitioned into 2" intervals. These intervals

are labeled as 0,1,...2" - 1.

A partition intersects an interval if the values of its ¢ bits in its partition

number is equal to the interval label. For example, if the size of the o bits

is 6, and the o bits in the partition-number of a partition P have values of

0,0,0,0,1,0,1, then P intersects interval 5, which is 0000101 in binary. Let
us call the set of partitions from R; which intersect interval j as W; ;. For
example, the set of R, partitions intersecting interval 0 is Wy .

Once the size and the positions of the a bits are known, our algorithm
searches both joining relations, R, and Rj, for members of W g and Wag. If
the number of partitions in W) g are less than those in Wy, records in Wiy
are placed in a hash table and those in Wy probe the hash tables for join.
But, if the number of partitions in Wy are less than those in Wl 0, Tecords
in Wy are placed in a hash table and the records in W, probe the hash
tables for join. Once the join of Wiy and Wy is done, a similar process is
repeated for the join of W)y and Wy, then for Wy, and Wy and so on till
the join of Wy on_1 and Waon_;.

Each set of partitions doesn’t have to be processed in a separate loop. If

the smallest partition in a set spans many intervals, then all the partitions

which intersect those infervals can be processed in one loop. Hence the

number of loops can be much less than the number of intervals.

If 2 set contains partitions of different sizes, records in a large wartition
may be processed in differnet loops. Some records of such a partition may
not be put in a hash table but instead be placed in partitions, according to

their hash values, which will be processed in the coming loops.

7.5 Intersection

An intersection is an operation which takes two relaticns as input, and resulis

in a third relations which includes records which are in both input relations.

The implementation of the intersection operation is similar to that of the
join. The primary difference (other than the result of the operai;ion) is that,
with the intersection operation all the choice vector bits can be considered
as a bits. But if the size of the & bits is equal to the size of the choice vector,
each interval on the average will be intersected by one page. This means
" that one page from each relation will be read and processed in each loop of
this algorithm. But processing one page at a time will substantially increase
the number of directoxy traversals. So to minimise the traversal of directory
pages, the number of intervals must be reduced. Reducing the number of
intervals will increase the average number of data pages intersecting an in-
terval. So to reduce the number of intervals, the number of « bits can also be
reduced. The number of o bits must be reduced until the number of pages

intersecting an interval comes close to the available memory.

Without loss of generality less us assume that the current intersecting

sets of partitions to be W;; and Wy; and the number of partitions in Wi,
to be less than that of Wy ;. The implementation of the join operation of
section 7.4.4, works by reading records of the W;; matching certain hash
values. The intersection operation can be implemented in the same way
provided that all of the records of the W, ; matching the given hash value are
in memory at once. During the pass over the W, ;, those records in the W;;

which match (intersect with) those in the W} ; should be marked. After all

the records in the Wy ; have been read, the marked records of the W; 4 can

be written out. This also ensures that no duplicate records are written.

7.6 Union

A union is an operation which takes two relations and resuits in a third rela-
tion which includes all records that are in either or in both input relations.
Duplicates must alsn be removed. However, unlike intersection operation,
the answer to the union are not present in one relation. To remove dupli-
cates without performing passes over the current sets of partitions, we must
have all the records from both sets matching certain hash values in memory
simultaneously. If this condition is met, the algorithm is simply a modifica-
tion of the join algorithm which performs the unjon operation instead of join
in the loop. The number of partition in W;; and W ; must not be larger
than the memory buffer allocated to them. This can be done by chocsing a
reasonable size of a bits.

The output partitions must.' be processed to remove the duplicates, and

the duplicate removal is described in Section 7.9.

183

7.7 Difference

The difference operution, which is denoted as R; — Ry, is an operation which
takes two inps relations, Ry and Ra, and results in a third relation which

includes al! 1*1¢ vecords that are in By but not in R,.

The initin) Taevtion of the output records of the difference is the first
relation, f¢;. This is different from the union operation, in which the result
records come from bhesth relations. It is also different from the intersection
 operation, in that the resalt records are found within one specific relation.
The differcrion operation is not commutative, and requires that duplicate
records be removed {rom the output. To avoid performing a final pass over
the output file to remove duplicates, each partition of the first relation must
be held in memory at ome timne. Thus the partitions of first relation must
be placed in the hash table, even if they are more than those of the second
relation.

The diffe: 02 operation can be implemented using the same algorithm as
the join, given in Section 7.4.4, except that the partitions of the first relation
must be placed into the hash table and those of the second one must probe
the hash table later. If the number of partitions in the current set of the first
relation is more than the allocated memory, duplicate records will have to be
removed from the output partitions after it has been produced, as described
in Section 7.9. | .

‘The main part of the difference algorithm can be implemented in a manner
similar to the intersection operation, described in Section 7.5. The only

change that is required is that instead of writing out the marked records, the

184

Subject code | Subject name
CS001 Databases
C5002 Operating systems

Table 7.1: SUBJECTS table

Subject ID [Subiect code

. STU00L >5002

[STU002 C3901
STU003 8001
STU003 C5002
STU0N4 CS001
5TUQ05 CS002
STU006 CS001
STU007 CS001
STU007 CS002
STU008 CS002
STU00S9 § CS002

Table 7.2: STV TNTS-SUBJECTS table

unmarked records should be written out.

7.8 Division

Tha divisicn process is best illustrated by considering the division of a relation
reivh two columns by a relation with single column. As an example assume
the division of the STUDENTS-SUBJECTS relation , shown in Table 7.2,
Ly SUBJECTS relation which is shown in Table 7.1.

The result relation, the quotient, will be a relation with one column which
is the S:udent ID. containing the ids of the students who took all the subjects

in the SUBJECTS table. The rows in the quotient relation will consist of

185

Student 1D
STU0D3
STU007

Table 7.3: Answer

students ids of the students who took all the subjects in the SUBJECTS
table. With our sample data, the new relation will consist of STUQQ3 and
STU007 as shown in Table 7.3. -

Our new division algorithm, on relations having multidimensional data,
starts by organising the data with optimised choice vector. The process of
finding the optimised choice vector is the same as that of join operation and
was discussed in Chapter 6. Like the join, the division operations consists of
two phases, namely, the selection phese and the hashing phase.

The selection phase is exactly the same as that of the join operation and

was explained in Section 6.2.1. The hashing phase has the following features.

1. T'wo hash tables, one for the divisor and the other one for the quotient

are created.
2. Each divisor is assigned a unique sequence number.

3. For each quotient candidate, a bit map is kept. The bit map contains

a bit for each divisor, indexed by the sequence number.

4. When a quotient candidate is found, the bit corresponding to the divi-

sor is set in the bit map of the quotient candidate.

5. The final quotient consists of all quotient candidates which have all the

bits set in their bit map.

186

o St L 4 e et St
T S Ty AL L e) (=45 W

e

TR

TN

7.9 Duplicate removal and aggregation

T‘he removal of duplicate records is implicit in most relational operations.
If an operation is of the type select-operation-project, and the attributes
on which the operation is performed are not included in the records after
the projection, the output could include duplicate records which must be
removed.

We eliminate duplicate records from a relation by arranging the records
into partitions, such that each partition is smaller than the size of main
memory. The partitions can tnen be read into main memory, the duplicates
removed, and the remaining records written out. The first step is the normal
process of partitioning a relation. Memory which is not used during the
execution of relation operation can be used to create the initial part of the
index at little additional cost.

Aggregate functions like SUM, AVG, MAX, MIN etc., often group records
together and produce some computed output. Therefor aggregate functions

can be implemented using the same basic algorithm as duplicate removals.

7.10 Conclusion

In this chapter we covered new techniques of optimising the organisation of
multidimensional data in order to minimise the cost of the standard relational
operations such as selection, projection, join, intersection, union difference
and division.

The selection operation is either exact match, partial match or range

query. The cost of exact match query is determined by the depth of the

187

BANG file so no optimal orgaﬁisation of the multidimensional data is re-
quired. Finding optimised choice vectors which minimise the cost of the
partial match and range queries were covered in Chapters 4 and 5 respec-
tively, and a brief summary of them is in this chapter for completeness.

Projection requires each record to be read once. It cannot be optimised
if it is the only operation to be performed and duplicates are to remain in
the output relation.

Duplicate records are eliminated from a relation by arranging its records
into partitions, such that each partition is smaller than the size of main mem-
ory. The partitions can then be read into main memory and the duplicates

removed.

Aggregate functions often grbup records together and produce some com-
puted output. Thus they can be implemented using the same basic algorithm
as duplicate removals.

The implementation of intersection, union difference and division is sim-
ilar to that of the join operation. Thus, the same basic approach, as the one

discussed in Chapter 6, can be taken in their eflicient implementation.

188

Chapter 8

Conclusions and Future work

8.1 Conclusions

Effective and efficient management of a large volume of data is critical in
modern and future computer applications. As the size and speed of com-
puter systems has increased, so has the amount of data which has to be
manipulated. While the CPU speed is still doubling nearly every eighteen
months, the performance of the secondary storage devices is not increasing
on the same rate. That is why the cost of answering a query is mainly
measured by the number of disk accesses performed to retrieve the records
described by the query. Therefore the efficiency with which this devices are
used continues to be very important. This thesis has addressed the issues
associated with improving the efficiency with which these devices are used.
The improvement is achieved by way of organising the data based on the

distribution of queries.

189

Minimizing the cost of uni-dimensional access methods has been exten-
sively studied, hence the aim of these thesis is to find techniques of opti-
mally organising multidimensional data. The lack of order th.a.t preserves
spatial proximity of records in uni-dimensional access methods makes them
much easier to design than multidimensional access methods. This is because
there is no total ordering of objects in two or higher dimensional space that

completely preserves spatial proximity.

Optimally organising multidimensional data is NP-hard. To circumvent
the problem, in this thesis, we use heuristic solutions, that is, we look for total
orders that preserve spatial proximity at least to a great extent. Our aim
is that objects located close to each other in the original space should likely
be stored close together on the disk. This could contribute substantially
in minimizing the number of disk accesses per query. Existing solutions
are limited to uniform data distribution or to optimising either a partial
match query or range query. The solutions in this thesis include skewed data
distributions and all t.ypes of relational queries.

For each type of relational operation a new algorithm was proposed. Also,
for each type of relational query, a cost model was proposed in order to
come up with cost functions that are used in association with the heuristic
algorithms. The proposed cost models are more accurate than the existing
cost models {17, 51,136]. Unlike the existing cost models, the proposed cost
models doesn’t ignore the cost associated with directory pages.

We found that the proposed organisation of multidimensional data con-
sistently performs better than the standard organisation across a wide range

of file sizes, page sizes, and buffer sizes. In one of our experiments, the gain

190

in performance was 3617%. The improvement in performance was greater
for relations containing a larger number of attributes. Further more, the
proposed data crganisation is not that sensitive to minor changes in the
query distribution. In more than 90% of our experiments, a change in the
query distribution of up to 20% has a minimal impact on the performance
(less than 5% degradation). Often the degradation is not significant (less
than 20%) even when the original query distribution is chg.nged' by 80%.

In range queries, the relative size of the query-space also affects the perfor-
mance of the proposed solution. For a query space size which is either equal
to the whole domain-space or is a point query-space, both the proposed data
organisation and the standard data organisation perform the same. How-
ever, the proposed solution performs better than the standard one when the
query-space size is between these two extremes.

To our knowledge, this is the most practical method of storing multi-
dimensional data in order to best exploit a known query distribution. We
therefore recommend that such structures be incorporated into new genera-

tion database systems.

8.2 Future work

There are a number of open problems resulting from the work in this thesis.
The heuristic algorithms that are used in this thesis to generate the opti-
mised organisation of multidimensional data are minimal marginal increase
and simulated annealing. Minimal marginal increase is a greedy algorithm

and is not guaranteed to find the optimal solution. The time taken by simu-

191

lated annealing to come up with the optimal solution may not be an option
for some applications. So there is a scope of finding heuristic algorithms
that are fast, dynamic and those which result in the optimal organisation of

multidimensional data.

A lot of the solutions that we proposed in this thesis can be done in

parallel. For example, in the proposed join algorithm, the join compatable

waves can be processed in parallel. Also, in recent years a lot of researches
came up with parallel algorithms to implement relational database opera-
tions [12, 80,82, 92,93,118,123, 129, 138]. These algorithms can be enhanced
to exploit the proposed multidimensional data organisation. This is another
area that can be investigated.

The full advantage of processing queries in paraliel can not be achieved
unless the data is striped across multiple disks. The optimal way of striping
skewed multidimensional data in order to speed up query processing is an an
area which has never been touched before.

In section 6.4.6 we showed that how the buffer size affects the cost of a
join query. Also, Evan et. al. in [53] show that the way the available buffer
is split between the two input relations significantly affects the cost of the
join operation. The optimal way of dividing the available memory between
the two input relations of the join operation to further optimise the proposed
join algorithms is another area to be looked at.

In multidimensional files, the way transactions are controlled and the way
locks are administered are not yet investigated. Also the way constraints are

handled, specially foreign key constraint, needs further investigation.

Bibliography

[1] E. Aarts and J. Korst. Simulated annealing and Boltzmann Machines.
Wiley, 1989.

r

[2] D. J. Abel and J. L. Smith. A data structure and algorithm based on

a linear key for a rectangie retrieval problem. Comput. Vis., 24:1-13,

- 1983

[3] A. V. Aho and J. D. Ullman. Optimal partial-match retrieval when
fields are independently specified. ACM Transactions on Database Sys-
tems, 4(2):168-179, June 1979.

[4] R. Bayer and E. M. Mccreight. Organization and maintenance of large

ordered indices. Acta Inf., 1{3):173-189, 1972.]

[5] R. Bayer and M. Schkoinick. Concurrency of operations on b-trees.
Acta Inf., pages 1-21, 1977.

[6] B. Becker, P. FrancLosa, S. Gschwind, T. Ohler, F. Thiem, and P. Wid-
mayer. Enclosing many boxes by an optimal pair of boxes. In In Pro-
ceedings of STACS92, pages 475-486, 1992. A. Finkel and M. Jantzen,
Eds., LNCS 525, Springer-Verlag, Berlin/Heidelberg/New York.

193

[7) L. Becker. A new algorithm and a cost model for join processing with the

grid file. PhD thesis, Universitiit-Gesamthochschule, Siegen, Germany,
1992,

[8] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Sfeger. The r*-
tree: An efficient and robust access method for points and rectangles.
In ACM SIGMOD International Conference on Management of Data,
pages 322-331, 1990.

bl s e o,

[9] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509-517, 1975.

[10] J. L. Bentley and J. H. Friedman. Data structures for range searching.

ACM Computing Surveys, 11:4):397-409, 1979.

[11] S. Berchtold, D. Keim, and i{.-*. Xriegel. The x-tree: An index struc-
ture for high-dimensional data. In The 22nd International Conference

on Very Large Data Bases, pages 168-179, 1996.

{12] D. Bitton, H. Boral, D. J. DeWitt, and W. K. Wilkinson. Parallel

algorithms for the execution of relational database operations. ACM

Transactions on Database Systems, 8(3):324-353, September 1983.

[13] M. W. Blasgen and K. P. Eswaran. Storage and access in relational
database. IBM Systems, 16(4):105-115, 1977.

[14] K. Bratbergesengen. Hashing methods and relational algebra opera-

. tions. In Proceedings of the 10th VLDB Conference, pages 323-333,
“ August 1984.

194

(15] W. A. Burkhard. Interpolation-based index maintenance. BIT, 23:274-
204, 1983. "

[16] W. A. Burkhard. Index maintenance for non-unifrom record distribu-
tion. In The Third ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 173-180, 1984.

[17) C. Y. Chen, C. C. Chang, and R. C. Lee. Optimal MMI file systems
for orthogonal range queries. Jnformation Systems, 18:37-54, 1993.

[18] L. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani.
Access to multidimenensional datasets on tertiary storage systems. Inf

Syst., 20(2):155-183, 1995.

[19] S. Christodulakis. Estimating block transfer and join size. In /n Pro-
ceedings of SIGMOD. CODASYL, 1971. Database Task Group Report.,
pages 105-115, 1985.

[20} D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(2):121-
138, 1979.

[21] H. Dang and D. Abramson. Cooling schedules for simulated anneal-
ing based on scheduling algorithms. In Proceedings of the 17th An-
r-:l Computer Science Conference, pages 541-550, Christchurch, New

Fualand, January 1994.

[22] B. P. Diesai. Performance of a composite attribute and join index. IEEE

Trans. on Software Engineering, SE-15(2):143-152, February 1989.

195

(23] D. J. DeWitt and J. Gary. Parallel database systems: the future of

24]

[25]

- [26]

[27]

[28]

[29]

database processing or passing fad. SIGMOD rec., 19(4):104-112, De-

cembe> 1990.

D. J. DeWitt, R. H. Katz, L. D. Olken, ~“. R. Shapiro, Stonebraker,
and Wood D. Implementation technique for main memory database

systems. pages 1-8, Boston, Massachusetts, US.,, . ne 1084.

R. Elmasri and S. B. Navathe. Fundamentals of database systemns.
Benjamin/Cummings Publishing Co., Redwood City, California, 1994.

M. Ester, J. Kohthammer, and H. Kriegel. T, ' dc-tree: A fully dynamic

index structure for data warehouses. In iecetkde, pages 379388, 2000.

G. Evangeliais, D. Lomet, and B. Salzberg. The hb-tree: A modified
hb-tree supporting concurrency, recovery and node consolidation. In

The 21st International Conference on Very Large Dala Bases, pages
551-561, 1995.

G. Evangflidis. The hB-tree: A concurrent and recoverable multi-
attribute index structure. PhD thesis, Northeastern University, Boston,

MA., 1994.

R. Fagin, J. Nievergelt, N. Pippenger, and R. Strong. Extendible hash-
ing: A fast access method for dynamic files. ACM Trensactions on

Database Systems, 4(3):315-344, 1979.

C. Faloutsos. Multiattribute hashing using gray-codes. In The ACM
SIGMOD International Cbnference on Management ofdata, pages 227—
238, 1986.

196

[31} G. Faloutsos. Gray-codes for partial match and range queries. IEEE
Trans. Softw. Eng., 14:1381-1393, 1988.

[32] G. Faloutsos and Y. Rong. Dot: A spatial access method using fractals.
In The Seventh IEEE International Conference on Data Engineering,
pages 152-159, 1991.

[33] G. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In
The Eighth ACM SIGa T-SIGMOD-SIGART Symposium on Princi-
ples of Datebase Systems, pages 247-252, 1989,

[34] R. Finkel and J. L. Bentley. Quad trees: A data structure-for retrieval
of composite keys. Acta Inf., 4(1):1-9, 1974.

[35] S. Finkelstein. Physical database design for relational databases. ACM
Transactions on Database Systems, 13(1):91-128, March 19£3.

[36] M. Freeston. The bang file: A new kind of grid file. In U. Dayal and
I. Traiger, editors, The ACM SIGMQOD International Conference on
Menagement of Data, pages 260-269, San Francisco, California, USA,
May 1987.

[37] M. Freeston. Advances in the design of the bang file. In In the pro-

ceeding of the Third International Conference on Foundations of Data

Organization and Algorithms, pages 322-338, 1989.

[38] M. Freeston. On the complexity of bv-tree updates. In The CDBJ7

e R LI Yy

4 and CP’96 Workshop on Constraint Databases and their Applica-
tion, V. Gaede, A. Brodsky, 0. Guniher, D. Srivastava, V. Vienu,

197

SFCATAT RS FRCR I ol I N)

and M. Wallace, Eds., pages 282-293, LNCS 1191, Springer-Verlag,
Berlin/Heidelberg/New York, 1997. |

[39] H. Fuchs, G. D. Abram, and F.. D. Grant. Near real-time shaded display
of rigid objects. Computer Graph, 17(3):65-72, 1983.

[40] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by

a priori tree structures. Computer Graph, 14(3), 1980.

[41] V. Gaede and O. Gunther. Multidimensional access methods. ACM
Computing Surveys, 30(1):170-230, June 1998.

[42] A. K. Garg and C. C. Gotlieb. Order preserving key transformation.
ACM Trans. Databese Syst., 11(2):213~-234, 1986.

[43] F. Glover. Tabu search: a tutorial. Interface, 20(4):74-94, 1990.

[44] D. E. Goldberg. Genetic algorithms in search, optimization, and ma-
chine learning. Addison-Wesley, Reading, Massachusetts, USA, 1989.

[45] J. R. Goodman. An investigation of multiprocessor structures and
algorithms for database management. Technical Report UCB/ERL,
M81/33, University of California, Berkly, 1981.

[46]) P. Goyal, H. Li, E. Regener, and F. Sadri. Scheduling of page fetches
in join operations using be-trees. In In Proceedings of Conference of

Date Engineering, pages 304-310, 1988.

[47] O. Gunther. The cell tree: An object-oriented index structure for
geometric databases. In The Fifth IEEE International Conference on
Data Engincering, pages 598-605, 1989,

198

148

(49]

[50]

[51]

[52]

[53]

[54]

O. Gunther and A. Buchmann. Research issues in spatial databases.
SIGMOD Rec., 19(4):61-68, 1990.

A. Guttman. R-irees: A dynamic index structure for spatial searching.

In Proceedings of the 1984 ACM SIGMOD International Conference
on the Management of Data, pages 47-54, Boston, 1984.

L. Harada, M. Nakano, M. Kitsuregawa, and M. Takagi. Query pro-
cessing method for multi-attribute clustered relations. In Proceedings of
the 16th VLDB Conference, pages 5970, Brisbane, Austvalia, August
1990.

E. P. Barris. Towards optimal storage design for efficient query pro-
cessing in relational database systems. PhD thesis, The Universily of

Melbourne, Melboure, Australia, 1994.

E. P. Harris and K. Ramamohanarao. Optimal dynamic multi-aitribute

hashing for range queries. BIT, 33(4):561~579, 1993.

E. P. Harris and K. Ramamot::narao. Optimal clustering of relations
to improve sorting and partitioning for joins. The Computer Journal,

40(7):416-434, 1997.

E. P. Harris and K. Ramamohanarao. Generalising niinimal marginal
increase to cluster records in multi-dimensional datz files. in Jeian
Roddick, editor, Detabase Systems 1999, Proceedings of the 18th
Australasian Database Conference, pages 129-140, Auckiaid, New

Zealand, January 1999. Springer.

199

T

o e AN Lo SR Al B]

B N s el b g T

ey

N Y N T
; ene e e R A Bk W ST

[55] A. Henrich, H.-W. Six, and P. Widmayer. The lsd tree: Spatial access
to multidimensional point and non-point objects. In The 15th Inter-

national Conference on Very Large Data Bases, pages 45-53, 1989.

[56] K. Hinrichs. Implementation of the grid file: Design concepts and
experience. BT, 25:569-592, 1935.

[57) A. Huiflesz, H.-W. Six, and P. Widmayer. Globally order preserving
multidimensional linear hashing. In The Fourth IEEE International

Conference on Date Engineering, pages 572-579, 1988.

[58] A. Hutflesz, H.-W. Six, and P. Widmayer. Twin grid files: Space
optimizing access schemes. In The ACM SIGMOD International Con-
ference on Management of Data, pages 183-190, 1988.

i59] L. Ingber and B. Rosen. Genetic algorithms and very fast simu-
lated annealing: a comparison. Mathematical and Computer Modelling,

16(11):87-100, 1992.

[60] Y.E. loannidis and Y. C. Kang. Randomized algerithms for optimizing
large join queries. In Proceedings of the 1990 ACM SIGMOD Interna-
tional Conference on the Management of Date, pages 312-321, Atlantic
city, New Jersey, USA, May 1990.

511 H. V. Jagadish. Linear clustering of objects with multiple attributes.
In The ACM SIGMOD International Conference on Management of
Data, pages 332-342, 1990,

[¢2] H. V. Jagadish. On indexing line segments. In The Sizteenth Interna-
tional Conference on Very Large Data Bases, pages 614-625, 1990.

[63] H. V. Jagadish. Spatial search with polyhedra. In The Sisth IEEE

International Conference on Data Engineering, pages 311~319, 1990.

[64] 1. Kamel and C. Faloutsos. Parallel r-trees, In The ACM SIGMOD In-

ternational Conference on Menagement of Dale, pages 195-204, 1992.

[65] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using
fractals. In The Twentieth International Conference on Very Large
Daia Bases, pages 600-509, 1994.

[66] A. Kemper and M. Wallrath. An analysis of geometric modeling in
database systems. ACM Computing Surveys, 19(1):47-91, 1987.

[67] W. Kim. A new way to compute the product and join of relations. In
Proceedings of the 1980 ACM SIGMOD International Conference on
the Management of Data, pages 179-187, 1980.

[68] M. Kitsuregawa, M. Nakayama, and M. Takagi. The effect of bucket

size tunning in the dynamic hybrid grace hash join methods. In Pro-
ceedings of the 15th VLDB Conference, pages 257-266, Amestardam,
- The Netherlands, August 1989.

[69] G. D. Knott. Hashing functions. Comput. J., 18(3):265-278, 1975.

[70) D. E. Knuth. Sorting and Searchiny. Addison-Wesley, Reading, Mas-
sachusetts, USA, 1973. Volume 3 of The Art of Computer Program-

1
et e yTan Lo i T RRL b L, o
£ d s e MR LR A il TR T SLFTECE

ming,

[71] H.-P. Kriegel and B. Seeger. Multidimensional order preserving linear
z hashing with partial expansions. In In Proceedings of the Interna-

201

[72]

(73]

[74]

[79]

(78]

tional Conference on Database Theory, LNCS 243, Springer- Verlag,
Berlin/Heidelberg/NewYork, 1986.

H.-P. Kriegel and B. Seeger. Multidimensional quantile hashing is very
efficient for non-uniform record distributions. In In Proceedings of iie
Third IEEE Intemationaf Conference on Data Engineering, pages 10~
17, 1087.

H.-P. Kriegel and B. Seeger. Multidimensional quantile hashing is very
efficient for non-uniform distributions. Inf, Sci., 48:99-117, 1989.

M. Kriegel, H.-P.and Schiwietz, R. Schneider, and B. Seeger. Perfor-
mance comparison of point and spatial access methods. pages 89-114,

1990.

H.-P. Kriegfl and B. Seeger. Plop-hashing: A grid file without directory.
In The Fourth IEEE International Conference on Data Engineering,
pages 369-376, 1988.

| A, Kumar. G-tree: A new data structure for organizing multidimen-

sional data. IEEE Trans. Knowl. Data Eng., 6(2):341-347, 1994.

R. 8. G. Lanzelotte, P. Valduriez, and M. Zait. On effectiveness of opti-
misation search strategies for parallel execution spaces. In Proceedings
of the 15ih VLDB Conference, pages 493-504, Dublin, Ireland, August
1993.

P. A. Larson. Linear hashing with partial expansions. In Proceedings

of the 6th VLDB Conference, pages 224-232, 1980.

202

(79} J.-H. Lee, Y.-K. Lee, K.-Y. Whang, and 1-Y. Song. A region splitting

strategy for physical database design of multidimensional file organi-

& zations. In Proceedings of the 29rd VLDB Conference, pa.ées 416-425,
Athens, Greece, August 1997.

(80] J. Li, D. Rotem, and J. Srivastava. Algorithms for loading parallel
grid files. In Proceedings of the 1993 ACM SIGMOD International

Conference on the Management of Date, pages 347-356, Washington,
DC, USA, May 1993.

SR

[81] W. Litwin. Linear hashing: A new tool for file and table addressing. In

The Sizth International Conference on Very Large Date Bases, pages
212-223, Monterial, Canada, August 1980.

. [82] W. Litwin and M.-A. Neimat. Distributed linear hashing. Technical
" memo HPL-DTD-92-7, Hewlett Packard, 7 1992, '

[83] J. W. Lioyd. Optimal partial-match retrieval. BIT, 20:406-413, 1980.

[34] J. W. Lloyd and Ramamoharao K. Partial-match retrieval for dynamic

files. BIT, 22:15(:-168, 1982.

[85] D. B. Lomet and B. Salzberg. The hb-tree: A robust multiattribute
. search structure. In In Proceedings of the Fifth IEEE International

Conference on Data Engineering, pages 296-304, 1989.

[86] D. B. Lomet and B. Salzberg. The hb-tree. a multiattribute indexing
method with good guaranteed perforinmance. ACM Transactions on

Database Systems, 15(4):38-71, 1990,

203

[88]

189)

[90]

(91]

[92]

[93]

[94)

(87} H. Lu and B.-C. Ooi. Spatial indexing: Past and future. JEEE Data

Eng. Bull., 16(3):16-21, 1993.

Z. Michalewicz. Genetic algorithms + data structures = evolution pro-

grams. Springer-Verlag, 1992.

P. Mishra and M. H. Eich. Join processing in relational databases.

ACM Computing Surveys, 24(1):63-113, March 1992.

S. Mohammed, E. P. Harris, and K. Ramamohanarao. Efficient partial-
match retrieval for skewed data distributions. In John Roddick, ed-
itor, Database Systems 1999, Proccedings of the 10th Australasian
Database Conference, pages 37-48, Auckland, New Zealand, January
1999. Springer.

S. Mohammed, E. P. Harris, and K. Ramamohanarao. Efficient range

query retrieval for non-uniform data distributions, January 2000.

S. Mohammed and B. Srinivasan. A novel parallel algorithms for grid
files. In IEEE, 3rd International Conf. on High Performance Comput-
ing, pages 31-40, Trivandrum, India, December 1996.

S. Mohammed and B. Srinivasan. Efficient parallel join algorithms for
multidimensioanl files. In Robotics, Vison and Parallel Processing for
Industrial Automation Conf., pages 141-151, Ipoh, Malaysia, Novem-
ber 1937.

8. Moran. On the complexity of designing optimal partial-match re-
trieval systems. ACM Transactions on Database Systems, 8(4):543-551,
December 1983. |

ML T B TR S e o

(9]

(96]

[97]

[98]

[99]

[100]

[101]

[102)

G. Morton. A computer oriented geodetic database and 2 new tech-

nique ir file sequencing. IBM Ltd., 1966.

M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-partitioned join
methed using dynamic destaging strategy. In Proceedings of the 15th
VLDEB Conference, pages 468-478, Los Angeles, California, USA, Au-
gust 1988.

J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adapt-
able, symmetric multikey file structure. In The Third ECI Conference,
A. Duijvestijn and P. Lockemann, Eds., LNCS 123, Springer-Verlag,
Berlin/Heidelberg/New York, pages 236-251, 1981,

J. Nievergelt, H. Hinterberger, and K. C. Seycik. The grid file: An
adaptable, symmetric multikey file structure. ACM Trans. Database
Syst., 9(1):38-71, 1984.

K. J. Nurmela. Constructing combinatorial designs by local search.
Department of Compuer Science, Digital Systems Laboratory A-zs,
Helsinki University, Finland, November 1993.

E. Omiecinski. Heuristics for join processing using non clustered index.

IEEE Trans. on Software Engineering, 15(1):18~25, January 1989.

B. C. Ooi, K. J. Medonell, , and R. Sacks-davis. Spatial kd-tree: An
indexing mechanism for spatial databases. In Ine IEEE Computer
Software and Applications Conference, pages 433-438, 1987.

P. Qosterom. Reaclive-date structures for geographic information sys-

tems. PhD thesis, University of Leiden, The Netherlands, 1990.

200

[L03)

(104]

[105]

[106]

[107)

(108]

[109]

J. Orenstein and T. H. Merrett. A class of data structures for associa-
tive searching. In The Third ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 181-190, 1984,

J. A. Orenstein. A dynamic hash file for random and sequential access.
In Proceedings of the 9th VLDB Conference, pages 132-141, Florence,
Italy, November 1983.

Y. Oshawa and M. Sakauchi. A new tree type data structure with
hemogeneous node suitable for a very large spatial database. In The
Sizth IEEE International Conference on Data Engineering, pages 296-
303, 1990.

E. J. Otoo. Symmetric dynamic index maintenance scheme. In The In-
ternational Conference on Foundations of Data Organization, Plenum,

New York, pages 283-296, 1985.

E. J. Otoo. Balanced multidimensional extendible hash tree. In Pro-
ceeding of the 5th ACM SIGACT-SIGMOD Sympoasium on Principles
of Database Systems, pages 100-113, 1986.

M. Ouksel. The interpolavion based grid file. In The Fourth ACM
SIGACT-SIGMOD Symposium on Principles of Detabase Systems,
pages 20-27, 1985.

M. Quksel and P. Scheuermann. Storage mappings for multidimen-
sional linear dynamic hashing. In The Second ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, pages 90-105, 1982.

206

110}

[111]

[112]

[113]

[114]

[115])

[116]

117

M. A. Ouksel and O. Mayer. A robust and efficient spatial data struc-
ture. Acta Informatica, 29:335-373, 1992.

E. A. Ozkarahan and M. Ouksel. Dynamic and order preserving data
partitioning for database machines. In Proceedings of the 11th VLDB
Conference, pages 90-105, 1983.

H. Pang, M. J. Carey, and M. Livny. Partially preemptive hash joins.
In Proceedings of the 1993 ACM SIGMOD International Conference on
the Management of Data, pages 59-68, Washington, DC, USA, Novem-
ber 1993.

W. Perrizo, J. Y Lin, and W. Hoffman. Algorithms for distributed
query processing in broadcast local area network. [FEE Trans. on

Knowledge and Date Engineering, 1(2):215-225, June 1989,

K. Ramamohanazao and J. W. Lloyd. Dynamic hashing schemes, The
Computer Journal, 25:478-485, 1982,

K. Ramamohanarao and R. Sacks-Davis. Recursive linear hashing.
ACM Transactions on Database Systems, 8(9):369-391, September
1684.

K. Ramamohanarao, J. Shepherd, and R. Sacks-Davis. Multi-attribute
hashing with multiple file copies for high performance partial-match

retrieval. BIT, 30:404-423, 1990.

-

M. Regnier. Analysis of the grid file algorithms. BIT, 25:335-357, 1985.

207

[118]

[119]

[120]

[121)

122)

[123]

[124]

J. P. Richardson, H. Lu, and K. Mikkilineni. Design and evaluation of
parallel pipelined join algorithms. pages 399-409, Sa,nfrailcisco, Cali-
fornia, May 1987.

J. T. Robinson. The k-d-b-tree: A search structure for large multidi-
mensional dynamic indexes. In Proceedings of the 1981 ACM SIGMOD
International Conference on the Management of Data, pages 10-1%,

1981.

J. B. Rosenberg. Geograﬁhical data structures compared: A study of

data structures supporting region queries. IJEEE Trans. on Computer-

aided Design, CAD-4(1):53-67, January 1985.

N. Rou:sopoulos and D. Leifker. Direct spatial search on pictorial
databases using packed r-trees. In I Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 17-31, 1985.

H. Samet. The Design and Anaiysis of Spetial Date Structures.
Addison-Wesley, Reading, MA., 1990,

D. A. Sclineider and D. J. DeWitt. A performance evaluation of four
parallel join algorithms in a shared nothing multi-processor environ- .
ment. In Proceedings of the 1989 ACM SIGMOD International Con-
ference on the Management of Data, pages 110-121, Portland, Oregon,
1989.

R. Schneider and H.-P. Kriegel. The tr¥-tree: A new representation

of polygonal objects supporting spatial queries and operations. In

In Proceedings of the Seventh Workshop on Computational Geome-

try, LNCS 553, Springer-Verlag, Berlin/Heidelberg/New York, pages
249-264, 1992,

[125] B. Seeger. Performance comparison of segment access methods im-
plemented on top of the buddy-tree. In In Advances in Spatial
Databases, O. Gunther and H. Schek, Eds., LNCS 595, Springer-
Veriag, Berlin/Heldelberg/New York, pages 277-296, 1991.

[126] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r4-tree. a dynamic
index for multidimensional objects. In In Proceedings o} the Thirteenth
International Conference on Very Large Daie Bases, pages 507-518,
1087.

[127] K. Sevcik and N. Koudas.‘ Filter trees for managing spatial data over a
range of size granularities. In In Proceedings of the 22th International
Conference on Very Large Data Bases, pages 16-27, Bombay, India,
1996.

[128] L. D. Shapiro. Join processing in database systems with large inain
memories. ACM Transactions on Database Systems, 11(3):239-264,
September 1986.

{129] A. Shatdal and J. F. Naughton. Using shared virtual memory for
parallel join processing. In Proceedings of the 1993 ACM SIGMOD
International Conference on the Management of Data, pages 119-128,

Washington, DC, USA, May 1993.

209

[130] S. Shekhar and D.-R. Liu. Ccam: A connectivity-clustered access

method for aggregate queries on transportation networks: A summary
P of results. In In Proceedings of the Eleventh IEEE International Con-
o ference on Dete Engineering, pages 410-419, 1995.

{131] R. E. Smith, D. E. Goldbe_-rg, and J. A. Earickson. Sga-c: A c-language

implementation of a simple genetic algorithm. Technical Report 91002,
The Clearinghouse for Genetic Algorithms, Department of Engineering
Mechanics, The University of Alabama, Tuscaloosa, Alabama, USA,
May 1991.

[132] S. Y. W. Su. Database Computers: Principles, Architectures, and Tech.
niques. McGraw-hill, New York, 1988.

[133] A.Swami. Optimization of large join queries: combining heuristics and
combinatorial techniques. In Proceedings of the 1989 ACM SIGMQOD
International M-nference on the Management of Data, pagés 367-376,
Portland, Oregon, USA, June 1989.

[134] M. Tamminen. The extendibie cell method for closest point problems.

BIT, 92:27-41, 1982.

[135] J. A. Thom and L. Ramamohanarao, K. Naish. A superjoin algorithm
for deductive databases. In Proceedings of the 18th VLDB Conference,
pages 189-196, Koyoto, Japan, August 1986.

[136] J. D. Ullman. Principles of database and knowledge-base systems, vol-
ume 1. Computer Science Press, Rockville, Maryland, USA, 1988.

[137] J. D. Ullman. Principles of database and knowledge-base systems, vol-
ume 2. Computer Science Press, Rockville, Maryland, USA, 1989.

(138] C.B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy and perfor-
mance model of data skew effects in parallel joins. In Proceedings of the

17th VLDB Conference, pages 537-548, Barcelona, Spain, September
1991.

[139] K.-Y. Whang and Krishnamurthy R. Multilevel grid files. Techni-
cal report, IBM Thomson J. Research Center, November 1985. IBM
Research Report RC 11516.

(140] K.-Y. Whang and Krishnamurthy R. The multilevel grid file — a dy-
namic hierarchical multidimensional file structure. In Iniernational
Symposium on Database Systems for Advanced Applications, pages
449-459, Tokyc, Japan, April 1991,

[141) M. White. N-trees: Large ordered indexes for multidimensional space.
| Technical report, Statistical Research Division, US Bureau of the Cen-
sus, 1981. Application Mathematics Research Staff.

[142] H. Yoo and S. Lafortune. An intelligent search method for query op-
timisation by semi-joins. IEEE Trans. on Knowledge and Data Engt-
neering, 1(2):226-237, June 1989.

[143] C.T. Yu and et al. Adaptive record clustering. ACM Transactions on
Database Systems, 10(2):180-204, June 1985.

[144] H. Zeller and J. Gray. An adaptive hash join algorithms for multiuser
environments. In Proceedings of the 16th VLDB Conference, pages
186-197, Brisbane, Australia, August 1990.

212

