MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
ON. 15 April 2003
\& Sec. Research Graduate School Committee
Under the copyright Act 1968, this thesis must be used only under the normal conditions of scholarly fair dealing for the purposes of research, criticism or review. In particular no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

NOTA BENE

1. Throughout the text, the spelling of the genus Biblumena should be changed to Bibulmena.
2. The genus name Montikola should be regarded as temporary (see p. 219 - Vol. 1) and therefore will be published under an alternative riame.

TAXONOMY, DISTRIBUTION PATTERNS AND PHYLOGENY OF AUSTRALIAN LEPTOPHLEBIIDAE (EPHEMEROPTERA).

Kyla Jane Finlay B.Sc. (Hons).

Department of Biological Sciences
Monash University
September 2002

> A thesis submitted in accordance with the requirements for the Degree of Doctor of Philosophy at Monash University, Victoria, Australia.

STATEMENT OF ORIGINALITY

Except where reference is made in the text or acknowledgements this thesis contains no material published elsewhere or extracted in whole or in part from a thesis which I have qualified for or been awarded another degree or diploma.

No other person's work has been use without due acknowledgement in the main text of the thesis.

This thesis has not been submitted for the award for any degree or diploma in any other tertiary institution.

Kyla J. Finlay

DEDICATION

I would like to dedicate the thesis to the late Professor William (Bill) Peters from the Centre for Studies in Entomology at the Florida Agricultural and Mechanical University (United States) for his enthusiasm, encouragement and informative discussions during the progress of this study.

"I followed the living thing, I went upon the broadest and narrowest paths that I might know its nature."

Friedrich Nietzsche 1883
"See everything; overlook a great deal: correct a little."

Pope John XXIII

Abstract

The taxonomy of the Leptophlebiidae, the largest family of Ephemeroptera (mayflies) in Australia, is poorly known despite a relative proliferation of work in the last decade or so. Deficiencies in taxonomic knowledge have hindered ecological studies and use of mayflies as bioindicators. The objectives of this project were to revise the taxonomy of a problematical group of species and investigate their ecology by detailing distribution and habitat preferences. Further, examination of the evolutionary relationships (phylogeny) of the Australian Leptophlebiidae was used to confirm the taxonomic findings and elucidate the hitherto unknown evolutionary relationships at the familial level.

Extensive collecting and rearing of mayflies throughout south eastern Australia was undertaken to obtain the associated nymph and adult material required for taxonomic revision. The rearing process was accompanied by the design and evaluation of a new rearing chamber.

The taxonomic revision of two closely related, morphologically similar and possibly congeneric taxa was undertaken on the subgenus Nousia (Australonousia) Campbell and Suter and the genus Koorrnonga Campbell and Suter. The revision established consistent morphological variations between the two taxa, specifically in regard to the hindwing, penes, egg and labrum, leading to the conclusion that the taxa are not congeneric. As a result of the revision of the subgenus Nousia (Australonousia) five species are now included; one of which is new to science. Three morphospecies, apparently endemic to Tasmania, have also been described but remain unnamed due to lack of adult material. In addition to this, three species previously thought to belong in the subgenus have been removed and are considered as belonging to two new genera: Montikola containing two new species (one newly described), and the monotypic Gemmayaluka. Revision of the genus Koorrnonga resulted in synonymization with the genus Thraulophlebia Demoulin which was found to have priority. All species were therefore transferred to Thraulophlebia which now contains four species. Keys, drawings, scanning electron micrographs and, in some instances colour photographs, are provided for all species.

Haibitat preferences for the revised species were examined and, for two species of Nousia (Australonousia) for which sufficient data were available, factors determining geographical distributions were explored using rapid bioassessment techniques and logistic regression. Environmental variables apparently affecting distribution differed considerably between the two species with Nousia (Australonousia) nigeli showing a preference for high altitude cool streams and Nousia (Australonousia) fusca tolerating a wider range of conditions but
being less frequent at the higher altitudes. Evaluation of the technique, however, indicated that the predictive power could probably be improved by measurements of additional environmental variables.

Lastly evolutionary relationships of the Australian Leptophlebiidae, perceived as a large gap in the knowledige of Gondwanan Leptophlebiid phylogeny, were studied using cladistic analysis. Outgroup material was provided primarily by the sister group Ephemeroidea. Thirty-four phylogenetically informative characters were identified and used to produce a strict consensus tree from the three most parsimonious trees initially produced. A high consistency and retention index indicated evidence of true evolutionary relationships within the ingroup. Comparisons of the cladogram with the relationships elucidated for other Gondwanan Leptophlebiid fauna reveal that the Australian fauna does not readily fit into the evolutionary lineages previously proposed and that these may need to be reconsidered. This work should be considered as a contribution to the development of an inclusive Gondwanan Leptophiebiid phylogeny which has never before been attempted.
ABSTRACT 5
LIST OF TABLES 11
LIST OF FIGURES 14
LIST OF APPENDICES 44
ACKNOWLEDGEMENTS 45

1. GENERAL INTRODUCTION 47
1.1 Introduction 48
1.2 Current status and knowiedge of Australian Ephemeroptera 49
1.2.1 Taxonomy 50
1.2.2 Biology and ecology 53
1.2.3 Systematics 57
1.3 The significance of the family Leptophlebiidae 58
1.4 Overall scope and objectives 58
1.4.1 Taxoinomy 58
1.4.2 Factors affecting distribution 59
1.4.3 Phylogeny 59
2. FIELD COLLECTION AND LABORATORY REARING 60
2.1 Introduction 61
2.2 Field collecting 61
2.2.1 Timing of fieldwork 61
2.2.2 Choice of locations to be sampled 62
2.2.3 Methods of collecting 62
2.2.3.1 Collection of nymphs 62
2.2.3.2 Collection of adults 63
2.2.3.3 Transporting 64
2.3 Rearing 64
2.3.1 Background 64
2.3.2 New rearing chamber design 66
2.3.3 Rearing system 66
2.3.4 Emergence data collection. 67
2.4 Results 67
2.4.1 Emergence success 68
2.4.2 Sex-ratios 71
2.5 Discussion 71
2.5.1 General. 71
2.5.2 Sex-ratios 73
3. REVISION OF THE SUBGENUS NOUSIA (AUSTRALONOUSIA) CAMPBELL AND SUTER AND THE GENUS KOORRNONGA CAMPBELL AND SUTER 74
3.1 Introduction 75
3.2 Methods and conventions 75
3.2.1 Material examined 76
3.2.2 Preparation of specimens 76
3.2.3 Presentation of descriptions 77
3.3 Revision of the subgenus Nousia (Australonousia) 81
3.3.1 History 81
3.3.2 Descriptions 82
3.3.2.1 Nousia (Australonousia) Campbell and Suter 82
3.3.2.2 Nousia (Australonousia) fusca (Ulmer) comb. nov. 86
3.3.2.2.1 Investigation of morphological variation within Nousia (Australonousia) fusca. 112
3.3.2.3 Nousia (Australonousia) darkara (Harker) Incertae sedis 115
3.3.2.4 Nousia (Australonousia) fuscula (Tiilyard) 117
3.3.2.5 Nousia (Australcnousia) nigeli sp. nov. 129
3.3.2.6 Nousia (Australonousia) wiltkorningae Finlay 137
3.3.2.7 Nousia (Australonousia) sp. "AV5" 137
3.3.2.8 Nousia (Australonousia) sp. "AV7" 140
3.3.2.9 Nousia (Australonousia; sp. "AV8" 145
3.3.3 Key to the species (and morphospecies) of Nousia (Australonousia) 149
3.3.4 Subgeneric separation 159
3.4 Revision of the genus Koormonga 161
3.4.1 History 161
3.4.2 Generic designation 161
3.4.3 Descriptions 162
3.4.3.1 Thraulophlebia Demoulin 162
3.4.3.2 Thraulophlebia lucida (Ulmer) comb. nov. 166
3.4.3.3 Thraulophlebia inconspicua (Eaton) comb. nov. 180
3.4.3.4 Thraulophlebia parva (Harker) comb. nov 198
3.4.3.5 Thraulophlebia simillima (Ulmer) Incertae sedis 204
3.4.4 Key to current species of Thraulophlebia 207
3.4.5 Investigation of the congenerity of Nousia (Australonousia) and Thraulophlebia 211
3.5 General discussion 213
4. DESCRIPTIONS OF TWO NEW GENERA FROM SOUTH-EASTERN AUSTRALIA (LEPTOPHELBIIDAE: ATALOPHLEBIINAE) 215
4.1 Introduction 216
4.2 Methods and conventions 216
4.3 Description of Montikola gen. nov. 216
4.3.1 Montikola gen. nov. 216
4.3.2 Montikola kala (Harker) comb. nov. 220
4.3.3 Montikola adamus sp. nov 226
4.3.4 Differentiation of the species 231
4.3.5 Key to the species 234
4.4 Description of Gemmayaluka gen. ncv. 234
4.4.1 Gemmayaluka gen. nov. 234
4.4.2 Gemmayaluka wiltkorringae (Finlay) comb. nov 238
5. FACTORS CONTROLLING THE DISTRIBUTION OF NOUSIA (AUSTRALONOUSIA) FUSCA COMB. NOV. AND NOUSIA (AUSTRALONOUSIA) NIGELI SP. NOV. IN VICTORIA WITH NOTES ON THRAULOPHLEBIA, MONTIKOLA GEN. NOV. AND GEMMAYALUKA GEN. NOV. 243
5.1 Introduction 244
5.2 Aims 247
5.3 Methods 247
5.3.1 Study sites 247
5.3.2 Site characteristics 248
5.3.3 Statistical analysis 253
5.3.3.1 Logistic regression 253
5.3.3.2 Preliminary screening methods 254
5.3.3.2.1 Normality of distributions for continuous variables 254
5.3.3.2.2 Review of discrete variables 255
5.3.3.2.3 Collinearities 257
5.4 Results 257
5.4.1 Collinearities 257
5.4.1.1 Continuous variables 257
5.4.1.2 Discrete variables 260
5.4.1.3 Continuous and discrete variables combined 260
5.4.2 Simple logistic regression 263
5.4.2.1 Nousia (Australonousia) fusca 263
5.4.2.2 Nousia (Australonousia) nigeli 264
5.4.3 Multiple logistic regression 268
5.4.3.1 Nousia (Australonousia) fusca 274
5.4.3.2 Nousia (Australonousia) nigeli 274
5.4.4 Model performance evaluation 275
5.5 Discussion 278
5.5.1 Nousia (Australonousia) fusca 278
5.5.2 Nousia (Australonousia) nigeli 280
5.5.3 Conclusions 281
6. THE PHYLOGENETIC RELATIONSHIPS OF THE AUSTRALIAN LEPTOPHLEBIIDAE 282
6.1 Introduction 283
6.2 Origins of the Leptophlebiidae 283
6.3 Inter-familial phylogenetic relationships of the Leptophlebiidae 285
6.4 Intra-familial phylogenetic relationships of Leptophiebiidae. 288
6.5 Aims of the phylogenetic analysis 290
6.6 Methods 290
6.6.1 Specimens examined 299
6.7 Results and Discussion 305
6.8 Conclusions 314
BIBLIOGRAPHY 317
APPENDICES 349

LIST OF TABLES

All Tables are included in Volume 1.

No.	Table Heading	page
1	Percentage of Australian genera and species occurring in each Ephemeropteran superfamily.	50
2	Number of families, genera and species of extant Australian Ephemeroptera.	54
3	Percentages of successful emergences affected by collection and rearing conditions.	70
$\mathbf{4}$	Similarities between the literature descriptions and type measurements of the imago and subimago stages of the species Nousia (Australonousia) fusca, Nousia (Australonousia) delicatula, Koormonga brunnea, and Nousia sp. "AV1".	96
5	Discrepancies between the literature descriptions and type measurements of the imago and subimago stages of the species Nousia (Australonousia) fusca, Nousia (Australonousia) delicatula, Koorrnonga brunnea, and Nousia sp. "AV1".	99
6	Analysis of differences in various characters of Nousia (Australonousia) fusca according to location of collection. Order of means where differences significant: G=Grampians, H=High Altitude, O=Otways, T=Tasmania and R= "The Rest" of Victoria.	114
$\mathbf{7}$	Similarities between the literature descriptions and measurements of Nousia (Australonousia) fuscula and the newly described Nousia (Australonousia) fusca.	122
$\mathbf{5}$	Discrepancies between the literature descriptions and measurements of Nousia (Australonousia) fuscula and the newly described Nousia (Australonousia) fusca showing outcomes of t-tests comparing the two species where measurements were available.	126
$\mathbf{1 1}$	Matrix of main characters useful for separating taxa of Nousia (Austalonousia). (he literature descriptions of Thraulophlebia lucida (incorporating Thraulus dentatus, Atalophlebia lucida and Koorrnonga sp. "AV1").	152
$\mathbf{1 0}$	Similarities between the redescription of Thraulophlebia lucida with the literature descriptions and type measurements of Thraulophlebia lucida (incorporating Thraulophlebia dentatus, Atalophlebia lucida and Koorrnonga sp. "AV1").	172

12	Similarities between the redescription of Thraulophlebia lucida and the literature descriptions of Koormonga pilosa.	175
13	Discrepancies between the redescription of Thraulophlebia lucida and the literature descriptions of Koormonga pilosa.	176
14	Similarities between the redescription of Thraulophlebia inconspicua and the literature descriptions of Atalophlebia inconspicua, Nousia inconspicua and Koorrnonga inconspicua.	187
15	Discrepancies between the redescription of Thraulophlebia inconspicua and the literature descriptions of Atalophlebia inconspicua, Nousia inconspicua and Koormonga inconspicua.	189
16	Comparison of the characteristics of Thraulophlebia lucida and Thraulophlebia inconspicua showing outcomes of t-tests comparing the two species where measurements were available.	192
17	Matrix of main characters useful for separating the species of Thraulophlebia.	209
18	Main characters separating the subgenus Nousia (Australonousia) from the genus Thraulophlebia.	212
19	Comparison of the two species of Montikola showing outcomes of t-tests	233
20	Summary table of site characteristics. For var. (variable) type CAT=categorical, CONT= continuous.	252
21	Pearson product-moment correlation co-efficients for highly correlated ($\geq \pm 0.7$) pairs of transformed continuous variables.	259
22	Chi-squared p-values determining collinearities between discrete variables.	260
23	ANOVA output testing multicollinearity between continuous and discrete variables.	261
24	Simple logistic regression analysis for the presence of Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli. The odds ratio indicates the probability of the species being present at a site relative to it being absent.	266
25	Simple logistic regression analysis for the presence of Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli showing discrete variables category by category.	267
26	Muitiple logistic regression analysis for Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli; interactions between non-BIOCLIM continuous variables. McF Rho ${ }^{2}$ (McFadden's Rho ${ }^{2}$) is a measure of the strength of association between the outcome and predictors.	269
27	Multiple logistic regression model for Nousia (Australonousia) fusca.	272

28	Multiple logistic regression model for Nousia (Australonousia) nigeli.	273
29	Assessment of logistic regression model performance for Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli using alternative measures.	$\mathbf{2 7 6}$
30	Diagnosis of the family Leptophlebiidae based on the work of Peters and Edmunds (1964) and Towns and Peters (1996).	286
31	Phylogenetic characters defining the five lineages of Pescador and Peters 1980a from the most primitive (Hapsiphlebia) to the most derived (Meridialaris). Bold text refers to apomorphic conditions. Blank spaces are due to the methodology of Pescador and Peters (1980a) where each furcation includes only characters relevant to the present branch and branches above ie: the Penaphlebia furcation includes characters relating to Atalonella, Dactyophlebia and Meridialaris but excludes those of Hapsiphlebia.	291
32	Genera currently thought to belong to the five lineages outlined by Pescador and Peters (1980a).	293
33	Morphological characters used in the phylogenetic analysis.	295
34	Data matrix of phylogenetic character states for the Australian genera of Leptophlebiidae.	298

LIST OF FIGURES

All Figures are included in Volume 2.

No.	Figure Title	Vol. 2 page
1	Equipment for transporting live nymphs from the field. Each bottle contains nymphs collected from one location. A pump capable of operating on batteries is connected to each bottle to provide constant aeration. Photo by K.J. Finlay.	1
2	New rearing chamber design. Each chamber holds one nymph from a particular site. The electrical pump supplies constant air flow which can be varies using the two-way controller. A plastic pipette tip attached to the end of the tubing is useful for restricting the flow of bubbles to a small stream. Photo by Steve Morton and Adrian Dyer.	2
3	Rearing chambers designed by I.C. Campbell (see Campbeli 1983) showing mode of operation. Chamber 1 shows tubing which is connected to pump. Chamber 2 shows container where nymph is placed for rearing. Chamber 3 shows removable door with mesh covered viewing hole.	3
4	Imago emergence success by genus. Bars represent 95% confidence intervals.	4
5	Effect of temperature on time taken to successful emergence by genus. Dáia back transformed from logged values. Bars represent back transformed standard error. Within each genus temperatures without a letter in common are significantly different (<0.05) by Tukeys HSD tests.	4
6	Effect of altitude of collection on rearing success of Austrophlebioides.	5
7	Mayfly sex-ratios (collected over 2 extended summer periods). Bars represent 95% confidence intervals. Asterisks indicate significant departures (at less than 5% significance leveis) from 1:1 ratio by chisquare.	5
8	Important diagnostic features of the male imago head. Eye size (ES) (sensu Bae 1991) = B (shortest distance between upper lobes) / D (longest diameter of upper lobe).	6
9	Segmentation of the male imago foreleg.	7
10	Segmentation of the female imago foreleg.	8
11	Imago tarsal claw morphology.	9

12	Forewing venation nomenclature. $\mathrm{C}=$ costa, $\mathrm{Sc}=$ subcosta, $\mathrm{R}=$ radius MA=medius anterior, IMA=intercalary medius anterior, MP=medius posterior, 1 MP=intercalary medius posterior, CuA=cubitus anterior, ICu=intercalary cubitus, CuP=cubitus posterior, $A_{1}=$ anal vein.	10
13	Male imago genitalia dorsal view, tergal segment ten removed.	11
14	Male imago genitalia entral view.	11
15	Male imago genitalia lateral view.	12
16	Female imago abdomen ventral view, sternites seven to nine.	12
17	Important diagnostic features of the male nymph head.	13
18	Important diagnostic features of the female nymph head, characters the same as in the male except for eyes.	13
19	Important diagnostic features of the nymph labrum and clypeus. W/L = labrum width length ratio; DWIW = denticle width / labrum width ratio; SHFWNW=secondary hair fringe width to labrum width ratio.	14
20	Important diagnostic features of the nymph left mandible.	15
21	Important diagnostic features of the nymph right mandible.	15
22	Important diagnostic features of the nymph maxillae. $\mathrm{W} / \mathrm{L}=$ width length ratio of galea-lacina.	16
23	Important diagnostic features of the nymph hypopharynx.	16
24	Important diagnostic features of the nymph labium.	17
25	Important diagnostic features of the nymph foreleg. FL/FW = femur length width ratio.	18
26	Nymph abdomen dorsal view showing postero-lateral spines. Tergal segments one to ten numbered.	19
27	Important diagnostic features of the nymph gill.	19
28	Nousia delicata Navás. Ventral view of male genitalia. Reproduction of a drawing from Navás (1925).	20
29	Distribution of the subgenus Nousia (Australonousia).	21
30	Distribution of the redescribed Nousia (Australonousia) fusca.	22
31	Male imago of Nousia (Australonousia) fusca. Reared from nymph collected from Rubicon River, Rubicon, Victoria (98101701). Photo by K.J. Finlay.	23
32	Nousia (Australonousia) fusca, male imago. Foreleg tarsal claw. Scale $\mathrm{bar}=50 \mu \mathrm{~m}$.	24
33	Nousia (Australonousia) fusca, male imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	24

34	Nousia (Australonousia) fusca, male imago. Hindwing. Scale bar = $500 \mu \mathrm{~m}$.	24
35	Nousia (Ausiralonousia) fusca, male imago. Dorsal view of abdomen. Scale bar $=1 \mathrm{~mm}$.	25
36	Nousia (Australonousia) fusca, male imago. Dorsal view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.	26
37	Nousia (Australonousia) fusca, male imago. Ventral view of genitalia showing penes. Scale bar $=200 \mu \mathrm{~m}$.	26
38	Nousia (Australonousia) fusca, male imago. Lateral view of genitalia showing penes and forceps. Scale bar $=500 \mu \mathrm{~m}$.	27
39	Nousia (Australonousia) fusca, male imago. SEM of dorsal view of genitalia showing penes and forceps. Individual from Gulf Stream, Grampians National Park, Victoria (00122001). Scale bar $=100 \mu \mathrm{~m}$.	28
40	Nousia (Australonousia) fusca, male imago. SEM of dorsal view of penes. Individual from Gulf Stream, Grampians National Park, Victoria (00122001). Scale bar $=100 \mu \mathrm{~m}$.	28
41	Nousia (Australonousia) fusca, male imago. SEM of ventral view of genitalia showing penes and forceps. Individual from Gulf Stream, Grampians National Park, Victoria (00122001). Scale bar $=100 \mu \mathrm{~m}$.	28
42	Nousia (Australonousia) fusca, male imago. SEM of ventral view of penes. Individual from Gulf Stream, Grampians National Park, Victoria (00122001). Scale bar $=100 \mu \mathrm{~m}$.	28
43	Nousia (Australonousia) fusca, male imago. SEM of dorsal view of penes Individual from Clyde River, Hamilton, Tasmania (96121901). Scale bar $=100 \mu \mathrm{~m}$.	29
44	Nousia (Australonousia) fusca, male imago. SEM of ventral view of penes. Individual from Clyde River, Hamilton, Tasmania (96121901). Scale bar $=100 \mu \mathrm{~m}$.	29
45	Nousia (Australonousia) fusca, male imago. SEM of lateral view of genitalia showing penes and forceps. Individual from Clyde River, Hamilton, Tasmania (96121901). Scale bar $=100 \mu \mathrm{~m}$.	29
46	Nousia (Australonousia) fusca, male imago. SEM of dorsal view of penes. Individual from Brandy Creek, Alpine National Park, Victoria (96111902). Shape distorted through drying process. Scale bar = $100 \mu \mathrm{~m}$.	30

47	Nousia (Australonousia) fusca, male imago. SEM of ventral view of penes. Individual from Brandy Creek, Alpine National Park, Victoria (96111902). Shape distorted through drying process. Scale bar $=100 \mathrm{um}$	30
48	Nousia (Australonousia) fusca, male imago. SEM of dorsal view of penes. Individual from Rubicon River, Rubicon, Victoria (98101701). Scale bars $=100 \mu \mathrm{~m}$.	30
49	Nousia (Australonousia) fusca, male imago. SEM of ventral view of penes. Individual from Rubicon River, Rubicon, Victoria (98101701). Scale bars $=100 \mu \mathrm{~m}$.	30
50	Female imago of Nousia (Australonousia) fusca. Reared from nymph collected from Rubicon River, Rubicon, Victoria (98101701). Photo by K.J. Finlay.	31
51	Nousia (Australonousia) fusca, female imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	32
52	Nousia (Australonousia) fusca, female imago. Hindwing. Scale bar = $500 \mu \mathrm{~m}$.	32
53	Nousia (Australonousia) fusca, female imago. Ventral view of abdomen showing sternites seven to nine. Scale bar $=500 \mu \mathrm{~m}$.	32
54	Nousia (Australonousia) fusca, female imago. SEM of sternites eight to nine. Individual from Brandy Creek, Alpine National Park, Victoria (97011902). Scale bar $=100 \mu \mathrm{~m}$.	33
55	Nousia (Australonousia) fusca, female imago. SEM of close up of apical section of sternite nine. Individual from Brandy Creek, Alpine National Park, Victoria (97011902). Scale bar $=50 \mu \mathrm{~m}$.	33
56	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of whole egg. Individual from Jimmys Creek, Grampians National Park, Victoria (00012203). Scale bar $=50 \mu \mathrm{~m}$.	34
57	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of close up of egg chorion. Individual from Jimmys Creek, Grampians National Park, Victoria (00012203). Scale bar $=10 \mu \mathrm{~m}$.	34
58	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of whole egg. Individual from Gulf Stream, Grampians Nationa! Park, Victoria (00012201). Scale bar $=50 \mu \mathrm{~m}$.	34
59	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of close up of egg chorion. Individual from Gulf Stream, Grampians National Park, Victoria (00012201). Scale bar $=10 \mu \mathrm{~m}$.	34

60	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of whole egg. Individual from Brandy Creek, Alpine National Park, Victoria (97011902). Scale bar $=50 \mu \mathrm{~m}$.	35
61	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of close up of egg chorion. Individual from Brandy Creek, Alpine National Park, Victoria (97011902). Scale bar $=10 \mu \mathrm{~m}$.	35
62	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of whoie egg. Individual from Sassafras Creek, Dandenong Ranges, Victoria (97032402). Scale bar $=50 \mu \mathrm{~m}$.	35
63	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of close up of egg chorion. Individual from Sassafras Creek, Dandenong Ranges, Victoria (97032402). Scale bar $=10 \mu \mathrm{~m}$.	35
64	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of whole egg. Individual from Carisbrook Creek, Great Ocean Road, Victoria (97030203). Scale bar $=50 \mu \mathrm{~m}$.	36
65	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of close up of egg chorion. Individual from Carisbrook Creek, Great Ocean Road, Victoria (97030203). Scaie bar $=10 \mu \mathrm{~m}$.	36
66	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of whole egg. Individual from Steavensons River, Marysville, Victoria (98021504). Scale bar $=50 \mu \mathrm{~m}$.	36
67	Nousia (Australonousia) fusca, eggs taken from female imago. SEM of close up of egg chorion. Individual from Steavensons River, Marysville, Victoria (98021504). Scale bar $=10 \mu \mathrm{~m}$.	36
68	Male subimago of Nousia (Australonousia) fusca. Reared from nymph collected from Rubicon River, Rubicon, Victoria (98101701). Photo by K.J. Finlay.	37
69	Nousia (Australonousia) fusca, male subimago. SEM of dorsal view of penes which are not yet fully developed. Individual from Victoria River, Alpine National Park, Victoria (96111901). Scale bar $=100 \mu \mathrm{~m}$.	38
70	Nousia (Australonousia) fusca, male subimago. SEM of ventral view of penes which are not yet fuily developed. Individual from Victoria River, Alpine National Park, Victoria (96111901). Scale bar $=100 \mu \mathrm{~m}$.	38
71	Female imago of Nousia (Australonousia) fusca. Collected from Rubicon River, Rubicon, Victoria (98101701). Photo by K.J. Finlay.	39
72	Nousia (Australonousia) fusca, female nymph. Scale bar $=1 \mathrm{~mm}$.	40

73	Nousia (Australonousia) fusca, nymph mouthpart. Labrum and clypeus showing straight anterior margin of labrum. Scale bar $=200 \mu \mathrm{~m}$.	41
74	Nousia (Australonousia) fusca, nymph mouthparts. Labrum and clypeus showing slight antero-median emargination of labrum. Scale bar = $200 \mu \mathrm{~m}$.	41
75	Nousia (Australonousia) fusca, nymph mouthpart. Left mandible. Scale bar $=200 \mu \mathrm{~m}$.	42
76	Nousia (Australonousia) fusca, nymph mouthpart. Right mandible. Scale $\mathrm{bar}=200 \mu \mathrm{~m}$.	42
77	Nousia (Australonousia) fusca, nymph mouthpart. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.	43
78	Nousia (Ausitralonousia) fusca, nymph mouthpart. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m}$.	43
79	Nousia (Australonousia) fusca, nymph mouthpart. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.	43
80	Nousia (Australonousia) fusca, nymph mouthpart. Labium. Scale bar $=$ $200 \mu \mathrm{~m}$.	44
81	Nousia (Australonousia) fusca, nymph mouthpart. Dorsal view of labial terminal palp showing apical spines. Scale bar $=100 \mu \mathrm{~m}$.	44
82	Nousia (Australonousia) fusca, nymph. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.	45
83	Nousia (Australonousia) fusca, nymph. Foreleg tarsal claw. Scale bar = $100 \mu \mathrm{~m}$.	46
84	Nousia (Australonousia) fusca, nymph. Gills, lateral tracheae strongly developed. Scale bar $=100 \mu \mathrm{~m}$.	46
85	Nousia (Australonousia) fusca, nymph. Gills, lateral tracheae weakly developed. Scale bar $=100 \mu \mathrm{~m}$.	46
86	Atalophlebia fusca Ulmer. Ventral view of male imago genitalia. Drawn from temporary slide mount of paralectotype. Specimen collected from Cedar Creek, Queensland, Mjöberg Expecition to Australia, 1910-1913 (SMNH).	47
87	Atalonella delicatula (Tillyard). Ventral view of male imago genitalia. Drawn from slide mount. Specimen collected from Meander River, Tasmania by David Scholes, 09 i 1960 (ANIC).	47
88	रoorrnonga brunnea (Tillyard). Ventral view of male imago genitalia. Drawn from temporary slide mount of holotype. Specimen collected from Clarendon, Tasmania by Eric Scott, 09 iii 1933 (NHM).	47

89	Atalophlebia fusca Ulmer. Ventral view of male genitalia. Reproduction of a drawing from Ulmer (1919).	48
90	Atalophlebia delicatula Tillyard. Dorsal view of male imago genitalia. Reproduction of a drawing from Tillyard (1936).	49
91	Atalophlebia brunnea Tillyard. Ventral view (?) of male imago genitalia. Reproduction of a drawing from Tillyard (1936).	49
92	Atalophlebia delicatula Tillyard. Male imago forewing. Reproduction of a drawing from Tillyard (1936).	50
93	Atalophlebia fusca Ulmer (labelled as Thraulus dentatus). Male imago forewing. Reproduction of a drawing from Ulmer (1916).	50
94	Atalophlebia brunnea Tillyard. Male imago forewing. Reproduction of a drawing from Tillyard (1936).	50
95	Nousia (Australonousia) fusca habitat - OTWAYS. Grey River, Otway Ranges, Victoria (87030101). Photo by K.J. Finlay.	51
96	Nousia (Australonousia) fusca habitat - OTWAYS. Carisbrook Creek, Great Ocean Road, Victoria (97030203). Photo by K.J. Finlay.	51
97	Nousia (Australonousia) fusca habitat - GRAMPIANS. Gulf Stream, Grampians National Park, Victoria (99011603). Photo by N. Ainsworth.	52
98	Nousia (Australonousia) fusca habitat - GRAMPIANS. Fyans Creek, Halls Gap, Victoria (99011608). Photo by N. Ainsworth.	52
99	Nousia (Australonousia) fusca habitat - TASMANIA. Lake River, 20km S of Perth, Tasmania (96121702). Photo by J. Griggs.	53
100	Nousia (Australonousia) fusca habitat -TASMANIA. Dee River, 10km NW of Ouse, Tasmania (96121903). Photo by J. Griggs.	53
101	Nousia (Australonousia) fusca habitat - HIGH ALTITUDE. Thredbo River, Thredbo, New South Wales (97120204). Photo by K.J. Finlay.	54
102	Nousia (Australonousia) fusca habitat - HIGH ALTITUDE. Eucumbene River, Kosciusko National Park, New South Wales (97120104). Photo by K.J. Finlay.	54
103	Nousia (Australonousia) fusca habitat - "THE REST" OF VICTORIA. Rubicon River, Rubicon, Victoria (98101701). Photo by N. Ainsworth.	55
104	Nousia (Australonousia) fusca habitat ~ "THE REST" OF VICTORIA. Clematis Creek, Dandenong Ranges, Victoria (97032401). Photo by K.J. Finlay.	55
105	Nousia (Australonousia) fusca habitat - "THE REST" OF VICTORIA. Moroka River, Alpine National Park, Victoria (97020603). Photo by K.J. Finlay.	56

106	Nousia (Australonousia) fusca habitat - "THE REST" OF VICTORIA. Jingalgalla River, Dellicknora, Victoria (99021402). Photo by K.J. Finlay.	56
107	Atalonella darkara Harker. Female subimago forewing. Reproduction of a drawing from Harker (1957b).	57
108	Atalonella darkara Harker. Nymph labrum. Reproduction of a drawing from Harker (1957b).	57
109	Atalophlebia fuscula Tillyard. Dorsal view of male genitalia. Reproduction of a drawing from Tillyard (1936).	58
110	Nousia fuscula (Tillyard). Dorsal view of male genitalia. Reproduction of a drawing from Suter (1986).	58
111	Atalonella fuscula (Tillyard). Dorsal view of male genitalia. Drawn from temporary slide mount. Specimen collected from North Esk River, Tasmania by David Scholes, 18 ii 1960 (ANIC).	58
112	Nousia fuscula (Tillyard). Lateral view of female imago segments six to nine. Arrow indicates location of small genital extension at sternum seven. Reproduction of a drawing from Suter (1986).	59
113	Nousia fuscula (Tillyard). Egg from female imago. Reproduction of an SEM from Suter (1986).	59
114	Nousia (Australonousia) fuscula, eggs taken from female imago. SEM of whole egg. Individual from Tookayerta Creek, South Australia (95051200). Scale bar $=50 \mu \mathrm{~m}$.	60
115	Nousia (Australonousia) fuscula, eggs taken from female imago. SEM of close up of egg chorion. Individual from Tookayerta Creek, South Australia (95051200). Scale bar $=10 \mu \mathrm{~m}$.	60
116	Nousia (Australonousia) nigeli. Type locality, Taggerty River, outside Marysville, Victoria (98101704). Photo by K.J. Finlay.	61
117	Distribution of Nousia (Australonousia) nigeli.	62
118	Nousia (Australonousia) nigeli, male imago. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.	63
119	Nousia (Australonousia) nigeli, male imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	63
120	Nousia (Australonousia) nigeli, male imago. Hindwing. Scale bar = $500 \mu \mathrm{~m}$.	63
121	Nousia (Australonousia) nigeli, male imago. Dorsal view of abdomen. Scale bar $=1 \mathrm{~mm}$.	64
122	Nousia (Australonousia) nigeli, male imago. Dorsal view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.	65

123	Nousia (Australonousia) nigeli, male imago. Ventral view of genitalia showing penes. Scale bar = 200,um.	65
124	Nousia (Australonousia) nigeli, male imago. SEM of dorsal view of penes. Individual from Loch River, Noojee, Victoria (98020903). Scale bar = 50 $\mu \mathrm{m}$.	66
125	Nousia (Australonousia) nigeli, male imago. SEM of ventral view of penes. Individual from Loch River, Noojee, Victoria (98020903). Scale bar = 100	6 m.

139	Nousia (Australonousia) nigeli, nymph mouthpart. Labium. Scale bar $=$ $200 \mu \mathrm{~m}$.	73
140	Nousia (Australonousia) nigeli, nymph: Foreleg. Scale bar $=200 \mu \mathrm{~m}$.	74
141	Nousia (Australonousia) nigeli, nymph. Foreleg tarsal claw. Scale bar $=$ $100 \mu \mathrm{~m}$.	75
142	Nousia (Australonousia) nigeli, nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	75
143	Distribution of Nolisia sp. "AV5".	76
144	Nousia (Australonousia) sp. "AV5", female nymph. Scale bar $=1 \mathrm{~mm}$.	77
145	Nousia (Australonousia) sp. "AV5", nymph mouthparts. Labrum and clypeus. Scale bar $=200 \mu \mathrm{~m}$.	78
146	Nousia (Australonousia) sp. "AV5", nymph mouthpart. Let: mandible. Scale bar $=200 \mu \mathrm{~m}$.	78
147	Nousia (Australonousia) sp. "AV5", nymph mouthpart. Right mandible. Scale bar $=200 \mu \mathrm{~m}$.	78
148	Nousia (Australonousia) sp, "AV5", nymph mouthpart. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.	79
149	Nousia (Australonousia) sp. "AV5", nymph mouthpart. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.	79
150	Nousia (Australonousia) sp. "AV5", nymph mouthpart. Labium. Scale bar $=200 \mu \mathrm{~m}$.	80
151	Nousia (Australonousia) sp. "AV5", nymph. Foreleg. Scale bar = $200 \mu \mathrm{~m}$.	81
152	Nousia (Australonousia) sp. "AV5", nymph. Foreleg tarsal claw. Scale bar $=100 \mu \mathrm{~m}$.	82
153	Nousia (Australonousia) sp. "AV5", nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	82
154	Distribution of No!: sia sp. "AV7".	83
155	Nousia (Australonousia) sp. "AV7", male imago. Dorsal view of genitalia showing penes. Scale bar $=200 \mu \mathrm{~m}$.	84
156	Nousia (Australonousia) sp. "AV7", female nymph. Scale bar $=1 \mathrm{~mm}$.	85
157	Nousia (Australonousia) sp. "AV7", nymph mouthparts. Labrum and clypeus. Scale bar $=200 \mu \mathrm{~m}$.	86
158	Nousia (Australonousia) sp. "AV7", nymph mouthpart. Left mandible. Scale bar $=200 \mu \mathrm{~m}$.	86
159	Nousia (Australonousia) sp. "AV7", nymph mouthpart. Right mandible. Scale bar $=200 \mu \mathrm{~m}$.	86
160	Nousia (Australonousia) sp. "AV7", nymph mouthpart. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.	87

161	Nousia (Australonousia) sp. "AV7", nymph mouthpart. Hypopharynx. Scaie bar $=200 \mu \mathrm{~m}$.	87
162	Nousia (Australonousia) sp. "AV7", nymph mouthpart. Labium. Scale bar $=200 \mu \mathrm{~m}$.	88
163	Nousia (Australonousia) sp. "AV7", nymph. Foreleg. Scale bar \approx $200 \mu \mathrm{~m}$.	89
164	Nousia (Australonousia) sp. "AV7", nymph. Foreleg tarsa! claw. Scale bar $=100 \mu \mathrm{~m}$.	90
165	Nousia (Australonousia) sp. "AV7", nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	90
166	Distribution of Nousia sp. "AV8".	91
167	Nousia (Australonousia) sp. "AV8", male nymph. Scale bar $=1 \mathrm{~mm}$.	92
168	Nousia (Australonousia) sp. "AV8", nymph mouthparts. Labrum and clypeus. Scale bar $=200 \mu \mathrm{~m}$.	93
169	Nousia (Australonousia) sp. "AV8", nymph mouthpart. Denticles on anterior margin of labrum. Scale bar $=50 \mu \mathrm{~m}$.	93
170	Nousia (Australonousia) sp. "AV8", nymph mouthpart. Left mandible. Scale bar $=200 \mu \mathrm{~m}$.	94
171	Nousia (Australonousia) sp. "AV8", nymph mouthpart. Right mandible. Scale bar $=200 \mu \mathrm{~m}$.	94
172	Nousia (Australonousia) sp. "AV8", nymph mouthpart. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.	95
173	Nousia (Australonousia) sp. "AV8", nymph mouthpart. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.	35
174	Nousia (Australonousia) sp. "AV8", nymph mouthpart. Labium. Scale bar $=200 \mu \mathrm{~m}$.	96
175	Nousia (Australonousia) sp. "AV8", nymph. Foreleg. Scale bar = $200 \mu \mathrm{~m}$.	97
176	Nousia (Australonousia) sp. "AV8", nymph. Foreleg tarsal claw. Scale $\mathrm{bar}=100 \mu \mathrm{~m}$.	98
177	Nousia (Australonousia) sp. "AV8", nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	98
178	Distribution of the genus Thraulophlebia.	99
179	Distribution of Thraulophlebia iucida.	100
180	Thraulophlebia lucida, male imago. Foreleg tarsal claw. Scale bar = 50 $\mu \mathrm{m}$.	101
181	Thraulophlebia lucida, male imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	101
182	Thraulophiebia lucida, male imago. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.	101

183	Thraulophlebia lucida, male imago. Dorsal view of abdomen. Scale bar =1mm.	102
184	Thraulophlebia lucida, male imago. Dorsal view of genitalia showing penes and forceps. Scale bar = 200 $\mu \mathrm{m}$.	103
185	Thraulophlebia lucida, male imago. Ventral view of genitalia showing penes. Scale bar = 200	103
186	Thraulophlebia lucida, male imago. SEM of dorsal view of genitalia showing penes and forceps. Individual from Gulf Stream, Grampians National Park, Victoria (00122001). Scale bar = 100	104.

198	Thraulophlebia /ucida, nymph mouthparts. Labrum and clypeus. Scale bar $=200 \mu \mathrm{~m}$.	108
199	Thraulophlebia lucida, nymph mouthpart. Left mandible. Scale bar $=$ $200 \mu \mathrm{~m}$.	108
200	Thraulophlebia lucida, nymph mouthpart. Right mandible. Scale bar $=$ $200 \mu \mathrm{~m}$.	108
201	Thraulophlebia lucida, nym: ; mouthpart. Right maxilla. Scale bar = $200 \mu \mathrm{~m}$.	109
202	Thraulophlebia lucida, nymph mouthpar. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m} . \mathrm{p}$	109
203	Thraulophlebia lucida, nymph mouthpart. Hypopharynx. Scale bar = $200 \mu \mathrm{~m}$.	109
204	Thraulophlebia lucida, nymph mouthpart. Labium. Scale bar $=200 \mu \mathrm{~m}$.	110
205	Thraulophlebia lucida, nymph mouthpart. Dorsal view of labial terminal palp showing apical spines. Scale bar $=100 \mu \mathrm{~m}$.	110
206	Thraulophlebia lucida, nymph. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.	111
207	Thraulophlebia lucida, nymph. Fore tibial spines. Scale bar $=50 \mu \mathrm{~m}$.	111
208	Thraulophlebia lucida, nymph. Foreleg tarsal claw. Scale bar $=100 \mu \mathrm{~m}$.	112
209	Thraulophlebia lucida, nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	112
210	Atalophlebia lucida Ulmer. Ventral view of male genitalia. Reproduction of a drawing from Uimer (1919)	113
211	Nousia pilosa Suter. Ventral view of male imago genitalia. Drawn from temporary slide mount of holotype. Specimen collected from Second Wannon River, Victoria by D.N. \& P.J. Suter, 25 xi 1977 (MV).	114
212	Nousia pilosa Suter. Ventral view of male imago geritalia. Reproduction of a drawing from Suter (1986).	115
213	Nousia pilosa Suter. Ventral view of male imago genitalia. Reproduction of an SEM from Suter (1986).	115
214	Distribution of Thraulophlebia inconspicua.	116
215	Thraulophlebia inconspicua, male imago. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.	117
216	Thraulophlebia inconspicua, male imago. Forewing showing reiative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	117
217	Thraulophlebia inconspicua, male imago. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.	117
218	Thraulophlebia inconspicua, male imago. Dorsal view of abdomen. Scale bar $=\mathbf{1 m m}$.	118

219	Thraulophlebia inconspicua, male imago. Doisal view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.	119
220	Thraulophlebia inconspicua, male imago. Ventral view of genitalia showing penes. Scale bar $=200 \mu \mathrm{~m}$.	119
221	Thraulophlebia inconspicua, male imago. SEM of dorsal view of penes. Individual from Sturt River, Coramandel Valley, South Australia (76042900). Scale bar $=100 \mu \mathrm{~m}$.	120
222	Thraulophlebia inconspicua, male imago. SEM of ventral view of penes. Individual from Sturt River, Coramandel Valley, South Australia (76042900). Scale bar $=100 \mu \mathrm{~m}$.	120
223	Thraulophlebia inconspicua, female imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	121
224	Thraulophlebia inconspicua, female imago. Hindwing. Scale bar = $500 \mu \mathrm{~m}$.	121
225	Thraulophlebia inconspicua, female imago. Ventral view of abdomen showing sternites seven to nine. Scale bar $=500 \mu \mathrm{~m}$.	121
226	Thraulophlebia inconspicua, eggs taken from fernale imago. SEM of whole egg. Individual from Sturt River, Coramandel Valley, South Australia (76042900). Scale bar $=50 \mu \mathrm{~m}$.	122
227	Thraulophlebia inconspicua, eggs taken from female imago. SEM of close up of egg chorion. Individual from Sturt River, Coramandel Valley, South Australia (76042900). Scale bar $=10 \mu \mathrm{~m}$.	122
228	Thraulophlebia inconspicua, female nymph. Scale bar $=1 \mathrm{~mm}$.	123
229	Thraulophlebia inconspicua, nymph mouthparts. Labrum and clypeus. Scale bar $=200 \mu \mathrm{~m}$.	124
230	Thraulophlebia inconspicua, nymph mouthpart. Left mandible. Scale bar $=200 \mu \mathrm{~m}$.	124
231	Thraulophlebia inconspicua, nymph mouthpart. Right mandible. Scale bar $=200 \mu \mathrm{~m}$.	124
232	Thraulophlebia inconspicua, nymph mouthpart. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.	125
233	Thraulophlebia inconspicua, nymph mouthpart. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.	125
234	Thraulophlebia inconspicua, nymph mouthpart. Labium. Scale bar $=$ $200 \mu \mathrm{~m}$.	126
235	Thraulophlebia inconspicua, nymph. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.	127

236	Thraulophlebia inconspicua, nymph. Foreleg tarsal claw. Scale bar = $100 \mu \mathrm{~m}$.	128
237	Thraulophlebia inconspicua, nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	128
238	Nousia inconspicua (Eaton). Ventral view of male imago penes. Reproduction of an SEM from Suter (1986).	129
239	Ataiophlebia inconspicua (Eaton). Ventral view of male imago penes: a) penes divided through drying process, b) penes in natural state. Reproduction of a drawing from Ulmer (1908).	129
240	Koorrnonga inconspicua (Eaton). Egg from female imago. Reproduction of an SEM from Campbell and Suter (1988).	129
241	Distribution of Thraulophlebia parva.	130
242	Thrautophiebia parva, male imago. Foreleg tarsal claw. Scale bar $=$ $50 \mu \mathrm{~m}$.	131
243	Thraulophlebia parva, male imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	131
244	Thraulophlebia parva, male imago. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.	131
245	Thraulophlebia panva, male imago. Dorsal view of abdomen. Scale bar $=1 \mathrm{~mm}$.	132
246	Thraulophlebia parva, male imago. Dorsal view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.	133
247	Thraulophlebia parva, male imago. Ventral view of genitalia showing penes. Scale bar $=200 \mu \mathrm{~m}$.	133
248	Thraulophlebia parva, male imago. SEM of dorsal view of genitalia showing penes and forceps. Individual from Wild Duck Creek, outside Heathcote, Victoria (99022304). Scale bar $=100 \mu \mathrm{~m}$.	134
249	Thraulophlebia parva, male imago. SEM of dorsal view of penes. Individual from Wild Duck Creek, outside Heathcote, Victoria (99022304). Scale bar $=100 \mu \mathrm{~m}$.	134
250	Thraulophisbia parva, male imago. SEM of ventral view of genitalia showing penes and forceps. Individual from Wild Duck Creek, outside Heathcote, Victoria (99022304). Scale bar $=100 \mu \mathrm{~m}$.	134
251	Thraulophlebia parva, male imago. SEM of ventral view of penes. Individual from Wild Duck Creek, outside Heathcote, Victoria (99022304). Scale bar $=100 \mu \mathrm{~m}$.	134
252	Thraulophlebia parva, female imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	135
253	Thraulophlebia parva, female imago. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.	135

254	Thraulophlebia parva, female imago. Ventral view of abdomen showing sternites 7-9. Scale bar = 500	135.
255	Thraulophlebia parva, female imago. SEM of ventral view of abdomen showing sternite nine. Individual from Wild Duck Creek, outside Heathcote, Victoria (99022304). Scale bar = $500 \mu \mathrm{~m}$.	135
256	Thraulophlebia parva, eggs taken from female imago. SEM of whole egg. Individual from Wild Duck Creek, outside Heathcote, Victoria (99040701 \& 00022001). Scale bar = 50	13 m.

273	Montikola kala, male imago. SEM of foreleg tarsal claw. Individual from Cement Creek, Mount Donna Buang, Victoria (80030300). Scale bai = 50 $\mu \mathrm{m}$.	146
274	Montikola kala, male imago. Forewing showing relative size of hindwing. Scale $\mathrm{bar}=1 \mathrm{~mm}$.	146
275	Montikola kala, male imago. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.	146
276	Montikola kala, male imago. Dorsal view of abdomen. Scale bar $=1 \mathrm{~mm}$.	147
277	Montikola kala, male imago. Dorsal view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.	148
278	Montikola kala, male imago. Ventral view of genitalia showing penes. Scale bar $=200 \mu \mathrm{~m}$.	148
279	Montikola kaia, male imago. SEM of dorsal view of penes. Individual from Cement Creek, Mount Donna-Buang, Victoria (80030300). Scale bar $=100 \mu \mathrm{~m}$.	149
280	Montikola kala, male imago. SEM of dorsal view of right lobe of penes showing missing apical process and internal spines. Individual from Loch River, Noojee, Victoria (93050200). Scale bar $=50 \mu \mathrm{~m}$.	149
281	Montikola kala, male imago. SEM of close up internal penes spines. Individual from Loch River, Noojee, Victoria (93050200). Scale bar $=$ $50 \mu \mathrm{~m}$.	149
282	Montikola kala, male imago. SEM of ventral view of penes. Individual from Perrins Creek, Dandenong Ranges, Victoria (97032406). Scale bar $=100 \mu \mathrm{~m}$.	150
283	Montikola kala, male imago. SEM of close up of right lobe of penes showing apical process. Individual from Perrins Creek, Dandenong Ranges, Victoria (97032406). Scale bar $=50 \mu \mathrm{~m}$.	150
284	Montikola kala, female imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	151
285	Montikola kala, female imago. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.	151
286	Montikola kala, female imago. Ventral view of abdomen showing sternites seven to nine. Scale bar $=500 \mu \mathrm{~m}$.	151
287	Montikola kala, eggs taken from female imago. SEM of whole egg. Individual from Clematis Creek, Dandenong Ranges, Victoria (97101501). Scale bar $=50 \mu \mathrm{~m}$.	152
288	Montikola kala, eggs taken from female imago. SEM of close up of egg chorion. Individual from Clematis Creek, Dandenong Ranges, Victoria (97101501). Scale bar $=10 \mu \mathrm{~m}$.	152

289	Montikola kala, female nymph. Scale bar $=1 \mathrm{~mm}$.	153
290	Montikola kala, nymph mouthparts. Labrum and clypeus. Scale bar $=$ $200 \mu \mathrm{~m}$.	154
291	Montikola kala, nymph mouthpart. Left mandible. Scale bar $=200 \mu \mathrm{~m}$.	154
292	Montikola kala, nymph mouthpart. Right mandible. Scale bar $=200 \mu \mathrm{~m}$.	154
293	Montikola kala, nymph mouthpart. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.	155
294	Montikola kala, nymph mouthpart. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m} . \mathrm{p}$	155
295	Montikola kala, nymph mouthpart. Hypopharynx. Scaie bar $=200 \mu \mathrm{~m}$.	155
296	Montikola kala, nymph mouthpart. Labium. Scale bar $=200 \mu \mathrm{~m}$.	156
297	Montikola kala, nymph mouthpart. Dorsal view of labial terminal palp. Scale bar $=100 \mu \mathrm{~m}$.	156
298	Montikola kala, nymph. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.	157
299	Montikola kala, nymph. Foreleg tarsal claw. Sca!e bar $=10 \mathrm{Cjm}$.	158
300	Montikola kala, nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	158
301	Atalophlebia kala Harker. Dorsal view of male genitalia showing penes and forceps. Reproduction of a drawing from Harker (1954).	159
302	Montikola kala. New collection site, Charity Creek tributary, Mount Baw Baw, Victoria (99021602). Photo by K.J.Finlay.	160
303	Montikola adamus. Type locality, Frying Pan Raceline tributary, Falls Creek, Victoria (99020505). Photo by A. Slocombe.	161
304	Montikola adamus. Type locality, Frying Pan Raceline tributary, Falls Creek, Victoria (99020505). Photo by A. Slocombe.	161
305	Distribution of Montikola adamus.	162
306	Montikola adamus, male imago. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.	163
307	Montikola adamus, male imago. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.	163
308	Niontikola adamus, male imago. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.	163
309	Montikola adamus, male imago. Dorsal view of abdomen. Scale bar = 1 mm .	164
310	Montikola adamus, male imago. Dorsal view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.	165
311	Montikolá adamus, male imago. Ventral view of genitalia showing penes. Scale bar $=200 \mu \mathrm{~m}$.	165
312	Montikola adamus, male imago. SEM of dorsal view of genitalia showing penes and forceps. Individual from type locality, Frying Pan Raceline tributary, Falls Creek, Vic.oria (99020505). Scale bar $=200 \mu \mathrm{~m}$.	166

313	Montikola adamus, male imago. SEM of diorsal view of penes. individual from type locality, Frying Pan Raceline tributary, Falls Creek, Victoria (99020505). Scale bar = 100 $\mu \mathrm{m}$.	166
314	Montikols adamus, male imago. SEM of ventral view of genitalia showing penes and forcer s. Individual from type locality, Frying Pan Raceline tributary, Falls Creek, Victoria (99020505). Scale bar = 200	16 m.

332	Gemmayaluka wiltkorringae. Type locality, Cement Creek, Mount Donna-Buang, Victoria (98030503). Photo by K.J.Finlay.	176
333	Gemmayaluka wiltkorringae, male imago. Foreleg tarsal clav. Scale bar $=50 \mu m$.	177
334	Gemmaj'aluka wiltkorringae, male imago. Forewing showing relative size of hindwing. Scale bar = 1mm.	177
335	Gemmayaluka wiltkorringae, male imago. Hindwing. Scale bar = $500 \mu m$.	177
336	Gemmayaluka wiltkorringae, male imago. Dorsal view of abdomen. Scale bar = 1mm.	178
337	Gemmayaluka wiltkorringae, male imago. Dorsal view of genitalia. showing penes. Scale bar = 200	179.

348	Gemmayaluka wiltkorringae, nymph mouthparts. Labrum and clypeus. Scale bar $=200 \mu \mathrm{~m}$.	184
349	Gemmayaluka wiltkorringae, nymph mouthpart. Denticles on anterior margin of labrum. Scale $\mathrm{bar}=200 \mu \mathrm{~m}$.	184
350	Gemmayaluka wiltkorringae, nymph mouthpart. Left mandible. Scale bar $=200 \mu \mathrm{~m}$.	185
351	Gemmayaluka wiltkorringae, nymph mouthpart. Right mandible. Scale bar $=200 \mu \mathrm{~m}$.	185
352	Gemmayaluka wiltkorringae, nymph mouthpart. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.	186
353	Gemmayaluka wiltkorringae, nymph mouthpart. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m} . \mathrm{p}$	186
354	Gemmayaluka wittkorringae, nymph mouthpart. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.	186
355	Gemmayaluka wiltkorringae, nymph mouthpart. Labium. Scale bar = $200 \mu \mathrm{~m}$.	187
356	Gemmayaluka wiltkorringae, nymph mouthpart. Dorsal view of labial terminal palp showing apical spines. Scale bar $=100 \mu \mathrm{~m}$.	187
357	Gemmayaluka wilthorringae, nymph. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.	188
358	Gemmayaluka wiltkorringae, nymph. Foreleg tarsal claw. Scale bar $=$ $100 \mu \mathrm{~m}$.	189
359	Gemmayaluka wiltkorringae, nymph. Gills. Scale bar $=100 \mu \mathrm{~m}$.	189
360	Drainage basin divisions of Victoria as defined by the Australian Water Resources Council (AWRC).	190
361	Location of mayfly collecting sites where environmental data was collected.	191
362	Relationship between the presence of Nousia (Australonousia) fusca and temperature seasonality. Bars show mean values, error bars represent one standard error.	192
363	Relationship between the presence of Nousia (Australonousia) fusca and temperature seasonality. Bars show mean values, error bars represent one standard error.	192
364	Proportion of sites with Nousia (Australonousia) fusca present in each landuse category.	193
365	Froportion of sites with Nousia (Australonousia) fusca present in each dominant vegetation category.	193

366	Proportion of sites with Nousia (Australonousia) fusca present in each substrate heterogeneity category.	134
367	Proportion of sites with Nousia (Australonousia) fusca present in each CPOM category.	194
368	Proportion of sites with Nousia (Australonousia) fusca present in each flow category.	195
369	Relationship between the presence of Nousia (Australonousia) nigeli and altitude. Bars show mean values, error bars represent one standard error.	196
370	Relationship between the presence of Nousia (Australonousia) nigeli and water temperature. Bars show mean values, error bars represent one standard error.	196
371	Relationship between the presence of Nousia (Australonousia) nigeli and slope. Bars show mean values, error bars represent one standard error.	197
372	Relationship between the presence of Nousia (Australonousia) nigeli and distance from source. Bars show mean values, error inar's represent one standard error.	197
373	Proportion of sites with Nousia (Australonousia) nigeli present in each flow category.	198
374	Proportion of sites with Nousia (Australonousia) nigeli present in each algae category.	198
375	Proportion of sites with Nousia (Australonousia) nigeli present in each macrophyte category.	199
376	Proportion of sites with Nousia (Australonousia) nigeli present in each shade category.	199
377	Proportion of sites with Nousia (Australonousia) nigeli present in each CPOM category.	200
378	Predicted probability of the presence of Nousia (Australonousia) fusca in a logistic model containing the factors altitude, distance from source and the interaction of the two variables.	201
379	Relationship between distance from source and substrate heterogeneity at sites less than 9 km from source.	202
380	Relationship between distance from source and substrate heterogeneity at sites 9 km or more from source.	202
381	Relationship between altitude and CPOM at sites above 500 m .	203
382	Relationship between altitude and CPOM at sites below 500 m .	203

383	Phylogenetic lineages developed for the cool-adapted Leptophiebiidae of southern South America and related Southern Hemisphere fauna (adapted from Pescador and Peters 1980a). Numbers refer to furcations. Austraiian taxa considered to belong to each lineage are added.	204
384	Setation on body of Jappa sp. "AV3".	205
385	Setation on gills of Jappa kutera.	205
386	Setation on body of Ulmerophlebia sp.	205
387	Setation on gills of Ulmerophlebia sp.	205
388	Labrum and clypeus morphology - Atalomicria	206
389	Labrum and clypeus morphology - Atalophlebia	206
390	Labrum and clypeus morphology - Austrophlebioides	207
391	Labrum and clypeus morphology - Billilmena	207
392	Labrum and clypeus morphology - Garinjuga	208
393	Labrum and clypeus morphology - Gemmayaluka	208
394	Labrum and clypeus morphology - Jappa	209
395	Labrum and clypeus morphology - Kalbaybaria	209
396	Labrum and clypeus morphology - Kaninga	210
397	Labrum and clypeus morphology - Kirrara	210
398	Labrum and clypeus morphology - Loamaggalangta	211
399	Labrum and clypeus morphology - Montikola	211
400	Labrum and clypeus morphology - Neboissophlebia	212
401	Labrum and clypeus morphology - Nousia (Nousia)	212
402	Labrum and clypeus morphology - Nousia (Australonousia)	213
403	Labrum and clypeus morphology - Nyungara	213
404	Labrum and clypeus morphology - Thraulophlebia	214
405	Labrum and clypeus morphology - Thraulus	214
406	Labrum and clypeus morphology - Tillyardophlebia	215
407	Labrum and clypeus morphology - Ulmerophiebia	215
408	Apical view of Kirrara procera labrum.	216
. 409	Frontal horns of Jappa sp. "AV4"	217
410	Frontal horns of Jappa sp. "AV3"	217
411	Mandible morphology - Atalomicria	218
412	Mandible morphology - Atalophlebia	218
413	Mandible morphology - Austrophlebioides	218
414	Mandible morphology - Bibllumena	218
415	Mandible morphology - Garinjuga	219
416	Mandible morphology - Gemmayaluka	219

417	Mandible morphology - Jappa	219
418	Mandible morphology - Kalbaybaria	219
419	Mandible morphology - Kaninga	220
420	Mandible morphology - Kirrara	220
421	Mandible morphology - Loamaggalangta	220
422	Mandible morphology - Montikola	220
423	Mandible morphology - Neboissophlebia	221
424	Mandible morphology - Nousia (Nousia)	221
425	Mandible morphology - Nousia (Australonousia)	221
426	Mandible morphclogy - Nyungara	221
427	Mandible morphology - Thraulophlebia	222
428	Mandible morphology - Thraulus	222
429	Mandible morphology - Tillyardophlebia	222
430	Mandible morpholegy - Ulmerophlebia	222
431	Mandible prosthecai tift morphology - Atalomicria	223
432	Mandible prosthecal tuft morphology - Atalophlebia	223
433	Mandible prosthecal tuft morphology - Austrophlebioides	223
434	Mandible prosthecal tuft morphology - Bidhmena	223
435	Mandible prosthecal tuft morphology - Garinjuga	224
436	Mandible prosthecal tuft morphology - Gemmayaluka	224
437	Mandible prosthecal tuft morphology - Jappa	224
438	Mandible prosthecal tuft morphology - Kalbaybaria	224
439	Mandible prosthecal tuft morphology - Kaninga	225
440	Mandible prosthecal tuft morphology - Kirrara	225
441	Mandible prosthecal tuft morphology - Loamaggalangta	225
442	Mandible prosthecal tuft morphology - Montikola	225
443	Mandible prosthecai tuft morphology - Neboissophlebia	226
444	Mandible prosthecal tuft morphology - Nousia (Nousia)	226
445	Mandible prosthecal tuft morphology - Nousia (Australonousia)	226
446	Mandible prosthecal tuft morphology - Nyungara	228
447	Mandible prosthecal tuft morphology - Thraulophlebia	227
448	Mandible prosthecal tuft morphology - Thraulus	227
449	Mandible prosthecal tuft morphology - Tillyardophlebia	227
450	Mandible prosthecal tuft morphology - Ulmerophlebia	227
451	Right mandible outer incisor morphology - Atalomicria	228
452	Right mandible outer incisor morphology - Atalophiebia	228

453	Right mandible outer incisor morphology - Austrophlebioides	228
454	Right mandible outer incisor morphology - Bithtmena	228
455	Right mandible outer incisor morphology - Garinjuga	229
456	Right mandible outer incisor morphology - Gemmayaluka	229
457	Right mandible outer incisor morphology - Jappa	229
458	Right mandible outer incisor morphology - Kalbaybaria	229
459	Right mandible outer incisor morphology - Kaninga	230
460	Right mandible outer incisor morphology - Kirrara	230
461	Right mandible outer incisor morphology - Loamaggalangta	230
462	Right mandible outer incisor morphology - Montikola	230
463	Right mandible outer incisor morphology - Neboissophlebia	231
464	Right mandible outer incisor morphology - Nousia (Nousia)	231
465	Right mandible outer incisor morphology - Nousia (Australonousia)	231
466	Right mandible outer incisor morphology - Nyungara	231
467	Right mandible outer incisor morphology - Thraulophlebia	232
468	Right mandible outer incisor morphology - Thraulus	232
469	Right mandible outer incisor morphology - Tillyardophlebia	232
470	Right mandible outer incisor morphology - Ulmerophlebia	232
471	Maxilla morphology - Atalomicria	233
472	Maxilla morphology - Atalophlebia	233
473	Maxilla morphology - Austrophlebioides	233
474	Maxilla morphology - Biblumena	233
475	Maxilla morphology - Garinjuga	234
476	Maxilla morphology - Gemmayaluka	234
477	Maxilla morphology - Jappa	234
478	Maxilla morphology - Kalbaybaria	234
479	Maxilla morphology - Kaninga	235
480	Maxilla morphology - Kirrara	235
481	Maxilla morphology - Loamaggalangta	235
482	Maxilla morphology - Montikola	235
483	Maxilla morphology - Neboissophlebia	236
484	Maxilla morphology - Nousia (Nousia)	236
485	Maxilla morphology - Nousia (Australonousia)	236
486	Maxilia morphology - Nyungara	236
487	Maxilla morphology - Thraulophlebia	237
488	Maxilla morphology - Thraulus	237

489	Maxilla morphology - Tillyardophlebia	237
490	Maxilla morphology - Ulmerophlebia	237
491	Labium inorphology - Atalomicria	238
492	Labium morphology - Atalophlebia	238
493	Labium morphology - Austrophlebioides	239
494	Labium morphology - Biblumena	239
495	Labium morphology - Garinjuga	240
496	Labium morphology - Gemmayaluka	240
497	Labium morphology - Jappa	241
498	Labium morphology - Kalbaybaria	241
499	Labium morphology - Kaninga	242
500	Labium morphology - Kirrara	242
501	Labium morphology - Loamaggalangta	243
502	Labium morphology - Montikola	243
503	Labium morphology - Neboissophlebia	244
504	Labium morphology - Nousia (Nousia)	244
505	Labium morphology - Nousia (Australonousia)	245
506	Labium morphology - Nyungara	245
507	Labium morphology - Thraulophlebia	246
508	Labium morphology - Thraulus	246
509	Labium morphology - Tillyardophlebia	247
510	Labium morphology - Ulmerophlebia	247
511	Labial terminal palp morphology - Atalomicria	248
512	Labial terminal palp morphology - Atalophlebia	248
513	Labial terminal palp morphology - Austrophlebioides	248
514	Labial terminal paip morphology - Bibllymena	248
515	Labial terminal palp morphology - Garinjuga	249
516	Labial terminal palp morphology - Gemmayaluka	249
517	Labial terminal palp morphology - Jappa	249
518	Labial terminal palp morphology - Kalbaybaria	249
519	Labial terminal palp morphology - Kaninga	250
520	Labial terminal palp morphology - Kirrara	250
521	Labial terminal palp morphology - Loamaggalangta	250
522	Labial terminal palp morphology - Montikola	250
523	Labial terminal palp morphology - Neboissophlebia	251
524	Labial terminal palp morphology - Nousia (Nousia)	251

525	Labial terminal palp morphology - Nousia (Australonousia)	251
526	Labial terminal paip morphology - Nyungara	251
527	Labial terminal palp morphology - Thraulophlebia	252
528	Labial terminal paip morphology - Thraulus	252
529	Labial terminal palp morphology - Tillyardophlebia	252
530	Labial terminal palp morphology - Ulmerophlebia	252
531	Hypopharynx morphology - Atalomicria	253
532	Hypopharynx morphology - Atalophlebia	253
533	Hypopharynx morphology - Austrophlebioides	254
534	Hypopharynx morphology - Bibllymena	254
535	Hypopharynx morphology - Garinjuga	255
536	Hypopharynx morphology - Gemmayaluka	255
537	Hypopharynx morphology - Jappa	256
538	Hypopharynx morphology - Kalbaybaria	256
539	Hypopharynx morphology - Kaninga	257
540	Hypopharynx morphology - Kirrara	257
541	Hypopharynx morphology - Loamaggalangta	258
542	Hypopharynx morphoiogy - Montikola	258
543	Hypopharynx morphslogy - Neboissophlebia	259
544	Hypopharynx morphology - Nousia (Nousia)	259
545	Hypopharynx morphology - Nousia (Australonousia)	260
546	Hypopharynx morphology - Nyungara	260
547	Hypopharynx morphology - Thraulophlebia	261
548	Hypopharynx morphology - Thraulus	261
549	Hypopharynx morphology - Tillyardophlebia	262
550	Hypopharynx morphology - Ulmerophlebia	262
551	Nymph tarsal claw morphology - Atalomicria	263
552	Nymph tarsal claw morphology - Atalophlebia	263
553	Nymph tarsal claw morphology - Austrophlebioides	263
554	Nymph tarsal claw morphology - Biblfymena	263
555	Nymph tarsal claw morphology - Garinjuga	264
556	Nymph tarsal claw morphology - Gemmayaluka	264
557	Nymph tarsal claw morphology - Jappa	264
558	Nymph tarsal claw morphology - Kalbaybaria	264
559	Nymph tarsal claw morphology - Kaninga	265
560	Nymph tarsal claw morphology - Kirrara	265

561	Nymph tarsal claw morphology - Loamaggalangta	265
562	Nyrnph tarsal claw morphology - Montikola	265
563	Nymph tarsal claw morphology - Neboissophlebia	266
564	Nymph tarsal claw morphology - Nousia (Nousia)	266
565	Nymph tarsal claw morphology - Nousia (Australonousia)	266
566	Nymph tarsal claw morphology - Nyungara	266
567	Nymph tarsal claw morphology - Thraulophlebia	267
568	Nymph tarsal claw morphology - Thraulus	267
569	Nymph tarsal claw morphology - Tillyardophlebia	267
570	Nymph tarsal claw morphology - Ulmerophlebia	267
571	Male imago forewing showing relative size of hindwing morphology Atalomicria	268
572	Male imago forewing showing relative size of hindwing morphology Atalophlebia	268
573	Male imago forewing showing relative size of hindwing morphology Austrophlebioides	269
574	Male imago forewing showing relative size of hindwing morphology Bibßymena	269
575	Male imago forewing showing relative size of hindwing morphology Garinjuga	270
576	Male imago forewing showing relative size of hindwing morphology Gemmayaluka	270
577	Male imago forewing showing relative size of hindwing morphology Jappa	271
578	Male imago forewing showing relative size of hindwing morphology Kalbaybaria	271
579	Mare imago forewing showing relative size of hindwing morphology Kaninga	272
580	Male imago forewing showing relative size of hindwing morphology Kirrara	272
581	Male imago forewing showing relative size of hindwing morphology Loamaggalangta	273
582	Male imago forewing showing relative size of hindwing morphology Montikola	273
583	Male imago forewing showing relative size of hindwing morphology Neboissophlebia	274

584	Male imago forewing showing relative size of hindwing morphology Nousia (Nousia)	274
585	Male imago forewing showing relative size of hindwing morphology Nousia (Australonousia)	275
586	Male imago forewing showing relative size of hindwing morphology Nyungara	275
587	Male imago forewing showing relative size of hindwing morphology Thraulophlebia	276
588	Male imago forewing showing relative size of hindwing morphology Thraulus	276
589	Male imago forewing showing relative size of hindwing morphology Tillyardophlebia	277
590	Male imago forewing showing relative size of hindwing morphology Ulmerophlebia	277
591	Male imago hindwing - Atalomicria	278
592	Male imago hindwing - Atalophlebia	278
593	Male imago hindwing - Austrophlebioides	278
594	Male imago hindwing - Bid/lymena	278
595	Male imago hindwing - Garinjuga	279
596	Male imago hindwing - Gemmayaluka	279
597	Male imago hindwing - Jappa	279
598	Male imago hindwing - Kalbaybaria	279
599	Male imago hindwing - Kaninga	280
600	Male imago hindwing - Kirrara	280
601	Male imago hindwing - Loamaggalangta	280
602	Male imago hindwing - Montikola	280
603	Male imago hindwing - Neboissophlebia	281
604	Male imago hindwing - Nousia (Nousia)	281
605	Male imago hindwing - Nousia (Australonousia)	281
606	Male imago hindwing - Nyungara	281
607	Male imago hindwing - Thraulophlebia	282
608	Male imago hindwing - Thraulus	282
609	Male imago hindwing - Tillyardophlebia	282
610	Maie imago hindwing - Ulmerophlebia	282
611	Female imago sternum nine - Atalomicria	283
612	Female imago sternum nine - Atalophlebia	283
613	Female imago sternum nine - Austrophlebioides	283

614	Female imago sternum nine - Biblumena	283
615	Female imago sternum rine - Garinjuga	284
616	Female imago sternum nine-Gemmayaluka	284
617	Female imago sternum nine - Jappa	284
618	Female imago sternum nine - Kalbaybaria	284
619	Female imago sternum nine - Kaninga	285
620	Female imago sternum nine - Kirrara	285
621	Female imago sternum nine - Loamaggalangta	285
622	Female imago sternum nine - Montikola	285
623	Female imago sternum nine - Neboissophlebia	286
624	Female imago sternum nine - Nousia (Nousia)	286
625	Female imago sternum nine - Nousia (Australonousia)	286
626	Female imago sternum nine - Nyungara	286
627	Female imago sternum nine - Thraulophlebia	287
628	Female imago sternum nine - Thraulus	287
629	Female imago sternum nine - Tillyardophlebia	287
630	Female imago sternum nine - Uiimerophlebia	287
631	Strict consensus tree of the relationships of the Australian Leptophlebiidae. Letter refer to clades. Circles refer to mapped character states where $\boldsymbol{=}$ apomorphy and $O=$ homoplasy (convergence, reversals). Numbers above circles refer to characters listed in Table 33, number below to the character state where $0=$ plesiomorphic condition, $1=$ apomorphic condition, $2=$ represents a multi-state apomorphy.	288
632	Strict consensus tree of the relationships of the Australian Leptophlebiidae, without the inclusion of Thraulus, which is considered to have Northern Hemisphere origins. Only clade K of original tree (Fig. 631) shown.	289

LIST OF APPENDICES

All Appendices are included in Volume 1.

No.	Appendix Title	refer to page 349
1	Publication: Finlay, K.J. (2001). Construction and evaluation of a new laboratory system for rearing mayflies. pp. 241-250. Proceedings of the Ninth International Conference on Ephemeroptera and the Thirteenth International Symposium on Plecoptera - Trends in Research in Ephemeroptera and Plecoptera, Tucumán, Argentina, Kluwer Academic Publishers.	
2	Alphabetically listed locality data for each specimen examined. Presence or absence of each species and genus at each site aiso noted.	
3	Publication: Finlay, K.J. (2000). Description and distribution of a new species of Nousia Navás (Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from south-eastern Australia. Australian Journal of Entomology 39: 111-117.	
4	Summary data on site characteristics where each species was present for all species found at more than 10 sites.	

ACKNOWLEDGEMENTS

Thanks go to all my supervisors; Associate Professor lan Campbell and Dr Martin Burd from Monash University and Dr Richard Marchant of the Museum of Victoria, for their assistance, advice, motivation and helpful discussions. I am particularly gizoful to Martin and Richard for contributing so much as associate supervisors especially as they came on board subsequent to the inception of the project.

I am extremely grateful to all the staff of the Department of Biological Sciences at Monash University for their overall support and encouragement. I would like to acknowiedge the acaderis and administrative staff for their friendliness and willingness to help. I would also like to thank the workshop staff; particularly Peter Domelow and lan Stewart, for patientily showing me the intricacies of carpentry and metalwork, and making the more sophisticated equipment that was beyond my capabilities. A special thanks must also go the Gunta Jandzems and Joan Clarke from the Microscopy Lab who were instrumental in instructing me with the use of the Scanning Electron Microscope (SEM).

For financial support I must thank to Co-operative Research Centre for Freshwater Ecology (CRCFE) and the Land and Water Resources Research and Development Council (LWRRDC) (now Land and Water) for their generous scholarship and support to attend seminars, conferences, meetings and workshops.

Thariks also the vast number of people who provided me with mayfly material to examine for taxonomic and phylogenetic review: Dr Richard Marchant (Museum of Victoria), John Dean (Environment Protection Authority, Victoria), Dr Phil Suter (La Trobe University, Albury-Wodonga), John Hawking (Murray Darling Frestwater Research Centre, Albury), Colin Beasley (Australian Water Technologies, New South Wales), Paul McEvoy (Australian Water Quality Centre, South Australia), Peter Goonan (Environment Protection Authority, South Australia), Dr Leon Barmuta (University of Tasmania), Faye Christidis (James Cook University, Queensland), Ngaire Phillips (Department of Primary Industries, Queensland), Gavin Dally (Museum and Art Galleries of the Northern Territory, Darwin), Dr Terry Hitchings (Canterbury Museum, New Zealand), Professor Yeon J. Bae (Seoul Women's Univenlity, Korea) and the late Professor William (Bill) Peters (Florida Agricultural and Mechanical University, U.S.A). I must also extend significant thanks to the following institutions for lending me type material for examination: Museum of Victoria (Melbourne), Australian Museum (Sydney), Australian National Insect Collection (Canberra), the Natural History Museum (London, U.K.), Naturhistoriska Riksmuseet (Stockholm, Sweden) and Oxford Museum of Natural History (Oxford, U.K.).

Field work was a significant part of this project and thanks must go to all who provided valuable field assistance throughout the project: Lucas Finlay, James Finlay, Faye Wescott, Ann Duguay, Fred Govedich, Bonnie Bain, Jackie Griggs, Katie Martin, Eddie Tsyrlin and most notably Nigel Ainsworth who was always willing to help out.

I would remiss if I did not single out a number of people who provided valuable aid in various forms throughout the project: Leesa Hughes for assistance in the laboratory; Julio Bonilla, Natalie Laukart, Jean-Louis Sagliocco, Aline Bruzzese and Nigel Ainsworth for translating various taxonomic papers; Les Bould for digital image processing; Jim Backholer for assembling map data; James Finlay for laboriously checking all drawings for proportion and scale accuracy; Steve Morton and Adrian Dyer, Jackie Griggs, Nigel Ainsworth and Andrew Slocombe for taking various field and technical photegraphs; Fred Govedich, Bonnie Bain and Yeon Bae for contributing to many valuable discussions on phylogeny; Gerry Quinn for help with the heavy-weight statistics of Chapter 5; Adam Finlay for explaining the machinations of Microsoft and providing much general practical support; Lucas Finlay, Nigel Ainsworth and Judith Finlay for proof reading and suggesting valuable comments in the final stages of writing up and Fiona Clissold, Kay Morris, Leesa Hughes, Craig Kingham and Jackie Griggs for their advice, friendship and willingness to accompany me on a coffee break.

Finally I would like to acknowledge my irrepressibie gratitude to my family. A heartfelt dedication to my husband Nigel for his never-ending encouragement, patience and unflinching confidence in my capacity to complete. Profound and sincere thanks also to my parents, James and Judith Finlay, and all my family for their love and encouragement.

1. GENERAL INTRODUCTION

"It has long been an axiom of mine that the little things are infinitely more important."

Arthur Conan Doyle

1.1 introduction

Australian streams differ greatly from their Northern Hemisphere counterparts (Williams 1968a; Williams and Wan 1972; Lake et al. 1985) being characterised by low discharge, intermittent and high variability of flow, high allochthonous inputs in summer rather than autumn and high proportions of woody debris. For these reasons Northern Hemisphere studies have been considered to have little relevance to Australia. Further, there are few full time limnologists in Australia due to the country's small population. As a result efforts have been thinly spread across a large country encompassing diverse biogeographic regions which include the tropics, desert and alpine regions. Most investigations, so far, have focussed in the more populated temperate zones such as the south east and south west. Areas such as the Northern Territory, north west Western Australia, the tropical North and Tasmania have been virtually neglected, a result of fewer centres from which to work and often long and arduous travel required for sampling.

As such the Australian freshwater invertebrate fauna has also been relatively little studied in comparison to that of the Northern Hemisphere. Taxonomic knowledge of the North American and European fauna is extensive (Thorp and Covich 1991; Merritt and Cummins 1996; Anonymous 2002) providing keys and major references for the vast majority of taxa. There is no equivalent up-to-date text for the Australian fauna. The first text to comprehensively summarise kriowledge of the Australian invertebrate freshwater fauna was "Australian Freshwater Life" (Williams 1968) which was updated in 1980 (Williams 1980). Since the time of the second edition there has been an expanding body of knowledge accumulated about the Australian aquatic fauna, usually based on individual taxa (see Hawking 1996). Unfortunately, a substantial amount of it has been published in the "grey literature", such as industry and government reports, (eg taxonomic identification guides published jointly by the Murray Darling Freshwater Research Centre and the Co-operative Research Centre for Freshwater Ecology) and remains difficult to obtain for overseas researchers. Despite this research, however, the current view is that the state of knowledge of the taxonomy and distribution of our macroinvertebrate aquatic fauna is merely "moderate" (Cullen and Lake 1993). Lake (1994) notes this lack of knowledge is "severely impeding our understanding of ecological processes".

To add to the difficulty, Australian streams also appear to have relatively high species richness compared with similar streams overseas (Lake et al. 1985) and much of the fauna appears to be distinctive and endemic (Williams 1980; Yen and Butcher 1997; Ponder and Lunney 1999). This gives no basis for comparison with the overseas literature.

The enormity of the task of identifying all Australian freshwater fauna has led researchers to target certain taxa. Benthic macroinvertebrates in general are considered ideai candidates for water quality monitoring due to their abundance, long aquatic life spans, relative lack of mobility and wide range of responses to environmental stress (Rosenberg and Resh 1996). However, three orders (Ephemeroptera, Plecoptera, Trichoptera) are considered more useful than others due to their perceived pollution sensitivity. The EPT index, sometimes referred to as EPT richness (percentage abundance of each order), has been used as a means to measure water quality without having to examine all the individuals in the community (Lenat 1988; Rosenberg and Resh 1996; Baker and Sharp 1998).

Ephemeropteran nymphs, in particular, are found in a wide variety of lentic and lotic habitats from fast flowing upland streams to meandering lowland rivers, lakes and reservoirs (Williams 1980). Most are commonly associated with highly oxygenated fast flowing water (Merritt and Cummins 1996) and are particularly sensitive to changes in water quality.

Ephemeroptera are also considered an integral part of the recreational freshwater fishing industry in Australia (Tillyard 1933b; Tillyard 1936; Scholes 1961). The success of the industry depends directly on the ability to maintain healthy insect communities as fish food. This requires a knowledge of the species common in each area along with their habits. This knowledge is also of enormous interest to fly fishermen in order that suitable artificial flies can be chosen.

Due to the restriction of the nymphal stage to water, and the adults' short life span and limited flight capabilities, Ephemeroptera are regarded as poor dispersers (Edmunds 1972). Mackerras (1970) hypothesized that this made the group ideal candidates for phylogenetic and biogeographic studies. Support for this view is seen in the numerous phylogenetic and zoogeographic studies of certain groups over the years; for example: Ephemeroidea (McCafferty and Gillies 1979; Bae 1991; McCafferty 1994); Heptagenioidea (McCafferty 1991a) and Leptophlebioidea (Peters 1971; Peters et al. 1978; Pescador and Peters 1980a; Peters 1980; Towns and Peters 1996).

1.2 Current status and knowledge of Australian Ephemeroptera

Like many of the other Australian aquatic insect orders, Australian Ephemeroptera is relatively understudied compared to North America and Europe although there has been substantial progress made in the last ten years or so (Campbell 2001). Eaton (1871)
discussed Australian fauna in his early monographs but it was Tillyard who produced the first substantial body of work on mayflies for this country (Tillyard 1926). The discipline, however, did not really begin to flourish until the 1980's with a relative proliferation of work from a few authors. Today there remain fewer than a dozen researchers working on mayflies in this country.

A striking feature of the Australian mayfly fauna is its uniqueness. Of the seven major groupings now generally accepted, and usually referred to as superfamilies (McCafferty 1991b; Hubbard et al. 2001; McCafferty 2002), Australian species are represented in all but the Ephemeroidea group. The distribution, however, is quite disparate with species of the Leptophlebioidea and Baetoidea dominating the Australian fauna (Table 1). Only three species, Cloeon virens Klapaliek, C. fluvaille Ulimer and Pseudocloeon Kraepelini Klapalek are not endemic (Campbell 1990).

Table 1. Percentage of Australian genera and species occurring in each Ephemeropteran superfamily.

Superfamily	\% of genera	\% of species
Baetoidea	29.7	24.7
Baetiscoidea	2.7	2.7
Heptagenioidea	2.7	0.9
Ephemeroidea	0	0
Ephemerelloidea	2.7	0.9
Caenoidea	8.1	10.6
Leptophlebioidea	54.1	60.2
TOTAL	100.00	100.00

1.2.1 Taxonomy

The eariest taxonomic study of an Australian mayfly is a description of Baetis costalis (now Atalophlebia albiterminata) by Burmeister (1839). Subsequently, workers such as Pictet (1843-1845) and Walker (1853) described a few species between them but it was not until the substantial monographs of Eaton (1871 and 1883-1888) that a large number of Australian species were first discussed. Eaton's work remains an important reference for taxonomic studies today.

The next influential and prolific worker was Georg Ulmer who described a great number of species now held at the Naturhistoriska Risksmuseet, Stockholm (Swedish Museum of Natural History) collected as part of the Mjöberg expedition to Australia (1910-1913).

Ulmer's numerous publications (Ulmer 1908; Ulmer 1916; Ulmer 1919; Ulmer 1920; Ulmer 1938) refer to at least 15 current Australian species.

Following Limer, R.J. Tillyard described a iarge number of new Australian species in his publication of works outlining the Ephemeropteran fauna of the Mount Kosciusko region (Tiilyard 1933a) and Tasmania (Tillyard 1933a; Tillyard 1933b). This work describes a number of species (Nousia darkara, N. delicatuia, Atalophlebia superba, A. pallida, A. hudsoni, A. ida, Tasmanophlebia lacustris, Cloeon tasmaniae and Baetis frater) which he considered endemic to Tasmania. Unfortunately, many of these species have not been revisited in subsequent revisions and little more is known of them other than Tillyard's original descriptions.

It took uritil the 1950's for the next substantial contribution to the taxonomy of Australian mayfly fauna to be made. Janet Harker outlined many new species (Harker 1950b; Harker 1954; Harker 1957a; Harker 1957b). Unfortunately much of her work includes specimens that are poorly described and inadequately drawn. Added to this her type specimens, all of which are listed as being held in the Natural History Museum in London, are missing. It is believed they were transferred to the Australian Museum in Sydney at some point but their whereabouts is still unknown (I.C. Campbell, pers. comm). This is unfortunate as her work needs revision due to a number of current species which appear to correspond to the described fauna in her papers. The ambiguities of her descriptions, however, provide much difficulty in the determination of these possible new species.

There were few authors actively mirsuing mayfly taxonomy in the 25 years following Harker. Of note, however, are Demoulin (1955b \& c), Riek (1955 \& 1963), Soldán (1978) and Pearson and Penridge (1979) who were responsible for descriptions of selected individual taxa.

From the mid 1980's, Ephemeropteran taxonomic study was actively pursued by a few Australian workers and has produced a plethora of new species descriptions. Influential has been P. J. Suter with his substantial revision of the South Australian fauna (Suter 1986) and his subsequent descriptions of new taxa of Caenidae (Suter 1993; Suter 1999), Baetidae (Suter 2000) and Leptophlebiidae (Campbell and Suter 1988). Suter's contributions have also provided working knowledge of the Australian mayfly fauna in the form of keys (Suter 1979; Suter 1992; Dean and Suter 1996). I. C. Campbell has also been responsible for establishing several new genera such as Kalbaybaria (Campbell 1993) and Koorrnonga, Garinjuga and Austrophlebioides in association with Suter (Campbell and Suter 1988). He has also revised several other genera (Campbell 1983;

Campbell and Peters 1986; Campbell and Peters 1993) and described a new species of Prosopistoma (Campbell and Hubbard 1998).
J.C. Dean has made a substantial contribution to the knowledge of mayfly taxonomy in Australia, publishing many new generic and species descriptions (Dean 1987; Dean 1988; Dean 1997; Dean et al. 1999; Dean 2000). He has also produced a number of keys (Dean 1989; Dean 1999, Dean and Suter 1996) which have detailed character variation in the nymphal stages. The latest guide, althouah based on morphospecies identification only, includes a large number of specimens and has provided a solid platform on which to base this present study.

Recently there have been a number of overseas papers describing new Baetidae from Australia (Lugo-Ortiz and McCafferty 1998a; Lugo-Ortiz and McCafferty 1998c; LugoOrtiz and McCafferty 1999; Lugo-Ortiz et al. 1999). Most of these revisions are based on material collected in the 1960's by J. Illies and G.F. Edmunds Jr. and there is some concern amongst Australian taxonomists that the authors have been hampered by lack of material. Further, it appears that they have produced many synonymies by not referring to the Australian literature. Papers are in press at present to correct some of these errors (P.J. Suter pers. comm.).

A totally new family, Siphlaenigmatidae, was also added to the Australian fauna by LugoOrtiz and McCafferty 1998b) with the description of Siplaenigma edmundsi Lugo-Ortiz and McCafferiy. Subsequently, however, this has been proved to be an error due to the mislabelling of the original specimens (I.C. Campbell \& P.J. Suter pers. comm). The family has been subsequently formally removed from the Australian fauna (McCafferty 1999).

The latest catalogue of Australian mayflies (Hubbard et al. 2001) lists 113 extant species described within 37 genera and 9 families although 10 families are recorded (see Table 2). The discrepancy in the family number derives from the erroneously described Atopopus spadix (Harker 1950a) which she attributed to Heptageniidae. The species is, in fact, a leptophlebiid awaiting redescription and the family Heptageniidae is considered absent from Australia (Hubbard and Campbell 1996; Hubbard et al. 2001).

Despite the discrepancy, the total is a significant improvement on previous tallies of the Australian species: 84 (Peters and Campbell 1991) and 95 (Hubbard and Campbell 1996). However, the total is still considered a significant underestimate of Australian species richness, 'Jespite the relative proliferation of work in the last decade or so. Recent publications have alluded to large numbers of undescribed taxa (Dean and Suter

1996; Dean 1999) and many authors believe there may be at least twice the number of species to be described (Campbell 1988; Campbell 1990; Dean and Suter 1996; Hubbard and Campbell 1996).

1.2.2 Biology and ecology

Autecological studies of the Australian mayfly fauna are also few in number especially in comparison to the Northern Hemisphere. Only a small number have detailed work, other than life history analyses, and the most significant of these are listed here. One study has investigated size allometry in various species belonging to the families Siphlonuridae, Ameletopsidae, Oniscigastridae and Colofburiscidae (Campbell 1991). Bailey (1981b) investigated Atalophlebioides sp. (now Austrophlebioides) in relation to drift. Three studies (Campbeil 1979; Bailey 1981a; Pinder et al. 1993) have recorded diel activity, often related to drifting behaviour, of various mayfly species. Investigations into the burrowing Ephemeroptera wor!d-wide have included mention of Jappa sp. in behavioural studies (Edmunds and McCafferty 1996) and investigations of tusk phylogeny (Bae and McCafferty 1995). Two dietary studies have ascertained most of the fauna thus far studied are predominantly detritivores although certain species of Baetis and Ameletoides were found to contain large amounts of algae (Campbell 1985; Chessman 1086). There have also been some investigations into egg development (Suter and Bishop 1990; Brittain and Campbell 1991; Brittain 1995) which indicate that the relationships between water temperature aind egg development time of the Australian temperate species are similar to those of their Northern Hemisphere relatives.

Table 2. Number of families, genera and species of extant Australian Ephemeroptera.

Family	Genus	No. of species	Key references
Ameletopsidae	Mirawara	3	(Harker 1954; Riek 1955)
Baetidae	Baetis	2	(Harker 1954; Suter 1986)
	Bungona	1	(Harker 1957b)
	Centroptilum	2	(Harker 1957b; Suter 1986)
	Cloeodes	2	(Lugo-Ortiz and McCafferty 1998a)
	Cloeon	5	(Suter 1986 ; Suter 2000)
	Edmundsiops	2	(Lugo-Ortiz and McCafferty 1999; Suter 2000)
	Offadens	3	(Lugo-Ortiz and McCafferty 1998c; Suter 2000)
	Pseudocloeon	4	(Waltz and McCafferty 1985; Lugo-Ortiz et al. 1999)
Caenidae	Ipracaenis	3	(Suter 1999)
	Tasmanocoenis	6	(Demoulin 1955b; Soldán 1978; Alba-Tercedor and Suter 1990)
	Wundacaenis	3	(Suter 1993)
Coloburiscidae	Coloburiscoides	3	(Tillyard 1933a; Campbell 1986)
Heptageniidae*	Atopopus	1	(Harker 1950a)
Leptophlebiidae	Atalomicria	7	(Campbell and Peters 1993)
	Atalophlebia	18	(Tillyard 1936; Harker 1950a; Harker 1954; Harker 1957a; Suter 1986)
	Atalophlebioides**	3	(Harker 1954; Towns and Peters 1978)
	Austrophlebioides	4	(Campbell and Suter 1988; Parnrong and Campbell 1997)
	Bibllymena	1	(Dean 1987)
	Deleatidium**	4	(Harker 1954; Towns and Peters 1996)
	Garinjuga	1	(Campbell and Suter 1988)
	Jappa	3	(Skedros and Polhemus 1986)
	Kalbaybaria	1	(Campbell 1993)
	Kaninga	1	(Dean 2000)
	Kirrara	3	(Harker 1954; Harker 1957b)

Table 2 cont'd.

Family	Genus	No. of species	Key references
	Koorrnonga	6	(Campbell and Suter 1988)
	Loamaggalangta	1	(Dean et al. 1999)
	Neboissophlebia	2	(Dean 1988)
	Nousia (subgenus Australonousia)	4	(Campbeil and Suter 1988)
	Nyungara	2	(Dean 1987)
	Thraulophlebia	1	(Demoulin 1955c)
	Thraulus	1	(Grant 1985)
	Tillyardophlebia	2	(Dean 1997)
	Ulmerophlebia	2	(Demoulin 1955c; Suter 1986)
Oniscigastridae	Tasmanophlebia	3	(Tillyard 1921; Tillyard 1933a)
Prosopistomatidae	Prosopistoma	1	(Campbell and Hubbard 1998)
Siphionuridae	Ameletoides	1	(Tillyard 1933a)
Teloganodidae (formerly Ephemerellidae)	Austremerella	1	(McCafferty and Wang 1997; Chessman and Boulton 1999)
Total families	Total genera	Total species	
10	37	113	

* Heptageniidae does not occur in Australia, species attributed in error and now considered a Leptophlebiid, awaiting revision.
**genus presently considered endemic to New Zealand, awaiting revision.

As mentioned previously the majority of studies in Australia have focused on life history investigations (Duncan 1972; Suter and Bishop 1980; Marchant 1982a; Campbell 1983; Campbell and Holt 1984; Marchant et al. 1984a; Campbell 1986; Bunn 1988; Campbell et al. 1990; Brittain and Campbell 1991; Campbell 1995; Schreiber 1995; Campbell et al. 1998; Pardo et al. 1998). Generally these have revealed somewhat poorly synchonized life histories with long emergence periods, multiple cohorts present and variation in life cycle patterns over time and space in temperate regions (Campbell 1986; Bunn 1988; Brittain and Campbell 1991). These patterns do not conform to studies undertaken in the Northern Hemisphere and have been attributed to the ecological variations between Australian and Northern Hemisphere streams (Lake et al. 1985; Williams 1988) with temperature being a dominant factor (Brittain and Campbell 1991). It is generally concluded that fauna from higher altitude streams show a relatively higher degree of synchrony (Duncan 1972; Campbeil 1986; Campbell et al. 1990; Brittain 1991) than their lower altitude counterparts. The few mayfly studies from the Australian tropics have also shown lifecycles to be multivoltine and asynchronous with emergence and recruitment occurring throughout the year (Marchant 1982a; Campbell 1995). This conforms with studies completed in the Northern Hemisphere which show a trend towards multivoltinism and asynchrony with lower latitudes (Clifford et al. 1973; Clifford 1982; Brittain 1990).

These autecological studies, however, on the Australian freshwater insect fauna have been hampered by the lack of taxonomic knowledge. Thirteen (68%) of the above mentioned Australian papers refer to one or more undescribed species.

Muitispecies investigations (including synecological studies) are somewhat more common although they usually refer to freshwater macroinvertebrate communities in general rather than just the Ephemeropteran component. Invariably, however, mayfies tend to be a significant component of the freshwater fauna.

A paucity of information on the Australian invertebrate fauna has led to a number of baseline investigations simply detailing macroinvertebrate communities in particular areas. For example, the Northern Territory Magela Creek (Marchant 1982b; Paltridge et al. 1997) and the George Gill Range (Davies et al. 1993). In Western Australia Bunn et al. (1986) have investigated the spatial and temporal variation in macroinvertebrate communities of Northern Jarrah forest streams. Timms (1978) documented the variety of benthos in Tasmanian lakes and in South Australia the invertebrate assemblages of the floodplains of the Murray were investigated (Boulton and Lloyd 1991). In Victoria invertebrates of the Goulburn River tributaries above Eildon (Doeg 1987), the Lake Mountain plateau (Jelinek et al. 1997), Lake Tali Karng (Timms 1974) and the environs of Mt Buffalo (Hawking 1998) have all been surveyed. Leading on from the above there
have been investigations into changes in macroinvertebrate community structure due to outside influences such as dam construction (Blyth et al. 1984; Doeg 1984; Chessman et al. 1987; Pardo et al. 1998); forestry activities (Davies and Nelson 1994; Growns and Davis 19@4); pulp mill waste water (Harris et al. 1992) and mine effluent (Norris et al. 1982). Studies were also conducted into the effects on macroinvertebrate structure of altering abiotic variables such as substrata size (Doeg et al. 1989a; Barmuta 1990; Hearnden and Pearson 1991); velocity (Barmuta 1990); sediment loads (Doeg and Milledge 1991) and by artificial disturbance (kicking and raking) the stream bed (Doeg and Lake 1989). A number of these studies also observed the phenomenon of drift in response to the abiotic variation (Doeg and Lake 1989; Doeg et al. 1989a; Doeg and Milledge 1991) and background drift for both temperate (Schreiber 1995) and tropical rainforest streams (Kerby el al. 1995).

A major two year study of the La Trobe River in Victoria was undertaken in which the organisation of macroinvertebrate communities was investigated (Marchant et al. 1984a; Marchant et al. 1984b; Marchant et al. 1984c; Metzeling et al. 1984; Marchant et al. 1985; Marchant 1988). These studies, in particular, led to a preliminary attempt at predictive modelling of lotic macroinvertebrate communities in Victoria (Marchant et al. 1994; Marchant et al. 1999). They have been useful in the development of Australian Rivers Assessment System (AusRivAS), a computer program that uses environmental data to measure the river health (Davies 1994; Coysh et al. 2000) along the same lines as the Riverine InVertebrate Prediction and Classification System (RIVPACS) in the United Kingdom (Wright et al. 1984; Moss et al. 1987; Wright et al. 1993).

1.2.3 Systematics

Inferences regarding the systematic relationships of the Australian fauna have been made within wider discussions regarding the evolution and biogeography of the group Ephemeroptera as a whole (lllies 1968; Edmunds 1972; Riek 1973; Landa and Soldán 1985) with many of the Australian families found to be amphinotically distributed. Indeed the comparative morphology of certain families found indicate that the Australian fauna is more closely related to that of Chile and Argentina rather than New Zealand. Tsui and Peters (1975) examined the comparative morphology of the Leptophlebiid thorax, tentorium and abdomen and hypothesized a transantarctic dispersal route. Pescador and Peters (1980a) included Southern Hemisphere genera in an investigation of the cooladapted Leptophlebiidae of South America and came to a similar conclusion.

The only cladistic analysis of Australian fauna to date studied the relationships between members of the Meridialaris lineage (sensu Pescador and Peters 1980a) (Christidis
*A primary objective of this study is to elucidate the phylogenetic relationships of the Australian Leptophlebiidae. This is because despite being the largest family of Ephemeroptera in Australia, and an important component of water quality assessment, the relationships between the genera are poorly defined. In order to undertake such a study, however, some Australian generic designations required clarification; in particular the Atalonella lineage as originally defined by Pescador and Peters (1985). Therefore, a revision of the problematical Australian genera within this lineage was undertaken, including new diagnoses of genera and descriptions or redescriptions of all species. To complete this revision new methods for rearing mayflies in the laboratory were developed in order that associations could be made between nymph and adult specimens. Further, collecting specimens for the taxonomic revision on a large scale produced new distributional data. Rapid assessment techniques were employed during field collection and allowed some preliminary investigation of habitat requirements of certain species.
2001). The aim was to establish the monophyly of the lineage which was supported but relationships between taxa of the larger clade, which included the other Australian Leptophlebiidae, varied considerably.

1.3 The significance of the family Leptophlebiidae

Leptophlebiidae is the largest mayfly family in the world and in Australia (Hubbard 1990; Peters and Campbell 1991). Further, maximum diversity of the genera is apparent in the Southern Hemisphere (Edmunds 1972) accompanied by a high degree of endemism (Tsui and Peters 1975). Indeed, all but two genera of Leptophlebiidae in Australia (Nousia and Thraulus), and all species within the family, are endemic.

The wide variety of environs inhabited by Ephemeropteran nymphs in Australia is largely due to the high diversity of the Leptophlebiidae. Their preference for highly oxygenated lotic waters makes them ideal for biomonitoring. The large diversity and high biomass of individuals that would be expected in a pristine environment can be readily detected by their absence. Further, as the majority of Leptophlebiid larvae are swimmers, clingers or sprawlers (Edmunds and Waltz 1996) pollution or spates result in immediate downstream drift. As the Leptophlebiidae are commonly encountered in survey work, mayflies are an integral part of the Australia-wide Monitoring River Health Initiative (Lake 1994; Coysh et al. 2000) which compares observed communities with those expected in an unpolluted environment.

1.4 Overall scope and objectives
 see opposite*

1.4.1 Taxonomy

Members of the endemic subgenus Nousia (Australonousia) Campbell and Suter and the closely related Koorrnonga (Campbell and Suter) are some of the more commonly encountered mayfly species. Yet both are poorly described and can be confused due to their morphological similarities. An objective of this study was to revise these two, possibly congeneric, genera. This required the collection of new material and rearing of nymphs to establish associations between nymphs and adults, the description of new species and matching of voucher specimens to newly, or previously described, specimens.

1.4.2 Factors affecting distribution

The species of Nousia (Australonousia) and Koorrnonga that have previously been described, as with much of the Australian fauna, are also poorly known ecologically. An objective of this study was to use the collection of new material to detail the distribution and habitat preferences of the newly revised taxa.

1.4.3 Phylogeny

Finally, the relationships of Southern Hemisphere Leptophlebiidae have been reasonably well studied through analysis of a restricted number of Gondwanan (Tsui and Peters 1975), eastern Hemisphere (Peters and Edmunds 1970), South American (Pescador and Peters 1980a; Dominguez 1995) and New Zealand (Towns and Peters 1996) taxa. The only place in the Southern Hemisphere where relationships have not been comprehensively investigated is Australia. An objective of this study was to determine the phylogenetic relationships between Australian Leptophlebiidae to provide a baseline from which the Leptophlebiid Gondwanan fauna can continue to be investigated. The relationships found in this study will be compared with the evolutionary lineages of certain Southern Hemisphere fauna already proposed by Pescador and Peters (1980a \& 1985); the hypotheses of which have not been tested on Australian fauna.

2. FIELD COLLECTION AND LABORATORY REARING*

"When the insects take over the world, we hope they will remember with gratitude how we took them along on all our picnics."

Bill Vaughan

[^0]
2.1 Introduction

The extensive collections of Ephemeroptera at various institutions throughout Australia such as the Australian National Insect Collection (ANIC), the Murray Darling Freshwater Research Centre (MDFRC), the State Environment Protection Authorities (EPA's) and the Museum of Victoria (MV), provided a basis for this study. In 1993 an Australia wide National River Health Program was established with an aim to improve the management of Australia's rivers. One of the major subprograms of this is the Monitoring River Health Initiative (MRHI) (Davies 1994) which uses a system of reference and test sites to determine predictive models for the health of each river citchment. Access to these specimens is possible through the various lead agencie's contracted to sample reference sites (eg: EPA VIC, Power and Water Authority NT, EPA SA, Department of Primary industry and Fisheries TAS, Department of Natural Resources QLD, Department of Conservation and Land Management WA, and the Department of Environment Land and Planning $A C T$).

Unfortunately, many of these collections consist of adult or, more usually, nymphal material only. In many cases no definitive link has been made between the two. Field collection of nymphs and adults in one location is an accepted method of identifying all insect life stages for a species but has the inherent problem of the difficulty of discriminating between different species, especially if one has to rely on immature nymphs for initial identification. A better method is to coflect nymphs and rear them to adults individually, keeping the subsequent larval skin case for examination. For most taxa examined in this study the animals had ${ }^{\text {to }}$ be collected live and reared to adults to make this definitive association therefore field work constituted an extensive part of the project.

2.2 Field collecting

2.2.1 Timing of fieldwork

As mayflies can only be collected during the emergence season, collecting times were restricted to an extended summer period. The main collection of nymphal material occurred over three seasons: September 96 to April 97 (year 1), October 97 to March 98 (year 2) and Octoker 98 to April 99 (year 3). Supplementary collections were made in the summer of 1999 to 2000 to sites previously visited to collect extra specimens for rearing. In total 368 sampling events were undertaken from locations throughout Victoria, Tasmania and New South Wales during the course of the project (see Appendix 2, collector: KJF).

2.2.2 Choice of locations to be sampled

For taxonomic review it was important that all known species of Nousia and Koormonga were examined in nymph and adult form. Limited resources dictated that the collection area be restricted. As the majority of possible species were thought to occur in southeast Australia, it was decided to concentrate on Victoria and southern New South Wales as the main source of supply. It was assumed that specimeirs from: other states or territories could be obtained from lead agencies and other sources, although this has not proved to be the case in all instances.

An early visit to Tasmania (December 96) established the difficulty of collecting and rearing in the field and it was hoped that collaboration would provide the specimens needed. Unfortunately, the time involved in collecting and rearing specimens proved difficult on a volunteer basis and very few associated specimens were gained this way. As a consequence, a second trip to Tasmania was planned for later in the study but ultimately time and resources did not permit this.

2.2.3 Methods of collecting

2.2.3.1 Collection of nymphs

Both Nousia and Koorrnonga prefer unpolluted environments and are relatively common in upland streams in association with logs, leaf packs and organic matter (Peters and Campbell 1991). Riffies with heterogeneous substrai? appear to be favourites of these animals although there are some species of Koorrnonga which are also thought to be common in shallow pools (Peters and Campbell 1991). Cool, upland streams were therefore targeted as potentially good sampling areas for both these genera.

For the most part nymphs were collected live for subsequent rearing in the laboratory, however, some nymphs were preserved in the field using 70\% ethanol and subsequently used as reference material.

Collections were primarily made by closely examining the substrata in the field and removing the nymphs individually with a small paintbrush. This reduced the chance of damage to the delicate nymphs which may have prevented them from successfully emerging. In slow flowing or standing waters a rectangular framed $300 \mu \mathrm{~m}$ aperture nylon mesh net was swirled through the water close to the substrate to pick up the nymphs.

At each sampling locality all likely habitats (riffle, pool, edge) were sampled. Sampling continued until sufficient nymphs of all visibly different taxa were collected with no apparently new types being found. The method employed was not quantitative as this was considered too time consuming and the fact that the collections were made at different times of the year made the significance questionable. Further, it was considered the main priority was the acquisition of nymphs for rearing rather than abundance estimates.

2.2.3.2 Collection of adults

Adults mayflies are difficult to collect in the field for several reasons. Adults generally live for a short time, usually several hours to a few days oniy (Peters and Campbell 1991) although some have been recorded living up to 14 days (Brittain 1982). In either case the chance of being present at a site when adults are emerging is quite small. Mayflies are also unique in that they are the only order of insects to moult after becoming fully winged. The first winged stage is called the subimago and is characterised by dull translucent, often patterned wings and a body surface covered with microtrichia. Further the forelegs, caudal filaments, male genitalia and occasionally eyes are not fully formed (Edmunds and McCafferty 1988). A second moult results in the true adult or imago. Only the imago can be used for taxonomic purposes so the subimago must be kept alive whether reared from a nymph or caught in the field.

In the field subimagos and imagos were caught when the opportunity arose. Imagos tend to swarm above the stream or along the stream banks and were collected by using a sweep net. Subimagos tend to be slow flying and passive (Edmunds et al. 1976) and can be captured easily by hand or with a net. They are often found on the underside of rocks in a stream during low flow having recently emerged from the water or close to the waters edge on stream side vegetation. Care is required in handling the subimagos as any damage, especially to the wings, can result in death. Subimagos were transferred to a plastic container to await emergence to the adult form. This container was a modified example of the subimago box used by Edmunds et al. (1976). The container was clear plastic container, about 8 cm high, with a white plastic screw on lid. Inside was placed a wetted cloth to create a humid environment and a branch for the subimago to perch on. A small hole was punched in the lid and the container was placed carefully in cool conditions. One to two days were required for the subimago to moult to an imago. Unfortunately this technique was not found to be particularly successful and most subimagos died before emerging.

An alternative method of collecting adults is to use a light trap. An ultra-violet light powered by a 12 V battery was set near the stream bank at dusk at various sampling localities throughout the study period. However, low numbers of emerging adults, and often unfavourable weather conditions, produced poor results.

2.2.3.3 Transporting

One of the main concerns for rearing was keeping the animal alive while it was transported to the laboratory. Live nymphs collected from one site were placed in a 1.25 litre clear plastic bottle filled with stream water. The bottles were sealed and placed in an insulated container filled with ice to cool the animals and slow metabolic rates so that emergence might be delayed (Fig. 1). In order to provide for the high oxygen requirements of the mayflies the bottles had to be constantly aerated. During the day the water was adequately aerated by the motion of the vehicle. Overnight, a battery operated pump was employed to aerate each individual chamber.

A small number of sites were accessible only by foot. Time was required to walk out of these sites during which problems with low oxygen levels in the water might be likely to develop. Further, the container could easily heat up, causing possible stress to the animal. These problems were overcome to some extent by planning the trip so that the shortest possible route was taken. Animals were also collected at the last possible moment so that as little time as possible was spent walking. Further, a small insulated container was used for collecting, rather than a bottle, and this was filled with ice beforehand to ensure conditions were kept as cool as possible.

2.3 Rearing

2.3.1 Background

Many authors have made suggestions for rearing aquatic insects to adults (see review by Merritt et al. (1996)). The two main approaches are field and laboratory rearing. Each method has its advantages and disadvantages which will be briefly reviewed here.

Most field rearing techniques involve a mechanism for containing the nymphs within the existing water body and providing room for the animal to emerge while safe from drowning. Methods used include jars partially immersed in the stream (Speith 1938), specially constructed wire screen cylinders sitting upright on the substrate (Day 1956) or plastic cups suspended in the water column on a foam float (Edmunds et al. 1976). An
alternative is to enclose a section of the stream bed with a large mesh covered frame to capture the emerging animal (Hynes 1970; Southwood 1978; Merritt et al. 1996). In fast flowing or deep water these emergence traps are anchored to the substrate.

The obvious advantage of field rearing is that the nymphs are reared in situ where the environmental conditions are ideally suited to the individual. Disadvantages are that field rearing is often very time consuming, requiring the researcher to be in the fieid until emergence has occurred. It is difficult to rear at several locations simultaneously as the cages or traps require frequent checking. Vandalism is also a potential problem but perhaps the most significant difficulty is that the nymphal exuviae, necessary for nymphadult association, is more likely to be lost during the process.

Laboratory methods range from simple to extremely complex as authors have tried to address the problem of recreating stream flow conditions. Covered aquariums have been used in conjunction with various methods of inducing a current such as a magnetic stirrer (Mason and Lewis 1970) or directed air (Craig 1966; Bay 1967). Gravity flow systems sustained by running tap water have been used by Hynes (1941). Pumps for recirculating the flow were later introduced by Mason and Lewis (1970). More sophisticated are the large flow tanks powered by propellers (eg. Vogel and LaBarbera 1978) and complicated systems designed more specifically for the purposes of toxicity testing (Buikema and Voshell 1993). Using these designs the rearing process and environmental conditions can be closely monitored. However, these systems are primarily suitable for mass rearing as the cost and logistics of setting up individual tanks becomes prohibitive.

The disadvantages of each method above led to the design of a new laboratory rearing system for mayflies specifically for this study. The aim was to produce a low cost system that would still allow for definitive associations between nymph and adult. Each chamber was therefore designed to house one individual mayfly and allowed the animal to pass through the stages of nymph and subimago without disturbance.

The chambers are made from readily obtainable material and are easy to construct. They are also inexpensive and cost less than AUS $\$ 2.00$ each assuming an air supply is available. As the chambers are quite small the air supply required for each is minimal and the cost of pumps no longer becomes a limiting factor. Up to ten chambers can be accommodated with a small 240 V aquarium pump. The compact chamber size also makes them space-efficient with many chambers able to be housed in a small area. Although similar systems have been described before in the literature (Merritt et al. 1996) I have yet to find a published account of their use.

2.3.2 New rearing chamber design

The new rearing chamber (Fig. 2) was constructed from a 1.25 litre transparent plastic bottle. This was cut in two at about two-thirds its length from the bottom, at the point where the sides start to converge towards the lid. The open container was lined with nyion mesh, which can either be glued in place or simply wetted and pressed against the sides. Two hooks were attached facing outwards and opposite each other on the outside of the bottle using electrical tape so that a rubber band could be stretched between them across the open end. A smail hole (diameter of $6-7 \mathrm{~mm}$) was drilled in the plastic bottle lid. The top third of the bottle with the lid was then inverted to sit in the chamber, lid downwards, and secured by the rubber band. The chamber was then half filled with water. Compressed air was supplied to the chamber by means of PVC aquarium tubing (interior diameter 4 mm) attached to a pump or laboratory air supply. Up to ten chambers were aerated from one small air pump linked through aquarium tubing, although each chamber required a two-way controller so flow could be balanced. It was found beneficial to attach a plastic micropipette tip to the end of the tubing to restrict the flow of bubbles to a small stream. Glass pipettes proved too fragile and, being heavier, were prone to blockage by resting on the chamber bottom.

2.3.3 Rearing system

Each rearing chamber was half filled with water from a particular site and one late instar individual from that site was added. Twigs collected from the site were added to each chamber supplying detritus and algae as a food source and providing a platform for emergence. Each chamber was attached to an air supply (air outlet or pump) and placed in a controlled temperature room that was variously set at $16^{\circ} \mathrm{C}, 18^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ or $22^{\circ} \mathrm{C}$. Only one room was available for rearing and as such temperature changes were a result of identifying optimal conditions rather than experimental design. Photoperiods of 12 hours daylight and darkness (12:12) or 14 hours daylight, 10 hours darkness (14:10) were used at different times. Some nymphs were placed in much larger chambers designed by (Campbell 1983, Fig. 3). These were made from a cube-shaped frame of wood to which fly-screen or mesh is stapled on all sides. A 500 ml container was placed inside the frame and connected to an air supply by aquarium tubing through a small hole. Surplus nymphs were stored in an aerated container refrigerated to $7^{\circ} \mathrm{C}$. Empty chambers were thoroughly washed and nymphs replaced from refrigerated stock. These new nymphs were acclimatised to the controlled temperature environment for a period of 20 to 30 minutes before being placed in the rearing chambers.

2.3.4 Emergence data collection

In the controlled environment the nymphs were checked every second day and the life cycle stage of the individual noted as N (nymph), S (subimago) or I (imago). Once emergence (or death) occurred the animals were removed and genus and sex determined by observation using a stereomicroscope.

Some effort was expended in documenting and analysing rearing success. One reason for this was to identify the suitability of the new chambers and other environmental conditions so rearing could be conducted as efficiently as possible. The results are presented here because it may be of assistance to other workers in the discipline to know: (1) what conditions proved suitable for various taxa, (2) success rates that can be expected in these conditions and (3) which factors the insects responded to, which may be of more general application to mayfly rearing.

2.4 Results

Emergence success data have previously been published (Finlay 2001, Appendix 1). It should be noted, however, that this publication was prepared and submitted in 1998 and therefore analysed prior to the taxonomic changes described in Chapters 3 and 4. The analysis that follows therefore differs slightly from the publication in that it incorporates these taxonomic changes.

The full data set included 1251 individuals of which Austrophlebioides and Nousia predominated, comprising 36.5% and 33.8% respectively. Next came Atalophlebia Eaton at 12%, then Garinjuga Campbell and Suter at 6.6\%, Tillyardophlebia Dean at 4.6\%, Thraulophlebia Demoulin (previously Koorrnonga, see Chapter 3) at 2.6% and Ulmerophlebia Demoulin at 0.9\%, Montikola gen. nov. (previously Nousia, see Chapter 4) at 1.6% and Gemmayaluka gen. nov. (previously Nousia, see Chapter 4) at 0.7%. A few individuals of other genera, such as Atalomicria, Jappa, Kirrara and the unnamed Genus 'W' (Dean 1999) were also coilected representing the remaining 0.6%. Of the ten named genera in south-east Australia, all were sampled except Neboissophlebia Dean despite this genus having been found previously in many of the sites where I collected. Data analysis will focus on the six most prevalent genera: Austrophlebioides, Nousia, Atalophlebia, Garinjuga, Tillyardophlebia and Thraulophlebia.

2.4.1 Emergence success

Imago emergence success rate for the full data set was 34.1% with 10.0% reaching the subimago stage before dying and 55.9% dying as nymphs. Individual genera, however, differed significantly in emergence success ($\chi^{2}=47.09, d f=5, p \ll 0.001$, Fig. 4). Atalophlebia was reared most successfully with 48.7% becoming imagos. Other highly successful genera were Tillyardophlebia (47.4\%) and Thraulophlebia (45.5\%) followed by Nousia (39.0\%). The genera with the lowest success rates were Austrophlebioides (25.0\%) and Garinjuga (22.0\%).

The new rearing chamber was compared with that designed by Campbell (1983). The new chamber produced higher imago emergence rates compared with the 'old' one (Campbell's) for all the genera examined (except Tillyardophlebia). However, a small sample size prevented analysis of all but three predominant genera (Table 3). A significant difference was found only for Austrophlebioides ($\chi^{2}=5.993, \mathrm{df}=1, \mathrm{p}=0.014$), whose emergence success rate more than doubled in the new chambers $(27.1 \% \mathrm{v}$. rsus 12.6%).

Emergence success did not differ between the sexes for any genus except Tillyardophlebia (Table 3) where a much greater proportion of females (58.8\%) than males (30.4%) emerged successfully ($\chi^{2}=4.435, d f=1, p=0.035$).

The effect of varying the photoperiod could be analysed only for year 1 as there were no individuals reared under 12:12 conditions during year 2 . Within the restricted data set a significant difference due to photoperiod was found only for Austrophlebioides ($\chi^{2}=$ $17.810 \mathrm{df}=1, \mathrm{p} \ll 0.001$, Table 3), yet this went against the trend for all other genera where success rates, although not significantly different, were generally higher under a 12:12 cycle. Similarly, the effect of year of collection could only be examined in relation to photoperiod 14:10. Again there was a significant difference between year 1 and 2 only for Austrophlebioides ($\chi^{2}=56.936$, $\mathrm{df}=1, \mathrm{p} \ll 0.001$, Table 3). There was no apparent trend for the other genera.

For most genera, the proportion successfully emerging was highest at $18^{\circ} \mathrm{C}$ (Table 3) and the temperature which produced the lowest proportion of successful emergence was $22^{\circ} \mathrm{C}$. The effect of temperature was significant for Austrophlebioides $\left(\chi^{2}=47.838, \mathrm{df}=3\right.$, $p \ll 0.001$. Table 3) and Nousia ($\chi^{2}=11.102, \mathrm{df}=3, \mathrm{p}=0.011$. Table 3). The effect of temperature was also considered in relation to time spent in the rearing system for a restricted number of genera (Fig. 5). Time taken to emerge successfully was greatest at
$18^{\circ} \mathrm{C}$ foliowed by $16^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ then $22^{\circ} \mathrm{C}$. Although patterns of response to temperature were similar for each genus, the time taken to reach outcome varied considerably. For example, at $18^{\circ} \mathrm{C}$ mean time to emerge varied from 7.8 days for Nousia to 12.9 days for Atalophlebia. Data were log transformed to meet the assumption of normality and an ANOVA run to test for a significant effect of temperature. All genera had significant temperature effects (Nousia, F-ratio $=3.032, \mathrm{df}=3, \mathrm{p}=0.031$; Austrophlebioides, Fratio $=4.269, \mathrm{df}=3, \mathrm{p}=0.007$; Atalophlebia, $20^{\circ} \mathrm{C}$ degrees removed, F -ratio $=4.354, \mathrm{df}=2$, $\mathrm{p}=0.017$) although multiple r^{2} showed that very little variability (around 10% or less) in rearing time was explained by temperature differences. Tukey's HSD tests showed significant differences for all genera between the temperatures of $18^{\circ} \mathrm{C}$ and $22^{\circ} \mathrm{C}$ only (Fig. 5).

The effect of altitude of collection on rearing success by genus was examined by chisquared for four altitude categories: [(1). $<400 \mathrm{~m},(2) .400-800 \mathrm{~m}$, (3). $801-1200 \mathrm{~m}$, (4). $>1200 \mathrm{~m}$]. It was found to be significant only for Austrophlebioides ($\chi^{2}=29.826, \mathrm{df}=3$, $\mathrm{p} \ll 0.001$, Table 3) where the highest success rates were found at progressively lower altitudes (Fig. 6).

Division of storage time into three categories: [(1). 0-2 days, (2). 3-5 days, (3). > 5 days] and subsequent analysis by chi-squared also showed a significant effect only for the genus Austrophlebioides ($\chi^{2}=18.297, \mathrm{df}=2, \mathrm{p} \ll 0.001$, Table 3) with a higher success rate for progressively fewer days in storage. However, altitude of collection and storage time were positively correlated as it took longer to return to the laboratory from high altitude collection sites.

Table 3. Percentages of successful emergences affected by collection and rearing conditions.

	Atalophlebia	Austrophlebioides	Garinjuga	Thraulophlebia	Nousia	Tillyardphlebia
CHAMBER TYPE p value n \% success old cage \% success new cage	$\begin{aligned} & 0.628 \\ & 150 \\ & 44.4 \\ & 49.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.014 \\ & 454 \\ & 12.6 \\ & 27.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & 15.4 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 33 \\ & 37.5 \\ & 48.0 \end{aligned}$	$\begin{array}{\|l} 0.926 \\ 423 \\ 38.7 \\ 39.1 \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & 50.0 \\ & 47.0 \end{aligned}$
SEX p value n \% success female \% success male	$\begin{aligned} & 0.795 \\ & 150 \\ & 47.8 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 0.909 \\ & 456 \\ & 24.8 \\ & 25.3 \end{aligned}$	$\begin{aligned} & 0.542 \\ & 82 \\ & 20.0 \\ & 25.9 \end{aligned}$	$\begin{aligned} & 0.435 \\ & 33 \\ & 40.5 \\ & 53.8 \end{aligned}$	$\begin{aligned} & 0.238 \\ & 423 \\ & 40.9 \\ & 34.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.035 \\ & 57 \\ & 58.8 \\ & 30.4 \end{aligned}$
PHOTOPERIOD (year 1) \dagger p value n \% success 12:12 \% success 14:10	$\begin{aligned} & 62 \\ & 62.3 \\ & 33.3 \end{aligned}$	$\begin{aligned} & \mathbf{0 . 0 0 0} \\ & 164 \\ & 24.0 \\ & 56.5 \end{aligned}$	82 28.2 18.0	3 100.0 100.0	$\begin{aligned} & 0.248 \\ & 152 \\ & 50.0 \\ & 40.4 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 53.8 \\ & 0.0 \end{aligned}$
COLLECTION YEAR (photoperiod 14:10) p value n \% success - year 1 \% success - year 2	$\begin{aligned} & 97 \\ & 33.3 \\ & 42.0 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 377 \\ & 56.5 \\ & 16.1 \end{aligned}$	$\begin{array}{\|l\|} 50 \\ 13.0 \\ 22.2 \end{array}$	$\begin{aligned} & 31 \\ & 100.00 \\ & 40.00 \end{aligned}$	$\begin{aligned} & 0.461 \\ & 365 \\ & 40.4 \\ & 36.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 44 \\ & 0.0 \\ & 46.5 \end{aligned}$
TEMPERATURE p value n $\%$ success $16^{\circ} \mathrm{C}$ $\%$ success $18^{\circ} \mathrm{C}$ $\%$ success $20^{\circ} \mathrm{C}$ $\%$ success $22^{\circ} \mathrm{C}$	150 43.4 59.0 50.0 38.2	$\begin{array}{\|l} 0.000 \\ 456 \\ 23.6 \\ 45.4 \\ 24.3 \\ 10.8 \\ \hline \end{array}$	$\begin{aligned} & 82 \\ & 20.0 \\ & 25.6 \\ & 42.8 \\ & 9 . \approx \end{aligned}$	33 42.1 100.0 0 40.0	$\begin{aligned} & 0.011 \\ & 423 \\ & 46.3 \\ & 49.2 \\ & 39.8 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 57 \\ & 51.4 \\ & 53.8 \\ & 25.0 \\ & 0 \end{aligned}$
ALTITUDE p value n $\%$ success $<400 \mathrm{~m}$ $\%$ success $400-800 \mathrm{~m}$ \% success 801 - 1200 m $\%$ success $>1200 \mathrm{~m}$	$\begin{aligned} & 0.126 \\ & 150 \\ & 46.9 \\ & 44.4 \\ & 73.3 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 456 \\ & 33.1 \\ & 22.5 \\ & 9.6 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 82 \\ & 24.5 \\ & - \\ & 0.0 \\ & 19.0 \end{aligned}$	33 12.5 54.5 66.7	$\begin{aligned} & 0.210 \\ & 423 \\ & 39.1 \\ & 38.5 \\ & 16.7 \\ & 56.2 \end{aligned}$	57 50.0 16.7 100.0
STORAGE p-value n \% success $0-2$ days $\%$ success $3-5$ days $\%$ success >5 days	$\begin{aligned} & 150 \\ & 43.8 \\ & 75.0 \\ & 62.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.000 \\ & 456 \\ & 32.3 \\ & 19.8 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & 20.9 \\ & 33.3 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 33 \\ & 50.0 \\ & 33.3 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 0.808 \\ & 423 \\ & 39.6 \\ & 35.1 \\ & 39.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & 62.5 \\ & 28.6 \\ & 27.8 \\ & \hline \end{aligned}$

Effect of each factor analysed by χ^{2} Significant p vaiues (at <0.05) shown in bold. \dagger analysed on restricted data set as there were no mayflies reared under the 12:12
regime in year 2.

- one or more categories with small sample size: χ^{2} test not reliable.

2.4.2 Sex-ratios

Ratios of $\boldsymbol{\sigma}^{\circ}: \%$ showed a female bias for all individual genera in the range of 1:1.5 for Tillyardophlebia to 1:2.2 for Nousia (Fig. 7). Chi-squared analysis was used to determine departure from the expected $1: 1$ sex ratio and was found to be significant for all genera except Thraulophlebia and 7illyardophlebia.

2.5 Discussion

2.5.1 General

The overall imago emergence success rate was 34%. Clearly, however, success rates depend on the genus in question. Taxa preferring slow waters would be expected to emerge more successfully in aerated tanks with low flow regimes (Edmunds et al. 1976). Therefore, it is not surprising that Atalophlebia, predominantly found in standing or slowly flowing waters (Peters and Campbell 1991), had the greatest proportion of imagos that emerged. The relatively low success rates of Garinjuga may be due to the presence of a large number of a possibly new high altitude species in the sample for which the emergence success was very low, thereby reducing the average for the whole genus.

Overall, the new rearing system was a success in that imago emergence rates were generally higher in the new chamber compared with the older one for all genera. In particular, the success rate for Austrophlebioides was much greater in the new chamber. The considerable advantages of the new chambers in terms of time saved in construction and set-up, space efficiency and low cost indicate that the system could be widely used even if just for routine species identification.

In general, few factors had an effect on overall emergence success for any genera other than Austropilebioides. Sex appeared to affect Tillyardophlebia but as this was a relatively small data set it may not prove to be biologically significant. There were also temperature effects for Atalophlebia and significantly for Nousia which must be considered. (Table 3, Fig. 5).

Miost striking, however, were the results for the genus Austrophlebioides which appeared to be affected strongly by all factors except sex. This is almost certainly related to habitat requirements. For example, the greater rearing success in smaller chambers with much less water could be indicative of an inherent need for highly oxygenated water in this
genus. Neither chamber adequately simulates current flow, but the new chamber may provide more oxygen per volume than the 'old' chamber. A high rate of water movement may be necessary for the development of this genus. Similarly, the highly positive response to a 14 hour photoperiod, which is typical of an Australian summer light regime, may be required as a cue for Austrophlebioides to emerge. If this is so, this is the first record of an enhanced emergence response to photoperiod for Australian Leptophlebiidae as photoperiod has been shown previously to have little effect on mayfly egg hatching or emergence (Brittain 1982; Suter and Bishop 1990; Newbold et al. 1994) despite the suggestion that it is important for aquatic insects in general (Hynes 1970).

Austrophlebioides fared better in year 1 possibly because they were stored for much less time (0.1 mean days in year 1 compared with 4.9 mean days in year 2). Frogressively shorter storage times produced significantly higher success rates. Another contributing factor may be that allitude range for each year was considerably skewed, with animals being collected no higher than 500 m in year 1 but up to 1560 m in year 2 , as progressively lower altitudes produced greater emergence success rates. Perhaps there is a greater temperature differential between higher altitude sites and the laboratory, creating more physiological stress on the animals and thus impairing the rearing process.

Temperature not only determines abundance, distribution and diversity of stream insects (Hynes 1970; Ward and Stanford 1982; Zamora-Muñoz et al. 1993) but is considered to be one of the most important influencing factors affecting insect development (Corkum 1978; Elliott 1978; Brittain 1982; Wallace and Anderson 1996). Indeed in this study, temperature was the only external factor significantly affecting emergence success of a genus other than Austrophlebioides. Success rates were much higher at $18^{\circ} \mathrm{C}$ than at $22^{\circ} \mathrm{C}$, yet summer water temperatures would be within the range $16-22^{\circ} \mathrm{C}$ for all but the highest altitudes; so it is puzzling to find such a restricted temperature preference for emergence. This restricted preference also applied to the length of time taken to emerg: It is possible that the nymphs have a narrow temperature requirement for development which is in line with the optimal thermal regime theory (Sweeney and Vannote 1978) that exists for a given species. Adult size, fecundity and presumably emergence rates, may diminish outside the bounds of the optimal regime for the species.

Trends in the data are not significant with the clear exception of Austrophlebioides. A broader study with species level data within this genus may therefore be especiaily valuable.

Insect sex-ratios in nature are generally expected to be $1: 1$ although skewed ratios due to inbreeding occur and will be biased towards females (Thornhill and Alcock 1983). Although female biased sex ratios in Ephemeroptera have been recorded in New Zeaiand in association with rapid flow (Towns 1983) most relate to parthenogenetic taxa of which 50 species are known worldwide (Brittain 1982) and only in three or four families (McCafferty and Huff 1974). It appears obligatory in only a few species (Peters and Canipbell 1991). In these species parthenogenetic eggs generally develop more slowly, causing a delayed female bias in the sf^{\cdots} ratio of the nymphs which is perpetuated through the life cycle. For example, sex ratios of Cloeon similae (Baetidae) increased from 1:1 in the summer to 2:1 in Spring and early Winter over 13 consecutive years due to a longer development time for the unfertilised eggs and subsequent late appearance of parthenogenetic progeny (females) (Harker 1997). Data for the present study were collected from a wide range of sites over two years, so it is possible that the observed sex ratio actually reflects what occurs in nature. As far as I am aware there are no previous records of parthenogenesis occurring in Australian Leptophlebiidae.
3. REVISION OF THE SUBGENUS NOUSIA (AUSTRALONOUSIA) CAMPBELL AND SUTER AND THE GENUS KOORRNONGA CAMPBELL AND SUTER
"There is no excellent beauty that hath not some strangeness in the proportion."

3.1 Introciuction

The subgenus Nousia (Australonousia) Campbell and Suter, which comprises all Nousia species in Australia, and the endemic genus Koorrnonga Campbell and Suter, are poorly known. At present three species are accommodated in the subgenus Nousia (Australonousia) while six species reside within the genus Koorrnonga although the status of some of these species is questionable and their placement acknowledged as tentative (Campbell and Suter 1988). The two taxa are also considered very closely related (Campbell and Suter 1988) and possibly congeneric, probably because the characters used to distinguish between them are relatively few. This also puts into question the subgeneric status of Nousia (Australonousia) with respect to its South American counterpart, the subgenus Nousia (Nousia).

In addition, potential new species of both taxa are recorded in government and industry reports ("grey" literature) (eg Dean 1999). These morphospecies are known only by voucher collection numbers, usuaily described only as nympis with no associated adults. Little attempt has been made to match them with any current species already published.

It is clear that a revision of these taxa is sorely needed. This study aims to:

1. revise the subgenus Nousia (Australonousia) redescribing species where necessary.
2. investigate the characters determining the subgeneric separation of Nousia (Nousia) from South America with Nousia (Australonousia) from Australia.
3. revise the genus Koorrnonga redescribing species where necessary.
4. describe and determine the laxonomic status of any potential new species.
5. investigate whether Nousia (Australonousia) and Koorrnonga are congeneric.

3.2 Methods and conventions

There has been much discussion on the various kinds of species concepts (for review see (Sluys 1991)). However, for the practising morphological taxonomist, species are delineated on the straightforward practical approach of morphological similarity: "a set of individuals closely resembling each other." (Darwin 1859). This approach has been somewhat refined in that the full range of morphological variation within a species is (or should be) accounted for when determining species status. The determination of what constitutes a mayfly species has been developed and refined by various ephemeropterists. Therefore, I have based the method of species descriptions on: (1) the prominent overseas workers in the field: William L. Peters (eg Peters and Edmunds 1970; Peters,Peters and Edmunds 1978; Peters and Peiers 1979; Peters 1980); George
F. Edmunds Jr. (eg Peters and Edmunds 1964; Peters and Edmunds 1972); David R. Towns (eg Towns and Peters 1978; Towns and Peters 1996); Manuel L. Pescador (eg Pescador and Peters 1980a; Pescador and Peters 1980b; Pescador and Peters 1982; Pescador and Peters 1985; Pescador and Peters 1987; Pescador 1997) and (2) the more recent Ausiralian workers Phillip J. Suter (eg (Suter 1979; Suter 1986; Suter 1993; Suter 1999; Suter 2000); Ian C. Campbell (eg Campbell and Peters 1986; Campbell and Suter 1988; Campbell 1993; Campbell and Peters 1993; Campbell and Hubbard 1998) and John C. Dean (eg Dean 1987; Dean 1988; Dean 1989; Dean and Suter 1996; Dean 1997; Dean 1999; Dean et al. 1999; Dean 2000).

3.2.1 Material examined

Mayfly specimens for this study were collected between September 1996 and April 2000 (see 2.2.1) from locations throughout Victoria, New South Wales and Tasmania. This was supplemented by material borrowed from the Museum of Victoria (MV), the Australian Museum (AM), the Australian National Insect Collection (ANIC), the Naturhistoriska Riksmuseet in Stockholm (Swedish Museum of Natural History, SMNH), the Natural History Museum in London (formerly British Museum of Natural History, NHM) and the Oxford University Museum (formerly Hope Museum, Oxford, OUM). Other material was examined from various Australian institutions such as the Monitoring River Health Initiative (MRHI), the Murray Darling Freshwater Research Centre (MDFRC), Australian Water Technologies (AWT), the Australian Water Quality Centre, South Australia (AWQC), the Environment Protection Authorities of Victoria and South Australia and various private collections.

All life stages of the insect were preserved in 70\% ethanol either in the field or in the laboratory once rearing was accomplished.

All new type material is lodged in the MV. All other material collected by the author is held personally and will subsequently be donated to the MV.

3.2.2 Preparation of specimens

Whole specimens were examined with the aid of an Olympus SZH dissecting microscope and illustrations made using a SZH drawing attachment. Dissection of the mayflies was necessary to examine mouth and body parts which are diagnostic of the species. Material dissected was soaked in ethoxy-ethanol for 5-10 minutes for clearing, then permanently mounted on slides in Canada Balsam for examination under a compound microscope. Wings of imagos and subimagos were dry mounted as suggested by
(Edmunds et al. 1976) as wings mounted in Canada Balsam can become clouded. I have found dry mounts become brittle easily and minimal handling is required to keep the wing intact. Illustrations of mounted specimens were made with the aid of a microprojector.

Body parts and eggs were also examined in finer detail using the scanning electron microscope (SEM). The material was dissected in 70\% ethanol taking care not to expose the parts to the air. The 70% ethanol was then removed and replaced with 100% ethanol through a series of two to three washes. On each occasion the material was left in undiluted alcohol for at least 30 minutes; a process designed to further remove moisture. Eggs were subsequently ultrasonicated for two to three minutes as this was found to dislodge the mucous layer, which surrounds the egg within the body cavity, and expose the detail underneath. Material was then critical point dried to further remove moisture, a process which helps minimize distortion. Once dried, the eggs were placed on metal stubs using adhesive. Body parts and genitalia were mounted on small strips of cardboard attached to a metal stub. This arrangement allowed dorsal, ventral and lateral sides of the genitalia to be viewed and photographed. Finally, the material was sputtercoated with gold. Digital imaging was used to record the SEM images.

3.2.3 Presentation of descriptions

For each genus the synonymies are listed first along with the relevant references. This is followed by the type species information, distribution, diagnosis (description), etymology for new species descriptions, remarks and finally locality data.

Each species description then follows a set pattern. The imago, male then female, are described first followed by the egg, the subimago and the nymph. Measurements are given in mm as ranges followed by the mean, standard deviation and n in parentheses. At least ten measurements were taken for each characteristic where possible. If n is less then not enough specimens of that species were available for that particular measurement.

Diagnosis of species status included measurements and examination of the whole animal for general appearance and colour. Important diagnostic characters for adults include measurements such as body, fore and hindwing length and the hindwing size in relation to the forewing. Body and head colour was recorded as was eye size and shape, noting the dimorphism between the sexes. Relative eye size of the male imagos was measured by the formula $E S=B / D$ following Bae (1991) where $E S=$ upper eye size, $B=$ shortest distance between upper lobes and $D=$ longest diameter of upper lobe. (Fig. 8). Relative upper eye sizes are as follows: large ($\mathrm{ES}=0.0-0.2$), medium sized ($\mathrm{ES}=0.3-0.5$), small
($E S=0.6-0.9$), very small ($E S=0.9-1.6$) and tiny ($E S=1.7-3.0$). Other characters on the head worth noting are ocelli size and shape and antennal length and colour (Fig. 8). From the thorax, colour and shape is noted with references to the three regions; the prothorax, mesothorax and metathorax as necessary. Although the detailed morphology of the thoracic region has been used previously for taxonomic distinction (Tsui and Peters 1972) it was not used here; the method is cumbersome and time consuming and it was considered that enough diagnostic information was available from other characters. Associated with the thorax are the legs where colour and length were noted along with foreleg length ratios especially between male (Fig. 9) and female (Fig. 10) and tarsal claw morphology (Fig. 11). Leg length ratios were calculated using the method of Suter (1986) where each segment is compared to the length of the fore femur or first segment and expressed as a ratio. The mean length of the femur is then given at the end in parentheses, followed by n. The forewing venation nomenclature followed in this study was that of Edmunds and Traver (1954b) and Edmunds et al. (1976) with recent variations outlined by (Dean (1989). This venational terminology is summarised in Fig. 12. The colour of the fore and hind wing and veins therein, the relationships between the various veins and the numbers of crossveins in the costal and subcostal spaces were all recorded. For the male imago, the genitalia are species specific (Edmunds et al. 1976) with the size, shape and colour of the forceps and pene:s being diagnostic in dorsal (Fig. 13), ventral (Fig. 14) and lateral (Fig. 15) view. In the female the ventral posterior margin of sternite nine, sometimes called the anal plate, is variable in shape and can be used to distinguish between taxa (Fig. 16) as can the presence or absence of a genital extension or egg guide at sternum seven (Fig. 16). The size, shape and pattern on the egg chorion is also considered diagnostic for a species and was determined using SEM where possible. Lastly, the caudal filament colour and characteristics were noted.

Subimago body lengths were recorded, if available, and their general appearance and colour in comparison to the imago noted.

Important features of the nymphs include body length of males and females separately. The general appearance and shape of the body was noted as were: head orientation, head colour and width; ocelli size and shape; antennal colour and length and eye size and shape of the dimorphically variant males (Fig. 17) and females (Fig. 18). The mouthparts of the nymph, unlike the adults, are fully functional and represent important diagnostic characters at the species level. With regard to the labrum (Fig. 19) the width, length and width length ratios are important features as is the shape of the lateral margins, the presence or absence of an antero-median emargination and denticles thereon. For certain taxa the presence of a secondary hair fringe, its width in relation to the labrum and frontal setae are diagnostic, as are ratios of the denticle width to labrum width. Finally,
the width of the labrum in relation to the clypeus is noted as is the angle that the lateral margins of the clypeus project anteriorly towards the labrum (Fig 19). Important features of the mandibles (Figs. 20,21) include general shape, colour and setation as well as the number, size, shape and denticulation of the incisors. Added to this the size and shape of the prostheca, the prosthecal tuft and the arrangement of hairs on such is important. The maxiliae (Fig. 22) size and shape is also determinative. The relative expansion of the galea-lacinae is important and the width length ratio of such is calculated by dividing the width apically by the length of the inner lateral margin to the base of the extension. Also recorded are the number of subapical pectinate setae, and the relative lengths and features of the palps. The hypopharynx features (Fig. 23) include the state of development of the lateral processes, the degree of cleavage of the lingua and the setal arrangement on the superlingua. Finally, for the mouthparts, the labium (Fig. 24) also rates as an important character. Recorded are the arrangement of the glossae in comparison to the paraglossae, the presence or absence of spines on the lateral margins and the relative lengths and features of the palps. Illustrations of mouthparts conform to a standard. All parts are drawn dorsally, except for the labia which follows the method of (Peters and Edmunds 1964) where the ventral surface is shown on the right hand side and the dorsal surface on the left. Palpi segment length ratios of maxillae and labia were calculated using Suter's method for measuring leg length ratios (above, Suter 1986) .

From the thorax, general appearance and colour is noted, occasionally referring to the three major parts of the thorax. The width of the pronotum is often measured and compared with head width as a ratio. Leg colour, size, shape and setation are important (Fig. 25). The foreleg width, length and width length ratio are recorded along with the leg length ratios for all three legs (Suter 1986). Number of spines on the fore tibiae and tarsus are noted. For some species the average length of the spines on the foretarsus compared to the mid-length width of the tarsus is important. Presence or absence of tarsal claw teeth and their number is also a useful diagnostic feature. General colour and patterning of the abdomen was recorded along with presence, absence and size of postero-lateral spines (Fig. 26). An important feature is the size, shape, colour and appearance of both the upper and lower lamellae of the gills (Fig. 27). Lastly caudal filament colour, length and characteristics were noted where appropriate.

Locality data (listed alphabetically in Appendix 2) were recorded for each specimen examined are recorded in the following manner in the text: name of creek in bold, specific location (eg Williams Rd Camp Site, Wandiligong), site identifier which consists of the year, month, day and collection number in an eight digit code (eg 98101703), EPH number if available (code used by the MV), altitude, longitude, latitude, date of collection, number of male specimens and life stages for each using N, S or I for nymph, subimago
and imago respectively, then number of female specimens using the same codes. Life stages were recorded with reared specimens and adult stages first. Thus the following order was employed: NSI (indicating nymph reared through to imago stage), I (imago only), SI (nymph reared to imago, subimago exuviae saved but nymphal exuviae not recovered), Nl (nymph reared to imago, subimago missing), NS (nymph reared to subimago then died), \mathbf{N} (nymph only). If a recorded site location does not follow this sequence the data missing were unavailable.

Collectors names are shown as abbreviations in parentheses at the end of the locality data. The material I collected during the course of this study is identified by the abbreviation KJF. Material collected by others, or used from other collections, is identified by the abbreviations of the collectors names as follows: $N A=$ Nigel Ainsworth, $P A=P$. Allbrook, $\mathrm{SA}=\mathrm{S}$. Arandt, $\mathrm{JB}=\mathrm{J}$ ohn Blyth, $\mathrm{JBa}=\mathrm{J}$. Barton, $\mathrm{JEB}=\mathrm{JE}$. Bishop, $\mathrm{SB}=$ Stuart Bunn, RB = R. Blackwood, RBu=Rhonda Butcher, $A C=A$. Calder, $D C=$ David Cartwright, $\mathrm{DCO}=\mathrm{D}$. Coleman, $\mathrm{IC}=\operatorname{lan}$ Campbell, $\mathrm{GD}=\mathrm{G}$. Drecktrah, JD $=$ John Dean, $F M=F r a n z$ Mahr, MD $=M$. Dean, $T D=$ Tim Doeg, $M E=$ Mjöberg Expedition, $N F=N$. Forteath, $I G=$ Ivor Growns, JG $=$ John Gooderham, $P G=$ Peter Goonan, $R G=$ R. Green, $\mathrm{BH}=\mathrm{B}$. Herbert, JH=J. Harker, PH = Pierre Horwitz, JJ = Jean Jackson, JL = J Lidston, $B M=$ Brooke Margery, BJM = B. Moulds, $C M=$ Chris Madden, GJM = GJ Morgan, MSM $=$ Max S. Mouids, RM $=$ Richard Marchant, $\mathrm{RMO}=$ R. Morley, $\mathrm{CMcP}=$ Catriona McPhee, AN = Arturs Neboiss, $T N=$ Tim New, $S P=$ Supatra Parnrong, ESGS =Sabine Schrieber, LS = Le Souef, RStC $=$ Ros St. Clair, ER = Edgar Riek, DS=David Scholes, MS $=$ M. Suter, PS = Phil Suter, SS = S. Sheerlock, ET = Edward Tsyrlin, RJT=R.J. Tillyard, AW = Alice Wells, KW = Ken Walker, PW=P. Wal!er, WDW = William (Bill) Williams.

3.3 Revision of the subgenus Nousia (Australonousia)

3.3.1 History

The genus Nousia was erected by L. Navás (Navás 1918) to accommodate the newly described Nousia delicata Navás from Chile, South America. He acknowiedged that the description was somewhat inadequate, being based on one male subimago, but considered it still warranted species status. He writes "un ejemplar ot muy deficinete, sin las Ms de las patas, \sin los cercos superiores o urodios. Como el ala anterior está en buen estado y la posterior ofrece suficientes caracteres, me he atrevido a describirlo de algún modo, aplazando para mejor ocasión, si longo ver algún ejemplar más perfecto, una descripción complementaria" ("An incomplete male specimen, without the majority of legs and caudal filaments. As the anterior wing is in good condition and the posterior one is in reasonable condition showing enough features, I have dared to describe it in some way, leaving for a future opportunity a complementary description if a specimens in better condition becomes available.") (Navás 1918, p.142).

Later, Navas (1925) obtained what he considered better specimens and described the species more thoroughly including a basic line drawing of the genitalia (FIG. 37, p. 309, reproduced here as Fig. 28). He also included supplementary characters from the dichotomous key in Needham and Murphy (1924) after concluding that the morphologically similar genus Atalonella, which Needham and Murphy established for Atalonella fusca (Ulmer) from Australia (Ulmer 1919) and the new species A. ophis Needham and Murphy from Chile, were in fact the same. Unfortunately, Navas did not formally designate Atalonella as a junior synonym of Nousia. He also left no record of where the type material he described was deposited.

This congeneric origin, however, was disputed by Traver (Traver 1946) who considered the hind wing venation of the two taxa to be quite different and proposed that Atalonella and Nousia be left as separate genera until careful study of the type material can be made.

Some time later, extensive collections were made at the type locality of Nousia delicata (Los Perales, Marga-Marga, Valparasio Province, Chile) by George F. Edmunds Jr. (Peters and Edmunds 1972). All the nymphis (and subsequent reared adult material) found simiiar to N. delicata were those identified as Atalonella. However, the original genitalia drawing of N. delicata (Navas 1925, Fig. 28) was so indistinct they could not be directly compared. (Peters and Edmunds 1972) concluded the two genera should not be synonymised until the type of Nousia delicata was located.

Happily, the missing type species of N. delicata was located not long after at Museo Municipal de Ciencias Naturales, Barcelona by Dr. J. Alba-Tercedor of the University of Granada in Spain (Pescador and Peters 1985). Upon examination it was established that N. delicata and A. ophis were identical and subsequently Pescador and Peters (1985) placed Atalonella as a junior synonym of Nousia. It followed therefore that A. ophis became a junior synonym of N. delicata. The species A. ophis still remains the type species of Atalonella and the species N.delicata the type species of Nousia. The South American species of the genus were comprehensively revised by Pescador and Peters (1985) and at present there are six described species.

By contrast, the taxonomy of Nousia in Australia is very poorly known. The Nousia of Australia are considered very speciose with perhaps sixteen species including seven endemic species from the island of Tasmania (Dean 1999). Yet only three are formally described in the literature at present. Of these three species N. darkara (Harker) and N. delicatula (Tillyard) are known only from Tasmania and are little known and poorly described. N. fuscula (Tillyard) is somewhat better known and is found on the mainland as well as Tasmania (Peters and Campbeli 1991). N. fuscula was extensively redescribed in Suter (1986) although it appears no type specimens were re-examined.

Based on the forewing venation, shape of the imago genitalia and mouthparts of the nymph, the Australian Nousia was considered to be quite different from those in South America (Campbell and Suter 1988) and a new subgenus, Nousia (Australonousia), was proposed to accommodate them. Subsequently, the South American species were referred to the subgenus Nousia (Nousia).

3.3.2 Descriptions

3.3.2.1 Nousia (Australonousia) Campbell and Suter

Nousia (Australonousia) (Campbell and Suter 1988)

Type species. Atalophlebia fuscula (Tillyard)

Species included. Nousia (Australonousia) fusca (Ulmer) comb. nov., Nousia (Australonousia) darkara (Harker) Incertae sedis, Nousia (Australonousia) fuscula (Tillyard), Nousia (Australonousia) nigeli sp. nov., Nousia (Australonousia) sp. "AV5", Nousia (Australonousia) sp. "AV7", Nousia (Australonousia) sp. "AV8". 29).

Diagnosis. Male imago. Dimensions: body length 5.8-9.0; forewing length 5.9-9.6; hindwing length 1.01-1.80; forewing hindwing ratio 4.85-6.96. General body colour variable, ranging from golden to tan to dark brown to black, with darker markings. Head: brown to black. Antennae: pedicel, scape light to dark brown, flagellum golden to light or tan brown. Ocelli: three; black with white inserts; laterals larger than media!. Eyes: upper eye size large, often contiguous, $E S=0.00-0.16$; upper lobe colour variable (pink, red, brown-grey, orange, orange-brown, dark brown), lower lobes grey, black or grey-black. Thorax: pronotum colour variable (golden, orange, brown, black), sometimes with darker markings; mesonotum shiny brown to black. Legs: colour variable (golden, tan, brown, black); femora usually darker; banciing present or absent; forelegs with severn segments, total foreleg length 5.76-8.90, tibia approximately 1.3-1.5 times length of femur, the five segmented tarsus approximately 1.4-1.6 times length of femur; tarsal claws of a pair similar, each apically hooked with an opposing hook. Wings. Forewing: membrane hyaline, pterostigmal region slightly opaque, longitudinal and crossveins dark brown, anal veins yellow; costal and subcostal crossveins usually absent (or very faint), costal space with $0-7$ crossveins proximally, 7-14 distally (sometimes anastomosed), subcostal space with $0-7$ crossveins proximally, 6-14 distally. Three bullae present on veins $S c, R_{2}$ and R ${ }_{4+5}$. MA forked at half to just over half the distance from wing base to margin, MP_{2} connected to MP_{1} and $\mathrm{CUA}, \mathrm{CuA}$ and CuP linked by crossvein, ICu_{1} recurved or joined to CuA and not linked to CuA-CuP crossvein, ICu_{2} joins $\mathrm{ICu}_{1}, \mathrm{ICu}_{1}$ and ICu_{2} parallel as wing margin approached, CuP strongly recurved and linked by cross vein to A_{1}. Hindwing: mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex at midiength immediately preceding shallow concavity; costa joins subcosta at approximately three-quarters to four-fifths wing length; no crossveins in proximal halves of costal space, 2-6 in distal space, 3-6 throughout subcostal space. Abdomen: colour and pattern variable ranging from golden to orange brown with dark brown markings to dark brown and black with golden markings, commonly forming a broken stripe midline, two golden coloured maculae flanking each midline marking anteriorly. Genitalia: forceps three segmented, first segment usually darker, progressively lighter apically; middle and terminal segment about the same length. Penes: fused in basal two-thirds, two lobes distinct, separate apically; often with subapical lobes protruding laterally towards midline, each subapical lobe with a small blunt triangular tooth, often partly sheathed by outer covering and generaily visible under transmitted light only. Cauda! filaments: three; golden to brown; terminal filament longer than cerci. Female imago. Dimensions: body length 6.1-10.1; forewing length 5.8-10.4; hindwing length 0.99-1.95; forewing hindwing ratio 4.94-7.12. General patterning and colouring
similar to male. Eyes: grey-black; separated on meson of head by a distance about four times maximum width of eye. Legs: shorter than male; total foreleg length 3.70-6.43; forelegs with six segments, tibia approximately 1.3-1.4 times the length of the femur, the four segmented tarsus approximately 0.6-0.8 times longer than the femur. Wings. Forewing: colour and venation similer to males except crossveins always in proximal halves of wing and generally more crossveins on average than male; costal space with 39 crossveins proximally, 10-18 distally (sometimes anastomosed), subcostal space with 38 crossveins proximally, 8 - 16 distally. Hindwing: no crossveins in proximal halves of costal space, 3-6 in distal space and throughout subcostal space. Abdomen: sternum seven with small to large genital extension; sternum nine moderately or deeply cleft. Egg. Ovoid; polar cap absent; chorion with large circular shaped protuberances, sometirnes interspersed with smaller ones; pattern variable. Male and female subimago. General colour and markings duli greyish black, similar to imago. Wings opaque, uniformly greybrown. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. Body lengths: $\delta^{\text {a }} 5.8-9.8, ~ \circ 6.0-11.4$. General body colour variable, ranging from golden to brown to black with light and / or dark markings. Head: prognathous; golden brown to dark brown, sometimes with darker markings; width 1.25-2.20. Ocelli: three; black with white to grey inserts; laterals larger than medial. Antennae: pedicel and scape brown, flagellum golden to light or tan brown; one and a half to more than twice length of head. Eyes: upper lobes of male tan to red-brown, lower lobes black; eyes of female grey-black to black. Mouthparts. Labrum and clypeus: lateral margins of clypeus parallel, slightly or moderately diverging towards antericr; lateral margins of labrum subequal, very slightly or slightly wider than clypeus, rounded to angular; anterior margin with straight, slight or distinct antero-median emargination; labrum length 0.25-0.54, labrum width 0.54-1.03, labrum width length ratio 1.68-2.72; four to five flat elongate, rounded or triangular denticles present on anterior margin extending 0.07-0.38 the width of labrum, denticle width as proportion of labrum width 0.10-0.51; frontal setae arranged as a narrow or broad band, secondary hair fringe usually clearly separated from front row; in one case abutting. Mandibles: outer margins slightly curved, sparse long setae at midpoint on outer lateral margins, shorter: setae between tuft and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in an inverted L-shape on lower mandibie body. Left mandible: two incisors, each with three apical teeth; outer incisor sometimes inconspicuously serrated on inner lateral margin; prostheca robust, moderately or distinctively serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible: sparse long spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, sometimes inconspicuously serrated on inner lateral margin; inner incisor with two apical teeth, sometimes inconspicuously serrated on outer lateral margin; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae: galea-lacinae
generally as wide as long, width length ratio 0.84-1.28; subapical row of 11-23 pectinate setae; with or without subapical process extending towards inner lateral margin; palpi three segmented, first segment length 0.22-0.30, segment two 0.71-0.97 times the length of first segment, terminal segment 0.51-0.71 times the length of first segment, terminal segment usually with single spine apically. Hypopharynx: well developed lateral processes; anterior margin of lingua moderately to deeply cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, rounded to slightly anguiar lateral margins, sometimes with slight indentations. Labium: glossae not turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, first segment length 0.29-0.38, segment two 0.71-0.94 times the length of first segment, terminal segment $0.53-0.78$ times the length of first segment, terminal segment with row of triangular spines aimost circling apex and stout spines on dorsal sufface; submentum with spines on lateral margins. Thorax: colour ranges from golden to orange to tan and dark brown with light and / or dark markings; pronotum width 1.222.43, equal or one-fifth wider than head, head pronotum width ratio 0.88-1.25. Legs: golden to tan and dark brown, banding present or absent; total foreleg length 2.28-4.98; fore femora length 0.95-2.20, fore femora width $0.28-0.73$; fore femora length width ratio 2.19-4.11; fore tarsi with 3-15 ventral spines; tarsal claws with $9-18$ ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; foreleg length ratios, tibiae 0.77-0.89 times length of femur, tarsi 0.36-0.55 times length of femur; mideg length ratios, tibiae 0.76-0.88 times length of femur, tarsi 0.31-0.40 times length of femur; hindleg length ratios, tibiae 0.81-0.92 times length of femur, tarsi 0.28-0.40 times length of femur. Abdomen: colcur and pattern variable ranging from golden to orange brown with dark brown markings to light and dark brown to black with golden markings commonly forming a broken stripe midline, two golden coloured maculae flanking each midline marking anteriorly; posterolateral spines present, progressively larger posteriorly. Gills: membrane clear to opaque, colour variable (pink, yellow, brownish); present on segments one to seven, progressively smaller posteriorly; double, upper and lower lanaeliae equaliy developed; slender, tapering to a thin point apically, main and lateral tracheae strongly to weakly developed. Caudal filaments: three; golden; terminal filament longer than cerci.

Remarks. The subgenus Nousia (Australonousia) can be distinguished from all other genera in the Leptophlebiidae family by the following combination of characters. In the imago: (i) body length ơ $5.8-9.0$; $96.1-10.1$; (ii) male upper eye size !arge, often contiguous; (iii) male and female forewing 4.9-7 times longer than hindwing; (iv) male forewing crossveins faint, or more usually absent, from proximal halves of wing; (v) MA forked at half to just over half the distance from wing base to margin; MP_{2} connected to MP_{1} and CuA_{1} ? u_{1} recurved or joined to CuA and not linked to $\mathrm{CuA}-\mathrm{CuP}$ crossvein; ICu_{2}
joins $\mathrm{ICu}_{1} ; \mathrm{ICu}_{1}$ and ICu_{2} parallel as wing margin approached, CuP strongly recurved and linked by cross vein to A_{i}; (vi) hindwing costa joins subcosta at approximately threequarters to four-fifths wing length; (vii) tarsal claws of a pair similar, each apically hooked with an opposing hook; (viii) penes fused in basal two-thirds, two lobes distinct; often with subapical lobes protruding laterally towards midline, each subapical lobe with a small blunt triangular tooth, often partly sheathed by outer covering and generally visible under transmitted light only; (ix) female eyes separated on meson of head by a distance about four times maximum width of eye; (x) female sternum seven with small genital extension; (xi) female sternum nine moderately or deeply cleft. In the nymph: (i) body length d 5.8 9.8, $\%$ 6.0-11.4; (ii) antennal length one and a half to more than twice length of head; (iii) lateral margins of clypeus straight, slightly or moderately diverging towards anterior; (iv) labrum slightly less than to twice or three times as wide as long; labrum subequal, very slightly to slightly wider than clypeus; lateral margins rounded to slightly angular; antero-median emargination straight, slight or distinct bearing four to five elongate, rounded or triangular denticles; denticles extend one-tenth to half the width of labrum; (v) mandibles with outer margins slightly curved; incisors with or without serrations on lateral margins; (vi) maxillae with galea lacinae generally about as wide or slightly wider than length; subapical row of 11-23 pectinate setae; terminal palp elongate, usually with single spine apically; (vii) hypopharynx moderately to deeply cleft, superlingua with rounded to slightly angular lateral margins; (viii) labium glossae not turned under ventrally, terminal segment elongate with row of triangular spines almost circling apex; submentum with lateral spines; (ix) pronotum about as wide as head; (x) legs with fore femora 2-4 times longer than wide; fore tarsi with $3-15$ ventral spines; tarsal claws with $9-$ 18 ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; (xi) abdomen with posterolateral spines, progressively larger posteriorly; (xii) gills with margins entire, double, upper and lower lameliae equally developed; slender, tapering to a thin point apically; main and lateral tracheae strongly to weakly developed.

3.3.2.2 Nousia (Australonousia) fusca (Ulmer) comb. nov.

Thraulus dentatus Ulmer (Ulmer 1916) [partim]
Atalophlebia fusca Ulmer (Ulmer 1919)
Nousia fusca (Ulmer) (Needham and Murphy 1924) [mistakenly reported from Chile] Atalophlebia fusca (Ulmer) (Lestage 1931)
Atalonella fusca (Ulmer) (Har':er 1954)
Atalophlebia fusca (Ulmer) (Demoulin 1955b)
Koorrnonga fusca (Uimer) (Campbell and Suter 1988)
Nousia (Australonousia) delicatula (Tillyard) (Campbell and Suler 1988)
Koormonga brunnea (Tillyard) (Campbell and Suter 1988)

Nousia (Australonousia) fusca (Ulmer) comb. nov.

Types. Lectotype (here designated). Atalophlebia fusca Ulmer. Cedar Creek, Queensland, 10040000, III i910-1913, 1 d imagos, in alcohol, coll. Mjöberg Expedition. Labels: a) "Atalophlebia fusca Ulm. (Ulm. 1920) Typen", b) "=Thraulus dentatus", c) "Cedar Creek, Mär." Paralectotypes (here designated). (1) Atalophlebia fusca Uimer. 1 ot subimago, in vial with lectotype, same collection data and labels. (2) Thraulus dentatus Ulmer / Atalophlebia fusca Ulmer, Artherton, Queensland, 10010000, I 19101913, 1 of imago, in alcohol, coll. Mjöberg Expedition. Labels: a) "Thraulus dentatus Ulm. (Type)", b) "Atalophlebia fusca Uim. (Ulmer 1929) Co-Typen", c) "Atherton, Jan", (3) "Thraulus dentatus Ulmer / Ataiophlebia fusca Ulmer. 1 ot subimago, in vial with paralectotype 2, same collection data." Held at the SMNH.

> Nousia (Australonousia) delicatula (Tillyard) Atalophlebia delicatula Tillyard (Tillyard 1936)
> Atalonella delicatula (Tillyard) (Harker 1954)
> Nousia (Australonousia) delicatula (Tillyard) (Campbe!l 1988)
> Nousia (Australonousia) delicatula (Tillyard) (Campbell and Suter 1988) Nousia (Australonousia) fusca (Ulmer) comb. nov.

Types. Hoiotype. Atalophlebia delicatula (Tillyard), North Esk River, 33012100, 21 I 1933, Perth, Tasmania. of imago [examined]. Labels: a) "Atalophlebia delicatula Till. Hclotype of R.J.T,. N. Esk, Tas. 21.1.33", b) "Holotype". Paratypes. Atalophlebia delicatula (Tillyard), 2 of imagos, of imago (marked allotype), of and \circ subimagos, same locality data, 21 | 1933, R.J. Tillyard; 6 XII 1954, B. McMillan. Held at the NHM [not seen].

Koormonga brunnea (Tillyard)
Atalophlebia brunnea Tiilyard (Tityard 1936)
Atalonella brunnea (Tillyard) (Harker 1954)
Nousia brunnea (Tillyard) (Campbell 1988)
Koorrnonga brunnea (Tillyard) (Campbell and Suter 1988)
Nousia (Australonousia) fusca (Ulmer) comb. nov.

Types. Holotype. Atalophlebia brunnea (Tillyard). South Esk River, Clarendon, Tasmania, 33030900, 9 lit 1933, or imago, coll by E. Scott, R.J. Tillyard collection. Paratype. Same location and collection data, of imago, genitalia
dissected and mounted on slide. Held at the NHM [examined, except for slide material]. Labels: a) "Atalophlebia brunnea Till. Holotype and Paratype Male Imagoes (Hol. in tube), Clarendon, Tas., 9.III.1933, Eric Scott.",b) "Ex. coll. R.J. Tillyard".

Distribution. New South Wales, Queensland, Tasmania, Victoria (Fig. 30).

Diagnosis. A redescription was considered desirable due to the accumulation of a large number of new specimens both as a result of collecting during this project and from examination of MRHI material. This has enabled the little known female imago and subimago stages and the previously unknown nymphs to be fully described. The species Koorrnonga brunnea (Tillyard) and Nousia (Australonousia) delicatula (Tillyard) and the morphospecies Nousia sp. "AV1" have all been synonymised with Nousia (Australonousia) fusca which has priority (see below for discussion).

Male imago. (Fig. 31). Dimensions: body length 5.8-9.0 ($7.3 \pm 0.68,58$); forewing length $6.0-8.6(7.2 \pm 0.59,59)$; hindwing length 1.01-1.71 (1.29士0.13, 56); forewing hindwing ratio 4.85-6.80 ($5.51 \pm 0.42,56$). General body colour very variable, ranging from tan brown to dark brown to black. Head: brown to black. Antennae: pedicel, scape and flagellum tan to dark brown. Ocelli: three; black with white inserts; laterals larger than medial. Eyes: upper eye size large, sometimes contiguous, $E S=0.00-0.16$ ($0.08 \pm 0.07,15$); upper lobes pink to red to tan brown, lower lobes grey to black. Thorax: pronotum brown to black; mesonotum shiny brown to black. Legs: golden through to tan, medium or dark brown, femora with darker apices, no apparent banding, forelegs with seven segments, total foreleg length $5.76-8.90(7.28 \pm 0.94,37)$; leg length ratios $1.00: 1.35: 0.06: 0.53: 0.50$: $0.37: 0.16(1.8 \pm 0.19,37)$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 32). Wings. Forewing (Fig. 33): membrane hyaline, pterostigmal region slightly opaque, longitudinal and crossveins dark brown, anal veins yellow; costal and subcostal crossveins absent, or if present very faint, in proximal halves of wing, costal space with $0-5$ (61), faint crossveins proximally, 7-14 (61) distally (sometimes anastomosed), subcostal space with $0-5$ (61) faint crossveins proximally, 6-13 (61) distally. Three bullae present on veins $S c, R_{2}$ and R_{4+5}, MA forked at half to just over half the distance from wing base to margin, MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{CuA}$ and CuP linked by crossvein, ICu_{1} recurved or joined to CuA and not linked to CuA-CuP crossvein, ICu_{2} recurved to join $\mathrm{ICu}_{1}, \mathrm{ICu}_{1}$ and ICu_{2} parallel as wing margin approached, CuP strongly recurved and linked by cross vein to A_{t}. Hindwing (Fig. 34): mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex at midlength immediately preceding shallow concavity; costa joins subcosta at approximately three-quarters wing length; no crossveins in proximal halves of costal space, 2-5 (56) in
distal space，3－5（56）throughout subcostal space．Abdomen：tan to dark brown to black with goiden markings on each segment forming a broken stripe midline，two golden coloured maculae flanking each midline marking anteriorly（Fig．35）；colour and pattern highly variable．Genitalia（Figs．36－49）：forceps three segmented（Fig．36，38，39，41）； tapering strongly，first segment dark brown，progressively lighter apically；terminal segment rounded，about the same length as middle segment．Penes brown；fused in basal two－thirds，two lobes distinct，dorsal view with two subapical lobes protruding laterally towards midline；each subapical lobe with a small biunt triangular tooth，partly sheathed by outer covering，generally visible under transmitted light only；shape variable between populations；dorsal view（Figs．36，39，40，46，48），ventral view（Figs．37，41，42， 44，47，49）and lateral view（Figs．38，45）．Caudal filaments：three；golden to brown； terminal filament and cerci length unknown．Female imago．（Fig．50）．Dimensions： body length $6.1-9.0(7.6 \pm 0.74,62)$ ；forewing length $5.8-9.6(7.7 \pm 0.73,63)$ ；hindwing length 0．99－1．72（1．26 $\pm 0.14,62$ ）；forewing hindwing ratio 4．94－7．07（6．14士0．44，60）． General patterning and colouring similar to male．Eyes：grey－black；separated on meson of head by a distance about four times maximum width of eye．Legs：total leg length shorter than rale；forelegs with six segments，total foreleg length 3．70－6．28（4．80土0．66， 40）；leg length ratios $1.00: 1.30: 0.21: 0.19: 0.16: 0.15(1.60 \pm 0.19,40)$ ．Wings．Forewing （Fig．51）：colour and venation similar to males except crossveins in proximal halves of wing and generally more crossveins on average than male；costal space with 3－8（67） crossveins proximally，10－16（67）distaliy（sometimes anastomosed），subcostal space with $3-8(67)$ crossveins proximally， $8-14$（67）distally．Hindwing（Fig．52）：no crossveins in proximal halves of costal space，3－5（64）in distal space，3－6（64）crossveins throughout subcostal space．Abdomen：sternum seven with small genital extension（Fig．53）； segment nine deeply cleft（Figs．53－55）．Egg．Ovoid；polar cap absent；chorion with large evenly spaced circular shaped protuberances interspersed with smaller ones； pattern variable（Figs．56－67）．Male and female subimago．General colour and markings dull greyish black，similar to imago．Wings opaque，uniformly grey－brown．Maie （Fig．66）forelegs of male not elongated．Genitalia not fully developed（Figs．69，70）．
Mature nymph．（Fig．71，72）．Body lengths：is 5．8－9．6（7．5士0．87，63），i 6．0－10．0 （ $7.9 \pm 0.87,81$ ）．General colour golden to tan brown with light and dark markings．Head： prognathous； \tan brown；width $1.25-1.82(1.53 \pm 0.11,83)$ ．Ocelli：three；black with white to grey inserts；laterals larger than medial．Antennae：pedicel，scape and flagellum golden to tan brown；more than twice length of head．Eyes：upper lobes of male reddish－ brown，lower lobes black；eyes of female black．Mouthparts．Labrum and clypeus， morphology variable（Figs．73，74）；lateral margins of clypeus slightly diverging towards anterior；lateral margins of labrum subequal to very slightly wider than clypeus，rounded； anterior margin with straight anterior margin（Fig．73）or slight antero－median emargination（Fig．74）；labrum length 0．30－0．54（0．37土0．04，101），labrum width 0．58－1．03
($0.74 \pm 0.08,101$), labrum width length ratio 1.71-2.23 (1.99 $\pm 0.12,101$); five flat elongate denticles present on anterior margin extending 0.14-0.32 (0.20 $\pm 0.03,101$) across labrum, denticle width as proportion of labrumi width $0.20-0.37$ ($0.27 \pm 0.03,101$); frontal setae arranged as a relatively narrow band, secondary hair fringe clearly separated from narrow band. Mandibles: outer margins slightly curved, sparse long setae at midpoint on outer lateral margins, shorter setae between tuft and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in an inverted L-shape on lower mandible body. Left mandible (Fig. 75): two incisors, each with three apical teeth; outer incisor inconspicuously serrated on inner lateral margin; prostheca robust, moderately serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 76): sparse long spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin; inner incisor with two apical teeth, inconspicuously serrated on outer lateral margin; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 77): galea-lacinae as wide as long, width length ratio 0.90-1.11 (0.99士0.06, 25); subapical row of 11-18 (25) pectinate setae; palpi three segmented, terminal palp with single spine apically although sometimes not apparent (Fig. 78); palp length ratios 1:00: 0.77: 0.71 ($0.24 \pm 0.03,50$). Hypopharynx (Fig. 79): well developed lateral processes; anterior margin of lingua deeply cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, rounded lateral margins. Labium (Fig. 80): glossae not turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface (Fig. 81); palp length ratios 1.00: 0.77: $0.63(0.36 \pm 0.04,50)$; submentum with spines on lateral margins. Thorax: golden to tan brown with darker markings; pronotum width 1.22-1.91 (1.51 ± 016, 83), approximately equal to width of head (see above), head pronotum width ratio 0.88 $1.15(1.02 \pm 0.06,83)$. Legs (Fig. 82): golden to tan brown, femora apices usually darker, no apparent banding, fore femora length 1.05-2.20 (1.42 $\pm 0.20,87$), fore femora width $0.28-0.73$ ($0.50 \pm 0.07,87$), fore femora length width ratio 2.51-4.11 (2.86 $\pm 0.20,87$); fore tibiae with numerous short ventral spines; fore tarsi with $5-10(25)$ ventral spines; tarsal claws with 10-16 (50) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated (Fig. 83); total foreleg length 2.45-4.98 (3.31 $\pm 0.49,87$; leg length ratios, foreleg 1.00: 0.85 : 0.44 ($143 \pm 0.21,87$) mid leg 1.00: 0.86: $0.35(1.51 \pm 0.26$, 60), hind leg $1.00: 0.91: 0.31(1.74 \pm 0.28,60)$. Abdomen: \tan to dark brown with golden markings on each segment forming a broken stripe midline, generally witin two golden coloured maculae flanking each midline marking anteriorly but pattern highly variable; posterolateral spines present, progressively larger posteriorly. Gills (Figs. 84, 85): membrane clear to pink; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; each gill slender,
tapered to a thin point apically; main tracheal branch apparent; lateral tracheae present, usually strongly developed (Fig. 84), but sometimes poorly developed (Fig. 85). Caudal filaments: three; goiden; terminal filament longer than cerci.

Remarks.

Nousia (Australonousia) fusca. Atalophlebia fusca was established by Ulmer (1919) as a new species although it was actually partly described by him in an eariier paper as Thraulus dentatus (Ulmer 1916). In the later revision, he considered that the light and dark coloured specimens of this genus were actually two different species and that, in fact, they both belonged to the genus Atalophlebia. The light examples he renamed A. lucida and the dark examples A. fusca as they required a new species name because dentatus was pre-occupied. Following this Needham and Murphy (1924) established the genus Atalonella to accommodate two species: A. ophis from Chile and A. fusca which they mistakenly believed to be from South America. Lestage (1931) then referred the species back to Atalophlebia on the understanding that all Alalonella species only came from South America. Probably without consulting the French (Lestage) literature Harker (1954) assumed the Needham and Murphy stance that the species belonged to Atalonella, and Demoulin (1955b) agreed. However, a complication ensued when Campbell (1988) apparently referred the species back to Atalophlebia. I consider this is because he misunderstood Demoulin (1955b), the last author to refer to the species, to have attributed the species to Atalophlebia whereas, in fact, Demoulin accepted Harker's view. Subsequently, a new combination of the species occurred as a result of the establishment of the new genus Koorrnonga (Campbell and Suter 1988) although no explanation was proffered. The current view of the species placement is tentative. Dean (1999) considers that it should be removed from Koormonga and referred back to Nousia on the basis of the genitalia and hindwing morphology.

Assessment of species status was not easily checked. A complication arose as a result of no specimen being nominated as the type species. In response to a request for the type specimens of fusca I received four vials from the SMNH, which I have named Series, each containing more than one specimen each:

Series 1. Thraulus dentatus Ulmer / Atalophlebia fusca Ulmer. Atherton, Queensland,
 Labels: a) "Thraulus dentatus Ulm. (Type)", b) "Atalophlebia fusca Ulm. (Ulmer 1920) CoTypen", c) "Atherton, Jan".

Series 2. Atalophlebia fusca Ulmer. Cedar Creek, Queensland, 10030001, III, 1910-1913, 1 ot imago, 1 ot subimage, in alcohol, coll. Mjöberg Expedition. Labels: a) "Atalophlebia fusca Ulm. (Ulm. 1920) Typen", b) "=Thrauluı dentatus", c) "Cedar Creek, März". Series 3. Thraulus dentatus Ulmer / Atalophlebia fusca Ulmer, Christmas Creek, Queensland, 10000000, 1910-1913, 1 o imago, 1 ㅇimago, 2 os subimagos, 2 ㅇF subimagos, in alcohol, coll. Mjöberg Expedition. Labels: a) "Thraulus dentatus UIm. (Typen)", b) "Atalophlebia fusca Ulmer (Ulm. 1920) Typen", c) "Christmas Creek". Series 4. Thraulus dentatus Ulmer / Atalophlebia fusca Ulmer, Malanda, Queensland, 10030002, III 1910-1913, 1 if imago, pinned, coll. Mjöberg Expedition. Labels: a) "Thraulus dentatus Ulm. (Type)", b) "Atalophlebia fusca Ulmer (1920)", c) "Malanda", d) "Queensl. Mjöberg".

In the situation of a collective type series all specimens constitute the name-bearing type and have equal status being referred to as syntypes (Article 72.1.1, ICZN 1999). Unfortunately, however, the fusca syntypes do not all represent the same species. The pinned female imago constituting Series 4, for example, definitely represents a species of Koormonga by the shape of its angular forewing and deeply cleft sternurz sine. The specimens contained with Series 2 are clearly Nousia-like with the separated lobes of the male genitalia and the rounded forewing. Indeed, the male genitalia (Fig. 86) clearly represents the morphospecies Nousia sp. "AV1". Similarly, although the male imago of Series 1 had the genitalia removed, the characters of both the imago and subimago are sufficiently similar to assign it to the same morphological status as Series 2. Lastly, the six adults constituting Series 3 are morphologically similar to those of Series 1 and 2 in respect of the wing venation and sternum nine of the female but the genitalia of the adult male has a spine protruding apically from the two penes lobes.

Under the rules of the International Code of Zoological Nomenclature (Article 74.1, ICZN 1999) "a lectotype may be designated from the available syntypes to become the unique bearer of the name of a nominal species-group taxon". I propose that the male imago from Series 2 (Fig. 86) becomes the lectotype primarily as the male genitalia is well preserved and intact but also because Ulmer (1919) himself declares of the two male imagos in this series "diese males betrache ich als typisch!" ("these males I consider typica!!", p.22). As a consequence, the male subimago from the Series 2 becomes a paralectotype (Article 74.1.3) as do the specimens making up the Series 1 . The remaining Series 3 and 4 are removed from the type series.

Nousia (Australonousia) delicatula. Tillyard (1936) first described this species from specimens collected in Northern Tasmania. Later, Harker regarded this species as a new combination of Atalonella after defining the differences between Atalophlebia and

Atalonella (Harker 1954). Scholes (1961) collected some more specimens from the same area and the same rivers as Tillyard and his description proved to be very similar. No explanation was given as to why the species is placed in the genus Nousia by either Campbell (1988) or Campbell and Suter (1988) although one can assume this was based on the size and shape of the male genitalia with diverging lobes. I agree with their assessment here. The type genitalia of the pinned imago were examined and found to be somewhat distorted, perhaps through the drying out process. However, I was fortunate to be able to examine some of Scholes' specimens collected from Northern Tasmania in the 1960's, and referred to in his subsequent paper (Scholes 1961). Luckily, the male imago genitalia, which was stored in alcohol, was in good condition providing a better representation of the true shape (Fig. 87). Based on the similarity of the male imago genitalia I have synonymized the species Nousia (Australonousia) fusca and Nousia (Australonousia) delicatula. As N. fusca has priority N. delicatula becomes the junior synonym.

Koorrnonga brunnea. Atalophlebia brunnea was originally described as such by Tillyard (1936) but was subsequently transferred to Atalonella by Harker (1950a) probably on the basis of fore and hind wing venation. It was referred to as Nousia by Campbell (1988) in his catalogue and subsequently transferred to Koorrnonga (Campbell and Suter 1988) on the basis of two characters: (1) the absence of crossveins in the proximal halves of the costal and subcostal spaces in the male forewing and (2) the shape of the penes. I disagree with this assessment. Firstly, other species of Nousia have missing or faint veins from the proximal costal and subcostal spaces so this is not necessarily a generic characteristic. Secondly, the genitalial shape ot the type (Fig. 88) conforms more strongly with that of Nousia with the presence of two diverging lobes rather than the closely associated lobes of Koorrnonga. One more characteristic can be used to cement the position of K. brunnea within Nousia (Australonousia). The shape of the hindwing is quite rounded and does not have the characteristic angularity of the Koorrnonga hindwing. I believe, therefore, that the species more correctly belongs to Nousia (Australonousia) and formally transfer it here. It is also clear that the genitalia shape is remarkably similar to that of the type species of both fusca and delicatula. Based on this and other imago characteristics I consider them to be the same species and synonymise them here. As N. fusca has priority K. brunnea becomes the junior synonym.

General. The synonymy of the three species N. fusca, N. delicatula and K. brunnea is based largely on the morphology of the male genitalia which were remarkably similar on examination as mentioned above.

Confusion arises, 1 feel, from the various drawings of the genitalia in the literature which do not appear to conform to the above individuals. Ulmer's drawing of Atalophlebia fusca is a simpie line drawing with little detail (Ulmer 1919, FIG. 14, p.21, reproduced here as Fig. 89). He describes the penes as ('..breit, tief eingeschnitten (FIG. 14); jeder Seitenabschnitt ist vor dem Ende as der Ventralfläche ausgehöhlt unc: ugt in dieser Höhlung einen das Seitenstück überragenden keulenförmigen Anhang, der an der Anßenkante vor dem rundlichen Apex eingekerbt ist; .." (p.22). This translates as "..wide, deeply indented (FIG. 14); each side section is hollowed out before the end of the ventral surface and bears in this hollow a companion-piece overhanging club-shaped attachment, that is notched on the outer edge before the rounded apex;.."

One wuld argue that this is not dissimilar to Tillyard's description of the penes of Atalophlebia delicatula: "..lobes separated by a deep cleft, each lobe stout, irregularly truncated, with three terminal rounded embossments and a larger rounded process projecting slightly inwards not far from apex. " (Tillyard 1936, p.48) although the thrers terminal embossments are absent from Uimer's drawing. Tillyard's simple line drawing of the penes (FIG. 16, p. 34, reproduced here as Fig. 90) clearly depicts the features described by Ulmer (1919).

As for Koorrnonga brunnea, the description of the male genitalia is less revealing. Tillyard (1936) describes the penes of Atalophlebia brunnea in the following manner: "..slightly diverging lobes separated by a deep semi-circular embayment; each lobe irregularly truncated. "Campbell and Suter (1988) believed that the lobes many have been artificially separated upon being mounted on the slide and this, coupled with Tillyard's description of "slightly diverging lobes" (Tillyard 1936, p. 44), led them to conclude the species belonged to Koorrnonga. However, it is clear from the holotype genitalia (Fig. 88) that the lobes are separated in their natural state. Tillyard's drawing of the genitalia (Tillyard 1936, FIG. 14, p. 34, reproduced here as Fig. 91) does not do the shape justice. I believe he has probably drawn the genitalia in the ventral view so it is not possible to see the apical lobes, and makes the drawing look dissimilar to that of A. fusca and A. delicatula.

In reference to Nousia sp. "AV1" a large number of male imago genitalia, which were collected over the course of this study, were examined by slide mounting and SEM. Although there appear to be some variations in length and width of the penes (see species redescription) the overall shape is similar to N. fusca, N. deiicaiula and K. brunnea. Further, as far asl can tell, small internal triangular spiries are present on the inner margin of each penis lobe. They appear to be partly covered by a sheath and are not visible unless the genitalia is mounted and viewed under transmitted light.

Synonymy was also established on the basis of comparison of the characteristics of the types and the various literature descriptions. These were compared to the newly described Nousia (Australonousia) fusca (above) which is largely comprised of specimens formerly known as Nousia sp. "AV1". These are compiled in Table 4. Unfortunately only the imago and subimago stages could be compared as there are no nymphal type specimens or literature descriptions.

Table 4. Similarities between the literature descriptions and type measurements of the imago and subimago stages of the species Nousia (Australonousia) fusca, Nousia (Australonousia) delicatula, Koorrnonga brunnea, and Nousia sp. "AV1".

	N. (A) fusca	N. (A) delicatula	K. brunnea	Nousia sp. "AV1"
Male Imago				
eye size	contiguous - lectotype, paralectotype	```large (Tillyard 1936, Scholes 1961) almost contiguous - holotype```	almost contiguous - holotype, paratype	large, almost contiguous
forewing overall colour	pterostigmal area slightly opaque - lectotype	hyaline (Tillyard 1936) glassy clear (Scholes 1961)	hyaline, pterostigmal area slightly darker (Tillyard 1936) glassy clear (Scholes 1961) pterostigmal area slightly opaque - holotype, paratype	membrane hyaline, pterostigmal region slightly opaque
forewing vein colour	wing veins dark brown (Ulmer 1916, Uimer 1919)	dark brown to blackish venation, anal veins pale (Tillyard 1936) dark brown to blackish venation (Scholes 1961)	with semi -transparent brownish venation, anal veins faint (Tillyard 1936) semi-transparent brownish venation (Scholes 1961)	longitudinal and crossveins brown, anal veins yellow
costa! crossulfens distal	$\begin{aligned} & 10 \text { (2 faint) (Ulmer 1919) } \\ & 10 \text { (UImer } 1919 \text {) } \\ & 10 \text { - lectotype } \\ & 8 \text { - paralectotype } \end{aligned}$	11 (Tillyard 1936) 9 - holotype	8 (Tillyard 1936) 9 - holotype 10- paratype	7-14
subcostal cross Vadns distal	7 (Ulmer 1919) 9 - lectotyp : paralectotype	$\begin{array}{\|l\|} \hline 7 \text { (Tillyard 1936) } \\ 8 \text {-holotype } \end{array}$	8-holotype 9 - paratype	6-13
MA fork	over half (Ulmer 1919) over half-lectotype, paralectotype	slightly more than half (Tillyard 1936) over half -- holotype	slightly more than half (Tillyaid 1936) around half - holotype	half to just over half
MP_{2} connected to MP_{1} and CuA	yes - (Ulmer 1919), lectotype, paralectotype	yes (Tillyard 1936), holotype	yes (Tillyard 1936, holotype, paratype	yes

Table 4 cont'd.

	N. (A) fusca	N. (A) delicatula	K. brunnea	Nousia sp. "AV1"
CUA-CuP crossvein	yes (Ulmer 1919), lectotype, paralectotype	yes (Tillyard 1936), holotype	yes (Tillyard 1936), holotype, paratype	yes
Cu_{1} and iCu_{2}	parallel (Ulmer 1919). lectotype, paralectotype	parallel (Tillyard 1936), hoiotype	paralle! (Tillyard 1936), holotype, paratype	parallel
$\begin{aligned} & \mathrm{ICu}_{1} \text { joins } \\ & \mathrm{CuA} \\ & \hline \end{aligned}$	yes (Ulmer 1919), lectotype, paralectotype	yes - (Tillyard 1936)	yes (Tillyard 1936), holotype, paratype	yes
Cu_{1} linked to CuA-CuP crossvein	no (Ulmer 1919), lectotype. paralectotype	no (Tillyard 1936), holotype	no (Tillyard 1936, holotype, paratype	no
CCu_{2} recurved to join ICu_{1}	yes (Ulmer 1919), lectotype, paralectotype	yes (Tillyard 1936), holotype	yes (Tillyard 1936)	yes
CuP linked to A_{1}	no (Ulmer 1919) lectotype, paralectotype	yes (Tillyard 1936), holotype	no (Tillyard 1936), holotype, paratype	yes
hindwing length at which costa joins subcosta		$\begin{aligned} & \text { about four-fifths (Tillyard } \\ & \text { 1936) } \end{aligned}$	three-fifths (Tiliyard 1936)	two-thirds
costal crossveins	4 (Ulmer 1919) 2-lectotype, paralectotype	2 (Tillyard 1936) 4 - holotype	$\begin{aligned} & 3 \text { (Tillyard 1936) } \\ & 3 \text { - holotype } \end{aligned}$	2-5
subcostal crossveins	$3-5$, sometimes faint (Ulmer 1919) 3 - lectotype, paralectotype	$\begin{aligned} & 3 \text { (Tillyard 1936) } \\ & 5 \text { - holotype } \end{aligned}$	4 (Tillyard 1936), holotype	3-5
Forceps		3 segmented (Tillyard 1936)	3 segmented (Tillyard 1936)	3 segmented
Female Imago				
head colour	$\begin{aligned} & \text { dark chestnut brown (Ulmer } \\ & \text { 1919) } \end{aligned}$			brown to black
thorax colour	dark chestnut brown (Ulmer 1919)			pronotum brown to black, mesonotum shiny brown to black

Table 4 cont'd.

	N. (A) fusca	N. (A) delicatula	K. brunnea	Nousia sp. "AV1"
abdomen	reddish brown to brown black with darker markings (Ulmer 1919)			same as male imago
body length		larger than male (Tillyard 1936, Scholes 1961)		length 6.1-9.0 (7.6土0.74, 62), larger than male
forewing genera: colour	shiny and iridescent, colourless or weakly grey (Ulmer 1919)			membrane hyaline, pterostigmal region slightly opaque, longitudinal and crossveins brown, anal veins yellow
forewing main colour	veins are pitch black against a white background, under transmitted light they appear dark brown (Ulimer 1919)			longitudinal and crossveins brown, anal veins yellow
forewing crossveins		$\begin{aligned} & \text { more than male (Tillyard } \\ & \text { 1936) } \end{aligned}$		more than male
costal space crossveins prox	3 tinclear (Uimer 1919)			3-8
costal space - crossveins -distal	$\begin{aligned} & \hline 2 \text { unclear, } 9 \text { clear (Ulmer } \\ & \text { 1919) } \end{aligned}$			10-16
sternum nine	very deeply indented, bisected (Ulmer 1919)	apparently strongly projecting, slightly truncate at tip at hollowed out (Tillyard 1936)		deeply cleft
Subimagos				
body colour		dull greyish black (Tillyard 1936, Scholes 1961)		dull greyish black

Table 5. Discrepancies between the literature descriptions and type measurements of the imago and subimago stages of the species Nousia (Australonousia) fusca, Nousia (Australonousia) delicatula, Koorrnonga brunnea, and Nousia sp. "AV1".

	N. (A) fusca	N. (A) delicatula	K. brunnea	Nousia sp. "AV1"
Male Imago				
body length	almost 6 (Ulmer 1919) 6.3 - lectotype	$\begin{aligned} & 5 \text { (Tillyard 1936, Scholes } \\ & 1961 \text {) } \\ & 5.5 \text {-holotype } \end{aligned}$	```6 (Tillyard 1936, Scholes 1961) 6.8-holotype 6.5 - paratype```	5.8-9.0 (7.3土0.68, 58)
forewing length	6-6.5 (Ulmer 1919) 6.7 - lectotype 6.2 - paralectotype	$\begin{aligned} & 6 \text { (Tillyard 1936, Scholes } \\ & 1961 \text {) } \\ & 6.3 \text {-holotype } \end{aligned}$	$\begin{aligned} & 6 \text { (Tillyard 1936, (Scholes } \\ & 1961 \text {) } \\ & 6.6 \text { - holotype } \\ & 6.8 \text { - paratype } \\ & \hline \end{aligned}$	6.0-8.6 (7.2土0.59, 59)
hindwing length	1.0-lectotype, paralectotype	1.1 (Tillyard 1936) 1.0 (Scholes 1961) 1.2 - holotype	1.1 (Tillyard 1936) 1.2 (Scholes 1961) 1.3 - holotype, paratype	1.01-1.71 (1.29 $\pm 0.13,56)$
general body colour		blackish (Tillyard 1936)	brown (Tillyard 1936)	variable, from tan brown to dark brown to black
head colour	grey-brown (Ulmer 1919)	black (Tillyard 1936, Scholes 1961)	dark brown (Tillyard 1936, Scholes 1961)	brown to black
antennae colour		$\begin{aligned} & \text { dark brown (Tillyard 1936, } \\ & \text { Scholes 1961) } \end{aligned}$	pale (Tillyard 1936) paler than head (Scholes 1961)	tan to dark brown
eye colour upper	reddish-grey (Uimer 1919) tan-brown - lectotype orange - paralectotype		```pinkish brown (Tillyard 1936) paler than head (Scholes 1961)```	pink to red to tan brown
eye colour lower	blackish (Ulmer 1919) grey-black - lectotype, black - paralectotype		dark grey (Tillyard 1936) paler than head (Scholes 1961)	grey to black

Table 5 cont'd.

	N. (A) fusca	N. (A) delicatula	K. brunnea	Nousia sp. "AV1"
thorax colour	deep dark brown on top and dark brown below (Ulmer 1916, Ulmer 1919)	black (Tillyard 1936) blwk and shiny (Scholes 1961)	dark brown above, darker markings (Tillyard 1936) dark brown to blackish (Scholes 1961)	pronotum brown to black, mesonotum shiny brown to black
leg colour	middle and hind legs light brownish yellow, thigh (femora) apices darker (Ulimer 1919),	dark brown, femora and tibia apices blackish (Tillyard 1936) dark brown with blackish markings (Scholes 1961)	medium brown, apices darker (Tillyard 1936) medium brown with blackish markings (Scholes 1961)	golden to tan, medium or dark brown, femora apices darker.
foreleg length		$\begin{aligned} & 5 \text { (Tillyard 1936, Scholes } \\ & 1961 \text {) } \end{aligned}$	$\begin{aligned} & \text { 5 (Tillyard 1936, Scholes } \\ & \text { 1961) } \\ & \hline \end{aligned}$	5.8-8.9 (7.3土0.94, 37$)$
costa! crossvigns proximal	4 faint (Ulmer 1916) $4-5$ very unclear (Uimer 1919) 0 (Ulmer 1919) faint - lectotype 0 - paralectotype	a few pale semi-transparent crossveins, sometimes incomplete (Tillyard 1936) 3 faint - holotype	absent (Tillyard 1936) 0 - holotype, paratype	0-5 faint
subcostal proximal	0 (Ulmer 1919), lectotype, paralectotype	```2 faint (Tillyard 1936) 3 faint - holotype```	absent (Tillyard 1936) 0 - holotype, paratype	0-5 faint
builae	$3 \mathrm{Sc}, \mathrm{R}_{2}, \mathrm{R}_{4+5}$ - lectotype	$\begin{aligned} & 2 \text { on } \mathrm{Sc} \text { and } \mathrm{R}_{2} \text { (Tillyard } \\ & \text { 1936) } \end{aligned}$	2 on Sc and R_{2} from (Tillyard 1936)	3 on Sc, R2, R4+5
abdomen colour	yellow to grey-brown with grey brown stripe, pattern variable (Ulmer 1916) yellow with grey-brown to dark brown markings (Ulmer 1919)	grey-black with a pattern of greyish markings (Tillyard 1936) grey-black with greyish markings on the middle segments (Scholes 1961)	pale to medium to dark brown with darker markings (Tillyard 1936) dark brown tending blackish towards the last segments (Scholes 1961)	tan to dark brown to black with goiden markings on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking anteriorly, pattern highly variable

Table 5 cont'd.

	N. (A) fusca	N. (A) delicatula	K. brunnea	Nousia sp. "AV1"
tail fitament length	approx 12 (Ulmer 1919)	subequai, 9 mm (Tillyard 1936) subequal, 8-i0 mm (Scholes 1961)	equal length, $10-11 \mathrm{~mm}$ (Tillyard 1936, Scholes 1961)	terminal filament longer than cerci
tail filament colour	whitish with black bands least at the base (Ulmer 1919)	grey, segments ringed apically with black (Tillyard 1936, Scholes 1961)	pale buff, slightly darker at bases (Tillyard 1936) dark brown (Scholes 1961)	golden to brown

There are many similarities between the four species according to Table 4. They are all, for example, reasonably small darkly coloured species. The measurements of body length, fore and hindwing length, leg length, caudal filament length all conform reasonably well. There are some variations but most of the individual measurements for the type specimens and literature descriptions fall within (or just outside) the range of the measurements taken for Nousia sp. "AV1" (the newly described Nousia (Australonousia) fusca), which appears to be a highly variable species by all accounts.

Variations between the four "species" refer to colour descriptions such as those for the body, head, antennae, eyes, thorax, leg, abdomen and caudal filaments (Table 5). However, large numbers of Nousia sp. "AV1" examined show the species to be highly variable ranging in colour from yellow through to tan, brown, dark brown and black and possibly refers to their temperature of development. I propose that the apparent colour variation is an artefact of the subjectivity of describing colour but that these individuals represent morphological variants of the same species.

One discrepancy which is quite clear in Table 5 is the number of bullae on the forewing. Tillyard (1936) claims there are only two builae on the forewing of the male imago of brunnea and delicatula which are located at Sc and Rs. I have examined both types and have found there are definitely three as mentioned in my description.

Tillyard (1936) and Scholes (1961) also suggest that the "tail filaments" of these species are subequal in length. The caudal filaments are missing from all the types and although many of the filaments on the specimens of Nousia sp. "AV1" are damaged there were enough specimens to establish that the caudal filaments were in fact slightly longer than the cerci. It is quite possible that the slight difference in length could have been inaccurately recorded as "subequal" in length.

The question of the number of crossveins in the proximal half of the forewing also appears to be an issue. The drawing of the three forewings are misleading taken at face value. The forewing of Atalophlebia delicatula (Tillyard 1936, FIG. 23, p. 47, reproduced here as Fig. 92) cleariy shows crossveins in the proximal half of the costal and subcostal spaces while the forewing of Atalophlebia fusca (Ulmer 1916; FIG. 7b, p.8, labelied Thraulus dentatus n. sp., reproduced here as Fig. 93) and Atalophlebia brunnea (Tillyard 1936, FIG. 21, p. 43, reproduced here as Fig. 94) do not. This is a very effective character for discrimination at the genus level and apparentiy incongruous. However, Ulmer (1919) writes of proximal A. fusca crossyifign in the costal space "...von der Bulla 4 bis 5 sehr undeutliche Queradern" (p.21) (".. in front of the bulla 4 or 5 very unclear crossveins..") indicating that they are apparent but very faint. Tillyard, too, comments on
the A. delicatula crossveins "..at first sight there are apparently no veinlets in the costal or subcostal spaces until the region of the pterostigma, but, under careful lighting, a few pale, semi-transparent veinjets can be made out" (Tillyard, 1936, p. 48). Uimer (1916) apparently chooses not to draw in the faint A. fusca crossveins while Tillyard (1936) draws the A. delicatula crossveins in boldy giving the false impression of solid presence whereas, in fact, they are quite faint. Comparison with the newly described Nousia (Australonousia) fusca (Nousia sp. "AV1") reveals that the crossveins are often absent (as in A. brunnea), or if present very faint, from the proximal halves of the male forewing leading to the conclusion that both authors are correct in their assessment.

Apart from Nousia sp. "AV1" (Dean 1999) there have been numerous other descriptions of this species (mostly the nymphs) in various voucher collections. It is also variously known as Nousia MDFRC "sp. 1", MMBW "sp. 1" (Melbourne Metropolitan Board of Works), MV "sp. 3", Atalonella "sp. 1", Atalonella "sp. D" and Nousia "sp. 1" (MRHI). The number of names probably reflects confusion surrounding the species status of the large number of morphologically variant individuals.

Finally, I am aware that the validation of the species would be better aided by the presence of a specimen from the type locality. However, the type locality of Atalophlebia fusca (Cedar Creek, Ulmer 1916) is somewhat ambiguous. There are 37 Cedar Creeks of Queensland listed in the current gazetteer ranging throughout the state of Queensland. Campbell and Peters (1993) tried to locate this site whilst collecting species of Atalomicria. It is reasonable to assume that this is the same site as both taxa were collected on the Mjöberg expedition of 1910-1913. Campbell and Peters (1993) focussed their search on the Atherton Tablelands where Ulmer had collected from before in the same expedition but failed to find an appropriately named stream. Although specimens of Nousia (Australonousia) fusca have been collected in south east Queensland (as Nousia sp. "AV1") a comprehensive survey of this genus in Queensland would be required to determine if the species range extends to the Atherton tablelands. Such a survey, which would cover 1.7 million square km , was beyond the scope of this project.

Nousia (Australonousia) fusca can be distinguished from all other species in the subgenus by the following combination of characters. In the imago: (i) male upper eye size large, sometimes contiguous; (ii) thorax often shiny brown to black; (iii) total foreleg length comparatively longer on average; (iv) leg banding absent; (v) hindwing costa joins subcosta at three-quarters wing length; (vi) abdomen colour variable but often with light coloured markings on each segment forming a broken stripe midline, two light coloured maculae flanking each midline marking; (vii) penes with subapical lobes; (viii) female sternum nine deeply cleft. In the nymph: (i) antennal length more than twice length of
head; (ii) lateral margins of clypeus slightly diverging towards anterior; (iii) labrum subequal to very slightly wider than clypeus, about twice as long as wide, lateral margins rounded; antero-median emargination straight or very slight bearing five flat elongate denticles, denticles extend one-third the width of the labrum on average; frontal setae arranged as a narrow band, secondary hair fringe clearly separated from frontal band; (iv) mandibles with no subapical processes on incisors, outer incisors inconspicuously serrated on inner lateral margins, right mandible inner incisor inconspicuously serrated on outer lateral margin; left mandible prostheca robust, moderately serrated; right mandible prostheca simple, slender; (v) maxillae with 11-18 subpectinate setae; (vi) hypopharynx deeply cleft, superlingua with rounded lateral margins; (vii) leg banding absent (viii) fore femora 2.9 times longer than wide; fore tarsi with 5-10 ventral spines; fore tarsal claws with 10-16 ventral teeth; (ix) abdomen colour variable but often with light coloured markings on each segment forming a broken stripe midline, two light coloured maculae flanking each midline marking; (x) gills clear, slender, tapering to a thin point apically, tracheae poorly to strongly dieveloped.

Specimens examined.

Atalonella delicatula TASMANIA. Meander River, Westwood, 60010900, 09। 1960, 1 $o^{\circ} \mathrm{I}, 1$ I 1,1 \& S . Scholes. Held at the ANIC.

Nousia sp. "AV1" collection. NEW SOUTH WALES. Barrengary Creek, Upper River Rd to Upper Kangaroo Valley, 84102801, $28 \times 1984,70 \mathrm{~m}, 150^{\circ} 31^{\prime} 34^{\circ} 43^{\prime}$, EPH 1683,3 $o^{\circ} \mathrm{N}, 16$ \& $\mathrm{N}(\mathrm{DC})$. Betts Creek, Summit Rd, 97120202, 02 XII 1997' $4740 \mathrm{~m}, 148^{\circ} 23^{\prime}$ $36^{\circ} 22^{\prime}, 2$ o $^{\circ} \mathrm{N}, 2$ 9 N (KJF). Boonoo Boonoo River, Lindsay Highway Bridge, 84111000, $10 \mathrm{XI} 1984,960 \mathrm{~m}, 152^{\circ} 05^{\prime} 28^{\circ} 53^{\prime}, \mathrm{EPH} 1677,8$ i $\mathrm{N}(\mathrm{DC})$. Brogo River, Princes Highway Bridge, 81052201, 22 V 1981, $80 \mathrm{~m}, 149^{\circ} 49^{\prime} 36^{\circ} 32^{\prime}$, EPH 1668, 3 \& N (JD). Brogo River, 5 km downstream Princes Highway Bridge, 81052201, 22 V 1981, $40 \mathrm{~m}, 149^{\circ} 49^{\prime} 36^{\circ} 34^{\prime}$, EPH 1684, $2 \sigma^{\circ} \mathrm{N}, 6$ 오 $\mathrm{N}(\mathrm{JD})$. Eucumbene River, KiandraAdaminaby Rd, 9712 0104, 01 XII 1997, 1340m, $148^{\circ} 31^{\prime} 35^{\circ} 53^{\prime}, 1$ i N (KJF). Georges River, 5 km S of Cambelltown, $84102802,28 \times 1984,100 \mathrm{~m}, 150^{\circ} 48^{\prime} 34^{\circ} 06^{\prime}$, EPH 1674, 1 i N (DC). Murray River tributary, Tom Groggin Picnic Area, 80102400, 24×1980, $490 \mathrm{~m}, 148^{\circ} 08^{\prime} 36^{\circ} 21^{\prime}$, EPH 1649, 2 of $\mathrm{N}, 1$ ㅇ N (DC). No. 1 Creek, upstream Alpine Way, 84012301, 23 I 1984, 1400m, $148^{\circ} 23^{\prime} 36^{\circ} 26^{\prime}$, EPH 168i, 2 of $N, 3$ o $N(J D)$. Perisher Creek, Smiggin Holes-Guthega Rd, 97120203, 02 XII 1997, 1520m, $148^{\circ} 25^{\prime}$ $36^{\circ} 22^{\prime}, 1 \%$ NSI (KJF). Swampy Plains River, Alpine Way, Kosciusko National Park, 97120206, 2 XII 1997, 420m, $148^{\circ} 12^{\prime} 36^{\circ} 23^{\prime}, 1$ of S, 1 of $\mathrm{N}, 1$ \& NSI, 1 if NS, 1 i S, 1 if N(KJF). Thredbo River, Bullocks Nature Track, 84012302, 23 । 1984, $1140 \mathrm{~m}, 148^{\circ} 35^{\prime}$
$36^{\circ} 26^{\prime}$, EPH 1667, 2 o $\mathrm{N}, 3$ \& $\mathrm{N}(\mathrm{JD})$. Thredbo River, Thredbo Golf Course, 84012502, 25 I 1984, $1380 \mathrm{~m}, 148^{\circ} 18^{\prime} 36^{\circ} 30^{\prime}$, EPH 1682, 8 of $\mathrm{N}, 7$ $\circ \mathrm{N}$ (JD). Thredbo River, Thredbo-Khancoban Rd, 97120204, 02 XII 1997, 1560m, 148º $17^{\prime} 36^{\circ} 31^{\prime}, 3 \circ \mathrm{~N}$ (KJF). Wentworth Falls, Blue Mountains, $88101900,19 \times 1988,800 \mathrm{~m} 150^{\circ} 22^{\prime} 33^{\circ} 43^{\prime}$, EPH 1669, 4 \& $\mathrm{N}(\mathrm{DC})$. Wentworth Falls, 150 m upstream Fails, Blue Mountains, 84111200, $12 \mathrm{XI} 1984,800 \mathrm{~m} 150^{\circ} 22^{\prime} 33^{\circ} 43^{\prime}$, EPH 1680,1 of $\mathrm{N}, 2$ of $\mathrm{N}(\mathrm{DC})$. TASMANIA. Break O'Day River, East of Fingal, 95011000, $10 \mathrm{II} 1995,240 \mathrm{~m}, 148^{\circ} 03^{\prime} 41^{\circ} 36^{\prime}$, EPH 0182, 1 \% N (PS\&PG). Clyde River, Hamilton, 96121901, 19 XII 1996, 90m, $146^{\circ} 49^{\prime} 49^{\prime \prime} 42^{\circ} 33^{\prime} 30^{\prime \prime}$,
 Lyell Highway, 96121903,19 XII 1996, 200m, $146^{\circ} 38^{\prime} 13^{\prime \prime} 42^{\circ} 45^{\prime} 51^{\prime \prime}, 1$ o $^{\circ} \mathrm{I}, 5$ of $\mathrm{S}, 1 \% \mathrm{~S}$ (KJF). Don River, B14 crossing, 96123004, 30 XII 1996, 120m, $146^{\circ} 19^{\prime} 00^{\prime \prime} 41^{\circ} 17^{\prime} 04^{\prime \prime}, 1$ $\sigma^{\circ} 1,1$ ㅇ $\mathrm{N}(\mathrm{KJF})$. Echo Point, unnamed stream flowing into Lake St. Clair, Cradle Mountain-Lake St Clair National Park, 96122702, 27 XII 1996, $740 \mathrm{~m}, 146^{\circ} 08^{\prime} 13^{\prime \prime}$ $42^{\circ} 02^{\prime} 37^{\prime \prime}, 1$ ㅇ NSI (KJF). Elizabeth River, Campbelltown, 96122202, 22 XII 1996, 190m, $147^{\circ} 29^{\prime} 18^{\prime \prime} 41^{\circ} 56^{\prime} 01^{\prime}, 1$ o $N(K J F)$. Huon River, locality 27, 82030702, 7 III 1982, EPH 0154, $2 \circ^{\circ} \mathrm{N}, 2$ of (DC). Lake River, Bridge on Highway C522, 96121702, 17 XII 1996, 160m, $145^{\circ} 05^{\prime} 44^{\prime \prime} 41^{\circ} 47^{\prime} 02^{\prime}, 1$ ¢ 1,1 ㅇ $\mathrm{N}(\mathrm{KJF})$. Lake Sorrell, Interlaken Boat Ramp, $88110402,4 \mathrm{Xl} 1988,900 \mathrm{~m}, 147^{\circ} 10^{\prime} 42^{\circ} 11^{\prime}$, EPH 0158, 2 o $^{\prime} \mathrm{N}$ (DC). Liffey Falls, 82022301, 23 II 1982, $470 \mathrm{~m}, 145^{\circ} 47^{\prime} 41^{\circ} 41^{\prime}$, EPH 0143, 1 i $\mathrm{N}(\mathrm{DC})$. Little Forester River, 94030601, 6 III 1994, $100 \mathrm{~m}, 147^{\circ} 21^{\prime} 41^{\circ} 11^{\prime}$, EPH 0217, 1 \& $N(P S)$. Pipers Brook, 94030602, 6 III 1994, $147^{\circ} 10^{\prime} 41^{\circ} 09^{\prime}$, EPH 0241, 1 o $^{\circ} \mathrm{N}, 1$ \& N(PS). Powers Rivulet, 94030703, 7 III 1994, 100 m, 148 ${ }^{\circ} 05^{\prime} 41^{\circ} 19^{\prime}$, EPH 0227, 1 ơ N (PS\&MS).
Ringarooma River, Pioneer, 95020909, 9 il 1995, $147^{\circ} 57^{\prime} 41^{\circ} 05^{\prime}$, EPH 0210, 1 \& N (PS\&PG). Scamander River, Upper Scamander, 82030900, 9 III 1982, 20m, $148^{\circ} 11^{\prime}$ $41^{\circ} 26^{\prime}$, EPH 0146, 5 o $^{\circ} \mathrm{N}, 6$ of $\mathrm{N}(\mathrm{DC})$. Shannon River, Waddamana Rd, 96121704, 17 XII 1996, $910 \mathrm{~m}, 146^{\circ} 45^{\prime} 39^{\prime \prime} 42^{\circ} 03^{\prime} 04^{\prime}, 1$ \& N (KJF). St Patricks River, Targa, 82031002, 10 III 1982, 380m, $146^{\circ} 21^{\prime} 41^{\circ} 18^{\prime}$, EPH 0120, 1 o N (DC). Tower Rivulet, Rossarden Rd, Pepper Hill, 94092700, 27 IX 1994, 260m, $147^{\circ} 52^{\prime} 41^{\circ} 37^{\prime}$, EPH 1673, 3 if N (MRHI). Unnamed Creek, E of Waratah, $88110100,1 \mathrm{XI} 1988,600 \mathrm{~m}, 145^{\circ} 32^{\prime}$ $41^{\circ} 26^{\prime}$, EPH 0167, $2 \circ^{\circ} \mathrm{N}, 2 \circ \mathrm{~N}(\mathrm{DC})$. QUEENSLAND. Blackfellows Falls, Springbrook, Warrie National Park, 79120601,6 XII 1979, $770 \mathrm{~m}, 153^{\circ} 16^{\prime} 28^{\circ} 13^{\prime}$, EPH 1691, 1 or (DC). Branch Creek, Conondale Ranges, 97061100,11 VI 1997, 160m, $152^{\circ} 43^{\prime} 26^{\circ} 53^{\prime}$, EPH 1688 , 1 i $\mathrm{N}(\mathrm{JJ})$. Stony Creek lower, Conondale Ranges, 97082600, 26 XIII 1997, $140 \mathrm{~m}, 152^{\circ} 41^{\prime} 26^{\circ} 51^{\prime}$, EPH 1685, 3 \& $N(J D)$. Yabba Creek tributary, Brooloo-Imbil Rd, 84110800,8 XI 1984, 100m, $152^{\circ} 40^{\prime} 26^{\circ} 29^{\prime}$, EPH 1687, 2 o $^{\circ}$ N, 3 \& N (DC). VICTORIA. Acheron River, Granton Rd, 98020101, 1 II 1998, 390m, $145^{\circ} 41^{\prime} 27^{\prime \prime} 36^{\circ} 34^{\prime} 42^{\prime}, 1 \sigma^{*} \mathrm{~N}, 1$ ㅇ NSI, 2 \& SI (KJF); 98021505, 15 Ill 1998, same iocality
data, 3 of $\mathrm{N}, 3$ 9 NSI (KJF). Agnes River, Agnes Falls, 99021104,11 II 1999, 150m, $146^{\circ} 22^{\prime} 10^{\prime \prime} 38^{\circ} 38^{\prime} 37^{\prime}, 1$ of $\mathrm{N}, 1 \not \& \mathrm{~N}(\mathrm{KJF})$. Arkins Creek west branch, weir at Wyelangta, 99121903, 19 XII 1999, 330m, $143^{\circ} 26^{\prime} 24^{\prime \prime} 38^{\circ} 39^{\prime} 00^{\prime \prime}, 2$ o NSI, $^{\prime}$ ㅇ NSI, 1 ㅇ NS, 1 \& N (KJF). Aura Vale Lake inlet stream, Cardinia, 76111200, 12 XI 1976, 175m, 145 ${ }^{\circ} 23^{\prime} 14^{\prime \prime} 37^{\circ} 56^{\prime} 25^{\prime}$, EPH 1620, 1 o $\mathrm{NI}, 1$ \& NI (JD); 980220601, 26 II 1998, same
 Badger Creek, junction Badger Creek Rd \& Bluegum Drive, 97040602, 6 IV 1997, 130m, $145^{\circ} 32^{\prime} 11^{\prime \prime} 37^{\circ} 41^{\prime} 02^{\prime \prime}, 1$ ㅇ NSI, 2 ㅇ NS (KJF). Badger Creek, Dalry Rd, 76032500, 25 III 1976, $90 \mathrm{~m}, 145^{\circ} 31^{\prime \prime} 37^{\circ} 41^{\prime}$, EPH 1626, 2 o $^{\circ} \mathrm{NSI}$ (JD); EPH 1557, 1 o $^{\circ} \mathrm{NI}$ (JD). Badger Creek downstream weir, $80010800,8 / 1980,280 \mathrm{~m}, 145^{\circ} 34^{\prime} 37^{\circ} 41^{\prime}$, EPH 1631, 1 of NSI (JD); 80020700, 7 II 1980, same locality data, EPH 1627, 2 o NI (JD); 80022102, 21 II 1980, same locality data, EPH 1630, 1 \& NSI (JD); 80032001, 20 III 1980, same locality data, EPH 1628, $1 \sigma^{\pi} \mathrm{NI}$ (JD). Barneys Creek, Grampians, 83120200,2 XII 1983, 300m, $142^{\circ} 32^{\prime} 37^{\circ} 13^{\prime}$ EPH 1635, 1 of $N(J D)$; EPH 1636, 1 of $N(J D)$ EPH 1637, 1 \& $N(J D)$; EPH 1638, 4 o N, 4 \& $\mathrm{N}(\mathrm{JD})$. Bellbrook Creek, Midland Highway, Yinnar South, 99030402, 4 III 1999, 100m, $146^{\circ} 18^{\prime} 37^{\prime \prime} 38^{\circ} 22^{\prime} 03^{\prime \prime}, 2$ of $\mathrm{N}, 7$ क N (KJF). Bemm River, Club-Terrace-Goolengook Rd, 81032100, 21 III 1981, $100 \mathrm{~m}, 148^{\circ} 54^{\prime} 37^{\circ} 34^{\prime}$, EPH 1654, 1o N, 1 甲 N (JD). Big River, Jamieson-Eildon Rd, 98021503 , 15 \| 1998, 300m, $146^{\circ} 03^{\prime} 12^{\prime \prime} 37^{\circ} 22^{\prime} 03^{\prime \prime}, 1$ of NSI (KJF). Black Snake Creek, Dyers Creek Picnic Ground, Gembrook South, 97012902, 29 I 1997, 115m, $145^{\circ} 40^{\prime} 08^{\prime \prime} 37^{\circ} 56^{\prime} 55^{\prime \prime}, 1$ \& NSI, 1 \& NS (KJF). Bonang River, Bonang Rd, N of Bonang, 99021308, 13 II 1999, 640m, 148 ${ }^{\circ} 43^{\prime}$ $37^{\circ} 09^{\prime}, 2$ o $^{\circ} \mathrm{N}(\mathrm{KJF})$. Brandy Creek, Great Alpine Rd, Alpine National Park, 96111802, 18 XI 1996, $1560 \mathrm{~m}, 147^{\circ} 11^{\prime} 22^{\prime \prime} 37^{\circ} 00^{\prime} 55^{\prime \prime}, 3$ \& $\mathrm{N}(\mathrm{KJF}) ; 96111902,19 \mathrm{XI}$ 1996, same locality data, 4 ¢ $\mathrm{NSI}, 1$ \& Sl, 1 \& I, 4 ơ N, 8 \& N (KJF); 97011902, 19 | 1997, same locality data, 1 o SI, 1 \& NSI (KJF). Buckland River, Mt Buffalo Rd,96110701, 07 XI 1996, 280m, $146^{\circ} 53^{\prime} 32^{\prime \prime} 36^{\circ} 41^{\prime} 52^{\prime \prime}, 1$ 1 N(KJF). Butchers Creek, Gelantipy Rd, S of Gelaptipy, 99021407, 14 II 1999, 640m, $148^{\circ} 15^{\prime} 37^{\circ} 13^{\prime}, 1 \circ \mathrm{~N}(\mathrm{KJF})$. Cann River east branch, W.B. Line Track, Coopracambra National Park, 98012503, 251 1998, 230m, $149^{\circ} 12^{\prime} 16^{\prime \prime} 37^{\circ} 20^{\prime} 48^{\prime \prime}$, 1 \& N (KJF). Cann River west branch, Buldah Rd, 98012504, 25 | 1998, 320m, $149^{\circ} 08^{\prime} 43^{\prime \prime} 37^{\circ} 17^{\prime} 59^{\prime \prime}, 2$ o $\mathrm{N}, 1$ \& NSI, 2 \& $\mathrm{N}(\mathrm{KJF})$. Cardinia Creek, Crystal Brook Park, 98022602, 26 || 1998, 80m, $145^{\circ} 23^{\prime} 23^{\prime \prime} 37^{\circ} 58^{\prime} 21^{\prime \prime}, 2$ \& NSI, 1 \& 1 (KJF). Carisbrook Creek, Great Ocean Rd, 97030203, 02 III 1997, $10 \mathrm{~m}, 143^{\circ} 48^{\prime} 27^{\prime \prime}$ $38^{\circ} 41^{\prime} 27^{\prime \prime}: 1$ \& I, $5 \&$ S, 1 o $^{\circ} \mathrm{N}, 1$ \& $\mathrm{N}(\mathrm{KJF})$; 99121901 , 19 XII 1999, same locality data, 2
 Rd, 76042301, 23 IV 1976, 670m, 145 ${ }^{\circ} 42^{\prime 2} 20^{\prime \prime} 37^{\circ} 42^{\prime} 48^{\prime \prime}$, EPH 1619, 1 \& NS (JD); 980305033, 5 III 1998, same locality data, 1 \& N (KJF). Charleys Creek, Charleys Creek Rd, outside Gellibrand, 98010304, 0311998, 80m, $143^{\circ} 31^{\prime} 30^{\prime \prime} 38^{\circ} 32^{\prime} 30^{\prime \prime}, 4$ \& NSI, $1 \delta^{\circ}$

N, 4 i N (KJF). Charleys Creek, Gellibrand Rd, 99121904, 19 XlI 1999, $70 \mathrm{~m}, 143^{\circ} 31^{\prime \prime}$ $38^{\circ} 31^{\prime}, 7$ ㅇ NSI, 1 of $\mathrm{NI}, 1$ \& SI, 1 \& NS, 4 ㅇ N (KJF). Cobungra River, 4WD track across Horsehair Plain, 97110803, $08 \mathrm{XI} 1997,1000 \mathrm{~m}, 147^{\circ} 19^{\prime} 33^{\prime \prime} 37^{\circ} 01^{\prime} 32^{\prime \prime}, 1$ \& N , (immature) (KJF). Cockatoo Creek, upstream Cockatoo, 94120100, 1 XII 1994, 170m, $145^{\circ} 29^{\prime} 37^{\circ} 55^{\prime}$, EPH 1671,1 \& N (MRHI); EPH 1672, 1 of $\mathrm{N}, 3$ \& N (MRHI).
Combienbar River, Budlah Track, 98012506, 251 1998, $270 \mathrm{~m}, 149^{\circ} 02^{\prime} 02^{\prime \prime} 37^{\circ} 20^{\prime} 58^{\prime \prime}, 2$ σ° NSI, 1 o N, 3 \& $N(K J F)$. Coranderrk Creek, Badger Weir Rd, 97040606, 6 IV 1997. $240 \mathrm{~m}, 145^{\circ} 34^{\prime} 16^{\prime \prime} 37^{\circ} 41^{\prime} 07^{\prime \prime}, 1$ \& NS (KJF); 98030502, 5 III 1998, same locality data, 1 σ° NS, 1 of N, 4 i $\mathrm{N}(\mathrm{KJF})$. Crystal Brook, Mount Buffalo Rd, 96110704, 07 XI 1996, 1330m, $146^{\circ} 48^{\prime} 15^{\prime \prime} 36^{\circ} 43^{\prime} 22^{\prime \prime}, 1 \circ^{\circ} \mathrm{S}, 1$ o $^{\circ} \mathrm{N}, 4 \neq \mathrm{N}$ (KJF). Dairy Creek, Grampians Tourist Rd, 90122600, 26 Xil 1990, 290m, $142^{\circ} 32^{\prime} 30^{\prime \prime} 37^{\circ} 11^{\prime} 38^{\prime \prime}$, EPH 1653, 1 of N, 3 우 N (DC); 99011601, 161 1999, same locality data, 1 q $\mathrm{NSI}, 2$ o $\mathrm{N}, 10 \% \mathrm{~N}$ (KJF). Deddick River, Deddick River Rd, Tubbut, 99021403, 14 II 1999, 440m, $148^{\circ} 36^{\prime} 37^{\circ} 04^{\prime}$, 2 \% N (KJF). Deep Creek, Benambra-Corryong Rd, 11kms N of Uplands, 99021501, 15 II 1999, 620m, $147^{\circ} 42^{\prime} 36^{\circ} 49^{\prime}, 2 \delta^{\circ} \mathrm{N}, 7$ 7 N (KJF). Deep Spring, Wombat State Forest, 97122003, 20 XII 1997, 480m, 14404'20" $37^{\circ} 21^{\circ} 07^{\prime \prime}, 1$ d NS, 2 o NSI (KJF); 98110103, 1 XI 1998, same locality data, 1 on NSI, 1 \& N (KJF). Delatite River, 5m upstream Merrijig, 81052101, 21 IV 1981, 540m, $146^{\circ} 20^{\prime} 37^{\circ} 06^{\prime}$, EPH 1661, 1 of $N(J D)$. Delegate River, Monaro Highway, 99021401, 14 II 1999, $800 \mathrm{~m}, 148^{\circ} 48^{\prime} 37^{\circ} 03^{\prime}, 5$ o $^{\prime} \mathrm{N}, 9$ \& N (KJF). Diggers Creek, Island Bend on Summit Rd, Kosciusko National Park, 97120201, 02 XII 1997, 1200m, $148^{\circ} 29^{\prime} 36^{\circ} 19^{\prime}, 1$ d $^{\prime \prime} \mathrm{NSI}$ (KJF). Donnelly Creek, Donnelly Weir Rd, 97040604, 6 IV 1997, $140 \mathrm{~m}, 145^{\circ} 32^{\prime} 03^{\prime \prime} 37^{\circ} 37^{\prime} 40^{\prime \prime}, 1 \circ \mathrm{~N}(\mathrm{KJF})$. Erskine River, Erskine Falis, 98010401,04 I 1998, $200 \mathrm{~m}, 143^{\circ} 54^{\prime} 48^{\prime \prime} 38^{\circ} 30^{\prime} 30^{\prime \prime}, 1 \sigma^{\circ} \mathrm{NSI}, 6 \not \approx \mathrm{NSI}, 1$ o $\mathrm{NS}, 1$ \& N (KJF). Eurobin River, Mt Buffalo National Park, 96110702, 7 XI 1996, 440m, $146^{\circ} 50^{\prime} 29^{\prime \prime} 36^{\circ} 43^{\prime} 10^{\prime \prime}, 1$ o $^{\prime \prime} \mathrm{N}(\mathrm{KJF})$. Ferny Glade, Seaters Cove Walk, Wilson's Promontory National Park, 97021503, 15 II 1997, 340m, 146 ${ }^{\circ} 23^{\prime} 21^{\prime \prime} 39^{\circ} 01^{\prime} 40^{\prime \prime}, 1$ o 1 i, 2 क NSI (KJF). Four Mile Creek, Horners Rd, Warburton, 97042501, 25 IV 1997, 185m, $145^{\circ} 41^{\prime} 56^{\prime \prime} 37^{\circ} 45^{\prime} 33^{\prime \prime}, 1$ o $^{\prime \prime} \mathrm{N}, 1$ \& N (KJF). Franklin River, South Gippsland Highway,
 Frosty Creek, Frosty Creek Rd, 96110803,08 XI 1996, $1380 \mathrm{~m}, 147^{\circ} 08^{\prime} 05^{\prime \prime} 37^{\circ} 05^{\prime} 55^{\prime \prime}, 2$ of $\mathrm{N}, 3$ \& N (KJF). Fyans Creek, Grampians Tourist Rd, 99011608, 16। 1999, 290m, $142^{\circ} 32^{\prime} 30^{\prime \prime} 37^{\circ} 12^{\prime} 59^{\prime \prime}, 1$ \& NS, 8 \& $\mathrm{N}(\mathrm{KJF})$. Geilibrand River, Barramunga-Upper Geilibrand Rd, 98010301, $03 / 1998,180 \mathrm{~m}, 143^{\circ} 31^{\prime} 10^{\prime \prime} 38^{\circ} 34^{\prime} 47^{\prime \prime}, 1$ of NSI (KJF). German Creek, Bright-Tawonga Rd, 96110901,9 XI 1996, $440 \mathrm{~m}, 147^{\circ} 03^{\prime} 25^{\prime \prime} 36^{\circ} 43^{\prime} 58^{\prime \prime}$, 5 of $\mathrm{N}, 7$ $\mp \mathrm{N}$ (KJF). Gibbo River, Benambra-Corryong Rd, 99021502, 15 II 1999, 500m, $147^{\circ} 42^{\prime} 36^{\circ} 45^{\prime}, 4$ o $^{\prime} \mathrm{N}, 7$ ㅇ $\mathrm{N}(\mathrm{KJF})$. Goulburn River, junction Flourbag Ck, 17 km upstream Jamieson, 81110100, 1 XI 1981, 360m, 146 ${ }^{\circ} 12^{\prime} 37^{\circ} 23^{\prime}$, EPH 1658, 2 o $\mathrm{N}, 9$ o

N (JD). Goulburn River, Twin Rivers Caravan Park, 99032005, 20 III 1999, 190m, $145^{\circ} 42^{\prime} 33^{\prime \prime} 37^{\circ} 14^{\prime} 28^{\prime \prime}, 1$ ㅇ S, 4 o $^{\prime \prime} \mathrm{N}, 5$ ㅇ N (KJF). Grace Burn, Waliace Pde, Healesville, $97040601,6 \mathrm{IV}$ 1997, $110 \mathrm{~m}, 145^{\circ} 32^{\prime} 18^{\prime \prime} 37^{\circ} 39^{\prime} 16^{\prime \prime}, 1$ \& I (KJF). Grace Burn, downstream weir, $75101600,16 \times 1975,180 \mathrm{~m}, 145^{\circ} 33^{\prime} 37^{\circ} 39^{\prime}$, EPH 1640,2 of $^{\prime} \mathrm{N}$, 3 ㅇ N (JD); 78011900, i9 I 1978, same locality data, EPH 1617, 2 of NS, 2 ㅇ NI, 2 \% NS (JD); $79101700,17 \times 1979$, same locality data, EPH 1561, 1 ㅇ (JD). Grey River, Grey River Rd, 97030101, 01 III 1997, 190m, $143^{\circ} 48^{\prime} 50^{\prime \prime} 38^{\circ} 39^{\prime} 43^{\prime \prime}, 1$ ㅇ I (KJF). Growlers Creek, Williams Rd Camp Site, Wandiligong, 96110801, 8 XI 1996, $380 \mathrm{~m}, 146^{\circ} 59^{\prime} 10^{\prime \prime}$ $36^{\circ} 45^{\prime} 54^{\prime \prime}, 7$ o $^{\circ} \mathrm{N}, 10 \circ \mathrm{~N}$ (KJF). Gulf Stream, downstream Epacris Falls, Mount Victory Rd, $99011603,16 \mathrm{I} 1999,440 \mathrm{~m}, 142^{\circ} 29^{\prime} 36^{\prime \prime} 37^{\circ} 09^{\prime} 00^{\prime \prime}, 1$ \& NSI, 1 \& NS (KJF); 00012201, 221 2000, same locality data, 1 of $\mathrm{NSI}, 3$ ㅇ $\mathrm{NSI}, 1$ \& $\mathrm{NS}, 1$ \& N (KJF). Haunted Stream, Great Alpine Rd, 99021409, 14 \|I 1999, 180m, $147^{\circ} 49^{\prime} 37^{\circ} 28^{\prime}$, 1 ơ N , 2 ㅇ $N(K J F)$. Hensleigh River, Combienbar Rd Ford, 98012505, 25 I 1998, 240m, $149^{\circ} 01^{\prime} 08^{\prime \prime} 37^{\circ} 21^{\prime} 36^{\prime \prime}, 1$ o $\mathrm{NSI}, 3$ o $\mathrm{N}, 1 \circ \mathrm{NSI}, 1 \circ \mathrm{~N}(\mathrm{KJF})$. Hopkins River, Allansford, 80031000, 10 III 1980, 10m, $142^{\circ} 35^{\prime} 38^{\circ} 23^{\prime}$, EPH 1632, 1 \& N (DC); EPH 1633, 1 \& N (DC); EPH 1634, 1 ơ N, 3 ㅇ N (DC). Jacksons Creek, Gisborne, 97102602, 26 X 1997, $410 \mathrm{~m}, 144^{\circ} 35^{\prime} 17^{\prime \prime} 37^{\circ} 29^{\prime} 04^{\prime \prime}$, 1 of NSI, 1 of I, 6 ㅇ NSI (KJF). Jamieson River, Gerran's Bridge, 98021502, 15 || 1998, 320m, $146^{\circ} 10^{\prime} 28^{\prime \prime} 37^{\circ} 17^{\prime} 38^{\prime \prime}, 1$ o NS (KJF). Jimmys Creek, Grampians Tourist Rd, 96101901, 19×1996, 310m, $142^{\circ} 30^{\prime} 18^{\prime \prime} 37^{\circ} 22^{\prime} 29^{\prime \prime}, 1$ o $^{\circ} \mathrm{S}, 1$ of $\mathrm{N}(\mathrm{KJF}) ; 99011607,16$ । 1999, same locality data, 2 o NS, 1 \& N (KJF); 00012203, 22 ! 2000, same locality data, 1 o NSI, 5 \& NSI, 1 of NS, 4 \& N (KJF). Jingalalla River, Dellicknora Rd, 2km SW Dellicknora, 99021402, 14 il 1999, $520 \mathrm{~m}, 148^{\circ} 39^{\prime} 37^{\circ} 07^{\prime}, 4$ of $\mathrm{N}, 1$ \& $\mathrm{I}, 6$ ㅇN(KJF). Kangaroo Creek, Kangaroo Rd, 5 km E Daylesford, 97010901, 9 l 1997, 600m, 144 $13^{\prime} 45^{\prime \prime} 37^{\circ} 21^{\prime} 10^{\prime \prime}, 1$ do NI, 6 of N, 1 i NSI, 1 ㅇ SI, 5 ¢ $\mathrm{N}(\mathrm{KJF})$. Kennett River, Great Ocean Rd, Kennett River, 98010306, 3। 1998, $20 \mathrm{~m}, 143^{\circ} 48^{\prime} 03^{\prime \prime} 38^{\circ} 40^{\prime} 05^{\prime \prime}, 1$ ㅇNSI, 1 ㅇ N (KJF). Kiewa River west branch, Blair's Hut, 97021901, 19 II 1997, 1010m, $147^{\circ} 10^{\prime} 17^{\prime \prime} 37^{\circ} 55^{\prime} 16^{\prime \prime}, 1$ \& N (KJF). King Parrot Creek, Whittlesea-Yea Rd, 15km SW Flowerdale, 98030501, 5 III 1998, 350m, $145^{\circ} 14^{\prime} 48^{\prime \prime} 37^{\circ} 25^{\prime} 50^{\prime \prime}, 2$ o $^{\prime \prime} \mathrm{N}, 1 \circ \mathrm{NSI}$ (KJF). Langford East Aqueduct tributary, Bogong High Plains Rd, Langford Gap, 96111001, 10 XI 1996, $1600 \mathrm{~m}, 147^{\circ} 19^{\prime} 05^{\prime \prime}$ $36^{\circ} 53^{\prime} 05^{\prime \prime}, 1$ \& N (KJF). La Trobe River, 5 km E of Powelltown, $96101002,10 \times 1996$, $320 \mathrm{~m}, 145^{\circ} 50^{\prime} 10^{\prime \prime} 37^{\circ} 52^{\prime} 35^{\prime \prime}, 4$ of $\mathrm{N}, 4 \% \mathrm{~N}(\mathrm{KJF})$. Learmonth Creek, Yarra JunctionNeerim Rd, Powelltown, 96101001, $10 \times 1996,180 \mathrm{~m}, 145^{\circ} 44^{\prime} 33^{\prime \prime} 37^{\circ} 51^{\prime} 43^{\prime \prime}, 1$ of N, 5 क N (KJF). Lerderderg River, Lerderderg Gorge State Park, 97122005, 20 XII 1997, $140 \mathrm{~m}, 144^{\circ} 25^{\prime} 06^{\prime \prime} 37^{\circ} 37^{\prime} 42^{\prime \prime}, 1$ \& NSI, $1 \sigma^{\circ} \mathrm{N}$ (KJF). Light Bound Creek headwaters, Dargo High Plains Rd, 96110804, 08 XI 1996, $1570 \mathrm{~m}, 147^{\circ} 09^{\prime} 30^{\prime \prime} 37^{\circ} 06^{\prime} 23^{\prime \prime}, 8$ or $\mathrm{N}, 29$ 甲 N(KJF). Lilly Pilly Gully, Wilson's Promontory National Park, 97021504, 15 II 1997,
$60 \mathrm{~m}, 146^{\circ} 20^{\prime} 01^{\prime \prime} 39^{\circ} 00^{\prime} 55^{\prime \prime}, 2$ o' $^{\prime \prime} \mathrm{NSI}, 1$ o $^{\circ} \mathrm{NS}, 2$ i NSI (KJF). Little Ada Creek, Ada River Rd, La Trobe State Forest, 96101004, $10 \times 1996,500 \mathrm{~m}, 145^{\circ} 52^{\prime} 07^{\prime \prime} 37^{\circ} 50^{\prime} 45^{\prime \prime}$, 5 ot $^{\prime}$ N (KJF). Little Toorongo River, Toorongo Fatls, 98020901, 9 II 1998, 420m, 14602'55" $37^{\circ} 50^{\prime} 58^{\prime \prime}, 1$ o $^{\circ} \mathrm{N}, 1$ \& N (KJF). Little Yarra River, Warburton Highway, 96092501, 25 IX 1996, 120m, $145^{\circ} 37^{\prime} 41^{\prime \prime} 37^{\circ} 47^{\prime} 03^{\prime \prime}, 2$ i S (KJF). Love Creek, Loves Creek Picnic Ground, Colac-Beech Forrest Rd, 98010303, 3 I 1998, 100m, $143^{\circ} 34^{\prime} 52^{\prime \prime} 38^{\circ} 28^{\prime} 55^{\prime \prime}, 1$ o $^{\circ}$
 Dandenong Ranges, 97032404, 24 III 1997, 220m, 145 $23^{\prime} 45^{\prime \prime} 37^{\circ} 49^{\prime} 50^{\prime \prime}$, 1 d NSI, 1 ㅇ NSI, 1 \& NI (KJF). Main Creek, Baldry's Rd, Green's Bush, Nepean State Park, 97041601, 16 IV 1997, $110 \mathrm{~m}, 144^{\circ} 57^{\prime} 34^{\prime \prime} 38^{\circ} 25^{\prime} 20^{\prime \prime}, 6$ \& NSI, 1 \& N (KJF). MacKenzie River, Wartook Rd, Grampians, 99011605, 161 1999, 420m, $142^{\circ} 24^{\prime} 56^{\prime \prime} 37^{\circ} 06^{\prime} 43^{\prime \prime}, 1$ o $^{\prime \prime}$ N, 3 甲 N (KJF). Martins Creek No. 2, Bonang Rd, 0.5 km S Malinns, 99021306, 13 II 1999, $260 \mathrm{~m}, 148^{\circ} 36^{\prime} 37^{\circ} 25^{\prime}, 3$ o $^{\circ} \mathrm{N}, 14$ \& N (KJF). Melba Gully, Anne's Cascades, Melba Gully State Park, 98010305, 03 I 1998, 340m, $143^{\circ} 22^{\prime} 15^{\prime \prime} 38^{\circ} 41^{\prime} 44^{\prime \prime}, 2$ \& NSI, 3 if NS, 4 of $\mathrm{N}, 2$ \& $\mathrm{N}(\mathrm{KJF}) ; 99121902,19$ XII 1999, same locality data, 4 o $\mathrm{NSI}, 1$ i NSI , 1 ㅇNS, 2 of $\mathrm{N}, 4$ ㅇ (KJF). Menzies Creek, Emerald-Monbulk Rd, Butterfield Wildife Reserve, Dandenong Ranges, 97032403, 24 III 1997, 160m, $145^{\circ} 26^{\prime} 22^{\prime \prime} 37^{\circ} 53^{\prime} 47^{\prime \prime}, 3$ 审 NSI, 3 \& I, 1 \& NS, 1 \& N (KJF). Middle Creek, Omeo Highway, 96111004, 10 XI 1996, $700 \mathrm{~m}, 147^{\circ} 27^{\prime} 50^{\prime \prime} 37^{\circ} 55^{\prime} 19^{\prime \prime}, 1$ o $^{\circ} \mathrm{N}, 5$ \& $\mathrm{N}(\mathrm{KJF})$. Mitta Mitta River, Omeo Valley Rd, 99021503, 15 II 1999, $540 \mathrm{~m}, 147^{\circ} 36^{\prime} 36^{\circ} 56^{\prime}, 5$ of $\mathrm{N}, 1$ \& N (KJF). Moroka River, Moroka River Track, Alpine National Park, 97020603, 6 II 1997, 440m, $146^{\circ} 53^{\prime} 00^{\prime \prime} 37^{\circ} 23^{\prime} 30^{\prime \prime}, 1$ \& N(KJF). Morwell River, Morwell River Rd, 21 km S of Morwell, 99030403, 4 III 1999, $110 \mathrm{~m}, 146^{\circ} 18^{\prime} 17^{\prime \prime} 38^{\circ} 24^{\prime} 32^{\prime \prime}, 2$ o $^{\circ} \mathrm{N}, 2$ क F (KJF). Mountain Creek, 7 km E Tawonga South, 90110300,3 XI $1990,510 \mathrm{~m}, 147^{\circ} 14^{\prime} 36^{\circ} 42^{\prime}$, EPH 1660,5 \& N (DC). Muddy Creek, Selby-Aura Rd, 96101303, 13×1996, $225 \mathrm{~m}, 145^{\circ} 23^{\prime} 15^{\prime \prime} 37^{\circ} 55^{\prime} 15^{\prime \prime}$, 1 ơ $\mathrm{N}, 2$ i N (KJF). Myrtle Gully, Sylvia Creek Rd, Toolangi State Forest, 96112901, 29 XI 1996, 620m, $145^{\circ} 31^{\prime} 44^{\prime \prime} 37^{\circ} 31^{\prime} 44^{\prime \prime}, 1$ i $\mathrm{N}(\mathrm{KJF})$. Myrtle Creek, Donna-Buang Rd, 00031901, 19 III 2000, $780 \mathrm{~m}, 145^{\circ} 36^{\prime} 42^{\prime \prime} 37^{\circ} 42^{\prime} 35^{\prime \prime}, 1 \sigma^{\circ} \mathrm{NS}, 3 \neq \mathrm{N}(\mathrm{KJF})$. Olinda Creek, Olinda Creek Rd, Dandenong Ranges, 97032405, 24 III 1997, 260m, $145^{\circ} 22^{\prime} 35^{\prime \prime} 37^{\circ} 49^{\prime} 47^{\prime \prime}$, 3 우 NS (KJF). O'Shannassy River, (restrictfed access), 75111400, 14 XI 1975, 580m, $145^{\circ} 49^{\prime} 37^{\circ} 36^{\prime}$, EPH 1554, 1 ơ $\mathrm{N}(\mathrm{JD})$, EPH 1555, 1 \& N (JD), EPH 1610, 4 o $\mathrm{N}, 4 \circ \mathrm{~N}$ (JD); 75102401, 24×1975, same locality data, EPH 1611, 4 \& N (JD); 76102103, $2 \mathrm{i} X$ 1976, same locality data, EPH 1609, 2 o N (JD); 76121501, 15 XII 1976, same locality data, EPH 1608, 1 o $\mathrm{N}, 1$ \& N (JD); 80010401, 4 I 1980, same locality data, EPH 1553, 1 of NI (JD), EPH 1556, 1 o NSI (JD), EPH 1607, 2 o Nl (JD). Ovens River, School Bridge, Harrietvilie, 97011903, 19 I 1997, $500 \mathrm{~m}, 147^{\circ} 03^{\prime} 48^{\prime \prime} 36^{\circ} 53^{\prime} 25^{\prime \prime}$, 1 \& N (KJF). Perrins Creek, Warwick Rd, Dandenong Ranges, 97032406, 24 III 1997, 350m, $145^{\circ}{ }^{\circ} 2^{\prime}$

370 $52^{\prime}, 1$ o $^{\circ} \mathrm{NI}, 1$ ㅇ 1.1 \& N (KJF). Peddy Creek, Princes Highway, S Club Terrace, 99021203, 12 || 1999, 180m, $148^{\circ} 54^{\prime} 37^{\circ} 35^{\prime}, 6$ ot N, 19 \& N (KJF). Pyramid Creek, Combienbar Rd, N Club Terrace, 99021304, 13 II 1999, 100m, $148^{\circ} 54^{\prime} 37^{\circ} 32^{\prime}, 7$ o' N, 21 i N (KJF). Raymond Creek, Princes Highway, 12km E Orbost, 81052102, 21 V 1981, $20 \mathrm{~m}, 148^{\circ} 34^{\prime} 37^{\circ} 42^{\prime}$, EPH 1657, $10^{\circ} \mathrm{N}, 14$ \& N (JD). Roadknight Creek, Roadknight Creek Rd, Otways, 98010302,31 1998, 160m, , $143^{\circ} 41^{\prime} 21^{\prime \prime} 38^{\circ} 31^{\prime} 06^{\prime \prime}, 1$ o $\mathrm{NSI}, 1$ ot NS , 2 of $^{\circ}$ N, 3 i NSI (KJF). Rubicon River, Rubicon Bridge, Taggerty-Thornton Rd,
 NSI, 5 \& N (KJF); 98111701, 17 XI 1998, same locality data, 2 of $\mathrm{NSI}, 6$ $9 \mathrm{NSI}, 4$ $\ddagger \mathrm{NS}$ (KJF). Running Creek, downstream Running Creek Reservoir, 85071000, 10 VII 1985, EPH 1639, 1 ㅇ N (JD). Running Creek, Warburton-Jamieson Rd, 85030700,7 III 1985, $750 \mathrm{~m}, 145^{\circ} 58^{\prime} 37^{\circ} 25^{\prime}$, EPH 1644, 5 ㅇ N (JD). Russell Creek, off Gunn Rd, 3 km N of Noojee, $96101005,10 \times 1996$, 280m, $145^{\circ} 59^{\prime} 26^{\prime \prime} 37^{\circ} 50^{\prime} 45^{\prime \prime}$, 1 i NSI, 1 i N (KJF). Sassafras Creek, Sassafras Creek Rd, 96112101, 21 XI 1996, $320 \mathrm{ml}, 145^{\circ} 22^{\prime} 18^{\prime \prime}$ $37^{\circ} 52^{\prime} 46^{\prime \prime} ; 2$ i $\mathrm{S}, 1$ o $^{\circ} \mathrm{N}$ (KJF). Sassafras Creek, Kay's Picnic Ground, Monbulk Rd, 96101303, $13 \times 1996,250 \mathrm{~m}, 145^{\circ} 23^{\prime} 21^{\prime \prime} 37^{\circ} 53^{\prime} 03^{\prime \prime}, 3$ o $^{\circ} \mathrm{N}$ (KJF); 97032402, 24 III 1997, same locality data, 1 o $\mathrm{NSI}, 1$ o $\mathrm{NI}, 4 \circ \mathrm{NSI} 1 \% \mathrm{~N}(\mathrm{KJF})$. Sawpit Creek, Donnelly Weir Rd, 97040605,6 IV 1997, $100 \mathrm{~m}, 145^{\circ} 32^{\prime} 03^{\prime \prime} 37^{\circ} 38^{\prime \prime} 1^{\prime \prime}$, 1 \& NS, 2 ㅇ N (KJF). Shaw Creek, Kelly's Lane Bridge, Alpine National Park, 97020601, $6 \|$ 1997, 1280m, $146^{\circ} 44^{\prime} 22^{\prime \prime} 37^{\circ} 27^{\prime} 30^{\prime \prime}, 1$ \& N (KJF). Shicer Creek, West Ovens Track, Bonang National Park, 96110802,8 XI 1996, $580 \mathrm{~m}, 147^{\circ} 02^{\prime} 30^{\prime \prime} 37^{\circ} 55^{\prime} 20^{\prime \prime}, 1$ of $N, 1$ क $N(K J F)$. Snowy Creek, Wonton Bridge, 74031700, 17 III 1974, EPH 1645, 1 of N (coll. unknown). Starvation Creek, Warburton-Woods Point crossing, 75102402, 24 X 1975, 240m, $145^{\circ} 47^{\prime} 37^{\circ} 42^{\prime}$, EPH 1558, 1 \& NI (JD); 76031900, 19 III 1976, same lociality data, EPH 1559, $1 \sigma^{\circ} \mathrm{NI}$ (JD), EPH 1616, 1 \& NS (JD); 76042302, 23 IV 1976, same locality data, EPH 1560, 1 d NS (JD). Starvation Creek, upstream weir, 79121900, 19 XII 1979, $340 \mathrm{~m}, 145^{\circ} 50^{\prime} 53^{\prime \prime} 37^{\circ} 45^{\prime} 39^{\prime \prime}$, EPH 1621, 1 ơ NI (JD), EPH 1622, 1 ㅇ NSI (JD). Steavensons River, Buxton-Marysville Rd, 98021504, 15 II 1998, $460 \mathrm{~m}, 145^{\circ} 45^{\prime} 02^{\prime \prime}$ $37^{\circ} 28^{\prime} 53^{\prime \prime}, 1$ o NSI, 2 \& NSI, 3 ㅇ NS (KJF). Steavensons River, Marysville Rd, 98101703, 17 X 1998, 320m, 145 $44^{\prime} 01^{\prime \prime} 37^{\circ} 28^{\prime} 32^{\prime \prime}, 1$ of $\mathrm{N}, 1$ ㅇ NSI, 1 ㅇ NS, 6 ㅇ N (KJF). Stony Creek, Wonderland Car Park, Grampians, 90112600, 26 XI 1990, EPH 1646, $410 \mathrm{~m}, 142^{\circ} 30^{\prime} 10^{\prime \prime} 37^{\circ} 09^{\prime} 04^{\prime \prime}, 2 \mathrm{~N}(\mathrm{DC})$; 99011602, 16 I 1999, same locality data, 1 of N (KJF). Swindlers Creek tributary, 6 km from Mt Loch Car Park, off Australian Alps walking track, Mt Hotham, 96111903, 19 III 1996, $1640 \mathrm{~m}, 147^{\circ} 09^{\prime} 40^{\prime \prime} 36^{\circ} 58^{\prime} 42^{\prime \prime}, 1 \sigma^{\circ} \mathrm{N}$ (KJF). Taggerty River, Lady Talbot Drive, outside Marysville, 98101704, 17×1998, $400 \mathrm{~m}, 145^{\circ} 46^{\prime} 28^{\prime \prime} 37^{\circ} 30^{\prime} 20^{\prime \prime}, 1$ ㅇ NSI (KJF). Tanji! River, 5 km N Moe, $87100600,6 \times$ 1987, 60m, 146º $16^{\prime} 38^{\circ} 08^{\prime}$, EPH 1652, $1 \sigma^{\circ} \mathrm{N}, 1$ 甲 N (KW\&AN), EPH 1659, 2 क N
(KW\&AN). Tanjil River East Branch tributary, Mount Baw Baw Tourist Rd, Tanjil State Park, $96101105,11 \times 1996$, $490 \mathrm{~m}, 146^{\circ} 12^{\prime} 11^{\prime \prime} 37^{\circ} 50^{\prime} 18^{\prime \prime}$, 1 o $\mathrm{N}(\mathrm{KJF})$. Taponga River, Eildon-Jamieson Rd, 99022008, 20 II 1999, 320m, $146^{\circ} 02^{\prime} 50^{\prime \prime} 37^{\circ} 22^{\prime} 42^{\prime \prime}$, 3 \& $N(K J F)$. Tarra River, Tarra Valley National Park, 84010900, 9 I 1984, 340m, $146^{\circ}{ }^{\circ} 2^{\prime} 13^{\prime \prime}$ $38^{\circ} 26^{\prime} 57^{\prime \prime}$, EPH 1717, 1 on N(JD). Tarra River branch 1, Tarra-Bulga National Park, 98112101, 21 XI 1998, $340 \mathrm{~m}, 146^{\circ} 32^{\prime} 13^{\prime \prime} 38^{\circ} 26^{\prime} 57^{\prime \prime}, 1$ of $\mathrm{NSI}, 1$ of $\mathrm{N}, 2$ o N (KJF). Tarra River branch 2, Tarra-Bulga National Park, 98112102, 21 XI 1998, 340m, 146º $32^{\prime} 15^{\prime \prime}$ $38^{\circ} 27^{\prime} 00^{\prime \prime}, 1$ i $\mathrm{NSI}(\mathrm{KJF}) ; 99021601,16$ II 1999, same locality data, 1 o $^{\circ} \mathrm{NI}, 2$ o $^{\circ} \mathrm{NS}, 2$ o $^{\circ}$ $\mathrm{N}, 2 \not \& \mathrm{~N}(\mathrm{KJF})$. Tarwin River East, Mirboo Bridge, Mirboo, 99030404,4 III 1999, 90m, $146^{\circ} 12^{\prime} 37^{\prime \prime} 38^{\circ} 28^{\prime} 25^{\prime \prime}, 3 \sigma^{\circ} \mathrm{N}, 2 \neq \mathrm{N}(\mathrm{KJF})$. Thowgla Cresk, upstream Nariel-Thougla signpost, $80102000,20 \times 1980,420 \mathrm{~m}, 147^{\circ} 54^{\prime} 36^{\circ} 18^{\prime}, 70 \mathrm{~N}, \mathrm{EPH} 1662,8 \circ \mathrm{~N}$ (JD). Thurra River west branch tributary, Thurra Junction Rd, 97101802, 18×1997, 200m, $149^{\circ} 17^{\prime} 41^{\prime \prime} 37^{\circ} 27^{\prime} 35^{\prime \prime}, 4$ o $^{\circ} \mathrm{N}, 1$ ㅇ $\mathrm{N}(\mathrm{KJF})$. Toorongo River, 5km NE Noojee, 96101102, 11 X 1996, 280m, 14602'29" 37051'17", 1 of N (KJF); 98020902, 9 II 1998, same locality data, 1 o N (KJF). Turitable Creek, Devonshire Lane, Mt Macedon, 81120100, 1 XII 1981, 680m, $144^{\circ} 35^{\prime} 37^{\circ} 23^{\prime}$, EPH 1744, 1 ㅇ N (JD), EPH 1745, 1 \& N (JD), EPH 1746, 1 \& N (JD), EPH 1747, 2 \& N (JD). Tyers River, Moe-Rawson (Walhalla) Rd, Moondarra State Park, 99021507, 15 II 1999, 180m, 146 ${ }^{\circ} 19^{\prime} 42^{\prime \prime}$ $38^{\circ} 02^{\prime} 15^{\prime \prime}, 2$ o $^{\circ} \mathrm{N}, 4$ $4 \mathrm{~N}(\mathrm{KJF})$. Unnamed Creek, 2 km W of Genoa, 82112100, 21 XI 1982, $100 \mathrm{~m}, 149^{\circ} 34^{\prime} 37^{\circ} 28^{\prime}$, EPH 1563, 1 \& $\mathrm{N}(\mathrm{JD})$. Unnamed Creek, 3km W of Genoa, 81052203, 22 V 1981, 60m, $149^{\circ} 33^{\prime} 37^{\circ} 28^{\prime}$, EPH 1564, 1 of N (JD), EPH 1565, 3 of $\mathrm{N}, 11$ \& N(JD). Victoria River, Victoria River Track, F6111804, 18 XI 1996, 1010m, $147^{\circ} 21^{\prime} 37^{\circ} 05^{\prime}, 1$ of (KJF); 96111901, 19 XI 1996, same locality data, 1 o $\mathrm{NI}, 1$ on NS (KJF). Wangarabell Creek, Wangarabell Rd, Wangarabell, 99021302, 120m, 149 ${ }^{\circ} 28^{\prime}$ $37^{\circ} 22^{\prime}, 2$ or $^{\circ} \mathrm{N}, 3$ ㅇ N (KJF). Watchbed Creek, $96031800,18 \mathrm{III} 1999,1680 \mathrm{~m}, 147^{\circ}{ }^{\circ} \mathbf{1 9}^{\prime}$ $36^{\circ} 51^{\prime}$, EPH 1693, 1 \& N (JD), EPH 1694, 1 \% NS (JD). Watts River, Fernshaw Rerserve, 74122000, 20 XII 1974, 200m, $145^{\circ} 36^{\prime} 37^{\circ} 37^{\prime}$, EPH 1642, 2 o $\mathrm{N}, 5$ 우 N (JD). Wellington River, Tamboritha Rd, Alpine National Park, 96092204, 22 IX 1996, 340m, $146^{\circ} 38^{\prime} 15^{\prime \prime} 37^{\circ} 31^{\prime} 02^{\prime \prime}, 1$ ㅇ N (KJF); 97020702, 7 II 1997, same locality data, 1 of $\mathrm{NI}, 1$ ot $^{\circ}$ I, 1 \& I, 1 \& N (KJF). Wild Dog Creek, Wild Dog Creek Rd, 97030201, 2 III 1997, 10m, $143^{\circ} 40^{\prime} 44^{\prime \prime} 38^{\circ} 44^{\prime} 04^{\prime \prime}, 1 \sigma^{\prime} 1$ (KJF). William Wallace Creek, Triangle Link Rd, Gembrook
 N (KJF). Wingan River, Drummer Rd, Coopracambra National Park, 98012501, 25 I 1998, 180m, $149^{\circ} 25^{\prime} 15^{\prime \prime} 37^{\circ} 28^{\prime} 03^{\prime \prime}, 2$ o N, 2 \& S, 9 \& N (KJF). Wombat Creek, Wombat Creek Dam Picnic Area, near Daylesford, 97122004, 20 XII 1997, 635m, $144^{\circ} 10^{\prime} 22^{\prime \prime} 37^{\circ} 23^{\prime} 25^{\prime \prime}, 2$ o $^{\prime \prime}$ NSI, 1 ơ NS, 1 ¢ NSI (KJF). Yarra River, upsiream of Warburton, 97042502, 25 IV 1997, 170m, 145 $42^{\prime} 43^{\prime \prime} 37^{\circ} 45^{\prime} 03^{\prime \prime}, 1$ of $\mathrm{S}, 1$ o S (KJF).

Yarra River, Hazelwood Rd, 80112000, 20 II 1980, EPH 1614, 1 d 1 (JD), EPH 1623, 1 o NSI, 1 ㅇ NS (JD). Yarra River, Peninsula Rd, 78122100,21 XII 1978, EPH 1612, $1 \sigma^{\circ}$ NS (JD); 80010402, 4 I 1980, same locality data, EPH 1625, 1 \& NI (JD); 80020600, 6 II 1980, same locality data, EPH 1562, 1 o NI (JD), EPH 1613, 1 ㅇ NI (JD), EPH 1624, 1 o NI (JD). Yarra River, Reefton Rd, 77110300, 3 XI 1977, EPH 1615, 1 甲 S (JD).
3.3.2.2.1 Investigation of morphological variation within Nousia (Australonousia) fusca.

Nousia (Australonousia) fusca appears extremely abundant throughout south-eastern Australia. It was found at $225 / 678$ (33%) of all sites examined (see Appendix 2) and was the most abundant species of the MRHI collections. The large number of collection sites covered many different locations through eastern Australia and groups of these were geographically isolated from others; possibly represented different ecological habitats. Isolated populations included the Otways, Grampians, Tasmania and high altitude sites (above 1000 m). As there was some morphological variation in the species from these collections, attempts were made to further examine species variation between these isolated sites through statistical analysis. Differences amongst regions were examined by oneway ANOVA for appropriate individual characters for populations from the Otways, Grampians, Tasmania, high altitude sites (above 1000 m) and "the rest" of Victoria which refers to all other sites where this species was found throughout Victoria. Typical habitat in these locations are shown in Figs. 95-106. A subset of the nymphal characters was further examined by discriminant anaiysis; this was not possible for the adult characters due to the low numbers of individuals available.

Of the eighteen ANOVA's run examining differences amongst regions eight showed significant variability amongst the collection sites (Table 6), which suggests that some genuine differences exist. The significant results pertained to the male and female imago characteristics in all cases but one (nymph female body length) and was generally based on very low number of individuals ($n<7$). High altitude collections tended to exhibit the highest mean values whilst the Grampians had the lowest mean values.

Discriminant analysis was conducted on three subsets of nymphal data (labrum, leg and head and pronotum measurements including ratios). These subsets had to be examined separately because not all measurements were available for each individual. Tolerances were generally low indicating high correlations between characters. The classification matrices returned overall percent correct figures of 35,34 and 35% for each subset respectively. This indicated that the differences in characters were noi strongly associated with place of collection and confirmed the predominance of non-significance
amongst the one-way ANOVA's of the nymphal characters. Multivariate ANOVA was only significant for the third subset analysis ($p=0.083,0.064,0.033$).

Whilst there were some indications of differences amongst collections from different regions these were not sufficient to contradict the view based on morphology that the material constitutes a single, albeit very variable, species. It is still possible that this species constitutes a group of cryptic species or a species complex. Molecular taxonomy may elucidate such differences in the future.

Table 6. Analysis of differences in various characters of Nousia (Australonousia) fisca according to location of collection. Order of means where differences significant: $\mathrm{G}=$ Grampians, $\mathrm{H}=$ High Altitude, $\mathrm{O}=$ Otways, $\mathrm{T}=$ Tasmania and $\mathrm{R}={ }^{\text {"The }}$ Rest" of Victoria.

	df	p	Order of means
Male lmago			
body length	4,53	$\mathbf{0 . 0 2 4}$	$H>R>T>O>G$
forewing length	4,54	$\mathbf{0 . 0 3 9}$	$H>O>R>T>G$
hindwing length	4,51	0.315	
total foreleg length	4,32	$\mathbf{0 . 0 2 1}$	O>H>R>G>T
Female lmago			
body length	4,57	$\mathbf{0 . 0 0 3}$	$H>O>R>T>G$
forewing length	4,58	$\mathbf{0 . 0 0 9}$	$H>R>O>T>G$
hindwing length	4,35	$\mathbf{0 . 0 2 4}$	$H>R>O>T>G$
total foreleg length	4,58	0.005	$H>R>T>O>G$
Nymph	4,76	$\mathbf{0 . 0 0 6}$	$O>H>T>G>R$
male body length	1,81	0.186	
female body length	4,78	0.425	
head width	4,96	0.252	
pronotum width	4,96	0.565	
labrum length	4,96	0.102	
labrum width	4,82	0.260	
labrum denticle width	4,82	0.488	
total fore leg length	4,82	0.920	
fore femora length			
fore femora width			

3.3.2.3 Nousia (Australonousia) darkara (Harker) Incertae sedis Atalonella darkara Harker (Harker 1957b) Atalonella darkara Harker (Scholes 1961) Nousia darkara (Harker) (Campbell 1988) Incertae sedis

Types. Holotype. Atalonella darkara Harker, Burnie, Tasmania, of subimago, 6 XII 1954, B. McMillan. Held at the NHM. [not seen].

Distribution. Tasmania (no locality data available).

Diagnosis. Due to lack of specimens the following description is derived from Harker (1957b). Male imago. unknown. Female imago. unknown. Egg. unknown. Male subimago. unknown. Female subimago. Dimensions: body length 12; forewing 6; hindwing 1.5. General body colour yellow with duill brown markings. Head, antennae, ocelli colour and characteristics unknown. Eyes: size and colour unknown. Thorax colour and characteristics unknown. Legs: cream, no markings; tarsal claws "acute". Wings. Forewing: colour uniformly grey; pterostigmal region opaque ("milky"); costal and subcostal crossveins absent, or if present very faint, in proximal halves of wings, 8 crossveins distally, subcostal space with 3 faint crossveins proximally, 6 crossveins distally. Presence of bullae unknown, MA forked at approximately half the distance from wing base to margin, MP_{2} apparently not connected to MP_{1} and CuA , CuA and CuP not linked by crossvein, $I C u_{1}$ recurved to join $\mathrm{CuA}, \mathrm{ICU}_{2}$ recurved to join $I C \mathrm{U}_{1}$. $\mathrm{Cu} \mathrm{I}_{1}$ and $I C \mathrm{I}_{2}$ parallel or very slightly diverging as wing margin approached, CuP strongly recurved and apparently not linked by crossvein to A_{1}. Hindwing: colour unknown; slightly convex at midlength immediately preceding shallow concavity; costa joins subcosta at four-fifths of wing length; no cross veins in costal space, 7 throughout subcostal space. Abdomen: colour unknown, sternum nine shallowly cleft. Caudal filaments: three; terminal filament shorter than cerci. Nymph. Body length $\$ 10$. General body colour unknown. Head, antennae, ocelli colour and characteristics unknown. Eyes: size and colour unknown. Mouthparts. Labrum and clypeus: lateral margin of labrum much wider than clypeus, angular; anterior margin with slights antero-median emargination; five rounded denticles. Clypeus unknown. Mandibies: outer margins slightly curved; number of incisors unknown, much denticulated, molar regions small. Maxillae: palpi three segmented, basal segment longer than the second, terminal segment "small and pointed". Hypopharynx: unknown. Labium: glossae not turned under ventrally and lying in same plane as paraglossae; paipi three segmented, basal segment longer than the second. Thorax: colour unknown. Legs: yellow, without markings, slightly darker dorsally; tarsal claws
each segment; posterolateral spines present, apparently progressively larger apically. Gills: colour unknown; present on segments one to seven; double, lanceolate.

Remarks. Very little is known about this species. It was established only on the basis of a female subimago and a nymph by Harker (1957b). There is no explanation as to why Atalonella was chosen as the genus to which this species belongs although one can assume that she made the assessment based on a previous paper (Harker 1954) where the distinctions between Atalophlebia and Atalonella were outlined. Unfortunately, the descriptions and drawings of Harker are very simplified and somewhat enigmatic. The drawing of the forewing (Harker 1957b, FIG. 30, p.70, reproduced here as Fig. 107) shows no (or a few very faint) costal crossveins in the proximal halves of the costal and subcostal spaces, a trait usually associated with male wing venation, not female. Further, the forewing is said to be half the body length which is clearly an error as it is more usual for the wing to be at least as long, if not longer, than the body. Lastly, the labrum appears as though it is much wider than the clypeus and possesses angular lateral margins which are not diagnostic for the genus (Harker 1957b, FIG. 33, p. 70, reproduced here as Fig. 108).

Despite the genus status of the species being unclear it was included in the Australian catalogue of Ephemeroptera as belonging to Nousia (Australonousia) (Campbell 1988). Strangely, however, it was not included in the genus revision of Australian Nousia published the same year (Campbell and Suter 1988).

A request was forwarded to the Natural History Museum to obtain the holotype Atalonella darkara but this could not be found. There is no direct mention that she lodged the specimens with the Natural History Museum in her paper 'Some new Australian Ephemeroptera Part II' (Harker 1957b) although Part I of that series (Harker 1957a) clearly states that the types were to be deposited there. As all her other types were lodged with the NHM there is no reason to assume she would choose another repository. Apparently, no other specimens of Atalonella darkara exist apart from the type.

A further complication is that the type location of this species is ill-defined. Burnie is a large town in Tasmania and collection of material in and around Burnie failed to produce a species similar to this description.

Without the type, any other specimens or an adequate description, it is not possible to place this species definitively in any genus. I therefore remove this species from Nousia (Australonousia) and propose that the status of Incertae sedis be adopted until the type is located and examined.

3.3.2.4 Nousia (Australonousia) fuscula (Tillyard)

Atalophlebia fuscula Tillyard (Tillyard 1936)
Atalonella fuscula (Tillyard) Harker (Harker 1954)
Nousia fuscula (Tillyard) (Suter 1986)
Nousia (Australonousia) fuscula (Tillyard) (Campbell and Suter 1988)

Types. Holotype. Atalophlebia fuscula (Tillyard), Tasmania, River Shannon, ơ imago, 33012700, 27 I 1933, R.J. Tillyard. Labels: a) "Holotype", b) "Atalophlebia fuscula Till. Holotype of R.J.T. R. Shannon. Tas., 27.1.33", c) "Brit. Mus. 1937-408". Paratypes. Atalophlebia fuscula (Tillyard), o inago, subimagos, same collection data. Held at the NHM. [not seen].

Distribution. South Australia, Tasmania (no locality data available).
Diagnosis. Due to relative lack of material the following description and measurements combines information from descriptions by Tillyard (1936). Scholes (1961) and predominantly Suter (1986). I was also able to examine the holotype from the NHM and a very small number of specimens borrowed from the AWQC and the ANIC. Male imago. Dimensions: body length 5.8-7.8; forewing length 5.9-8.0; hindwing length 1.1-1.6; forewing hindwing ratio approx. 5. General body colour black. Head black. Ocelli: three; black with white inserts; laterals larger than medial. Eyes: upper lobes brown-grey. Thorax: black. Legs: brown to black, no apparent banding; forelegs with seven segments, total foreleg length 6.23; leg length ratios 1.00: 1.29: 0.14: 0.49: $0.44: 0.28$: 0.16 (1.64); tarsal claws of a pair similar, each apically hooked with an opposing hook. Wings. Forewing: membrane hyaline, pterostigmal area red brown, opaque; longitudinal and crossveins brown, anal veins yellow; costal and subcostal veins absent, or if present very faint, in proximal halves of wing; costal space with 6 proximally, 10 distally, subcostal space with 2-4 proximally, 7-10 distally. Three bullae present on veins $S c, R_{2}$ and R_{4+5}, MA forked at half to just over half the distance from base to margin, MP_{2} connected to MP_{1} and CUA, CuA and CuP linked by crossvein, ICu_{1} joins CuA and not linked to CuACuP crossvein, $I \mathrm{Cu}_{2}$ recurved to join $I \mathrm{Cu}_{1}, \mathrm{ICu}_{1}$ and $I \mathrm{Cu}_{2}$ parallel as wing margin approached, CuP strongly recurved and linked by cross vain to A_{1}. Hindwing: mostly hyaline; costal margin slightly convex at midength immediately preceding shallow concavity, costa joins subcosta at approximately four-fifths wing length; no cross veins in proximal half of costal space, 4 in distal half, subcostal space with 4-6 cross veins. Abdomen: black with light brown to brown markings forming a broken stripe midline, two maculae flanking each midline marking anteriorly. Genitalia: forceps three segmented;
terminal segment globular. Penes brown, fused in basal two-thirds, two distinct lobes; in dorsal view two indistinct subapical lobes, each with a small blunt triangular tooth, partly sheathed by outer covering, generally visible under transmitted light only. Caudal filaments: three, dark brown, 10. Female imago. Dimensions: body length larger than maie; forewing length 8 ; hindwing length larger than male. General patterning and colouring similar to male. Legs: total leg length shorter than male. Wings. Forewing colour and venation similar to male except crossveins in proximal halves of wings and generally more crossveins on average than male. Hindwing: unknown. Abdomen: sternum seven with small genital extension; sternum nine deeply cleft. Egg. Ovoid, polar cap with three rings of tubular processes, chorion with small circular tubules regularly placed over surface. Male and female subimago. General colour dull black. Wings opaque, dark-grey. Mature nymph. Body lengths: 7-8. General colour black. Head: prognathous; dark brown to black. Ocelli: three; black with white to grey inserts; laterals larger than medial. Antennae: pale greyish. Eyes: upper lobes of male reddish-brown. Mouthparts. Labrum and clypeus: lateral margin of clypeus slightly diverging towards anterior; lateral margins of labrum subequal to very slightly wider than clypeus, rounded; anterior margin with slight antero-median emargination; labrum two times wider than long; four to six triangular denticles extending less than one-third the entire width of labrum, frontal setae arranged as a narrow band, secondary hair fringe clearly separated from narrow band. Mandibles: outer margins slightly curved; sparse long setae at midpoint on inner lateral margins, shorter setae between tuft and base; dark coloured nodule at midpoint on inner mesal surface. Left mandible: two incisors, each with three apical teeth, no apparent serrations on lateral margins; prostheca robust, moderately serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible: sparse long spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inner incisor with two apical teeth, no apparent serrations on lateral margins; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae: galea-lacinae as wide as long; subapical row of approximately 15 pectinate setae; palpi three segmented; palp length ratios 1.00 : $0.71: 0.78$ (0.21). Hypopharynx: well developed lateral processes; anterior margin of lingua deeply cleft; superlingua with thick tufts of setae on anterior margins, rounded lateral margins. Labium: glossae not turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, terminal segment with stout spines on dorsal surface; palp length ratios 1.00: 0.71: 0.69 (0.29); submentum with spines on lateral margins. Thorax: dark brown. Legs: medium brown, no apparent banding; fore femora length width ratio approx. 2.74; fore tarsi with approx. 13 ventral spines; tarsal claws with approx. 11 ventral teeth, progressively larger apically; total foreleg length 2.86; leg length ratios, foreleg 1.00: 0.87 : 0.55 (1.18), midleg 1.00: 0.84 : $0.39(1.19)$, hindleg 1.00: 0.91: $0.38(1.40)$. Abdomen: black with yellow-brown markings.

Gills: membrane pale, brownish; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; each gill slender, tapering to a thin point apically; main and lateral tracheae strongly developed. Caudal filaments: three, 10.

Remarks. Atalophlebia fuscula was first established by Tillyard in his monograph of the mayflies of Tasmania (Tillyard 1936). Following this it was transferred to Atalonella by Harker (1954) on the basis of wing venation and gill shape. Scholes (1961) briefly described the nymph and adult stages in his popular treatise on fly-fishing and an extensive revision of the South Australian fauna was completed by Suter (1986) in which the species was transferred to Nousia. I agree with this designation based on Suter's description.

Unfortunately, only a few of Suter's specimens could be located and these comprised a series of nymphs from Tookayerta Creek in South Australia and some specimens marked Atalonella fuscula from the ANIC. I also endeavoured to recollect this species from some of the places Suter collected in his revision (Suter 1986) such as Jimmy's Creek, MacKenzie River and Stony Creek in the Grampians and Tanjil River, Tarwin River and Tooroongo Falls in eastern Victoria. However, I was only able to coliect a few specimens from Jimmy's Creek on several different occasions (96101901, 99011607, 00012203) and was only able to rear one male to adulthood. The adult conformed more readily to the newly described N. (A) fusca in that the subapical lobes were more developed..

It occurs to me that N. (A). fusca and N. (A) fuscula are very closely related and may be conspecific. This may explain why only specimens of N. (A) fusca were found at Suter's collecting sites. I have attempted to examine the similarities (Table 7) and differences (Table 8) between the two species by close examination of the literature, holotype and scant specimens of N.(A) fuscula with specimens of the newly described N. (A) fusca.

The two species appear to have more similarities than differences (Tabie 7). They are similarly sized in both the imago and nymph. They are also similarly coloured and patterned although N. (A) fuscula tends to be a darker in general. In the imago, wing colouring and venation are practically identical and the female imago possesses a deeply cleft sternum nine in both cases. In the nymph, mouthpart morphology appears very closely aligned between the two with the possible exception of maxillae and labium paip relative lengths. Fore femora length to width ratio and gill colour, shape and size are also compatible.

Discrepancies in the male imago (Table 8) include measurements of the dissimilar body and forewing lengths. T-tests were performed and a significant difference was found between the two ($p<0.001$ in both cases) where the lengths N. (A) fuscula were smaller than that of N. (A) fusca. This appears to be the case with the foreleg lengths (as shown by the ratios) although no statistical test could be applied. The total foreleg length of N. (A) fuscula, although quite small, is within or just outside the range of N. (4) fusca. Another variation in the male imago pertains to the equality in tail filament length, although this is disputed (Suter 1986).

I admit that these few differences, when compared to the similarities, are not conclusive evidence of species status and felt that if I was able to examine the genitalia closely I would be able to make an assessment. For some time, however, the only male imago specimen 1 had was the type specimen and as this was pinned it was quite shrivelled. I have found, through trial and error, that air dried specimens (and the parts dissected from them) do not retain their shape. The genitalia of the type specimen was one such example and frustratingly provided little clue as to the true shape, especially as it did not compare with the literature drawings such as Tillyard (1936, FIG. 15, p. 34, reproduced here as Fig. 109) and Suter (1986, FIG. 10j, p. 375, reproduced here as Fig. 110). It was not until some time later that I was fortunate to find a vial containing Scholes' specimens of N. (A). fuscula from Tasmania which contained a number of specimens including two intact male imagos. The genitalia of these specimens have a somewhat similar design to N. (A). fusca in that the two species both have two lobes which are fused in the basal twothirds, each lobe has a small triangular process on the inner lateral margins which appear to be partly sheathed (Fig. 111). The obvious difference between this and the literature drawings appears to be lack of prominent subapical lohes in the descriptions and drawings of Tillyard (1936) and Suter (1986). It is unfortunate the genitalia drawings do not conclusively determine species status either way.

In the female imago, a discrepancy between the two descriptions appears to be with regard to the genital extension which is considered to be absent in N. (A) fuscule ("no ovipositor" (Suter 1986, p. 349) and small in N. (A) fusca (3.3.2.2). However, the drawing of the female abdomen by Suter (1986), FIG. 10f, p. 375, reproduced here as Fig. 112) indicates a small extension which is at least as big as the one present on N. (A) fusca. Two female imagos of $N(A)$ fuscula coliected by Scholes (1961) in Tasmania also possess a small genital extension on sternum seven.

Another concern is the morphology of the egg. The SEM taken by Suter (1986, FIG. 16b, p. 381, reproduced here as Fig. 113), has three rings of tubular processes and looks remarkably like a Thraulophlebia egg (see 3.4.3.1). Moreover, it does not conform to the
general morphology of all the other Nousia eggs, which have no polar caps or tubular processes. I had many problems with contamination with eggs from other samples and would often have eggs of more than one species in a sample. After many false starts, I resorted to a new set of equipment (glassware, pipettes; critical point drier container etc) for each sample and did not process more than one sample at the same time. Although there were very few viable specimens, I was able to dissect a few eggs from one of the mature female nymphs from Tookayerta Creek, South Australia (Figs. 114, 115). The general shape and patterning appears to conform more closely with the Nousia species.

Lastly, variation exists with respect to the head width and leg length of the nymph, as in the imago, and again N. (A) fuscula is much smailer. The leg length ratios and mouthpart ratios of the maxillae and labium, as mentioned earlier, are also incongruous. The head width of N. (A) fuscula proved to be significantly smaller than that of N. (A) fusca as measured by t-test ($\mathrm{p}<0.001$). There also appears to be a body colour variation between the two species where the N. (A) fuscula nymph, like the imago, is generally darker.

Table 7. Similarities between the literature descriptions and measurements of Nousia (Australonousia) fuscula and the newly described Nousia (Australonousia) fusca.

	Nousia (Australonousia) fuscula	newly described Nousia (Australonousia) fusca
Male Imago		
hindwing length	$\begin{aligned} & 1.6 \mathrm{~mm} \text { (Tiilyard 1936) } \\ & 1.6 \text { (Scholes } 1961) \\ & 1.12-1.40(1.29 \pm 0.09,23) \text { (Suter 1986) } \\ & 1.6 \text { - holotype } \\ & \hline \end{aligned}$	1.01-1.71 (1.29 $40.13,56)$
general body colour	black (Tillyard 1936, Scholes 1961)	variable, from tan brown to dark brown to black
head colour	black (Tillyard 1936, Scholes 1961, (Suter 1986)	brown to black
thorax colour	black (Tillyard 1936, Suter 1986)	pronotum brown to black, mesonotum shiny brown to black
forewing colour	wings hyaline with dark brown venation, slight fuscous tinting of membrane at pterostigma, anal veins pale (Tillyard 1936) glassy clear with dark brown venation (Scholes 1961) pterostigmal region slightly tinged with brown, (Suter 1986)	membrane hyaline, pterostigmal region slightly opaque, longitudinal and crossveins brown, anai veins yellow
costal crossy $/$ (enc proximal	6, faint (Tillyard 1936) 3-7, faint (Suter 1986) 5, faint - holotype	0-5 faint
costal crossumdns - distal	10 (Tiliyard 1936) 14 (Suter 1986), holotype	7-14
subcostai crossumbis proximal	5 -holotype 2-4 (Sider 1986)	0-5 faint
subcostal crossyilins distal	inore numerous than costal crossveins (fillyard 1936) 7-10 (Suter 1986) 11- holotype	6-13
bullae	3 on $\mathrm{S}, \mathrm{R}_{2}, \mathrm{R}_{4+5}$ (Tillyard 1936)	3 on $\mathrm{Sc}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4+5}$
MA fork	about half (Tillyard 1936, Suter 1986), holotype	hall to just over half

Table 7 cont'd.

	Nousia (Australonousia) fuscula	newly described Nousia (Australonousia) fusca
MP_{2} connected to MP_{1} and CuA	yes (Tillyard 1936, Suter 1986), holotype	yes
CuA-CuP crossvein	yes (Tillyard 1936, Suter 1986), holotype	yes
ICu_{1} and ICu${ }^{\text {a }}$	parallel (Tillyard 1936, Suter 1986), holotype	parallel
1Cus joins CuA	yes (Tillyard 1936, Suter 1986), holotype	yes
${ }^{1 C C_{1}}$ linked to CuA-CuP crossvein	no (Tillyard 1936, Suter 1986)	no
ICu_{2} recurved to join ICu	yes (Tillyard 1936, Suter 1986)	yes
Cup linked to A_{1}	yes (Tillyard 1936, Suter 1986, holotype	yes
hindwing - length at which costa joins subcosta	four fifths (Tillyard 1936, Suter 1986)	three-quarters to four-iths
costal crossveins	$\begin{aligned} & 4 \text { (Tillyard 1936), holotype } \\ & 3-4 \text { (Suter 1986) } \end{aligned}$	$2-5$
subcostal crossveins	$\begin{array}{\|l\|} \hline 4 \text { (Tillyard 1936) } \\ 4-6 \text { (Suter 1986) } \\ 5 \text { - holotype } \\ \hline \end{array}$	3-5
abdomen colour	black, marked with a pattern of dark brown and black (Tillyard 1936) shiny black, marked with dark brown beneath towards the centre, (Scholes 1961) black with brown and light brown markings (Suter 1986)	tan to dark brown to biack with golden markings on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking anteriorly pattern variable
forceps	3 segmented (Tillyard 1936)	3 segmented
Female Imago		
body length	larger than male (Tillyard 1936, Scholes 1961, Suter 1986)	6.1-9.0 (7.6 $\pm 0.74,62)$, larger than male

Table 7 cont'd.

	Nousia (Australonousia) fuscula	newly described Nousia (Australonousia) fusca
forewing length	8 (Tillyard 1936)	5.8-9.6 (7.7 $\pm 0.73,63)$
hindwing length	longer than male (Tillyard 1936), (Scholes 1961)	0.99-1.72 (1.26 $0.14,62$)
hindwing crossveins	more than male (Tillyard 1936), (Suter 1986)	C 3-5, Sc 3-6
sternum nine	deep V shaped incision, (Suter 1986)	deeply cleft
Egg _ _ _ _		
general shape	ovoid	ovoid
Subimago		
body colour	duli black (Tillyard 1936), (Suter 1986)	dull greyish black
wing colour	almost black (Tillyard 1936) opaque, dark grey (Suter 1986)	grey-brown
Nymph ___		
body length	7-8 (Tillyard 1936, Scholes 1961)	$\begin{aligned} & 65.8-9.6(7.5 \pm 0.87,63) \\ & \text { o } 6.0-10.0(7.9 \pm 0.87,81) \end{aligned}$
male eye colour	grey biack (Tillyard 1936, Scholes 1961) reddish brown (Suter 1986)	upper lobes - russet to dark brown, lower lobes black
antennae colour	pale greyish (Tillyard 1936, Scholes 1961)	golden to tan brown
labrum	slight antero-median emargination (Tillyard 1936, Suter 1986)	no apparent or slight anteromedian emargination
labrum length width ratio	2 times wider than long (Suter 1986)	1.71-2.23(1.99 $\pm 0.12,101)$ times wider than long
labrum denticles	4-6 rounded denticles (Suter 1986)	5
left mandible	incisors with 3 apical teeth (Suter 1986)	teeth 3,3
right mandible	outer incisors with 3 apical teeth, inner incisors with 2 teeth (Suter 986)	teeth 3,2
maxillae galea-lacinae length width ratio	short and broad (Tillyard 1936) galea-lacinae appears as wide as long (Suter 1986)	0.90-1.11 (0.99 $\pm 0.06,25)$
thorax	dark brown, meson $\mathrm{th}^{2} \mathrm{dm}$ with two yellowish brown marks above apex. apex itself tipped with blackish (Tillyard 1936) chiefly dark brown (Scholes 1961)	golden to tan brown with darker markings

Table 7 cont'd.

	Nousia (Australonousia) fuscula	newly described Nousia (Australonousia) fusca
leg colour	medium brown, semi-transparent, femora with dark line along dorsal ridge, apex fuscous (Tillyard 1936) brown, not banded (Suter 1986)	golden to tan brown, femora apices usually darker, no apparent banding
fore femur length to width ratio	2.74 (Suter 1986)	$2.51-4.11(2.86 \pm 0.20,87)$
abdomen	black above with a mid longitudinal row of pale yellowish brown markings (Tillyard 1936) colour pattern irregular (Suter 1986)	tan to dark brown with golden markings on each segment forming a broken stripe midline, generally with two golden coloured maculae flanking each midline marking anteriorly, pattern highly variable
gill shape	double, seven pairs, on segments 1-7, narrowly lanceolate and end in a long slender filament (Tillyard $1936)$ linear (Suter 1986)	double on segment 1-7 tapering to a thin point apically
gill colour	pale, semi-transparent brownish (Tillyard 1936) pale (Scholes 1961)	clear to pink
gill tracheae	main and lateral branches apparent (Tilyard 1936) main branch apparent, linear branches faint(Suter $1986)$	main and lateral tracheae strongly or poorly developed

Table 8. Discrepancies between the literature descriptions and measurements of Nousia (Australonousia) fuscula and Nousia (Australonousia) fusca showing outcomes of t-tests comparing the two species where measurements were available.

	Nousia (Australoinousia) fuscula	newly described Nousia (Australonousia) fusca	Sig.
Male Imago			
body length	7.8 (Tillyard 1936) 8 (Scholes 1961) $5.82-7.01(6.58 \pm 0.32,23)$ (Suter 1986) 7.3 -holotype	5.8-9.0 (7.3 $\pm 0.68,58)$	***
forewing length	$7-8 \mathrm{~mm}$ (Tillyard 1936, Scholes 1961) $5.90-6.97(6.41 \pm 0.28,22)$ (Suter 1986) 7.6 - holotype	$6.0-8.6(7.2 \pm 0.59,59)$	***
eye colour - upper	brown-grey (Suter 1986)	pink to red to tan brown	
penes shape	turned upwards; lobes separate, cylindrical; irregularly truncated at apex which is divided into 2 blunt lobes with a third lobe arising on the inner side and not reaching the level of the apex, inner lobe carries a small blunt triangular tooth (Tillyard 1936); lobes widely separated, cylindrical, constricted near apex, apex rounded, lobes apparently sheathed, inner margin with a small spine hidden within sheath visible in mounted preparation using transmitted light but not in the scanning electron micrographs (Suter 1986)	fused in basal two-thirds, two lobes distinct, in dorsal view two subapical lobes protruding laterally towards midline; each lobe with a small blunt triangular tooth apparent, generally visible only under transmitted light;	
leg colour	chiefly black, hind femora mostly dark brown (Tillyard 1936); chiefly black (Scholes 1961); forelegs black, middle and hind legs brown, no banding (Suter 1986)	golden to tan or dark brown, femora apices darker, no apparent banding	

Table 8 cont＇d．

	Nousia（Australonousia）fuscula	newly described Nousia（Australonousia）fusca	Sig．
foreleg length	$\begin{aligned} & 6.5 \mathrm{~mm} \text { (Tillyard 1936) } \\ & 5-6 \mathrm{~mm} \text { (Scholes 1961) } \\ & 6.2 \mathrm{~mm} \text { (Suter 1986) } \end{aligned}$	$5.8-8.9$（7．3土0．94，37）	
foreleg leg length ratio	$\begin{aligned} & \text { 1.00: 1.29: 0.14: 0.49: 0.44: } 0.28: 0.16(1.64) \\ & \text { (Suter 1986) } \end{aligned}$	$\begin{aligned} & 1.00: 1.35: 0.06: 0.53: 0.50: 0.37: 0.16(1.8 \pm 0.19, \\ & 37) \end{aligned}$	
tail filament length	subequal， 10 （Tillyard 1936，Scholes 1961） cerci－9．23－11．11（10．32土0．62，12）（Suter 1986） terminal filament 10．77－13．00（11．67 $\pm 0.76,8$ ）） （Suter 1986）	terminal filament longer than cerci	
tail filament colour	dark fuscous（Tillyard 1936） blackish（Scholes 1961）	golden to brown	
Female Imago＿＿＿			
sternum seven	no ovipositor（Suter 1986）	small genital extension	
Egg			
chorion	polar cap with three rings of tubular processes， chorion with small circular tubules regularly placed over surface．	polar cap absent，chorion with large evenly spaced circular shaped protuberances	
Nymph＿＿＿			
head width	1．36－1．50（1．44土0．06，6）（Suter 1986）	1．25－1．82（1．53 $\pm 0.11,83)$	＊＊
general colour	black（Tillyard 1936） blackish（Scholes 1961）	golden to tan brown with darker markings	
head colour	blackish with dark brown（Tillyard 1936，Scholes 1961） dark brown（Suter 1986）	\tan brown	
maxillae palp ratios	1．00：0．71： 0.78 （0．21）（Suter 1986）	1．00：0．77： 0.71 （0．24土0．03，50）	
labium palp length ratios	1．00：0．71： 0.69 （0．29）（Suter 1986）	1．00：0．77： 0.63 （0．36ı0．04，50）	
total foreleg length	2.86 （Suter 1986）	2．45－4．98（3．31 $\pm 0.49,87)$	
foreleg	1．00：0．87：0．55（1．18）（Suter 1986）	1．00：0．85： 0.44 （1．43土0．21，87）	
midleg	1．00：0．84：0．39（1．19）（Suter 1986）	1．00：0．86： $0.35(1.51 \pm 0.26,60)$ ，	
hindleg	1．00：0．91： 0.38 （1．40）（Suter 1986）	1．00：0．91： 0.31 （1．74 $\pm 0.28,60$ ）．	

I do not feel there is enough evidence to conclude that these two taxa are definitely different species. On the other hand, 1 consider there is insufficient evidence to consider them conspecific. A major concern is the lack of specimens for comparison. As a result, I believe I have not been able to determine the correct morphology of the male genitalia and egg. I consider the best option is to leave the two as separate species until more specimens can be examined.

Nousia (Australonousia) fuscula can be distinguished from all other species in the subgenus by the following combination of characters. In the imago: (i) body colour generally dark, brown to black, abdomen colour black with light markings on each segment forming a broken stripe midline, two light coloured maculae flanking each midline marking; (ii) leg banding absent; (iii) hindwing costa joins subcosta at four fifths wing length; (iv) penes with indistinct subapical lobes; (v) female sternum nine deeply cleft. In the nymph: (i) general body colour dark, brown to black, abdomen colour variable but usually black with light markings on each segment forming a broken stripe midline, two light coloured maculae flanking each midline marking; (ii) lateral margins of clypeus slightly diverging towards anterior; (iii) labrum subequal to very slightly wider than clypeus, lateral margins rounded; antero-median emargination slight bearing four to six triangular denticles extending less than one-third the width of labrum; frontal setae arranged as a narrow band, secondary hair fringe clearly separated from front band; (iv) mandible incisors with no serrations on lateral margins, no subapical processes; left mandible prostheca robust, moderately serrated; right mandible prostheca simple, slender; (v) maxillae with 15 subpectinate setae; (vi) hypopharynx deeply cleft, superlingua with rounded lateral margins; (vii) leg banding absent; (viii) fore tarsi with 13 ventral spines, fore tarsal claws with 11 ventral teeth; (ix) gills pale, slightly opaque; slender, tapering to a thin point apically; tracheae strongly developed.

Other specimens examined. SOUTH AUSTRALIA. Tookayerta Creek: TI AS1, 84120501, 5 XII 1984, 62 of N, 89 ㅇ N , (most immature); N7 AS1, 84120502,5 XII 1984, 10 or $\mathrm{N}, 11$ \& N , (most immature); S7 ASI, 84120503, 5 XII 1984, 7 of $\mathrm{N}, 10$ \& $\mathrm{N} ; \mathbf{S 7}$ AS2, 84120504, 5 XII 1984, 8 of $\mathrm{N}, 11$ \& N , (many immature); S5, 85012300, 23 I 1985, $14 \mathrm{o}^{\circ}$ $\mathrm{N}, 23$ \& N ; S5 AS3, 85030600, 6 III 1985, 4 of $\mathrm{N}, 7$ $\mp \mathrm{N}$, (most immature); S5, Cleland Gully Rd, location 3956, 95051200, 12 IV 1995, 2 d $\mathrm{N}, 1$ o $\mathrm{N} ;($ (PS). Held at the AWQC. TASMANIA. North Esk River, near Perth, 60011800, 18 I 1960, 2 of l, 2 \% I. (DS), det. E.F. Riek 1960. Heid at the ANIC.
3.3.2.5 Nousia (Australonousia) nigeli sp. nov.

Nousia sp. "AV2" (Dean 1999)
Nousia (Australonousia) nigeli sp. nov.

Types. Nousia (Australonousia) nigeli sp. nov. Holotype. Taggerty River, Lady Talbot Drive, outside Marysville, Victoria (Fig. 116) 98101704, $400 \mathrm{~m}, 145^{\circ} 46^{\prime} 28^{\prime \prime} 37^{\circ} 30^{\prime} 20^{\prime \prime}, 17$ X 1988, 1 \& NSI (reared) (KJF). Paratypes. Taggerty River, 98101704, locality data as above, 17×1988, 1 o $^{\circ} \mathrm{NSI}$ (reared) (KJF). Donnelly Creek, Donnelly Weir Rd, 97040604, 140m, $145^{\circ} 32^{\prime \prime} 03^{\prime \prime} 37^{\circ} 37^{\prime} 30^{\prime \prime}, 6$ IV 1997, 1 ㅇ NSI (reared) (KJF).

Distribution. New South Wales, Victoria, Queensland (Fig. 117).
Diagnosis. Male imago. Dimensions: body length 7.0-8.6 (7.5士0.52, 10); forewing length 6.9-8.5 $(7.6 \pm 0.50,10)$; hindwing length 1. 13-1.55 (1.27 $\pm 0.13,12)$; forewing hindwing ratio 5.03-6.89 $(5.99 \pm 0.60,10)$. General body colour chocolate brown to black. Head black. Antennae: pedicel and scape dark brown; flagellum light brown. Ocelli: three; black with white inserts; laterals larger than medial. Eyes: upper eye size large, almost contiguous, $E S=0.09-0.15$ ($0.11 \pm 0.02,10$); upper lobes orange-brown, lower lobes grey-black. Thorax: pronotum black; mesonotum shiny dark brown to black. Legs: femora yellow to tan brown with very dark brown to black markings giving a banded appearance; fore tibia dark brown, middle and hind tibiae yellow; all other segments yellow; forelegs with seven segments, total foreleg length 6.05-7.35 (6.54 $\pm 0.55,7$; leg length ratios 1.00: 1.48: $0.07: 0.47: 0.44: 0.33: 0.15(1.66 \pm 0.10,7$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 118). Wings. Forewing (Fig. 119): membrane hyaline, pterostigmal area slightly opaque, longitudinal and crossveins brown, anal veins yellow; costal and subcostal crossveins absent, or if present very faint, in proximal halves of wing, costal space with $0-5$ (10) faint crossveins proximally, 7-13 (10) distally (often some faint, some anastomosed), subcostal space with 0-4 (10) faint crossveins proximally, $9-11(10)$ distally (some faint). Three bullae present on veins Sc, R_{2} and R_{4+5}, MA forked at half to just over half the distance from wing base to margin, $M P_{2}$ connected to MP1 and CUA, CuA and CuP linked by crossvein, $I C U_{1}$ recurved to join CuA and not linked to CuA-CuP crossvein, $I C u_{2}$ recurved to join $I C u_{1}, I C u_{1}$ and $I C u_{2}$ parallel as wing margin approached, CuP strongly recurved and linked by crossvein to A_{1}. Hindwing (Fig. 120): mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex at midlength immediately preceding shallow concavity; costa joins subcosta at approximately four-fifths wing length; no crossveins in proximal haives of costal space, 3-4(10) in distal space, 3-6(10) crossveins throughout subcostal space. Abdomen: dark brown to black with golden markings on each segment forming a broken
stripe midline, two golden coloured maculae flanking each midline marking anteriorly (Fig. 121), pattern variable. Genitalia (Figs 122-126): forceps three segmented; first segment brown, progressively lighter apically; terminal segment rounded, about the same length as middie segment; penes dark brown, fused along at least two-thirds length in dorsal (Fig. 122, 124) and ventral (Fig. 123, 125) view; not extending beyond length of forceps; apical lobes with shallow concavity; two subapical lobes apparent in dorsal view (Fig. 122, 124), protruding laterally towards midiine, each lobe with a small blunt triangular tooth apparent, generally visible only under transmitted light. Caudal filaments: three; brown; terminal filament longer than cerci. Female imago. Dimensions: body length 6.6-10.1 (8.1 11.2 , $10)$; forewing length $7.6-10.4(8.6 \pm 0.76,10)$; hindwing length $1.20-1.38(1.28 \pm 0.06)$; forewing hindwing ratio 6.08-7.54 ($6.73 \pm 0.44,10$). General paiterning and colouring similar to male. Eyes: grey-black; separated on meson of head by a distance about four times maximum width of eye. Legs: total leg length snorter than male; forelegs with six segments, total foreleg length 4.62-5.34 (5.07 $\pm 0.23,10)$; leg length ratios 1.00 : 1.37: $0.18: 0.16: 0.15: 0.14(1.69 \pm 0.09,10)$. Wings. Forewing (Fig. 127): colour and venation similar to male except crossveins in proximal halves of wing and generally more crossveins on average than male; costal space with 4-6 (10) crossveins proximally (some anastomosed), 12-18 (10) distally, subcostal space with 3-5 (10) crossveins proximally, 10-14 (10) distally. Hindwing (Fig. 128): no crossveins in proximal halves of costal space, 3-4 (10) in distal space, 4-6 (10) crossveins throughout subcostal space. Abdomen: stornum seven with small genital extension, sternum nine moderately cleft (Figs. 129). Egg. Ovoid; polar cap absent; egg chorion with similarly shaped, circular protuberances medially, surrounded by interlocking polygons which cover the whole surface (Figs. 130, 131). Male and female subimago. Body lengths: σ 6.4-7.2 ($6.7 \pm 0.38,4$), -9 6.6-9.9 ($8.1 \pm 1.2,7$). Colour and markings similar to imago. Wings uniformly grey-brown, opaque. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. (Figs. 132, 133). Body lengths: of 7.2-8.2 (7.7 $\pm 0.39,12)$, o 8.3-10.0 (8.9 $\pm 0.49,15$). General colour dark brown with light markings. Head: prognathous; dark brown with darker brown wash between ocelli; width 1.48-1.78 (1.61 $\pm 0.10,11)$. Ocelli; three; black with white inserts; laterals larger than medial. Antennae: pedicel and scape dark brown, flagellum golden; approximately one and a half times length of head. Eyes: upper lobes of male reddish-brown, lower lobes black; eyes of female black. Mouthparts. Labrum and clypeus (Fig. 134): lateral margins of clypeus straight or slightly diverging towards arterior; lateral margins of labrum slightly wider than clypeus, rounded; anterior margin of labrum with straight antero-median emargination; labrum length 0.25-0.39 $\mathbf{(0 . 3 4 \pm 0 . 0 4 ,}$ 20), labrum width 0.66-0.89 ($0.77 \pm 0.07,20$), labrum width length ratio 2.11-2.72 $(2.29 \pm 0.15,20)$; five flat elongate denticles present extending $0.24-0.34(0.30 \pm 0.05,11)$ across labrum, denticle width as proportion of labrum width $0.33-0.51(0.39 \pm 0.08,11)$; frontal setae arranged as a broad band, secondary thair fringe abutts broad band.

Mandibles: outer margins slightly curved, sparse long setae at midpoint on outer lateral margins, shorter setae along margin between tufi and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in an inverted L-shape on lower mandible body. Left mandible (Fig. 135): two incisors, each with three apical teeth, outer incisor inconspicuously serrated on inner lateral margin; prostheca robust, distinctiy serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 136): sparse long spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin; inner incisor with two apical teeth; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 137): galealacinae about as wide as long, width length ratio 0.84-1.00 ($0.95 \pm 0.05,10$); subapical row of 13-16 (10) pectinate setae; palpi three segmented; ternsinal palp with single spine apically; palp length ratios 1.00: 0.69: $0.63(0.22 \pm 0.02,10)$. Hypopharynx (Fig. 138): well developed lateral processes; antericr margin of lingua deeply cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, rounded lateral margins. Labium (Fig. 139): glossae not turned under ventrally and lying in the same plane as paraglossae, series of blunted spines apically; palpi three segmented, terminal segment with ring of triangular spines circling apex and stout spines on dorsal surface; palp length ratios 1.00: 0.81: $0.55(0.35 \pm 0.03,10)$; submentum with spines on lateral margins. Thorax: tan to dark brown with darker chocolate brown markings; pronotum width 1.38-1.73 (1.53 ± 0.13, 11), approximately equal to width of head (see above), head pronotum width ratio 0.89 1.06 ($0.95 \pm 0.06,11$). Legs (Fig. 140): tan brown with chocolate brown markings across femora, tibiae and tarsus giving a banded appearance; fore femora length 1.15-1.55 $(1.37 \pm 0.14,13)$, fore femora width $0.44-0.63(0.56 \pm 0.07,13)$, fore femora length width ratio 2.19-2.70 $(2.45 \pm 0.14,13)$; fore tarsi with $6-8(10)$ ventral spines; tarsal claws with . 10-14 (10) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated (Fig. 141); total foreleg length 2.66-3.53 (3.12 $\pm 0.28,13$); leg length ratios, foreleg $1.00: 0.89: 0.40(1.37 \pm 0.14,13)$, midleg $1.00: 0.82: 0.31(1.51 \pm 0.14,13)$, hindleg 1.00: $0.83: 0.28(1.79 \pm 0.16,13)$. Abdomer:. dark chocolate brown to black with yellow to light brown markings medially on each segment forming a broken stripe midline, two light coloured maculae flanking each midline markings anteriorly; posterolateral spines present, progressively larger posteriorly. Gills (Fig. 142): membrane opaque, grey to black; present on segments one to seven, progressively smailer posteriorly; double, upper and lower lamellae equally developed, each gill slender, tapered to a thin point apically; main tracheal branch just apparent, lateral tracheae poorly to moderately well developed. Caudal filaments: three: yellow, darkened apically at each segment giving banded appearance; terminal filament longer than cerci.

Etymology. The species epithet is named for Nigel Ainsworth who was of significant help with field work and general support throughout the project.

Remarks. The nymph of this species has been known for some time but has remained undescribed. It has variously been referred to Atalonella "sp. 2" or Atalonella "sp. E", MMBW "sp. 2", Nousia "sp. 2", Atalophlebioides " sp. B", Atalophlebioides "sp. D" and Dartmouth "sp. 8A" in voucher collections held at various institutions throughout the state. It is listed as Nousia sp. "AV2" in the most recent publication (Dean 1999).

Nousia (Âustralonousia) nigeli can be distinguished from all other species in the subgenus by the following combination of characters. In the imago: (i) general body colour chocolate brown to black, (ii) male upper eye size large, never contiguous; (iii) thorax often shiny bro! 7 to black; (iv) leg banding present; (v) hindwing costa joins subcosta at threequarters wing length; (vi) abdomen colour chocolate brown to black with golden coloured markings on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking; (vii) penes with subapical lobes; (viii) female sternum nine moderately cleft: (ix) egg chorion with similarly shaped, circular protuberances medially, surrounded ; interlocking polygons which cover the whole surface. In the nymph: (i) antennal lengtl: one and a half times length of head; (ii) lateral margins of clypeus slightly diverging towards anterior; (iii) labrum slightly wider than clypeus; more than twice as long as wide; lateral margins rounded; antero-median emargination straight bearing five rounded denticies, denticles extend two-fifths the width of the labrum on average; frontal setae arranged as a broad band secondary hair fringe abutts front band; (iv) mandibles with no subapical processes on incisors, outer incisors inconspicuously serrated on inner niargin; (v) maxillae with 13-16 subpectinate setae; (vi) hypopharynx deeply cleft, superlingua with rounded lateral margins; (vii) leg banding present; (viii) fore femora 2.5 times longer than wide; fore tarsi with 6-8 ventral spines; fore tarsal claws with 10-14 ventral teeth; (ix) abdiomen dark chocolate brown to black with yellow to light brown markings medially on each segment forming a broken stripe midline, two light coloured maculae flariking each midline marking anteriorly; (x) gills grey-black, opaque, slender, tapering to a thin point apically, tracheae poorly to moderaiely well developed.

Specimens examined. NEW SOUTH WALES. Boonoo Boonoo River tributary, 83052000, 20 V 1983, EPH 1670, 30° N, (DC). Diggers Creek, Summit Rd near Stonehenge, Kosciusko National Park, 97120201, 02 XII 1997, 1500m, $148^{\circ} 29^{\prime} 36^{\circ} 22^{\prime}, 1$ \& N (KJF). Friday Flat Creek tributary, near Thredbo, 84011900, 19 11984, 1380m, $148^{\circ} 19^{\prime} 29^{\prime \prime} 36^{\circ} 30^{\prime} 02^{\prime \prime}$, EPH 1675, 1 of N, 1 \& N (JD). Leather Barrell Creek, Alpine Way, Kosciusko National Park, 97120205, 02 XII 1997, 1000m, $148^{\circ} 11^{\prime} 36^{\circ} 31^{\prime}, 2$ of N, 2 \& N (KJF). Murray River tributary, Tom Groggin Picnic Area, Kosciusko National Park, 80102400, 24×1980, EPH 1650, 1 if N, 3 甲 N (DC). No 1 Creek, 6kms downstream
 Swampy Plains River, Alpine Way, Kosciusko National Park, 97120206, 2 XII 1997, $420 \mathrm{~m}, 148^{\circ} 10^{\prime} 36^{\circ} 23^{\prime}, 2$ \% $\mathrm{N}(\mathrm{KJF})$. Thredbo River, Thredbo Golf Course, 84012501, 25 (1984, $1380 \mathrm{~m}, 148^{\circ} 18^{\prime} 36^{\circ} 30^{\prime}$, EPH 1656, 5 of $\mathrm{N}, 4$ 9 N (JD). QUEENSLAND. Blackfellows Falls, Springbrook, Warrie National Park, 79120601, 6 XII 1979, 770m, $153^{\circ} 16^{\prime} 28^{\circ} 13^{\prime}$, EPH 1692,1 o $^{\circ} \mathrm{N}, 3 \neq \mathrm{N}(\mathrm{DC})$. Branch Creek, Conondale Ranges, 88070900, 9 VII 1988, $160 \mathrm{~m}, 152^{\circ} 43^{\prime} 26^{\circ} 53^{\prime}$, EPH 1689, $1 \circ \mathrm{~N}(\mathrm{SB})$. Upstream Fallis, Natural Bridge National Park, 79120602,6 XII 1979, $800 \mathrm{~m}, 153^{\circ} 14^{\prime} 28^{\circ} 15^{\prime}$, EPH 1791,1 ¢ N (DC). VICTORIA. Acheron River, Granton Rd, 98021505, $15 \|$ 1998, 390m, $145^{\circ} 41^{\prime} 27^{\prime \prime} 37^{\circ} 34^{\prime} 42^{\prime \prime}, 10^{\circ} \mathrm{NS}$ (reared, sub em 2 III 1999), 1 甲 $\mathrm{N}(\mathrm{KJF})$. Badger Creek, junction of Eadger Creek Rd and Bluegum Drive, 97040602, 6 IV 1997, 130m, $145^{\circ} 32^{\prime} 11^{\prime \prime} 37^{\circ} 41^{\prime} 02^{\prime \prime}, 1 \circ \mathrm{~N}(\mathrm{KJF})$. Badger Creek downstream weir, 80011801, 181 1980, 280m, $145^{\circ} 34^{\prime} 37^{\circ} 41^{\prime}$, EPH 1582, 1 of NSI (reared), (JD). Bluff Creek, 11.7 km up Mt Stirling Rd, 81110201, 2 XI 1981, 1310m, $146^{\circ} 28^{\prime} 37^{\circ} 07^{\prime}$, EPH 1742, 1 of $\mathrm{N}, 1$ \& N (JD). Bogong Jack Creek, West Kiewa Logging Rd, 97110602, 6 XI 1997, 1070m, $147^{\circ} 10^{\prime} 12^{\prime \prime} 36^{\circ} 49^{\prime} 59^{\prime \prime}, 1$ ㅇ N, 1 ㅇ NS (reared, sub em 10 XI 1997) (KJF). Bonang River, Bonang Rd, N of Bonang, $99021308,13 \| 1999,640 \mathrm{~m}, 148^{\circ} 43^{\prime} 37^{\circ} 09^{\prime}, 1$ \& N (KJF). Brandy Creek, Great Alpine Rd, 96111902, 19 XI 1996, $1560 \mathrm{~m}, 147^{\circ} 11^{\prime} 22^{\prime \prime} 37^{\circ} 00^{\prime} 55^{\prime \prime}$, $1{ }^{\circ} \mathrm{N}$ (KJF); 97011902, 19 I 1997, same locality data, 2 \% N (KJF). Brodribb River, Bonang Rd, 16 kms N of Malinns, 99021305,13 il $1999,100 \mathrm{~m}, 148^{\circ} 32^{\prime} 37^{\circ} 30^{\prime}, 1$ i N (KJF). Bull Creek, Bull Creek Rd, $96113003,30 \mathrm{XI} 1996,360 \mathrm{~m}, 145^{\circ} 35^{\prime} 39^{\prime \prime} 37^{\circ} 28^{\prime} 31^{\prime \prime}$, 1 of $\mathrm{N}, 1$ ¢ N (KJF). Bull Creek tributary, W of Yea Rock, 450m, 96113004, 30 XI 1996, $145^{\circ} 35^{\prime} 14^{\prime \prime} 37^{\circ} 27^{\prime} 07^{\prime \prime}, 1$ o $^{\circ}$ NS , 1 of $\mathrm{N}(\mathrm{KJF})$. Cement Creek, Mount Donna Buang Rd, $76102101,21 \times 1976,670 \mathrm{~m}, 145^{\circ} 42^{\prime} 20^{\prime \prime} 37^{\circ} 42^{\prime} 48^{\prime \prime}$, EPH 1583, 1 \& Nl (reared), (JD); 98030503, 5 III 1998, same locality data, 1 o NSI (reared), (KJF); 00022601, 26 II 2000, same locality data, 1 \& N (KJF). Charity Creek tributary, Mt Baw Baw Tourist Rd, 99021602, 16 II 1999, 1180m, 146 ${ }^{\circ} 15^{\prime \prime} 15^{\prime \prime} 37^{\circ} 50^{\prime} 47^{\prime \prime}$, 1 o $\mathrm{N}, 1$ of (KJF). Clearwater Creek, Bogong High Plains Rd, 96111003, 10 XI 1996, 1410m, $147^{\circ}{ }^{\circ} 1^{\prime} 10^{\prime \prime} 36^{\circ} 57^{\prime \prime} 10^{\prime \prime}, 2$ \% N (KJF). Coranderrk Creek, Badger Weir Rd, 98030502, 5 III 1998, 240m,
 Corryong Rd, 11 kms N of Upiands, 99021501, 15 II 1999, 620m, $147^{\circ} 42^{\prime} 36^{\circ} 49^{\prime}, 2$ o $\mathrm{N}, 4$ i N (KJF). Eurobin Creek, Mt Buffalo Rd, Mt Buffalo National Park, 96110702, 7 XI 1996, 440m, $146^{\circ} 50^{\prime} 29^{\prime \prime} 36^{\circ} 43^{\prime} 10^{\prime \prime}$, 1 of $\mathrm{N}, 2$ ㅇ N (KJF). Faith Creek, Tarijil Bren Rd, 96101205, $12 \times 1996,540 \mathrm{~m}, 146^{\circ} 14^{\circ} 37^{\circ} 52^{\prime} 20^{\prime \prime}, 1$ \& $\mathrm{N}, 1$ of $\mathrm{N}(\mathrm{KJF})$. Falls Creek, Telephone Box Junction, Mt Stirling Rd, 81110203, 2 X! 1981, $1220 \mathrm{~m}, 146^{\circ} 27^{\prime} 37^{\circ} 06^{\prime}$, EPH 1572, 1 \% N, (JD); EPH 1574, $2 \sigma^{\circ} \mathrm{N}$, (JD). First Creek, Warburton-Jamieson Rd, 85120700, 7 XII 1985: $750 \mathrm{~m}, 145^{\circ} 58^{\prime} 10^{\prime \prime} 37^{\circ} 25^{\prime} 25^{\prime \prime}$, EPH 1733, 1 ifN, (JD). German Creek, Bright-Tawonga Rd, 96110901 , 9 XI 1996, $440 \mathrm{~m}, 147^{\circ} 03^{\prime} 25^{\prime \prime} 36^{\circ} 43^{\prime} 58^{\prime \prime}, 5$ of $\mathrm{N}, 4$ of $N(K J F)$. Gibbo River, Benambra-Corryong Rd, 99021502, 15 II 1999, 500m, $147^{\circ} 42^{\prime}$ $36^{\circ} 45^{\prime}, 2$ \% $\mathrm{N}(\mathrm{KJF})$. Growlers Creek, Williams Rd Camp Site, Wandiligong, 96110801, 8 Xi 1996, 380m, $146^{\circ} 59^{\prime} 10^{\prime \prime} 36^{\circ} 45^{\prime} 54^{\prime \prime}, 1$ o $^{\prime \prime} \mathrm{N}, 7$ ㅇ N (KJF); 97110801, 8 XI 1997, same locality data, $1 \& \mathrm{~N}, 1$ \& NS (reared), (KJF). Haunted Stream, Great Alpine Rd, 99021409, 14 II $1999,180 \mathrm{~m}, 147^{\circ} 49^{\prime} 37^{\circ} 28^{\prime}, 4 \circ^{\circ} \mathrm{N}, 5 \% \mathrm{~N}(\mathrm{KJF})$. Hensleigh Creek,
 (reared), 1 o NSI (reared, sub em 291 1998, im em 30। 1998), 1 o $\mathrm{N}, 2$ 오 N (KJF). Hope Creek, Tanjil Bren Rd, 96101204, $12 \times 1996,550 \mathrm{~m}, 146^{\circ} 14^{\prime} 03^{\prime \prime} 37^{\circ} 51^{\prime \prime} 55^{\prime \prime}, ~ 1$ o N (KJF). Kiewa River west branch, Blairs Hut, 97021901, 1911 1997, 120m, $147^{\circ} 10^{\prime} 36^{\circ} 55^{\prime} 16^{\prime \prime}, 1$ of N (KJF). King Parrot Creek, Whittlesea Yea Rd, 15km SW of Flowerdale, 98030501,05 III 1998, $350 \mathrm{~m}, 147^{\circ} 14^{\prime} 48^{\prime \prime} 37^{\circ} 25^{\prime} 00^{\prime \prime}, 1 \neq \mathrm{NSI}$ (reared, sub em 12 III 1998, im em 13 III 1998), 1 i NI (reared, im em ; 13 III 1997), 2 \& $\mathrm{N} ; 1$ \& NSI (reared, imago em 16 III 1998) (KJF). La Trobe River, Big Creek Basin Rd, 5km E of Powelltown, 96101002, $10 \times 1996,320 \mathrm{~m}, 145^{\circ} 50^{\prime} 10^{\prime \prime} 37^{\circ} 52^{\prime} 35^{\prime \prime}, 2$ of N (KJF). Lawler Springs, Bright-Tawonga Rd, 96110902, $09 \mathrm{XI} 1996,760 \mathrm{~m}, 147^{\circ} 07^{\prime} 47^{\prime \prime} 36^{\circ} 43^{\prime} 30^{\prime \prime}, 2$ o $^{\circ}$ I, 2 of $\mathrm{N}, 3 \circ \mathrm{~N}$ (KJF). Learmonth Creek, Yarra Junction-Neerim Rd, Powelltown, 96101001, $10 \times 1996,180 \mathrm{~m}, 145^{\circ} 44^{\prime} 33^{\prime \prime} 37^{\circ} 51^{\prime} 43^{\prime \prime}, 3 \delta^{\circ} \mathrm{N}(\mathrm{KJF})$. Little River, Maroondah Highway, outside Taggerty, 77122200, 22 XI 1977, 210m, 145²42'40" $37^{\circ} 19^{\prime} 25^{\prime \prime}$, EPH 1651, 2 of $\mathrm{N}, 7$ \% N_{1} (JD); 98101702, $17 \times$ 1998, same locality data, 1 \% NS (reared, sub em 21×1998) (KJF). Little Toorongo Falls, Toorongo Falls, Toorongo Falls Rd, 9802090 , 09 II 1998, 420m, $146^{\circ} 02^{\prime \prime} 55^{\prime \prime} 37^{\circ} 50^{\prime} 58^{\prime \prime}, 2$ of NI (reared), 1 \& N (KJF). Loch River, Loch River Rd, $1^{\text {st }}$ bridge from Noojee, 98020903,9 II 1998, 290m, $145^{\circ} 59^{\prime} 40^{\prime \prime} 37^{\circ} 50^{\prime} 53^{\prime \prime}, 1$ o $^{\mathrm{N}} \mathrm{NSI}$ (reared, im em 16 II 1998), 1 o $^{\circ} \mathrm{NSI}$ (reared, sub em 17 II 1998, im em 18 II 1998), 1 \& N (KJF). Menzies Creek, Butterfield Wildlif3 Reserve, Emerald-Mcnbulk Rd, 07032403, 24 III 1997, 160m, $145^{\circ} 26^{\prime} 22^{\prime \prime} 37^{\circ} 53^{\prime \prime} 47^{\prime \prime}$, 1 ㅇ N (KJF). Middle Creek, Omeo Highway, $96111004,10 \mathrm{XI} 1996,700 \mathrm{~m}, 147^{\circ} 27^{\prime} 50^{\prime \prime} 37^{\circ} 55^{\prime} 19^{\prime \prime}$, $700 \mathrm{~m}, 7$ of $\mathrm{N}, 9$ \& N (KJF). Mitta Mitta River, Omeo Valley Rd, 99021503 , 15 II 1999, $540 \mathrm{~m}, 147^{\circ} 36^{\prime} 36^{\circ} 56^{\prime}, 1$ of $\mathrm{N}, 2$ \& $\mathrm{N}(\mathrm{KJF})$. Mountain Creek, 7 km E of Tawonga South,

90110300,3 XI 1990, $510 \mathrm{~m}, 147^{\circ} 14^{\prime} 36^{\circ} 42^{\prime}$, EPH 1584, 7 \& $\mathrm{N}, 12$ 오 N, (DC). Myrtle Gully, Syivia Creek Rd, Toolangi State Forest, 96112901, 29 XI 1996, $620 \mathrm{~m}, 145^{\circ} 31^{\prime} 44^{\prime \prime}$ $37^{\circ} 31^{\prime} 44^{\prime \prime}, 13^{7} \mathrm{~N}$ (KJF). Myrtie Creek, Donna-Buang Rd, 00031901, 19 III 2000, 780m, $145^{\circ} 36^{\prime} 42^{\prime \prime} 37^{\circ} 42^{\prime} 35^{\prime \prime}, 2$ o N (KJF). O'Shannassy River, (access restricted), 75111400, 14 XI 1975, 580m, $145^{\circ} 49^{\prime} 37^{\circ} 36^{\prime}$, EPH 1570, 1 o N, (JD); 76121502, 15 XII 1976, same locality data, EPH 1567, 1 or N (JD), EPH 1581, 3 \% $\mathrm{N}, ~(J D) ; 80010401,41$ 1980, sane locality data, EPH 1568, 10 NI (reared), (JD), EPH 1569, 10 NI , reared (JD), EPH 1577, 1 i NI (reared), (JD). Ovens River tributary, upstream Harrietville, 82091000, 10 IX 1982: $540 \mathrm{~m}, 147^{\circ} 00^{\prime} 0^{\prime \prime} 36^{\circ} 54^{\prime} 15^{\prime \prime}$, EPH 1571, 1 \& N (JD), EPH 1579, 1 of $\mathrm{N}, 2$ ㅇ N , (JD). Pioneer Creek, Bennetts Track, Tarago-La Trobe State Forest, $96101003,10 \times 1996$, $330 \mathrm{~m}, 145^{\circ} 49^{\prime} 47^{\prime \prime} 37^{\circ} 53^{\prime} 01^{\prime \prime}, 1$ ㅇ $N(K J F)$. Pretty Valley Creek, Bogong High Plains Rd, 1.5 km S of Bogong, 96110904,9 XI 1996, $740 \mathrm{~m}, 147^{\circ} 13^{\prime} 20^{\prime \prime} 36^{\circ} 49^{\prime} 10^{\prime \prime}, 2$ o N (KJF). Running Creek, Warburton- Jamieson Rd, 81103102, $31 \times 1981,750 \mathrm{~m}, 145^{\circ} 58^{\prime} 10^{\prime \prime}$ $37^{\circ} 21^{\prime} 42^{\prime \prime}$, EPH 1580, 2 ㅇ N, (JD). Rubicon River, Rubicon Bridge, Taggerty-Thornton Rd, $98101701,17 \times 1998,220 \mathrm{~m}, 145^{\circ} 47^{\prime} 56^{\prime \prime} 37^{\circ} 16^{\prime} 56^{\prime \prime}, 1$ o NS (reared, sub em 28 X 1998), 1 \& N (KJF). Rubicon River, Rubicon Falls, 80112001,20 XI 1980, 560m, $145^{\circ} 51^{\prime} 02^{\prime \prime}, 37^{\circ} 20^{\prime} 29^{\prime \prime}$, EPH 1648, 2 \& N, (JD). Russell Creek, off Gunn Rd, 3 km N of Noojee, $96101005,10 \times 1996,280 \mathrm{~m}, 145^{\circ} 59^{\prime} 26^{\prime \prime} 37^{\circ} 50^{\prime} 45^{\prime \prime}, 1$ i $N(K J F)$. Sandy Creek, Murrindindi Falis, 96112903, 29 XI 1996, 390 m, $145^{\circ} 34^{\prime} 27^{\prime \prime} 37^{\circ} 26^{\prime} 27^{\prime \prime}, 1$ o N (KJF). Sassafras Creek, Monbulk-Olinda Rd, 96101302, $13 \times 1996,320 \mathrm{~m}, 145^{\circ} 22^{\prime} 18^{\prime \prime}$ $37^{\circ} 52^{\prime} 46^{\prime \prime} ; 2$ of $\mathrm{N}, 1$ \& $\mathrm{N}, 96112101,21 \mathrm{XI}$ 1996, same locality data, 1 \& NS (reared), 1 o NSI (reared), (KJF). Sassafras Creek, Kay's Picnic Ground, Monbulk Rd, 90101303, $13 \times 1996,250 \mathrm{~m}, 145^{\circ} 23^{\prime} 21^{\prime \prime} 37^{\circ} 53^{\prime} 03^{\prime \prime}, 3$ 甲 N (KJF); 97032402, 24 III 1997, same locality data, 1 \& N, 1 \& NS (reared), (KJF). Sassafras Creek, Perrins Creek Rd, 97101502, $15 \times 1997,370 \mathrm{~m}, 145^{\circ} 22^{\prime} 37^{\circ} 52^{\prime} 46^{\prime \prime}, 2$ of $N(K J F)$. Shicer Creek, West Ovens Track, Bonang National Park, 96110802,8 XI 1996, 580m, $147^{\circ} 02^{\prime} 30^{\prime \prime} 37^{\circ} 55^{\prime} 20^{\prime \prime}$, 2 \& N (KJF). Snobs Creek, Snois Rd crossing, 81103103, 31×1981, 760m, $145^{\circ} 54^{\prime} 38^{\prime \prime} 37^{\circ} 21^{\prime} 00^{\prime \prime}$, EPH 1573, 1 \& N (JD); EPH 1585, 4 o $^{\circ} \mathrm{N}, 10$ \% N (JD). Starvation Creek, upstream weir, 77120901,9 XII 1977, $340 \mathrm{~m}, 145^{\circ} 50^{\prime} 53^{\prime \prime} 37^{\circ} 45^{\prime} 39^{\prime \prime}$, EPH 1566, 1 o $\mathrm{N}(\mathrm{JD})$; EPH 1578, 4 o $\mathrm{N}, 3 \ngtr \mathrm{~N}$ (JD). Steavensons River, Marysville Rd, $98101703,17 \times 1998,320 \mathrm{~m}, 145^{\circ} 44^{\prime} 01^{\prime \prime} 37^{\circ} 28^{\prime} 32^{\prime \prime}, 1$ o $N(K J F)$. Steavensons River, Buxton-Marysville Rd, 98021504, 15 II 1998, 460m, $145^{\circ} 45^{\prime} 02^{\prime \prime} 37^{\circ} 28^{\prime} 53^{\prime \prime}, 1$ o $^{\circ}$ NSI (reared), 1 \& NSI (reared, sub em 17 || 1998, im em 18 II 1998), 1 \& NSI (reared, sub em 19 II 1998, im em $20 \|$ 1998), 1 ¢ NS (reared, sub em $19 \|$ 1998), 4 of $\mathrm{N}, 1$ 9 N (KJF). Suggan Buggan River, Snowy River Rd, Suggan Buggan, 99021406, 14 || 1999, $390 \mathrm{~m}, 148^{\circ} 19^{\prime} 36^{\circ} 57^{\prime}, 1$ \& N (KJF). Swindlers Creek, 6 km from Mt Loch Car Park, off Australian Alps walking track, Mt Hotham, 96111903, 19 XI 1996, $1640 \mathrm{~m}, 147^{\circ} 09^{\prime} 40^{\prime \prime}$
$36^{\circ} 58^{\prime} 42^{\prime \prime}, 8 \% \mathrm{~N}(\mathrm{KJF})$ ．Taggerty River， $98101704,17 \times 1998$ ，locality data as per types， $1 \sigma^{*} \mathrm{NSI}$（reared，sub em 21×1998 ，im em 22×1998 ）， 1 đ NI， 12 o $\mathrm{N}, 4$ 甲 N （KJF）．Taggerty River headwaters，Royston Gap Rd，Lake Mountain，96102501， 25 X 1996， $1320 \mathrm{~m}, 145^{\circ} 52^{\prime} 35^{\prime \prime} 37^{\circ} 29^{\prime} 39^{\prime \prime}, 1$ \＆ N （immature）（KJF）．Talbot Creek， downstream Thomson River Reservoir，86040900， 9 IV 1986， $700 \mathrm{~m}, 147^{\circ} 22^{\prime} 20^{\prime \prime}$ $37^{\circ} 50^{\prime} 52^{\prime \prime}$ ，EPH 1753， 1 ㅇ N，（DC）．Tanjil River east branch tributary，Mt Baw Baw Touris！Rd，96101104， $11 \times 1996,500 \mathrm{~m}, 146^{\circ} 11^{\prime} 29^{\prime \prime} 37^{\circ} 49^{\prime} 58^{\prime \prime}, 5$ o N （KJF）．Taponga River，Eildon－Jamieson Rd，99022008， $20111999,320 \mathrm{~m}, 146^{\circ} 02^{\prime \prime} 50^{\prime \prime} 37^{\circ} 22^{\prime} 42^{\prime \prime}, 2$ of $\mathrm{N}, 2$甲 N （KJF）．Tarra River，Tarra Bulga National Park，84010900， 9 I 1984，340m， $146^{\circ} 32^{\prime} 13^{\prime \prime} 38^{\circ} 26^{\prime} 57^{\prime \prime}$ ，EPH $1716,10^{\circ} \mathrm{N},(\mathrm{JD}) ; 98112101,21 \mathrm{XI} 1998$ ，same locality data， $1 \circ \mathrm{NSI}$（reared，sub em $30 \|$ 1998，im em 1 XII 1998）， $1 \circ \mathrm{NS}$（reared， $23 \|$ 1998）， 1 ¢ N（KJF）；Tarra River，Tarra Buiga National Park，99021601， 16 II 1999，340m， $146^{\circ} 32^{\prime} 15^{\prime \prime} 38^{\circ} 27^{\prime} 00^{\prime \prime}, 3$ if $\mathrm{N}(\mathrm{KJF})$ ．Toorongo River， 5 km NE of Noojee， 96101102,11 X 1996，280m，146 ${ }^{\circ} 02^{\prime} 29^{\prime \prime} 37^{\circ} 51^{\prime} 17^{\prime \prime}$ ， 1 \＆ N （KJF）．Unnamed tributary of Tanjil River east branch－＇Rubbish Tip＇，Nit Baw Baw Tourist Rd，96101206， 12×1996 ，620m， $146^{\circ} 13^{\prime} 00^{\prime \prime} 37^{\circ} 50^{\prime} 38^{\prime \prime}, 1$ \＆ $\mathrm{N}(\mathrm{KJF})$ ．William Wallace Creek，Triangle Link Rd， Gembrock Park，97012901， 29 I 1997，150m， $145^{\circ} 35^{\prime} 38^{\prime \prime} 37^{\circ} 59^{\prime} 03^{\prime \prime}, 2$ \＆NSI（reared）， 1 甲 Nl （reared）， 1 甲 NS （reared）， 2 \＆ N （KJF）．

3.3.2.6 Nousia (Australonousia) wiltkorringae Finlay

 see Chapter 4
3.3.2.7 Nousia (Australonousia) sp. "AV5"

Nousia sp. "AV5" (Dean 1999)

Distribution. Tasmania (Fig. 143).

Diagnosis. Male imago. Unknown. Female Imago. Unknown. Egg. Unknown. Male and female subimago. Unknown. Mature nymph. (Fig. 144). Body lengths: body length $\sigma^{\circ} 7.3-9.3(8.3 \pm 0.70,10) ;$ 8.3-9.0 (8.4 $\left.\pm 0.36,7\right)$. General colour golden to tan brown with light and dark markings. Head: prognathous; golden brown, darker anteriorly and between ocelli; width $1.43-1.65$ ($1.57 \pm 0.07,11$). Ocelli: three, black with grey inserts; laterals larger than medial. Antennae: pedicel, scape and flagellum golden; approximately one and a half times the length of the head. Eyes: upper lobes of male reddish-brown, lower lobes black; eyes of female grey-black. Mouthparts. Labrum and clypeus (Fig. 145): lateral mârgins of clypeus moderately diverging towards anterior; lateral margins of labrum wider than clypeus, rounded to angular; labrum length 0.31-0.39 ($0.35 \pm 0.02,10$); labrum width $0.73-0.91(0.83 \pm 0.05,10)$; labrum width length ratio 2.21 $2.48(2.36 \pm 0.10,10)$; anterior margin of labrum with slight antero-median emargination; five flat elongate denticles present on anterior margin extending 0.15-0.38 (0.26 ± 0.06, 10) across labrum; denticle width as proporition of labrum width 0.21-0.42 (0.30 ± 0.061, 10); frontal setae arranged as a narrow band; secondary hair fringe clearly separated from narrow band. Mandibles: outer margins slightly curved; sparse long setae at midpoint on outer lateral margins; shorter setae between tuft and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in an inverted L-shape on lower mandible body. Left mandible (Fig. 146): two incisors, each with three apical teeth, both inconspicuously serrated on inner margin; outer incisor occasionally with subapical process; prostheca distinctly robust, serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 147): sparse long spine-like setae on inner lateral margin; two incisors; outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin; inner incisor with two apical teeth, serrated on outer lateral margin; prostheca simple, slender, divided apically; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 148): galea-!acinae wider than long, width length ratio 1.06-1.28 (1.20 $\pm 0.07,10$); subapical row of 20-23 (10) pectinate setae; subapical process extending lateraliy towards inner margin; palpi three segmented, terminal segments often with single spine apically, palp length
ratios 1.00: 0.95: $0.51(0.30 \pm 0.02,10)$. Hypopharynx (Fig. 149): well developed lateral processes; anterior margin of lingua moderately cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, angular iateral margins with slight indentation. Labium (Fig. 150): glossae not turned under ventrally and lying in the same plane as paraglossae, series of blunted spines apically; palpi three segmented, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface; paip length ratios 1.00:0.90: $0.53(0.38 \pm 0.01,10)$; submentum with sparse spines on lateral margins. Thorax: goiden to tan brown with darker brown markings; pronotum width 1.33-1.60 ($1.47 \pm 0.08,10$), slightly narrower than width of head (see above), head pronotum width ratio $0.88-0.98$ ($0.93 \pm 0.03,10$). Legs (Fig. 151): goiden to tan brown, no apparent markings; femora slightly darker than tibia or tarsus; fore femora length 1.38-1.70 (1.56 $\pm 0.09,11$); fore femora width 0.43-0.53 (0.48 $\pm 0.03,11$); fore femora length width ratio $3.00-3.50(3.24 \pm 0.15,11)$; fore tarsi with $3-6$ (10) ventral spines; tarsal claws with 9-12 (10) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated (Fig. 152); total foreleg length 3.03-3.81 (3.54 $\pm 0.21,11$); leg length ratios, foreieg $1.00: 0.88: 0.39(1.56 \pm 0.09,11)$, midleg 1.00: $0.88: 0.35(1.57 \pm 0.12$, 10), hindieg 1.00: $0.87: 0.31(1.84 \pm 0.15,10)$. Abdomen: predominantly tan brown with underlying yellow colour; yellow patches of colour on segments six to nine, progressively larger posteriorly; segment ten almost entirely yellow; small posterolateral spines present, progressively larger posteriorly. Gills (Fig. 153): membrane somewhat opaque, greyish; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; each gill slender, tapering to a thin point apically; main tracheae strongly developed, fateral tracheae absent or weakly developed. Caudal filaments: three; golden; terminal filament longer than cerci.

Remarks. This morphospecies appears to be endemic to Tasmania and is known only from the nymph. It has been known as Nousia sp. 5 (Dean and Cartwright 1992) and is now referred to in the literature as Nousia sp. "AV5" (Dean 1999) but cannot be given species status due to the absence of the adult stages. As its species status remains uncertain, I suggest it remains informally within Nousia (Australonousia) until associations between the nymphs and the adults can be made.

It appears many individuals were found by David Cartwright and John Dean on a collecting trip to the Pelion Valley World Heritage Area (Dean and Cartwright 1992). Much of this area is inaccessible except by foot and is more than a day's walk from civilisation. I did not visit this area for the purpose of rearing species due to the logistic difficultly of transporting live specimens long distances. Further, I was unsuccessful in my attempts to collect this species from relatively accessible sites in and around Cradle Mountain-Lake St. Clair National Park despite visiting numerous streams eg: Watersmeet
(96122701) near Lake St Clair; Litite Navarre River (96122801), Collingwood River (96122803) near Lyell Highway and Pencil Pine Creek (96123002) and Iris River (96123003) near Cradle Mountain. Other collecting sites in Tasmania did not yield any of this species either.

According to Dean and Cartwright (1992) the animal prefers larger streams in the Pelion Valley. Collection trips to similar habitat around Tasmania failed to produce any specimens, despite the fact that it has been found in a few areas outside the Park. A comprehensive survey of the state, concentrating on larger streams, would be of value in attempting to collect some specimens for rearing. Failing that, rearing in situ in the Pelion Valley may be the only way to obtain an associated adult. Such a process is logistically difficult, time-consuming and expensive.

The morphospecies Nousia (Australonousia) sp. "AV5" can be distinguished from all other species in the subgenus by the following combination of characters. In the nymph: (i) antennal length approximately twice length of head; (ii) lateral margins of clypeus slightly diverging towards anterior; (iii) labrum slightly wider than clypeus, more than twice as long as wide, lateral margins rounded to angular; antero-median emargination slight bearing five flat elongate denticles; denticles extend one-third width of the labrum on average; frontal setae arranged as a narrow broad, secondary hair fringe separate from front band; (iv) mandibles with incisors inconspicuously to conspicuously serrated on lateral margins; left mandible outer incisor with small subapical process; left mandible prostheca robust, distinctly serrated; right mandible prosthecal simple, slender, divided apically; (v) maxillae galea-lacinae slightly wider than long, 20-23 subpectinate setae, subapical process extending laterally towards inner lateral margin; (vi) hypopharynx moderately cleft, superlingua with slight angular lateral margins; (vii) leg banding absent; (viii) fore femora 3.2 times longer than wide; fore tarsi with 3-6 ventral spines; fore tarsal claws with 9-12 ventral teeth; (ix) abdomen tan brown, yellow patches of colour on segments six to nine, progressively larger apically, segment ten almost entirely yellow; (x) gills greyish, opaque; slender, tapering to a thin point apically; main tracheae strongly developed, lateral tracheae absent or very weakly developed.

Specimens examined. TASMANIA. Boyd River, locality $25,82030400,4$ ill 1982, EPH
 $147^{\circ} 52^{\prime} 41^{\circ} 26^{\prime}$, EPH 0189, 1 ơ N, 11 ㅇ N (PS \& PG). Douglas Creek, High Bridge near old Pelion Hut, Cradle Mountain-Lake St Clair National Park, 90011801, 181 1990, 840m, $146^{\circ} 03^{\prime} 41^{\circ} 49^{\prime}$, EPH 1532, 3 d N (JD\&DC). Douglas Creek, Pelion Rangers Hut, Cradle Mountain-Lake St Clair National Park, 90011601,16 | 1990, $820 \mathrm{~m}, 146^{\circ} 04^{\prime} 41^{\circ} 50^{\prime}$, EPH

1533, 1 o $\mathrm{N}, 1$ \& N (JD \& DC). Douglas Creek, upstream of confluence with Lake Ayr outlet stream, Cradle Mountain-Lake St Clair National Park, 90011602, 16 I 1990, 840m, $146^{\circ} 04^{\prime} 41^{\circ} 49^{\prime}$, EPH 15271 N, (JD\&DC), EPH 1528, 1 o N (JD\&DC); EPH 1534, 2 o N , 1 if N (JD\&DC). Huon River, locality 27, 82030702, 7 III 1982, EPH 0155, 4 of $\mathrm{N}, 2$ of (DC). River Forth headwaters, 0.25 km E of Frog Flats, Cradle Mountain-Lake St Clair National Park, 90011802,18 I $1990,760 \mathrm{~m}, 146^{\circ} 01^{\prime} 41^{\circ} 50^{\prime}$: EPH 1530, I ㅇ $N(J D \& D C)$. River Forth headwaters, Frogs Flat Overland Track, Cradle Mountain-Lake St Clair National Park, 90011803,181 1990, EPH 1529, 1 \& N, (JD\&DC). Tom Creek, locality 16, south of Zeehan, 82022801,28 II 1982, $190 \mathrm{~m}, 145^{\circ} 25^{\prime} 41^{\circ} 55^{\prime}$, EPH 0125, 1 d N (DC). Wedge River, locality 23, 82030301, 3 III 1982, EPH 0128, 1 \& N , (immature) (DC).

3.3.2.8 Nousia (Australonousia) sp. "AV7"
 Nousia sp. "AV7" (Dean 1999)

Distribution. Tasmania (Fig. 154).

Diagnosis. Male imago. Dimensions: body length 8.3 (1); forewing length 9.0 (1); hindwing length 1.8 (1); forewing hindwing ratio 5 (1). General body colour golden to tan and chocolate brown with light and dark markings. Head tan brown. Antennae: pedicel, scape and flagellum \tan brown. Oceili: three: black with white inserts; laterals larger than medial. Eyes: upper eye size large, contiguous, $\mathrm{ES}=0.00$ (1); upper lobes tan orange, lower lobes grey-black. Thorax: pronotum and mesonotum tan brown with darker markings. Legs: femora tan brown; tibiae and tarsi golden; forelegs with seven segments, tarsal claw morphology unknown. Wings. Forewing: membrane hyaline, pterostigmatal region slightly opaque, longitudinal and crossveins brown, anal veins yellow, costal and subcostal crossveins absent from proximal halves of wings, costal space with 12 crossveins distally (1), subcostal space with 10 crossveins distally (1). Three bullae present on veins $S c, R_{2}$ and R_{4+5}, MA forked at approximately half the distance from wing base to margin, MP_{2} connected to MP , and CuA , CuA and CuP linked by crossvein, ICu_{1} recurved to join CuA and not linked to CuA-CuP crossvein, ICu_{2} recurved to join $\mathrm{ICu}_{1}, \mathrm{ICu}_{1}$ and ICu_{2} parallel as wing margin approached, CuP strongly recurved and linked by crossvein to A_{1}. Hindwing: mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex at midlength immediately preceding shallow concavity; costa joins subcosta at approximately four-fifths wing length; no crossveins in proximal halves of costal space, 6 in distal space, 5 crossveins throughout subcostal space (1). Abdomen: golden with the occasional darker margins, darker stripe apical on each segment. Genitalia: forceps three segmented: first
segment tan brown, progressively lighter apically; terminal segment rounded, slightly shorter than middle segment; penes (Fig. 155): golden brown with darker markings, fused along at least two-thirds length; two apical lobes, conspicuously separate, three embossments on each lobe apically; dorsal view with two subapical lobes extending laterally, one internal spine visible on right hand lobe (may be present on left lobe but detached in this specimen). Caudal filaments: unknown. Female Imago. Unknown. Egg. Jnknown. Male subimago. unknown. Female subimago. unknown. Mature nymph. (Fig. 156). Body lengths: đ̛ 6.0-8.3 (7.2 $\pm 0.85,12)$; $+7.5-9.7(8.8 \pm 0.65,17)$. General colour yellow with tan brown to dark chocolate brown markings, colour variable. Head: prognathous; yellow, tan brown surrounding ocelli; width 1.43-1.80 (1.64士0.10, 20). Ocelli: three; black with grey inserts; laterals larger than medial. Antennae: pedicel, scape ard flagellum golden; approximately twice length of head. Eyes: upper lobes of male reddish-brown, lower lobes black; eyes of female grey-black. Mouthparts. Labrum and clypeus (Fig. 157): lateral margins of clypeus slightly diverging towards anterior, lateral margins of labrum slightly wider than clypeus, rounded; anterior margin of labrum with slight antero-median emargination; labrum length 0.37-0.44 (0.40 $\pm 0.02,13$); labrum width 0.66-0.98 ($0.80 \pm 0.08,13$); labrum width length ratio 1.74-2.29 (1.99 $\pm 0.16,13)$; five denticles present on anterior margin; denticles rounded to triangular, median denticle moderately enlarged; denticles extending 0.19-0.31 (0.25 $\pm 0.03,13)$ across labrum, denticle width as proportion of labrum width 0.24-0.37 (0.32 $\pm 0.04,13$); frontal setae arranged as a narrow band; secondary hair fringe clearly separated from narrow band. Mandibles: outer margins slightly curved; sparse long setae at midpoint on outer lateral margins; shorter setae between tuft and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in an inverted L-shape on lower mandible body. Left mandible (Fig. 158): two incisors, each with three apical teeth, outer incisor inconspicuously serrated on inner lateral margin, occasionally with small subapical process; prostheca robust, distinctly serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margirs only. Right mandible (Fig. 159): sparse long spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin; inner incisor with two apical teeth; prosthecal simple, slender, divided apically; prostheca: tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 160): galea-lacinae as wide as long, width length ratio 0.98-1.13 (1.04 $\pm 0.05,10)$; subapical row of $16-18$ (10) pecinate setae; palpi three segmented; terminal segment with single spine apicaily, palp length ratios 1.00: 0.97: 0.65 ($0.23 \pm 0.02,10$). Hypopharynx (Fig. 161): well developed lateral processes; anterior margin of lingua moderately cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, angular lateral margins with slight indentation. Labium (Fig. 162): glossae not turned under ventrally and ying in the same plane as paraglossae, series of blunted spines apically; palpi three segmented, terminai
segment with a row of triangular process almost circling apex and stout spines on dorsal surface; palp length ratios $1.00: 0.9+0.67(0.36 \pm 0.05,12)$; submentum with sparse robust spines on lateral margins. Thorax: golden brown with darker brown markings; pronotum width 1.30-1.85 (1.64士0.17, 20), approximately equal to width of head (see above), head pronotum width ratio 0.91-1.09 (1.00 $\pm 0.06,20$). Legs (Fig. 163): yellow with no apparent markings; fore femora length $1.25-1.83(1.56 \pm 0.15,12)$; fore femora width $0.43-0.60(0.52 \pm 0.05,12)$; fore femora length width ratio 2.83-3.29 (3.03 $\pm 0.17,12)$; fore tarsi with 6-9 (10) ventral spines; tarsal claws with 12-15 (10) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated (Fig. 164); total foreleg length 3.03$4.24(3.69 \pm 0.32,11)$; leg length ratios, foreleg 1.00: $0.83: 0.42(1.56 \pm 0.15,12)$, midleg 1.00: 0.87: 0.37 ($1.58 \pm 0.11,12$), hindleg 1.00: 0.91: 0.33 ($1.69 \pm 0.13,12$). Abdomen: predominantly tan brown with yellow and dark brown markings, yellow markings form a broken stripe midline, two yellow coloured maculae flanking each midline marking, segment ten predominantly yellow, pattern variable; postero-lateral spines present, progressively larger posteriorly. Gills (Fig. 165): membrane clear, present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; linear, tapered to a thin poini apically, upper lamellae with slightly longer tail; main and lateral tracheae present, main and lateral tracheae strongly developed. Caudal filaments: three; golden, terminal filament longer than cerci.

Remarks. This unnamed morphospecies also appears endemic to Tasmania. It was first recorded as Nousia sp. 7 (Dean and Cartwright 1992) and is now referred to as Nousia sp. "AV7" (Dean 1999). It is known from its nymphal stages and one associated male imago located in the MV. There appears much variation in the nymph, particularly in the colour patterns of the abdomen and it is unclear whether this constitutes variation or a separate taxon. For example, Dean (pers. comm.) considers there is a coloured variation of sp . " $A V 7$ " which is distinguished by a dark tergal segment eight. The male genitalia (Fig. 155) is clearly Nousia-like but is drawn from a slide mount enabling only the dorsal view to be detailed and the possibility that the shape may be distorted by flattening. Further, only one internal spine is apparent and it is not known if this is a species characteristic or if the "twin" spine has been accidentally detached. Certainly, there is some indication that a process may have been present on the left hand penis lobe as well.

Despite the similarity with Nousia, the description of one imago does not allow for the full variation of the taxa to be detailed. I feel it would be presumptuous to erect a new species on the basis of one associated individual when so little is known about the fauna.

Like Nousia sp. "AV5" many of the specimens collected were from the Pelion Valley World Heritage Area (Dean and Cartwright 1992). However, this morphospecies seems to have a more widespread distribution than N. (A) sp. "AV5" and has been recorded from many other areas throughout Tasmania. Despite this, I was only able to collect one male nymph of this morphospecies at Watersmeet (96122701) which unfortunately did not rear through to an adult.

The morphospecies Nousia (Australonousia) sp. "AV7" can be distinguished from all other species in the subgenus by the following combination of characters. In the imago: (i) general body colour golden to tan brown with darker markings; (ii) male upper eye size large, contiguous; (iii) leg banding absent; (iv) hindwing costa joins subcosta at threequarters wing length; (v) penes with subapical lobes. Iri the nymph: (i) antennal length approximately twice length of head; (ii) lateral margins of clypeus slightly diverging towards anterior; (iii) labrum slightly wider than clypeus, about twice as wide as long, lateral margins rounced; antero-median emargination slight bearing five rounded to triangular denticles extending one-third width of the labrum on average, median denticle moderately enlarged; frontal setae arranged as a narrow broad, secondary hair fringe separate from front band; (iv) mandibles with outer incisors inconspicuously serrated on inner lateral margins; left mandible outer incisor with small subapical process; left mandible prostheca robust, distiristly serrated; right mandible prostheca simple, slender, divided apically; (v) maxilla with $16-18$ subpectinate setae; (vi) hypopharynx moderately cleft, superlingua with slight angular lateral margins; (vii) leg banding absent; (viii) fore femora 3 times longer than wide; fore tarsi with 6-9 ventral spines; fore tarsal claws with 12-15 ventral teeth; (ix) abdomen tan brown with yellow and dark brown markings, yellow markings form a broken stripe midline, two yellow coloured maculae flanking each midline marking, segment ten predominantly yellow; (x) gills with membrane clear, slender, tapering to a thin point apically; main and lateral tracheae strongly developed.

Specimens examined. TASMANIA. Ansons River, Rd to Pioneer, 95020902, 9 II 1995, 80m, $148^{\circ} 09^{\prime} 41^{\circ} 11^{\prime}$, EPH 0204, 4 o $\mathrm{N}, 1$ \& N (PS\&PG). Boyd River, locality 25 , 82030400, 4 III 1982, EPH 0114, 1 ơ N, 3 우 (DC). Coquet Creek, Tasman Highway, NE of Nunamara, 95020803, 8 II 1995, 380m, $147^{\circ} 20^{\prime} 41^{\circ} 21^{\prime}$, EPH 0246, 2 \& N (PS\&PG), EPH 0247, 3 o N, 1 \& N (PS\& PG). Douglas Creek, Pelion Rangers Hut, Cradle Mt-Lake St Clair National Park, 90011601 , 16 I 1990 , $820 \mathrm{~m}, 146^{\circ} 04^{\prime} 41^{\circ} 50^{\prime}$, EPH 1547, 7 o N 11 \& N (JD\&DC). Douglas Creek, upstream Lake Ayr outlet stream, Cradle Mit-Lake St Clair National Park, 90011602, 16 I $1990840 \mathrm{~m}, 146^{\circ} 04^{\prime} 41^{\circ} 49^{\prime}$, EPH 1536, 1 of (JD\&DC), EPH 1544, 1 of N, 1 o $N(J D \& D C)$, EPH 1545, 1 o $N, 14$ ㅇ N (JD\&DC). Douglas Creek, High Bridge near old Pelion Hut, Cradle Mt-Lake St Clair National Park,
$90011801,18 \mathrm{l} 1990,840 \mathrm{~m}, 146^{\circ} 03^{\prime} 41^{\circ} 49^{\prime}$, EPH 1546, $50^{\circ} \mathrm{N}, 5$ ㅇ N (JD\&DC). Douglas Creek headwaters, 100 m N of Pelion Gap, Cradle Mt-Lake St Clair National Park, 90011702, 17 I 1990, 800m, 146ㅇㅇ́ $41^{\circ} 48^{\prime}$, EPH 1537, 1 \& N (JD\&DC), EPH 1548, $1 \sigma^{\circ}$ N, 1 i N (JD\&DC). Douglas Creek tributary, 1.5 km NW of Pelion Gap, Cradle Mt-Lake St Clair National Park, 90011703,17 I 1990, $146^{\circ} 02^{\prime} 41^{\circ} 48^{\prime}$, EPH 1550, 5 of $\mathrm{N}, 17$ क 9 N (JD\&DC). Douglas Creek tributary, 2.5 km N of Pelion Gap, Cradle Mt-Lake St Clair National Park, 90011704, 17 I 1990, $800 \mathrm{~m}, 146^{\circ} 02^{\prime} 41^{\circ} 49^{\prime}$, EPH 1551, 2 of $\mathrm{N}, 3$ 甲 N (JD\&DC). Franklin River, 82030201, 2 III 1982, EPH 0136, 1 ¢ N (DC). George River, Intake Bridge, St Columba Falls Reserve, 95020905,9 II $1995,150 \mathrm{~m}, 147^{\circ} 59^{\prime} 41^{\circ} 17^{\prime}$, EPH 0232, 3 of $\mathrm{N}, 5$ क N (PS\&PG). Hellyer River Gorge, 82022800, 28 \|l 1982, 220m, $145^{\circ} 33^{\prime} 41^{\circ} 16^{\prime}$, EPH 0151, 2 o $\mathrm{N}, 2$ \& N (DC). Huon River, locality 27, 82030702, 7 III 1982, EPH 0156, 5 o $\mathrm{N}, 2$ ㅇ N (DC). Iris River tributary, 82022600, 26 II 1982, EPH 0165, 1 \& N (DC). Lake Ayr inlet stream, Cradle Mt-Lake St Clair National Park, 90011603, 16 I 1990, 880m, $146^{\circ} 05^{\prime} 41^{\circ} 49^{\prime}$, EPH 1542, s $\mathrm{N}, 4$ क N (JD\&DC), EPH 1543, 1 of NSI (JD\&DC). Liffey Falls, 82022301, 23 II 1982, $470 \mathrm{~m}, 146^{\circ} 47^{\prime} 41^{\circ} 41^{\prime}$, EPH 0142, 1 or $^{\circ} \mathrm{N}, 4$ \& $\mathrm{N}(\mathrm{DC})$. Mother Logans Creek, Terrys Hill Rd, 95020907, 9 |l 1995, 130m, $148^{\circ} 06^{\prime} 41^{\circ} 13^{\prime}$, EPH 0201, 1 of (PS\&PG). Nelson River, 18km E of Queenstown, 88110200,2 XI 1988, 500m, $145^{\circ} 42^{\prime} 42^{\circ} 06^{\prime}$, EPH 0159, 1 o $^{\circ} \mathrm{N}$ (DC). New River, upstream Ralph Falls, 95021003,10 II 1995, $810 \mathrm{~m}, 147^{\circ} 50^{\prime} 41^{\circ} 19^{\prime}$, EPH 0207, 4 of $\mathrm{N}, 7$ \& N (PS\&PG). Nortri Eldon River, Lake Burbury, 94110100, 1 XI 1994, EPH 1460, i \& N (MRHI), EPH 1461, 1 o N, 1 ㅇ N (MRHI). Ransom Creek, Terrys Hill Rd, 95020908, 9 li 1995, $90 \mathrm{~m}, 148^{\circ} 04^{\prime} 41^{\circ} 15^{\prime}$, EPH 0175, 2 \& N (PS\&PG). River Forth headwaters, 0.75 km NE of Frog Flats, Cradle Mt-Lake St Clair National Park, 90011705, 17 I 1990, 1000m, 146 ${ }^{\circ} 01^{\prime} 41^{\circ} 51^{\prime}$, EPH 1540, 2 o N (JD\&DC). River Forth headwaters, 0.25 km E of Frog Flats, Cradle Mt-Lake St Clair National Park, 90011802, 181 1990, $760 \mathrm{~m}, 146^{\circ} 01^{\prime} 41^{\circ} 50^{\prime}$, EPH 1541, 9 of $\mathrm{N}, 8$ \& N (JD\&DC). River Forth headwaters, Frog Flats Overland Track, Cradle Mt-Lake St Clair National Park, 90011803, 18 I 1990, $740 \mathrm{~m}, 146^{\circ} 00^{\prime} 41^{\circ} 50^{\prime}$, EPH 1538, 1 \% N (JD\&DC), EPH 153914 d N, 17 \& N (JD\&DC). River Forth tributary, 2.75 km NW of Pelion Gap, Cradle Mt-Lake St Clair National Park, 90011701, 17 I 1990, $760 \mathrm{~m}, 146^{\circ} 01^{\prime} 41^{\circ} 49^{\prime}$, EPH 1552, 2 of $\mathrm{N}, 2$ of N (DC\&.JD). Russell Falls, near Lonnavale, 82030202, 2 III 1982, $130 \mathrm{~m}, 146^{\circ} 47^{\prime}$ $42^{\circ} 56^{\prime}$, EPH 0124, 1 ơ $\mathrm{N}(\mathrm{DC})$. Second River, upstream Lilydale Falls, 82031100, 11 III 1982, $150 \mathrm{~m}, 147^{\circ} 12^{\prime} 41^{\circ} 13^{\prime}$, EPH 0155, 1 \& $\mathrm{N}(\mathrm{DC})$. Second River, upstream Lilydale Falls, 82031100, 11 III 1982, 150m, $147^{\circ} 12^{\prime} 41^{\circ} 13^{\prime}$, EPH 0155, 1 \& N (DC). St Columbia Falls, Pyengana, 82031001, $10 \mathrm{III} 1982,150 \mathrm{~m}, 148^{\circ} 00^{\prime} 41^{\circ} 17^{\prime}$, EPH 0162,1 or S (DC). St Patricks River, Targa, 82031002, 10 III 1982, $380 \mathrm{~m}, 147^{\circ} 21^{\prime} 41^{\circ} 18^{\prime}$, EPH $0121,1 \sigma^{\circ} \mathrm{N}, 1$ ㅇ $\mathrm{N}(\mathrm{DC})$. Stoney Creek, $82022302,23 \| 1982,350 \mathrm{~m}, 146^{\circ} 51^{\prime} 42^{\circ} 51^{\prime}$,

EPH 0110, 1 o $\mathrm{N}, 1$ ㅇ $\mathrm{N}(\mathrm{DC})$. Tom Creek, locality 16, S of Zeehan, 82022801, 28 II 1982, $190 \mathrm{~m}, 145^{\circ} 25^{\prime} 41^{\circ} 55^{\prime}$, EPH 0122, 1 \% $\mathrm{N}(\mathrm{DC})$. Unnamed Creek, 3 miles E of Waratah, 82022800,28 H $1982,650 \mathrm{~m}, 145^{\circ} 33^{\prime} 41^{\circ} 26^{\prime}$, EPH 0161, 2 i N (DC).
Unnamed Creek, Strickland Ave, Hobart, 82030800, 8 III 1982, $110 \mathrm{~m}, 147^{\circ} 17^{\prime} 42^{\circ} 53^{\prime}$, EPH 0123, 1 or $\mathrm{N}, 1$ \& $\mathrm{N}(\mathrm{DC})$. Unnamed Creek, E of Waratah, 88110100, 1 XI 1988, $600 \mathrm{~m}, 145^{\circ} 32^{\prime} 41^{\circ} 26^{\prime}$, EPH 0166, 1 甲 $\mathrm{N}(\mathrm{DC})$. Unnamed Creek, Strickland Ave, Hobart, 88110300, 3 XI 1988, $110 \mathrm{~m}, 147^{\circ} 17^{\prime} 42^{\circ} 53^{\prime}$, EPH 0131, 1 o $^{\prime \prime} \mathrm{N}, 2$ ㅇ $\mathrm{N}(\mathrm{DC})$. Walkers Creek, Mt Saddleback, 95021005,10 II 1995, $750 \mathrm{~m}, 147^{\circ} 46^{\prime} 41^{\circ} 22^{\prime}$, EPH 0186, 4 o $^{\circ} \mathrm{N}, 6$ \& N. (JD\&DC). Watersmeet, conjunction of Cuvier and Hugel Rivers, Cradle MountainLake St Clair National Park, 96122701, 27 XII 1996, 740m, 146 ${ }^{\circ} 09^{\prime} 37^{\prime \prime} 42^{\circ} 06^{\prime} 41^{\prime \prime}, 1$ of N (KJF). Wedge River, locality 23, 82030301, 3 III 1982, EPH 0130, 2 of $\mathrm{N}, 5 \% \mathrm{~N}$ (DC). Weld River, E of Weldborough, 94030603, 6 III 1994, $360 \mathrm{~m}, 147^{\circ} 56^{\prime} 41^{\circ} 12^{\prime}$, EPH 0221, 1 or $^{\circ} \mathrm{N}(\mathrm{PS})$.

3.3.2.9 Nousia (Australonousia) sp. "AV8"

Nousia sp. "AV8" (Dean 1999)

Distribution. Tasmania (Fig. 166).

Diagnosis. Male imago. Unknown. Female Imago. Unknown. Egg. Unknown. Male and female subimago. Unknown. Mature nymph. (Fig. 167). Body lengths: of 5.8-9.0 ($7.1 \pm 0.91,10$); $\rho 6.0-9.1(7.4 \pm 1.10,13)$. General colour golden to tan to dark brown with light to dark markings. Head: prognathous; golden brown with tan brown surrounding ocelli; width 1.32-1.68 (1.51 $\pm 0.12,11$). Ocelli: three; black with grey inserts; laterals larger than medial. Antennae: pedicel, scape and flagellum golden; approximately one and half times length of head. Eyes: upper lobes of male purplish-brown, lower lobes black; eyes of female grey-black. Mouthparts. Labrum and clypeus (Fig. 168): lateral margins of clypeus slightly diverging towards anterior; lateral margins of iabrum subequal to clypeus, rounded; labrum antero-median emargination abrupt (Figs. 168, 169); labrum length 0.30-0.40 $(0.35 \pm 0.03,10)$; labrum width 0.54-0.72 $(0.63 \pm 0.05,10)$; labrum width length ratio 1.68-1.94 (1.80 $\pm 0.08,10)$; five triangular denticles present on anterior magrin; median denticle greatly enlarged, triangular; denticles extending 0.07-0.09 (0.08 ± 0.01, 10) across labrum; denticle width as proportion of labrum width 0.11-0.15 (0.13 $\pm 0.01,10)$; one large prominent median denticle (Fig. 169); frontal setae arranged as a narrow band; secondary hair fringe clearly separated from narrow band. Mandibles: outer margins slightly curved; sparse long setae at midpoint on outer lateral margins; shorter setae between tuft and base; dark coloured nodule at midpoint on inner lateral margins; row of
setae in an inverted L-shape on lower mandible body. Left mandibie (Fig. 170): two incisors, each with three apical teeth; outer incisor inconspicuously serrated on inner lateral margin, occasionally with subapical process; inner incisor stout, broad at base, inconspicuously serrated on outer lateral margin; prostheca robust, distinctly serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 171): sparse spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin; inner inciscr with two apical teeth; prostheca more simple, inconspicuously serrated, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 172): galea-lacinae as wide as long, width length ratio 0.88-1.08 (0.96 $\pm 0.07,10$); subapical row of 11-13 (10) pectinate setae; palpi three segmented; terminal segments often with single spine apically, palp length ratios $1.00: 0.92$: 0.64 ($0.22 \pm 0.01,10$). Hypopharynx (Fig. 173): well developed lateral processes; anterior margin of lingua moderately cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, rounded lateral margins. Labium (Fig. 174): glossae not turned under ventrally and lying in the same plane as paraglossae, series of stout spines apically; palpi three segmented, terminal segment with a row of triangular process almost circling apex and stout spines on dorsal surface; palp length ratios 1.00: 0.92: 0.78 (0.29土0.02, 10); submentum with sparse robust spines on lateral margins. Thorax: golden brown with darker brown markings; pronotum width $1.30-1.75(1.49 \pm 0.18,11)$, approximately equal to width as head (see above), head pronotum width ratio $0.88-1.07(0.99 \pm 0.07,11)$. Legs (Fig. 175): golden brown with no apparent markings; fore femora length 0.95-1.40 ($1.15 \pm 0.11,13$); fore femora width 0.40-0.53 ($0.45 \pm 0.04,13$); fore femora length width ratio 2.38-2.86 (2.58 $\pm 0.16,13)$; fore tarsi with 10-15 (10) ventral spines; tarsal claws with 16-18 (10) ventral teeth, progressively larger apically, subapical tooth greatly enlarged, apical tooth inconspicuously serrated (Fig. 176); total foreleg length 2.28-3.31 (2.71 ± 0.25, 13); leg length ratios, foreleg 1.00: $0.87: 0.49(1.15 \pm 0.11,13)$, midleg 1.00: 0.84: 0.41 $(1.19 \pm 0.11,10)$, hindleg $1.00: 0.92: 0.40(1.33 \pm 0.14,10)$. Abdomen: predominantly golden to tan brown with distinctive dark brown markings, segment ten predominantly yellow; postero-lateral spines present, progressively larger posteriorly. Gills (Fig. 177): membrane clear, present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; linear, tapered to a thin point apically; main tracheae strongly developed, lateral tracheae present, weakly developed. Caudal filaments: three, golden, terminal filament longer than cerci.

Remarks. Nousia sp. "AV8" (Dean 1999), also known as Nousia sp. 8 (Dean and Cartwright 1992), is also considered endemic to Tasmania. Like N. (A). sp. "AV5" and " $A V 7$ " it came to the attention of the authors on a collecting trip to the Pelion Valley (Dean
and Cartwright 1992). However, further inspection showed it had previously been collected from a wide range of sites throughout Tasmania (see specimens examined).

Nousia (Australonousia) sp. "AV8", although similar in many respects to the other species and morphospecies of Nousia, has some profound differences. The unusual shape of the labrum, with the abrupt antero-median emargination, represents a morphology seen in other apparently endemic Tasmanian morphospecies such as N. (A) sp. "AV10" and N. (A) sp. "AV9" (Dean and Cartwright 1992). (Unfortunately I had very few specimens of each of these and therefore did not attempt to describe them). It may be that these three represent a different taxon from Nousia (Australonousia) although one would not be in a position to judge this without the availability of adult specimens. Again, I propose this morphospecies remains informally described as part of Nousia (Australonousia) until nymph and adult associations can be made.

The morphospecies Nousia (Australonousia) sp. "AV8" can be distinguished from all other species in the subgenus by the following combination of characters. In the nymph: (i) antennal length approximately one and a half times length of head; (ii) latera! margins of clypeus slightly diverging towards anterior; (iii) labrum subequal to clypeus, less than twice as wide as long, lateral margins rounded: labrum antero-median emargination abrupt bearing five rounded to triangular denticles, median denticle greatly enlarged; denticles extend one-seventh the width of the labrum on average; frontal setae arranged as a narrow broad, secondary hair fringe separate from front band; (iv) mandibles with incisors inconspicuously serrated on lateral margins; left mandible outer incisor with small subapical process; left mandible inner incisor stout, broad at base; prostheca robust, distinctly serrated; right mandible prostheca simple, slender, divided apically; (v) maxillae with 11-13 subpectinate setae; (vi) hypopharynx moderately. cleft, superlingua with rounded lateral margins; (vii) leg banding absent; (viii) fore femora 2.5 times longer than wide; fore tarsi with 10-15 ventral spines; fore tarsal claws with 16-18 ventral teeth; (ix) abdomen golden to tan brown with distinctive dark brown markings, segment ten predominantly yellow; (x) gills with membrane clear, slender, tapering to a thin point apically; main and lateral tracheae present, main tracheae strongly developed, lateral tracheae present, weakly developed.

Specimens examined. TASMANIA. Ansons River, Rd to Pioneer, 95020902, 9 ॥ 1995, 80m, 1487º $09^{\prime}, 41^{\circ} 11^{\prime}, ~ E P H$ 0205, 2 o N, 2 o N (PS\&PG). Arthur River, Tayatea Bridge, $94102500,25 \times 1994$, EPH 1475, 1 qN (MRHI). Barrow Creek, Tasman Highway, 95020801, 8 II 1995, 390m, $147^{\circ} 21^{\prime}, 41^{\circ} 20^{\prime}$, EPH 0215, 1 of N , (immature), (PS\&PG). Brid River, Tasman Highway, W of Scottsdale, 95020802, 8 1I 1995, 180m, $147^{\circ} 27^{\prime}, 41^{\circ} 13^{\prime}$, EPH 0239, 4 o' $^{\circ} \mathrm{N}, 5$ 9 N (PS\&PG). Coquet Creek, Tasman Highway,

NE of Nunamara, 95020803, 8 II 1995, $380 \mathrm{~m}, 147^{\circ} 20^{\prime} 41^{\circ} 21^{\prime}$, EPH 0244, 1 o N , (PS\&PG). Creekton Rivulet, near Dover, 82030701, 7 I! $1982,60 \mathrm{~m}, 146^{\circ} 57^{\prime}, 43^{\circ} 21^{\prime}$, EPH 0150, 1 o $N(D C)$. Dee River, Lyell Highway, 96121903,19 XII 1996, 200m, $146^{\circ} 38^{\prime} 13^{\prime \prime} 42^{\circ} 45^{\prime} 51^{\prime \prime}, 10^{\prime \prime} \mathrm{N}(\mathrm{KJF})$. Douglas Creek, High Bridge near old Pelion Hut, Cradle Mouritain - Lake St Clair National Park, 90011801, 181 1990, $840 \mathrm{~m}, 146^{\circ} 03^{\prime}$ $41^{\circ} 49^{\prime}$, EPH 1466, 1 ㅇ N (JD\&DC), EPH 1472, 1 of N (JD\&DC). George River, Goshen, 95020904, 9 II 1995, $60 \mathrm{~m}, 148^{\circ} 05^{\prime}, 41^{\circ} 10^{\prime}$, EPH 0178, 1 o $\mathrm{N}, 2$ क N (PS\&PG). George River, Intake Bridge, St Columba Falls Reserve, $95020905 ; 9$ II 1995, 150m, $147^{\circ} 59^{\prime}$ $41^{\circ} 17^{\prime}$, EPH 0239, 2 o $^{\circ}$ N, 3 ㅇ N (PS\&PG). Great Musselroe River Rd to Pioneer from St Helens, 95020906, 9 \|I 1995, 60m, 148 ${ }^{\circ} 03^{\prime}, 41^{\circ} 05^{\prime}$, EPH 0206, 2 o $^{\circ} \mathrm{N}, 8$ \& N (PS\&PG). Groom River, Tasman Highway, 94030701, 7 lii 1994, 900m, $148^{\circ} 0 \overline{5^{\prime}}, 41^{\circ} 15^{3}, \mathrm{EPH} 0228,2$ i N (PS\&MS). Lake Ayr inlet stream, Cradle Mt-Lake St Clair National Park, 90011603 , 16| 1990, 880m, $146^{\circ} 05^{\prime} 41^{\circ} 49^{\prime}$, EPH 1464, 1 ㅇ $\mathrm{N}, ~(J D \& D C)$, EFH 1471, 2 of $\mathrm{N}, 4$ \& N , (JD\&JDC). Lake Ayr outlet stream, 100 m downstream Lake, Cradle Mountain-Lake St Clair National Park, 90011605,16 I $1990,800 \mathrm{~m}, 146^{\circ} 03^{\prime}, 41^{\circ} 49^{\prime}$, EPH 1467, 1 or $^{\mathrm{N}} \mathrm{N}$ (immature) (JD\&DC). Lake Ayr outlet stream, upstream Douglas Creek, Cradle Mountain-Lake St Clair National Park, 90011604, 1611990 , $640 \mathrm{~m}, 146^{\circ} 02^{\prime}, 41^{\circ} 48^{\prime}$, EPH 1465, 1 \& N (JD\&DC), EPH 1470, 3 of $\mathrm{N}, 4$ \& N, (JD\&DC). Lake Crescent, outlet stream, 88110401, 4 XI 1988, $900 \mathrm{~m}, 147^{\circ} 10^{\prime}, 41^{\circ} 07^{\prime}$, EPH 0133, 1 o $\mathrm{N}, 3$ 아 N (DC). Margisons Creek, St Mary's, 95021001, 10 il 1995, 280m, $148^{\circ} 11^{\prime}, 41^{\circ} 34^{\prime}$, EPH 0192, 1 of $\mathrm{N}, 1$ \& N (PS\&PG). Mother Logans Creek, Terrys Hill Rd, 95020907, 9 II 1995,
 94030702, 7 III 1994, EPH 0197, 2 đ N (PS\&MS). Pipers Brook, 94030602, 6 III 1994, $147^{\circ} 10^{\prime}, 41^{\circ} 09^{\prime}$, EPH 0242, 1 б $\mathrm{N}, 3$ \& N (PS). Powers Rivuiet, 95020901, 9 II 1995, $100 \mathrm{~m}, 148^{\circ} 05^{\prime}, 41^{\circ} 19^{\prime}$, EPH 0228, 2 ㅇ N (PS\&MS). Ransom Creek, Terrys Hill Rd, 95020908, 9 II 1995, $90 \mathrm{~m}, 148^{\circ} 04^{\prime} 41^{\circ} 15^{\prime}$, EPH 0174, 3 of $^{\circ} \mathrm{N}, 4$ q N (PS\&PG).
Ringarooma River, Pioneer, 95020909, 9 II 1995, $147^{\circ} 57^{\prime}, 41^{\circ} 05^{\prime}$, EPH 0213, 1 \& N (PS\&PG). River Forth headwaters, Frog Flats Overland Track, Cradle Mt-Lake St Clair National Park, $90011803,18 / 1990,740 \mathrm{~m}, 146^{\circ} 00^{\prime} 41^{\circ} 50^{\prime}$, EPH 1479, 1 ơ N (JD\&DC). South George River, St Columba Falls Reserve, $94100500,5 \times 1994$, 150m, $147^{\circ} 58^{\prime}$, $41^{\circ} 18^{\prime}$, EPH 1473, 1 \& \mathbf{N} (MRHI), EPH 1474, 2 o $^{\circ} \mathrm{N}, 2$ $2 \mathrm{~N}(\mathrm{MRHI})$. St Patricks River, Nunamara, 95020805, 8 II 1995, 350m, 147º 17', 41º23', EPH 0236, 1 ơ N, 1 \& N (PS\&PG). St Patricks River, Targa, 82031002, 10 III 1982, $380 \mathrm{~m}, 147^{\circ} 21^{\prime} 41^{\circ} 18^{\prime}$, EPH 0177, 2 \& $\mathrm{N}(\mathrm{DC})$. Township Creek, near Fingal, 95021004,10 \| 1995, EPH 0184, 1 \% N (PS\&PG). Tyenna River, Westerway, 94031100, 11 III 1994, $100 \mathrm{~m}, 146^{\circ} 47^{\prime}, 42^{\circ} 40^{\prime}$, EPH 0191, 1 ㅇ N (PS).

3.3.3 Key to the species (and morphospecies) of Nousia (Australonousia)

This key is accompanied by a matrix of main characters for separating the species as an alternate means of identification (Table 9).

Male imagos

1. Penes without distinct subapical lobes dorsally; abdomen darkly coloured brown to black with golden markings on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking; hindwing costa joins subcosta at four-fifths wing length.
fuscula

Abstract

Penes with distinct subapical lobes dorsally; body colour variable, light to darkly coloured; hindwing costa joins subcosta at three-quarters wing length.

2(1) Upper eye lobes large but never contiguous; darkly coloured chocolate brown to black species; legs yellow to tan brown with darker coloured banding; mesonotum often shiny dark brown to black. \qquad nigeli

Upper eye lobes large, often contiguous but not always; body colour variable, light to darkly coloured; no leg banding

3(2) Body colour light, golden to tan brown with darker markings; mesonotum tan brown; legs, femora tan brown, tibiae and tarsi golden; penes straight sided sp. "AV7"

Body colour very variable, ranging from tan brown to dark brown to black; pronotum shiny brown to black; abdomen colour variable but usually with golden markings on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking; penes with prominent subapical lobes dorsally. \qquad fusca

Mature nymphs

Darkly coloured chocolate brown colour with light coloured markings; labrum slightly wider than clypeus, more than twice as wide as long; secondary hair fringe arranged as a broad band, abutting front row; gills dark, grey to black, tracheae poorly to moderately well developed. nigeli
\qquadNot as above.2

2(1) Light coloured with distinctive dark brown markings on abdomen segments; labrum subequal to clypeus, less than twice as wide as long; abrupt anteromedian emargination; triangular denticles, median denticle greatly enlarged; tarsal claws with 16-18 ventral teeth, subapical tooth greatly enlarged; Tasmania only. .sp. "AV8"

Not as above 3

Labrum slightly more than twice as long as wide, slightly wider than clypeus, slight anterc-median emargination, denticles extend one-third the width of entire labrum; left mandible oute incisor with small subapical process, prostheca robust, distinctly serrated; right mandible prostheca simple, slender, divided apically; hypopharynx moderately cleft, somewhat angular lateral margins with slight indentations; fore femora about 3 times as long as wide, Tasmania only. .. 4

Labrum about twice as long as wide, subequal to very slightly wider than clypeus, slightly diverging towards anterior, rounded lateral margins; left mandible outer incisor without subapical process; prostheca moderately serrated; right mandible prostheca simple, slender, not divided apically; maxillae galea-lacinae about as wide as long; hypopharynx deeply cleft, rounded lateral margins .5

4(3) Labrum mooisrately diverging towards anterior, rounded to angular lateral margins, denticles flat, elongate; mandible with all incisors serrated, right mandible inner incisor conspicuously serrated; maxillae galea-lacinae slightly wider than long, 20-23 subapical setae, subapical process extending laterally towards inner lateral margin; fore tarsi with 3-6 ventral spines; tarsal claws with 9-12 ventral teeth; gills greyish, opaque; main tracheae strongly developed, lateral tracheae absent or very weakly developed, Tasmania only. .sp."AV5"

Labrum slightly diverging towards anterior, rounded lateral margins, denticles rounded to triangular, median denticle moderately enlarged; maxillae galealacinae as wide as long, 16-18 subapical setae; fore tarsi with 6-9 ventral spines; tarsal claws with 12-15 ventral teeth; gills clear, main and lateral tracheae strongly developed, Tasmania only. .sp."AV7"

5(3) Dark coloured, dark brown to black, with lighter markings; labrum with four-six triangular denticles extending less than one-third the width of entire labrum; incisors without serrations on lateral margins; fore tarsi with more than 10 ventral spines; gills pale, brownish; main and lateral tracheae strongly developed; total leg length shorter than other species. \qquad fuscula

Variously coloured, usually tan to dark brown with light markings; labrum with five flat elongate rounded denticles extending one-third the width of entire labrum; incisors inconspicuously serrated on lateral margins; fore tarsi with $5-10$ ventral spines; gills clear to pink; tracineation variable, main tracheae strongly developed, lateral tracheae weakly to strongly developed. fusca

Table 9. Matrix of main characters useful for separating taxa of Nousia (Austalonousia).

	fusca	fuscula	nigeli	"Av5"	"AV7"	"AV8"
Imago - male				unknown		unknown
general body colour	very variable, ranging from tan brown to dark brown to black.	body colour black	chocolate brown to black		golden to tan brown with darker markings	
eyes contiguous	sometimes		no		yes	
eye size (ES)	0.00-0.16 (0.08)		0.09-0.15 (0.11)		0.00	
thorax colour	pronotum brown to black; mesonotum shiny brown to black	black	pronotum biack; mesonotum shiny dark brown to black.		pronotum and mesonotum tan brown with darker markings.	
total foreleg length	5.76-8.90 (7.28)	6.23	6.05-7.35 (6.54)			
leg colour	golden through to tan, medium or dark brown,	brown to black	femora yellow to tan brown with very dark brown to black markings fore tibia dark brown, middle and hind tibiae yellow; all other segments yellow;		femora tan brown; tibiae and tarsi golden;	
leg banding	no	no	yes		no	
hindwing length where costa joins subcosta	three-quarters	four-fifths	three-quarters		three-quarters	

Table 9 cont'd.

	fusca	fuscula	nigeli	"AV5"	"AV7"	"AV8"
abdomen colour	tan to dark brown to black with golden markings on each segment forming a broken stripe midline, two goiden coloured maculae flanking each midline marking anteriorly colour and pattern highly variable	black with light brown to brown markings forming a broken stripe midline, two maculae flanking each midline marking anteriorly.	dark brown to black with golden markings on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking anteriorly		golden with the occasional darker margins, darker stripe apical on each segment.	
penes with subapical lobes	yes	not distinct	yes		yes	
Imago female					unknown	
sternum nine	deeply cleft	deeply cleft	moderately cleft			
Egg		unknown				
egg shape	ovoid		ovoid			
egg polar cap	absent		absent			
egg pattern	large evenly spaced circular shaped protuberances, pattern variable		chorion with similarly shaped, circular protuberances medially, surrounded by interlocking polygons which cover the whole surface			

Table 9 cont'd.

	fusca	fuscula	nigeli	"AV5"	"AV7"	"AV8"
Mature nymph						
general body colour	golden to tan brown with light and dark markings.	black, light markings	dark brown with light markings.	golden to tan brown with light and dark markings.	goiden to \tan to chocolate brown with light and dark markings, colour variable	golden to \tan to dark brown with dark markings .
antennal length	more than twice length of head		approximately one and an half times length of head	approximately one and a half times times the length of the head.	approximately twice length of head.	approximately one and half times length of head.
lateral margins of clypeus	slightly diverging towards anterior	slightly diverging towards anterior	straight or slightly diverging towards anterior	moderately diverging to anterior;	slightly diverging towards anterior,	slightly diverging towards anterior;
labrum compared to clypeus	subequal to very slightly wider than clypeus	subequal to very slightly wider than clypeus,	slightly wider	slightly wider	slightly wider	subequal
lateral margins of labrum	rounded	rounded	rounded	rounded to angular	rounded	rounded
anteriomedian emargination	straight or very slight,	anterior margin with slight anteromedian emargination	straight	slight anteromedian emargination;	slight anteromedian emargination,	abrupt anteromedian emargination
labrum width length ratio	about twice as wide as long	about twice as long as wide	more than twice as wide as long	more than twice as wide as long	more than twice as wide as long	less than twice as wide as long
denticle number	5	4-6	5	5	5	5
denticle shape	flat, elongate	triangular	flat, elongate	flat, elongate	rounded to triangular, median denticle moderately enlarged	triangular, median denticle greatly enlarged

Table 9 cont'd.

	fusca	fuscula	nigeli	"AV5"	"AV7"	"AV8"
denticle width / labrum width ratio	denticles extend one-third the width of entire labrum	denticles extend less than one-third the width of entire labrum	denticles extend two-fifths the width of entire labrum	denticles extend one-third the width of entire labrum	denticles extend one-third the width of entire labrum	denticles extend one-seventh the width of entire labrum
frontal setae arrangement	narrow band	narrow band	broad band	narrow band	narrow band	narrow band
secondary hair fringe separate or abutting front row	separate	separate	abutting	separate	separate	separate
left mandible incisors serration	outer incisor inconspicuously serrated on inner lateral margin	incisors with no apparent serrations on lateral margins	outer incisor inconspicuously serrated on inner lateral margin	incisors inconspicuously to conspicuously serrated on inner margin,	outer incisor inconspicuously serrated on inner lateral margin,	outer incisor inconspicuously serrated on inner lateral margins, inner incisor stout, broad at base
left mandible incisors subapical process	no	no	no	outer incisor with small subapical process;	outer incisor with small subapical process;	outer incisor with small subapical process;
left mandible prostheca shape	robust, moderately serrated	robust, moderately serrated	robust, distinctly serrated	robust, distinctly serrated	robust, distinctly serrated	robust, distinctly serrated

Table 9 cont'd.

	fusca	fuscula	nigeli	"AV5"	"AV7"	"AV8"
right mandible incisors serration	outer incisor inconspicuously serrated on inner lateral margin; inner incisor inconspicuously serrated on outer lateral margin;		outer incisor inconspicuously serrated on inner lateral margin	incisors inconspicuously to conspicuously serrated on inner lateral margins, inner incisor conspicuously serrated on outer lateral margin	Outer incisor inconspicuously serrated on inner lateral margin;	Outer incisor inconspicuously serrated on inner lateral margin;
right mandible - prosthecal shape	simple, slender	simple, slender	simple, slender	simple, slender, divided apically	simple, slender, divided apically	simple, slender, divided apically
Maxillae -galea-lacinae width length ratio	about as wide as long	about as wide as long	about as wide as long	slightly wider than long	about as wide as long	about as wide as long
maxillae number of subapical pectinate setae	11-18	approx. 15	13-16	20-23	16-18	11-13 (10)
maxillae subapical piocess	no	no	no	yes	no	no
hypopharynx superlingua shape	rounded lateral margins	rounded lateral margins	rounded lateral margins	slightly angular lateral margins with slight indentation.	slightly angular lateral margins with slight indentation.	rounded lateral margins
hypopharynx cleftness	deeply cleft	deeply cleft	deeply cleft	moderately cleft	moderately cleft	moderately cleft

Table 9 cont'd.

	fusca	fuscula	nigeli	"AV5"	"AV7"	"AV8"
leg colour	golden to tan brown	medium brown	tan brown with chocolate brown markings	golden to tan brown,	yellow	Golden brown
leg banding	no	no	yes	no	no	no
total leg length	2.45-4.98 (3.31)	2.86	2.66-3.53 (3.12)	3.03-3.81 (3.54)	3.03-4.24 (3.69)	2.28-3.31 (2.71)
foreleg length ratios	$\begin{aligned} & 1.00: 0.85: 0.44 \\ & (1.43) \end{aligned}$	$\begin{aligned} & 1.00: 0.87: 0.55 \\ & (1.18) \end{aligned}$	$\begin{aligned} & 1.00: 0.89: 0.40 \\ & (1.37) \end{aligned}$	$\begin{aligned} & 1.00: 0.88: 0.39 \\ & (1.56) \end{aligned}$	$\begin{aligned} & 1.00: 0.83: 0.42 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00: 0.87: 0.49 \\ & (1.15) \end{aligned}$
midleg length ratios	$\begin{aligned} & 1.00: 0.86: 0.35 \\ & (1.51) \end{aligned}$	$\begin{aligned} & \text { 1.00: } 0.84: 0.39 \\ & \text { (1.19) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1.00: } 0.82: 0.31 \\ & (1.51) \end{aligned}$	$\begin{aligned} & 1.00: 0.88: 0.35 \\ & (1.57) \end{aligned}$	$\begin{aligned} & 1.00: 0.87: 0.37 \\ & (1.58) \end{aligned}$	$\begin{aligned} & 1.00: 0.84: 0.41 \\ & (1.19) \end{aligned}$
hindleg length ratios	$\begin{aligned} & \text { 1.00: } 0.91: 0.31 \\ & (1.74) . \end{aligned}$	$\begin{aligned} & 1.00: 0.91: 0.38 \\ & (1.40) \end{aligned}$	$\begin{aligned} & 1.00: 0.83: 0.28 \\ & (1.79) \end{aligned}$	$\begin{aligned} & 1.00: 0.87: 0.31 \\ & (1.84) \end{aligned}$	$\begin{aligned} & 1.00: 0.91: 0.33 \\ & (1.89) \end{aligned}$	$\begin{aligned} & 1.00: 0.92: 0.40 \\ & (1.33) \end{aligned}$
fore femora length width ratio	fore femora 2.9 times longer than wide		fore femora 2.5 times longer than wide	fore femora 3.2 times longer than wide	fore femora 3.0 times longer than wide	fore femora 2.6 times longer than wide
fore tarsi number of spines	5-10	approx. 13	6-8	3-6	6-9	10-15
tarsal claws number of ventral teeth	10-16	approx. 11	10-14	9-12	12-15	16-18, subapical tooth greatly enlarged

Table 9 cont'd.

	fusca	fuscula	nigeli	"AV5"	"AV7"	"AV8"
abdomen colour	tan to dark brown with golden markings on each segment forming a broken stripe midline, generally with two golden coloured maculae flanking each midline marking anteriorly but pattern highly variable	often black with yellow-brown markings, pattern variable.	dark brown to black with yellow to light brown markings medially on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline markings anteriorly	\tan brown with underlying yellow colour; yellow patches of colour on segments six to nine, progressively larger posteriorly; segment ten almost entirely yellow;	\tan brown with yellow and dark chocolate brown markings, segment ten almost entirely yellow; pattern variable;	golden to tan brown with distinctive dark brown markings; segment ten almost entirely yellow
gill colour	clear to pink	pale, brownish	grey to black	opaque, greyish;	clear	clear
gill shape	slender, tapering to a thin point apically	slender, tapering to a thin point apically	slender, tapered to a thin point apicaliy	linear, apically tapered;	linear, tapering to a thin point apically, upper lamellae with slightly longer taii;	linear, tapering to a thin point apically;
gill tracheation	variable - main tracheae strongly developed, lateral tracheae strongly to weakly developed	main and lateral tracheae strongly developed.	weakly to moderately well developed.	main tracheae strongly developed, lateral tracheae absent or weakly developed.	main tracheae strongly developed, lateral tracheae strongly developed.	main tracheae strongly developed, lateral tracheae weakly developed.

3.3.4 Subgeneric separation

As mentioned in 3.3.1 Campbell and Suter (1988) created the new subgenus Nousia (Australonousia) to accommodate the Australian species of Nousia. However, they based this subgeneric separation on five characters which have subsequently been questioned (Dean 1999). The five characters included: from the male imago, distance of the MA fork in the imago forewing and the penes shape; the shape and surface characteristics of the egg and from the nymph, the cleftness of the hypopharynx anterior margin and shape of the left mandible prostheca.

As a result of the revision of Nousia (Australonousia) and the subsequent redefinition of the subgenus (3.3.2.1) I have been able to assess the validity of these characters and identify some others. In the male imago, I found that the MA vein of the forewing was forked at half to just over half the distance from wing base to margin in Nousia (Australonousia) not slightly less than half as espoused by Campbell and Suter (1988). As Pescador and Peters (1985) state that at the genus level the MA of Nousia (Nousia) forks at more than half the distance from wing base to margin this character cannot used as a subgeneric separator. The penes of both taxa are fused in basal two-thirds as Campbell and Suter (1988) claim but the maxim that the remainder is divided and tubular in Nousia (Nousia) and divided and divergent in Nousia (Australonousia) does not always apply (eg N^{\prime} (A) sp. "AV7"). The only other imago character I can determine as a variation between the two taxa is the frequent absence of crossveins in the proximal halves of the costal and subcostal spaces of the male forewing in Nousia (Australonousia) and the presence of such veins, albeit sometimes weakly developed, in Nousia (Nousia). However, this is not a consistent difference as Nousia (Australonousia) also has weakly developed crossveins in this area in some species (eg N. (A) fuscula).

As stated in 3.3.2.4 I believe the egg morphology of N. (A) fuscula, with the three rings of tubular processes, as represented in Suter (1986) and Campbell and Suter (1988) is false. The true morphology of Nousia (Australonousia) eggs appears to be a chorion with large circular shaped protuberances, sometimes interspersed with smaller ones. The tubular processes, I believe, are representative of the genus Koorrnonga.

The nymphal characters identified by Campbell and Suter (1988) to separate the subgenus are consistent. The lingua of the hypopharynx is shallowly cleft in Nousia (Nousia) and moderately to deeply cleft in Nousia (Australonousia). Also, the left mandible prostheca is relatively slender in Nousia (Nousia) compared with the robust serrated prostheca in Nousia (Australonousia). Other characters identified as variations between the taxa as a result of this study are as follows: denticle width always narrow in

Nousia (Nousia) usually wider in Nousia (Australonousia) (exception N. (A) sp. "AV8"); maxillae with an average 9-12 subpectinate setae in Nousia (Nousia), 11-23 in Nousia (Australonousia); galea-lacinae slightly wider than long in Nousia (Nousia), usually as wide as long in Nousia (Australonousia); hypopharynx superlingua always with rounded lateral margins in Nousia (Nousia), variable in Nousia (Australonousia) from rounded to slightly angular, sometimes with indentations; segment two and three of maxillary palps subequal in length in Nousia (Nousia) segment three usually shorter than segment two in Nousia (Australonousia); subapical denticles of tarsal claws greatly enlarged in Nousia (Nousia), not usually greatly enlarged in Nousia (Australonousia) (exception N. (A) sp. "AV8").

It appears that the male and female imago characters used for subgeneric separation do not hold. The nymphal characters are somewhat more robust, but apart from the original differences proposed by Campbell and Suter (1988) the other differences I elucidated are not distinct, either having exceptions or overlapping with each other.

I consider my revision of Australian Nousia (Nousia) is incomplete, largely due to lack of material. | believe Nousia (Australonousia) is not as morphologically diverse as stated (Dean 1999) but has become a "dumping ground" for undescribed species. Certainly, some of the morphospecies included in this revision do not conform to the definition of the genus sensu Pescador and Peters (1985). After careful consideration I transferred three of these morphospecies into two new genera (See Chapter 4). However, I have still not accounted for seven morphospecies in this revision (not including sp. "AV5", "AV7" and "AV8"). Many of these morphospecies were searched for extensively from the locations of the few specimens that were available to me, with no success. Ultimately, these species will have to caught, reared and identified and included (or not) in Nousia (Australonousia).

I must conclude that although I feel the subgeneric classification is superfluous at this stage, further material must be collected to complete the revision and make a more informed decision. In the interests of stability it would be prudent to retain the subgeneric classification until these possible new species are found and described.

3.4 Revision of the genus Koorrnonga

3.4.1 History

This genus Koormonga was established by Campbell and Suter (1988) primarily to accommodate the species Nousia inconspicua and Nousia pilosa. These species were described thoroughly as Nousia by Suter (1986) during his revision of the South Australian mayflies. The two species were subsequently considered sufficiently different to warrant the establishment of a rew genus. The other four species placed in the new genus at the time; fusca, simillima, brunnea and parva all became new combinations. They had been previously assigned to Atalonella, then automatically transferred to Nousia when the two genera were synonymized (Pescador and Peters 1985). Very little was known about these species at the time; the descriptions and drawings being scarce and somewhat inadequate. It also appears the types were not examined. Campbell and Suter (1988) admit that some of the placements were considered tentative at the time but generally the characters described in the literature appeared to fit more closely to the nominated type species, Leptophlebia inconspicua Eaton. It was reasonable to assume therefore that they belonged in the new genus but their status remained questionable.

3.4.2 Generic designation

I believe that establishment of the genus Koorrnonga was premature. The species Thraulus dentatus (Ulmer 1916) (subsequently renamed Atalophlebia lucida (Ulmer 1919; Ulmer 1920)) and automatically transferred to Atalonella by Harker (1954) is remarkably similar to other species belonging to Koorrnonga. Demoulin (1955c) recognised this fact. He considered that the angular shape of the hindwing, and the wing venation in general, prevented its placement in Atalophlebia or Atalonella. No other genus described at the time seemed to fit the characters of the specimen and he therefore created a new genus Thraulophlebia, nominating Atalophlebia lucida Ulmer as the type specimen.

I have examined the type specimens of Atalophlebia lucida (two male imagos) from the SMNH and they conform to the genus description of Koorrnonga in that the forewings have no crossveins in subcostal and costal spaces, the hind wing has a strong projection on the costa and the penes lobes are not distinctly separated facing inwards towards the midine. As a result of this, and my understanding of the features of the genus as a result of this study, I believe Koornonga should be synonymized with Thraulophlebia. As Thraulophlebia has priority, all species now belonging to Koorrnonga are now transferred to this genus. Atalophlebia lucida becomes the type species for the genus.

3.4.3 Descriptions

3.4.3.1 Thraulophlebia Demoulin
 Thraulophlebia Demoulin (Demoulin 1955c)
 Koormonga Campbell \& Suter (Campbell and Suter 1988)

Type species. Atalophlebia lucida Ulmer (Ulmer 1919)

Species included. Thraulophlebia lucida (Ulmer) comb. nov., Thraulophlebia inconspicua (Eaton) comb. nov., Thraulophlebia parva (Harker) comb. nov., Thraulophlebia simillima (Ulmer) Incertae sedis.

Distribution. New South Wales, South Australia, Queensland, Victoria (Fig. 178).
Diagnosis. Male imago. Dimensions: body length 5.6-7.4; forewing length 5.7-8.1; hindwing length 0.83-1.58; forewing hindwing ratio 4.37-7.56. General body colour variable, ranging from light to tan to chocolate brown to black. Head: tan brown to dark brown to black. Antennae: pedicel, scape medium to dark brown, flagellurrı golden to tan brown. Ocelli: three; black with white to white-grey inserts; laterals larger than medial. Eyes: upper eye size large, often contiguous, $E S=0.00-0.15$; upper lobe colour variable (orange-brown, tan brown, pink brown), lower lobes grey-black. Thorax: pronotum and mesonotum tan to dark brown, mesonotum sometimes shiny brown. Legs: colour variable (golden, light brown, tan brown); femora usually darker; banding present or absent; forelegs with seven segments, total foreleg length 4.45-7.46, tibia approximately 1.4 times length of femur, the five segmented tarsus approximately 1.3-1.6 times length of femur; tarsal claws of a pair similar, each apically hooked with an opposing hook. Wings. Forewing: membrane hyaline, pterostigmal region slightly opaque, longitudinal and crossveins dark brown, anal veins yeliow; costal and subcostal crossveins usually absent proximally, costal space with 6-11 crossveins distally, subcostal space with 4-10 crossveins distally. Three bullae present on veins $\mathrm{Sc}, \mathrm{R}_{2}$ and R_{4+5}, MA forked at around half the distance from wing base to margin, MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{CuA}$ and CuP linked by crossvein, ICu1 recurved or joined to CuA and not linked to CuA-CuP crossvein, ICu_{2} joins $\mathrm{I} \mathrm{Cu}_{1}, \mathrm{ICu}_{1}$ and ICu_{2} parallel or very slightly diverging as wing margin approached, CuP strongly recurved and linked by cross vein to A_{1}. Hindwing mostly hyaline, costal space washed with yellow and very slightly opaque; strong projection of the costa which joins subcosta at approximately two-thirds to four-fifths wing length; no crossveins in proximal halves of costal space, 2-4 in distal space, 3-5 throughout subcostal space. Abdomen: colour and pattern variable ranging from tan to dark brown to black with golden to light tan markings on each segment forming a broken stripe midline,
two golden coloured maculae flanking each midline marking anteriorly. Genitalia: forceps three segmented; first segment usually darker, progressively lighter apically; middle and terminal segment about the same length. Penes: two lobes distinct, lobes joined apically (or very nearly so), fused in basal third to half ventrally, separated at base or fused in basal third dorsally; lobes sometimes indented apically; rounded to angular expanded lateral margin in apical third; ventral view with or without subapical lobes protrucing laterally outwards; with or without small blunt triangular tooth on inner lateral margin, generally visible under transmitted light only. Caudal filaments: three; golden to brown; terminal filament longer than cerci. Female imago. Dimensions: body length 5.6-8.8; forewing length 5.9-8.5; hindwing length 0.69-1.70; forewing hindwing ratio 4.93-8.55. General patterning and colouring similar to male. Eyes: brown-black to grey-black; separated on meson of head by a distance four to five times maximum width of eye. Legs: shorter than male; total foreleg length 3.81-5.13; forelegs with six segments, tibia approximately 1.2-1.4 times longer than the femur, the four segmented tarsus approximately $0.6-0.7$ times longer than the femur. Wings. Forewing: colour and venation similar to males except usually with weakly developed crossveins in proximal halves of wing and generally more crossveins on average than male; costal space with 26 weakly developed crossveins proximally, 7-15 distally, subcostal space with $0-5$ weakly developed crossveins proximally, 6-11 distally. Hindwing: no crossveins in proximal halves of costal space, 2-4 in distal space, 3-6 throughout subcostal space. Abdomen: sternum seven with small genital extension; sternum nine deeply cleft. Egg. Ovoid to cylindrical with rounded ends, polar cap with two or three rings of tubular processes; chorion with small evenly spaced circular proturbences. Male and female subimago. General colour and markings dull greyish black, similar to imago. Wings opaque, uniformly grey-brown. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. Body lengths: $\sigma^{5} 5.0-7.5, \circ 5.8-10.0$. General body colour variable, ranging from tan or middle to chocolate brown to black with light and / or dark markings. Head: prognathous; tan to middle to dark brown; width 1.28-1.65. Ocelli: three; black with white to grey inserts; laterals larger than medial. Antennae: pedicel, scape and flagellum golden; one and a half to more than twice length of head. Eyes: upper lobes of male orange to reddish-brown, lower lobes grey-black to black; eyes of female black. Mouthparts. Labrum and clypeus: lateral margins of clypeus very slightly diverging towards anterior; lateral margins of labrum subequal to slightly wider than clypeus, rounded to slightly angular; anterior margin of labrum with slight or distinct antero-median emargination; iabrum length $0.27-0.41$, labrum width $0.51-0.86$, labrum width length ratio 1.69-2.56; four to five elongate denticles present on anterior margin extending 0.08-0.38 times the width of the labrum, denticle width as proportion of labrum width $0.14-0.38$; frontal setae arranged as a single row or narrow band; secondary hair fringe clearly separated from front row, reaching well beyond frontal setae, extending 0.04-0.25 times
the width of the labrum, containing 12-55 setae; secondary hair fringe width to labrum width ratio $0.06-0.35$; thick socketed setae present lateral to secondary hair fringe. Mandibles: outer margins slightly curved, long spine-like setae at midpoint on outer lateral margins, occasionally shorter setae between tuft and base; dark coloured nodule at midpoint on inner lateral margins; sparse tuft of setae on lower mandible body. Left mandible: two incisors, each with three apical teeth; outer incisor often inconspicuously serrated on inner lateral margin; prostheca robust, serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible: sparse long setae on inner lateral margin; two incisors, outer incisor with three apical teeth, often inconspicuously serrated on inner lateral margin; inner incisor with two apical teeth; prostheca simple, slender; prosthecal tuft slender, tapering to a point apicaily, hairs on lateral margins only. Maxillae: galea-lacinae generally as wide as long, width length ratio $0.88-1.12$; subapical row of 16-22 pectinate setae; palpi three segmented, first segment length $0.22-0.23$, segment two $0.75-0.85$ times the length of first segment, terminal segment 0.64-0.75 times the length of first segment, usually with single spine apically. Hypopharynx: well developed lateral processes; anterior margin of lingua shallowly cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, rounded to slightly angular lateral margins. Labium: glossae not turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; paipi three segmented, first segment length 0.32-0.34, segment two 0.84-0.88 times the length of first segment, terminal segment 0.57 - 0.65 times the length of first segment, terminal segment with row of triangular spines aliriost circling apex and stout spines on dorsal surface; submentum with spines on lateral margins. Thorax: colour ranges from tan to middle brown often with dark brown markings; pronotum width 1.10-1.72, approximately equal to width of head; head pronotum width ratio $0.92-1.00$. Legs: golden to tan to dark brown, banding present or absent; total foreleg length 2.53-3.73; fore femora length 1.05-1.60, fore femora width $0.28-0.53$; fore femora length width ratio 2.74-3.75; fore tarsi with $8-14$ ventral spines, tarsal claws with $11-15$ ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; foreleg length ratios, tibiae 0.92-0.93 times length of femur, tarsi 0.40-0.47 times length of femur; midieg length ratios, tibiae 0.90-0.93 times length of femur, tarsi 0.35-0.39 times length of femur; hindleg length ratios, tibiae 0.93-1.00 times length of femur, tarsi $0.34-0.36$ times length of femur. Abdomen: colour dark brown to black with goiden markings commonly forming a broken stripe midline, two golden coloured maculae flanking each midline marking anteriorly; posterolateral spines present, progressively larger posteriorly. Gills: membrane clear to light-grey or pink; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae dissimilar in size; upper lamellae narrows at three-quarters length with long apical filament or broadened apical third; lower lamellae narrows at four-fifths length,
tapering to a thin point apically; main and lateral tracheae strongly developed. Caudal filaments: three; golden; terminal filament longer than cerci.

Remarks. The genus Thraulophlebia can be distinguished from all other genera in the Leptophlebiidae family by the following combination of characters: In the imago: (i) body length of $5.6-7.4$; $95.6-8.8$; (ii) forewing hindwing ratio, ot 4.4-7.6; o 4.9-8.6; (iii) male upper eye size large, often contiguous; (iv) male and fernale forewing 4.4-8.6 times longer than hindwing; (v) male forewing crossveins faint, or more usually absent, from proximal halves of wing, MA forked at around half to the distance from wing base to margin? MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{ICu}_{1}$ recurved or joined to CuA and not linked to CuA-CuP crossvein; ICu_{2} joins $\mathrm{ICu}_{1}, \mathrm{ICu}_{1}$ and ICu_{2} parallel as wing margin approached, CuP strongly recurved and linked by cross vein to $A_{i} ;($ vi) hindwing with strong projection of the costa, joins subcosta at approximately two-thirds to four-fifths wing length; (vii) tarsal claws of a pair similar, each apically hooked with an opposing hook; (viii) penes fused in basal third to half ventrally, expended lateral margins in apical third; (ix) female eyes separated on meson of head by a distance about four to five times maximum width of eye; (x) female sternum seven with small genital extension; (xi) female sternum nine deeply cleft. In the nymph: (i) body length o $5.0-7.5, \% 5.8-10.0$; (ii) antennal length one and a half to more than twice length of head; (iii) lateral margins of clypeus very slightly diverging towards anterior; (iv) labrum slightly less than to slightly more than twice as wide as long; labrum subequal to slightly wider than clypeus, lateral margins rounded to slightly angular; labrum antero-median emargination slight or distinct bearing four to five elongate denticles; denticles extend 0.10 to 0.38 the width of labrum; labrum frontal setae arranged as a single row or narrow band; labrum secondary hair fringe clearly separated, reaching well beyond front band, containing 12-55 setae, extends 0.06 to one-third the width of labrum; thick socketed setae present lateral to secondary hair fringe; (v) mandibles with outer margins slightly curved; incisors often with inconspicuous serrations of lateral margins; (vi) maxillae with galea lacinae generally about as wide as long; subapical row of 16-22 pectinate setae; terminal palp with single spine apically; (vii) hypopharynx shallowly cleft, superlingua with rounded to slightly angular lateral margins; (viii) labium glossae not turned under ventrally; terminal segment elongate with row of triangular spines almost circling apex; submentum with lateral spines; (ix) pronotum about as wide as head; (x) legs with fore femora 2.7-3.8 times longer than wide; fore tarsi with 8 -14 ventral spines, tarsal claws with 11-15 ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; (xi) abdomen with posterolateral spines, progressively larger posteriorly; (xii) gills with margins entire, double, upper and lower lamellae dissimilar in size, upper lamellae narrows at three-quarters length with long apical filament or broadened apical third, lower lamellae narrows at four-fifths length tapering to a thin point apically; main and lateral tracheae strongly developed.

3.4.3.2 Thraulophlebia lucida (Uimer) comb. nov.

Thraulus dentatus Ulmer (Ulmer 1916) [partim]
Atalophlebia lucida Uimer (Ulmer 1919)
Atalonella lucida (Ulmer) (Harker 1954)
Thrauloph/ebia lucida (Ulmer) (Demoulin 1955c)
Koormonga sp. "AV1" (Dean 1999)
Koorrnonga pilosa (Suter) (Campbell and Suter 1988)
Thraulophlebia lucida (Ulmer) (Demoulin 1955c)

Types. Holotype (here designated). Atalophlebia lucida Ulmer. Cedar Creek, Queensland. 10030001, Ill 1910-1913, coll. Mjöberg's expedition, 1 đ imago, head and genitalia attached, hindwings missing. Paratype. (here designated). Atalophlebia lucida Ulmer. Same collection data, stored in the same vial, 1 of imago, head and genitalia detached. Labels: a) "Thraulus dentatus Ul. (Type)", b) "Atalophlebia lucida Ulm. (Ulm. 1920) Typus", c) "Queensl. Mjöberg ", d) "Cedar Creek", e) "mars". Held at the SMNH.

Koormonga pilosa (Suter)
Nousia pilosa Suter (Suter 1986)
Koorrnonga pilosa (Suter) (Campbell and Suter 1988)

Types. Holotype. Nousia pilosa. Second Wannon River, Grampians, Victoria. 77112502, 25 XI 1997, grid reference 547396, o imago, alcohol and slide material, coll. D.N and P.J. Suter. Labeis: a) "Holotype M T-8941", b) "Nousia pilosa N.sp. P. SUTER 1986. Second Wannon River South of Hails Gap, Vic. G.R. 547396. 25-11-1977. D.N. and P.J. SUTER Body and Genitalia +2 slides". Paratypes. Same location and collection data, 3 o imagos, 3 o nymphs, 3 \& nymphs. Hitchcock Drain, South Australia, 77112501, 25 XI 1997, 1 ot imago, 1 ot nymph, alcohol and slide material. Labeis: Vial 1 - a) "Paratypes M T-8942-8945", b) "Nousia pilosa N. sp. P. SUTER 1986. Second Wannon R. S of Halls Gap. Vic. G.R. 547396. 25-11-1977. D.N. + P.J. SUTER Imagos"; Vial 2 - a) "Paratypes M T-8946-8947, F T-8948-8950", b) "Nousia pilosa N. sp. P. SUTER 1986. Second Wannon R. S of Halls Gap. Vic. G.R. 547396. 25-111977. D.N. + P.J. SUTER M + F nymphs"; Vial 3 - a) "Paratype M T-8951 b) Nousia pilosa N. sp. P. SUTER 1986. MALE IMAGO. HITCHCOCK DRAIN S.E. South Australia 23-11-1977 D.N. + P.J. SUTER Body + slides (2) ${ }^{n}$. [examined]. Held at the MV.

Distribution. New South Wales, South Australia, Queensland, Victoria (Fig. 179).

Diagnosis. A redescription was considered desirable due to the accumulation of a large number of new specimens. It has also enabled the previously unknown female imago, subimago and nymph stages to be described. Male image. Dimensions: body lengths 5.7-7.4 ($6.6 \pm 0.45,20$); forewing length 5.7-7.4 ($6.6 \pm 0.51,21$); hindwing length 0.83-1.26 ($0.98 \pm 0.10,17$); forewing hindwing ratio 5.87-7.56 ($6.80 \pm 0.59,17$). General body colour ranging from light to tan to chocolate brown, usually quite dark. Head: dark brown. Antennae: pedicel and scape medium brown, flagellum golden. Ocelli: three; black with white inserts; laterals larger than medial. Eyes: upper eye size large, often contiguous, $E S=0.00-0.04(0.01 \pm 0.01,10)$; upper lobes orange-brown, lower lobes grey-black. Thorax: pronotum and mesonotum tan to dark brown. Legs: golden brown, femora apices darker, banding inconspicuous or absent; forelegs with seven segments, total foreleg length 5.64-6.61 (6.08 $\pm 0.33,10)$; leg length ratios $1.00: 1.45: 0.06: 0.50: 0.48$: $0.37: 0.17(1.52 \pm 0.14,10)$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 180). Wings. Forewing (Fig. 181): membrane hyaline, pterostigmatal area slightly opaque, longitudinal and crossveins light brown, anal veiris yellow; costal and subcostal crossveins absent from proximal halves of wing, costal space with 7-11 (19) crossveins distally, subcostal space with 5-10 (19) crossveins distally. Three bullae present on veins $\mathrm{Sc}, \mathrm{R}_{21}$ and R_{4+5}. MA forked at arol half the distance from wing base to margin, MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{CuA}$ and CuP linked by crossvein, $I C u_{1}$ recurved to join CuA and not linked to CuA-CuP crossvein, $I C u_{2}$ recurved to join $I C u_{1}, I C u_{1}$ and $I C U_{2}$ parallel or very slightly diverging as wing margin approached, CuP stronjly recurved and linked by crossvein to A_{1}. Hindwing (Fig. 182): mostly hyaline, costal space washed with yellow and very slightly opaque; strong projection of the costa which joins subcosta at approximately two-thirds wing length; no crossveins in proximal half of costal space, 2-3 (17) in distal space, 3-5 (17) throughout subcostal space. Abdomen (Fig. 183): tan to chocolate brown with goiden markings forming a broken stripe midline, two coloured maculae flanking each midline marking anteriorly. Genitalia (Figs 184-189): forceps (Figs. 184, 186) three segmented; tan brown basally, becoming lighter apically; terminal segment rounded, about the same length as middle segment; penes light brown; two lobes distinct, with expanded lateral margin in apical third, each lobe indented apically; separated almost at base dorsally (Figs. 184, 186, 187); inner margin of subapical lobes corrugated representing small teeth (Fig. 188); fused in basal half ventrally (Figs. 185, 189), with subapical lobes protruding laterally outwards; no internal spines or processes apparent. Caudal filaments: three; light brown; terminal filament longer than cerci. Female imago. Dimensions: body lengths 5.6-7.6 (6.6 $\pm 0.56,25)$; forewing length 5.9-8.3 (7.2 $\pm 0.58,21$); hindwing length 0.69-1.28 (1.04 $\pm 0.14,20)$; forewing hindwing ratio 5.47-8.55 (6.93 $\pm 0.77,20)$. General patterning and colour similar
to male. Eyes: grey-black; separated on meson of head by a distance of about four times maximum width of eye. Legs: total leg length shorter than male; foreiegs with six segments, tutal foreleg length $3.81-4.80(4.25 \pm 0.38,10)$; leg length ratios $1.00: 1.37$: $0.22: 0.19: 0.15: 0.15(1.38 \pm 0.14,10)$. Wings. Forewing (Fig. 190): colour and venation similar to males except with weakly developed crossveins in proximal halves of wing and generally more crossveins on average than male; costal space with 2-6 (22) faint crossveins proximally, 8-15 (22) distally, subcostal space with 0-5 (22) faint crossveins proximally, 8-11 (22) distally. Hindwing (Fig. 191): no crossveins in proximal half of costal space, 2-3(20) in distal space, 3-4 (20) crossveins throughout subcostal space. Abdomen (Fig. 192, 193): sternum seven with small genital extension; sternum nine deeply cleft. Egg. Ovoid, polar cap with two rings of tubular projections on each apex; chorion with small eveniy spaced circular protuberances (Figs. 194-196). Male and female subimago. Dimensions: body lengths of 5.5-7.2 (6.2 $\pm 0.52,12$); \& 6.0-7.3 (6.6 \pm $0.46,9$). General colour and markings similar to imago. Wings uniformly opaque. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. (Fig. 197). Body lengths o $5.0-7.5(6.6 \pm 0.82,20)$, of 5.8-7.9 (7.1 $\pm 0.62,20)$. General colour ranging from tan to middle to chocolate brown, usually dark, colour variable. Head: prognathous; tan to middle brown, width $1.28 \mathrm{~m} 1.53(1.41 \pm 0.08,15)$. Ocelli: three; black with grey inserts; laterals larger than medial. Antennae: pedicel, scape and flagellum golden; approximately one and a half times length of head. Eyes: upper lobes of male orange-brown, lower lobes black; eyes of female black. Mouthparts. Labrum and clypeus (Fig. 198): lateral margins of elypeus very slightly diverging to anterior; lateral margins of labrum subequal to clypeus, rounded; labrum anterior margin with slight antero-median emargination; labrum length $0.29-0.40(0.33 \pm 0.04,25)$, labrum width $0.51-0.75$ ($0.61 \pm 0.06,25$), labrum width length ratio $1.69-2.18(1.86 \pm 0.13,25)$; five elongated denticles present on anterior margin extending 0.14-0.21 ($0.18 \pm 0.02,24$) across labrum; denticle width labrum width ratio $0.23-0.38(0.29 \pm 0.05,24)$; frontal setae arranged as a single row; secondary hair fringe clearly separated from front row, reaching well beyond the frontal setae, containing between 12-25 (20) setae, extends 0.04-0.14 (0.08 ± 0.02, 25) across labrum; secondary hair fringe to labrum width ratio $0.06-0.20(0.14 \pm 0.03,25)$; thick socketed setae present lateral to secondary hair fringe. Mandibles: outer margins slightly curved; long setae at midpoint on outer lateral margins; shorter setae between long setae and base; dark coloured nodule at midpoint on inner lateral margins; sparse tuft of setae on lower mandible body. Left mandible (Fig. 199): two incisors, each with three apical teeth, outer incisor often inconspicuously serrated on inner lateral margin; prothesca robust, serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 200): spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, often inconspicuously serrated on inner
lateral margin; inner incisor with two apical teeth; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 201): galea-lacinae as wide as long, width length ratio $0.91-1.12$ ($1.00 \pm 0.07,12$); subapical row of 16-21 (16) pectinate setae; palpi three segmented, terminal palp with single spine on apex (Fig. 202); palp length ratios 1.00: 0.79: 0.64 ($0.22 \pm 0.02,19$). Hypopharynx (Fig. 203): well developed lateral processes; anterior margin of lingua shallowly cleff; superlingua with thick tufts of setae on anterior margins; lateral margins slightly angular. Labium (Fig. 204): glossae not turned under ventrally and lying in the same plane as paragiossae, series of blunted spines apically; palpi three segmented, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface (Fig. 205); palp length ratios $1.00: 0.86: 0.65(0.32 \pm 0.02,12)$; submentum with spines on lateral margins. Thorax: tan to middle brown with darker brown markings; pronotum width 1.10-1.63 (1.36 $\pm 0.14,15)$; approximately equal to width of head (see above); head pronotum width ratio $0.84-1.07(0.96 \pm 0.08,15)$. Legs (Fig. 206): golden to tan brown, banding ranges from conspicuous to inconspicuous; total foreleg length 2.53-3.29 $(2.89 \pm 0.21,20)$; fore femora length $1.05-1.38(1.21 \pm 0.10,20)$; fore femora width 0.28 $0.43(0.37 \pm 0.04,20)$; fore femora length width ratio $2.83-3.75(3.31 \pm 0.26,20)$; fore tibiae with numerous short ventral spines, sometimes serrated (Fig. 207); fore tarsi with 8-14 (22) ventral spines, length 0.20-0.34 (0.27 $\pm 0.04,10$) width of tarsus; tarsal claws (Fig. 208) with $12-15(12)$ ventral teeth, progressively larger apically, apical tooth inconspicuously serrated on inner margin; leg length ratios, foreleg 1.00: 0.92: 0.47 ($1.21 \pm 0.10,20$), mid leg 1.00: 0.93: $0.35(1.20 \pm 0.10,15)$, hind leg 1.00: 1.00: 0.34 $(1.26 \pm 0.12,14)$. Abdomen : dark brown with golden markings medially on each segment forming a broken stripe midline, two light coloured maculae flanking midline marking, pattern variable; posterolateral spines present, progressively larger posteriorly. Gills (Fig. 209): membrane clear to light grey; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae similarly shaped; upper lamellae narrows at three-quarters length with long apical filament, lower lamellae narrows at fourfifths length with shorter apical filament; main and lateral tracheae present, strongly developed. Caudal filaments: three; golden; terminal filament longer than cerci..

Remarks. Admittedly there is much confusion surrounding the types species of Thraulophlebia. A large number of specimens referred to as Thraulus dentatus (Ulmer 1916) were described from specimens taken during Dr Mjöberg's Swedish Expedition to Australia 1910-1913. Upon review some time later Ulmer (1919) considered that the light and dark examples he had described were in fact two different species belonging to the genus Atalophlebia. The dark examples were renamed A. fusca and the light examples A. lucida (a new species name was necessary as dentatus was pre-occupied). It was
difficult to tell whether the species /ucida or fusca were being discussed in Ulmer (1916) and this was only clarified by careful examination of the type specimens in conjunction with the literature.

The type specimens were also compared closely with specimens from the MRHI and the MV. Those referred to by Dean (1999) as Koorrnonga sp. "AV1" also proved to be the same species. These specimens, and a large number of new specimens collected as a result of this project, enabled a compleie redescription of the species including the hitherto unknown female imago, male and female subimago and nymph stages (above). The described species was then compared with the original descriptions of the new species T. lucida.

The size and shape of the holotype genitalia match exactly with the redescribed species giving a strong case for synonymy. Unfortunately, the genitalia drawing of the holotype (Ulmer 1919, FIG. 11, p.18, reproduced here as Fig. 210) is somewhat enigmatic with what looks like a covering surrounding the two lobes ventrally for at least two-thirds of the length. Ulmer (1919, p.19) describes the ventral surface of the penis in his paper as "..sehr breit; aus einer flach röhrenförmigen Umhüllung, deren Apikalrand etwas wulstig nach außen gebogen ist.." ("..very wide; arising from a flat tubular formed covering, of which the apical margin is somewhat swollen and bowed out.."). I am willing to concede that the rounded ends of the penes lobes could flatten and "bow out" when mounted for viewing under a compound microscope but do not understand the origin of tubular covering on the specimens I examined. Perhaps Ulmer is referring to the rounded lateral ventral margins of each penis lobe which appears to curl inwards and cover some of the inner surface of the lobes although these do not cover the entire ventral surface. Indeed, Ulmer's drawing is so different from the type specimens, I wonder that he has not confused his specimens and drawn from the wrong specimen. Incongruously, in the same paper he refers to the penes lobes being ". ragen zwei nebeneinander liegende, durch einen Spalt getrennte Loben hervor mit unregeimäßig schief abgestutstem Apex;.." ("..two lobes side by side, separated by a crack with an irregular crooked stumpy apex;..") (Ulmer 1919, p.19). This is not shown in the drawing but more clearly describes the type specimens and the redescribed T. lucida.

Two other important characters are the forewing venation and hindwing shape, although these characters are generic, rather than species, specific. The type specimens are consistent with the descriptions and drawings of Ulmer (1919) and the description of Demoulin (1955c). As mentioned previously (3.4.2) these features, especially the sharp curve of vein C of the hindwing ("..La C se corbe brusquement à mid-longueur..")
(Demoulin 1955c, p.228), led the author to create a new genus for this species as it was so distinct.

In most other respects the type specimens and literature descriptions of T. lucida match closely with the redescription (Table 10). However, there are a number of relatively minor discrepancies between the descriptions of Ulmer (1916) and Ulmer (1919) and the redescription of T. lucida which should be mentioned (Table 11). These differences relate solely to colour variations amongst the adults. Colour is quite a subjective character and can be strongly influenced by environmental factors such as development temperature. The differences are minimal and 1 am inclined to disregard this as a major issue. The type specimens do not help to clarify the matter as the colour has facied dramatically to creamy-white and cannot be compared to the darker coloured "fresh" specimens.

Table 10. Similarities between the redescription of Thraulophlebia lucida and the literature descriptions and type measurements of Thraulophlebia lucida (incorporating Thraulophlebia dentatus, Atalophlebia lucida and Koorrnonga sp. "AV1").

	Thraulophlebia lucida	type measurements and literature descriptions
Male Imago		
body length	5.7-7.4 (6.6 $\pm 0.45,20)$	5.8 - holotype, 6.0-paratype, 6 (Uimer 1919)
forewing length	forewing length 5.7-7.4 (6.6 ± 0.51. 21)	6.2 - holotype, 5.6 - paratype, 6-6.5 (Ulmer 1919)
hindwing length	0.83-1.26 (0.98 $\pm 0.10,17)$	1.0 - paratype
costal crossveins - distally	absent	absent - holotype, paratype
costal crossveins - proximally	7-11 (19)	10- holotype, 11 - paratype, 8-9 (Ulmer 1919)
subcostal crossveins - distally	absent	absent - holotype, paratype
subcostal crossveins - proximally	5-10(19)	10 - holotype, 8 - paratype, 7 (Ulmer 1919) drawing
bullae	Sc, $\mathrm{R}_{2}, \mathrm{R}_{4+5}$	Sc, R_{2}, R_{4+5} - holotype, paratype
MA fork	about half	slightly less than half - holotype, paratype approximately half (Uimer 1919)
MP_{2} connected to MP_{1} and CuA	yes	yes - holotype, paratype
CuA, Cup linked by crossvein	yes	yes - holotype, paratype
ICu_{1} joins CuA	yes	yes - holotype, paratype
ICu_{2} joins CCu_{1}	yes	yes - holotype, paratype
ICu_{1} and ICU_{2} parallel or diverging as wing margin approached.	parailel	parallel - holotype, paratype
hindwing - costal crossveins	2-3 (17)	$\begin{array}{\|l\|} \hline 2 \text { - paratype } \\ 2 \text { (Ulmer 1919) } \\ \hline \end{array}$
hindwing - subcostal crossveins	3-5 (17)	3 - paratype 3 (Ulmer 1919)
Nymph		
leg banding	conspicuous to inconspicuous	conspicuous (Dean 1999)
length of spines on foretarsus	0.20-0.34 (0.27 $\pm 0.04,10)$	one-third or less the diameter of tarsus (Dean 1999)

Table 11. Discrepancies between the redescription of Thraulophlebia lucida and the literature descriptions of Thraulophlebia lucida (incorporating Thraulus dentatus, Atalophlebia lucida, and Koorrnonga sp. "AV1").

	Thraulophlebia lucida	literature descriptions
Male imago	dark brown-	grey-yellow to grey-brown (Ulmer 1919)
head colour	upper: orange-brown, lower: grey-black	upper: brick-brown to darkly cream coloured, lower: blackish (Ulmer 1919)
eye colour	tan to dark brown	grey-brown with blackish margins (Ulmer 1919)
thorax colour	tan to chocolate brown with golden markings	grey-yellow with dark grey- brown (Ulmer 1916, 1919).
abdomen colour		

In addition to the museum and new material used for the redescription, I checked other species for possible matches to T. lucida. Koorrnonga pilosa was extensively and adequately initiaily described as Nousia pilosa (Suter 1986) in the revision of the South Australian mayfly fauna and subsequently placed in the genus Koorrnonga following revision of the Australian Nousia (Campbell and Suter 1988). Indeed, it was this same paper that established the genus Koorrnonga based on the morphological differences these species showed compared to Nousia. I wholeheartedly agree with his assessment which was based on such characters as the width of the secondary hair fringe in the nymph and the shape of the male hindwing and genitalia in the male imago. It was unfortunate then that the genus Thraulophlebia was not considered when the genus Koorrnonga was established.

The N. pilosa holotype has been examined and the male genitalia conforms very closely to that of the T. lucida types and the redescribed T. lucida material (Fig. 211). In addition, as the redescription of T. lucida encompassed a large amount of material this enabled the full range of variation within the species to be examined. In doing so, I was able to establish that K. pilosa fitted largely within these boundaries (Table 12).

There are a few discrepancies between the two descriptions that must be accounted for (Table 13). A most significant one, is the genitalia drawings of N. pilosa (Suter 1986, FIG. 12d, p377, reproduced here as Fig. 212) and the accompanying SEM photo (Suter 1986, FIG. 15f, p.380, reproduced here as Fig. 213). Although the dorsal view is not shown and the lateral margins of the penes are obscured by the forceps, the shape does not appear similar to the T. lucida types or newly redescribed species. I am at a loss to explain this
as the holotype genitalia of K. pilosa is more similar to T. lucida rather than Suter's drawings and micrographs.

Also in the male imago there is an apparent absence of a crossvein attaching CuP to A_{1} in K. pilosa. I believe this was an oversight on the part of Suter as both the holotype and paratype show the crossvein present. The issue of the leg colour varying between golden and dark brown between the two "speies" can be dismissed, I believe, as natural variation.

A large number of discrepancies refer to measurti. ents and ratios in both the imago and nymph. For many of the measurements and ratios K pilosa is larger and within, or just outside, the range of measurements for 7 . Iucida specimens both in the imago (body length, forewing length, hindwing length) and the nymph (head width, pronotum width, head/pronotum width ratio, labrum length width ratio). The total fore leg lengths of both the imago and nymph and the palp length ratios of the labium and maxillae, however, are very much larger in K. pilosa than T. lucida. As there is no indication of the number of specimens measured for K. pilosa (Suter 1986) it is possible that they refer to a few large individuals. In most cases the ratios of the various measurements are similar.

Table 12. Similarities between the redescription of Thraulophlebia lucida and the literature descriptions of Koorrnonga pilosa.

		Thraulophlebia lucida redescription	Koorrnonga pilosa literature descriptions (Suter 1986)
	Male imago		
	head colour	dark brown	black-brown
	eye colour	upper lobes orange brown	upper lobes pink brown
	costal crossveins - proximal /.distal	absent / 7-11 (19)	absent / 9 (drawing)
	subcostal crossveins - proximal / distal	absent / 5-10 (19)	absent/7
	bullae	Sc, R_{2}, and R_{4+5}	Sc, R_{2}, and R_{4+5}
	MA fork	around half	around half (drawing)
	MP_{2} connected to MP_{1} and CuA	yes	yes (drawing)
	CuA and CuP linked by crossvein	yes	yes (drawing)
	ICu_{1} joins CuA	yes	yes (drawing)
	Cu_{2} joins ICu_{1}	yes	yes (drawing)
	$1 \mathrm{Cu}_{1}$ and Cu_{2} parallel or diverging	parallel	parallel (drawing)
$\stackrel{\rightharpoonup}{\text { a }}$	hindwing costa joins subcosta	two - hirds	two-thirds (drawing)
	hindwing crossveins - costal/subcostal	2-3 (17)/3-5 (17)	2/3
	abdomen colour	chocolate brown with golden markings	dark brown, mid dorsal light brown
	caudal filaments	terminal filament longer than cerci	cerci length 9.05, terminal filament length 12.00
	Nymph		
	head colour	tan to middle brown	light brown
	male eye colour	upper lobes orange brown	upper lobes red-brown
	denticle number	5	6
	left mandible incisors	3,3	3,3
	right mandible incisors	3,2	3,2
	hypopharynx	shallowly cleft	shallowly cleft (drawing)
	legs	golden to tan brown	light brown
	forefemur length to width ratio	2.83-3.75 (3.31 $0.26,20)$	3.13
	leg banding	ranges from conspicuous to inconspicuous	absent
	tarsal claws - teeth no.	12-15 (12)	12
	abdomen colour	dark brown with light central golden markings	dark brown with light central marking
	gills	double, upper lamellae longer than lower	double, upper lamellae longer than lower

Table 13. Discrepancies between the redescription of Thraulophlebia lucida and the literature descriptions of Koormonga pilosa.

2		Thraulophlebia lucida redescription	Koorrnonga pilosa literature descriptions (Suter 1986)
	body length	5.7-7.4 (6.6さ0.45, 20)	7.5
	forewing length	5.7-7.4 (6.6 $\pm 0.51,21)$	7.67
	hindwing length	0.83-1.26 (0.98 $\pm 0.10,17)$	1.23
	legs	golden brown, femora apices darker	femur dark brown, tibia and tarsi light brown
	total foreleg length	5.64-6.61 (6.08 $\pm 0.33,10)$	7.07
	CuP attached to A1	yes	no (drawing)
	penes shape	fused in basal half ventrally, separated almost at base dorsally; two lobes distinct, separating then coming together apically, each lobe indented apically; ventral view with subapical lobes protruding laterally outwards; dorsal view with expanded lateral margin in apical third.	penes fused, apex with two lobes, ventral surface lacking lobes.
	Nymph		
の	head width	1.28-1.53 (1.41 $\pm 0.08,15)$	1.20
	pronotum width	1.10-1.63 (1.36 $\pm 0.14,15)$	1.09
	head pronotum width ratio	0.84-1.07 (0.96 $\pm 0.08,15)$	pronotum width $0.91 \times$ head width
	labrum length width ratio	1.69-\% $18(1.86 \pm 0.13,25)$	1.5 times wider than long
	maxillae palp length ratios	1.00:0.79:0.64 (0.22 $\pm 0.02,19)$	1.00: 0.68: 0.68 (0.27)
	labium palp length ratios	1.00: 0.86: 0.65 (0.32 $\pm 0.02,12)$	1.00: 0.77: 0.49 (0.44)
	total foreleg length	2.53-3.29 (2.89 $\pm 0.21,20)$	4.01
	foreleg	1.00:0.92: 0.47 (1.21 $\pm 0.10,20)$	1.00: 0.96: 0.40 (1.70)
	midleg	1.00:0.93: $0.35(1.20 \pm 0.10,15)$	1.00: 0.95: 0.31 (1.77)
	hindleg	1.00: 1.00: 0.34 (1.26 $\pm 0.12,14)$	1.00: 1.01: 0.29 (1.93)

I am confident in the synonymy of T. lucida, Koormonga sp. "AV1" and K. pilosa based on morphological similarity, especially with regard to the the size and shape of the male genitalia. I therefore formally synonymise T. lucida with K. pilosa. The types of K.pilosa now become part of the type series for T. lucida.

I was unable to collect a specineen from the type locality of Cedar Creek in Queensiand to confirm my diagnosis (see 3.3.2.2). A small number of specimens of Koorrnonga sp. "AV1" have been found in South East Queensland. Whether this encompasses the Cedar Creek mentioned in Ulmer (1916 and 1919) is unknown. A comprehensive survey of Queensland would be required to determine the extent of the distribution of this species.

Thraulophlebia lucida can be distinguished from all other species in the genus by the following combination of characters. In the imago: (i) forewing hindwing ratio comparatively large; (ii) upper eye size large, often contiguous; (iii) leg banding conspicuous to inconspicuous; (iv) penes with expanded lateral margin in apical third; fused in basal half ventrally; separated at base dorsally; lobes indented apically; subapical lobes ventrally protruding laterally outwards; (v) female body length comparatively shorter on average; (vi) egg ovoid with two rings of tubular processes. In the nymph: (i) labrum subequal to clypeus, lateral margins rounded, antero-median emargination slight, length width ratio less then two on average; single row of frontal setae; secondary hair fringe containing 12-25 setae with width approximately one-sixth across labrum; (ii) hypopharynx superlingua with slightly angular lateral margins; (iii) leg banding inconspicuous to absent; (iv) gill shape with upper lamellae narrowing at tnree quarters length with long apical filament, lower lamellae narrows at four-fifths length with long apical filament.

Specimens examined. NEW SOUTH WALES. Allyn River, 12 km N of Eccleston, 80022101, 21 II $1980,300 \mathrm{~m}, 151^{\circ} 29^{\prime} 32^{\circ} 09^{\prime}, 1$ \& I (AC). Jindabyne, $76022100,21 \mathrm{II}$ 1976, $1000 \mathrm{~m}, 148^{\circ} 37^{\prime} 36^{\circ} 24^{\prime}, 1$ o' $\mathrm{N}, 1$ or $\mathrm{S}(\mathrm{AN})$. Wentworth Falls, Blue Mountains, 82111600, 16 XI 1982, $800 \mathrm{~m}, 150^{\circ} 22^{\prime} 33^{\circ} 43^{\prime}$, EPH $1130,1 \sigma^{\circ} \mathrm{N}, 2$ क N (DC).
QUEENSLAND. Branch Creek, Conondale Ranges, 97082601,26 VIII 1997, 160m, $152^{\circ} 43^{\prime} 26^{\circ} 53^{\prime}$, EPH 1264, 3 of N, 1 \& N (JD). Stony Creek, Conondale Ranges, 97082602, 26 VIII 1997, $140 \mathrm{~m}, 152^{\circ} 41^{\prime} 26^{\circ} 51^{\prime}$, EPH 1259, 3 of N (JD). TASMANIA. Aspley River, Bicheno, 72110900, 9 XI 1972, 20m, $148^{\circ} 18^{\prime} 41^{\circ} 52^{\prime}, 1$ \& I (AN). Chung River, Rd to Pioneer from St Helens, 95020903, $9 \| 1995,130 \mathrm{~m}, 147^{\circ} 59^{\prime} 41^{\circ} 05^{\prime}$, EPH 0203, 4 © N (PS\&PG). North George River, 94030702, 7 III 1994, EPH 0198, 2 \& N (PS\&MS). Powers Rivulet, 94030703,7 III 1994, 100m, 14800 ${ }^{\prime} 41^{\circ} 19^{\prime}$, EPH 0225, 3 ㅇ N (PS\& MS). Seven Time Creek, Tasman Highway near Targa, 95020804, 8 II 1995, $400 \mathrm{~m}, 147^{\circ} 22^{\prime} 41^{\circ} 18^{\prime}$, EPH 0216, 1 of $\mathrm{N}, 4 \circ \mathrm{~N}$ (PS\&PG). St Patricks River,

Nunamara, 95020805, 8 II 1995, 350m, $147^{\circ} 17^{\prime} 41^{\circ} 23^{\prime}$, EPH 0233, 3 © $\mathrm{N}, 2$ 우 N (PS\& PG). VICTORIA. Badger Creek, Dalry Rd, 76032500, 25 III 1976, $90 \mathrm{~m}, 145^{\circ} 31^{\prime} 37^{\circ} 41^{\prime}$, EPH 1503, 1 \& NI (JD), EPH 1504, 3 ㅇ 1 (JD). Badger Creek, downstream weir, 78033000, 30 III 1978, 280m, $145^{\circ} 34^{\prime} 37^{\circ} 41^{\prime}$, EPH 1506, 1 ó S (JD); 80010800, 81 1980, same locality data, 1 ㅇ (JD). Barkly River, Lyndon Flat, 9km NW of Liccla, (Mc14), 76120300, 3 XII 1976, 260m, 146 $34^{\prime} 37^{\circ} 33^{\prime}, 1$ s' $^{\prime \prime}$ (AC). Bellbrook Creek, Midiand Highway, Yinnar South, 99030402, 4 III 1999, 100m, $146^{\circ} 18^{\prime} 37^{\prime \prime} 38^{\circ} 22^{\prime} 03^{\prime \prime}, 1$ of $\mathrm{N}, 5$ \& N (KJF). Bonang River, Dellicknora, 97031401, 14 III 1997, $600 \mathrm{~m}, 148^{\circ} 40^{\prime} 37^{\circ} 06^{\prime}, 1$ \& N (KJF). Branch Creek, Victoria Range, Grampians, 66121600, 16 XII 1966, 142¹5' 37 ${ }^{\circ} 23^{\prime}, 1 \delta^{\prime} 1,1$ fl(AN). Dairy Creek, Grampians Tourist Rd, 99011601, 16 I 1999, 290m, $142^{\circ} 32^{\prime} 30^{\prime \prime} 37^{\circ} 11^{\prime} 38^{\prime \prime}, 1$ o $^{\circ} \mathrm{NSI}, 1$ \& $\mathrm{NSI}, 2$ o $^{\circ} \mathrm{N}, 2 \neq \mathrm{N}$ (KJF). Charleys Creek, 5km S of Gellibrand, 82012900,291 1982, $90 \mathrm{~m}, 143^{\circ} 41^{\prime} 38^{\circ} 33^{\prime}, 2$ 이 (AN). Chinaman's Creek, Wilsons Promitory National Park, 99030400,4 III 1999, 60m, $146^{\circ} 23^{\prime} 38^{\circ} 55^{\prime}, 1$ б I, MV light, (TN\& KW). Diamond Creek, Hurstbridge, 28 XI 1986, EPH 1507, 2 d N, 12 \& $N(J D)$. Diamond Creek, 7 km SE of Gembrook, 79013100 , 31 I 1979, 130m, $145^{\circ} 37^{\prime}$ $37^{\circ} 58^{\prime} 1$ ol 1 (AN\&AW). Dinner Creek, Wangarabell Rd, 99021301, $13 \| 1999,130 \mathrm{~m}$, $149^{\circ} 31^{\prime} 20^{\prime \prime} 37^{\circ} 24^{\prime} 39^{\prime \prime}, 5$ o $^{\circ} \mathrm{N}, 7$ $7 \mathrm{~N}(\mathrm{KJF})$. Deep Spring, Wombat State Forest, 97122003, 20 XII 1997, 480m, 144 ${ }^{\circ} 04^{\prime} 20^{\prime \prime} 37^{\circ} 21^{\prime} 07^{\prime \prime}, 1$ ㅇ $\mathrm{NSI}, 1$ of $\mathrm{N}, 4$ ㅇ N (KJF); 98110103, 1 XI 1998, same locality data, 1 o $\mathrm{NSI}, 2$ ㅇ $\mathrm{NSI}, 1$ or $\mathrm{N}, 3$ ㅇ N (KJF). Donnelly Creek, upstream Watts River, 78022300, 23 II 1978, 140m, 145 ${ }^{\circ}{ }^{\prime 2}$ $37^{\circ} 37^{\prime}, \mathrm{EPH}$ 1495, 1 o $^{\circ} 1$ (genitalia missing), 2 \& $1,2 \sigma^{\circ} \mathrm{S}, 1 \% \mathrm{~S}$ (JD). Eurobin River, Mount Buffalo Rd, Mt Buffalo National Park, 96110702,7 XI 1996, 440m, 14650'29' $36^{\circ} 43^{\prime} 10^{\prime \prime}, 1$ o $^{\circ} \mathrm{N}, 1$ q $\mathrm{N}(\mathrm{KJF}) ; 99021101$, 11 if 1999, same locality data, 2 \& $1,1 \neq \mathrm{S}, 3$ o $\mathrm{N}, 10 \% \mathrm{~N}(\mathrm{KJF})$. Erinundra Creek, 15km iv of Club Terrace, 75111100, 11 XI 1975, 120m, $148^{\circ} 55^{\prime} 37^{\circ} 22^{\prime}, 1$ ㅇ I, (JB). Fitzroy River, T\&W Rd, off Princes Highway, 99022801, 28 II 1999, $80 \mathrm{~m}, 141^{\circ} 25^{\prime} 38^{\prime \prime} 38^{\circ} 04^{\prime} 38^{\prime \prime}$, 1 of N (KJF). Fyans Creek, Grampians Tourist Rd, 00012202, 22 । 2000, 290m, $142^{\circ} 32^{\prime} 30^{\prime \prime} 37^{\circ} 12^{\prime} 59^{\prime \prime}, 1$ of $\mathrm{N}, 1$ i N (KJF). Gellibrand River, Pumping Station at Carlisle River junction, 82012500, 251 1982, $40 \mathrm{~m}, 143^{\circ} 23^{\prime} 38^{\circ} 33^{\prime}$ (AN). Gellibrand River, 3 km E Gellibrand, 82012600, 26 I 1982, $80 \mathrm{~m}, 143^{\circ} 33^{\prime} 38^{\circ} 31^{\prime \prime} 1 \delta^{\circ} \mathrm{I}$ (RStC\& AN). German Creek, Bright-Tawonga Rd, near Bright, 96110901,9 XI 1996, $440 \mathrm{~m}, 147^{\circ} 03^{\prime} 25^{\prime \prime} 36^{\circ} 43^{\prime} 58^{\prime \prime}, 1$ of $\mathrm{N}, 2$ 9 N (KJF). Gulf Stream, downstream Epacris Falls, Mount Victory Rd, Grampians, 99011603, 16 1 1999.
 2000, same locality data, 2 ơ NSI, $1 \not \% \mathrm{NSI}, 2$ of $\mathrm{N}, 2$ $\ddagger \mathrm{N}(\mathrm{KJF})$. Hensleigh River, Combienbar Rd Ford, 98012505,25 I 1998, 240m, 149 $01^{\prime} 08^{\prime \prime} 37^{\circ} 21^{\prime} 36^{\prime \prime}, 1$ б $N(K J F)$. Holland Creek, Fords Bridge, Tatong-Tolmie Rd, 99022003, 20 |l 1999, 360m, $146^{\circ} 08^{\prime} 13^{\prime \prime} 36^{\circ} 49^{\prime} 37^{\prime \prime}$, 1 o $^{\prime \prime} \mathrm{N}$ (KJF). Howqua River, 12km SE of Merriiig, 71113000, 30

XI 1971, 420m, $146^{\circ} 19^{\prime} 37^{\circ} 11^{\prime \prime} 1$ s 1 (AN). Jackson's Creek tributary, Waterloo Flat Rd, $97102601,26 \times 1997,470 \mathrm{~m}, 144^{\circ} 31^{\prime} 27^{\prime \prime} 37^{\circ} 28^{\prime} 30^{\prime \prime}, 1$ of $\mathrm{NSI}, 1$ ㅇ $\mathrm{NSI}, 2$ \& $\mathrm{NI}, 2$ ơ N , 2 ; N (KJF). Jimmys Creek, Glenelg, 94111000, 10 XI 1994, 1 il (MRHI). Johnstone Creek, Portland-Nelson Rd, 97030401, 4 III 1997, 110m, 141¹9'16" $38^{\circ} 11^{\prime} 33^{\prime \prime}, 1$ o $^{\circ} \mathrm{NSI}$, 1 \& N (KJF); 97102501, 25×1997, same locality data, 2 ㅇ $\mathrm{NSI}, 1$ ㅇ N (KJF).
Kangaroo Creek, Kangaroo Rd, 5km E of Daylesford, 97010901,91 1997, 600 m , $144^{\circ} 13^{\prime} 45^{\prime \prime} 37^{\circ} 21^{\prime} 10^{\prime \prime}, 1$ of $\mathrm{NSI}, 1$ \& NSI, 1 \& NI, 1 \& SI, 3 of N, 2 \& N (KJF). King Parrot Creek, Whittlesea-Yea Rd, 15km SW of Flowerdale, 98030501, 5 III 1998, 350m, $145^{\circ} 14^{\prime} 48^{\prime \prime} 37^{\circ} 25^{\prime} 50^{\prime \prime}, 1$ o N (KJF). Lardner Creek, Lardners Rd, 96040504, 5 IV 1996, $80 \mathrm{~m}, 143^{\circ} 32^{\prime} 33^{\prime \prime \prime} 38^{\circ} 32^{\prime} 11^{\prime \prime}, 1$ o $^{\prime \prime} \mathrm{S}$ (KJF). Love Creek, Loves Creek Picnic Ground, Colac-Beech Forrest Rd, 98010303, 3 I 1998, 100m, $143^{\circ} 34^{\prime} 52^{\prime \prime} 38^{\circ} 28^{\prime} 55^{\prime \prime}, 1$ of $\mathrm{N}, 1$ \& N (KJF). Main Creek, Baldry's Rd, Green's Bush National Park, 97041601, 16 IV 1997, $110 \mathrm{~m}, 144^{\circ} 57^{\prime} 34^{\prime \prime} 38^{\circ} 25^{\prime} 20^{\prime \prime}, 1$ q N (KJF). Martins Creek No. 2, Bonang Rd, 0.5 km S of Malinns, $99021306,13!11999,260 \mathrm{~m}, 148^{\circ} 36^{\prime} 37^{\circ} 25^{\prime}, 2$ i $\mathrm{F}(\mathrm{KJF})$. Perisher Creek, Smiggin Holes-Guthega Rd, 97120203, 2 XII 1997, 1520m, $148^{\prime 2} 25^{\prime \prime} 36^{\circ} 22^{\prime}, 1$ o $^{\prime \prime} \mathrm{NSI}, 1$ \& NSI, $1 \sigma^{\circ} \mathrm{NS}, 1 \sigma^{\circ} \mathrm{N}(\mathrm{KJF})$. Sassafras Creek, 1 km N of Kallista, $74103000,30 \times 1974$, $320 \mathrm{~m}, 145^{\circ} 22^{\prime} 37^{\circ} 52^{\prime}, 1$ o $^{\prime} \mathrm{I}$ (AN). Scrubby Valley Creek, Flat Rock Crossing, Glenelg River Rd, 161 1999, $290 \mathrm{~m}, 142^{\circ} 26^{\prime} 36^{\prime \prime} 37^{\circ} 09^{\prime} 46^{\prime \prime}, 1$ o' $^{\prime} \mathrm{NS}$ (KJF). Spring Creek, 4.5 km upstream Alexandra-Yarck Rd, 81110400,4 XI 1981, 220m, $145^{\circ} 38^{\prime} 37^{\circ} 08^{\prime}$, EPH 1509, 1 σ^{7} NS (JD). Starvation Creek, 76031900, 19 III 1976, 240m, $145^{\circ} 47^{\prime} 37^{\circ} 42^{\prime}$, EPH 1490 , 1 on NSI, (genitalia missing) (JD), EPH 1491, 1 or I, (genitalia missing) (JD), EPH 1492, 1 ¢ ! (JD), EPH 1493, 1 ol, (genitalia missing), 1 ㅇ (JD); 76042302, 23 IV 1976, same locality data, EPH 1495, 1 of (JD), EPH 1501, 3 of (JD), EPH 1502, 4 \& NSI, 9 \% S (JD). Stevensons Falls, Upper Gellibrand River, 82012000, 201 1982, 3 \& I, 2 ㅇ I (AN\& AW). Stony Creek, Wonderland Car Park, Grampians, 99011602, 16 I 1999, 410 m , $142^{\circ} 30^{\prime} 10^{\prime \prime} 37^{\circ} 09^{\prime} 04^{\prime \prime}, 1$ \& NS, 1 \& NS, 3 o $^{\prime} \mathrm{N}, 7$ \& N (KJF). Tarra River, Yarram, 91031200, 12 IIf 1991, $320 \mathrm{~m}, 146^{\circ} 32^{\prime} 20^{\prime \prime} 38^{\circ} 27^{\prime} 17^{\prime \prime}, 1$ o $\mathrm{N}(\mathrm{MRHI})$. Tarwin River East, Mirboo Bridge, Mirboo, 99030404, 4 III 1999, 90m, $146^{\circ} 12^{\prime} 37^{\prime \prime} 38^{\circ} 28^{\prime} 25^{\prime \prime}, 1$ 우 $N(K J F)$. Thurra River, Princes Highway, 74033000,30 III 1974, $140 \mathrm{~m}, 149^{\circ} 15^{\prime} 37^{\circ} 34^{\prime}, 1$ of 1,1 i 1 (AN). Thurra River west branch tributary, Thurra Junction Rd, $97101801,18 \times 1997$, $200 \mathrm{~m}, 149^{\circ} 17^{\prime} 41^{\prime \prime} 37^{\circ} 27^{\prime} 35^{\prime \prime}, 6$ o $^{\circ} \mathrm{N}, 5$ \& N (KJF). Wannon River, Serra RdBridge, 25 km S of Halls Gap, 83120400, 4 XII 1983, 320m, $142^{\circ} 30^{\prime} 37^{\circ} 21^{\prime}, 1$ ㅇ 1 (AN).

Wellington River, Tamboritha Rd, Alpine National Park, 96092204, 22 IX 1996, 340m, $146^{\circ} 38^{\prime} 15^{\prime \prime} 37^{\circ} 31^{\prime} 02^{\prime \prime}, 1$ d $^{\prime \prime} \mathrm{N}(\mathrm{KJF})$. Werribee River, Blakeville-Bunding Rd, 99032601, 26 III 1999, $550 \mathrm{~m}, 144^{\circ} 10^{\prime} 12^{\prime \prime} 37^{\circ} 30^{\prime} 04^{\prime \prime}, 1$ o' $^{\circ} \mathrm{NSI}, 1$ ot $^{\prime} \mathrm{NS}, 11$ ơ $^{\circ} \mathrm{N}, 12$ \% $\mathrm{N}(\mathrm{KJF})$.

Wingan River, Drummer Rd, Coopracambra National Park, 98012501, 25 I 1998, 180m, $149^{\circ} 25^{\prime} 15^{\prime \prime} 37^{\circ} 28^{\prime} 03^{\prime \prime}, 2$ ㅇ N (KJF). Yzrra Flats, Healesville, 65091400,14 IX 1965, 1 ó

N (AN). Yarra River, near McMahons Creek, 76021900, 19 II 1976, 250m, $145^{\circ} 50^{\prime}$ $37^{\circ} 42^{\prime}$, 1 ㅇ I (AN). Yarra River, O'Shannassy Rd, 79022100, 21 || 1979, EPH 1498, 1 o' I, (genitalia missing), (JD). Yarra River, Reefton Rd, 78020900, 9 || 1978, 260m, 1450 50^{\prime} $37^{\circ} 42^{\prime}$, EPH 1500, 1 ơ NS (JD); 79102400, 24×1979, same locality data, EPH 1496, 1 $\sigma^{\circ} 1$ (JD), EPH 1497, 1 ㅇ NS (JD), EPH 1499, 6 ㅇ (JD). Yarra River, Willgrove, 76022400, 24 II 1976, 1 ¢ I (AN). Yea River, 7km S of Glenburn, 72120100, 1 XII 1972, $330 \mathrm{~m}, 145^{\circ} 25^{\prime} 37^{\circ} 29^{\prime}, 10^{\circ} 1(\mathrm{AN})$.
3.4.3.3 Thraulophlebia inconspicua (Eaton) comb. nov.

Leptophlebia inconspicua Eaton (Eaton 1871)
Atalophlebia inconspicua (Eaton) (Eaton 1883-1888)
Atalophlebia inconspicua (Eaton) (Ulmer 1908)
Atalonella inconspicua (Eaton) (Suter and Bishop 1980)
Atalophlebia inconspicua (Eaton) (Campbell 1986)
Nousia inconspicua (Eaton) (Suter 1986)
Nousia inconspicua (Eaton) (Campbell 1988)
Koorrnonga inconspicua (Eaton) (Campbell and Suter 1988)
Nousia inconspicua (Eaton) (Suter and Bishop 1990)
Koorrnonga inconspicua (Eaton) (Peters and Campbell 1991)
Thraulophlebia inconspicua (Eaton) comb. nov.

Types. Holotype. None designated. Syntypes. Leptophlebia inconspicua Eaton, Adelaide, South Australia, date unknown, 5 o * imago/subimagos, A.E. Eaton, Held at the OUM. (Eaton 1883-1888; Kimmins 1960). [not seen].

Distribution. South Australia (Fig. 214).

Diagnosis. This species has been previously thoroughly described by Suter (1986) and Campbell and Suter (1988). However, access to limited slide material and MRHI specimens from South Australia have enabled a redescription for comparison. Male imago. Dimensions: body length 6.7-7.2 (6.8 $\pm 0.21,5)$; forewing length $6.5-8.1(7.6 \pm 0.42$, 11); hindwing length $1.16-1.58(1.47 \pm 0.11,16)$; forewing hindwing ratio 4.94-5.31 $(5.08 \pm 0.12,9)$. General body colour brown to black. Head: brown to black. Antennae: pedicel and scape dark brown, flagellum golden. Ocelli: three; black with white-grey inserts; laterals larger than medial. Eyes: upper eye size large, almost contiguous, ES = 0.10-0.15 (0.13 $\pm 0.02,5)$; upper lobes tan brown, lower lobes grey-black. Thorax: pronotum and mesonotum brown. Legs: femora light brown, tibiae and tarsi golden,
banding inconspicuous or absent; forelegs with seven segments, total foreleg lengths 6.29-7.46 (6.89土0.32, 10); leg length ratios 1.00: 1.44: 0.08: 0.45: 0.43: 0.32: 0.16 $(1.78 \pm 0.08,10)$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 215). Wings. Forewing (Fig. 216): membrane hyaline, pterostigmal region slightly opaque, longitudinal and crossveins brown, anal veins yeliow; costal and subcostal crossveins absent in proximal halves of wings, costal space with 7-9 (11) crossveins distally, subcostal space with 4-7 (11) crossveins distally. Three bullae present on veins $\mathrm{Sc}, \mathrm{R}_{2}$ and R_{4+5}, MA forked at around half the distance from wing base to margin, MP_{2} connected to MP_{1} and CuA , CuA and CuP linked by crossvein, ICu_{1} recurved to join CuA and not linked to CuA-CuP crossvein, ICu_{2} recurved to join $\mathrm{ICu}, \mathrm{ICu}$, and ICu_{2} parallel or very slightly diverging as wing margin approached, CuP strongly recurved and linked by cross vein to A_{1}. Hindwing (Fig. 217): mostly hyaline; costal space washed with yellow and very slightly opaque; strong projection of the costa, joins subcosta at approximately two-thirds to three-quarters wing length; no cross veins in proximal half of costal space, 34 (11) in distal space, 3-5 (11) throughout subcostal space. Abdomen (Fig. 218): dark brown with golden markings on each segment forming a broken stripe midline, a goiden coloured maculae anteriorly and medially on segments two to nine incorporating midline stripe; pattern variable. Genitalia (Figs 219-222): forceps three segmented; first segment brown basally, progressively lighter apically; terminal segment globular, about the same length as the middle segment; penes brown; two lobes distinct, with expanded lateral margin in apical third, each lobe not indented apically; separated almost at base dorsally (Figs. 219, 221); fused in basal third ventrally (Figs 220, 222); ventral subapical lobes protruding laterally outwards; no internal spines or processes apparent. Caudal filaments: three; brown; terminal filament longer than cerci. Female imago. Dimensions: body length 7.0-8.8 (7.6 $\pm 0.80,6$); forewing length 7.0-8.5 (7.6 $\pm 0.70,6$); hindwing length 1.101.70 ($1.47 \pm 0.22,6$); forewing hindwing ratio 4.93-6.45 (5.30 $\pm 0.65,5$). General patterning and colouring similar to male. Eyes: grey-black; separated on meson of head by a distance about four times maximum width of eye. Legs: total leg length shorter than male; forelegs with six segments, total foreleg length 3.95-5.13 (4.54 $\pm 0.83,2)$; leg length ratios $1.00: 1.35: 0.18: 0.17: 0.15: 0.15(1.52 \pm 0.33,2)$. Wings. Forewing (Fig. 223): colour and venation similar to male except with crossveins in proximal halves of wing and generally more crossveins on average than male; costal space with 3-5 (6) weakly developed crossveins proximally, 10-13 (6) distally, subcostal space with $4-5$ (6) weakily developed crossveins proximally, 6-10 (6) distally. Hindwing (Fig. 224): no crossveins in proximal halves of costal space, 3-4 in distal space (2), 4-5 throughout costal space (2). Abdomen (Fig. 225): sternum seven with small genital extension, sternum nine deeply cleft. Egg. Ovoid, polar cap with three rings of tubular processes on each apex; chorion with small evenly shaped circular protuberances (Figs. 226, 227). Male and female
subimago. General colour and markings similar to imago. Wings uniformly grey-brown, opaque. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. (Fig. 228). Body lengths © $6.3-7.5(6.9 \pm 0.60,3)$, $96.7-10(8.0 \pm 0.93,9)$. General colour light to middle brown with darker brown markings. Head: prognathous; brown; width 1.50 1.65 ($1.58 \pm 0.06,11$). Ocelli: inree; black with white inserts; laterals larger than medial. Antennae: pedicel, scape and flagellum goiden; more than one and half times length of head. Eyes: upper lobes of male reddish-brown, lower lobes black; eyes of female black. Mouthparts. Labrum and clypeus (Fig. 229): lateral margins of clypeus very slightly diverging towards anterior; lateral margins of labrum subequal to slightly wider than clypeus, rounded; labrum anterior margin with slight antero-median emargination; labrum length 0.32-0.41 ($0.37 \pm 0.02,23$); labrum width $0.64-0.83(0.73 \pm 0.05,23)$; width length ratio 1.82-2.11 (1.96 $\pm 0.07,23$); five elongated denticles present on anterior margin extending $0.10-0.20(0.14 \pm 0.02,23)$ across labrum; denticle width labrum width ratio 0.14-0.25 ($0.19 \pm 0.03,23$); frontal setae arranged as a narrow band; secondary hair fringe clearly separated from narrow band, reaching well beyond the frontal setae, extends $0.15-0.21(0.18 \pm 0.02,22)$ the width of labrum, containing between 20-40 (18) setae; secondary hair fringe width to labrum width ratio 0.19-0.30 (0.25 $\pm 0.03,22$); thick socketed setae present lateral to secondary hair fringe. Mandibles: outer margins slightly curved, long setae at midpoint on outer lateral margins, shorter setae between long setae and base; dark coloured nodule at midpoint on inner lateral margins; sparse tuft of setae on lower mandible body. Left mandible (Fig. 230): two incisors, each with three apical teeth, outer incisor often inconspicuously serrated on inner lateral margin; prostheca robust, serrated; prosthecal tuft slender, tapering to a thin point apically, hairs on lateral margins only. Right mandible (Fig. 231): spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth; often inconspicuously serrated on inner lateral margin, inner incisor with two apical teeth; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 232): galea-lacinae as wide as long, width length ratio 0.89-1.11 (0.98 $\pm 0.07,19$); subapical row of 17-21 (18) pectinate setae; palpi three segmented, terminal palp with single spine on apex; palp length ratios 1.00: 0.83: 0.75 ($0.23 \pm 0.02,78$). Hypopharynx (Fig. 233): well developed lateral processes; anterior margin of lingua shallowly cleft; superlingua with thick tufts of setae on anterior margins, rounded lateral margins. Labium (Fig. 234): glossae not turned under ventraliy and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface; palp length ratios 1.00 : 0.88 : $0.62(0.3410 .03,17)$; submentum with spines on lateral margins. Thorax: brown; pronotum width $1.30-1.72(1.57 \pm 0.09,11)$, equal to width of head (see above); head pronotum width ratio $0.91-1.05$ ($1.00 \pm 0.05,11$). Legs (Fig. 235): golden to tan brown with
banding inconspicuous or absent; total foreleg length 3.13-3.48 (3.31 $\pm 0.12,10)$; fore femora length $1.30-1.45(1.38 \pm 0.05,10)$; fore femora width $0.45-0.53(0.48 \pm 0.03,10)$; fore femora length width ratio $2.74-3.11(2.89 \pm 0.12,10)$; fore tibiae with numerous short ventral spines, sometimes serrated; fore tarsi with 8-13 (10) ventral spines, length 0.25 $0.38(0.30 \pm 0.04,10)$ width of tarsus; tarsal claws (Fig. 236) with 12-15 (10) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated on inner margin; leg length ratios, foreleg 1.00: $0.93: 0.46(1.38 \pm 0.05,10)$, midleg 1.00: 0.91: $0.39(1.40 \pm 0.06$, 10), hindleg 1.00: 0.96: $0.36(1.49 \pm 0.06,10)$. Abdomen: dark brown with golden markings medially on each segment forming a broken stripe midline, golden patches also laterally on each segment, pattern variable; posterolateral spines present, progressively larger posteriorly. Gills (Fig. 237): membrane clear to pink; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae similarly shaped; upper lamellae narrows at three-quarters length with long apical filament, fower lamellae narrows at four-fifths length with shorter apical filament; main and lateral tracheae present, strongly developed. Caudal filaments three; golden; terminal filament longer than cerci.

Remarks. There has been much confusion as to the generic designation of inconspicua with numerous changes occurring since it was described. Eaton (1871) originally placed the species in Leptophlebia along with numerous other species. He admitted, however, that some of these species were placed there for lack of anywhere eise to put them, although he did not identify which ones. Once he had established the new genus Atalophlebia (Eaton 1881), and examined the distinction between this genus and Leptophlebia, he created the new combination Atalophlebia inconspicua (Eaton 18831888). Eaton drew the penes fused along most of their length, while Uimer (1908) describes them as divideci while noting they are held tightly together in the alcohol preserved specimens and widely separated in dried specimens. Suter (1986) later claimed the separation of the two lobes readily occurs with air dried specimens and slide mounted material, however, he questions whether it is indeed the same species due to variation in forewing venation. Following Ulmer, Tillyard (1936) included Atalophlebia inconspicua in his key to the Tasmanian species of the genus Atalophlebia but by this stage the description was based on the imago and subimago only, the nymph was yet to be identified. Suter and Bishop (1980) collected the nymph in an intermittent stream in South Australia reierring to it as Atalonella inconspicua. The new combination of Nousia inconspicua was introduced by Suter (1986) some years later and introduced the first full description of all life cycle stages. Arourd the same time a paper was published referring to Atalophlebia inconspicua (Campbell 1986). In the Zoological Catalogue of Ephemeroptera it is referred to as Nousia inconspicua (Campbell 1988), and in the same
year a taxonomic review paper was published in which it was considered there were sufficient differences between this species and Nousia to warrant the establishment of the genus Koorrnonga into which this species was placed (Campbell and Suter 1988). Suter reverted to using the old name Nousia inconspicua in a subsequent paper (Suter and Bishop 1990), probably in error. The correct name Koorrnonga inconspicua was used in the Ephemeroptera chapter of the second edition of "The Insects of Australia" (Peters and Campbell 1991).

Examination of a small number of Suter's specimens and some of those collected for the MRHI has led me to conclude that Koorrnonga inconspicua in fact belongs in the genus Thraulophlebia to which it is hereby transferred. This is confirmed in the main by the shape of the genitalia and hindwing, the venation of the forewing and the fabrum characteristics of the nymph. Although a redescription was not considered entirely necessary due to the comprehensive description of Suter (1986) it was undertaken to confirm the diagnosis.

A comparison was also made between the redescription of T. inconspicua and the literature descriptions and was found to conform in many respects (Table 14). However, there are a number of discrepancies that should also be taken account of (Table 15).

Some of the body lengths of the imago as measured by Eaton (1871) and Suter (1986) are well outside the range of my measurements $6.7-7.2(6.8 \pm 0.21,5)$, especially the relatively short body length of Eaton (1871) at $5-6 \mathrm{~mm}$. It occurs to me that perhaps Eaton's measurements were not precise as he was unable to distinguish between 5 and 6 mm for the one individual. If the animal actually measured closer to 6 mm than 5 it almost fits within the range measured by Suter (1986) (6.07-7.95 (7.27 $\pm 05,26)$). I am reassured by the fact that the mean body length measured by $\operatorname{Suter}(1986,7.2)$ is similar to my mean length (6.8). It must be remembered that Suter's measurements $(n=26)$ are likely to be more accurate than mine $(n=5)$ as he had access to more specimens. Similarly, the range of some of the male imago forewing lengths in the literature are outside my measurements. Tillyard (1936) measured the forewing length as 5 mm but I am sceptical of this for, as far as I am aware, T. inconspicua does, not occur in Tasmania.

Examination of the forewing in the slide mounted specimens borrowed from Suter clearly showed that CuP is connected to A_{1} by a crossvein yet this feature is not apparent in the drawings of Ulmer (1908), Suter (1986) or Campbell and Suter (1988). (Admittedly, though the forewing drawings of Campbell and Suter (1988) are reproduced from Suter (1986). There is no accounting for this except to say that perhaps the anal veins, which tend to a faint yellow colour, are more difficult to see than the brown longitudinal
crossveins and the feature could easily have been missed and therefore not represented in the drawing.

Although the leg length ratios of the male imago are similar, the total leg length varies significantly between my measurements (6.29-7.46 (6.89 $\pm 0.32,10)$) and those calculated from the ratios by Suter $(1986,8.6)$. I cannot account for this large difference although Suter (1986) does not state how many individuals he measured and may have been referring to one aberrant individual.

Despite the fact that the SEM micrographs of the genitalia shown here (Figs. 221, 222) are taken from Suter's specimens they do vary a little from those depicted in Suter (1986, FIG. 15b, p. 380, reproduced here as Fig. 238). Suter's drawing and SEM show the lobes to be quite separate apically, bowing strongly outwards, and curving back in to meet apically whereas Figs. 221 \& 222 show a less dramatic separation. Both of these vary from Ulmer's drawing (Ulmer 1908, FIG. 29a \& b, p. 43, reproduced here as Fig. 239), which I am inclined to discount as over-simplified. He does, however, state that "Der Penis ist tief gespalten, so daß zwei Flügel eentstehen; die Form derselben variiert nach dem höheren oder geringeren Grade der Austricknung." ("The penis is deeply divided so that two wings arise; the shape of it varies according to the degree of drying") (Ulmer 1908, p.43). Perhaps the variation seen in the micrograph taken by Suter and myself are as a result of shrinkage from drying during the process of SEM preparation. In other respects the penes morphology between the two is similar with the distinctive subapical ventral lobes and no internal spines or processes.

The egg morphology, and the question of whether the species has two rings or three rings of tubular processes, has been hampered somewhat by the lack of specimens. The SEM micrographs of T. inconspicua from Suter (1986, FIG. 16a, p 281) and Campbell and Suter (1988, FiG. 85, p. 272, the same photo in fact, reproduced here as Fig. 240), clearly shows a polar cap with two rings of tubular processes on each apex. However, 1 have extracted eggs from a female imago from the Sturt River, Coramandel Valley (Suter's collection) which has three rings of tubular processes. I also have access to a slide mount of a female imago abdomen which is labelled "Leptophlebiidae A Atalonella (1) \& abdomen \& eggs Sturt R Coramandel Valley SA 29/4/76 P.S." The eggs contained within the abdomen show much less detail than an SEM but three rings can clearly be seen under transmitted light. The only other egg with the three ring morphology is Nousia (Australonousia) fuscula according to, Suter (1986) and Campbell and Suter (1988) but this has been questioned due to probiems of contamination (see discussion under 3.3.2.4). Both N. (A) fuscula and T.inconspicua have been found in Tookayerta Creek so it may be that this N. (A) fuscula egg actually belongs to T. inconspicua! I am extremely
confident that the three ringed eggs I extracted from the Sturt River female imago belong to that individual and believe that it is a species characieristic.

The few discrepancies between the descriptions and redescription in the nymphs relate to the length of the maxillary and labium palp. It appears that the length of the second maxillary palp measured by me (1.00: 0.83: $0.75(0.23 \pm 0.02,18)$ is consistently shorter than those measured by Suter (1986, 1.00: 0.92: $0.80(0.22)$. Similarly, the length of the second labial paip measured by me (1.00: 0.88: $0.62(0.34 \pm 0.02,18)$ is consistently longer than those of Suter (1.00: 0.79: $0.64(0.35)$. This is despite the fact that some of my measurements included slide material obtained from Suter! However, it is not clear how many individuals were measured in Suter's paper as no n or standard deviation is given, so comparisons may be spurious.

Further, I considered other nymphs described by Dean (1999) as Koorrnonga sp. "AV3" and Koormonga sp. "AV5" were morphologically very similar to T. inconspicua. As far as I am aware only one specimen of Koorrnonga sp. "AV3" exists; a male nymph from the Wannon River near Dunkeld. Koorrnonga sp. "AV5" has also been found in the Wannon River but also apparently occurs in south-east Queensland and New South Wales. Attempts were made to collect more specimens of Koormonga sp. "AV3" and sp. "AV5" to confirm "synonymy" with T. inconspicua but despite two visits to Dunkeld where the Wannon River (99022804), a Wannon river tributary (99022805) and the nearby Wannon River Falls (00122004) were sampled, no such specimens were found.

I am aware that it is dangerous to make these comparisons without seeing the type specimens but it appears that the type specimens have been lost. Several requests were forwarded to the OUM to obtain the fype but they cannot find any trace of this specimen. Further to this there is some confusion as to the whereabouts of the type specimen, for although Eaton clearly states he placed the new combination Atalophlebia inconspicua in the "Hope Museum Oxford" (Eaton 1883-1888) in a previous paper where the species was actually described for the first time Eaton (137i) states "My own types of new species are placed in the British Museum." Subsequent requests made to the NHM for this specimens have also proved fruitless.

Table 14. Similarities between the redescription of Thraulophlebia inconspicua and the literature descriptions of Atalophlebia inconspicua, Nousia inconspicua and Koorrnonga inconspicua.

	Thraulophlebia inconspicua	literature descriptions of inconspicua
\% ${ }_{\text {ala }}$ Imago		
hindwing length	1.16-1.58 (1.47 $\pm 0.11,16)$	1.2-1.8 (Suter 1986)
head colour	brown to black	black (Suter 1986)
eye colour	upper: tan brown, lower: grey-black	upper: light brown, lower: grey (Suter 1986)
leg length ratios	$\begin{aligned} & 1.00: 1.44: 0.08: 0.45: 0.43: 0.32: 0.16 \\ & (1.78 \pm 0.08,10) \end{aligned}$	$\begin{aligned} & \text { 1.00: 1.46: 0.14:0.48:0.45:0.33:0.17 (2.13) (Suter } \\ & 1986 \text {) } \end{aligned}$
leg banding	absent	absent (Suter 1986)
tarsal claws	similar	similar (Suter 1986)
thorax colour	brown	dark brown-black (Suter 1986)
costal crossveins - proximal	ábsent	absent (Suter 1986, Campbell and Suter 1988)
subcostal crossveins - proximal	absent	absent (Suter 1986, Campbell and Suter 1988)
bullae	$\mathrm{Sc}, \mathrm{R}_{2}, \mathrm{R}_{4+5}$	Sc, R_{2}, R_{4+5}
MA fork	about half	about half (Suter 1986, Campbell and Suter 1988)
MP_{2} connected to MP_{1} and CuA	yes	yes (Suter 1986, Campbell and Suter 1988)
CuA, Cup linked by crossvein	yes	yes (Suter 1986, Campbell and Suter 1988)
CLu_{1} joins CUA	yes	yes(Suter 1986, Campbell and Suter 1988)
$1 \mathrm{Cu}_{2}$ joins $/ \mathrm{Cu}_{1}$	yes	yes (Suter 1986, Campbell and Suter 1988)
ICu_{1} and ICU_{2} paraliel or diverging	parallel	parallel (Suter 1986, Campbell and Suter 1988)
hindwing - length at which costa joins subcosta	two thirds to three quarters wing length	three-quarters wing length (Suter 1986, Campbell and Suter 1988)
hindwing - costal crossveins	3-4	4-5 (Suter 1986, Campbell and Suter 1988)
hindiwing - subcostal crossveins	3-5	3-5 (Suter 1986) 4 (Campbell and Suter 1988)
abdomen colour	dark brown with golden markings, variable	piceous (Eaton 1871) black with light central marking dorsally (Suter 1986)
penes - processes	no internal spines or processes	no internal spines or processes (Suiter 1986, Campbell and Suter 1988).
Female Imago		
sternum nine	deeply cleft	deep V shaped incision (Suter 1986, Campbell and Suter 1988)

Table 14 cont'd.

	Thraulophilebia inconspicua	literature descriptions of inconspicua
Nymph		
head colour	brown	dark brown (Suter 1986)
head width	1.50-1.65 (1.58 $\pm 0.06,11$)	1.54-1.70 (1.59) (Suter 1986)
eye colour - male	upper: reddish-brown, lower: black	upper: dark reddish brown (Suter 1986)
labrum antero-median emargination	yes, slight	yes, slight (Suter 1986)
labrum length width ratio	1.82-2.11 (1.96 $\pm 0.07,24$)	2 times wider than long (Suter 1986)
left mandible incisors	3,3	3,3 (Suter 1986, Campbell and Suter 1988)
left mandible prostheca	robust serrated,	robust serrated, (Suter 1986, Campbell and Suter 1988)
left mandible prosthecal tuft	slender, hairs on lateral margins only	slender, hairs on lateral margins only (Suter 1986; Campbell and Suter 1988)
right mandible incisors	3,2	3,2 (Suter 1986, Campbell and Suter 1988)
right mandible prostheca	robust slender	robust slender (Suter 1986)
right mandible prosthecal tuft	slender, hairs on lateral margins only	slender, hairs on lateral margins only (Suter 1986, Campbell and Suter 1988)
hypopharynx	shallowly cleft	shallowly cleft (Suter 1986, Campbell and Suter 1988)
pronotum width	1.36-1.72 (1.57 $\pm 0.09,11)$	1.38-1.56 (1.50 ${ }^{\text {a }} 0.08$, 8) (Suter 1986)
leg colour	golden to tan brown	brown (Suter 1986)
leg banding	inconspicuous or absent	inconspicuous or absent (Dean 1999)
foreleg	1.00: 0.93:0.46 (1.38 $\pm 0.05,10)$	1.00:0.92:0.52 (1.39) (Suter 1986)
midieg	1.00:0.91:0.39 (1.40土0.06, 10)	1.00:0.92:0.44 (1.39) (Suter 1986)
hindleg	1.00: 0.96: 0.36 (1.49 $\pm 0.06,10)$	1.00: 0.98:0.36 (1.49) (Suter 1986)
abdomen colour	dark brown with lighter markings, pattern variable	brown dorsally, light stripe mid-line (Suter 1986)
gills	double, upper lamellae slightly longer than lower	double, upper lamellae slightly longer than lower (Suter 1986)
caudal filaments	terminal filament longer than cerci	terminal filament length 10.8, cerci 9.9 length (Suter 1986)

Table 15. Discrepancies between the redescription of Thraulophlebia inconspicua and the literature descriptions of Atalophlebia inconspicua, Nousia inconspicua and Koormonga inconspicua.

	Thraulophlebia. inconspicua	literature descriptions of inconspicua
Male Imago		
body leng:i	6.7-7.2 (6.8 $\pm 0.21 .5)$	$\begin{array}{\|l\|} \hline 5.6 \text { (Eaton 1871) } \\ 7 \text { (Ulmer 1908) } \\ 6.07-7.95(7.27) \text { (Suter 1986) } \\ \hline \end{array}$
forewing length	6.5-8.1 (7.6 $\pm 0.42,11)$	6.7 (Eaton 1871) 7 (Ulmer 1908) 5 (Tillyard 1936) $5.74-8.36$ (7.25) (Suter 1986)
forewing CuP attached to A_{1}	yes	no (Ulmer 1908, Suter 1986, Campbell and Suter 1988)
total leg length	6.9	8.6
hindwing C joins Sc	at two thirds wing length	at three-quarters wing length (Suter 1986, Campbell and Suter 1988)
penes shape	lateral expansion more apical	lateral expansion appears more distal (Suter 1986, Campbell and Suter 1988)
penes internal spines	yes	no. (Suter 1986)
Egg		
	three rings of tubular processes	two rings of tubular processes (Suter 1986, Campbell and Suter 1988)
Nymph		
maxillae palp length ratios	1.00:0.83: 0.75 (0.23 $\pm 0.02,18)$	1.00: 0.92: 0.80 (0.22) (Suter 1986)
labium palp length ratios	1.00: 0.88: 0.62 (0.34 $\pm 0.03,17)$	1.00:0.79: 0.64 (0.35) (Suter 1986)
fore tarsi number of ventral spines	8-13 (10)	15-20 (Dean 1999)

T. lucida also appears morphologically very similar to T. inconspicua, particularly in the nymph, and it was extremely difficult to separate the two species by eye. However, on further examination differences between the genitalia of the two species proved to be consistent. Subsequent measurements taken revealed consistent morphological variations beiween the two taxa (Table 16). Differences in the means of all the measurements were tested using a two tailed t-test assuming unequal variances.

At first glance, the male imagos of the two species are also remarkably similar. Body length, colour and wing venation are all consistent. The most pronounced difference is in the shape of the genitalia. T-tests revealed that the forewing, hindwing, upper eye size and length of foreleg in T. inconspicua are significantly larger than those of T. Iucida. Similarly, there is a significant difference in the forewing hindwing ratio with the hindwing of T. inconspicua being one-fifth the length of forewing on average, compared with the hindwing of T. lucida which is only one-sixth or less the length of the forewing on average.

In the female imago, body and hindwing length vary significantly with T. inconspicua being larger. The forewing hindwing ratio also varies significantly in the same direction and with similar dimensions as the male. The foreleg measurements, however, are not significantly different.

The nymph is superficially similar in many respects, however, the t-tests reveal many significant differences in size and shape of body parts. Very highly significant to highly significant differences were found in most of the measurements compared including: head width, pronotum width, labrum length, labrum width, labrum length width ratio, denticle width, denticle width labrum width ratio, secondary hair fringe width, secondary hair fringe to labrum width ratio, maxillae galea-lacinae width and length, maxillary palp lengths, labial paip lengths, foreleg lengths, femora length width and length width ratios with T. inconspicua always being larger. The labrum ratio measurements in particular reveal that the labrum of T. inconspicua is slightly wider than long, has a narrower denticle width and a larger secondary hair fringe relative to that of T. lucida. The labrum, I believe, is one of tise few characters of the nymph that can be used to reliably separate the two species morphologically. Other ratios (maxillae galea-lacinae width length ratio, head pronotum width ratio) showed no significant differences indicating that they were proportionately the same shape.

I have enough confidence in the dissimilarity of the two to retain them as separate species. One should be aware that apart from the maie genitalia the two look superficially similar and the differences are difficult to distinguish without dietailed measurements.

Thraulophlebia inconspicua can be distinguished from all other species in the genus by the following combination of characters: In the imago: (i) forewing hindwing ratio comparatively small; (ii) upper eye size large, but never contiguous; (iii) leg banding inconspicuous or absent; (iv) penes expanded lateral margin in apical third, fused in basal third ventrally, separated aimost at base dorsally; lobes not indented apically; subapical lobes ventrally protruding laterally outwards; (v) female body length comparatively longer on average; (vi) egg ovoid with three rings of tubular processes. In the nymph: (i) labrum subequal to slightly wider than clypeus, lateral margins rounded, antero-mecian emargination slight, length width ratio around two on average, narrow band of frontal setae, secondary hair fringe contains 20-40 setae with width approximately one-quarter across labrum; (ii) hypopharynx superlingua with rounded latera: margins; (iii) leg banding inconspicuous to absent; (iv) gill shape with upper lamellae narrowing at three quaters length with long apical filament, lower lamellae narrows at four-fifths length with long apical filament.

Tabic 16. Comparison of the ciaracteristics of Thraulophlebia lucida and Thraulophlebia inconspicua showing outcemes of t-tests comparing the two species where measurements were available.

	Thraulophlebia lucida	Thraulophlebia inconspicua	Sig.
Male Imago			
body length	5.7-7.4 (6.6 $\pm 0.45,20)$	$6.7-7.2(6.8 \pm 0.21,5)$	ns
forewing length	5.7-7.4 (6.6 $\pm 0.51,21)$	6.5-8.1 (7.6 $\pm 0.42,11$)	***
hindwing length	0.83-1.26 (0.98 $\pm 0.10,17)$	1.16-1.58(1.47 $\pm 0.11,16)$	***
forewing hindwing ratio	$5.87-7.56$ (6.80土 0.59, 17)	4.94-5.31 (5.08 $\pm 0.12,9)$	**
head colour	dark brown	brown to black	
eye colour	upper: orange-brown, lower: grey-black	upper: tan brown, lower: grey-black	
eye size (ES)	0.00-0.04 (0.01 $\pm 0.01,10)$	0.10-0.15 (0.13 $\pm 0.02,5)$	***
total length of foreleg	5.64-6.61 (6.08 $\pm 0.33,10)$;	6.29-7.46 (6.89 $0.32,10$)	***
leg length ratios	$\begin{aligned} & 1.00: 1.45: 0.06: 0.50: 0.48: 0.37: 0.17 \\ & (1.52: 0.14,10) \end{aligned}$	$\begin{aligned} & \text { 1.00: 1.44: } 0.08: 0.45: 0.43: 0.32: 0.16(1.78 \pm 0.08, \\ & 10) \end{aligned}$	
foreleg length of segment one	1.25-1.65 (1.52土 0.14, 10)	1.60-1.88 (1.78 $\pm 0.08,10)$	***
leg colour	golden brown, darker markings	light brown to golden	
leg banding	absent	absent	
tarsal claws	similar	similar	
thorax colour	\tan to dark brown	brown	
forewing costal crossveins - distaliy	absent	absent	
forewing costal crossveiris - proximally	7-11 (19)	7-9 (11)	
forewing subcostal crossveins - distally	absent	absent	
forewing subcostal crossveins - proximally	5-10 (19)	4-7 (11)	
buliae	$\mathrm{Sc}, \mathrm{R}_{2}, \mathrm{R}_{4+5}$	Sc, $\mathrm{R}_{2}, \mathrm{R}_{4+5}$	

Table 16 cont'd.

	Thraulophlebia fucida	Thraulophlebia inconspicua	Sig.
MA fork	about half	about half	
MP_{2} connected to $\overline{\mathrm{MP}} \mathbf{1}_{1}$ and CuA	yes	yes	
CUA, CuP linked by crossvein	yes	yes	
$1 \mathrm{Cu} \mathrm{l}_{1}$ joins CuA	yes	yes	
ICu_{2} joins ICu_{1}	yes	yes	
ICu_{1} and ICu_{2} parallel or diverging	parallel	parallel	
CuP attached to A_{1}	yes	yes	
hindwing - costal crossveins	2-3(17)	3-4 (11)	
hirdwing - subcostal crossveins	3-5 (17)	3-5 (11)	
abdomen colour	tan to chocolate brown with golden markings	dark brown with golden markings, variable	
penes shape	lateral expansion more distal than inconspicua (two-thirds length)	lateral expansion more apical (four-fifths length)	
Femaie Imago			
body length	5.6-7.6 (6.6 $\pm 0.56,25)$	$7.0-8.8$ (7.6 $\pm 0.80,6)$	f:
forewing length	5.9-8.3 (7.2 $\pm 0.58,21)$	7.0-8.5 (7.6 $\pm 0.70,6)$	ns
hindwing length	0.69-1.28 (1.04土0.14, 20)	1.10-1.70 (1.47 $\pm 0.22,6)$	**
forewing hindwing ratio	5.47-8.55 (6.93 $\pm 0.77,20)$	4.93-6.45 (5.30 $\pm 0.65,5)$	**
eye colour	grey-black	grey-black	
eye separation	4 times max width of eye	4 times max width of eye	
total foreleg length	$3.81-4.80$ (4.25 $\pm 0.38,10)$	3.95-5.13 (4.54 $\pm 0.83,2)$	ns

Table 16 cont'd.

	Thraulophlebia lucida	Thraulophlebia inconspicua	Sig.
leg length ratios	$\begin{aligned} & 1.00: 1.37: 0.22: 0.19: 0.15: 0.15(1.38 \pm 0.14, \\ & 10) \end{aligned}$	1.00: 1.35: $0.18: 0.17: 0.15: 0.15$ (1.52 $\pm 0.33,2)$	
foreleg length of segment one	1.24-1.58 (1.38 $\pm 0.14,10)$	1.25-1.75 (1.52 $\pm 0.33,2)$	ns
costal crossveins - distal	2-6 (22)	3-5 (6)	
costal crossveins - prox	8-15 (22)	10-13 (6)	
subcostal crossveins distal	0-5 (22)	4-5 (6)	
subcostal crossveins prox	8-11 (22)	6-10 (6)	
hindwing - costal crossveins	2-3(20)	3-4 (2)	
hindwing subcostal crossveins	3-4 (20)	4-5 (2)	
sternum seven	small genital extension	small genital extension	
sternum nine	deeply cleft	deeply cleft	
Egg			
egg shape	two rings of tubular processes	three rings of tubular processes	
Nymph			
body length - male	5.5-7.2 (6.2 $\pm 0.52,12)$	6.3-7.5 (6.9土0.60, 3)	ns
body length - female	6.0-7.3 (6.6 $\pm 0.46 .9)$	$6.7-10$ (8.0 $\pm 0.93,9)$	*
head colour	tan to middle brown	brown	
head width	1.28-1.53 (1.41 $\pm 0.08,15)$	1.50-1.65 (1.58 $\pm 0.06,11$)	**
antennae colour	golder	golden	
eye colour - male	upper: orange-brown, lower: black	upper: reddish-brown, lower: black	
eye colour femaie	black	black	
clypeus lateral margins	slightly diverging towards anterior	slightly diverging towards anterior	

Table 16 cont'd.

	Thraulophlebia lucida	Thraulophlebia inconspicua	Sig.
labrum lateral margins	subequal to slightly wider than clypeus, rounded	subequal to slightly wider than clypeus, rounded	
labrum antero-median emargination	yes, slight	yes, slight	
labrum length	0.29-0.40 (0.33 $\pm 0.04,25)$	0.32-0.41 (0.37 $\pm 0.02,23)$	***
labrum width	0.51-0.75 (0.61 $\pm 0.06,25)$	0.64-0.83 (0.73 $\pm 0.05,23)$	***
labrum length width ratio	1.69-2.18 (1.86 $\pm 0.13,25)$	1.82-2.11 (1.96 $\pm 0.07,23$)	**
denticles	5	5	
denticle width	0.14-0.21 (0.18 $\pm 0.02,24)$	0.10-0.20 (0.14土0.02, 23$)$	***
denticle width labrum width ratio	0.23-0.38 (0.29 $\pm 0.05,24)$	0.14-0.25 (0.19 $\pm 0.03,23)$	***
Secondary hair fringe width	0.04-0.14 (0.08士 0.02, 25)	0.15-0.21 (0.18 $\pm 0.02,22)$	***
secondary hair fringe / labrum width ratio	0.06-0.20 (0.14 $\pm 0.03,25)$	0.19-0.30 (0.25 $\pm 0.03,22)$	***
number of hairs in secondary hair fringe	12-25 (18.5, 20)	20-40 (32.7, 18)	
left mandible incisors	3,3	3,3	
left mandible prostheca	robust serrated,	robust serrated,	
left mandible prosthecal tuft	slender, hairs on lateral margins only	slender, hairs on lateral margins only	
right mandible incisors	3, 2	3,2	
right mandible prostheca	robust slender	robust slender	
right mandible prosthecal tuft	slender, hairs on lateral margins only	slender, hairs on lateral margins only	
maxillae galea-lacinae width	$0.36-0.45$ (0.40 $\pm 0.03,12)$	0.40-0.55 (0.48 $\pm 0.04,19)$	***

Table 16 cont'd.

	Thraulophlebia fucida	Thraulophlebia inconspicua	Sig.
maxillae galea-lacinae length	0.34-0.49 (0.40 0 0.04, 12)	0.43-0.58 (0.50 $\pm 0.04,19)$	***
maxillae galea lacinae width length ratio	0.91-1.12 (1.00 $\pm 0.07,12)$	0.89-1.11 (0.98 $\pm 0.07,19)$	ns
maxillae - number of pectinate setae in subapical row	16-21 (16)	17-21 (18)	
maxillae palp length ratios	1.00: 0.79: 0.64 (0.22 $\pm 0.02,19)$	1.00: 0.83: 0.75 (0.23 $\pm 0.02,18)$	
total maxillae palp lengths	0.40-0.58 (0.53 $\pm 0.04,19)$	(0.50-0.68 (0.59 $\pm 0.05,18)$	***
hypopharynx	shallowly cleft	shallowiy cleft	
labium palp length ratios	1.00: 0.86: 0.65 (0.32 $\pm 0.02,12)$	1.00: 0.88: 0.62 (0.34土0.03, 17)	
total labium palp length	0.74-0.88 (0.79 $\pm 0.04,12)$	$0.75-0.94(0.85 \pm 0.05,17)$	**
thorax colour	tan to middle brown	brown	
pronotum width	1.10-1.63 (1.36 $\pm 0.14,15)$	1.36-1.72 (1.57 $\pm 0.09,11)$	***
head pronotum width ratio	0.84-1.07 (0.96 $\pm 0.08,15)$	0.91-1.05 (1.00 $\pm 0.05,11)$	ns
leg colour	goiden to tan brown	golden to tan brown	
leg banding	inconspicuous or absent	inconspicuous or absent	
total foreleg length	2.53-3.29 (2.89 $\pm 0.21,20)$	3.13-3.18 (3.31 $\pm 0.12,10)$	**
foreleg femora length	1.05-1.38 (1.21 $\pm 0.10,20)$	1.30-1.45 (1.38 $\pm 0.05,10)$	***
foreleg femora width	$0.28-0.43$ (0.37 $\pm 0.04,20)$	0.45-0.53 (0.48 $\pm 0.03,10)$	***
foreleg femora length width ratio	2.83-3.75 (3.31 $\pm 0.26,20)$	2.74-3.11 (2.89土0.12, 10)	***
fore tarsi spines	8-14 (22)	8-13 (10)	
length of fore tarsi spines	0.20-0.34 (0.27 $\pm 0.04,10)$	$0.25-0.38(0.30 \pm 0.04,10)$	ns

Table 16 cont'd.

	Thraulophlebia lucida	Thraulophlebia inconspicua	Sig.
tarsal claw teeth	$8-14(22)$	$12-15(10)$	
foreleg	$1.00: 0.92: 0.47(1.21 \pm 0.10,20)$	$1.00: 0.93: 0.46(1.38 \pm 0.05,10)$	
midleg	$1.00: 0.93: 0.35(1.20 \pm 0.10,15)$	$1.00: 0.91: 0.39(1.40 \pm 0.06,10)$	
hindleg	$1.00: 1.00: 0.34(1.26 \pm 0.12,14)$	$1.00: 0.96: 0.36(1.49 \pm 0.06,10)$	
abdomen colour	dark brown with golden markings, pattern variable	dark brown with lighter markings, pattern variable	
gills	double, upper lamella longer than lower, longer apical filament	double, upper lamella longer than lower, longer apical filament	

Specimens examined. SOUTH AUSTRALIA. Brownhill Creek, 76030300, 3 III 1976, $150 \mathrm{~m}, 138^{\circ} 38^{\prime} 34^{\circ} 59^{\prime}, 3$ ol $^{\prime} 1, \& 1$ (coll. unknown). Bull Creek, '"The Ciiff', Finniss River Survey, location 3929, 89103101, $31 \times 1989,2$ of N, 6 여 (PS\&SS). Deep Creek Tributary, Castambul, 77030400, 04 III 1977, 200m, $138^{\circ} 45^{\prime} 34^{\circ} 52^{\prime}, 1$ o' $^{\circ} \mathrm{N}, 1$ \& N (JEB \& AW). Finniss River, "Riverdale", Finniss River Survey, location 3930, 89103102, 31 X 1989, 1 đ N, 2 ㅇN (PS\&SS). Meadows Creek, Fingerboard corner, Finniss River Survey, location 3173, 89103103, $31 \times 1989,2$ o N, 7 ㅇN (PS\& SS). North East River, near Carnarvan, Kangaroo Island, 77111900, 19 XI 1977, 40m, $136^{\circ} 59^{\prime} 35^{\circ} 56^{\prime}, 1$ o $^{\circ} \mathrm{I}, 1$ 91 (JEB). North Pava River, downstream Orlando Ford, winery discharge, 83081900, 19 VIII 1983, 1 o N. 1 कN (immature), (PS). North Pava River, Tanunda, 91102100, 21 X 1991, $40 \mathrm{~m}, 136^{\circ} 59^{\prime} 35^{\circ} 56^{\prime}, 3 \& N(P W)$. Rocky River, Flinders Chase National Park, Kangaroo Island: 76121300, 13 XII 1976, 60m, 136 ${ }^{\circ} 44^{\prime} 35^{\circ} 56^{\prime}, 5$ б N, 9 \&N (WDV); 76121800, 18 XII 1976, same locality data, 8 of $10 \% \mathrm{~N}$ (WDW). Scott Creek, 94110900, 9 XI 1994, 2 o N, 4 ¢N (PG \& CM). South West River, Brigadoon, Kangaroo Island, $77101900,19 \mathrm{XI} 1977,180 \mathrm{~m}, 136^{\circ} 50^{\prime} 35^{\circ} 52^{\prime}, 1$ © ! (JEB). Spring Creek, 95101100, $11 \times$ 1995, 11 © N, 18 ㅇN (MRHI). Stunsail Broom River, Kangaroo Island, 76121200, $12 \mathrm{XII} 1976,8 \mathrm{~m}, 137^{\circ} 00^{\prime} 35^{\circ} 59^{\prime}, 2$ \& N (immature), (WDW). Sturt River, Bedford Park, 76112700, 27 XI 1976, 60m, $138^{\circ} 33^{\prime} 35^{\circ} 02^{\prime}, 2$ o $^{\circ} \mathrm{N}$ (immature), (JES). Sturt River, upstream Minno Creek, $94102600,26 \times 1994,200 \mathrm{~m}, 138^{\circ} 38^{\prime} 35^{\circ} 02^{\prime}$, 11 б N, $16 \nrightarrow \mathrm{~N}$ (immature), (MRHI). Sturt River, Coramandel Valley: 76042900, 29 IV 1976, $200 \mathrm{~m}, 138^{\circ} 57^{\prime} 35^{\circ} 03^{\prime}, 2$ of 1,1 이 (PS). Tookayerta Creek, location 3956, 84102200, 22 X 1984, 190m, 1 o $N, 6 \& N$ (immature), (PS). Unnamed Creek, Parawa Rd, near Yankalilla, 78110200, 2 XI 1978, 80m, $138^{\circ} 21^{\prime} 35^{\circ} 28^{\prime}$, (JEB \& AW).

3.4.3.4 Thraulophlebia parva (Harker) comb. nov.

Atalophlebia parva Harker (Harker 1950a)
Atalonella panva (Harker) (Harker 1954)
Nousia parva (Harker) (Campbell 1988)
Koorrnonga parva (Harker) (Campbell and Suter 1988)
Koorrnonga sp. "AV2" (Dean 1999)
Thraulophlebia parva (Harker) comb. nov.

Types. Holotype. Atalophlebia parva. Serpentine River, Point Lookout, 4000 feet, 48100000, X 1948, of imago, coli. by J. Harker. Labels: "Holotype Serpentine River Point Lookout 4000' NSW ö imago, 10: 1948 J . Harker ". Paratypes. Same location and collection data, \uparrow imago; 9 subimago, \circ nymph, coll by J. Harker. Labels: \circ imago, a)
"Atalophlebia parva Allotype Serpentine River. Point Lookout, 4,000' N.S.W. 10: 1948 J. Harker"; b) isubimago, "Atalophlebia parva Morphotype (Subimago) Serpentine River. Point Lookout, 4,000' N.S.W. 10: 1948 J. Harker"; c) \ddagger nymph, "Atalophlebia parva Morphotype Nympin Serpentine River. Point Lookout, 4,000' N.S.W. 10: 1948 J. Harker"; Held at the AM.

Distribution. New South Wales, Queensland, Victoria (Fig. 241).
Diagnosis. Male imago. Dimensions: body length 5.6-7.3 (6.7 $\pm 0.65,8$); forewing length 5.8-7.1 ($6.4 \pm 0.49,8$; hindwing length 1.05-1.45 (1.23 $\pm 0.15,7$; forewing hindwing ratio 4.37-5.90 $(5.16 \pm 0.55,7)$. General body colour dark brown to black. Head: tan to dark brown. Antennae, pedicel and scape dark brown, flagellum tan brown. Ocelli: three; black with white inserts, laterals larger than medial. Eyes: upper eye size large, contiguous; upper lobes pink-brown, lower lobes grey-black. Thorax: pronoturn dark brown; mesonotum darker brown, shiny. Legs: brown, femora tan brown with dark brown middle third and dark brown apices; tibiae golden brown, dark brown markings apically; tarsi golden brown; banding conspicuous; forelegs with seven segments, total foreleg length 4.45-5.58 (5.08 $\pm 0.58,4)$; leg length ratios 1.00: 1.44: 0.06: 0.40: 0.38: 0.26: 0.17 $(1.37 \pm 0.09,4)$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 242). Wings. Forewing (Fig. 243): membrane hyaline, pterostigmatal area slightly opaque, longitudinat and crossveins light brown, anal veins yellow; costal and subcostal crossveins absent from proximal halves of wing, costal space with 6-9 (9) crossveins distally, subcostal space with 5-9 (9) crossveins distally. Three bullae present on veins $\mathrm{Sc}, \mathrm{R}_{2}$, and R_{4+5}, MA forked at around half the distance from wing base to margin, $M P_{2}$ connected to MP_{1} and CUA, CuA and CuP linked by crossvein, ICu_{1} joins CuA and not linked to CuA -CuP crossvein, ICu_{2} recurved to join ICu_{1}, ICu_{1} and ICu_{2} parallel or very slightly diverging as wing margin approached, CuP strongly recurved and linked by crossveins to A_{1}. Hindwing (Fig. 244): mostly hyaline, costal space washed with yellow and very slightly opaque; strong projection of the costa, joins subcosta at approximately two-thirds wing length; no crossveins in proximal half of costal space, 3-4 (7) in distal space, 3-5 (7) crossveins throughout subcostal space. Abdomen (Fig. 245): dark brown to black with light to tan brown patterning on each segment forming a broken stripe midiline, two light coloured maculae flanking each midline marking anteriorly. Genitalia (Figs 246-251): forceps three segmented (Figs. 246, 248, 250), tan brown, progressively lighter apically; penes brown, darker apically; each lobe not indented apically, fused in basal third dorsally (Figs. 246, 248, 249) and ventrally (247, 250, 251), no subapical lobes ventrally; small internal spines apparent under transmitted light (Figs. 246, 247). Caudal filaments: three; terminal filament longer than cerci. Female imago. Dimensions: body length 5.7-8.7 (7.1 $\pm 0.80,13)$; forewing length $7.0-7.9(7.4 \pm 0.28,11)$; hindwing length

1．18－1．40（1．29士0．09，10）；forewing hindwing ratio 5．07－6．64（5．74土0．49，10）．General patterning and colour similar to male．Body generally larger than male，abdomen wider． Eyes：brown－black；separated on meson of head by a distance of about five times maximum width of eye．Legs：total leg length shorter than male，forelegs with six segments，total foreleg length 4．19－4．94（4．52 $\pm 0.24,10)$ ；leg length ratios 1．00：1．24： $0.15: 0.15: 0.13: 0.15(1.61 \pm 0.09,10)$ ．Wings．Forewing（Fig．252）：colour and venation similar to males except weakly developed crossveins in proximal halves of wing and generally more crossveins on average than male；costal space with 0－6（14）weakly developed crossveins proximaily，subcostal space with 7－13（14）crossveins distally； subcostal space v_{i} in $0-4$（14）weakly developed crossveins proximally， $5-10$（14） crossveins distally．Hindwing（Fig．253）：no crossveins in proximal half of costal space，3－ 4 （10）in distal space，4－6（10）throughout subcostal space．Abdomen（Fig．254，255）： sternum seven with small genital extension；sternum nine deeply cleft．Egg．Cylindrical with rounded ends，polar cap with two rings of tubular projections on each apex；chorion with small evenly spaced circular protuberances（Figs．256－259）．Male and female subimago．Dimensions：body lengths of 5．8－7．3（6．6 $\pm 0.57,5)$ ； $9.3-8.1(7.3 \pm 0.58,9)$ ． General colour and markings similar to imago．Wings uniformly brown，opaque．Forelegs of male not elongated．Genitalia not fully developed．Mature nymph．（Fig．260）．Body lengths $\sigma^{*} 6.2-7.6(6.7 \pm 0.56,12)$ ，$\circ 6.7-8.4(7.3 \pm 0.53,12)$ ．General colour dark brown to black with lighter tan markings．Head：prognathous；dark brown，tan colour surrounding ocelli，two distinct white circular patches on each mandible；width 1．28－1．63 （ $1.48 \pm 0.11,12$ ）．Ocelli：three；black with grey base surrounding white inserts；laterals larger than medial．Antennae：pedicel，scape and flagellum golden；more than twice length of head．Eyes：upper lobes of male reddish－brown，lower lobes grey－black；eyes of female black．Mouthparts．Labrum and clypeus（Fig．261）：lateral margin of clypeus very slightly diverging to anterior；lateral margins of labrum wider than clypeus，rounded to slightly anguiar；distinct antero－median emargination；labrum length 0．27－0．38（0．34 ± 0.04 ， 15），labrum width 0．59－0．86（0．72 $\pm 0.06,15)$ ，labrum width length ratio 1．92－2．56（2．14 \pm $0.15,15)$ ；four to five elongated denticles extending $0.08-0.18(0.15 \pm 0.03,15)$ across labrum；denticle width as proportion of labrum width 0．14－0．29（0．20土0．04，15）；frontal setae arranged as a single row；secondary hair fringe clearly separated from front row， reaching well beyond the frontal setae，extends $0.16-0.25(0.20 \pm 0.04,15)$ times the width of labrum，contains 41－55（10）setae；secondary hair fringe width to labrum width ratio $0.23-0.35(0.28 \pm 0.04,15)$ ；thick socketed setae present lateral to secondary hair fringe． Mandibles：outer margins slightly curved，long setae at midpoint on outer lateral margins， shorter setae between long setae and base，dark coloured nodule at midpoint on inner lateral margins；dark brown basally becoming lighter anteriorly，basal section with golden coloured circular maculae，small tuft of setae flanking the base of each maculae．Left
mandible (Fig. 262): two incisors, each with three apical teeth; outer incisor often inconspicuously serrated on inner lateral margin, prothesca robust, serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 263): spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, often inconspicuously serrated on inner lateral margin, inner incisor with two apical teeth; prothesca simple, slender; prothecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 264): yalea lacinae as wide as long; width length ratio 0.88-1.06 (0.99 $\pm 0.06,10$); subapical row of 18-22 (10) pectinate setae; palpi three segmented, terminal palp with single spine on apex; palp length ratios $1.00: 0.85$: 0.64 ($0.22 \pm 0.01,10$). Hypopharynx (Fig. 265): well developed lateral processes; anterior margin of lingua shallowly cleft; superlingua with thick tufts of setae on anterior margins, rounded lateral margins. Labium (Fig. 265): glossae not turned under ventrally and lying in the same plane as paraglossae, series of spines apically; palpi three segmented, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface; palp length ratios $1.00: 0.84: 0.57(0.33 \pm 0.02,10)$; submentum with spines on lateral margins. Thorax: light tan to medium brown with darker brown markings; pronotum width 1.20-1.53 (1.36 $\pm 0.11,12$); slightly narrower than head width (see above), head pronotum width ratio 0.85-0.97 (0.92 $\pm 0.03,12$). Legs (Fig. 267): colour light tan with dark brown markings giving a banded appearance; femora with middle third dark brown and dark brown at apices; tibiae with proximal sixth and middle third dark brown; tarsi with middle four-fifths clark brown; total foreleg length 2.68-3.73 (3.07 $\pm 0.27,12$); fore femora length 1.15-1.60 (1.32 $\pm 0.12,12)$, fore femora width $0.40-0.48(0.44 \pm 0.02,12)$; fore femora length width ratio $2.78-3.33(3.01 \pm 0.18,12)$; fore fibiae : :ith numerous short ventral spines, sometimes serrated; fore tarsi with 8-12 (12) ventral spines; tarsal claws (Fig. 268) with 11-14 (10) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated on inner margin; leg length ratios, foreleg 1.00: 0.93: 0.40 (1.32 $\pm 0.12,12$), middle leg 1.00: 0.90: $0.35(1.36 \pm 0.15,12)$, hind leg 1.00: $0.93: 0.34$ ($1.48 \pm 0.16,12$). Abdomen: dark brown to black, golden markings on each segment forming a broken stripe midline, two light coloured maculae flank the marks anteriorly on each segment; posterolateral spines present, progressively larger posteriorly. Gills (Fig. 269): membrane clear to light grey; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae dissimilar in size; upper lamellae narrow at approximately two-thirds length and broadens again in apical third, inner margin with small emargination near base of broadened apical third; lower lamellae narrow at two-thirds length tapering to a point; main and lateral tracheae present, strongly developed. Caudal fiiaments three, golden brown, terminal filament longer than cerci.

Remarks. This species was first described by Harker (1950a) as Atalophlebia parva from specimens collected in Armidale, New Sourh Wales (type specimens). It was then transferred to Atalonella (Harker 1954) after she established the differences between the two genera in that paper. A subsequent transfer was made from Atalonella to Nousia following Campbell (1988) although no explanation was given for this change. Finally, in revision of the genus Nousia (Campbell and Suter 1988) the species was placed in the new genus Koorrnonga based on the egg morphology and genitalia shape. Subsequently this species has been referred to as Koorrnonga sp. "AV2" by Dean (1999).

I have examined all four types of parva from the Australian Museum. Unfortunately, they are all quite damaged and give very fittle useful information regarding the status of this species. The holotype has no forelegs or hindwings and the forewings are so badly damaged it is difficult to distinguish the all important absence of crossvein venation in the costal and subcostal spaces. I was able to examine the penes, which had been dissected from the body, but they definitely do not conform to the original drawings (Harker 1950a). This may be because the specimens lodged in the museum are from the Serpentine River, while those she nominated as the types in her paper (Harker 1950a) are from the Gara and Dumaresque Rivers. It could be inferred, therefore, that the specimens from the three locations may not be the same species. The paratypes are equally frustrating. The female imago has half of the abdomen missing and the hindwings in both the female imago and subimago are damaged or missing. There are, however, no crossveins in proximal halves of the costal and subcostal spaces of the imago and subimago forewing which conforms to the genus diagnosis. Finally the nymph has an indistinct body pattern, all but one hindleg missing and no gills. Despite this, however, the descriptions and drawings of these characters (Harker 1950a) do conform to the species description above. The species has several other quite distinguishing features such as the egg morphology, genitalia and shape of the nymphal gill with the broadened apical third of the upper lamellae, which make it unlikely to be any other species in the genus.

Thraulophlebia parva can be distinguished from all other species in the genus by the following combination of characters: In the infago: (i) forewing hindwing ratio comparatively small; (ii) upper eye size large, aiways contiguous; (iii) leg banding conspicuous; (iv) penes expanded lateral margin in apical third less distinct, fused in basal third dorsally and ventrally, lobes not indented apically; subapical tobes absent; small internal spines apparent under transmitted light; (v) egg cylindrical with rounded ends, two rings of tubular processes. In the nymph: (i) labrum subequal to wider than clypeus, lateral margins rounded to slightly angular, antero-median emargination distinct, length width ratio higher than two on average, single row of frontal setae, secondary hair fringe contains 41-55 setae and extends approximately one-third the width across labrum;
(ii) hypopharynx superlingua with rounded lateral margins; (iii) leg banding conspicuous; (iv) gill shape with upper lamellae narrowing at two-thirds length and broadens again in apical third, inner margin with small emargination near base of broadened apical third, lower lamellae narrows at two-thirds length with long apical filament tapering to a point.

Dther specimens examined. QUEENSLAND. Careys Creek, S of Calen, N of Mackay, 79112001, 20 XI 1979, $140 \mathrm{~m}, 148^{\circ} 43^{\prime} 20^{\circ} 52^{\prime}, 2$ o $\mathrm{N}(\mathrm{DC})$. Mother Mountain, 12km SE of Gympie, $80102900,29 \times 1980,100 \mathrm{~m}, 152^{\circ} 47^{\prime} 26^{\circ}{ }^{\circ} 5^{\prime}$, EPH 1127, 1 of $N(A N)$. Priors Creek, Atherton, 96040600,6 IV 1995, 760m, 145² $8^{\prime} 79^{\prime \prime}{ }^{\prime \prime} 17^{\circ} 15^{\prime} 32^{\prime \prime}$, EPH 1439, 1 of N, 1 of $N(B H)$. Stony Creek, Conondale Ranges, 97082602, 26 VIII 1977, $140 \mathrm{~m}, 152^{\circ} 41^{\prime}$ $26^{\circ} 51^{\prime}$, EPH 1251, 1 \& $\mathrm{N}, 1$ क N (JD). VICTORIA: Acheron River, 87030500, 5 III 1987, $320 \mathrm{~m}, 145^{\circ} 41^{\prime} 37^{\circ} 30^{\prime}$, nymphs (TD \& RM). Aura Vale Lake, Hentys Picnic Area, 97112401, 24 XI 1997, 97112401, 140m, 145 $23^{\prime} 17^{\prime \prime} 37^{\circ} 56^{\prime} 19^{\prime \prime}, 1$ ㅇ N (KJF). Coliban River, Lyells Bridge, Redesdale-Bendigo Rd, 97040800, 8 IV 1997, 210 m, 144 $^{\circ}{ }^{\circ} 9^{\prime} \mathbf{\prime 2}^{\prime \prime}$ $36^{\circ} 57^{\prime} 46^{\prime \prime}$, N (JD). East Errinundra River, junction with west branch, 32031200, 12 III 1982, $300 \mathrm{~m}, 148^{n} 54^{\prime} 37^{\circ} 20^{\prime}$, nymphs. (JB); 84010600,611984 , same locality data, nymphs (JB). Mclvor Creek, 6km downstream Heathcote, 81091300, 13 IX 1981, 250m, $144^{\circ} 44^{\prime} 36^{\circ} 57^{\prime}$, EPH 1523, 1 \& N (JD). Plenty River, Mernda, 77110900, 9 XI 1977. $160 \mathrm{~m}, 145^{\circ} 06^{\prime} 37^{\circ} 36^{\prime}$, EPH 1512, 1 o NI (reared), (JD), EPH 1513, 1 o' I (JD), EPH 1515, 2 \& NI (reared), (JD), EPH 1516, 3 ơ N (JD); 77120700, 7 XII 1977, EPH 1514, 1 $\sigma^{\circ} \mathrm{N}$ (JD), EPH 1517, 1 o NS, 1 \& NS (reared), (JD), EPH 1518, 1 o NS, 1 \& NS (reared), (JD), EPH 1519, 1 ㅇ NS (reared), (JD), EPH 1520, 3 o NS, 2 \& NS (reared), (JD). Upper Broken River, Mansfield-Whitfield Rd, 9km N of Mansfield, 99022005, 20 II 1999, $340 \mathrm{~m}, 146^{\circ} 06^{\prime} 20^{\prime \prime} 36^{\circ} 58^{\prime} 38^{\prime \prime}, 4$ o $^{\circ} \mathrm{N}, 4 \circ \mathrm{~N}$ (KJF). West Errinundra River, Hammond Rd, $82031500,15 \mathrm{III}$ 1982, $960 \mathrm{~m}, 148^{\circ} 51^{\prime} 37^{\circ} 18^{\prime}$, nymphs (JB). Wild Duck Creek, Heathcote-Redesdale Rd, 1km SW Heathcote, 99022304, 23 II 1999, 210m, $144^{\circ} 39^{\prime} 35^{\prime \prime} 36^{\circ} 52^{\prime} 44^{\prime \prime}, 2$ ơ NSI, 2 ㅇ NS, 6 ơ N, 7 ㅇ $\mathrm{N} ; 99040701,7$ IV 1999, same locality data, 1 of $\mathrm{NSI}, 3 \oplus \mathrm{NSI}, 1 \circ \mathrm{NI}, 2 \mp \mathrm{~N} ; 00022001,20 \mathrm{ll} 2000$, same locality data, 3 σ° NSI, $3 \circ$ NSI, $1 \circ$ NI, $2 \neq$ NS, 2 of, $2 \circ$ N(KJF). Wombat Creek, Wombat Creek Dam Picnic Area, near Daylesford, 97122004, 20 XII 1997, 635m, $144^{\circ} 10^{\prime} 22^{\prime \prime} 37^{\circ} 23^{\prime 2} 25^{\prime \prime}$, 1 \& NSI (KJF). Yan Yean Reservoir, 76021800, 18 I! 1976, $180 \mathrm{~m}, 145^{\circ} 08^{\prime} 37^{\circ} 33^{\prime}$, EPH 1522,1 \& NI (reared), 1 ol N (JD); 76032900, 29 ill 1976, same locality data, EPH 1511. 1 of l (JD); 77102600, 26×1977, same locality data, EPH 1521, 2 of I, 2 \& 1 (JD).

3.4.3.5 Thraulophlebia simillima (Ulmer) Incertae sedis
 Atalophlebia australasica Ulmer (Ulmer 1916)
 Atalophlebia simillima Uimer (Ulmer 1919)
 Atalonella simillima (Ulmer) (Harker 1954)
 Nousia simillima (Ulmer) (Campbell 1988)
 Koormonga simillima (Ulmer) (Campbell and Suter 1988)
 Thraulophlebia simillima (Ulmer) comb. nov.
 Incertae sedis

Types. Holotype. Atalophlebia simillima Uimer. Cedar Creek, Queensland, 10040000, N 1910-1913, ơ imago. coll. Mjöberg Expedition [examined]. Labels: a) "Ataiophlebia simillima Ulm (1920) Type", b) "Cedar Creek, April, Mjöberg". Held at SMNH.

Distribution. Queensland (no locality data available).

Diagnosis. The following description encompasses the only available description of the species (Ulimer 1919) and examination of the type specimen. Male Imago. Dimensions: body length 9 , forewing length 9.5 . Head: yellow-brown with black markings. Eyes: upper eye size large; upper lobes reddish-grey, lower lobes black. Thorax: pronotum light yellow brown with black markings; mesonotum light brownish yellow on dark brown background; metanotum dark brown. Legs: forelegs missing; middle and hind legs yellowish-grey, femora with dark brown band medially and at apex, tarsal apices also dark. Wings. Forewing: membrane hyaline, pterostigmatal area opaque, brownish-brick coloured; longitudinal and crossveins brown or reddish-brown; costal and subcostal crossveins present in the proximal halves of wing, costal space with 5 crossveins proximally, 17 distally. Hindwing: hyaline, venation similar to Atalophlebia australasica. Abdomen: colour dark brown from tergal segments two to seven with two dark longitudinal light stripes, tergal segments nine and ten darker; sternites brown. Genitalia: forceps three segmented, yellow-brown, progressively lighter apically; penes grey brown, divided into two square-shaped very wide lobes, distal edge weakly bent into an S-shape, between the lobes a blunt heart shaped lobe is apparent, each penis lobe is narrowed from a wider base to a triangle. Caudal filaments: two, umber brown, banding apparent. Female imago. unknown. Egg. unknown. Male and female subimago. unknown. Mature nymph. unknown.

Remarks. Very little is known of this species as the account by Ulmer (1919) was incomplete, largely consisting of descriptions of colour patterns on the body of the male imago. Further, no females, subimagos or nymphs were described and remain unknown today. By the definition of Harker (1954) it was considered to be part of the Atalonella
group. It was subsequently placed in Nousia by Campbe!l (1988), then Koormonga following revision of Australian Nousia by Campbell and Suter (1988). The placement in the genus Koorrnonga was probably based on the broad based geritalia with the narrow apex although Campbell and Suter (1988) considered the placement tentative.

There is a also a complication regarding the type description created by Uimer himself. He writes of the specimen he called Atalophlebia simillima that: "..Dies Stück fand sich noch nachträglich im Material der A. costalis, das Mjöberg auf seinen Expeditionen 19101913 gesammelt hatte und von mir als A. australasica Pict. in Ark f. Zoologi, 10 No. 4 1916 p 2. f. I.2, beschrieben wurde;.." ("..This specimen was later found in the material of A.costalis that Mjöberg collected on the expedition of 1910-1913 and was described by myself as A. australasica Pict. in Ark. f. Zoologi 10(4) 1916 p.2. f. 1.2..") (Ulmer 1916, p.17). Unfortunately, it is not clear which specimen was confused with the numerous specimens of A. australasica described therein, and which descriptions, if any, actually relate to T. simillima. I have decided to consider the description of Atalophlebia simillima (Uimer 1919) as the valid one. Any references to the previous paper (Ulmer 1916) will only be made if directly referred to by Ulmer (1919).

The single type specimen from the Stockholm Museum is very damaged. It is somewhat shrivelled as if it has been dried out and dehydrated making it difficult to see the characters especially the wing venation. Even so, the genitalia shape does reasonably approximate the drawing by Ulmer (1919) with the two wide lobes converging medially. This is a generic characteristic of Thraulophlebia and I can see why it would be considered to relate to this genus. However, other genera, such as Atalophlebia have penes lobes which are similar.

In other respects the type specimen does not conform to Thraulophlebia. Although difficult to see, the type definitely has crossveins proximally in the costal and subcostal space of the forewing; a fact that Ulmer mentions in the text: "..im Costalraume von der Bulla fünf starke, dunkel umschattete Queradern.." ("..in the costal space in front of the bulla five strong, darker shaded cross-veins") (Uimer 1919, p.16). I would also say the forewing size of the type at 9.5 mm is significantly larger than Thraulophlebia forewings which I have found to range in size from $5.7-8.1 \mathrm{~mm}$.

The simillima hindwings appear to be missing from the type but a clue to their shape is provided by Ulmer (1919) when he writes "..Costalraum und seine Adern, ebenso die übrige Nervatur wie bei A. costalis Burm. (A. australasica Pict.) " ("..the costal space, its veins and the remaining venation are the same as A. costalis Burm. (A. australascia Pict..)" (Ulmer 1919, p. 16). If we take Ulmer's drawing of the hindwing of A. australasica
to represent simillima as mentioned previously (Ulmer 1916; FiG. 1, p. 2 reproduced here as Fig. 270) it is clear that the wing does not have the characteristics of Thraulophlebia with the absence of the strong projection of the costal margin which gives the wing a somewhat triangular shape.

Another characteristic of the type which is incommensurate with Thraulophlebia is the large body size $(9 \mathrm{~mm})$. I found the Thraulophlebia species range in size from 5.67.4 mm .

The option of trying to recollect this species has been ruled out by the ambiguousness of the type locality - Cedar Creek in Queensland (see. 3.3.2.2) and, of course, a full survey of the mayflies of that state was beyond the scope of this project.

As a result of the genus revision, all species belonging to Koorrnonga are formally transferred to Thraulophlebia. I believe, however, that simillima clearly does not belong to this genus. I feel it would perhaps would be better placed in Atalophlebia due to the similarities it appears to have to other members of this genus. As it is not possible to determine this without a revision of the genus Aialophlebia, I feel there is no choice but to declare this species Incertae sedis.

3.4.4 Key to current species of Thraulophlebia

This key is accompanied by a matrix of main characters for separating the species as an alternate means of identification (Table 17).

Male imagos

1 Penes fused in basal third dorsally and ventrally, with narrowly expanded outer lateral margins in apical third, without distinct subapical lobes dorsally, small internal spines apparent under transmitted light; upper eye size large, always contiguous; forelegs with conspicuous banding
parva

Penes almost separated at base dorsally, with widely expanded outer lateral margins in apically third, with distinct subapical lobes dorsally, small internal spines absent; leg banding inconspicuous or absent. . .2

2(1) Penes fused in basal half ventrally, lobes indented apically; upper eye size large, often contiguous; forewing hinging ratio comparatively large with forewing 5.9-7.6 times larger than hindwing. lucida

Penes fused in basal third ventrally, lobes not indented apically; upper eye size large, never contiguous; forewing hindwing ratio comparatively small with forewing 4.9-5.3 times larger than hindwing. inconspicua

Female imagos
1 Egg cylindrical with rounded ends, two rings of tubular processes. parva
Egg ovoid with two to three rings of tubular processes. 2

2(1) Egg ovoid with two rings of tubular processes; body length comparatively smaller; forewing hindwing ratio comparatively larger with forewing 5.5-8.6 times larger than hindwing. lucida

Egg ovoid with three rings of tubular processes, body length comparatively larger; forewing hindwing ratio comparatively smaller with forewing 4.9-6.5 times larger than hindwing
inconspicua

Mature nymphs

1 Labrum wider than clypeus with distinct antero-median emargination, length width ratio generally larger than two, secondary hair fringe contains 41-55 setae and extends approximately one-third the width across labrum; gills with upper lamellae narrowing at two-thirds length and broadens again in apical third, inner margin with small emargination near base of broadened apical third, lower lameilae narrow at two-thirds length with long apical filament tapering to a point
.parva

Labrum subequal to slightly wider than clypeus with slight antero-median emargination, length width ratio two or less, secondary hair fringe with 40 or less setae extending one-quarter or less the width across labrum; gills with upper lamellae narrowing at three-quarters length with long apical filament, lower lamellae narrows at four-fifths length with shorter apical filament

2(1) Labrum subequal to clypeus, length width ratio usually less than two, frontal setae arranged as a single row, secondary hair fringe with 12-25 setae extending one sixth the width across labrum; hypopharynx superlingua with slightly angular lateral margins lucida

Labrum subequal to slightly wider than clypeus, length width ratio usually around two, frontal setae arranged as a narrow band, secondary hair fringe with 20-40 setae extending one quarter the width across labrum; hypopharynx superlingua with rounded lateral margins \qquad inconspicua

Table 17．Matrix of main characters useful for separating the species of Thraulophlebia．

	Thraulophlebia lucida	Thraulophlebia inconspicua	Thraulophlebia parva
Male Imago			
forewing ／hindwing ratio	$5.87-7.56$（6．80土0．59，17）	4．94－5．31（5．08 $\pm 0.12,9)$	4．37－5．90（5．16 $\pm 0.55 .7)$
eyes contiguous	often	no	always
eye size（ES）	0．00－0．04（0．01 $\pm 0.01,10)$	0．10－0．15（0．13 $\pm 0.02,10)$	
leg banding	inconspicuous or absent，	inconspicuous or absent	conspicuous
total leg length	5．64－6．61（6．08 $\pm 0.33,10)$	6．29－7．46（6．89土0．32，10）	4．45－5．58（5．08 $\pm 0.58,4)$
leg length ratios	$\begin{aligned} & 1.00: 1.45: 0.06: 0.50: 0.48: 0.37: \\ & 0.17(1.52 \pm 0.14,10) \end{aligned}$	$\begin{aligned} & 1.00: 1.44: 0.08: 0.45: 0.43: 0.32: \\ & 0.16(1.78 \pm 0.08,10) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00: 1.44: 0.06: 0.40: 0.38: 0.26: \\ & 0.17(1.37 \pm 0.09,4) \\ & \hline \end{aligned}$
penes shape	widely expanded lateral margin in apical third	widely expanded lateral margin in apical third	more narrowly expanded lateral margin in apical third
penes fusion	fused in basal half ventrally， separated almost at base dorsally	fused in basal third ventrally， separated almost at base dorsally	fused in basal third dorsally and ventrally
penes lobes apically	each lobe indented apically	lobes not indented apically	lobes not indented apically，less distinct
penes－ventral	yes ventral view with subapical lobes protruding laterally outwards	ventral view with subapical lobes protruding laterally outwards	ventral view without subapical lobes
penes with processes inner margins	no	no	yes
Female Imago			
body length	5．6－7．6（6．6 $\pm 0.56,25$ ）	7．0－8．8（7．6 $\pm 0.80,6)$	5．7－8．7（7．1 $\pm 0.80,13)$
forewing hindwing ratio	$5.47-8.55$（6．93 $\pm 0.77,20)$	4．93－6．45（5．30 $\pm 0.65,5)$	$5.07-6.64$（5．74士0．49，10）
Egg			
egg shape	ovoid	ovoid	cylindrical with rounded ends
egg polar cap	two rings of tubular processes	three rings of tubular processes	two rings of tubular processes

Table 17 cont'd.

Mature nymph			
labrum wider than clypeus	subequal to clypeus	subequal to slightly wider than clypeus	lateral margins of labrum wider than clypeus
lateral margins of labrum	rounded	rounded	rounded to slightly angular
antero-median! emargination	slight	slight	distinct antero-median emargination
labrum length /width ratio	1.69-2.18 (1.86 $\pm 0.13,25)$	1.82-2.11 (1.96 $\pm 0.07,23)$	1.92-2.56 (2.14 $\pm 0.15,15)$
frontal setae arrangement	single row	narrow band	single row
Secondary hair fringe width to labrum width ratio	$0.06-0.20$ (0.14 $\pm 0.03,25)$	0.19-0.30 (0.25 $\pm 0.03,22)$	0.23-0.35 (0.28 $\pm 0.04,15)$
secondary hair fringe - number of setae	12-25 (20)	20-40(18)	41-55 (10)
hypopharynx superlingua lateral margins	slightly angular	rounded lateral margins	rounded lateral margins
leg banding	conspicuous to inconspicuous	inconspicuous or absent	yes
gill shape	upper lamellae narrow at threequarters length with long apical filament, lower lamellae nerrow at four-fifths length with shorter apical filament	upper lamellae narrow at threequarters length with long apical filament, lower lamellae narrow at four-fifths length with shorter apical filament	upper lamellae narrow at approximately two-thirds length and broadens again in apical third, inner margin with small emargination near base of broadened apical third; lower lamellae narrow at two-thirds length tapering to a point

3.4.5 Investigation of the congenerity of Nousia (Australonousia) and Thraulophlebia

It is clearly acknowledged that the two taxa are very closely related as intimated by Campbell and Suter 1988). However, due to the current revision, some of the characters used to separate them no longer apply. For example, Campbell and Suter (1988) state that in Koormonga (now Thraulophlebia) the crossvein MA is forked slightly less than half the distance from wing base to margin and the penes lack a sclerotised process on the inner margin. I have found that in Thraulophlebia MA is forked at around half the distance from wing base to margin. Campbell and Suter (1988) also state that the male forewing is without crossveins proximally in Thraulophlebia which I have also found to be true, but I have noted it in the subgenus Nousia (Australonousia) as well. Finally, although the question of the egg morphology has not been put to rest because of the lack of Nousia (Australonousia) fuscula specimens, the presence of polar caps and rings of tubular processes appears to be characteristic of Thraulophlebia. If this is the case, the difference in the number of tubular rings to distinguish between the two genera as outlined in Campbell and Suter (1988) is no longer valid. As for the nymph, Koorrnonga is considered to be distinguished from the Australian Nousia by the presence of 4-6 smooth regular denticles and segment one of the labial palpi is 1.3 times longer than segment two (Campbell and Suter 1988). I have found that the revised subgenus Nousia (Australonousia) contains some species with 4-6 elongate regular denticles and that there are no apparent differences in the labial palp length of the labium of the two taxa.

Despite this anomalies, there are consistent variations between the two taxa which I believe warrant their separate status. The most significant are the shape of the hindwing, penes and egg and the arrangement and type of setae on the labrum (see Table 18).

Table 18. Main sharacters separating the subgenus Nousia (Australonousia) from the genus Thraulophlebia.

	Nousia (Australonousia)	Thraulophlebia
Male Imago		
hindwing shape	costal margin slightly convex at midlength immediately preceding shallow concavity rounded shape	strong projection of the costa - triangular shape
penes fusion	fused in basal two-thirds, lobes separate apically	fused in basal third to half ventrally, separated at base or fused in basal third dorsally, lobes joined or nearly so apically
Female Imago		
forewing - proximal crossveins in costal and subcostal space	present	weakly developed
Egg		
egg polar cap	absent	with two or three tubular processes
egg pattern	large and small circular shaped protuberances, pattern variable	small evenly spaced circular protuberances
Mature nymph		
labrum frontal setae	arranged as a narrow or broad band	arranged as a single row or narrow band
labrum secondary hair fringe	extends more than one half the width of labrum	extends no more than twofifths the width of labrum
labrum thick socketed setae	absent	present
mandible - setae on lower body	row of setae in an inverted L-shape	small tuft of setae
hypopharynx	moderately to deeply cleft	shailowly cleft
pronotum width	equal to slightly greater than width of head	always equal to width of head

3.5 General discussion

According to Dean (1999) there are eight morphospecies of Nousia (Australonousia) not accounted for in these revisions, all of which have been determined by the nymph stages only. At least four appear to be Tasmanian endemics. One is from Western Australia and previously considered to belong to an unnamed genus ("genus R") (Dean and Suter 1996) but subsequently transferred to Nousia in a later revision (Dean 1999). The other taxa apparently occur in Victoria but are represented by only one or two specimens. Despite repeated efforts to collect them from Mt Baw Baw, Mt McKay at Falls Creek and the Tarra River in Tarra-Bulga National Park, I was unable to collect or rear specimens that proved different from the other species of Nousia (Australonousia).

With regard to Thraulophlebia it is considered there are four morphospecies not accounted for in these revisions (Dean 1999). Two are supposedly found in Victoria. Koorrnonga sp. "AV3" and sp. "AV5". Superficially they appear very similar to T. inconspicua but their species status was unable to be verified due to an inability to collect more specimens (see 3.4.3.3). The other two morphospecies of this genus apparently occur only in northern Queensland. Examination of the one or two specimens available in each case revealed Thraulophlebia-like characteristics, such as the secondary hair fringe and unequal length of the gills, but there were too few specimens to assess differences that would confer species status.

In summary in the subgenus Nousia (Australonousia) two species have been redescribed, one new species described and three morphospecies described. Of the two species redescribed one has been synonymised with two other species, N. (A) delicatula and K. brunnea. One species, N. (A) wiltkorringae has been removed and placed in a monotypic genus (See Chapter 4) and one species N. (A) darkara has been declared Incertae sedis. The subgenus Nousia (Australonousia) now consists of three species: N. (A) fusca, N. (A) fuscula and N. (A) nigeli sp. nov. The subgeneric status of Nousia (Australonousia) has been investigated and considered somewhat unnecessary but in the interests of stability should stay until the remaining species of Australian Nousia are described.

With regards to Koorrnonga, it was established that is not congeneric with Nousia (Australonousia) but should be synonymised with Thraulophlebia. T. pilosa was synonymised with T. lucida and T. simillima has been declared Incertae sedis. The genus Thraulophlebia now contains three redescribed species: T. lucida comb.nov., T. inconspicua comb.nov., and T. parva comb.nov.

These revisions must be considered incomplete as they clearly do not contain all the species. However, the revision of these two taxa has been hampered by the deficiencies of some of the early descriptions and drawings. Further, many type specimens were either unavailable or too damaged to be of sufficient use. A number of the type localities were ill-defined and there was also limited time and too few resources to conduct sufficient field collecting and rearing over the large geographical areas involved. In particular, collecting trips to Tasmania and Queensland are necessary to fill in the gaps and ultimately complete the revisions. Although the geographical restraint became more apparent as the project progressed, the research focus on Victoria allowed a concentration of work in the species-rich south-east. Despite these limitations, substantial progress has been made towards a comprehensive revision, providing a sound platform from which subsequent work can proceed.

4. DESCRIPTIONS OF TWO NEW GENERA FROM SOUTH-EASTERN AUSTRALIA (LEPTOPHELBIIDAE: ATALOPHLEBIINAE).

"The stimulating delight of the systematist is that he never knows what remarkable unknown organism or structure of form or function or habit may come to his attention tomorrow, or the next day or the next; the tragedy of the systematist is that he knows that his work can never lee completed."

Elwood C. Zimmerman, Entomologist 1991

4.1 Introduction

In revising the subgenus Australonousia (Chapter 3) it was recognised that two species, currently considered as Nousia (Australonousia) (Dean 1999), were morphologically distinct and did not belong as part of that taxon. Two new genera have been erected here to accommodate them. The first, Montikola, encompasses two species and the second, Gemmayaluka is monotypic. Gemmayaluka wiltkorringae has already been published as a species of Nousia (Australonousia) (Finlay 2000, Appendix 3). This paper was written in 1999 and I then believed this taxon correctly belonged in the sutigenus Nousia (Australonousia) based on the available evidence. Following a further two years intensive study on the subject I have come to the conclusion that the species does not readily fit within the revised generic and subgentis diagnosis.

4.2 Methods and conventions

See 3.2

4.3 Description of Montikola gen. nov.

4.3.1 Montikola gen. nov.

Type species. Atalophlebia kala (Harker)

Distribution. Southern New South Wales, Eastern Victoria (Fig. 271).

Diagnosis. Male imago. Dimensions: body length 8.6-13.5; forewing length 8.8-13.2; hindwing length 1.9-3.3; forewing hindwing ratio 3.81-5.79. General body colour brown, head dark brown, antennae tan to dark brown. Ocelli: three; black with white-grey inserts; laterals larger than medial. Eyes: upper eye size large, sometimes contiguous, $E S=0.00-$ 0.11 ; upper lobes orange brown; lower lobes grey-black. Thorax: brown to shiny brown with darker markings. Legs: femora tan brown with darker apices, tibiae and tarsal golden; total leg length 7.4-11.4; forelegs with seven segments, tibia approximately 1.41.5 times length of femur, the five segmented tarsus approximately 1.2-1.5 times length of femur; tarsal claws of a pair similar, each apically hooked with an opposing hook. Wings. Forewing: membrane hyaline, pterostigmal area slightly opaque, longitudinal and crossveins brown, anal veins yellow, costal and subcostal veins present in proximal and distal halves of wing; costal space with 5-11 crossveins proximally, 12-20 distally (sometimes anastomosed), subcostal space with 5-10 crossveins proximally, 11-16 distally. Three bullae present on veins $S c, R_{2}$ and R_{4+5}, MA forked at half to just over half the distance from wing base to margin, MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{CuA}$ and

CuP linked by crossvein, $I C u$, recurved to join CuA and not linked to $\mathrm{CuA}-\mathrm{CuP}$ crossvein, ICu_{2} recurved to join ICu_{1}, CuA and CuP linked by crossvein, ICu_{1} and ICu_{2} parallel as wing margin approached, CuP strongly recurved and linked by crossvein to A_{r}. Hindwing: mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex and midlength immediately preceding shallow concavity, costa joins subcosta at approximately four-fifths wing length; no crossveins in proximal halves of costal space, 5-9 in distal space, 5-9 throughout subcostal space. Abdomen: light to tan brown with golden and darker brown markings, colour and patterning variable. Genitalia: forceps three segmented; tan brown, progressively lighter apically, terminal segment angular, about the same length as middle segment. Penes golden to tan brown, fused in basal half dorsally, fused almost along entire length ventrally, two lobes distinct, outer lateral margins relatively straight to bulbous; each lobe pointing outwards, small triangular process present apically (although sometimes missing), two pairs of internal spines. Caudal filaments: three, tan brown; terminal filament ionger than cerci. Female imago. Dimensions: body length forewing length 8.4-15.6; hindwing length 1.4-3.5; forewing hindwing ratio 3.94-6.00. General patterning and colour similar to male. Eyes: grey-black, separated on meson of head by a distance about four times maximum width of eye. Legs: total leg length shorter than male, 5.8-9.3; forelegs with six segments; tibia approximately 1.4 times length of femur, the four segmented tarsus approximately 0.7 times length of femur. Wings. Forewing: colour and venation similar to male except wings with generally more crossveins on average; costal space with 6-11 crossveins proximally, 13-20 distally (sometimes anastomosed), subcostal space with 5-10 crossveins proximally, 12-17 distally. Hindwing: no crossveins in proximal half of costal space, 5-8 in distal space, 5-10 throughout subcostal space. Abdomen: sternum sever with small genital extension, sternum nine moderately cleft. Egg. Ovoid; polar cap absent, chorion with large and small circular shaped protuberances over surface, pattern variable. Male and female subimago. General pattern and colouring similar to imago. Wings uniformly grey-brown, opaque. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. Body lengths of 10.0-13.3, $\mp 8.0-14.9$. General colour tan brown with darker markings. Head: prognathous; tan to dark brown, width 1.9-2.8. Ocelli: three; black with white inserts: laterals larger than medial. Antennae: golden to tan brown; more than twice length of head. Eyes: upper lobes of male orange to reddish-brown, lower lobes black; eyes of female black. Mouthparts. Labrum and clypeus: lateral margins of clypeus very slightly diverging towards anterior; lateral margins of labrum slightly wider than clypeus, rounded: anterior margin of labrum straight with no apparent antero-median emargination; labrum length $0.40-0.63$, labrum width $0.95-1.33$, labrum width length ratio $2.00-2.45$; five elongated denticles present on anterior margin extending $0.24-0.58$ times the total width of the labrum; denticle width as proportion of labrum width 0.21-0.53; frontal setae arranged as a broad band; secondary hair fringe clearly separated from
broad band. Mandibles: outer margins slightly curved; sma!l indentation and sparse long setae at midpoint on outer lateral margins; shorter setae along margin between midpoint and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in inverted L-shape on lower mandible body. Left mandible: two incisors, each with three apical teeth, outer incisor inconspicuously serrated on inner lateral margin, with or without subapical process; prostheca robust, serrated; prosthecal tuft slender, tapering to a thin point apically, hairs on lateral margins only. Right mandible: spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin, short spines on inner mesal surface; inner incisor with two apical teeth; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae: galea-lacinae slightly wider to as wide as long, width length ratio 0.85-1.17; subapical row of 16-23 pectinate setae; palpi three segmented, first segment length 0.37 , segments two and three of approximately equal length, 0.69-0.71 times the length of first segment, segment three with single spine apically. Hypopharynx: well developed lateral processes; anterior margin of lingua deeply cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, lateral margins slightly angular. Labium: glossae not turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, first segment length 0.51-0.53, segment two 0.81-0.83 tirs length of first segment, segment three approximately half the length of the first segment, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface; submentum with spines on lateral margins. Thorax: tan brown with darker brown markings; pronotum width 1.98-2.90, slightly wider than width of head (see above), head pronotum width ratio 1.00-1.17. Legs: golden to tan brown, femora usually darker at apices; fore femora occasionally with white patch on proximally but this is not always apparent; total foreleg length $3.80-7.33$, fore femora length $1.75-3.13$; fore femora width 0.63-0.90; fore femora length width ratio 2.69-4.05; fore tibiae with numerous short ventral spines, fore tarsi with 6-11 ventral spines; tarsal claws with 11-15 ventral teeth, progressively larger apically; average leg length ratios, tibiae 0.87-0.93 times length of femur, tarsi 0.29-0.37 times length of femur. Abdomen: golden to tan brown with golden and darker brown markings, colour and patterning variable; posterolateral spines present, progressively larger posteriorly. Gills: membrane clear or opaque, light grey to grey-black colour; present on segments one to seven, progressively smailer posteriorly; double, upper and lower lamellae equally developed; each gill tapered to a thin point apically; main and lateral tracheae present, strongly developed. Caudal filaments: three; golden; terminal filament longer than cerci.
*Following examination of this thesis an external examiner has pointed out that the generic name Montikola has potential to cause confusion and should be changed. The genus name should therefore be regarded as a temporary tag and the genus will be published under an aliernative name.
*The new genus is erected according to the criteria outlined by Peters and Edmunds (1970) for separating genera: ie 'if two or more groups of species are separated by a distinct gap of characters evident in both adults and nymphs.' These characters are outlined in the table below.

Main characters separating the genus Nousia from the newly erected genus Montikola

GENUS	Nousia		Montikola
SUBGENUS	Nousia (Nousia)	Nousia (Australonousia)	
Male imago			
body length	less than 9 mm	less than 9mm	generally more than 10 mm
forewing length	less than 10 mm	less than 10 mm	generally more than 10 mm
forewing costal and subcostal crossveins	reduced or absent	reduced or absent	present
forewing - number of crossveins in costal space	usually 10-15	usually 10-15	usually 20 or more
penes	fused in basal twothirds, remainder divided	fused in basal twothirds, remainder divided	fused in basal half dorsally, fused almost along entire length ventrally
Female imago		-	
body length	less than 10 mm	less than 10 mm	generally more than 10 mm
Mature nymph			
body length - male	less than 10 mm	less than 10 mm	more than 10 mm
maxillae no. subapical setae	less than or equal to 15	less than or equal to 15	equal to or more than 17
maxillae first segment length	unknown	$0.22-0.30 \mathrm{~mm}^{\prime}$	0.37 mm
hypopharynx superlingua lateral margins	rounded	rounded to slightly angular, sometimes with slight indentations.	angular
labium first segment length	unknown	$0.29-0.38 \mathrm{~mm}$	$0.51-0.53 \mathrm{~mm}$

Etymology. The genus name is derived from the Latin Monticola meaning mountaineer and refers to the species preference for high altitude mountainous habitats. The distinct spelling of Montikola was adopted as Monticola was pre-occupied. see opposite*

Remarks. The genus Montikola can be distinguished from all other genera in the Leptophlebiidae family by the following combination of characters: In the imago: (i) body length or 8.6-13.5; ; 8.0-13.6; (ii) male upper eye size large, sometimes contiguous (iii) male and female forewing 3.3-6.0 times longer than hindwing; (iv) forewing crossveins present in proximal halves of wing, male with 17-31 crossveins in costal space (sometimes anastomosed distally), 16-26 in subcostal space, female with 19-31 in costal space (sometimes anastomosed distaliy), 17-27 subcostally; (v) MA forked at half to just over half the distance from wing base to margin; MP_{2} connected to MP , and $\mathrm{CuA}, \mathrm{ICU}_{1}$ recurved or joined to CuA and not linked to CuA-CuP crossvein; ICu_{2} joins $\mathrm{ICu}_{1} ; \mathrm{ICu}_{1}$ and ICu_{2} paraliel as wing margin approached, CuP strongly recurved and linked by cross vein to $A_{1 i}$ (vi) hindwing costa joins subcosta at four-fifths wing length; (vii) tarsal claws of a pair similar, each apically hooked with an opposing hook; (viii) fused in basal half dorsally, fused almost along entire length ventrally, two lobes distinct, small triangular process present apically (although sometimes missing); each lobe pointing outwards, two pairs of internal spines; (ix) female eyes separated on meson of head by a distance about four times maximum width of eye; (x) female sternum seven with small gential extension (xi) female sternum nine moderately cleft; (xi) egg ovoid, polar cap absent, chorion with small to large circular shaped protuberances. In the nymph: (i) body length of 10.0-13.3, 9.0 14.9. (ii) antennal length more than twice length of head; (iii) lateral margins of ciypeus very slightly diverging towards anterior; (iv) labrum slightly wider than clypeus, 2-2.5 times wider than long; lateral margins rounded; no antero-median emargination; five elongate denticles extend one-fifth to one-half the width of labrum; frontal setae arranged as a broad band, secondary hair fringe clearly separated from broad band; (v) mandibles with outer margins slightly curved; incisors with inconspicuous serrations on inner lateral margins, sometimes with subapical lobe; (vi) maxillae with galea lacinae generally about as wide as long; subapical row of 16-23 pectinate setae; terminal palp elongate, usually with single spine apically; (vii) hypopharynx deeply cleft; (viii) labium glossae not turned under ventrally: terminal segment elongate with row of triangular spines almost circulating apex; submentum with spines on lateral margins; (ix) pronotum generally slightly wider than head; (x) legs with fore femora 2.7-4.0 times longer than wide; fore tarsi with 6-11 ventral spines; tarsal claws with 11-15 ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; (xi) abdomen with posterolateral spines, progressively larger posteriorly; (xii) gills with nargins entire, double, upper and lower lamellae equally developed; slender, tapering to a thin point apically, main and lateral tracheae strongly to weakly developed. see opposite*

4.3.2 Montikola kala (Harker) comb. nov.

Atalophlebia kala Harker (Harker 1954)
Nousia sp. "AV3" (Dean 1999)
Montikola kala (Harker) comb. nov.

Types. Holotype. Atalophlebia kala (Harker), Lake Albina, Mount Kosciusko, New South Wales, 29020200, 2 II 1929, o" imago pinned, R.J. Tillyard. Labels: a) "Atalophlebia kala", b) "Abdomen in slide cabinet", c) Mt. Kosciusko, Lake Álbina 2.2.29, R.J. Tillyard", d) "Type", e) Brit. Mus. 1937-408". Paratypes. Lake Cootapatamba, Mount Kosciusko, New South Wales, 30012700, 27 :1930, R. J.Tillyard, q imago, subimagos [not seen]. Heid at the NHM.

Distribution. Southern New South Wales, Eastern Victoria (Fig. 272).

Diagnosis. Male Imago. Dimensions: body length 9.3-13.1 (11.1 $\pm 1.25,15$); forewing length 10.3-12.8 (11.8 $\pm 0.80,14$); hindwing length 1.9-2.9 (2.52 $\pm 0.36,13$); forewing hindwing ratio 4.07-5.79 (4.74 $40.52,13$). General body colour tan to dark brown. Head dark brown. Antennae: pedicel and scape dark brown, flagelluin tan brown. Ocelli: three; black with white-grey inserts; laterals larger than medial. Eyes: upper eye size large, sometimes contiguous; $E S=0.00-0.11(0.06 \pm 0.04,10)$; upper lobes orange-tan brown, lower lobes grey-black. Thorax: pronotum dark brown; mesonotum tan brown with darker brown markings. Legs: femora tan brown, apices darker; tibiae and tarsi yellow; total leg length $9.8-11.4(10.9 \pm 0.57,10)$; forelegs with seven segments; length ratios 1.00: 1.51: $0.05: 0.45: 0.45: 0.37: 0.15(2.7 \supseteqq \pm 0.21,10)$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 273). Wings. Forewing (Fig. 274): membrane hyaline, pterostigmal region opaque, longitudinal and crossveins bro: Nn , anal veins yellow; costal and subcostal crossveins present in proximal and distal halves of wing; costal space with 5-9 (12) cross veins proximally, 12-20 (12) distally (some anastomosed), subcostal space with 5-8 (12) cross veins proximaily, 11-16 (12) distally. Three bullae present on veins $S c, R_{2}$ and R_{4+5}. MA forked at half to just over half the distance from wing base to margin, MP_{2} connected to MP , and $\mathrm{CuA}, \mathrm{CuA}$ and CuP linked by crossvein, ICu_{1} recurved to join CuA and not linked to CuA-CuP crossvein, ICU_{2} recurved to join ICu_{1}, CuA and CuP linked by crossvein, ICu_{1} and ICu_{2} parallel as wing margin approached, CuP strongly recurved and linked by crossvein to A_{1}. Hindwing (Fig. 275): mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex at midlength immediatefy preceding shallow concavity, costa joins subcosta at approximately four-fifths wing length; no cross veins in proximal half of costal space, $5-8$ (11) in distal space, 6-8 (11) throughout subcostal space. Abdomen (Fig.
276): \tan brown, darker posteriorly, usually with golden markings on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking anteriorly, segments eight and nine usually darker, segment ten usually light, colour and pattern variable. Genitalia (Figs 277-283): forceps three segmented (Figs. 277); tan brown; terminal segment angular, sometimes indented, about the same length as middle segment; penes tan brown; fused in basal half dorsally (Fig. 277), fused almost along entire length ventrally (Figs. 278, 282); outer lateral margins bulbous; two lobes distinct, each lobe pointing outwards, small triangular processes present apically (Figs. 277, 278, 282, 283), although sometimes missing (Figs. 279, 280); two pairs of internal spines (Figs. 277-281), although sometimes not apparent. Caudal filaments: three; tan brown; apex of each segment washed dark brown giving a banded appearance; terminal filament longer than cerci. Female imago. Dimensions: body length 9.6-12.6 (11.2 ± 1.00, 15); forewing length 11.3-15.6 (12.8 $\pm 1.02,14)$; hindwing length 2.2-3.0 (2.62 $\pm 0.25,13$; forewing hindwing ratio 4.27-5.61 (4.93 $\pm 0.44,13$). General patterning and colouring similar to male. Eyes: grey-black, separated on meson of head by a distance about four times maximum width of eye. Legs: total leg length shorter than male, total foreleg length 7.6-9.4 (8.3 $\pm 0.59,10)$; forelegs with six segments, leg length ratios 1.00: 1.43: $0.21: 0.18$: 0.15 : $0.13(2.69 \pm 0.23,10)$. Wings. Forewing (Fig. 284): colour and venation similar to male except wings with generally more crossveins on average; costal space with 7-8 (11) cross veins proximally, 16-20 (11) distally (some anastomosed), subcostal space with 7-9 (11) crossveins proximally, 14-16 (11) distally. Hindwing (Fig. 285): no crossveins in proximal halves of costal space, $6-8(10)$ in distal space, $7-10(10)$ throughout subcostal space. Abdomen: sternum seven with small genital extension; sternum nine moderately cleft (Fig. 286). Egg. Ovoid; polar cap absent, chorion with large and smail circular shaped protuberances over surface, pattern variable (Fig. 287, 288). Male and female subimago. Body lengths: of 9.3-10.6 (9.7 $\pm 0.61,10)$; o $10.0-13.7(11.5 \pm 1.05,15)$. General colour and markings similar to imago. Wings uniformly grey-brown, opaque. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. (Fig. 289). Body lengths: ơ 10.0-12.5 (11.1 $\pm 0.86,10)$; $\& 11.5-14.9(13.0 \pm 1.00,16)$. General colour tan to darker brown markings. Head: prognathous; tan to dark brown, golden patches surrounding ocelli; width 1.94-2.75 (2.28 $\pm 0.21,18)$. Ocelli: three; black with white inserts; laterals larger than medial. Antennae: pedicel, scape and flagellum golden brown; more than twice length of head. Eyes: upper lobes of male orange-brown, lower lobes black; eyes of female black. Mouthparts. Labrum and clypeus (Fig. 290): lateral margins of clypeus very slightly diverging towards anterior; lateral margins of labrum slightly wider than clypeus, rounded; arterior margin of labrum straight with no apparent antero-median emargination; labrum length $0.40-0.63$ ($0.51 \pm 0.07,20$); labrum width 0.95 1.33 (1.11 $\pm 0.12,20)$; width length ratio 2.00-2.45 (2.20 $\pm 0.15,20)$; five elongated denticles
present on anterior margin extending 0.28-0.58 ($0.40 \pm 0.07,20$) times the total width of the labrum; denticle width as proportion of labrum width $0.25-0.53(0.37 \pm 0.08,20)$; frontal setae arranged as a broad band; secondary hair fringe clearly separated from broad band. Mandibles: outer margins slightly curved; small indentation and sparse long spinelike setae at midpoint on outer lateral margins, shorter setae along margin between midpoint and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in an inverted L-shape on lower mandible body. Left mandible (Fig. 291): two incisors, each with three apical teeth, outer incisor inconspicuously serrated on inner lateral margin; Frostheca robust, serrated; prosthecal tuft siender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 292): spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin, short spines on inner mesal surface; inner incisor with two apical teeth; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 293): galea-lacinae as wide as long, width length ratio 0.85-1.17 (1.03 $\pm 0.10,10$); subapical row of 16-23 (12) pectinate setae; palpi three segmented, terminal palp with single spine apicaliy (Fig. 294); palp length ratios 1.00: 0.69: 0.67 ($0.37 \pm 0.04,10$). Hypopharynx (Fig. 295): well developed lateral processes; anterior margin of lingua deeply cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, lateral margins slightly angular. Labium (Fig. 296): glossae not turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, first segment with sharp spines, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface (Fig. 297); palp length ratios 1.00: 0.83: 0.50 ($0.53 \pm 0.05,10$); submentum with spines on lateral margins. Thorax: tan brown with darker brown markings; pronotum width 1.98-2.85 ($2.43 \pm 0.23,18$), slightly wider than width of head (see above), head pronotum width ratio $1.00-1.12(1.07 \pm 0.04,18)$. Legs (Fig. 298): yellow to tan brown, femora usually darker at apices; fore femora occasionally with white patch on proximally but this is not always apparent; total foreleg length 4.96-7.33 (5.93 $\pm 0.73,15$); fore femora length 2.25-3.13 (2.56 $\pm 0.28,15)$; fore femora width $0.63-0.90(0.77 \pm 0.08,15)$; fore femora length width ratio 2.88-4.05 ($3.32 \pm 0.30,15$); fore tibiae with numerous short ventral spines, fore tarsi with 6-10 (10) ventral spines; tarsal claws (Fig. 299) with 11-15 (10) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; leg length ratios, foreleg 1.00: $0.93: 0.36(2.56 \pm 0.28,15)$, mid leg 1.00: $0.87: 0.31$ ($2.52 \pm 0.29,15$), hind leg 1.00: 0.89: 0.27 (2.96 $\pm 0.32,15$). Abdomen: \tan brown with darker brown markings, goiden markings medially on each segment, pattern variable; posterolateral spines present, progressively larger posteriorly. Gills (Fig. 300): membrane clear, light grey colour; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; each gill tapered to a
thin point apically; main and lateral tracheae present, strongly developed. Caudal filaments: three; golden brown; terminal filament longer than cerci.

Remarks. The larval stage of this species has been recognised previously and referred to as "Genus Y sp. 2" or Atalophlebioides "sp. 2" in various unpublished keys from the Museum of Victoria. Recently, it carried the name Nousia sp. "AV3" (Dean 1999).

This species, however, appears to have been described previously as Atalophlebia kala by Harker(1954) from specimens collected by Tuvard twenty years earlier. Her description only included the adult stages and her basis for including this species in Atalophlebia is not clear, although I presume the large size of the animal influenced her decision. I have examined the holotype and type slide of genitalia from the NHM and it clearly represents Atalophlebia kala Harker (Harker 1954, FIG. 36, p. 251, reproduced here as Fig. 301).

Dean (1999) considers the nymph to belong to Nousia (Australonousia) and it is clear that there are many similarities in mouthpart, leg and gill morphology. However, only the nymph was documented and no association made with the clearly distinct adults. I have also examined a large number of nymphs from the type localities of Lake Albina and Lake Cootapatamba, collected by John Dean in the mid 1980's, which I am satisfied represent Nousia sp. "AV3" sensu Dean. Specimens collected by me from a small unnamed tributary of Charity Creek underneath a chairlift (Fig. 302) near the summit of Mt Baw Baw were reared in the laboratory and proved to be this species. These specimens and a wide range of other reared material (see below) has confirmed the association between nymph and adult of this species.

Montikola kala can be distinguished from other species in the genus by the following combination of characters. In the imago: (i) male forewing length longer; (ii) male forewing hindwing ratio larger, ie hindwing smaller in proportion to forewing; (iii) male foreleg lengths longer; (iv) abdomen with golden markings medially on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking; (v) outer lateral margins of penis more bulbous. In the nymph: (i) denticles on labrum extend approximately two-fifths the width of the labrum; (ii) total foreleg length longer, particularly femora; (iii) abdomen with golden markings medially on each segment forming a broken stripe midline, two golden coloured maculae flanking each midline marking; (iv) gills with membrane clear.

Other specimens examined. NEW SOUTH WALES. Lake Albina outlet stream (Lady Northcotes Creek), 85020903, $9 \| 1985,1920 \mathrm{~m}, 147^{\circ} 16^{\prime} 36^{\circ} 26^{\prime}$, EPH 1776, 1 \& S (DC),

EPH 1777, 3 © $\mathrm{N}, 2$ \& $\mathrm{N}(\mathrm{DC})$. Lake Albina inflowing stream, Mt Kosciusko, 85020901, 9 II 1985, 1920m, $148^{\circ} 16^{\prime} 30^{\prime \prime} 36^{\circ} 26^{\prime} 59^{\prime \prime}$, EPH 1778, $1 \circ$ N. (JD). Lake Albina, 79042000, 20 IV 1979, 1950m, $147^{\circ} 16^{\prime} 36^{\circ} 26^{\prime}, 1$ \& N (IC). Lake Cootapatomba inflowing stream, Mt Kosciusko, 84012400,241 1984, $2160 \mathrm{~m}, 148^{\circ} 15^{\prime} 59^{\prime \prime} 36^{\circ} 28^{\prime \prime} 01^{\prime \prime}$, EPH 1774, 1 ه $\mathrm{N}, 13$ 9 N (JD). Ramshead Creek, upstream Kosciusko Walking Track, 84012703, 27 I 1984, $1940 \mathrm{~m}, 148^{\circ} 16^{\prime} 36^{\circ} 29^{\prime}$, EPH 1780, 1 \& N, (JD). South Ramshead, 82032500, 25 ill 1982, 1950m, $148^{\circ} 14^{\prime} 36^{\circ} 31^{\prime}, 1$ ol $^{\prime}$ (RG). Unnamed tributary, small creek crossing track, Upper Snowy Valley, Ramshead, 85020902, 9 II 1985, 1940m, $148^{\circ} 16^{\prime} 36^{\circ}{ }^{\circ} 8^{\prime}$, EPH 1785, 1 o $N(J D)$. Unnamed creek, south slope of North Ramshead, 84012702, 27 I 1984, 1940m, 148 ${ }^{\circ} 16^{\prime} 36^{\circ}{ }^{\circ} 8^{\prime}$, EPH 1787, 3 of $\mathrm{N}, 2$ \& N (JD). VICTORIA. Albert River, Albert River Rd, 84053100, $31 \mathrm{~V} 1984,330 \mathrm{~m}$, $146^{\circ} 23^{\prime} 26^{\prime \prime} 38^{\circ} 30^{\prime} 22^{\prime \prime}$, EPH 1768, 3 of N 4 \& N. (DC). Badger Creek, downstream weir, 80011801, 18 i 1980, $280 \mathrm{~m}, 145^{\circ} 34^{\prime} 37^{\circ} 41^{\prime}$, EPH 1726, 1 ol $^{\circ} \mathrm{I}$, (reared), (JD); 80032001 , 20 III 1980, same locality data, EPH 1725, 1 o NS (reared), (JD). Badger Creek, upstream weir, Badger Weir Park, 5km SE of Healesville, 80011802, 18। 1980, 300m, $145^{\circ} 34^{\prime} 04^{\prime \prime} 37^{\circ} 41^{\prime} 17^{\prime \prime}$, EPH 1714, $5 \& \mathrm{~N}$ (JD). Buckland River, Mt Buffalo Rd, 96110701, 7 XI 1996, $96110701,280 \mathrm{~m}, 146^{\circ} 53^{\prime} 32^{\prime \prime} 36^{\circ} 41^{\prime} 52^{\prime \prime}, 1$ \& N (KJF). Bull Creek, Bull Creek Rd, 96113003,30 XI 1996, $360 \mathrm{~m}, 145^{\circ} 35^{\prime} 39^{\prime \prime} 37^{\circ} 28^{\prime} 31^{\prime \prime}$, 1 \& NS (reared), 1 ㅇ N (KJF). Bull Creek tributary, W of Yea Rock, 96113004, 30 XI 1996, 450m, $145^{\circ} 35^{\prime} 14^{\prime \prime} 37^{\circ} 27^{\prime} 07^{\prime \prime}, 1$ \& N (KJF). Buller Ck, Mirimbah, 81110202, 2 XI 1981, 670m, $146^{\circ} 24^{\prime} 37^{\circ} 06^{\prime}$, EPH 1760,4 o $^{\circ} \mathrm{N}, 7$ $\% \mathrm{~N}(\mathrm{JD})$. Cement Creek, Mount Donna Buang Rd, $670 \mathrm{~m}, 76040800,8 \mathrm{IV} 1976,145^{\circ} 42^{\prime} 20^{\prime \prime} 37^{\circ} 42^{\prime} 48^{\prime \prime}$, EPH 1696, 1 \& N, (JD), EPH 1704, 1 \& NSI (reared) (JD), EPH 1706, 1 \& NS (reared) (JD); 76042301, 23 IV 1976, same locality data, EPH 1705, 1 ㅇ NSI (reared) (JD); 76120100, 1 XII 1976, same locality data, EPH 1698, 1 ol $^{\circ}$ (JD); $77041400,14 \mathrm{IV}$ 1977, same locality data, EPH 1695, 1 of N (JD),
 data, EPH 1699, 4 \& N (JD), EPH 1700, 1 of (JD); 78100600, 6×1978, same locality data, 1 of NI (reared) (JD); 79120700, 7 XII 1979, same locality data, EPH 1697, 1 of NI (JD); 80030300, 3 III 1980, same locality data, EPH 1703, 3 o 1, 3 ㅇ 1,3 9 S (JD), 96092501, 25 IX 1996, same locality data, 1 \& NS (KJF); 98030503, 5 III 1998, same locality data, 1 \& N (KJF); 99012301, 23 I 1999, same locality data, 1 申 NSI (reared), 1 i NS (KJF); 00022601, 26 II 2000, same locality data, 1 of NSI (reared), 1 of N (KJF). Charity Creek tributary, Mt Baw Baw Tourist Rd, 99021602, 16 II 1999, 1180m, $146^{\circ} 15^{\prime} 15^{\prime \prime} 37^{\circ} 50^{\prime} 47^{\prime \prime} ; 1$ of $\mathrm{NSI}, 1$ ㅇ NSI, 1 \& NI, 1 of $\mathrm{NS}, 1$ o N (KJF). Clearwater Creek, Bogong High Plains Rd, $96111003,10 \times 1$ 1996, $1410 \mathrm{~m}, 147^{\circ} 21^{\prime} 14^{\prime \prime} 37^{\circ} 57^{\prime} 10^{\prime \prime}, 1$ o N (KJF). Clematis Creek, Monbuik Rd, 97101501 , $15 \times 1997,290 \mathrm{~m}, 145^{\circ}{ }^{\circ} 1^{\prime}{ }^{\prime 2} 2^{\prime \prime} 37$ ${ }^{\circ} 53^{\prime} 57^{\prime \prime}, 2$ ㅇ NSI (reared), 1 of NS (reared) (KJF). Coranderrk Creek, Badger Weir Park,

97040606， 06 IV 1997， $240 \mathrm{~m}, 145^{\circ} 34^{\prime} 16^{\prime \prime} 37^{\circ} 41^{\prime} 07^{\prime \prime}, 2$ 和 $\mathrm{N}, 1$ 우 N （KJF）．Donnelly Creek，Donnelly Weir Rd，97040604， 6 IV 1997，140m， $145^{\circ} 32^{\prime \prime} 03^{\prime \prime} 37^{\circ} 37^{\prime} 40^{\prime \prime}, 1$ i NS （reared）， $1 \delta \mathrm{~N}$（KJF）．Errinundra River，1．5km upstream Combienbar Rd，81052101， 21 V 1981，120m， $148^{\circ} 55^{\prime} 37^{\circ} 27^{\prime}$ ，EPH 1750， 2 ot（JD）．Falls Creek，Telephone Box Junction，Mt Stirling Rd，81110203， 2 XI 1981，1220m， $146^{\circ} 27^{\prime} 43^{\prime \prime} 37^{\circ} 06^{\prime} 52^{\prime \prime}, ~ E P H ~ 1740$, 1 \＆N（JD）．Four Mile Creek，Horners Rd，Warburton，97042501， 25 IV 1997，185m， $145^{\circ} 41^{\prime} 56^{\prime \prime} 37^{\circ} 45^{\prime} 33^{\prime \prime}, 1$ o 1 NS（reared）（KJF）．German Creek，Bright－Tawonga Rd， 96110901， 9 XI 1996，440m， $147^{\circ} 03^{\prime} 25^{\prime \prime} 36^{\circ} 43^{\prime} 58^{\prime \prime}, 1$ o $^{\circ} \mathrm{N}$（KJF）．Grace Burn upstream weir， 78042700,27 IV $1978,250 \mathrm{~m}, 145^{\circ} 35^{\prime} 02^{\prime \prime} 37^{\circ} 39^{\prime} 26^{\prime \prime}$ ，EPH 1721， 1 \＆ NS （reared） （JD）．Grace Burn，Wallace Parade，Healesville， 97040601,6 IV 1997， $110 \mathrm{~m}, 145^{\circ} 32^{\prime} 18^{\prime \prime}$ $37^{\circ} 39^{\prime} 16^{\prime \prime}, 1 \sigma^{\circ} \mathrm{N}$（KJF）．Hope Creek，Tanjil Bren Rd， $96101204,12 \times 1996,550 \mathrm{~m}$ ， $146^{\circ} 14^{\prime} 03^{\prime \prime} 37^{\circ} 51^{\prime} 55^{\prime \prime}$ ， 1 ¢ NS （reared）， 2 ㅇ N （KJF）．Icy Creek，Tooronga Rd， $96101103,11 \times 1996,530 \mathrm{~m}, 146^{\circ} 00^{\prime} 50^{\prime \prime} 37^{\circ} 48^{\prime} 09^{\prime \prime}, 2$ \＆ $\mathrm{N}(\mathrm{KJF})$ ．Keppel Creek，upper site， $94091700,17 \mathrm{IX} 1994,800 \mathrm{~m}, 145^{\circ} 46^{\prime} 37^{\circ} 27^{\prime}, 8$ \＆ N （SP）； $94101000,10 \times 1994$ ， same locality data， 1 \＆NS（reared）（SP）；94111900， 19 XI 1994，same locality data， 1 of NS（reared）（SP）；94120501， 05 XII 1994，same tocality data， 1 ㅇ NS（reared）（SP）； 95031300， 13 III 1995，same locality data， 1 of S（SP）；95031400， 14 III 1995，sanie locality data， $1 \sigma^{\circ} \mathrm{NSI}$（reared）， 2 ； NSI （reared）， $1 \circ \mathrm{NS}$（reared）， $1 \mp \mathrm{NS}$（reared）（SP）； 95031500， 15 III 1995，same locality data， 10 NS（reared）， 18 NS（reared），（SP）； 95032100， 21 III 1995，same locality data， 1 ㅇ I（SP）；95032700， 27 III 1995，same locality data， 1 or NS（reared）（SP）；95033100， 31 III 1995，same locality data， 1 o NSI （reared）（SP）；95041000， 10 IV 1995，same locality data， 1 甲 NSI（reared）（SP）．King Parrot Creek，Wallaby Creek Rd， $760 \mathrm{~F} 1600,16$ VIII 1976： $350 \mathrm{~m}, 145^{\circ} 14^{\prime} 56^{\prime \prime} 37^{\circ} 25^{\prime} 50^{\prime \prime}$ ， EPH 1710， 1 ㅇ S（JD），EPH 1711， 1 of 1 ， 1 \＆S（JD）．King Parrot Creek，4WD irack off Whittlesea－Yea Rd，Kinglake West， $96100701,7 \times 1996,96100701,340 \mathrm{~m}, 145^{\circ} 15^{\prime} 44^{\prime \prime}$ $37^{\circ} 25^{\prime} 20^{\prime \prime}, 1$ o $^{\mathrm{N}} \mathrm{N}(\mathrm{KJF})$ ．Lake Elizabeth，inlet stream，Otways，88052200， 22 V 1988， $210 \mathrm{~m}, 143^{\circ} 45^{\prime} 36^{\prime \prime} 38^{\circ} 33^{\prime} 13^{\prime \prime}$ ，EPH 1751， 2 o $^{\prime \prime} \mathrm{N}$（DC）．Loch River，Noojee，93050200， 2 V 1993， $240 \mathrm{~m}, 145^{\circ} 59^{\prime} 37^{\circ} 53^{\prime}, 1$ o $^{\circ} \mathrm{NSI}(\mathrm{SP})$ ．Martins Creek No．2，Bonang Rd， 0.5 km S of Malinns， 990 1306， 13 II 1999，260m， $148^{\circ} 36^{\prime} 37^{\circ} 25^{\prime}, 1$ i N （KJF）．Mit Baw Baw，

 $37^{\circ} 08^{\prime}, 3$ o $^{\circ} \mathrm{l}, 2 \neq 1,1 \neq \mathrm{S}, 3 \neq \mathrm{N}$（IC）．Myrtie Gully，Sylvia Creek Rd，Toolangi State Forest， 96112901,29 XI 1996， $620 \mathrm{~m}, 145^{\circ} 31^{\prime} 44^{\prime \prime} 37^{\circ} 31^{\prime} 44^{\prime \prime}, 10^{\circ} \mathrm{N}, 3$ \＆ N （KJF）．North Cascade Creek，Thomson Valley Rd， 91011300,13 I 1991， $920 \mathrm{~m}, 146^{\circ} 20^{\prime} 19^{\prime \prime} 37^{\circ} 48^{\prime} 22^{\prime \prime}$ ， EPH 1722， 1 ㅇ $\mathrm{N}(\mathrm{JD})$ ． O^{\prime} Shannassy River， 75111400 ， $14 \mathrm{XI} 1975,580 \mathrm{~m}, 145^{\circ} 49^{\prime}$ $37^{\circ} 36^{\prime \prime}$ ，EPH 1713， 1 o $^{\circ} \mathrm{N}$（JD）；80010401， 4 I 1980，same locality data，EPH 1759， 1 ot N， 1 甲 $N(J D)$ ．Perrins Creek，Warwick Rd，97032406， 24 III 1997，350m， $145^{\circ}{ }^{\circ} 2^{\prime}$
 Rd, $\vdots .5 \mathrm{~km}$ S of Bogong, $96110904,9 \mathrm{XI} 1996,740 \mathrm{~m}, 147^{\circ} 13^{\prime} 20^{\prime \prime}, 36^{\circ} 49^{\prime} 10^{\prime \prime}, 2$ 2 N (KJF). Razor Creek, Mt Stirling Rd, 89030300, 30 III 1989, 1150m, 146 ${ }^{\circ} 27^{\prime} 19^{\prime \prime}$ $37^{\circ} 06^{\prime} 52^{\prime \prime}$, EPH 1754, 1 \& N(AN) Rum Creek, Thomson Valley, 85041700, 17 IV 1985, $640 \mathrm{~m}, 146^{\circ} 22^{\prime} 49^{\prime \prime} 37^{\circ} 52^{\prime} 45^{\prime \prime}$, EPH 1758, 1 ơ $^{\circ} \mathrm{N}, 5$ \% N, (JD). Running Creek, Warburton- Jamieson Rd, $81103102,31 \times 1981,750 \mathrm{~m}, 145^{\circ} 58^{\prime} 37^{\circ} 25^{\prime}$, EPH 1724, 1 o $^{\circ} \mathrm{N}$, 2 \% N (JD). Running Jump Creek tributary, Mt Buffalo Rd, 96110705, 7 XI 1996, 1500m, $146^{\circ} 46^{\prime} 26^{\prime \prime} 36^{\circ} 46^{\prime} 15^{\prime \prime}, 1$ q $\mathrm{N}(\mathrm{KJF})$. Sassafras Creek, Perrins Creek Rd, 97101502, $15 \times 1997,370 \mathrm{~m}, 145^{\circ} 22^{\prime} 18^{\prime \prime} 37^{\circ} 52^{\prime} 46^{\prime \prime}, 1 \circ \mathrm{NSI}$ (reared) (KJF). Snobs Creek tributary, Snobs Creek Rd, $81103103,31 \times 1981,760 \mathrm{~m}, 145^{\circ} 54^{\prime} 38^{\prime \prime} 37^{\circ} 21^{\prime} 15^{\prime \prime}$,
 Starvation Creek, upstream weir, $77102800,28 \times 1977,340 \mathrm{~m}, 145^{\circ} 50^{\prime} 53^{\prime \prime} 37^{\circ} 45^{\prime} 39^{\prime \prime}$, EPH 1712, 1 os * S (JD). Talbot Creek, downstream Thomson River Reservoir, 10 VIII 1983, $700 \mathrm{~m}, 147^{\circ} 22^{\prime} 20^{\prime \prime} 37^{\circ} 50^{\prime} 52^{\prime \prime}$, EPH 1757, 1 o $\mathrm{N}, 7$ \% N (DC); 86040900, 9 IV 1986, same locality data, EPH 1752, 3 o $\mathrm{N}, 1$ \& $\mathrm{N}(\mathrm{DC})$. Tanjil River east branch tributary, Mt Baw Baw Tourist Rd, 96101104, 11 X 1996, 500m, 146́11'29" $37^{\circ} 49^{\prime} 58^{\prime \prime}, 1$ o $^{\prime \prime}$ NS (reared) (KJF). Tarra River, Tarra-Bulga National Park, 84010900, 91 1984, 340m, $146^{\circ} 32^{\prime} 13^{\prime \prime} 38^{\circ} 26^{\prime} 57^{\prime \prime}$, EPH 1715, 1 \& N (JD). Tarra River, 20m upstream Tarra Falls, 84120900, 9 XII 1984, 320m, $146^{\circ} 32^{\prime} 20^{\prime \prime} 38^{\circ}{ }^{\prime} \prime^{\prime} 1^{\prime \prime}$ ", EPH 1769, 4 of $\mathrm{N}, 6$ 9 N (JD). Tarra River, Tarra-Bulga National Park, 99021601, 16 il 1999, $340 \mathrm{~m}, 146^{\circ} 32^{\prime} 15^{\prime \prime}$ $38^{\circ} 27^{\prime} 00^{\prime \prime}, 1$ 아 NSI (reared), $40^{\circ} \mathrm{N}, 2$ ㅇ N (KJF). Traralgon Creek, Guntzler Bridge, $84052900,29 \mathrm{~V} 1984,110 \mathrm{~m}, 146^{\circ} 31^{\prime} 38^{\circ} 20^{\prime}, 3$ of $\mathrm{N}, 2$ o N (DC).

4.3.3 Montikola adamus sp. nov.

Nousia sp. "AV11" (Dean 1999)

Types. Here designated. Montikola adamus sp. nov. Holotype. Frying Pan Raceline tributary, Teimark St, Falls Creek, 99020505, 5 II 1999, 1560m, $147^{\circ} 16^{\prime} 50^{\prime \prime} 36^{\circ} 52^{\prime \prime} 00^{\prime \prime}, 1$ σ^{*} NSI (KJF). (Figs. 303-304). Paratypes. Frying Pan Raceline tributary, same collection data, 2 ㅇ NSI, $4 \circ \mathrm{~N}$ (KJF). McKay Creek tributary - waterfall, Mt McKay, Alpine National Park, 99020504, 5 II 1999, 1700m, $147^{\circ} 15^{\prime} 20^{\prime \prime} 36^{\circ} 52^{\prime} 1^{\prime \prime \prime}, 1$ o' NSI (KJF). Tanjil River $^{\prime}$ east branch headwaters, Mt Baw Baw Alpine Village, 99021603, 16 II 1999, 1440m, $146^{\circ} 15^{\prime} 45^{\prime \prime} 36^{\circ} 50^{\prime} 25^{\prime \prime}, 1$ of NSI (KJF).

Distribution. Southern New South Wales, Eastern Victoria (Fig. 305).

Diagnosis. Male imago. Dimensions: body length 8.6-13.5 (10.8土1.96, 10); forewing length 8.8-13.2 (10.5土1.66, 10); hindwing length 2.05-3.30 (2.50 $\pm 0.46,10)$; forewing
hindwing ratio $3.81-4.78(4.24 \pm 0.31,10)$. General body coiour tan to brown with dark brown ma،kings. Head dark brown. Antennae: pedicel, scape and flagellum dark brown. Ocelli: three, black with white-grey inserts, laterals larger than medial. Eyes: upper eye size large, sometimes contiguous, $E S=0.00-0.09(0.03 \pm 0.03,10)$; upper lobes orangebrown, lower lobes grey-black. Thorax: pronotum and mesonotum shiny tan brown with darker markings. Legs: femora tan brown, apices darker, tibiae and tarsi goiden; total foreleg length 7.4-11.4 ($9.0 \pm 1.32,10$); forelegs with seven segments; leg length ratios 1.00: 1.39: $0.06: 0.37: 0.35: 0.28: 0.16(2.50 \pm 0.35,9)$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 306). Wings. Forewing (Fig. 307): membrane hyaline, pterostigmal slightly opaque, longitudinal and crossveins brown, anal veins yellow; costal and subcostal crossveins present in proximal and distal halves of wing; costal space with 7-11 (10) crossveins proximally, 14-17 (10) distally (some anastomosed), subcostal space with 7-10 (10) crossveins proximally, 11-14 (10) distally. Three bullae present on veins $\mathrm{Sc}, \mathrm{R}_{2}$ and $\mathrm{R}_{4+5,}$ MA forked at half to just over half the distance from wing base to margin, MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{CuA}$ and CuP linked by crossvein, ICu_{1} recurved to join CuA and not linked to CuA-CuP crossvein, ICu_{2} recurved to join ICu_{1}, CuA and CuP linked by crossvein, ICu_{1} and ICu_{2} parailel as wing margin approached, CuP strongly recurved and linked by crossvein to A_{1}. Hindwing (Fig. 308): mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex at midlength immediately preceding shallow concavity; costa joins subcosta at approximately four-fifths wing length; no crossveins in proximal half of costal space, 5-8 (10) in distal space, 5-9(10) crossveins throughout subcostal space.
Abdomen (Fig. 309): light to tan brown with darker brown markings, dark brown diamond shaped maculae forming central stripe on segments two to nine, flanked by golden markings anteriorly and posteriorly on each segment, segments one and ten predominantly brown. Genitalia (Figs 310-315): forceps three segmented (Figs. 310, 312, 314); tan brown, progressively lighter apically, terminal segment angular, about the same length as middle segment; penes golden brown, fused in basal half dorsally (Figs. 310, 312,313), fused almost along entire length ventrally (Figs. 311, 314, 315), two lobes distinct, outer lateral margins relatively straight; each lobe pointing outwards: two pairs of in : nal spines. Caudal filaments: three, tan brown; terminal fliament longer than cerci. Fer. $:>$ imago. Dimensions: body length $8.0-13.6$ ($11.5 \pm 1.86,13$); forewing length $8.4-$ $13.8(11.8 \pm 1.91,12)$; hindwing length 1.4-3.5 $(2.5 \pm 0.59,12)$; forewing hindwing ratio 3.94-6.00 (4.69 $\pm 0.54,12$). General patterning and colouring similar to male. Eyes: grey black, separated on meson of head by a distance about four times maximum width of eye. Legs: totai leg length shorter than male, total leg length $5.8-9.5(7.5 \pm 1.29,10)$; forelegs with six segments, leg length ratios 1.00: 1.36: 0.21: 0.19: 0.16: $0.14(2.44 \pm 0.42,11)$. Wings. Forewing (Fig 316): colour and venation similar to male except wings generally
with more crossveins on average; costal space witin 6-11 (12) crossveins proximally, 1318 (12) distally, subcostal space with 5-10 (12) crossveins proximaliy, 12-17 (12) distally. Hindwing (Fig. 317): no crossveins proximal halves of costal space, 5-8 (12) in distal space, 5-9 (12) crossveins throughout subcostal space. Abdomen: sternum seven with genital extension, segment nine moderately cleft (Fig. 318). Egg. Ovoid; polar cap absent, chorion with large and small circular shaped protuberances over surface, pattern variable (Figs 319, 320). Male and femaie subimago. General colour and markings similar to imago. Wings uniformly grey-brown, opaque. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. (Fig. 321). Body lengths: of 10.0-13.3 $(11.7 \pm 1.25,10)$, \& $8.0-13.7$ (11.8 $\pm 1.75,14$). General colour tan brown with darker markings. Head: prognathous; tan brown, slightly darker posteriorly; width 1.98-2.48 ($2.20 \pm 0.16,11$). Ocelli: three; black with white inserts; laterals larger than medial. Antennae: pedicel and scape tan brown, flagellum golden; more than twice length of head. Eyes: upper lobes of male reddish brown, lower lobes black; eyes of female black. Mouthparts. Labrum and clypeus (Fig. 322): laterai margins of clypeus very slightly diverging towards anterior; lateral margins of labrum slightiy wider than clypeus, rounded; anterior margin of labrum straight with no apparent antero-meaian emargination; labrum length 0.45-0.60 (0.50 $\pm 0.04,14)$, labrum width $1.00-1.25(1.08 \pm 0.08,14)$, width length ratio 2.00-2.33 (2.16 $\pm 0.09,14$); five denticles present on anterior margin extending 0.24 $0.34(0.28 \pm 0.03,14)$ times the total width of the labrum; denticle width as proportion of labrum width 0.21-0.31 ($0.26 \pm 0.03,14$); frontal setae arranged as a broad band; secondary hair fringe clearly separated from broad band. Mandibles: outer margins slightly curved; small indentation and sparse long spine-like setae at midpoint on outer lateral margins, shorter setae along margin between midpoint and base; dark coloured nodule at midpoint on inner lateral margins; row of setae in an inverted L-shape on lower mandible body. Left mandible (Fig. 323): two incisors, each with three apical teeth, outer incisor inconspicuously serrated on inner laieral margin, often with subapical process; prostheca robust, serrated; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins only. Right mandible (Fig. 324): spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, inconspicuously serrated on inner lateral margin, short spines on inner mesal surface; inner incisor with two apical teeth; prostheca simple, slender; prostheca tuft slender, tapering to a point apically, hairs on lateral margins only. Maxillae (Fig. 325): galea-lacinae slightly wider than long, width length ratio 1.00-1.22 (1.10 $\pm 0.06,10$); subapical row of 16-19 (10) pectinate setae; palpi three segmented, terminal palp with single spine apically; palp length ratios 1.00: 0.71: 0.67 ($0.37 \pm 0.03,11$). Hypopharynx (Fig. 326): well developed lateral processes; anterior margin of lingua deeply cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, tateral margins slightly angular. Labium (Fig. 327): glossae not
turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, first segment with sharp spines, terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface; palp length ratios 1.00: $0.81: 0.51(0.51 \pm 0.05,10)$; submentum with spines on lateral margins. Thorax: tan brown with darker brown markings; pronotum width 2.15-2.90 (2.42 ± 0.22, 11), slightly wider than width of head (see above), head pronotum width ratio 1.03-1.17 ($1.10 \pm 0.05,11$). Legs (Fig. 328): goiden to tan brown, femora usually darker at apices; fore femora occasionally with white patch proximally but this is not always apparent; total foreleg length 3.80-6.03 (4.84 $\pm 0.62,12)$; fore femora length 1.75-2.38 (2.14 $\pm 0.23,12$), fore femora width $0.63-0.90(0.74 \pm 0.07,12)$, fore femora length width ratio 2.69-3.14 ($2.91 \pm 0.15,12$); fore tibiae with numerous shiort ventral spines, fore tarsi with 7-11 (10) ventral spines; tarsal claws (Fig. 329) with 11-14 (10) ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; leg length ratios, foreleg 1.00: 0.89: 0.37 (2.14 $\pm 0.23,12$), mid leg 1.00: 0.87: 0.35 (2.23 $\pm 0.27,10$), hind leg 1.00: 0.88: 0.29 ($2.58 \pm 0.36,10$). Abdomen: golden brown with darker brown markings, dark brown diamond shaped maculae forming central stripe on segments two to nine flanked by tan and golden markings anteriorly and posteriorly on each segment, segment ten predominantly golden; posterolateral spines present, progressively larger apically. Gills (Fig. 330): membrane opaque, grey-black, present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equaliy developed; each gill tapered to a thin point apically; main tracheal branch apparent, lateral tracheae poorly developed and visible under transmitted light only. Caudal filaments: three; golden, terminal filament longer than cerci.

Etymology. The species epithet is derived from the Latin word adamus (masc.) meaning diamond and refers to the diamond-shaped marks on the dorsum of both the imago and nymph abdomen.

Remarks. The nymph of this species has previously been identified as a morphospecies and referred to as Nousia sp. "AV11" (Dean 1999).

The genitalia of M. adamus is remarkably similar to that of M. kala with two lobes pointing outwards and two internal spines. They do appear, however, to be somewhat slimmer and with straighter lateral margins than M. kala although this difference is slight and not always apparent. One obvious difference from the SEM photographs is that M. kala has a process apically on the penes lobes which is apparently missing from M. adamus. However, this lobe is sometimes missing from M. kala specimens as well. As the indentation for the process is obvious on the M. kala photographs I have concluded that
the process itself may be very fragile and easily removed especially during the rigorous process of critical point drying required for electron microscopy. The indentation for the process is not apparent on the M. adamus genitalia and I have been unable to determine whether this is a standard feature.

Montikola adamus can be distinguished from other species in the genus by the following combinations of characters. In the imago: (i) male forewing length shorter; (ii) male forewing hindwing ratio smaller, ie hindwing larger in proportion to forewing; (iii) male foreleg lengths shorter; (iv) abdomen with dark brown diamond shaped maculae forming central stripe; (v) outer lateral margins of penis more straight. In the nymph: (i) denticles on labrum extend approximately one-third width of the labrum; (ii) total foreleg length shorter, particularly femora; (iii) fore femora 2.9 times longer than wide; (iv) abdomen with dark brown diamond shaped maculae forming central stripe; (v) gills with membrane opaque, grey-black.

Other specimens examined. NEW SOUTH WALES. Ramshead Creek, "the Cascades", Merritts Track, 84012701, 27!1984, EPH 1783, 1 of N, 1 \& N (JD). Ramshead Creek, upstream Kosciusko Walking Track, 84012703, 27 ! 1984, 1940m, $148^{\circ} 16^{\prime} 36^{\circ} 29^{\prime}$, EPH 1781, 2 o $^{\prime \prime} \mathrm{N}, 1 \circ \mathrm{~N}(\mathrm{JD})$. Unnamed tributary, south slope of North Ramshead, 84012702, 27 I 1984, EPH 1788, 1 \& I (JD). Unnamed trickle, small trickle on Cascade Trail, 1 km upstream Deadhorse Gap, 84012100, 21 I 1984, EPH 1782, 1 \% $\mathrm{N}, 7 \circ \mathrm{~N}(J \mathrm{D})$. VICTORIA. Baldy Creek, Mt Stirling Rd, 75011700, 17 IV 1975, 1220m, $146^{\circ} 27^{\prime} 37^{\circ} 06^{\prime}$, EPH 1727, 1 o $^{\circ} \mathrm{N}$ (RM). Bluff Creek, 11.7 km up Mt Stirling Rd, 81110201, 2 XI 1981, $1310 \mathrm{~m}, 146^{\circ} 28^{\prime} 38^{\prime \prime} 37^{\circ} 07^{\prime} 49^{\prime \prime}$, EPH 1741, $48^{\circ} \mathrm{N}, 10$ of (JD). Bogong Jack Creek, West Kiewa Logging Rd, 97110602, 6 XI 1997, 1070m, 147¹0'12" $36^{\circ} 49^{\prime} 59^{\prime \prime}, 1$ o $\mathrm{N}(\mathrm{KJF})$. Brandy Creek, Great Alpine Rd, Alpine National Park,
 96111802, 18 XI 1996, same locality data, 1 o N (KJF); 96111902, 19 XI 1996, same locality data, 1 \& N (KJF); 97011902, 191 1997, same locality data, 1 ه N (KJF). Breakfast Creek, Tamboritha Rd, Alpine National Park, 97020701, 7 Il 1997, 320m, $146^{\circ} 36^{\prime} 58^{\prime \prime} 37^{\circ} 31^{\prime} 09^{\prime \prime}, 1$ of 1 (KJF). Caledonia River, Howitts Hut, $96051400,14 \mathrm{~V} 1996$, 1480m, 147 ${ }^{\circ} 41^{\prime} 37^{\circ} 14^{\prime}$, EPH 1793, 2 \& N (coll. unknown), EPH 1794, 2 $\mp \mathrm{N}$ (coll. unknown). Cement Creek, Mount Donna Buang Rd, 78112300, 23 XI 1978, 670m, $145^{\circ} 42^{\prime} 20^{\prime \prime} 37^{\circ} 42^{\prime} 48^{\prime \prime}$, EPH 1734, 1 \&N (JD), EPH 1736, $16^{\circ} \mathrm{N}, 1$ \% N (JD). Charity Creek tributary, Mt Baw Baw Tourist Rd, 99021602, 16 II 1999, 1180m, $146^{\circ} 15^{\prime} 15^{\prime \prime}$ $37^{\circ} 50^{\prime} 47^{\prime \prime}, 1$ \& $\mathrm{NSI}, 1 \neq \mathrm{N}(\mathrm{KJF})$. Falls Creek, Telephone Box Junction, Mt Stirling Rd, 81110203, 2 XI 1981,1220m, $146^{\circ} 27^{\prime} 43^{\prime \prime} 37^{\circ} 06^{\prime} 52^{\prime \prime}$, EPH 1737, 1 \& N (JD), EPH 1738, 1 of $\mathrm{N}(\mathrm{JD})$, EPH 1739, 8 of $\mathrm{N}, 3 \circ \mathrm{~N}(\mathrm{JD})$. First Creek, Warburton-Jamieson Rd,

85120700, 7 XII 1985, 750m, $145^{\circ} 58^{\prime} 10^{\prime \prime} 37^{\circ} 25^{\prime} 25^{\prime \prime}$, EPH 1731, 1 \& N, (JD), EPH 1732, 2 $0^{\prime \prime} \mathrm{N}, 2$ \& $\mathrm{N}(\mathrm{JD})$. Frosty Creek, Frosty Creek Rd, 96110803, 8 XI 1996, 1380m, $147^{\circ} 08^{\prime} 05^{\prime \prime} 37^{\circ} 05^{\prime} 55^{\prime \prime}, 1$ o' NS, 1 ㅇ S, 6 o $\mathrm{N}, 3$ ㅇ N (KJF). Frying Pan Raceline tributary, Telmark St, Falls Creek, 99020505, 5 II 1999, $1560 \mathrm{~m}, 147^{\circ} 16^{\prime} 50^{\prime \prime} 36^{\circ} 52^{\prime} 00^{\prime \prime}, 4$
 tributary, track between Blairs Hut and Westons Hut, Mt Hotham, 91110301, 3 XI 1991, 1320m, $147^{\circ} 10^{\prime} 37^{\circ} 55^{\prime}$, EPH 1755, 1 б N, 1 ㅇ N (JD). McKay Creek, Mt McKayHowmans Gap Rd, 80011100, 11 I 1980, 1580m, $147^{\circ} 14^{\prime} 36^{\circ} 52^{\prime}$, EPH 1770, 3 of N, 3 \& N(JD). McKay Creek tributary - waterfall, Mt McKay, Alpine National Park, 96110905, 9 XI 1996, $1700 \mathrm{~m}, 147^{\circ} 15^{\prime} 20^{\prime \prime} 36^{\circ} 52^{\prime} 19^{\prime \prime}, 30^{\prime} \mathrm{N}, 10$ o $\mathrm{N}(\mathrm{KJF})$. Merritts Creek, Charloites Pass, Mt Kosciusko National Park, 96120802, 8 XII 1996, 1920m, 148 ${ }^{\circ} 19^{\prime}$ $36^{\circ} 25^{\prime}, 1$ ¢ $\mathrm{SI}, 1$ ¢ $\mathrm{N}(\mathrm{KJF})$. Midale Creek tributary, Alpine National Park, 96111002, 10 XI 1996, 1620m, $147^{\circ} 18^{\prime} 05^{\prime \prime} 36^{\circ} 54^{\prime} 55^{\prime \prime}, 1$ \& N (KJF). Mt Baw Baw, 75011400, 14 I
 $1680 \mathrm{~m}, 146^{\circ} 25^{\prime} 37^{\circ} 08^{\prime}$, EPH 1756, 1 ot $^{\circ} \mathrm{N}, 1$ ㅇ $\mathrm{N}(\mathrm{AN})$. Myrtle Creek, Mt Donna-Buang Rd, $97040603,6 \mathrm{IV} 1997,780 \mathrm{~m}, 145^{\circ} 36^{\prime} 42^{\prime \prime} 37^{\circ} 42^{\prime} 35^{\prime \prime}, 1$ o $^{\circ} \mathrm{N}, 3$ ㅇ N (KJF); 00022602, 26 II 2000, same locality data, 1 o $\mathrm{NSI}, 3$ o $\mathrm{NS}, 1$ \& $\mathrm{S}, 4$ \& N (KJF); 00031901, 19 III 2000, same locality data, $1 \not \& \mathrm{NSI}, 3 \circ \mathrm{NS}, 1$ or $^{\prime} \mathrm{N}, 2 \neq \mathrm{N}(\mathrm{KJF})$. Sawpit Creek, Donnelly Weir Rd, 97040605, 6 IV 1997, 100m, $145^{\circ} 32^{\prime} 03^{\prime \prime} 37^{\circ} 38^{\prime} 15^{\prime \prime}, 1$ o $^{\prime \prime} \mathrm{N}(\mathrm{KJF})$. South Buller Creek headwaters, Mt Buller Summit, $97021501,15 \|$ I $997,1680 \mathrm{~m}, ~ 146^{\circ} 25^{\prime} 36^{\circ} 08^{\prime}, 1$ \& NS (KJF). Tanjil River headwaters, Mt Baw Baw Alpine Village, 96101201, 12×1996, 1440m, $146^{\circ} 15^{\prime} 45^{\prime \prime} 37^{\circ} 50^{\prime} 25^{\prime \prime}, 2$ o' $^{\prime \prime} \mathrm{N}$ (KJF); 99021603, 16 II 1999, 99021603, same locality data, 1 o NS, 1 ㅇ NSI (KJF). Target Creek tributary, Heyfield-Jamieson Rd,
 River Tarra-Bulga National Park, 98112101, 21 XI 1998, 340m, $146^{\circ} 32^{\prime} 13^{\prime \prime} 38^{\circ} 26^{\prime \prime} 57^{\prime \prime}, 1$ \& N (KJF). Tarra River, "̈arra-Bulga National Park, 98112102, 21 XI 1998, 340m, $146^{\circ} 32^{\prime} 15^{\prime \prime} 38^{\circ} 27^{\prime} 00^{\prime \prime} .1$ \& NS, $1 \sigma^{\prime \prime} \mathrm{N}(\mathrm{KJF})$. Unnamed Creek, NE slope of Mt Builer,
 96110703,7 XI 1996, 1060m, $146^{\circ} 48^{\prime} 06^{\prime \prime} 36^{\circ} 42^{\prime} 39^{\prime \prime}, 1$ of N (KJF). Upper Perkins Creek, 941 i2100, 21 XI 1994, EPH 1748, 1 ¢N (JBa), EPH 1749, 3 i N (JBa).

4.3.4 Differentiation of the species

I have considered the possibility that the these two species are conspecific due to the similarity of the genitalia. However, there are number of differences between the two species that are consistent (Table 19). In particular there are some significant differences in the length of the jorewing and foreleg of the two speciss with M. kala being larger. The
forewing hindwing ratio of the M. kala is also larger which presents a smaller hindwing in relation to the forewing. In the nymph there are highly significant differences in the denticle width of the labrum and the denticle width in relation to the labrum width. The total foreleg length and fore femora length are also significant, again with M. kala possessing the longer lengths. In addition to these measurements, there are definite differences in the abdomen pattern of the imago and nymph, and in the colour of the nymphal gills. All factors combined I feel warrant the establishment of separate species.

Table 19．Comparison of the characteristics of the two species of Montikola showing outcomes of t－tests．

	Montikola kala	Montikola adamus	Sig．
Male Imago＿＿			
body length	9．3－13．1（11．1 $\pm 1.25,15)$	8．6－13．5（10．8 $\pm 1.96,10)$	ns
forewing length	10．3－12．8（11．8 $\pm 0.80,14)$	8．8－13．2（10．5 $\pm 1.66,10)$	＊
hindwing length	1．9－2．9（2．52 $\pm 0.36 .13)$	2．05－3．30（2．50 $\pm 0.46,10)$	ns
forewing hindwing ratio	4．07－5．79（4．74土0．52，13）	3．81－4．78（4．24士0．31，10）	＊
eye size（ES）	$\begin{gathered} 0.00-0.11(0.06 \pm 0.04 \\ 10) \\ \hline \end{gathered}$	0．00－0．09（0．03 $\pm 0.03,10)$	ns
total length of foreleg	9．8－11．4（10．9 ${ }^{\text {a }}$ ． 57,10 ）	7．4－11．4（9．0 1 1．32，10）	＊＊
Female Imago			
body length	9．6－12．6（11．2土1．00，15）	8．0－13．6（11．5 $\pm 1.86,13)$	ns
forewing length	11．3－15．6（12．8 $\pm 1.02,14)$	$8.4-13.8$（11．8 $\pm 1.91,12)$	ns
hindwing length	2．2－3．0（2．62 $\pm 0.25,13)$	1．4－3．5（2．5 $\pm 0.59,12)$	ns
forewing hindwing ratio	4．27－5．61（4．93 $\pm 0.44,13)$	$3.94-6.00$（4．69 $\pm 0.54,12)$	ns
total foreleg length	7．6－9．4（8．3土0．59，10）	$5.8-9.5(7.5 \pm 1.29,10)$	ns
Nymph			
body length－male	10．0－12．5（11．1 $\pm 0.86,10)$	10．0－13．3（11．7 $\pm 1.25,10)$	ns
body length－ female	11．5－14．9（13．0 $\pm 1.00,16)$	8．0－13．7（11．8土 1．75，14）	ns
head width	1．91－2．75（2．28土0．21，18）	1．98－2．48（2．20 $\pm 0.16,11)$	ns
labrum length	$0.40-0.63(0.51 \pm 0.07,20)$	$0.45-0.60(0.50 \pm 0.04,14)$	ns
labrum width	$0.95-1.33(1.11 \pm 0.12,20)$	1．00－1．25（1．08 $+0.08,14)$	ns
labrum length width ratio	2．00－2．45（2．20 $\pm 0.15,20)$	2．00－2．33（2．16 $\pm 0.09,14$ ）	ns
denticle width	$0.28-0.58(0.40 \pm 0.07,20)$	0．24－0．34（0．28 $\pm 0.03,14$ ）	＊＊
denticle width labrum width ratio	0．25－0．53（0．37 $\pm 0.08,20)$	0．21－0．31（0．26 $\pm 0.03,14$ ）	＊＊＊
Maxillae galea lacinae width length ratio	0．85－1．17（1．03 $\pm 0.10,10)$	1．00－1．22（1．10 $\pm 0.06,10)$	ns
pronotum width	1．98－2．85（2．43 $\pm 0.23,18)$ ，	2．15－2．90（2．42 $+0.22 .11)$	ns
head pronotum width ratio	1．00－1．12（1．07 $\pm 0.04,18)$	1．03－1．17（1．10 $0.05,11$ ）	ns
total foreleg length	4．96－7．33（5．93 $\pm 0.73,15)$	$3.80-6.03$（4．84土0．62，12）	＊＊
foreleg femora length	2．25－3．13（2．56 $\pm 0.28,15)$	1．75－2．38（2．14土0．23，12）	＊＊＊
foreleg femora widtin	0．63－0．90（0．77 $\pm 0.08,15)$	0．63－0．90（0．74土0．07，12）	ns
foreleg femora length width ratio	2．88－4．05（3．32 $\pm 0.30,15)$	2．69－3．14（2．91 $\pm 0.15,12)$	ns

Male Imagos

Abdomen with golden markings midine, lateral margins of penes more
bulbous...a
Abdomen with dark brown diamond shaped maculae midline, lateral margins of penes straight. adamus

Nymphs

> Abdomen with golden markings midiline, denticles extending two-fifths the total width of the labrum, gills with membrane clear..

Abdomen with dark brown diamond shaped maculae midline, denticles extending one third the total width of labrum, gills with membrane opaque, greyblack adamus

4.4 Description of Gemmayaluka gen. nov.

4.4.1 Gemmayaluka gen. nov.

Type species. Nousia (Australonousia) wiltkorringae (Finlay)

Distribution. Southern New South Wales, Eastern Victoria (Fig. 331).

Diagnosis. Male imago. Dimensions: body length 7.0-8.9; forewing length 8.6-9.6; hindwing length 1.39-1.64; forewing hindwing ratio 5.34-6.96. General body colour golden-brown to orange-brown with darker brown markings. Head brow.. Antennae: pedicel and scape light brown, flagellum golden. Ocelli: three; black with white inserts; laterals larger than medial. Eyes: upper eye size large, often contiguous, $E S=0.00-0.09$; upper lobes orange, lower lobes grey-black. Thorax: pronotum and mesonotum golden to orange or tan brown with darker brown markings. Legs: golden brown, femora apices darker; forelegs with seven segments, total foreleg length 6.90-7.77; forelegs with seven segments, tibia approximately 1.4 times the length of femur, the five segmented tarsus 1.4 times the length of femur; tarsal claws of a pair similar, each apically hooked with an opposing hook. Wings. Forewing: membrane hyaline, pterostigmal area slightly opaque, longitudinal and crossveins brown, anal veins yellow, costal and subcostal veins present
in proximal and distal halves of wing; costal space with 6-7 crossveins proximally, 10-14 distally; subcostal space with 5-7 crossveins proximally, 9-14 distally. Three bullae present on veins $S c, R_{2}$ and R_{4+5}, MA forked at half to just over half the distance from wing base to margin, MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{CuA}$ and CuP linked by crossvein, ICu_{1} recurved to join CuA and not linked to CuA-CuP crossvein, ICu_{2} recurved to join $\mathrm{IC} \mathrm{I}_{1}$. CuA and CuP linked by crossvein, ICu_{1} and ICu_{2} parallel as wing margin approashed, CuP strongly recurved and linked by crossvein to A_{1}. Hindwing: mostly hyaline, costal space washed with yellow and very slightly opaque; costal margin slightly convex and midlength immediately preceding shallow concavity, costa joins subcosta at approximately four-fifths wing length; no crossveins in proximal halves of costal space, 4-5 in distal space,4-5 throughout subcostal space. Abdomen: golden to orange brown, distinct dark brown markings forming distinctive W -shaped pattern which is more apparent on the posterior segments. forceps three segmented; yellow; terminal segment anguiar, slightly indented at apex; penes yellow, laterally broad with penes extending to approximately half the length of the forceps; ventral surface fused in basal third, remainder divided, divergent; dorsal surface separate, two laterally expanded lobes meeting at two-thirds length; two small trianguiar processes projecting from inner margin. Caudal filaments: three, \tan brown; terminal filament longer than cerci. Female imago. Dimensions: body length 7.8-9.7; forewing length 9.8-10.9; hindwing length 1.46-1.95; forewing hindwing ratio 5.75-7.12. General patterning and colouring similar to male. Eyes: grey-ituck; separated on meson of head by a distance about four times maximum width of eye. Legs: total leg length shorter than male, 5.1-6.4; forelegs with six segments; tibia approximately 1.4 times the length of femur, the four segmented tarsus approximately 0.8 times the length of femur. Wings. Forewing: colour and venation similar to male except wings with generally more crossveins on average; costal space with 6-9 crossveins proximally, 13-16 distally, subcostal space with $5-8$ crossveins proximally, 11-16 distally. Hindwing: no crossveins in proximal half of costal space, 5-6 in distal space, 5-6 crossveins throughout subcostal space. Abdomen: sternum seven with relatively prominent genital extension, sternum nine shallowly cleft. Egg. Ovoid, polar cap absent, chorion with similarly sized evenly spaced flower shaped protuberances. Male and female subimago. General pattern and colouring similar to imago. Wings uniformly grey-brown, opaque. Forelegs of male not elongated. Genitalia not fully developed. Mature nymph. Body lengths © $6.2-9.8$, . 7.9-11.4. General colour golden to orange or tan brown with light and dark markings. Head: prognathous; goiden or orange brown with darker brown wash between ocelli and anterior margins of eyes; width 1.58-2.20. Ocelli: three; black with white inserts: laterals larger than medial. Antennae: pedicel, scape and flagellum golden brown; slightly longer than length of head. Eyes: upper lobes of male tan, lower lobes grey-black; eyes of female grey-black. Mouthparts. Labrum and clypeus: lateral margins of clypeus slightly diverging towards anterior; lateral margins of labrum
subequal to slightly wider than clypeus, rounded: anterior margin of labrum with slight antero-median emargination bearing small medial convex 'hump'; labrum length 0.300.45 , labrum width 0.72-1.02, labrum width length ratio 2.05-2.46; four to five prominent triangularly shaped denticles extending 0.08-0.15 across labrum, denticle width as proportion of labrum width 0.10-0.19; frontal setae arranged as a broad band; secondary hair fringe clearly separated from broad band. Mandibles: outer margins slightly curved; sparse long setae at midpoint on outer lateral margins; shorter setae along margin between midpoint and base; dark. coloured nodule at midpoint on inner lateral margins; row of setae in inverted L-shape on lower mandible body. Left mandible: two incisors, each with three apical teeth, outer incisor inconspicuously serrated on inner lateral margin, inner incisor stout at base; prostheca robust, serrated; prosthecal tuft slender, tapering to a thin point apically, hairs on lateral margins only. Right mandible: sparse long spine-like setae on inner lateral margin; two incisors, outer incisor with three apical teeth, conspicuously serrated on inner lateral margin; inner incisor with two apical teeth; prostheca simple, slender; prosthecal tuft slender, tapering to a point apically, hairs on lateral margins oniy. Maxillae: galea-lacinae as wide as long, width length ratio 0.90-1.10; subapical row of 15-20 pectinate setae; palpi three segmented, terminal palp with single spine apically, first segment length 0.23 , segments two 0.74 times length of first segment, segment three 0.65 times length of first segment, terminal segment with single spine apically. Hypopharynx: well developed lateral processes; anterior margin of lingua moderately cleft, lined with short setae; superlingua with thick tufts of setae on anterior margins, rounded lateral margins. Labium: glossae not turned under ventrally and lying in same plane as paraglossae, series of blunted spines apically; palpi three segmented, first segment length 0.36 , segment two 0.81 times the length of first segment, segment three 0.61 times the length of the first segment, terminal segment with row of triangular spines almost circulating apex and stout spines on lateral margins; submentum with spines on lateral margins. Thorax: golden to orange or tan brown with darker brown markings; pronotum width 1.75-2.43 wider than head, head pronotum width ratio 1.06-1.25. Legs: golden to orange or tan brown, femora tend to be darker than tibiae or tarsi, distinct white patches present, blunt spines on inner lateral margin for about half the total length; fore femora length 1.13-1.65, fore femora width 0.50-0.73, fore femora short and squat, lergth width ratio 1.95-2.69; fore tarsi with 5-9 stout ventrai spines; tarsal claws with $9-11$ ventral leeth, progressively larger apically, apical tooth inconspicuously serrated; total foreleg length 2.51-3.50 average leg length ratios, tibiae 0.76-0.81 times length of femur, tarsi 0.32-0.36 times length of femur. Abdomen: golden to orange or tan brown with distinct dark brown markings; posterolateral spines present, progressively larger posteriorly. Gills: membrane pale, clear, sometimes slightly tinged pink or yeliowish; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; each gill large, wide and ovate, apically tapered; main and
lateral tracheae present, strongly developed. Caudal filaments: three; golden with darker colouration at segment join giving a slightly banded appearance; terminal filament longer than cerci.

Etymology. The genus name is derived from the amalgamation of the Latin gemma (fem.) meaning gem and the aboriginal word yaluk referring to a creek or a river, that is: gem of the river. The aboriginal word is derived from the language of the Wurundjeri Woiwurung; the people whose land occupies the area of the type locality.

Remarks. The genus Gemmayaluka can be distinguished from all other genera in the Leptophlebiidae family by the following combination of characters: In the imago: (i) male upper eye size large, often contiguous (ii) male and female forewing 5.3-7.1 times longer than hindwing; (iii) forewing crossveins present in proxima! halves of wing, male with 1621 crossveins in costal space, 14-21 in distal space, female with 19-25 in costal space, 16-24 distally; (iv) MA forked at half to just over half the distance from wing base to margin; MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{ICu}_{1}$ recurved or joined to CuA and not linked to CuA-CuP crossvein; $I \mathrm{Cu}_{2}$ joins $I \mathrm{Cu}_{1}, \mathrm{ICu}_{1}$ and $I C u_{2}$ parallel as wing margin approached, CuP strongly recurved and linked by cross vein to A_{1}; (v) hindwing costa joins subcosta at four-fifths wing length; (vi) tarsal claws of a pair similar, each apicaily hooked with an opposing hook; (vii) abdomen golden to orange brown, (viii) laterally broad with penes extending to approximately half tine length of the forceps; ventral surface fused in basal third, remainder divided, divergent; dorsal surface separate, two laterally expanded lobes meeting at two-thirds length; two small triangular processes projecting from inner margin. (ix) female eyes separated on meson of head by a distance about four times maximum width of eye; (x) female sternum seven with relatively prominent gential extension (xi) female sternum nine shailowly cleft; (xii) egg ovoid, polar cap absent, chorion with similarly sized evenly spaced flower shaped protuberances. In the nymph: (i) antennae slightly longer than length of head; (ii) lateral margins of clypeus slightly diverging towards anterior; (iii) labrum subequal to slightly wider than clypeus, 2-2.5 times wider than long; lateral margins rounded; slight antero-median emargination bearing small medial convex "hump"; five triangular denticles extending approximately one-tenth across labrum; frontal setae arranged as a broad band, seconciary hair fringe clearly separated from broad band; (iv) mandibles with outer margins slightly curved; incisors with inconspicuous to conspicuous serrations on lateral margins; (v) maxillae with galea lacinae as wide as long; subapical row of 15-20 pectinate setae; terminal palp with single spine apically; (vi) hypopharynx moderately cleft; (vii) labium giossae not turned under ventrally: terminal segment elongate with row of triangular spines almost circulating apex; submentum with spines on lateral margins; (viii) pronotum moderately wider than head; (ix) legs with fore femora 2.0-2.7 times longer than wide; fore tarsi with 5-9 ventral spines; tarsal claws with
*The new genus is erected according to the criteria outlined by Peters and Edmunds (1970) for separating genera: ie 'if two or more groups of species are separated by a distinct gap of characters evident in both adults and nymphs.' These characters are outlined in the table below.

Main characters separating the genus Nousia from the newly erected genus Gemmayaluka.

GENUS	Nousia		Gemmayaluka
SUBGENUS	Nousia (Nousia)	Nousia (Australonousia)	
Male imago			
forewing costal and subcostal crossveins	reduced or absent	reduced or absent	present
penes	fused in basal twothirds, remainder divided	fused in basal twothirds, remainder divicied	fused in basal third ventrally, not fused dorsally
forewing - number of crossveins in costal space	usually 10-15	usually 10-15	usually 20 or more
Femaie imago			
sternum nine	moderately or deeply cleft	moderately or deeply cleft	shallowly cleft
egg	ovoid, polar cap absent, chorion granulate with scaitered circular ridges enclosing a short cylindrical process,	ovoid, polar cap absent, chorion with large circular shaped protuberances, sometimes interspersed with smalier ones, pattern variable	ovoid, polar cap absent, chorion with similarly spaced evenly shaped flowershaped protuberances
Mature nymph			
antennae cf length of head	1and $1 / 2$ times length of head	1and $1 / 2$ to more than 2	only slightly longer than length of head
anterior margin of labrum	broad, U-shaped with 5 irregular denticles.	straight, slight or distinct anteromedian emargination	slight anteromedian emargination bearing hump
denticle width as proportion of labrum width	approx 0.50	0.10-0.51	0.10-0.19
left mandible inner incisor shape	narrow	narrow	stout
maxillae no. subapical setae	less than or equal to 15	less than or equal to 15	equal to or more than 17
gill shape	slender	slender	wide, ovate

9-11 ventral teeth, progressively larger apically, apical tooth inconspicuously serrated; ((x) Abdomen colour golden to orange or tan brown with distinct dark brown markings; (xi) double, upper and lower lamellae equally developed; each gill large, wide and ovate, apically tapered; main and lateral tracheae present, strongly developed. see opposite*

4.4.2 Gemmayaluka wiltkorringae (Finlay) comb. nov.

Nousia sp. "AV4" (Dean 1999)
Nousia (Australonousia) wiltkorringae Finlay (Finlay 2000) Gemmayaluka wiltkorringae (Finlay) comb. nov.

Distribution. Southern New South Wales, Eastern Victoria (see Fig. 331).

Types. Nousia (Australonousia) wiltkorringae Finlay. Holotype. Cement Creek (Fig. 332), Mt Donna Buang Rd, outside Warburton, Victoria, 98030503, 05 III 1998, 670 m , $145^{\circ} 42^{\prime} 20^{\prime \prime} 37^{\circ} 42^{\prime} 48^{\prime \prime}, 10^{\prime \prime} \mathrm{NI}$ (reared) (KJF). Paratypes. Victoria. Cement Creek, same collection data: 76120100, 1 XII 1976, EPH 1587, 1 of I (JD); EPH 1588, 10 NI (JD); EPH 1602, 1 오 (JD), 78112300, 23 XI ^978, EPH 1589, 1 ㅇNI (reared) (JD), EPH 1590, 1 o NSI (reared) (JD), EPH 1591, 1 o NS (reared) (JD), EPH 1592, 1 \& NS (reared) (JD), EPH 1594, $1 \circ \mathrm{NI}$ (reared) (JD), EPH 1596, 1 ¢ Nl (reared) (JD), EPH 1597, $1 \circ \mathrm{NS}$ (reared) (JD), EPH 1598, 1 ¢ NS (JD), EPH 1599, 1 o NS (reared), 1 \& NS (reared) (JD); 80030300, 3 III 1980, EPH 1593, 1 \& NS (JD); 98030503, 05 III 1998, 1 ㅇ SI (reared), 1 of N (KJF); 98112901, 29 XI 1998, 1 o NSI (KJF); 99012301, 23 I 1999, 2 or $\mathrm{N}, 1$ ㅇ N (KJF); 99032004, 20 III 1999, 1 \& N (KJF). Heid at the MV.

Diagnosis. Male imago. Dimensions: body lengih 7.0-8.9 (8.1 $\pm 0.65,10)$; forewing length 8.6-9.6 ($9.0 \pm 0.40,10$); hindwing length 1.39-1.64 (1.48 $\pm 0.11,10)$; forewing hindwing ratio $5.34-6.96(6.23 \pm 0.61,8)$. General body colour ranging from goldenbrown to orange-brown with darker-brown markings. Head brown. Antennae: pedicel and scape light brown, flagellum golden. Ocelli: three; black with white inserts; laterals larger than medial. Eyes: upper eye size large, often contiguous, ES=0.00-0.09 $(0.02 \pm 0.04,5)$; upper lobes orange, lower lobes grey-iiack. Thorax: pronotum and mesonotum goiden to orange or tan brown with darker brown markings. Legs: golden brown, femora apices darker; forelegs with seven segments, total foreleg length 6.90-7.77 ($7.39 \pm 0.36,5$); leg length ratios $1.00: 1.37: 0.10: 0.43: 0.36: 0.30: 0.16(1.99 \pm 0.07,5)$; tarsal claws of a pair similar, each apically hooked with an opposing hook (Fig. 333). Wings. Forewing (Fig. 334): membrane hyaline, pterostigmatal region slightly opaque, longitudinal and crossveins brown, anal veins yellow; costal and subcostal crossveins present in proximal halves of wing; costal space with 6-7 (10) crossveins proximally, 10-

14 （10）distally；subcostal space with 5－7（10）crossveins proximally，9－14（10）distaily． Three bullae present on veins $S c_{1} R_{2}$ and R_{4+5} ．MA forked at just over half the distance from wing base to wing margin， MP_{2} connected to MP_{1} and $\mathrm{CuA}, \mathrm{CuA}$ and CuP linked by crossvein， ICu_{1} recurved to join CuA and not linked to CuA－CuP crossvein， ICu_{2} recurved to join $\mathrm{ICu}_{1}, \mathrm{ICu}_{1}$ and ICu_{2} parallel as wing margin approached，CuP strongly curved and linked by crossvein to A_{1} ．Hindwing（Fig．335）：mostly hyaline，costal space washed with yellow and very slightly opaque；costal margin slightly convex at midlength immediately preceding shallow concavity；costa joins subcosta at approximateiy four－ifths wing length； no crossveins in proximal halves of costal space，4－5（10）in distai space，4－5（10） crossveins throughout subcostal space．Abdomen：golden to orange brown，distinct dark brown markings forming distinctive W －shaped pattern which is more apparent on the posterior segments（Fig．336）．Genitalia（Figs．337－34．1）：forceps three segmented（Figs． 340），yeilow；terminal segment angular，slightly indented at apex；penes yellow，raterally broad with penes extending to approximately half the length of the forceps；dorsal surface separated at base，two laterally expanded lobes meeting at two－thirds length；two small triangular processes projecting from inner margin（Fig．337，339），ventral surface fused in basal third，remainder divided，divergent（Figs．338，340，341）．Caudal filaments：three； generally yellow；dark brown at proximal edge of each segment giving banded appearance；terminal filament longer than cerci．Female imago：Dimensions：body length 7．8－9．7（8．9 $\pm 0.60,10)$ ；forewing length $9.8-10.9(10.3 \pm 0.30,10)$ ；hindwing lengiti 1．46－1．95（1．54土0．13，13）；forewing hindwing ratio 5．75－7．12（6．35士0．42，10）．General patterning and colouring similar to male．Eyes：grey－black；separated on meson of head by a distance about four times maximum width of eye．Legs：total leg length shorter than male；forelegs with six segments，total foreleg length 5．07－6．43（5．78土0．51，10）；leg length ratios 1．00： $1.35: 0.24: 0.21: 0.17: 0.17(1.85 \pm 0.11,10)$ ．Wings．Forewing（Fig．342）： colour and venation similar to male except with generally more crossveins on average than male；costal space with 6－9 crossveins proximally，13－16（10）distally，subcostal space with $5-8$ crossveins proximally，11－16（10）distally．Hindwing（Fig．343）：no crossveins in proximal halves of costal space，5－6（10）in distal space，5－6（10）crossveins throughout subcostal space．Abdomen：sternum seven with relatively prominent genital extension，sternum nine shallowly cleft（Fig．344）．Egg．Ovoid；polar cap absent；chorion with similarly sized evenly spaced flower shaped protuberances（Figs．345，346）．Male and female subimago．Colour and markings similar to imago．Wings uniformly greyish－ yeilow，opaque．Forelegs of male not elongated．Genitalia not fully developed．Mature nymph．（Fig．347）．Body lengths：ơ 6．2－9．8（8．3 $\pm 0.84,18$ ），$\% 7.9-11.4$（ $9.5 \pm 1.21,16$ ）． General colour golden to orange or tan brown with light and dark markings．Head： prognathous；golden or crange brown with darker brown wash between ocelli and anterior margins of eyes；width 1．58－2．20（1．74 $\pm 0.17,15$ ）．Ocelli：three；black with white inserts； laterals larger than medial．Antennae：pedicel，scape and flagellum golden brown；slightly
longer than length of head．Eyes：upper lobes of male tan，lower lobes grey－black；eyes of female grey－black．Mouthparts．Labrum and clypeus（Fig．348）：lateral margins of clypeus slightiy diverging to anterior；lateral margins of labrum subequal to slightly wider than clypeus，rounded；anterior margin with slight antero－median emargination bearing small medial convex＇hump＇；labrum length $0.30-0.45(0.37 \pm 0.04,10)$ ，labrum width 0.72 － $1.02(0.84 \pm 0.10,10)$ ，labrum width length ratio $2.05-2.46(2.29 \pm 0.15,10)$ ；four to five prominent triangularly shaped denticles（Fig．349）extending 0．08－0．15（0．12土0．02，10） across labrum，denticle width as proportion of labrum width 0．10－0．19（0．14土0．03，10）； frontal setae arranged as a broad band；secondary hair fringe clearly separated from broad band．Mandibles：outer margins slightly curved，sparse long setae at midpoint on outer lateral margins，shorter setae along margin between midpoint and base；dark coloured nodule at midpoint on inner lateral margins；row of setae in an inverted L－shape on lower mandible body．Left mandible（Fig．350）：two incisors，each with three apical teeth；outer incisor inconspicuously serrated on inner lateral margin；inner incisor stout at base；prostheca robusi，serrated；prosthecal tuft siender，tapering to a point apically， hairs on lateral margins only．Right mandible（Fig．351）：sparse long spine－like setae on inner lateral margin；two incisors，outer incisor with three apical teeth，conspicuously serrated on inner lateral margin，inner incisor with two apical teeth；prostheca simple， slender；prosthecal tuft slender，tapering to a point apically，hairs on lateral margins only． Maxillae（Fig．352）：galea－lacinae as wide as long，width length ratio 0．90－1．10 （ $1.00 \pm 0.06,10$ ）；subapical row of $15-20(10)$ pectinate setae；palpi three segmenied， terminal palp with single spine apically（Fig．353）；palp length ratios 1．00：0．74： 0.65 （ $0.23 \pm 0.02,10$ ）．Hypopharynx（Fig．354）：well developed lateral processes；anterior margin of lingua moderately cleft，lined with short setae；superlingua with＂＇ick tufts of setae on anterior margins，rounded lateral margins．Labium（Fig．355）：glossae not turned under ventrally and lying in same plane as paraglossae，series of blunted spines apically；palpi three segmented，terminal segment with row of triangular spines almost circling apex and stout spines on dorsal surface（Fig．356）；palp length ratios 1．00：0．81： $0.61(0.36 \pm 0.05,10)$ ；submentum with spines on lateral margins．Thorax：golden to orange or tan brown with darker brown markings；pronotum width 1．75－2．43（2．08 ± 0.20 ， 15），wider than head（see above），head pronotum width ratio 1．06－1．25（1．20 $\pm 0.06,15)$ ． Legs（Fig．357）：golden to orange or tan brown，femora tend to be darker than tibiae or tarsi，distinct white patches present，blunt spines on inner lateral margin for about half the total length；fore femora length 1．13－1．65（1．38士0．20，11），fore femora width 0．50－0．73 $(0.59 \pm 0.07,11)$ ，fore femora short and squat，length width ratio 1．95－2．69 $(2.34 \pm 0.21,11)$ ； fore tarsi with 5－9（10）stout ventral spines；tarsal claws with 9－11（10）ventral teeth， progressively larger apically，apical tooth inconspicuously serrated（Fig．358）；total foreleg length 2．51－3．50（2．94 $\pm 0.40,11$ ）；leg length ratios，foreleg 1．00：0．77： 0.36 $(1.38 \pm 0.20,11)$ middle leg $1.00: 0.76: 0.36(1.35 \pm 0.19,10)$ ，hindieg 1．00：0．81： 0.32
($1.58 \pm 0.20,10$). Abdomen: golden to orange or \tan brown with distinct dark brown markings forming a distinctive W-shaped pattern which is which is more apparent on the posterior segments; posterolateral spines present, progressively larger posteriorly. Gills (Fig. 359): membrane pale, clear, sometimes slightly tinged pink or yellowish; present on segments one to seven, progressively smaller posteriorly; double, upper and lower lamellae equally developed; each gill large, wide and ovate, apically tapered; main and !ateral tracheae present, strongly developed. Caudal filaments: three; golden with darker rolouration at segment join giving a slightly banded appearance; terminal filament longer than :erci.

> Etymology. The species epithet is derived from the aboriginal language of the Wurundjeri Woiwurung. The word wilt-korring translates as wide and refers to the shape of the gills.

Remarks. In unpublished keys it has also been referred to as "Atalophlebioides sp. $\mathrm{E}^{\text {" }}$ (MDRFC), "Atalonella sp 5" (MV) and Nousia "sp. 4" (MRHI). More recently it has been referred in the literature as "Nousia AV4" (Dean 1999) based on the nymphal morphology. Following this it was published as Nousia (Australonousia) wiltkorringae (Finlay 2000) but has herewith been moved to its own genus.

Specimens examined. NEW SOUTH WALES. No. 1 Creek, 6 km downstream Thredbo, 78121401, 14 XII 1978, 1260m, $148^{\circ} 23^{\prime} 36^{\circ} 28^{\prime}$, EPH 1678, $2 \circ \mathrm{~N}$ (JD). Thredbo River, Thredbo Golf Course, 78121401,14 XII 1978, $1380 \mathrm{~m}, 148^{\circ} 18^{\prime} 36^{\circ} 30^{\prime}$, EPH 1655 , 1 o N , 2 i N (JD). VICTORIA. Acheron River, Marysvilie Rd, 97120500, 5 XII 1997, 560m, $145^{\circ} 43^{\prime} 26^{\prime \prime} 37^{\circ} 38^{\prime} 55^{\prime \prime}, 3 \mathrm{~N},(\mathrm{MRHI})$. Badger Creek, upstream weir, Badger Weir Park, 5 km SE of Healesville, 80011802,18 I 1980, $300 \mathrm{~m}, 145^{\circ} 34^{\prime} 04^{\prime \prime} 37^{\circ} 41^{\prime} 17^{\prime \prime}$, EPH 1605, 1 of $\mathrm{N}, 1$ \& $\mathrm{N}(\mathrm{JD}) ; 80032002,20$ III 1980, same locality data, EPH 1606, 1 б $\mathrm{N}, 1$ \& N (JD). Buller Creek, Mirimbah, 81110202, 2 XI 1981, $670 \mathrm{~m}, 146^{\circ} 24^{\prime} 37^{\circ} 06^{\prime}$, EPH 1761, 1 i N (JD). Charity Creek, Mt Baw Baw Tourist Rd, 97111200, 12 XI 1997, 700m, $146^{\circ} 13^{\prime} 49^{\prime \prime} 37^{\circ} 50^{\prime} 57^{\prime \prime} 3 \mathrm{~N}$ (MRHI). Charity Creek tributary, Mt Baw Baw Tourist Rd, 99021602, 16 II 1999, $1180 \mathrm{~m}, 146^{\circ} 15^{\prime} 15^{\prime \prime} 37^{\circ} 50^{\prime} 47^{\prime \prime}, 3$ o $^{\prime \prime} \mathrm{N}, 7 \not \approx \mathrm{~N}$ (KJF). Deep Creek, Benambra-Corryong Rd, 11 km N of Uplands, 99021501,15 II 1999, $620 \mathrm{~m}, 147^{\circ} 42^{\prime}$ $36^{\circ} 49^{\prime}, 1$ \& N (KJF). Erinundra River, Erinundra, 94111500, 15 XI 1994, 320m, 14851'42" $37^{\circ} 37^{\prime} 1^{\prime \prime}$, 1 N(MRHI). Eurobin Creek, Mount Buffalo Rd, Mount Buffalo National Park, 96110702,07 XI 1996, 440m, 146 ${ }^{\circ} 50^{\prime} 29^{\prime \prime} 36^{\circ} 43^{\prime} 10^{\prime \prime}, 1$ o' $^{\circ} \mathrm{N}$ (KJF).
Growlers Creek, Williams Rd camp site, Wandiligong, 96110801, 8 XI 1996, 380m, $146^{\circ} 59^{\prime} 10^{\prime \prime} 36^{\circ} 45^{\prime} 54^{\prime \prime}, 1 \sigma^{\circ} \mathrm{N}(\mathrm{KJF})$. Kiewa River, West Kiewa Logging Rd, 5 km NE of Mt Hotham, $1180 \mathrm{~m}, 147^{\circ} 10^{\prime} 44^{\prime \prime} 36^{\circ} 55^{\prime} 46^{\prime \prime}, 1 \circ \mathrm{~N}^{\prime}(\mathrm{KJF})$. King Parrot Creek, Whittlesea-

Yea Rd, 15 km SW of Flowerdale, $98030501,3 \mathrm{~V}$ 1998, $350 \mathrm{~m}, 147^{\circ} 14^{\prime} 48^{\prime \prime} 37^{\circ} 25^{\prime \prime} 50^{\prime \prime}, 1$ ot $^{\circ}$
 of Powelltown, 96101002, $10 \times 1996,320 \mathrm{~m}, 145^{\circ} 50^{\prime} 10^{\prime \prime} 37^{\circ} 52^{\prime} 35^{\prime \prime}$, 1 ㅇ NSI (reared) (KJF). Learmonth Creek, Yarra Junction-Neerim Rd, Powelltown, 96101001, 10×1996, 180m, $145^{\circ} 44^{\prime} 33^{\prime \prime} 37^{\circ} 51^{\prime} 43^{\prime \prime}, 3$ $9 \mathrm{~N}(\mathrm{KJF})$. Mountain Creek, 7 km E of Tawonga South,
 Gully, Sylvia Creek Rd, Toolangi State Forest, 96112901, 29 XI 1996, 620m, $145^{\circ} 31^{\prime \prime} 04^{\prime \prime}$ $37^{\circ} 31^{\prime} 44^{\prime \prime}, 1$ \& $\mathrm{N}(\mathrm{KJF})$. Myrtle Creek, Donna-Buang Rd, 00022602, 26 || 2000, 780m, $145^{\circ} 36^{\prime} 42^{\prime \prime} 37^{\circ} 42^{\prime} 35^{\prime \prime}, 2$ ㅇ $N(K J F)$. O'Shannassy River, 75111400, 14 XI 1975, 580m, $145^{\circ} 49^{\prime} 37^{\circ} 36^{\prime}$, EPH 1603, 1 o $^{\circ} \mathrm{N}, 2 \neq \mathrm{N}(\mathrm{JD}) ; 80010401,4$ । 1980, same locality data, EPH 1604, 1 ơ $^{\circ} \mathrm{NSI}$ (reared) (JD); 94121502,5 XII 94, same locality data, 2 N, (MRHI). Rodger River, Deddick, 90112300, 23 XI 1990 , 560m, $148^{\circ} 46^{\prime} 37^{\circ} 29^{\prime} 1$ i N (MRHI). Snowy River, Wanton Bridge, 74031700, 17 III 1974, EPH 1647, 1 o N (coll. unknown). Steavensons River, Buxton-Marysville Rd, 98021504, 15 || 1998, 460m, $145^{\circ} 45^{\prime} 02^{\prime \prime}$ $37^{\circ} 28^{\prime} 53^{\prime \prime}, 1$ o $^{\circ} \mathrm{NSI}$ (reared) (KJF). Taggerty River, Lady Talbot Drive, outside Marysville, $98101704,17 \times 1998,400 \mathrm{~m}, 145^{\circ} 46^{\prime} 28^{\prime \prime} 37^{\circ} 30^{\prime} 20^{\prime \prime}, 1$ o $^{\circ} \mathrm{N}$ (KJF). Thomson River, 12 km NNW of Walhalla, $77111200,12 \mathrm{XI} 1977,290 \mathrm{~m}, 146^{\circ} 24^{\prime} 37^{\circ} 52^{\prime}, 1 \mathrm{~N}$, (MDFRC). West Ovens River, Harrietville, $90111200,12 \mathrm{XI} 1990,540 \mathrm{~m}, 147^{\circ} 05^{\prime} 36^{\circ} 51^{\prime}$ 2 क N (MRHI). Whitelaw Creek, Whitelaw Portal upstream weir, 77021100, 2 XI 1977, $470 \mathrm{~m}, 146^{\circ} 16^{\prime} 37^{\circ} 43^{\prime}, 1 \mathrm{~N}$, (MDFRC).
5. FACTORS CONTROLLING THE DISTRIBUTION OF NOUSIA (AUSTRALONOUSIA) FUSCA COMB. NOV. AND NOUSIA (AUSTRALONOUSIA) NIGELISP. NOV. IN VICTORIA WITH NOTES ON THRAULOPHLEBIA, MONTIKOLA GEN. NOV. AND GEMMAYALUKA GEN. NOV.

[^1]William Shakespeare - Hamlet V, ii

5.1 introduction

Mayflies have a short adult life span, are easily subject to desiccation (Edmunds 1962) and are regarded as poor fliers. As a result they have a poor dispersal ability. For example, there are few representatives on oceanic islands such as Micronesia and Polynesia (Edmunds 1962) and no native species on the Hawaiian islands (Edmunds 1972). Distribution patterns, therefore, are likely to be highly influenced by evolutionary and vicariance events in addition to current availability of suitable habitat.

There is little published information on the distribution of the species described in Chapters 3 and 4. Nor has anything been published on their habitat requirements other than an occasional note accompanying the taxonomic descriptions. Admittedly this deficiency is largely due to the poor state of taxonomic knowledge of the Australian insect fauna. This chapter attempts to address these deficiencies.

Large numbers of specimens were collected for taxonomic purposes (see Chapter 2). This, along with information from previous surveys, enabled the creation of the first broad scale distribution maps for the taxon descriptions in Chapters 3 and 4. These distribution maps accompany the species descriptions and diagnoses.

Fundamental to the study of ecology is understanding the factors affecting the distribution of organisms (Lawton 1996; Gaston and Blackburn 1999). Presence-absence prediction is one such method which has been valuable to the discipline of applied ecology (Manel et al. 2001). It has wide reaching applications to conservation biology, invasion ecology, pest species management and biogeography (Manel et al. 2001). In stream ecology, presence-absence data have been primarily and successfully used to evaluate water quality and assess stream degradation (Parsons and Norris 1996; Wright et al. 1997; Manel et al. 2001).

In general positive prediction becomes more robust with inclusion of detailed environmental data in the model (Manel et al. 1999). At medium to large spatial scales, which can include multiple sites, there is an increasing need for survey methods that can be easily employed by non-specialists, be cost effective and reduce time and effort in the field (Cullen 1990; Chessman 1995). To this end, rapid biological assessment techniques were developed and have been widely employed in stream ecology in the Northern Hemisphere (Wright et al. 1993; Plafkin et al. 1998). This has been the case more recently in Australia, with the development of the Monitoring River Heaith Initiative (Anonymous 1994; Davies 1994; Marchant et al. 1994; Chessman 1995). As the primary focus of this project was to collect specimens for taxonomic revision (and to try and
assess the full range of the distribution for those species), collecting from a large number of sites enabled the construction of represeniative distribution maps and offered the best ch!nce of locating new species. This priority prevented very detailed habitat assessments which would have added to the biogeographical analysis. Ultimately the bioassessment variables collected were restricted to those easily and rapidiy collected. Therefore the variables collected in the field were divided into three categories: (1) local land use and riparian characteristics, (2) stream abiotic conditions and (3) stream biotic conditions. In addition, topographic, spatial and climate data were added post-field.

Large scale disturbances such as land clearance, urbanisation, forestry or mining activities are often reflective of general catchment degradation. For streams and rivers this can incorporate decreases in bank stability and subsequent increases in sedimentation, decreases of bankside native vegetation (often accompanied by an increase in exotic vegetation), increases in pollution and exotic species and alterations in stream flow, all of which can affect the stream community structure (Boulton and Brcck 1999). Such disturbances can be assessed by surrounding land use, including an assessment of the riparian vegetation, both on a local (Marchant et al. 1997) and catchment (Hunter and Zampatti 1994) scale.

Abiotic variables such as velocity, substrate composition and temperature have long been known to affect macroinvertebrate community structure in streams (Minshall 1988; Lampert and Sommer 1997). The components of flow regime (volume, depth and current velocity) interact to produce continual alteration to stream characteristics, such as a restructuring of the stream bed and changing the aquatic plant composition, for example (Lampert and Sommer 1997). In turn such changes lead to macroinvertebrate community restructuring due to changes in habitat requirements and increases (or decreases) in invertebrate drift (see review by Brittain and Eikeland 1988)). Depending on their intensity, high water flow events (floods) can result in small scale disturbances to the substrate or may scour the entire stream bed and alter channei morphology (Lake 1995). Macroinvertebrate recolonisation following these events has been shown to vary greatly between small and large scale disturbances (Brooks and Boulton 1991). A reduction in flow (and subsequently stream depth and width) may decrease oxygen concentrations, causing organsims to die or actively drift in search of more favourable habitat.

Substratum characteristics have been the one of the most extensively studied types of abictic variables (Minshall 1984) and greatly affect the micro-environmental conditions experienced by the benthos. Preferences for particular substrate types may involve protection from disturbance and predation and oxygen availability. High substrate
complexity (number and variety of crevices) and particle diversity (varying grain sizes) have been shown to sustain a higher species richness than uniform substrate (Brooks and Boulton 1991; Jowett et al. 1991). Further, individuals have consistently preferred to colonise pebble size particles (16 to 64 mm) (Brooks and Boulton 1991), which tend to collect more fine organic matter which is the principal food source for many aquatic invertebrates including mayflies (Minshall 1984).

Water temperature cannot be discounted as one of the more important abiotic variables affecting metabolic rate, activity, feeding, growth, emergence and reproduction of freshwater fauna (Lampert and Sommer 1997; Boulton and Brock 1999) leading to changes in the abundance, distribution and diversity of such fauna (see Chapter 2) (Hynes 1970; Ward and Stanford 1982; Merritt ard Cummins 1996). Temperature in lotic environments can vary depending on the volume of water present. For example small headwater streams (with small depths and widths) can be rapidly warmed by sunlight whereas larger watercourses further downstream are subject to smaller daily temperature fluctuations (Lampert and Sommer 1997).

Macroinvertebrate distribution is also dependent on the instream biological conditions. Coarse particulate organic matter (CPOM) provides useful habitat for small stream macroinvertebrates such as mayflies (Boulton and Brock 1999). Australian Leptophiebiids are predominantly collector-gatherers or scrapers using the functionalfeeding terminology of Cummins and Klug (1979) feeding predominantly on detritus, periphyton and other biofilms (Edmunds and Waltz 1996) and are therefore likeiy to be greatly influenced by the amount of CPOM.

An assessment of the periphytic and filamentous algae in the field can help determine the amount of photosynthetic production in a stream. Low light levels in heavily shaded upland streams can limit the abundance of plants. Further, the coarse rocky substrate of these environments provides few holdfasts for emergent vegetation (Boulton and Brock 1999). High plant biomass can provide habitat for benthos and emerging invertebrates and can also reduce velocity. However, high productivity can lead to eutrophication and can cause bacterial or algal blooms (Boulton and Brock 1999).

Topographical and spatial data, derived from maps, were used to supplement the information already gathered from each site. It is recognised that altitude, distance from stream source and slope (or steepness) can be considered surrogate terms for other variables such as temperature, substrate, flow regime and oxygen availability that directly affect the fauna (Hynes 1970).

Finslly, climate data were obtained from BIOCLIM, a bioclimatic predictive computer program (Houlder et al. 2000). BIOCLIM approximates energy and water balances for a given location derived from bioclimatic parameters such as mean, minimum and maximum monthly values for temperature, precipitation, solar radiation and evaporation. The monthly mean estimates summarise annual and seasonal mean conditions which uitimately may prove to have biological significance (Nix 1986).

5.2 Aims

1. To document the habitat preferences of the Victorian species of Nousia (Australonousia), Thraulophlebia, Montikola and Gemmayaluka.
2. To identify some of the factors that may determine the geographical distributions of these species
3. To discover the extent to which distribution is predictabie from site characteristics.

5.3 Methods

5.3.1 Study sites

For biogeographic purposes it was decided to limit the study area to Victoria and southern New South Wales as collections made in other places did not constitute large enough sample sizes for analysis. Three seasons of data only were used from the summer field work collecting periods: 96-97 (season 1), 97-98 (season 2) and 98-99 (season 3). The fourth season (summer 99-00) was not included in the analysis because this comprised very few sites. Within the main study area (Victoria) the aim was to attempt to sample the majority of the Australian Water Resources Council (AWRC) drainage divisions (Fig. 360) (Anonymous 1989) in order to obtain a good coverage of the state. Within each division multiple sites were searched where conditions for the target mayflies might be suitable. A smailer number of sites which did not immediately appear highly suitable (because of high turbidity, slow flow, uniform muddy or silty substrate) were also searched in order to better define the habitat requirements. However, these sites were limited in number because they were unlikely to contribute to the taxonomic work and time in the field was limited.

Some potentially interesting areas, such as the Wongungarra River, in the north of the Mitchell Basin (24), were deliberately excluded due to difficulty of access. The effort required to reach such places was considered to be excessive for the extra information that vould have been obtained. Drainage divisions such as the Mallee (14) and the Millicent Coast (39) were excluded due to the lack of water in these areas. These are areas of low elevation (height above sea level less than 130m) and low rainfall (average
annual rainfall less than 400 mm , mean annual runoff 25 mm or less) with very few, if any, permanent streams (Anonymous 1989). Yet other sites such as the Avoca (8) and the Wimmera-Avon (15) were investigated but were predominantly dry at the time of sampling. Accessible, although still poorly studied, sites were considered preferable to maximise the geographic range of taxa able to be collected in the time available.

The total number of sites where environmental data were collected was 267 (Fig. 361). A small proportion of these sites (34) were collected from more than once. The environmental data for these sites were combined so that the site was only represented once in the final analysis. The large number of sites visited ensured a good coverage of the study area, increased the chance of discovering any new species and allowed for documenting cistributions in relation to environmental conditions. For each of the 267 sites mayfly nymphs from the family Leptophlebiidae were collected with an emphasis on the taxa of interest. The collection process was an attempt to find all relevant taia, not to estimate relative abundance of different taxa. Therefore the data obtained are presence/absence at species leve!.

5.3.2 Site characteristics

At each of the site locations iapid biological assessment techniques were employed to determine site characteristics.

Initially the area surrounding the stream was assessed and the following characteristics determined. As there is evidence that benthic invertebrate communities are more influenced by local conditions rather than regional ones (Corkum 1990; Richards et al. 1993) local land use was considered more biologically appropriate to the presence of a particular species presence rather the the larger scale catchment land use categories of Hunter and Zampatti (1994) where only a determination of the major activity of the catchment (eg: 'agriculture', 'forestry' or 'redevelopment') is recorded. Therefore local land use was determined using a method previously employed by Marchant et al. (1997) where the riparian zone and adjacent land use was placed in one of the four following categories with category one representing the most disturbance and category four representing the least disturbance:

1. Agriculture, urban development, grass, no native vegetation
2. Agriculture, native vegetation, introduced plant species, no urban development
3. Native vegetation, introduced plant species, no agriculture or urban development
4. Native vegetation, no introduced plant species, no agriculture or urban development.

Riparian vegetation was assessed by two factors. Shade caused by riparian vegetation over the river was assessed as a percentage to the nearest 10% taken at midday, although these estimates were later placed in the following five categories due to concern over the accuracy of field data:

1. $\leq 5 \%$
2. $6-25 \%$
3. $26-50 \%$
4. $51-75 \%$
5. 76%

Dominant vegetation type of the riparian zone was recorded using the following categories:

1. grasses, ferns, sedges, rushes etc.
2. shrubs, vines
3. trees ($<10 \mathrm{~m}$)
4. trees ($>10 \mathrm{~m}$)

No attempt was made to distinguish between native and exotic vegetation as this was, in part, assessed by the local land use categories.

Instream physical condition of the stream (ie: abiotic variables) were also assessed. Water temperature was taken as a spot measurement at the time of sampling using a celsius thermometer. It is recognised that a spot temperature is not considered a sufficient record of the temperature regime of the stream, however it did give some information on summer daytime temperature and may be associated with the presence or absence of a particular species. Stream width was estimated in metres at the sampling point from water's edge to water's edge. Stream depth was measured in the field using a metre ruler and recording the mean of five points. Stream velocity was assessed subjectively by characterising the flow into one of the categories below:

1. no flow or very smail flow
2. slow flow
3. moderate flow
4. high flow

Sediments in the area immediately surrounding the sample site and 10 m upstream and downstream were classified by eye in the field. The substratum composition was estimated in the field using apparent abundance of particle sizes. Traditionally, substratum particles are grouped in millimetre size classes according to the Wentworth scale (Cummins 1962) each class being given a descriptive term such as boulder, cobble or gravel, sand, silt or clay. Grade scales for particle size can be extremely
comprehensive (Brakensiek et al. 1979; Gordon et al. 1992; Boulton and Brock 1999) yet for the purposes of this study that level of accuracy was not feasible and a reduced scale was considered sufficient. Each size class is assigned a phi (ϕ) value which equates to the negative logarithm (base 2) of the mean particle diameter in mm , resulting in a whole number. This tactic is used as a method of eliminating cumbersome numbers when dealing with the smaller size classes. The following size classes used in this analysis with the accompanying ϕ scale were:

1. Bedrock: $\phi=-9.5$
2. Boulder: 256-2048mm, $\phi=-9.0$
3. Cobble: $64-256 \mathrm{~mm}, \phi=-6.5$
4. Pebble: $16-64 \mathrm{~mm}, \phi=-4.5$
5. Gravel: $2-16 \mathrm{~mm}, ~ \varsigma=-2.0$
6. Sand: $0.06-2 \mathrm{~mm}, \phi=2.0$
7. Silt: $0.004-0.06 \mathrm{~mm}, \phi=6.5$
8. Clay $<0.004 \mathrm{~mm}, \phi=9.5$

The percentage of the total area estimated as covered by each of the particle size categories was recorded and multiplied by the ϕ value for each particle size category. The sum of these values was then divided by 100 to give a mean ϕ value for each site. A higher value of mean ϕ corresponds to an increased representation of fine substrata. Using the same data as above, substrate heterogeneity was measured as the number of particle size categories that covered $\geq 10 \%$ of the sample area. The possible values for this variable therefore ranged between one and eight.

Coarse particulate organic matter (CPOM), defined as woody and non-woody material larger than 1 mm in size (Cummins 1974), was estimated by eye at the time of sampling. The percentage of CPOM in a 20 m stretch of stream was categorised into three levels:

1. $<5 \%$
2. between $5-20 \%$
3. 20%

Fine particulate organic matter or FPOM (ie: particle size between $50 \mu \mathrm{~m}$ and 1 mm) (Cummins and Klug 1979) is considered the dominant food source for Leptophlebiids in the Northern Hemisphere (Edmunds and Waltz 1556; Merritt and Cummins 1996). However, there are indications that this classification does not readily apply to Australian aquatic invertebrates, many of which appear to be generalist and opportunistic feeders (Lake 1995). Therefore CPOM may also provide a valid food source for mayflies as well as a valuable habitat.

Algal (periphytic and filamentous) and macrophyte cover in the same 20 m stretch were determined by eye and percentage of area covered noted according to the following categories.

1. $<10 \%$
2. $10-35 \%$
3. $36-65 \%$
4. $66-90 \%$
5. $>90 \%$

The remaining site attributes were determined from maps. Altitude was determined in metres to the nearest 10 to 20 m depending on the map scale used (1:25,000 maps or 1:50,000 respectively). Stream gradient or slope was determined from 1:25,000 maps. The horizontal distance in metres bitween one contour interval upstream and downstream of the site was determin:ad, then the gradient was calculated as a percentage. For very steep slopes several centour intervals had to be used. Distance from source was measured on 1:10c. 000 maps to the nearest half km with the use of an opisometer. The source was considered as the highest branch from the original sampling point. Streams marked as intermittent or semi-permanent were considered to be flowing. The highest point of an inlet stream of a regulated waterbody was considered to be the source of the outlet stream. Table 20 summarises the characteristics recorded for each site.

Table 20. Summary table of site characteristics. For var. (variable) type CAT=categorical, CONT= continuous.

Variable name	Var. type	Unit of measurement and precision	Method of determination
1. local land use	CAT	descriptions of surrounding land use and vegetation type in four categories	determined by eye in field
2. shade	CAT	percentage ranges in five categories	determined by eye in field
3. dominant vegetation type	CAT	percentage ranges for four vegetation classes	determined by eye in field
4. water temperature	CONT	${ }^{\circ} \mathrm{C}$ to nearest $0.5{ }^{\circ} \mathrm{C}$	spot temperature, liquid thermometer
5. stream width	CONT	metres to nearest half metre	estimated by eye in field
6. stream depth	CONT	centimetres to nearest 15 cm	mean of five metre ruler depths taken around sampling site.
7. flow	CAT	flow estimate in four categories	estimated in field
8. substrate phi	CONT	estimates of each substrate class as a percentage of 20 m stretch of stream bed; each size class converted to ϕ	mean ϕ of all substrate classes.
9. substrate heterogeneity	CAT	whole numbers, eight possible categories	number of particle size categories accounting for \geq 10% of the total sample area.
10. coarse particulate organic matter	CAT	percentage in three classes	percentage cover of 20 m stretch determined by eye in field.
11. algae	CAT	percentage cover in five classes	percentage cover of 20 m stretch determined by eye in field.
12. macrophytes	CAT	percentage cover in five classes	percentage cover of 20 m stretch determined by eye in field.
13. altitude	CONT	nearest 10 or 20 m	1:25,000/1:50,000 maps
14. slope	CONT	percentage to 2 decimal places	1: 25,000 maps, horizontal distance in metres of one or more contour interval(s) upstream and downstream of site; expressed as a percentage
$\begin{aligned} & \text { 15. distance from } \\ & \text { source } \end{aligned}$	CONT	km	1: 100,000 maps, measured using opisometer

For each collection site, determined by longitude and latitude, nineteen climate variables were obtained from the BIOCLIM program. These were:

1. annual mean temperature $\left({ }^{\circ} \mathrm{C}\right)$
2. mean diurnal range (monthly maxmin)
3. isothermality (mean diurnal range / mean seasonal range)
4. temperature seasonality (co-efficient of variation)
5. maximum temperature of warmest period
6. minimum temperature of coldest period
7. temperature annual range
8. mean temperature of wettest quarter
9. mean temperature of driest quarter
10. mean temperature of warmest quarier
11. mean temperature of coldest quarter
12. annual mean precipitation
13. precipitation of wettest period
14. precipitation of driest period
15. precipitation seasonality (co-efficient of variation)
16. precipitation of wettest quarter
17. precipitation of driest quarter
18. precipitation of warmest quarter
19. precipitation of coldest quarter

5.3.3 Statistical analysis

5.3.3.1 Logistic regression

Logistic regression was used to identify the factors or combination of factors most strongly associated with the presence or absence of each taxon. However, this strategy could only be used for Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli as the other species occurred at too few sites (19/267 or less). Summaries of the characteristics of sites where each species was present are provided in Appendix 4, with the exception of species that were found at fewer than 10 sites. This allows some assessment of the type of sites at which each of the less common species were found.

Logistic regression is useful when describing a relationship between a number of factors (independent variables) and a dichotomous dependent variable with the values of 0 or 1.
The logit (or log of the odds) function calculates the probability of being present or absent in one group divided by the probability of being present or absent in another and can determine the combined effect of several variables on the outcome (Hosmer and

Lemeshow 1989; Kleinbaum 1994; Tabachnick and Fidell 1996). The technique is very flexible as it can analyse a group of independent variables which can include continuous, discrete, dichotomous or a mix. It does not require that the independent variables be normally distributed, lineariy related or of equal variance. Further, there is no requirement for assumptions relating to the distribution of the independent variables to be tested, although transformation may improve the power of the analysis and is recommended (Tabachnick and Fidell 1996). Although this technique has rarely been used in the field of freshwater ecology (Peeters and Gardeniers 1998) recent comparisons of presenceabsence data analyses using discriminant analysis, artificial neural networks and logistic regression on aquatic invertebrates in Himalayan streams concluded that logistic regression was best suited for this sort of work (Manel et al. 2001).

Using Systat version 7.0 (Systat 1997) simple logistic regression was used to determine which individual variables, considered singly, best predicted the presence of each species. Multiple logistic regression was then used to determine which site characteristics were significant predictors for the presence of the species.

5.3.3.2 Preliminary screening methods

5.3.3.2.1 Normality of distributions for continuous variables

Box plots were used for all continuous variables to identify distribution patterns. Following this, all pairs of continuous variables were plotted against each other to check for complex non-linear relationships. All continuous variables were transformed as required to approximate a normal distribution. Box-plots of these independent variables revealed that no transformation was necessary for the foliowing BIOCLIM variables: mean diurnal range (monthly maxmin) (MDR), temperature seasonality (TS), temperature annual range (TAR), maximum temperature of the warmest period (MAXTWARM) and mean temperature of the wettest quarter (MTWET). The following transformations were used to normalise the distribution of the remaining continuous variables, abbreviated names of transformed variables in parentheses:

- Loge transformation for altitude (LGALT), water temperature (LGTEMP), stream width (LGWIDTH), stream depth (LGDEPTH), precipitation of the wettest period (LGPWETP), precipitation of the driest period (LGPDRYP), precipitation seasonality (LGPSEAS) and precipitation of the wettest quarter (LGPWETQ), precipitation of the driest quarter (LGPDRYQ), precipitation of the warmest quarter (LGPWARMQ), precipitation of the coldest quarter (LGPCOLDQ). For slope (LGSLOPE) and
distance from source (LGDFS) a constant of 1 was added before transformation to cope with zero values.
- Square root transformations for substrate phi (PHISQR), isothermality (ISOSQR) and minimum temperature of the coldest period (MTCOLDSQR). A constant of 8 was added to substrate phi and 2 to the minimum temperature of the coldest period to eliminate negative values before transforming.
- The remaining variables were reflected, a strategy applied for correcting negative skewness. Reflection involves creating a constant by adding one to the largest score and subtracting each score from the constant to produce a new variable. Normal transformation procedure is then applied. All the reflected variables (above) were then subject to a $\log _{e}$ transformation: annual mean temperature (LREFAMT), mean temperature of the driest quarter (LREFMTDRY), mean temperature of the warmest quarter (LREFMTWARM) and mean temperature of the coldest quarter (LREFMTCOLD)

5.3.3.2.2 Review of discrete variables

Each of the discrete variables were analysed to assess the number of cases in each category. If less than 10% of the cases were present in any category this category was merged with the closest one. Four out of the eight categorical variables had such problems. Too few cases in a category can lead to large parameter estimates and standard errors in the analysis. Tabachnick and Fidell (1996) recommend that categories be collapsed to accommodate larger values at each level or, if this is not possible, the variable be removed from the analysis. Each of the offending variables (shade, substrate heterogeneity, algae and macrophytes) were able to have categories merged so each of the remaining level contained at least 10% of the total values. New categories of each variable are listed below.

The percentage of shade covering the river was reduced from the original five categories to four as there were too few individuals in the $\leq 5 \%$ categories. The new categories were as follows:

1. $0-25 \%$
2. $26-50 \%$
3. $51-75 \%$
4. $76-100 \%$

With substrate heterogeneity, the total number of categories possible was eight. In the current data set the maximum number of categories recorded was six, and this had to be
subsequently reduced to four in order that each category was adequately represented. Categories for this variable were then as follows:

1. ≤ 2
2. 3
3. 4
4. ≥ 5

The percentage of algae and macrophytes in a 20 m length of stream was originailly divided into five categories. However, there were so few levels containing very high percentages of either algal or macrophyte cover at the collecting locations that both categories were reduced to three:

1. 10%
2. $11-35 \%$
3. 36%

To maintain the power of goodness-of-fit tests that compare observed with expected frequencies in cells formed by combinations of discrete variables Tabachnick and Fidell (1996) suggest that all expected frequencies should be greater than one and no more than $\mathbf{2 0 \%}$ should be less than five. This was assessed for every pair-wise combination of discrete variables including the two dependent variables; presence of N.(A) fusca and N. (A) nigeli.

For the 28 combinations of discrete independent variables only two pairs had more than 20% of ceils with predicted frequencies less than five ($4 / 16$ in both cases). No predicted frequencies less than one were observed in any combination of variables. Over the total 367 individual predicted frequencies only 25 (6.8\%) were less than five. In view of these results, no further collapsing of categories was considered necessary. For the two pairs where more than 20% of expected frequencies were less than five (landuse*substrate heterogeneity and landuse*flow) it was decided to accept possibly reduced power of goodness-of-fit tests without making any further adjustment.

For combinations of independent discrete variables with the presence-absence data for each species, only one predicted frequency less than five was found and none less than one was found. Expected frequencies were now considered adequate for all subsequent analyses.

Names for discrete variables shown in statistical output are as follows: landuse (LANDUSE), dominanf riparian vegetation (DOMRIP), shade (SHADE), substrate
heterogeneity (SUBHET), flow (FLOW), CPOM (CPOM), algae (ALGAE) and macrophytes (MACROP).

5.3.3.2.3 Collinearities

Once transformed, all continuous variables were checked for multicolinearities using the Pearson's product-moment correlation co-efficient. At this stage, some variables which were found to be highly correlated with each other were dropped from the analysis. Collinearity between the discrete variables was assessed using chi-squared analysis.

Multicollinearity between the eight discrete variables against the continuous ones was assessed by analysis of variance testing the null hypothesis that the continuous variables are consistent across each level of the discrete variables.

5.4 Results

5.4.1 Collinearities

5.4.1.1 Continuous variables

High correlations amongst these variables may result in errors in estimation of the output and can introduce high standard errors for each estimate. Statistical problems created by multicollinearity only occur at very high correlation of ± 0.9 or more (Tabachnick and Fidell 1996) although correlations above ± 0.7 may introduce redundancy in the variables.

Scatter plots of the continuous variables indicated relationships between slope and distance from source, slope and width and slope and water temperature. Temperature plotted against width and depth also revealed reasonably strong relationships. None of the correlations between the above variables exceeded 0.7, although a Pearson correlation co-efficient was calculated at -0.699 for slope versus distance from source indicating that these two variables must be carefully considered.

The remaining correlations occurred only between the BIOCLIM climatic variables. In many ways this is not unexpected as many of the climatic variables record similar information. Outputs from the Pearson correlation co-efficient revealed many correlations at or above ± 0.7 (Table 21), all involving the BIOCLIM variables. A strategy for dealing with high correlations, especially those between ± 0.7 to ± 0.9, is to omit one of the variables (Tabachnick and Fidell 1996). Annual mean temperature, for example, may be considered less biologically significant than the variables with which it correlated (mean
temperature of the warmest and coldest quarter) as conditions in a particular season are more likely to affect a mayfly than an overall average figure. Accordingly, the following variables were excluded: mean diurnal temperature range, temperature annual range, maximum temperature of the warmest period, minimum temperature of the coldest period, annual mean precipitation and precipitation of the driest quarter.

Continuous variables retained for analysis, therefore, were all the instream characteristics (water temperature, stream width and depth and substrate phi), all the topographic and spatial data (altitude, slope, distance from source) and the remaining nine BIOCLIM variables.

Table 21. Pearson product-moment correlation co-efficients for highly correlated ($\geq \pm 0.7$) pairs of transformed continuous variables.

	Transformed variables
Pearson correlation co-efficient	
Annual mean temperature vs mean temperature of the warmest quarter	0.769
Annual mean temperature vs mean temperature of the coldest quarter	0.736
Mean diurnal range vs temperature seasonality	0.850
Mean diurnal range vs maximum temperature of ihe warmest quarter	0.880
Mean diurnal range vs temperature annual range	0.968
Temperature seasonality vs maximum temperature of the warmest period	0.811
Temperature seasonality vs minimum temperature of the coidest quarter	0.698
Temperature seasonality vs temperature annual range	0.953
Maximum temperature of the warmest period vs temperature annual range	0.885
Maximum temperature of the warmest period vs mean temperature of the warmest quarter	-0.874
Minimum temperature of the coldest period vs mean temperature of the coldest quarter	-0.846
Mean temperature of the driest quarter vs mean temperature of the warmest quarter	0.728
Annual mean precipitation vs precipitation of the wettest period	0.958
Annual mean precipitation vs precipitation of the driest quarter	0.811
Annual mean precipitation vs precipitation of the wettest quarter	0.955
Annual mean precipitation vs precipitation of the driest quarter	0.838
Annual mean precipitation vs precipitation of the warmest quarter	0.799
Precipitation of the wettest period vs precipitation of the wettest quarter	0.995
Precipitation of the wettest period vs precipitation of the coldest quarter	0.975
Precipitation of the driest period vs precipitation of the warmest quarter	0.985
Precipitation of the driest period quarter vs precipitation of the driest quarter	0.988
Precipitation of the wettest quarter vs precipitation of the coldest quarter	0.980
Precipitation of the driest quarter vs precipitation of the warmest quarter	0.989

5.4.1.2 Discrete variables

Chi-square analysis between each discrete variable against each other discrete variable revealed a high degree of collinearity (Table 22). Despite the high incidence of multicollinearity in these variables, decisions of whether to exclude some from the analysis were postponed until the predictive power of each variable had been separately assessed.

Table 22. Chi-squared p-values determining collinearities between discrete variables.

	DOMRIP	SHADE	SUBHET	FLOW	CPOM	ALGAE	MACROP
LANDUSE	0.000	0.000	$0.403 \dagger$	$\mathbf{0 . 0 0 0} \dagger$	0.123	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$
DOMRIP		0.000	$\mathbf{0 . 0 3 5}$	$\mathbf{0 . 0 0 7}$	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 1}$	0.162
SHADE			0.077	0.837	0.000	$\mathbf{0 . 0 1 2}$	0.627
SUBHET				0.738	0.630	0.865	0.383
FLOW					0.309	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$
CPOM						$\mathbf{0 . 0 0 3}$	0.000
ALGAE							$\mathbf{0 . 0 0 0}$

\dagger suspect due to low predicted frequencies in some category combinations.

5.4.1.3 Continuous and discrete variables combined

Analysis of variance (ANOVA) showed some strong relationships between the continuous and discrete variables (Table 23). There were a number of significant relationships between the categorical variables and the continuous ones especially altitude, temperature, slope, distance from source and stream width and depth. However, the R^{2} values were all very low (<0.150) and on that basis it was considered unnecessary to delete any correlated variables at this stage.

Table 23. ANOVA output testing multicollinearity between continuous and discrete variables.

		LANDUSE			DOMRIP			SHADE			SUBHET		
		F	P	R_{2}	F	P	R_{2}	F	P	R_{2}	F	P	R_{2}
N	LGALT	13.957	0.000	0.134	5.960	0.001	0.062	0.463	0.708	0.005	0.815	0.487	0.009
	LGTEMP	10.564	0.000	0.105	2.349	0.073	0.026	4.703	0.003	0.050	1.169	0.322	0.013
	LGSLOPE	12.215	0.000	0.120	2.092	0.102	0.023	13.015	0.000	0.126	5.286	0.001	0.055
	LGDFS	6.634	0.000	0.069	3.140	0.026	0.034	9.968	0.000	0.100	3.272	0.022	0.035
	LGWIDTH	0.785	0.503	0.009	6.597	0.000	0.069	4.623	0.004	0.050	1.512	0.212	0.017
	LGDEPTH	4.816	0.003	0.051	0.695	0.556	0.008	3.498	0.016	0.037	0.763	0.515	0.008
	LREFMTWARM	2.453	0.064	0.027	2.157	0.093	0.023	1.751	0.157	0.019	0.567	0.637	0.006
	LREFMTCOLD	1.810	0.146	0.020	2.785	0.041	0.030	0.131	0.942	0.001	0.498	0.684	0.006
	LREFMTDRY	3.564	0.015	0.038	1.372	0.252	0.015	0.914	0.435	0.010	1.787	0.150	0.019
	MTWET	0.360	0.782	0.004	2.247	0.083	0.024	0.252	0.860	0.003	0.177	0.912	0.002
	TS	0.454	0.715	0.005	0.998	0.394	0.011	0.566	0.638	0.006	0.335	0.800	0.004
	ISOSQR	1.518	0.210	0.017	1.098	0.350	0.012	0.339	0.797	0.004	0.396	0.756	0.004
	LGPDRYP	2.794	0.041	0.030	2.767	0.042	0.030	0.415	0.742	0.005	0.756	0.520	0.008
	LGPWETP	1.584	0.194	0.017	2.721	0.045	0.029	0.395	0.756	0.004	0.136	0.938	0.002
	LGPSEAS	2.472	0.062	0.027	0.347	0.792	0.004	1.323	0.267	0.014	0.554	0.646	0.006

Table 23 cont'd.

	FLOW			CPOM			ALGAE			MACROP		
	F	P	R_{2}	F	P	R_{2}	F	P	R_{2}	F	p	R_{2}
LGALT	1.560	0.199	0.017	0.278	0.758	0.002	17.947	0.000	0.117	22.018	0.000	0.140
LGTEMP	11.980	0.000	0.118	3.156	0.044	0.023	9.795	0.000	0.068	5.950	0.003	0.042
LGSLOPE	1.600	0.190	0.017	7.863	0.000	0.055	8.037	0.000	0.056	3.389	0.035	0.024
LGDFS	1.352	0.258	0.015	11.990	0.000	0.081	0.082	0.921	0.001	0.200	0.819	0.001
LGWIDTH	8.550	0.000	0.088	4.381	0.013	0.032	7.231	0.001	0.051	1.784	0.170	0.013
LGDEPTH	5.026	0.002	0.053	7.801	0.001	0.054	1.114	0.330	0.008	2.131	0.121	0.015
LREFMTWARM	0.689	0.560	0.008	0.112	0.895	0.001	0.530	0.589	0.004	0.024	0.976	0.000
LREFMTCOLD	0.155	0.926	0.002	0.835	0.435	0.006	0.564	0.570	0.004	0.290	0.748	0.002
LREFMTDRY	0.161	0.923	0.002	0.615	0.541	0.005	1.787	0.150	0.019	0.054	0.947	0.000
MTWET	1.389	0.246	0.015	3.524	0.031	0.025	0.177	0.912	0.002	0.244	0.784	0.002
TS	0.096	0.962	0.001	1.198	0.303	0.009	0.200	0.819	0.001	0.212	0.809	0.002
ISOSQR	1.115	0.343	0.012	1.180	0.309	0.009	0.396	0.756	0.004	0.355	0.701	0.003
LGPDRYP	0.702	0.552	0.008	0.627	0.535	0.005	0.756	0.520	0.008	0.517	0.597	0.004
LGPWETP	0.788	0.501	0.009	1.259	0.286	0.009	0.136	0.938	0.002	0.185	0.832	0.001
LGPSEAS	1.105	0.348	0.012	2.263	0.106	0.016	0.554	0.646	0.006	0.327	0.722	0.002

5.4.2 Simple logistic regression

5.4.2.1 Nousia (Australonousia) fusca

All the variables retained following screening were tested in simple logistic regression models to assess whether they were related to the presence or absence of the species without taking into account the other independent variables (Table 24). For N. (A) fusca, o^{\prime} ly two of the sixteen continuous variables (temperature seasonality and mean 'emperature of the coldest quarter) proved to be significant. For both the direction of the effect is negative. Therefore, for temperature seasonality the higher the co-efficient of variation the less chance of finding the species (Fig. 362). This reflects the variation between the warmest and coldest portions of the year and shows that the presence of the animal is associated with a small difference between the summer and winter temperatures. For the mean temperature of the coldest quarter, the direction of the effect is positive so that the greater the mean temperature of the coldest quarter the more chance of finding the species (Fig. 363) suggesting the animal's propensity for winter temperatures that are not too cold. However, there must be caution in interpreting these results as air temperatures do not always correlate closely with water temperatures.

With regard to the eight discrete variables landuse, dominant riparian vegetation, substrate heterogeneity and CPOM all proved significant (Table 24). Significances of individual comparisons of each category with the reference (highest) category are shown in Table 25. For landuse (Fig. 364), the proportion of sites where the species was found was greatest in category three (second least disturbance). There were significant effects between landuse categories one relative to four and three relative to four. Landuse category one (most disturbance) is significantly negative relative to category four so that the probability of finding the species decreases with more disturbance. However, landuse category three relative to category four is slightly positive so there is a slightly greater chance of finding the species with a small degree of disturbance compared to none. Similarly, dominant riparian vegetation (Fig. 365) is significant when comparing category three (trees $<10 \mathrm{~m}$) to category four (trees $>10 \mathrm{~m}$) which translates to a greater chance of finding the animal when the tree size is relatively small. For substrate heterogeneity (Fig. 366) categories one ($\$ 2$ substrate size ciasses) and three (4 substrata size classes) were also significant relative to category four (≥ 5 substrate size classes). The probability of finding the species when the number of classes is ≤ 2 is reduced compared to ≥ 5 while the probability of species presence when the number of classes is 4 is greater compared to ≥ 5.

CPOM (Fig.367) was significant overall (Table 24) showing that the species was more likely to be found at the highest percentage category $(>20 \%)$. However, none of the individual comparisons between the highest category and the others were significant (Table 25).

The firal dscrete variable to show significance was flow (Fig. 368). In this case the variable wias not significant overall, however category one (no or very small flow) shows a significant negative effect relative to flow category four (high flow) so that the chance of finding the species decreases as the flow decreases (Table 25). However, the proportion of sites where the species was found when the flow was category one (no or very small flow) was still approximately 30%; evidently the species occurs in a wide range of flows as assessed by this technique.

Also of note is the extremely high odds ratio (195.185) for isothermality for tnis species (Table 24). This occurs because isothermality varies only between 0.3 and 0.5 (ie: when transformed 0.55-0.71) and thus a theoretical change of 1 unit in this variable has an extreme influence on the probability.

5.4.2.2 Nousia (Austraionousia) nigeli

For this species the continuous variables altitude, water temperature, slope and distance from source are significant (Table 24). The higher the altitude, the lower the water temperature, the steeper the slope and the greater the distance from source the greater the probability of finding the species (Figs. 369-372).

Among the discrete variables shade, flow, CPOM, algae and macrophytes also proved to be significant (Table 24) although few individual comparisons were significant (Table 25). Exceptions include flow category one (no or very small flow) relative to flow category four (high flow) where low flow indicates a reduced probability of finding the species (Fig. 373). Algae and macrophytes also proved to be highly significant for category one ($\leq 10 \%$ cover) relative to category three ($\geqq 36 \%$ cover). In both cases the direction of the effect was positive indicating a greater success rate for finding the species if the algal and macrophyte percentage cover was low (Figs. 374, 375).

Shade and CPOM were significant overall (Table 24) although none of the individual comparisons between the highest and other categories were significant (Table 25). For shade, the proportion of sites with $N .(A)$ nigeli present was greatest in categories with high percentages of shade (ie: category three $51-75 \%$ and category four $76-100 \%$, Fig.
376) indicating a preference for shady streams. Similarly, the animal was found in a higher proportion of sites with the highest percentage of CPOM (category three, $\mathbf{> 2 0 \%}$, Fig. 377).

As with N. (A) fusca, an extremely high odds ratio for isothermality (475.681) was calculated for this species in the simple regression model (Table 24).

Table 24. Simple logistic regression analysis for the presence of Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli. The odds ratio indicates the probability of the species being present at a site relative to it being absent.

	Nousia (Australonousia) fusca			Nousia (Australonousia) nigeli		
Variables	Estimate	Odds ratio	p-value	Estimate	Odds ratio	p-value
LGALT	-0.062	0.940	0.595	0.398	1.489	0.013
LGTEMP	0.036	1.037	0.927	-1.528	0.217	0.002
LGSL.OPE	0.062	1.064	0.643	0.396	1.486	0.014
LGDFS	-0.133	0.876	0.241	-0.293	0.746	0.041
LGWIDTH	-0.044	0.957	0.746	0.085	1.088	0.620
LGDEPTH	-0.101	0.904	0.511	-0.222	0.801	0.246
PHISQR	-0.128	0.879	0.558	0.021	1.022	0.938
TS	-1.253	0.286	0.043	-0.171	0.843	0.824
LREFMTWARM	-0.237	0.789	0.435	-0.001	0.999	0.998
LREFMTCOLD	-0.480	0.619	0.042	0.067	1.069	0.819
LREFMTDRY	0.125	1.133	0.635	-0.182	0.834	0.582
MTWET	0.073	1.076	0.056	0.030	1.031	0.524
LGPWETP	-0.646	0.524	0.065	0.272	1.313	0.529
LGPDRYP	-0.574	0.563	0.163	0.407	1.502	0.435
ISOSQR	5.274	195.185	0.204	6.165	475.681	0.259
LGPSEAS	-0.320	0.726	0.338	0.006	1.006	0.989
LANDUSE	see Table 25		0.005	see Table 25		0.187
DOMRIP			0.039			0.056
SHADE			0.820			0.043
SUBHET			0.009			0.868
FLOW			0.081			0.000
CPOM			0.042			0.031
ALGAE			0.245			0.000
MACROP			0.159			0.002

Table 25. Simple logistic regression analysis for the presence of Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli showing discrete variables category by category.

	Nousia (Australonousia) fusca			Nousia (Australonousia) nigeli		
Variables	Estimate	Odds ratio	pvalue	Estimate	Odds ratio	pvalue
landuse category 1 relative to category 4	-1.304	0.271	0.006	-1.273	0.280	0.103
landuse category 2 relative to category 4	0.317	1.371	0.255	0.278	1.321	0.478
landuse category 3 relative to category 4	0.865	2.375	0.004	0.531	1.700	0.193
dominant riparian category 1 relative to category 4	-0.409	0.664	0.086	-0.431	0.650	0.172
dominant riparian category 2 relative to category 4	0.088	1.092	0.696	-0.431	0.650	0.172
dominant riparian category 3 relative to category 4	0.507	1.660	0.010	0.161	1.175	0.510
shade category 1 relative to category 4	-0.169	0.845	0.416	-0.496	0.609	0.077
shade category 2 relative to category 4	-0.071	0.931	0.733	-0.426	0.653	0.130
shade category 3 relative to category 4	0.090	1.094	0.680	0.388	1.474	0.126
substrate heterogeneity category 1 relative to category 4	-0.926	0.396	0.017	-0.015	0.985	0.970
substrate heterogeneity category 2 relative to category 4	0.113	1.120	0.605	0.101	1.106	0.700
substrate heterogeneity category 3 relative to category 4	0.664	1.942	0.003	0.194	1.214	0.476
flow category 1 relative to category 4	-0.545	0.580	0.044	-1.431	0.239	0.011
flow category 2 relative to category 4	0.465	1.591	0.053	-0.555	0.574	0.174
flow category 3 relative to category 4	0.186	1.204	0.335	0.475	1.607	0.092
CPOM category 1 relative to category 3	-0.166	0.847	0.332	-0.296	0.744	0.182
CPOM category 2 relative to category 3	-0.306	0.736	0.103	-0.293	0.746	0.226
algae category 1 relative to category 3	0.094	1.099	0.586	1.021	2.776	0.000
algae category 2 relative to caiegory 3	0.280	1.323	0.164	-0.343	0.709	0.330
macrophyte category 1 relative to category 3	0.353	1.423	0.060	0.908	2.479	0.003
macrophyte category 2 relative to category 3	-0.012	0.988	0.956	-0.206	0.813	0.572

5.4.3 Multiple logistic regression

All discrete variables were retained because many of them had significant individual predictive power for one or other of the species (Table 24) and it was considerer preferable to retain all eight at the risk of introducing redundancy into the final model, rather than exclude such potentially important predictors.

Further screening of continuous variables was necessary due to the large number of variables and the need to obtain an acceptable ratio of cases to variables for the final analysis. This was accomplished by complete, stepwise forward and stepwise backward regression runs. These were run with the following settings: convergence (the largest relative change in any cocrdinate before iterations terminate) $=1 \times 10^{-6}$; tolerance (entry of a variable that is hignly correlated with the independent variables already included in the model) $=1 \times 10^{-12}$, probability to enter (enters a variable into the model if its alpha value is less than the specified value) $=0.15$; probability to remove (removes a variable from the model if its alpha value is greater than the specified value) $=0.15$. The entry and removal values are those suggested by (Hosmer and Lemeshow 1989) to ensure entry of variables with coefficients greater than zero. Maximum number of steps was set at 20 although this was never reached.

As a result of the regression runs, it was concluded that the variables to be retained for the final stepwise logistic regression analysis for N. (A) fusca were: distance from source, subphi, temperature seasonality, mean temperatures of the warmest, driest and wettest quarters. For N. (A) nigeli the variables retained were altitude, water temperature, slope, distance from source, width, subphi, temperature seasonality, mean temperature of the coldest quarter and isothermality.

While distance from source remained a potentially good predictor the other non-BIOCLIM variables (water temperature, width, depth, slope, altitude) showed questionable predictive power. However, these were considered such fundamental variables that interactions between them were tested before deciding whether to remove them from the final analysis. The test was assessed by running multiple logistic regressions for both species for each of the fifteen possible interactions, each of which included two continuous variables plus the interaction term (Table 26).

For both species there was a high number of significant interaction terms. In order to avoid excluding potentially useful interaction terms by applying a strict $p=0.05$ cut-off, it was decided arbitrarily that all interaction terms with a p-value <0.075 would be included. For N. (A) fusca these interactions were identified as altitude*water temperature,

Table 26. Multiple logistic regression analysis for Nousia (Australonousia) fusca and Nousia (Australonousia) nigell; interactions between non-BIOCLIM continuous variables. McF Rho ${ }^{2}$ (McFaddens Rho ${ }^{2}$) is a measure of strength of association between the outcome and predictors.

	Nousia (Australonousia) fusca				Nousia (Australonousia) nigeli			
interaction	p-value	Odds ratio	$\begin{gathered} \text { Chi }^{2} \\ \text { p-value } \end{gathered}$	McF Rho ${ }^{2}$	p-value	Odds ratio	$\begin{gathered} \text { Chi }^{2} \\ \text { p-value } \end{gathered}$	McFRho ${ }^{2}$
altitude water temperature. altitude*water temperature.	$\begin{aligned} & 0.001 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	0.020 0.000 4.480	0.007	0.034	$\begin{aligned} & 0.070 \\ & 0.025 \\ & 0.051 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.068 \\ & 0.000 \\ & 3.256 \end{aligned}$	0.002	0.059
altitude slope altitude*slope	0.009 0.000 0.000	$\begin{aligned} & 1.888 \\ & 46.83 \\ & 0.542 \\ & \hline \end{aligned}$	0.001	0.047	$\begin{aligned} & 0.108 \\ & 0.262 \\ & 0.376 \end{aligned}$	$\begin{aligned} & 1.662 \\ & 3.676 \\ & 0.850 \\ & \hline \end{aligned}$	0.023	0.037
altitude distance from source altitude*DFS	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & \hline \end{aligned}$	0.164 0.010 2.102	0.000	0.077	$\begin{aligned} & 0.325 \\ & 0.051 \\ & 0.066 \end{aligned}$	$\begin{aligned} & 0.651 \\ & 0.093 \\ & 1.435 \end{aligned}$	0.012	0.043
altitude stream width altitude*stream width	$\begin{aligned} & 0.073 \\ & 0.061 \\ & 0.068 \end{aligned}$	$\begin{aligned} & 0.714 \\ & 0.209 \\ & 1.290 \\ & \hline \end{aligned}$	0.252	0.011	0.140 0.799 0.672	$\begin{aligned} & 1.441 \\ & 0.750 \\ & 1.080 \end{aligned}$	0.059	0.029
altitude stream depth altitude*stream depth	$\begin{aligned} & 0.082 \\ & 0.019 \\ & 0.024 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.654 \\ & 0.081 \\ & 1.515 \end{aligned}$	0.083	0.019	0.271 0.836 0.909	$\begin{aligned} & 1.059 \\ & 0.760 \\ & 1.026 \\ & \hline \end{aligned}$	0.089	0.025
water temperature slope water temp.*slope	$\begin{aligned} & 0.022 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.194 \\ & 0.032 \\ & 4.253 \\ & \hline \end{aligned}$	0.012	0.031	$\begin{aligned} & 0.490 \\ & 0.039 \\ & 0.368 \end{aligned}$	$\begin{aligned} & 0.438 \\ & 0.148 \\ & 1.573 \end{aligned}$	0.007	0.047
water temperature distance from source water temp*DFS	$\begin{aligned} & 0.001 \\ & 0.002 \\ & 0.001 \end{aligned}$	26.88 25.60 0.253	0.002	0.043	$\begin{aligned} & 0.754 \\ & 0.091 \\ & 0.073 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.406 \\ & 7.417 \\ & 0.415 \\ & \hline \end{aligned}$	0.004	0.052
water temperature stream width water temp.*stream width	$\begin{aligned} & 0.845 \\ & 0.919 \\ & 0.877 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.096 \\ & 1.097 \\ & 0.946 \\ & \hline \end{aligned}$	0.986	0.000	$\begin{aligned} & \hline \mathbf{0 . 0 0 5} \\ & 0.719 \\ & 0.602 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.162 \\ & 0.675 \\ & 1.271 \end{aligned}$	0.014	0.041

Table 26 cont'd.

	Nousia (Australonousia) fusca				Nousia (Australonousia) nigeli			
interaction	p-value	Odds ratio	$\begin{gathered} \text { Chi }^{2} \\ \text { p-value } \end{gathered}$	McF Rho ${ }^{2}$	p-value	Odds ratio	$\begin{gathered} \mathbf{C h i}^{2} \\ \text { p-value } \end{gathered}$	McFRho ${ }^{2}$
water temperature stream depth water temperature*stream depth	$\begin{aligned} & 0.132 \\ & 0.096 \\ & 0.081 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 10.72 \\ & 0.378 \end{aligned}$	0.301	0.010	$\begin{aligned} & 0.250 \\ & 0.877 \\ & 0.943 \end{aligned}$	$\begin{aligned} & 0.249 \\ & 0.766 \\ & 1.050 \end{aligned}$	0.019	0.039
slope distance from source slope*DFS	$\begin{aligned} & 0.003 \\ & 0.002 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.397 \\ & 0.500 \\ & 1.765 \end{aligned}$	0.000	0.051	$\begin{aligned} & 0.491 \\ & 0.081 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 0.790 \\ & 0.605 \\ & 1.490 \end{aligned}$	0.007	0.048
slope stream width slope*stream width	$\begin{aligned} & 0.652 \\ & 0.169 \\ & 0.083 \end{aligned}$	$\begin{aligned} & 0.928 \\ & 0.746 \\ & 1.263 \end{aligned}$	0.323	0.010	$\begin{aligned} & 0.088 \\ & 0.986 \\ & 0.179 \end{aligned}$	$\begin{aligned} & 1.446 \\ & 1.005 \\ & 1.257 \end{aligned}$	0.013	0.042
slope stream depth slope*stream depth	$\begin{aligned} & 0.046 \\ & 0.051 \\ & 0.038 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.887 \\ & 0.598 \\ & 1.424 \end{aligned}$	0.149	0.015	$\begin{aligned} & 0.039 \\ & 0.265 \\ & 0.241 \end{aligned}$	$\begin{aligned} & 2.155 \\ & 0.680 \\ & 1.254 \end{aligned}$	0.055	0.029
distance from source stream width DFS*siream width	$\begin{aligned} & 0.935 \\ & 0.168 \\ & 0.138 \end{aligned}$	$\begin{aligned} & 0.987 \\ & 1.474 \\ & 0.861 \end{aligned}$	0.287	0.011	$\begin{aligned} & \hline .047 \\ & 0.258 \\ & 0.935 \end{aligned}$	$\begin{aligned} & 0.626 \\ & 1.424 \\ & 1.011 \end{aligned}$	0.057	0.029
distance from source stream depth DFS*stream depth	$\begin{aligned} & 0.047 \\ & 0.140 \\ & 0.078 \end{aligned}$	$\begin{aligned} & 0.614 \\ & 1.719 \\ & 0.782 \end{aligned}$	0.191	0.013	$\begin{aligned} & 0.232 \\ & 0.864 \\ & 0.710 \end{aligned}$	$\begin{aligned} & 0.691 \\ & 1.075 \\ & 0.938 \end{aligned}$	0.219	0.017
stream width stream depth stream width*stream depth	$\begin{aligned} & \hline 0.759 \\ & 0.271 \\ & 0.189 \end{aligned}$	$\begin{aligned} & 1.070 \\ & 0.736 \\ & 0.825 \end{aligned}$	0.515	0.006	$\begin{aligned} & 0.672 \\ & 0.265 \\ & 0.771 \end{aligned}$	$\begin{aligned} & \hline 0.736 \\ & 1.162 \\ & 0.950 \\ & \hline \end{aligned}$	0.407	0.011

altitude*slope, altitude*distance from source, altitude*width, altitude*depth, water temperature*slope, water temperature*distance from source, slope*distance from source and slope*depth. For N. (A) nigeli, the important interactions were determined as altitude*water temperature, altitude*distance from source, water temperature*distance from source and slope*distance from source. These results indicate that the interactions might have high predictive power and should remain in the final analysis. The Systat manual (Systat 1997) recommends that individual variables constituting such interactions should also remain in the final analysis.

As ? result of this screening, 29 variables were retained for the final stepwise logistic regression analysis for N. (A) fusca, 21 continuous and eight discrete: substrate phi, distance from source, temperature seasonality, mean temperatures of the warmest, driest and wettest quarters, altitude*water temperature, altitude*slope, altitude*distance from source, altitude*width, altitude*depth, water temperature*slope, water temperature*distance from source, slope*distance from source, slope*depth, waier temperature, altitude, distance from source, stream width, stream depth, slope, landuse, dominant riparian vegetation, shade, substrate heterogeneity, flow, CPOM, algae and macrophytes.

For N. (A) nigeli, 21 variables were selected for inclusion in the final stepwise logistic regression, 13 continuous and eight discrete: substrate phi, mean temperature of the coldest quarter, isothermality, altitude*water temperature, altitude*distance from source, water temperature*distance from source, slope*distance from source, altitude, water temperature, slope, distance from source, stream width, temperature seasonality, landuse, dominant riparian vegetation, shade, substrate heterogeneity, flow, CPOM, algae and macrophytes.

These variables were included in final stepwise forward and backward logistic regressions using the settings listed earlier. These were run using the Systat command editor to force the individual variables involved in interaction terms into the model. Although the screening process had already substantially reduced the number of variables it was considered that with 29 and 21 variables retained the ratios of cases to variables were still excessively low. Therefore, stepwise analyses to refine the models further were considered appropriate. For N. (A) fusca, both the forward and backward processes produced the same model (Table 27). For N. (A) nigeli, the stepwise backward model aborted after six steps, so the forward regression was considered the final model (Table 28).

Table 27. Multiple !ogistic regression model for Nousia (Australonousia) fusca.

Table 28. Multiple logistic regression model for Nousia (Australonousia) nigeli.

5.4.3.1 Nousia (Australonousia) fusca

For N. (A) fusca, significant continuous variables from the final multiple logistic regression (Table 27) model included altitude and distance from source. The lower the altitude the greater the chance of finding the species, and as distance from source increases the probability of finding N. (A) fusca decreases. This appears contradictory and is evidertly related to the significant interaction between these two variables. From examination of the 3D plot of calculated probabilities from a model containing both terms and their interaction (Fig. 378), it is clear that the predicted probability of presence of the species increases with altitude to approximately 500 m then decreases as the altitude increases further. In conjunction with this, the predicted probability of finding the species also increases with distance from source up to approximately 9 km and then decreases with greater distance from the source.

The only other continuous variable of note is the mean temperature of the warmest quarter which is almost significant (p-value $=0.051$). The higher the temperature of the warmest quarter the higher the probability of finding the species.

Of the discrete variables only macrophytes and substrate heterogeneity were significant. Macrophyte category one relative to category three reveals that the lower the percentage of macrophyte cover the greater the chance of findirig the species. Both substrate heterogeneity categories one and three are significant relative to four but iri different directions. If substrate heterogeneity is ≤ 2 the chances of finding the species are reduced relative to ≥ 5. However, if substrate heterogeneity is 4 the probability of finding the species is increased compared to ≥ 5.

5.4.3.2 Nousia (Australonousia) nigeli

The multiple logistic regression model for N. (A) nigeli (Table 28) shows far fewer significant variables than for N. (A) fusca. Subphi is the only significant continuous variable, showing that a high ϕ value (ie: greater number of smaller sized particles) corresponds to a greater chance of finding the species. Of the categorical variables, only two showed significant comparisons. Shade category two (26-50\%) is negative relative to category four (76-100\%) so that the probability of finding the species increases as the percentage of shade slightly increases. Algae category one ($\leq 10 \%$) is positive relative to category three ($11-35 \%$) indicating that the lower the percentage of algae the greater the chance of finding the species.

5.4.4 Model performance evaluation

For the simple logistic regression each of the variables in the final model can be considered to predict preferred habitat for each species when considered individually. However, McFadden's Rino (a measure of strength of association between the outcome and the predictors) is quite low for all the predictor variables (<0.07, see Table 24). According to Tabachnick and Fidell (1996) McFadden's Rho ${ }^{2}$ is only considered "very satisfactory" between the values of 0.20 and 0.40 . The low valuer "r both N. (A) fusca ath N. (A) nigeli indicate that the predictive power of the significant variables is relatively low when considered individually.

Multiple logistic regression model performance was assessed by alternative measures recommended by Fielding and Bell (1997 and Systat (1997) and Manel et al. (2001) for comparison. Values were obtained or calculated from the model prediction success output and the deciles of risk output from Systat. Measures used, with an explanation of how they were derived, and an overall percentage or ratio figure are shown in Table 29.

Model performance appears to vary greatly depending on which measure is used. Overall prediction success is often used by ecologists and shows that the models obtained very successfully place sites into presence or absence categories $(70.4 \%$ for N. (A) fusca and 83.9% for N. (A) nigell). A criticism of this measure, however, is that it does not take into account chance success in correctly predicting cases (Manel et al. (2001).

The sensitivity calculation (percent of true positive correctly predicted) shows a 55% success in correctly predicting the presence of N. (A) fusca and a 32% success in predicting the presence of N.(A) nigeli. The Systat default method of calculating sensitivity, assigning outcomes partiaily to each class according to predicted probability, produces very similar figures (53% and 39% respectively). Specificity (percent of true negatives correctly predicted) shows a extremely high success for both species (N. (A) fusca $81 \%, N$. (A) nigeli 96%); somewhat higher than the Systat specificity of 69% and 86% respectively. Sensitivity tends to be more correctly predicted when there is a high prevalence and specificity more correctly predicted when a prevalence is low (Manel et al. (2001). This explains why the predictions for specificity for both species are better than sensitivity as there is a higher proportion of negative cases for each species (eg 161/267 for N. (A) fusca and 217/267 for N. (A) nigell). For N. (A) nigeli, in particular, as the prevalence is so low the prediction success for absence is extremely high (96%).

Table 29. Assessment of multiple logistic regression model performance for Nousia (Australonousia) fusca and Nousia (Australonousia) nigeli using alternative measures.

			N. (A) fusca		N. (A) nigeli	
Model performance measure	Definition	Formulae \dagger	\%	value	\%	value
Overall prediction success	\% of all cases correctly predicted	$a+d / n$	70.41		83.90	
Sensitivity	\% of true positives correctly predicted	$a /(a+c)$	54.72		32.00	
Systat sensitivity	\% of true positives correctly predicted, but outcomes assigned partially to each class according to predicted probability	$a /(a+c)$	52.80		38.70	
Specificity	\% of true negatives correctly predicted	$d /(b+d)$	80.75		95.85	
Systat specificity	\% of true positives correctly predicted but outcomes assigned partially to each class according to predicted probability	$d(b+d)$	68.90		85.90	
Odds ratio	ratio of correctly assigned cases to incorrectly assigned cases	$(\mathrm{a} * \mathrm{~d}) /(\mathrm{c} * \mathrm{~b})$		5.07		10.87
McFadden's Rho ${ }^{2}$	strength of association between outcome and predictors	${ }^{-}$		0.182		0.252
Cohen's kappa (k)	proportion of specific agreement.	$\begin{gathered} {[(a+d)-(((a+c)(a+b)+(b+d)(c+d)) / n] /} \\ {[n-((a+c)(a+b)+(b+d)(c+d) / n]} \end{gathered}$		0.365		0.345

\dagger (a) correctly predicted positive occurrences, (b) falsely predicted positive occurrences, (c) falsely predicted negative occurrences and (d) correctly predicted negative occurrences, (n) overall number of cases

An alternative assessment of model success is the odds ratio which is the ratio of correctly assigned cases to incorrectly assigned cases. However, Manel et al. (2001) also found the effects of prevalence to be highly significant, evident here in the high odds ratio for N. (A) nigeli.

Multiple logistic regression output also gives an overall McFadden's Rho ${ }^{2}$. McFadden's Rho ${ }^{2}$ for N. (A) nigeli is 0.252 (Table 28) which is considered "very satisfactory" (ie: between 0.20 and 0.40 , Tabachnick and Fidell 1996). The prediction success for N. (A) fusca is somewhat less than satisfactory at 0.182 (Table 27).

Manel et al. (2001) suggest as an alternative measure of model performance Coher's kappa (k), or proportion of specific agreement, which is easily calculable and provides a more accurate measurement of prediction success by accounting for falsely predicted positive and negative occurrences. Further, Cohen's kappa is considered largely insensitive to prevalence. Alternative interpretations of the value of kappa have been made by various authors. Landis and Koch (1977) suggested < 0.4 indicates poor agreement, while >0.4 indicates good agreement but expanded this to encompass more categories where values of $0.0-0.4$ were considered as slight to fair model performance, 0.4-0.6 moderate, 0.6-0.8 substantial and 0.8-1.0 almost perfect (Landis and Koch 1977; Manel et al. 2001). Comparison of simulated vegetation maps with field derived maps led Monserud and Leemans (1992) to propose the following comprehensive scale for kappa values: $0.00-0.05=$ no agreement, $0.05-0.20$ very poor, $0.20-0.40$ poor, $0.40-0.55$ moderate, $0.55-0.70$ good, $0.70-0.85$ very good, $0.85-0.99$ excellent, $0.99-1.00$ perfect. A.scordingly, the final multiple model for N.(A) fusca has 'slight to fair' prediction success according to Landis and Koch (1977) and 'very poor' according to Monserud and Leemans (1992). N.(A) nigeli prediction success is also 'slight to fair' Landis and Koch (1977) or simply 'poor' Monserud and Leemans (1992).

If we accept kappa as the more accurate assessment of model performance, it is clear that the predictive power of both models could be substantially improved. One obvious possible reason for poor model performance is that the species were overlooked at sites where they were actually present. In this respect it is unfortunate that collecting was done over three relatively dry summers in Victoria (Beaureau of Meterology 2002) so a number of potentially interesting sites were dry or running at very low flow. A greater number of visits to each individual site would obviously have been an advantage.

Other possible improvements that may be considered are the inclusion of more environmental variables such as pH , oxygen, conductivity, flow variability, turbidity, nutrient concentrations. For example (Marchant eí al. 1994) found changes in
macroinvertebrate communities in Victorian streams were closely associated with altitude (and correlated variables such as water temperature and dissolved oxygen', substratum and conductivity.

Spot water temperature measurements spread over several long collecting seasons probably failed to adequately represent the thermal regime of the streams. Continuous temperature recording at such a large number of sites was impractical. The relatively strong response of N. (A) nigeli to the spot water temperature measurements suggests that better temperature data may well have had high predictive value.

5.5 Discussion

5.5.1 Nousia (Australonousia) fusca

The simple logistic regression model reveals a number of variables which individually help predict the distribution of the species. The temperature preferences for small differences between warmest and coldest portions of the year and winter temperatures that are not too cold may relate to the uptimal thermal regime hypothesis (Sweeney and Vannote 1978). Although the species may still be present outside the optimal thermal regime, it may have reduced abundance at such sites, diminishing the likelihood of it being found.

Several other instream variables (CPOM, flow and substrate heterogeneity) were shown to have an effect on the distribution of the species. N. (A) fusca prefers high CPOM, relatively high flows and a high diversity of substrate classes, which is typical of an upland stream environment.

It is easy to interpret a reduced number of substrate size classes as unfavourable habitat since this would reduce the complexity of the environment that the majority of benthos prefer (jowett and Richardson 1990; Brooks and Boulton 1991; Marchant et al. 1994). However, a preference for four substrate size classes as opposed to five or more than five is more difficult to interpret. Perhaps a high number of size classes introduces the extremes of the ϕ scale into the equation (bedrock, silt or clay) which might indicate either a headwater stream or lowland reach. In either case, food availability may be reduced along with the fine organic matter that accumulates between the abundant crevices of pebble-sized particles (Minshall 1984; Brooks and Boulton 1991). Predator avoidance may also be more difficult for mayflies in an environment with a reduced number of crevices.

Undisturbed surrounding landuse and the height of dominant bankside vegetation does not directly affect the species. They can however have an effect on the stream through processes such as erosion, which in turn can alter the hydrological regime of the stream and also substrate composition and dissolved oxygen concentration. Surprisingly, the species prefers the bankside vegetation to be dominated by small ($<10 \mathrm{~m}$) rather than larger $>10 \mathrm{~m}$) trees. It is conceivable that introduced plant species may indeed make up a large part of the small trees ($<10 \mathrm{~m}$) of the riparian zone as native eucalypts tend to be the dominant riparian trees over 10 metres in height for a large part of Victoria at least (Conn 1993). However, this pattern may also reflect the sampling strategy where easy access to the stream was preferable to more isolated areas. Vehicle access and the accompanying disturbance is likely to promote the introduction of weeds and exotic plants.

Each of the variables in the final model can be considered to have predictive power for the probability of finding the species when considered individually. In the multiple logistic regression model, however, the predictive power may increase or decrease depending on the influence of the other variables. in fact, only one variable (substrate heterogeneity) was significant both singly and in the multiple regression model for N. (A) fusca.

It appears that altitude, distance from source and the interaction term are some of the more useful variables for predicting the presence of the species. Conditions at altitudes above 500 m and closer than 9 km from the source appear to be progressively less suitable. This may be related to changes in instream conditions from high altitude streams with high proportions of bedrock/boulders and little CPOM to a more mixed substrate with higher CPOM. For example, substrate heterogeneity increases with distance from source within the first 9 km (Fig. 379) then generally decreases with distance from source from this point (Fig. 380). Also, CPOM increases with decreasing altitude until 500 m (Fig. 381) then, if anything, the trend is reversed (Fig.382).

In fact, the interpretation that the animal prefers to be at high altitudes and close to the source only until a certain point also appears consistent with the effects of temperature variables in the simple logistic regression models, probably due to the close relationship between altitude and temperature (Minshall 1988; Power et al. 1988). Preference for litlle variation between the winter and summer temperatures and for winter temperatures that are not extremely cold indicates that the very highest altitudes would be unsuitable for the species. Unsuitability of lower altitudes may relate to excessive summer water temperature and perhaps associated deoxygenation.

5.5.2 Nousia (Australonousia) nigeli

The simple logistic regression models for N. (A) nigeli reveal a greater number of significant variables than for N. (A) fusca. Each significant variable, whether directly impacting on the stream biota (low water temperature, high flow, low percentages of algae and macrophytes and high percentages of shade and CPOM) or indirectly impacting (high altitude, small distance from source and steeper slopes) taken together are all indicative of an upland stream, notwithstanding the limitations of the RCC in Australia (Vannote et al. 1980). However, high levels of CPOM in the stream are predominantly the result of litter drop from bankside vegetation and can be directly associated with high levels of shade. The species preference for high CPOM probably precludes arid and alpine zones where riparian shading is sparse (Boulton and Brock 1999) therefore a wooded upland stream is indicated. In fact Fig. 367 does show that CPOM is reduced at higher altitude sites.

The importance of all the above variables is not reflected in highly significant effects in the multiple logistic regression model for N. (A) nigeli. Only three variables in the final model are significant with only shade and algae common between the simple and multiple models. The high percentages of shade and low percentages of algae shown to predict the probability of finding the species strengthen the findings of the simple regression model.

The oniy other variable that was significant was substrate phi, where the presence of smaller sized particles increased the probability that the species was present. The mean ϕ value for sites where the species was present was -2.1 which corresponds to gravel sized particles $(2-16 \mathrm{~mm})$. This is somewhat finer than the suggested preferred particle size class for Australian macroinvertebrates of 16-64mm (Brooks and Boulton 1991), however it must be borne in mind that the substrate phi figures here are an average for the whole stream bed; therefore presence of very fine particles, such as silt, may reduce the average and the species could, in fact, be inhabiting coarser parts of the substrate. However, this species was certainly recovered, on a number of occasions, from pools dominated by finer particles and is clearly able to tolerate such conditions.

Altitude, slope, distance from source, water temperature and the interaction of distance from source*slope were not significant in the final model, despite their low p-values when considered in isolation. This could be because the discrete variables present in the final model rendered these continuous variables redundant.

5.5.3 Conclusions

For each species there are numerous differences between the variables significantly associated with presence. CPOM is the only variable which was significant for both species in simple logistic regression analysis (Table 24) although this variable was only included in the final multivariate model for N. (A) rigeli (Table 28). Of the remaining discrete variables landuse, dominant riparian vegetation and substrate heterogeneity were significant only for N. fusca and shade, flow, algae and macrophytes only for N. nigeli (Table 24).

For N. (A) nigeli, altitude, water temperature, slope and distance from source were all individually significant compared to N. (A) fusca where none of these variables were significant (Table 24) unless included in a model which contained interactions between them (Table 26). For example, for N. (A) fusca there is a clear peak probability of occurrence at intermediate altitude and water temperature (interaction term $p=0.001$, Table 26) whereas with N. (A) nigeli the peak probability is located at high altitudes and cooler water temperatures (interaction term $p=0.051$, Table 26). N. (A) nigeli is associated with steeper slopes, shorter distance from source, higher altitudes and colder temperatures than N. (A) fusca. In particular maximum water temperature recorded at sites where N. (A) nigeli was found was only $17^{\circ} \mathrm{C}$ compared to a maximum of $26^{\circ} \mathrm{C}$ at sites where N. (A) fusca was present. Clearly, N. (A) nigeli is more restricted to high altitude cool streams. This is entirely consistent with N. (A) fusca preferring low temperature seasonality and higher mean temperature of the coldest quarter, whereas N. nigeli shows no significant response to either variable (Table 24).

Another difference between the species is that the final model for N. nigeli inciudes a highly significant effect of substrate phi (Table 28) whereas this variable has no importance for N. (A) fusca (Table 27). This may indicate tolerance of a broader range of substrate conditions, consistent with the wider range of average substrate phi values encountered at sites where N. (A) fusca was found (-7.6 to 6.8) compared with N. (A) nigeli (-6.5 to 3.6). Alternatively, N. (A) nigeli may prefer finer substrates.

It is clear that the two species differ substantially in which environmental variailes have most influence on them, and illustrates the desirability of recording a wide range of bioassessment variables in order to capture the information relevant to different species.

6. THE PHYLOGENETIC RELATIONSHIPS OF THE AUSTRALIAN LEPTOPHLEBIIDAE.

"I am beginning to push Species Plantarum completely out of my thoughts....
 Shall I work myself to death?
 Shall I never get to se:: a taste of the world?
 What do I gain by all this?"

6.1 Introduction

The family Leplophlebiidae is considered to be one of the oldest and most diversified mayfly families (Peters 1988). The Leptophlebiidae are distributed woridwide with over 100 genera; predominantly in the southern Hemisphere (Hubbard 1990).

Leptophlebiid species occur in a wide variety of habitats including fast flowing upland streams, lowland standing or slow flowing waters and lakes. Nymphs are predominantly categorised as swimmers, clingers or sprawlers (Edmunds and Waltz 1996) which are adapted to clinging to submerged objects and swimming short distances. Morphological adaptations include dorso-ventral flattening, long curved tarsal claws and mouthparts sometimes arranged as a suction disc. This is in stark contrast to the robust burrowing mayflies (superfamily Ephemeroidea) which have developed anteriorly directed mandibular tusks to accommodate their burrowing behaviour.

Although the monophyly of the family Leptophlebiidae within the superfamily Leptophlebioidea was in question for some time (Edmunds 1972; McCafferty and Edmunds 1979), it is now well established (Lancia and Soldán 1985; McCafferty 1991b). However, phylogenetic relationships within the family have not been considered in total (due to the large number of species invoived) but rather studied in smaller groups within geographic regions such as the Southern Hemisphere (Tsui and Peters 1975), the Eastern Hemisphere (Peters and Edmunds 1970), South America (Pescador and Peters 1980a) and New Zealand (Towns and Peters 1979; Towns and Peters 1996) or within certain genera, eg: Meridialaris and Massartellopsis (Pescador and Peters 1987), Miroculis (Savage and Peters 1983), Nousia (Pescador and Peters 1985), Penaphlebia (Pescador and Peters 1991), Thraulus (Grant 1985) and Ulmeritus (Domínguez 1995).

Relationships amongst the Australian genera are virtually unknown. Apart from the inclusion of some Australian genera in an investigation of the cool-adapted Leptophlebiidae of South America (Pescador and Peters 1980a), and more recently a cladistic analysis of the Meridialaris lineage (sensu Pescador and Peters 1980a) in Australia (Christidis 2001) no cladistic analysis of the Australian Leptophlebiidae has been performed.

6.2 Origins of the Leptophlebiidae

The earliest recognition of a leptophlebiid taxon was a discussion of the newly established genus Leptophlebia proposed by Westwood (1840). He identified a number of characters in both the larvae and adult form that distinguished it from the genus

Ephemera (Ephemeridae) to which it formerly belonged; namely the lack of horns and pairs of thin tapering gills in the nymph, the "delicacy of the veins of the wings" (p.32) and the absence of numerous crossveins in the anal region of the forewing in the adult. Despite these differences, however, the genus was still considered part of the family Ephemeridae.

Pictet (1843-1845) identified seven genera based on the number of crossveins in the hindwings, the condition of the male oculi, the number and proportions of caudal setae in the imago and the nymph habitat. Unfortunately, he included all Leptophlebia in Potamanthus perhaps not realising the existence of the name Leptophlebia. He did admit that he assumed some of these species did not belong in Potamantius but was prevented from reaching a definitive decision by lack of available material.

The designation of Potamanthus remained unchanged until 1868 when Eaton published a catalogue of genera together with named types and notes on geographical distribution in the Entomologists' Monthly Magazine (Eaton 1868-69). Here he retained Potamanthus but named a new genus Leptophlebia based on differences in the wings and genitalia. Later, Eaton attempted another revision (Eaton 1871) and although Leptophlebia was retained he had significant doubts as to the placement of the taxon, frustrated primarily by the lack of nymphal material.

Following this "A Revisional Monograph of the Recent Ephemeridæ" (Eaton 1883-1888) was published but this resulted only in minor changes to the family despite the inclusion of the examination of nymphs. Eaton recognised a group (which he called a section) of nine genera which he referred to as "the Leptophlebia type" (Atalophlebia, Leptophlebia, Elastur:s, Adenophlebia, Hagenulus, Thraulus, Calliarcys, Habrophlebia and Choroterpes). This was essentially the beginning of the family Leptophlebiidae which was charasterised by the following: in the adult (1) the pronotum of the male with a lengthwise ridge and excised posterior border; (2) hind tibia longer than femur and tarsus shorter than tibia; (3) anal veins (A_{1} and A_{2}) convergent and in the nymph (1) first maxillary palp longer than lacinia; (2) labium paips small; (3) pairs of tracheal abdominal gills on segments one to seven and (4) posterolateral projections on posterior abdominal segments.

Banks (1900) stibsequently established authorship for the family Leptophlebiidae by the recognition of seven tribes (Bætiscins, Polymitarcini, Leptophlebini, Siphlurini, Ephemerini, Bætini and Cænini) which are essentially analogous to modern families (Peters and Edmunds 1964). Characteristics of the Leptophlebini include: (1) three
caudal filaments; (2) male eyes contiguous; (3) hind tarsi four jointed; (4) hindwings not angulated on costa near base and (5) numerous costal crossveins.

Subsequent revisions and taxonomic descriptions (eg. Klapálek 1909; Ulmer 1920; Phillips 1930; Barnard 1932; Uimer 1932-33; Needham et al. 1935; Burks 1953; Grandi 1960) have enabled a more complete definition of the family to emerge. The most comprehensive diagnosis of the family was outlined by Peters and Edmunds (1964) and updated in Towns and Peters (1996). It is summarised in Table 30.

6.3 Inter-familial phylogenetic relationships of the Leptophlebiidae

Perhaps the earliest phylogenetic classification of Ephemeroptera was attempted by Spieth (1933) using North American fauna. The extensive study was based on the gills and mouthparts of the nymp.s and the wings and genitalia of the adults. The resulting classification puts the families Leptophlebiidae and Ephemeridae within the superfamily Ephemeroidea, showing the two families to be closely related. However, the classification was limited by the phenetic, rather than cladistic, nature of the data. Edmunds and Traver 1954a) placed the family Leptophthiidae with Ephemerelidae and Tricorythidae in new superfariily Leptophlebioidea wir: no explanation, although it was presented as a preliminary revision. Demoulin (1958) Hiciwever disagreed, placing Leptophlebiidae with Heptageniidae and Ametropodidae within the new superfamily Heptagerioidea. A new superfamily Ephemerelloidea was created for Ephemerellidae and Tricorythidae based on new fossil evidence. However, he believed Leptophlebiidae to be somewhat intermediary between Heptageniidae and Ephemerelloidea and that given more evidence Leptophlebiidae might ultimately require a superfamily of its own.

A revision of the phylogeny of the order Ephemeroptera placed Leptophiebiidae back with the superfamily Leptophlebioidea along with Ephemereilidae and Tricorythidae (Edmunds 1962). The superfamily Leptophlebioidea was presented as most closely related to Ephemeroidea. This revision was based on the cumulative knowledge gained from various investigations (Edmunds and Traver 1954b; Edmunds 1957; Edmunds 1959; Edmunds and Traver 1959). Paleontological data was not included as it was considered too inadequate to determine homologies of extant forms. Edmunds et al. (1963) followed up on this work with the production of a key designed to distinguish between nymphs of the families. He stated Leptophlebiidae were distinguished by: (1) the presence of morphologically variable double lameilate gills; (2) mandibular tusks rarely present and (3) the absence of an enlarged thoracic notum forming a shield which partly covers the abdomen. He noted that the inclusion of some highly modified southern hemisphere Leptophlebiidae has resulted in a somewhat altered diagnosis of the family.

Table 30. Diagnosis of the family Leptophlebiidae based on the work of Peters and Edmunds (1964) and Towns and Peters (1996)..

Imago	
eyes	male eyes divided - upper portion with medium to large facets, lower portion with small facets; on a stalk or sessile; female eyes not divided, with small facets
ocelli	median and lateral ocelli well developed
forewings	veins C and Sc well developed; vein MA_{2} attached at base to MA_{1}, one intercalary present between the two; vein MP_{2} free at base or attached at base to MP_{1} or attached at base to $\mathrm{CuA}_{\text {; }}$ one intercalary between $M P_{2}$ and $M P_{1}$; no intercalaries between $M P_{2}$ and $C u A_{i}$ vein ICu_{1} parallel or strongly divergent distally to CuA; several varied intercalaries between veins CuA and CuP; vein CuP strongly recurved; anal veins present, all strongly recurved; cross veins few to n!merous
hindwings	present or absent, if present reduced to moderately large; costal projection well developed to absent; venation varied; crossveins few to numerous
legs	male foreleg tarsi 5 segmented with segment 1 shortest, middle and hind legs 4 segmented; female leg tarsi 3 segmented; tarsal claws similar or dissimilar
female genitalia \& associations	ovipositor present or absent; egg guide present or absent; $9^{\text {mh }}$ abdominal sternum entire to deeply cleft
male genitalia	forceps 2-4 segmented; segments 2 and 3 , when present, shorter than segment 1 ; penis lobes divided to fused, with or without spines or appendages.
caudal filaments	3, well developed, terminal filament shorter or longer than cerci.
Nymph	
body shape	depressed
head	prognathous, semi-prognathous or hypognathous
clypeus	fused entirely or parily to frons
labrum	with or without anteromedian emargination, emarginatio. 7 with or without denticles
mandibles	outer margin straight to angular, naked or with hair
maxillae	galea-lacinia bearing an apical row of sparse to dense long narrow setae, a subapical row of pectinate spine-like setae and a row of long hair like setae on the inner margin; with or without antero-lateral tooth like projection; cardo with or without a row of marginal setae; palpi 3 segmented
hypopharynx	well developed, with or without lateral processes.
labium	glossae and paraglossae well developed; glossae straight to strongly curved ventrally; submentum with or without setae on lateral margins palpi 3 segmented
pronotum	with or without spine-like setae on antero-lateral margins
tarsal claws	with or without denticles
gills	on abdominal segments 1-7, 2-7 or 1-6; slender to plate like; vertral lamellae present or absent
caudal filaments	3; well developed; with whorls of setae, without lateral (swimming) setae

Criticisms of Edmunds' work were put forward by Tshernova (1970) who disagreed with the exclusion of the paleontological evidence. Her classification took into account evidence from the newly discovered Mesozoic and Recent fauna. She includes Leptophlebiidae within the Siphlonuroidea, a relatively new superfamily first proposed by Demoulin (1958), along with the Metropodidae, Ametropodidae, Isonychiidae, Siphlonuridae, Baetidae and Siphlaenigmatidae, based on the unspecialised venation of the forewing, small or absent hindwings, and the free swimming mode of locomotion of the nymph.

Around the same time, examination of the comparative external anatomy of nymph and adult mayflies and new paleontological evidence led to the placement of Leptophlebiidae as a primitive clade of what Edmunds (1962) recognised as Ephemeroidea (Landa 1969; Landa 1973). Edmunds (1972) then produced a classification based on data from biogeographical, morpinological and the palaeontologic sources representing Leptophlebiidae as a highly diverse distinct lineage primitive to the closely allied Ephemeroidea. This classification was updated in Edmunds et al. (1976). An alternative classification was presented by Riek (1973), based largely on nymphal characters, that once again closely allied the Leptophlebiid, Ephemerellid arid Trichorythid families.

The classification proposed by McCafferty and Edmunds (1979) was little modified from Edmunds et al. (1976) with the establishment of six superfamilies within two suborders: the Schistonata, (Baetoidea, Leptophiebioidea and Ephemeroidea) and the Pannota (Ephemerelloidea, Caenoidea and Prosoptomatoidea). The classification indicates the ephemerellid-tricorythid lineage as derived from a common ancestor with the superfamilies Caenoidea and Prosopistomatoidea. Leptophlebioidea had a common ancestor with Ephemeroidea both of which stemmed from a pre-leptophlebioid or leptophlebioid-like ancestor. Suborder ciassification was based on thoracic structure of the nymph and, to a lesser extent, imago morphologies.

The next major phylogenetic classification involved a comprehensive study of the comparative anatomy of the larvae (Landa and Soldán 1985) which included the ventral nerve chord, tracheal system, alimentary canal, malpighian tubules and internal reproductive organs. The resultant classification varied from McCafferty and Edmunds (1979) by altering the composition of the two suborders. Schistonota contained four superfamilies (Baetoidea, Leptophlebioidea, Ephemeroidea and Heptagenioidea) and Pannota contained only two (Ephemerellidae and Caenoidea [encompassing Prosopistomatidae]). The placement of the major stem group Leptophlebioidea (containing only the family Leptophlebiidae) was unchanged showing a close association and common ancestor with Ephemeroidea.

The higher phylogenetic classification was again revisited by McCafferty (1991b) where the suborder Schistonota was identified as a paraphyletic grouping and became no longer valid. Pannota became an infraorder within three new suborders: Rectracheata, Setisura and Pisciforma. The Rectracheata, which now contained the three infraorders Vetulata, Lanceolata and Pannota, was established based on synapomorphies elucidated by the internal anatomy studies (Landa and Soldán 1985). Lanceolata contained the superfamilies Leptophiebioidea, Ephemeroidea, and the new Behningioidea, upgraded to superfamily status because it is highly specialised and contains many autapomorphies. Within the Lanceolata, Leptophlebiidae is shown as more closely refated to Behningiidae than Ephemeroidea.

The latest revision of the higher classification of mayflies has been completed for the North American fauna (McCafferty 2002). Rectracheata lost its suborder status and the new suborder Furcatergalia now contained three infraorders: Lanceolata (leptophlebiids), Palpatarsa (primitive burrowing mayflies, Behningiidae) and the Scapphodonta (burrowing mayflies, Ephemeroidea). Essentially, these three infraorders replaced the superfamilies of the former infraorder Lanceolata. The relationships between the infraorders within the new suborder have remained the same.

6.4 Intra-familial phylogenetic relationships of Leptophlebiidae

The first phylogenetic analysis of any group of Leptophlebiidae was attempted by Peters and Edmunds (1970). They proposed a phylogeny for the Eastern Hemisphere genera of Leptophlebiidae including all Palearctic, Ethiopian and Oriental regions but excluding Australia and New Zealand as they considered these taxa to have closer affinities with the Neotropical fauna. This hypothesis had been previously inferred from a revision of the Ethiopian Leptophlebiidae (Peters and Edmunds 1964) and examination of the morphology of certain Gondwana genera (Tsui and Peters 1975).

Peters and Edmunds (1970) proposed an ancestial leptophlebiid type in line with (McCafferty and Ed́munds 1979). The most primitive !ineage, representing an early dispersai to the Northern Hemisphere, was based on a deeply cleft ninth sternum of the male imago and the brush on the anterior margin of the maxiliae of the nymph being completely composed of fine hair. The lineage included eight genera: Paraleptophlebia, Leptophlebia, Habroleptoides, Habrophlebia, Calliarcys, Habrophlebioides,
Dipterophlebioides and Gilliesia. Of these, it was considered Paraleptophlebia and Leptophlebia were the most primitive of the Leptophlebiidae based on wing shape, venation, penis shape and body shape.

Subsequent phylogenetic analysis determined the eight genera to be sufficiently different to warrant the establishment of the subfamily Leptophiebiinae (Peters 1980). All other genera in the Leptophlebiidae were placed in a new subfamily designated as Atalophlebiinae.

The question of close affinities between the amphinotic fauna was revisited in an examination of the relationships among the South American taxa (Pescador and Peters 1980a). This smrall but significant paper provided a basis for further phylogenetic work on the Leptophlebiidae. Five phyletic lineages were established based on cladistic analysis of the cool-adapted Leptophiebiidae of southern South America and were considered to apply to other Southern Hemisphere fauna including Austraiia. The lineages are shown in Fig. 383 which has been adapted from Pescador and Peters (1980a) and includes the genus designation for 'New genus A' which was subsequently described as Dactylophlebia (Pescador and Peters 1980b). The phylogenetic characters defining the members of the five lineages, which may be analogous to tribes, are summarised in Table 31. Although Australian and New Zealand fauna were not included in the analysis, cursory examination of such fauna inferred close reiationships between the cool-adapted fauna (referring to cool mountain waters and regular freezing episodes) of the three areas and affinities of the Australian taxa with each of the lineages have been identified (Fig. 383, Table 32). As a result of the analysis, it was hypothesized that the fauna of South America were more closely related to that of Australia rather than New Zealand. This is exemplified, in part, by the genus Nousia which the two continents share (Hubbard 1990) and the fact that neither Australia nor South America share any taxa in common with New Zealand. Among insect groups this hypothesis was first intimated by Brundin (1966) studying the biogeography of chironomid midges and coincides with the generally accepted view of the sequential break up of Gondwana (Norton and Sclater 1979). Examination of the phylogenetic relationships of the Ephemeropteran Gondwanan fauna may fend further support.

Subsequent to the study by Pescador and Peters (1980a), authors of new taxa have suggested placement within the lineages based on morphological similarities. Table 32 is a compilation of the current genera thought be included in each lineage. References are given for those genera added since the publication of the original paper. Any genera without references were included in the original study. On the most part, however, these assumptions have not been cladistically tested due to the enormity of the task. The approach has been to analyse each country's or continents fauna separately in the hope that these analyses can be combined into a full scale phylogenetic analysis of all the Gondwanan fauna combined. Relationships between various Gondwanan taxa have
been postulated for the Eastern Hemisphere (Peters and Edmunds 1970), New Caledonia (Peters et al. 1978; Peters and Peters 1979; Peters and Peters 1981a; Peters and Peters 1981b; Peters et al. 1990; Peters et al. 1994), Africa (Peters and Edmunds 1964) and Madagascar (Peters and Edmunds 1984). However, cladistic ana!ysis has only been completed for the New Zealand (Towns and Peters 1979; Towns and Peters 1996) and South American fauna (Pescador and Peters 1980a; Domingues 1995). The one Australian cladistic study (Christidis 2001) focussed on an examination of the Meridialaris lineage at the species level, although other Australian genera were included for comparison. It is clear that a major gap in our understanding of the Southern Hemisphere Leptophlebiidae is the lack of knowiedge regarding the Australian fauna.

6.5 Aims of the phylogenetic analysis

This study aims to:

1. establish the relationships between the Australian Leptophlebiid genera in order to provide a basis for the inclusion of Australian taxa into a future phylogenetic analysis of the Gondwanan fauna.
2. compare and contrast the relationships of the Australian Leptophlebiid genera with the lineages defined by Pescador and Peters (1980a) and those established for other Southern Hemisphere fauna.

6.6 Methods

Representatives of the majority of the species of each of the 17 known Australian genera and one subgenus Nousia (Australonousia), along with the South American subgenus Nousia (Nousia), were examined for the phylogenetic analysis (see 6.6.1). Type species material was borrowed where possible and examined in preference to other species in the genus. The various sources of the type material included the Museum of Victoria (MV), the Australian National insect Collection (ANIC), the Queensland Department of Primary Industry (DFIQ), the Swedish Museum of Natural History (SMNH) and the Fiorida Agricultural and Mechanical University collection (FAMU). Other material examined was borrowed from the private collections of I.C. Campbell (Campbell collection), P.J. Suter (Suter collestion), Y.J. Bae collection (Bae collection) or was collected by myself during the course of this study (Finlay collection).

Table 31. Phylogenetic characters defining the five lineages of Pescador and Peters (1980a) from the most primitive (Hapisphlebia) to the most derived (Meridialaris). Bold text refers to apomorphic conditions. Blank spaces are due to the methodology of Pescador and Peters (1980a) where each furcation includes only characters relevant to the present branch and the branches above ie the Penaphlebia furcation includes characters relevant to Atalonella, Dactyophlebia and Meridialaris but excludes those of Hapsiphlebia.

Charactar	Hapsiphlebia	Penaphlebia	Ata/onel/a	Dactyoph/ebia	Meridialaris
Clypeus width compared with labrum width	wider	subequal to slightly narrower	narrower	narrower	narrower
Labrum lateral margins	subparallel	rounded to angular	rounded to angular, smoothly curved	rounded to angular, abruptly to angularly curved	rounded to angular, abruptly to angularly curved
Mandible outer margin	almost straight	rounded to angular	rounded to angular smoothly curved	rounded to angular slightly angular	rounded to angular distinctly angular
Mandible right outer incisor	with broad subapical denticles	smooth or spinose	smooth or spinose	smooth or spinose	smooth or spinose
Abdominal terga lateral margin setae	prominent	bare or minute	bare or minute	bare or minute	bare or minute
Maxillae inner margin of palp 2		pectinate setae	non-pectinate setae	non-pectinate setae	non-pectinate setae
Abdominal terga posterior margin		prominent spines and long tassellike setae	spines and scattered fine hairs	spines and scattered fine hairs	spines and scattered fine hairs
Forewings MP ${ }_{2}$		strongly recurved	moderately recurved	moderately recurved	moderately recurved
Costal crossveins		more than 25	less than 25	less than 25	less than 25

Table 31 cont'd.

Character	Hapsiphlebia	Penaphlebia	Atalonella	Dactyophlebia	Meridialaris
Clypeus lateral margins			parallel	divergent	divergent
Clypeus width / labrum width			less than 4/5	more than 4/5	more than $4 / 5$
Labrum - anteromedial emargination			broad with prominent denticles	narrow (may be cleft or hooded), denticles reduced; if cleft, Vshaped dorsally and ventrally	narrow (may be cleft or hooded), denticles reduced; if cleft shallow U-shaped or deep Vshaped ventrally
Sternum nine of female			deeply cleft	entire or shallow	entire or shallow
Labrum length / width				2/3-3/4	1/3-1/2
Maxillae galea-lacinia				narrow at apex	broad at apex
Maxillae - subapical pectinate setae				≤ 15	> 15
Labium submentum				thick lateral setae	lateral margins bare
Body of nymph				robust	flattened

Table 32. Genera currently thought to belong to the five lineages outlined by Pescador and Peters (1980a).

Lineage	Genus	Country 1 Continent	Reference
1. Hapsiphlebia	Aprionyx	Africa	
	Atalophlebia	Australia	
	Atalomicria	Australia	
	Jappa	Australia	
	Kalbaybaria	Australia	(Campbell 1993)
	Ulmerophlebia	Australia	
	Papposa	New Caledonia	(Peters and Peters 1981b)
	Acanthophlebia	New Zealand	(Towns and Peters 1996)
	Hapsiphlebia	South America	
2.Penaphlebia	Garinjuga	Australia	(Campbell and Suter 1988)
	Nesophlebia	Madagascar	(Peters and Edmunds 1984)
	Massartella	South America	
	Penaphlebia	South America	
3. Atalonella	Atalonella $=$ Nousia	Australia/South America	$\begin{aligned} & \text { (Pescador and Peters } \\ & \text { 1985) } \end{aligned}$
	Neozephlebia	New Zealand	(Towns and Peters 1996)
	Nyungara	Australia	(Dean 1987)
	Rhigotopus	South America	
	Archethraulodes	South America	
4. Dactylophlebia	Austroclima	New Zealand	(Towns and Peters 1996)
	Mauiulus	New Zealand	(Towns and Peters 1996)
	Dactylophlebia	South America	$\begin{aligned} & \text { (Pescador and Peters } \\ & 1980 \text { b) } \end{aligned}$
	Magallanella	South America	$\begin{aligned} & \text { (Pescador and Peters } \\ & 1980 \mathrm{~b}) \end{aligned}$
5. Meridialaris	Austrophlebioides (Atalophlebioides)	Australia	(Campbell and Suter 1988)
	Kirrara	Australia	(Campbell and Peters 1986)
	Tillyardophlebia	Australia	(Dean 1997)
	Petersophlebia	Madagascar	
	Atalophlebioides	New Zealand	(Towns and Peters 1996)
	Deleatidium	New Zealand	(Towns and Peters 1996)
	Massaretellopsis	South America	
	Meridialaris	South America	
	Secochela	South America	$\begin{aligned} & \text { (Pescador and Peters } \\ & \text { 1982) } \end{aligned}$
	Sulawesia	Sulawesi	(Peters and Edmunds 1990)

*Although the method of polarising characters a priori has been used extensively it is considered by some to be outdated and preferably should be discarded in favour of analysing ingroup and external, closely related outgroup taxa simultaneously and determining character polarity from the cladogram produced (Nixon and Carpenter 1993). For completeness, then, an alternative analysis was performed using the same morphological characters (Table 33) with closely related taxa as outgroups and assuming no polarity of characters. The three outgroups chosen were Paraleptoplebia and Leptophebia belonging to the primitive subiamily Leptophlebiinae (Peters 1980) and Ephemera from the sister group Ephemeroidea (McCafferty 1991b, McCafferty 2002).

Morphologicai characters ('rable 33) were determined from careful examination of the species and from the species descriptions in the literature. Key sources of information for each of the genera include: Atalophlebia (Tillyard 1933b; Suter 1986); Atalomicria (Campbell and Peters 1993), Austrophlebicides (Campbell and Suter 1988), Bilikmena (Dean 1987), Garinjuge (Campbell and Suter 1988), Jappa (Skedios and Polhemus 1986), Kalbaybaria (Campbell 1993), Kaninga (Dean 2000), Kirrara (Campbell and Peters 1986), Loamaggalangta (Dean et al. 1999), Neboissophlebia (Dean 1988), Nousia (Pescador and Peters 1980a; Campbell and Suter 1988), Nyungara (Dean 1987), Thraulophlebia (Demoulin 1955b; Campbell and Suter 1988), Thraulus (Grant 1985; Suter 1992), Tillyardophlebia (Dean 1997), Ulmerophlebia (Suter 1986). In the case of the newly revised taxa, Nousia (Australonousia) and Thraulophlebia (Chapter 3), and the newly established genera Montikola and Gemmayaluka (Chapter 4), extensive revision was required to determine generic status and as a result these chapters subsequently became the primary sources of information.

In line with Edmunds and Allen (1966), Riek (1973) and Pescador and Peters (1980a) nymph characters were found to be more taxonomically informative than those of the imago, hence the disproportionately low number of adult characters in Table 33. Further, one of the major characteristics of the adult, wing venation, can be subject to significant parallel evolution (Edmunds 1972).

Plesiomorphic and apomorphic, characters states were assessed by comparison with all available outgroups following the traditional methods of Hennig (1966) and Ross (1974) where the polarity of characters was determined prior to analysis. The nearest outgroup was the subfamily Leptophlebinae, considered a pirmitive furcation in the evolution of the Eastern Hemisphere Leptophlebiidae (Peters and Edmunds 1970, see 6.4). Within this subfamily the plesiotypic Paraleptophlebia and Leptophlebia provided particularly valuable cladistic information. see opposite*

The latest revisions of the higher classification of mayflies (McCafferty 1991b; McCafferty 2002), encompassing the work of Landa and Soldan (1985), provide the next nearest outgroups within infraorder Lanceolata: that of the sister group Ephemeroidea (Polymitarcyidae, Euthyplociidae, Potamanthidae, Ephemeridae, Palingeniidae) followed by the superfamily Caenoidea (Ephemerellidae, Tricorythidae and Caenidae). Although the superfamily Behningoidea (containing the single family Behningiidae) is considered more closely related to Leptophlebioidea (McCafferty 1991b) its use as an outgroup is limited due to its highly distinctive and specialised nature in both adult and nymphal forms.

Table 33. Morphological characters used in phylogenetic analysis.

No.	Character	State (0)-plesiomorphy	State (1)-apomorphy	State (2)-apomorphy
Nymphal characters				
0	Mouthparts.	hypognathous	prognathous	
1	Body and gills fringed with fine setae (Figs. 384387).	no	yes	
2	Setation or spination on lateral margins of abdominal terga.	bare, minute or fine setae	prominent spines	
3	Spines on posterior margins of abdominal terga.	none or small	prominent	
4	Posterolateral spines on abdomen.	on segments 4, 5, 6, 7, 8 $\text { to } 9$	on segments 2 to 9	
5	Labrum width in relation to clypeus (Figs. 388-407).	narrower	subequal to slightly wider	significantly wider
6	Labrum lateral margins (Figs. 388-407).	parallel	rounded	angular
7	Labrum cross section (Fig. 408).	oval	triangular	
8	Labrum 'hood' (Figs. 390, 406).	absent	present	
9	Labrum secondary hair fringe (Figs. 388-407).	absent	present	
10	Labrum denticles on anteromedian emargination (Figs. 388-407).	absent	present	present with one prominent denticle
11	Frontal horns (Figs. 409, 410).	absent	present	
12	Clypeus lateral margins (Figs. 388-407).	converging towards anterior	parailel	diverging towards anterior
13	Mandible outer margins (Figs. 411-430).	relatively straight	smoothly curved	angular
14	Mandible with enlarged process (Fig. 418).	absent	present	
15	Mandible prosihecal tuft (Figs. 431-450).	wide, flap-like; setae on acical and lateral margins	spine-like; hairs on lateral margins only	
16	Right mandible outer incisor inner margin (Figs. 451-470).	smooth or spinose	denticulate	
17	Maxillae galea-lacinae (Figs. 471-490).	narrow at apex; widthlength ratio < 1	relatively broad at apex; width-length ratio ≈ 1 (as wide as long)	very broad at ape ${ }^{\text {. }}$ width-length ratio > 1

Table 33 cont'd.

No.	Character	State (0)-plesiomorphy	State (1) - apomorphy	State (2) - apomorphy
18	Average number of pectinate setae on maxillae (Figs. 471-490).	≤ 15	>17	
19	Maxillary palp morphology (Figs. 471-490).	extending just beyond galea-lacinae	greatly elongate	
20	Labium glossae (Figs. 491-510).	turned over ventrally	straight, upright	
21	Spines on inner margins of labial terminal palp (Fig. 511-530).	prominent	minor or absent	
22	Labium submentum lateral setae.	present	absent	
23	Hypopharynx lateral processes (Figs. 531-550).	absent	present	
24	Tarsal claws (Figs. 551-570).	smooth or with minor processes	denticulate	
Imago characters				
25	Size of male imago dorsal eye lobes. ES=B/D (sensu [Bae, 1991 \#906], see chapter 3.	eye size large (≤ 0.2 or contiguous)	eye size medium (≥ 0.3)	
26	Male dorsal eye facets.	hexagonal	square	
27	Position of forewing veins $1 \mathrm{Cu} \mathrm{I}_{1}$ and ICu_{2} (Figs. 571 590).	strongly diverging as wing margin approached	parallel to very slightly diverging as wing margin approached	
28	Average number of crossveins in the costal space of forewings (Figs. 571-590).	≈ 20 or more	$\approx 10-15$	
29	costal crossveins in proximal half of male forewings (Figs. 571-590).	present	reduced or absent	
30	Hindwing length relative to forewing (Figs. 571590).	hindwing large ($\approx 1 / 3$ th the length of forewing)	hindwing smaller ($\approx 1 / 4$ to $1 / 5$ th length of forewing)	hindwing very small (\approx 1/10th length of forewing)
31	Length of hindwing subcostal vein (Figs. 591-610).	$\geq 0.9 \times$ length of hindwing	$\leq 0.85 \times$ length of hindwing	
32	Hindwing midlength costal projection (Figs. 591610).	absent	present	
33	Sternum nine of female (Figs. 611-630).	cleft	entire	

Outgroup material was borrowed from various sources including the ANIC, FAMU and various private collections. However, insufficient material was an issue and literature was relied upon for some of the taxa. Sources of information for the various taxa included are as follows. Leptophlebinnae - Paraleptophlebia, Leptophlebia (Burks 1953; Peters and Edmunds 1970), Habroleptoides, Habrophlebia, Calliarcys, Habrophlebioides, Dipterphlebioides (Peters and Edmunds 1970), Gillesia (Gillies 1951; Peters and Edmunds 1970). Ephemeroidea - Ephemeridae: Aethephemera (McCafferty 1971b; McCafferty 1973), Afromera (Demoulin 1955a; McCafferty and Gillies 1979; Elouard 1986a); Eatonica (McCafferty 1971a; Elouard 1986b; Elouard et al. 1998), Ephemera (McCafferty 1973; NicCafferty 1975; Hubbard 1982; Hubbard 1983; Balasubramanian et al. 1991; Kang and Yang 1994; Bae 1995; Ishiwata 1996), Hexagenia (Spieth 1941; McCafferty 1975; Keltner and McCafferty 1986), Ichthybotus (Eatur: .899), Litobrancha (Lestage 1939; McCafferty 1975). Euthyplociidae: Afroplocia (Demoulin 1952a), Campylocia (Demoulin 1952a; Pereira and Da Silva 1990), Euthyplocia (Lestage 1918; Lestage 1939; Demoulin 1952a), Exeuthyplocia (Lestage 1918; Lestage 1939; Gillies 1980), Proboscidoplocia (Demoulin 1966), Polyplocia (Demoulin 1952a), Mesoplocia (Demoulin 1952a). Palingeniidae: Cheirogenesia (McCafferty and Edmunds 1976; Sartori and Elouard 1999), Chankagenesia (Demoulin 1952b). Palingenia (Sartori 1992), Pentagenia (Lestage 1918; McCafferty 1972; McCafferty 1975; Keltner and McCafferty 1986). Polymitarcyidae: Campsurus (Eaton 1868-69; McCafferty 1975), Ephoron (Lestage 1918; Spieth 1933; Demoulin 1952a; McCafferty 1975; Ishiwata 1996), Tortopus (Needham and Murphy 1924; McCafferty 1975; McCafferty and Bloodgood 1989; LugeOrtiz and McCafferty 1996), Povilla (Lestage 1918; Lestage 1939; Hubbard 1984). Potamanthidae (Bae 1991): Anthopotamus (McCafferty and Bee 1990), Neopotamanthus (Wu and You 1986), Potamanthodes (You 1984; You and Su 1987), Potamanthus (Uéno 1928; McCafferty 1975; Elpers and Tomka 1994; Kang and Yang 1994; Vuori 1999); Rhoenanthus (Soldán and Putz 2000), Stygifloris (Bae et al. 1990).

Taxa ($n=21$) and characters ($n=34$) were compiled into a data matrix (Table 34). NONA version 2.0 (Goloboff 1993) was used to construct a cladogram using the tree bisectionreconnection command (mult*). A strict consensus tree (nelsen command) was constructed from the most parsimonious trees. Winclada version 0.9.99i (beta) (Nixon 1999) was used to redraw the tree with the characters and character states mapped.

For the alternative analysis using multiple outgroups and making no a priori assumptions of character polarity, three outgroup taxa plus the same ingroup taxa ($n=23$) and the same characters $(n=34)$ were compiled into a data matrix (Alternative Table 34 [see adjacent to page 298]). The methodology described above was used to construct a new strict consensus tree.

Alternative Table 34. Data matrix of phylogenetic character states for the Australian genera of Leptophlebiidae."

111111111122222222223333

01234	56789	01234	56789	01234	56789	0123

| Paraleptophlebia | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Letophlebia | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 |
| Ephemera | 0000 | 00000 | 00001 | -0001 | 00000 | $10-00$ | 0000 |
| Atalonticria | 10000 | 00001 | 10000 | 01001 | 00010 | 11000 | 1100 |
| Ataiophlebia | 10001 | 00001 | 10000 | 01000 | 00010 | 11000 | 0100 |
| Austrophlebioides | 10011 | 22011 | 10220 | 10210 | 11111 | 01100 | 0001 |
| Bibulmena | 10000 | 11001 | 10110 | 10110 | 01010 | 01000 | 1000 |
| Garinjuga | 10010 | 11001 | 10110 | 10110 | 11011 | 01000 | 1000 |
| Gemmayaluka | 10000 | 11001 | 10110 | 10110 | 11011 | 01100 | 1100 |
| Jappa | 11100 | 00001 | 21000 | 01000 | 00010 | 01000 | 1100 |
| Kalbaybaria | 10000 | 00000 | 00001 | $011-0$ | 00010 | 01100 | 1000 |
| Kaninga | 10010 | 11001 | 10110 | 10110 | 01010 | 01100 | 1000 |
| Kirrara | 10001 | 22100 | 00220 | -0210 | 11111 | 01000 | 1001 |
| Loamaggalangta | 10000 | 11001 | 10110 | 10110 | 01010 | 01100 | 1000 |
| Montikola | 10000 | 11001 | 10110 | 10110 | 11011 | 01100 | 1100 |
| Neboissophlebia | 10000 | 11001 | 10110 | 10010 | 01010 | 01111 | 1100 |
| Nousia(Nousia) | 10000 | 11001 | 10110 | 10100 | 11011 | 01111 | 1100 |
| Nousia (Australonousia) | 10000 | 11001 | 10110 | 10100 | 11011 | 01111 | 1100 |
| Nyungara | 10000 | 11000 | 10110 | 10100 | 11011 | 01110 | 2110 |
| Thraulophlebia | 10000 | 11001 | 10110 | 10110 | 11011 | 01111 | 1100 |
| Thraulus | 10000 | 11001 | 10110 | 10110 | 11011 | $0111-$ | 1111 |
| Tillyandophlebia | 10011 | 22011 | 10220 | 10210 | 11111 | 01100 | 1001 |
| Ulmerophlebia | 11100 | 00001 | 20000 | 01000 | 00010 | 01000 | 1100 |

Table 34. Data matrix of phyiogenetic character states for the Australian genera of Leptophlebiidae.

111111111122222222223333 0123456789012345678901234567890123

| Outgroup | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Atalomicria | 10000 | 00001 | 10000 | 01001 | 00010 | 11000 | 1100 | |
| Atalophlebia | 10001 | 00001 | 10000 | 01000 | 00010 | 11000 | 0100 | |
| Austrophlebioides | 10011 | 22011 | 10220 | 10210 | 11111 | 01100 | 0001 | |
| Biblumena | 10000 | 11001 | 10110 | 10110 | 01010 | 01000 | 1000 | |
| Garinjuga | 10010 | 11001 | 10110 | 10110 | 11011 | 01000 | 1000 | |
| Gemmayaluka | 10000 | 11001 | 10110 | 10110 | 11011 | 01100 | 1100 | |
| Jappa | 11100 | 00001 | 21000 | 01000 | 00010 | 01000 | 1100 | |
| Kalbaybaria | 10000 | 00000 | 00001 | 011 | 0 | 00010 | 01100 | 1000 |
| Kaninga | 10010 | 11001 | 10110 | 10110 | 01010 | 01100 | 1000 | |
| Kirrara | 10001 | 22100 | 00220 | -0210 | 11111 | 01000 | 1001 | |
| Loamaggalangta | 10000 | 11001 | 10110 | 10110 | 01010 | 01100 | 1000 | |
| Montikola | 10000 | 11001 | 10110 | 10110 | 11011 | 01100 | 1100 | |
| Neboissophlebia | 10000 | 11001 | 10110 | 10010 | 01010 | 01111 | 1100 | |
| Nousia(Nousia) | 10000 | 11001 | 10110 | 10100 | 11011 | 01111 | 1100 | |
| Nousia (Australonousia) | 10000 | 11001 | 10110 | 10100 | 11011 | 01111 | 1100 | |
| Nyungara | 10000 | 11000 | 10110 | 10100 | 11011 | 01110 | 2110 | |
| Thraulophlebia | 10000 | 11001 | 10110 | 10110 | 11011 | 01111 | 1100 | |
| Thraulus | 10000 | 11001 | 10110 | 10110 | 11011 | $0111-$ | 1111 | |
| Tillyardophlebia | 10011 | 22011 | 10220 | 10210 | 11111 | 01100 | 1001 | |
| Ulmerophlebia | 11100 | 00001 | 20000 | 01000 | 00010 | 01000 | 1100 | |

©.6.1 Specimens examined

Leptophlebiidae

Atalophlebiinae

Atalomicria Harker

Atalomicria banjdjalama Campbell and Peters

- holotype, male imago; paratypes, female imago, male and female nymphs; slide material; Booloumba Creek, Connondale Ranges, QLD, 29 xi 89, coll. I.C. Campbell (MV)

Atalomicria bifasciaia Campbell and Peters

- holotype, male imago; paratypes, female imago, subimagos, nymphs; slide material; Booloumba Creek, Connondale Ranges, QLD, 5 xil 89, coll. I.C. Campbell (MV)

Atalomicria dalgara Campbell and Peters

- holotype, male imago; paratypes, nymphs; slide material; Booloumba Creek, Connondale Ranges, QLD, 29 xi 89, coll. I.C. Campbell (MV)

Atalomicria chessmani Campbell and Peters

- holotype, male imago; paratypes, male and female imagos, nymphs; slide material; Ferntree Creek, 10 km S of Goongerah, VIC, 18 ; 1990, coll. I.C.Campbell (MV)

Atalomicria sexfasciata (Ulmer)

- holotype, male imago; paratype, female imago; Cedar Creek, QLD, Dr Mjöbergs Swedish Expedition to Australia 1910-1913 (SMNH).
- slide material, Yuccabine Creek, Kirrama Rd, QLD, 27 ix 87, coll. I.C. Campbell (MV).

Atalomicria uncinata (Ulmer)

- holotype, male imago; Cedar Creek, QLD, Dr Mjöbergs Swedish Expedition to Australia 1910-1913 (SMNH).

Atalomicria sp. "AV1" (Dean 1999)

- nymphs and imagos, NSW, QLD, VIC (MV)
- nymphs, NSW, VIC (Finlay collection)
- slide material, QLD (Campbell collection)

Atalophlebia Eaton

Atalophlebia albiterminata Tillyard

- nymphs and imagos, reared, VIC (Finlay collection)

Atalophlebia australis (Walker)

- nymphs and imagos, reared, VIC, NSW, NT, TAS (NMV, Finlay collection, Campbell collection)
- slide material, VIC (MV)

Atalophlebia sp. "AV2" (Dean 1999)

- nymphs and imagos, reared, VIC (Finiay collection)

Atalophlebia sp. "AV4" (Dean 1999)

- nymphs and imagos, reared, VIC (Finlay collection)

Atalophlebia sp. "AV5" (Dean 1999)

- nymphs and imagos, reared, VIC, TAS (Finlay collection)

Atalophlebia sp. "AV7" (Dean 1999)

- nymphs and imagos, reared, VIC (Finlay collection)

Atalophlebia sp. "AV9" (Dean 1999)

- nymphs and imagos, reared, VIC (Finlay collection)

Atalophlebia sp. "AV13" (Dean 1999)

- nymphs and imagos, reared, VIC (Finlay collection)

Atalophlebia sp. "AV15" (Dean 1999)

- nymphs, VIC (Finlay collection)

Atalophlebia sp. "AV21" (Dean 1999)

- nymphs, VIC (Finlay collection)

Atalophlebia spp.

- nymphs and imagos, reared, VIC, NSW, TAS (Finlay collection)

Austrophlebioides Campbell and Suter

Austrophlebioides booloumbi Parnrong and Campbell

- holotype, male imago \& paratypes, male and female nymphs; Booloumba Creek, Connondale Ranges, QLD, 5 xii 89, coll. I.C. Campbell (MV).

Austrophlebioides marchanti Parnrong and Campbell

- holotype, male imago \& paratypes, female imago, female and male nymphs; Loch River, Noojee, i 1995, coll. S. Parnrong (MV)
- nymphs, imagos, slide material, NSW, VIC (Finlay collection)

Austrophlebioides pusillus (Harker)

- nymphs, imagos, NSW, VIC (MV)
- nymphs, imagos, slide material, NSW, VIC (Finlay collection)
- slide material (Campbell collection)

Austrophlebioides sp. "AV2" (Dean 1999)

- nymphs, imagos, NSW, VIC (Finlay collection)

Austrophlebioides spp.

- nymphs, imagos, VIC (Finlay collection)

Bilflumena Dean

Bithídmena kadina Dean

- holotype, male imago, reared, North Dandalup River, North Dandalup, WA, 01 vi 1984, coll. S. Bunn (MV)
- paratypes, male and female imago, slide material, Foster Brook, North Dandalup, 1983, coll. S. Bunn (MV)
- paratype, nymph, slide material, Wungong Brook, Jarrahdale, 2 xii 1981, coll. S. Bunn (MV)
- nymphs, imagos, WA (MV)

Ganinjuga Campbe! and Suter

Garinjuga maryannae Campbell and Suter

- holotype, male imago \& paratypes, subimagos, female and male nymphs; Thredbo River, Summit Rd at entrance to Kosciusko National Park, 19×1995, coll. I.C. Campbell (ANIC)
- nymphs, imagos, slide material, NSW, VIC (Finlay collection)
- nymphs, imagos, slide material, NSW (Campbell collection)

Garinjuga sp. "AV1" (Dean 1999)

- nymphs, imagos, NSW, TAS, VIC (MV)
- nymphs, imagos, slide material, NSW, VIC (Finlay collection)

Garinjuga spp.

- nymphs, imagos, slide material, NSW, VIC (Finlay collection)

Gemmayaluka gen.nov.

see Chapter 4

Jappa Harker

Jappa edmundsi Skedros and Polhemus

- holotype and paratypes, nymphs, Hutchinson Creek, Cape Tribulation Rd, N of Daintree Landing, 17 viii 1983, coll. D.A. \& T.J. Polhemus (ANIC)
- slide material, QLD (Campbell collection)

Jappa kutera Harker

- nymphs, imagos, slide material, NSW, NT, QLD,
- nymphs, NSW, VIC (Finlay collection)
- slide material, VIC (Suter collection)

Jappa serrata Skedros and Polhemus

- holotype, nymph, Hutchinson Creek, Cape Tribulation Rd, N of Daintree Landing, 17 viii 1983, coll. D.A. \& T.J. Polhemus (ANIC)
- nymphs, imagos, slide materiai, QLD (Campbell collection)

Jappa sp. "AV3" (Dean 1999)

- nymphs, imagos, VIC (Finlay coliection)

Jappa sp. "AV4" (Dean 1999)

- nymphs, imagos, VIC (Finlay collection)

Jappa spp.

- nymphs, imagos, VIC (Campbell collection)
- slide material, QLD (Campbell collection)

Kalbaybaria Campbell

Kalbaybaria doantrangae Campbell

- holotype, male imago; paratypes, male and female imago, nymphs; slide material, Romeo Creek, near Helenvale, QLD, 5 v 1988, coll. I.C. Campbell (ANIC)
- slide material, Palmer River, QLD, 20 vi 1971, coll. E.F. Riek (ANIC)
- slide material, Millstream Falls, W of Ravenshoe, QLD, 25 vi 1971, coll. E.F. Riek (ANIC)

Kaninga Dean

Kaninga gwabbalitcha Dean

- nymphs, slide material, WA (MV)

Genus Q sp. "AV1" (Dean 1999)

- holotype, male imago; paratypes, male imagos, Carey Brook, Staircase Road, WA, 15 vii 1989 coll. I. Growns (MV)
- nymphs, subimagos, WA (MV)

Kirrara Harker

Kirrara procera Harker

- nymphs, imagos, slide material, VIC, NSW (MV)
- nymphs, imagos, slide material, VIC (Firilay collection)

Kirrara sp. "AV1" (Dean 1999)

- nymphs, slide material, QLD (Campbell collection)

Loamaggalangta Dean, Forteath \& Osborn

Loamaggalangta pedderensis Dean, Forteath \& Osborn

- holotype, male imago; paratypes, male imagos, subimagos; Lake Pedder, Trappes Bay, TAS, if 1997, coll. N. Forteath (ANIC)
- nymphs, slide material, TAS (MV)

Genus K sp. "AV1" (Dean 1999)

- nymphs, NSW, VIC (MY)
- nymphs, TAS (Finlay collection)

Genus K sp. "AV2" (Dean 1999)

- nymphs, QLD (MV)

Montikola gen. nov.
see Chapter 4

Neboissophlebia Dean

Neboissophlebia hamulata Dean

- holotype, male imago; paratypes, male imago, female imagos, subimagos; slide material, Tarago River, 7 km W Neerim, VIC, 1 iii 1972, coll. A. Neboiss (MV)
- nymphs, imagos, NSW, VIC (MV)
- nymphs, imagos, NSW, VIC (Finlay coilection)

Neboissophlebia occidentalis Dean

- paratypes, male imagos, female imagos, slide material, Harvey River, 15 km E Harvey, WA, 21 xi 1978, coll. A. Neboiss (MV)

Nousia Navás

subgenus Nousia (Nousia) Navás

Nousia delicata Navás

- male imagos, Santiago Province, CHILE, xi 1972, coll. M.L. Pescador \& G. Barria
- nymphs, Rio Caren, Hacienda Illapel, Coquimbo Province, CHILE, 17 xi 1972, coll. M.L. Pescador (FAMU)
- nymphs, Rio Caren, Hacienda lllape!, Coquimbo Province, CHiLE, 18 xi 1972, coll. M.L. Pescador \& G. Barria (FAMU)

Nousia grandis (Demoulin)

- nymphs; female imago reared, male subimago reared; El Coigual, Curico Province, CHILE, i 1964, coll. L. Peña (FAMU)

Nousia minor (Demoulin)

- male imago, Valdivia, CHILE, 19×1957, coll. J. Illies.
- nymphs, Río Piquiquen, El Manzano, 35 km W Angol, Maileco Province, CHILE, xii 1972, coll. M.L. Pescador (FAMU)

Nousia Navás

subgenus Nousia (Australonousia) Campbell and Suter

See Chapter 3

Nyungara Dean

Nyungara bunni Dean

- holotype, male imago reared; paratype, nymph; slide material, Foster Brook, North Dandalup, WA, 22 ix 1983, coll. S. Bunn (MV)
- paratypes, male imago, female imago, nymphs, slide material, Waterfall Gully, Jarrahdale, WA, 1981-1982, coll. S. Bunn (MV)
- imagos, nymphs, slide material, WA (MV)

Thraulophlebia Demoulin

See Chapter 3

Thraulus Eaton

Thraulus sp. "A" sp. nov.(informal description, Grant 1985)

- "holotype", maie imago, Drysdale River, WA, viii 1975, coll. I.F. Common and M.D. Upton (ANIC)
- "paratypes", male imagos, Nourlangie Creek, 6km W Cahill, NT, 18 xi 1972, coll. J.C. Cardale (ANIC)
- "paratypes", male subimagos, Cooper Creek, 19km SE of Mt Borrdaile, NT, vi 1973, coll. J.C. Cardale (ANIC)

Thraulus sp. "AV1" (Dean 1999)

- imagos, nymphs, NT (MV)

Thraulus sp. "AV2" (Dean 1999)

- nymphs, QLD (MV)

Thraulus sp. "AV3" (Dean 1999)

- nymphs, QLD (MV)

Thraulus spp.

- nymphs, QLD (DPIQ)

Tillyardophlebia Dean

Tillyardophlebia alpina Dean

- imagos, nymphs, NSW (MV)

Tillyardophlebia rufosa Dean

- holotype, male imago; paratypes, male and female imagos, nymphs; slide material, Badger Creek downstream weir, VIC, 23 ii 1984, coll. J. Dean (MV)
- imagos, nymphs, NSW, VIC (MV)
- imagos, nymphs, NSW, VIC (Finlay collection)

Tillyardophlebia spp.

- imagos, nymphs, NSW, VIC (Finlay collection)

Uimerophiebia Demoulin

IImerophlebia pippina Suter

- nymphs, subimago, VIC (Finlay collection)

Ulmerophlebia sp. "AV2" (Dean 1999)

- nymphs, imagos, NSW, VIC (Finlay collection)
- nymphs, imagos, NSW, VIC (Finlay collection)

Ulmerophlebia sp. "AV6" -mjobbergi? (Dean 1999)

- nymphs, imagos, QLD. (MV)

Ulmerophlebia spp.

- nymphs, imagos, VIC (Finlay collection)

Leptophleblinae

Gillesia hindustanica (Gillies)

- imagos, Assam, INDIA (FAMU)

Leptophlebia cupida (Say)

- nymphs, Indiana, USA (Bae collection)

Leptophlebia sp.

- nymphs, Missouri, USA (Bae collection)

Paraleptophlebia bicornuta (McDonnough)

- nymphs, Idaho, USA (Bae collection)

Paraleptophlebia chocc'ata Imanishi

- nymphs, imago, reáred, Kyonggi-do, KOREA (Bae collection)

Paralepíophlebia packi (Needham)

- nymph, imago, reared, Utah, USA (Bae collection)

Paraleptophlebia sp.

- nymphs, Wyoming, USA (ANIC)

Ephemeroidea

Ephemera danica Müller

- nymphs, near Silkeborg, DENMARK (Campbell collection)

Ephemera simulans Walker

- nymphs, Wyoming, USA (ANIC)

Euthyplocia spp.

- nymphs, San Marin Province, PERU (ANIC)
lchthybotus hudsoni McLachian
- nymphs, Taupo, NEW ZEALAND (ANIC)

Povilla adusta Navás

- nymphs, Lake Kivu, BELGIAN CONGO (ANIC)

Rhoenanthopsis spp.

- nymphs, Chiangmai Province, THAILAND (ANIC)

6.7 Results and Discussion

The relationships of the Australian Leptophlebiidae are shown in the itrict consensus tree (Fig. 631) constructed from the three most parsimonious trees initially produced. This resulted in a relatively short tree length (total number of character changes required to support relationship of the taxa) of 62 . The relative amount of homoplasy was shown to be reasonably low as shown by the high consistency index ($\mathrm{ci}=0.66$). Finally a high retention index (ri=0.82), or the proportion of apparent synapomorphy which can expected as true synapomorphy in the clacogram, indicates true evolutionary trends within the family.

A number of synapomorphies were found to define the ingroup taxa (clade A): prognathous nymphal mouthparts (character 0), presence of hypopharynx lateral processes (character 23, Figs. 531-550) and the presence of square dorsal eye facets in the male imago (character 26). As each of these characters is present amongst the Atalophlebiinae world-wide an analysis including other Gondwana taxa would be required to investigate the potential monophyly of Australian groups. Square facets have been noted before as a characteristic of all but one of the Atalophlebiinae taxa (Peters and Peters 1995), a condition thought to have evolved to catch a greater proportion of the ultraviolet light available (Horridge et al. 1982). All Leptophlebiinae and Ephemeroidea were found to have hexagonal dorsal eye facets (Peters and Peters 1995). The presence of lateral processes on the hypopharynx applies to Atalophlebiinae world-wide, although may be secondarily lost in some species, (Peters and Edmunds 1970) but they are lacking in all Leptophlebiinae and Ephemeroidea. Their evolutionary function is unknown but one may presume it is related to feeding behaviour. The head position in the nymph in Leptophlebiidae can be either hypognathous, semi-hypognathous or prognathous (Peters and Edmunds 1964). I have found the mouthpart position to be more or less stable, even if the head position can be somewhat ambiguous. For example, the position of the head of Jappa and Ulmerophlebia can sometimes be orientated partly downwards (possibly representing the semi-hypognathous position of Peters and Edmunds (1964) but the mouthparts are most
commonly directed forward. The habit of the Atalophlebiinae as sprawlers, swimmers and clingers (Edmunds and Waltz 1996) translates into a streamlined body capable of maintaining a position of least resistance on the stream bed. The Leptophlebiinae tend to be more laterally rather than dorso-ventrally flattened, often with prognathous heads (Peters and Edmunds 1970). The Ephemeroidea are very robust and laterally flattened to accommodate their burrowing behaviour and their mouthparts are generally hypognathous for filtering and gathering detritus.

The other synapomorphies defining clade A are all homoplasic. For example, the right mandible outer incisor (character 16, Figs. 451-470) is apomorphic ie: denticulate and triangularly shaped for all taxa below clade F where it reverts to the primitive condition. The width length ratio of the maxilla galea-lacinae (character 17, Figs. 471-490) approximates 1 for most of the ingroup taxa, except for those at clade C where the taxa possess the primitive condition of a narrow apex and those of clade H where the taxa possess the highly derived apomorphy of a very broad apex. All but three of the ingroup taxa possess the derived condition of a small hindwing in comparison to the forewing (character 30, Figs. 571-590). Atalophlebia and Austrophlebioides possess the plesiomorphic larger hindwings while Nyungara has the highly derived condition of a very small hindwing in relation to the forewing. Finally, members of clade A also possess the derived condition of the parallel to slightly diverging veins ICu_{1} and ICu_{2} of the male forewing (character 27, Fig. Figs. 571-590). This character state appears to have reverted back to the primitive condition in taxa comprising clade C as well as Bibfumena, Garinjuga and Kirrara. The primitive condition tends to be associated with more triangular shaped wings of the outgroup, where the junction of the hind and outer margin form an approximate 90 degree angle. This tends to expand the length of the hind margin and therefore separates CCu_{1} and ICU_{2} as the wing margin is approached. The relatively larger size of Jappa, Ulmerophlebia, Atalomicria, Atalophlebia, Kirrara and Garinjuga may lead to the possession of this character state from the possession of larger more robust forewings. The explanation for Bilflemena is less clear. It does not clearly fit into the lineages outlined by Pescador and Peters (1980a) (Fig. 383, Table 32) and has variously been attributed to the Hapsiphlebia, Atalonella and Penaphlebia groups (Dean 1987).

Clade B is defined by two synapomorphies. The presence of a secondary hair fringe on the labrum (character 9, Figs. 388-407) is shared by all ingroup taxa except Kalbaybaria, Kirrara and Nyungara. Secondary hair fringes are distinctive to Atalophlebiinae and it appears that this feature has been secondarily lost in the three genera. Similarly the ingroup all share the apomorphy of the presence of denticles on the labrum (character 10, Figs. 388-407) except Kalbaybaria and Kirrara and this may also represent a secondary convergent loss. These hypotheses, however, will only be supported by the examination
of Gondwanan genera from other countries. The monotypic genus Kalbaybaria is separated from the rest of the ingroup by the autapomorphy of the mandible extending anteriorly into an enlarged flattened process (character 14, Fig. 418); a feature not homologous with the horns of Jappa which are derived from the head capsule. Certain Leptophlebiinae (eg Paraleptophlebia) also possess tusks derived from the outer incisor of the mandible (Needham et al. 1935) but more work is required to establish the possible homology of Kalbaybaria and Ephemeroidea mandibular tusks (Bae and McCafferty 1995). There are some indications that the tusk robustness and setation of the Ephemeroidea is more related to burrowing and fitter feeding (Bae and McCafferty 1995) as opposed to the spatulate Kalbaybaria tusks which, it is suggested, are used io navigate through leaf packs (Campbell 1993).

Clade C is not supported by any synapomorphies. As discussed, character 17 and character 27 are reversions to the primitive condixion and are shared by various other taxa within the ingroup. The length of the hindwing subcostal vein relative to the hindwing length (character 31, Figs. 591-610) is equal to or less than 0.85 of the total wing length in the derived condition and is possessed by all members of clade C and clade J .

The monophyly of the Hapsiphlebia lineage (Pescador and Peters 1980a) which is considered to include five genera in Australia (Kalbaybaria, Jappa, Ulmerophlebia, Atalomicria, Atalophlebia) (Pescador and Peters 1980a; Campbell 1993) has not been supported in this cladogram. Pescador and Peters (1980a) found only two synapomorphies to support this lineage (see Table 32): abdominal terga with laterai margins possessing prominent setae (character 2) and the right outer incisor with broad subapical denticles (character 16). All five 'Hapsiphlebia' genera possess the apomorphic condition of an outer incisor of the right mandible being triangularly shaped and denticulate which is considered to form a phenocline from parallei sided and smooth to becoming more triangularly-shaped and denticulate (Towns and Peters 1979; Pescador and Peters 1980a). However, only Jappa and Ulmerophlebia possess thick prominent spines on the lateral margins. Campbell (1993) assumed Kalbaybaria to belong to the Hapsiphlebia lineage as it shares several other character states with the other members of the lineage, such as labrum narrower than clypeus (character 5, Fig. 395), labrum lateral margins parallel (character 6, Fig. 395) and mandibles with straight outer margin (character 13, Fig. 418). However, all these characters represent symplesiomorphies which do not provide phylogenetic information. The distinct morphology and habitat of this tropical species, found only in Far North Queensland, may indicate a highly evolved condition although the adaptive or historical origins of its morphology remain obscure.

Clade D shows Jappa and Ulmerophlebia are closely related by the possession of three synapomorphies: body and gills fringed with fine setae (character 1. Figs. 384-397); abdominal terga with prominent setae on lateral margins (character 2) and one prominent median denticle on the labrum (character 10, Figs. 394, 408). Jappa is clearly separated by the autapomorphy of the presence of frontal horns (character 11, Figs. 384, 409, 410). Suggestions have been made that the two taxa are congeneric (Riek 1970; Suter 1986) due to the significant similarities other than the frontal horm. This proposal is currently being disputed (Bae, Finlay and Campbell, unpublished data).

A synapomorphy at clade E reveals a close relationship between the genera Atalomicria and Atalophlebia. These are the only genera to possess the apomorphic character of medium sized male imago upper eye lobes although this character can be subject to convergence (Bae 1991). However, the two genera are separated by Atalomicria possessing the autapomorphy of greatly elongate maxillary palps (character 19, Fig. 471). Atalophlebia possesses the convergent state of posterolateral spines on abdominal segments 2-9 (character 4), a homoplasic condition shared with clade H, and also the plesiomorphic larger hindwings.

There are a large number of synapomorphies at Clade F which separate the 'Hapsiphlebia' taxa from the rest of the ingroup. There are four multi-state characters for which all members possess the derived condition except for the Kirrara, Austrophlebioides, Tillyardophlebia trichotomy (clade H) which possess a more highly derived state. Thus, for clade F the labrum is subequal to slightly wider than the clypeus (character 5), the labrum has rounded lateral margins (character 6) the clypeus possesses parallel sided lateral margins (character 12), and the outer margin of the mandible is smoothly curved (character 13) (see Figs. 391-393, 396, 398-405, 414-416, 419, 421-428), while for clade H taxa the labrum is wider than the clypeus (character 5) and has angular lateral margins (character 6), the clypeus has diverging lateral margins (character 12) and the outer margin of the mandible is angular (character 13) (see Figs. 390, 397, 406, 413, 420, 430). These patterns have also been observed in the South American (Pescador and Peters 1980a) and New Zealand fauna (Towns and Peters 1979) with the primitive condition belonging to the Hapsiphlebia, the derived belonging to Penaphlebia and Atalonella and the highly derived belonging to the Meridialaris.

There are also several other synapomorphies possessed by all the members of clade F. For example, the mandible with spine-like prosthecal tuft (character 15, Figs 433-436, 439, 441-449). This character is regarded as a phenocline (Towns and Peters 1979) ranging from the primitive flap-like prosthecal tuft with hairs on apical and lateral margins gradually becoming more spine-like with hairs on the lateral margins only, until the highly
derived state is reached where the prosthecal tuft is reduced to a few hairs (eg. Deleatidium of New Zealand) although no such maximum reduction occurs within the Australian genera. The average number of pectinate setae on the maxillae (character 18, Figs 473-476, 479-484, 487-489) increases in the apomorphic condition. This character state is related to the width-length ratio of the galea-lacinae (character 17) where a large ratio (>1) is associated with more pectinate setae. However, the number of setae varies greatly between genera and is somewhat subjective. Therefore the number of setae was chosen as a mean rather than raw numbers but this was only able to delineate two groups rather than the three as with character 17. The condition of fewer pectinate setae reverts to the plesiomorphic condition for members of clade C, Nyungara and clade N (the South American subgenus Nousia (Nousia) and the Australiari subgenera Nousia (Australonousia)). Finally, minor or absent spines on the terminal palp of the labium (character 21) are considered apomorphic for the all members of clade F (Figs. 513-516, 519-529) The stout equilateral triangular shaped third labial palp considered primitive by Towns and Peters (1979) is apparently associated with the stoui spines on the inner margin. In Australia, these plesiomorphic states are retained only by Atalomicria, Atalophlebia and Jappa. Although Ulmerophlebia and Kalhaybaria possess spines along the inner margin of the third palp the palp is more elongated in shape. Kalbaybaria, in particular, has a rather elongate hirsute third labial palp which appears to be a highly derived condition.

Clade G is well supported by two synapomorphies: labium with straight upright glossae (character 20, Figs 493, 495, 496,500, 502, 504-509) and denticulate nymphal tarsal claws (character 24, Figs $553,555,556,560,562,564-569$). The clade contains taxa belonging to the Penaphlebia, Atalonella and Meridialaris lineages of Pescador and Peters (1980a).

The position of Bib风umena, Kaninga and Loamaggalangta is unresolved within the cladogram. All possess the pleisiomorphic conditions of the labium glossae turned over ventrally (character 20. Figs. $494,499,501$) and tarsal claws which are smooth or have minor processes (character 24, Figs. 554, 559, 561). Loamaggalangta is considered close to Bibllmena (Dean et al. 1999). In turn, Bith/mena is considered to be intermediate between the Hapsiphlebia and Atalonella lineages sharing many characters of both. The possibility has been put forward that Bibllmena may belong to the Penaphlebia lineage (Dean 1987) although it does not share the derived character states of the Penaphlebia lineage such as the absence of pectinate setae on the inner margin of palp 2 and prominent spines or pectinate, long setae on the posterior margins of the abdominal terga (Pescador and Peters 1980a). Kaninga has only recently been established as a genus (Dean 2000) and its single species is confined to south-west

Western Australia. It has been considered similar to BibThmena (Dean 2000) and Loamaggalangta (Dean et al. 1999) but the symplesiomorphic characters, such as the smooth tarsal claws and the turned over labial glossae, do not demonstrate a close relationship. Biblumena and Kaninga are found only in south west Western Australia, an indication that the origins of these species may vary from their eastern Australian counterparts. Loamaggalangta has been found solely in Tasmania where it occurs only at water depths of greater than five metres clinging to submerged objects (Dean et al. 1999) which may account for some of its more unusual features such as extremely elongated leg lengths of the nymph including a long curved smooth tarsal claw which might heip it grip tightly to the substrate.

Garinjuga is the only Australian taxon considered a member of the Penaphlebia lineage (Campbell and Suter 1988). It possesses all the 'Penaphlebia' characteristics of the clypeus width subequal to labrum (character 5, Fig. 392), rounded labrum lateral margins (character 6, Fig. 392), smoothly curved outer margin of mandit :es (character 13, Fig. 415) the relatively smooth right mandible inner margin of the outer incisor (character 16, Fig. 455) and the strongly recurved forewing vein $\mathrm{MP}_{\mathbf{2}}$ (Fig. 575). However, all of these character states, apart from the latter, are also shared by the Atalonella, Dactyophlebia and Meridialaris lineages (Pescsdor and Peters 1980a, see Table 31). The forewing MP2 character state is ambiguous as 'strongly recurved' (terminology used by Pescador and Peters 1980a) is somewhat subjective. I assessed this character amongst the Austraiian taxa using the proviso that 'strongly recurved' as referred to more than 90 degrees but was still not able to separate the taxa, therefore this character was not considered in the phylogenetic analysis. Of the other 'Penaphlebia' characteristics there is no evidence of pectinate setae on the inner margin of maxillary palp 2 as suggested by Campbell and Suter (1988) or the long tassel-like setae on the abdominal terga posterior margins, although it does possess prominent spines in this area (character 3). Further, Garinjuga does not possess more than 25 costal crossveins in the forewing. Therefore, in the present phylogeny Garinjuga is distinguished by the prominent spines on the posterior margin of the abdominal terga (character 3) and the strongly diverging ICu_{1} and ICu_{2} (character 27, Fig. 575); botn convergent apomorphic states. Thus the placement of Garinjuga within the lineages defined by Pescador and Peters (1980a) is unclear and will depend upon a phylogenetic analysis including all the Gondwanan fauna.

The monophyly of the three genera constituting Clade H is extremely well supported with many apomorphies. The genera all share the following apomorphies with the Meridialaris lineage (Pescador and Peters 1980a) where they are considered to belong: labrum misch wider than clypeus (character 5), lateral margins of labrum angular (character 6), lateral margins of clypeus slightly diverging towards anterior (character 12) (see Figs. 390, 397,
406), mandible with outer margin angular (character 13, Figs. 413, 420, 429), maxillae galea-lacinae broad at apex (character 17, Figs. 473, 480, 489), labium submentum with no lateral setae (character 22) and ninth sternum of female entire, not cleft (character 33, Figs. 613, 620, 629). This final character is homoplasic, being convergent with the genus Thraulus (Fig. 628). One more character was found for this clade that was not considered by Pescador and Peters (1980a) which is the presence of posterolateral spines on abdominal segments 2-9 (character 4), although this character state is convergent within the genus Atalophlebia as well.

Within clade H Austrophlebioides and Tillyardophlebia are shown to be closely related and form a clade possessing two apomorphies (clade I). Pescador and Peters (1980a) refer to a narrow anteromedian emargination of the labrum with reduced denticles and a U and/or V -shaped cleft as a derived condition possessed by the Meridialaris lineage (Table 31). Austrophlebioides and Tillyardophlebia have a U-shaped labrum cleft with reduced denticles which is often referred to as a labrum 'hood' (character 8, Figs. 390, 406). This character is absent from all other members of the ingroup including the other purported Meridialaris taxon in Australia (Kirrara). The unnamed Genus 'Z' from southeastern Australia (Dean 1999) is not well known but has a wide labrum and distinct V shaped cleft. It is considered to be related to Austrophlebioides and may well prove to be part of the Meridialaris lineage. Austrophlebioides and Tillyardophlebia are also distinguished by the apomorphic possession of prominent spination on the abdominal posterior margins (character 3); a character state shared by Kaninga and Garinjuga. Finally Austrophlebioides is distinguished from Tillyardophlebia by a relatively large hindwing (character 30, Fig. 573), also possessed by Atalophlebia. (Fig. 572).

Kirrara is distinguished from clade I by the possession of an autapomorphic labrum which is triangular in cross sectior with quite a wide anterior margin in apical view (Fig. 408). The previously named 'Genus T ' (Dean and Suter 1996), which has recently been referred to Kirrara as an unnamed species (Christidis 2001), also possesses an apically expanded labrum where the frontal setae have been modified to form a suction disc. Kirrara is very similar to the highly derived Deleatidium of New Zealand (Towns and Peters 1996) and Lepegenia of New Calendonia (Peters et al. 1978) which have laterally and apically expanded labrum and gills forming a suction disc on the venter of the abdomen (not present in all Deleatidium). These are considered adaptations to extremely rapid flow which enable the species to cling tightly to the substrate. 'Genus T', Lepegenia and several species of Deleatidium, for example, have all been found in association with vertical rock faces of waterfalls. Other distinguishing characteristics of Kirrara include an absence of a secondary hair fringe in the labrum (character 9 , Fig. 397) and an absence of labrum denticles (Fig. 397) which appears to have evolved separately for Kirrara,

Kalbaybaria and Nyungara. The genus also has the strongly diverging CCu_{1} and $\mathrm{iCu}_{\mathrm{U}_{2}}$ veins (character 27, Fig. 580), which are probably associated with large forewings as discussed earlier.

The remaining taxa (Clade J) are united only by the homoplasic character state of hindwing subcostal vein being equal to or less than 0.85 times the length of hindwing (character 31, Figs. $591,592,596,597,602-608,610$) (convergent with all members of Clade C). For clade J this may be related to a reduced number of crossveins in the hindwing costal space (6 or less). For the independently evolved clade C however, the number of costal crossveins is always more than six in line with the rest of the ingroup and probably reflects the larger imago size. Montikola and Gemmayaluka are unresolved within clade J but do not appear closely related to Nousia (Australonousia), the genus to which they were previously assigned (Dean 1999), lending strength to the establishment of the new genera.

All members of clade K possess the synapomorphy of a reduction in the average number of crossveins in the costal space of the male forewing (character 28, Figs. 583-588) which may be related to the relatively smaller size of the imagos where the cross support between the costal and subcostal veins is not needed. This clade appears to possess a strong affinity with the Atalonella lineage (Pescador and Peters 1980a) (with the exception of Thraulus). Nyungara, Thraulophlebia, Nousia (Nousia), Nousia (Australonousia) and Neboissophlebia share the only derived condition of the Atalonella lineage (Pescador and Peters 1980 a , Table 31), that of a labrum with a broad anteromedian emargination with prominent denticles. This character, however, proved to be somewhat ambiguous, especially with respect to the definition of 'broad', and as it could not be objectively defined, was not included in the phylogenetic analysis.

Nyungara and Thraulus (ciade L) both possess the apomorphic well developed midength costal projection of the hind wing (character 32, Figs 606, 608). Although this character is also possessed by the Leptophlebiinae in some cases (eg Habrophlebiodes, Gillesia) it is nut present in the Ephemeroidea which usually possess an apical costal projection and is therefore considered a derived condition. Thraulus was included in the analysis as it is part of the Australian fauna, although its Gondwanan status is unclear, being primarily distributed throughout the Oriental and Ethiopian regions and Europe (Grant 1985). Evidence suggests there are two centres of origin for Leptophlebiidae: one with Holarctic-Oriential distribution and the other Gondwanan (Peters and Edmunds 1970; Edmunds 1972). Thraulus is known in Australia from the Northern Territory, north Queensiand and north Western Australia, a distribution that superficially suggests Holarctic-Oriental affinities. However, only a more taxonomically inclusive analysis could address the question of its geographic origins.

Further, our knowledge of Thraulus in Australia is rudimentary. Two morphospecies were described from the Alligator River Region of Northern Territory (Suter 1992) but were subsequently considered conspecific being referred to as Thraulus sp. 'AV1' (Dean 1999). From the label data attached it is clear that specimens of Thraulus sp. 'AV1' were are the same as Thraulus sp . A. named in an assessment of the macroinvertebrate fauna of Magela Creek of the Northern Territory (Marchant 1982b). Only two other unnamed species from Queensland are recognised (Dean 1999) but are based only on nymphs. Adult material is essential to further elucidate the total contingent of species in Australia.

Because of the questionable biogeographic affinities of Thraulus and the possibility that it does not belong with the rest of the Gondwanan fauna, it could be argued that Thraulus should be removed from the phylogenetic analysis. To examine this, a second strict consensus tree was produced from the 20 remaining taxa (tree length $=63$, consistency index $=0.65$, retention index $=0.81$). The resultant clade at K (Fig. 632) collapses all subsequent nodes and introduces a second synapomorphy (character 29) indicating a stronger relationship between the terminals. Other than this very little in the cladogram has changed indicating support for the position of Thraulus among the Australian Atalophlebiinae.

Members of clade M all possess the derived condition of an absence of crossveins in the male forewing costal space (character 29, Fig. 583-585, 587). The evolutionary significance of this character state is unknown (W.L. Peters pers. comm.) but as with a reduction in the number of costal crossveins in the male forewing (character 28) it could also be related to the relatively smaller size of the male imagos. Ecological investigation will be required to determine the significance of this character state which may or may not relate to the very small size of the adults, although the state is not possessed by the females of the same species. Interestingly, despite the morphological variation between Thraulophlebia and Nousia which warrants their separate generic status (see 3.4.5, Table 18) there appear to be no phylogenetic informative characters separating the two taxa in this clade. The inclusion of the full complement of Gondwanan fauna in an analysis may elucidate some evolutionary information in the future. There has also been some question of the relationship of Neboissophlebia in this clade. It has been indicated that it belongs to the more primitive Hapsiphlebia lineage (Dean 1988) sharing characters states such as the plesiomorphic narrow maxilla galea-lacinae (character 17, Fig. 483), hypopharynx glossae turned over ventrally (character 20, Fig. 503) and smooth tarsal claws (character 24, Fig. 563). However, the cladogram indicates a closer relationship with members of the Atalonella lineage.

Finally, the relationship between the two subgenera of Nousia (clade N) is held t.sether only by the plesiomorphic character of a reduction in the average number of subapical
*The alternative analysis, assuming no a priori polarity of characters, also produced three most parsimonious trees which were then used to construct a strict consensus tree (Alternative Fig. 631 [see adjacent to page 288, Vol. 2]). Compared to the initial analysis this resulted in a longer tree length of 65 , a marginally lower consistency index (0.63) and slightly higher retention index (0.84). No changes were apparent within the ingroup. Indeed the only variation between the cladograms relate to homoplasy connected with the outgroup Ephemera. Character convergence shared by Ephemera includes: a mandible with an enlarged process along with Kalbaybaria (character 14, Fig. 418); greatly elongate maxillary paips along with Atalomicria (character 19, Fig. 471) and a medium eye size for the male imago (character 25) along with the other members of clade E (character 25). As mentioned previously (p .307) the differing morphologies of the enlarged mandibular process in Kalbaybaria and ephemerid mayflies may be related to specialised behavioural and feeding habits. The function of elongate maxillary palps is also unknown but, again, the palp morphologies of two genera are quite distinct. In Atalomicria it is segments one and two which make up most of the length whereas in Ephemera all segments are equally elongate. Reduced or absent maxiliary palps are common in the Ephemerellidae (Merritt and Cummins 1996), a family within the superfamily Caenoidea which is considered a more primitive lineage (McCafferty 1991b, McCafferty 2002). Finally, large or contiguous imago eye size is possessed by all terminals of the cladogram except for Ephemera, Atalomicria and Atalophlebia. Although smaller eye size has been noted as an apomorphy the character is also considered liable to parallelism (Bae 1991).
pectinate setae on the maxillae (character 18, Figs. 484-485). This character is also possessed by various other taxa, for example, members of clade C which also have the companion character of a very narrow galea-lacinae apex but also, less explicably, Nyungara which has a width-length ratio of the galea-lacinae approximately equal to 1. No characters separate the two subgenera of Nousia which, based on morphological evidence, does not appear entirely warranted (see 3.3.4). However, a more complete revision of Nousia (Australonousia) may reveal some consistent phylogenetic evidence that may justify the subgeneric separation. see opposite*

6.8 Conclusions

The relationships of the Australian Leptophlebiidae, as represented in the cladogram (Fig. 631), do not fit readily into the lineages proposed by for the Southern Hemisphere fauna (Pescador and Peters 1980a, Fig. 383). There is no support for the Hapsiphlebia iineage, which in Australia is considered to comprise the genera Atalomicria, Atalophlebia, Jappa, Ulmerophlebia and Kalbaybaria (Pescador and Peters 1980a; Campbell 1993). All five genera share only one plesiomorphic condition (broad subapical denticles on the right outer incisor) which is insufficient to establish monophyly in this case. Kalbaybaria, as discussed, is highly distinct and its relationships to the rest of the Australia genera unresolved. Jappa and Ulmerophlebia, however, form a well supported monophyly.

The Penaphlebia lineage is only represented in Australia by the genus Garinjuga but this taxon does not possess any of the synapomorphies considered to define the lineage. It appears to have been placed in this lineage predominantly by plesiomorphic characters (Campbell and Suter 1988) which do not constitute an evolutionary relationship and its position amongst the Australian Leptophlebiid fauna is unclear. This also applies to the unresolved relationships of Biblumena, Kaninga and Loamaggalangta which are considered to variously belong to the Penaphlebia lineages or somewhere between the Hapsiphlebia and Atalonella lineages (Dean 1987; Dean et al. 1999; Dean 2000). It is likely that their particular characteristics have evolved in response to the varying origins (Western Australia, Tasmania) or habitats (eg: extremely deep pools) of these taxa.

The Atalonella lineage is supported only by one character (the reduction in the number of costal crossveins in the male forewing). This character, however, was not included in the original characters considered by Pescador and Peters (1980a) to define the lineage. In fact, the only apomorphy that defines the lineage according to Pescador and Peters (1980a) is the antero-median emargination of the labrum with broad sub-apical denticles, which was considered too ambigúous amongst the Australian taxa and was subsequently not included in the analysis. It is clear that the relationships of the Atalonella fauna need
more examination, especially the placement of the new genera Montikola and Gemmayaluka which, by virtue of their previous status within Nousia (Australonousia), are considered closely related to them.

The only lineage of Pescador and Peters (1980a) which is well supported in this cladogram is that of the Meridialaris, the Australian members of which include Kirrara, Austrophlebioides and Tillyardophlebia (clade H). This monophyletic clade includes a nuriber of synapomorphies, many of which are multi-state and show highly derived cJnditions. This finding is supported by the cladogram of Australian fauna Christidis (2001) which also shows a monophyletic Meridialaris lineage at the species level, including many unnamed species which she discovered in Queensland. Similarly, the phylogenetic tree of Towns and Peters (1996) shows a close relationship between Deleatidium and Atalophlebioides which are considered to be the New Zealand representatives of the Meridialaris lineage.

The Australian phylogeny by Christidis (2001) also grouped together Nyungara, Nousia (Ausiralonousia) and Thraulophlebia (as Koormonga) in a monophyletic clade, but notably this did not include Neboissophlebia whose relationship was unresolved. In line with the phylogeny presented here the relationships of Biblumena, Garinjuga and Loamaggalangta (as 'Genus K') and the 'Hapsiphlebia' genera (Jappa, Ulmerophlebia, Kalbaybaria, Atalophlebia, Atalomicria) were also unresolved (Christidis 2001).

In general terms the phylogeny of the New Zealand fauna (Towns and Peters 1996) is also unrepresentative of the lineages outlined by Pescador and Peters (1980a). Apart from the monophyletic Dactyophlebia lineage, and the close relationship of the two 'Meridialaris' genera (see above), the relationships of the rest of the fauna are unresolved. More work is needed, for example, to elucidate the placement of Neozephlebia, the only New Zealand representative of the Atalonella lineage.

At the beginning of the analysis an assumption was made that the ingroup taxa were monophyletic. In fact, the ingroup taxa are clearly paraphyletic due to the exclusion of the remaining worldwide Leptophlebiid taxa. The inordinately large number of Leptophlebiid taxa worldwide (Hubbard 1990) has so far prevented an analysis of the phylogenetic relationships of the family as a whole. Despite this much progress has been made on the relationships of other Gondwanan fauna, such as those in South America and New Zealand, as we have seen. The value of this analysis is, not only in a preliminary elucidation of the relationships of the Australian fauna, but also the information it contributes to the investigation of a possibly monophyletic Gondwanan lineage. Such a study would require co-operation from ephemeropterologists around the world, each
conversant with their own country's fauna. Now that the preliminary relationships among the Australian taxa have been more thoroughly elucidated, these findings can be used as a basis for development of a Gondwanan phylogeny and ultimately a phylogeny of the Leptophlebiidae worldwide.

BIBLIOGRAPHY

Alba-Tercedor, J. and Suter, P.J. (1990). A new species of Caenidae from Australia: Tasmaocoenis arcuata sp.n. (Insecta, Ephemeroptera). Aquatic Insects 12(2): 85-94.

Anonymous (1989). Water Victoria - An environmental handbook. Melbourne, Victorian Department of Water Resources: 352pp.

Anonymous (1994). River Bioassessment Manual. Canberr:3, National River Processes and Management Program - Monitoring River Health Initiative.

Anonymous (2002). .http://www.fba.org.uk/. Freshwater Biological Association Publications. Date accessed 18th November 2001.

Bae, Y.J. (1991). Phylogenetic systematics of the Potamanthidae (Ephemeroptera). Transactions of the American Entomological Society 117(3-4): 1-143.

Bae, Y.J. (1995). Ephemera separigata, a new species of Ephemeridae (insecta: Ephemeroptera) from Korea. The Korean Journal of Systematic Zoology 11(2): 159-166.

Bae, Y.J. and McCafferty, W.P. (1995). Ephemeroptera tusks and their evolution. pp. 377-405, Proceedings of the Seventh International Conference on Ephemeroptera Current Directions in Research on Ephemeroptera, Orono, Maine, Canadian Scholars Press.

Bae, Y.J., McCafferty, W.P. and Edmunds, G.F.Jr. (1990). Stygifloris, a new genus of mayilies (Ephemeroptera: Potamanthidae) from Southeast Asia. Annals of the Entomological Society of America 83(5): 887-891.

Bailey, P.C.E. (1981a). Diel activity patterns in nymphs of an Australian Mayfly Atalophlebioides sp. (Ephemeroptera: Leptophlebiidae). Australian Journal of Marine and Freshwater Research 32: 121-131.

Bailey, P.C.E. (1981b). Insect drift in Condor Creek, Australian Capital Territory. Australian Journal of Marine and Freshwater Research 32: 111-120.

Baker, S.C. and Sharp, H.F.J. (1998). Evaluation of the iecovery of a poliuted urban stream using the Ephemeroptera-Plecoptera-Trichoptera index. Journal of Freshwater Ecology 13(2): 229-234.

Salasubramanian, C., Venkataraman, K. and Sivaramakrishnan, K.G. (1991). Life stages of a south Indian burrowing mayfly, Ephemera (Aethephemera) nadinae McCafferty and Edmunds 1973 (Ephemeroptera: Ephemeridae). Aquatic Insects 13(4): 223-228.

Banks, N. (1900). New genera and species of Nearctic Neuropteroid insects. Transactions of the American Entomological Society 26: 239-259.

Barmuta, L.A. (1990). Interaction between the effects of substratum, velocity and location on stream benthos: an experiment. Australian Journal of Marine and Freshwater Research 41: 557-573.

Barnard, K.H. (1932). South African may-flies (Ephmeroptera). Transactions of the Royal Society of South Africa 20(3): 201-259.

Bay, E.C. (1967). An inexpensive filter-aquarium for rearing and experimenting with aquatic invertebrates. Turtox News 45(6): 146-148.

Blyth, J.D., Doeg, T.J. and St Clair, R.M. (1984). Response of the macroinvertebrate fauna of the Mitta Mitta River, Victoria, to the construction and operation of Dartmouth Dam. 1. Construction and initial filling period. Occasional Papers from the Museum of Victoria 1(2): 83-100.

Boulton, A.J. and Brock, M.A. (1999). Australian Freshwater Ecology - processes and management. Glen Osmond, South Australia, Gleneagles Publishing.

Boulton, A.J. and Lloyd, L.N. (1991). Macroinvertebrate assemblages in floodplain habitats of the lower River Murray, South Australia. Regulated Rivers 6: 183-201.

Brakensiek, D.L., Osborn, H.B. and Rawls, W.J. (1979). Field manual for research in agricultural hydrology, United States Department of Agriculture (USDA).

Brittain, J.E. (1982). Biology of mayflies. Annual Review of Entomology 27: 119-147.

Brittain, J.E. (1990). Life history strategies in Ephemeroptera and Plecoptera. pp. 1-12, Proceedings of the Fifth International Conference on Ephemeroptera and the Ninth International Symposium on Plecoptera - Mayflies and Stoneflies: Life History and Biology, Marysville, Australia, Kluwer Academic Publishers.

Brittain, J.E. (1991). Effect of temperature on egg development in the Australian stonefly genus Austrocercella illies (Plecoptera: Notonemouridae). Australian Journal of Marine and Freshwater Research 42: 107-114.

Brittain, J.E. (1985). Egg development in Australian mayflies. pp. , Proceedings of the Seventh International Conference on Ephemeroptera - Current Directions in Research on Ephemeroptera, Orono, Maine, Canadian Scholars' Press Inc.

Brittain, J.E. and Campbell, I.C. (1991). The effect of temperature on egg development in the Australian mayfly genus Coloburiscoides (Ephemeroptera: Coloburiscidae) and its relationship to distribution and life history. Journal of Biogeography 18: 231-235.

Brittain, J.E. and Eikeland, T.J. (1988). Invertebrate drift - a review. Hydrobiologia 166: 77-93.

Brooks, S.S. and Boulton, A.J. (1991). Recolonization dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Australian Journal of Marine and Freshwater Research 42: 295-308.

Brundin, L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges (with a monograph of the subfamily Posciominae and Aphroteniinae and the Austral Heptaginae). Kungliga Svenska Vetenskapsakademiens Handlingar Series 4, 11(1): 1-472.

Buikema, A.L.J. and Voshell, J.R. Jr. (1993). Toxicity studies using freshwater benthic macroinvertebrates. Toxicity Studies: 344-398.

Bunn, S.E. (1988). Life histories of some benthic invertebrates from streams of the Northern Jarra Forrest, western Australia. Australian Journal of Marine and Freshwater Research 39: 785-804.

Bunn, S.E., Edward, D.H. and Loneragan, N.R. (1986). Spatial and temporal variation in the macroinvertebrate fauna of streams of the Northern Jarrah forest, Western Australia: community structure. Freshwater Biology 16: 67-91.

Bureau of Meterology (2002). http//www.born.gov.au. Date accessed 20th April 2002.

Burks, B.D. (1953). The mayflies, or Ephemeroptera, of Illinois. Bulletin of the Natural History Survey Division 26(1): 1-216.

Burmeister, H. (1839). Ephemeria. Handbuch der Entomologie 2(2): 788-804.

Campbell, I.C. (1979). Diurnal variations in the activity of Mirawara purpurea Riak (Ephemeroptera, Siphlonuridae) in the Aberfeldy River, Victoria, Australia. pp. 297-308, Proceedings of the Third International Conference on Ephemeroptera - Advances in Ephemeroptera Biology, Winnipeg, Canada, Plenum Publishing Corporation.

Campbell, I.C. (1983). Studies on the taxonomy and ecology of the Australian Siphlonuridae and Oligoneuriidae (Insecta: Ephemeroptera). Department of Zoology. Melbourne, Monash University: 227pp.

Campbell, I.C. (1985). Dietary habits of Australian siphlonurid and oligonuriid ephemeropteran nymphs. Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie 22: 3250-3259.

Campbell, I.C. (1986). Life histories of some Australian Siphlonurid and Oligoneuriid Mayflies (Insecta: Ephemeroptera). Australian Journal of Marine and Freshwater Research 37: 261-288.

Campbell, I.C. (1988). Ephemeroptera. Zoological Catalogue of Australia. . 1-22, Bureau of Flora and Fauna, Canberra. Australian Government Publishing Service.

Campbell, I.C. (1990). The Australian mayfly fauna: composition, distribution and convergence. pp. 149-153, Proceedings of the Fifth International Conference on Ephemeroptera and the Ninth International Symposium on Plecoptera - Mayflies and Stoneflies: Life History and Biology, Marysville, Australia, Kluwer Academic Publishers.

Campbeli, I.C. (1991). Size aliometry in some Australian mayfly nymphs. Aquatic Insects 13(2): 79-86.

Campbell, I.C. (1993). A new genus and species of Leptophlebiid mayfly (Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from Tropical Australia. Aquatic Insects 15(3): 159-167.

Campbell, I.C. (1995). The life histories of three tropical species of Jappa Harker (Ephmereroptera: Leptophlebiidae) in the Mitchell River System, Queensland, Australia. pp. 197-206, Proceedings of the Seventh International Conference on Ephemeroptera - Press.

Campbell, I.C. (2001). The current status of Ephemeroptera biology in Australia. pp. 7-12, Proceedings of the Ninth International Conference on Ephemeroptera and the Thirteenth International Symposium on Plecoptera - Trends in Research in Ephemeroptera and Plecoptera, Tucumán, Argentina, Kluwer Academic Publishers.

Campbell, I.C., Duncan, M.J. and Swadling, K.M. (1990). Life histories of some Ephemeroptera from Victoria, Australia. pp. 81-84, Proceedings of the Fifth International Conference on Ephemeroptera and the Ninth International Symposium on Plecoptera Mayflies and Stoneflies: Life History and Biology, Marysville, Australia, Kluwer Academic Publishers.

Campbell, I.C. and Holt, M.K. (1984). The life history of Kirrara procera Harker (Ephemeroptera) in two south eastern Australian rivers. pp. 299-305, Proceedings of the Fourth International Conference on Ephemeroptera, Bechyne, Czechoslovakia, Czechoslavak Academy of Science.

Campbell, I.C. and Hubbard, M.D. (1998). A new species of Prosopistoma (Ephemeroptera: Prosopistomatidae) from Australia. Aquatic Insects 20(3): 141-148.

Campbell, I.C., Parnong, S. and Treadwell, S. (1998). Food availability and life history patterns of aquatic insects in evergreen eucalypt forest streams in southeastern Australia. Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie 26: 986-989.

Campbell, I.C. and Peters, W.L. (1986). Redefinition of Kirrara Harker with a redescription of Kirrara procera Harker (Ephemeroptera: Leptophlebiidae: Atalophlebiinae). Aquatic Insects 8(2): 71-81.

Campbell, I.C. and Peters, W.L. (1993). A revision of the Australian Ephemeroptera genus Atalomicria Harker (Leptophlebiidae: Atalophlebiidae). Aquatic Insects 15(2): 89107.

Campbell, I.C. and Suter, P.J. (1988). Three new genera, a new subgenus and a new species of Leptophlebiidae (Ephemeroptera) from Australia. Journal of the Australian Entomological Society 27: 259-273.

Chessman, B.C. (1986). Dietary studies of aquatic insects from two Victorian streams. Australian Journal of Marine and Freshwater Research 37: 129-46.

Chessman, B.C. (1995). Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sampling, family level identification and a biotic index. Australian Joumal of Ecology 20: 122-129.

Chessman, B.C. and Boulton, A.J. (1999). Occurrence of the mayfly family Teloganodidae in northern New South Wales. Australian Journal of Entomology 38: 9698.

Chessman, B.C., Robinson, D.P. and Hortle, K.G. (1987). Changes in the riffle macroinvertebrate fauna of the Tanjil river, southeastern Australia, during construction of the Blue Rock Dam. Regulated Rivers: Research and Management 1: 317-329.

Christidis, F. (2001). A cladistic analysis of Austrophlebioides and related genera (Leptophlebiidae: Atalophlebiinae). pp. 305-312, Proceedings of the Ninth International Conference on Ephemeroptera and the Thirteenth International Symposium on Plecoptera - Trends in Research in Ephemeroptera and Plecoptera, Tucumán, Argentina, Kluwer Academic Publishers.

Clifford, H.F. (1982). Life cycles of Mayflies (Ephemeroptera) with special reference to voltinism. Quaestiones Entomologicae 18: 15-90.

Clifford, H.F., Robertson, M.R. and Zelt, K.A. (1973). Life cycle patterns of mayflies (Ephemeroptera) from some streams of Alberta, Canada. pp. 122-131, Proceedings of the First International Conference on Ephemeroptera, Florida, E.J. Brill.

Conn, B.J. (1993). Natural regions and vegetation of Victoria. Flora of Victoria. Foreman, D.B. and Walsh, N.G. 79-158.Melbourne, Inkata Press, Royal Botanical Gardens Melbourne.

Corkum, L.D. (1978). The nymphal development of Paraleptophlebia adoptiva (McDunnough) and Paraleptophlebia mollis (Eaton) (Ephemeroptera: Leptophlebiidae) and the possible influence of temperature. Canadian Journal of Zoology 56: 1842-1846.

Corkum, L.D. (1990). Intrabiome distributional patterns of lotic macroinvertebrate assemblages. Canadian Journal of Fisheries and Aquatic Sciences 47: 2147-2157.

Coysh, J., Nichols, S., Simpson, J., Norris, R., Earmuta, L., Chessman, B. and Blackman, P. (2000). AusRivAs - National River Health Program, Predictive Model Manual, CRC Freshwater Ecology, National Heritage Trust, Environment Australia, Land and Water Resources.

Craig, D.A. (1966). Techniques for rearing stream-dwelling organisms in the laboratory. Tuatara 14: 65-72.

Cullen, P. (1990). Biomonitoring and environmental management. Environmental Monitoring and Assessment 14: 107-114.

Cullen, P. and Lake, P.S. (1993). Conserving biodiversity. Water Resources and Biodiversity: past, present and future problerns and solutions. University of Sydiney: 18pp.

Cummins, K.W. (1962). An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. American Midland Naturalist 67 : 477-504.

Cummins, K.W. (1974). Structure and function of stream ecosystems. Bioscience 24: 631-641.

Cummins, K.W. and Klug, M.J. (1979). Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147-172.

Darwin, C. (1859). The Origin of Species by means of Natural Selection or The Preservation of Favoured Races in the Struggle for Life. New York, Avenel Books.

Davies, J.A., Harrington, S.A. and Friend, J.A. (1993). Invertebrate communities of relict streams in the arid zone: the George Gill Range, Central Australia. Australian Journal of Marine and Freshwater Research 44: 483-505.

Davies, P.E. (1994). National River Processes and Management Program- Monitoring River Health Initiative, River Bioassessment Manual. Tasmania, Department of Environment, Sport and Territories, Land and Water Resources, Commonwealth Environment Protection Agency.

Davies, P.E. and Nelson, M. (1994). Relationships between riparian buffer widths and the effects of logging on stream habitat, invertebrate community composition and fish abundance. Australian Journal of Marine and Freshwater Research 45(7): 1289-1305.

Day, W.C. (1956). Ephemeroptera. Aquatic Insects of California. Usinger, R.L. 79105.Berkeley and Los Angeles, University of California Press.

Dean, J.C. (1987). Two new genera of Leptophlebiidae (Insecta:Ephemeroptera) from south-western Australia. Memoirs of the Museum of Victoria 48(2): 9\%-100.

Dean, J.C. (1988). Description of a new genus of Leptophlebiid mayfly from Australia (Ephemeroptera: Leptophlebiidae: Atalophlebiinae). Proceedings of the Royal Society of Victoria 100: 39-45.

Dean, J. C. (1989). A Guide to Australian Mayflies of the family Leptophlebiidae. Victoria, Water Science Laboratories, 68 Ricketts Rd, Mount Waverley,3149: 36.

Dean, J.C. (1997). Descriptions of new Leptophlebiidae (Insecta: Ephemeroptera) from Ausiralia. 1 Tillyardophlebia gen. nov. Memoirs of the Museum of Victoria 56(1): 83-89.

Dean, J.C. (1999). Preliminary keys for the identification of Australian mayfly nymphs of the family Leptophlebiidae. Albury, Co-operative Research Centre for Freshwater Ecology and Murray Darling Freshwater Research Centre.

Dean, J.C. (2000). Descriptions of new Leptophlebiidae (Insecta: Ephemeroptera) from Australia. II. Kaninga, a new monotypic genus from south-western Australia. Records of the Western Austraiian Museum 20: 8\%-94.

Dean, J.C. and Cartwright, D.I. (1992). Plecoptera, Ephemeroptera and Trichoptera of the Pelion Vailey, Tasmanian world heritage area. Occasional Papers from the Museum of Victoria 5: 73-79.

Dean, J.C., Forteath, G.N.R. and Osborn, A.W. (1999). Loamaggalangta pedderensis gen. \& sp. nov.: A new mayfly from Tasmania (Ephemeroptera: Leptophlebiidae: Ataloplebiinae). Australian Journal of Entomology 38: 72-76.

Dean, J.C. and Suter, P.J. (1996). Mayfly nymphs of Australia. Albury, Co-operative Research Centre for Freshwater Ecology and Murray Darling Freshwater Research Centre.

Demoulin, G. (1952a). Contribution a l'étude des Ephoronidae Euthypolciinae (Insectes Éphéméroptères). Bulletin d'Institut Royal des Sciences Naturelles de Belgique 28(45): 122.

Demoulin, G. (1952b). Sur deux Palingeniidae (Insectes Éphéméroptères) mal connus. Bulletin d'Institut Royal des Sciences Naturelles de Belgique 28(33): 1-11.

Demoulin, G. (1955a). Éphéméroptères Nouveaux ou Rares du Chili. Bulletin de 'Institut Royal des Sciences naturelles de Belgique 73: 1-30.

Demoulin, G. (1955b). Les Brachycercidae Australiens. Le genre Tasmanocoenis Lestage. Bulletin de l'institut Royal des Sciences naturelles de Belgique 31(10): 1-7.

Demoulin, G. (1955c). Note sur deux nouveaux genres de Leptophlebiidae d'Australie. Bulletin et Annales de la Société Royale Entomologique de Belgique 91: 227-229.

Demoulin, G. (1955d). Afromera, gen. nov. Ephemeridae de la faune éthiopienne. Bulletin et Annales de la Société Royale Entomologique de Belgique 91(11-12): 291-295.

Demoulin, G. (1958). Nouveau schéma de classification des Archodonates et des Éphéméroptères. Bulletin de linstitut Royal des Sciences naturelles de Belgique 24(27): 1-19.

Demoulin, G. (1966). Contribution a l'étude des Euthyplociidae (Ephemeroptera) IV un nouveau genre de Madagascar. Annals Société Entomologie de France 11(4): 941-949.

Doeg, T.J. (1984). Response of the macroinvertebrate fauna of the Mitta Mitta River, Victoria, to the construction and operation of Dartmouth Dam. 2. Irrigation release. Occasional Papers from the Museum of Victoria 1(2): 101-108.

Doeg, T.J. (1987). Macroinvertebrate communities in the Goulburn River and tributaries above Lake Eildon, Victoria. Bulletin of the Australian Society of Limnology 11: 47-61.

Doeg, T.J. and Lake, P.S. (1989). Colonization of experimentally disturbed patches by stream macroinvertebrates in the Acheron River, Victoria. Australian Journal of Ecology 14: 207-220.

Doeg, T.J., Marchant, R., Douglas, M. and Lake, P.S. (1989a). Experimental colonization of sanci, gravel and stones by macroinvertebrates in the Acheron River, southeastern Australia. Freshwater Biology 22: 57-64.

Doeg, T.J. and Milledge, G.A. (1991). Effect of experimentally increasing concentrations of suspended sediment on macroinvertebrate drift. Australian Journal of Marine and Freshwater Research 42: 519-526.

Dominguez, E. (1995). Cladistic analysis of the Ulmeritus-Ulmeritoides group (Ephemeroptera, Leptophlebiidae) with descriptions of five new species of Ulmeritoides. Journal of New York Entomological Society 103(1): 15-38.

Duncan, M.J. (1972). The life histories of Ephemeroptera from two Victorian streams. Department of Ecology and Evolutionary Biology. Melbourne, Monash University.

Eaton, A.E. (1868-69). An outline of a re-arrangement of the genera of Ephemeridae. The Entomologist's Monthly Magazine 5: 82-95.

Eaton, A.E. (1871). A monograph on the Ephemeridae. Transactions of the Entomological Society of London: 1-164 plus 6 plates.

Eaton, A.E. (1881). An announcement of the new genera of the Ephemeridae. The Entomologist's Monthly Magazine 17: 191-197.

Eaton, A.E. (1883-1888). A revisional monograph of recent Ephemeridae or mayflies.
Transactions of the Linnean Society of London, Second Series, Zoology 3: 1-352.

Eaton, A.E. (1899). An annotated list of the Ephmeridae of New Zealand. Transactions of the Entomological Society of London Part Ill: 285-293, 1 pl.

Edmunds, G.F.Jr. (1957). The systematics relationships of the paleantartic Siphionuridae (including Isonychiidae) (Ephemeroptera). Proceedings of the Entomological Society of Washington 59(5): 245-246.

Edmunds, G.F.Jr. (1959). Subgeneric groups within the mayfly genus Ephemerella (Ephemeroptera: Ephemerellidae). Annals of the Entomologica! Society of America 52: 543-547.

Edmunds, G.F. (1962). The principles applied in determining the hierarchic level of the higher categories of Ephemeroptera. Systematic Zoology 11: 22-31.

Edmunds, G.F.Jr. (1972). Biogeography and evolution of Ephemeroptera. Annual Review of Entomology 17: 21-42.

Edmunds, G.F.Jr. and Allen, R.K. (1966). The significance of the nymphal stages in the study of Ephemeroptera. Annals of the Entomological Society of America 59(2): 300-303.

Edmunds, G.F. Jr., Allen, R.K. and Peters, W.L. (1963). An annotated key to the nymphs of the families and subfamilies of mayflies. University of Utah Biological Series 23(1): 349.

Edmunds, G.F.Jr., Jensen, S.L. and Berner, L. (1976). The Mayflies of North and Central America.(The biological role of mayflies.). Minneapolis, University of Minnesota Press.

Edmunds, G.F.Jr. and McCafferty, W.P. (1988). The mayfly subimago. Annual Review of Entomology 33: 509-529.

Edmunds, G.F.Jr. and McCafferty, W.P. (1996). New field observations on burrowing in Ephemeroptera from around the worid. Entomological News 107(2): 68-76.

Edmunds, G.F. Jr. and Traver, J.R. (1954a). An outline of the reclassification of the Ephemeroptera. Proceedings of the Entomological Society of Washington 56(5): 236-240.

Edmunds, G.F. Jr. and Traver, J.R. (1954b). The flight mechanisms and evolution of the wings of Ephemeroptera, with notes on the archetype insect wing. Journal of the Washington Academy of Sciences 44(12): 390-400.

Edmunds, G.F.Jr. and Traver, J.R. (1959). The classification of the Ephemeroptera 1. Ephemeroptera: Behningiidae. Annals of the Entomological Society of America 52: 43-51.

Elliott, J.M. (1978). Effect of temperature on the hatching time of eggs of Ephemerella ignita (Poda) (Ephemeroptera: Ephemerellidae). Freshwater Biology 8: 51-58.

Elouard, J.-M. (1986a). Ephémères d'Afrique de l'Ouest: le genre Afromera (Éphéméridae). Revue d'Hydrobiologie tropicale 19(3-4): 169-176.

Elouard, J:-M. (1986b). Éphémères d'Afrique de l'Ouest: le genre Eatonica (Éphéméridae). Revue d'Hydrobiologie tropicale 19(2): 87-92.

Elouard, J.-M., Oliarinony, R. and Sartori, M. (1998). Biodiversité aquatique de Madagascar. 9. Le genre Eatonica Navàs (Ephemeroptera, Ephemeridae). Bulletin de la Société Entomologique Suisse 71: 1-9.

Elpers, C. and Tomka, I. (1994). Mouthparts of the predaceous larvae of the Behningiidae (Insecta: Ephemeroptera). Archiv für Hydrobiologie / Supplementum 99 4: 381-413.

Fielding, A.H. and Bell, J.F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38-49.

Finlay, K.J. (2000). Description and distribution of a new species of Nousia Navás (Epheimeroptera: Leptophlebiidae: Atalophlebiinae) from south-eastern Australia. Australian Journal of Entomology 39: 111-117.

Finlay, K.J. (2001). Construction and evaluation of a new laboratory system for rearing mayflies. pp. 241-250, Proceedings of the Ninth International Conference on Ephemeroptera and the Thirteenth International Symposium on Plecoptera - Trends in Research in Ephemeroptera and Plecoptera, Tucumán, Argentina, Kluwer Academic Publishers.

Gaston, K.J. and Blackburn, T.M. (1999). A critique for macroecology. Oikos 84: 353-368.

Gillies, M.T. (1951). Further notes on Ephemeroptera from India and south east Asia. Proceedings of the Royal Entomological Society of London (B) 20(11-12): 121-130.

Gillies, M.T. (1980). The African Euthyplociidae (Ephemeroptera) (Exeuthyplociinae subfam.n.). Aquatic Insects 1(4): 217-224.

Goloboff, P.A. (1993). NOI:A. Tucumán, Argentina, Goloboff, P.A.

Gordon, N.D., McMahon, T.A. and Finlayson, B.L. (1992). Stream Hydrology - an introduction for ecologists. Brisbane, John Wiley and Sons Inc.

Grandi, M. (1960). Fauna d'Italia - Ephemeroidea. Accademis Nazionale Italiana di Entomologia and Unione Zoologica Italiana 3: 212-396.

Grant, P. (1985). Systematic revision of the Thraulus group genera (Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from the Eastern Hemisphere. Department of Biological Sciences. Tallahasee, Florida, Florida State University - College of Arts and Sciences: 326pp.

Growns, I.O. and Davis, J.A. (1994). Effects of forestry activities (clearfelling) on stream macroinvertebrate fauna in south-eastern Australia. Australian Journal of Marine and Freshwater Research 45: 963-975.

Harker, J.E. (1950a). Australian Ephemeroptera. Part 1 Taxonomy of New South Wales species and evaluation of taxonomic characters. Proceedings of the Linnean Society of New South Wales 75: 1-34.

Harker, J.E. (1950b). The effect of temperature on the final instar nymphs of three species of Australian Ephemeroptera. Proceedings of the Royal Entomological Society of London (A) 25: 111-114.

Harker, J.E. (1954). The Ephemeroptera of Eastern Australia. Transactions of the Royal Entomological Society of London 105(12): 241-268.

Harker, J.E. (1957a). Some New Australian Ephemeroptera. Proceedings of the Royal Entomological Society of London (B) 26: 63-68.

Harker, J.E. (1957b). Some New Australian Ephemeroptera. Part 2. Proceedings of the Royal Entomological Society of London (B) 26: 69-78.

Harker, J.E. (1997). The role of parthenogenesis in the biology of two species of mayfly (Ephemeroptera). Freshwater Biology 37: 287-297.

Harris, J.H., Scarlett, G. and MacIntyre, R.J. (1992). Effects of a pulp and paper mill on the ecology of the La Trobe River, Victoria, Australia. Hydrobiologia 246: 49-67.

Hawking, J.H. (1996). A preliminary guide to keys and zoological information to identify invertebrates from Australian freshwaters. Albury, Co-operative Research Centre for Freshwater Ecology, Murray Darling Freshwater Research Centre.

Hawking, J.H. (1998). Freshwater macroinvertebrates of Mount Buffalo. The Victorian Naturalist 115(5): 215-217.

Hearnden, M.N. and Pearson, R.G. (1991). Habitat partitioning among the mayfly species (Ephemeroptera) of Yuccabine Creek, a tropical Australian stream. Oecologia 87: 91-101.

Hennig, W. (1966). Phylogenetic systematics. Urbana, University of Illinois Press.

Horridge, G.A., Marcelja, L. and Jahnke, R. (1982). Light guides in the dorsal eye of the male mayfly. Proceedings of the Royal Society of London B 216: 137-150.

Hosmer, D.W. and Lemeshow, S. (1989). Applied Logistic Regression. New York, John Wiley and Sons.

Houlder, D.J., Hutchinson, M.F., Nix, H.A. and McMahon, J.P. (2000). ANUCLIM User's guide, version 5.1. Canberra, Centre for Resource and Environmental Studies, Australian National University.

Hubbard, M.D. (1982). Two new species of Ephemera from South India (Ephemeroptera: Ephemeridae). Pacific Insects 24(2): 192-195.

Hubbard, M.D. (1983). Ephemeroptera of Sri Lanka: Ephemeridae. Systematic Entomology 8(4): 383-392.

Hubbard, M.D. (1984). A revision of the genus Povilla (Ephemeroptera: Polymitarcyidae). Aquatic Insects 6(1): 17-35.

Hubbard, M.D. (1990). Mayflies of the World - A Catalog [sic] of the Family and Genus group Taxa (Insecta: Ephemeroptera) Flora and Fauna Handbook No. 8. Gainsville, Sandhill Crane Press Inc.

Hubbard, M.D. and Campbell, I.C. (1996). Catalogue of the Australian Mayflies, recent and fossil (Insecta: Ephmeroptera). Melbourne, Australian Society of Limnology.

Hubbard, M.D., Suter, P.J. and Campbell, I.C. (2001). Catalog [sic] of Australian mayflies, Florida Agricultural and Mechanical University.

Hunter, K.M. and Zampatti, B.P. (1994). Victorian Water Quality Monitoring Network Annual Report 1993. Melbourne, State Water Laboratory.

Hynes, H.B.N. (1941). The taxonomy and ecology of the nymphs of British Plecoptera with notes on the adults and eggs. Transactions of the Royal Entomological Society of London 91(10): 459-557.

Hynes, H.B.N. (1970). The ecology of stream insects. Annual Review of Entomology 15: 25-42.

ICZN (1999). International Code of Zoological Nomenclature. London, International Trust for Zoological Nomenciature.

Illies, J. (1968). Mayflies (Ephemeroptera) - Eintagsfliegen. handbuch der Zoology 4(2): 17, 15-27

Ishiwata, S.-I. (1996). A study of the genus Ephoron from Japan (Ephemeroptera: Polymitarcyidae). The Canadian Entomologist 128: 551-572.

Jelinek, A., Cameron, D., Belcher, C. and Turner, L. (1997). New perspectives on the ecology of Lake Mountain (ii): Significant ecological communities and species. The Victorian Naturalist 114(1): 30-39.

Jowett, I.G. and Richardson, J. (1990). Microhabitat preferences of benthic invertebrates in a New Zealand river and the development of in-stream flow-habitat models for Deleatidium spp. New Zealand Journal of Marine and Freshwater Research 24: 19-30.

Jowett, I.G., Richardson, J., Biggs, B.J.F., Hickey, C.W. and Quinn, J.M. (1991). Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp. habitat suitability curves, applied to four New Zealand rivers. New Zealand Journal of Marine and Freshwater Research 25: 187-199.

Kang, S.-C. and Yang, C.-T. (1994). Ephemeroidea of Taiwan (Ephemeroptera). Chinese Journal of Entomology 14: 391-399.

Keltner, J. and McCafferty, W.P. (1986). Functional morphology of burrowing in the mayflies Hexagenia limbata and Pentagenia vittigera. Zoological Journal of the Linnean Society 87: 139-162.

Kerby, B.M., Bunn, S.E. and Hughes, J.M. (1995). Factors influencing invertebrate drift in small forest streams, south-eastern Queensland. Marine and Freshwater Research 46: 1101-1108.

Kimmins, D.E. (1960). The Ephemeroptera types of species described by A.E. Eaton, R. McLachlan and F. Walker, with particular reference to those in the British Museum (Natural History). Bulletin of the British Museum (Natural History) - Entomology 9: 269318.

Klapálek, F. (1909). Ephemerida, Eintagsfliegen. Die Süsswasserfauna Deutchlands eine Exkursionsfauna. . 1-32.

Kleinbaum, D.G. (1994). Logistic Regression - a self learning text. New York, SpringerVeriag Inc.

Lake, P.S. (1994). Understanding the Ecology of Australian running waters: as assessment of current endeavours and of future priorities. National River Health Program., LWRRDC Occasional Paper Series No 13/94.

Lake, P.S., (1995). Of floods and droughts: river and stream ecosystems of Australin. pp. 659-694. In: Cushing, C.E.et al. (eds). Ecosystems of the World 22 - River and Stream Ecosystems. Amsterdam, Elsevier.

Lake, P.S., Barmuta, L.A., Boulton, A.J., Campbell, I.C. and St Clair, R.M. (1985). Australian streams and Northern Hemisphere stream ecology: comparisons and problems. Proceedings of the Ecological Society of Australia 14: 61-82.

Lampert, W. and Sommer, U. (1997). Limnoecology: the ecology of lakes and streams. Oxford, Oxford University Press.

Landa, V. (1969). Comparative Anatomy of mayfly larvae (Ephemeroptera). Acta entomologica bohemoslovaca 66: 289-316.

Landa, V. (1973). A contribution to the evolution of the order Ephemeroptera based on comparative anatomy. pp. 155-159, Proceedings of the First International Conference on Ephemeroptera, Florida, E.J.Brill.

Landa, V. and Soldán, T. (1985). Phylogeny and higher classification of the order Ephemeroptera: a discussion from the comparative anatomical point of view. Praha, Publishing House of the Czexkoslovak Academy of Sciences.

Landis, J.R. and Koch, G.C. (1977). The measurement of observer agreement for categorical data. Biometrics 33: 159-174.

Lawton, J. (1996). Patterns in ecology. Oikos 75: 145-147.

Lenat, D.R. (1988). Water quality assessment of streams using a qualitative collection method for stream invertebrates. Journal of the North American Benthological Society 7(3): 222-233.

Lestage, J.A. (1918). Les Ephémères d'Afrique (Notes critiques sur les espèces connues). Revue Zoologique Africaine 6: 65-114.

Lestage, J.A. (1931). Notes sur le genre Massartella nov. gen. de la famille des Leptophlebiidae et le genotype Massartella brieni Lest. Une Mission Biologique Belge au Bresil 2: 249-258.

Lestage, J.A. (1939). Contribution a l'etude des Ephéméroptères XXIII Les Polymitarcidae de la faune africaine et description d'un genre nouveau du Natal. Bulletin et Annales de la Société Royale Entomologique de Belgique 79: 135-138.

Lugo-Ortiz, C.R. and McCafferty, W.P. (1996). Central American Tortopus (Ephemeroptera: Polymitarcyidae): a unique new species and new country records. Entomological News 107(1): 23-27.

Lugo-Ortiz, C.R. and McCafferty, W.P. (1998a). First report and new species of the genus Cloeodes (Ephemeroptera: Baetidae) from Australia. Entomological News 109(2): 122128.

Lugo-Ortiz, C.R. and McCafferty, W.P. (1998b). First report of the genus Siphlaenigma Penniket and the family Siphlaenigmatidae (Ephemeroptera) from Australia. Proceedings of the Entomological Society of Washington 100(2): 209-313.

Lugo-Ortiz, C.R. and McCafferty, W.P. (1998c). Offadens, a new genus of small minnow mayflies (Ephemeroptera: Baetidae) from Australia. Proceedings of the Entomological Society of Washington 100(2): 306-309.

Lugo-Ortiz, C.R. and McCafferty, W.P. (1999). Edmundsiops instigatus: a new genus and species from small minnow mayflies (Ephemeroptera: Baetidae) from Australia. Entomological News 100(1): 65-69.

Lugo-Ortiz, C.R., McCafferty, W.P. and Waltz, R.D. (1999). Definition and reorganization of the Genus Pseudocioeon (Ephemeroptera: Baetidae) with new species descriptions and combinations. Transactions of the American Entomologiral Society 125(1/2): 1-37.

Mackerras, I.M. (1970). Evolution and classification of the insects. The Insects of Australia. CSIRO. 152-167.Melbourne, Melbourne University Press.

Manel, S., Dias, J.M., Buckton, S.T. and Ormerod, S.J. (1999). Alternative methods for predicting species distribution: an illustration with Himalayan River birds. Journal of Applied Ecology 36: 734-747.

Manel, S., Williams, H.C. and Ormerod, S.J. (2001). Evaluating presence-absence models in ecology: the need to account for prevalence. Journa: of Applied Ecology 38: 921-931.

Marchant, R. (1982a). Life spans of two species of tropical mayfly nymph (Ephemeroptera) from Magela Creek, Northern Territory. Australian Journal of Marine and Freshwater Research 33: 173-179.

Marchant, R. (1982b). The macroinvertebrates of Magela Creek, Northern Territory, Supervising Scientist for the Alligator Rivers Region: 40pp.

Marchant, R. (1988). Seasonal and longitudinal patterns in the macroinvertebrate communities of cobbles from the upper La Trobe River, Victoria, Australia. Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie 23: 1389-1393.

Marchant, R., Barmuta, L.A. and Chessman, B.C. (1994). Preliminary study of the ordination and classification of macroinvertebrate communities from running waters in Victoria, Australia. Australian Journal of Marine and Freshwater Research 45: 945-962.

Marchant, iर., Graesser, A., Metzeling, L., Mitchell, P., Norris, R. and Suter, F. (1984a). Life histories of some benthic insects from the La Trobe River, Victoria. Australian Journal of Marine and Freshwater Research 35: 793-806.

Marchant, R., Hirst, A., Norris, R. and Metzeling, L. (1999). Classification of macroinvertebrate communities across drainage basins in Victoria: Australia: consequences of sampling on a broad spatial scale for predictive modelling. Freshwater Biology 41: 253-268.

Marchant, R., Hirst, A., Norris, R.H., Butcher, Fl., Metzeling, L. and Tiller, D. (1997). Classification and prediction of macroinvertebrate assemblages from running waters in Victoria, Australia. Jourial of the North American Benthological Society 16(3): 664-681.

Marchant, R., Metzeling, L., Graesser, A. and Suter, P. (1985). The organisation of macroinvertebrate communities in the major tributaries of the La Trobe River, Victoria, Australia. Freshwater Biology 15: 315-331.

Marchant, R., Mitchell, P. and Norris, R. (1984b). A distribution list for the aquatic invertebrates in the lowland region of the La Trobe River, Victoria. Occasional Papers from the Museum of Victoria 1: 63-79.

Marchant, R., Mitchell, P. and Norris, R. (1984c). Distribution of benthic invertebrates along a disturbed section of the La Trobe River, Victoria: an analysis based on numerical classification. Australian Journal of Marine and Freshwater Research 35: 355-374.

Mason, W.T.J. and Lewis, P.A. (1970). Rearing devices for stream insect larvae. The Progressive Fish-Culturist 32: 61-62.

McCafferty, W.P. (1971a). New burrowing mayflies from Africa (Ephemeroptera: Ephemeridae). Journal of the Entomological Society of South Africa 34(1): 57.

McCafferty, W.P. (1971b). New genus of mayflies from Eastern North America (Ephemeroptera: Ephemeridae). New York Entomological Society 79: 45-51.

McCafferty, W.P. (1972). Pentageniidae: a new family of Ephemeroidea (Ephemeroptera). Journal of the Georgia Entomological Society 7(1): 51-56.

McCafferty, W.P. (1973). Subgeneric classification of Ephemera (Ephemeroptera: Ephemeridae). The Pan-Pacific Entomologist 49: 300-307.

McCafferty, W.P. (1975). The burrowing mayflies (Ephemeroptera: Ephemeroidea) of the United States. Transactions of the American Entomological Society 101: 447-504.

McCafferty, W.P. (1991a). The cladistics, classification and evolution of the Heptagenioidea (Ephemeroptera). pp. 87-101, Overview and Strategies of Ephemeroptera and Plecoptera, Granada Spain, Sandhill Crane Press Inc.

McCafferty, W.P. (1991b). Towards a phylogenetic classification of the Ephemeroptera (Insecta): a Commentary on Systematics. Annals of the Entomological Society of America 84(4): 343-360.

McCafferty, W.P. (1994). Distributional and classificatory supplement to the burrowing mayflies (Ephemeroptera: Ephemeroidea) of the United States. Entomological News 105: 1-13.

McCafferty, W.P. (1999). Distribution of Siphlaenigmatidae (Ephemeroptera). Entomological News 110(3): 191.

McCafferty, W.P. (2002). http://www.mayflycentral.com. Higher classification of the mayflies of North America, Departmert of Entomology, Purdue University, West Lafayette, indiana. Date last accessed 4th Janu/ary 2002.

McCafferty, W.P. and Bae, Y.J. (1990). Anthopotamus, a new genus for North American species previously known as Potamanthus (Ephemeroptera: Potamanthidae). Entomological News 101(4): 200-202.

McCaiferty, W.P. and Bloodgood, D.W. (1989). The female anci male roupling apparatus in Tortopus mayflies. Aquatic Insects 11(3): 141-146.

McCafferty, W.P. and Edmunds, G.F.Jr. (1976). The larvae of the Madagascar genus Cheirogenesia Demoulin (Ephemeroptera: Palingeniidae). Systematic Entomology 1: 189194.

McCafferty, W.P. and Edmunds, G.F.Jr. (1979). The higher classification of the Ephemeroptera and its evolutionary basis. Annals of the Entomological Society of America 72(1): 5-12.

McCafferty, W.P. and Gillies, M.T. (1979). The African Ephemeridae (Ephemeroptera). Aquatic Insects 3: 169-178.

McCafferty, W.P. and Huff, B.L.J. (1974). Parthenogenesis in the mayfly Stenonema fermoratum (Say) (Ephemeroptera: Heptageniidae). Entomological News 85: 76-80.

McCafferty, W.P. and Wang, T.Q. (1997). Phylogenetic systematics of the Family Teloganoididae (Ephemeroptera: Pannota). Annals of the Cape Provincial Museums (Natural History) 19(9): 387-437.

Merritt, R.W. and Cummins, K.W., (1996). An Introduction to the Aquatic Insects of North America. pp. 862pp. Dubuque, Iowa, Kendail-Hunt Publishing Co.

Merritt, R.W., Cummins, K.W. and Resh, V.H. (1996). Design of Aquatic Insect Studies: collecting, sampling, and rearing procedures. An Introduction to the Aquatic Insects of North America. Merritt, R.W. and Cummins, K.W. 12-28. Iowa, Kendall Hunt Publishing Co.

Metzeling, L., Graesser, A., 心uter, P. and Marchant, R. (1984). The distribution of aquatic macroinvertebrates in the upper catchment of the La Trobe River, Victoria. Occasional Papers from the Museum of Victoria 1: 1-62.

Minshall, G.W. (1984). Aquatic Insect-substratum relationships. The Ecology of Aquatic Insects. Resh, V.H. and Rosenberg, D.M. 358-400.New York, Praeger Scientific.

Minshall, G.W. (1988). Stream ecosystem theory: a global perspective. Journal of the North American Benthological Society 7(4): 263-288.

Monserud, R.A. and Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modeling 62: 275-293.

Moss, D., Furse, M.T., Wright, J.F. and Armitage, P.D. (1987). The prediction of the macro-invertebrates fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwater Biciogy 17: 41-52.

Navás, R.L.P. (1918). Insectos chilenos. Boletin de la Sociedad Aragonesa de Ciencias Naturales. 17: 212-230.

Navás, R.L.P. (1925). Insectos neotrópicos. Revista Chilena de Historia Natural: 305-313.

Needham, J.G. and Murphy, H.E. (1924). Neotropical Mayflies. Bulletin of the Lloyd Library of Sotany, Pharmacy and Materia Medica - Entomological Series 4: 1-79, 13 pl.

Needham, J.G., Traver, J.R. and Hsu, Y.-C. (1935). The Biology of Mayflies. New York, Comstock.

Newbold, J.D., Sweeney, B.W. and Vannote, R.L. (1994). A model for seasonal synchrony in stream mayflies. Journal of the North American Benthological Society 13(1): 3-18.

Nix, H. (1986). A biogeographic analysis of Australian Elapid Snakes. Atlas of Elapid Snakes of Australia. Longmore, R. 415pp.Cariberra, Australian Government Publishing Service.

Nixon, K.C. (1999). Winclada. Tucumán, Argentina. Nixon, K.C. and Carpenter, J.M. (1993) On outgroups. Cladistics 9(4): 413-426.
Norris, R.H., Lake, P.S. and Swain, R. (1982). Ecological effects of mine effluents in the South Esk River, north-eastern Tasmania III - Benthic macroinvertebrates. Australian Journal of Marine and Freshwater Research 33: 789-809.

Norton, I.O. and Sclater, J.G. (1979). A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. Journal of Geophysical Research 84: 6803-6830.

Paltridge, R.M., Dostine, P.L., Humphrey, C.L. and Boulton, A.J. (1997).
Macroinvertebrate recolonization after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia). Marine and Freshwater Research 48: 633645.

Pardo, i., Campbell, I.C. and Brittain, J.E. (1998). Influence of dam operation on mayfly assemblage structure and life histories in two south-eastern Australian streams.
Regulated Rivers: Research and Management 14.

Parnrong, S. and Campbell, I.C. (1997). Two new species of Austrophlebioides Campbell and Suter (Ephemeroptera: Leptophlebiidae) from Australia, with notes on the genus. Austrailan Journal of Entomology 37: 121-127.

Parsons, M. and Norris, R.H. (1996). The effect of habitat-specific sampling on biological assessment of water quality using a predictive mndel. Freshwater Biology 36: 419-434.

Pearson, R.G. and Penridge, L.K. (1979). First records of Prosopistoma sedlaceki in Australia (Ephemeroptera: Prosopistomatidae). Journal of the Australian Entomological Society 18: 362.

Peeters, E.T.H.M. and Gardeniers, J.J.P. (1998). Logistic regression as a tool for defining habitat requirements of two common gammarids. Freshwater Biology 39: 605-615.

Pereira, S.M. and Da Silva, E.R. (1990). Noca espécie de Campylocia Needham \& Murphy, 1924 com notas biológicas (Ephemeroptera: Euthyplociidae). Boletim do Museu Nacional Nova Série Rio de Janeiro (Brasil) 336: 1-12.

Pescador, M.L. (1997). Gonserellus, a new genus of Leptophlebiidae (Ephemeroptera) from southern South America. Aquatic Insects 19(4): 237-242.

Pescador, M.L. and Peters, W.L. (1980a). Phylogenetic relationships and zoogeography of cool-adapted Leptophlebiidae (Ephemeroptera) in southern South America. pp. 43-56, Proceedings of the Third International Conference on Ephemeroptera - Advances in Ephemeroptera Biology, Winnipeg, Canada, Plenum Press, New York.

Pescador, M.L. and Peters, W.L. (1980b). Two new genera of cool-adapted Leptophlebiidae (Ephemeroptera) from southern South America. Anna's of the Entomological Society of America 73(3): 332-338.

Pescador, M.L. and Peters, W.L. (1982). Four new genera of Leptophiebiidae (Ephemeroptera: Atalophlebiinae) from southern South America. Aquatic Insects 4(1): 119.

Pescador, M.L. and Peters, W.L. (1985). Biosystematics of the genus Nousia from southern South America (Ephemeroptera: Leptophlebiidae, Atalophtebiinae). Journal of the Kansas Entomological Society 58(1): 91-123.

Pescador, M.L. and Peters, W.L. (1987). Revision of the genera Meridialaris and Massartellopsis. Transactions of the American Entomological Society 112: 147-189.

Pescador, M.L. and Peters, W.L. (1991). Biosystematics of the genus Penaphlebia (Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from South America. Transactions of the American Entomological Society 117(1): 1-38.

Peters, J.G. and Peters, W.L. (1995). Square facets in a hexagonal world. Proceedings of the Seventh International Conference on Ephemeroptera - Current Directions in Research on Ephemeroptera. Corkum, L.D. and Ciborowski, J.J.H. 371-375.Orono, Maine, Canadian Scholars Press.

Peters, W.L. (1971). A revision of the Leptophlebiidae of the West Indies (Ephemeroptera). Smithsonian Contributions to Zoology - No. 62. Washington D.C., Smithsonian Institution: 48pp.

Peters, W.L. (1980). Phylogeny of the Leptophiebiidae: an introduction. pp. , Proceedings of the Third International Conference on Ephemeroptera - Advances in Ephemeroptera Biology, Winnipeg, Canada, Plenum Press, New York.

Peters, W.L. (1988). Origins of the North American Ephemeroptera fauna, especially the Leptophlebiidae. Memoirs of the Entomological Society of Canada 144: 13-24.

Peters, W.L. and Campbell, I.C. (1991). Ephemeroptera. The Insects of Australia. CSIRO. 279-293.Melbourne, Meibourne University Press.

Peters, W.L. and Edmunds, G.F.Jr. (1964). A revision of the generic classification of the Ethiopian Leptophlebiidae. Transactions of the Royal Entomological Society of London 116(10): 225-253.

Peters, W.L. and Edrmunds, G.F.Jr. (1970). Revision of the generic classification of the Eastern Hemisphere Leptophlebiidae. Pacific Insects 12(1): 157-240.

Peters, W.L. and Edmunds, G.F.Jr. (1972). A revision of the generic classification of certain Leptophlebiidae from southern South America (Ephemeroptera). Annals of the Entomological Society of America 65(6): 1398-1414.

Peters, W.L. and Edmunds, G.F.J. (1984). A redescription and phylogenetic relationships of Nesophlebia (Ephmeroptera, Leptophlebiidae, Atalophlebiinae). pp. 27-35, Proceedings of the Fourth international Conference on Ephemeroptera, Bechyne, Czechoslovakia, Czechoslavak Academy of Science.

Peters, W.L. and Peters, J.G. (1979). The Leptophlebiidae of New Caledonia (Ephemeroptera). Part 2 - Systematics. Cahiers ORSTOM, Série Hydrologie XIII(1-2): 6182.

Peters, W.L. and Peters, J.G. (1981a). The Leptophlebiidae: Atalophlebiinae of New Caledonia (Ephemeroptera). Part 3 - Systematics. Revue d'Hydrobiologie tropicale 14(3): 233-243.

Peters, W.L. and Peters, J.G. (1981b). The Leptophlebiidae: Atalophlebiinae of New Caledonia (Ephemeroptera). Part 4 - Systematics. Revue d'Hydrobiologie tropicale 14(3): 245-252.

Peters, W.L., Peters, J.G. and Edmunds, G.F.Jr. (1978). The Leptophlebiidae of New Caledonia (Ephemeroptera). Part 1. Introduction and Systematics. Cahiers ORSTOM, Série Hydrologie 12(2): 97-117.

Peters, W.L., Peters, J.G. and Edmunds, G.F.J. (1990). The Leptophlebiidae: Atalophlebinae of New Caledonia (Ephemeroptera). Part 5 - Systematics. Revue d'Hydrobiologie tropicale 23(2): 121-140.

Peters, W.L., Peters, J.G. and Edmunds, G.F.J. (1994). The Leptophlebiidae: Atalophlebiinae of New Caledonia (Ephemeroptera). Part 6 - Systematics. Revue d^{\prime} Hydrobiologie tropicale 27(2): 97-105.

Phillips, J.S. (1930). A revision of New Zealand Ephemeroptera. Part 2. Transactions of the New Zealand Institute. 61: 335-390, pl. 61-67.

Pictet, F.-J. (1843-1845). Historie naturelle generale et particuliere des insectes Nevropteres. Chez J. Kessmann et Ab. Cherbuliz: 1-300.

Pinder, A.M., Trayler, K.M., Mercer, J.W., Arena, J. and Davis, J.A. (1993). Diel periodicities of adult emergence of some chironomids (Diptera: Chironomidae) and a mayfly (Ephemeroptera: Caenidae) at a Western Australian wetland. Journal of the Australian Entomological Society 32: 129-135.

Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K. and Hughes, R.M. (1998). Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. Washinton, United States Environmental Protection Agency.

Ponder, W. and Lunney, D. (1959). The Other 99\% - The Conservation and Biodiversity of Invertebrates, Australian Museum, Sydney, Royal Zoological Society of New South Wales.

Power, M.E., Stout, J.E., Cushing, C.E., Harper, P.P., Hauer, F.R., Matthews, W.J., Moyle, P.B., Statzner, B. and Wais de Badgen, I.R. (1988). Biotic and abiotic controls in river and stream communities. Journal of the North American Benthological Society 7(4): 456-479.

Richards, C., Host, G.E. and Arthur, J.W. (1993). Identification of predominant environmental factors structuring stream macroinvertebrate communities within a large agricultural catchment. Freshwater Biology 29: 285-294.

Riek, E.F. (1955). Revision of the Australian mayflies (Siphonurinae). Australian Journal of Zoology 3(2): 266-282.

Riek, E.F. (1963). An Australian mayfly of the family Ephemerellidae (Ephemeroptera). Journal of the Entomological Society of Queensland 2: 48-50.

Riek, E.F. (1970). Ephemeroptera. Insects of Australia. Riek, E.F. 224-240.Melbourne, Melbourne University Press.

Riek, E.F. (1973). The classification of Ephemeroptera. pp. 160-178, Proceedings of the First International Conference on Ephemeroptera, Florida, E.J. Brill.

Rosenberg, D.M. and Resh, V.H. (1996). Freshwater biomonitoring and benthic macroinvertebrates. Iowa, Chapman and Hall .

Ross, H.H. (1974). Biological Systematics. Reading, Massachusetts, Addison-Wesley Publishing Co.

Sartori, M. (1992). Mayflies from Israel (Insecta: Ephemeroptera) I. Heptageniidae, Ephemerellidae, Lepiophlebiidae and Palingeniidae. Revue Suisse de Zoologie 99(4): 835-858.

Sartori, M. and Elouard, J.-M. (1999). Biodiversité aquatique de Madagascar 30: ie genre Cheirogenesia Demoulin 1952 (Ephemeroptera: Patingeniidae). Revue Suisse de Zoologie 106(2): 325-337.

Savage, H.M. and Peters, W.L. (1983). Systematics of Miroculis and related genera from Northern South America (Ephemeroptera: Leptophlebiidae). Transactions of the American Entomological Society 108: 491-600.

Scholes, D. (1961). Fly-Fisher in Tasmania. London and New York, Cambridge University Press.

Schreiber, E.S.G. (1995). Long-term patterns of invertebrate stream drift in an Australian temperate stream. Freshwater Biology 33: 13-25.

Skedros, D.G. and Polhemus, D.A. (1986). Two new species of Jappa from Australia (Ephemeroptera: Leptophlebiidae). Pan-Pacific Entomologist 62(4): 311-315.

Sluys, R. (1991). Species concepts, process analysis and the hierarchy of nature. Experientia 47: 1162-1170.

Soldán, T. (1978). New genera and species of Caenidae (Ephemeroptera) from Iran, India and Australia. Acta entomologica bohemoslovaca 75: 119-129.

Soldán, T. and Putz, M. (2000). The larva of Rhoenanthus distafurcus Bae et McCafferty (Ephemeroptera: Potamanthidae) with notes on distribution and biology. Aquatic Insects 22(1): 9-17.

Southwood, T.R.E. (1978). Ecological Methods - with particular reference to the study of insect populations. London, Chapman and Hall.

Spieth, H.T. (1933). The phylogeny of some mayfly genera. Journal of the New York Entomological Society 41(1,2,3): 55-86, 327-391.

Speith, H.T. (1938). A method of rearing Hexagenia nymphs (Ephemerida). Entomological News XLIX(2): 29-32.

Spieth, H.T. (1941). Taxonomic studies on the Ephemeroptera. II. The genus Hexagenia. The American Midland Naturalist 26(2): 233-280.

Suter, P.J. (1979). A revised key to the Australian genera of mature mayfly (Ephemeroptera) nymphs. Transactions of the Royal Society of South Australia 103(3): 79-83.

Suter, P.J. (1986). The Ephemeroptera (Mayflies) of South Australia. Records of the South Australian Museum 19(17): 339-397.

Suter, P.J. (1992). Taxonomic key to the Ephemeroptera (Mayflies) of the Alligator Rivers Region, Northern Territory.

Suter, P.J. (1993). Wundacaenis, a new genus of Caenidae (Insecta: Ephemeroptera) from Australia. Invertebrate Taxonomy 7: 787-803.

Suter, P.J. (1999). Ipracaenis, a new genus of Caenidae (Ephemeroptera) from Australia. Australian Journal of Entomology 38: 159-167.

Suter, P.J. (2000). Edmundsiops hickmani sp. nov., Offadens fratei (Tillyard) nov. comb. and description of the nymph of Cloeon tasmaniae Tillyard (Ephemeroptera: Baetidae) from Tasmania. Papers and Proceedings of the Royal Society of Tasmania 134: 63-74.

Suter, P.J. and Bishop, J.E. (1980). The effect of mesh size on the interpretation of the life history of two mayffies from South Australia. pp. 381-403, Proceedings of the Third International Conference on Ephemeroptera - Advances in Ephemeroptera Biology, Winnipeg, Canada, Plenum Press, New York.

Suter, P.J. and Bishop, J.E. (1990). Post-oviposition development of eggs of South Australian mayflies. pp. pp85-94, Proceedings of the Fifth International Conference on Ephemeroptera and the Ninth International Symposium on Plecoptera - Mayflies and Stoneflies: Life History and Biology, Marysville, Australia, Kluwer Academic Publishers.

Sweeney, B.W. and Vannote, R.L. (1978). Size variation and the distribution of hemimetabolous aquatic insects: two Thermal Equilibrium Hypotheses. Science 200: 444446.

Systat (1947). Systat version 7.0 for windows. Chicago, SPSS Inc.

Tabachnick, B.G. and Fidell, L.S. (1996). Using multivariate statistics. Northbridge, Harper Collins.

Thornhill, R. and Alcock, J. (1983). The evolution of mating systems. Cambridge, Mass., Harvard University Press.
*Towns, D.R. (1983). Life history patterns of six sympatric species of Leptophlebiidae (Ephemeroptera) in a New Zealand stream and the role of interspecific competition in their evolution. Hydrobiologia (99): 37-50.

Thorp, J.H. and Covich, A.P., (1991). Ecology and Classification of North American Freshwater Invertebrates. San Diego, Academic Press, Inc.

Tillyard, R.J. (1921). A new genus and species of May-fly (Order Plectoptera) from Tasmania, belonging to the family Siphluridae. Proceedings of the Linnean Society of New South Wales 46: 409-412.

Tillyard, R.J. (1926). The Insects of Australia and New Zealand. Sydney, Angus and Robertson, Ltd.

Tillyard, R.J. (1933a). The Mayflies of the Mount Kosciusko Region 1. (Plecoptera). Introduction and family Siplonuridae. Proceedings of the Linnean Society of New South Wales 58: 1-32, pl. 1.

Tillyard, R.J. (1933b). The trout-food insects of Tasmania. Part 1 - A study of the genotype of the mayfly genus Atalophlebia and its life history. Papers and Praceedings of the Royal Society of Tasmania: 1-16, pl.1-2.

Tillyard, R.J. (1936). The trout-food insects of Tasmania. Part 2 - a monograph of the mayflies of Tasmania. Papers and Proceedings of the Royal Society of Tasmania: 23-59, pl.1.

Timms, B.V. (1974). Aspects of the Limnology of Lake Tali Karng, Victoria. Australian Journal of Marine and Freshwater Research 25: 273-79.

Timms, B.V. (1978). The benthos of seven lakes of Tasmania. Archiv fur Hydrobiologie 81(4): 422-444.
Towns (1983) see opposite*
Towns, D.R. and Peters, W.L. (1978). A revision of the genus Atalophlebioides (Ephemeroptera: Lepiophlebiidae). New Zealand Journal of Zoology 5: 607-614.

Towns, D.R. and Peters, W.L. (1979). Phylogenetic relationships of the Leptophiebiidae of New Zealand. pp. 56-69, Proceedings of the Third International Conference on Ephemeroptera - Advances in Ephemeroptera Biology, Winnipee, Canada, Plenum Press, New York.

Towns, D.R. and Peters, W.L. (1996). Fauna of New Zealand - Ko te Aitanga Pepeke o Aotearoa, Leptophlebiidae (Insecta: Ephemeroptera). Canterbury, Manaaki Wheena Press.

Traver, J.R. (1946). Notes on Neotropical Mayflies. Part 1. Family Baeticlae, subfamily Leptophlebiidae. Revista de Entomologia 17(3): 418-436.

Tshernova, O.A. (1970). On the classification of the fossil and recent Ephemeroptera. Revue d'Entomriologie de I'URSS XLIX(1): 71-81.

Tsui, P.T.P. and Peters, W.L. (1972). The comparative morphology of the thorax of selected genera of the Leptophlebiidae (Ephemeroptera). Journal of Zoology, London 168: 309-367.

Tsui, P.T.P. and Peters, W.L. (1975). The comparative morphology and phylogeny of certain Gondwanian Leptophlebiidae based on the thorax, tentorium, and abdominal ierga (Ephemeroptera). Transactions of the American Entomological Society 101: 505-595.

Uéno, M. (1928). Some Japanese mayfly nymphs. Memoirs of the College of Science, Kyoto Imperial University (B) 4(no. 1, article 2.): 1-63.

Uimer, G. (1908). Tricopteridae and Ephemeridae. Die Fauna Sudwest-Australiens 2(3): 25-46.

Ulmer, G. (1916). Results of Dr. E. Mjöberg's Swedish Expedition to Australia 1910-1913 6. Ephemeroptera. Arkiv för Zoologi 10(4): 1-18.

Ulmer, G. (1919). Neue Ephemeropteren. Archiv für Naturgeschichte 85A(11): 1-80.

Ulmer, G. (1920). Übersicht uber die Gattungen der Ephemeropteren. nebst Bemerkungen über einzelne Arten. Stettiner Entomologische Zeitung 81: 97-144.

Ulmer, G. (1932-33). Aquatic Insects of China. Article V'l. Revised key to the genera of Ephemeroptera. Peking Natural History Bulletin 7: 195-218, 2 plates.

Ulmer, G. (1938). Chilenische Ephemeropteren, hauptsächlich aus dem Deutschen Entomologischen Institut, Berlin-Dahlem. Arbeiten über Morphologische und Taxonomische Entomologie aus Berlin-Dahlem. 5: 85-108.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137.

Vogel, S. and LaBarbera, M. (1978). Simple flow tanks for research and teachirig. Bioscience 28(10): 638-643.

Vuori, K.-M. (19:S). Potamanthus luteus L. (Ephemeroptera, Ephemeridae) found for the first time in Finland: notes on the morphology and habitats of the nymphs. Entomologica Fennica 10: 171-174.

Walker, F. (1853). Ephemerinae. List of specimens of neuropterous insects in the collection of the British Museum. Part III. (Termitidae-Ephemeridae). Walker, F. pp 533585.

Wallace, J.B. and Anderson, N.H. (1996). Habitat, life history, and behavioural adaptations of aquatic insects. An Introduction to the Aquatic Insects of North America. Merritt, R.W. and Cummins, K.W. pp41-73.lowa, Kendall Hunt Publishing Co.

Waltz, R.D. and McCafferty, W.P. (1985). Redescription and new lectotype designation for the type species of Pseudocloeon, P. Kraepelini Klapálek (Ephemeroptera: Baetidae). Proceedings of the Entomological Society of Washington 87(4): 800-804.

Ward, J.V. and Stanford, J.A. (1982). Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27: 97-117.

Westwood, J.O. (1840). An introduction to the modern classification of insects. London, Longman, Orme, Brown, Green Ans Longmans.

Williams, W.D. (1968). Australian Freshwater Life. Melbourne, Sun Books.

Williams, W.D. (1980). Australian Freshwater Life: The Invertebrates of Australian Inland Waters. Melbourne, Sun Books.

Williams, W.D. (1988). Limnological imbalances: an antipodean viewpoint. Freshwater Biology 20: 407-420.

Williams, W.D. and Wan, H.F. (1972). Some distinctive features of Australian inland waters. Water Research 6: 829-836.

Wright, J.F., Furse, M.T. and Armitage, P.D. (1993). RIVPACS - a technique for evaluating the biological quality of rivers in the U.K. European Water Pollution Control 3(4): 15-25.

Wright, J.F., Moss, D., Armitage, P.D. and Furse, M.T. (1984). A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data. Freshwater Biology 14: 221-256.

Wright, J.F., Moss, D., Clarke, R.T. and Furse, M.T. (1997). Biological assessment of river quality using the new version of RIVPACS (RIVPACS III). Freshwater Quality: defining the indefinable? Boon, P.J. and Howell, D.L. 102-108.Edinburgh, The Stationary Office.

Wu, X.-Y. and You, D.-S. (1986). A new genus and species of Potamanthidae from China (Ephemeroptera). Acta Zootaxonomica Sinica 11(4): 405-408.

Yen, A.L. and Butcher, R.J. (1997). An overview of the conservation of non-marine invertebrates in Australia. Canberra, Endangered Species Program, Environment Australia.

You, D.-S. (1984). A revision of genus Potamanthodes with a description of two new species (Ephemeroptera: Potamanthidae). pp. 101-107, Proceedings of the Fourth International Conference on Ephemeroptera, Bechyne, Czechoslovakia, Czechoslavak Academy of Science.

You, D.-S. and Su, C.-R. (1987). Descriptions of the nymphs of Choropterps nanjingensis, Potamanthodes fujianensis and Isonychia kiangsiensis (Ephemeroptera: Leptophlebiidae, Potamanthidae, Siphlonuridae). Acta Zootaxonomica Sinica 12(3): 332-336.

Zamora-Muñoz, C., Sanchez-Ortega, A. and Alba-Tercedor, J. (1993). Physio-chemical factors that determine the distribution of mayflies and stoneflies in a high mountain stream in southern Europe (Sierra Nevada, southern Spain). Aquatic Insects 15(1): 11-20.

APPENDICES

APPENDIX 1

Publication: Finlay, K.J. (2001). Construction and evaluation of a new laboratory system for rearing mayflies. pp. 241-250. Proceedings of the Ninth International Conference on Ephemeroptera and the Thirteenth International Symposium on Plecoptera Trends in Research in Ephemeroptera and Plecoptera, Tucumán, Argentina, Kluwer Academic Publishers.

CONSTRUCTION AND EVALUATION OF A NEW LABORATORY SYSTEM FOR REARING MAYFLIES

Kyia J. Finlay
Dept of Biological Sciences, Monash University Co-operative Research Centre for Freshwater Ecology Land and Water Resources Research and Development Corporation Clayton, VIC 3ióo, Australia

Abstract

A new laboratory system was developed for rearing adults of Australian Leptophlebiidae (Ephemeroptera). The space-efficient chambers, made from readily available materials, are an inexpensive alternative to conventional rearing systerns and worked just as well. and in many cases better, than a comparable larger system. Genera differed significantly in rearing success. No genera were significantly affected by the rearing conditions except Austrophlebioides Campbell and Suter (1988), which responded strongly to all external factors. This suggests that a more restricted environmental regime may be required to maximise emergence success for this genus. Sex ratios were biased towards fempes for all genera, indicating the possible occurrence of parthenogenesis in Australian Leptophlebiidae.

INTRODUCTION

Positive identification of species requires examination of all life stages for most aquatic insects. However, in most cases, identification of species has been based on the nymphs or adults only with no association being made between the two (Hynes, 1970; Smock, 1996; Merritt et al., 1996). Field collecting of nymphs and adults in one location is an accepted method of identifying all insect life stages but has the inherent problem with discriminating between different species, especially if one has to rely on immature nymphs for initial identification. An insect reared from an immature stage to an adult, with the subsequent larval skin moult kept for comparison, provides the definitive association.

Many authors have made suggestions for rearing aquatic insects to adults (see review by Merritt et al., 1996). The two main approaches are field and laboratory rearing. Most field rearing techniques involve a mechanism for containing the nymphs within the existing water body and providing room for the animal to emerge while safe from drowning (Speith, 1938; Fremling, 1967; Day, 1968; Schnieder, 1967; Edmunds et al., 1976). An alternative is the use of emergence traps (Hynes, 1941; Southwood, 1978; Merritt et al., 1996). Despite the relative

Fig. 1. The new rearing chamber. The aquarium tubing is connected to an air supply.
simplicity of design, the disadvantage of field rearing is that it may require the researcher to be away from the workplace for extended periods. Laboratory methods range from simple to extremely complex as authors have tried to address the problem of recreating stream flow conditions. Covered aquariums are used in conjunction with various methods of inducing a current such as a magnetic stirrer (Mason and Lewis, 1970) or directed air (Craig, 1966). Gravity flow systems were first used by Hynes (1941) and improved upon by Mason and Lewis (1970). Later came the development of large flow tanks powered by propellers (Vogel and LaBarbera, 1978) and complicated systems designed more specifically for the purposes of toxicity testing (Buikema and Voshell, 1993). All have the disadvantage of being suitable only for mass rearing and often requiring large inputs of electrical power. None address the issues of cost-effectiveness and simplicity in a field where rearing is likely to be of secondary concern.

The rearing of mayflies can be especially difficult because of the presence of a fragile subimago stage which has characteristics different to those of the adult. With all these factors in mind I have designed and tested a new laboratory rearing system for mayflies. Each chamber houses one individual and allows the animal to pass through the stages of nymph and subimago without disturbance. The chambers are made from readily obtainable material and are easy to construct. They are space-efficient and inexpensive, costing less than US $\$ 2.00$ each when an air supply is available. Such systems have been described before in the literature (Merritt et al., 1996) but I have yet to find a published account of their use.

An analysis of the success of the new rearing system by imago emergence success rates in relation to genus, sex, photoperiod, year of collection, temperature, and for an alternative chamber type has been conducted. The influences of altitude of collection and refrigerated storage of nymphs, which was often necessary after a prolonged collecting trip, were also investigated. These data were collected as a consequence of rearing mayfly adults for taxonomic review rather than experimental purposes. The data collected provides indications of how these genera may respond to factors influencing emergence in the field, however, the taboratory outcomes are, at present, analysed at genus level only. Within each genus there may well be species with very different responses to these environmental factors. Further, only one controlled temperature room was used for this work, therefore all individuals from each

Fig. 2. South-east Austraiia: area from which mayflies were collected.
separate field collection were placed in the same temperature and photoperiod regimes. As a result the species compositions of the groups receiving each set of conditions may well have been different. In these circumstances it is difficult to be confident that the results obtained mirror responses in the field. Nevertheless, these observations may be of interest to workers concerned with field responses of mayfly nymphs to environmental conditions.

METHODS

Chamber Design

The new rearing chamber (Figure 1) was constructed from a 1.25 litre plastic soft drink bottle. This was cut in two at about two-thirds its length, at the point where the sides start to converge towards the lid. The open container was lined with nylon mesh, which can either be glued in place or simply wetted. Two hooks were attached facing outwards and opposite each other on the outside of the bottle using electrical tape, so that a rubber band could be stretched between them across the open end. A small hole (diameter of $6-7 \mathrm{~mm}$) was drilled in the plastic bottle lid. The top third of the bottle with the lid was then inverted to sit in the chamber, lid downwards, and secured by the rubber band. The chamber was then half filled with water. Compressed air was supplied to the chamber by means of PVC aquarium tubing (interior diameter 4 mm) attached to a pump or laboratory air supply. Up to ten chambers can be aerated from one s all 240 V air pump linked through aquarium tubing, although each chamber requires a two-way controller so flow can be balanced. It is also advisable to attach a plastic micropipette tip to the end of the tubing to restrict the flow of bubbles to a small stream. Glass pipettes proved too fragile and, being heavier, were prone to blockage by resting on the chamber bottom.

Fig. 3. Imago emergence success by genus.
Abbreviations for genera are as follows: Atalo=Atalophlebia, Austro=Austrophlebioides, Gar=Garinjugu. Koorr=Koorrnonga, Nous=Nousia, Till=Tillyardophlebia. Bars represent 95\% confidence intervals.

Data Collection

Mayfly nymphs from the family Leptophlebiidae were collected over two extended summer periods; October 1996 to April 1997 (year 1) and October 1997 to April 1998 (year 2) from 123 sites throughout Victoria, Tasmania and New South Wales (Figure 2). Animals were collested from altitudes on the shoreline ($<10 \mathrm{~m}$) to near the summit of Australia's highest point, Mt Kosciusko (1650 m), and therefore represent species from a wide range of climatically diverse regions. Two closely related Leptophlebiids, Nousia Navás (1918) and Koorrnonga Campbell and Suter (1988), were targeted for collection as part of a larger taxonomic study being undertaken, although all Leptophlebiidae were collected if found. Nousia and Koorrnonga are relatively common in stream riffles in association with logs and organic matter (Peters and Campbell, 1991), so the sampling regime favoured these areas.

Late instar nymphs were carefully removed from the substrate with a paintbrush and placed in a bottle of the stream's water. The bottle was sealed and placed on ice for transportation to the laboratory. During the day the water was adequately aerated through the motion of the vehicle but at night a battery-operated pump was employed to aerate each chamber.

Laboratory Rearing

Each rearing chamber was half filled with water from a particular site: and one late instar individual from that site added. Twigs collected from the site were added to each chamber for the insect to use as a food source and as a platform for emergence. Each chamber was attached to an air supply and placed in controlled temperature room environments at $16^{\circ} \mathrm{C}, 18^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ or $22^{\circ} \mathrm{C}$. Photoperiods of 12 hours daylight and darkness (12:12) or 14 hours daylight, 10 hours darkness (14:10) were used. Some nymphs were placed in much larger chambers designed by Campbell (1983). These were made from a cube-shaped frame of wood to which fly-screen or mesh is stapled on all sides. A container, which can hold volumes up to 500 ml , was placed inside the frame and connected to an air supply by aquarium tubing through a small hole. Surplus nymphs were stored in an aerated container refrigerated to $7^{\circ} \mathrm{C}$. In the controlled environment the nymphs were checked every second day and the life cycle stage of the individual noted. Once emergence (or death)
occurred the animals were removed and genus and sex determined by observation using a stereomicroscope. Empty chambers were thoroughly washed and nymphs replaced from refrigerated stock. These new nymphs were acclimatised to the controlled temperatures for a period of 20 to 30 minutes.

Abstract

RESULTS The full data set included 1251 individuals of which Austrophlebioides and Nousia predominated, comprising 36.5% and 36.2% respectively. Next came Atalohplebia Eaton (1881) at 12\%, then Garinjuga (Campbell and Suter (1988)) at 6.6\%, Tillyardophlebia Dean (1997) at 4.6\%, Koorrnonga (Campbell and Suter (1988)) (2.6\%) and Ulmerophlebia Demoulin (1955) at 0.9%. A few individuals of other genera, such as Atalomicra, Jappa, Kirrara and an undescribed one, were also collected and represented the remaining 0.6%. Of the ten named genera in south-east Australia, all were sampled except Neboissophlebia Dean (1988), despite this genus having been found previously in many of the sites where I collected (Dean, 1988). Data analysis will focus on the six most prevalent genera.

Emergence Success

Imago emergence success rate for the fuil data set was 34.1% with 10.0% reaching the subimago stage before dying and 55.9% dying as nymphs. Individual genera, however, differed significantly in emergence success ($\chi^{2}=46.071$, $\mathrm{df}=5, \mathrm{p} \ll 0.001$, Figure 3). Atalophlebia was reared most successfully with 48.7% becoming imagos. Other highly successful genera were Tillyardophlebia (47.4%) and Koorrnonga (45.5%). The genus with the lowest success rate was Garinjuga (22.0%) followed by Austrophlebioides $(25.0 \%$).

The new rearing chamber was compared with that designed by Campbell (1983). The new chamber produced higher imago emergence rates compared with the 'old' one for all the genera examined (except Nousia) (Table 1). A significant difference was found only for Austrophlebioides ($\chi^{2}=5.993, \mathrm{df}=1, \mathrm{p}=0.014$), where the emergence success rate more than doubled in the new chambers (27.1% versus 12.7%).

Emergence success did not differ between the sexes for any genus excef Tillyardophlebia (Table 1) where a much greater proportion of females (58.8%) than male (30.4%) emerged successfully ($\chi^{2}=4.435, \mathrm{df}=1, \mathrm{p}=0.035$). The effect of varying the photoperiod could be analysed only for year 1 as there were no individuals reared unde, 12:12 conditions during year 2 . Within tise restricted data set a significant difference due to photoperiod was found only for Austrophiobioides ($\chi^{2}=17.810, \mathrm{df}=1, \mathrm{p} \ll 0.001$, Table 1) yet this went against the trend for all other genera where success rates, although not significantly different, were higher under a $12: 12$ cycle. Similarly, the effect of year of collection could only be examined in relation to photoperiod 14:10. Again there was a significant difference between year 1 and 2 only for Austrophlebioides ($\chi^{2}=56.936, \mathrm{df}=1$, $\mathrm{p} \ll 0.001$, Table 1). There was no apparent trend for the other genera.

For most genera the proportion successfully emerging was highest at $18^{\circ} \mathrm{C}$ (for Nousia this occurred at $16^{\circ} \mathrm{C}$ but the difference in success rate from $18^{\circ} \mathrm{C}$ was very slight; 0.1%). The temperature which produced the lowest proportion of successful emergence was $22^{\circ} \mathrm{C}$. The effect of temperature was significant for both Austrophlebioides ($\chi^{2}=47.838, \mathrm{df}=3$, $\mathrm{p} \ll 0.001$) and Nousia ($\chi^{2}=10.517, \mathrm{df}=3, \mathrm{p}=0.015$, Table 1). The effect of temperature was also considered in relation to time spent in the rearing system for a restricted number of genera (Figure 4). Time taken to emerge successfully was greatest at $18^{\circ} \mathrm{C}$ followed by $16^{\circ} \mathrm{C}$, $20^{\circ} \mathrm{C}$ then $22^{\circ} \mathrm{C}$. Although patterns of response to temperature were similar for each genus, the time taken to reach outcome varied considerably. For example, at $18^{\circ} \mathrm{C}$ mean time to emerge varied from 7.7 days for Nousia to 12.9 days for Atalophlebia. Data were log transformed to meet the assumption of normality and an ANOVA run to test for a significant effect of temperature. All genera had significant temperature effects (Nousia. F-ratio $=0.635$,

Table 1. Percentages of successful emergences as affected by collection and rearing conditions

	Atalo. phlebia	Austrophlebioides	Garinjuga	Koorrnonga	Nousia	Tillyard. phlebia
Claunber Type						
p value	0.628	0.014	**	**	0.926	**
n	150	454	82	33	453	57
\% success oid cage	44.4	12.6	15.4	37.5	38.7	50.0
\% success new cage	49.6	27.1	23.2	48.0	38.1	47.0
Sex						
praluc	0.795	0.909	0.542	0.435	0.234	0.035
n	150	456	82	33	. 453	57
\% success femase	47.8	24.8	20.0	40.0	40.0	58.8
$\%$ success male	50.0	25.3	25.9	53.8	34.2	30.4
Photuperiod "ycar 11*						
	**	0.000	**	**	0.293	**
1	62	164	82	3	166	14
\% success 12:12	62.3	24.0	28.2	100.0	46.8	53.8
\% sutcess 14:10	33.3	56.5	18.0	100.0	38.4	0.0
Year of Coll (photoperiod 14:10)						
pralue	**	0.000	**	**	0.687	**
"	97	377	50	31	391	44
\% success - year 1	33.3	56.5	13.0	100.00	38.5	0.0
\% success - ycar 2	42.0	16.1	22.2	40.00	36.2	46.5
Temperature p value	**	0.000	**	**	0.015	**
\because	150	456	82	33	452	57
\% success $16^{\prime \prime} \mathrm{C}$	43.4	23.6	20.0	42.1	46.4	51.4
$\%$ success $18^{\prime \prime} \mathrm{C}$	59.0	45.4	25.6	100.0	46.3	53.8
\% success $20^{\circ} \mathrm{C}$	50.0	24.3	42.8	0	38.9	25.0
$\%$ suceess $22^{\prime \prime} \mathrm{C}$	38.2	10.8	9.5	40.0	29.3	0
Allitude						
p value	0.126	0.000	**	**	0.118	**
"	150	456	82	3.3	453	57
\% success <400m	46.9	33.1	24.5	12.5	39.4	50.0
\% success $400-800 \mathrm{~m}$	44.4	22.5	-	54.5	34.5	16.7
$\%$ suceess 801.1200 m	73.3	9.6	0.0	-	15.4	100.0
\because success $>1200 \mathrm{~m}$,	6.1	19.0	66.7	56.3	-
Storage						
p-value	**	0.000	**	**	0.856	**
"	150	456	82	33	453	57
\% surcess 0-2 days	43.8	32.3	20.9	50.0	38.5	62.5
\% success 3-5 days	75.0	19.8	33.3	33.3	35.0	28.6
$\%$ success > 5 days	62.5	12.0	16.7	50.0	39.1	27.8

Effict of each latior analysed by χ^{2} Significant p values (al <0.05) shown in boid.
*analysed on restricted data set as there were no mayflies reared under the 12:12 regime in year 2.
** one or more categorics with small sample size: χ^{2} test not reliable.

Fig. 4. Effect of temperature on time taken to successful emergence by genus.
Abbreviations for genera as in Figure 3. Data back transformed from logged values. Bars represent back transformed standard crror. Within each genus temperatures without a letter in common are significantly different (p-value less than 0.05) by Tukeys HSD tests.
$\mathrm{df}=3, \mathrm{p}=0.010$; Austrophlebioides, $\mathrm{F}-\mathrm{ratio}=4.269, \mathrm{df}=3, \mathrm{p}=0.007$; Atalophlebia, $20^{\circ} \mathrm{C}$ degrees removed, F -ratio $=4.354, \mathrm{df}=2, \mathrm{p}=0.017$) aithough multiple r^{2} showed that very little variability (around 10% or less) in rearing time was explained by temperature differences. Tukey's HSD tests showed significant differences between the temperatures $18^{\circ} \mathrm{C}$ and $22^{\circ} \mathrm{C}$ only for all genera (Figure 4).

The effect of altitude of collection on rearing success by genus was examined by chisquared for 4 altitude categories. ($1 .<400 \mathrm{~m}, 2.400-800 \mathrm{~m}, 3.801-1200 \mathrm{~m}, 4 .>1200 \mathrm{~m}$) and was found to be significant only for Austrophlebioides ($\chi^{2}=29.826, \mathrm{df}=3, \mathrm{p} \ll 0.001$, Table 1) where the highest success rates were found at progressively lower altitudes.

Division of storage time into three categories (1.0-2 days, 2. 3-5 days, $3 .>5$ days) and subsequent analysis by chi-squared also showed a significant effect only for the genus Austrophlebioides ($\chi^{2}=18.297, \mathrm{df}=2, \mathrm{p} \ll 0.001$, Table 1) with a higher success rate for progressively less days in storage. However, altitude of collection and storage time were positively correlated as it took longer to return to the laboratory from high altitude collection sites. A logistic regression of both factors against emergence success showed altitude probabiy was more influential than storage.

Sex-Ratios

Ratios of males to females showed a female bias for all individual genera in the range of 1: 1.5 for Tillyardophlebia to 1: 2.1 for Nousia (Figure 5). Chi-squared analysis was used to determine departure from the expected $1: 1$ sex ratio and was found to be significant for all genera except Koorrnorga and Tillyardophlebia.

DISCUSSION

The overall imago emergence success rate was 34%. ©learly, however, success rates depend on the genus in question. Taxa preferring slow waters would be expected to emerge more successfully in aerated tanks with low flow regimes (Edmunds et al.,1976). Therefore,

Fig. 5. Mayfly sex-ratios of six genera captured over 2 extended summer periods. Abbreviations for genera as in Figure 3. Bars represent 95% confidence intervals. Asterisks indicate significant departures (at less than 5% significance level) from l:1 ratio by chi-squared.
it is not surprising that Atalophlebia, predominantly found in standing or siowly flowing waters (Peters and Campbell, 1991), had the greatest proportion of imagos that emerged. The relatively low success rates of Garinjuga may be due to the presence of a possibly new high altitude species for which the emergence success was very low, thereby reducing the average for the whole genus.

Overall, the new rearing system was a success in that imago cmergence rates were generally higher in the new chamber compared with the older one for all genera. In particular, the success rate for Austrophlebioides was much greater in the new chamber. The considerable advantages of the new chambers in terms of time saved in construction and set-up, space efficiency and low cost indicate that the system could be widely used even if just for routine species identification.

In general, few factors had an effect on overall emergence success for any genera other than Austrophlebioides. Sex appeared to affect Tillyardophlebia but, because this was a relatively small data set, may not prove to be biologically significant. There are also some temperature effects for Nousia and Atalophlebia which must be considered. (Table 1, Figure 4). Most striking, however, were the results for the genus Austrophlebioides which appeared to be affected strongly by all factors except sex. This is almost certainly related to habitat requirements. For example, the greater rearing success in smaller chambers with much less water could be indicative of an inherent need for highly oxygenated water in this genus. Neither chamber adequately simulates current flow, but the new chamber may provide more oxygen per volume than the 'old' chamber. A high rate of water movement may be necessary for the development of this genus. Similarly, the highly positive response to a 14 hour photoperiod, which is typical of an Australian summer light regime, may be required as a cue for Austrophlebioides to emerge. If this is so, this is the first record of an enhanced emergence response to photoperiod for Australian Leptophlebiidae as photoperiod has been shown previously to have no effect on mayfly egg hatching or emergence (Brittain, 1982; Suter and Bishop, 1990; Newbold et al., 1994) despite the suggestion that it is important for aquatic insects in general by Hynes (1970).

Austrophlebioides fared better in year I possibly because they were stored for much less time (0.1 mean days in year 1 compared with 4.9 mean days in year 2). Progressively shorter storage times produced significantly higher success rates. Another contributing factor
may be that altitude range for each year was considerably skewed, with animals being collected no higher than 500 m in year 1 , yet up to 1560 m in year 2; progressively lower altitudes produced greater emergence success rates.

It is acknowledged that animals do not respond to altitude per se but rather environmental variables associated with altitude (see reviews by Minshall, 1988; Power et al., 1988) such as temperature, substrate, dissolved oxygen and hydraulic variation. One can speculate that there is greater temperature differential between higher altitude sites and the laboratory compared with lower altitude sites, possibly making the physiological stress on the animals greater.

Temperature not only determines abundance, distribution and diversity of stream insects (Hynes, 1970; Ward and Stanford, 1982; Zamora-Muñoz et al., 1993) but is considered to be one of the most important influencing factors affecting insect development (Corkum, 1978; Elliott, 1978; Brittain, 1982; Wallace and Anderson, 1996). Indeed, in this study, temperature was the only external factor significantly affecting emergence success of a genus other than Austrophlebioides. Success rates were much higher at $18^{\circ} \mathrm{C}$ than at $22^{\circ} \mathrm{C}$, yet summer water temperatures would be within the range $16-22^{\circ} \mathrm{C}$ for all but the highest ahtitudes; so it is puzzling to find such a restricted temperature preference for emergence. This restricted preference also applied to the length of time taken to emerge. It is possible that the nymphs have a narrow temperature requirement for development which is in line with the theory of Sweeney and Vannote (1978) that an optimal thermal regime exists for a given species. Adult size and fecundity and, presumably emergence rates, may diminish outside the bounds of the optimal regime for the species.

Trends in the data are not significant with the clear exception of Austrophlebioides. Species level data within this genus would therefore be especially valuable.

Sex-Ratios

Insect sex-ratios in nature are generally expected to be $1: 1$ although skewed ratios due to inbreeding occur and will be biased towards females (Thornhill and Alcock, 1983). Female biased sex ratios in Ephemeroptera have been recorded only for parthenogenetic taxa of which 50 species are known worldwide (Brittain, 1982) and only in 3 or 4 families (McCafferty and Huff, 1974). It appears obligatory in only a few species (Peters and Campbell, 1991). In general, parthenogenetic eggs develop more slowly, causing. a delayed female bias in the sex ratio of the nymphs which is perpetuated through the life cycle. For example Harker (1997) found sex ratios of Clocon similae (Baetidae) increased from I:I in the summer to $2: 1$ in Spring and early Winter over 13 consecutive years due to a longer development time for the unfertilised eggs and subsequent late appearance of parthenogenetic progeny (females). Data for the present study were collected from a wide range of sites over two years, so it is possible that the observed sex ratio actually reflects what occurs in nature. As far as I am aware there are no previous records of parthenogenesis occurring in Australian Leptophlebiidae.

REFERENCES

Brittain, J. E. 1982. Biology of mayflies. Ann. Rev. Ent. 27: 119-147.
Buikema, A. L. (Jr.) and J. R. Voshell (Jr.). 1993. Toxicity studies using freshwater benthic macroinvertebratcs, pp. 344-398 In: D. M. Rosenberg and V. H. Resh (cds.). Freshwater bromonitoring and Benthic macroinvertebrates. Chapman and Hall, New York and London.
Campbell. I. C. 1983. Studies on the Taxonomy and Ecology of the Australian Siplonutidae and Oligoneuriidae (Insecta: Ephemeroptera) PhD Thesis, Monash University, Mebourne, Australia.
Campbell, I. C. and P. J. Suter. 1988. Three new genera, a new subgenus and a new species of Leptophlebiidae (Ephemeroptera) from Australia. J. Aust. ent. Soc. 27: 259-273.
Corkum, L. D. 1978. The nymphal development of Paraleptophlebia adoptiva (McDunnough) and Paraleptophlebia mollis (Eaton) (Ephemeroptera: Leptophlebiidae) and the possible influence of temperature. Can J. Zool. 56: 1842-1846.

Craig, D. A. 1966. Techniques for rearing stream dwelling organisms in the laboratory. Tuatara 14: 65-92.
Day, W. C. 1968. Epherneroptera. pp. 79-105. In: R. L. Usinger (ed.) 3rd edn. Aquatic Insects of California. University of California Press, Berkeley and Los Angeles.
Dean, J. C. 1988. Description of a new genus of Leplophlebiid mayny from Australia (Ephemeroptcra: Leptophlebiidae: Atalophlebiinae). Proc, roy. Soc. Vict. 100: 39-45.
Dean, J.C. 1997. Descriptions of a new genus of Leptophlebiidae (Insecta: Ephemeroptera) from Australia. I. Tillyardophlebia gen. nov. Mcm. Mus. Vic. 56(1): 83-89.

Demoulin, G. 1955. Note sur deux nouveaux genres de Leptophlebiidae d'Australie. Bull. Ann. Soc. r. Ent. Belg. 91: 227-229.
Eaton. A. E. 1881. An Announcement of new genera of the Ephemeridae. Entomol. Mon. Mag. 17: 191-197.
Edmunds. G. F. (Jr.), S. L. Jensen and L. Berner. 1976. The Mayflies of North and Central America. University of Minnesota Press, Minneapolis.
Elliot. J. M. 1978. Effect of temperature on the hatching time of eggs of Ephemerella ignita (Poda) (Ephemeroptera: Ephemerellidae). Freshw. Biol. 8: 51-58.
Fremling, C. R. 1967. Methods for mass-rearing Hexagenia mayflies (Ephemeroptera: Ephemeridae) Trans. Amer. Fish. Soc. 96: 407-410.
Harker, J. E. 1954. The Ephemeroptera of eastern Australia. Trans. r. ent. Soc. Lond. 105: 24J-268.
Harker, J. E. 1997. The role of parthenogenesis in the biology of two species of mayfly (Ephemeroptera) Freshw. Biol. 37: 287-297.
Hynes H. B. N. 1941. The taxonomy and ecology of the nymphs of British Plecoptera with notes on the adults and eggs. Trans. R. ent. Soc. Lond. 91(10): 459-557.
Kynes, H. B. N. 1970. The Ecology of Stream Insects. Ann. Rev. ent. 15: 25-42.
Mason, W. T. and Lewis, P. A. 1970. Rearing devices for stream insect larvac. Prog. Fish-Cult. 32(1): 61 62.

McCafferty, W. P. and Huff, B. L. 1974. Parthenogenesis in the mayfly Stenonema fermoratum (Say) Ephemeroptera: Heptageniidac. Ent. News 85: 76-80.
Merritt, R. W, K. W. Cummins and V. H. Resh. 1996. Design of Aquatic Insect Studies: collecting, sampling and rearing procedures, pp. 12-28. In: R. W. Merritt and K. W. Cummins (eds.). An Introduction to the Aquatic Insects of North America. 3rd edn. Kendall Hunt Publishing Co, lowa.
Minshall, G. W, 1988. Stream ecosystem theory: a global perspective. J. N. Amer, Benthol. Soc. 7(4): 263288.

Navás, L. 1918. Insectos chilenos. Bol. Soc. Arag. Cienc. Nat. 17: 212-230.
Newbold. J. D, B. W. Sweeney and R. L. Vannote. 1994. A model for seasonal synchrony in stream maytlies. J. N. Amer. Benthol. Soc. 13 (1): 3-18.

Peters, W. L. and I. C. Campbell. 1991. Ephemeroptera, pp. 279-293. In; The Insects of Australia. 2nd edn. Melbourne University, Press, Melbourne.
Power, M. E., R. J. Stout, C. E. Cushing, P. P. Herper, F. R. Hauer, W. J. Matthews, P. B. Moyle, B. Statzner and I. R. Wais de Badgen. 1988. Biotic and abiotic controls in river and stream communities. J. N. Amer. Benthol. Soc. 7(4): 456-479.
Schneider, R. F. 1967. An Aquatic Rearing Apparatus for Insects. Turtox News 44: 90.
Smock, L. A. 1996. Macroinvertebrate movements: drift, colonisation, and emergence, pp. 371-390. In: F. R. Haver and G. A. Lamberti (eds.). Methods in Stream Ecology. Academic Press, San Diego.

Southwood, T. R. E. 1978. Ecological Methods - with particular reference to the study of Insect Populations. Chapman and Hall, London.
Speith H. T. 1938. A method of rearing Hexagenia nymphs (Ephemeridae) Ent. News 49 (2): 29-32.
Suter. P. J. and J. E. Bishop. 1990. Post-oviposition development of eggs of South Australian mayflies, pp. 85-94. In: I. C. Campbell (ed.). Mayflies and Stoneflies: Life History and Biology. Kluwer Academic Publishers, Dordrecht.
Sweeney, B. W. and R. L. Vannote. 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444-446.
Thornhill, R. and J. Alcock. 1983. The Evolution of Insect mating Systems. Harvand University Press, Cambridge.
Vogel, S. and M. LaBarbera. 1978. Simple flow tanks for research and teaching. BioScience 28(10): 638643.

Wallace, J. B. and N. H. Anderson. 1996. Habitat, Life History and Behavioural adaptations of Aquatic Insects, pp. 41-73. In: R. W. Merritt and K. W. Cummins (eds.). An Introduction to the Aquatic Insects of North America. 3rd edn. Kendall Hunt Publishing Co, lowa.
Ward, J. V. and J. A. Stanford. 1982. Thermal responses in the evolutionary ecology of aquatic insects. Ann. Rev. ent. 27: 97-117.
Zamora-Muñoz, C., A. Sánchez-Ortega and J. Alba-Tercedor. 1993. Physio-chemical factors that determine the distribution of mayflies and stoneflies in a high mountain stream in southern Europe (Sierra Nevada, Southern Spain). Aquat. Insects 15(1): 11-20.

APPENDIX 2

Alphabetically listed locality data for each specimen examined. Presence or absence of each species and genus at each site also noted.

Locality data for all specimens examined

Locality data for all specimens examined

2	$\begin{gathered} \text { ※ } \\ \text { 范 } \end{gathered}$		$\begin{aligned} & \text { 든 } \\ & \text { 淢 } \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \stackrel{y}{\circ} \\ & \dot{\phi} \end{aligned}$	号 营 4	$\begin{aligned} & \text { 号 } \\ & \text { 驚 } \\ & \hline \end{aligned}$				$\begin{aligned} & \text { 응 } \\ & \frac{0}{9} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 哭 } \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	N．（A）fuscula			$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & 3 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	T. lucida		5		THRAULOPHELBIA				
19	VIC	Aufa Vale inlet stream	Cardinia	98022601	175	145.2314	－37．5625	KJF collection	26111998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	VIC	Aura Vale Lake	Hentys Picnic Area	97112401	140	145.2317	－37．5619	KJF collection	2 2×11997	K．JF	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
21	VIC	Avon River	Princes Highway，Stratiord	99021201	10	147.0431	－37．5824	KJF collection	12 11999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	VIC	Axe Creek	Mclvor Highway	99022308	170	144．2541	－36．4629	KJF collection	2311999	K／F	0	0	0	0	$\overline{0}$	0	0	0	0	0	0	0	0	0	0	0
23	VIC	Badger Creek	Dairy Rd	76032500	90	145.3100	－37．4100	MV－EPH1503， 1504，1557， 1626	25 III 1976	JD	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
24	VIC	Badger Creek	downstream weir	78033000	280	145.3400	－37．4100	MV－EPH1506	30 ili 1978	JD	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
25	VIC	Badger Creek	downstream weir	80010800	280	145.3400	－37．4100	MV－EPH1505， 1671	108：1980	JD	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
26	VIC	Badger Creek	downstream weir	80011801	280	145.3400	－37．4100	M V －EPH1582， 1726	1811980	J0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
	VIC	Badger Creek	downstream weir	80020700	280	145.3400	－37．4100	MV－EPH1627	07111980	J0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
28	VIC	Badger Creek	downstream weir	80022102	280	145.3400	－37．4100	MV．EPH1630， 1726	21：1980	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
29	VIC	Badger Creek	downstream weir	80032001	280	145.3400	－37．4100	MV－EPH1628， 1725	20111980	JD	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
30	VIC	Badger Creek	junction of Badger Creek Rd and Bluegum Drive	97040602	130	145.3211	－37．4102	KJF coilection	06 IV 1997	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

Locality data for all specimens examined

安 喜			$\begin{gathered} \stackrel{\circ}{2} \\ \stackrel{y}{\mathbf{0}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 䔍 } \\ & \text { 坒 } \\ & \hline \end{aligned}$				䒭	$\begin{aligned} & \text { 응 } \\ & \underline{\underline{\circ}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 哭 } \\ & \text { 3 } \\ & \hline \mathbf{3} \\ & \hline \mathbf{z} \\ & \hline \end{aligned}$	0 3 3 3 3 3 2			$\begin{aligned} & 5 \\ & 5 \\ & 3 \\ & 0 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$			$\stackrel{9}{9}$			巽		$\begin{aligned} & \frac{90}{90} \\ & \frac{10}{2} \\ & 20 \end{aligned}$		$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
43 VIC	Bemm River	Club Terrace－Goolengook Rd	81032100	100	148.5400	． 37.3400	MV－EPH 6654	21 III 1981	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
42 NSW	Betts Creek	Summit Rd	97120202	1740	148.2300	36.2600	KJF collection	102 X1． 1997	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
43 VIC	Eig Pats Creek	Riverside Ditive	97042503	160	145.4345	． 37.4510	KJF collection	25 N 1997	KJF＇	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$44 . \mathrm{VC}$	Rig River	Jamieson－Eilion Rd	98021503	300	146.0312	． 37.2203	KJF collection	15119998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
45 VIC	Black Snake Creek	Dyers Creek Picnic Ground，Gembrook South	97012902	115	145，4006	－37．5655	KJF collection	2911997	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
46 OLD	Blackellows Falls	Springbrook，Warre NP	79120601	770	153.1600	－28．1300	MV－EPH1691， 1692	106 XII 1979	DC	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
47 VIC	Biuff Creek	11.7 km up Stiring Rd	81110201	1310	146.2838	－37．0749	MV－EPH1741， 1742	02×1981	JD	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0
48）VC	Bodmans Creek	Hyland Highway	99030401	50	146.4234	－38．3015	KJF conlection	04111999	KJJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
49 VIC	Boggy Creek	Great Alpine Rd，Alpine National Park	96141803	1300	147.1843	－37．025	KJF coilection	18×11996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50．VIC	Roggy River	Princes Highway，Nowa Nowa	99021202	10	148.0534	－37．4356	K．JF collection	1211999	KıF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
51 VIC	Bogong Jack Creek	West Kiewa Logging Rd	97110602	1070	147.1012	－36．4959	KJF collection	106 XI 1997	KJF	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0
52 ViC	Bonang River	Dellicknora	97031401	600	148.4000	－37．0600	Kif collection	14111997	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
53V6．	Bonang River	Bonang Rd，Nof Bonang	99021308	640	148.4300	－37．0900	KJF collection	1311999	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
54／NSW	B00n00 B00n00 River	Lindsay Highway Bridge	84114000	960	152．0500	－28．5300	MV－EPH1677	10×11984	DC	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

8			$\begin{array}{r} \text { 등 } \\ \text { (1) } \\ \hline \underline{3} \\ \hline \end{array}$	$\begin{aligned} & \dot{0} \\ & \mathbf{2} \\ & \text { \$ } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 䔍 } \\ & \text { "흥 } \\ & \end{aligned}$					4 3 3 3 3 3 3	N. (A) fuscula			$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & \frac{2}{6} \\ & \frac{5}{5} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \frac{2}{2} \\ & \frac{2}{x} \\ & \frac{0}{0} \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & \hline 0 \end{aligned}$		$\stackrel{8}{9}$								宕
55	NSW	Bcon00 Boonoo River tributary		83052000		\times	x	MV-EPH 1670	$20 \vee 1983$	OC	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
56	W\%	Boyd River	locality 25	82030400		x	x	MV-EPH0113, 0114	04 If 1982	DC	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0
57	7 VIC	Branch Creek	Victoria Range, Grampians	66121600		142.1500	-37.2300	MV	16 XII 1966	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
58	QLD	Branch Creek	Corondale Ranges	88070900	160	152.4300	-26.5300	MV-EPH1689	09 VII 1988	SB	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
59	QLD	Branch Creek	Corondale Ranges	97061100	160	152.4300	-26.5300	MV-EPH1688	11 VI 1997	JJ	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
60	QLD	Branch Creek	Conondale Ranges	97082601	160	152.4300	-26.5300	MV-EPH1264	26 VIII 1997	J0	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
61	VIC	Brandy Creek	Great Alpine Rd, Alpine NP	87010500	1560	147.1i22	-37.0055	MV.EPH4764	0511987	JD	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
62	VIC	Erandy Creek	Great Alpine Rd, Alpine NP	96111802	1560	147.1122	.37.0055	KJF collection	18×11996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0
63	VIC	Brandy Creek	Great Alpine Rd, Alpine NP	96111902	1560	147.1122	. 37.0055	KJF collection	19×11996	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0
64	VIC	Brandy Creek	Great Alpine Rd, Alpine NP	97011902	1550	147.1122	-37.0055	KJF collection	19)1997	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0
65	TAS	Break O'Day River	E of Fingal	95011000	240	148.0300	-41.3600	MV-EPH0182	1014995	PS\&PG	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
66	V1c	Breakfast Creek	Tamboritha Rd, Alpine NP	97020402	320	146.3658	-37.3109	KJF collection	04114997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
67	VIC	Breakiast Creek	Tamboritha Rd, Alpine NP	97020701	320	146.3658	-37.3109	KJF collection	07 II 1997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
68.	VIC	Breakiast Creek	Tamboritha Rd, Alpine NP	97103010	320	146.3658	-37.3109	KJF collection	30×1997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

		$\begin{aligned} & \text { 훙 } \\ & \text { 흉 } \\ & \hline \end{aligned}$		号 茕		$\begin{aligned} & \text { 券 } \\ & \text { 总 } \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{a}} \\ & \text { + } \\ & \stackrel{3}{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 苞 } \\ & \text { 号 } \\ & \vdots \\ & 2 \end{aligned}$	$\begin{array}{\|c} 5 \\ 3 \\ 3 \\ 3 \\ 5 \\ 5 \\ 2 \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \frac{0}{E} \\ & \frac{5}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & x_{0}^{2} \\ & 2 \\ & 20 \\ & 0 \\ & \frac{2}{3} \\ & z \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & i \\ & i \\ & i \\ & 3 \\ & 2 \\ & 2 \end{aligned}$		$\stackrel{9}{9}$		管		皆		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\＄
69 TAS	Brid River	Tasman Highway，W of Sontsdale	95020802	180	147.2700	41.1300	MV－EPH 0239	10811995	PS\＆PG	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0
70．VIC	Brodribb River	Bonang Rd， $16 \mathrm{km3} \mathrm{~N}$ of Malinns	99021305	100	148.3200	－37．3000	kJF collection	1311999	KJF	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
71NSW	Brogo River	Princes Highway Bridge	81052201	80	149.4900	$\cdot 36.3200$	MVEPH1668	22 V 1981	jo	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
72NSW	Brogo River	Skm downstream of Princes Highway Bridge	81052202	40	149.4900	－36．3400	MV－EPH1684	22 V 1981	J0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
73 VIC	Eroken River	Evans Bridge，Swanpool	99122001	200	146.0132.	－36．4448	KJF collection	2011999	KJJ．	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
74 SA	Brownhill Creek		76030300	150	138.3800	－34．5900	PS conection	03111976	unkrown	0	0	0	0	0	0	0	0	10	010	1	0	0	0	0
75 TAS	Brumbys Creek	B51 crossing	96121701	150	147.0452	－41．4253	K．JF collection	17×111996	unknown	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$76 . \mathrm{VIC}$	Buchan River	Buchan	99021408	100	148.1000	－37．2900	KJF collection	11411999	KJJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
77 VIV	Buckand River	Mi Buffialo Rd	96110701	280	1466.5332	－36．4152	KJF collection	07X1996	KJF	1	0	0	0	0	0	1	0	0	0	0	1	0	1	0
78 SA	Bull Creek	The Cliff Finniss River Survey，bocation 3929	$89103101 \times$	x	x		AWQC	31×1989	PSSSS	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
79 VIC	But Creek	Bull Creek Rd	96113003	360	145.3539 ．	－37．28311／	K̇FF collection	30×11996	KJF	0	0	1	0	0	0	1	0	0	0	5	1	0	1	0
80 Vic	Bull Creek tributary	W of Yea Rock	96113004	450	145.3514	． 37.2707	K．JF conlection	30×1996	KJJ	0	0	1	0	0	0	1	0	0	0	0	1	0	1	0
81 VIC	Buller Creek	Mrimbah	81110202	670	146.2400	－37．0600	MV－EPH1760， 1761	02×11981	10	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
82 NSW			Nand	Onis	：48．2200］	－35．5200］	WJF collection	10，	15	0	0	0	0	0	0	0	0	0	0.0	0	0	0	0	0

Locality data for all specimens examined

				$\begin{aligned} & \text { 을 } \\ & \text { 至 } \end{aligned}$		跆			¢ ¢0 O\％ 0	$\begin{aligned} & \text { 发 } \\ & \frac{3}{3} \\ & \frac{5}{5} \\ & \underline{2} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & z \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \frac{0}{c} \\ & \mathbf{3} \\ & 2 \end{aligned}$	$\begin{aligned} & i \\ & \frac{2}{2} \\ & i \\ & 0 \\ & 5 \\ & \frac{2}{2} \\ & z \end{aligned}$			$\begin{aligned} & \frac{3}{3} \\ & 0 \\ & 0 \\ & \mathbf{0} \end{aligned}$	$\stackrel{y}{9}$		$\begin{aligned} & 50 \\ & 50 \\ & 0 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \frac{90}{50} \\ \mathbf{x} \\ \hline \end{array}$		$\begin{aligned} & 5 \\ & 0 \\ & 5 \\ & 5 \end{aligned}$	宕
83 VIC	Butchers Creek	$\begin{aligned} & \text { Gelantipy Rd, S of } \\ & \text { Gelantipy } \end{aligned}$	99021407	640	148.1500	－37．1300	KJF collection	1411999	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	c
84 vic	Caledonia River	Howits Hut	96051400	1480	346.4100	． 37.1400	MV－EPH1793， 1794	14 V 1996	unknown	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
85 TAS	Camerons Lagoon	near Great Lake	96122002	1040	146.3813	－41．5913	KJF colliection	20 XII 1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
86. VIC	Campaspe River	Heathcote－Kyneton Rd	99022305	220	144.3226	． 37.0102	KJF collection	2311999	KJJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
87 VIC	Cann River	Cann Valley Highway	96112404	160	149.1144	－37．2411	KJF conlection	24×11996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8B．VIC	Cans River	Princes Highway，Cann River	99021204	100	149．0600	－37．3400	KJF collection	12111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
89 VIC	Cann River east branct	WB Line Track Coopracambra NP	98012503	230	149.1216	－37．2048	KJF collection	2511998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
90. VIC	Cann River main branch	Cann Valley Highway． Noorinbee North	98012502	140	149.1152	－37．2611	KIF collection	251998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
91 VIC	Cann River west tranch	Buldah Rd	98012504	320	149.0843	－37．1759	KJF collection	2511998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
92 VIC	Cardinia Creek	Crystal Brook Park	97112402	80	145.2323	37.5821	KIF collection	24×11997	KJJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
${ }^{93}$ VIC	Cardinia Creek	Crystal Brook Park	98022602	80	145.2323	－37．5821	KJF collection	26111998	K	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
94 OLO	Careys Creek	S Calen，N of Mackay	79112001	140	1488.4300	－20．5200	MV－EPH1524	20×1979	DC	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
95 ViC	Carisbrook Creek	Great Ocean Rd	97030203	10	143.4827	－38．4127	$\overline{\mathrm{KFF}}$ pollection	02 111997	KjF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
96.10	Carisbrook Creek	Great Ocean Rd	99121901	10	143.4827	－38．4127	KIF collection	19×111999	KJF	1	0	0	0	0	0	1	0	0	2	0	0	0	0	0	0
97 VIC	Castetum Creek	Dargo Rd \｛Private Property）	96041702	180	147.1300	－37．3i00	K．JF collection	17 IV 1996	ET	0	0	0	0	0	0	0	010	0	0	0	0	0	0	0	0

Locality data for all specimens examined

				$\begin{aligned} & \text { 哏 } \\ & \text { 䂦 } \end{aligned}$						$\begin{aligned} & \text { 菢 } \\ & \stackrel{y y}{5} \\ & \underline{2} \end{aligned}$		$\begin{aligned} & \mathbf{3} \\ & \underline{5} \\ & \underline{5} \\ & \text { in } \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 0 \\ & 0 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathbf{N}_{0}^{0} \\ & \frac{2}{x} \\ & 0 \\ & 0 \\ & \frac{2}{3} \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & \frac{5}{3} \\ & \frac{3}{3} \\ & 0 \end{aligned}$	$\stackrel{7}{5}$				\square	哭	号 品 2 2	$\begin{aligned} & 5 \\ & 0 \\ & \mathbf{y} \\ & \mathbf{5} \\ & \hline \end{aligned}$	㼓
98010	Cedar Creek	unknown	10030001				SMNH	业1910－1913	ME	1	0	－	－	\bigcirc	2	1	1	0	0	0	1	0	0	－	0
990LD	Cedar Creek	unknown	10040000				SMNH	（V）1910－1913	ME	1	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0
100 VIC	Cement Creek	Mt Donna－Buang Rd	76042301	670	145.4220	－37．4248	MV－EPH1619， 1705	23 IV 1976	JD	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
101 VIC	Cement Creek	Mit Donna－Buang Rd	96047701	670	145.4220	－37．4248	KJF collection	17N 1996	ET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
102 VIC	Cement Creek	Mt Donna－Buang Rd	96092501	670.	145.4220	－37．4248	KJF collection	251×1998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
103 VIC	Cement Creek	Mt Donna－Buang Rd	96113002	670.	145．4200	－37．4248	KJF collection	30×1996	$\mathrm{K}^{\prime} \mathrm{J}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
104 VIC	Cement Creek	Mid Donna－Buang Rd	98030503	670	145．4220	－37．4248	KJF collection	05111998	KJF	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1
105 VIC	Cement Creek	Mt Donna－Buang Rd	98112901	670	145.4220	． 37.4248	kJF collection	29×1 1998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
105 vic	Cement Creek	Mt Donna－Buang Rd	99012301	670	145.4220	－37．4248	KJF collection	2311999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
107 Vic	Cement Creek	Mt Donna－Buang Rd	99032004	670	145.4220	－37．4248	KJF collection	20 III 1999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
108 VIC	Cement Creek	Mt Donna－Buang Rd	200022601	670	145.4220	－37．4248	KJF collection	26112000	KJF	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
109 VIC	Cement Creek	Mt Donna－Buang Rd	76040800	670	145.4220	－37．4248	MV－EPH1696， 1704， 1706	108 N 1976	JD	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
110 VVic	Cement Creek	Mt Donna－Bueng Rd	76102101	670	145.4220	－37．4248	NV－EPH1583	21×1976	JD	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0

Appendix 2
Page 8

Locality data for all specimens examined

$\dot{\sim}$				$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{y}{6} \\ & \stackrel{\rightharpoonup}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 亳 } \\ & \frac{\text { B }}{\mathbf{x}} \end{aligned}$		$\begin{array}{r} \text { 霛 } \\ \text { 空 } \\ \hline \end{array}$		$\begin{aligned} & \text { 品 } \\ & \hline \end{aligned}$		岛	告	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{o}} \\ & \frac{0}{2} \\ & \frac{1}{3} \\ & \dot{z} \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & \frac{2}{n} \\ & \frac{2}{n} \\ & \frac{1}{2} \end{aligned}$			：					$\frac{50}{90}$	M．adamus	$\begin{aligned} & 5 \\ & 0 \\ & 3 \\ & \mathbf{y} \\ & \mathbf{y} \\ & \hline 3 \end{aligned}$	荹
141）	VIC	Cement Creek	Mthonna－Euang Rd	76120100	670	145.4220	－37．4248	MV－EPH4587， 1588．1602， 1698	01×111976	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
112	VIC	Cement Creek	Mt Donna－Buang Rd	77041400	670	145.4220	－37．4248	MV－EPH1695， 1701， 1702	14 IV 1977	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
113		Cement Creek	Mt Donna－Buang Rd	78011200	670	145.4220	－37．4248	MV．EPW1699， 1700	121978	Jo	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
114		Cement Creek	Mat Donna－Buang Rd	78100600	670	145.4220	－37．4248	MV－EPH1707	06×1978	J0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
115	Vic	Cement Creek	Mt Donna－Buang Rd	78112300	670	145.4220	－37．4248	MV－EPH1589， 1590，1591，1592， 1594，1596，1597． 1598，1599，1734， 1736	23×1978	N0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
116	VIC	Cement Creek	Mt Donna－Buang Rd	79120700	670	145.4220	． 37.4248	MV－EPH1697	07 XII 1979	Jo	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
117 V	VIC	Cement Creek	Mt Donna－Buang Rd	80030300	670	145.4220	－37．4248	MV－EPH1593， 1703	03 III 1980	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
118	VIC．	Charity Creek	M．Baw Baw Tourist Rd	97111200	700	146.1349	．37．5057	MV	12×11997	MRHI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
119.		Charity Creek－＂The Gantry＇	MA Baw Baw Tounist Rd	96101203	700	146．1349	37．5057 K	KJF collection	12×1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0

Locality data for all specimens examined

Page 10

Locality data for all specimens examined

Page 11
Appendix 2

Locality data for all specimens examined

Locality data for all specimens examined

Locality data for all specimens examined

Locality data for all specimens examined

－					$\begin{aligned} & \text { 券 } \\ & \frac{5}{3} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 号 } \\ & \text { 空 } \end{aligned}$	든 ． 든 © \mathbf{O}	器		$\begin{aligned} & 9 \\ & \underline{3} \\ & \underline{3} \\ & 2 \\ & 2 \end{aligned}$						$\begin{aligned} & 3 \\ & \frac{3}{3} \\ & 5 \\ & 0 \\ & 2 \end{aligned}$	$\stackrel{y}{3}$					$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$			S
179	TAS	Dove River	below confluence with Lilla Creek，Cradie Mountain－ cake St Clai NP	96123001	940	145.5640	41．3824	KJF collection	30×111998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	VIC	East Erinundra River	junction with west branch	82031200	300	148.5400	－37．2000	AWT	12 III 1982	J8	\checkmark	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
181	VIC	East Erinundra River	junction with west branch	84010600	300	148.5400	－37．2000	AWT	0611984	13	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
182	TAS	Echo Point	unnamed stream flowing into Gradle Mountain－Lake St Clair NP	96122702	740	146.0813	42．0237／1	KJF collection	27×11996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
183	TAS	Elizabeth River	Campbeltiown	96122202	190	147.2918	41.5601	KJF coillection	22×11996	KJJ	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
184	VIC	Erinundra Creek	15km N of Club Terrace	75111100	120	148.5500	－37．2200	MV	11×1975	JB	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
185	VIC	Erinundra River	1.5 km upstream Combienbar Rd	81052101	120	148.5500	－37．2700	MV－EPH1750	21 V 1981	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
186	Vic	Eninundra River	Erinunda	94111500	320	148.5142	－37．3719	MV	15×11994	MRHI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	VIC	Efinundira River	Erinurdra	96110500	320	148.5142	－37．3719；	KJF collection	05 X 13986	MR Fif	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
188	VIC	Erskine River	Erskine Falis	98010401	200	143.5448	－38．5030	KJF collection	0414998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
189	NSW	Eucumbene River	Kaandra－Adaminaby Rd	97120104	1340	148.3100	－35．5300	KJF collection	01×111997	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
190	VC	Eurobin Creek	Mr Buffalo Rd，Mt Buffalo Np	96110702	440	146．5029	－36．4310 K	KJF collection	07×11996	KJF	1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1

Locality data for all specimens examined

$\begin{array}{c\|c} \text { 呂 } \\ \hline \end{array}$			$\begin{array}{r} \stackrel{\circ}{2} \\ \stackrel{y}{\mathbf{3}} \mathbf{0} \\ \hline \end{array}$	$\begin{aligned} & \text { 券 } \\ & \text { 要 } \end{aligned}$				$\begin{aligned} & \stackrel{y}{\tilde{\circ}} \underset{\sim}{0} \\ & \hline \end{aligned}$			$\left\lvert\, \begin{gathered} \frac{9}{3} \\ 9 \\ 3 \\ 2 \\ 2 \\ 3 \end{gathered}\right.$			$\left.\begin{aligned} & z \\ & z \\ & z \\ & i \\ & i \\ & z \\ & z \\ & z \end{aligned} \right\rvert\,$		$\begin{aligned} & \frac{3}{6} \\ & \frac{1}{3} \\ & 0 \\ & \hline \end{aligned}$	棣		蓇	票	\square			$\begin{aligned} & \mathrm{S} \\ & \text { O } \\ & \text { 采 } \\ & 0 \\ & \hline \end{aligned}$	亨
	Eurobin Creek	Mi Buffalo Rd，Mt Buffalo NP	99021101	440	146.5029	－36．4310	KJF collecion	1111999	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
192 VIC	Faith Creek	Tanijiliren Rd	96101205	540	146.1421	－37．5220	KJF coilection	12×1996	K．JF	0	0	1	0	0	0	1	0	0	0	0	$\overline{0}$	0	0	0	0
193 VIC	Falls Creek	Telephone Box Junction． Mt Stiring Rd	81110203	1220	146.2743	． 37.0652	MV－EPH1572， 1737，1738，1739， 1740	02 X1981	KJF	0	0	1	0	0	0	1	0	0	0	0	0	1	1	1	0
194 VIC	Feny Glade	Sealers Cove Walk， Wilsons Promontory NP	97021503	340	146.2321	－39．0140	KJF collection	1511997	［KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
195 VIC	Ferrers Creek	Bells Bridge，Rokewood－ Shellord Rd	99022705	195	143.4730	－37．5508	KJF collection	27111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
196 VIC	Fiery Creek	Glenelg Highway， Streatham	99022707	240	143．035\％	－37．4057	K．JF collection	27111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
197 SA	Finniss River	＂Riverdale＂，Finniss River Survey，location 3930	89103102 ${ }^{\text {x }}$	x	x		AWQC	31×1989	PS 8 SS	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
198 VIC	First Creek	Warbution－Jamieson Rd	85120700	750	145.5810	－37．2525	MV－EPH1731， 1732． 1733	107 XII 1985	JD	0	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0
199 VIC	Fisher Creek	Anderson Rd	96091901	360	145.3912	－ 37.3255	KJF collection	191×1996	K J J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200 VIC	Filtroy River	T\＆W Rd，of Princes Highway	99022801	80	141.2538	－38．0438	KJF collection	2811999	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
201 VIC	Four Mile Creek	Homers Rd，Warbution	97042501	185	145.4156	－37．4533	KJF collection	25 IV 1997	KJF	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
202 TAS	Frankin River	location unknown	$82030201 \times$	x	x		MV－EPH0136	02111982	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens exalŭined

					$\begin{aligned} & \text { 怱 } \\ & \text { 至 } \end{aligned}$		으를		¢	¢ \％ O $\mathbf{0}$	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$			$\begin{aligned} & \sum_{0}^{3} \\ & 3 \\ & \frac{0}{n} \\ & 3 \\ & 3 \end{aligned}$							\％			第	管		㶪
¢	家													0	0	0	1	0		0	0	0	0	0	0	0	0
			and	99021102	20	146.1754	－38．3911 K	KJF collection	1111999	KJF	1	0	0	0													
203	IC	Frankin River								10	0	0	1	0	0	0	1	0		0	0	0	0	0	0	0	0
			near Thredbo	84011900	1380	148.1929	－36．3002	MVEPH1675			1	0	0	0	0	0	1	，		0	0	0	0	0	1	1	0
204 N	NSW	Friday Flat Creek tioutary		96110803	1380	147.0805	－37．0555	KJF coslection	05×1996	KJF	1	0	0														
205	VIC	Frosty Creek	Frosty Creek Rd													0	0	0		0	0	0	0	0	1	1	0
206	VIC	Frying Pan Raceríne tributary	Telmark St，Falls Creek	99020505	1560	147．1650	－36．5200	KJF collection	05 II 1999	KJF	0	0	0	0	0	0											
								collection	1611999	KJF	1	0	0	0	0	0	1	0		0	0	0	0	0	0	0	0
207	VIC	Fyans Creak	Grampians Tourist Rd	99011608	290	142.3230	－37．1259	NJF collection																			
								JF coilection	2212000	KJF	3	0	0	0	0	0	0		1	0	0	0	1	0	0	0	0
208	VIC	Fyans Creek	Grampians Tourst Rd	200012202																							
			pumping station at Cariste	82012500	40	143.2300	－38．3300	MV	2511982	IAN	0	0	0	0	0	0	0		1	0							
209	VIC	Gellibrand River	River township							RStC									1	0	0	0	1	0	0	0	0
		Gellibrand River	3 km E Gellibrand	82012600	80	143.3300	－38．3100	MV	2611982																		
											1	0	0	0	0	0		1	0	0	0	0	0	0	0	0	0
		Gellibrand River	Gellibrand Rd	98010301	180	143.3110	－38．3447	KJF collection	$\frac{0311998}{13114999}$	KNF	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
212	$V I C$	Genoa River	Wangarabell Rd	99021303	100	149.2900	－37．2300	KJF collection	1311999	PS\＆PG	0	0	0	0	1			1	0	0	0	0	0	0	0	0	0
213	TAS	George River	Goshen	95020904	60	148.0500	41.1600	MV－EPH0178	0911																		
			Intake Bridge，St Coiumba			147500	－411700	MV－EPH0232， 0239	109 II 1995	PS\＆PG	0	0	0	0				1	0	0	0	0	0	0	0	0	0
214	TAS	George River	Falls Reserve	\＄5020905	150	147．5																				0	
					000	150.4800	－34．0600	MVEPH1674	28×1984	DC	1	0	0	0				1	0	0	0				0		
215	NSW	Georges River	5 km S of Campbelliown	84102802	10	N0．480	36.4358	Klif collection	09×1996		1	0	1	0		1		1	1	0	0	0	1		0		
216	Vİ	German Creek	Bright－Tawonga Rd	96110901																							

Appendix 2

Locality data for all specimens examined

Locality data for all specimens examined

家 喜		들 $\stackrel{y}{8}$	$\begin{aligned} & \dot{8} \\ & \stackrel{0}{2} \\ & \dot{\omega} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 旁 } \\ & \text { 亲 } \\ & \hline \end{aligned}$									$\left\lvert\, \begin{aligned} & 5 \\ & \frac{5}{x} \\ & i \\ & \vdots \\ & \frac{2}{3} \\ & 2 \end{aligned}\right.$				$\begin{aligned} & 8 \\ & \frac{8}{3} \\ & \mathbf{3} \\ & \hline \end{aligned}$					$\begin{array}{\|} \frac{0}{10} \\ \frac{51}{5} \\ 5 \end{array}$			宕
232 TAS	Great Lake	west shore，Duck Point	96121707	1033	146.4247	－41．5510	KJF collection	177×11996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
233 TAS	Great Musselroe River	Rd to Pioneer from St Helens	95020906	60	148.0300	41.0500	MV－EPH0206	09111995	PSSPG	－	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2341 VIC	Grey Riser	Grey River Rd	97030101	190	143.4850	－ 38.3943	KWF collection	01111999	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
225 TAS	Groom River	Tasman Highway	94030701	90	148.0500	41.1500	MV－EPH0228	071111994	PSSPG	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
236 VIC	Growlers Creek	Williams Rd camp sile， Wandirigong	96110801	380	146.5910	－36．4654	KJF collection	108×11996	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1
237 vic	Growlers Creek	Williams Rd camp site． Wandiligorg	97140801	380	146.5910	－36．4654	KJF collection	08×11997	KJF	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
238 VIC	Gulf Stream	downstream Epacris Falls， Mount Victory Rd， Grampians	99011603	440	142.2936	－37．0900	KJF coliection	16：1999	KiF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
239 VIC	Gull Stream	downstream Epacris Falls， Mount Victory Rd． Grampians	200012201	440	142.2936	－37．0900	KJF collection	2212000	KJF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
240 NSW	Guthrie Creek	Summit Rd，Mt Kosciusko NP	96120702	1760	148.2300	－36．2500	KJF collection	07×11996	K．JF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
241 VIC	Haunted Stream	Great Alpin Ro	99021409	180	147.4900	－37．2800	KJF coliection	14111999	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
242 TAS	Reillyer River Goise		82022800	220	145.3600	41.1600	MV－EPH0151	2811982	0 C	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
243 Vic	Hensleigh Creek	Combienbar Rd Ford	98012505	240	149.0108	－37．2436	KJF collection	2511998	KJF	1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	0
244 SA	Hithchoock Drain		$77112501 \times$	x	x		MV	25×11977	ON\＆PS	0	0	0	0	0	0	0	1	0	01	0	1	0	0	0	0

Locelity data for all specimens examined

20	芯			$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{y}{2} \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { 号 } \\ & \text { 妾 } \end{aligned}$	$\begin{array}{r} \text { 怱 } \\ \text { 落 } \\ \hline \end{array}$	䔍				$\begin{aligned} & 8 \\ & \frac{3}{3} \\ & \frac{3}{x} \\ & 2 \end{aligned}$			$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & i \\ & i n \\ & \frac{0}{n} \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & 0 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & \overline{3} \\ & \frac{1}{6} \\ & 0 \\ & 3 \end{aligned}$	$\stackrel{9}{\mathbf{S}}$					$\begin{array}{\|l\|} \frac{9}{90} \\ \frac{10}{9} \\ \hline \end{array}$		$\begin{aligned} & 5 \\ & 0 \\ & \mathbf{y} \\ & \mathbf{3} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{5}{3} \\ & \frac{1}{x} \\ & \frac{3}{3} \\ & \text { 岕 } \end{aligned}$
245	VIC	Hodgsons Creek	Eeechworth－Wangaratta Rd	97022202	240	146.3400	－36．2346	KJF collection	22．11997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
246	VIC	Holland Creek	Swanpool Rd，near Tatong	99022002	220	146.0557	－36．4412	IKUFP collection	20111999	KWF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
247	VIC	Holland Creek	Fords Bridge，Tatong－ Tolmie Rd	99022003	360	146.0813	－36．4937	KJF collection	20 11999	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
248	VIC	Hope Creek	Tanjili Bren Rd	96101204	550	146.1403	－37．5155	KJF coliection	12×1996	KJF	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
249	VIC	Hopkins River	Allanstorc	80031000	10	142.3500	． 38.2300	$\begin{aligned} & \text { MV-EPH1632, } \\ & 1633,1634 \end{aligned}$	10 ill 9980	DC	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
250	VIC	Hopkins River	Back Bolac R ${ }^{\text {d }}$	99022708	220	142.4505	－37．3604	KJF collection	27111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
251	VIC	House Creek	Mt Beauty Rd	99020501	330	147.0744	－36．4031	KJF collection	0511999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
252	VIC	Howqua River	12km SE Merrijig	71113000	420	146.1900	－37．1100	MV	30×1971	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
253		Howqua River	Running Creek Camping Reserve，Howqua River Rd	98021501	310	146.1341	－37．1418	KJF collection	1511998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0
254	TAS	Huon River	locality 27	$82030702 \times$		x		MV－EPH0154， 0155， 0156	07 III 1982	DC	1	0	0	1	1	0	1	0	0	0	0	0	0	0	00	0
255	VIC	licy Creek	Toorcongo Rd	96101103	530	146.0050	． 37.48091	KJF collection	11×1936	KJF	－	0	0	0	0	0	0	0	0	0	0	0	：	0	10	0
256	TAS	Inis River	Crade Mountain Rd	96123003	760	145.5742	41.3303	KJF collection	30×119996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
257	TAS	Inis River tibutary	location unknown	$82022600 \times$		x		MV－EPH01E5	26 ！ 1982	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
258		Jack River	Yarram－Monwell Rd Eridge	99021103	30	146.3409	－38．3312	KJF collection	11 II 1999	KJF	0	0	0	0	0	0	0	0	0	010	0	0	0	0	0	0
259	VIC	Jacksons Creek	Gisbome	97102602	410	144.3517	． 37.2904	KJF collection	26×1997	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
260］		Jacksons Creek tributany	Waterioo Flat Rd	97102601	470	944．3127	．37．2830	KJF collection	26×1997	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0

Locality data for all specimens examined

$\underline{0}$							号 覀			$\begin{aligned} & \text { 흫 } \\ & \text { O} \\ & \hline \mathbf{8} \\ & \hline \end{aligned}$			$\begin{gathered} \frac{9}{5} \\ \frac{5}{5} \\ 2 \end{gathered}$	$\begin{aligned} & \frac{1}{3} \\ & x \\ & 2 \\ & 0 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$	5 3 3 $\frac{2}{n}$ 3 3 2 2			鹗		\sum_{0}^{0}		THRAULOPHELBIA	喿	脗	$\begin{aligned} & 5 \\ & 0 \\ & 2 \\ & 8 \\ & 8 \end{aligned}$	5
261	V1c	Jacksons Creek tributary	Waterbo Flat Rd	98140101	470	144.3127	－37．2830	KJF collection	101×11998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
262	VIC	Jamieson River	Gerrans Eridge	98021502	320	146．1028	－37．1738	KjF collection	1511 1998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
263	VIC	Jimmys Creek	Grampians Tount Rd	96104901	310	142.3018	－37．2229	KJF collection	19×1996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
264	VIC	Jimmys Creek	Grampians Tourist Rd	98101109	310.	142.3018	－37．2229	KJF collection	19×1998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
265	VIC	Jimnys Creek	Grampians Tounist Rd	99011607	310	1423018	－37．2229	KJF collection	1611999	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
266	VIC	Jifmmy Creek	Glenelg	94111000 x		x		MV	10×1994	MRHI	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
267	VIC	Jimmys Creek	Grampians Tourist Rd	200012203	340	142.3018	－37．2229	KJF collection	2212000	KJF	1	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
268	NSW	Jindabyne		76022100	1000	148.3700	－36．2400	MV	2111976	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
269	VIC	Jingalalla River	Dellicknora Rd， 2 km SW of Dellicknora	99021402	520.	148.3900	－37．0700	KJF collection	14 II 1999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	VIC	Johnstone Creek	Portand－NelsonRd	97030401	110	141.1916	－38．1133	KJF collection	041111997	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
271	ViC	Johnstone Creek	Portand－Nelson Rd	97102501	110	141.1916	－38．1133	KJF collection	25×1997	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
272	VIC	Kalatha Creek	Kalatha Rd and Katatha Link Rd intersection	96112902	580	145.3147	－37．2832	KJF coilection	29×1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
273	VIC	Kangaroo Creek	Kangaroo Rd， 5 km E of Daylesford	97010901	600	144.1345	－37．2110	KJF collection	0911997	KJF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
274	VIC	Kennett River	Kennett River，Great Ocean Rd	98010306	20.	143.4803	－38．4005	KJF collection	0311998	jKJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
275	VIC	Keppel Creek	upper site	94091700	800	145.4600	－37．2700	1 C collection	17×1994	SP	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0

Appendix 2
Page 21

Locality data for all specimens examined

Appendix 2

Locality data for all specimens examined

\％	$\begin{aligned} & \text { 世 } \\ & \frac{\pi}{0} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{y}{\mathbf{j}} \\ & \hline \end{aligned}$							$\begin{aligned} & \text { 品 } \\ & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \\ & \hline \end{aligned}$			$\begin{aligned} & i \\ & 2 \\ & 2 \\ & 6 \\ & 5 \\ & 3 \\ & 2 \end{aligned}$				$\begin{aligned} & \text { 塄 } \\ & 93 \\ & 3 \\ & \hline \end{aligned}$					－	$\begin{aligned} & \text { 埐 } \\ & \text { 第 } \\ & \text { 察 } \end{aligned}$		S
293	VIC	King Parrot Creek	Wallaby Ck Rd	76081600	350	145.1456	－37．2550	MV－EPH1710， 1711	16 VIII 1976	J0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
294	VIC	King Parrot Creek	4WD track off Whittlesea－ Yea Rd，Kinglake West	96100701	340	145．1544	－37．2520	KJF collection	07×1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
295	VIC	King Parrot Creek	h Wittlesea－Yea Rd，15km SW of Flowerdale	98030501	350	145．4448	－37．2550	KJF collection	051111998	KJF	1	0	1	0	0	0	1	1	0	0	0	1	0	0	0	1
296	VIC	King River	King Valley Rd，Cheshunt	99022004	270	146.2533	－36．4755	KJF collection	20111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
297	VIC	King River	King Valley Rd，Cheshunt	39022202	270	146.2533	－36．4755	KJF collection	22119999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
298	VIC	Koala Park Dam	Mount Alexandra State Park	97141901	630	144.1322	． 37.0202	KJF collection	19 XI 1997	NA\＆FM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
299	VIC	La Trobe River	Big Creek Basin Rd，5km E of Powellown	96101002	320	145，5010	． 37.5235	KsF collection	10×1996	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1
300	TAS	Lagoon of isiands	off Interiaken Rd	95122104	760	146.5600	－42．0346	KJF collection	21×11996	KJF	0	0	0	0	$\overline{0}$	0	0	0	0	0	0	0	0	0	0	0
301	NSW	Lake Albina	Mt Kosciusko	29020200	1920	148.1630	－ 26.2659	NHM	02 II 1929	RJT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
302	NSW	Lake Albina	Mt Kosciusio	79042000	1950	147.1600	－36．2600	Collection	20 N 1973	IC	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
303	NSW	Lake Albina	infiowing stream，Mt Kosciusko	85020901	1920	148．1630	－36．2659	MV－EPH1778	0911985	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
304	NSW	Lake Albina	ortlet stream＝Lady Northcotes Creek	85020903	1920	147.1600	－36．2600	MV．EPH1776，1777	09 11985	DC	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0

Locality data for all specimens examined

울	皆				$\begin{aligned} & \text { 哏 } \\ & \text { 空 } \end{aligned}$				稛	$\begin{aligned} & \stackrel{\vdots}{\mathbf{0}} \\ & \frac{0}{\bar{\circ}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 鹗 } \\ & \frac{2}{3} \\ & \text { 2 } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{5} \\ & \frac{0}{5} \\ & \frac{5}{3} \\ & 2 \\ & 2 \end{aligned}$		$\left\|\begin{array}{l} 5 \\ \frac{2}{2} \\ \frac{2}{n} \\ \frac{2}{5} \\ 2 i \end{array}\right\|$	$\begin{gathered} e \\ \frac{2}{x} \\ i \\ i \\ \frac{i}{5} \\ \frac{x}{3} \end{gathered}$		$\begin{aligned} & 8 \\ & 8 \\ & \mathbf{8} \\ & 1 \end{aligned}$		$\begin{aligned} & 10 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$						
305		Lake Ayr inlet stream	Cradte Mountain－Lake St Clair NP	90011603	880	146.0500	41.4900	MV－EEPH1464， 1474，1542，15a3	161990	JDSDC	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
306	TAS	Lake Ayr outet stream	upstream Douglas Creek， Cradle Mountain－Lake St Clair NP	90011604	640	146.0200	－41．4800	MV－EPH1470	161990	JD80C	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
307	tas	Lake Ayr outtet stream	100m downstream Lake， Cradle Mountain－Lake St Clair NP	90011605	800	146.0300	41.4900	MVEPH1467	1611990	Jos．0．	0	－	0	0	1	1	1	0	0	0	0	0	0	0	0	0
308	TAS	Lake Botsoord	off 4W0 track	96122102	1150	146.3019	41.5317	KJF coliection	21×11996	KJJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
309	NSW	Lake Cootapatomba	Mt Kosciusko	30012700	2160	148.1559	－36．2801	NHM	271930	RJT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
310	NSW	Lake Cootapatomba	Inflowing stream，Mt Kosciusko	84012400	2160	148.1559	－36．2801	MVEEPHiT74	2411984	J0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
311	TAS	Lake Crescent	Outilet stream	88110401	900	147.1000	42.0700	MV．EPH0i33	04×11988	DC	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
312	tas	Lake Dove	Lake Dove Rd．Cradie Mountain－Lake St Clair NP	96122902	934	145.5738	41.3917	K．JF collection	29×111996	KJF	0	－	0	0	0	－	0	0	0	0	0	0	0	0	0	0
313	TAS	Lake Echo	South side of Dam	96122300	846	146.3825	－42．1302	KJF collection	23 X］11996	KJIF	0	0	0	－	0	－	0	0	0	0	0	0	0	0	0	0
314		Lake Elizabeth	Iniet stream，Ciways	88052200	210	143.4536	－38．3313	MV－EPH1751	22V1988	DC	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
315	TAS	Lake Leake	Citting Grass Bay	96122203	580	147.4800	42.0100	KJF collection	22 XII 1996	K KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
316	TAS	Lake Lilia	Cradle Mountain－Lake St Clair NP	96122901	922	145．5720	41.3912	KJF collection	29×111996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
317	TAS	Lake Paget	below Lake Augusta spillway	96122103	1150	146.3050	－41．5222	KJF collection	21×111996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix 2
Page 24

Locality data for all specimens examined

Locality data for all specimens examined

Page 26

Locality data for all specimens examined

			$\begin{aligned} & \text { 드웅 } \\ & \hline \end{aligned}$		을 总	율 흥 0	总		品	$\begin{aligned} & \text { 음 } \\ & \underline{0} \\ & \hline \mathbf{O} \end{aligned}$		0 3 3 3 3 3 3 2	$\begin{aligned} & \frac{20}{6} \\ & \frac{2}{2} \\ & 2 \\ & 2 \end{aligned}$						－		$\stackrel{5}{2}$			只	号	$\begin{aligned} & 5 \\ & 0 \\ & 5 \\ & \hline 8 \\ & \hline \end{aligned}$	䂞
－	\％																			0	0		0	0	0	0	0
			Loch River Rd－2nd bridge	98020904	280	145.5943	－37．5030 K	WJF collection	09111998	KJF	0	0	0	0	0	0	0		0	0	0	0	0				
345	VIC	Loch River tributary										0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
346	VIC	Loddon River	Guildford Bridge，Midand Highway	97122001	240	144.0958	． 37.0855	KJF collection	20 XII 1997	KJF	0	0	0	0	0												
			Loves Creek Picric Ground，Colac－Beech Forrest Rd	10303	100	143.3452	－38．2855	KJF collection	0311998	KJF	1	0	0	0	0	0	1		1	0	0	0	1	0	0	0	0
347	VIC	Love Creek	Fomest Rd																							0	0
	VIC	Lyrebird Creek	Olinda Creek Rd， Oandenong Ranges	97032404.	220	145.2345	－37．4950	KJF collection	24 111997	KKJF	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
349	VIC	Macalister River	Cheynes Bridge	97020703	120	146.4004	－37．4548	K．JF coliection	1071197	KF																	
349	VIC										1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
		Mackenzie River	Wartook Rd，Grampians	99011605	420	142.2456	． 37.0643	KJF collection	1611999	｜KJF	0	0	0	0	－	0		O	0	0	0	0	0	0	0	0	0
350	Vic	Macquaṅe River	Ross Bridge，Ross	96122201	180	147．2919	－42．0157	KJF collection	22×11990	KF																	
351	TAS	Macquane River													0	0		1	1	0	0	0	1	0	0	0	0
352	VIC	Main Creek－Site 1	Baldys Rd，Green＇s Bish National Park	97041601	110	144.5734	－38．2520	KJF collection	16 IV 1997	KJF	1	0	0	0													
			Boneo（Rosebud－Flinders）				3818	IF collection	16 IV 1997	KJF	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
353	VIC	Main Creek－Site 2		97041602	3	， 4.																			0	0	0
				10030002	700	145.3500	－17．2100	SMANH	til 1910－1913	ME	1	0	0	0	0		0	1	0	0	0	0	0	0	0	0	0
354	QLD	Malanda		05021001	280	148.1100	41.3400	｜AV－EPH0192	1011995	PS\＆PG	0	0	0	0			1	1	0	0	0	0	0				
355	TAS	Margisons Creek	St Mary＇s	95021001	280	48．1．	， 3																1	1	0	1	0
			Bonang Rd， 0.5 kms S of Malinns	99021306	260	148.3600	－37．2500	KJF conlection	1311999	KJF	1	0	0				0	1	1	0	0	0		1			
356	VIC	Maruns Creek Nc． 2											0				0	0	0	0	1	0	1	0	0	0	0
			6 km downstream Heathcote	81091300	250	144.4400	－3i．5700	MV－EPH1523	$\frac{131 \times 1981}{23111999}$		0	0	10	10	1	－	0	0	0	0	0	0	0	0	0	－	0
357	V	Mavor Creek	Heathoote	99022303	240	144.4240	－36．5521	KJF collection	23111999	Wr																	
358	VIC	Mclvor Creek	Heancole																						e		

Appendix 2
Page 27

Locality data for all specimens examined

$\dot{8}$	$\begin{aligned} & \Phi \\ & \stackrel{\Phi}{0} \\ & \text { 灾 } \end{aligned}$		$\begin{aligned} & \text { 동 } \\ & \text { 웅 } \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \text { 安 } \\ & \text { 芯 } \\ & \hline \end{aligned}$	$$	象	德			응 荷 8	聥		$\begin{aligned} & \mathbf{9} \\ & \frac{7}{5} \\ & \frac{5}{3} \\ & 2 \end{aligned}$		$\begin{array}{\|c} 5 \\ \frac{5}{2} \\ 0 \\ 0 \\ 3 \\ 3 \\ 2 \end{array}$	$\begin{aligned} & 2 \\ & 8 \\ & \frac{2}{3} \\ & 0 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$		㘶	T．inconpsicua	$\begin{aligned} & \mathbf{x} \\ & \sum_{2} \\ & \mathbf{x} \\ & \hline \end{aligned}$	T. simillima	THRAULOPHELBIA	$\begin{aligned} & \text { 枈 } \\ & 0 \\ & 50 \end{aligned}$		\％	5
359	VIC	McKay Creek	Mit McKay－Howmans Gap Rd	80011100	1580	147．1400	－36．5200	MiV－EPH1770	1111980	JD	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
360	VIC	McKay Creek（Roadside Springs＂）	Mt McKay，Alpine National Park	96110906	1700	147.1539	－36．5225	K．3F collection	09×1996	K NJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
361	VIC	McKay Creek（Roddside Springs＂）	Mt McKay，Alpine National Park	99020503	1700	147.1539	－36．5225	KJF collection	105 111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
362	VIC	McKKay Creek tributary waterfall	Mi McKay，Alpine National Park	96110905	1700	147.1520	－36．5219	KJF collection	09×11996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
363	VIC	McKay Creek tributary waterfall	Mi McKay，Alpine National Park	99020504	1700	147.1520	－36．5219	KJF collection	05111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
364	SA	Meadows Creek	Fingerboard comer， Finniss River Survey， location 3173	$89103103 \times$	x			AWOC	31×1989	PS\＆SS	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
365	TAS	Meander River	Westwood	60010900	150	146.5700	41.3000	ANIC	0111960	DS	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
366	VIC	Melta Gully	Annes Cascades，Melba Gully State Park	98010305	340	143.2245	－38．4144	K．JF collection	0311998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
367	VIC	Melloa Gully	Annes Cascades，Meiba Gulty State Park	99121902	340	143.2215	－38．4144	KJF collection	13 XII 1999	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

Appendix 2

Locality data for all specimens examined

20				$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{y}{\circ} \\ & \text { in } \end{aligned}$			要		$\begin{aligned} & \text { \$ } \\ & \hline \mathbf{5} \end{aligned}$	능 荅	$\begin{aligned} & \mathbf{~} \\ & \mathbf{y} \\ & 4 \\ & \mathbf{3} \\ & \mathbf{z} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{9} \\ & \frac{3}{5} \\ & \frac{3}{3} \\ & z \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & \frac{1}{6} \\ & \frac{3}{3} \\ & 2 \end{aligned}$					$\begin{gathered} \frac{10}{2} \\ \frac{8}{8} \\ n_{0}^{\prime} \end{gathered}$	量	THRAULOPHELBIA		量		
383	VIC	Mosquito Creek	Bonfieids Bridge， Redesdale－Bendigo Rd	99022307	180	144.2949	－36．5114	KJF coliection	23 II 1999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
384	TAS	Mother Logans Creek	Terry Hills Rd	95020907	130	148.0600	41.1300	MV－EPH0200， 0201	0911995	PS\＆PG	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
385	QLD	Mother Moutain	12km SE of Gympie	80102900	100	152.4700	－26．1500	MV－EPH1127	29×1980	AN	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
366	VIC	Mount Misery Creek	Rokewood－Skipton Rd	99022704	190	143．3940	－37．5254	KJF collection	27111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
387	VIC	Mountain Creek	7 km E of Tawonga South	90110300	510.	147.1400	－36．4200）	$\begin{aligned} & \text { MV-EPH1584, } \\ & 1660,1723 \end{aligned}$	03×11990	DC	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1
388	VIC	Mt Baw Baw		75011400	1460	146.1600	． 37.5000		1411975	IC	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
389	Vic	Mt Baw Baw		7511990	4460	146.9600	－37．500	ticoll	1911975	1 C	0	0	0	0	0	$\overline{0}$	0	0	0	0	0	0	1	0	1	0
390	VIC	Mt Baw Baw		75112900	1460	146.1600	－37．5000	to Colection	29×1975	1 C	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
391	VIC	M B Buller		58011700	1680	146.2500	－37．0800	MV－EPH1756	1711958	AN	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
392	Vic	Mt Butier		95032800	1680	146.2500	－ 37.0800	ic Collection	28111995	1 C	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
393	VIC	Muddy Creek	Selby－Aura Rd	96101301	225	145.2315	－37．5515	KSF collection	13×1996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
394／	NSW	Murray River tributary	Tom Groggin Picnic Area， Kosciusko NP	80102400	490	148.0800	－36．2100	MV－EPH1649， 1650	24×1980	OC	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
395	VIC	Murrindal River	Gelantipy Rd	97101901	220	148.1256	－37．2327	KJF collection	19X 1997	KJJ	0	0	0	0	0	0	$\overline{0}$	0	0	0	0	\checkmark	0	0	0	0
396	VIC	Murrindindi River	Murrindindi Falls Rd	96113001	300	\｛45．3327	－37．2348	KJF collection	30×11996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
397	VIC	Myrde Creek	Donna Buang Rd	97040603	780	145.3642	－37．4235	KJF collection	06 IV 1997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
398	VIC	Myrthe Creek	Donna Buang Rd	200022602	780	145.3642	－37．4235	KJF collection	26112000	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
399	VIC	Myrtle Creek	Donna Buang Rd	200031903	7801	145.3642	－37．4235	KJF collection	191112000	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0

Locality data for all specimens examined

$\stackrel{\circ}{2}$	$\begin{gathered} \text { 需 } \end{gathered}$			$\begin{aligned} & \dot{8} \\ & \stackrel{2}{2} \\ & \text { ín } \end{aligned}$	号 気 集	皆	$\begin{aligned} & \text { 홀 } \\ & \text { 空 } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{\Phi} \\ & \mathbf{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 흘 } \\ & \frac{0}{\bar{O}} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \text { 毕 } \\ & \mathbf{3} \\ & \mathbf{3} \\ & \times \end{aligned}$	5 3 3 3 3 3		$\begin{aligned} & i \\ & 3 \\ & i \\ & i \\ & 0 \\ & 3 \\ & 3 \\ & z \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & 5 \\ & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 5 \\ & 3 \\ & 2 \end{aligned}$		哭		T．parva	苟		0 0 0 0			
400	VIC	Matice Gully	Sylvia Creek Rd，Toolangi Slate Forest	96112901	620	145.3104	－37．3144	KJF collection	29 XI 1996	KJF	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1
401	VIC	Naringhil Creek	Rokewood－Skipion Rd	99022706	250	143.2930	－37．4540	KJF conlection	27111999	KJFF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
402	TAS	Nelson River	38km E of Queenstown	88110200	500）	145.4200	－42．0600	MV－EPH0159	02×11998	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
403	TAS	New River	upstream Ralph Falls	95021003	810	\＄47．5000	－41．1900	MV－EPH0207	1011995	PS\＆PG	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
404	NSW	No． 1 Creek	6 kms downstream Thredbo	78121401	1260	148.2300	－36．2800	MV－EPH1678， 1679	14×11978	10	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1
4051	NSW	No． 1 Creek	upstream Alpine Way	84012301	1400	148.2300	－36．2600	MV－EPH1689	2311984	J0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
406	VIC	North Cascede Creek	Thornson Valley Rd	91011300	920	146.2019	－37．4822	MV－EPH1722	1311991	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
407	SA	North East River	near Camanven，Kangaroo island	77111900	40.	136.5900	－35．5600	PS collection	19×19977	JEB	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
408	TAS	North Eldon River	Lake Burbury	94110100） x	x	x		MV－EPH1460， 1461	01×11994	MRHI	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
409	TAS	North Esk River		$33012100 \times$		x		NHM	2111933	RJT	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
410	TAS	North Esk River	near Perth	$60019800 \times$	x	x		ANIC	re： 1960	LS	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
411	TAS	North George River		$94030702 \times$	x	x		MV．EPH0197， 0198	07 M 1994	PS\＆MS	0	0	0	0	0	1	1	1	0	0	0	1	0	0	0	0
412	SA	North Para River	downstream Ordando Ford， winery discharge	$83081900 \times$	x	x		AWCC	19 VIII 1983	PS	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0

Locality data for all specimens examined

$\stackrel{\circ}{2}$	$\begin{gathered} \stackrel{y y y y}{0} \\ \stackrel{0}{0} \\ \hline \end{gathered}$								品	$\begin{aligned} & \text { 능 } \\ & \text { (0) } \\ & \overline{8} \end{aligned}$		N. (A) fuscula	$\begin{aligned} & \frac{3}{3} \\ & \frac{3}{5} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & i \\ & 2 \\ & 2 \\ & n \\ & \frac{1}{n} \\ & 2 \\ & 2 \end{aligned}$	5 $\frac{5}{2}$ $\frac{1}{3}$ $\frac{5}{3}$ 3 2						莺					
413	SA	North Para River	Tanunda	91102100	250	138.5800	-34.3200	WQ	21×1991	PW	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
414	NSW	Ogivies Creek	Tooma Rd	97120105	1300	148.1900	-36.0300	KJF collection	01 X14997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
415	VIC	Olinda Creek	Olinda Creek Rd. Dandenong Ranges	97032405	260	145.2235	-37.4947	KJF collection	241111997	KJj	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
416	VIC	O'Shannassy River	restricted access	75102401	580	145.4900	-37.3600	MV-EPH1611	24×1975	ND	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
417	vic	OShannassy River	restricted access	75111400	580	145.4900	-37.3600	MV-EPH1554, 1555, 1570, 1603, 1610. 1713	14×11975	JD	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1
418	VIC	O'Shannassy River	restricted access	76102103	580	145.4900	-37.3600	MV-EPH1609	21×1976	J0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
419	VIC	O'Shannessy R Reer	restricted access	76121501	580	145.4900	-37.3600	MV-EPH1567	15×111976	JD	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
420	VIC	O'Shannassy River	restricted access	76421502	580	145.4960	-37.3600	$\begin{aligned} & \text { MV-EPH1567, } \\ & 1581,1608 \end{aligned}$	15 XH 1976	JD	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
421	VIC	O'Shannassy River	restricted access	80010401	580	145.4900	-37.36C0	MV-EPH1553, 1556, 1568, 1569, 1577,1604, 1607, 1759	0411980	JD	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	1
422	Vic	O'Shannassy River	restricted access	94121502	580	145.4900	-37.3600	MV	05×111994	MRHI	1	0	0	0	0	$\overline{0}$	1	0	0	0	0	0	0	0	0	1
423	TAS	Ouse River	Grace Nicholas Park, Ouse	96121902	90.	146.4245	-42.2912	KiF coilection	19 XII 1996	KJJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
424	TAS	Ouse River	ourside Waddamana	96122005	530	146.4505	-42.0904	KJF collection	20×111996	KJF	0	0	0	$\overline{0}$	0	0	0	0	0	0	0	0	0	0	0	0
425	VIC	Ovens Rifer	School Bridge. Harrietvilte	96119904	500	147.0348	-36.5325	KJF collection	19×1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

Locality data for all specirrens examined

Appendix 2

Locality data for all specimens examined

Appendix 2

Locality data for all specimens examined

$$		．	$\begin{aligned} & \dot{\circ} \\ & \stackrel{0}{6} \\ & \stackrel{0}{6} \\ & \hline \end{aligned}$	$\frac{\text { 娄 }}{\frac{5}{4}}$		亳		$\begin{aligned} & \text { 呂 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 늘 } \\ & \text { O} \\ & \hline \mathbf{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 哭 } \\ & \frac{3}{2} \\ & \frac{x}{x} \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{00}{3} \\ & \frac{0}{3} \\ & \frac{3}{8} \\ & 2 \end{aligned}$		$\begin{aligned} & i \\ & i \\ & i \\ & i \\ & i n \\ & \frac{5}{5} \\ & z \end{aligned}$	$\begin{aligned} & 5 \\ & \frac{5}{x} \\ & 0 \\ & 0 \\ & 3 \\ & z \end{aligned}$		3 3 0 0 8	皆		2	品	\square	$\begin{array}{\|c} 50 \\ \mathbf{9 0} \\ 5 \end{array}$		$\begin{aligned} & 5 \\ & 0 \\ & 5 \\ & \mathbf{y} \\ & \hline \mathbf{3} \\ & \hline \end{aligned}$	等
459.9 VIC	Rodger River	Deddick	90112300	560	148.4600	－37．2900	AWT	23×1990	unknown	，	2	－	0	0	，	－	，	0	0	－	－	0	0	0	1
460 VIV	Rose Creek	Rose Creek Rd	96102001	340	142.2200	－37．0737	K－NF collection	20×1996	BM	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0
461 VIC	Rose River Site 1	Rose River RdBridge	99022201	340	${ }^{146.3455}$	－36．4940	K．JF collection	2211999	BM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
462 VIC	Rosa River Sita 1	Rose River R B Bridge	99031701	340	146．3465	－36．4940	KJF collection	17111959	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
463 VIIC	Rose River Site 2	Rose River Rd	99031702	360	146.3302	－36．5214	KJF collection	17111999	，$\overline{\text { J }}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
464 VIC	Rose River Site 3	Rose River Rd	99031703	460	146.3212	－36．5701	KJF collection	17 7119	10］F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
465 VIC	Rose River Site 4	Bennies，Upper Rose River／Cobbler Lake Rd	99031704	460	146.3210	－36．5645	KJF collection	17 III 1999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
466 VVC	Rubicon River	Rubicon Falis	80112001	560	145.5102	．37．2029	MVEEPH1648	20×1980	J0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
467 Vic	Rubicon River	Rubicon Bridge，Taggerty－ Thomton Rd	98104701	220	145.4756	－37．665	KJF collection	17×1998	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
468 VIC	Rubicon River	Rubicon Bridge，Taggerty－ Thomton Rd	98111701	220	145.4756	－37．6555	KJF collection	17×1998	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
469 VIC	Rubicon River	Rubicon Bridge，Taggerty－ Thomton Rd	98121601	220	145.4756	．37．655	KJF collection	16 XII 1998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
470 Vic	Ruined Caste Springs	Falis Creek	99020502	1755	147.1555	36.5240	K．JF collection	0511999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
471 VIC	Rum Creek	Thomson Valiey	85041700	640	146.2249	． 37.5245	MVEEPH1758	17 IV 1985	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
472 VIC	Running Creek	Warturion－Jamieson Rd	81103102	759	145.5800	－37．2500	MV．EPH1580， 1724	31×1981	JD	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0

Locality data for all specimens examined

i	$\begin{aligned} & \text { 帯 } \\ & \text { 范 } \end{aligned}$			$\begin{aligned} & \dot{i} \\ & \stackrel{y}{2} \\ & \stackrel{y y y y}{0} \end{aligned}$		$\begin{array}{r} \text { B } \\ \text { 总 } \\ \text { B } \\ \hline \end{array}$	$\begin{aligned} & \text { 帚 } \\ & \text { 莺 } \end{aligned}$			¢ ¢0 ¢ 0		$\begin{aligned} & \frac{01}{3} \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & z \end{aligned}$	$\begin{aligned} & \frac{3}{3} \\ & \frac{0}{5} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & i n \\ & \frac{1}{2} \\ & i \\ & \frac{i}{n} \\ & \frac{1}{2} \\ & z \end{aligned}$			$\begin{aligned} & 3 \\ & \frac{3}{3} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				䍝			品 品 定	5 0 0	
473	VIC	Running Creek	Warbutton－Jamieson R ${ }^{\text {d }}$	85030700	750	145.5800	． 37.2500	MV－EPH1644	07 III 1985	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
474	VIC	Running Creek	downstream Running Creek Reseı joir	$85071000 \times$				MV－EPH1639	10 VlH 1985	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
475	VIC	Running Jump Creek tributary	Mt Buflaio Rd	96110705	1500	145.4626	－36．4615	KJF collection	07×11996	KJJF	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
476	VIC	Russell Creek	off Gunn Rd，3km N of Noojee	96101005	280	145.5926	－37．5045	KJF collection	10×1996	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
477	TAS	Russell River	near Lonnavale	82030202	130	146.4700	－ 42.5600	MV－EPH0124	02月1982	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
478	VIC	Sandy Creek	Mumindindi Fallis Rd	96112903	390	145.3427	－37．2627	KJF coliection	29×1996	K KJF	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
479	VIC	Sandy Creek	near Lucas Access Rd off Omeo Highway	97102902	220	147.5056	－37．2457	K．JF collection	29×1997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4801	VIC	Sassafras Creek	1 km N of Kallista	74903000	320	145.2200	－37．5200	MV	30×1974	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
481	VIC	Sassafras Creek	Monbulk－Oinda Rd， Dandenong Ranges	96101302	320	145.2218	－37．5246	KJF collection	13X 1996	KJF	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
482	VIC	Sassafras Creek	Kays Pienic Grourd． Monbulk Rd，Dandenong Ranges	96101303	250	145.2321	－37．5303	KJF collection	13×1996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4831		Sassafras Creek	Monbulk－Olinda Rd， Dandenong Ranges	96112104	320	145.2218	． 37.5246	KJF collection	21×1995	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

		든 ©		$\begin{aligned} & \text { 帚 } \\ & \text { 妾 } \\ & \hline \end{aligned}$		$\begin{gathered} \text { 品 } \\ \text { 䔍 } \end{gathered}$		$\begin{aligned} & \text { 呂 } \\ & \underline{0} \\ & \hline \end{aligned}$			気					$\begin{aligned} & \frac{3}{3} \\ & \frac{5}{3} \\ & \frac{3}{2} \end{aligned}$	T．lucida		20		\square			$\begin{aligned} & 5 \\ & 0 \\ & \mathbf{y} \\ & \mathbf{3} \\ & \hline \end{aligned}$	宕
484 VIC	Sassafras Creek	Kays Pienic Ground， Monbulk Rd，Dandenong Ranges	96112102	250	145.2321	－37．5303	KIF collection	21×11996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
485 VIC	Sassafras Creek	Kays Picnic Ground． Monbulk Rd，Dandenong Ranges	97032402	250	145.2321	－37．5303	KJF collection	24111997	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
486 VIC	Sassafras Creek	Perrins Creek Rd Dandenong Ranges	97401502	370	145.2218	－37．5246	KJF collection	15×1997	KJF	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
487 VIC	Sassafras Creek	Kays Picric Ground， Monbulk Rd，Dandenong Ranges	99032002	250	145.2321	－37．5303	KJF collection	20111999	YWF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc
488 VIC	Sawpit Creek	Donnelly Weir Rd	97040605	100	145.3203	－37．3815	KJF coulection	06 IV 1997	KJJF	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0
489 TAS	Scamander River	Upper Scamander	82030950	20	148.1100	－41．2600	MV－EPH0146	091111982	DC	1	0	0	0	0	0	1	－	0	0	0	0	0	0	0	0
490 SA	Scotit Creek		$94110900 \times$	x	－${ }^{\text {x }}$		AWQC	099 X 1994	PG\＆CM	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
491 VIC	Scrubby Valley Creek	Flat Rock Crossing， Glenelg River Rd	99011604	290	142.2636	－37．0946	KJF collection	1611999	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
492 TAS	Second River	upsteam Lilydate Falls	82031100	150	147，1200	41.1300	MVEPH0115	11 ill 1982	JO\＆DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
493 VIC	Second Wannoon River	Grampians	77112502	430	142.3200	－37．1900	MV	25×1977	DN\＆PS	0	0	0	0	0	－	0	1	0	0	0	1	0	0	0	0
494 NSW	Serpentine River	Point Lookout	48100000	1280	152.2000	－30．2800	AM	X 1948	JH	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
495 TAS	Seven Time Creek	Tasman Highway，near Targa	95020804	400	147.2200	41.1800	MNV－EPH0216	08月1995	PS\＆PG	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
498 TAS	Shannon Lagoon	Lake Highway	96121706	1017	146.4458	41.5913	K．JF collection	17711996	KJF	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0
497 TAS	Shannoon Ligoon	Lake Highway	96122004	1017	146.4458	41.5913	KJF collection	20 XII 1996	KJjF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
${ }^{498}$ TȦS	Shannon Eiver	Waddamana Rd	96121704	910	146.4539	－42．0304	KJF coilection	17×11996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

0					㤟 总		$\begin{array}{r}\text { 垔 } \\ \text { 至 } \\ \hline\end{array}$		$\stackrel{\Phi}{\stackrel{\Phi}{\mathbf{N}}}$	$\begin{aligned} & \text { 을 } \\ & \stackrel{1}{0} \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$		0 3 3 3 3 3 3 2	$\begin{aligned} & \text { 3 } \\ & \frac{0}{2} \\ & 3 \\ & 3 \end{aligned}$		$\begin{array}{\|l} \frac{1}{5} \\ 2 \\ \frac{1}{6} \\ \frac{2}{6} \\ \frac{3}{2} \end{array}$			哭		$\begin{gathered} \sum_{5}^{20} \\ 5 \end{gathered}$			－			
495		Shannon River	Lake Highway	96122003	1017	146.4458	41.5913	KJF collection	20×111996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
500	VIC	Shaw Creek	oif Dingo Hill Rd near McMillians walking Track， Alpine NP	96092203	1350	146.4215	－37．2730		22 IX 1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
501	VIC	Shaw Creek	Kellys Lane Brioge，Alpine NP	97020601	1280	146.4422	－37．2730	KJF collection	06 II 1997	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
502	VIC	Shaw Creek	Howitit R，Alpine NP	97020602	1520	146.4448	－37．2342	KJF collection	06 II 1997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
503	VIC	Shegak Creek	below Sheoak Falls，Great Ocean Rd	98100802	10	143.5800	－38．3402	KJF collection	08×1998	KFF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
504	VIC	Shicer Creek	West Ovens Track， Bonang NP	96410802	580	147.0230	－37．5520	KJF collection	08×1996	KFF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
505	VIC	Smythes Creek	Greai Ocean Rd	97030202	10	143.4538	38.4231	KJF collection	02111997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
506	VIC	人）\％bs Creek	Snots Rd	81103101	760	145.5400	－37．2100	MV－EPH1573， 1585	31×1981	JD	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
507	VIC	Snobs Creek tributary	Snobs Creek Rd	81103103	760	145.5438	－37．2115	$\begin{aligned} & \text { MV-EPH1573, } \\ & 1585,1708,1709 \text {. } \\ & 1763 \end{aligned}$	31×1981	JD	0	0	1	0	0	0	1	0	0	0	0	n	1	0	1	0
508	VIC	Snowy Creek	Mita	99031202	280	146.2215	－36．3210	KJF collection	121119999	KJF	0	0	0	0	0	0	0	0	0	0	0	\checkmark	0	0	0	0
5097	vic	Snowy River	Mckiliops Bridge	93021404	180	148.2400	－37．0500	KJF collection	1411999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
510	VIC	Snowy River	Wanton Bridge	74031700｜x	x	x		MV－EPH1645， 1647	17 III 1974	unknown	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
519］	vit	South Buller Creek headwaters	Mit Buller Summit	97021501	1680	146.2500	． 37.0800	KJF collection	15111997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

Locality data for all specimens examined

$\stackrel{0}{2}$		© 空 © 灾							$\stackrel{\Phi}{\mathbf{5}}$	$\begin{aligned} & \text { 늘 } \\ & \text { (0 } \\ & \overline{8} \\ & \hline \end{aligned}$	$N_{1}(A) \text { fusca }$	N．（A）fuscula	穿	N. (A) sp. "AV5"			2 3 5 5 3 2 2	$\begin{aligned} & 9 \\ & 8 \\ & \hline 3 \\ & \hline 10 \end{aligned}$		$\begin{aligned} & \sum_{2} \\ & 8 \\ & 0 \end{aligned}$	T．simillima			M. adamus		
512	TAS	South Esk River	Clarendon	33030900	160	947．9700	41.3800	NHM	09 in 1933	ES	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
513	TAS	South George River	St Columba Falis Reserve	94100500	150	147.5800	－41．1800	MV－EPH1473， 1474	05 X 1994	MRHI	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
514	NSW	South Rarnshead		82032500	1950	148.1400	-36.3100	IC collection	251111982	RG	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
515	SA	South West River	Brigadoon，Kangaroo Island	77101900	180	136.5000	－35．5200	PS collection	19 XI 1977	JEB	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
516	VIC	Spring Creek	4．5km upstream Alexandra Yarck Rd	81110400	220	145.3800	－37．0800	MV－EPH1509	04×1981	JD	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
517	SA	Spring Creek		95101100 x				AWQC	11×1995	MRT	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
518	TAS	St Columbia Falis	Pyengana	82031001	150	148.0000	41.1700	MV－EPH0162	10 III 1982	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
519	TAS	St Patricks River	Targa	82031002	380	147.2100	41.1800	$\begin{aligned} & \text { MV-EPH0120, } \\ & 0121,0177 \end{aligned}$	10 III 1982	OC	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
520	TAS	St Patricks River	Numamara	95020305	350	147.1700	－41．2303	MV－EPH0233， 0236	0811995	PS\＆PG	0	0	0	0	0	1	1	1	0	0	0	1	0	0	0	0
521	VC	Starvation Creek	Warburton－Woods Point crossing	75102402	240	145.4700	－37．4200	MV－EPH1558	24×1975	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
522	VIC	Starvation Creek	Warburion－Woods Point crossing	76031300	240	145.4700	－37．4200	MV－EPH1490． 1491．1492，1493． 1559． 1616	19 ill 1976	JD	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
523	VIC	Starvation Creek	Warburton－Woods Point crossing	76042302	240	145.4700	－37．4200	MVEPHI495． 1501， 4502,1560	23 IV 1976	J0	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
524	ViC	Starvation Creek	upstream weir	77102800	340	145.5053	－37．4539	MV－EPH1712	28×1977	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0

Appendix 2
Page 40

Locality data for all specimens examined

$\begin{array}{l\|l} \text { 荡 } \\ \hline \end{array}$				$\begin{aligned} & \frac{8}{3} \\ & \frac{3}{4} \\ & \hline \end{aligned}$		号		$\begin{gathered} \text { I5 } \\ \hline \mathbf{D} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{-}{\mathbf{O}} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$\begin{array}{\|c} \text { a } \\ 0 \\ 3 \\ 3 \\ 3 \\ 3 \\ \hline \end{array}$			$\begin{aligned} & \frac{1}{x} \\ & \frac{1}{2} \\ & \frac{i}{3} \\ & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & \mathbf{3} \\ & 5 \\ & 0 \\ & 3 \\ & 2 \end{aligned}$	皆							$\begin{aligned} & \text { S } \\ & \mathbf{0} \\ & \text { 空 } \\ & \hline \end{aligned}$	宕
525 VIC	Starvation Creek	upstream weir	77120961	340	145.5053	－37．4539	MV－드PH566， 1578	109×11977	jD	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
526.1 VC	Staration Creek	upstream weir	79121900	340	145．50：3	－37．4539	MVELPH1621， 1622	19 XII 1979	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
527 VIC	Steavensons Falls	Upper Gellibrand River	82012000 \times				MV	2011982	AN\＆AW	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
528 VIC	Steavensons River	Buxton－Marysville Rd	98021504	460	145.4502	－37．2853	KJF collection	$15 \mid 1998$	KJF	1	0	1	0	0	0	1	0	0	0	0	0	－	0	0	1
529 VIC	Steavensons River	Marsville Rd	98101703	320	145.4401	－37．2832	KJF collection	17X1998	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
530 VIC	Stili Creek	Eildon－vamieson Rd	96041403	340	146.0225	－37．2243	KJF collection	141319996	ET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
531 TAS	Stoney Creek		82022302	350	146.5100	42.5100	MV－EPH0110	23119982	DC	0	0	0	O	1	0	1	0	0	0	0	0	0	0	0	0
5320 LD	Story Creek	Conondale Ranges	77082600	140	152.4100	－26．5100		20×1979	DC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
533 OLD	Stony Creek	Conandale Ranges	79112002	140	152.4100	－26．5100		20×1979	DC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
534 VIC	Stony Creek	Wonderland Car Park Grampians	90112600	410	142.3010	37.0904	MV－EPH1646	26 XI 1990	DC	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
535 VIC	Stony Creek	Shands Rd，Red Mill South	97041603	100	145.0029	－38．2412	KJF colliection	161V 1997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
536．VIC	Stony Creek	Wonderland Car Park Grampians	99011602	410	142.3010	－37．0904	KJF collection	1611999	KJF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
537 QLD	Stony Creek	Conandale Ranges	97082602	140	152.4100	－26．5100	MV－EPH1251，1259	26 VIII 1997	DC	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0
5380LO	Stony Creek lower	Conondate Ranges	97082600	140	152.4100	－26．5100	MV－EPH1685	26 vil 1997	j0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
539 SA	Stunsail Broom River	Kangaroo Island， Coramandel	76121200	8	137.0000	－35．5900	PS collection	12×11976	wow	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
540）SA	Sturt River	Coramandel Valley	76042900	200	138.5700	－35．0300	PS coilection	291V1976	PS	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0

Locality data for all specimens examined

Appendix 2

Locality data for all specimens examined

－				$\stackrel{\stackrel{i}{\circ}}{\stackrel{\circ}{i n}}$	$\begin{aligned} & \text { 䖝 } \\ & \text { 穻 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 㟧 } \\ & \text { 总 } \\ & \hline \end{aligned}$		喜	褭 0 0 0	$\begin{aligned} & \text { 蜀 } \\ & \stackrel{3}{3} \\ & \mathbf{3} \\ & \mathbf{z} \end{aligned}$		$\begin{aligned} & \frac{0}{5} \\ & \frac{3}{5} \\ & \frac{3}{3} \end{aligned}$	2 2 2 2 0 0 5 2 2	$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & 2 \\ & \frac{2}{n} \\ & \frac{3}{2} \\ & z \end{aligned}$		$\begin{aligned} & \mathbf{x} \\ & \sqrt{3} \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{9}{9}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & =0 \\ & 5 \end{aligned}$	9 	劵				$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	否
552	VIC	Talbot Creek	downstream Thomson River Reservoir	83081000	700	147.2220	－37．5052	MV．EPH1757	10 Vil 1983	OC	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
553	VIC	Talbot Creek	downstream Thomson River Reservoir	86040900	700	147.2220	－37．5052	NMC-EPH1752,	109 IV 1986	DC	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
554	VIC	Tambo River	S of Doctors Flat，Omeo Highway	97102901	300	147．4514	－37．1840	KJF collection	29×1997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
555	VIC	Tambo River	Omeo Highway，Ensay South	99030405	320	147.4900	－37．2200	KJF collection	104111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
556	VIC	Tanjil River	5 km N of Moe	87100600	60	146.1600	－38．0800	MV－EPH1652， 1659	106×1987	KW\＆AN	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
557	VIC	Tanjil River	Asthown Rd	96110301	70	146.1433	－38．0548	KJF collection	103×11996	K $\mathrm{J}^{\text {F }}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
558	VIC	Tanili River east branch headwaters	Mt Eaw Baw Alpine Village	96101201	1440	146.1545	－37．5025	KJF collection	12×1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
559	VIC	Tangili River east branch headwaters	Mt Baw Baw Alpine Village	99021603	1440	146.1545	－37．5025	KJf collection	16111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
560	VIC	Tanjil River east branch tributary	Mt Baw Paw Tourist Rd	96101104	500	146.1129	－37．4958	KJF collection	11×1996	K．JF	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
	VIC	Tanill River east branch tibutary	Mt Baw Baw Tourist Rd	96101105	490	146.1211	－37．5018	K．JF collection	11×1996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
562	Vic	Taponga River	Eilidon－Jamieson Rd	99022008	320	146.0250	－37．2242	KJF collection	2011999	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
563	VIC	Target Creek tributary	Heytield－Jamieson Rd	97020502	720	146.3357	－37．3504	KJF collection	0511997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
564	Vic	Tama River	Tarra－Bulga NP	84010900	340	146．3213	－38．2657	MVEPH1715， 1716， 1717	0911984	JD	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0

Appendix 2
Page 43

Locality data for all specimens examined

－	$\begin{aligned} & \stackrel{y}{\tilde{W}} \\ & \stackrel{5}{6} \\ & \hline \end{aligned}$			$\begin{aligned} & \dot{\mathbf{o}} \\ & \stackrel{y}{6} \\ & \stackrel{\omega}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 韩 } \\ & \text { 骎 } \\ & \hline \end{aligned}$			듷 응 을 $\mathbf{0}$ 0	$\begin{aligned} & \stackrel{0}{\tilde{0}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathbf{0}} \\ & \underline{\bar{O}} \\ & \hline \end{aligned}$		$\begin{array}{\|c} \frac{80}{3} \\ 0 \\ 3 \\ \frac{3}{2} \\ 2 \\ 2 \end{array}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \frac{1}{5} \\ & \frac{3}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 5 \\ & 2 \end{aligned}$		$\left.\begin{aligned} & 3 \\ & \frac{3}{3} \\ & 0 \\ & 0 \\ & 3 \end{aligned} \right\rvert\,$	을	$\left\lvert\, \begin{gathered} 9 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ 5 \end{gathered}\right.$	$\begin{aligned} & \text { n } \\ & \text { in } \\ & 0 \end{aligned}$			$\begin{array}{\|l\|} \frac{90}{98} \\ 58 \\ \hline 8 \end{array}$	$\begin{array}{r} \text { 粡 } \\ \text { 品 } \\ \text { 定 } \end{array}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & \mathbf{E} \\ & 0 \\ & 0 \end{aligned}$	
565	VIC	Tara River	20 m upstream Tara Falls	84120900	320	146.3220	－38．2717	MV－EPH4769	09 Xll 1984	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
566	VIC	Tama River	Yaram	91031200	320	146.3220	－38．2717	MV	12 III 1991	MR H I	0	0	0	0	0	0	0	，	0	d	0	1	0	0	0	0
567	VIC	Tana River	Tama－Bulga NP	98012601	340	146.3213	－38．2657	KJF coliection	2611998	K／FF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
568	VIC	Tarra River	Tama－Bulga NP	9812101	340	146.3213	－38．2657	KJF coilection	21 Xl 1998	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	1	4	0
569	VIC	Tama River	Tarà－Bulga ${ }^{\text {NP }}$	98112102	340	146.3215	－38．2700	K 1 IF collection	21×19988	K．jF	1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0
570	VIC	Tara River	Tama－Buiga NP	99021601	340	146.3215	－38．2700	KJF collection	1611993	KJjF	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
571	VIC	Tawin River East	Mirboo Bridge，Mitoo	99030404	90	146.1237	－38．2825	KJF collection	104｜｜ 1999	KJF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
572	VIC	Thomson River	12km NNW of Walhalla	77111200	290	146.2400	－37．5200	MDFRC	12×11977	unknown	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
573	VIC	Thomson River	Walhalla Rd	99021505	210	145.2508	－37．5735	KJF collection	1511999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
574	VIC	Thowgla Creek	upstream Nariel－Thowgla signpost	80102000	420	147.5400	－36．1800	MV．EPH1662	20×1980	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
575	NSW	Thredto River	Bullocks Nature Track	84012302	1140	148.3500	－36．2600	MV－EPH1667	2311984	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
576	NSW	Thredbo River	Thredbo－Khancoban Rd	97120204	1560	148.1700	－36．3100	KJF collection	02×111997	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
577／	NSW	Thredbo River	Thredbo Goll Course	84012501	1380	148.1800	－36．3000	MV－EPH1656	2511984	J	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
578	NSW	Thredbo River，Thredbo	Thredbo Goll Course	78121402	1380	148.1800	－36．3000	MV－EPH1655	14×11978	JD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
579	NSW	Thredbo River，Thredbo	Thredbo Golf Course	84042502	1380	148.1800	－36．3000	MVEPH1682	2511984	j0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

\％	$\begin{aligned} & \stackrel{y}{\mathbf{5}} \\ & \stackrel{5}{\boldsymbol{\omega}} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 등 } \\ & \text { 응 } \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{0}{\omega} \\ & \dot{\omega} \end{aligned}$					$\begin{aligned} & \text { 凹 } \\ & \text { 芯 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { O} \\ & \bar{O} \\ & \hline \mathbf{S} \end{aligned}$				$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & \frac{5}{x} \\ & \frac{2}{6} \\ & \frac{3}{3} \\ & 2 \end{aligned}$		3 3 3 3 2	T. lucida							$\begin{aligned} & 5 \\ & 0 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	
580	NSW	Three Mile Dam	between Cabramurra \＆ Kiandra	97120101	1480	148.2700	－35．1000	KJF collection	01×119997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
581	VIC	Thuma River	Princes Highway	74033000	140	149.1500	－37．3400	MV	30111974	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
582	VIC	Thurra River west branch tributary	Thurra Junction Rd	97101801	200	149.1741	－37．2735	KJF collection	18×1997	KNF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
583	VIC	Tiger Creek	Heyrield－Jamieson Rd	97020503	930	146.3223	－37．3515	KJF collection	05 11997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
584	VIC	Titania Creek tributary	Witsons Promontory NP	97021502	220	146.2227	－39．0202	KJF collection	1511997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
585	TAS	Tom Creek	locality 16， 5 of Zeehan	82022801	：90	145.2500	－41．5500	MV－EPH0122， 0125	28111982	DC	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0
586	SA	Tookayerta Creek	focation 3956	84102200	190	138.3900	－35．2200	AWCAC	22×1984	PS	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
587	SA	Tookayerta Creek	TIIAS 1	84120501 x				AWQC	05×119984	$\overline{\text { PS }}$	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
588，	SA	Tookayerta Creek	N7 AS1	84120502 x				AWQC	05×111984	PS	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
589	SA	Tookayerta Creek	S7 AS1	84120503	115	138.4200	－35．2200	AWQC	05×11984	PS	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
590	SA	Tookayerta Creek	S7 AS2	84120504	115	138.4200	－35．2200	AWCC	05X］ 1989	PS	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
591	SA	Tookayerta Creek	S5	85012300	190	138.3900	－35．2200	AWQC	2311985	PS	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
592	SA	Tookayerta Creek	S5 AS3	85030600	190	138.3900	－35．2200	AWQC	06 III 1985	PS	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
593	SA	Tookayerta Creek	S5 Cleland Gully Rd， location 3956	95051200	190	138.3900	－35．2200	AWOC－MRHI	12 V 1995	PS	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
594	VIC	Toorongo River	5 km NE of Noojee	96101102	280	146.0229	－37．5117	KJF collection	11×1996	KJF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
595	VIC	Toorongo River	5km NE of Noojee	98020902	280	146.0229	－37．5117	KJF collection	09111998	KNF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
596	TAS	Tower Rivulet	Rossarden Rd，Pepper Hial	94092700	260	147.5200	－41．3700	MV－EPH1673	27×1994	MRH｜	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

$\frac{8}{2}$	$\stackrel{\text { 需 }}{2}$		$\begin{aligned} & \text { 등 } \\ & \text { 50 } \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	홀				$\stackrel{9}{\text { ® }}$	$\begin{aligned} & \text { 는 } \\ & \text { O } \\ & \hline \mathbf{O} \\ & \hline \mathbf{O} \end{aligned}$							$\underset{3}{9}$ $\frac{7}{2}$ 0 2		T．inconpsicua	$\begin{array}{\|c\|} \hline \\ \hline 8 \\ 8 \\ \hline \end{array}$	T．simillima		第		5 0 0 5 5 	
597	TAS	Township Creek	neaı Fingal	$95021004 \times$		x	x	MV－EPH0184	10111995	PS\＆PG	0	0	0	0	0	1	1	0	0	0	0	0	2	0	0	0
598	VIC	Traralgon Creek	Guntzler Bridge	84052900	110	146.3100	－38．2000	MV－EPH1762	29 V 9984	DC	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
599	VIC	Tullaroop Creek	Carisbrook，Pyrenees Highway	97122002	190	143.4857	－37．0304	KJF collection	20×111997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
600	VIC	Turitable Creek	Devonshire Lane，Mit Macedon	81120100	680	144.3500	－37．2300	$\begin{aligned} & \text { MV-EPH1744, } \\ & 0: 1745,1746,1747 \end{aligned}$	01 X11 1981	10	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
$60{ }^{\text {a }}$	TAS	Tyenna River	Westerway	94031100	100	146.4700	－42．4000	MV－EPH0191	11111994	PS	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
602	VIC	Tyers River	Moe－Rawson（Walhalla） Rd，Moondarra State Park	99021507	180	146.1942	－38．0215	K／F collection	15111999	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
603	VIC	Unnamed Creek	3 km W of Genoa	81052203	60	149.3300	－37．2800	EPH－MV1564， 1565	22 V 1981	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
604	VIC	Unnamed Creek	NE slope of Mt Buller	$81110300 \times$		x x	x	MV－EPH1728	03×1981	JD	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
605	TAS	Unnamed Creek	Stickuand Ave，Hobart	82030800	110	147.1700	－42．5300	MV－EPH0t23	08 III 1982	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
606	VIC	Unnamed Creek	2 km W of Genoa	82112100	100	149.3400	－37．2800	MV－EP ${ }^{\text {P }} 1563$	21×1982	JD	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
${ }^{607}{ }^{1}$	TAS	Unnamed Creek	Stickland Ave，Hobart	88110300	110	147.1700	－42．5300，	MV－EPH0131	03X19988	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
608 S	SA	Unnamed Creek	Parawa Rd，near Yankalilla	78110200	80	138.2100	－35．2800	PS collection	02×1978	JEB	0	0	0	0	0	0	0	0	1	0	c	1	0	0	0	0
609 T	TAS	Unnamed Creek	3 miles E of Waratah	82027800	650	145.3300	－41．2600	MV－EPH106！	28 II 1982	DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
610 T	TAS	Unnamed Creek	E of Waratah	88110100	600	145.3200	$41.2600 \mid$	MV－EPH0166	01×11998	DC	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
611 V	VIC	Unnamed creek－＂Summit T－Bar＂trickle	Mt Baw Baw Alpine Village	96101202	1500	146.1610	－37．5030 K	KJF collection	12×1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

$\dot{0}$	$\begin{aligned} & \stackrel{\Phi}{0} \\ & \text { 荡 } \end{aligned}$	$\stackrel{\text { U }}{\stackrel{\text { E }}{\text { E }}}$			曾		$\begin{aligned} & \text { 票 } \\ & \text { 范 } \\ & \hline \end{aligned}$	Collection origin	$\stackrel{\text { む゙ }}{\substack{0 \\ \hline}}$	$\begin{aligned} & \text { 을 } \\ & \text { O } \\ & 0 \\ & \hline 0 \end{aligned}$		3 3 3 3 3 3 3	$\begin{aligned} & \text { w } \\ & \frac{0}{\mathbf{5}} \\ & \frac{1}{3} \\ & 3 \end{aligned}$		$\begin{aligned} & 5 \\ & \frac{5}{2} \\ & \frac{c i}{6} \\ & 3 \\ & z \end{aligned}$	30 3 3 3 3 3 3 i						THRAULOPHELEIA	$\begin{array}{\|c} \frac{80}{50} \\ \frac{5}{50} \\ \frac{20}{n} \end{array}$		$\begin{aligned} & 5 \\ & 0 \\ & 5 \\ & \hline 8 \end{aligned}$	
612	VIC	Unnamed icemelt	Mt Buffalo Rd	96110703	1060	146.4806	－36．4239	KiF collection	107×1999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
613	NSW	Unnamed tributary	south slope of North Ramshead	84012702	1940	148．：600	－36．2800	MV－EPH1787， 1788	2711984	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
614	NSW	Unnamed tributary	small ck crossing track upper Snowy Valley， Ramshead	85020902	1940	148.1600	－36．2800	MV－EPH1785	109 111985	JD	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
615	VIC	Unnamed tributary－ ＂Rubbish Tip＊	Mt Baw Baw Tourist Rd	96101206	620	146.1300	－37．5038	KJF collection	12×1996	KJF	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
616	NSW	Unnamed trickle	small trickle，Cascade Trall， 1 km upstream Deadhorse Gap	84012100	1600	148.1600	－36．3100	MV－EPH1782	21！1984	J0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
617	VIC	Upper Broken River	Mansfield－Whitfield Rd， 9 km N Mansfield	99022005	340	146.0620	－36．5838	KJF collection	20111999	KJF	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
618	VIC	Upper Perkins Creek		94112100 x				MV－EPH1748， 1749	21×1994	JBa	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
619	VIC	Upper Tambo River	Nunniong Rd	99021504	360	147.4500	－37．4000	KJF collection	15111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
620	OLD	Upstream Falis	Natural Bridge NP	79120602	800	153.1400	－28．1500	MV－EPH1791	06×111979	0 C	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
6.1	VIC	Victoria River	Victoria River Track，Alpine NP	96111804	1010	147.2100	－37．0500	KJF coilection	18×11996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
622	VIC	Victoria River	Victoria River Track，Alpine NP	96111901	1010	147.2400	－37．0500	KJF collection	13×11996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
623	TAS	Walkers Creek	Mt Saddeback	95021005	750	147.4600	－41．2200	MV－EPH0186	10111995	JD8DC	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
624	VIC	Wangarabell Creek	Wangarabell Rd， Wangarabell	99021302	120	149.2800	－37．2200	KIF collection	13119999	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

\％								등 응 등 $\bar{\circ}$ 8	$\begin{gathered} \stackrel{\Phi}{\mathbf{W}} \\ \hline \mathbf{D} \\ \hline \end{gathered}$	¢ $\stackrel{\text { ¢ }}{0}$ 0	$\begin{aligned} & \text { 苞 } \\ & \text { 足 } \\ & \frac{5}{5} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & \text { 湒 } \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & 5 \\ & 2 \\ & 2 \\ & \frac{1}{3} \\ & 5 \\ & \frac{2}{2} \end{aligned}$	$\begin{gathered} 5 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 2 \\ 2 \end{gathered}$		3 $\frac{3}{6}$ $\frac{3}{3}$ 0	皆		등					$\begin{aligned} & 5 \\ & 0 \\ & 3 \\ & \mathbf{y} \\ & 0 \end{aligned}$	岛
625	Vic	Wannon River	Serra Rd Bridge，25km S of Halls Gap	83120400	320	142.3000	－37．2100	MV	04 XII 1983	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
626	VIC	Wannon River	Victoria Valley Rd	200012204	240	142.2000	－37．3700	KJF coliection	2212000	KJJF	0	0	0	0	0	0	0		0	0		0	－	0	0	0
627	VIIC	Wannon River	Wannon Falis	99022804	120	141.5020	－37．4039	KJF collection	2811999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
628	VIC	Wannon River tributary	Dunkeld	99022805	240	142.2036	－37．3802	KJF collection	28111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
629	VIC	Watchbed Creek		96031800	1680	147.1900	36.5100	MV－EPH1693， 1694	18111996	KJF	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
630	TAS	Watersmeet	conjunction of Cuvier and Hugel Rivers，Cradle Mountain－Lake St Clair NP	96122701	740	146.0937	42.0641	KJF collection	27 X月1996	KJF	0	0	0	，	1	0	1	0	0	0	0	0	0	0	0	0
631	VIC	Watis River	Femshaw Resene	74122000	200	145.3600	－37．3700	MVEPH1642	20×11974	J0	1	0	0	－	0	0	1	0	0	0	0	0	0	0	0	0
632	TAS	Wedge River	locality 23	82030301 ¢	${ }^{\text {x }}$	－${ }^{\text {x }}$		MV－EPH0128， 0130	03111982	DC	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
633	TAS	Wheld River	E of Weliborough	94030600	360	147.5600	41.1200	MV－EPH0221	06 III 1994	PS	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
634	Vic	Wellington River	Tamboritha Rd，Alpine NP	96092204	340	146.3815	－37．3102	KJF collection	221×1996	KJF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
635	VIC	Wellington River	Tamboritha Rd，Alpine NP	96092301	320	146.3712	－37．3i13	KJF collection	231×1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
636	Vic	Wellington River	Tamboritha Rd，Alpine NP	97020401	340	146.3815	－37．3102	KJF collection	04111997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Wellirgton River	Tamboritha Rd，Alpine NP	97020702	340	146.3815	－37．3102	KJF collection	0711997	KJF	1.	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Locality data for all specimens examined

家			$\stackrel{0}{8}$ $\stackrel{y}{5}$ 	穿		营		$\begin{aligned} & \stackrel{y}{\mathbf{T}} \\ & \hline \mathbf{0} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathbf{O}}$ $\stackrel{\rightharpoonup}{0}$ \mathbf{O}		0 3 3 3 3 3 2	$\frac{2}{\frac{9}{5}}$		$\left\|\begin{array}{c} 5 \\ 2 \\ 2 \\ 2 \\ n \\ 2 \\ 3 \\ z \\ z \end{array}\right\|$		$\begin{aligned} & 5 \\ & 3 \\ & 5 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$		0 0 0 0 0 0 0	웅	咢		$\begin{aligned} & \frac{8}{909} \\ & \frac{9}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	宕
638 VIC	Wellington River	10kn N of Licola，Alpine NP	96092201	280	146.3637	－37．3241	K．JF collection	22 IX 1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
639 VIC	Wellirgion River	Tamborita Rd，Alpine NP	96092302	320	146.3648	． 37.3135	KJF collection	231×1996	IKJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
640 HSW	Wentworth Falls	Bilue Mountains	82111600	800	150.2200	－ 33.4300	MV－EPH1130	16×1982	DC	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
641 NSW	Wentworth Falls	Blue Mountains	84111200	800	150.2200	－33．4300	MVVEPH 1680	12X1984	DC	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
642 ${ }^{\text {NSW }}$	Wentworth Falls	Blue Mountiains	88101900	800	150.2200	－33．4300	MV－EPH1669	19×1988	DC	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
643 VIC	Werribee River	Blakeville－Bunding Rd	99022701	550	144.1012	－37．3004	KJF collection	27111999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
644 VIC	Werribee River	Blakeville－Bunding Rd	99032100	550	144.1012	－37．3004	KJF collection	21 III 1599	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
645 VIC	Werribee Rives	Elakevilie－Bunding Rd	200032600	550	144.1012	． 37.3004	KJF collection	261112000	KJF	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
646 VIC	West Eninundra River	Hammond Rd	82031500	960	148.5100	－37．1800	AWT	15 III 1982	JB	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
647 VIC	West Ovens River	Harrietvile	90111200	540	147.0500	36.5100	AWT	12 XI 1990	RBu	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
648 VIC	Whtelaw Creek	Whitelaw Portal upstream weir	77021100	470	146.1600	－37．4300	MDFRC	02×1977	unknown	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
649 VIC	Wild Dog Creek	Wild Dog Creek Ró	97030201	10	143.4044	－38．4404	KJF cothection	02 III 1997	KJF	1	0	0	0	0	0	1	0	0	c	0	0	0	0	0	0
650 VIC	Wild Duck Creek	Heathcote Redesdale Rd， 1 km SW of Heathoote	99022304	210	144．3935	－36．5244	KJF conlection	2311999	KJF	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
651 Vic	Wild Duck Creek	Heathcole－Redesdale Rd， 1 km SW of Heathcote	200022001	210	144.3935	－36．5244	KJF collection	20112000	KJF	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0

Locality data for all specimens examined

$\underline{0}$	$\begin{aligned} & \text { 采 } \\ & \dot{N} \end{aligned}$		$\begin{aligned} & \text { 둥 } \\ & \text { 䔍 } \\ & 0 \\ & \hline \end{aligned}$		$\stackrel{\text { 을 }}{8}$	$\begin{aligned} & \text { 을 } \\ & \text { 훙 } \\ & \hline \end{aligned}$	黑	Collection origin	$\stackrel{\text { ® }}{\stackrel{\circ}{\mathbf{D}}}$	$\begin{aligned} & \grave{0} \\ & \stackrel{4}{6} \\ & \overline{0} \\ & \hline \end{aligned}$		等 0 3 3 3 2	$\frac{2}{9}$	$\begin{aligned} & \frac{5}{3} \\ & 3 \\ & \frac{0}{6} \\ & \frac{1}{6} \\ & 2 \end{aligned}$		$\begin{aligned} & y_{0}^{\prime} \\ & \frac{x}{2} \\ & \text { 号 } \\ & \frac{1}{3} \\ & z \end{aligned}$	3 5 6 0 0 0	T．Iucida		范	哭		哭			
652	VIC	Wild Duck Creek	Heaihcote－Redesdate R．d， 1 km SW of Heathcole	99040701	210	144.3935	－36．5244	KJF collection	07 IV 1999	KJF	0	0	0	0		0	0	0	0	1	0	1	0	0	0	0
653	VIC	William Wallace Creek	Triangte Link Rd， Gembrook Park	97012901	150	145.3538	－37．5903	KJF collection	2911997	K KF	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
654	VIC	Wingan River	Drummer Rd． Coopracambra NP	96112301	180	149.2515	－37．2803	KJF coilection	23 XI 1996	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
655	VIC	Wingan River	Drummer Rd． Coopracambra NP	98012501	180	149.2515	－37．2803	KJF collection	2511998	KJF	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
656	VIC	Woady Yaloak Creek	Glenelg Highway，outside Scarsdale	99022703	330	143.3830	－37．4037	KJF collection	27 II 1999	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
657	VIC	Wombat Creek	Wombat Creek Dam Picnic Area	97122004	635	184.1022	－37．2325	KJF collection	20×111997	KWF	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0
658	VIC	Wombat Creek	Wombat Creek Dam Picnic Area，near Daylesford	98110102	635	144.1022	－37．2325	KJF collection	01 XI 1998	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0
659	OLD	Yabba Creek tributary	Brootoo－mbil Rd	84110800	100	152.4000	－26．2900	MV－EPH1687	08×1984	OC	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
660	VIC	Yackandandah Creek	Ostomes Fiat，Gaps Flat Rd	97022201	200	146.5418	－36．1615	KJJ collection	22.11997	KJF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
661	VIC	Yan Yean Reservoir		76021800	180	145.0860	37.3300	MVEPH1522	1817：976	JD	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
662	VC	Yan Yean Reseno？		76032900	180	145.0800	－37．3300	MV－EPH 1511	29111076	Jo	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
663	VIC	Yan Yean Reservor		77102600	180	145.0800	－37．3500	MV－EPH1521	26× 1977	J	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
664	VIC	Yama Flats	Healesville	$65091400 \times$	x	x		MV	14×1965	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
665	VC	Yarra River	near Michahons Creek	76021900	250	145.5000	． 37.4200	MV	1311976	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
666	VIC	Yara River	Willgrove	$76022400 \times$	x	x		MV	2411976	AN	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0

Locality data for all specimens examined

\％	$\begin{aligned} & \text { 世 } \\ & \stackrel{7}{6} \\ & \hline 6 \end{aligned}$		$\begin{aligned} & \text { 등 } \\ & \text { 웅 } \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { io } \\ & \text { 完 } \\ & \text { 荡 } \end{aligned}$			믈		$\begin{aligned} & \text { 芯 } \\ & \hline \mathbf{0} \end{aligned}$				9 3 3 3 3 3			$\begin{aligned} & 5 \\ & 2 \\ & \frac{0}{n} \\ & \frac{1}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{2}{6} \\ & \frac{5}{6} \\ & \frac{5}{2} \\ & 2 \end{aligned}$	3 $\frac{1}{3}$ 3 3 3		0 0 0 0 0			THRAULOPHELBIA	$\frac{8}{5}$	号 空 品 哭		
667	VIC	Yana River	Reeftion Rd	77110300	260	145.5000	－37．4200	MV－EPH1615	03×11977	JD		1	0	0	0	0	0	1	0	0	D	0	0	0	0	0	0
668	VIC	Yara River	Reefton Rd	78020900	250	145.5000	－37．4200	MVEEPH1500	09111978	J		0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
669	Vic	Yarma River	Peninsula Rd	78122100	230	145.4900	－37．4200	MV－EPH1612	21×1978	J0		1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
670	VIC	Yama River	O＇Shannassy Rd	79022100			x	MV－EPH1498	21：1979	j0		0	0	0	0	0	0	0	1	0	O	0	1	0	0	0	0
671	VIC	Yarra River	Reefton Rd	79102400	260	345.5000	－37．4200	$\begin{aligned} & \text { MV-EPH1496, } \\ & 1497,1499 \end{aligned}$	24×1979	JD		0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
672	VIC	Yarra River	Peninsula Rd	80010402	230	145.4900	－37．4200	MV－EPH1625	1041980	JD		1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
673	VIC	Yarra River	Peninsula Rd	80020600	230	145．9900	－37．4200	$\begin{aligned} & \text { MV-EPH1562, } \\ & 1613.1624 \\ & \hline \end{aligned}$	06111980	JD		1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
674	VIC	Yarra River	Hazelwood Rd	80：12000	170	145.4400	－37．4400	MV－EPH1614，1623	20 Il 1980	J0		t	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
675	VIC	Yara River	upstream of Warturion	97042502	170	145.4243	－37．4503	KJF collection	25 IV 1997	KJ		1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
676	NSW	Yarrangobilly River	Near ravine	97120102	560	148.2300	－35．4700	KJF collection	01×111997	K		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
677	VIC	Yarrowee River	Mt Clear－Sebastapol Rd	99022702	380	143.5002	－37．3731	KJF collection	27111999	KJ		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
678	VIC	Yea River	7 km S of Glenburn	72120100	330	145.2500	－37．2900	MV	01 XII 1972	AN		0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0

APPENDIX 3

Publication: Finlay, K.J. (2000). Description and distribution of a new species of Nousia Navás (Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from south-eastern Australia. Australian Journal of Entomology 39: 111-117.

Description and distribution of a new species of Nousia Navás (Ephemeroptera: Leptophlebiidae: Atalophlebiinae) from south-eastern Australia

Kyla J Finlay
Deparment of Biological Sciences amd Cooperaive Researh Comre for Freshroter Eeolog: Momash University: Wellingtom Rocte. Clayton. Vic: 3/68, Austratia.

Abstract

Nousia wilthorringat sp. n. is described as a new species of the gemus Nomsia (subgemus Alastralonotasia) from south-eastern Austratia. It is commonly found in matronvertehrate strveys. Nymphs and aduts were assectated by rearing. The distribution of the species is recorded along with notes on the apparent habitat reguirements.

Key words Ephemeroptera. Leptophehiidac, mayly. Nomsia, taxomony.

INTRODUCTION

The taxonomy of Australian mayllics is., at present, prorly known. with alleast as many species to be described as are already documented (Dean \& Suter 1996: Hubbard \& Campbell 1996). This is despite a proliferation of recem publications detining new taxa (Dean 1987, 1988. 1997, Camphell \& Peters 1993: Dean (t al. 1999). The endemic Austratiant subgemus destratomousia (Cample!l \& Suter 1988) requires significan revision as it presenty includes only three described species (Hubbard \& Campbell 1996), although it is considered that there may be at least 16 (Dean 1999).

The present contribution documents a new species of Nomsia Navis (1918) liom soubh-castern Australia. The nymph has been known for some time and has been variously reterred to as Atahophohiobides sp. E (Murray Darling Freshwater Research Centre: MDFRC). Atalondla sp. 5 (Museum Victoria: MV) and Nomsia sp. + (Monitoring Riser Heallh Initiative: MRHI). In the latest guide, however, it is referred to as Nousia AVt (Dean 1999). It is a commonly encomered species in mectoinventebate survey work. being found in the mid to high aditudes of momentainous regions of castern Victoriat and southern New South Walles. where in generally prefers fast-llowing. unpolluted streans. Formal description of this species is important io prevent furler confusion in future publications. This species is presented here in adatike of a full revision of the gemus. Examination of all life stages has confirmed the new species status of this taxom aud its agreement with the generic diagnosis (Pescador \& Peters 1985).

MATERIALS AND METHODS

In the fied. nymphs were brushed dieetly from rocks and wood using a painthush and either preserved with 70%

[^2]ethanol or kept alive. Live nymphs were stom in a botte of stream water and placed on ice for transportation to the laborafory for rearing. In the laboratory, tinal-instar nymphs were phaced individually in specially designed rearing chambers in a controlled-temperature enviromment. Resultam suthmagos and inagos were associand with the myphat exaviae.

Whole specimens were examined with the aid of a dissecting microscope, white body parts were mounted in Canada balsam and examined by using a compound microseope. Hlustrations were made with the aid of a drawing tulte or a microprojecor:

Wing venation terminology follows that of Edmunds a al. (1976). Leg and palpi segmem ration were calculated using the medmed of Suter (1986), where eath segment is compared to the lengit of the femm, or first segment. and expressed as a ratio. The absolute length of the femur/irst segment is given in parembeses. The labia figutes follow the method of Peers and Edmunds (1906). where the dorsal surface is illustrated on the left and the vemral surface on the right.

Materiad for the scoming electron microscope was prepared by aransfer from 70% ethemol to 100% elhanol through a series of washes. The genitalia were dissected and egoss removed without exposing them to air. The eges were uttrasonicated for 5 min. All material was critical-poind dried to minimise distortion. The dried eyges were placed on metal stubs using adhesive and genitalia were mounted on cartboard attached to a metat stub, allowing for maximum rokation so that the dorsal. veneral and lateral sides could be viewed.

Specimens that I colleced are referenced by an eight digit code with. where necessary. identilication of individwals by two further digits. Other material is referenced by a MV code (E EPH' phus for digits). For material not collected by the athor. MDFRC or MRHI, initials are as follows: DC. David Cartwrigh: ID. John Dean. Specimens are denoled by N (nymph). S (subimago) or I (imago). Multiple combinations of these letters indicate exuriac retained from
rearing. All type material is lodged in the MV, other material remains in the author's personal collection.

TAXONOMY

Order Ephemeroptera, family Leptophlebiidae, subfamily Atalophlebinae

Nousia wiltkorringae sp. n.

Types. Victoria. Holotype male NI, Cement Creek, Moun Donna Buang Road. outside Warburton. 670 m a.s.l. $145^{\circ} 42^{\prime} 20^{\circ}$ E. $37^{\circ}+22^{\circ} 48^{\circ} \mathrm{S}$. 5.iii.1998. 98030501.15. Pitat types sank locality. I.xii.1976: EPH 1602. one female S (JD): EPHI587, one male I (JD): EPHI588, one male N (JD): 23.xi.1978: EPHI589. one female NI reared (JD): EPH I590, one mate NSI (JD): EPHI591. one male NS (JD): EPHI592, one female NS (JD): EPH 1594 , one female NI (JD): EPHI596. one female NI (JD): EPH 1597 , one female NS (JD): EPHI598, one female NS (JD): EPH1599. one male NS, 1(NS (JD): 3.iii. 1980: EPH 1593 , one female NS (JD): 5.iii. 1998: 98030503.01, one femate SI: 98030503.05 one male $\mathrm{N}: 29 . x$ xi.1998: 98112901.03 , one male NSI reared: 23.i.1999: 99012301 , two male N. one female N : 20. iii.1999: 99032004, one female N: 93 xi.1978: EPH 1599 , one malc NS, one femaic. NS (JD).
Other material examined. Victoria. Acheron River Ohher material examined. Victoria. Acheron River
Marysvile Rd. 560 m a.s.L. $145^{\circ} 43^{\circ} \mathrm{E}$. $37^{\circ} 38^{\circ} \mathrm{S}$. $5 \times \mathrm{xi} 1997$
 three N (MRHI): Badger Creek. 5 km soulh-eist of
 EPHI605. one male N . one female N (JD): same locality Buler Cre Miring one male N. one lembale N (JD) Buller Creek, MGG1 -xi. 1981 EPFI 61.1 . $140^{\circ} 13^{\prime} 49^{\circ} \mathrm{E} 37^{\circ} 50^{\prime} 57^{\circ} \mathrm{S}$, 1 , Moun Baw Baw. RRH: C... three N (MRHI): Charity Creek tributary, Mount Baw Baw Tourist Road. 16 .ii 1999 a.s.... $146^{\circ} 15^{\circ}$ IS E. $37^{\circ} 50^{\prime} 47^{\circ} \mathrm{S}$ 16.iii 1999. 99021602 . three male N . seven female N : Deep Creek. 0.5 km north of Uplands, 620 m a....... $147^{\circ}+2^{\prime} \mathrm{E}$. B4 S. 15.iti River, Erinundra, 320 man..... 4853 E. 3722 S. $15 . x i .1994$. ilhree N : 05.xi.1996. one N (MRHI): Eurobin Creck, Moum
 7xi.1996. 96110702 , one male $N:$ Growlers Creek. Wandiligong, 380 m a.s. 1. . $146^{\circ} 59^{\prime} 10^{\circ} \mathrm{E} .36^{\circ} 45^{\circ} 54^{\prime \prime} \mathrm{S}$. 8xi.1996, 96110801 , one male N : Kiewal River, 5 km normcast of Mount Hotham. 1180 m a.s.s.. $147^{\circ} 10^{\circ}+4^{\prime \prime} \mathrm{E}$. $36^{\circ} 55^{\circ} 46^{\circ}$ S. 7.xi. 1997. 97110703. one female N: King Pamol Creek. 15 km south-west of Flowerdale. 350 m a.s.s... 147014 $56^{\circ} \mathrm{E} .37^{\circ} 25^{\circ} 50^{\circ} \mathrm{S}$. $3 . \mathrm{V} .1988$. 98030501 . one femaile N . one femate NI, one male NSI: La Trobe River, 5 km east of Powellown. 320 mm a.s. $.1 .{ }^{2} 145^{\circ} 50^{\circ} 10^{\circ} \mathrm{E}$. $37^{\circ} 52^{\circ} 35^{\circ} \mathrm{S}$, 10.x.1996. 96101002 , one female NSI: Learmonth Creek, Powellown, 180 m a.s.s. $1.145^{\circ} 44^{\circ} 33^{\circ} \mathrm{E}$. $37^{\circ} 51^{\prime} 43^{\circ} \mathrm{S}$. $10 . \mathrm{x} .1996$. 96101001.04 . three female N : Mountain Creek, 7 km cast of Tawonga South, 510 m a.s.s.. $147^{\circ} 14^{\prime} \mathrm{E} .36^{\circ} 42^{\prime} \mathrm{S}$. $3 . x \mathrm{xi} .1990$, EPHI723, one male N . two
female $\mathrm{N}(\mathrm{DC})$: Myrule Gully. 3 km east of Toolangi. $62(\mathrm{~m}$ a.s.1. $145^{\circ} 31^{\circ} 04^{\circ} \mathrm{E} .37^{\circ} 31^{4} 4^{*} \mathrm{~s}$. $29 . \mathrm{xi} .1996$. 96112901 . ons Female $\mathrm{N}: \mathrm{O}^{\prime}$ Shannassy River. 580 m as.s... $145^{\circ} 49^{\circ} \mathrm{E}$ $37^{\circ} 36^{\prime}$ S. It.xi.i975. EPH 1603 , one male N. iwo female N (JD): 4. . 1950 , EPH 1604 . one male NS (JD): 5 xii. 1994 . wo $\mathrm{N}(\mathrm{MRH} \mathrm{H}):$ Rodger River. Deddick, 560 m a....... $1+8^{\circ} 27^{\circ} \mathrm{E}$. $37^{\circ} 17$ S. 23 xi. 1990 , one female N (MRHI): Smowy River. Wanton Bridge, location unknown. 17.iii.1974. EPHI647, one female N (collector unknown): Steavensons River, 12 km south-east of Buxton. $46\left(0 \mathrm{ma}\right.$ m. $146^{\circ} 500^{\circ} 29 \mathrm{E} .36^{\circ}+3^{\circ} 10 \mathrm{~S}$. 15.ii.1998. 98021504.06. one male NSI: Tagerty River.
 981201704 , one male N : Themson River. 12 km northnorthwest of Wallailla. 290 m as.s.l. $1+6^{\circ} 24^{\circ} \mathrm{E} .37^{\prime \prime} 52^{\prime} \mathrm{S}$, 12xi.1977, one N (MDFRC): West Ovens River. Harrietville. 540 ml a.s. $1 . .147^{\circ} 04^{\prime} 15^{\circ} \mathrm{E}, 36^{\circ} 54^{\circ} 13^{\circ} \mathrm{S}$. $12 . \mathrm{xi} .19 \%$), two female N (MRHI): Whitelaw Creek. Whitelaw Portal. 470 m a.s.s.l. $146^{\circ} 16^{\circ} \mathrm{E} 37^{\circ} 43^{\circ} \mathrm{S}$. $2 \times \mathrm{xi} 1977$, me N (MDFRC) New South Wales. No. 1 Creek, near Thredoo. 1260 m a..... $148^{\circ} 23^{\circ} \mathrm{E} .36^{\circ} 28^{\prime} \mathrm{S}$. 14 xii. 1978 . 140 female N (JD) Thredbo River. Thredto. ! 380 m ans.I. $148^{\circ} 18^{\circ} \mathrm{E} .36^{\circ} 30^{\prime} \mathrm{S}$ 14.xii. 1978. EPH 655 . one male N. two female $N(J D)$

Diagnostic features. Male imago (Figs 1-8,25-27) It ethanol. Body lengit $7.0-8.9 \mathrm{~mm}$ (meall $=8.1 \mathrm{~mm} . n=8$) forewing lengll $8,6-9.6 \mathrm{~mm}$ (mean $=9.0 \mathrm{~mm}, n=6$) hind wing loget $1+1-1.0 \mathrm{~mm}$ (mean $=15 \mathrm{~mm}, n=0$). heneral wing lyeh colour anging from golden brown to orange-brown with duker brown matine Head brown Anteme-beow Ocelli berk with whise ineris hard Anemac yellow

 orac forming a W forming a W.shaped paten thar becomes more apparent on the posterior segments (age. 1). Abdominal sterna with lighter brown markings. Wings: forewing win membrame hyarine (e. -). Konend for antar seins. which are ligher and yellow coloured: contal and subcostal celts hyalate but slighty darker. Three bullae present on veins Sc. R_{2} and R_{4+5} an approximately one-hall to one-diurd the distance from base to wing margin. In the costal region 6-7 cross veins prehulla, 11-14 posibu!ta: in the subcostal region 5-7 crossreins pretulta. 9-14 positurliti ($n=8$). Rs forked at approximately one-third of the distance from wing base to wing margin: vein MA symmetrically forked at approximately one-half the distance from base to wing margin: IMP joins MP, sometimes recurved but not always: MP, tecurved to join MP_{1} at one-quarter to one-fifith the lengh of MiP, from base to wirge margin: MP_{2} joined by crossvein to $\mathrm{CuA}: \mathrm{ICu}_{1}$ joins CuA, sometimes securved: ICu, recurved to join $\mathrm{CCu}_{\text {, }}$, both attached an base to CuA: CuA and CuP linked by crowsein. CuP strongly curved and linked by crossvein to A_{1}. Hindwing hyaline (Fig. 3): costal margin slighty convex at midength followed by shatlow connaviny. subcosta four-fitiohs maximum lengeth of wing. Costal spate with no crossveins in proximal halt. $4-5$ crossucins in distal hall $(n=5)$. Subcostal space wibh $1-5$ crossweins ($n=5$).
 wing comparatively sired, (3) hindwine: (4) tassal claws: (5) Forceps: (6) genitalial. Laterat: (7) genitalia, ventral: (8) genititia, dersal. (9) Femake imiwo, ninth sermum. cemtat. State bars: Fig. $1,0.5$ mum: Fig. 2, 1 mum: Fige. 3.0 .5 mut: fig, t. 0.1 mm Fige. 5-6.0.2 mum Fige. 7-8. 0.1 mm: Fig. 9, 0.5 mm

Less golden brown with no markings except for the forelegs where apex of eadl segment washed will bown. Forelegs with seven segments: mean lengh ratios $1.00: 1.37: 0.10$: $0.43: 0.36: 0.30: 0.16$ (1.9) mm. $n=5$. Timat coms of a pair similar. each apically hooked with an opposing smaller hook (Fig. 4). Made gentalis: forceps thre-segmented trig. 5): yellow, third segment globose and stighty indented at apex. Penes yellow, latranly gunte lage winh penes extend ing: a approximately hall the lengen of forceps (Fige o). ventral surface of penes (Figs 7.25.26) fused in hasal thirud. remainder divided. divergent; dorsal strfate (dys. s.27) separate with two lateratly expanded tobes meeting at two-thirds tengh and two small triangular processes progecting from inner surlace. Caudal hilaments three. yelow with dirk hrown at proximal edge of each segulent givine a banded appeanance. Terminal bilamen fonger han cerci. Femate imago ($7 \mathrm{zg}, 9$). In ellanol. Body tengith $7.8-9.7 \mathrm{~mm}$ (mean $=8.9 \mathrm{~mm}$. $n=10$): forewing lengh $9.8-10.9 \mathrm{~mm}$ (meam $=10.3 \mathrm{~mm}$ $n=10$: hindwing fenght $1.5-2.0 \mathrm{~mm}$ (me:m $=1.6 \mathrm{~mm} . n=12$).

Iig. 10. Nonsia wiltherringere mature nymph. Scale har: ! mm.

Colour :und markings as in make. Forewings with generally more crowseine in costal and subcostal spaces: costal region will o-9 crossveins probulla. 13-16 post bulla: subrestal wion will $0-8$ crossteins prethulli. $11-16$ posithulla $(n=9)$. Hindwinece costal space with no crossveins in proximal hallf. 5-6 curseins in distal half subcostal spate with 5-6,

 menn. 185 m . $1=7$) Sumum 9 with very

 female subimag. in mis imago atheough not as apparen. Wings onowy Eeys yellow, opapue. Forelegs not elongated. Genitain hot fily developed. Manare nymph (rigs 1/-24). In elanol. Body Wengll: male $6.2-9.8 \mathrm{~mm}$ (mean $=8.3 \mathrm{~mm}$. $n=18$). Remale 7.9-11.4 mm (nean $=9.5 \mathrm{mml}, n=16$). Generat cotour golden to tan brown with dark brown markings. Head prognathous width $1.6-2.2 \mathrm{~mm}$ (mean $=1.7 \mathrm{~mm}, n=15$). Head colour predominamly golden brown with dark brown wash between

Figs 1/-19. Nonsia mitherringae mature nympl: (11) labrum: (12) latrum, anterior margin enlarged showing artangement of denticles: (13) left mandible, dorsal: (14) righn mandible. dorsal: (15) lefi mandible incisors. enlarged: (16) left maxillae. ventral: (177) and ventral (ripht of midliuc): (18) terminal sumen of thial palp. dorsial: (19) hypepharynx. Scalle bars: Fins il 13-19. 0.1 mm : Fig. 12.0 .01 mm .
ocelli and on amerior margin of eyes. Ocelli black. Antematc golden brown. Antennue lengh $1.7-2.3 \mathrm{~mm}$ (mean $=1.9 \mathrm{~mm}$ $n=6$). slightly longer than head width: ratio of :utemate length to head width $1.0-1.2$ (mean $=1.1 . n=0$). Upper lobes of male eyes tan. lower tobes grey-black. Eyes of female grey-biack. Mouthparts (Figs 11-19): clypeus (Fig. II) with lateral margins very slightly diverging to anterior: lateral margin of labrum slighly wider than clypeus, widh of kibrum 2.05-2.46 times the length along the median line (mean = 2.29. $n=10$): :merior margin slighly concave with medial convex 'hump', which is $0.08-0.15$ times the widh of labrum (mean $=0.12, n=10$) and bearing four (or more usually five) small, prominent rounded denticles (Fig. 12). Frontal setac arranged as a broad band, subapical hair fringe clearly separated from frontal band and $0.54-0.73$ times the width of the labrum (mean $=0.61, n=10$). Mandibles (Figs 13-15)
with outer margin sightify curved. a smatl indentation :t lateral midpoinn with sparse tuff of long spine-like setae and shorter setie along margin between tult and base. Bont mandibles with dark coloured nodule at midpoint on inner margin and row of setae in an inverted L-shape on lower mandible body. Left mandible with robust incisors (Fig. 15) each with three apieal teeth: inmer incisor very robust with wide base and prostheca wide, serrated. Right mandible with incisors also lirge: outer incisor wilh three apical teeth. inner incisor with two teeth and prositheca simple, slender: 12-15 spine-like setae on inner mesal surface. Maxillat (Fig. 16) with galea-lacinate expanded medially with subapical row of approximately 20 pectinate setac; palpi three-segmented. mean palp segment ratios 1.00$): 0.74: 0.65(0.23 \mathrm{~mm} . n=10$: terminal segment has small triangular processes on apex. Labium (Fig. 17) with glossate not turned under ventrally and

Fïgs 20-24. Nousia wilthorringae mature nymph: (20) Foreleg: (21) fore-tarsal claw: (22) posterior spines of abtominal lerga five: (23) gills from abdominas segne at one-third lenglh. Scale bars: Fi Fie. 22. 0.01 mm .
lying in same plame as paraglossac: with series of blunted spines apically. Submentum with sparse robust spines. Palpi thee-segmented: first segment with stout spines both anteriorly and posteriorly. terminal seguent with line of triangular processes almost circling apex (Fig. 18). Labium mean palp segres ratios: $1.00: 0.81: 0.61(0.36 \mathrm{~mm} . n=10)$ Hype: ax (Fig. 19) wilh relatively well-developed lateral processes, anterior margin of lingua moderately but noticeably cleft and lined with short selate. superlingua with thick tufts of setale on anterior margens. Thorax. tan brown with darker brown markings. Pronotum widh 1.s-2.t minn (mean $=2.1 \mathrm{~mm} . n=15$): wider than heiad (sec above). Ratio of pronotum width to heatd width ranges from 1.06 to 1.25 (mean $=1.30, n=15$). Legs: colour gorden fo orange brown washed with slighty darker brown an outer hateral margins. femora apex of each leg datk brown: distinct white patehe are present on fore- mid- ind hinder. Fore-femora short and squan, 2.0-2.7 times longer than wide (mean $=2.3, n=11$ with shon blum spines on inner lateral margin for approximately one-half the total length of femur (Fig. 20). Mean

pale coloured, sometimes slighly tinged pink or yellow:
present on segmems $1-7$. becoming somewhat progressively smaller towards posterior although not significimlly so. Gills double wilh upper and lower lamellae equally developed. each hamellia broadly lanceolate. Lateral tracheae strongly developed with main trunk quite thick. Caudal filaments three, golden with darker coloration a segment join giving a slighty handed apparance. Each seyment bearing apical whorl or sho angular denticles (Fig. 24). Terminal filament longer than cerci. Etynology. The species name is derived from the language of the Wurundjeri Woiwt ung. the Aboriginal people who mhabit the area of the Ifje localiy. The word wimorring means wide and refers to the shape of the gills. Remarks. This new species. although quite distinct, conforms to the genus diagnosis of Pescador and Peters (1985). It can be distinguished from all other species of Nousia by the following combination of characters. In the imago: (i) MA symmetrically forked at slightly more than half the distance from base to wing margin: (ii) subcosta of hindwing is fourfitths the maximum length of wing: (iii) ventral surfiace of penes fused in basal third. remainder divided, divergent: (iv) dorsal surface of penes separate with two laterally expanded lobes meeting at two-thirds lengh; two small triangular processes hook together at this point: (v) terminal segment of forcens globular. indented al apex: (vi) male eyes meeting foreeps giobular. imened ar apex. (viominal colouring in a W-shaped pattern: and (viii) female stermum nine with very wall al clic to the nymph: (i) promoum wider than shallow apical cleft. In the nymph: (i) promoum wider han widlh, the lateral margins very slighty diverging to anterior:
 (il)
 comalle whe medrat ent rounded demicles: (v) fromal setae of habrum manged as broad band with subapical hair fringe clearly separated
(vi) inner incisor of left mandible very robust wilh wide base (vi) inner incisor of left mandible very rolans wiil) wide bas (vii) prostheca of left mandible serrated: (viii) labium with glossace not turned under venriny and winh a series of blumed spines apically; (ix) hypopharynx moderately but noticeably cleft; (x) fore-emora short and squat. (woro longer than wide with shor blum spines on imer hateral margin for about half the total length of femur: (xi) abdomen paterning distinct: (xii) terga with combinuous row of minte spines along posterior margin; (xiii) posterolateral spine present on segments 2-9, progressively larger apically: and (xiv) gills large, wide and lanceolate, becoming progres (xiv) gills large, wide and lanceolate. becoming progres.
sively smaller posteriorly.
leg-length ratios: foreleg 1.00:0.77:0.36 ($1.38 \mathrm{~mm}, n$ 10). middle leg $1.00: 0.76: 0.36$ ($1.35 \mathrm{~mm} . n=10$). hindle $1.00: 0.80: 0.32$ ($1.58 \mathrm{mmn}, n=10$). Tarsal claws (apically athough eqical veniral te much laryer. Abdominal trea colour golden to tan brown with distinct dark brown
 res segments: each tergum with a continuous row of spines along posterior margin (Fig. 22). Posterolateral spines present on patern 20, (2 , eegments 2-9, progressively larger apically. Gills (Fig with main trunk quite thick. Caudal filaments three (ii) width of labrum approximately $2.0-2.5$ times the longer than wide with shor blum spines on imer hatea

Figs 25-28. Scamming dectron micrographs. Mate genialia and ege of Nomsia wiltherringae: (25) vental view of gemitalia: (20) vemral
view of pencs. cuianged: (27) view of penes. entatued: (27)
dorsal view of penes. enlarged. (28) Egg.

(ond between athitudes of 400 and 700 m as.s.l. Nymphs inhabil cold. fast-flowing. undisturted upland streams $\left(7-15^{\circ} \mathrm{C}\right)$ that are heavily shaded with native vegetation. They are generally foum chinging to cobbles. large rocks. ges and within leal litter, generailly in association with shallow riffles. It is re:tsonable to assume that this species is present in other similar areas in neighbouring states. However. MRHI data collested from New South Wales and Tasmamia have been idenified to family level only, so it is unknown whether this species oceurs there.

ACKNOWLEDGEMENTS

I am supported by a PlaD studentship jointly funded by the Conperative Reseach Centre for Freshwater Ecology and the Land and Water Resources Rescarch and Develoment Corporation. Many thanks go to Bill Nicholson of the Warundjeri Tribal Conncil who suggested the species name and gave permission for the use of it. Thanks to Dr Ken Walker, the Curator of Entomology at the Museum Victoria, for making available the malerial held in the MV collections. Richard Mareham and
advice. 1 am alko grateful to Frod Gowedich. Faye Wescom Anne Duguay, Edward Tsyrlin and most especially Nige Ainsworth for all their help with collecting malerial from the field Thank you also to Gunta Jaudzems and Joan Clark for their help and adviee in preparing the SEM specimens.

REFERENCES

Camptell IC \& Peters Whi. 1993. A revision of the Anstralian Ephemeroptera Eemus Audemicria Hiath
and and

 athearia 48.91-106.

 af Entemidegy 3k. 72-70.
 Guide no. 7. Muray Darting Frehawater Reseatrsh Cemate and

 de Cichciau Nanurdes 17.212-230.

 $91-12$

APPENDIX 4

Summary data on site characteristics where each species was present for all species found at more than 10 sites.

Site characteristic summary data

	ALTITUDE						SLOPE					
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae ，${ }^{\text {dex }}$	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae
n	106	50	24	19	15	11 紜	106	50	24	19	15	11
min	10.00	100.00	80.00	110.00	100.00	180.00	0.00	0.00	0.20	0.44	1.43	0.65
max	1740.00	1640.00	1520.00	1500.00	1920.00	1180.00 ，${ }^{\text {d }}$	33.33	33.33	20.00	23.53	50.00	13.33
mean	442.22	522.00	341.25	536.05	1207.33	557.27 1	4.28	11.41	3.56	6.82	18.47	4.58
SE	40.78	51.77	61.73	93.18	136.57	100．20 ${ }^{\text {d }}$ 䊽	0.62	1.17	0.91	1.54	3.57	1.42
		29xay								1403	2atak	Pem
	DISTANCE FROM SOURCE					－	WATER TEMPERATURE					
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	$\overline{\text { G．wiltkorringae }}$
n	106	50	24	19	15	11 純絞	106	50	24	19	15	11
min	0.00	0.00	1.50	0.50	0.50		6.00	5.00	9.00	5.00	5.50	6.00
max	96.00	59.00	26.50	47.00	3.50	17.50 新趐	26.00	17.00	20.50	14.00	17.00	15.50
mean	13.29	11.41	8.25	7.61	1.30	7.91	13.20	11.44	14.02	10.37	9.20	11.18
SE 	1.45	1.74	1.17	2.33	0.28	1.60	0.40	0.37	0.73	0.51	0.81	0.84
										2mis	，4izaz	
	STREAM WIDTH					斯綧	STREAM DEPTH					
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae
n	106	50	24	19	15	11	106	50	24	19	15	11
min	0.20	0.30	0.50	0.20	0.30		0.02	0.02	0.02	0.05	0.02	0.08
max	40.00	10.00	6.00	5.50	20.00	9.00 䈷	1.00	1.00	1.00	0.40	0.80	1.00
mean	3.65	3.48	2.22	2.26	2.44		0.31	0.31	0.29	0.18	0.15	0.41
SE	0.45	0.33	0.31	0.33	1.27	0.68 数號	－0．02	0.04	0.05	0.02	0.05	0.10
		Whamak										
	SUBPH｜					W	ANNUAL ME	EAN TEMPER	2ATURE			
	N．（A）fusca	N．（A）nigeli	7．Jucida	M．kala	M．adamus	G．wiltkorringae ${ }^{\text {ded }}$	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M ：adamus	G．wiltkorringae
n	106	50	24	19	15	11	106	50	24	19	15	11
min	－7．60	－6．45	－7．60	－6．45	－6．45		－ 4.90	5.70	5.10	7.40	1.33	12.00
max	6.80	3.63	6.80	0.08	0.40	3.63 勻緆	－14．00	13.60	14.00	13.80	1.88	13.80
mean	－2．21	－2．12	－16．05	－2．80	－3．35	－1．97	－11．88	11.76	11.51	11.42	1.53	13.07
SE	0.23	0.29	0.88	0.39	0.52	0.88	－ 0.21	0.25	0.51	0.40	0.05	0.19

Site characteristic summary data

	MEAN TEMPERATURE OF THE WARMEST QUARTER					W蘺MEAN TEMPERATURE OF THE COLDEST QUARTER						G．wiltkorringae
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae ${ }^{\text {dx }}$ 枹	N．（A）fusca	N $\mathrm{N} .(\mathrm{A})$ nigeli	T．lucida	M．kala	M．adamus	
n	106	50	24	19	15	11	106	50	24	19	15	11
min	9.90	10.60	11.00	12.50	9.90	16.50	－0．80	0.40	－0．70	2.50	－0．40	7.10
max	20.80	20.10	20.40	18.00	19.70	20.50	10.00	9.40	9.90	9.90	8.40	9.40
mean	17.00	16.96	16.72	16.50	16.70	18.22	6.82	6.62	6.36	6.36	6.01	8.06
SE	0.20	0.26	0.49	0.34	0.71	0.37	0.24	0.28	0.58	0.48	0.71	0.27
				\％	綡繥			ans				
	ANNUAL MEAN PRECIPITATION						PRECIPITATION SEASONALITY					
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wikoringae
n	106	50	24	19	15	11 近	106	50	24	19	75	11
min	491.00	645.00	500.00	758.00	714.00	645.00 甥	9.00	9.00	11.00	9.00	13.00	12.00
max	2201.00	1933.00	2201.00	1595.00	2312.00	1188.00 㷺	39.00	39.00	39.00	38.00	40.00	36.00
mean	1047.01	1103.88	1113.67	1074.74	1211.13	945.00 絔	23.02	23.76	24.33	20.32	25.53	22.00
SE	32.30	39.99	73.81	51.14	102.99	53.19	0.81	1.23	1.69	1.72	2.18	2.39
				，								
	PRECIPITATION OF THE WETTEST PERIOD											
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus		N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae
n	106	50	24	19.	15	11	106	50	24	19	15	11
min	51.00	68.00	53.00	81.00	85.00	71.00 䚬	28.00	30.00	28.00	33.00	30.00	30.00
max	289.00	239.00	289.00	177.00	316.00	154.00 委数	99.00	99.00	88.00	78.00	93.00	70.00
mean	116.42	123.86	127.04	115.63	138.53		54.59	57.48	56.21	58.68	59.93	50.46
SE	4.20	5.40	10.33	5.49	15.6		1.55	2.09	3.21	2.86	4.38	2.98
	PRECIPITATION OF THE WETTEST QUARTER					团						
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae ${ }^{\text {dex }}$	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorringae
n	106	50	24	19	15	11 鹞	106	50	24	19	15	11
min	144.00	197.00	155.00	228.00	248.00	$206.00{ }^{4}$ 緆	93.00	104.00	93.00	118.00	107.00	104.00
max	806.00	659.00	806.00	505.00	868.00		315.00	310.00	303.00	267.00	307.00	235.00
mean	332.08	352.36	360.63	328.63	390.13	295.55 㭠等	184.04	191.56	191.54	199.47	202.00	170.73
SE	11.61	14.82	28.12	16.39	40.09	20.44 枚妾	5.06	6.49	10.61	9.18	15.11	9.98
						\％						

Site characteristic summary data

	PRECIPITATION OF THE WARMEST QUARTER											
	N．（A）fusca	N．（A）nigeli	T．lucida	M．kala	M．adamus	G．wiltkorningae ${ }^{\text {duta }}$	N．（A）fusca	N．（A）nigeii	T．lucida	M．kala	M．adamus	G．wiltkoringae
n	106	50	24	19	15	11 W ${ }^{2}$	106	50	24	19	15	11
min	96.00	104.00	96.00	118.00	107.00		110.00	149.00	155.00	220.00	240.00	163.00
max	316.00	310.00	303.00	267.00	316.00	235.00 樃	772.00	659.00	772.00	482.00	835.00	434.00
mean	188.98	196.18	195.46	203.74	203.93	174.00 \％	318.47	340.08	345.96	309.63	375.33	285.09
SE	5.08	6.46	10.63	9.19	15.29	10.10 数	11.80	15.83	27.77	15.97	39.77	23.32
						数						
						緒岳						

$$
\begin{aligned}
& H 24 / 3471 \\
& V 2
\end{aligned}
$$

NOTA BENE

1. Throughout the text, the spelling of the genus Biblumena should be changed to Bibulmena.
2. The genus name Montikola should be regarded as temporary (see p. 219 - Vol. 1) and therefore will be published under an alternative name.

TAXONOMY, DISTRIBUTION PATTERNS AND PHYLOGENY OF AUSTRALIAN LEPTOPHLEBIIDAE (EPHEMEROPTERA).

Kyla Jane Finlay B.Sc. (Hons).

Department of Biological Sciences
Monash University
September 2002

A thesis submitted in accordance with the requirements for the Degree of Doctor of Philosophy at Monash University, Victoria, Australia.

VOLUME 2

Figures

Fig. 1. Equipment for transporting live nymphs from the field. Each bottle contains nymphs collected from one location. A pump capable of operating on batteries is connected to each bottle to provide constant aeration.

Photo by K.J. Finlay.

Fig. 2. New rearing chamber design.
Each chamber holds one nymph from a particular site. The electrical pump supplies constant air flow which can be varied using the two-way controller. A plastic pipette tip attached to the end of the tubing is useful for restricting the flow of bubbles to a small stream. Photo by Steve Morton and Adrain Dyer.

Fig. 3. Rearing chambers designed by I.C. Campbell (see Campbell 1983) showing mode of operation.
Chamber 1 shows tubing which is connected to pump.
Chamber 2 shows container where live nymph is placed for rearing. Chamber 3 shows removable door with mesh covered viewing hole.

Photo by K.J. Finlay.

Fig. 4. Imago emergence success by genus. Bars represent 95% confidence intervals.

Fig. 5. Effect of temperature on time taken to successful emergence by genus. Data back transformed from logged values. Bars represent back transformed standard error. Within each genus temperatures without a tetter in common are significantly different (<0.05) by Tukeys HSD tests.

Fig. 6. Effect of altitude of collection on rearing success of Austrophlebioides.

Fig. 7. Mayfly sex-ratios (collected over 2 extended summer periods).
Bars represent 95% confidence intervals.
Asterisks indicate significant departures
(at less than 5% significance levels) from 1:1 ratio by chi-square.

Fig. 8. Important diagnostic features of the maie imago head. Eye size (ES) (sensu Bae 1991) = B (shortest distance between upper lobes) / D (longest diameter of upper lobe).

Fig. 9. Segmentation of the male imago foreleg.

Fig. 10. Segmentation of the female imago foreleg.

Fig. 11. Imago tarsal claw morphology.

Fig. 12. Forewing venation nomenclature. $\mathrm{C}=\operatorname{costa}, \mathrm{Sc}=$ subcosta, $\mathrm{R}=$ radius, MA=medius anterior, IMA=intercalary medius anterior, MP=medius posterior, IMP=intercalary medius posterior, $\mathrm{CuA}=$ cubitus anterior, $\mathrm{ICu}=$ intercalary cubitus, $\mathrm{CuP}=$ cubitus posterior, $A_{1}=$ anal vein.

Fig. 13. Male imago genitalia dorsal view, tergal segment ten removed.
Fig. 14. Male imago genitalia ventral view.

Fig. 15. Male imago genitalia lateral view.
Fig. 16. Female imago abdomen ventral view, sternites seven to nine.

18

Fig. 17. Important diagnostic features of the male nymph head.
Fig. 18. Important diagnostic features of the female nymph head, characters the same as in the male except for eyes.

Fig. 19. Important diagnostic features of the nymph labrum and clypeus. W/L = labrum width length ratio; DWM = denticle width / labrum width ratio SHFWN $=$ secondary hair fringe width to labrum width ratio.

Figs 20-21. Important diagnostic features of the nymph mandibles.
Fig. 20. Left mandible.
Fig. 21. Right mandible.

Fig. 22. Important diagnostic features of the nymph maxillae. W/L = width length ratio of galea-lacina.

Fig. 23. Important diagnostic features of the nymph hypopharynx.

Fig. 24. Important diagnostic features of the nymph labium.

Fig. 25. Important diagnostic features of the nymph foreleg. FL/FW= femur length width ratio.

Fig. 26. Nymph abdomen dorsal view showing postero-lateral spines. Tergal segments one to ten numbered.

Fig. 27. Important diagnostic features of the nymph gill.

Fig. 28. Nousia delicata Navás.
Ventral view of male genitalia.
Reproduction of a drawing from Navás (1925).

29

Fig. 29. Distribution of the subgenus Nousia (Australonousia).

Fig. 30. Distribution of the redescribed Nousia (Australonousia) fusca.

Fig. 31. Male imago of Nousia (Australonousia) fusca.
Reared from nymph collected from Rubicon River, Rubicon, Victoria (98101701). Photo by K.J. Finlay.

Figs. 32-34. Nousia (Australonousia) fusca, male imago.
Fig. 32. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 33. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 34. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.

Fig. 35. Nousia (Australonousia) fusca, male imago.
Dorsal view of abdomen.
Scale $\mathrm{bar}=1 \mathrm{~mm}$.

Figs. 36-37. Nousia (Australonousia) fusca, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 36. Dorsal view of genitalia showing penes and forceps.
Fig. 37. Ventral view of genitalia showing penes.

Fig. 38. Nousia (Australonousia) fusca, male imago. Scale bar $=500 \mu \mathrm{~m}$.

Lateral view of genitalia showing penes and forceps.

Figs. 39-42: Nousia (Australonousia) fusca, male imago.
Individual from Gulf Stream, Grampians National Park, Victoria (00122001).
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 39. Dorsal view of genitalia showing penes and forceps.
Fig. 40. Dorsal view of penes
Fig. 41. Ventral view of genitalia showing penes and forceps.
Fig. 42. Ventral view of penes.

Figs. 43-45: Nousia (Australonousia) fusca, male imago.
Individual from Clyde River, Hamilton, Tasmania (96121901).
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 43. Dorsal view of penes.
Fig. 44. Ventral view of penes.
Fig. 45. Lateral view of genitalia showing penes and forceps.

Fig. 46-49: Nousia (Australonousia) fusca, male imago.
Fig. 46. Dorsal view of penes.
Fig. 47. Ventral view of penes.
Individual from Brandy Creek, Alpine National Park, Victoria (96111902).
Shape distorted through drying process. Scale bars $=100 \mu \mathrm{~m}$.
Fig. 48. Dorsal view of penes.
Fig. 49. Ventral view of penes.
Individual from Rubicon River, Rubicon, Victoria (98101701).
Scale bars $=100 \mu \mathrm{~m}$.

Fig. 50. Female imago of Nousia (Australonousia) fusca.
Reared from nymph collected from Rubicon River, Rubicon, Victoria (98101701).
Photo by K.J. Finlay.

51

Figs 51-53. Nousia (Australonousia) fusca, female imago.
Fig. 51. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 52. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 53. Ventral view of abdomen showing sternites 7-9. Scaio sar $=500 \mu \mathrm{~m}$.

Figs. 54-55: Nousia (Australonousia) fusca, female imago.
Individual from Srandy Creek, Alpine National Park, Victoria (97011902).
Fig. 54. Sternites eight to nine. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 55. Close up of apical section of sternite nine. Scale bar $=50 \mu \mathrm{~m}$.

Fig. 56-59. Nousia (Australonousia) fusca, eggs taken from female imago.
Fig. 56. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 57. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$. Individual from Jimmys Creek, Grampians National Park, Victoria (00012203).

Fig. 58. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 59: Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.
Individual from Gulf Stream, Grampians National Park, Victoria (00012201).

Figs. 60-63. Nousia (Australonousia) fusca, eggs taken from female imago.
Fig. 60. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 61. Ciose up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$. Individual from Brandy Creek, Alpine National Park, Victoria (97011902).

Fig. 62. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 63 Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.
Individual from Sassafras Creek, Dandenong Ranges. Victoria (97032402).

Figs. 64-67. Nousia (Australonousia) fusca, eggs taken from female imago.
Fig. 64. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 65. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$ Individual from Carisbrook Creek. Great Ocean Road, Victoria (97030203).

Fig. 66: Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 67. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.
Individual from Steavensons River, Marysville. Victoria (98021504).

Fig. 68. Male subimago of Nousia (Australonousia) fusca.
Reared from nymph collected from Rubicon River, Rubicon, Victoria (98101701). Photo by K.J. Finlay.

Figs. 69-70. Nousia (Australonousia) fusca, male subimago.
Individual from Victoria River, Alpine Nationai Park, Victoria (96111901).
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 69. Dorsal view of penes which are not yet fully developed.
Fig. 70. Ventral view of penes which are not yet fully developed.

Fig. 71. Female nympin of Nousia (Australonousia) fusca. Collected from Rubicon River, Rubicon, Victoria (98101701).
Photo by K.J. Finlay.

Fig. 72. Nousia (Australonousia) fusca, female nymph. Scale $\mathrm{bar}=1 \mathrm{~mm}$.

Figs. 73-74. Nousia (Australonousia) fusca, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 73. Labrum and clypeus showing straight anterior margin of labrum. Fig. 74. Labrum and clypeus showing slight antero-median emargination of labrum.

Figs. 75-76. Nousia (Australonousia) fusca, nymph mouthparts.
Scale bar $=200 \mu \mathrm{~m}$.
Fig. 75. Left mandible.
Fig. 76. Right mandible.

Figs. 77-79. Nousia (Australonousia) fusca, nymph mouthparts.
Fig. 77. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 78. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 79. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 80-81. Nousia (Australonousia) fusca, nymph mouthparts.
Fig. 80. Labium. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 81. Dorsal view of labial terminal palp showing apical spines. Scale bar $=100 \mu \mathrm{~m}$.

Fig. 82. Nousia (Australonousia) fusca, nymph.
Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 83-85. Nousia (Australonousia) fusca, nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 83. Foreleg tarsal claw.
Fig. 84. Gills, lateral tracheae strongly developed.
Fig. 85. Gills, lateral tracheae weakly developed.

Fig. 86. Atalophlebia fusca Uimer.
Ventral view of male imago genitalia. Drawn from temporary slide mount of paralectotype. Specimen coilected from Cedar Creek, Queensland, Mjöberg Expedition to Australia, 1910-1913 (SMNH).

Fig. 87. Atalonella delicatula (Tillyard).
Ventral view of male imago genitalia. Drawn from slide mount. Specimen collected from Meander River, Tasmania by David Scholes, 09 i 1960 (ANIC).

Fig. 88. Atalophlebia brunnea (Tillyard).
Ventral view of male imago genitalia. Drawn from temporary slide mount of holotype. Specimen collected from Clarendon, Tasmania by Eric Scott, 09 iii 1933 (NHM).

Fig. 89. Atalophlebia fusca Ulmer.
Ventral view of male genitalia.
Reproduction of a drawing from Ulmer (1919).

Fig. 90. Atalophlebia delicatula Tillyard. Dorsal view of male imago genitalia. Reproduction of a drawing from Tillyard (1936).

Fig. 91. Atalophlebia brunnea Tillyard. Ventral view (?) of male imago genitalia. Reproduction of a drawing from Tillyard (1936).

Fig. 92. Atalophlebia delicatula Tillyard. Male imago forewing.
Reproduction of a drawing from Tillyard (1936).
Fig. 93. Atalophlebia fusca Ulmer (labelled as Thraulus dentatus). Male imago forewing.
Reproduction of a drawing from U'mer (1916).
Fig. 94. Atalophlebia brunnea Tillyard. Male imago forewing.
Reproduction of a drawing from Tillyard (1936).

Figs. 95-96. Nousia (Australonousia) fusca habitat - OTWAYS.
Fig. 95. Grey River, Otway Ranges, Victoria (97030101).
Fig. 96. Carisbrook Creek, Great Ocean Road, Victoria (97030203). Photos by K.J. Finlay.

Figs. 97-98. Nousia (Australonousia) fusca habitat - GRAMPIANS.
Fig. 97. Gulf Stream, Grampians National Park, Victoria (99011603).
Fig. 98. Fyans Creek, Halls Gap, Victoria (99011608).
Photos by N. Ainsworth.

Figs. 99-100. Nousia (Australonousia) fusca habitat - TASMANIA.
Fig. 97. Lake River, 20km S of Perth, Tasmania (96121702).
Fig. 98. Dee River, 10 km NW of Ouse, Tasmania (96121903).
Photos by J. Griggs.

Figs. 101-102. Nousia (Australonousia) fusca habitat - HIGH ALTITUDE.
Fig. 101. Thredbo River, Thredbo, New South Wales (97120204).
Fig. 102. Eucumbene River, Kosciusko National Park, New South Wales (97120104). Photos by K.J. Finlay.

Figs. 103-104. Nousia (Australonousia) fusca habitat "THE REST" OF VICTORIA.
Fig. 103. Rubicon River, Rubicon, Victoria (98101701).
Photo by N. Ainsworth.
Fig. 104. Clematis Creek, Dandenong Ranges, Victoria (97032401).
Photo by K.J. Finlay.

Figs. 105-106. Nousia (Australonousia) fusca habitat - "THE REST" OF VICTORIA.
Fig. 105. Moroka River, Alpine National Park, Victoria (97020603). Fig. 106. Jingalgalla River, Dellicknora, Victoria (99021402).

Photos by K.J. Finlay.

Fig. 107. Atalonella darkara Harker.
Female subimago forewing.
Reproduction of a drawing from Harker (1957b).
Fig. 108. Atalonella darkara Harker.
Nymph labrum.
Reproduction of a drawing from Harker (1957b).

Fig. 109. Atalophlebia fuscula Tillyard. Dorsal view of male genitalia.
Reproduction of a drawing from Tillyard (1936).
Fig. 110. Nousia fuscula (Tillyard).
Dorsal view of male genitalia.
Reproduction of a drawing from Suter (1986).
Fig. 111. Atalonella fuscula (Tillyard).
Dorsal view of male genitalia. Drawn from temporary siide mount. Specimen collected from North Esk River, Tasmania by David Scholes, 18 ii 1960 (ANIC).

112

Fig. 112. Nousia fuscula (Tillyard).
Lateral view of female imago segments six to nine. Arrow indicates location of small genital extension at sternum seven.

Reproduction of a drawing from Suter (1986).
Fig. 113. Nousia fuscula (Tillyard).
Egg from female imago.
Reproduction of an SEM from Suter (1986).

Figs. 114-115: Nousia (Australonousia) fuscula, eggs taken from female imago.
Individual from Tookayerta Creek, South Australia (95051200).
Fig. 114. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 115. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.

Fig. 116. Nousia (Australonousia) nigeli.
Type locality, Taggerty River, outside Marysville, Victoria (98101704)
Photo by K.J. Finlay.

117

Fig. 117. Distribution of Nousia (Australonousia) nigeli.

119

Figs. 118-120. Nousia (Australonousia) nigeli, male imago.
Fig. 118. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 119. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 120. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.

Fig. 121. Nousia (Australonousia) nigell, male imago.
Dorsal view of abdomen.
Scale bar $=1 \mathrm{~mm}$.

123

Figs. 122-123. Nousia (Australonousia) nigeli, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 122. Dorsal view of genitalia showing penes and forceps.
Fig. 123. Ventral view of genitalia showing penes.

Figs. 124-126. Nousia (Australonousia) nigeli, male imago.
Individual from Loch River, Noojee, Victoria (98020903).
Fig. 124. Dorsal view of penes. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 125. Ventral view of penes. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 126. Lateral view of genitalia showing penes and forceps, tergite ten removed. Scale bar $=100 \mu \mathrm{~m}$.

Figs. 127-129. Nousia (Australonousia) nigeli, female imago.
Fig. 127. Forewing showing relative size of hindwirg. Scale bar $=1 \mathrm{~mm}$.
Fig. 128. Hindwing. Scale $b a r=500 \mu \mathrm{~m}$.
Fig. 129. Ventral view of abdomen showing sternites $7-9$. Scale bar $=500 \mu \mathrm{~m}$.

Figs. 130-131. Nousia (Australonousia) nigeli, eggs taken from female imago.
Individual from Coranderrk Creek, outside Healesville, Victoria (98030502).
Fig. 130. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 131. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.

Fig. 132. Female nymph of Nousia (Australonousia) nigeli.
Collected from Steavensons River, 12km SE of Buxton, Victoria (98021504).
Photo by K.J. Finlay.

Fig. 133. Nousia (Australonousia) nigeli, female nymph.
Scale bar $=1 \mathrm{~mm}$.

Figs. 134-136. Nousia (Australonousia) nigeli, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 134. Labrum and clypeus.
Fig. 135. Left mandible.
Fig. 136. Right mandible.

Figs. 137-138. Nousia (Austra/onousia) nigeli, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 137. Right maxilla.
Fig. 138. Hypopharynx.

Fig. 139. Nousia (Australonousia) nigeli, nymph mouthpart.
Labium. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 140. Nousia (Australonousia) nigeli, nymph.
Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 141-142. Nousia (Australonousia) nigeli, nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 141. Foreleg tarsal claw.
Fig. 142. Gills.

Fig. 143. Distribution of Nousia (Australonousia) sp. "AV5".

Fig. 144. Nousia (Australonousia) sp. "AV5", female nymph.
Scale bar $=1 \mathrm{~mm}$.

Figs. 145-147. Nousia (Australonousia) sp. "AV5", nymph mouthparts.
Scale bars $=200 \mu \mathrm{~m}$.
Fig. 145. Labrum and clypeus.
Fig. 146. Left mandible.
Fig. 147. Right mandible.

Figs. 148-149. Nousia (Australonousia) sp. "AV5n, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 148. Right maxilla.
Fig. 149. Hypopharynx.

Fig. 150. Nousia (Australonousia) sp. "AV5", nymph mouthpart. Labium. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 151. Nousia (Australonousia) sp. "AV5", nymph.
Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 152-153. Nousia (Australonousia) sp. "AV5", nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 152. Foreleg tarsal claw.
Fig. 153. Gills.

154

Fig. 154. Distribution of Nousia (Australonousia) sp. "AV7".

Fig. 155. Nousia (Australonousia) sp. "AV7", male imago, Scale bar $=200 \mu \mathrm{~m}$.

Dorsal view of genitalia showing penes.

Fig. 156. Nousia (Australonousia) sp. "AV7", female nymph. Scale bar $=1 \mathrm{~mm}$.

Figs. 157-159. Nousia (Australonousia) sp. "AV7", nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 157. Labrum and clypeus.
Fig. 158. Left mandible.
Fig. 159. Right mandible.

Figs. 160-161. Nousia (Australonousia) sp. "AV7", nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 160. Right maxilla.
Fig. 161. Hypopharynx.

Fig. 162. Nousia (Australonousia) sp. "AV7", nymph mouthpart. Labium. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 163. Nousia (Australonousia) sp. "AV7", nymph. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 164-165. Nousia (Australonousia) sp. "AV7", nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 164. Foreleg tarsal claw.
Fig. 165 . Gills.

166

Fig. 166. Distribution of Nousia (Australonousia) sp. "AV8".

Fig. 167. Nousia (Australonousia) sp. "AV8", male nymph.
Scale $\mathrm{bar}=1 \mathrm{~mm}$.

169

Figs. 168-169. Nousia (Australonousia) sp. "AV8", nymph mouthparts.
Fig. 168. Labrum and clypeus Scale bar $=200 \mu \mathrm{~m}$.
Fig. 169. Denticles on anterior margin of labrum. Scale $\mathrm{bar}=50 \mu \mathrm{~m}$.

Figs. 170-171. Nousia (Australonousia) sp. "AV8", nymph mouthparts. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 170. Left maricible.
Fig. 171. Right mandible.

Figs. 172-173. Nousia (Australonousia) sp. "AV8", nymph mouthparts.
Scale bars $=200 \mu \mathrm{~m}$.
Fig. 172. Right maxilla.
Fig. 173. Hypopharynx.

Fig. 174. Nousia (Australonousia) sp. "AV8", nymph mouthpart.
Labium. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 175. Nousia (Australonousia) sp. "AV8", nymph.
Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 176-177. Nousia (Australonousia) sp. "AV8", nymph.
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 176. Foreleg tarsal claw.
Fig. 177. Gills.

Fig. 178. Distribution of the genus Thraulophlebia.

179

Fig. 179. Distribution of Thraulophlebia /ucida.

Figs 180-182. Thraulophlebia lucida, male imago.
Fig. 180. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 181. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 182. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.

Fig. 183. Thraulophlebia lucida, male imago.
Dorsal view of abdomen.
Scale $\mathrm{bar}=1 \mathrm{~mm}$.

Figs. 184-185. Thraulophlebia lucida, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 184. Dorsal view of genitalia showing penes and forceps.
Fig. 185. Ventral view of genitalia showing penes.

Figs. 186-189. Thraulophlebia lucida, male imago.
Individual from Gulf Stream, Grampians National Park, Victoria (00122001).
Fig. 186. Dorsal view of genitalia showing penes and forceps. Scale bar $=100 \mu \mathrm{~m}$
Fig. 187. Dorsal view of penes. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 188. Dorsal view of teeth on subapical lobes of penes. Scale bar $=10 \mu \mathrm{~m}$.
Fig. 189. Ventral view of penes. Scale bar $=100 \mu \mathrm{~m}$.

Figs. 190-192. Thraulophlebia lucida, female imago.
Fig. 190. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 191. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 192. Ventral view of abdomen showing sternites $7-9$. Scale bar $=500 \mu \mathrm{~m}$.

Figs. 193-196. Thraulophlebia lucida, female imago.
Fig. 193. Ventral view of abdomen showing sternite 9 . Scale bar $=200 \mu \mathrm{~m}$. Individual from Kangaroo Creek, near Daylesford, Victoria (97010901).

Fig. 194. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 195. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.
Fig. 196. Apical view of egg showing two rings of tubular projections. Scale bar $=10 \mu \mathrm{~m}$. Individual from Gulf Stream, Grampians National Park, Victoria (00012201).

Fig. 197. Thraulophlebia lucida, male nymph.
Scale bar $=1 \mathrm{~mm}$.

Figs. 198-200. Thraulophlebia lucida, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 198. Labrum and clypeus.
Fig. 199. Left mandible.
Fig. 200. Right mandible.

Figs. 201-203. Thraulophlebia lucida, nymph mouthparts.
Fig. 201. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 202. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 203. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 204-205. Thraulophlebia lucid, nymph mouthparts.
Fig. 204. Labiurn. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 205. Dorsal view of labial terminal palp showing apical spines. Scale bar $=100 \mu \mathrm{~m}$.

Figs. 206-207. Thraulophlebia lucida, nymph.
Fig. 206. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 207. Fore tibial spines. Scale bar $=50 \mathrm{j} \mu \mathrm{m}$.

Figs. 208-209. Thraulophlebia lucida, nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 208. Foreleg tarsal claw.
Fig. 209. Gills.

Fig. 210. Atalophlebia lucida Ulmer.
Ventral view of male genitalia.
Reproduction of a drawing from Ulmer (1919).

Fig. 211. Nousia pilosa Suter.
Ventral view of male imago genitalia. Drawn from temporary slide mount of holotype. Specimen collected from Second Wannon River, Victoria by D.N. \& P.J. Suter, 25 xi 1977 (MV).

Figs. 212-213. Nousia pilosa Suter, male imago.
Ventral view of genitalia showing penes and forceps.
Reproduction of a drawing and an SEM from Suter (1986).

214

Fig. 214. Distribution of Thraulophlebia inconspicua.

Figs. 215-217. Thraulophlebia inconspicua, male imago.
Fig. 215. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 216. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 217. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.

Fig. 218. Thraulophlebia inconspicua, male imago.
Dorsal view of abdomen.
Scale bar $=1 \mathrm{~mm}$.

Figs. 219-220. Thraulophlebia inconspicua, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 219. Dorsal view of genitalia showing penes and forceps.
Fig. 220. Ventral view of genitalia showing penes.

Figs. 221-222. Thraulophlebia inconspicua, male imago.
Individual from Sturt River, Coramandel Valley, South Australia (76042900).
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 221. Dorsal view of penes.
Fig. 222. Ventral view of penes.

Figs. 223-225. Thraulophlebia inconspicua, female imago.
Fig. 223. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 224. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 225. Ventral view of abdomen showing sternites $7-9$. Scale bar $=500 \mu \mathrm{~m}$.

Figs. 226-227. Thraulophlebia inconspicua, eggs taken from female imago. Individual from Sturt River, Coramandel Valley, South Australia (76042900).

Fig. 226. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 227. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.

Fig. 228. Thraulophlebia inconspicua, female nymph. Scale bar $=$! mm .

Figs. 229-231. Thraulophlebia inconspicua, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 229. Labrum and clypeus.
Fig. 230. Left mandible.
Fig 231. Right mandible.

Figs. 232-233. Thraulophlebia inconspicua, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 232. Right maxilla.
Fig. 233. Hypopharynx.

Fig. 234. Thraulophlebia inconspicua, nymph mouthpart.
Labium. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 235. Thraulophlebia inconspicua, nymph. Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 236-237. Thraulophlebia inconspicua, nymph. Scale bar $=100 \mu \mathrm{~m}$.

Fig. 236. Foreleg tarsal claw.
Fig. 237. Gills.

Fig. 238. Nousia inconspicua (Eaton).
Ventral view of male imago penes.
Reproduction of an SEM from Suter (1986).
Fig. 239. Atalophlebia inconspicua (Eaton). Ventral view of male imago penes.
a) penes divided through drying process, b) penes in natural state.

Reproduction of a drawing from Ulmer (1908).
Fig. 240. Koorrnonga inconspicua (Eaton).
Egg from female imago.
Reproduction of an SEM from Campbell and Suter (1988).

241

Fig. 241. Distribution of Thraulophlebia parva.

Figs 242-244. Thraulophlebia parva, male imago.
Fig. 242. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 243. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 244. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.

Fig. 245. Thraulophlebia parva, male imago.
Dorsal view of abdomen.
Scale bar $=1 \mathrm{~mm}$.

Figs. 246-247. Thraulophlebia parva, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 246. Dorsal view of genitalia showing penes and forceps.
Fig. 247. Ventral view of genitalia showing penes.

Figs. 248-251. Thraulophlebia parva, male imago.
Individual from Wiid Duck Creek, outside Heathcote, Victoria (99022304).
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 248. Dorsal view of genitalia showing penes and forceps.
Fig. 249. Dorsal view of penes.
Fig. 250. Ventral view of genitalia showing penes and forceps.
Fig. 251. Ventral view of penes.

252

Figs. 252-255. Thraulophlebia parva, female imago.
Fig. 252. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 253. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 254. Ventral view of abdomen showing sternites 7-9. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 255. Ventral view of abdomen showing sternite 9. Scale bar $=200 \mu \mathrm{~m}$. Individual from Wild Duck Creek, outside Heathcote, Victoria (00022001).

Figs. 256-259. Thraulophlebia parva, eggs taken from female imago.
Individuals from Wild Duck Creek, outside Heathcote, Victoria (99040701 \& 00022001).
Figs. 256-257. Whole eggs. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 258. Apical view of egg showing two rings of tubular projections.
Scale bar $=30 \mu \mathrm{~m}$.
Fig. 259. Close up of chorion. Scale bar $=10 \mu \mathrm{~m}$.

Fig. 260. Thraulophlebia parva, female nymph. Scale bar $=1 \mathrm{~mm}$.

Figs. 261-263. Thraulophlebia parva, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 261. Labrum and clypeus.
Fig. 262. Left mandible.
Fig. 263. Right mandible.

Figs. 264-265. Thraulcithlebia parva, nymph mouthparts.
Scale bars $=200 \mu \mathrm{~m}$.
Fig. 264. Right maxilla.
Fig. 265. Hypopharynix.

Fig. 266. Thraulophlebia parva, nymph mouthpart.
Labium. Scaie bar $=200 \mu \mathrm{~m}$.

Fig. 267. Thraulophlebia parva, nymph foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 268-269. Thraulophlebia parva, nymph.
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 268 Foreleg tarsal claw.
Fig. 269. Gills.

Fig. 270. Atalophlebia australasica Ulmer.
Hindwing.
Reproduction of a drawing from Ulmer (1916).

271

Fig. 271. Distribution of the genus Montikola.

272

Fig. 271. Distribution of Montikola kala.

275

Figs 273-275. Montikoia kala, male imago.
Fig. 273. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Individual from Cement Creek, Mount Donna Buang, Victoria (80030300).
Fig. 274. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 275. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.

Fig. 276. Montikola kala, male imago.
Dorsal view of abdomen.
Scale $\mathrm{bar}=1 \mathrm{~mm}$.

Figs. 277-278. Montikola kala, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 277. Dorsal view of genitalia showing penes and forceps. Fig. 278. Ventral view of of genitalia showing penes.

Figs. 279-281. Montikola kala, male imago.
Fig. 279. Dorsal view of penes. Scale $\mathrm{bar}=100 \mu \mathrm{~m}$. Individual from Cement Creek, Mount Donna-Buang, Victoria (80030300).

Figs. 280. Dorsal view of right lobe of penes showing missing apical process and internal spines. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 281. Close up of internal penes spines. Scale bar $=50 \mu \mathrm{~m}$. Individual from Loch River, Noojee, Victoria (93050200).

Figs. 282-283. Montikola kala, male imago.
Individual from Perrins Creek, Dandenong Ranges, Victoria (97032406).
Fig. 282. Ventral view of penes. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 283. Close up of right lobe of penes showing apical process. Scale bar $=50 \mu \mathrm{~m}$.

Figs. 284-286. Montikola kala, female imago.
Fig. 284. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 285. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 286. Ventral view of abdomen showing sternites $7-9$. Scale bar $=500 \mu \mathrm{~m}$.

Figs. 287-288. Montikola kala, eggs taken from female imago.
Individual from Clematis Creek, Dandenong Ranges, Victoria (97101501).
Fig. 287. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 288. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.

Fig. 289. Montikola kala, female nymph. Scale bar $=1 \mathrm{~mm}$.

Figs. 290-292. Montikola kala, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 290. Labrum and clypeus.
Fig. 291. Left mandible.
Fig. 292. Right mandible.

Figs. 293-295. Montikola kala, nymph mouthparts.
Fig. 293. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 294. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 295. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 296-297. Montikola kala, nymph mouthparts.
Fig. 296. Labium. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 297. Dorsal view of labial terminal palp showing apical spines.
Scale bar $=100 \mu \mathrm{~m}$.

Fig. 298. Montikola kala, nymph.
Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

rigs. 299-300. Montikola kala, nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 299. Foreleg tarsal claw.
Fig. 300. Gills.

Fig. 301. Atalophlebia kala Harker.
Dorsal view of male genitalia showing penes and forceps.
Reproduction of a drawing from Harker (1954).

Fig. 302. Montikola kala
New collection site, Charity Creek tributary, Mount Baw Baw, Victoria (99021602).
Photo by K.J.Finlay.

Figs. 303-304. Montikola adamus.
Type locality, Frying Pan Raceline tributary, Falls Creek, Victoria (99020505). Photos by A. Slocombe.

305

Fig. 305. Distribution of Montikola adamus.

Figs. 306-308. Montikola adamus, male imago.
Fig. 306. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 307. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 308. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
309

Fig. 309. Montikola adamus, male imago.
Dorsal view of abdomen.
Scale $\mathrm{bar}=1 \mathrm{~nm}$.

Figs. 310-311. Montikola adamus, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 310. Dorsal view of genitalia showing penes and forceps.
Fig. 311. Ventral view of genitalia showing penes.

Figs. 312-315. Montikola adamus, male imago.
Individual from type locality, Frying Pan Raceline tributary, Falls Creek, Victoria (99020505).
Fig. 312. Dorsal view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 313. Dorsal view of penes. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 314. Ventral view of genitalia showing penes and forceps. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 315. Ventral view of penes. Scale bar $=100 \mu \mathrm{~m}$.

Figs. 316-318. Montikola adamus, female imago.
Fig. 316. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 317. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 318. Ventral view of abdomen showing sternites $7-9$. Scale $\operatorname{bar}=500 \mu \mathrm{~m}$.

Figs. 319-320. Montikola adamus, eggs taken from female imago.
Individual from type locality, Frying Pan Raceline tributary, Falls Creek, Victoria (99020505).

Fig. 319. Whole egg. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 320. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.

Fig. 321. Montikola adamus, female nymph. Scale $\mathrm{bar}=1 \mathrm{~mm}$.

Figs. 322-324. Montikola adamus, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 322. Labrum and clypeus.
Fig. 323. Left mandible.
Fig. 324. Right mandible.

Figs. 325-326. Montikola adamus, nymph mouthparts. Scale bars $=200 \mu \mathrm{~m}$.

Fig. 325. Right maxilla.
Fig. 326. Hypopharynx.

327

Fig. 327. Montikola adamus, nymph mouthpart.
Labium. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 328. Montikola adamus, nymph.
Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 329-330. Montikola adamus, nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 329. Foreleg tarsal claw.
Fig. 330. Gills.

Fig. 331. Distribution of the monotypic genus Gemmayaluka.

Fig. 332. Gemmayaluka wiltkorringae.
Type locality, Cement Creek, Mount Donna-Buang, Victoria (98030503).
Photo by K.J.Finlay.

Figs 333-335. Gemmayaluka wiltkorringae, male imago.
Fig. 333. Foreleg tarsal claw. Scale bar $=50 \mu \mathrm{~m}$.
Fig. 334. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 335. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.

Fig. 336 Gemmayaluka wittkorringae, male imago.
Dorsal view of abdomen.
Scate bar $=1 \mathrm{~mm}$.

Figs. 337-338. Gemmayaluka wiltkorringae, male imago. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 337. Dorsal view of penes.
Fig. 338. Ventral view of penes.

Figs. 339-341. Gemmayaluka wiltkorringae, male imago.
Individual from King Parrott Creek, 15km SW of Flowerdale, Victoria (98030501).
Scale bars $=100 \mu \mathrm{~m}$.
Fig. 339. Dorsal view of penes.
Fig. 340. Ventral view of genitalia showing penes and forceps.
Fig. 341 . Ventral view of penes.

Figs. 342-344. Gemmayaluka wiltkorringae, female imago.
Fig. 342. Forewing showing relative size of hindwing. Scale bar $=1 \mathrm{~mm}$.
Fig. 343. Hindwing. Scale bar $=500 \mu \mathrm{~m}$.
Fig. 344. Ventral view of abdomen showing sternites $7-9$. Scale bar $=500 \mu \mathrm{~m}$.

Figs. 345-346. Gemmayaluka wiltkorringae, eggs taken from female imago Individual from type locality, Cement Creek, Mount Donna Buang. Victoria (98050503).

Fig. 345. Whole egg. Scale $\mathrm{bar}=50 \mu \mathrm{~m}$.
Fig. 346. Close up of egg chorion. Scale bar $=10 \mu \mathrm{~m}$.

Fig. 347. Gemmayaluka wiltkorringae, female nymph. Scale bar $=1 \mathrm{~mm}$.

349

Figs. 348-349. Gemmayaluka wiltkorringae, nymph mouthparts.
Fig. 348. Labrum and clypeus. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 349. Denticles on anterior margin of labrum. Scale bar $=50 \mu \mathrm{~m}$.

Figs. 350-351. Gemmayaluka wiltkorringae, nymph mouthparts. Scale bar $=200 \mu \mathrm{~m}$.

Fig. 350. :-eft mandible.
Fig. 351. Right mandible.

Figs. 352-354. Gemmayaluka wiltkorringae, nymph mouthparts.
Fig. 352. Right maxilla. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 353. Terminal palp of maxilla showing apical spine. Scale bar $=100 \mu \mathrm{~m}$.
Fig. 354. Hypopharynx. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 355-356. Gemmayaluka wiltkorringae, nymph mouthparts.
Fig. 355. Labium. Scale bar $=200 \mu \mathrm{~m}$.
Fig. 356. Dorsal view of labial terminal palp showing apical spines. Scale bar $=100 \mu \mathrm{~m}$.

Fig. 357. Gemmayaluka wiltkorringae, nymph.
Foreleg. Scale bar $=200 \mu \mathrm{~m}$.

Figs. 358-359. Gemmayaluka wilkkorringae, nymph. Scale bars $=100 \mu \mathrm{~m}$.

Fig. 358. Foreleg tarsal claw.
Fig. 359. Gills.

Fig. 360. Drainage basin divisions of Victoria as defined by the Australian Water Resources Council (AWRC).

Fig. 361. Location of mayfly collecting sites where environmental data was collected.

Fig. 362. Relationship between the presence of Nousia (Australonousia) fuscá and temperature seasonalify.

Fig. 363. Relationship beiween the presence of Nousia (Australonousia) fusca and mean temperature of the coldest quarter.

Bars show mean values, error bars represent one standard error.

Fig. 364. Proportion of sites with Nousia (Australonousia) fusca present in each landuse category.

Fig. 365. Proportion of sites with Nousia (Australonousia) fusca present in each dominant vegetation category.

Fig. 366. Proporticn of sites with Nousia (Australonousia) fusca present in each substrate heterogeneity category.

Fig. 367. Proportion of sites with Nousia (Austra'onousia) fusca present in each CPOM category.

Fig. 368. Proportion of sites with Nousia (Australonousia) fusca present in each flow category.

Fig. 369. Relationship between the presence of Nousia (Australonousia) nigeli and altitude.

Fig. 370. Relationship between the presence of Nousia (Australonousia) nigeli and water temperature.

Bars show mean values, error bars represent one standard error.

Fig. 371. Relationship between the presence of Nousia (Australonousia) nigeli and slope.

Fig. 372. Relationship between the presence of Nousia (Austraionousia) nigeli and distance from source.

Bars show mean values, error bars represent one standard error.

Fig. 373. Proportion of sites with Nousia (Australonousia) nigeli present in each flow category.

Fig. 374. Proportion of sites with Nousia (Austra/cnousia) nigeli present in each algae category.

Fig. 375. Proportion of sites with Nousia (Australonousia) nigeli present in each macrophyte category.

Fig. 376. Proportion of sites with Nousia (Australonousia) nigeli present in each shade category.
Fig. 377. Proportion of sites with Nousia (Australonousia) nigeli prusent in
each CPOM category.

Proportion of sites with Nousia (Australonousia) nigeli present

378

Fig. 378. Predicted probability of the presence of Nousia (Australonousia) fusca in a logistic model containing the factors altitude, distance from source and the interaction of the two variables.

Fig. 379. Relationship between distance from source and substrate heterogeneity at sites less than 9 km from source.

Fig. 380. Relationship between distance from source and substrate heterogeneity at sites 9 km or more from source.

Fig. 381. Relationship between altitude and CPOM at sites above 500 m .
Fig. 382. Relationship between altitude and CPOM at sites below 500 m .

Fig. 383. Phylogenetic lineages developed for the cool-adapted Leptophlebiidae of southerir South America and related Southern Hemisphere fauna (figure adapted from Pescador and Peters 1980a). Numbers refer to furcations. Australian taxa considered to have affirities with each lineage are added.

Figs. 384-387. Genera that have body and gills fringed with fine setae.
Fig. 384. Jappa sp. "AV3" - body setation.
Fig. 385. Jappa kutera - gill setation.
Fig. 386. Ulmerophlebia sp. - body setation.
Fig. 387. Ulmerophlebia sp. - gill setation.

Figs. 388-389. Labrum and clypeus morphology.
Fig. 388. Atalomicria
Fig. 389. Atalophlebia

Figs. 390-391. Labrum and clypeus morphology.
Fig. 390. Austrophlebioides
Fig. 391. Bidllmena

393

Figs. 392-393. Labrum and clypeus morphology.
Fig. 392. Garinjuga
Fig. 393. Gemmayaluka

Figs 394-395. Labrum and clypeus morphology.
Fig. 394. Jappa
Fig. 395. Kalbaybaria

Figs. 396-397. Labrum and clypeus morphology.
Fig. 396. Kaninga
Fig. 397. Kirrara

Figs. 398-399. Labrum and clypeus morphology.
Fig. 398. Loamaggalangta
Fig. 399. Montikola

Figs. 400-401. Labrum and clypeus morphology.
Fig. 400. Neboissophlebia
Fig. 4012. Nousia (Nousia)

Figs. 402-403. Labrum and clypeus morphology.
Fig. 403. Nousia (Australonousia)
Fig. 404. Nyungara

Figs. 404-405. Labrum and clypeus morphology.
Fig. 404. Thraulophlebia
Fig. 405. Thraulus

Figs. 406-407. Labrum and clypeus morphology.
Fig. 406. Tillyardophlebia
Fig. 407. Ulmerophlebia

408

DORSAL SURFACE

VENTRAL
 SURFACE

Fig. 408. Apical view of Kirrara procera labrum.

Figs. 409-410. Frontal horns of two undescribed species of the genus Jappa.

Fig. 409. Jappa sp. "AV4".
Fig. 410. Jappa sp. "AV3".

Figs. 411-414. Mandible morphology.
Fig. 411. Atalomicria
Fig. 412. Atalophlebia
Fig. 413. Austrophlebioides
Fig. 414. Bibllmena

Figs. 415-418. Mandible morphology.
Fig. 415. Garinjuga
Fig. 4i6. Gemmayaluka
Fig. 417. Jappa
Fig. 418. Kalbaybaria

Figs. 419-422. Mandible morphology.
Fig. 419. Kaninga
Fig. 420. Kirrara
Fig. 421. Loamaggalangta
Fig. 422. Montikola

Figs. 423-426. Mandible morphology.
Fig. 423. Neboissophlebia
Fig. 424. Nousia (Nousia)
Fig. 425. Nousia (Australonousia)
Fig. 426. Nyungara

Figs. 427-430. Mandible morphology.
Fig. 427. Thraulophlebia
Fig. 428. Thraulus
Fig. 429. Tillyardophlebia
Fig. 430. Ulmerophlebia

Figs. 431-434. Mandible prosthecal tuft morphology.
Fig. 431. Atalomicria
Fig. 432. Atalopilebia
Fig. 433. Austrophlebioides
Fig. 433. Bibllmena

Figs. 435-438. Mandible prosthecal tuft morphology.
Fig. 435. Garinjuga
Fig. 436. Gemmayaluka
Fig. 437. Jappa
Fig. 438. Kalbaybaria

Figs. 439-442. Mandible prosthecal tuft morphology.
Fig. 439. Kaninga
Fig. 440. Kirrara
Fig. 441. Loamaggalangta
Fig. 442. Montikola

Figs. 443-446. Mandible prosthecal tuft morphology.
Fig. 443. Neboissophlebia
Fig. 444. Nousia (Nousia)
Fig. 445. Nousia (Australonousia)
Fig. 446. Nyungara

Figs. 447-450. Mandible prosthecal tuft morphology.
Fig. 447. Thraulophlebia
Fig. 448. Thraulus
Fig. 449. Tillyardophlebia
Fig. 450. Ulmerophlebia

Figs. 451-454. Right mandible outer incisor morphology.
Fig. 451. Atalomicria
Fig. 452. Atalophlebia
Fig. 453. Austrophlebioides
Fig. 454. Bibllymena

Figs. 455-458. Right mandible outer incisor morphology.
Fig. 455. Garinjuga
Fig. 456. Gemmayaluka
Fig. 457. Jappa
Fig. 458. Kalbaybaria

Figs. 459-462. Right mandible outer incisor morphology.
Fig. 459. Kaninga
Fig. 460. Kirrara
Fig. 461. Loamaggalangta
Fig. 462. Montikola

Figs. 463-466. Right mandible outer incisor morphology.
Fig. 463. Neboissophlebia
Fig. 464. Nousia (Nousia)
Fig. 465. Nousia (Australonousia)
Fig. 466. Nyungara

Figs. 467-470. Right mandible outer incisor morphology.
Fig. 467. Thraulophlebia
Fig. 468. Thraulus
Fig. 469. Tillyardophlebia
Fig. 470. Ulmerophlebia

Figs. 471-474. Maxilla morphology.
Fig. 471. Atalomicria
Fig. 472. Atalophlebia
Fig. 473. Austrophlebioides
Fig. 474. Bid?mena

Figs. 475-478. Maxilla morphology.
Fig. 475. Garinjuga
Fig. 476. Gemmayaluka
Fig. 477. Jappa
Fig. 478. Kalbaybaria

Figs. 479-482. Maxilla morphology.
Fig. 479. Kaninga
Fig. 480. Kirrara
Fig. 481. Loamaggalangta
Fig. 482. Montikola

Figs. 483-486. Maxilla morphology.
Fig. 483. Neboissophlebia
Fig. 484. Nousia (Nousia)
Fig. 485. Nousia (Australonousia)
Fig. 486. Nyungara

Figs. 487-490. Maxilla morphology.
Fig. 487. Thraulophlebia
Fig. 488. Thraulus
Fig. 489. Tillyardophlebia
Fig. 490. Ulmerophlebia

492

Figs. 491-492. Labium morphology.
Fig. 491. Atalomicria
Fig. 492. Atalophlebia

Figs. 493-494. Labium morphology.
Fig. 493. Austrophlebioides
Fig. 494. Bitllimena

Figs. 495-496. Labium morphology.
Fig. 495. Garinjuga
Fig. 496. Gemmayaluka

Figs. 497-498. Labium morphology.
Fig. 497. Jappa
Fig. 498. Kalbaybaria

Figs. 499-500. Labium morphology.
Fig. 499. Kaninga
Fig. 500. Kirrara

Figs. 501-502. Labium morphology.
Fig. 501. Loamaggalangta
Fig. 502. Montikola

504

Figs. 503-504. Labium morphology.
Fig. 503. Neboissophlebia
Fig. 504. Nousia (Nousia)

506

Figs. 505-506. Labium morphology.
Fig. 505. Nousia (Australonousia)
Fig. 506. Nyungara

Figs. 507-508. Labium morphology.
Fig. 507. Thraulophlebia
Fig. 508. Thraulus

Figs. 509-510. Labium morphology.
Fig. 509. Tillyardophlebia
Fig. 510. Ulmerophlebia

511

513

512

514

Figs. 511-514. Labial terminal palp morphology.
Fig. 511. Atalomicria
Fig. 512. Atalophlebia
Fig. 513. Austrophlebioides
Fig. 514. Bithlmena

515

517

516

518

Figs. 515-518. Labial terminal peto morphology.
Fig. 515. Garinjuga
Fig. 5i6. Semmayaluka
Fig. 517. Jappa
Fig. 518. Kalbaybaria

Figs. 519-522. Labial terminal palp morphology.
Fig. 519. Kaninga
Fig. 520. Kirrara
Fig. 521. Loamaggalangta
Fig. 522. Montikola

523

525

524

526

Figs. 523-526. Labial terminal palp morphology.
Fig. 523. Neboissophlebia
Fig. 524. Nousia (Nousia)
Fig. 525. Nousia (Australonousia)
Fig. 526. Nyungara

Figs. 527-530. Labial terminal palp morphology.
Fig. 527. Thraulophlebia
Fig. 528. Thraulus
Fig. 529. Tillyardophlebia
Fig. 530. Ulmerophlebia

531

532

Figs. 531-532. Hypopharynx morphology.
Fig. 531. Atalomicria
Fig. 532. Atalophiebia

533

534

Figs. 533-534. Hypopharynx morphology.
Fig. 533. Austrophlebioides
Fig. 534. Bit 亿unena

536

Figs. 535-536. Hypopharynx morphology.
Fig. 535. Garinjuga
Fig. 536. Gemmayaluka

538

Figs. 537-538. Hypopharynx morphology.
Fig. 537. Jappa
Fig. 538. Kalbaybaria

540

Figs. 539-540. Hypopinarynx morphology.
Fig. 539. Kaninga
Fig. 540. Kirrara

541

542

Figs. 541-542. Hypopharynx morphology.
Fig. 541. Loamaggalangta
Fig. 542. Moritikola

543

544

Figs. 543-544. Hypopharynx morphology.
Fig. 543. Neboissophlebia
Fig. 544. Nousia (Nousia)

545

546

Figs. 545-546. Hypopharynx morphology.
Fig. 545. Nousia (Australonousia)
Fig. 546. Nyungara

547

548

Figs. 547-548. Hypopharynx morphology.
Fig. 547. Thraulophlebia
Fig. 548. Thraulus

549

550

Figs. 549-550. Hypopharynx morphology.
Fig. 549. Tillyardophlebia
Fig. 550. Ulmerophlebia

551

553

552

554

Figs. 551-554. Nymph tarsal claw morphology.
Fig. 551. Atalomicria
Fig. 552. Atalophlebia
Fig. 553. Austrophlebioides
Fig. 554. Bibllmena

Figs. 555-558. Nymph tarsal claw morphology.
Fig. 555. Garinjuga
Fig. 556. Gemmayaluka
Fig. 557. Jappa
Fig. 558. Kalbaybaria

Figs. 559-562. Nymph tarsal claw morphology.
Fig. 559. Kaninga
Fig. 560. Kirrara
Fig. 561. Loamaggalangta
Fig. 562. Montikola

Figs. 563-566. Nymph tarsal claw morphology.
Fig. 563. Neboissophlebia
Fig. 564. Nousia (Nousia)
Fig. 565. Nousia (Australonousia)
Fig. 566. Nyungara

Figs. 567-570. Nymph tarsal claw morphology.
Fig. 567. Thraulophlebia
Fig. 568. Thraulus
Fig. 569. Tillyardophlebia
Fig. 570. Ulmerophlebia

571

572

Figs. 571-572. Male imago forewing showing relative size of hindwing.
Fig. 571. Atalomicria
Fig. 572. Atalophlebia

573

574

Figs. 573-574. Male imago forewing showing relative size of hindwing.
Fig. 573. Austrophlebioides
Fig. 574. Bithluma

575

576

Figs. 575-576. Male imago forewing showing relative size of hindwing.
Fig. 575. Garinjuga
Fig. 576. Gemmayaluka

577

Figs. 577-578. Male imago forewing showing relative size of hindwing.
Fig. 577. Jappa
Fig. 576. Kalbaybaria

579

580

Figs. 579-580. Male imago forewing showing relative size of hindwing.
Fig. 579. Kaninga
Fig. 580. Kirrara

581

582

Figs. 581-582. Male imago forewing showing relative size of hindwing.
Fig. 581. Loamaggalangta
Fig. 582. Montikola

583

584

Figs. 583-584. Male imago forewing showing relative size of hindwing.
Fig. 583. Neboissophlebia
Fig. 584. Nousia (Nousia)

585

586

Figs. 585-586. Male imago forewing showing relative size of hindwing.
Fig. 585. Nousia (Australonousia)
Fig. 586. Nyungara

587

588

Figs. 587-588. Male imago forewing showing relative size of hindwing.
Fig. 587. Thraulophlebia
Fig. 588. Thraulus

589

590

Figs. 589-590. Male imago forewing showing relative size of hindwing.
Fig. 589. Tillyardophlebia
Fig. 590. Ulmerophlebia

Figs. 591-594. Male imago hindwing.
Fig. 591. Atalomicria
Fig. 592. Atalophlebia
Fig. 593. Austrophlebioides
Fig. 594. Bib 1 lmena

Figs. 595-598. Male imago hindwing.
Fig. 595. Garinjuga
Fig. 596. Gemmayaluka
Fig. 597. Jappa
Fig. 598. Kalbaybaria

Figs. 599-602. Male imago hindwing.
Fig. 599. Kaninga
Fig. 600. Kirrara
Fig. 601. Loamaggalangta
Fig. 602. Montikola

Figs. 603-606. Male imago hindwing.
Fig. 603. Neboissophlebia
Fig. 604. Nousia (Nousia)
Fig. 605. Nousia (Australonousia)
Fig. 606. Nyungara

Figs. 607-610. Male imago hindwing.
Fig. 607. Thraulophlebia
Fig. 608. Thrauius
Fig. 609. Tillyardophlebia
Fig. 610. Ulmerophlebia

611

613

Figs. 611-614. Female imago sternum nine.
Fig. 611. Atalomicria Fig. 612. Atalophlebia Fig. 613. Austrophlebioides Fig. 614. Bithlumena

Figs. 615-618. Female imago sternum nine.
Fig. 615. Garinjuga
Fig. 616. Gemmayaluka
Fig. 617. Jappa
Fig. 618. Kalbaybaria

Figs. 619-622. Female imago sternum nine.
Fig. 619. Kaninga
Fig. 620. Kirrara
Fig. 621. Loamaggalangta
Fig. 622. Montikola

Figs. 623-626. Female imago sternum nine.
Fig. 623. Neboissophlebia
Fig. 624. Nousia (Nousia)
Fig. 625. Nousia (Australonousia)
Fig. 626. Nyungara

Figs. 627-630. Female imago sternum nine.
Fig. 627. Thraulophlebia
Fig. 628. Thraulus
Fig. 629. Tillyardophlebia
Fig. 630. U/merophlebia

Alternative Fig. 631. Strict consensus tree of the relationships of the Australian Leptophlebiidae. Letters refer to clades. Circles refer to mapped character states where \bullet apomorphy and $\mathrm{O}=$ homoplasy (convergence, reversals). Numbers above circles refer to characters listed in Table 33, numbers below refer to the character state.

Fig. 631. Strict consensus tree of the relationships of the Australian Leptophlebiidae. Letter refer to clades. Circles refer to mapped character states where $\bullet=$ apomorphy and $O=$ homoplasy (convergence, reversals). Numbers above circles refer to characters listed in Table 33, number below to the character state where $0=$ plesiomorphic condition, $1=$ apomorphic condition, 2 = represents a multi-state apomorphy.

Fig. 632: Alternative strict consensus tree of the relationships of the Australian Leptophlebiidae, without the inclusion of Thraulus, which is considered to have Northern Hemisphere origins. Only clade K of original tree (Fig. 631) shown.

[^0]: - Part of this chapter has already been published in the combined proceedings of the IXth International Conference on Ephemeroptera and the Xillth International Symposium of Plecoptera Trends in Research in Ephemeroptera and Plecoptera (see Finlay 2001, Appendix 1)

[^1]: "With ho! such bugs and goblins in my life"

[^2]: Eimail: kyta.linkey en sci,momashedu.au

